xref: /spdk/lib/nvmf/tcp.c (revision 0cae873b78434b905669bf3e373b421c2b6f18f9)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 
19 #include "spdk_internal/assert.h"
20 #include "spdk_internal/nvme_tcp.h"
21 #include "spdk_internal/sock.h"
22 
23 #include "nvmf_internal.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
28 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
29 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
30 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
31 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
32 
33 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
34 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
35 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
36 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
37 
38 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
39 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
41 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
42 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
43 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
44 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
45 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE 32
46 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
47 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
48 
49 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
50 
51 /* spdk nvmf related structure */
52 enum spdk_nvmf_tcp_req_state {
53 
54 	/* The request is not currently in use */
55 	TCP_REQUEST_STATE_FREE = 0,
56 
57 	/* Initial state when request first received */
58 	TCP_REQUEST_STATE_NEW = 1,
59 
60 	/* The request is queued until a data buffer is available. */
61 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
62 
63 	/* The request is waiting for zcopy_start to finish */
64 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
65 
66 	/* The request has received a zero-copy buffer */
67 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
68 
69 	/* The request is currently transferring data from the host to the controller. */
70 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
71 
72 	/* The request is waiting for the R2T send acknowledgement. */
73 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
74 
75 	/* The request is ready to execute at the block device */
76 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
77 
78 	/* The request is currently executing at the block device */
79 	TCP_REQUEST_STATE_EXECUTING = 8,
80 
81 	/* The request is waiting for zcopy buffers to be commited */
82 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
83 
84 	/* The request finished executing at the block device */
85 	TCP_REQUEST_STATE_EXECUTED = 10,
86 
87 	/* The request is ready to send a completion */
88 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
89 
90 	/* The request is currently transferring final pdus from the controller to the host. */
91 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
92 
93 	/* The request is waiting for zcopy buffers to be released (without committing) */
94 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
95 
96 	/* The request completed and can be marked free. */
97 	TCP_REQUEST_STATE_COMPLETED = 14,
98 
99 	/* Terminator */
100 	TCP_REQUEST_NUM_STATES,
101 };
102 
103 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
104 	"Invalid PDU Header Field",
105 	"PDU Sequence Error",
106 	"Header Digiest Error",
107 	"Data Transfer Out of Range",
108 	"R2T Limit Exceeded",
109 	"Unsupported parameter",
110 };
111 
112 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
113 {
114 	spdk_trace_register_owner(OWNER_NVMF_TCP, 't');
115 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
116 	spdk_trace_register_description("TCP_REQ_NEW",
117 					TRACE_TCP_REQUEST_STATE_NEW,
118 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
119 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
120 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
121 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
122 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
123 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
124 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
125 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
126 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
127 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
128 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
129 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
130 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
132 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
133 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
134 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
136 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
137 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
138 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
140 	spdk_trace_register_description("TCP_REQ_EXECUTING",
141 					TRACE_TCP_REQUEST_STATE_EXECUTING,
142 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
144 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
145 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
146 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
148 	spdk_trace_register_description("TCP_REQ_EXECUTED",
149 					TRACE_TCP_REQUEST_STATE_EXECUTED,
150 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
152 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
153 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
154 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
155 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
156 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
157 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
158 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
159 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
160 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
161 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
162 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
163 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
164 	spdk_trace_register_description("TCP_REQ_COMPLETED",
165 					TRACE_TCP_REQUEST_STATE_COMPLETED,
166 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
168 	spdk_trace_register_description("TCP_WRITE_START",
169 					TRACE_TCP_FLUSH_WRITEBUF_START,
170 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
171 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
172 	spdk_trace_register_description("TCP_WRITE_DONE",
173 					TRACE_TCP_FLUSH_WRITEBUF_DONE,
174 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
175 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
176 	spdk_trace_register_description("TCP_READ_DONE",
177 					TRACE_TCP_READ_FROM_SOCKET_DONE,
178 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
179 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
180 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
181 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
182 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
183 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
184 
185 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
186 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
187 					SPDK_TRACE_ARG_TYPE_INT, "");
188 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
189 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
190 					SPDK_TRACE_ARG_TYPE_INT, "");
191 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
192 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
193 					SPDK_TRACE_ARG_TYPE_INT, "state");
194 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
195 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
196 					SPDK_TRACE_ARG_TYPE_INT, "");
197 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
198 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
199 					SPDK_TRACE_ARG_TYPE_INT, "");
200 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
201 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
202 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
203 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
204 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
205 					SPDK_TRACE_ARG_TYPE_INT, "state");
206 
207 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
208 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
209 }
210 
211 struct spdk_nvmf_tcp_req  {
212 	struct spdk_nvmf_request		req;
213 	struct spdk_nvme_cpl			rsp;
214 	struct spdk_nvme_cmd			cmd;
215 
216 	/* A PDU that can be used for sending responses. This is
217 	 * not the incoming PDU! */
218 	struct nvme_tcp_pdu			*pdu;
219 
220 	/* In-capsule data buffer */
221 	uint8_t					*buf;
222 
223 	struct spdk_nvmf_tcp_req		*fused_pair;
224 
225 	/*
226 	 * The PDU for a request may be used multiple times in serial over
227 	 * the request's lifetime. For example, first to send an R2T, then
228 	 * to send a completion. To catch mistakes where the PDU is used
229 	 * twice at the same time, add a debug flag here for init/fini.
230 	 */
231 	bool					pdu_in_use;
232 	bool					has_in_capsule_data;
233 	bool					fused_failed;
234 
235 	/* transfer_tag */
236 	uint16_t				ttag;
237 
238 	enum spdk_nvmf_tcp_req_state		state;
239 
240 	/*
241 	 * h2c_offset is used when we receive the h2c_data PDU.
242 	 */
243 	uint32_t				h2c_offset;
244 
245 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
246 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
247 };
248 
249 struct spdk_nvmf_tcp_qpair {
250 	struct spdk_nvmf_qpair			qpair;
251 	struct spdk_nvmf_tcp_poll_group		*group;
252 	struct spdk_sock			*sock;
253 
254 	enum nvme_tcp_pdu_recv_state		recv_state;
255 	enum nvme_tcp_qpair_state		state;
256 
257 	/* PDU being actively received */
258 	struct nvme_tcp_pdu			*pdu_in_progress;
259 
260 	struct spdk_nvmf_tcp_req		*fused_first;
261 
262 	/* Queues to track the requests in all states */
263 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
264 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
265 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
266 
267 	/* Number of requests in each state */
268 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
269 
270 	uint8_t					cpda;
271 
272 	bool					host_hdgst_enable;
273 	bool					host_ddgst_enable;
274 
275 	/* This is a spare PDU used for sending special management
276 	 * operations. Primarily, this is used for the initial
277 	 * connection response and c2h termination request. */
278 	struct nvme_tcp_pdu			*mgmt_pdu;
279 
280 	/* Arrays of in-capsule buffers, requests, and pdus.
281 	 * Each array is 'resource_count' number of elements */
282 	void					*bufs;
283 	struct spdk_nvmf_tcp_req		*reqs;
284 	struct nvme_tcp_pdu			*pdus;
285 	uint32_t				resource_count;
286 	uint32_t				recv_buf_size;
287 
288 	struct spdk_nvmf_tcp_port		*port;
289 
290 	/* IP address */
291 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
292 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
293 
294 	/* IP port */
295 	uint16_t				initiator_port;
296 	uint16_t				target_port;
297 
298 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
299 	 *  not close the connection.
300 	 */
301 	struct spdk_poller			*timeout_poller;
302 
303 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
304 	void					*fini_cb_arg;
305 
306 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
307 };
308 
309 struct spdk_nvmf_tcp_control_msg {
310 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
311 };
312 
313 struct spdk_nvmf_tcp_control_msg_list {
314 	void *msg_buf;
315 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
316 };
317 
318 struct spdk_nvmf_tcp_poll_group {
319 	struct spdk_nvmf_transport_poll_group	group;
320 	struct spdk_sock_group			*sock_group;
321 
322 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
323 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
324 
325 	struct spdk_io_channel			*accel_channel;
326 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
327 
328 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
329 };
330 
331 struct spdk_nvmf_tcp_port {
332 	const struct spdk_nvme_transport_id	*trid;
333 	struct spdk_sock			*listen_sock;
334 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
335 };
336 
337 struct tcp_transport_opts {
338 	bool		c2h_success;
339 	uint16_t	control_msg_num;
340 	uint32_t	sock_priority;
341 };
342 
343 struct spdk_nvmf_tcp_transport {
344 	struct spdk_nvmf_transport		transport;
345 	struct tcp_transport_opts               tcp_opts;
346 
347 	struct spdk_nvmf_tcp_poll_group		*next_pg;
348 
349 	struct spdk_poller			*accept_poller;
350 
351 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
352 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
353 };
354 
355 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
356 	{
357 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
358 		spdk_json_decode_bool, true
359 	},
360 	{
361 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
362 		spdk_json_decode_uint16, true
363 	},
364 	{
365 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
366 		spdk_json_decode_uint32, true
367 	},
368 };
369 
370 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
371 				 struct spdk_nvmf_tcp_req *tcp_req);
372 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
373 
374 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
375 				    struct spdk_nvmf_tcp_req *tcp_req);
376 
377 static inline void
378 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
379 		       enum spdk_nvmf_tcp_req_state state)
380 {
381 	struct spdk_nvmf_qpair *qpair;
382 	struct spdk_nvmf_tcp_qpair *tqpair;
383 
384 	qpair = tcp_req->req.qpair;
385 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
386 
387 	assert(tqpair->state_cntr[tcp_req->state] > 0);
388 	tqpair->state_cntr[tcp_req->state]--;
389 	tqpair->state_cntr[state]++;
390 
391 	tcp_req->state = state;
392 }
393 
394 static inline struct nvme_tcp_pdu *
395 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
396 {
397 	assert(tcp_req->pdu_in_use == false);
398 
399 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
400 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
401 
402 	return tcp_req->pdu;
403 }
404 
405 static struct spdk_nvmf_tcp_req *
406 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
407 {
408 	struct spdk_nvmf_tcp_req *tcp_req;
409 
410 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
411 	if (spdk_unlikely(!tcp_req)) {
412 		return NULL;
413 	}
414 
415 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
416 	tcp_req->h2c_offset = 0;
417 	tcp_req->has_in_capsule_data = false;
418 	tcp_req->req.dif_enabled = false;
419 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
420 
421 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
422 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
423 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
424 	return tcp_req;
425 }
426 
427 static inline void
428 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
429 {
430 	assert(!tcp_req->pdu_in_use);
431 
432 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
433 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
434 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
435 }
436 
437 static void
438 nvmf_tcp_request_free(void *cb_arg)
439 {
440 	struct spdk_nvmf_tcp_transport *ttransport;
441 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
442 
443 	assert(tcp_req != NULL);
444 
445 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
446 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
447 				      struct spdk_nvmf_tcp_transport, transport);
448 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
449 	nvmf_tcp_req_process(ttransport, tcp_req);
450 }
451 
452 static int
453 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
454 {
455 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
456 
457 	nvmf_tcp_request_free(tcp_req);
458 
459 	return 0;
460 }
461 
462 static void
463 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
464 			   enum spdk_nvmf_tcp_req_state state)
465 {
466 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
467 
468 	assert(state != TCP_REQUEST_STATE_FREE);
469 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
470 		if (state == tcp_req->state) {
471 			nvmf_tcp_request_free(tcp_req);
472 		}
473 	}
474 }
475 
476 static void
477 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
478 {
479 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
480 
481 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
482 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
483 
484 	/* Wipe the requests waiting for buffer from the global list */
485 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
486 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
487 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
488 				      spdk_nvmf_request, buf_link);
489 		}
490 	}
491 
492 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
493 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
494 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
495 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
496 }
497 
498 static void
499 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
500 {
501 	int i;
502 	struct spdk_nvmf_tcp_req *tcp_req;
503 
504 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
505 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
506 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
507 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
508 			if ((int)tcp_req->state == i) {
509 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
510 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
511 			}
512 		}
513 	}
514 }
515 
516 static void
517 _nvmf_tcp_qpair_destroy(void *_tqpair)
518 {
519 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
520 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
521 	void *cb_arg = tqpair->fini_cb_arg;
522 	int err = 0;
523 
524 	spdk_trace_record(TRACE_TCP_QP_DESTROY, 0, 0, (uintptr_t)tqpair);
525 
526 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
527 
528 	err = spdk_sock_close(&tqpair->sock);
529 	assert(err == 0);
530 	nvmf_tcp_cleanup_all_states(tqpair);
531 
532 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
533 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
534 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
535 			    tqpair->resource_count);
536 		err++;
537 	}
538 
539 	if (err > 0) {
540 		nvmf_tcp_dump_qpair_req_contents(tqpair);
541 	}
542 
543 	/* The timeout poller might still be registered here if we close the qpair before host
544 	 * terminates the connection.
545 	 */
546 	spdk_poller_unregister(&tqpair->timeout_poller);
547 	spdk_dma_free(tqpair->pdus);
548 	free(tqpair->reqs);
549 	spdk_free(tqpair->bufs);
550 	free(tqpair);
551 
552 	if (cb_fn != NULL) {
553 		cb_fn(cb_arg);
554 	}
555 
556 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
557 }
558 
559 static void
560 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
561 {
562 	/* Delay the destruction to make sure it isn't performed from the context of a sock
563 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
564 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
565 	 */
566 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
567 }
568 
569 static void
570 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
571 {
572 	struct spdk_nvmf_tcp_transport	*ttransport;
573 	assert(w != NULL);
574 
575 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
576 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
577 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
578 }
579 
580 static int
581 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
582 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
583 {
584 	struct spdk_nvmf_tcp_transport	*ttransport;
585 
586 	assert(transport != NULL);
587 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
588 
589 	spdk_poller_unregister(&ttransport->accept_poller);
590 	free(ttransport);
591 
592 	if (cb_fn) {
593 		cb_fn(cb_arg);
594 	}
595 	return 0;
596 }
597 
598 static int nvmf_tcp_accept(void *ctx);
599 
600 static struct spdk_nvmf_transport *
601 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
602 {
603 	struct spdk_nvmf_tcp_transport *ttransport;
604 	uint32_t sge_count;
605 	uint32_t min_shared_buffers;
606 
607 	ttransport = calloc(1, sizeof(*ttransport));
608 	if (!ttransport) {
609 		return NULL;
610 	}
611 
612 	TAILQ_INIT(&ttransport->ports);
613 	TAILQ_INIT(&ttransport->poll_groups);
614 
615 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
616 
617 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
618 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
619 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
620 	if (opts->transport_specific != NULL &&
621 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
622 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
623 					    &ttransport->tcp_opts)) {
624 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
625 		free(ttransport);
626 		return NULL;
627 	}
628 
629 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
630 
631 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
632 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
633 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
634 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
635 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
636 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
637 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n",
638 		     opts->max_queue_depth,
639 		     opts->max_io_size,
640 		     opts->max_qpairs_per_ctrlr - 1,
641 		     opts->io_unit_size,
642 		     opts->in_capsule_data_size,
643 		     opts->max_aq_depth,
644 		     opts->num_shared_buffers,
645 		     ttransport->tcp_opts.c2h_success,
646 		     opts->dif_insert_or_strip,
647 		     ttransport->tcp_opts.sock_priority,
648 		     opts->abort_timeout_sec,
649 		     ttransport->tcp_opts.control_msg_num);
650 
651 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
652 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
653 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
654 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
655 		free(ttransport);
656 		return NULL;
657 	}
658 
659 	if (ttransport->tcp_opts.control_msg_num == 0 &&
660 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
661 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
662 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
663 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
664 	}
665 
666 	/* I/O unit size cannot be larger than max I/O size */
667 	if (opts->io_unit_size > opts->max_io_size) {
668 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
669 			     opts->io_unit_size, opts->max_io_size);
670 		opts->io_unit_size = opts->max_io_size;
671 	}
672 
673 	/* In capsule data size cannot be larger than max I/O size */
674 	if (opts->in_capsule_data_size > opts->max_io_size) {
675 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
676 			     opts->io_unit_size, opts->max_io_size);
677 		opts->in_capsule_data_size = opts->max_io_size;
678 	}
679 
680 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
681 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
682 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
683 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
684 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
685 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
686 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
687 	}
688 
689 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
690 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
691 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
692 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
693 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
694 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
695 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
696 	}
697 
698 	sge_count = opts->max_io_size / opts->io_unit_size;
699 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
700 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
701 		free(ttransport);
702 		return NULL;
703 	}
704 
705 	min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
706 	if (min_shared_buffers > opts->num_shared_buffers) {
707 		SPDK_ERRLOG("There are not enough buffers to satisfy "
708 			    "per-poll group caches for each thread. (%" PRIu32 ") "
709 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
710 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
711 		free(ttransport);
712 		return NULL;
713 	}
714 
715 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
716 				    opts->acceptor_poll_rate);
717 	if (!ttransport->accept_poller) {
718 		free(ttransport);
719 		return NULL;
720 	}
721 
722 	return &ttransport->transport;
723 }
724 
725 static int
726 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
727 {
728 	unsigned long long ull;
729 	char *end = NULL;
730 
731 	ull = strtoull(trsvcid, &end, 10);
732 	if (end == NULL || end == trsvcid || *end != '\0') {
733 		return -1;
734 	}
735 
736 	/* Valid TCP/IP port numbers are in [0, 65535] */
737 	if (ull > 65535) {
738 		return -1;
739 	}
740 
741 	return (int)ull;
742 }
743 
744 /**
745  * Canonicalize a listen address trid.
746  */
747 static int
748 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
749 			   const struct spdk_nvme_transport_id *trid)
750 {
751 	int trsvcid_int;
752 
753 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
754 	if (trsvcid_int < 0) {
755 		return -EINVAL;
756 	}
757 
758 	memset(canon_trid, 0, sizeof(*canon_trid));
759 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
760 	canon_trid->adrfam = trid->adrfam;
761 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
762 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
763 
764 	return 0;
765 }
766 
767 /**
768  * Find an existing listening port.
769  */
770 static struct spdk_nvmf_tcp_port *
771 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
772 		   const struct spdk_nvme_transport_id *trid)
773 {
774 	struct spdk_nvme_transport_id canon_trid;
775 	struct spdk_nvmf_tcp_port *port;
776 
777 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
778 		return NULL;
779 	}
780 
781 	TAILQ_FOREACH(port, &ttransport->ports, link) {
782 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
783 			return port;
784 		}
785 	}
786 
787 	return NULL;
788 }
789 
790 static int
791 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
792 		struct spdk_nvmf_listen_opts *listen_opts)
793 {
794 	struct spdk_nvmf_tcp_transport *ttransport;
795 	struct spdk_nvmf_tcp_port *port;
796 	int trsvcid_int;
797 	uint8_t adrfam;
798 	struct spdk_sock_opts opts;
799 
800 	if (!strlen(trid->trsvcid)) {
801 		SPDK_ERRLOG("Service id is required\n");
802 		return -EINVAL;
803 	}
804 
805 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
806 
807 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
808 	if (trsvcid_int < 0) {
809 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
810 		return -EINVAL;
811 	}
812 
813 	port = calloc(1, sizeof(*port));
814 	if (!port) {
815 		SPDK_ERRLOG("Port allocation failed\n");
816 		return -ENOMEM;
817 	}
818 
819 	port->trid = trid;
820 	opts.opts_size = sizeof(opts);
821 	spdk_sock_get_default_opts(&opts);
822 	opts.priority = ttransport->tcp_opts.sock_priority;
823 	/* TODO: also add impl_opts like on the initiator side */
824 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
825 			    NULL, &opts);
826 	if (port->listen_sock == NULL) {
827 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
828 			    trid->traddr, trsvcid_int,
829 			    spdk_strerror(errno), errno);
830 		free(port);
831 		return -errno;
832 	}
833 
834 	if (spdk_sock_is_ipv4(port->listen_sock)) {
835 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
836 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
837 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
838 	} else {
839 		SPDK_ERRLOG("Unhandled socket type\n");
840 		adrfam = 0;
841 	}
842 
843 	if (adrfam != trid->adrfam) {
844 		SPDK_ERRLOG("Socket address family mismatch\n");
845 		spdk_sock_close(&port->listen_sock);
846 		free(port);
847 		return -EINVAL;
848 	}
849 
850 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
851 		       trid->traddr, trid->trsvcid);
852 
853 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
854 	return 0;
855 }
856 
857 static void
858 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
859 		     const struct spdk_nvme_transport_id *trid)
860 {
861 	struct spdk_nvmf_tcp_transport *ttransport;
862 	struct spdk_nvmf_tcp_port *port;
863 
864 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
865 
866 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
867 		      trid->traddr, trid->trsvcid);
868 
869 	port = nvmf_tcp_find_port(ttransport, trid);
870 	if (port) {
871 		TAILQ_REMOVE(&ttransport->ports, port, link);
872 		spdk_sock_close(&port->listen_sock);
873 		free(port);
874 	}
875 }
876 
877 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
878 		enum nvme_tcp_pdu_recv_state state);
879 
880 static void
881 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
882 {
883 	tqpair->state = state;
884 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
885 			  tqpair->state);
886 }
887 
888 static void
889 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
890 {
891 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
892 
893 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, 0, 0, (uintptr_t)tqpair);
894 
895 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
896 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
897 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
898 		spdk_poller_unregister(&tqpair->timeout_poller);
899 
900 		/* This will end up calling nvmf_tcp_close_qpair */
901 		spdk_nvmf_qpair_disconnect(&tqpair->qpair, NULL, NULL);
902 	}
903 }
904 
905 static void
906 _mgmt_pdu_write_done(void *_tqpair, int err)
907 {
908 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
909 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
910 
911 	if (spdk_unlikely(err != 0)) {
912 		nvmf_tcp_qpair_disconnect(tqpair);
913 		return;
914 	}
915 
916 	assert(pdu->cb_fn != NULL);
917 	pdu->cb_fn(pdu->cb_arg);
918 }
919 
920 static void
921 _req_pdu_write_done(void *req, int err)
922 {
923 	struct spdk_nvmf_tcp_req *tcp_req = req;
924 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
925 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
926 
927 	assert(tcp_req->pdu_in_use);
928 	tcp_req->pdu_in_use = false;
929 
930 	/* If the request is in a completed state, we're waiting for write completion to free it */
931 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
932 		nvmf_tcp_request_free(tcp_req);
933 		return;
934 	}
935 
936 	if (spdk_unlikely(err != 0)) {
937 		nvmf_tcp_qpair_disconnect(tqpair);
938 		return;
939 	}
940 
941 	assert(pdu->cb_fn != NULL);
942 	pdu->cb_fn(pdu->cb_arg);
943 }
944 
945 static void
946 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
947 {
948 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
949 }
950 
951 static void
952 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
953 {
954 	uint32_t mapped_length = 0;
955 	ssize_t rc;
956 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
957 
958 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
959 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable,
960 			       &mapped_length);
961 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
962 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
963 		rc = spdk_sock_writev(tqpair->sock, pdu->iov, pdu->sock_req.iovcnt);
964 		if (rc == mapped_length) {
965 			_pdu_write_done(pdu, 0);
966 		} else {
967 			SPDK_ERRLOG("Could not write %s to socket: rc=%zd, errno=%d\n",
968 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
969 				    "IC_RESP" : "TERM_REQ", rc, errno);
970 			_pdu_write_done(pdu, -1);
971 		}
972 	} else {
973 		spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
974 	}
975 }
976 
977 static void
978 data_crc32_accel_done(void *cb_arg, int status)
979 {
980 	struct nvme_tcp_pdu *pdu = cb_arg;
981 
982 	if (spdk_unlikely(status)) {
983 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
984 		_pdu_write_done(pdu, status);
985 		return;
986 	}
987 
988 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
989 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
990 
991 	_tcp_write_pdu(pdu);
992 }
993 
994 static void
995 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
996 {
997 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
998 	int rc = 0;
999 
1000 	/* Data Digest */
1001 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1002 		/* Only suport this limitated case for the first step */
1003 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1004 				&& tqpair->group)) {
1005 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1006 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1007 			if (spdk_likely(rc == 0)) {
1008 				return;
1009 			}
1010 		} else {
1011 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1012 		}
1013 		data_crc32_accel_done(pdu, rc);
1014 	} else {
1015 		_tcp_write_pdu(pdu);
1016 	}
1017 }
1018 
1019 static void
1020 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1021 			 struct nvme_tcp_pdu *pdu,
1022 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1023 			 void *cb_arg)
1024 {
1025 	int hlen;
1026 	uint32_t crc32c;
1027 
1028 	assert(tqpair->pdu_in_progress != pdu);
1029 
1030 	hlen = pdu->hdr.common.hlen;
1031 	pdu->cb_fn = cb_fn;
1032 	pdu->cb_arg = cb_arg;
1033 
1034 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1035 	pdu->iov[0].iov_len = hlen;
1036 
1037 	/* Header Digest */
1038 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1039 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1040 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1041 	}
1042 
1043 	/* Data Digest */
1044 	pdu_data_crc32_compute(pdu);
1045 }
1046 
1047 static void
1048 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1049 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1050 			      void *cb_arg)
1051 {
1052 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1053 
1054 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1055 	pdu->sock_req.cb_arg = tqpair;
1056 
1057 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1058 }
1059 
1060 static void
1061 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1062 			     struct spdk_nvmf_tcp_req *tcp_req,
1063 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1064 			     void *cb_arg)
1065 {
1066 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1067 
1068 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1069 	pdu->sock_req.cb_arg = tcp_req;
1070 
1071 	assert(!tcp_req->pdu_in_use);
1072 	tcp_req->pdu_in_use = true;
1073 
1074 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1075 }
1076 
1077 static int
1078 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1079 {
1080 	uint32_t i;
1081 	struct spdk_nvmf_transport_opts *opts;
1082 	uint32_t in_capsule_data_size;
1083 
1084 	opts = &tqpair->qpair.transport->opts;
1085 
1086 	in_capsule_data_size = opts->in_capsule_data_size;
1087 	if (opts->dif_insert_or_strip) {
1088 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1089 	}
1090 
1091 	tqpair->resource_count = opts->max_queue_depth;
1092 
1093 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1094 	if (!tqpair->reqs) {
1095 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1096 		return -1;
1097 	}
1098 
1099 	if (in_capsule_data_size) {
1100 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1101 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1102 					    SPDK_MALLOC_DMA);
1103 		if (!tqpair->bufs) {
1104 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1105 			return -1;
1106 		}
1107 	}
1108 	/* prepare memory space for receiving pdus and tcp_req */
1109 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1110 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1111 					NULL);
1112 	if (!tqpair->pdus) {
1113 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1114 		return -1;
1115 	}
1116 
1117 	for (i = 0; i < tqpair->resource_count; i++) {
1118 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1119 
1120 		tcp_req->ttag = i + 1;
1121 		tcp_req->req.qpair = &tqpair->qpair;
1122 
1123 		tcp_req->pdu = &tqpair->pdus[i];
1124 		tcp_req->pdu->qpair = tqpair;
1125 
1126 		/* Set up memory to receive commands */
1127 		if (tqpair->bufs) {
1128 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1129 		}
1130 
1131 		/* Set the cmdn and rsp */
1132 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1133 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1134 
1135 		tcp_req->req.stripped_data = NULL;
1136 
1137 		/* Initialize request state to FREE */
1138 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1139 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1140 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1141 	}
1142 
1143 	for (; i < 2 * tqpair->resource_count; i++) {
1144 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1145 
1146 		pdu->qpair = tqpair;
1147 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1148 	}
1149 
1150 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1151 	tqpair->mgmt_pdu->qpair = tqpair;
1152 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1153 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1154 
1155 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1156 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1157 
1158 	return 0;
1159 }
1160 
1161 static int
1162 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1163 {
1164 	struct spdk_nvmf_tcp_qpair *tqpair;
1165 
1166 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1167 
1168 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1169 
1170 	spdk_trace_record(TRACE_TCP_QP_CREATE, 0, 0, (uintptr_t)tqpair);
1171 
1172 	/* Initialise request state queues of the qpair */
1173 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1174 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1175 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1176 
1177 	tqpair->host_hdgst_enable = true;
1178 	tqpair->host_ddgst_enable = true;
1179 
1180 	return 0;
1181 }
1182 
1183 static int
1184 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1185 {
1186 	int rc;
1187 
1188 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, 0, 0, (uintptr_t)tqpair);
1189 
1190 	/* set low water mark */
1191 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1192 	if (rc != 0) {
1193 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1194 		return rc;
1195 	}
1196 
1197 	return 0;
1198 }
1199 
1200 static void
1201 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1202 			struct spdk_nvmf_tcp_port *port,
1203 			struct spdk_sock *sock)
1204 {
1205 	struct spdk_nvmf_tcp_qpair *tqpair;
1206 	int rc;
1207 
1208 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1209 		      port->trid->traddr, port->trid->trsvcid);
1210 
1211 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1212 	if (tqpair == NULL) {
1213 		SPDK_ERRLOG("Could not allocate new connection.\n");
1214 		spdk_sock_close(&sock);
1215 		return;
1216 	}
1217 
1218 	tqpair->sock = sock;
1219 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1220 	tqpair->port = port;
1221 	tqpair->qpair.transport = transport;
1222 
1223 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1224 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1225 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1226 			       &tqpair->initiator_port);
1227 	if (rc < 0) {
1228 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1229 		nvmf_tcp_qpair_destroy(tqpair);
1230 		return;
1231 	}
1232 
1233 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1234 }
1235 
1236 static uint32_t
1237 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1238 {
1239 	struct spdk_sock *sock;
1240 	uint32_t count = 0;
1241 	int i;
1242 
1243 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1244 		sock = spdk_sock_accept(port->listen_sock);
1245 		if (sock == NULL) {
1246 			break;
1247 		}
1248 		count++;
1249 		nvmf_tcp_handle_connect(transport, port, sock);
1250 	}
1251 
1252 	return count;
1253 }
1254 
1255 static int
1256 nvmf_tcp_accept(void *ctx)
1257 {
1258 	struct spdk_nvmf_transport *transport = ctx;
1259 	struct spdk_nvmf_tcp_transport *ttransport;
1260 	struct spdk_nvmf_tcp_port *port;
1261 	uint32_t count = 0;
1262 
1263 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1264 
1265 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1266 		count += nvmf_tcp_port_accept(transport, port);
1267 	}
1268 
1269 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1270 }
1271 
1272 static void
1273 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1274 		  struct spdk_nvme_transport_id *trid,
1275 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1276 {
1277 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1278 	entry->adrfam = trid->adrfam;
1279 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1280 
1281 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1282 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1283 
1284 	entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1285 }
1286 
1287 static struct spdk_nvmf_tcp_control_msg_list *
1288 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1289 {
1290 	struct spdk_nvmf_tcp_control_msg_list *list;
1291 	struct spdk_nvmf_tcp_control_msg *msg;
1292 	uint16_t i;
1293 
1294 	list = calloc(1, sizeof(*list));
1295 	if (!list) {
1296 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1297 		return NULL;
1298 	}
1299 
1300 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1301 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1302 	if (!list->msg_buf) {
1303 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1304 		free(list);
1305 		return NULL;
1306 	}
1307 
1308 	STAILQ_INIT(&list->free_msgs);
1309 
1310 	for (i = 0; i < num_messages; i++) {
1311 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1312 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1313 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1314 	}
1315 
1316 	return list;
1317 }
1318 
1319 static void
1320 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1321 {
1322 	if (!list) {
1323 		return;
1324 	}
1325 
1326 	spdk_free(list->msg_buf);
1327 	free(list);
1328 }
1329 
1330 static struct spdk_nvmf_transport_poll_group *
1331 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1332 			   struct spdk_nvmf_poll_group *group)
1333 {
1334 	struct spdk_nvmf_tcp_transport	*ttransport;
1335 	struct spdk_nvmf_tcp_poll_group *tgroup;
1336 
1337 	tgroup = calloc(1, sizeof(*tgroup));
1338 	if (!tgroup) {
1339 		return NULL;
1340 	}
1341 
1342 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1343 	if (!tgroup->sock_group) {
1344 		goto cleanup;
1345 	}
1346 
1347 	TAILQ_INIT(&tgroup->qpairs);
1348 	TAILQ_INIT(&tgroup->await_req);
1349 
1350 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1351 
1352 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1353 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1354 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1355 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1356 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1357 		if (!tgroup->control_msg_list) {
1358 			goto cleanup;
1359 		}
1360 	}
1361 
1362 	tgroup->accel_channel = spdk_accel_get_io_channel();
1363 	if (spdk_unlikely(!tgroup->accel_channel)) {
1364 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1365 		goto cleanup;
1366 	}
1367 
1368 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1369 	if (ttransport->next_pg == NULL) {
1370 		ttransport->next_pg = tgroup;
1371 	}
1372 
1373 	return &tgroup->group;
1374 
1375 cleanup:
1376 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1377 	return NULL;
1378 }
1379 
1380 static struct spdk_nvmf_transport_poll_group *
1381 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1382 {
1383 	struct spdk_nvmf_tcp_transport *ttransport;
1384 	struct spdk_nvmf_tcp_poll_group **pg;
1385 	struct spdk_nvmf_tcp_qpair *tqpair;
1386 	struct spdk_sock_group *group = NULL, *hint = NULL;
1387 	int rc;
1388 
1389 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1390 
1391 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1392 		return NULL;
1393 	}
1394 
1395 	pg = &ttransport->next_pg;
1396 	assert(*pg != NULL);
1397 	hint = (*pg)->sock_group;
1398 
1399 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1400 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1401 	if (rc != 0) {
1402 		return NULL;
1403 	} else if (group != NULL) {
1404 		/* Optimal poll group was found */
1405 		return spdk_sock_group_get_ctx(group);
1406 	}
1407 
1408 	/* The hint was used for optimal poll group, advance next_pg. */
1409 	*pg = TAILQ_NEXT(*pg, link);
1410 	if (*pg == NULL) {
1411 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1412 	}
1413 
1414 	return spdk_sock_group_get_ctx(hint);
1415 }
1416 
1417 static void
1418 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1419 {
1420 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1421 	struct spdk_nvmf_tcp_transport *ttransport;
1422 
1423 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1424 	spdk_sock_group_close(&tgroup->sock_group);
1425 	if (tgroup->control_msg_list) {
1426 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1427 	}
1428 
1429 	if (tgroup->accel_channel) {
1430 		spdk_put_io_channel(tgroup->accel_channel);
1431 	}
1432 
1433 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1434 
1435 	next_tgroup = TAILQ_NEXT(tgroup, link);
1436 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1437 	if (next_tgroup == NULL) {
1438 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1439 	}
1440 	if (ttransport->next_pg == tgroup) {
1441 		ttransport->next_pg = next_tgroup;
1442 	}
1443 
1444 	free(tgroup);
1445 }
1446 
1447 static void
1448 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1449 			      enum nvme_tcp_pdu_recv_state state)
1450 {
1451 	if (tqpair->recv_state == state) {
1452 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1453 			    tqpair, state);
1454 		return;
1455 	}
1456 
1457 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1458 		/* When leaving the await req state, move the qpair to the main list */
1459 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1460 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1461 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1462 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1463 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1464 	}
1465 
1466 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1467 	tqpair->recv_state = state;
1468 
1469 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
1470 			  tqpair->recv_state);
1471 }
1472 
1473 static int
1474 nvmf_tcp_qpair_handle_timeout(void *ctx)
1475 {
1476 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1477 
1478 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1479 
1480 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1481 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1482 
1483 	nvmf_tcp_qpair_disconnect(tqpair);
1484 	return SPDK_POLLER_BUSY;
1485 }
1486 
1487 static void
1488 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1489 {
1490 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1491 
1492 	if (!tqpair->timeout_poller) {
1493 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1494 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1495 	}
1496 }
1497 
1498 static void
1499 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1500 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1501 {
1502 	struct nvme_tcp_pdu *rsp_pdu;
1503 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1504 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1505 	uint32_t copy_len;
1506 
1507 	rsp_pdu = tqpair->mgmt_pdu;
1508 
1509 	c2h_term_req = &rsp_pdu->hdr.term_req;
1510 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1511 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1512 	c2h_term_req->fes = fes;
1513 
1514 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1515 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1516 		DSET32(&c2h_term_req->fei, error_offset);
1517 	}
1518 
1519 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1520 
1521 	/* Copy the error info into the buffer */
1522 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1523 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1524 
1525 	/* Contain the header of the wrong received pdu */
1526 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1527 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
1528 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1529 }
1530 
1531 static void
1532 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1533 				struct spdk_nvmf_tcp_qpair *tqpair,
1534 				struct nvme_tcp_pdu *pdu)
1535 {
1536 	struct spdk_nvmf_tcp_req *tcp_req;
1537 
1538 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1539 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1540 
1541 	tcp_req = nvmf_tcp_req_get(tqpair);
1542 	if (!tcp_req) {
1543 		/* Directly return and make the allocation retry again.  This can happen if we're
1544 		 * using asynchronous writes to send the response to the host or when releasing
1545 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1546 		 * receive the response before we've finished processing the request and is free to
1547 		 * send another one.
1548 		 */
1549 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1550 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1551 			return;
1552 		}
1553 
1554 		/* The host sent more commands than the maximum queue depth. */
1555 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1556 		nvmf_tcp_qpair_disconnect(tqpair);
1557 		return;
1558 	}
1559 
1560 	pdu->req = tcp_req;
1561 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1562 	nvmf_tcp_req_process(ttransport, tcp_req);
1563 }
1564 
1565 static void
1566 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1567 				    struct spdk_nvmf_tcp_qpair *tqpair,
1568 				    struct nvme_tcp_pdu *pdu)
1569 {
1570 	struct spdk_nvmf_tcp_req *tcp_req;
1571 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1572 	uint32_t error_offset = 0;
1573 	enum spdk_nvme_tcp_term_req_fes fes;
1574 	struct spdk_nvme_cpl *rsp;
1575 
1576 	capsule_cmd = &pdu->hdr.capsule_cmd;
1577 	tcp_req = pdu->req;
1578 	assert(tcp_req != NULL);
1579 
1580 	/* Zero-copy requests don't support ICD */
1581 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1582 
1583 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1584 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1585 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1586 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1587 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1588 		goto err;
1589 	}
1590 
1591 	rsp = &tcp_req->req.rsp->nvme_cpl;
1592 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1593 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1594 	} else {
1595 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1596 	}
1597 
1598 	nvmf_tcp_req_process(ttransport, tcp_req);
1599 
1600 	return;
1601 err:
1602 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1603 }
1604 
1605 static void
1606 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1607 			     struct spdk_nvmf_tcp_qpair *tqpair,
1608 			     struct nvme_tcp_pdu *pdu)
1609 {
1610 	struct spdk_nvmf_tcp_req *tcp_req;
1611 	uint32_t error_offset = 0;
1612 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1613 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1614 
1615 	h2c_data = &pdu->hdr.h2c_data;
1616 
1617 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1618 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1619 
1620 	if (h2c_data->ttag > tqpair->resource_count) {
1621 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1622 			      tqpair->resource_count);
1623 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1624 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1625 		goto err;
1626 	}
1627 
1628 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1629 
1630 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1631 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1632 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1633 			      tcp_req->state);
1634 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1635 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1636 		goto err;
1637 	}
1638 
1639 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1640 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1641 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1642 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1643 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1644 		goto err;
1645 	}
1646 
1647 	if (tcp_req->h2c_offset != h2c_data->datao) {
1648 		SPDK_DEBUGLOG(nvmf_tcp,
1649 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1650 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1651 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1652 		goto err;
1653 	}
1654 
1655 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1656 		SPDK_DEBUGLOG(nvmf_tcp,
1657 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1658 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1659 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1660 		goto err;
1661 	}
1662 
1663 	pdu->req = tcp_req;
1664 
1665 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1666 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1667 	}
1668 
1669 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1670 				  h2c_data->datao, h2c_data->datal);
1671 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1672 	return;
1673 
1674 err:
1675 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1676 }
1677 
1678 static void
1679 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1680 			       struct spdk_nvmf_tcp_qpair *tqpair)
1681 {
1682 	struct nvme_tcp_pdu *rsp_pdu;
1683 	struct spdk_nvme_tcp_rsp *capsule_resp;
1684 
1685 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1686 
1687 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1688 	assert(rsp_pdu != NULL);
1689 
1690 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1691 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1692 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1693 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1694 	if (tqpair->host_hdgst_enable) {
1695 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1696 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1697 	}
1698 
1699 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1700 }
1701 
1702 static void
1703 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1704 {
1705 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1706 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1707 					     struct spdk_nvmf_tcp_qpair, qpair);
1708 
1709 	assert(tqpair != NULL);
1710 
1711 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1712 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1713 			      tcp_req->req.length);
1714 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1715 		return;
1716 	}
1717 
1718 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1719 		nvmf_tcp_request_free(tcp_req);
1720 	} else {
1721 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1722 	}
1723 }
1724 
1725 static void
1726 nvmf_tcp_r2t_complete(void *cb_arg)
1727 {
1728 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1729 	struct spdk_nvmf_tcp_transport *ttransport;
1730 
1731 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1732 				      struct spdk_nvmf_tcp_transport, transport);
1733 
1734 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1735 
1736 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1737 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1738 		nvmf_tcp_req_process(ttransport, tcp_req);
1739 	}
1740 }
1741 
1742 static void
1743 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1744 		      struct spdk_nvmf_tcp_req *tcp_req)
1745 {
1746 	struct nvme_tcp_pdu *rsp_pdu;
1747 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1748 
1749 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1750 	assert(rsp_pdu != NULL);
1751 
1752 	r2t = &rsp_pdu->hdr.r2t;
1753 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1754 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1755 
1756 	if (tqpair->host_hdgst_enable) {
1757 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1758 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1759 	}
1760 
1761 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1762 	r2t->ttag = tcp_req->ttag;
1763 	r2t->r2to = tcp_req->h2c_offset;
1764 	r2t->r2tl = tcp_req->req.length;
1765 
1766 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1767 
1768 	SPDK_DEBUGLOG(nvmf_tcp,
1769 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1770 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1771 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1772 }
1773 
1774 static void
1775 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1776 				 struct spdk_nvmf_tcp_qpair *tqpair,
1777 				 struct nvme_tcp_pdu *pdu)
1778 {
1779 	struct spdk_nvmf_tcp_req *tcp_req;
1780 	struct spdk_nvme_cpl *rsp;
1781 
1782 	tcp_req = pdu->req;
1783 	assert(tcp_req != NULL);
1784 
1785 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1786 
1787 	tcp_req->h2c_offset += pdu->data_len;
1788 
1789 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1790 	 * acknowledged before moving on. */
1791 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1792 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1793 		/* After receiving all the h2c data, we need to check whether there is
1794 		 * transient transport error */
1795 		rsp = &tcp_req->req.rsp->nvme_cpl;
1796 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1797 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1798 		} else {
1799 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1800 		}
1801 		nvmf_tcp_req_process(ttransport, tcp_req);
1802 	}
1803 }
1804 
1805 static void
1806 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1807 {
1808 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1809 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1810 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1811 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1812 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1813 			      DGET32(h2c_term_req->fei));
1814 	}
1815 }
1816 
1817 static void
1818 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1819 				 struct nvme_tcp_pdu *pdu)
1820 {
1821 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1822 	uint32_t error_offset = 0;
1823 	enum spdk_nvme_tcp_term_req_fes fes;
1824 
1825 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1826 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1827 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1828 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1829 		goto end;
1830 	}
1831 
1832 	/* set the data buffer */
1833 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1834 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1835 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1836 	return;
1837 end:
1838 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1839 }
1840 
1841 static void
1842 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1843 				     struct nvme_tcp_pdu *pdu)
1844 {
1845 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1846 
1847 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
1848 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
1849 }
1850 
1851 static void
1852 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
1853 {
1854 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
1855 			struct spdk_nvmf_tcp_transport, transport);
1856 
1857 	switch (pdu->hdr.common.pdu_type) {
1858 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
1859 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
1860 		break;
1861 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
1862 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
1863 		break;
1864 
1865 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
1866 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
1867 		break;
1868 
1869 	default:
1870 		/* The code should not go to here */
1871 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
1872 		break;
1873 	}
1874 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1875 }
1876 
1877 static void
1878 data_crc32_calc_done(void *cb_arg, int status)
1879 {
1880 	struct nvme_tcp_pdu *pdu = cb_arg;
1881 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1882 	struct spdk_nvmf_tcp_req *tcp_req;
1883 	struct spdk_nvme_cpl *rsp;
1884 
1885 	/* async crc32 calculation is failed and use direct calculation to check */
1886 	if (spdk_unlikely(status)) {
1887 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
1888 			    tqpair, pdu);
1889 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1890 	}
1891 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1892 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
1893 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
1894 		tcp_req = pdu->req;
1895 		assert(tcp_req != NULL);
1896 		rsp = &tcp_req->req.rsp->nvme_cpl;
1897 		rsp->status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR;
1898 	}
1899 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
1900 }
1901 
1902 static void
1903 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
1904 {
1905 	int rc = 0;
1906 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1907 	tqpair->pdu_in_progress = NULL;
1908 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1909 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1910 	/* check data digest if need */
1911 	if (pdu->ddgst_enable) {
1912 		if (!pdu->dif_ctx && tqpair->group && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
1913 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1914 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
1915 			if (spdk_likely(rc == 0)) {
1916 				return;
1917 			}
1918 		} else {
1919 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1920 		}
1921 		data_crc32_calc_done(pdu, rc);
1922 	} else {
1923 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
1924 	}
1925 }
1926 
1927 static void
1928 nvmf_tcp_send_icresp_complete(void *cb_arg)
1929 {
1930 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
1931 
1932 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
1933 }
1934 
1935 static void
1936 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
1937 		      struct spdk_nvmf_tcp_qpair *tqpair,
1938 		      struct nvme_tcp_pdu *pdu)
1939 {
1940 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
1941 	struct nvme_tcp_pdu *rsp_pdu;
1942 	struct spdk_nvme_tcp_ic_resp *ic_resp;
1943 	uint32_t error_offset = 0;
1944 	enum spdk_nvme_tcp_term_req_fes fes;
1945 
1946 	/* Only PFV 0 is defined currently */
1947 	if (ic_req->pfv != 0) {
1948 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
1949 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1950 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
1951 		goto end;
1952 	}
1953 
1954 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
1955 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
1956 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
1957 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1958 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
1959 		goto end;
1960 	}
1961 
1962 	/* MAXR2T is 0's based */
1963 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
1964 
1965 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
1966 	if (!tqpair->host_hdgst_enable) {
1967 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1968 	}
1969 
1970 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
1971 	if (!tqpair->host_ddgst_enable) {
1972 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1973 	}
1974 
1975 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
1976 	/* Now that we know whether digests are enabled, properly size the receive buffer */
1977 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
1978 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
1979 			     tqpair,
1980 			     tqpair->recv_buf_size);
1981 		/* Not fatal. */
1982 	}
1983 
1984 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
1985 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
1986 
1987 	rsp_pdu = tqpair->mgmt_pdu;
1988 
1989 	ic_resp = &rsp_pdu->hdr.ic_resp;
1990 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
1991 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
1992 	ic_resp->pfv = 0;
1993 	ic_resp->cpda = tqpair->cpda;
1994 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
1995 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
1996 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
1997 
1998 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
1999 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2000 
2001 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2002 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2003 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2004 	return;
2005 end:
2006 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2007 }
2008 
2009 static void
2010 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2011 			struct spdk_nvmf_tcp_transport *ttransport)
2012 {
2013 	struct nvme_tcp_pdu *pdu;
2014 	int rc;
2015 	uint32_t crc32c, error_offset = 0;
2016 	enum spdk_nvme_tcp_term_req_fes fes;
2017 
2018 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2019 	pdu = tqpair->pdu_in_progress;
2020 
2021 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2022 		      pdu->hdr.common.pdu_type);
2023 	/* check header digest if needed */
2024 	if (pdu->has_hdgst) {
2025 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2026 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2027 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2028 		if (rc == 0) {
2029 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2030 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2031 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2032 			return;
2033 
2034 		}
2035 	}
2036 
2037 	switch (pdu->hdr.common.pdu_type) {
2038 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2039 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2040 		break;
2041 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2042 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2043 		break;
2044 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2045 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2046 		break;
2047 
2048 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2049 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2050 		break;
2051 
2052 	default:
2053 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2054 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2055 		error_offset = 1;
2056 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2057 		break;
2058 	}
2059 }
2060 
2061 static void
2062 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2063 {
2064 	struct nvme_tcp_pdu *pdu;
2065 	uint32_t error_offset = 0;
2066 	enum spdk_nvme_tcp_term_req_fes fes;
2067 	uint8_t expected_hlen, pdo;
2068 	bool plen_error = false, pdo_error = false;
2069 
2070 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2071 	pdu = tqpair->pdu_in_progress;
2072 	assert(pdu);
2073 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2074 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2075 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2076 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2077 			goto err;
2078 		}
2079 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2080 		if (pdu->hdr.common.plen != expected_hlen) {
2081 			plen_error = true;
2082 		}
2083 	} else {
2084 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2085 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2086 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2087 			goto err;
2088 		}
2089 
2090 		switch (pdu->hdr.common.pdu_type) {
2091 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2092 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2093 			pdo = pdu->hdr.common.pdo;
2094 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2095 				pdo_error = true;
2096 				break;
2097 			}
2098 
2099 			if (pdu->hdr.common.plen < expected_hlen) {
2100 				plen_error = true;
2101 			}
2102 			break;
2103 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2104 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2105 			pdo = pdu->hdr.common.pdo;
2106 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2107 				pdo_error = true;
2108 				break;
2109 			}
2110 			if (pdu->hdr.common.plen < expected_hlen) {
2111 				plen_error = true;
2112 			}
2113 			break;
2114 
2115 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2116 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2117 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2118 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2119 				plen_error = true;
2120 			}
2121 			break;
2122 
2123 		default:
2124 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2125 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2126 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2127 			goto err;
2128 		}
2129 	}
2130 
2131 	if (pdu->hdr.common.hlen != expected_hlen) {
2132 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2133 			    pdu->hdr.common.pdu_type,
2134 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2135 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2136 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2137 		goto err;
2138 	} else if (pdo_error) {
2139 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2140 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2141 	} else if (plen_error) {
2142 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2143 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2144 		goto err;
2145 	} else {
2146 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2147 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2148 		return;
2149 	}
2150 err:
2151 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2152 }
2153 
2154 static int
2155 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2156 {
2157 	int rc = 0;
2158 	struct nvme_tcp_pdu *pdu;
2159 	enum nvme_tcp_pdu_recv_state prev_state;
2160 	uint32_t data_len;
2161 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2162 			struct spdk_nvmf_tcp_transport, transport);
2163 
2164 	/* The loop here is to allow for several back-to-back state changes. */
2165 	do {
2166 		prev_state = tqpair->recv_state;
2167 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2168 
2169 		pdu = tqpair->pdu_in_progress;
2170 		assert(pdu || tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2171 		switch (tqpair->recv_state) {
2172 		/* Wait for the common header  */
2173 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2174 			if (!pdu) {
2175 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2176 				if (spdk_unlikely(!pdu)) {
2177 					return NVME_TCP_PDU_IN_PROGRESS;
2178 				}
2179 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2180 				tqpair->pdu_in_progress = pdu;
2181 			}
2182 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2183 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2184 		/* FALLTHROUGH */
2185 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2186 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2187 				return rc;
2188 			}
2189 
2190 			rc = nvme_tcp_read_data(tqpair->sock,
2191 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2192 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2193 			if (rc < 0) {
2194 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2195 				return NVME_TCP_PDU_FATAL;
2196 			} else if (rc > 0) {
2197 				pdu->ch_valid_bytes += rc;
2198 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2199 			}
2200 
2201 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2202 				return NVME_TCP_PDU_IN_PROGRESS;
2203 			}
2204 
2205 			/* The command header of this PDU has now been read from the socket. */
2206 			nvmf_tcp_pdu_ch_handle(tqpair);
2207 			break;
2208 		/* Wait for the pdu specific header  */
2209 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2210 			rc = nvme_tcp_read_data(tqpair->sock,
2211 						pdu->psh_len - pdu->psh_valid_bytes,
2212 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2213 			if (rc < 0) {
2214 				return NVME_TCP_PDU_FATAL;
2215 			} else if (rc > 0) {
2216 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2217 				pdu->psh_valid_bytes += rc;
2218 			}
2219 
2220 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2221 				return NVME_TCP_PDU_IN_PROGRESS;
2222 			}
2223 
2224 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2225 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2226 			break;
2227 		/* Wait for the req slot */
2228 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2229 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2230 			break;
2231 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2232 			/* check whether the data is valid, if not we just return */
2233 			if (!pdu->data_len) {
2234 				return NVME_TCP_PDU_IN_PROGRESS;
2235 			}
2236 
2237 			data_len = pdu->data_len;
2238 			/* data digest */
2239 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2240 					  tqpair->host_ddgst_enable)) {
2241 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2242 				pdu->ddgst_enable = true;
2243 			}
2244 
2245 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2246 			if (rc < 0) {
2247 				return NVME_TCP_PDU_FATAL;
2248 			}
2249 			pdu->rw_offset += rc;
2250 
2251 			if (pdu->rw_offset < data_len) {
2252 				return NVME_TCP_PDU_IN_PROGRESS;
2253 			}
2254 
2255 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2256 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2257 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2258 						     pdu->dif_ctx) != 0) {
2259 				SPDK_ERRLOG("DIF generate failed\n");
2260 				return NVME_TCP_PDU_FATAL;
2261 			}
2262 
2263 			/* All of this PDU has now been read from the socket. */
2264 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2265 			break;
2266 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2267 			if (!spdk_sock_is_connected(tqpair->sock)) {
2268 				return NVME_TCP_PDU_FATAL;
2269 			}
2270 			break;
2271 		default:
2272 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2273 			abort();
2274 			break;
2275 		}
2276 	} while (tqpair->recv_state != prev_state);
2277 
2278 	return rc;
2279 }
2280 
2281 static inline void *
2282 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2283 {
2284 	struct spdk_nvmf_tcp_control_msg *msg;
2285 
2286 	assert(list);
2287 
2288 	msg = STAILQ_FIRST(&list->free_msgs);
2289 	if (!msg) {
2290 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2291 		return NULL;
2292 	}
2293 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2294 	return msg;
2295 }
2296 
2297 static inline void
2298 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2299 {
2300 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2301 
2302 	assert(list);
2303 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2304 }
2305 
2306 static int
2307 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2308 		       struct spdk_nvmf_transport *transport,
2309 		       struct spdk_nvmf_transport_poll_group *group)
2310 {
2311 	struct spdk_nvmf_request		*req = &tcp_req->req;
2312 	struct spdk_nvme_cmd			*cmd;
2313 	struct spdk_nvme_sgl_descriptor		*sgl;
2314 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2315 	enum spdk_nvme_tcp_term_req_fes		fes;
2316 	struct nvme_tcp_pdu			*pdu;
2317 	struct spdk_nvmf_tcp_qpair		*tqpair;
2318 	uint32_t				length, error_offset = 0;
2319 
2320 	cmd = &req->cmd->nvme_cmd;
2321 	sgl = &cmd->dptr.sgl1;
2322 
2323 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2324 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2325 		/* get request length from sgl */
2326 		length = sgl->unkeyed.length;
2327 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2328 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2329 				    length, transport->opts.max_io_size);
2330 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2331 			goto fatal_err;
2332 		}
2333 
2334 		/* fill request length and populate iovs */
2335 		req->length = length;
2336 
2337 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2338 
2339 		if (spdk_unlikely(req->dif_enabled)) {
2340 			req->dif.orig_length = length;
2341 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2342 			req->dif.elba_length = length;
2343 		}
2344 
2345 		if (nvmf_ctrlr_use_zcopy(req)) {
2346 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2347 			req->data_from_pool = false;
2348 			return 0;
2349 		}
2350 
2351 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2352 			/* No available buffers. Queue this request up. */
2353 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2354 				      tcp_req);
2355 			return 0;
2356 		}
2357 
2358 		/* backward compatible */
2359 		req->data = req->iov[0].iov_base;
2360 
2361 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2362 			      tcp_req, req->iovcnt, req->data);
2363 
2364 		return 0;
2365 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2366 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2367 		uint64_t offset = sgl->address;
2368 		uint32_t max_len = transport->opts.in_capsule_data_size;
2369 
2370 		assert(tcp_req->has_in_capsule_data);
2371 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2372 		tqpair = tcp_req->pdu->qpair;
2373 		/* receiving pdu is not same with the pdu in tcp_req */
2374 		pdu = tqpair->pdu_in_progress;
2375 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2376 		if (tqpair->host_ddgst_enable) {
2377 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2378 		}
2379 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2380 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2381 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2382 				    length, sgl->unkeyed.length);
2383 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2384 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2385 			goto fatal_err;
2386 		}
2387 
2388 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2389 			      offset, length);
2390 
2391 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2392 		if (spdk_unlikely(offset != 0)) {
2393 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2394 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2395 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2396 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2397 			goto fatal_err;
2398 		}
2399 
2400 		if (spdk_unlikely(length > max_len)) {
2401 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2402 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2403 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2404 
2405 				/* Get a buffer from dedicated list */
2406 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2407 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2408 				assert(tgroup->control_msg_list);
2409 				req->data = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2410 				if (!req->data) {
2411 					/* No available buffers. Queue this request up. */
2412 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2413 					return 0;
2414 				}
2415 			} else {
2416 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2417 					    length, max_len);
2418 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2419 				goto fatal_err;
2420 			}
2421 		} else {
2422 			req->data = tcp_req->buf;
2423 		}
2424 
2425 		req->length = length;
2426 		req->data_from_pool = false;
2427 
2428 		if (spdk_unlikely(req->dif_enabled)) {
2429 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2430 			req->dif.elba_length = length;
2431 		}
2432 
2433 		req->iov[0].iov_base = req->data;
2434 		req->iov[0].iov_len = length;
2435 		req->iovcnt = 1;
2436 
2437 		return 0;
2438 	}
2439 	/* If we want to handle the problem here, then we can't skip the following data segment.
2440 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2441 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2442 		    sgl->generic.type, sgl->generic.subtype);
2443 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2444 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2445 fatal_err:
2446 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2447 	return -1;
2448 }
2449 
2450 static inline enum spdk_nvme_media_error_status_code
2451 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2452 	enum spdk_nvme_media_error_status_code result;
2453 
2454 	switch (err_type)
2455 	{
2456 	case SPDK_DIF_REFTAG_ERROR:
2457 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2458 		break;
2459 	case SPDK_DIF_APPTAG_ERROR:
2460 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2461 		break;
2462 	case SPDK_DIF_GUARD_ERROR:
2463 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2464 		break;
2465 	default:
2466 		SPDK_UNREACHABLE();
2467 		break;
2468 	}
2469 
2470 	return result;
2471 }
2472 
2473 static void
2474 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2475 			struct spdk_nvmf_tcp_req *tcp_req)
2476 {
2477 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2478 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2479 	struct nvme_tcp_pdu *rsp_pdu;
2480 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2481 	uint32_t plen, pdo, alignment;
2482 	int rc;
2483 
2484 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2485 
2486 	rsp_pdu = tcp_req->pdu;
2487 	assert(rsp_pdu != NULL);
2488 
2489 	c2h_data = &rsp_pdu->hdr.c2h_data;
2490 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2491 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2492 
2493 	if (tqpair->host_hdgst_enable) {
2494 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2495 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2496 	}
2497 
2498 	/* set the psh */
2499 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2500 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2501 	c2h_data->datao = tcp_req->pdu->rw_offset;
2502 
2503 	/* set the padding */
2504 	rsp_pdu->padding_len = 0;
2505 	pdo = plen;
2506 	if (tqpair->cpda) {
2507 		alignment = (tqpair->cpda + 1) << 2;
2508 		if (plen % alignment != 0) {
2509 			pdo = (plen + alignment) / alignment * alignment;
2510 			rsp_pdu->padding_len = pdo - plen;
2511 			plen = pdo;
2512 		}
2513 	}
2514 
2515 	c2h_data->common.pdo = pdo;
2516 	plen += c2h_data->datal;
2517 	if (tqpair->host_ddgst_enable) {
2518 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2519 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2520 	}
2521 
2522 	c2h_data->common.plen = plen;
2523 
2524 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2525 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2526 	}
2527 
2528 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2529 				  c2h_data->datao, c2h_data->datal);
2530 
2531 
2532 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2533 	/* Need to send the capsule response if response is not all 0 */
2534 	if (ttransport->tcp_opts.c2h_success &&
2535 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2536 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2537 	}
2538 
2539 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2540 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2541 		struct spdk_dif_error err_blk = {};
2542 		uint32_t mapped_length = 0;
2543 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2544 		uint32_t ddgst_len = 0;
2545 
2546 		if (tqpair->host_ddgst_enable) {
2547 			/* Data digest consumes additional iov entry */
2548 			available_iovs--;
2549 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2550 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2551 			c2h_data->common.plen -= ddgst_len;
2552 		}
2553 		/* Temp call to estimate if data can be described by limited number of iovs.
2554 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2555 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2556 				    false, &mapped_length);
2557 
2558 		if (mapped_length != c2h_data->common.plen) {
2559 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2560 			SPDK_DEBUGLOG(nvmf_tcp,
2561 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2562 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2563 			c2h_data->common.plen = mapped_length;
2564 
2565 			/* Rebuild pdu->data_iov since data length is changed */
2566 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2567 						  c2h_data->datal);
2568 
2569 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2570 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2571 		}
2572 
2573 		c2h_data->common.plen += ddgst_len;
2574 
2575 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2576 
2577 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2578 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2579 		if (rc != 0) {
2580 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2581 				    err_blk.err_type, err_blk.err_offset);
2582 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2583 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2584 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2585 			return;
2586 		}
2587 	}
2588 
2589 	rsp_pdu->rw_offset += c2h_data->datal;
2590 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2591 }
2592 
2593 static void
2594 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2595 		       struct spdk_nvmf_tcp_req *tcp_req)
2596 {
2597 	nvmf_tcp_req_pdu_init(tcp_req);
2598 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2599 }
2600 
2601 static int
2602 request_transfer_out(struct spdk_nvmf_request *req)
2603 {
2604 	struct spdk_nvmf_tcp_req	*tcp_req;
2605 	struct spdk_nvmf_qpair		*qpair;
2606 	struct spdk_nvmf_tcp_qpair	*tqpair;
2607 	struct spdk_nvme_cpl		*rsp;
2608 
2609 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2610 
2611 	qpair = req->qpair;
2612 	rsp = &req->rsp->nvme_cpl;
2613 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2614 
2615 	/* Advance our sq_head pointer */
2616 	if (qpair->sq_head == qpair->sq_head_max) {
2617 		qpair->sq_head = 0;
2618 	} else {
2619 		qpair->sq_head++;
2620 	}
2621 	rsp->sqhd = qpair->sq_head;
2622 
2623 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2624 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2625 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2626 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2627 	} else {
2628 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2629 	}
2630 
2631 	return 0;
2632 }
2633 
2634 static void
2635 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2636 			      struct spdk_nvmf_tcp_qpair *tqpair,
2637 			      struct spdk_nvmf_tcp_req *tcp_req)
2638 {
2639 	enum spdk_nvme_cmd_fuse last, next;
2640 
2641 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2642 	next = tcp_req->cmd.fuse;
2643 
2644 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2645 
2646 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2647 		return;
2648 	}
2649 
2650 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2651 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2652 			/* This is a valid pair of fused commands.  Point them at each other
2653 			 * so they can be submitted consecutively once ready to be executed.
2654 			 */
2655 			tqpair->fused_first->fused_pair = tcp_req;
2656 			tcp_req->fused_pair = tqpair->fused_first;
2657 			tqpair->fused_first = NULL;
2658 			return;
2659 		} else {
2660 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2661 			tqpair->fused_first->fused_failed = true;
2662 
2663 			/*
2664 			 * If the last req is in READY_TO_EXECUTE state, then call
2665 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2666 			 */
2667 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2668 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2669 			}
2670 
2671 			tqpair->fused_first = NULL;
2672 		}
2673 	}
2674 
2675 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2676 		/* Set tqpair->fused_first here so that we know to check that the next request
2677 		 * is a SECOND (and to fail this one if it isn't).
2678 		 */
2679 		tqpair->fused_first = tcp_req;
2680 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2681 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2682 		tcp_req->fused_failed = true;
2683 	}
2684 }
2685 
2686 static bool
2687 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2688 		     struct spdk_nvmf_tcp_req *tcp_req)
2689 {
2690 	struct spdk_nvmf_tcp_qpair		*tqpair;
2691 	uint32_t				plen;
2692 	struct nvme_tcp_pdu			*pdu;
2693 	enum spdk_nvmf_tcp_req_state		prev_state;
2694 	bool					progress = false;
2695 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2696 	struct spdk_nvmf_transport_poll_group	*group;
2697 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2698 
2699 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2700 	group = &tqpair->group->group;
2701 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2702 
2703 	/* If the qpair is not active, we need to abort the outstanding requests. */
2704 	if (tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2705 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2706 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2707 		}
2708 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2709 	}
2710 
2711 	/* The loop here is to allow for several back-to-back state changes. */
2712 	do {
2713 		prev_state = tcp_req->state;
2714 
2715 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2716 			      tqpair);
2717 
2718 		switch (tcp_req->state) {
2719 		case TCP_REQUEST_STATE_FREE:
2720 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2721 			 * to escape this state. */
2722 			break;
2723 		case TCP_REQUEST_STATE_NEW:
2724 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.qid, 0, (uintptr_t)tcp_req, tqpair);
2725 
2726 			/* copy the cmd from the receive pdu */
2727 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2728 
2729 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2730 				tcp_req->req.dif_enabled = true;
2731 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2732 			}
2733 
2734 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2735 
2736 			/* The next state transition depends on the data transfer needs of this request. */
2737 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2738 
2739 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2740 				tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2741 				tcp_req->req.rsp->nvme_cpl.status.sc  = SPDK_NVME_SC_INVALID_OPCODE;
2742 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2743 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2744 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2745 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2746 				break;
2747 			}
2748 
2749 			/* If no data to transfer, ready to execute. */
2750 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2751 				/* Reset the tqpair receiving pdu state */
2752 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2753 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2754 				break;
2755 			}
2756 
2757 			pdu = tqpair->pdu_in_progress;
2758 			plen = pdu->hdr.common.hlen;
2759 			if (tqpair->host_hdgst_enable) {
2760 				plen += SPDK_NVME_TCP_DIGEST_LEN;
2761 			}
2762 			if (pdu->hdr.common.plen != plen) {
2763 				tcp_req->has_in_capsule_data = true;
2764 			} else {
2765 				/* Data is transmitted by C2H PDUs */
2766 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2767 			}
2768 
2769 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2770 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2771 			break;
2772 		case TCP_REQUEST_STATE_NEED_BUFFER:
2773 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2774 					  tqpair);
2775 
2776 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2777 
2778 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2779 				SPDK_DEBUGLOG(nvmf_tcp,
2780 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2781 					      tcp_req, tqpair);
2782 				/* This request needs to wait in line to obtain a buffer */
2783 				break;
2784 			}
2785 
2786 			/* Try to get a data buffer */
2787 			if (nvmf_tcp_req_parse_sgl(tcp_req, transport, group) < 0) {
2788 				break;
2789 			}
2790 
2791 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2792 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2793 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2794 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2795 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2796 				}
2797 
2798 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2799 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2800 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2801 				break;
2802 			}
2803 
2804 			if (!tcp_req->req.data) {
2805 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2806 					      tcp_req, tqpair);
2807 				/* No buffers available. */
2808 				break;
2809 			}
2810 
2811 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2812 
2813 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2814 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2815 				if (tcp_req->req.data_from_pool) {
2816 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2817 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2818 				} else {
2819 					struct nvme_tcp_pdu *pdu;
2820 
2821 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2822 
2823 					pdu = tqpair->pdu_in_progress;
2824 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
2825 						      tqpair);
2826 					/* No need to send r2t, contained in the capsuled data */
2827 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2828 								  0, tcp_req->req.length);
2829 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2830 				}
2831 				break;
2832 			}
2833 
2834 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2835 			break;
2836 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
2837 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.qid, 0,
2838 					  (uintptr_t)tcp_req, tqpair);
2839 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
2840 			 * to escape this state. */
2841 			break;
2842 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
2843 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.qid, 0,
2844 					  (uintptr_t)tcp_req, tqpair);
2845 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
2846 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
2847 					      tcp_req, tqpair);
2848 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2849 				break;
2850 			}
2851 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2852 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2853 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2854 			} else {
2855 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
2856 			}
2857 			break;
2858 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
2859 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2860 					  tqpair);
2861 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
2862 			break;
2863 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2864 
2865 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.qid, 0,
2866 					  (uintptr_t)tcp_req, tqpair);
2867 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
2868 			 * to escape this state. */
2869 			break;
2870 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
2871 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.qid, 0,
2872 					  (uintptr_t)tcp_req, tqpair);
2873 
2874 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2875 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2876 				tcp_req->req.length = tcp_req->req.dif.elba_length;
2877 			}
2878 
2879 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2880 				if (tcp_req->fused_failed) {
2881 					/* This request failed FUSED semantics.  Fail it immediately, without
2882 					 * even sending it to the target layer.
2883 					 */
2884 					tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2885 					tcp_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2886 					tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2887 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2888 					break;
2889 				}
2890 
2891 				if (tcp_req->fused_pair == NULL ||
2892 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2893 					/* This request is ready to execute, but either we don't know yet if it's
2894 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
2895 					 * or the other request of this fused pair isn't ready to execute. So
2896 					 * break here and this request will get processed later either when the
2897 					 * other request is ready or we find that this request isn't valid.
2898 					 */
2899 					break;
2900 				}
2901 			}
2902 
2903 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2904 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
2905 				/* If we get to this point, and this request is a fused command, we know that
2906 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
2907 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
2908 				 * request, and the other request of the fused pair, in the correct order.
2909 				 * Also clear the ->fused_pair pointers on both requests, since after this point
2910 				 * we no longer need to maintain the relationship between these two requests.
2911 				 */
2912 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2913 					assert(tcp_req->fused_pair != NULL);
2914 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2915 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2916 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2917 					tcp_req->fused_pair->fused_pair = NULL;
2918 					tcp_req->fused_pair = NULL;
2919 				}
2920 				spdk_nvmf_request_exec(&tcp_req->req);
2921 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2922 					assert(tcp_req->fused_pair != NULL);
2923 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2924 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2925 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2926 					tcp_req->fused_pair->fused_pair = NULL;
2927 					tcp_req->fused_pair = NULL;
2928 				}
2929 			} else {
2930 				/* For zero-copy, only requests with data coming from host to the
2931 				 * controller can end up here. */
2932 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
2933 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
2934 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
2935 			}
2936 
2937 			break;
2938 		case TCP_REQUEST_STATE_EXECUTING:
2939 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2940 					  tqpair);
2941 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2942 			 * to escape this state. */
2943 			break;
2944 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
2945 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.qid, 0,
2946 					  (uintptr_t)tcp_req, tqpair);
2947 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2948 			 * to escape this state. */
2949 			break;
2950 		case TCP_REQUEST_STATE_EXECUTED:
2951 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2952 					  tqpair);
2953 
2954 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2955 				tcp_req->req.length = tcp_req->req.dif.orig_length;
2956 			}
2957 
2958 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2959 			break;
2960 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
2961 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.qid, 0,
2962 					  (uintptr_t)tcp_req, tqpair);
2963 			if (request_transfer_out(&tcp_req->req) != 0) {
2964 				assert(0); /* No good way to handle this currently */
2965 			}
2966 			break;
2967 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2968 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.qid, 0,
2969 					  (uintptr_t)tcp_req, tqpair);
2970 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
2971 			 * to escape this state. */
2972 			break;
2973 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
2974 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.qid, 0,
2975 					  (uintptr_t)tcp_req, tqpair);
2976 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
2977 			 * to escape this state. */
2978 			break;
2979 		case TCP_REQUEST_STATE_COMPLETED:
2980 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2981 					  tqpair);
2982 			/* If there's an outstanding PDU sent to the host, the request is completed
2983 			 * due to the qpair being disconnected.  We must delay the completion until
2984 			 * that write is done to avoid freeing the request twice. */
2985 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
2986 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
2987 					      "write on req=%p\n", tcp_req);
2988 				/* This can only happen for zcopy requests */
2989 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
2990 				assert(tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
2991 				break;
2992 			}
2993 
2994 			if (tcp_req->req.data_from_pool) {
2995 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
2996 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
2997 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
2998 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
2999 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3000 				assert(tgroup->control_msg_list);
3001 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3002 				nvmf_tcp_control_msg_put(tgroup->control_msg_list, tcp_req->req.data);
3003 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3004 				/* If the request has an unreleased zcopy bdev_io, it's either a
3005 				 * read, a failed write, or the qpair is being disconnected */
3006 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3007 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3008 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3009 				       tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3010 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3011 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3012 				break;
3013 			}
3014 			tcp_req->req.length = 0;
3015 			tcp_req->req.iovcnt = 0;
3016 			tcp_req->req.data = NULL;
3017 			tcp_req->fused_failed = false;
3018 			if (tcp_req->fused_pair) {
3019 				/* This req was part of a valid fused pair, but failed before it got to
3020 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3021 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3022 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3023 				 */
3024 				tcp_req->fused_pair->fused_failed = true;
3025 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3026 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3027 				}
3028 				tcp_req->fused_pair = NULL;
3029 			}
3030 
3031 			nvmf_tcp_req_put(tqpair, tcp_req);
3032 			break;
3033 		case TCP_REQUEST_NUM_STATES:
3034 		default:
3035 			assert(0);
3036 			break;
3037 		}
3038 
3039 		if (tcp_req->state != prev_state) {
3040 			progress = true;
3041 		}
3042 	} while (tcp_req->state != prev_state);
3043 
3044 	return progress;
3045 }
3046 
3047 static void
3048 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3049 {
3050 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3051 	int rc;
3052 
3053 	assert(tqpair != NULL);
3054 	rc = nvmf_tcp_sock_process(tqpair);
3055 
3056 	/* If there was a new socket error, disconnect */
3057 	if (rc < 0) {
3058 		nvmf_tcp_qpair_disconnect(tqpair);
3059 	}
3060 }
3061 
3062 static int
3063 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3064 			struct spdk_nvmf_qpair *qpair)
3065 {
3066 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3067 	struct spdk_nvmf_tcp_qpair	*tqpair;
3068 	int				rc;
3069 
3070 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3071 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3072 
3073 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3074 	if (rc != 0) {
3075 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3076 		return -1;
3077 	}
3078 
3079 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3080 	if (rc < 0) {
3081 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3082 		return -1;
3083 	}
3084 
3085 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3086 	if (rc < 0) {
3087 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3088 		return -1;
3089 	}
3090 
3091 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3092 				      nvmf_tcp_sock_cb, tqpair);
3093 	if (rc != 0) {
3094 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3095 			    spdk_strerror(errno), errno);
3096 		return -1;
3097 	}
3098 
3099 	tqpair->group = tgroup;
3100 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3101 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3102 
3103 	return 0;
3104 }
3105 
3106 static int
3107 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3108 			   struct spdk_nvmf_qpair *qpair)
3109 {
3110 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3111 	struct spdk_nvmf_tcp_qpair		*tqpair;
3112 	int				rc;
3113 
3114 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3115 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3116 
3117 	assert(tqpair->group == tgroup);
3118 
3119 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3120 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3121 		TAILQ_REMOVE(&tgroup->await_req, tqpair, link);
3122 	} else {
3123 		TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3124 	}
3125 
3126 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3127 	if (rc != 0) {
3128 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3129 			    spdk_strerror(errno), errno);
3130 	}
3131 
3132 	return rc;
3133 }
3134 
3135 static int
3136 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3137 {
3138 	struct spdk_nvmf_tcp_transport *ttransport;
3139 	struct spdk_nvmf_tcp_req *tcp_req;
3140 
3141 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3142 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3143 
3144 	switch (tcp_req->state) {
3145 	case TCP_REQUEST_STATE_EXECUTING:
3146 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3147 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3148 		break;
3149 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3150 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3151 		break;
3152 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3153 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3154 		break;
3155 	default:
3156 		assert(0 && "Unexpected request state");
3157 		break;
3158 	}
3159 
3160 	nvmf_tcp_req_process(ttransport, tcp_req);
3161 
3162 	return 0;
3163 }
3164 
3165 static void
3166 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3167 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3168 {
3169 	struct spdk_nvmf_tcp_qpair *tqpair;
3170 
3171 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3172 
3173 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3174 
3175 	assert(tqpair->fini_cb_fn == NULL);
3176 	tqpair->fini_cb_fn = cb_fn;
3177 	tqpair->fini_cb_arg = cb_arg;
3178 
3179 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3180 	nvmf_tcp_qpair_destroy(tqpair);
3181 }
3182 
3183 static int
3184 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3185 {
3186 	struct spdk_nvmf_tcp_poll_group *tgroup;
3187 	int rc;
3188 	struct spdk_nvmf_request *req, *req_tmp;
3189 	struct spdk_nvmf_tcp_req *tcp_req;
3190 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3191 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3192 			struct spdk_nvmf_tcp_transport, transport);
3193 
3194 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3195 
3196 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3197 		return 0;
3198 	}
3199 
3200 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3201 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3202 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3203 			break;
3204 		}
3205 	}
3206 
3207 	rc = spdk_sock_group_poll(tgroup->sock_group);
3208 	if (rc < 0) {
3209 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3210 	}
3211 
3212 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3213 		nvmf_tcp_sock_process(tqpair);
3214 	}
3215 
3216 	return rc;
3217 }
3218 
3219 static int
3220 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3221 			struct spdk_nvme_transport_id *trid, bool peer)
3222 {
3223 	struct spdk_nvmf_tcp_qpair     *tqpair;
3224 	uint16_t			port;
3225 
3226 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3227 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3228 
3229 	if (peer) {
3230 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3231 		port = tqpair->initiator_port;
3232 	} else {
3233 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3234 		port = tqpair->target_port;
3235 	}
3236 
3237 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3238 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3239 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3240 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3241 	} else {
3242 		return -1;
3243 	}
3244 
3245 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3246 	return 0;
3247 }
3248 
3249 static int
3250 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3251 			      struct spdk_nvme_transport_id *trid)
3252 {
3253 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3254 }
3255 
3256 static int
3257 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3258 			     struct spdk_nvme_transport_id *trid)
3259 {
3260 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3261 }
3262 
3263 static int
3264 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3265 			       struct spdk_nvme_transport_id *trid)
3266 {
3267 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3268 }
3269 
3270 static void
3271 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3272 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3273 {
3274 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
3275 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
3276 	tcp_req_to_abort->req.rsp->nvme_cpl.cid = tcp_req_to_abort->req.cmd->nvme_cmd.cid;
3277 
3278 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3279 
3280 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3281 }
3282 
3283 static int
3284 _nvmf_tcp_qpair_abort_request(void *ctx)
3285 {
3286 	struct spdk_nvmf_request *req = ctx;
3287 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3288 			struct spdk_nvmf_tcp_req, req);
3289 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3290 					     struct spdk_nvmf_tcp_qpair, qpair);
3291 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3292 			struct spdk_nvmf_tcp_transport, transport);
3293 	int rc;
3294 
3295 	spdk_poller_unregister(&req->poller);
3296 
3297 	switch (tcp_req_to_abort->state) {
3298 	case TCP_REQUEST_STATE_EXECUTING:
3299 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3300 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3301 		rc = nvmf_ctrlr_abort_request(req);
3302 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3303 			return SPDK_POLLER_BUSY;
3304 		}
3305 		break;
3306 
3307 	case TCP_REQUEST_STATE_NEED_BUFFER:
3308 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3309 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3310 
3311 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3312 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3313 		break;
3314 
3315 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3316 	case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3317 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3318 		break;
3319 
3320 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3321 		if (spdk_get_ticks() < req->timeout_tsc) {
3322 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3323 			return SPDK_POLLER_BUSY;
3324 		}
3325 		break;
3326 
3327 	default:
3328 		break;
3329 	}
3330 
3331 	spdk_nvmf_request_complete(req);
3332 	return SPDK_POLLER_BUSY;
3333 }
3334 
3335 static void
3336 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3337 			     struct spdk_nvmf_request *req)
3338 {
3339 	struct spdk_nvmf_tcp_qpair *tqpair;
3340 	struct spdk_nvmf_tcp_transport *ttransport;
3341 	struct spdk_nvmf_transport *transport;
3342 	uint16_t cid;
3343 	uint32_t i;
3344 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3345 
3346 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3347 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3348 	transport = &ttransport->transport;
3349 
3350 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3351 
3352 	for (i = 0; i < tqpair->resource_count; i++) {
3353 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3354 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3355 			tcp_req_to_abort = &tqpair->reqs[i];
3356 			break;
3357 		}
3358 	}
3359 
3360 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, qpair->qid, 0, (uintptr_t)req, tqpair);
3361 
3362 	if (tcp_req_to_abort == NULL) {
3363 		spdk_nvmf_request_complete(req);
3364 		return;
3365 	}
3366 
3367 	req->req_to_abort = &tcp_req_to_abort->req;
3368 	req->timeout_tsc = spdk_get_ticks() +
3369 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3370 	req->poller = NULL;
3371 
3372 	_nvmf_tcp_qpair_abort_request(req);
3373 }
3374 
3375 static void
3376 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3377 {
3378 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3379 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3380 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3381 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3382 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3383 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3384 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3385 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3386 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3387 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3388 	opts->transport_specific =      NULL;
3389 }
3390 
3391 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3392 	.name = "TCP",
3393 	.type = SPDK_NVME_TRANSPORT_TCP,
3394 	.opts_init = nvmf_tcp_opts_init,
3395 	.create = nvmf_tcp_create,
3396 	.dump_opts = nvmf_tcp_dump_opts,
3397 	.destroy = nvmf_tcp_destroy,
3398 
3399 	.listen = nvmf_tcp_listen,
3400 	.stop_listen = nvmf_tcp_stop_listen,
3401 
3402 	.listener_discover = nvmf_tcp_discover,
3403 
3404 	.poll_group_create = nvmf_tcp_poll_group_create,
3405 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3406 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3407 	.poll_group_add = nvmf_tcp_poll_group_add,
3408 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3409 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3410 
3411 	.req_free = nvmf_tcp_req_free,
3412 	.req_complete = nvmf_tcp_req_complete,
3413 
3414 	.qpair_fini = nvmf_tcp_close_qpair,
3415 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3416 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3417 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3418 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3419 };
3420 
3421 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3422 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3423