xref: /spdk/lib/nvmf/tcp.c (revision 12fbe739a31b09aff0d05f354d4f3bbef99afc55)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022, 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 
19 #include "spdk_internal/assert.h"
20 #include "spdk_internal/nvme_tcp.h"
21 #include "spdk_internal/sock.h"
22 
23 #include "nvmf_internal.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
28 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
29 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
30 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
31 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
32 
33 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
34 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
35 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
36 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
37 
38 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
39 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
41 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
42 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
43 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
44 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
45 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
46 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
47 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
48 
49 #define TCP_PSK_INVALID_PERMISSIONS 0177
50 
51 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
52 static bool g_tls_log = false;
53 
54 /* spdk nvmf related structure */
55 enum spdk_nvmf_tcp_req_state {
56 
57 	/* The request is not currently in use */
58 	TCP_REQUEST_STATE_FREE = 0,
59 
60 	/* Initial state when request first received */
61 	TCP_REQUEST_STATE_NEW = 1,
62 
63 	/* The request is queued until a data buffer is available. */
64 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
65 
66 	/* The request is waiting for zcopy_start to finish */
67 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
68 
69 	/* The request has received a zero-copy buffer */
70 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
71 
72 	/* The request is currently transferring data from the host to the controller. */
73 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
74 
75 	/* The request is waiting for the R2T send acknowledgement. */
76 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
77 
78 	/* The request is ready to execute at the block device */
79 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
80 
81 	/* The request is currently executing at the block device */
82 	TCP_REQUEST_STATE_EXECUTING = 8,
83 
84 	/* The request is waiting for zcopy buffers to be committed */
85 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
86 
87 	/* The request finished executing at the block device */
88 	TCP_REQUEST_STATE_EXECUTED = 10,
89 
90 	/* The request is ready to send a completion */
91 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
92 
93 	/* The request is currently transferring final pdus from the controller to the host. */
94 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
95 
96 	/* The request is waiting for zcopy buffers to be released (without committing) */
97 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
98 
99 	/* The request completed and can be marked free. */
100 	TCP_REQUEST_STATE_COMPLETED = 14,
101 
102 	/* Terminator */
103 	TCP_REQUEST_NUM_STATES,
104 };
105 
106 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
107 	"Invalid PDU Header Field",
108 	"PDU Sequence Error",
109 	"Header Digiest Error",
110 	"Data Transfer Out of Range",
111 	"R2T Limit Exceeded",
112 	"Unsupported parameter",
113 };
114 
115 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
116 {
117 	spdk_trace_register_owner(OWNER_NVMF_TCP, 't');
118 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
119 	spdk_trace_register_description("TCP_REQ_NEW",
120 					TRACE_TCP_REQUEST_STATE_NEW,
121 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
122 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
123 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
124 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
125 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
126 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
127 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
128 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
129 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
130 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
131 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
132 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
133 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
134 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
135 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
136 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
137 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
138 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
139 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
140 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
141 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
142 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
143 	spdk_trace_register_description("TCP_REQ_EXECUTING",
144 					TRACE_TCP_REQUEST_STATE_EXECUTING,
145 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
146 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
147 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
148 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
149 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
150 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
151 	spdk_trace_register_description("TCP_REQ_EXECUTED",
152 					TRACE_TCP_REQUEST_STATE_EXECUTED,
153 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
154 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
155 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
156 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
157 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
158 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
159 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
160 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
161 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
162 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
163 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
164 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
165 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
166 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
167 	spdk_trace_register_description("TCP_REQ_COMPLETED",
168 					TRACE_TCP_REQUEST_STATE_COMPLETED,
169 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
170 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
171 	spdk_trace_register_description("TCP_WRITE_START",
172 					TRACE_TCP_FLUSH_WRITEBUF_START,
173 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
174 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
175 	spdk_trace_register_description("TCP_WRITE_DONE",
176 					TRACE_TCP_FLUSH_WRITEBUF_DONE,
177 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
178 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
179 	spdk_trace_register_description("TCP_READ_DONE",
180 					TRACE_TCP_READ_FROM_SOCKET_DONE,
181 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
182 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
183 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
184 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
185 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
186 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
187 
188 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
189 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
190 					SPDK_TRACE_ARG_TYPE_INT, "");
191 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
192 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
193 					SPDK_TRACE_ARG_TYPE_INT, "");
194 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
195 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
196 					SPDK_TRACE_ARG_TYPE_INT, "state");
197 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
198 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
199 					SPDK_TRACE_ARG_TYPE_INT, "");
200 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
201 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
202 					SPDK_TRACE_ARG_TYPE_INT, "");
203 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
204 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
205 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
206 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
207 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
208 					SPDK_TRACE_ARG_TYPE_INT, "state");
209 
210 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
211 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
212 }
213 
214 struct spdk_nvmf_tcp_req  {
215 	struct spdk_nvmf_request		req;
216 	struct spdk_nvme_cpl			rsp;
217 	struct spdk_nvme_cmd			cmd;
218 
219 	/* A PDU that can be used for sending responses. This is
220 	 * not the incoming PDU! */
221 	struct nvme_tcp_pdu			*pdu;
222 
223 	/* In-capsule data buffer */
224 	uint8_t					*buf;
225 
226 	struct spdk_nvmf_tcp_req		*fused_pair;
227 
228 	/*
229 	 * The PDU for a request may be used multiple times in serial over
230 	 * the request's lifetime. For example, first to send an R2T, then
231 	 * to send a completion. To catch mistakes where the PDU is used
232 	 * twice at the same time, add a debug flag here for init/fini.
233 	 */
234 	bool					pdu_in_use;
235 	bool					has_in_capsule_data;
236 	bool					fused_failed;
237 
238 	/* transfer_tag */
239 	uint16_t				ttag;
240 
241 	enum spdk_nvmf_tcp_req_state		state;
242 
243 	/*
244 	 * h2c_offset is used when we receive the h2c_data PDU.
245 	 */
246 	uint32_t				h2c_offset;
247 
248 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
249 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
250 };
251 
252 struct spdk_nvmf_tcp_qpair {
253 	struct spdk_nvmf_qpair			qpair;
254 	struct spdk_nvmf_tcp_poll_group		*group;
255 	struct spdk_sock			*sock;
256 
257 	enum nvme_tcp_pdu_recv_state		recv_state;
258 	enum nvme_tcp_qpair_state		state;
259 
260 	/* PDU being actively received */
261 	struct nvme_tcp_pdu			*pdu_in_progress;
262 
263 	struct spdk_nvmf_tcp_req		*fused_first;
264 
265 	/* Queues to track the requests in all states */
266 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
267 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
268 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
269 	/* Number of working pdus */
270 	uint32_t				tcp_pdu_working_count;
271 
272 	/* Number of requests in each state */
273 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
274 
275 	uint8_t					cpda;
276 
277 	bool					host_hdgst_enable;
278 	bool					host_ddgst_enable;
279 
280 	/* This is a spare PDU used for sending special management
281 	 * operations. Primarily, this is used for the initial
282 	 * connection response and c2h termination request. */
283 	struct nvme_tcp_pdu			*mgmt_pdu;
284 
285 	/* Arrays of in-capsule buffers, requests, and pdus.
286 	 * Each array is 'resource_count' number of elements */
287 	void					*bufs;
288 	struct spdk_nvmf_tcp_req		*reqs;
289 	struct nvme_tcp_pdu			*pdus;
290 	uint32_t				resource_count;
291 	uint32_t				recv_buf_size;
292 
293 	struct spdk_nvmf_tcp_port		*port;
294 
295 	/* IP address */
296 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
297 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
298 
299 	/* IP port */
300 	uint16_t				initiator_port;
301 	uint16_t				target_port;
302 
303 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
304 	 *  not close the connection.
305 	 */
306 	struct spdk_poller			*timeout_poller;
307 
308 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
309 	void					*fini_cb_arg;
310 
311 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
312 };
313 
314 struct spdk_nvmf_tcp_control_msg {
315 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
316 };
317 
318 struct spdk_nvmf_tcp_control_msg_list {
319 	void *msg_buf;
320 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
321 };
322 
323 struct spdk_nvmf_tcp_poll_group {
324 	struct spdk_nvmf_transport_poll_group	group;
325 	struct spdk_sock_group			*sock_group;
326 
327 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
328 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
329 
330 	struct spdk_io_channel			*accel_channel;
331 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
332 
333 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
334 };
335 
336 struct spdk_nvmf_tcp_port {
337 	const struct spdk_nvme_transport_id	*trid;
338 	struct spdk_sock			*listen_sock;
339 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
340 };
341 
342 struct tcp_transport_opts {
343 	bool		c2h_success;
344 	uint16_t	control_msg_num;
345 	uint32_t	sock_priority;
346 };
347 
348 struct tcp_psk_entry {
349 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
350 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
351 	char				psk_identity[NVMF_PSK_IDENTITY_LEN];
352 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
353 
354 	/* Original path saved to emit SPDK configuration via "save_config". */
355 	char				psk_path[PATH_MAX];
356 	uint32_t			psk_size;
357 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
358 	TAILQ_ENTRY(tcp_psk_entry)	link;
359 };
360 
361 struct spdk_nvmf_tcp_transport {
362 	struct spdk_nvmf_transport		transport;
363 	struct tcp_transport_opts               tcp_opts;
364 
365 	struct spdk_nvmf_tcp_poll_group		*next_pg;
366 
367 	struct spdk_poller			*accept_poller;
368 
369 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
370 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
371 
372 	TAILQ_HEAD(, tcp_psk_entry)		psks;
373 };
374 
375 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
376 	{
377 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
378 		spdk_json_decode_bool, true
379 	},
380 	{
381 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
382 		spdk_json_decode_uint16, true
383 	},
384 	{
385 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
386 		spdk_json_decode_uint32, true
387 	},
388 };
389 
390 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
391 				 struct spdk_nvmf_tcp_req *tcp_req);
392 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
393 
394 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
395 				    struct spdk_nvmf_tcp_req *tcp_req);
396 
397 static inline void
398 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
399 		       enum spdk_nvmf_tcp_req_state state)
400 {
401 	struct spdk_nvmf_qpair *qpair;
402 	struct spdk_nvmf_tcp_qpair *tqpair;
403 
404 	qpair = tcp_req->req.qpair;
405 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
406 
407 	assert(tqpair->state_cntr[tcp_req->state] > 0);
408 	tqpair->state_cntr[tcp_req->state]--;
409 	tqpair->state_cntr[state]++;
410 
411 	tcp_req->state = state;
412 }
413 
414 static inline struct nvme_tcp_pdu *
415 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
416 {
417 	assert(tcp_req->pdu_in_use == false);
418 
419 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
420 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
421 
422 	return tcp_req->pdu;
423 }
424 
425 static struct spdk_nvmf_tcp_req *
426 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
427 {
428 	struct spdk_nvmf_tcp_req *tcp_req;
429 
430 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
431 	if (spdk_unlikely(!tcp_req)) {
432 		return NULL;
433 	}
434 
435 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
436 	tcp_req->h2c_offset = 0;
437 	tcp_req->has_in_capsule_data = false;
438 	tcp_req->req.dif_enabled = false;
439 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
440 
441 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
442 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
443 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
444 	return tcp_req;
445 }
446 
447 static inline void
448 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
449 {
450 	assert(!tcp_req->pdu_in_use);
451 
452 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
453 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
454 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
455 }
456 
457 static void
458 nvmf_tcp_request_free(void *cb_arg)
459 {
460 	struct spdk_nvmf_tcp_transport *ttransport;
461 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
462 
463 	assert(tcp_req != NULL);
464 
465 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
466 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
467 				      struct spdk_nvmf_tcp_transport, transport);
468 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
469 	nvmf_tcp_req_process(ttransport, tcp_req);
470 }
471 
472 static int
473 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
474 {
475 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
476 
477 	nvmf_tcp_request_free(tcp_req);
478 
479 	return 0;
480 }
481 
482 static void
483 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
484 			   enum spdk_nvmf_tcp_req_state state)
485 {
486 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
487 
488 	assert(state != TCP_REQUEST_STATE_FREE);
489 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
490 		if (state == tcp_req->state) {
491 			nvmf_tcp_request_free(tcp_req);
492 		}
493 	}
494 }
495 
496 static void
497 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
498 {
499 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
500 
501 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
502 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
503 
504 	/* Wipe the requests waiting for buffer from the global list */
505 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
506 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
507 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
508 				      spdk_nvmf_request, buf_link);
509 		}
510 	}
511 
512 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
513 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
514 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
515 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
516 }
517 
518 static void
519 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
520 {
521 	int i;
522 	struct spdk_nvmf_tcp_req *tcp_req;
523 
524 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
525 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
526 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
527 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
528 			if ((int)tcp_req->state == i) {
529 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
530 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
531 			}
532 		}
533 	}
534 }
535 
536 static void
537 _nvmf_tcp_qpair_destroy(void *_tqpair)
538 {
539 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
540 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
541 	void *cb_arg = tqpair->fini_cb_arg;
542 	int err = 0;
543 
544 	spdk_trace_record(TRACE_TCP_QP_DESTROY, 0, 0, (uintptr_t)tqpair);
545 
546 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
547 
548 	err = spdk_sock_close(&tqpair->sock);
549 	assert(err == 0);
550 	nvmf_tcp_cleanup_all_states(tqpair);
551 
552 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
553 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
554 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
555 			    tqpair->resource_count);
556 		err++;
557 	}
558 
559 	if (err > 0) {
560 		nvmf_tcp_dump_qpair_req_contents(tqpair);
561 	}
562 
563 	/* The timeout poller might still be registered here if we close the qpair before host
564 	 * terminates the connection.
565 	 */
566 	spdk_poller_unregister(&tqpair->timeout_poller);
567 	spdk_dma_free(tqpair->pdus);
568 	free(tqpair->reqs);
569 	spdk_free(tqpair->bufs);
570 	free(tqpair);
571 
572 	if (cb_fn != NULL) {
573 		cb_fn(cb_arg);
574 	}
575 
576 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
577 }
578 
579 static void
580 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
581 {
582 	/* Delay the destruction to make sure it isn't performed from the context of a sock
583 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
584 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
585 	 */
586 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
587 }
588 
589 static void
590 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
591 {
592 	struct spdk_nvmf_tcp_transport	*ttransport;
593 	assert(w != NULL);
594 
595 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
596 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
597 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
598 }
599 
600 static int
601 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
602 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
603 {
604 	struct spdk_nvmf_tcp_transport	*ttransport;
605 	struct tcp_psk_entry *entry, *tmp;
606 
607 	assert(transport != NULL);
608 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
609 
610 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
611 		TAILQ_REMOVE(&ttransport->psks, entry, link);
612 		free(entry);
613 	}
614 
615 	spdk_poller_unregister(&ttransport->accept_poller);
616 	free(ttransport);
617 
618 	if (cb_fn) {
619 		cb_fn(cb_arg);
620 	}
621 	return 0;
622 }
623 
624 static int nvmf_tcp_accept(void *ctx);
625 
626 static struct spdk_nvmf_transport *
627 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
628 {
629 	struct spdk_nvmf_tcp_transport *ttransport;
630 	uint32_t sge_count;
631 	uint32_t min_shared_buffers;
632 
633 	ttransport = calloc(1, sizeof(*ttransport));
634 	if (!ttransport) {
635 		return NULL;
636 	}
637 
638 	TAILQ_INIT(&ttransport->ports);
639 	TAILQ_INIT(&ttransport->poll_groups);
640 	TAILQ_INIT(&ttransport->psks);
641 
642 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
643 
644 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
645 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
646 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
647 	if (opts->transport_specific != NULL &&
648 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
649 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
650 					    &ttransport->tcp_opts)) {
651 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
652 		free(ttransport);
653 		return NULL;
654 	}
655 
656 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
657 
658 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
659 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
660 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
661 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
662 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
663 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
664 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n",
665 		     opts->max_queue_depth,
666 		     opts->max_io_size,
667 		     opts->max_qpairs_per_ctrlr - 1,
668 		     opts->io_unit_size,
669 		     opts->in_capsule_data_size,
670 		     opts->max_aq_depth,
671 		     opts->num_shared_buffers,
672 		     ttransport->tcp_opts.c2h_success,
673 		     opts->dif_insert_or_strip,
674 		     ttransport->tcp_opts.sock_priority,
675 		     opts->abort_timeout_sec,
676 		     ttransport->tcp_opts.control_msg_num);
677 
678 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
679 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
680 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
681 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
682 		free(ttransport);
683 		return NULL;
684 	}
685 
686 	if (ttransport->tcp_opts.control_msg_num == 0 &&
687 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
688 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
689 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
690 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
691 	}
692 
693 	/* I/O unit size cannot be larger than max I/O size */
694 	if (opts->io_unit_size > opts->max_io_size) {
695 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
696 			     opts->io_unit_size, opts->max_io_size);
697 		opts->io_unit_size = opts->max_io_size;
698 	}
699 
700 	/* In capsule data size cannot be larger than max I/O size */
701 	if (opts->in_capsule_data_size > opts->max_io_size) {
702 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
703 			     opts->io_unit_size, opts->max_io_size);
704 		opts->in_capsule_data_size = opts->max_io_size;
705 	}
706 
707 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
708 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
709 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
710 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
711 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
712 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
713 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
714 	}
715 
716 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
717 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
718 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
719 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
720 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
721 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
722 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
723 	}
724 
725 	sge_count = opts->max_io_size / opts->io_unit_size;
726 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
727 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
728 		free(ttransport);
729 		return NULL;
730 	}
731 
732 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
733 	if (opts->buf_cache_size < UINT32_MAX) {
734 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
735 		if (min_shared_buffers > opts->num_shared_buffers) {
736 			SPDK_ERRLOG("There are not enough buffers to satisfy "
737 				    "per-poll group caches for each thread. (%" PRIu32 ") "
738 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
739 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
740 			free(ttransport);
741 			return NULL;
742 		}
743 	}
744 
745 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
746 				    opts->acceptor_poll_rate);
747 	if (!ttransport->accept_poller) {
748 		free(ttransport);
749 		return NULL;
750 	}
751 
752 	return &ttransport->transport;
753 }
754 
755 static int
756 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
757 {
758 	unsigned long long ull;
759 	char *end = NULL;
760 
761 	ull = strtoull(trsvcid, &end, 10);
762 	if (end == NULL || end == trsvcid || *end != '\0') {
763 		return -1;
764 	}
765 
766 	/* Valid TCP/IP port numbers are in [0, 65535] */
767 	if (ull > 65535) {
768 		return -1;
769 	}
770 
771 	return (int)ull;
772 }
773 
774 /**
775  * Canonicalize a listen address trid.
776  */
777 static int
778 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
779 			   const struct spdk_nvme_transport_id *trid)
780 {
781 	int trsvcid_int;
782 
783 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
784 	if (trsvcid_int < 0) {
785 		return -EINVAL;
786 	}
787 
788 	memset(canon_trid, 0, sizeof(*canon_trid));
789 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
790 	canon_trid->adrfam = trid->adrfam;
791 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
792 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
793 
794 	return 0;
795 }
796 
797 /**
798  * Find an existing listening port.
799  */
800 static struct spdk_nvmf_tcp_port *
801 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
802 		   const struct spdk_nvme_transport_id *trid)
803 {
804 	struct spdk_nvme_transport_id canon_trid;
805 	struct spdk_nvmf_tcp_port *port;
806 
807 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
808 		return NULL;
809 	}
810 
811 	TAILQ_FOREACH(port, &ttransport->ports, link) {
812 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
813 			return port;
814 		}
815 	}
816 
817 	return NULL;
818 }
819 
820 static int
821 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *psk_identity,
822 		 void *get_key_ctx)
823 {
824 	struct tcp_psk_entry *entry;
825 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
826 	size_t psk_len;
827 	int rc;
828 
829 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
830 		if (strcmp(psk_identity, entry->psk_identity) != 0) {
831 			continue;
832 		}
833 
834 		psk_len = entry->psk_size;
835 		if ((size_t)out_len < psk_len) {
836 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
837 				    out_len, psk_len);
838 			return -ENOBUFS;
839 		}
840 
841 		/* Convert PSK to the TLS PSK format. */
842 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, psk_identity, out, out_len,
843 					     entry->tls_cipher_suite);
844 		if (rc < 0) {
845 			SPDK_ERRLOG("Could not generate TLS PSK\n");
846 		}
847 
848 		switch (entry->tls_cipher_suite) {
849 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
850 			*cipher = "TLS_AES_128_GCM_SHA256";
851 			break;
852 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
853 			*cipher = "TLS_AES_256_GCM_SHA384";
854 			break;
855 		default:
856 			*cipher = NULL;
857 			return -ENOTSUP;
858 		}
859 
860 		return rc;
861 	}
862 
863 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", psk_identity);
864 
865 	return -EINVAL;
866 }
867 
868 static int
869 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
870 		struct spdk_nvmf_listen_opts *listen_opts)
871 {
872 	struct spdk_nvmf_tcp_transport *ttransport;
873 	struct spdk_nvmf_tcp_port *port;
874 	int trsvcid_int;
875 	uint8_t adrfam;
876 	const char *sock_impl_name;
877 	struct spdk_sock_impl_opts impl_opts;
878 	size_t impl_opts_size = sizeof(impl_opts);
879 	struct spdk_sock_opts opts;
880 
881 	if (!strlen(trid->trsvcid)) {
882 		SPDK_ERRLOG("Service id is required\n");
883 		return -EINVAL;
884 	}
885 
886 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
887 
888 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
889 	if (trsvcid_int < 0) {
890 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
891 		return -EINVAL;
892 	}
893 
894 	port = calloc(1, sizeof(*port));
895 	if (!port) {
896 		SPDK_ERRLOG("Port allocation failed\n");
897 		return -ENOMEM;
898 	}
899 
900 	port->trid = trid;
901 
902 	sock_impl_name = NULL;
903 
904 	opts.opts_size = sizeof(opts);
905 	spdk_sock_get_default_opts(&opts);
906 	opts.priority = ttransport->tcp_opts.sock_priority;
907 	if (listen_opts->secure_channel) {
908 		if (!g_tls_log) {
909 			SPDK_NOTICELOG("TLS support is considered experimental\n");
910 			g_tls_log = true;
911 		}
912 		sock_impl_name = "ssl";
913 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
914 		impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
915 		impl_opts.get_key = tcp_sock_get_key;
916 		impl_opts.get_key_ctx = ttransport;
917 		impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
918 		opts.impl_opts = &impl_opts;
919 		opts.impl_opts_size = sizeof(impl_opts);
920 	}
921 
922 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
923 			    sock_impl_name, &opts);
924 	if (port->listen_sock == NULL) {
925 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
926 			    trid->traddr, trsvcid_int,
927 			    spdk_strerror(errno), errno);
928 		free(port);
929 		return -errno;
930 	}
931 
932 	if (spdk_sock_is_ipv4(port->listen_sock)) {
933 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
934 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
935 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
936 	} else {
937 		SPDK_ERRLOG("Unhandled socket type\n");
938 		adrfam = 0;
939 	}
940 
941 	if (adrfam != trid->adrfam) {
942 		SPDK_ERRLOG("Socket address family mismatch\n");
943 		spdk_sock_close(&port->listen_sock);
944 		free(port);
945 		return -EINVAL;
946 	}
947 
948 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
949 		       trid->traddr, trid->trsvcid);
950 
951 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
952 	return 0;
953 }
954 
955 static void
956 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
957 		     const struct spdk_nvme_transport_id *trid)
958 {
959 	struct spdk_nvmf_tcp_transport *ttransport;
960 	struct spdk_nvmf_tcp_port *port;
961 
962 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
963 
964 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
965 		      trid->traddr, trid->trsvcid);
966 
967 	port = nvmf_tcp_find_port(ttransport, trid);
968 	if (port) {
969 		TAILQ_REMOVE(&ttransport->ports, port, link);
970 		spdk_sock_close(&port->listen_sock);
971 		free(port);
972 	}
973 }
974 
975 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
976 		enum nvme_tcp_pdu_recv_state state);
977 
978 static void
979 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
980 {
981 	tqpair->state = state;
982 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
983 			  tqpair->state);
984 }
985 
986 static void
987 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
988 {
989 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
990 
991 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, 0, 0, (uintptr_t)tqpair);
992 
993 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
994 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
995 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
996 		spdk_poller_unregister(&tqpair->timeout_poller);
997 
998 		/* This will end up calling nvmf_tcp_close_qpair */
999 		spdk_nvmf_qpair_disconnect(&tqpair->qpair, NULL, NULL);
1000 	}
1001 }
1002 
1003 static void
1004 _mgmt_pdu_write_done(void *_tqpair, int err)
1005 {
1006 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1007 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1008 
1009 	if (spdk_unlikely(err != 0)) {
1010 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1011 		return;
1012 	}
1013 
1014 	assert(pdu->cb_fn != NULL);
1015 	pdu->cb_fn(pdu->cb_arg);
1016 }
1017 
1018 static void
1019 _req_pdu_write_done(void *req, int err)
1020 {
1021 	struct spdk_nvmf_tcp_req *tcp_req = req;
1022 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1023 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1024 
1025 	assert(tcp_req->pdu_in_use);
1026 	tcp_req->pdu_in_use = false;
1027 
1028 	/* If the request is in a completed state, we're waiting for write completion to free it */
1029 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1030 		nvmf_tcp_request_free(tcp_req);
1031 		return;
1032 	}
1033 
1034 	if (spdk_unlikely(err != 0)) {
1035 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1036 		return;
1037 	}
1038 
1039 	assert(pdu->cb_fn != NULL);
1040 	pdu->cb_fn(pdu->cb_arg);
1041 }
1042 
1043 static void
1044 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1045 {
1046 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1047 }
1048 
1049 static void
1050 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1051 {
1052 	int rc;
1053 	uint32_t mapped_length;
1054 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1055 
1056 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1057 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1058 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1059 
1060 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1061 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1062 		/* Try to force the send immediately. */
1063 		rc = spdk_sock_flush(tqpair->sock);
1064 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1065 			_pdu_write_done(pdu, 0);
1066 		} else {
1067 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1068 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1069 				    "IC_RESP" : "TERM_REQ", rc, errno);
1070 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1071 		}
1072 	}
1073 }
1074 
1075 static void
1076 data_crc32_accel_done(void *cb_arg, int status)
1077 {
1078 	struct nvme_tcp_pdu *pdu = cb_arg;
1079 
1080 	if (spdk_unlikely(status)) {
1081 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1082 		_pdu_write_done(pdu, status);
1083 		return;
1084 	}
1085 
1086 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1087 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1088 
1089 	_tcp_write_pdu(pdu);
1090 }
1091 
1092 static void
1093 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1094 {
1095 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1096 	int rc = 0;
1097 
1098 	/* Data Digest */
1099 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1100 		/* Only support this limitated case for the first step */
1101 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1102 				&& tqpair->group)) {
1103 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1104 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1105 			if (spdk_likely(rc == 0)) {
1106 				return;
1107 			}
1108 		} else {
1109 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1110 		}
1111 		data_crc32_accel_done(pdu, rc);
1112 	} else {
1113 		_tcp_write_pdu(pdu);
1114 	}
1115 }
1116 
1117 static void
1118 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1119 			 struct nvme_tcp_pdu *pdu,
1120 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1121 			 void *cb_arg)
1122 {
1123 	int hlen;
1124 	uint32_t crc32c;
1125 
1126 	assert(tqpair->pdu_in_progress != pdu);
1127 
1128 	hlen = pdu->hdr.common.hlen;
1129 	pdu->cb_fn = cb_fn;
1130 	pdu->cb_arg = cb_arg;
1131 
1132 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1133 	pdu->iov[0].iov_len = hlen;
1134 
1135 	/* Header Digest */
1136 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1137 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1138 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1139 	}
1140 
1141 	/* Data Digest */
1142 	pdu_data_crc32_compute(pdu);
1143 }
1144 
1145 static void
1146 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1147 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1148 			      void *cb_arg)
1149 {
1150 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1151 
1152 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1153 	pdu->sock_req.cb_arg = tqpair;
1154 
1155 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1156 }
1157 
1158 static void
1159 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1160 			     struct spdk_nvmf_tcp_req *tcp_req,
1161 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1162 			     void *cb_arg)
1163 {
1164 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1165 
1166 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1167 	pdu->sock_req.cb_arg = tcp_req;
1168 
1169 	assert(!tcp_req->pdu_in_use);
1170 	tcp_req->pdu_in_use = true;
1171 
1172 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1173 }
1174 
1175 static int
1176 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1177 {
1178 	uint32_t i;
1179 	struct spdk_nvmf_transport_opts *opts;
1180 	uint32_t in_capsule_data_size;
1181 
1182 	opts = &tqpair->qpair.transport->opts;
1183 
1184 	in_capsule_data_size = opts->in_capsule_data_size;
1185 	if (opts->dif_insert_or_strip) {
1186 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1187 	}
1188 
1189 	tqpair->resource_count = opts->max_queue_depth;
1190 
1191 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1192 	if (!tqpair->reqs) {
1193 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1194 		return -1;
1195 	}
1196 
1197 	if (in_capsule_data_size) {
1198 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1199 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1200 					    SPDK_MALLOC_DMA);
1201 		if (!tqpair->bufs) {
1202 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1203 			return -1;
1204 		}
1205 	}
1206 	/* prepare memory space for receiving pdus and tcp_req */
1207 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1208 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1209 					NULL);
1210 	if (!tqpair->pdus) {
1211 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1212 		return -1;
1213 	}
1214 
1215 	for (i = 0; i < tqpair->resource_count; i++) {
1216 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1217 
1218 		tcp_req->ttag = i + 1;
1219 		tcp_req->req.qpair = &tqpair->qpair;
1220 
1221 		tcp_req->pdu = &tqpair->pdus[i];
1222 		tcp_req->pdu->qpair = tqpair;
1223 
1224 		/* Set up memory to receive commands */
1225 		if (tqpair->bufs) {
1226 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1227 		}
1228 
1229 		/* Set the cmdn and rsp */
1230 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1231 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1232 
1233 		tcp_req->req.stripped_data = NULL;
1234 
1235 		/* Initialize request state to FREE */
1236 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1237 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1238 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1239 	}
1240 
1241 	for (; i < 2 * tqpair->resource_count; i++) {
1242 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1243 
1244 		pdu->qpair = tqpair;
1245 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1246 	}
1247 
1248 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1249 	tqpair->mgmt_pdu->qpair = tqpair;
1250 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1251 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1252 	tqpair->tcp_pdu_working_count = 1;
1253 
1254 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1255 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1256 
1257 	return 0;
1258 }
1259 
1260 static int
1261 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1262 {
1263 	struct spdk_nvmf_tcp_qpair *tqpair;
1264 
1265 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1266 
1267 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1268 
1269 	spdk_trace_record(TRACE_TCP_QP_CREATE, 0, 0, (uintptr_t)tqpair);
1270 
1271 	/* Initialise request state queues of the qpair */
1272 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1273 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1274 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1275 
1276 	tqpair->host_hdgst_enable = true;
1277 	tqpair->host_ddgst_enable = true;
1278 
1279 	return 0;
1280 }
1281 
1282 static int
1283 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1284 {
1285 	int rc;
1286 
1287 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, 0, 0, (uintptr_t)tqpair);
1288 
1289 	/* set low water mark */
1290 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1291 	if (rc != 0) {
1292 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1293 		return rc;
1294 	}
1295 
1296 	return 0;
1297 }
1298 
1299 static void
1300 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1301 			struct spdk_nvmf_tcp_port *port,
1302 			struct spdk_sock *sock)
1303 {
1304 	struct spdk_nvmf_tcp_qpair *tqpair;
1305 	int rc;
1306 
1307 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1308 		      port->trid->traddr, port->trid->trsvcid);
1309 
1310 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1311 	if (tqpair == NULL) {
1312 		SPDK_ERRLOG("Could not allocate new connection.\n");
1313 		spdk_sock_close(&sock);
1314 		return;
1315 	}
1316 
1317 	tqpair->sock = sock;
1318 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1319 	tqpair->port = port;
1320 	tqpair->qpair.transport = transport;
1321 
1322 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1323 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1324 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1325 			       &tqpair->initiator_port);
1326 	if (rc < 0) {
1327 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1328 		nvmf_tcp_qpair_destroy(tqpair);
1329 		return;
1330 	}
1331 
1332 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1333 }
1334 
1335 static uint32_t
1336 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1337 {
1338 	struct spdk_sock *sock;
1339 	uint32_t count = 0;
1340 	int i;
1341 
1342 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1343 		sock = spdk_sock_accept(port->listen_sock);
1344 		if (sock == NULL) {
1345 			break;
1346 		}
1347 		count++;
1348 		nvmf_tcp_handle_connect(transport, port, sock);
1349 	}
1350 
1351 	return count;
1352 }
1353 
1354 static int
1355 nvmf_tcp_accept(void *ctx)
1356 {
1357 	struct spdk_nvmf_transport *transport = ctx;
1358 	struct spdk_nvmf_tcp_transport *ttransport;
1359 	struct spdk_nvmf_tcp_port *port;
1360 	uint32_t count = 0;
1361 
1362 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1363 
1364 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1365 		count += nvmf_tcp_port_accept(transport, port);
1366 	}
1367 
1368 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1369 }
1370 
1371 static void
1372 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1373 		  struct spdk_nvme_transport_id *trid,
1374 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1375 {
1376 	struct spdk_nvmf_tcp_port *port;
1377 	struct spdk_nvmf_tcp_transport *ttransport;
1378 
1379 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1380 	entry->adrfam = trid->adrfam;
1381 
1382 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1383 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1384 
1385 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1386 	port = nvmf_tcp_find_port(ttransport, trid);
1387 
1388 	assert(port != NULL);
1389 
1390 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1391 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1392 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1393 	} else {
1394 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1395 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1396 	}
1397 }
1398 
1399 static struct spdk_nvmf_tcp_control_msg_list *
1400 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1401 {
1402 	struct spdk_nvmf_tcp_control_msg_list *list;
1403 	struct spdk_nvmf_tcp_control_msg *msg;
1404 	uint16_t i;
1405 
1406 	list = calloc(1, sizeof(*list));
1407 	if (!list) {
1408 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1409 		return NULL;
1410 	}
1411 
1412 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1413 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1414 	if (!list->msg_buf) {
1415 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1416 		free(list);
1417 		return NULL;
1418 	}
1419 
1420 	STAILQ_INIT(&list->free_msgs);
1421 
1422 	for (i = 0; i < num_messages; i++) {
1423 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1424 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1425 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1426 	}
1427 
1428 	return list;
1429 }
1430 
1431 static void
1432 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1433 {
1434 	if (!list) {
1435 		return;
1436 	}
1437 
1438 	spdk_free(list->msg_buf);
1439 	free(list);
1440 }
1441 
1442 static struct spdk_nvmf_transport_poll_group *
1443 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1444 			   struct spdk_nvmf_poll_group *group)
1445 {
1446 	struct spdk_nvmf_tcp_transport	*ttransport;
1447 	struct spdk_nvmf_tcp_poll_group *tgroup;
1448 
1449 	tgroup = calloc(1, sizeof(*tgroup));
1450 	if (!tgroup) {
1451 		return NULL;
1452 	}
1453 
1454 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1455 	if (!tgroup->sock_group) {
1456 		goto cleanup;
1457 	}
1458 
1459 	TAILQ_INIT(&tgroup->qpairs);
1460 	TAILQ_INIT(&tgroup->await_req);
1461 
1462 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1463 
1464 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1465 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1466 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1467 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1468 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1469 		if (!tgroup->control_msg_list) {
1470 			goto cleanup;
1471 		}
1472 	}
1473 
1474 	tgroup->accel_channel = spdk_accel_get_io_channel();
1475 	if (spdk_unlikely(!tgroup->accel_channel)) {
1476 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1477 		goto cleanup;
1478 	}
1479 
1480 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1481 	if (ttransport->next_pg == NULL) {
1482 		ttransport->next_pg = tgroup;
1483 	}
1484 
1485 	return &tgroup->group;
1486 
1487 cleanup:
1488 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1489 	return NULL;
1490 }
1491 
1492 static struct spdk_nvmf_transport_poll_group *
1493 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1494 {
1495 	struct spdk_nvmf_tcp_transport *ttransport;
1496 	struct spdk_nvmf_tcp_poll_group **pg;
1497 	struct spdk_nvmf_tcp_qpair *tqpair;
1498 	struct spdk_sock_group *group = NULL, *hint = NULL;
1499 	int rc;
1500 
1501 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1502 
1503 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1504 		return NULL;
1505 	}
1506 
1507 	pg = &ttransport->next_pg;
1508 	assert(*pg != NULL);
1509 	hint = (*pg)->sock_group;
1510 
1511 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1512 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1513 	if (rc != 0) {
1514 		return NULL;
1515 	} else if (group != NULL) {
1516 		/* Optimal poll group was found */
1517 		return spdk_sock_group_get_ctx(group);
1518 	}
1519 
1520 	/* The hint was used for optimal poll group, advance next_pg. */
1521 	*pg = TAILQ_NEXT(*pg, link);
1522 	if (*pg == NULL) {
1523 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1524 	}
1525 
1526 	return spdk_sock_group_get_ctx(hint);
1527 }
1528 
1529 static void
1530 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1531 {
1532 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1533 	struct spdk_nvmf_tcp_transport *ttransport;
1534 
1535 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1536 	spdk_sock_group_close(&tgroup->sock_group);
1537 	if (tgroup->control_msg_list) {
1538 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1539 	}
1540 
1541 	if (tgroup->accel_channel) {
1542 		spdk_put_io_channel(tgroup->accel_channel);
1543 	}
1544 
1545 	if (tgroup->group.transport == NULL) {
1546 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1547 		 * calls this function directly in a failure path. */
1548 		free(tgroup);
1549 		return;
1550 	}
1551 
1552 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1553 
1554 	next_tgroup = TAILQ_NEXT(tgroup, link);
1555 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1556 	if (next_tgroup == NULL) {
1557 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1558 	}
1559 	if (ttransport->next_pg == tgroup) {
1560 		ttransport->next_pg = next_tgroup;
1561 	}
1562 
1563 	free(tgroup);
1564 }
1565 
1566 static void
1567 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1568 			      enum nvme_tcp_pdu_recv_state state)
1569 {
1570 	if (tqpair->recv_state == state) {
1571 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1572 			    tqpair, state);
1573 		return;
1574 	}
1575 
1576 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1577 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1578 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1579 			tqpair->tcp_pdu_working_count--;
1580 		}
1581 	}
1582 
1583 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1584 		assert(tqpair->tcp_pdu_working_count == 0);
1585 	}
1586 
1587 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1588 		/* When leaving the await req state, move the qpair to the main list */
1589 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1590 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1591 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1592 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1593 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1594 	}
1595 
1596 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1597 	tqpair->recv_state = state;
1598 
1599 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
1600 			  tqpair->recv_state);
1601 }
1602 
1603 static int
1604 nvmf_tcp_qpair_handle_timeout(void *ctx)
1605 {
1606 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1607 
1608 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1609 
1610 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1611 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1612 
1613 	nvmf_tcp_qpair_disconnect(tqpair);
1614 	return SPDK_POLLER_BUSY;
1615 }
1616 
1617 static void
1618 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1619 {
1620 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1621 
1622 	if (!tqpair->timeout_poller) {
1623 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1624 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1625 	}
1626 }
1627 
1628 static void
1629 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1630 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1631 {
1632 	struct nvme_tcp_pdu *rsp_pdu;
1633 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1634 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1635 	uint32_t copy_len;
1636 
1637 	rsp_pdu = tqpair->mgmt_pdu;
1638 
1639 	c2h_term_req = &rsp_pdu->hdr.term_req;
1640 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1641 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1642 	c2h_term_req->fes = fes;
1643 
1644 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1645 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1646 		DSET32(&c2h_term_req->fei, error_offset);
1647 	}
1648 
1649 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1650 
1651 	/* Copy the error info into the buffer */
1652 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1653 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1654 
1655 	/* Contain the header of the wrong received pdu */
1656 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1657 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1658 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1659 }
1660 
1661 static void
1662 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1663 				struct spdk_nvmf_tcp_qpair *tqpair,
1664 				struct nvme_tcp_pdu *pdu)
1665 {
1666 	struct spdk_nvmf_tcp_req *tcp_req;
1667 
1668 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1669 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1670 
1671 	tcp_req = nvmf_tcp_req_get(tqpair);
1672 	if (!tcp_req) {
1673 		/* Directly return and make the allocation retry again.  This can happen if we're
1674 		 * using asynchronous writes to send the response to the host or when releasing
1675 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1676 		 * receive the response before we've finished processing the request and is free to
1677 		 * send another one.
1678 		 */
1679 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1680 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1681 			return;
1682 		}
1683 
1684 		/* The host sent more commands than the maximum queue depth. */
1685 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1686 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1687 		return;
1688 	}
1689 
1690 	pdu->req = tcp_req;
1691 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1692 	nvmf_tcp_req_process(ttransport, tcp_req);
1693 }
1694 
1695 static void
1696 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1697 				    struct spdk_nvmf_tcp_qpair *tqpair,
1698 				    struct nvme_tcp_pdu *pdu)
1699 {
1700 	struct spdk_nvmf_tcp_req *tcp_req;
1701 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1702 	uint32_t error_offset = 0;
1703 	enum spdk_nvme_tcp_term_req_fes fes;
1704 	struct spdk_nvme_cpl *rsp;
1705 
1706 	capsule_cmd = &pdu->hdr.capsule_cmd;
1707 	tcp_req = pdu->req;
1708 	assert(tcp_req != NULL);
1709 
1710 	/* Zero-copy requests don't support ICD */
1711 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1712 
1713 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1714 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1715 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1716 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1717 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1718 		goto err;
1719 	}
1720 
1721 	rsp = &tcp_req->req.rsp->nvme_cpl;
1722 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1723 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1724 	} else {
1725 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1726 	}
1727 
1728 	nvmf_tcp_req_process(ttransport, tcp_req);
1729 
1730 	return;
1731 err:
1732 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1733 }
1734 
1735 static void
1736 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1737 			     struct spdk_nvmf_tcp_qpair *tqpair,
1738 			     struct nvme_tcp_pdu *pdu)
1739 {
1740 	struct spdk_nvmf_tcp_req *tcp_req;
1741 	uint32_t error_offset = 0;
1742 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1743 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1744 
1745 	h2c_data = &pdu->hdr.h2c_data;
1746 
1747 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1748 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1749 
1750 	if (h2c_data->ttag > tqpair->resource_count) {
1751 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1752 			      tqpair->resource_count);
1753 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1754 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1755 		goto err;
1756 	}
1757 
1758 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1759 
1760 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1761 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1762 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1763 			      tcp_req->state);
1764 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1765 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1766 		goto err;
1767 	}
1768 
1769 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1770 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1771 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1772 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1773 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1774 		goto err;
1775 	}
1776 
1777 	if (tcp_req->h2c_offset != h2c_data->datao) {
1778 		SPDK_DEBUGLOG(nvmf_tcp,
1779 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1780 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1781 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1782 		goto err;
1783 	}
1784 
1785 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1786 		SPDK_DEBUGLOG(nvmf_tcp,
1787 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1788 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1789 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1790 		goto err;
1791 	}
1792 
1793 	pdu->req = tcp_req;
1794 
1795 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1796 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1797 	}
1798 
1799 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1800 				  h2c_data->datao, h2c_data->datal);
1801 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1802 	return;
1803 
1804 err:
1805 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1806 }
1807 
1808 static void
1809 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1810 			       struct spdk_nvmf_tcp_qpair *tqpair)
1811 {
1812 	struct nvme_tcp_pdu *rsp_pdu;
1813 	struct spdk_nvme_tcp_rsp *capsule_resp;
1814 
1815 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1816 
1817 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1818 	assert(rsp_pdu != NULL);
1819 
1820 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1821 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1822 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1823 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1824 	if (tqpair->host_hdgst_enable) {
1825 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1826 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1827 	}
1828 
1829 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1830 }
1831 
1832 static void
1833 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1834 {
1835 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1836 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1837 					     struct spdk_nvmf_tcp_qpair, qpair);
1838 
1839 	assert(tqpair != NULL);
1840 
1841 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1842 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1843 			      tcp_req->req.length);
1844 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1845 		return;
1846 	}
1847 
1848 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1849 		nvmf_tcp_request_free(tcp_req);
1850 	} else {
1851 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1852 	}
1853 }
1854 
1855 static void
1856 nvmf_tcp_r2t_complete(void *cb_arg)
1857 {
1858 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1859 	struct spdk_nvmf_tcp_transport *ttransport;
1860 
1861 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1862 				      struct spdk_nvmf_tcp_transport, transport);
1863 
1864 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1865 
1866 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1867 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1868 		nvmf_tcp_req_process(ttransport, tcp_req);
1869 	}
1870 }
1871 
1872 static void
1873 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1874 		      struct spdk_nvmf_tcp_req *tcp_req)
1875 {
1876 	struct nvme_tcp_pdu *rsp_pdu;
1877 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1878 
1879 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1880 	assert(rsp_pdu != NULL);
1881 
1882 	r2t = &rsp_pdu->hdr.r2t;
1883 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1884 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1885 
1886 	if (tqpair->host_hdgst_enable) {
1887 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1888 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1889 	}
1890 
1891 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1892 	r2t->ttag = tcp_req->ttag;
1893 	r2t->r2to = tcp_req->h2c_offset;
1894 	r2t->r2tl = tcp_req->req.length;
1895 
1896 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1897 
1898 	SPDK_DEBUGLOG(nvmf_tcp,
1899 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1900 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1901 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1902 }
1903 
1904 static void
1905 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1906 				 struct spdk_nvmf_tcp_qpair *tqpair,
1907 				 struct nvme_tcp_pdu *pdu)
1908 {
1909 	struct spdk_nvmf_tcp_req *tcp_req;
1910 	struct spdk_nvme_cpl *rsp;
1911 
1912 	tcp_req = pdu->req;
1913 	assert(tcp_req != NULL);
1914 
1915 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1916 
1917 	tcp_req->h2c_offset += pdu->data_len;
1918 
1919 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1920 	 * acknowledged before moving on. */
1921 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1922 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1923 		/* After receiving all the h2c data, we need to check whether there is
1924 		 * transient transport error */
1925 		rsp = &tcp_req->req.rsp->nvme_cpl;
1926 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1927 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1928 		} else {
1929 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1930 		}
1931 		nvmf_tcp_req_process(ttransport, tcp_req);
1932 	}
1933 }
1934 
1935 static void
1936 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1937 {
1938 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1939 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1940 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1941 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1942 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1943 			      DGET32(h2c_term_req->fei));
1944 	}
1945 }
1946 
1947 static void
1948 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1949 				 struct nvme_tcp_pdu *pdu)
1950 {
1951 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1952 	uint32_t error_offset = 0;
1953 	enum spdk_nvme_tcp_term_req_fes fes;
1954 
1955 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1956 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1957 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1958 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1959 		goto end;
1960 	}
1961 
1962 	/* set the data buffer */
1963 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1964 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1965 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1966 	return;
1967 end:
1968 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1969 }
1970 
1971 static void
1972 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1973 				     struct nvme_tcp_pdu *pdu)
1974 {
1975 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1976 
1977 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
1978 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1979 }
1980 
1981 static void
1982 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
1983 {
1984 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
1985 			struct spdk_nvmf_tcp_transport, transport);
1986 
1987 	switch (pdu->hdr.common.pdu_type) {
1988 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
1989 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
1990 		break;
1991 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
1992 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
1993 		break;
1994 
1995 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
1996 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
1997 		break;
1998 
1999 	default:
2000 		/* The code should not go to here */
2001 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2002 		break;
2003 	}
2004 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2005 	tqpair->tcp_pdu_working_count--;
2006 }
2007 
2008 static void
2009 data_crc32_calc_done(void *cb_arg, int status)
2010 {
2011 	struct nvme_tcp_pdu *pdu = cb_arg;
2012 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2013 	struct spdk_nvmf_tcp_req *tcp_req;
2014 	struct spdk_nvme_cpl *rsp;
2015 
2016 	/* async crc32 calculation is failed and use direct calculation to check */
2017 	if (spdk_unlikely(status)) {
2018 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2019 			    tqpair, pdu);
2020 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2021 	}
2022 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2023 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2024 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2025 		tcp_req = pdu->req;
2026 		assert(tcp_req != NULL);
2027 		rsp = &tcp_req->req.rsp->nvme_cpl;
2028 		rsp->status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR;
2029 	}
2030 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2031 }
2032 
2033 static void
2034 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2035 {
2036 	int rc = 0;
2037 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2038 	tqpair->pdu_in_progress = NULL;
2039 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2040 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2041 	/* check data digest if need */
2042 	if (pdu->ddgst_enable) {
2043 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2044 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2045 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2046 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2047 			if (spdk_likely(rc == 0)) {
2048 				return;
2049 			}
2050 		} else {
2051 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2052 		}
2053 		data_crc32_calc_done(pdu, rc);
2054 	} else {
2055 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2056 	}
2057 }
2058 
2059 static void
2060 nvmf_tcp_send_icresp_complete(void *cb_arg)
2061 {
2062 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2063 
2064 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
2065 }
2066 
2067 static void
2068 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2069 		      struct spdk_nvmf_tcp_qpair *tqpair,
2070 		      struct nvme_tcp_pdu *pdu)
2071 {
2072 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2073 	struct nvme_tcp_pdu *rsp_pdu;
2074 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2075 	uint32_t error_offset = 0;
2076 	enum spdk_nvme_tcp_term_req_fes fes;
2077 
2078 	/* Only PFV 0 is defined currently */
2079 	if (ic_req->pfv != 0) {
2080 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2081 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2082 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2083 		goto end;
2084 	}
2085 
2086 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2087 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2088 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2089 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2090 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2091 		goto end;
2092 	}
2093 
2094 	/* MAXR2T is 0's based */
2095 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2096 
2097 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2098 	if (!tqpair->host_hdgst_enable) {
2099 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2100 	}
2101 
2102 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2103 	if (!tqpair->host_ddgst_enable) {
2104 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2105 	}
2106 
2107 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2108 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2109 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2110 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2111 			     tqpair,
2112 			     tqpair->recv_buf_size);
2113 		/* Not fatal. */
2114 	}
2115 
2116 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2117 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2118 
2119 	rsp_pdu = tqpair->mgmt_pdu;
2120 
2121 	ic_resp = &rsp_pdu->hdr.ic_resp;
2122 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2123 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2124 	ic_resp->pfv = 0;
2125 	ic_resp->cpda = tqpair->cpda;
2126 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2127 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2128 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2129 
2130 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2131 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2132 
2133 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2134 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2135 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2136 	return;
2137 end:
2138 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2139 }
2140 
2141 static void
2142 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2143 			struct spdk_nvmf_tcp_transport *ttransport)
2144 {
2145 	struct nvme_tcp_pdu *pdu;
2146 	int rc;
2147 	uint32_t crc32c, error_offset = 0;
2148 	enum spdk_nvme_tcp_term_req_fes fes;
2149 
2150 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2151 	pdu = tqpair->pdu_in_progress;
2152 
2153 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2154 		      pdu->hdr.common.pdu_type);
2155 	/* check header digest if needed */
2156 	if (pdu->has_hdgst) {
2157 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2158 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2159 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2160 		if (rc == 0) {
2161 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2162 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2163 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2164 			return;
2165 
2166 		}
2167 	}
2168 
2169 	switch (pdu->hdr.common.pdu_type) {
2170 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2171 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2172 		break;
2173 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2174 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2175 		break;
2176 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2177 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2178 		break;
2179 
2180 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2181 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2182 		break;
2183 
2184 	default:
2185 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2186 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2187 		error_offset = 1;
2188 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2189 		break;
2190 	}
2191 }
2192 
2193 static void
2194 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2195 {
2196 	struct nvme_tcp_pdu *pdu;
2197 	uint32_t error_offset = 0;
2198 	enum spdk_nvme_tcp_term_req_fes fes;
2199 	uint8_t expected_hlen, pdo;
2200 	bool plen_error = false, pdo_error = false;
2201 
2202 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2203 	pdu = tqpair->pdu_in_progress;
2204 	assert(pdu);
2205 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2206 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2207 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2208 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2209 			goto err;
2210 		}
2211 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2212 		if (pdu->hdr.common.plen != expected_hlen) {
2213 			plen_error = true;
2214 		}
2215 	} else {
2216 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2217 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2218 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2219 			goto err;
2220 		}
2221 
2222 		switch (pdu->hdr.common.pdu_type) {
2223 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2224 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2225 			pdo = pdu->hdr.common.pdo;
2226 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2227 				pdo_error = true;
2228 				break;
2229 			}
2230 
2231 			if (pdu->hdr.common.plen < expected_hlen) {
2232 				plen_error = true;
2233 			}
2234 			break;
2235 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2236 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2237 			pdo = pdu->hdr.common.pdo;
2238 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2239 				pdo_error = true;
2240 				break;
2241 			}
2242 			if (pdu->hdr.common.plen < expected_hlen) {
2243 				plen_error = true;
2244 			}
2245 			break;
2246 
2247 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2248 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2249 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2250 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2251 				plen_error = true;
2252 			}
2253 			break;
2254 
2255 		default:
2256 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2257 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2258 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2259 			goto err;
2260 		}
2261 	}
2262 
2263 	if (pdu->hdr.common.hlen != expected_hlen) {
2264 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2265 			    pdu->hdr.common.pdu_type,
2266 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2267 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2268 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2269 		goto err;
2270 	} else if (pdo_error) {
2271 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2272 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2273 	} else if (plen_error) {
2274 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2275 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2276 		goto err;
2277 	} else {
2278 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2279 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2280 		return;
2281 	}
2282 err:
2283 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2284 }
2285 
2286 static int
2287 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2288 {
2289 	int rc = 0;
2290 	struct nvme_tcp_pdu *pdu;
2291 	enum nvme_tcp_pdu_recv_state prev_state;
2292 	uint32_t data_len;
2293 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2294 			struct spdk_nvmf_tcp_transport, transport);
2295 
2296 	/* The loop here is to allow for several back-to-back state changes. */
2297 	do {
2298 		prev_state = tqpair->recv_state;
2299 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2300 
2301 		pdu = tqpair->pdu_in_progress;
2302 		assert(pdu || tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2303 		switch (tqpair->recv_state) {
2304 		/* Wait for the common header  */
2305 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2306 			if (!pdu) {
2307 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2308 				if (spdk_unlikely(!pdu)) {
2309 					return NVME_TCP_PDU_IN_PROGRESS;
2310 				}
2311 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2312 				tqpair->pdu_in_progress = pdu;
2313 				tqpair->tcp_pdu_working_count++;
2314 			}
2315 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2316 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2317 		/* FALLTHROUGH */
2318 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2319 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2320 				return rc;
2321 			}
2322 
2323 			rc = nvme_tcp_read_data(tqpair->sock,
2324 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2325 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2326 			if (rc < 0) {
2327 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2328 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2329 				break;
2330 			} else if (rc > 0) {
2331 				pdu->ch_valid_bytes += rc;
2332 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2333 			}
2334 
2335 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2336 				return NVME_TCP_PDU_IN_PROGRESS;
2337 			}
2338 
2339 			/* The command header of this PDU has now been read from the socket. */
2340 			nvmf_tcp_pdu_ch_handle(tqpair);
2341 			break;
2342 		/* Wait for the pdu specific header  */
2343 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2344 			rc = nvme_tcp_read_data(tqpair->sock,
2345 						pdu->psh_len - pdu->psh_valid_bytes,
2346 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2347 			if (rc < 0) {
2348 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2349 				break;
2350 			} else if (rc > 0) {
2351 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2352 				pdu->psh_valid_bytes += rc;
2353 			}
2354 
2355 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2356 				return NVME_TCP_PDU_IN_PROGRESS;
2357 			}
2358 
2359 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2360 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2361 			break;
2362 		/* Wait for the req slot */
2363 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2364 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2365 			break;
2366 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2367 			/* check whether the data is valid, if not we just return */
2368 			if (!pdu->data_len) {
2369 				return NVME_TCP_PDU_IN_PROGRESS;
2370 			}
2371 
2372 			data_len = pdu->data_len;
2373 			/* data digest */
2374 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2375 					  tqpair->host_ddgst_enable)) {
2376 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2377 				pdu->ddgst_enable = true;
2378 			}
2379 
2380 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2381 			if (rc < 0) {
2382 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2383 				break;
2384 			}
2385 			pdu->rw_offset += rc;
2386 
2387 			if (pdu->rw_offset < data_len) {
2388 				return NVME_TCP_PDU_IN_PROGRESS;
2389 			}
2390 
2391 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2392 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2393 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2394 						     pdu->dif_ctx) != 0) {
2395 				SPDK_ERRLOG("DIF generate failed\n");
2396 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2397 				break;
2398 			}
2399 
2400 			/* All of this PDU has now been read from the socket. */
2401 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2402 			break;
2403 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2404 			if (tqpair->tcp_pdu_working_count != 0) {
2405 				return NVME_TCP_PDU_IN_PROGRESS;
2406 			}
2407 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2408 			break;
2409 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2410 			if (!spdk_sock_is_connected(tqpair->sock)) {
2411 				return NVME_TCP_PDU_FATAL;
2412 			}
2413 			return NVME_TCP_PDU_IN_PROGRESS;
2414 		default:
2415 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2416 			abort();
2417 			break;
2418 		}
2419 	} while (tqpair->recv_state != prev_state);
2420 
2421 	return rc;
2422 }
2423 
2424 static inline void *
2425 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2426 {
2427 	struct spdk_nvmf_tcp_control_msg *msg;
2428 
2429 	assert(list);
2430 
2431 	msg = STAILQ_FIRST(&list->free_msgs);
2432 	if (!msg) {
2433 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2434 		return NULL;
2435 	}
2436 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2437 	return msg;
2438 }
2439 
2440 static inline void
2441 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2442 {
2443 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2444 
2445 	assert(list);
2446 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2447 }
2448 
2449 static int
2450 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2451 		       struct spdk_nvmf_transport *transport,
2452 		       struct spdk_nvmf_transport_poll_group *group)
2453 {
2454 	struct spdk_nvmf_request		*req = &tcp_req->req;
2455 	struct spdk_nvme_cmd			*cmd;
2456 	struct spdk_nvme_sgl_descriptor		*sgl;
2457 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2458 	enum spdk_nvme_tcp_term_req_fes		fes;
2459 	struct nvme_tcp_pdu			*pdu;
2460 	struct spdk_nvmf_tcp_qpair		*tqpair;
2461 	uint32_t				length, error_offset = 0;
2462 
2463 	cmd = &req->cmd->nvme_cmd;
2464 	sgl = &cmd->dptr.sgl1;
2465 
2466 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2467 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2468 		/* get request length from sgl */
2469 		length = sgl->unkeyed.length;
2470 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2471 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2472 				    length, transport->opts.max_io_size);
2473 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2474 			goto fatal_err;
2475 		}
2476 
2477 		/* fill request length and populate iovs */
2478 		req->length = length;
2479 
2480 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2481 
2482 		if (spdk_unlikely(req->dif_enabled)) {
2483 			req->dif.orig_length = length;
2484 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2485 			req->dif.elba_length = length;
2486 		}
2487 
2488 		if (nvmf_ctrlr_use_zcopy(req)) {
2489 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2490 			req->data_from_pool = false;
2491 			return 0;
2492 		}
2493 
2494 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2495 			/* No available buffers. Queue this request up. */
2496 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2497 				      tcp_req);
2498 			return 0;
2499 		}
2500 
2501 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2502 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2503 
2504 		return 0;
2505 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2506 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2507 		uint64_t offset = sgl->address;
2508 		uint32_t max_len = transport->opts.in_capsule_data_size;
2509 
2510 		assert(tcp_req->has_in_capsule_data);
2511 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2512 		tqpair = tcp_req->pdu->qpair;
2513 		/* receiving pdu is not same with the pdu in tcp_req */
2514 		pdu = tqpair->pdu_in_progress;
2515 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2516 		if (tqpair->host_ddgst_enable) {
2517 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2518 		}
2519 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2520 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2521 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2522 				    length, sgl->unkeyed.length);
2523 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2524 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2525 			goto fatal_err;
2526 		}
2527 
2528 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2529 			      offset, length);
2530 
2531 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2532 		if (spdk_unlikely(offset != 0)) {
2533 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2534 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2535 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2536 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2537 			goto fatal_err;
2538 		}
2539 
2540 		if (spdk_unlikely(length > max_len)) {
2541 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2542 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2543 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2544 
2545 				/* Get a buffer from dedicated list */
2546 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2547 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2548 				assert(tgroup->control_msg_list);
2549 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2550 				if (!req->iov[0].iov_base) {
2551 					/* No available buffers. Queue this request up. */
2552 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2553 					return 0;
2554 				}
2555 			} else {
2556 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2557 					    length, max_len);
2558 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2559 				goto fatal_err;
2560 			}
2561 		} else {
2562 			req->iov[0].iov_base = tcp_req->buf;
2563 		}
2564 
2565 		req->length = length;
2566 		req->data_from_pool = false;
2567 
2568 		if (spdk_unlikely(req->dif_enabled)) {
2569 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2570 			req->dif.elba_length = length;
2571 		}
2572 
2573 		req->iov[0].iov_len = length;
2574 		req->iovcnt = 1;
2575 
2576 		return 0;
2577 	}
2578 	/* If we want to handle the problem here, then we can't skip the following data segment.
2579 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2580 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2581 		    sgl->generic.type, sgl->generic.subtype);
2582 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2583 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2584 fatal_err:
2585 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2586 	return -1;
2587 }
2588 
2589 static inline enum spdk_nvme_media_error_status_code
2590 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2591 	enum spdk_nvme_media_error_status_code result;
2592 
2593 	switch (err_type)
2594 	{
2595 	case SPDK_DIF_REFTAG_ERROR:
2596 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2597 		break;
2598 	case SPDK_DIF_APPTAG_ERROR:
2599 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2600 		break;
2601 	case SPDK_DIF_GUARD_ERROR:
2602 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2603 		break;
2604 	default:
2605 		SPDK_UNREACHABLE();
2606 		break;
2607 	}
2608 
2609 	return result;
2610 }
2611 
2612 static void
2613 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2614 			struct spdk_nvmf_tcp_req *tcp_req)
2615 {
2616 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2617 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2618 	struct nvme_tcp_pdu *rsp_pdu;
2619 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2620 	uint32_t plen, pdo, alignment;
2621 	int rc;
2622 
2623 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2624 
2625 	rsp_pdu = tcp_req->pdu;
2626 	assert(rsp_pdu != NULL);
2627 
2628 	c2h_data = &rsp_pdu->hdr.c2h_data;
2629 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2630 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2631 
2632 	if (tqpair->host_hdgst_enable) {
2633 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2634 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2635 	}
2636 
2637 	/* set the psh */
2638 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2639 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2640 	c2h_data->datao = tcp_req->pdu->rw_offset;
2641 
2642 	/* set the padding */
2643 	rsp_pdu->padding_len = 0;
2644 	pdo = plen;
2645 	if (tqpair->cpda) {
2646 		alignment = (tqpair->cpda + 1) << 2;
2647 		if (plen % alignment != 0) {
2648 			pdo = (plen + alignment) / alignment * alignment;
2649 			rsp_pdu->padding_len = pdo - plen;
2650 			plen = pdo;
2651 		}
2652 	}
2653 
2654 	c2h_data->common.pdo = pdo;
2655 	plen += c2h_data->datal;
2656 	if (tqpair->host_ddgst_enable) {
2657 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2658 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2659 	}
2660 
2661 	c2h_data->common.plen = plen;
2662 
2663 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2664 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2665 	}
2666 
2667 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2668 				  c2h_data->datao, c2h_data->datal);
2669 
2670 
2671 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2672 	/* Need to send the capsule response if response is not all 0 */
2673 	if (ttransport->tcp_opts.c2h_success &&
2674 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2675 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2676 	}
2677 
2678 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2679 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2680 		struct spdk_dif_error err_blk = {};
2681 		uint32_t mapped_length = 0;
2682 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2683 		uint32_t ddgst_len = 0;
2684 
2685 		if (tqpair->host_ddgst_enable) {
2686 			/* Data digest consumes additional iov entry */
2687 			available_iovs--;
2688 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2689 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2690 			c2h_data->common.plen -= ddgst_len;
2691 		}
2692 		/* Temp call to estimate if data can be described by limited number of iovs.
2693 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2694 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2695 				    false, &mapped_length);
2696 
2697 		if (mapped_length != c2h_data->common.plen) {
2698 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2699 			SPDK_DEBUGLOG(nvmf_tcp,
2700 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2701 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2702 			c2h_data->common.plen = mapped_length;
2703 
2704 			/* Rebuild pdu->data_iov since data length is changed */
2705 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2706 						  c2h_data->datal);
2707 
2708 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2709 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2710 		}
2711 
2712 		c2h_data->common.plen += ddgst_len;
2713 
2714 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2715 
2716 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2717 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2718 		if (rc != 0) {
2719 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2720 				    err_blk.err_type, err_blk.err_offset);
2721 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2722 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2723 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2724 			return;
2725 		}
2726 	}
2727 
2728 	rsp_pdu->rw_offset += c2h_data->datal;
2729 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2730 }
2731 
2732 static void
2733 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2734 		       struct spdk_nvmf_tcp_req *tcp_req)
2735 {
2736 	nvmf_tcp_req_pdu_init(tcp_req);
2737 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2738 }
2739 
2740 static int
2741 request_transfer_out(struct spdk_nvmf_request *req)
2742 {
2743 	struct spdk_nvmf_tcp_req	*tcp_req;
2744 	struct spdk_nvmf_qpair		*qpair;
2745 	struct spdk_nvmf_tcp_qpair	*tqpair;
2746 	struct spdk_nvme_cpl		*rsp;
2747 
2748 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2749 
2750 	qpair = req->qpair;
2751 	rsp = &req->rsp->nvme_cpl;
2752 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2753 
2754 	/* Advance our sq_head pointer */
2755 	if (qpair->sq_head == qpair->sq_head_max) {
2756 		qpair->sq_head = 0;
2757 	} else {
2758 		qpair->sq_head++;
2759 	}
2760 	rsp->sqhd = qpair->sq_head;
2761 
2762 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2763 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2764 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2765 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2766 	} else {
2767 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2768 	}
2769 
2770 	return 0;
2771 }
2772 
2773 static void
2774 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2775 			      struct spdk_nvmf_tcp_qpair *tqpair,
2776 			      struct spdk_nvmf_tcp_req *tcp_req)
2777 {
2778 	enum spdk_nvme_cmd_fuse last, next;
2779 
2780 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2781 	next = tcp_req->cmd.fuse;
2782 
2783 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2784 
2785 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2786 		return;
2787 	}
2788 
2789 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2790 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2791 			/* This is a valid pair of fused commands.  Point them at each other
2792 			 * so they can be submitted consecutively once ready to be executed.
2793 			 */
2794 			tqpair->fused_first->fused_pair = tcp_req;
2795 			tcp_req->fused_pair = tqpair->fused_first;
2796 			tqpair->fused_first = NULL;
2797 			return;
2798 		} else {
2799 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2800 			tqpair->fused_first->fused_failed = true;
2801 
2802 			/*
2803 			 * If the last req is in READY_TO_EXECUTE state, then call
2804 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2805 			 */
2806 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2807 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2808 			}
2809 
2810 			tqpair->fused_first = NULL;
2811 		}
2812 	}
2813 
2814 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2815 		/* Set tqpair->fused_first here so that we know to check that the next request
2816 		 * is a SECOND (and to fail this one if it isn't).
2817 		 */
2818 		tqpair->fused_first = tcp_req;
2819 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2820 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2821 		tcp_req->fused_failed = true;
2822 	}
2823 }
2824 
2825 static bool
2826 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2827 		     struct spdk_nvmf_tcp_req *tcp_req)
2828 {
2829 	struct spdk_nvmf_tcp_qpair		*tqpair;
2830 	uint32_t				plen;
2831 	struct nvme_tcp_pdu			*pdu;
2832 	enum spdk_nvmf_tcp_req_state		prev_state;
2833 	bool					progress = false;
2834 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2835 	struct spdk_nvmf_transport_poll_group	*group;
2836 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2837 
2838 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2839 	group = &tqpair->group->group;
2840 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2841 
2842 	/* If the qpair is not active, we need to abort the outstanding requests. */
2843 	if (tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2844 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2845 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2846 		}
2847 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2848 	}
2849 
2850 	/* The loop here is to allow for several back-to-back state changes. */
2851 	do {
2852 		prev_state = tcp_req->state;
2853 
2854 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2855 			      tqpair);
2856 
2857 		switch (tcp_req->state) {
2858 		case TCP_REQUEST_STATE_FREE:
2859 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2860 			 * to escape this state. */
2861 			break;
2862 		case TCP_REQUEST_STATE_NEW:
2863 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.qid, 0, (uintptr_t)tcp_req, tqpair);
2864 
2865 			/* copy the cmd from the receive pdu */
2866 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2867 
2868 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2869 				tcp_req->req.dif_enabled = true;
2870 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2871 			}
2872 
2873 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2874 
2875 			/* The next state transition depends on the data transfer needs of this request. */
2876 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2877 
2878 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2879 				tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2880 				tcp_req->req.rsp->nvme_cpl.status.sc  = SPDK_NVME_SC_INVALID_OPCODE;
2881 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2882 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2883 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2884 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2885 				break;
2886 			}
2887 
2888 			/* If no data to transfer, ready to execute. */
2889 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2890 				/* Reset the tqpair receiving pdu state */
2891 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2892 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2893 				break;
2894 			}
2895 
2896 			pdu = tqpair->pdu_in_progress;
2897 			plen = pdu->hdr.common.hlen;
2898 			if (tqpair->host_hdgst_enable) {
2899 				plen += SPDK_NVME_TCP_DIGEST_LEN;
2900 			}
2901 			if (pdu->hdr.common.plen != plen) {
2902 				tcp_req->has_in_capsule_data = true;
2903 			} else {
2904 				/* Data is transmitted by C2H PDUs */
2905 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2906 			}
2907 
2908 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2909 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2910 			break;
2911 		case TCP_REQUEST_STATE_NEED_BUFFER:
2912 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2913 					  tqpair);
2914 
2915 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2916 
2917 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2918 				SPDK_DEBUGLOG(nvmf_tcp,
2919 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2920 					      tcp_req, tqpair);
2921 				/* This request needs to wait in line to obtain a buffer */
2922 				break;
2923 			}
2924 
2925 			/* Try to get a data buffer */
2926 			if (nvmf_tcp_req_parse_sgl(tcp_req, transport, group) < 0) {
2927 				break;
2928 			}
2929 
2930 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2931 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2932 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2933 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2934 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2935 				}
2936 
2937 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2938 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2939 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2940 				break;
2941 			}
2942 
2943 			if (tcp_req->req.iovcnt < 1) {
2944 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2945 					      tcp_req, tqpair);
2946 				/* No buffers available. */
2947 				break;
2948 			}
2949 
2950 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2951 
2952 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2953 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2954 				if (tcp_req->req.data_from_pool) {
2955 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2956 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2957 				} else {
2958 					struct nvme_tcp_pdu *pdu;
2959 
2960 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2961 
2962 					pdu = tqpair->pdu_in_progress;
2963 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
2964 						      tqpair);
2965 					/* No need to send r2t, contained in the capsuled data */
2966 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2967 								  0, tcp_req->req.length);
2968 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2969 				}
2970 				break;
2971 			}
2972 
2973 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2974 			break;
2975 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
2976 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.qid, 0,
2977 					  (uintptr_t)tcp_req, tqpair);
2978 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
2979 			 * to escape this state. */
2980 			break;
2981 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
2982 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.qid, 0,
2983 					  (uintptr_t)tcp_req, tqpair);
2984 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
2985 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
2986 					      tcp_req, tqpair);
2987 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2988 				break;
2989 			}
2990 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2991 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2992 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2993 			} else {
2994 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
2995 			}
2996 			break;
2997 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
2998 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2999 					  tqpair);
3000 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3001 			break;
3002 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3003 
3004 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.qid, 0,
3005 					  (uintptr_t)tcp_req, tqpair);
3006 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3007 			 * to escape this state. */
3008 			break;
3009 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3010 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.qid, 0,
3011 					  (uintptr_t)tcp_req, tqpair);
3012 
3013 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3014 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3015 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3016 			}
3017 
3018 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3019 				if (tcp_req->fused_failed) {
3020 					/* This request failed FUSED semantics.  Fail it immediately, without
3021 					 * even sending it to the target layer.
3022 					 */
3023 					tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
3024 					tcp_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
3025 					tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
3026 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3027 					break;
3028 				}
3029 
3030 				if (tcp_req->fused_pair == NULL ||
3031 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3032 					/* This request is ready to execute, but either we don't know yet if it's
3033 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3034 					 * or the other request of this fused pair isn't ready to execute. So
3035 					 * break here and this request will get processed later either when the
3036 					 * other request is ready or we find that this request isn't valid.
3037 					 */
3038 					break;
3039 				}
3040 			}
3041 
3042 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3043 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3044 				/* If we get to this point, and this request is a fused command, we know that
3045 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3046 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3047 				 * request, and the other request of the fused pair, in the correct order.
3048 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3049 				 * we no longer need to maintain the relationship between these two requests.
3050 				 */
3051 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3052 					assert(tcp_req->fused_pair != NULL);
3053 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3054 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3055 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3056 					tcp_req->fused_pair->fused_pair = NULL;
3057 					tcp_req->fused_pair = NULL;
3058 				}
3059 				spdk_nvmf_request_exec(&tcp_req->req);
3060 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3061 					assert(tcp_req->fused_pair != NULL);
3062 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3063 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3064 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3065 					tcp_req->fused_pair->fused_pair = NULL;
3066 					tcp_req->fused_pair = NULL;
3067 				}
3068 			} else {
3069 				/* For zero-copy, only requests with data coming from host to the
3070 				 * controller can end up here. */
3071 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3072 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3073 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3074 			}
3075 
3076 			break;
3077 		case TCP_REQUEST_STATE_EXECUTING:
3078 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3079 					  tqpair);
3080 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3081 			 * to escape this state. */
3082 			break;
3083 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3084 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.qid, 0,
3085 					  (uintptr_t)tcp_req, tqpair);
3086 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3087 			 * to escape this state. */
3088 			break;
3089 		case TCP_REQUEST_STATE_EXECUTED:
3090 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3091 					  tqpair);
3092 
3093 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3094 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3095 			}
3096 
3097 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3098 			break;
3099 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3100 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.qid, 0,
3101 					  (uintptr_t)tcp_req, tqpair);
3102 			if (request_transfer_out(&tcp_req->req) != 0) {
3103 				assert(0); /* No good way to handle this currently */
3104 			}
3105 			break;
3106 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3107 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.qid, 0,
3108 					  (uintptr_t)tcp_req, tqpair);
3109 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3110 			 * to escape this state. */
3111 			break;
3112 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3113 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.qid, 0,
3114 					  (uintptr_t)tcp_req, tqpair);
3115 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3116 			 * to escape this state. */
3117 			break;
3118 		case TCP_REQUEST_STATE_COMPLETED:
3119 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3120 					  tqpair);
3121 			/* If there's an outstanding PDU sent to the host, the request is completed
3122 			 * due to the qpair being disconnected.  We must delay the completion until
3123 			 * that write is done to avoid freeing the request twice. */
3124 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3125 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3126 					      "write on req=%p\n", tcp_req);
3127 				/* This can only happen for zcopy requests */
3128 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3129 				assert(tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3130 				break;
3131 			}
3132 
3133 			if (tcp_req->req.data_from_pool) {
3134 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3135 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3136 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3137 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3138 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3139 				assert(tgroup->control_msg_list);
3140 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3141 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3142 							 tcp_req->req.iov[0].iov_base);
3143 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3144 				/* If the request has an unreleased zcopy bdev_io, it's either a
3145 				 * read, a failed write, or the qpair is being disconnected */
3146 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3147 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3148 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3149 				       tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3150 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3151 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3152 				break;
3153 			}
3154 			tcp_req->req.length = 0;
3155 			tcp_req->req.iovcnt = 0;
3156 			tcp_req->fused_failed = false;
3157 			if (tcp_req->fused_pair) {
3158 				/* This req was part of a valid fused pair, but failed before it got to
3159 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3160 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3161 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3162 				 */
3163 				tcp_req->fused_pair->fused_failed = true;
3164 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3165 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3166 				}
3167 				tcp_req->fused_pair = NULL;
3168 			}
3169 
3170 			nvmf_tcp_req_put(tqpair, tcp_req);
3171 			break;
3172 		case TCP_REQUEST_NUM_STATES:
3173 		default:
3174 			assert(0);
3175 			break;
3176 		}
3177 
3178 		if (tcp_req->state != prev_state) {
3179 			progress = true;
3180 		}
3181 	} while (tcp_req->state != prev_state);
3182 
3183 	return progress;
3184 }
3185 
3186 static void
3187 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3188 {
3189 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3190 	int rc;
3191 
3192 	assert(tqpair != NULL);
3193 	rc = nvmf_tcp_sock_process(tqpair);
3194 
3195 	/* If there was a new socket error, disconnect */
3196 	if (rc < 0) {
3197 		nvmf_tcp_qpair_disconnect(tqpair);
3198 	}
3199 }
3200 
3201 static int
3202 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3203 			struct spdk_nvmf_qpair *qpair)
3204 {
3205 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3206 	struct spdk_nvmf_tcp_qpair	*tqpair;
3207 	int				rc;
3208 
3209 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3210 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3211 
3212 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3213 	if (rc != 0) {
3214 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3215 		return -1;
3216 	}
3217 
3218 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3219 	if (rc < 0) {
3220 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3221 		return -1;
3222 	}
3223 
3224 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3225 	if (rc < 0) {
3226 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3227 		return -1;
3228 	}
3229 
3230 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3231 				      nvmf_tcp_sock_cb, tqpair);
3232 	if (rc != 0) {
3233 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3234 			    spdk_strerror(errno), errno);
3235 		return -1;
3236 	}
3237 
3238 	tqpair->group = tgroup;
3239 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3240 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3241 
3242 	return 0;
3243 }
3244 
3245 static int
3246 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3247 			   struct spdk_nvmf_qpair *qpair)
3248 {
3249 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3250 	struct spdk_nvmf_tcp_qpair		*tqpair;
3251 	int				rc;
3252 
3253 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3254 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3255 
3256 	assert(tqpair->group == tgroup);
3257 
3258 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3259 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3260 		TAILQ_REMOVE(&tgroup->await_req, tqpair, link);
3261 	} else {
3262 		TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3263 	}
3264 
3265 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3266 	if (rc != 0) {
3267 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3268 			    spdk_strerror(errno), errno);
3269 	}
3270 
3271 	return rc;
3272 }
3273 
3274 static int
3275 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3276 {
3277 	struct spdk_nvmf_tcp_transport *ttransport;
3278 	struct spdk_nvmf_tcp_req *tcp_req;
3279 
3280 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3281 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3282 
3283 	switch (tcp_req->state) {
3284 	case TCP_REQUEST_STATE_EXECUTING:
3285 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3286 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3287 		break;
3288 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3289 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3290 		break;
3291 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3292 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3293 		break;
3294 	default:
3295 		assert(0 && "Unexpected request state");
3296 		break;
3297 	}
3298 
3299 	nvmf_tcp_req_process(ttransport, tcp_req);
3300 
3301 	return 0;
3302 }
3303 
3304 static void
3305 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3306 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3307 {
3308 	struct spdk_nvmf_tcp_qpair *tqpair;
3309 
3310 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3311 
3312 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3313 
3314 	assert(tqpair->fini_cb_fn == NULL);
3315 	tqpair->fini_cb_fn = cb_fn;
3316 	tqpair->fini_cb_arg = cb_arg;
3317 
3318 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3319 	nvmf_tcp_qpair_destroy(tqpair);
3320 }
3321 
3322 static int
3323 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3324 {
3325 	struct spdk_nvmf_tcp_poll_group *tgroup;
3326 	int rc;
3327 	struct spdk_nvmf_request *req, *req_tmp;
3328 	struct spdk_nvmf_tcp_req *tcp_req;
3329 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3330 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3331 			struct spdk_nvmf_tcp_transport, transport);
3332 
3333 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3334 
3335 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3336 		return 0;
3337 	}
3338 
3339 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3340 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3341 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3342 			break;
3343 		}
3344 	}
3345 
3346 	rc = spdk_sock_group_poll(tgroup->sock_group);
3347 	if (rc < 0) {
3348 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3349 	}
3350 
3351 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3352 		rc = nvmf_tcp_sock_process(tqpair);
3353 
3354 		/* If there was a new socket error, disconnect */
3355 		if (rc < 0) {
3356 			nvmf_tcp_qpair_disconnect(tqpair);
3357 		}
3358 	}
3359 
3360 	return rc;
3361 }
3362 
3363 static int
3364 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3365 			struct spdk_nvme_transport_id *trid, bool peer)
3366 {
3367 	struct spdk_nvmf_tcp_qpair     *tqpair;
3368 	uint16_t			port;
3369 
3370 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3371 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3372 
3373 	if (peer) {
3374 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3375 		port = tqpair->initiator_port;
3376 	} else {
3377 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3378 		port = tqpair->target_port;
3379 	}
3380 
3381 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3382 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3383 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3384 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3385 	} else {
3386 		return -1;
3387 	}
3388 
3389 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3390 	return 0;
3391 }
3392 
3393 static int
3394 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3395 			      struct spdk_nvme_transport_id *trid)
3396 {
3397 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3398 }
3399 
3400 static int
3401 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3402 			     struct spdk_nvme_transport_id *trid)
3403 {
3404 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3405 }
3406 
3407 static int
3408 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3409 			       struct spdk_nvme_transport_id *trid)
3410 {
3411 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3412 }
3413 
3414 static void
3415 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3416 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3417 {
3418 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
3419 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
3420 	tcp_req_to_abort->req.rsp->nvme_cpl.cid = tcp_req_to_abort->req.cmd->nvme_cmd.cid;
3421 
3422 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3423 
3424 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3425 }
3426 
3427 static int
3428 _nvmf_tcp_qpair_abort_request(void *ctx)
3429 {
3430 	struct spdk_nvmf_request *req = ctx;
3431 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3432 			struct spdk_nvmf_tcp_req, req);
3433 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3434 					     struct spdk_nvmf_tcp_qpair, qpair);
3435 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3436 			struct spdk_nvmf_tcp_transport, transport);
3437 	int rc;
3438 
3439 	spdk_poller_unregister(&req->poller);
3440 
3441 	switch (tcp_req_to_abort->state) {
3442 	case TCP_REQUEST_STATE_EXECUTING:
3443 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3444 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3445 		rc = nvmf_ctrlr_abort_request(req);
3446 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3447 			return SPDK_POLLER_BUSY;
3448 		}
3449 		break;
3450 
3451 	case TCP_REQUEST_STATE_NEED_BUFFER:
3452 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3453 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3454 
3455 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3456 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3457 		break;
3458 
3459 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3460 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3461 		if (spdk_get_ticks() < req->timeout_tsc) {
3462 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3463 			return SPDK_POLLER_BUSY;
3464 		}
3465 		break;
3466 
3467 	default:
3468 		/* Requests in other states are either un-abortable (e.g.
3469 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3470 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3471 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3472 		 * abort request with the bit0 of dword0 set (command not aborted).
3473 		 */
3474 		break;
3475 	}
3476 
3477 	spdk_nvmf_request_complete(req);
3478 	return SPDK_POLLER_BUSY;
3479 }
3480 
3481 static void
3482 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3483 			     struct spdk_nvmf_request *req)
3484 {
3485 	struct spdk_nvmf_tcp_qpair *tqpair;
3486 	struct spdk_nvmf_tcp_transport *ttransport;
3487 	struct spdk_nvmf_transport *transport;
3488 	uint16_t cid;
3489 	uint32_t i;
3490 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3491 
3492 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3493 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3494 	transport = &ttransport->transport;
3495 
3496 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3497 
3498 	for (i = 0; i < tqpair->resource_count; i++) {
3499 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3500 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3501 			tcp_req_to_abort = &tqpair->reqs[i];
3502 			break;
3503 		}
3504 	}
3505 
3506 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, qpair->qid, 0, (uintptr_t)req, tqpair);
3507 
3508 	if (tcp_req_to_abort == NULL) {
3509 		spdk_nvmf_request_complete(req);
3510 		return;
3511 	}
3512 
3513 	req->req_to_abort = &tcp_req_to_abort->req;
3514 	req->timeout_tsc = spdk_get_ticks() +
3515 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3516 	req->poller = NULL;
3517 
3518 	_nvmf_tcp_qpair_abort_request(req);
3519 }
3520 
3521 struct tcp_subsystem_add_host_opts {
3522 	char *psk;
3523 };
3524 
3525 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3526 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3527 };
3528 
3529 static int
3530 tcp_load_psk(const char *fname, char *buf, size_t bufsz)
3531 {
3532 	FILE *psk_file;
3533 	struct stat statbuf;
3534 	int rc;
3535 
3536 	if (stat(fname, &statbuf) != 0) {
3537 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
3538 		return -EACCES;
3539 	}
3540 
3541 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
3542 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
3543 		return -EPERM;
3544 	}
3545 	if ((size_t)statbuf.st_size >= bufsz) {
3546 		SPDK_ERRLOG("Invalid PSK: too long\n");
3547 		return -EINVAL;
3548 	}
3549 	psk_file = fopen(fname, "r");
3550 	if (psk_file == NULL) {
3551 		SPDK_ERRLOG("Could not open PSK file\n");
3552 		return -EINVAL;
3553 	}
3554 
3555 	memset(buf, 0, bufsz);
3556 	rc = fread(buf, 1, statbuf.st_size, psk_file);
3557 	if (rc != statbuf.st_size) {
3558 		SPDK_ERRLOG("Failed to read PSK\n");
3559 		fclose(psk_file);
3560 		return -EINVAL;
3561 	}
3562 
3563 	fclose(psk_file);
3564 	return 0;
3565 }
3566 
3567 static int
3568 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3569 			    const struct spdk_nvmf_subsystem *subsystem,
3570 			    const char *hostnqn,
3571 			    const struct spdk_json_val *transport_specific)
3572 {
3573 	struct tcp_subsystem_add_host_opts opts;
3574 	struct spdk_nvmf_tcp_transport *ttransport;
3575 	struct tcp_psk_entry *entry;
3576 	char psk_identity[NVMF_PSK_IDENTITY_LEN];
3577 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3578 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN] = {};
3579 	uint8_t tls_cipher_suite;
3580 	int rc = 0;
3581 	uint8_t psk_retained_hash;
3582 	uint64_t psk_configured_size;
3583 
3584 	if (transport_specific == NULL) {
3585 		return 0;
3586 	}
3587 
3588 	assert(transport != NULL);
3589 	assert(subsystem != NULL);
3590 
3591 	memset(&opts, 0, sizeof(opts));
3592 
3593 	/* Decode PSK file path */
3594 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3595 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3596 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3597 		return -EINVAL;
3598 	}
3599 
3600 	if (opts.psk == NULL) {
3601 		return 0;
3602 	}
3603 	if (strlen(opts.psk) >= sizeof(entry->psk)) {
3604 		SPDK_ERRLOG("PSK path too long\n");
3605 		rc = -EINVAL;
3606 		goto end;
3607 	}
3608 
3609 	rc = tcp_load_psk(opts.psk, psk_interchange, sizeof(psk_interchange));
3610 	if (rc) {
3611 		SPDK_ERRLOG("Could not retrieve PSK from file\n");
3612 		goto end;
3613 	}
3614 
3615 	/* Parse PSK interchange to get length of base64 encoded data.
3616 	 * This is then used to decide which cipher suite should be used
3617 	 * to generate PSK identity and TLS PSK later on. */
3618 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3619 					    &psk_configured_size, &psk_retained_hash);
3620 	if (rc < 0) {
3621 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3622 		goto end;
3623 	}
3624 
3625 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3626 	 * This check also ensures that psk_configured_size is smaller than
3627 	 * psk_retained buffer size. */
3628 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3629 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3630 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3631 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3632 	} else {
3633 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3634 		rc = -EINVAL;
3635 		goto end;
3636 	}
3637 
3638 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3639 	/* Generate PSK identity. */
3640 	rc = nvme_tcp_generate_psk_identity(psk_identity, NVMF_PSK_IDENTITY_LEN, hostnqn,
3641 					    subsystem->subnqn, tls_cipher_suite);
3642 	if (rc) {
3643 		rc = -EINVAL;
3644 		goto end;
3645 	}
3646 	/* Check if PSK identity entry already exists. */
3647 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3648 		if (strncmp(entry->psk_identity, psk_identity, NVMF_PSK_IDENTITY_LEN) == 0) {
3649 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", psk_identity);
3650 			rc = -EEXIST;
3651 			goto end;
3652 		}
3653 	}
3654 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3655 	if (entry == NULL) {
3656 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3657 		rc = -ENOMEM;
3658 		goto end;
3659 	}
3660 
3661 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3662 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3663 		rc = -EINVAL;
3664 		free(entry);
3665 		goto end;
3666 	}
3667 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3668 		SPDK_ERRLOG("Could not write subnqn string!\n");
3669 		rc = -EINVAL;
3670 		free(entry);
3671 		goto end;
3672 	}
3673 	if (snprintf(entry->psk_identity, sizeof(entry->psk_identity), "%s", psk_identity) < 0) {
3674 		SPDK_ERRLOG("Could not write PSK identity string!\n");
3675 		rc = -EINVAL;
3676 		free(entry);
3677 		goto end;
3678 	}
3679 	entry->tls_cipher_suite = tls_cipher_suite;
3680 
3681 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3682 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3683 		/* Psk configured is either 32 or 48 bytes long. */
3684 		memcpy(entry->psk, psk_configured, psk_configured_size);
3685 		entry->psk_size = psk_configured_size;
3686 	} else {
3687 		/* Derive retained PSK. */
3688 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3689 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3690 		if (rc < 0) {
3691 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3692 			free(entry);
3693 			goto end;
3694 		}
3695 		entry->psk_size = rc;
3696 	}
3697 
3698 	rc = snprintf(entry->psk_path, sizeof(entry->psk_path), "%s", opts.psk);
3699 	if (rc < 0 || (size_t)rc >= sizeof(entry->psk_path)) {
3700 		SPDK_ERRLOG("Could not save PSK path!\n");
3701 		rc = -ENAMETOOLONG;
3702 		free(entry);
3703 		goto end;
3704 	}
3705 
3706 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3707 	rc = 0;
3708 
3709 end:
3710 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3711 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3712 
3713 	free(opts.psk);
3714 
3715 	return rc;
3716 }
3717 
3718 static void
3719 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3720 			       const struct spdk_nvmf_subsystem *subsystem,
3721 			       const char *hostnqn)
3722 {
3723 	struct spdk_nvmf_tcp_transport *ttransport;
3724 	struct tcp_psk_entry *entry, *tmp;
3725 
3726 	assert(transport != NULL);
3727 	assert(subsystem != NULL);
3728 
3729 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3730 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3731 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3732 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3733 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3734 			spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
3735 			free(entry);
3736 			break;
3737 		}
3738 	}
3739 }
3740 
3741 static void
3742 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3743 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3744 			     struct spdk_json_write_ctx *w)
3745 {
3746 	struct spdk_nvmf_tcp_transport *ttransport;
3747 	struct tcp_psk_entry *entry;
3748 
3749 	assert(transport != NULL);
3750 	assert(subsystem != NULL);
3751 
3752 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3753 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3754 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3755 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3756 			spdk_json_write_named_string(w, "psk", entry->psk_path);
3757 			break;
3758 		}
3759 	}
3760 }
3761 
3762 static void
3763 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3764 {
3765 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3766 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3767 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3768 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3769 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3770 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3771 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3772 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3773 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3774 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3775 	opts->transport_specific =      NULL;
3776 }
3777 
3778 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3779 	.name = "TCP",
3780 	.type = SPDK_NVME_TRANSPORT_TCP,
3781 	.opts_init = nvmf_tcp_opts_init,
3782 	.create = nvmf_tcp_create,
3783 	.dump_opts = nvmf_tcp_dump_opts,
3784 	.destroy = nvmf_tcp_destroy,
3785 
3786 	.listen = nvmf_tcp_listen,
3787 	.stop_listen = nvmf_tcp_stop_listen,
3788 
3789 	.listener_discover = nvmf_tcp_discover,
3790 
3791 	.poll_group_create = nvmf_tcp_poll_group_create,
3792 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3793 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3794 	.poll_group_add = nvmf_tcp_poll_group_add,
3795 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3796 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3797 
3798 	.req_free = nvmf_tcp_req_free,
3799 	.req_complete = nvmf_tcp_req_complete,
3800 
3801 	.qpair_fini = nvmf_tcp_close_qpair,
3802 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3803 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3804 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3805 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3806 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
3807 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
3808 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
3809 };
3810 
3811 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3812 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3813