xref: /spdk/lib/nvmf/rdma.c (revision f6504f486ea65726440b1f8b83811a4d424d1c11)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "spdk/config.h"
10 #include "spdk/thread.h"
11 #include "spdk/likely.h"
12 #include "spdk/nvmf_transport.h"
13 #include "spdk/string.h"
14 #include "spdk/trace.h"
15 #include "spdk/tree.h"
16 #include "spdk/util.h"
17 
18 #include "spdk_internal/assert.h"
19 #include "spdk/log.h"
20 #include "spdk_internal/rdma.h"
21 
22 #include "nvmf_internal.h"
23 #include "transport.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
28 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma;
29 
30 /*
31  RDMA Connection Resource Defaults
32  */
33 #define NVMF_DEFAULT_MSDBD		16
34 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
35 #define NVMF_DEFAULT_RSP_SGE		1
36 #define NVMF_DEFAULT_RX_SGE		2
37 
38 #define NVMF_RDMA_MAX_EVENTS_PER_POLL	32
39 
40 SPDK_STATIC_ASSERT(NVMF_DEFAULT_MSDBD <= SPDK_NVMF_MAX_SGL_ENTRIES,
41 		   "MSDBD must not exceed SPDK_NVMF_MAX_SGL_ENTRIES");
42 
43 /* The RDMA completion queue size */
44 #define DEFAULT_NVMF_RDMA_CQ_SIZE	4096
45 #define MAX_WR_PER_QP(queue_depth)	(queue_depth * 3 + 2)
46 
47 enum spdk_nvmf_rdma_request_state {
48 	/* The request is not currently in use */
49 	RDMA_REQUEST_STATE_FREE = 0,
50 
51 	/* Initial state when request first received */
52 	RDMA_REQUEST_STATE_NEW,
53 
54 	/* The request is queued until a data buffer is available. */
55 	RDMA_REQUEST_STATE_NEED_BUFFER,
56 
57 	/* The request is waiting on RDMA queue depth availability
58 	 * to transfer data from the host to the controller.
59 	 */
60 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
61 
62 	/* The request is currently transferring data from the host to the controller. */
63 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
64 
65 	/* The request is ready to execute at the block device */
66 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
67 
68 	/* The request is currently executing at the block device */
69 	RDMA_REQUEST_STATE_EXECUTING,
70 
71 	/* The request finished executing at the block device */
72 	RDMA_REQUEST_STATE_EXECUTED,
73 
74 	/* The request is waiting on RDMA queue depth availability
75 	 * to transfer data from the controller to the host.
76 	 */
77 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
78 
79 	/* The request is waiting on RDMA queue depth availability
80 	 * to send response to the host.
81 	 */
82 	RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING,
83 
84 	/* The request is ready to send a completion */
85 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
86 
87 	/* The request is currently transferring data from the controller to the host. */
88 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
89 
90 	/* The request currently has an outstanding completion without an
91 	 * associated data transfer.
92 	 */
93 	RDMA_REQUEST_STATE_COMPLETING,
94 
95 	/* The request completed and can be marked free. */
96 	RDMA_REQUEST_STATE_COMPLETED,
97 
98 	/* Terminator */
99 	RDMA_REQUEST_NUM_STATES,
100 };
101 
102 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
103 {
104 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
105 
106 	struct spdk_trace_tpoint_opts opts[] = {
107 		{
108 			"RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW,
109 			OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 1,
110 			{
111 				{ "qpair", SPDK_TRACE_ARG_TYPE_PTR, 8 },
112 				{ "qd", SPDK_TRACE_ARG_TYPE_INT, 4 }
113 			}
114 		},
115 		{
116 			"RDMA_REQ_COMPLETED", TRACE_RDMA_REQUEST_STATE_COMPLETED,
117 			OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
118 			{
119 				{ "qpair", SPDK_TRACE_ARG_TYPE_PTR, 8 },
120 				{ "qd", SPDK_TRACE_ARG_TYPE_INT, 4 }
121 			}
122 		},
123 	};
124 
125 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
126 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
127 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
128 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
129 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H",
130 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
131 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
132 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
133 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C",
134 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
135 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
136 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
137 	spdk_trace_register_description("RDMA_REQ_TX_H2C",
138 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
139 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
140 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
141 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE",
142 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
143 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
144 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
145 	spdk_trace_register_description("RDMA_REQ_EXECUTING",
146 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
147 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
148 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
149 	spdk_trace_register_description("RDMA_REQ_EXECUTED",
150 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
151 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
152 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
153 	spdk_trace_register_description("RDMA_REQ_RDY2COMPL_PEND",
154 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING,
155 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
156 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
157 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL",
158 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
159 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
160 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
161 	spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H",
162 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
163 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
164 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
165 	spdk_trace_register_description("RDMA_REQ_COMPLETING",
166 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
167 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
168 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
169 
170 	spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE,
171 					OWNER_TYPE_NONE, OBJECT_NONE, 0,
172 					SPDK_TRACE_ARG_TYPE_INT, "");
173 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT,
174 					OWNER_TYPE_NONE, OBJECT_NONE, 0,
175 					SPDK_TRACE_ARG_TYPE_INT, "type");
176 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT,
177 					OWNER_TYPE_NONE, OBJECT_NONE, 0,
178 					SPDK_TRACE_ARG_TYPE_INT, "type");
179 	spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT,
180 					OWNER_TYPE_NONE, OBJECT_NONE, 0,
181 					SPDK_TRACE_ARG_TYPE_INT, "");
182 	spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY,
183 					OWNER_TYPE_NONE, OBJECT_NONE, 0,
184 					SPDK_TRACE_ARG_TYPE_INT, "");
185 }
186 
187 enum spdk_nvmf_rdma_wr_type {
188 	RDMA_WR_TYPE_RECV,
189 	RDMA_WR_TYPE_SEND,
190 	RDMA_WR_TYPE_DATA,
191 };
192 
193 struct spdk_nvmf_rdma_wr {
194 	/* Uses enum spdk_nvmf_rdma_wr_type */
195 	uint8_t type;
196 };
197 
198 /* This structure holds commands as they are received off the wire.
199  * It must be dynamically paired with a full request object
200  * (spdk_nvmf_rdma_request) to service a request. It is separate
201  * from the request because RDMA does not appear to order
202  * completions, so occasionally we'll get a new incoming
203  * command when there aren't any free request objects.
204  */
205 struct spdk_nvmf_rdma_recv {
206 	struct ibv_recv_wr			wr;
207 	struct ibv_sge				sgl[NVMF_DEFAULT_RX_SGE];
208 
209 	struct spdk_nvmf_rdma_qpair		*qpair;
210 
211 	/* In-capsule data buffer */
212 	uint8_t					*buf;
213 
214 	struct spdk_nvmf_rdma_wr		rdma_wr;
215 	uint64_t				receive_tsc;
216 
217 	STAILQ_ENTRY(spdk_nvmf_rdma_recv)	link;
218 };
219 
220 struct spdk_nvmf_rdma_request_data {
221 	struct ibv_send_wr		wr;
222 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
223 };
224 
225 struct spdk_nvmf_rdma_request {
226 	struct spdk_nvmf_request		req;
227 
228 	bool					fused_failed;
229 
230 	struct spdk_nvmf_rdma_wr		data_wr;
231 	struct spdk_nvmf_rdma_wr		rsp_wr;
232 
233 	/* Uses enum spdk_nvmf_rdma_request_state */
234 	uint8_t					state;
235 
236 	/* Data offset in req.iov */
237 	uint32_t				offset;
238 
239 	struct spdk_nvmf_rdma_recv		*recv;
240 
241 	struct {
242 		struct	ibv_send_wr		wr;
243 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
244 	} rsp;
245 
246 	uint16_t				iovpos;
247 	uint16_t				num_outstanding_data_wr;
248 	/* Used to split Write IO with multi SGL payload */
249 	uint16_t				num_remaining_data_wr;
250 	uint64_t				receive_tsc;
251 	struct spdk_nvmf_rdma_request		*fused_pair;
252 	STAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
253 	struct ibv_send_wr			*remaining_tranfer_in_wrs;
254 	struct ibv_send_wr			*transfer_wr;
255 	struct spdk_nvmf_rdma_request_data	data;
256 };
257 
258 struct spdk_nvmf_rdma_resource_opts {
259 	struct spdk_nvmf_rdma_qpair	*qpair;
260 	/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
261 	void				*qp;
262 	struct spdk_rdma_mem_map	*map;
263 	uint32_t			max_queue_depth;
264 	uint32_t			in_capsule_data_size;
265 	bool				shared;
266 };
267 
268 struct spdk_nvmf_rdma_resources {
269 	/* Array of size "max_queue_depth" containing RDMA requests. */
270 	struct spdk_nvmf_rdma_request		*reqs;
271 
272 	/* Array of size "max_queue_depth" containing RDMA recvs. */
273 	struct spdk_nvmf_rdma_recv		*recvs;
274 
275 	/* Array of size "max_queue_depth" containing 64 byte capsules
276 	 * used for receive.
277 	 */
278 	union nvmf_h2c_msg			*cmds;
279 
280 	/* Array of size "max_queue_depth" containing 16 byte completions
281 	 * to be sent back to the user.
282 	 */
283 	union nvmf_c2h_msg			*cpls;
284 
285 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
286 	 * buffers to be used for in capsule data.
287 	 */
288 	void					*bufs;
289 
290 	/* Receives that are waiting for a request object */
291 	STAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
292 
293 	/* Queue to track free requests */
294 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	free_queue;
295 };
296 
297 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair);
298 
299 typedef void (*spdk_poller_destroy_cb)(void *ctx);
300 
301 struct spdk_nvmf_rdma_ibv_event_ctx {
302 	struct spdk_nvmf_rdma_qpair			*rqpair;
303 	spdk_nvmf_rdma_qpair_ibv_event			cb_fn;
304 	/* Link to other ibv events associated with this qpair */
305 	STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx)	link;
306 };
307 
308 struct spdk_nvmf_rdma_qpair {
309 	struct spdk_nvmf_qpair			qpair;
310 
311 	struct spdk_nvmf_rdma_device		*device;
312 	struct spdk_nvmf_rdma_poller		*poller;
313 
314 	struct spdk_rdma_qp			*rdma_qp;
315 	struct rdma_cm_id			*cm_id;
316 	struct spdk_rdma_srq			*srq;
317 	struct rdma_cm_id			*listen_id;
318 
319 	/* Cache the QP number to improve QP search by RB tree. */
320 	uint32_t				qp_num;
321 
322 	/* The maximum number of I/O outstanding on this connection at one time */
323 	uint16_t				max_queue_depth;
324 
325 	/* The maximum number of active RDMA READ and ATOMIC operations at one time */
326 	uint16_t				max_read_depth;
327 
328 	/* The maximum number of RDMA SEND operations at one time */
329 	uint32_t				max_send_depth;
330 
331 	/* The current number of outstanding WRs from this qpair's
332 	 * recv queue. Should not exceed device->attr.max_queue_depth.
333 	 */
334 	uint16_t				current_recv_depth;
335 
336 	/* The current number of active RDMA READ operations */
337 	uint16_t				current_read_depth;
338 
339 	/* The current number of posted WRs from this qpair's
340 	 * send queue. Should not exceed max_send_depth.
341 	 */
342 	uint32_t				current_send_depth;
343 
344 	/* The maximum number of SGEs per WR on the send queue */
345 	uint32_t				max_send_sge;
346 
347 	/* The maximum number of SGEs per WR on the recv queue */
348 	uint32_t				max_recv_sge;
349 
350 	struct spdk_nvmf_rdma_resources		*resources;
351 
352 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_read_queue;
353 
354 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_write_queue;
355 
356 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_send_queue;
357 
358 	/* Number of requests not in the free state */
359 	uint32_t				qd;
360 
361 	bool					ibv_in_error_state;
362 
363 	RB_ENTRY(spdk_nvmf_rdma_qpair)		node;
364 
365 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	recv_link;
366 
367 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	send_link;
368 
369 	/* Points to the a request that has fuse bits set to
370 	 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting
371 	 * for the request that has SPDK_NVME_CMD_FUSE_SECOND.
372 	 */
373 	struct spdk_nvmf_rdma_request		*fused_first;
374 
375 	/*
376 	 * io_channel which is used to destroy qpair when it is removed from poll group
377 	 */
378 	struct spdk_io_channel		*destruct_channel;
379 
380 	/* List of ibv async events */
381 	STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx)	ibv_events;
382 
383 	/* Lets us know that we have received the last_wqe event. */
384 	bool					last_wqe_reached;
385 
386 	/* Indicate that nvmf_rdma_close_qpair is called */
387 	bool					to_close;
388 };
389 
390 struct spdk_nvmf_rdma_poller_stat {
391 	uint64_t				completions;
392 	uint64_t				polls;
393 	uint64_t				idle_polls;
394 	uint64_t				requests;
395 	uint64_t				request_latency;
396 	uint64_t				pending_free_request;
397 	uint64_t				pending_rdma_read;
398 	uint64_t				pending_rdma_write;
399 	uint64_t				pending_rdma_send;
400 	struct spdk_rdma_qp_stats		qp_stats;
401 };
402 
403 struct spdk_nvmf_rdma_poller {
404 	struct spdk_nvmf_rdma_device		*device;
405 	struct spdk_nvmf_rdma_poll_group	*group;
406 
407 	int					num_cqe;
408 	int					required_num_wr;
409 	struct ibv_cq				*cq;
410 
411 	/* The maximum number of I/O outstanding on the shared receive queue at one time */
412 	uint16_t				max_srq_depth;
413 	bool					need_destroy;
414 
415 	/* Shared receive queue */
416 	struct spdk_rdma_srq			*srq;
417 
418 	struct spdk_nvmf_rdma_resources		*resources;
419 	struct spdk_nvmf_rdma_poller_stat	stat;
420 
421 	spdk_poller_destroy_cb			destroy_cb;
422 	void					*destroy_cb_ctx;
423 
424 	RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs;
425 
426 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_recv;
427 
428 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_send;
429 
430 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
431 };
432 
433 struct spdk_nvmf_rdma_poll_group_stat {
434 	uint64_t				pending_data_buffer;
435 };
436 
437 struct spdk_nvmf_rdma_poll_group {
438 	struct spdk_nvmf_transport_poll_group		group;
439 	struct spdk_nvmf_rdma_poll_group_stat		stat;
440 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)		pollers;
441 	TAILQ_ENTRY(spdk_nvmf_rdma_poll_group)		link;
442 };
443 
444 struct spdk_nvmf_rdma_conn_sched {
445 	struct spdk_nvmf_rdma_poll_group *next_admin_pg;
446 	struct spdk_nvmf_rdma_poll_group *next_io_pg;
447 };
448 
449 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
450 struct spdk_nvmf_rdma_device {
451 	struct ibv_device_attr			attr;
452 	struct ibv_context			*context;
453 
454 	struct spdk_rdma_mem_map		*map;
455 	struct ibv_pd				*pd;
456 
457 	int					num_srq;
458 	bool					need_destroy;
459 	bool					ready_to_destroy;
460 	bool					is_ready;
461 
462 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
463 };
464 
465 struct spdk_nvmf_rdma_port {
466 	const struct spdk_nvme_transport_id	*trid;
467 	struct rdma_cm_id			*id;
468 	struct spdk_nvmf_rdma_device		*device;
469 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
470 };
471 
472 struct rdma_transport_opts {
473 	int		num_cqe;
474 	uint32_t	max_srq_depth;
475 	bool		no_srq;
476 	bool		no_wr_batching;
477 	int		acceptor_backlog;
478 };
479 
480 struct spdk_nvmf_rdma_transport {
481 	struct spdk_nvmf_transport	transport;
482 	struct rdma_transport_opts	rdma_opts;
483 
484 	struct spdk_nvmf_rdma_conn_sched conn_sched;
485 
486 	struct rdma_event_channel	*event_channel;
487 
488 	struct spdk_mempool		*data_wr_pool;
489 
490 	struct spdk_poller		*accept_poller;
491 
492 	/* fields used to poll RDMA/IB events */
493 	nfds_t			npoll_fds;
494 	struct pollfd		*poll_fds;
495 
496 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
497 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
498 	TAILQ_HEAD(, spdk_nvmf_rdma_poll_group)	poll_groups;
499 
500 	/* ports that are removed unexpectedly and need retry listen */
501 	TAILQ_HEAD(, spdk_nvmf_rdma_port)		retry_ports;
502 };
503 
504 struct poller_manage_ctx {
505 	struct spdk_nvmf_rdma_transport		*rtransport;
506 	struct spdk_nvmf_rdma_poll_group	*rgroup;
507 	struct spdk_nvmf_rdma_poller		*rpoller;
508 	struct spdk_nvmf_rdma_device		*device;
509 
510 	struct spdk_thread			*thread;
511 	volatile int				*inflight_op_counter;
512 };
513 
514 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = {
515 	{
516 		"num_cqe", offsetof(struct rdma_transport_opts, num_cqe),
517 		spdk_json_decode_int32, true
518 	},
519 	{
520 		"max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth),
521 		spdk_json_decode_uint32, true
522 	},
523 	{
524 		"no_srq", offsetof(struct rdma_transport_opts, no_srq),
525 		spdk_json_decode_bool, true
526 	},
527 	{
528 		"no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching),
529 		spdk_json_decode_bool, true
530 	},
531 	{
532 		"acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog),
533 		spdk_json_decode_int32, true
534 	},
535 };
536 
537 static int
538 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2)
539 {
540 	return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num;
541 }
542 
543 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare);
544 
545 static bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
546 				      struct spdk_nvmf_rdma_request *rdma_req);
547 
548 static void _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
549 				 struct spdk_nvmf_rdma_poller *rpoller);
550 
551 static void _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
552 				 struct spdk_nvmf_rdma_poller *rpoller);
553 
554 static void _nvmf_rdma_remove_destroyed_device(void *c);
555 
556 static inline enum spdk_nvme_media_error_status_code
557 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) {
558 	enum spdk_nvme_media_error_status_code result;
559 	switch (err_type)
560 	{
561 	case SPDK_DIF_REFTAG_ERROR:
562 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
563 		break;
564 	case SPDK_DIF_APPTAG_ERROR:
565 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
566 		break;
567 	case SPDK_DIF_GUARD_ERROR:
568 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
569 		break;
570 	default:
571 		SPDK_UNREACHABLE();
572 	}
573 
574 	return result;
575 }
576 
577 /*
578  * Return data_wrs to pool starting from \b data_wr
579  * Request's own response and data WR are excluded
580  */
581 static void
582 _nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
583 			     struct ibv_send_wr *data_wr,
584 			     struct spdk_mempool *pool)
585 {
586 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
587 	struct spdk_nvmf_rdma_request_data	*nvmf_data;
588 	struct ibv_send_wr			*next_send_wr;
589 	uint64_t				req_wrid = (uint64_t)&rdma_req->data_wr;
590 	uint32_t				num_wrs = 0;
591 
592 	while (data_wr && data_wr->wr_id == req_wrid) {
593 		nvmf_data = SPDK_CONTAINEROF(data_wr, struct spdk_nvmf_rdma_request_data, wr);
594 		memset(nvmf_data->sgl, 0, sizeof(data_wr->sg_list[0]) * data_wr->num_sge);
595 		data_wr->num_sge = 0;
596 		next_send_wr = data_wr->next;
597 		if (data_wr != &rdma_req->data.wr) {
598 			data_wr->next = NULL;
599 			assert(num_wrs < SPDK_NVMF_MAX_SGL_ENTRIES);
600 			work_requests[num_wrs] = nvmf_data;
601 			num_wrs++;
602 		}
603 		data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : next_send_wr;
604 	}
605 
606 	if (num_wrs) {
607 		spdk_mempool_put_bulk(pool, (void **) work_requests, num_wrs);
608 	}
609 }
610 
611 static void
612 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
613 			    struct spdk_nvmf_rdma_transport *rtransport)
614 {
615 	rdma_req->num_outstanding_data_wr = 0;
616 
617 	_nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool);
618 
619 	if (rdma_req->remaining_tranfer_in_wrs) {
620 		_nvmf_rdma_request_free_data(rdma_req, rdma_req->remaining_tranfer_in_wrs,
621 					     rtransport->data_wr_pool);
622 		rdma_req->remaining_tranfer_in_wrs = NULL;
623 	}
624 
625 	rdma_req->data.wr.next = NULL;
626 	rdma_req->rsp.wr.next = NULL;
627 }
628 
629 static void
630 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
631 {
632 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool);
633 	if (req->req.cmd) {
634 		SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
635 	}
636 	if (req->recv) {
637 		SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
638 	}
639 }
640 
641 static void
642 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
643 {
644 	int i;
645 
646 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
647 	for (i = 0; i < rqpair->max_queue_depth; i++) {
648 		if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
649 			nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
650 		}
651 	}
652 }
653 
654 static void
655 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
656 {
657 	spdk_free(resources->cmds);
658 	spdk_free(resources->cpls);
659 	spdk_free(resources->bufs);
660 	spdk_free(resources->reqs);
661 	spdk_free(resources->recvs);
662 	free(resources);
663 }
664 
665 
666 static struct spdk_nvmf_rdma_resources *
667 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
668 {
669 	struct spdk_nvmf_rdma_resources		*resources;
670 	struct spdk_nvmf_rdma_request		*rdma_req;
671 	struct spdk_nvmf_rdma_recv		*rdma_recv;
672 	struct spdk_rdma_qp			*qp = NULL;
673 	struct spdk_rdma_srq			*srq = NULL;
674 	struct ibv_recv_wr			*bad_wr = NULL;
675 	struct spdk_rdma_memory_translation	translation;
676 	uint32_t				i;
677 	int					rc = 0;
678 
679 	resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
680 	if (!resources) {
681 		SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
682 		return NULL;
683 	}
684 
685 	resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs),
686 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
687 	resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs),
688 					0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
689 	resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
690 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
691 	resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
692 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
693 
694 	if (opts->in_capsule_data_size > 0) {
695 		resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size,
696 					       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY,
697 					       SPDK_MALLOC_DMA);
698 	}
699 
700 	if (!resources->reqs || !resources->recvs || !resources->cmds ||
701 	    !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
702 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
703 		goto cleanup;
704 	}
705 
706 	SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx\n",
707 		      resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds));
708 	SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx\n",
709 		      resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls));
710 	if (resources->bufs) {
711 		SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x\n",
712 			      resources->bufs, opts->max_queue_depth *
713 			      opts->in_capsule_data_size);
714 	}
715 
716 	/* Initialize queues */
717 	STAILQ_INIT(&resources->incoming_queue);
718 	STAILQ_INIT(&resources->free_queue);
719 
720 	if (opts->shared) {
721 		srq = (struct spdk_rdma_srq *)opts->qp;
722 	} else {
723 		qp = (struct spdk_rdma_qp *)opts->qp;
724 	}
725 
726 	for (i = 0; i < opts->max_queue_depth; i++) {
727 		rdma_recv = &resources->recvs[i];
728 		rdma_recv->qpair = opts->qpair;
729 
730 		/* Set up memory to receive commands */
731 		if (resources->bufs) {
732 			rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
733 						  opts->in_capsule_data_size));
734 		}
735 
736 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
737 
738 		rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
739 		rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
740 		rc = spdk_rdma_get_translation(opts->map, &resources->cmds[i], sizeof(resources->cmds[i]),
741 					       &translation);
742 		if (rc) {
743 			goto cleanup;
744 		}
745 		rdma_recv->sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
746 		rdma_recv->wr.num_sge = 1;
747 
748 		if (rdma_recv->buf) {
749 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
750 			rdma_recv->sgl[1].length = opts->in_capsule_data_size;
751 			rc = spdk_rdma_get_translation(opts->map, rdma_recv->buf, opts->in_capsule_data_size, &translation);
752 			if (rc) {
753 				goto cleanup;
754 			}
755 			rdma_recv->sgl[1].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
756 			rdma_recv->wr.num_sge++;
757 		}
758 
759 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
760 		rdma_recv->wr.sg_list = rdma_recv->sgl;
761 		if (srq) {
762 			spdk_rdma_srq_queue_recv_wrs(srq, &rdma_recv->wr);
763 		} else {
764 			spdk_rdma_qp_queue_recv_wrs(qp, &rdma_recv->wr);
765 		}
766 	}
767 
768 	for (i = 0; i < opts->max_queue_depth; i++) {
769 		rdma_req = &resources->reqs[i];
770 
771 		if (opts->qpair != NULL) {
772 			rdma_req->req.qpair = &opts->qpair->qpair;
773 		} else {
774 			rdma_req->req.qpair = NULL;
775 		}
776 		rdma_req->req.cmd = NULL;
777 		rdma_req->req.iovcnt = 0;
778 		rdma_req->req.stripped_data = NULL;
779 
780 		/* Set up memory to send responses */
781 		rdma_req->req.rsp = &resources->cpls[i];
782 
783 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
784 		rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
785 		rc = spdk_rdma_get_translation(opts->map, &resources->cpls[i], sizeof(resources->cpls[i]),
786 					       &translation);
787 		if (rc) {
788 			goto cleanup;
789 		}
790 		rdma_req->rsp.sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
791 
792 		rdma_req->rsp_wr.type = RDMA_WR_TYPE_SEND;
793 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp_wr;
794 		rdma_req->rsp.wr.next = NULL;
795 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
796 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
797 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
798 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
799 
800 		/* Set up memory for data buffers */
801 		rdma_req->data_wr.type = RDMA_WR_TYPE_DATA;
802 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data_wr;
803 		rdma_req->data.wr.next = NULL;
804 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
805 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
806 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
807 
808 		/* Initialize request state to FREE */
809 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
810 		STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
811 	}
812 
813 	if (srq) {
814 		rc = spdk_rdma_srq_flush_recv_wrs(srq, &bad_wr);
815 	} else {
816 		rc = spdk_rdma_qp_flush_recv_wrs(qp, &bad_wr);
817 	}
818 
819 	if (rc) {
820 		goto cleanup;
821 	}
822 
823 	return resources;
824 
825 cleanup:
826 	nvmf_rdma_resources_destroy(resources);
827 	return NULL;
828 }
829 
830 static void
831 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair)
832 {
833 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx;
834 	STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) {
835 		ctx->rqpair = NULL;
836 		/* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */
837 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
838 	}
839 }
840 
841 static void nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller);
842 
843 static void
844 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
845 {
846 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
847 	struct ibv_recv_wr		*bad_recv_wr = NULL;
848 	int				rc;
849 
850 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair);
851 
852 	if (rqpair->qd != 0) {
853 		struct spdk_nvmf_qpair *qpair = &rqpair->qpair;
854 		struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(qpair->transport,
855 				struct spdk_nvmf_rdma_transport, transport);
856 		struct spdk_nvmf_rdma_request *req;
857 		uint32_t i, max_req_count = 0;
858 
859 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
860 
861 		if (rqpair->srq == NULL) {
862 			nvmf_rdma_dump_qpair_contents(rqpair);
863 			max_req_count = rqpair->max_queue_depth;
864 		} else if (rqpair->poller && rqpair->resources) {
865 			max_req_count = rqpair->poller->max_srq_depth;
866 		}
867 
868 		SPDK_DEBUGLOG(rdma, "Release incomplete requests\n");
869 		for (i = 0; i < max_req_count; i++) {
870 			req = &rqpair->resources->reqs[i];
871 			if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) {
872 				/* nvmf_rdma_request_process checks qpair ibv and internal state
873 				 * and completes a request */
874 				nvmf_rdma_request_process(rtransport, req);
875 			}
876 		}
877 		assert(rqpair->qd == 0);
878 	}
879 
880 	if (rqpair->poller) {
881 		RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair);
882 
883 		if (rqpair->srq != NULL && rqpair->resources != NULL) {
884 			/* Drop all received but unprocessed commands for this queue and return them to SRQ */
885 			STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
886 				if (rqpair == rdma_recv->qpair) {
887 					STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link);
888 					spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr);
889 					rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
890 					if (rc) {
891 						SPDK_ERRLOG("Unable to re-post rx descriptor\n");
892 					}
893 				}
894 			}
895 		}
896 	}
897 
898 	if (rqpair->cm_id) {
899 		if (rqpair->rdma_qp != NULL) {
900 			spdk_rdma_qp_destroy(rqpair->rdma_qp);
901 			rqpair->rdma_qp = NULL;
902 		}
903 
904 		if (rqpair->poller != NULL && rqpair->srq == NULL) {
905 			rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
906 		}
907 	}
908 
909 	if (rqpair->srq == NULL && rqpair->resources != NULL) {
910 		nvmf_rdma_resources_destroy(rqpair->resources);
911 	}
912 
913 	nvmf_rdma_qpair_clean_ibv_events(rqpair);
914 
915 	if (rqpair->destruct_channel) {
916 		spdk_put_io_channel(rqpair->destruct_channel);
917 		rqpair->destruct_channel = NULL;
918 	}
919 
920 	if (rqpair->poller && rqpair->poller->need_destroy && RB_EMPTY(&rqpair->poller->qpairs)) {
921 		nvmf_rdma_poller_destroy(rqpair->poller);
922 	}
923 
924 	/* destroy cm_id last so cma device will not be freed before we destroy the cq. */
925 	if (rqpair->cm_id) {
926 		rdma_destroy_id(rqpair->cm_id);
927 	}
928 
929 	free(rqpair);
930 }
931 
932 static int
933 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
934 {
935 	struct spdk_nvmf_rdma_poller	*rpoller;
936 	int				rc, num_cqe, required_num_wr;
937 
938 	/* Enlarge CQ size dynamically */
939 	rpoller = rqpair->poller;
940 	required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
941 	num_cqe = rpoller->num_cqe;
942 	if (num_cqe < required_num_wr) {
943 		num_cqe = spdk_max(num_cqe * 2, required_num_wr);
944 		num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
945 	}
946 
947 	if (rpoller->num_cqe != num_cqe) {
948 		if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) {
949 			SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n"
950 				    "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe);
951 			return -1;
952 		}
953 		if (required_num_wr > device->attr.max_cqe) {
954 			SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
955 				    required_num_wr, device->attr.max_cqe);
956 			return -1;
957 		}
958 
959 		SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
960 		rc = ibv_resize_cq(rpoller->cq, num_cqe);
961 		if (rc) {
962 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
963 			return -1;
964 		}
965 
966 		rpoller->num_cqe = num_cqe;
967 	}
968 
969 	rpoller->required_num_wr = required_num_wr;
970 	return 0;
971 }
972 
973 static int
974 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
975 {
976 	struct spdk_nvmf_rdma_qpair		*rqpair;
977 	struct spdk_nvmf_rdma_transport		*rtransport;
978 	struct spdk_nvmf_transport		*transport;
979 	struct spdk_nvmf_rdma_resource_opts	opts;
980 	struct spdk_nvmf_rdma_device		*device;
981 	struct spdk_rdma_qp_init_attr		qp_init_attr = {};
982 
983 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
984 	device = rqpair->device;
985 
986 	qp_init_attr.qp_context	= rqpair;
987 	qp_init_attr.pd		= device->pd;
988 	qp_init_attr.send_cq	= rqpair->poller->cq;
989 	qp_init_attr.recv_cq	= rqpair->poller->cq;
990 
991 	if (rqpair->srq) {
992 		qp_init_attr.srq		= rqpair->srq->srq;
993 	} else {
994 		qp_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth;
995 	}
996 
997 	/* SEND, READ, and WRITE operations */
998 	qp_init_attr.cap.max_send_wr	= (uint32_t)rqpair->max_queue_depth * 2;
999 	qp_init_attr.cap.max_send_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
1000 	qp_init_attr.cap.max_recv_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
1001 	qp_init_attr.stats		= &rqpair->poller->stat.qp_stats;
1002 
1003 	if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
1004 		SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
1005 		goto error;
1006 	}
1007 
1008 	rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr);
1009 	if (!rqpair->rdma_qp) {
1010 		goto error;
1011 	}
1012 
1013 	rqpair->qp_num = rqpair->rdma_qp->qp->qp_num;
1014 
1015 	rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2),
1016 					  qp_init_attr.cap.max_send_wr);
1017 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge);
1018 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge);
1019 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair);
1020 	SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair);
1021 
1022 	if (rqpair->poller->srq == NULL) {
1023 		rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
1024 		transport = &rtransport->transport;
1025 
1026 		opts.qp = rqpair->rdma_qp;
1027 		opts.map = device->map;
1028 		opts.qpair = rqpair;
1029 		opts.shared = false;
1030 		opts.max_queue_depth = rqpair->max_queue_depth;
1031 		opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
1032 
1033 		rqpair->resources = nvmf_rdma_resources_create(&opts);
1034 
1035 		if (!rqpair->resources) {
1036 			SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
1037 			rdma_destroy_qp(rqpair->cm_id);
1038 			goto error;
1039 		}
1040 	} else {
1041 		rqpair->resources = rqpair->poller->resources;
1042 	}
1043 
1044 	rqpair->current_recv_depth = 0;
1045 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1046 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1047 	STAILQ_INIT(&rqpair->pending_rdma_send_queue);
1048 	rqpair->qpair.queue_depth = 0;
1049 
1050 	return 0;
1051 
1052 error:
1053 	rdma_destroy_id(rqpair->cm_id);
1054 	rqpair->cm_id = NULL;
1055 	return -1;
1056 }
1057 
1058 /* Append the given recv wr structure to the resource structs outstanding recvs list. */
1059 /* This function accepts either a single wr or the first wr in a linked list. */
1060 static void
1061 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first)
1062 {
1063 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1064 			struct spdk_nvmf_rdma_transport, transport);
1065 
1066 	if (rqpair->srq != NULL) {
1067 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, first);
1068 	} else {
1069 		if (spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, first)) {
1070 			STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link);
1071 		}
1072 	}
1073 
1074 	if (rtransport->rdma_opts.no_wr_batching) {
1075 		_poller_submit_recvs(rtransport, rqpair->poller);
1076 	}
1077 }
1078 
1079 static int
1080 request_transfer_in(struct spdk_nvmf_request *req)
1081 {
1082 	struct spdk_nvmf_rdma_request	*rdma_req;
1083 	struct spdk_nvmf_qpair		*qpair;
1084 	struct spdk_nvmf_rdma_qpair	*rqpair;
1085 	struct spdk_nvmf_rdma_transport *rtransport;
1086 
1087 	qpair = req->qpair;
1088 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1089 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1090 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1091 				      struct spdk_nvmf_rdma_transport, transport);
1092 
1093 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1094 	assert(rdma_req != NULL);
1095 
1096 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, rdma_req->transfer_wr)) {
1097 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1098 	}
1099 	if (rtransport->rdma_opts.no_wr_batching) {
1100 		_poller_submit_sends(rtransport, rqpair->poller);
1101 	}
1102 
1103 	assert(rqpair->current_read_depth + rdma_req->num_outstanding_data_wr <= rqpair->max_read_depth);
1104 	rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1105 	assert(rqpair->current_send_depth + rdma_req->num_outstanding_data_wr <= rqpair->max_send_depth);
1106 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1107 	return 0;
1108 }
1109 
1110 static inline void
1111 nvmf_rdma_request_reset_transfer_in(struct spdk_nvmf_rdma_request *rdma_req,
1112 				    struct spdk_nvmf_rdma_transport *rtransport)
1113 {
1114 	/* Put completed WRs back to pool and move transfer_wr pointer */
1115 	_nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool);
1116 	rdma_req->transfer_wr = rdma_req->remaining_tranfer_in_wrs;
1117 	rdma_req->remaining_tranfer_in_wrs = NULL;
1118 	rdma_req->num_outstanding_data_wr = rdma_req->num_remaining_data_wr;
1119 	rdma_req->num_remaining_data_wr = 0;
1120 }
1121 
1122 static inline int
1123 request_prepare_transfer_in_part(struct spdk_nvmf_request *req, uint32_t num_reads_available)
1124 {
1125 	struct spdk_nvmf_rdma_request	*rdma_req;
1126 	struct ibv_send_wr		*wr;
1127 	uint32_t i;
1128 
1129 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1130 
1131 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1132 	assert(rdma_req != NULL);
1133 	assert(num_reads_available > 0);
1134 	assert(rdma_req->num_outstanding_data_wr > num_reads_available);
1135 	wr = rdma_req->transfer_wr;
1136 
1137 	for (i = 0; i < num_reads_available - 1; i++) {
1138 		wr = wr->next;
1139 	}
1140 
1141 	rdma_req->remaining_tranfer_in_wrs = wr->next;
1142 	rdma_req->num_remaining_data_wr = rdma_req->num_outstanding_data_wr - num_reads_available;
1143 	rdma_req->num_outstanding_data_wr = num_reads_available;
1144 	/* Break chain of WRs to send only part. Once this portion completes, we continue sending RDMA_READs */
1145 	wr->next = NULL;
1146 
1147 	return 0;
1148 }
1149 
1150 static int
1151 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1152 {
1153 	int				num_outstanding_data_wr = 0;
1154 	struct spdk_nvmf_rdma_request	*rdma_req;
1155 	struct spdk_nvmf_qpair		*qpair;
1156 	struct spdk_nvmf_rdma_qpair	*rqpair;
1157 	struct spdk_nvme_cpl		*rsp;
1158 	struct ibv_send_wr		*first = NULL;
1159 	struct spdk_nvmf_rdma_transport *rtransport;
1160 
1161 	*data_posted = 0;
1162 	qpair = req->qpair;
1163 	rsp = &req->rsp->nvme_cpl;
1164 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1165 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1166 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1167 				      struct spdk_nvmf_rdma_transport, transport);
1168 
1169 	/* Advance our sq_head pointer */
1170 	if (qpair->sq_head == qpair->sq_head_max) {
1171 		qpair->sq_head = 0;
1172 	} else {
1173 		qpair->sq_head++;
1174 	}
1175 	rsp->sqhd = qpair->sq_head;
1176 
1177 	/* queue the capsule for the recv buffer */
1178 	assert(rdma_req->recv != NULL);
1179 
1180 	nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr);
1181 
1182 	rdma_req->recv = NULL;
1183 	assert(rqpair->current_recv_depth > 0);
1184 	rqpair->current_recv_depth--;
1185 
1186 	/* Build the response which consists of optional
1187 	 * RDMA WRITEs to transfer data, plus an RDMA SEND
1188 	 * containing the response.
1189 	 */
1190 	first = &rdma_req->rsp.wr;
1191 
1192 	if (spdk_unlikely(rsp->status.sc != SPDK_NVME_SC_SUCCESS)) {
1193 		/* On failure, data was not read from the controller. So clear the
1194 		 * number of outstanding data WRs to zero.
1195 		 */
1196 		rdma_req->num_outstanding_data_wr = 0;
1197 	} else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1198 		first = rdma_req->transfer_wr;
1199 		*data_posted = 1;
1200 		num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
1201 	}
1202 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) {
1203 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1204 	}
1205 	if (rtransport->rdma_opts.no_wr_batching) {
1206 		_poller_submit_sends(rtransport, rqpair->poller);
1207 	}
1208 
1209 	/* +1 for the rsp wr */
1210 	assert(rqpair->current_send_depth + num_outstanding_data_wr + 1 <= rqpair->max_send_depth);
1211 	rqpair->current_send_depth += num_outstanding_data_wr + 1;
1212 
1213 	return 0;
1214 }
1215 
1216 static int
1217 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1218 {
1219 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
1220 	struct rdma_conn_param				ctrlr_event_data = {};
1221 	int						rc;
1222 
1223 	accept_data.recfmt = 0;
1224 	accept_data.crqsize = rqpair->max_queue_depth;
1225 
1226 	ctrlr_event_data.private_data = &accept_data;
1227 	ctrlr_event_data.private_data_len = sizeof(accept_data);
1228 	if (id->ps == RDMA_PS_TCP) {
1229 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1230 		ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1231 	}
1232 
1233 	/* Configure infinite retries for the initiator side qpair.
1234 	 * We need to pass this value to the initiator to prevent the
1235 	 * initiator side NIC from completing SEND requests back to the
1236 	 * initiator with status rnr_retry_count_exceeded. */
1237 	ctrlr_event_data.rnr_retry_count = 0x7;
1238 
1239 	/* When qpair is created without use of rdma cm API, an additional
1240 	 * information must be provided to initiator in the connection response:
1241 	 * whether qpair is using SRQ and its qp_num
1242 	 * Fields below are ignored by rdma cm if qpair has been
1243 	 * created using rdma cm API. */
1244 	ctrlr_event_data.srq = rqpair->srq ? 1 : 0;
1245 	ctrlr_event_data.qp_num = rqpair->qp_num;
1246 
1247 	rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data);
1248 	if (rc) {
1249 		SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno);
1250 	} else {
1251 		SPDK_DEBUGLOG(rdma, "Sent back the accept\n");
1252 	}
1253 
1254 	return rc;
1255 }
1256 
1257 static void
1258 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1259 {
1260 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
1261 
1262 	rej_data.recfmt = 0;
1263 	rej_data.sts = error;
1264 
1265 	rdma_reject(id, &rej_data, sizeof(rej_data));
1266 }
1267 
1268 static int
1269 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event)
1270 {
1271 	struct spdk_nvmf_rdma_transport *rtransport;
1272 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
1273 	struct spdk_nvmf_rdma_port	*port;
1274 	struct rdma_conn_param		*rdma_param = NULL;
1275 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1276 	uint16_t			max_queue_depth;
1277 	uint16_t			max_read_depth;
1278 
1279 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1280 
1281 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1282 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1283 
1284 	rdma_param = &event->param.conn;
1285 	if (rdma_param->private_data == NULL ||
1286 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1287 		SPDK_ERRLOG("connect request: no private data provided\n");
1288 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1289 		return -1;
1290 	}
1291 
1292 	private_data = rdma_param->private_data;
1293 	if (private_data->recfmt != 0) {
1294 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1295 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1296 		return -1;
1297 	}
1298 
1299 	SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n",
1300 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1301 
1302 	port = event->listen_id->context;
1303 	SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1304 		      event->listen_id, event->listen_id->verbs, port);
1305 
1306 	/* Figure out the supported queue depth. This is a multi-step process
1307 	 * that takes into account hardware maximums, host provided values,
1308 	 * and our target's internal memory limits */
1309 
1310 	SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n");
1311 
1312 	/* Start with the maximum queue depth allowed by the target */
1313 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1314 	max_read_depth = rtransport->transport.opts.max_queue_depth;
1315 	SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n",
1316 		      rtransport->transport.opts.max_queue_depth);
1317 
1318 	/* Next check the local NIC's hardware limitations */
1319 	SPDK_DEBUGLOG(rdma,
1320 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1321 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1322 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1323 	max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1324 
1325 	/* Next check the remote NIC's hardware limitations */
1326 	SPDK_DEBUGLOG(rdma,
1327 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1328 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1329 	/* from man3 rdma_get_cm_event
1330 	 * responder_resources - Specifies the number of responder resources that is requested by the recipient.
1331 	 * The responder_resources field must match the initiator depth specified by the remote node when running
1332 	 * the rdma_connect and rdma_accept functions. */
1333 	if (rdma_param->responder_resources != 0) {
1334 		if (private_data->qid) {
1335 			SPDK_DEBUGLOG(rdma, "Host (Initiator) is not allowed to use RDMA operations,"
1336 				      " responder_resources must be 0 but set to %u\n",
1337 				      rdma_param->responder_resources);
1338 		} else {
1339 			SPDK_WARNLOG("Host (Initiator) is not allowed to use RDMA operations,"
1340 				     " responder_resources must be 0 but set to %u\n",
1341 				     rdma_param->responder_resources);
1342 		}
1343 	}
1344 	/* from man3 rdma_get_cm_event
1345 	 * initiator_depth - Specifies the maximum number of outstanding RDMA read operations that the recipient holds.
1346 	 * The initiator_depth field must match the responder resources specified by the remote node when running
1347 	 * the rdma_connect and rdma_accept functions. */
1348 	if (rdma_param->initiator_depth == 0) {
1349 		SPDK_ERRLOG("Host (Initiator) doesn't support RDMA_READ or atomic operations\n");
1350 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_IRD);
1351 		return -1;
1352 	}
1353 	max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1354 
1355 	SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1356 	SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize);
1357 	max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1358 	max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1359 
1360 	SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1361 		      max_queue_depth, max_read_depth);
1362 
1363 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1364 	if (rqpair == NULL) {
1365 		SPDK_ERRLOG("Could not allocate new connection.\n");
1366 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1367 		return -1;
1368 	}
1369 
1370 	rqpair->device = port->device;
1371 	rqpair->max_queue_depth = max_queue_depth;
1372 	rqpair->max_read_depth = max_read_depth;
1373 	rqpair->cm_id = event->id;
1374 	rqpair->listen_id = event->listen_id;
1375 	rqpair->qpair.transport = transport;
1376 	STAILQ_INIT(&rqpair->ibv_events);
1377 	/* use qid from the private data to determine the qpair type
1378 	   qid will be set to the appropriate value when the controller is created */
1379 	rqpair->qpair.qid = private_data->qid;
1380 
1381 	event->id->context = &rqpair->qpair;
1382 
1383 	spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair);
1384 
1385 	return 0;
1386 }
1387 
1388 static inline void
1389 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next,
1390 		   enum spdk_nvme_data_transfer xfer)
1391 {
1392 	if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1393 		wr->opcode = IBV_WR_RDMA_WRITE;
1394 		wr->send_flags = 0;
1395 		wr->next = next;
1396 	} else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1397 		wr->opcode = IBV_WR_RDMA_READ;
1398 		wr->send_flags = IBV_SEND_SIGNALED;
1399 		wr->next = NULL;
1400 	} else {
1401 		assert(0);
1402 	}
1403 }
1404 
1405 static int
1406 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1407 		       struct spdk_nvmf_rdma_request *rdma_req,
1408 		       uint32_t num_sgl_descriptors)
1409 {
1410 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1411 	struct spdk_nvmf_rdma_request_data	*current_data_wr;
1412 	uint32_t				i;
1413 
1414 	if (spdk_unlikely(num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES)) {
1415 		SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n",
1416 			    num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES);
1417 		return -EINVAL;
1418 	}
1419 
1420 	if (spdk_unlikely(spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests,
1421 						num_sgl_descriptors))) {
1422 		return -ENOMEM;
1423 	}
1424 
1425 	current_data_wr = &rdma_req->data;
1426 
1427 	for (i = 0; i < num_sgl_descriptors; i++) {
1428 		nvmf_rdma_setup_wr(&current_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer);
1429 		current_data_wr->wr.next = &work_requests[i]->wr;
1430 		current_data_wr = work_requests[i];
1431 		current_data_wr->wr.sg_list = current_data_wr->sgl;
1432 		current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id;
1433 	}
1434 
1435 	nvmf_rdma_setup_wr(&current_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1436 
1437 	return 0;
1438 }
1439 
1440 static inline void
1441 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req)
1442 {
1443 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1444 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1445 
1446 	wr->wr.rdma.rkey = sgl->keyed.key;
1447 	wr->wr.rdma.remote_addr = sgl->address;
1448 	nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1449 }
1450 
1451 static inline void
1452 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs)
1453 {
1454 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1455 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1456 	uint32_t			i;
1457 	int				j;
1458 	uint64_t			remote_addr_offset = 0;
1459 
1460 	for (i = 0; i < num_wrs; ++i) {
1461 		wr->wr.rdma.rkey = sgl->keyed.key;
1462 		wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset;
1463 		for (j = 0; j < wr->num_sge; ++j) {
1464 			remote_addr_offset += wr->sg_list[j].length;
1465 		}
1466 		wr = wr->next;
1467 	}
1468 }
1469 
1470 static int
1471 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_device *device,
1472 		      struct spdk_nvmf_rdma_request *rdma_req,
1473 		      struct ibv_send_wr *wr,
1474 		      uint32_t total_length)
1475 {
1476 	struct spdk_rdma_memory_translation mem_translation;
1477 	struct ibv_sge	*sg_ele;
1478 	struct iovec *iov;
1479 	uint32_t lkey, remaining;
1480 	int rc;
1481 
1482 	wr->num_sge = 0;
1483 
1484 	while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) {
1485 		iov = &rdma_req->req.iov[rdma_req->iovpos];
1486 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1487 		if (spdk_unlikely(rc)) {
1488 			return rc;
1489 		}
1490 
1491 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1492 		sg_ele = &wr->sg_list[wr->num_sge];
1493 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1494 
1495 		sg_ele->lkey = lkey;
1496 		sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset;
1497 		sg_ele->length = remaining;
1498 		SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr,
1499 			      sg_ele->length);
1500 		rdma_req->offset += sg_ele->length;
1501 		total_length -= sg_ele->length;
1502 		wr->num_sge++;
1503 
1504 		if (rdma_req->offset == iov->iov_len) {
1505 			rdma_req->offset = 0;
1506 			rdma_req->iovpos++;
1507 		}
1508 	}
1509 
1510 	if (spdk_unlikely(total_length)) {
1511 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1512 		return -EINVAL;
1513 	}
1514 
1515 	return 0;
1516 }
1517 
1518 static int
1519 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_device *device,
1520 			       struct spdk_nvmf_rdma_request *rdma_req,
1521 			       struct ibv_send_wr *wr,
1522 			       uint32_t total_length,
1523 			       uint32_t num_extra_wrs)
1524 {
1525 	struct spdk_rdma_memory_translation mem_translation;
1526 	struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx;
1527 	struct ibv_sge *sg_ele;
1528 	struct iovec *iov;
1529 	struct iovec *rdma_iov;
1530 	uint32_t lkey, remaining;
1531 	uint32_t remaining_data_block, data_block_size, md_size;
1532 	uint32_t sge_len;
1533 	int rc;
1534 
1535 	data_block_size = dif_ctx->block_size - dif_ctx->md_size;
1536 
1537 	if (spdk_likely(!rdma_req->req.stripped_data)) {
1538 		rdma_iov = rdma_req->req.iov;
1539 		remaining_data_block = data_block_size;
1540 		md_size = dif_ctx->md_size;
1541 	} else {
1542 		rdma_iov = rdma_req->req.stripped_data->iov;
1543 		total_length = total_length / dif_ctx->block_size * data_block_size;
1544 		remaining_data_block = total_length;
1545 		md_size = 0;
1546 	}
1547 
1548 	wr->num_sge = 0;
1549 
1550 	while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) {
1551 		iov = rdma_iov + rdma_req->iovpos;
1552 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1553 		if (spdk_unlikely(rc)) {
1554 			return rc;
1555 		}
1556 
1557 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1558 		sg_ele = &wr->sg_list[wr->num_sge];
1559 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1560 
1561 		while (remaining) {
1562 			if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) {
1563 				if (num_extra_wrs > 0 && wr->next) {
1564 					wr = wr->next;
1565 					wr->num_sge = 0;
1566 					sg_ele = &wr->sg_list[wr->num_sge];
1567 					num_extra_wrs--;
1568 				} else {
1569 					break;
1570 				}
1571 			}
1572 			sg_ele->lkey = lkey;
1573 			sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset);
1574 			sge_len = spdk_min(remaining, remaining_data_block);
1575 			sg_ele->length = sge_len;
1576 			SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele,
1577 				      sg_ele->addr, sg_ele->length);
1578 			remaining -= sge_len;
1579 			remaining_data_block -= sge_len;
1580 			rdma_req->offset += sge_len;
1581 			total_length -= sge_len;
1582 
1583 			sg_ele++;
1584 			wr->num_sge++;
1585 
1586 			if (remaining_data_block == 0) {
1587 				/* skip metadata */
1588 				rdma_req->offset += md_size;
1589 				total_length -= md_size;
1590 				/* Metadata that do not fit this IO buffer will be included in the next IO buffer */
1591 				remaining -= spdk_min(remaining, md_size);
1592 				remaining_data_block = data_block_size;
1593 			}
1594 
1595 			if (remaining == 0) {
1596 				/* By subtracting the size of the last IOV from the offset, we ensure that we skip
1597 				   the remaining metadata bits at the beginning of the next buffer */
1598 				rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset);
1599 				rdma_req->iovpos++;
1600 			}
1601 		}
1602 	}
1603 
1604 	if (spdk_unlikely(total_length)) {
1605 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1606 		return -EINVAL;
1607 	}
1608 
1609 	return 0;
1610 }
1611 
1612 static inline uint32_t
1613 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size)
1614 {
1615 	/* estimate the number of SG entries and WRs needed to process the request */
1616 	uint32_t num_sge = 0;
1617 	uint32_t i;
1618 	uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size);
1619 
1620 	for (i = 0; i < num_buffers && length > 0; i++) {
1621 		uint32_t buffer_len = spdk_min(length, io_unit_size);
1622 		uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size);
1623 
1624 		if (num_sge_in_block * block_size > buffer_len) {
1625 			++num_sge_in_block;
1626 		}
1627 		num_sge += num_sge_in_block;
1628 		length -= buffer_len;
1629 	}
1630 	return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES);
1631 }
1632 
1633 static int
1634 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1635 			    struct spdk_nvmf_rdma_device *device,
1636 			    struct spdk_nvmf_rdma_request *rdma_req)
1637 {
1638 	struct spdk_nvmf_rdma_qpair		*rqpair;
1639 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1640 	struct spdk_nvmf_request		*req = &rdma_req->req;
1641 	struct ibv_send_wr			*wr = &rdma_req->data.wr;
1642 	int					rc;
1643 	uint32_t				num_wrs = 1;
1644 	uint32_t				length;
1645 
1646 	rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair);
1647 	rgroup = rqpair->poller->group;
1648 
1649 	/* rdma wr specifics */
1650 	nvmf_rdma_setup_request(rdma_req);
1651 
1652 	length = req->length;
1653 	if (spdk_unlikely(req->dif_enabled)) {
1654 		req->dif.orig_length = length;
1655 		length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
1656 		req->dif.elba_length = length;
1657 	}
1658 
1659 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
1660 					   length);
1661 	if (spdk_unlikely(rc != 0)) {
1662 		return rc;
1663 	}
1664 
1665 	assert(req->iovcnt <= rqpair->max_send_sge);
1666 
1667 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1668 	 * the stripped_buffers are got for DIF stripping. */
1669 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1670 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1671 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1672 						       &rtransport->transport, req->dif.orig_length);
1673 		if (rc != 0) {
1674 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1675 		}
1676 	}
1677 
1678 	rdma_req->iovpos = 0;
1679 
1680 	if (spdk_unlikely(req->dif_enabled)) {
1681 		num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size,
1682 						 req->dif.dif_ctx.block_size);
1683 		if (num_wrs > 1) {
1684 			rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1);
1685 			if (spdk_unlikely(rc != 0)) {
1686 				goto err_exit;
1687 			}
1688 		}
1689 
1690 		rc = nvmf_rdma_fill_wr_sgl_with_dif(device, rdma_req, wr, length, num_wrs - 1);
1691 		if (spdk_unlikely(rc != 0)) {
1692 			goto err_exit;
1693 		}
1694 
1695 		if (num_wrs > 1) {
1696 			nvmf_rdma_update_remote_addr(rdma_req, num_wrs);
1697 		}
1698 	} else {
1699 		rc = nvmf_rdma_fill_wr_sgl(device, rdma_req, wr, length);
1700 		if (spdk_unlikely(rc != 0)) {
1701 			goto err_exit;
1702 		}
1703 	}
1704 
1705 	/* set the number of outstanding data WRs for this request. */
1706 	rdma_req->num_outstanding_data_wr = num_wrs;
1707 
1708 	return rc;
1709 
1710 err_exit:
1711 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1712 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1713 	req->iovcnt = 0;
1714 	return rc;
1715 }
1716 
1717 static int
1718 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1719 				      struct spdk_nvmf_rdma_device *device,
1720 				      struct spdk_nvmf_rdma_request *rdma_req)
1721 {
1722 	struct spdk_nvmf_rdma_qpair		*rqpair;
1723 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1724 	struct ibv_send_wr			*current_wr;
1725 	struct spdk_nvmf_request		*req = &rdma_req->req;
1726 	struct spdk_nvme_sgl_descriptor		*inline_segment, *desc;
1727 	uint32_t				num_sgl_descriptors;
1728 	uint32_t				lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0;
1729 	uint32_t				i;
1730 	int					rc;
1731 
1732 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1733 	rgroup = rqpair->poller->group;
1734 
1735 	inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1736 	assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1737 	assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1738 
1739 	num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1740 	assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1741 
1742 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1743 	for (i = 0; i < num_sgl_descriptors; i++) {
1744 		if (spdk_likely(!req->dif_enabled)) {
1745 			lengths[i] = desc->keyed.length;
1746 		} else {
1747 			req->dif.orig_length += desc->keyed.length;
1748 			lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx);
1749 			req->dif.elba_length += lengths[i];
1750 		}
1751 		total_length += lengths[i];
1752 		desc++;
1753 	}
1754 
1755 	if (spdk_unlikely(total_length > rtransport->transport.opts.max_io_size)) {
1756 		SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n",
1757 			    total_length, rtransport->transport.opts.max_io_size);
1758 		req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1759 		return -EINVAL;
1760 	}
1761 
1762 	rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1);
1763 	if (spdk_unlikely(rc != 0)) {
1764 		return -ENOMEM;
1765 	}
1766 
1767 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length);
1768 	if (spdk_unlikely(rc != 0)) {
1769 		nvmf_rdma_request_free_data(rdma_req, rtransport);
1770 		return rc;
1771 	}
1772 
1773 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1774 	 * the stripped_buffers are got for DIF stripping. */
1775 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1776 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1777 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1778 						       &rtransport->transport, req->dif.orig_length);
1779 		if (spdk_unlikely(rc != 0)) {
1780 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1781 		}
1782 	}
1783 
1784 	/* The first WR must always be the embedded data WR. This is how we unwind them later. */
1785 	current_wr = &rdma_req->data.wr;
1786 	assert(current_wr != NULL);
1787 
1788 	req->length = 0;
1789 	rdma_req->iovpos = 0;
1790 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1791 	for (i = 0; i < num_sgl_descriptors; i++) {
1792 		/* The descriptors must be keyed data block descriptors with an address, not an offset. */
1793 		if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1794 				  desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1795 			rc = -EINVAL;
1796 			goto err_exit;
1797 		}
1798 
1799 		if (spdk_likely(!req->dif_enabled)) {
1800 			rc = nvmf_rdma_fill_wr_sgl(device, rdma_req, current_wr, lengths[i]);
1801 		} else {
1802 			rc = nvmf_rdma_fill_wr_sgl_with_dif(device, rdma_req, current_wr,
1803 							    lengths[i], 0);
1804 		}
1805 		if (spdk_unlikely(rc != 0)) {
1806 			rc = -ENOMEM;
1807 			goto err_exit;
1808 		}
1809 
1810 		req->length += desc->keyed.length;
1811 		current_wr->wr.rdma.rkey = desc->keyed.key;
1812 		current_wr->wr.rdma.remote_addr = desc->address;
1813 		current_wr = current_wr->next;
1814 		desc++;
1815 	}
1816 
1817 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1818 	/* Go back to the last descriptor in the list. */
1819 	desc--;
1820 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1821 		if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1822 			rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1823 			rdma_req->rsp.wr.imm_data = desc->keyed.key;
1824 		}
1825 	}
1826 #endif
1827 
1828 	rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1829 
1830 	return 0;
1831 
1832 err_exit:
1833 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1834 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1835 	return rc;
1836 }
1837 
1838 static int
1839 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1840 			    struct spdk_nvmf_rdma_device *device,
1841 			    struct spdk_nvmf_rdma_request *rdma_req)
1842 {
1843 	struct spdk_nvmf_request		*req = &rdma_req->req;
1844 	struct spdk_nvme_cpl			*rsp;
1845 	struct spdk_nvme_sgl_descriptor		*sgl;
1846 	int					rc;
1847 	uint32_t				length;
1848 
1849 	rsp = &req->rsp->nvme_cpl;
1850 	sgl = &req->cmd->nvme_cmd.dptr.sgl1;
1851 
1852 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1853 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1854 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1855 
1856 		length = sgl->keyed.length;
1857 		if (spdk_unlikely(length > rtransport->transport.opts.max_io_size)) {
1858 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1859 				    length, rtransport->transport.opts.max_io_size);
1860 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1861 			return -1;
1862 		}
1863 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1864 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1865 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1866 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1867 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1868 			}
1869 		}
1870 #endif
1871 
1872 		/* fill request length and populate iovs */
1873 		req->length = length;
1874 
1875 		rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req);
1876 		if (spdk_unlikely(rc < 0)) {
1877 			if (rc == -EINVAL) {
1878 				SPDK_ERRLOG("SGL length exceeds the max I/O size\n");
1879 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1880 				return -1;
1881 			}
1882 			/* No available buffers. Queue this request up. */
1883 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1884 			return 0;
1885 		}
1886 
1887 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1888 			      req->iovcnt);
1889 
1890 		return 0;
1891 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1892 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1893 		uint64_t offset = sgl->address;
1894 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1895 
1896 		SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1897 			      offset, sgl->unkeyed.length);
1898 
1899 		if (spdk_unlikely(offset > max_len)) {
1900 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1901 				    offset, max_len);
1902 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1903 			return -1;
1904 		}
1905 		max_len -= (uint32_t)offset;
1906 
1907 		if (spdk_unlikely(sgl->unkeyed.length > max_len)) {
1908 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1909 				    sgl->unkeyed.length, max_len);
1910 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1911 			return -1;
1912 		}
1913 
1914 		rdma_req->num_outstanding_data_wr = 0;
1915 		req->data_from_pool = false;
1916 		req->length = sgl->unkeyed.length;
1917 
1918 		req->iov[0].iov_base = rdma_req->recv->buf + offset;
1919 		req->iov[0].iov_len = req->length;
1920 		req->iovcnt = 1;
1921 
1922 		return 0;
1923 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1924 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1925 
1926 		rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1927 		if (spdk_unlikely(rc == -ENOMEM)) {
1928 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1929 			return 0;
1930 		} else if (spdk_unlikely(rc == -EINVAL)) {
1931 			SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1932 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1933 			return -1;
1934 		}
1935 
1936 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1937 			      req->iovcnt);
1938 
1939 		return 0;
1940 	}
1941 
1942 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
1943 		    sgl->generic.type, sgl->generic.subtype);
1944 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1945 	return -1;
1946 }
1947 
1948 static void
1949 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1950 			struct spdk_nvmf_rdma_transport	*rtransport)
1951 {
1952 	struct spdk_nvmf_rdma_qpair		*rqpair;
1953 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1954 
1955 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1956 	if (rdma_req->req.data_from_pool) {
1957 		rgroup = rqpair->poller->group;
1958 
1959 		spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport);
1960 	}
1961 	if (rdma_req->req.stripped_data) {
1962 		nvmf_request_free_stripped_buffers(&rdma_req->req,
1963 						   &rqpair->poller->group->group,
1964 						   &rtransport->transport);
1965 	}
1966 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1967 	rdma_req->req.length = 0;
1968 	rdma_req->req.iovcnt = 0;
1969 	rdma_req->offset = 0;
1970 	rdma_req->req.dif_enabled = false;
1971 	rdma_req->fused_failed = false;
1972 	rdma_req->transfer_wr = NULL;
1973 	if (rdma_req->fused_pair) {
1974 		/* This req was part of a valid fused pair, but failed before it got to
1975 		 * READ_TO_EXECUTE state.  This means we need to fail the other request
1976 		 * in the pair, because it is no longer part of a valid pair.  If the pair
1977 		 * already reached READY_TO_EXECUTE state, we need to kick it.
1978 		 */
1979 		rdma_req->fused_pair->fused_failed = true;
1980 		if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
1981 			nvmf_rdma_request_process(rtransport, rdma_req->fused_pair);
1982 		}
1983 		rdma_req->fused_pair = NULL;
1984 	}
1985 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
1986 	rqpair->qd--;
1987 
1988 	STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
1989 	rqpair->qpair.queue_depth--;
1990 	rdma_req->state = RDMA_REQUEST_STATE_FREE;
1991 }
1992 
1993 static void
1994 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport,
1995 			       struct spdk_nvmf_rdma_qpair *rqpair,
1996 			       struct spdk_nvmf_rdma_request *rdma_req)
1997 {
1998 	enum spdk_nvme_cmd_fuse last, next;
1999 
2000 	last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2001 	next = rdma_req->req.cmd->nvme_cmd.fuse;
2002 
2003 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2004 
2005 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2006 		return;
2007 	}
2008 
2009 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2010 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2011 			/* This is a valid pair of fused commands.  Point them at each other
2012 			 * so they can be submitted consecutively once ready to be executed.
2013 			 */
2014 			rqpair->fused_first->fused_pair = rdma_req;
2015 			rdma_req->fused_pair = rqpair->fused_first;
2016 			rqpair->fused_first = NULL;
2017 			return;
2018 		} else {
2019 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2020 			rqpair->fused_first->fused_failed = true;
2021 
2022 			/* If the last req is in READY_TO_EXECUTE state, then call
2023 			 * nvmf_rdma_request_process(), otherwise nothing else will kick it.
2024 			 */
2025 			if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2026 				nvmf_rdma_request_process(rtransport, rqpair->fused_first);
2027 			}
2028 
2029 			rqpair->fused_first = NULL;
2030 		}
2031 	}
2032 
2033 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2034 		/* Set rqpair->fused_first here so that we know to check that the next request
2035 		 * is a SECOND (and to fail this one if it isn't).
2036 		 */
2037 		rqpair->fused_first = rdma_req;
2038 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2039 		/* Mark this req failed since it ia SECOND and the last one was not a FIRST. */
2040 		rdma_req->fused_failed = true;
2041 	}
2042 }
2043 
2044 bool
2045 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
2046 			  struct spdk_nvmf_rdma_request *rdma_req)
2047 {
2048 	struct spdk_nvmf_rdma_qpair	*rqpair;
2049 	struct spdk_nvmf_rdma_device	*device;
2050 	struct spdk_nvmf_rdma_poll_group *rgroup;
2051 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
2052 	int				rc;
2053 	struct spdk_nvmf_rdma_recv	*rdma_recv;
2054 	enum spdk_nvmf_rdma_request_state prev_state;
2055 	bool				progress = false;
2056 	int				data_posted;
2057 	uint32_t			num_blocks, num_rdma_reads_available, qdepth;
2058 
2059 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2060 	device = rqpair->device;
2061 	rgroup = rqpair->poller->group;
2062 
2063 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
2064 
2065 	/* If the queue pair is in an error state, force the request to the completed state
2066 	 * to release resources. */
2067 	if (spdk_unlikely(rqpair->ibv_in_error_state || !spdk_nvmf_qpair_is_active(&rqpair->qpair))) {
2068 		switch (rdma_req->state) {
2069 		case RDMA_REQUEST_STATE_NEED_BUFFER:
2070 			STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link);
2071 			break;
2072 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2073 			STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2074 			break;
2075 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2076 			STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2077 			break;
2078 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING:
2079 			STAILQ_REMOVE(&rqpair->pending_rdma_send_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2080 			break;
2081 		default:
2082 			break;
2083 		}
2084 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2085 	}
2086 
2087 	/* The loop here is to allow for several back-to-back state changes. */
2088 	do {
2089 		prev_state = rdma_req->state;
2090 
2091 		SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state);
2092 
2093 		switch (rdma_req->state) {
2094 		case RDMA_REQUEST_STATE_FREE:
2095 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
2096 			 * to escape this state. */
2097 			break;
2098 		case RDMA_REQUEST_STATE_NEW:
2099 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
2100 					  (uintptr_t)rdma_req, (uintptr_t)rqpair, rqpair->qpair.queue_depth);
2101 			rdma_recv = rdma_req->recv;
2102 
2103 			/* The first element of the SGL is the NVMe command */
2104 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
2105 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
2106 			rdma_req->transfer_wr = &rdma_req->data.wr;
2107 
2108 			if (spdk_unlikely(rqpair->ibv_in_error_state || !spdk_nvmf_qpair_is_active(&rqpair->qpair))) {
2109 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2110 				break;
2111 			}
2112 
2113 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) {
2114 				rdma_req->req.dif_enabled = true;
2115 			}
2116 
2117 			nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req);
2118 
2119 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2120 			rdma_req->rsp.wr.opcode = IBV_WR_SEND;
2121 			rdma_req->rsp.wr.imm_data = 0;
2122 #endif
2123 
2124 			/* The next state transition depends on the data transfer needs of this request. */
2125 			rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req);
2126 
2127 			if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2128 				rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2129 				rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE;
2130 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2131 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2132 				SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req);
2133 				break;
2134 			}
2135 
2136 			/* If no data to transfer, ready to execute. */
2137 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
2138 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2139 				break;
2140 			}
2141 
2142 			rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
2143 			STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link);
2144 			break;
2145 		case RDMA_REQUEST_STATE_NEED_BUFFER:
2146 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
2147 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2148 
2149 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
2150 
2151 			if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) {
2152 				/* This request needs to wait in line to obtain a buffer */
2153 				break;
2154 			}
2155 
2156 			/* Try to get a data buffer */
2157 			rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
2158 			if (spdk_unlikely(rc < 0)) {
2159 				STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2160 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2161 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2162 				break;
2163 			}
2164 
2165 			if (rdma_req->req.iovcnt == 0) {
2166 				/* No buffers available. */
2167 				rgroup->stat.pending_data_buffer++;
2168 				break;
2169 			}
2170 
2171 			STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2172 
2173 			/* If data is transferring from host to controller and the data didn't
2174 			 * arrive using in capsule data, we need to do a transfer from the host.
2175 			 */
2176 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER &&
2177 			    rdma_req->req.data_from_pool) {
2178 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
2179 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
2180 				break;
2181 			}
2182 
2183 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2184 			break;
2185 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2186 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
2187 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2188 
2189 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
2190 				/* This request needs to wait in line to perform RDMA */
2191 				break;
2192 			}
2193 			assert(rqpair->max_send_depth >= rqpair->current_send_depth);
2194 			qdepth = rqpair->max_send_depth - rqpair->current_send_depth;
2195 			assert(rqpair->max_read_depth >= rqpair->current_read_depth);
2196 			num_rdma_reads_available = rqpair->max_read_depth - rqpair->current_read_depth;
2197 			if (rdma_req->num_outstanding_data_wr > qdepth ||
2198 			    rdma_req->num_outstanding_data_wr > num_rdma_reads_available) {
2199 				if (num_rdma_reads_available && qdepth) {
2200 					/* Send as much as we can */
2201 					request_prepare_transfer_in_part(&rdma_req->req, spdk_min(num_rdma_reads_available, qdepth));
2202 				} else {
2203 					/* We can only have so many WRs outstanding. we have to wait until some finish. */
2204 					rqpair->poller->stat.pending_rdma_read++;
2205 					break;
2206 				}
2207 			}
2208 
2209 			/* We have already verified that this request is the head of the queue. */
2210 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
2211 
2212 			rc = request_transfer_in(&rdma_req->req);
2213 			if (spdk_likely(rc == 0)) {
2214 				rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
2215 			} else {
2216 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2217 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2218 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2219 			}
2220 			break;
2221 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2222 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
2223 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2224 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
2225 			 * to escape this state. */
2226 			break;
2227 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
2228 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
2229 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2230 
2231 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2232 				if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2233 					/* generate DIF for write operation */
2234 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2235 					assert(num_blocks > 0);
2236 
2237 					rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt,
2238 							       num_blocks, &rdma_req->req.dif.dif_ctx);
2239 					if (rc != 0) {
2240 						SPDK_ERRLOG("DIF generation failed\n");
2241 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2242 						spdk_nvmf_qpair_disconnect(&rqpair->qpair);
2243 						break;
2244 					}
2245 				}
2246 
2247 				assert(rdma_req->req.dif.elba_length >= rdma_req->req.length);
2248 				/* set extended length before IO operation */
2249 				rdma_req->req.length = rdma_req->req.dif.elba_length;
2250 			}
2251 
2252 			if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2253 				if (rdma_req->fused_failed) {
2254 					/* This request failed FUSED semantics.  Fail it immediately, without
2255 					 * even sending it to the target layer.
2256 					 */
2257 					rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2258 					rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2259 					STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2260 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2261 					break;
2262 				}
2263 
2264 				if (rdma_req->fused_pair == NULL ||
2265 				    rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2266 					/* This request is ready to execute, but either we don't know yet if it's
2267 					 * valid - i.e. this is a FIRST but we haven't received the next
2268 					 * request yet or the other request of this fused pair isn't ready to
2269 					 * execute.  So break here and this request will get processed later either
2270 					 * when the other request is ready or we find that this request isn't valid.
2271 					 */
2272 					break;
2273 				}
2274 			}
2275 
2276 			/* If we get to this point, and this request is a fused command, we know that
2277 			 * it is part of valid sequence (FIRST followed by a SECOND) and that both
2278 			 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this
2279 			 * request, and the other request of the fused pair, in the correct order.
2280 			 * Also clear the ->fused_pair pointers on both requests, since after this point
2281 			 * we no longer need to maintain the relationship between these two requests.
2282 			 */
2283 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2284 				assert(rdma_req->fused_pair != NULL);
2285 				assert(rdma_req->fused_pair->fused_pair != NULL);
2286 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2287 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2288 				rdma_req->fused_pair->fused_pair = NULL;
2289 				rdma_req->fused_pair = NULL;
2290 			}
2291 			rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
2292 			spdk_nvmf_request_exec(&rdma_req->req);
2293 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2294 				assert(rdma_req->fused_pair != NULL);
2295 				assert(rdma_req->fused_pair->fused_pair != NULL);
2296 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2297 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2298 				rdma_req->fused_pair->fused_pair = NULL;
2299 				rdma_req->fused_pair = NULL;
2300 			}
2301 			break;
2302 		case RDMA_REQUEST_STATE_EXECUTING:
2303 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
2304 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2305 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
2306 			 * to escape this state. */
2307 			break;
2308 		case RDMA_REQUEST_STATE_EXECUTED:
2309 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
2310 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2311 			if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
2312 			    rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2313 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
2314 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
2315 			} else {
2316 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2317 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2318 			}
2319 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2320 				/* restore the original length */
2321 				rdma_req->req.length = rdma_req->req.dif.orig_length;
2322 
2323 				if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2324 					struct spdk_dif_error error_blk;
2325 
2326 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2327 					if (!rdma_req->req.stripped_data) {
2328 						rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2329 								     &rdma_req->req.dif.dif_ctx, &error_blk);
2330 					} else {
2331 						rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov,
2332 									  rdma_req->req.stripped_data->iovcnt,
2333 									  rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2334 									  &rdma_req->req.dif.dif_ctx, &error_blk);
2335 					}
2336 					if (rc) {
2337 						struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
2338 
2339 						SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type,
2340 							    error_blk.err_offset);
2341 						rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2342 						rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type);
2343 						STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2344 						STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2345 						rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2346 					}
2347 				}
2348 			}
2349 			break;
2350 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2351 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
2352 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2353 
2354 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
2355 				/* This request needs to wait in line to perform RDMA */
2356 				break;
2357 			}
2358 			if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
2359 			    rqpair->max_send_depth) {
2360 				/* We can only have so many WRs outstanding. we have to wait until some finish.
2361 				 * +1 since each request has an additional wr in the resp. */
2362 				rqpair->poller->stat.pending_rdma_write++;
2363 				break;
2364 			}
2365 
2366 			/* We have already verified that this request is the head of the queue. */
2367 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
2368 
2369 			/* The data transfer will be kicked off from
2370 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2371 			 * We verified that data + response fit into send queue, so we can go to the next state directly
2372 			 */
2373 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2374 			break;
2375 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING:
2376 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING, 0, 0,
2377 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2378 
2379 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_send_queue)) {
2380 				/* This request needs to wait in line to send the completion */
2381 				break;
2382 			}
2383 
2384 			assert(rqpair->current_send_depth <= rqpair->max_send_depth);
2385 			if (rqpair->current_send_depth == rqpair->max_send_depth) {
2386 				/* We can only have so many WRs outstanding. we have to wait until some finish */
2387 				rqpair->poller->stat.pending_rdma_send++;
2388 				break;
2389 			}
2390 
2391 			/* We have already verified that this request is the head of the queue. */
2392 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_send_queue, state_link);
2393 
2394 			/* The response sending will be kicked off from
2395 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2396 			 */
2397 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2398 			break;
2399 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
2400 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
2401 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2402 			rc = request_transfer_out(&rdma_req->req, &data_posted);
2403 			assert(rc == 0); /* No good way to handle this currently */
2404 			if (spdk_unlikely(rc)) {
2405 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2406 			} else {
2407 				rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
2408 						  RDMA_REQUEST_STATE_COMPLETING;
2409 			}
2410 			break;
2411 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2412 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
2413 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2414 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2415 			 * to escape this state. */
2416 			break;
2417 		case RDMA_REQUEST_STATE_COMPLETING:
2418 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
2419 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2420 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2421 			 * to escape this state. */
2422 			break;
2423 		case RDMA_REQUEST_STATE_COMPLETED:
2424 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2425 					  (uintptr_t)rdma_req, (uintptr_t)rqpair, rqpair->qpair.queue_depth);
2426 
2427 			rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc;
2428 			_nvmf_rdma_request_free(rdma_req, rtransport);
2429 			break;
2430 		case RDMA_REQUEST_NUM_STATES:
2431 		default:
2432 			assert(0);
2433 			break;
2434 		}
2435 
2436 		if (rdma_req->state != prev_state) {
2437 			progress = true;
2438 		}
2439 	} while (rdma_req->state != prev_state);
2440 
2441 	return progress;
2442 }
2443 
2444 /* Public API callbacks begin here */
2445 
2446 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2447 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2448 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2449 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
2450 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2451 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2452 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2453 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095
2454 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
2455 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false
2456 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false
2457 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100
2458 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1
2459 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false
2460 #define SPDK_NVMF_RDMA_DEFAULT_DATA_WR_POOL_SIZE 4095
2461 
2462 static void
2463 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2464 {
2465 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2466 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2467 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2468 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2469 	opts->io_unit_size =		SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2470 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2471 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2472 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2473 	opts->dif_insert_or_strip =	SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP;
2474 	opts->abort_timeout_sec =	SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC;
2475 	opts->transport_specific =      NULL;
2476 	opts->data_wr_pool_size	=	SPDK_NVMF_RDMA_DEFAULT_DATA_WR_POOL_SIZE;
2477 }
2478 
2479 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2480 			     spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg);
2481 
2482 static inline bool
2483 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device)
2484 {
2485 	return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD ||
2486 	       device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW;
2487 }
2488 
2489 static int nvmf_rdma_accept(void *ctx);
2490 static bool nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport);
2491 static void destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
2492 			      struct spdk_nvmf_rdma_device *device);
2493 
2494 static int
2495 create_ib_device(struct spdk_nvmf_rdma_transport *rtransport, struct ibv_context *context,
2496 		 struct spdk_nvmf_rdma_device **new_device)
2497 {
2498 	struct spdk_nvmf_rdma_device	*device;
2499 	int				flag = 0;
2500 	int				rc = 0;
2501 
2502 	device = calloc(1, sizeof(*device));
2503 	if (!device) {
2504 		SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2505 		return -ENOMEM;
2506 	}
2507 	device->context = context;
2508 	rc = ibv_query_device(device->context, &device->attr);
2509 	if (rc < 0) {
2510 		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2511 		free(device);
2512 		return rc;
2513 	}
2514 
2515 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2516 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2517 		SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2518 		SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2519 	}
2520 
2521 	/**
2522 	 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2523 	 * The Soft-RoCE RXE driver does not currently support send with invalidate,
2524 	 * but incorrectly reports that it does. There are changes making their way
2525 	 * through the kernel now that will enable this feature. When they are merged,
2526 	 * we can conditionally enable this feature.
2527 	 *
2528 	 * TODO: enable this for versions of the kernel rxe driver that support it.
2529 	 */
2530 	if (nvmf_rdma_is_rxe_device(device)) {
2531 		device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2532 	}
2533 #endif
2534 
2535 	/* set up device context async ev fd as NON_BLOCKING */
2536 	flag = fcntl(device->context->async_fd, F_GETFL);
2537 	rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2538 	if (rc < 0) {
2539 		SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2540 		free(device);
2541 		return rc;
2542 	}
2543 
2544 	TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2545 	SPDK_DEBUGLOG(rdma, "New device %p is added to RDMA trasport\n", device);
2546 
2547 	if (g_nvmf_hooks.get_ibv_pd) {
2548 		device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2549 	} else {
2550 		device->pd = ibv_alloc_pd(device->context);
2551 	}
2552 
2553 	if (!device->pd) {
2554 		SPDK_ERRLOG("Unable to allocate protection domain.\n");
2555 		destroy_ib_device(rtransport, device);
2556 		return -ENOMEM;
2557 	}
2558 
2559 	assert(device->map == NULL);
2560 
2561 	device->map = spdk_rdma_create_mem_map(device->pd, &g_nvmf_hooks, SPDK_RDMA_MEMORY_MAP_ROLE_TARGET);
2562 	if (!device->map) {
2563 		SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2564 		destroy_ib_device(rtransport, device);
2565 		return -ENOMEM;
2566 	}
2567 
2568 	assert(device->map != NULL);
2569 	assert(device->pd != NULL);
2570 
2571 	if (new_device) {
2572 		*new_device = device;
2573 	}
2574 	SPDK_NOTICELOG("Create IB device %s(%p/%p) succeed.\n", ibv_get_device_name(context->device),
2575 		       device, context);
2576 
2577 	return 0;
2578 }
2579 
2580 static void
2581 free_poll_fds(struct spdk_nvmf_rdma_transport *rtransport)
2582 {
2583 	if (rtransport->poll_fds) {
2584 		free(rtransport->poll_fds);
2585 		rtransport->poll_fds = NULL;
2586 	}
2587 	rtransport->npoll_fds = 0;
2588 }
2589 
2590 static int
2591 generate_poll_fds(struct spdk_nvmf_rdma_transport *rtransport)
2592 {
2593 	/* Set up poll descriptor array to monitor events from RDMA and IB
2594 	 * in a single poll syscall
2595 	 */
2596 	int device_count = 0;
2597 	int i = 0;
2598 	struct spdk_nvmf_rdma_device *device, *tmp;
2599 
2600 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2601 		device_count++;
2602 	}
2603 
2604 	rtransport->npoll_fds = device_count + 1;
2605 
2606 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2607 	if (rtransport->poll_fds == NULL) {
2608 		SPDK_ERRLOG("poll_fds allocation failed\n");
2609 		return -ENOMEM;
2610 	}
2611 
2612 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2613 	rtransport->poll_fds[i++].events = POLLIN;
2614 
2615 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2616 		rtransport->poll_fds[i].fd = device->context->async_fd;
2617 		rtransport->poll_fds[i++].events = POLLIN;
2618 	}
2619 
2620 	return 0;
2621 }
2622 
2623 static struct spdk_nvmf_transport *
2624 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2625 {
2626 	int rc;
2627 	struct spdk_nvmf_rdma_transport *rtransport;
2628 	struct spdk_nvmf_rdma_device	*device;
2629 	struct ibv_context		**contexts;
2630 	size_t				data_wr_pool_size;
2631 	uint32_t			i;
2632 	int				flag;
2633 	uint32_t			sge_count;
2634 	uint32_t			min_shared_buffers;
2635 	uint32_t			min_in_capsule_data_size;
2636 	int				max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2637 
2638 	rtransport = calloc(1, sizeof(*rtransport));
2639 	if (!rtransport) {
2640 		return NULL;
2641 	}
2642 
2643 	TAILQ_INIT(&rtransport->devices);
2644 	TAILQ_INIT(&rtransport->ports);
2645 	TAILQ_INIT(&rtransport->poll_groups);
2646 	TAILQ_INIT(&rtransport->retry_ports);
2647 
2648 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2649 	rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
2650 	rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2651 	rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ;
2652 	rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2653 	rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING;
2654 	if (opts->transport_specific != NULL &&
2655 	    spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder,
2656 					    SPDK_COUNTOF(rdma_transport_opts_decoder),
2657 					    &rtransport->rdma_opts)) {
2658 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
2659 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2660 		return NULL;
2661 	}
2662 
2663 	SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n"
2664 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
2665 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2666 		     "  in_capsule_data_size=%d, max_aq_depth=%d,\n"
2667 		     "  num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d,"
2668 		     "  acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n",
2669 		     opts->max_queue_depth,
2670 		     opts->max_io_size,
2671 		     opts->max_qpairs_per_ctrlr - 1,
2672 		     opts->io_unit_size,
2673 		     opts->in_capsule_data_size,
2674 		     opts->max_aq_depth,
2675 		     opts->num_shared_buffers,
2676 		     rtransport->rdma_opts.num_cqe,
2677 		     rtransport->rdma_opts.max_srq_depth,
2678 		     rtransport->rdma_opts.no_srq,
2679 		     rtransport->rdma_opts.acceptor_backlog,
2680 		     rtransport->rdma_opts.no_wr_batching,
2681 		     opts->abort_timeout_sec);
2682 
2683 	/* I/O unit size cannot be larger than max I/O size */
2684 	if (opts->io_unit_size > opts->max_io_size) {
2685 		opts->io_unit_size = opts->max_io_size;
2686 	}
2687 
2688 	if (rtransport->rdma_opts.acceptor_backlog <= 0) {
2689 		SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n",
2690 			    SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG);
2691 		rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2692 	}
2693 
2694 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2695 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2696 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
2697 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2698 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2699 		return NULL;
2700 	}
2701 
2702 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
2703 	if (opts->buf_cache_size < UINT32_MAX) {
2704 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
2705 		if (min_shared_buffers > opts->num_shared_buffers) {
2706 			SPDK_ERRLOG("There are not enough buffers to satisfy"
2707 				    "per-poll group caches for each thread. (%" PRIu32 ")"
2708 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2709 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2710 			nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2711 			return NULL;
2712 		}
2713 	}
2714 
2715 	sge_count = opts->max_io_size / opts->io_unit_size;
2716 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
2717 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2718 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2719 		return NULL;
2720 	}
2721 
2722 	min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES;
2723 	if (opts->in_capsule_data_size < min_in_capsule_data_size) {
2724 		SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n",
2725 			     min_in_capsule_data_size);
2726 		opts->in_capsule_data_size = min_in_capsule_data_size;
2727 	}
2728 
2729 	rtransport->event_channel = rdma_create_event_channel();
2730 	if (rtransport->event_channel == NULL) {
2731 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2732 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2733 		return NULL;
2734 	}
2735 
2736 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2737 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2738 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2739 			    rtransport->event_channel->fd, spdk_strerror(errno));
2740 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2741 		return NULL;
2742 	}
2743 
2744 	data_wr_pool_size = opts->data_wr_pool_size;
2745 	if (data_wr_pool_size < SPDK_NVMF_MAX_SGL_ENTRIES * 2 * spdk_env_get_core_count()) {
2746 		data_wr_pool_size = SPDK_NVMF_MAX_SGL_ENTRIES * 2 * spdk_env_get_core_count();
2747 		SPDK_NOTICELOG("data_wr_pool_size is changed to %zu to guarantee enough cache for handling "
2748 			       "at least one IO in each core\n", data_wr_pool_size);
2749 	}
2750 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data", data_wr_pool_size,
2751 				   sizeof(struct spdk_nvmf_rdma_request_data), SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2752 				   SPDK_ENV_SOCKET_ID_ANY);
2753 	if (!rtransport->data_wr_pool) {
2754 		if (spdk_mempool_lookup("spdk_nvmf_rdma_wr_data") != NULL) {
2755 			SPDK_ERRLOG("Unable to allocate work request pool for poll group: already exists\n");
2756 			SPDK_ERRLOG("Probably running in multiprocess environment, which is "
2757 				    "unsupported by the nvmf library\n");
2758 		} else {
2759 			SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2760 		}
2761 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2762 		return NULL;
2763 	}
2764 
2765 	contexts = rdma_get_devices(NULL);
2766 	if (contexts == NULL) {
2767 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2768 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2769 		return NULL;
2770 	}
2771 
2772 	i = 0;
2773 	rc = 0;
2774 	while (contexts[i] != NULL) {
2775 		rc = create_ib_device(rtransport, contexts[i], &device);
2776 		if (rc < 0) {
2777 			break;
2778 		}
2779 		i++;
2780 		max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2781 		device->is_ready = true;
2782 	}
2783 	rdma_free_devices(contexts);
2784 
2785 	if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2786 		/* divide and round up. */
2787 		opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2788 
2789 		/* round up to the nearest 4k. */
2790 		opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2791 
2792 		opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2793 		SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2794 			       opts->io_unit_size);
2795 	}
2796 
2797 	if (rc < 0) {
2798 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2799 		return NULL;
2800 	}
2801 
2802 	rc = generate_poll_fds(rtransport);
2803 	if (rc < 0) {
2804 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2805 		return NULL;
2806 	}
2807 
2808 	rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport,
2809 				    opts->acceptor_poll_rate);
2810 	if (!rtransport->accept_poller) {
2811 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2812 		return NULL;
2813 	}
2814 
2815 	return &rtransport->transport;
2816 }
2817 
2818 static void
2819 destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
2820 		  struct spdk_nvmf_rdma_device *device)
2821 {
2822 	TAILQ_REMOVE(&rtransport->devices, device, link);
2823 	spdk_rdma_free_mem_map(&device->map);
2824 	if (device->pd) {
2825 		if (!g_nvmf_hooks.get_ibv_pd) {
2826 			ibv_dealloc_pd(device->pd);
2827 		}
2828 	}
2829 	SPDK_DEBUGLOG(rdma, "IB device [%p] is destroyed.\n", device);
2830 	free(device);
2831 }
2832 
2833 static void
2834 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
2835 {
2836 	struct spdk_nvmf_rdma_transport	*rtransport;
2837 	assert(w != NULL);
2838 
2839 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2840 	spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth);
2841 	spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq);
2842 	if (rtransport->rdma_opts.no_srq == true) {
2843 		spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe);
2844 	}
2845 	spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog);
2846 	spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching);
2847 }
2848 
2849 static int
2850 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2851 		  spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
2852 {
2853 	struct spdk_nvmf_rdma_transport	*rtransport;
2854 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
2855 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
2856 
2857 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2858 
2859 	TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, port_tmp) {
2860 		TAILQ_REMOVE(&rtransport->retry_ports, port, link);
2861 		free(port);
2862 	}
2863 
2864 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2865 		TAILQ_REMOVE(&rtransport->ports, port, link);
2866 		rdma_destroy_id(port->id);
2867 		free(port);
2868 	}
2869 
2870 	free_poll_fds(rtransport);
2871 
2872 	if (rtransport->event_channel != NULL) {
2873 		rdma_destroy_event_channel(rtransport->event_channel);
2874 	}
2875 
2876 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2877 		destroy_ib_device(rtransport, device);
2878 	}
2879 
2880 	if (rtransport->data_wr_pool != NULL) {
2881 		if (spdk_mempool_count(rtransport->data_wr_pool) != transport->opts.data_wr_pool_size) {
2882 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2883 				    spdk_mempool_count(rtransport->data_wr_pool),
2884 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2885 		}
2886 	}
2887 
2888 	spdk_mempool_free(rtransport->data_wr_pool);
2889 
2890 	spdk_poller_unregister(&rtransport->accept_poller);
2891 	free(rtransport);
2892 
2893 	if (cb_fn) {
2894 		cb_fn(cb_arg);
2895 	}
2896 	return 0;
2897 }
2898 
2899 static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2900 				     struct spdk_nvme_transport_id *trid,
2901 				     bool peer);
2902 
2903 static bool nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport);
2904 
2905 static int
2906 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
2907 		 struct spdk_nvmf_listen_opts *listen_opts)
2908 {
2909 	struct spdk_nvmf_rdma_transport	*rtransport;
2910 	struct spdk_nvmf_rdma_device	*device;
2911 	struct spdk_nvmf_rdma_port	*port, *tmp_port;
2912 	struct addrinfo			*res;
2913 	struct addrinfo			hints;
2914 	int				family;
2915 	int				rc;
2916 	long int			port_val;
2917 	bool				is_retry = false;
2918 
2919 	if (!strlen(trid->trsvcid)) {
2920 		SPDK_ERRLOG("Service id is required\n");
2921 		return -EINVAL;
2922 	}
2923 
2924 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2925 	assert(rtransport->event_channel != NULL);
2926 
2927 	port = calloc(1, sizeof(*port));
2928 	if (!port) {
2929 		SPDK_ERRLOG("Port allocation failed\n");
2930 		return -ENOMEM;
2931 	}
2932 
2933 	port->trid = trid;
2934 
2935 	switch (trid->adrfam) {
2936 	case SPDK_NVMF_ADRFAM_IPV4:
2937 		family = AF_INET;
2938 		break;
2939 	case SPDK_NVMF_ADRFAM_IPV6:
2940 		family = AF_INET6;
2941 		break;
2942 	default:
2943 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam);
2944 		free(port);
2945 		return -EINVAL;
2946 	}
2947 
2948 	memset(&hints, 0, sizeof(hints));
2949 	hints.ai_family = family;
2950 	hints.ai_flags = AI_NUMERICSERV;
2951 	hints.ai_socktype = SOCK_STREAM;
2952 	hints.ai_protocol = 0;
2953 
2954 	/* Range check the trsvcid. Fail in 3 cases:
2955 	 * < 0: means that spdk_strtol hit an error
2956 	 * 0: this results in ephemeral port which we don't want
2957 	 * > 65535: port too high
2958 	 */
2959 	port_val = spdk_strtol(trid->trsvcid, 10);
2960 	if (port_val <= 0 || port_val > 65535) {
2961 		SPDK_ERRLOG("invalid trsvcid %s\n", trid->trsvcid);
2962 		free(port);
2963 		return -EINVAL;
2964 	}
2965 
2966 	rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res);
2967 	if (rc) {
2968 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
2969 		free(port);
2970 		return -(abs(rc));
2971 	}
2972 
2973 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
2974 	if (rc < 0) {
2975 		SPDK_ERRLOG("rdma_create_id() failed\n");
2976 		freeaddrinfo(res);
2977 		free(port);
2978 		return rc;
2979 	}
2980 
2981 	rc = rdma_bind_addr(port->id, res->ai_addr);
2982 	freeaddrinfo(res);
2983 
2984 	if (rc < 0) {
2985 		TAILQ_FOREACH(tmp_port, &rtransport->retry_ports, link) {
2986 			if (spdk_nvme_transport_id_compare(tmp_port->trid, trid) == 0) {
2987 				is_retry = true;
2988 				break;
2989 			}
2990 		}
2991 		if (!is_retry) {
2992 			SPDK_ERRLOG("rdma_bind_addr() failed\n");
2993 		}
2994 		rdma_destroy_id(port->id);
2995 		free(port);
2996 		return rc;
2997 	}
2998 
2999 	if (!port->id->verbs) {
3000 		SPDK_ERRLOG("ibv_context is null\n");
3001 		rdma_destroy_id(port->id);
3002 		free(port);
3003 		return -1;
3004 	}
3005 
3006 	rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog);
3007 	if (rc < 0) {
3008 		SPDK_ERRLOG("rdma_listen() failed\n");
3009 		rdma_destroy_id(port->id);
3010 		free(port);
3011 		return rc;
3012 	}
3013 
3014 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3015 		if (device->context == port->id->verbs && device->is_ready) {
3016 			port->device = device;
3017 			break;
3018 		}
3019 	}
3020 	if (!port->device) {
3021 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
3022 			    port->id->verbs);
3023 		rdma_destroy_id(port->id);
3024 		free(port);
3025 		nvmf_rdma_rescan_devices(rtransport);
3026 		return -EINVAL;
3027 	}
3028 
3029 	SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n",
3030 		       trid->traddr, trid->trsvcid);
3031 
3032 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
3033 	return 0;
3034 }
3035 
3036 static void
3037 nvmf_rdma_stop_listen_ex(struct spdk_nvmf_transport *transport,
3038 			 const struct spdk_nvme_transport_id *trid, bool need_retry)
3039 {
3040 	struct spdk_nvmf_rdma_transport	*rtransport;
3041 	struct spdk_nvmf_rdma_port	*port, *tmp;
3042 
3043 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3044 
3045 	if (!need_retry) {
3046 		TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp) {
3047 			if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
3048 				TAILQ_REMOVE(&rtransport->retry_ports, port, link);
3049 				free(port);
3050 			}
3051 		}
3052 	}
3053 
3054 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
3055 		if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
3056 			SPDK_DEBUGLOG(rdma, "Port %s:%s removed. need retry: %d\n",
3057 				      port->trid->traddr, port->trid->trsvcid, need_retry);
3058 			TAILQ_REMOVE(&rtransport->ports, port, link);
3059 			rdma_destroy_id(port->id);
3060 			port->id = NULL;
3061 			port->device = NULL;
3062 			if (need_retry) {
3063 				TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link);
3064 			} else {
3065 				free(port);
3066 			}
3067 			break;
3068 		}
3069 	}
3070 }
3071 
3072 static void
3073 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
3074 		      const struct spdk_nvme_transport_id *trid)
3075 {
3076 	nvmf_rdma_stop_listen_ex(transport, trid, false);
3077 }
3078 
3079 static void _nvmf_rdma_register_poller_in_group(void *c);
3080 static void _nvmf_rdma_remove_poller_in_group(void *c);
3081 
3082 static bool
3083 nvmf_rdma_all_pollers_management_done(void *c)
3084 {
3085 	struct poller_manage_ctx	*ctx = c;
3086 	int				counter;
3087 
3088 	counter = __atomic_sub_fetch(ctx->inflight_op_counter, 1, __ATOMIC_SEQ_CST);
3089 	SPDK_DEBUGLOG(rdma, "nvmf_rdma_all_pollers_management_done called. counter: %d, poller: %p\n",
3090 		      counter, ctx->rpoller);
3091 
3092 	if (counter == 0) {
3093 		free((void *)ctx->inflight_op_counter);
3094 	}
3095 	free(ctx);
3096 
3097 	return counter == 0;
3098 }
3099 
3100 static int
3101 nvmf_rdma_manage_poller(struct spdk_nvmf_rdma_transport *rtransport,
3102 			struct spdk_nvmf_rdma_device *device, bool *has_inflight, bool is_add)
3103 {
3104 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3105 	struct spdk_nvmf_rdma_poller		*rpoller;
3106 	struct spdk_nvmf_poll_group		*poll_group;
3107 	struct poller_manage_ctx		*ctx;
3108 	bool					found;
3109 	int					*inflight_counter;
3110 	spdk_msg_fn				do_fn;
3111 
3112 	*has_inflight = false;
3113 	do_fn = is_add ? _nvmf_rdma_register_poller_in_group : _nvmf_rdma_remove_poller_in_group;
3114 	inflight_counter = calloc(1, sizeof(int));
3115 	if (!inflight_counter) {
3116 		SPDK_ERRLOG("Failed to allocate inflight counter when removing pollers\n");
3117 		return -ENOMEM;
3118 	}
3119 
3120 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3121 		(*inflight_counter)++;
3122 	}
3123 
3124 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3125 		found = false;
3126 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3127 			if (rpoller->device == device) {
3128 				found = true;
3129 				break;
3130 			}
3131 		}
3132 		if (found == is_add) {
3133 			__atomic_fetch_sub(inflight_counter, 1, __ATOMIC_SEQ_CST);
3134 			continue;
3135 		}
3136 
3137 		ctx = calloc(1, sizeof(struct poller_manage_ctx));
3138 		if (!ctx) {
3139 			SPDK_ERRLOG("Failed to allocate poller_manage_ctx when removing pollers\n");
3140 			if (!*has_inflight) {
3141 				free(inflight_counter);
3142 			}
3143 			return -ENOMEM;
3144 		}
3145 
3146 		ctx->rtransport = rtransport;
3147 		ctx->rgroup = rgroup;
3148 		ctx->rpoller = rpoller;
3149 		ctx->device = device;
3150 		ctx->thread = spdk_get_thread();
3151 		ctx->inflight_op_counter = inflight_counter;
3152 		*has_inflight = true;
3153 
3154 		poll_group = rgroup->group.group;
3155 		if (poll_group->thread != spdk_get_thread()) {
3156 			spdk_thread_send_msg(poll_group->thread, do_fn, ctx);
3157 		} else {
3158 			do_fn(ctx);
3159 		}
3160 	}
3161 
3162 	if (!*has_inflight) {
3163 		free(inflight_counter);
3164 	}
3165 
3166 	return 0;
3167 }
3168 
3169 static void nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport,
3170 		struct spdk_nvmf_rdma_device *device);
3171 
3172 static struct spdk_nvmf_rdma_device *
3173 nvmf_rdma_find_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
3174 			 struct ibv_context *context)
3175 {
3176 	struct spdk_nvmf_rdma_device	*device, *tmp_device;
3177 
3178 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp_device) {
3179 		if (device->need_destroy) {
3180 			continue;
3181 		}
3182 
3183 		if (strcmp(device->context->device->dev_name, context->device->dev_name) == 0) {
3184 			return device;
3185 		}
3186 	}
3187 
3188 	return NULL;
3189 }
3190 
3191 static bool
3192 nvmf_rdma_check_devices_context(struct spdk_nvmf_rdma_transport *rtransport,
3193 				struct ibv_context *context)
3194 {
3195 	struct spdk_nvmf_rdma_device	*old_device, *new_device;
3196 	int				rc = 0;
3197 	bool				has_inflight;
3198 
3199 	old_device = nvmf_rdma_find_ib_device(rtransport, context);
3200 
3201 	if (old_device) {
3202 		if (old_device->context != context && !old_device->need_destroy && old_device->is_ready) {
3203 			/* context may not have time to be cleaned when rescan. exactly one context
3204 			 * is valid for a device so this context must be invalid and just remove it. */
3205 			SPDK_WARNLOG("Device %p has a invalid context %p\n", old_device, old_device->context);
3206 			old_device->need_destroy = true;
3207 			nvmf_rdma_handle_device_removal(rtransport, old_device);
3208 		}
3209 		return false;
3210 	}
3211 
3212 	rc = create_ib_device(rtransport, context, &new_device);
3213 	/* TODO: update transport opts. */
3214 	if (rc < 0) {
3215 		SPDK_ERRLOG("Failed to create ib device for context: %s(%p)\n",
3216 			    ibv_get_device_name(context->device), context);
3217 		return false;
3218 	}
3219 
3220 	rc = nvmf_rdma_manage_poller(rtransport, new_device, &has_inflight, true);
3221 	if (rc < 0) {
3222 		SPDK_ERRLOG("Failed to add poller for device context: %s(%p)\n",
3223 			    ibv_get_device_name(context->device), context);
3224 		return false;
3225 	}
3226 
3227 	if (has_inflight) {
3228 		new_device->is_ready = true;
3229 	}
3230 
3231 	return true;
3232 }
3233 
3234 static bool
3235 nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport)
3236 {
3237 	struct spdk_nvmf_rdma_device	*device;
3238 	struct ibv_device		**ibv_device_list = NULL;
3239 	struct ibv_context		**contexts = NULL;
3240 	int				i = 0;
3241 	int				num_dev = 0;
3242 	bool				new_create = false, has_new_device = false;
3243 	struct ibv_context		*tmp_verbs = NULL;
3244 
3245 	/* do not rescan when any device is destroying, or context may be freed when
3246 	 * regenerating the poll fds.
3247 	 */
3248 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3249 		if (device->need_destroy) {
3250 			return false;
3251 		}
3252 	}
3253 
3254 	ibv_device_list = ibv_get_device_list(&num_dev);
3255 
3256 	/* There is a bug in librdmacm. If verbs init failed in rdma_get_devices, it'll be
3257 	 * marked as dead verbs and never be init again. So we need to make sure the
3258 	 * verbs is available before we call rdma_get_devices. */
3259 	if (num_dev >= 0) {
3260 		for (i = 0; i < num_dev; i++) {
3261 			tmp_verbs = ibv_open_device(ibv_device_list[i]);
3262 			if (!tmp_verbs) {
3263 				SPDK_WARNLOG("Failed to init ibv device %p, err %d. Skip rescan.\n", ibv_device_list[i], errno);
3264 				break;
3265 			}
3266 			if (nvmf_rdma_find_ib_device(rtransport, tmp_verbs) == NULL) {
3267 				SPDK_DEBUGLOG(rdma, "Find new verbs init ibv device %p(%s).\n", ibv_device_list[i],
3268 					      tmp_verbs->device->dev_name);
3269 				has_new_device = true;
3270 			}
3271 			ibv_close_device(tmp_verbs);
3272 		}
3273 		ibv_free_device_list(ibv_device_list);
3274 		if (!tmp_verbs || !has_new_device) {
3275 			return false;
3276 		}
3277 	}
3278 
3279 	contexts = rdma_get_devices(NULL);
3280 
3281 	for (i = 0; contexts && contexts[i] != NULL; i++) {
3282 		new_create |= nvmf_rdma_check_devices_context(rtransport, contexts[i]);
3283 	}
3284 
3285 	if (new_create) {
3286 		free_poll_fds(rtransport);
3287 		generate_poll_fds(rtransport);
3288 	}
3289 
3290 	if (contexts) {
3291 		rdma_free_devices(contexts);
3292 	}
3293 
3294 	return new_create;
3295 }
3296 
3297 static bool
3298 nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport)
3299 {
3300 	struct spdk_nvmf_rdma_port	*port, *tmp_port;
3301 	int				rc = 0;
3302 	bool				new_create = false;
3303 
3304 	if (TAILQ_EMPTY(&rtransport->retry_ports)) {
3305 		return false;
3306 	}
3307 
3308 	new_create = nvmf_rdma_rescan_devices(rtransport);
3309 
3310 	TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp_port) {
3311 		rc = nvmf_rdma_listen(&rtransport->transport, port->trid, NULL);
3312 
3313 		TAILQ_REMOVE(&rtransport->retry_ports, port, link);
3314 		if (rc) {
3315 			if (new_create) {
3316 				SPDK_ERRLOG("Found new IB device but port %s:%s is still failed(%d) to listen.\n",
3317 					    port->trid->traddr, port->trid->trsvcid, rc);
3318 			}
3319 			TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link);
3320 			break;
3321 		} else {
3322 			SPDK_NOTICELOG("Port %s:%s come back\n", port->trid->traddr, port->trid->trsvcid);
3323 			free(port);
3324 		}
3325 	}
3326 
3327 	return true;
3328 }
3329 
3330 static void
3331 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
3332 				struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
3333 {
3334 	struct spdk_nvmf_request *req, *tmp;
3335 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
3336 	struct spdk_nvmf_rdma_resources *resources;
3337 
3338 	/* First process requests which are waiting for response to be sent */
3339 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_send_queue, state_link, req_tmp) {
3340 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3341 			break;
3342 		}
3343 	}
3344 
3345 	/* We process I/O in the data transfer pending queue at the highest priority. */
3346 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
3347 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3348 			break;
3349 		}
3350 	}
3351 
3352 	/* Then RDMA writes since reads have stronger restrictions than writes */
3353 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
3354 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3355 			break;
3356 		}
3357 	}
3358 
3359 	/* Then we handle request waiting on memory buffers. */
3360 	STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) {
3361 		rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3362 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3363 			break;
3364 		}
3365 	}
3366 
3367 	resources = rqpair->resources;
3368 	while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
3369 		rdma_req = STAILQ_FIRST(&resources->free_queue);
3370 		STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
3371 		rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
3372 		STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
3373 
3374 		if (rqpair->srq != NULL) {
3375 			rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
3376 			rdma_req->recv->qpair->qd++;
3377 		} else {
3378 			rqpair->qd++;
3379 		}
3380 
3381 		rdma_req->receive_tsc = rdma_req->recv->receive_tsc;
3382 		rdma_req->state = RDMA_REQUEST_STATE_NEW;
3383 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
3384 			break;
3385 		}
3386 	}
3387 	if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) {
3388 		rqpair->poller->stat.pending_free_request++;
3389 	}
3390 }
3391 
3392 static void
3393 nvmf_rdma_poller_process_pending_buf_queue(struct spdk_nvmf_rdma_transport *rtransport,
3394 		struct spdk_nvmf_rdma_poller *rpoller)
3395 {
3396 	struct spdk_nvmf_request *req, *tmp;
3397 	struct spdk_nvmf_rdma_request *rdma_req;
3398 
3399 	STAILQ_FOREACH_SAFE(req, &rpoller->group->group.pending_buf_queue, buf_link, tmp) {
3400 		rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3401 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
3402 			break;
3403 		}
3404 	}
3405 }
3406 
3407 static inline bool
3408 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device)
3409 {
3410 	/* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */
3411 	return nvmf_rdma_is_rxe_device(device) ||
3412 	       device->context->device->transport_type == IBV_TRANSPORT_IWARP;
3413 }
3414 
3415 static void
3416 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair)
3417 {
3418 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
3419 			struct spdk_nvmf_rdma_transport, transport);
3420 
3421 	nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
3422 
3423 	/* nvmf_rdma_close_qpair is not called */
3424 	if (!rqpair->to_close) {
3425 		return;
3426 	}
3427 
3428 	/* device is already destroyed and we should force destroy this qpair. */
3429 	if (rqpair->poller && rqpair->poller->need_destroy) {
3430 		nvmf_rdma_qpair_destroy(rqpair);
3431 		return;
3432 	}
3433 
3434 	/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
3435 	if (rqpair->current_send_depth != 0) {
3436 		return;
3437 	}
3438 
3439 	if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
3440 		return;
3441 	}
3442 
3443 	if (rqpair->srq != NULL && rqpair->last_wqe_reached == false &&
3444 	    !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) {
3445 		return;
3446 	}
3447 
3448 	assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR);
3449 
3450 	nvmf_rdma_qpair_destroy(rqpair);
3451 }
3452 
3453 static int
3454 nvmf_rdma_disconnect(struct rdma_cm_event *evt, bool *event_acked)
3455 {
3456 	struct spdk_nvmf_qpair		*qpair;
3457 	struct spdk_nvmf_rdma_qpair	*rqpair;
3458 
3459 	if (evt->id == NULL) {
3460 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
3461 		return -1;
3462 	}
3463 
3464 	qpair = evt->id->context;
3465 	if (qpair == NULL) {
3466 		SPDK_ERRLOG("disconnect request: no active connection\n");
3467 		return -1;
3468 	}
3469 
3470 	rdma_ack_cm_event(evt);
3471 	*event_acked = true;
3472 
3473 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3474 
3475 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair);
3476 
3477 	spdk_nvmf_qpair_disconnect(&rqpair->qpair);
3478 
3479 	return 0;
3480 }
3481 
3482 #ifdef DEBUG
3483 static const char *CM_EVENT_STR[] = {
3484 	"RDMA_CM_EVENT_ADDR_RESOLVED",
3485 	"RDMA_CM_EVENT_ADDR_ERROR",
3486 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
3487 	"RDMA_CM_EVENT_ROUTE_ERROR",
3488 	"RDMA_CM_EVENT_CONNECT_REQUEST",
3489 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
3490 	"RDMA_CM_EVENT_CONNECT_ERROR",
3491 	"RDMA_CM_EVENT_UNREACHABLE",
3492 	"RDMA_CM_EVENT_REJECTED",
3493 	"RDMA_CM_EVENT_ESTABLISHED",
3494 	"RDMA_CM_EVENT_DISCONNECTED",
3495 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
3496 	"RDMA_CM_EVENT_MULTICAST_JOIN",
3497 	"RDMA_CM_EVENT_MULTICAST_ERROR",
3498 	"RDMA_CM_EVENT_ADDR_CHANGE",
3499 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
3500 };
3501 #endif /* DEBUG */
3502 
3503 static void
3504 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport,
3505 				    struct spdk_nvmf_rdma_port *port)
3506 {
3507 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3508 	struct spdk_nvmf_rdma_poller		*rpoller;
3509 	struct spdk_nvmf_rdma_qpair		*rqpair;
3510 
3511 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3512 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3513 			RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) {
3514 				if (rqpair->listen_id == port->id) {
3515 					spdk_nvmf_qpair_disconnect(&rqpair->qpair);
3516 				}
3517 			}
3518 		}
3519 	}
3520 }
3521 
3522 static bool
3523 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport,
3524 				      struct rdma_cm_event *event)
3525 {
3526 	const struct spdk_nvme_transport_id	*trid;
3527 	struct spdk_nvmf_rdma_port		*port;
3528 	struct spdk_nvmf_rdma_transport		*rtransport;
3529 	bool					event_acked = false;
3530 
3531 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3532 	TAILQ_FOREACH(port, &rtransport->ports, link) {
3533 		if (port->id == event->id) {
3534 			SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid);
3535 			rdma_ack_cm_event(event);
3536 			event_acked = true;
3537 			trid = port->trid;
3538 			break;
3539 		}
3540 	}
3541 
3542 	if (event_acked) {
3543 		nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
3544 
3545 		nvmf_rdma_stop_listen(transport, trid);
3546 		nvmf_rdma_listen(transport, trid, NULL);
3547 	}
3548 
3549 	return event_acked;
3550 }
3551 
3552 static void
3553 nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport,
3554 				struct spdk_nvmf_rdma_device *device)
3555 {
3556 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
3557 	int				rc;
3558 	bool				has_inflight;
3559 
3560 	rc = nvmf_rdma_manage_poller(rtransport, device, &has_inflight, false);
3561 	if (rc) {
3562 		SPDK_ERRLOG("Failed to handle device removal, rc %d\n", rc);
3563 		return;
3564 	}
3565 
3566 	if (!has_inflight) {
3567 		/* no pollers, destroy the device */
3568 		device->ready_to_destroy = true;
3569 		spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_remove_destroyed_device, rtransport);
3570 	}
3571 
3572 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
3573 		if (port->device == device) {
3574 			SPDK_NOTICELOG("Port %s:%s on device %s is being removed.\n",
3575 				       port->trid->traddr,
3576 				       port->trid->trsvcid,
3577 				       ibv_get_device_name(port->device->context->device));
3578 
3579 			/* keep NVMF listener and only destroy structures of the
3580 			 * RDMA transport. when the device comes back we can retry listening
3581 			 * and the application's workflow will not be interrupted.
3582 			 */
3583 			nvmf_rdma_stop_listen_ex(&rtransport->transport, port->trid, true);
3584 		}
3585 	}
3586 }
3587 
3588 static void
3589 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport,
3590 				       struct rdma_cm_event *event)
3591 {
3592 	struct spdk_nvmf_rdma_port		*port, *tmp_port;
3593 	struct spdk_nvmf_rdma_transport		*rtransport;
3594 
3595 	port = event->id->context;
3596 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3597 
3598 	rdma_ack_cm_event(event);
3599 
3600 	/* if device removal happens during ctrl qpair disconnecting, it's possible that we receive
3601 	 * an DEVICE_REMOVAL event on qpair but the id->qp is just NULL. So we should make sure that
3602 	 * we are handling a port event here.
3603 	 */
3604 	TAILQ_FOREACH(tmp_port, &rtransport->ports, link) {
3605 		if (port == tmp_port && port->device && !port->device->need_destroy) {
3606 			port->device->need_destroy = true;
3607 			nvmf_rdma_handle_device_removal(rtransport, port->device);
3608 		}
3609 	}
3610 }
3611 
3612 static void
3613 nvmf_process_cm_events(struct spdk_nvmf_transport *transport, uint32_t max_events)
3614 {
3615 	struct spdk_nvmf_rdma_transport *rtransport;
3616 	struct rdma_cm_event		*event;
3617 	uint32_t			i;
3618 	int				rc;
3619 	bool				event_acked;
3620 
3621 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3622 
3623 	if (rtransport->event_channel == NULL) {
3624 		return;
3625 	}
3626 
3627 	for (i = 0; i < max_events; i++) {
3628 		event_acked = false;
3629 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
3630 		if (rc) {
3631 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
3632 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
3633 			}
3634 			break;
3635 		}
3636 
3637 		SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
3638 
3639 		spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
3640 
3641 		switch (event->event) {
3642 		case RDMA_CM_EVENT_ADDR_RESOLVED:
3643 		case RDMA_CM_EVENT_ADDR_ERROR:
3644 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
3645 		case RDMA_CM_EVENT_ROUTE_ERROR:
3646 			/* No action required. The target never attempts to resolve routes. */
3647 			break;
3648 		case RDMA_CM_EVENT_CONNECT_REQUEST:
3649 			rc = nvmf_rdma_connect(transport, event);
3650 			if (rc < 0) {
3651 				SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
3652 				break;
3653 			}
3654 			break;
3655 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
3656 			/* The target never initiates a new connection. So this will not occur. */
3657 			break;
3658 		case RDMA_CM_EVENT_CONNECT_ERROR:
3659 			/* Can this happen? The docs say it can, but not sure what causes it. */
3660 			break;
3661 		case RDMA_CM_EVENT_UNREACHABLE:
3662 		case RDMA_CM_EVENT_REJECTED:
3663 			/* These only occur on the client side. */
3664 			break;
3665 		case RDMA_CM_EVENT_ESTABLISHED:
3666 			/* TODO: Should we be waiting for this event anywhere? */
3667 			break;
3668 		case RDMA_CM_EVENT_DISCONNECTED:
3669 			rc = nvmf_rdma_disconnect(event, &event_acked);
3670 			if (rc < 0) {
3671 				SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3672 				break;
3673 			}
3674 			break;
3675 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
3676 			/* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL
3677 			 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s.
3678 			 * Once these events are sent to SPDK, we should release all IB resources and
3679 			 * don't make attempts to call any ibv_query/modify/create functions. We can only call
3680 			 * ibv_destroy* functions to release user space memory allocated by IB. All kernel
3681 			 * resources are already cleaned. */
3682 			if (event->id->qp) {
3683 				/* If rdma_cm event has a valid `qp` pointer then the event refers to the
3684 				 * corresponding qpair. Otherwise the event refers to a listening device. */
3685 				rc = nvmf_rdma_disconnect(event, &event_acked);
3686 				if (rc < 0) {
3687 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3688 					break;
3689 				}
3690 			} else {
3691 				nvmf_rdma_handle_cm_event_port_removal(transport, event);
3692 				event_acked = true;
3693 			}
3694 			break;
3695 		case RDMA_CM_EVENT_MULTICAST_JOIN:
3696 		case RDMA_CM_EVENT_MULTICAST_ERROR:
3697 			/* Multicast is not used */
3698 			break;
3699 		case RDMA_CM_EVENT_ADDR_CHANGE:
3700 			event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event);
3701 			break;
3702 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
3703 			/* For now, do nothing. The target never re-uses queue pairs. */
3704 			break;
3705 		default:
3706 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
3707 			break;
3708 		}
3709 		if (!event_acked) {
3710 			rdma_ack_cm_event(event);
3711 		}
3712 	}
3713 }
3714 
3715 static void
3716 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair)
3717 {
3718 	rqpair->last_wqe_reached = true;
3719 	nvmf_rdma_destroy_drained_qpair(rqpair);
3720 }
3721 
3722 static void
3723 nvmf_rdma_qpair_process_ibv_event(void *ctx)
3724 {
3725 	struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx;
3726 
3727 	if (event_ctx->rqpair) {
3728 		STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3729 		if (event_ctx->cb_fn) {
3730 			event_ctx->cb_fn(event_ctx->rqpair);
3731 		}
3732 	}
3733 	free(event_ctx);
3734 }
3735 
3736 static int
3737 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair,
3738 				 spdk_nvmf_rdma_qpair_ibv_event fn)
3739 {
3740 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx;
3741 	struct spdk_thread *thr = NULL;
3742 	int rc;
3743 
3744 	if (rqpair->qpair.group) {
3745 		thr = rqpair->qpair.group->thread;
3746 	} else if (rqpair->destruct_channel) {
3747 		thr = spdk_io_channel_get_thread(rqpair->destruct_channel);
3748 	}
3749 
3750 	if (!thr) {
3751 		SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair);
3752 		return -EINVAL;
3753 	}
3754 
3755 	ctx = calloc(1, sizeof(*ctx));
3756 	if (!ctx) {
3757 		return -ENOMEM;
3758 	}
3759 
3760 	ctx->rqpair = rqpair;
3761 	ctx->cb_fn = fn;
3762 	STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link);
3763 
3764 	rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx);
3765 	if (rc) {
3766 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3767 		free(ctx);
3768 	}
3769 
3770 	return rc;
3771 }
3772 
3773 static int
3774 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
3775 {
3776 	int				rc;
3777 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
3778 	struct ibv_async_event		event;
3779 
3780 	rc = ibv_get_async_event(device->context, &event);
3781 
3782 	if (rc) {
3783 		/* In non-blocking mode -1 means there are no events available */
3784 		return rc;
3785 	}
3786 
3787 	switch (event.event_type) {
3788 	case IBV_EVENT_QP_FATAL:
3789 	case IBV_EVENT_QP_LAST_WQE_REACHED:
3790 	case IBV_EVENT_QP_REQ_ERR:
3791 	case IBV_EVENT_QP_ACCESS_ERR:
3792 	case IBV_EVENT_COMM_EST:
3793 	case IBV_EVENT_PATH_MIG:
3794 	case IBV_EVENT_PATH_MIG_ERR:
3795 		rqpair = event.element.qp->qp_context;
3796 		if (!rqpair) {
3797 			/* Any QP event for NVMe-RDMA initiator may be returned. */
3798 			SPDK_NOTICELOG("Async QP event for unknown QP: %s\n",
3799 				       ibv_event_type_str(event.event_type));
3800 			break;
3801 		}
3802 
3803 		switch (event.event_type) {
3804 		case IBV_EVENT_QP_FATAL:
3805 			SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
3806 			spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3807 					  (uintptr_t)rqpair, event.event_type);
3808 			rqpair->ibv_in_error_state = true;
3809 			spdk_nvmf_qpair_disconnect(&rqpair->qpair);
3810 			break;
3811 		case IBV_EVENT_QP_LAST_WQE_REACHED:
3812 			/* This event only occurs for shared receive queues. */
3813 			SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair);
3814 			rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached);
3815 			if (rc) {
3816 				SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc);
3817 				rqpair->last_wqe_reached = true;
3818 			}
3819 			break;
3820 		case IBV_EVENT_QP_REQ_ERR:
3821 		case IBV_EVENT_QP_ACCESS_ERR:
3822 		case IBV_EVENT_COMM_EST:
3823 		case IBV_EVENT_PATH_MIG:
3824 		case IBV_EVENT_PATH_MIG_ERR:
3825 			SPDK_NOTICELOG("Async QP event: %s\n",
3826 				       ibv_event_type_str(event.event_type));
3827 			spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3828 					  (uintptr_t)rqpair, event.event_type);
3829 			rqpair->ibv_in_error_state = true;
3830 			break;
3831 		default:
3832 			break;
3833 		}
3834 		break;
3835 	case IBV_EVENT_DEVICE_FATAL:
3836 		SPDK_ERRLOG("Device Fatal event[%s] received on %s. device: %p\n",
3837 			    ibv_event_type_str(event.event_type), ibv_get_device_name(device->context->device), device);
3838 		device->need_destroy = true;
3839 		break;
3840 	case IBV_EVENT_CQ_ERR:
3841 	case IBV_EVENT_PORT_ACTIVE:
3842 	case IBV_EVENT_PORT_ERR:
3843 	case IBV_EVENT_LID_CHANGE:
3844 	case IBV_EVENT_PKEY_CHANGE:
3845 	case IBV_EVENT_SM_CHANGE:
3846 	case IBV_EVENT_SRQ_ERR:
3847 	case IBV_EVENT_SRQ_LIMIT_REACHED:
3848 	case IBV_EVENT_CLIENT_REREGISTER:
3849 	case IBV_EVENT_GID_CHANGE:
3850 	case IBV_EVENT_SQ_DRAINED:
3851 	default:
3852 		SPDK_NOTICELOG("Async event: %s\n",
3853 			       ibv_event_type_str(event.event_type));
3854 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
3855 		break;
3856 	}
3857 	ibv_ack_async_event(&event);
3858 
3859 	return 0;
3860 }
3861 
3862 static void
3863 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events)
3864 {
3865 	int rc = 0;
3866 	uint32_t i = 0;
3867 
3868 	for (i = 0; i < max_events; i++) {
3869 		rc = nvmf_process_ib_event(device);
3870 		if (rc) {
3871 			break;
3872 		}
3873 	}
3874 
3875 	SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i);
3876 }
3877 
3878 static int
3879 nvmf_rdma_accept(void *ctx)
3880 {
3881 	int	nfds, i = 0;
3882 	struct spdk_nvmf_transport *transport = ctx;
3883 	struct spdk_nvmf_rdma_transport *rtransport;
3884 	struct spdk_nvmf_rdma_device *device, *tmp;
3885 	uint32_t count;
3886 	short revents;
3887 	bool do_retry;
3888 
3889 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3890 	do_retry = nvmf_rdma_retry_listen_port(rtransport);
3891 
3892 	count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
3893 
3894 	if (nfds <= 0) {
3895 		return do_retry ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3896 	}
3897 
3898 	/* The first poll descriptor is RDMA CM event */
3899 	if (rtransport->poll_fds[i++].revents & POLLIN) {
3900 		nvmf_process_cm_events(transport, NVMF_RDMA_MAX_EVENTS_PER_POLL);
3901 		nfds--;
3902 	}
3903 
3904 	if (nfds == 0) {
3905 		return SPDK_POLLER_BUSY;
3906 	}
3907 
3908 	/* Second and subsequent poll descriptors are IB async events */
3909 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
3910 		revents = rtransport->poll_fds[i++].revents;
3911 		if (revents & POLLIN) {
3912 			if (spdk_likely(!device->need_destroy)) {
3913 				nvmf_process_ib_events(device, NVMF_RDMA_MAX_EVENTS_PER_POLL);
3914 				if (spdk_unlikely(device->need_destroy)) {
3915 					nvmf_rdma_handle_device_removal(rtransport, device);
3916 				}
3917 			}
3918 			nfds--;
3919 		} else if (revents & POLLNVAL || revents & POLLHUP) {
3920 			SPDK_ERRLOG("Receive unknown revent %x on device %p\n", (int)revents, device);
3921 			nfds--;
3922 		}
3923 	}
3924 	/* check all flagged fd's have been served */
3925 	assert(nfds == 0);
3926 
3927 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3928 }
3929 
3930 static void
3931 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem,
3932 		     struct spdk_nvmf_ctrlr_data *cdata)
3933 {
3934 	cdata->nvmf_specific.msdbd = NVMF_DEFAULT_MSDBD;
3935 
3936 	/* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled
3937 	since in-capsule data only works with NVME drives that support SGL memory layout */
3938 	if (transport->opts.dif_insert_or_strip) {
3939 		cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16;
3940 	}
3941 
3942 	if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) {
3943 		SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule"
3944 			     " data is greater than 4KiB.\n");
3945 		SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux "
3946 			     "kernel between versions 5.4 and 5.12 data corruption may occur for "
3947 			     "writes that are not a multiple of 4KiB in size.\n");
3948 	}
3949 }
3950 
3951 static void
3952 nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
3953 		   struct spdk_nvme_transport_id *trid,
3954 		   struct spdk_nvmf_discovery_log_page_entry *entry)
3955 {
3956 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
3957 	entry->adrfam = trid->adrfam;
3958 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
3959 
3960 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
3961 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
3962 
3963 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
3964 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
3965 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
3966 }
3967 
3968 static int
3969 nvmf_rdma_poller_create(struct spdk_nvmf_rdma_transport *rtransport,
3970 			struct spdk_nvmf_rdma_poll_group *rgroup, struct spdk_nvmf_rdma_device *device,
3971 			struct spdk_nvmf_rdma_poller **out_poller)
3972 {
3973 	struct spdk_nvmf_rdma_poller		*poller;
3974 	struct spdk_rdma_srq_init_attr		srq_init_attr;
3975 	struct spdk_nvmf_rdma_resource_opts	opts;
3976 	int					num_cqe;
3977 
3978 	poller = calloc(1, sizeof(*poller));
3979 	if (!poller) {
3980 		SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
3981 		return -1;
3982 	}
3983 
3984 	poller->device = device;
3985 	poller->group = rgroup;
3986 	*out_poller = poller;
3987 
3988 	RB_INIT(&poller->qpairs);
3989 	STAILQ_INIT(&poller->qpairs_pending_send);
3990 	STAILQ_INIT(&poller->qpairs_pending_recv);
3991 
3992 	TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
3993 	SPDK_DEBUGLOG(rdma, "Create poller %p on device %p in poll group %p.\n", poller, device, rgroup);
3994 	if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) {
3995 		if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) {
3996 			SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n",
3997 				     rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr);
3998 		}
3999 		poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr);
4000 
4001 		device->num_srq++;
4002 		memset(&srq_init_attr, 0, sizeof(srq_init_attr));
4003 		srq_init_attr.pd = device->pd;
4004 		srq_init_attr.stats = &poller->stat.qp_stats.recv;
4005 		srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth;
4006 		srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
4007 		poller->srq = spdk_rdma_srq_create(&srq_init_attr);
4008 		if (!poller->srq) {
4009 			SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
4010 			return -1;
4011 		}
4012 
4013 		opts.qp = poller->srq;
4014 		opts.map = device->map;
4015 		opts.qpair = NULL;
4016 		opts.shared = true;
4017 		opts.max_queue_depth = poller->max_srq_depth;
4018 		opts.in_capsule_data_size = rtransport->transport.opts.in_capsule_data_size;
4019 
4020 		poller->resources = nvmf_rdma_resources_create(&opts);
4021 		if (!poller->resources) {
4022 			SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
4023 			return -1;
4024 		}
4025 	}
4026 
4027 	/*
4028 	 * When using an srq, we can limit the completion queue at startup.
4029 	 * The following formula represents the calculation:
4030 	 * num_cqe = num_recv + num_data_wr + num_send_wr.
4031 	 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
4032 	 */
4033 	if (poller->srq) {
4034 		num_cqe = poller->max_srq_depth * 3;
4035 	} else {
4036 		num_cqe = rtransport->rdma_opts.num_cqe;
4037 	}
4038 
4039 	poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
4040 	if (!poller->cq) {
4041 		SPDK_ERRLOG("Unable to create completion queue\n");
4042 		return -1;
4043 	}
4044 	poller->num_cqe = num_cqe;
4045 	return 0;
4046 }
4047 
4048 static void
4049 _nvmf_rdma_register_poller_in_group(void *c)
4050 {
4051 	struct spdk_nvmf_rdma_poller	*poller;
4052 	struct poller_manage_ctx	*ctx = c;
4053 	struct spdk_nvmf_rdma_device	*device;
4054 	int				rc;
4055 
4056 	rc = nvmf_rdma_poller_create(ctx->rtransport, ctx->rgroup, ctx->device, &poller);
4057 	if (rc < 0 && poller) {
4058 		nvmf_rdma_poller_destroy(poller);
4059 	}
4060 
4061 	device = ctx->device;
4062 	if (nvmf_rdma_all_pollers_management_done(ctx)) {
4063 		device->is_ready = true;
4064 	}
4065 }
4066 
4067 static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
4068 
4069 static struct spdk_nvmf_transport_poll_group *
4070 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport,
4071 			    struct spdk_nvmf_poll_group *group)
4072 {
4073 	struct spdk_nvmf_rdma_transport		*rtransport;
4074 	struct spdk_nvmf_rdma_poll_group	*rgroup;
4075 	struct spdk_nvmf_rdma_poller		*poller;
4076 	struct spdk_nvmf_rdma_device		*device;
4077 	int					rc;
4078 
4079 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
4080 
4081 	rgroup = calloc(1, sizeof(*rgroup));
4082 	if (!rgroup) {
4083 		return NULL;
4084 	}
4085 
4086 	TAILQ_INIT(&rgroup->pollers);
4087 
4088 	TAILQ_FOREACH(device, &rtransport->devices, link) {
4089 		rc = nvmf_rdma_poller_create(rtransport, rgroup, device, &poller);
4090 		if (rc < 0) {
4091 			nvmf_rdma_poll_group_destroy(&rgroup->group);
4092 			return NULL;
4093 		}
4094 	}
4095 
4096 	TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link);
4097 	if (rtransport->conn_sched.next_admin_pg == NULL) {
4098 		rtransport->conn_sched.next_admin_pg = rgroup;
4099 		rtransport->conn_sched.next_io_pg = rgroup;
4100 	}
4101 
4102 	return &rgroup->group;
4103 }
4104 
4105 static uint32_t
4106 nvmf_poll_group_get_io_qpair_count(struct spdk_nvmf_poll_group *pg)
4107 {
4108 	uint32_t count;
4109 
4110 	/* Just assume that unassociated qpairs will eventually be io
4111 	 * qpairs.  This is close enough for the use cases for this
4112 	 * function.
4113 	 */
4114 	pthread_mutex_lock(&pg->mutex);
4115 	count = pg->stat.current_io_qpairs + pg->current_unassociated_qpairs;
4116 	pthread_mutex_unlock(&pg->mutex);
4117 
4118 	return count;
4119 }
4120 
4121 static struct spdk_nvmf_transport_poll_group *
4122 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
4123 {
4124 	struct spdk_nvmf_rdma_transport *rtransport;
4125 	struct spdk_nvmf_rdma_poll_group **pg;
4126 	struct spdk_nvmf_transport_poll_group *result;
4127 	uint32_t count;
4128 
4129 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
4130 
4131 	if (TAILQ_EMPTY(&rtransport->poll_groups)) {
4132 		return NULL;
4133 	}
4134 
4135 	if (qpair->qid == 0) {
4136 		pg = &rtransport->conn_sched.next_admin_pg;
4137 	} else {
4138 		struct spdk_nvmf_rdma_poll_group *pg_min, *pg_start, *pg_current;
4139 		uint32_t min_value;
4140 
4141 		pg = &rtransport->conn_sched.next_io_pg;
4142 		pg_min = *pg;
4143 		pg_start = *pg;
4144 		pg_current = *pg;
4145 		min_value = nvmf_poll_group_get_io_qpair_count(pg_current->group.group);
4146 
4147 		while (1) {
4148 			count = nvmf_poll_group_get_io_qpair_count(pg_current->group.group);
4149 
4150 			if (count < min_value) {
4151 				min_value = count;
4152 				pg_min = pg_current;
4153 			}
4154 
4155 			pg_current = TAILQ_NEXT(pg_current, link);
4156 			if (pg_current == NULL) {
4157 				pg_current = TAILQ_FIRST(&rtransport->poll_groups);
4158 			}
4159 
4160 			if (pg_current == pg_start || min_value == 0) {
4161 				break;
4162 			}
4163 		}
4164 		*pg = pg_min;
4165 	}
4166 
4167 	assert(*pg != NULL);
4168 
4169 	result = &(*pg)->group;
4170 
4171 	*pg = TAILQ_NEXT(*pg, link);
4172 	if (*pg == NULL) {
4173 		*pg = TAILQ_FIRST(&rtransport->poll_groups);
4174 	}
4175 
4176 	return result;
4177 }
4178 
4179 static void
4180 nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller)
4181 {
4182 	struct spdk_nvmf_rdma_qpair	*qpair, *tmp_qpair;
4183 	int				rc;
4184 
4185 	TAILQ_REMOVE(&poller->group->pollers, poller, link);
4186 	RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) {
4187 		nvmf_rdma_qpair_destroy(qpair);
4188 	}
4189 
4190 	if (poller->srq) {
4191 		if (poller->resources) {
4192 			nvmf_rdma_resources_destroy(poller->resources);
4193 		}
4194 		spdk_rdma_srq_destroy(poller->srq);
4195 		SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq);
4196 	}
4197 
4198 	if (poller->cq) {
4199 		rc = ibv_destroy_cq(poller->cq);
4200 		if (rc != 0) {
4201 			SPDK_ERRLOG("Destroy cq return %d, error: %s\n", rc, strerror(errno));
4202 		}
4203 	}
4204 
4205 	if (poller->destroy_cb) {
4206 		poller->destroy_cb(poller->destroy_cb_ctx);
4207 		poller->destroy_cb = NULL;
4208 	}
4209 
4210 	free(poller);
4211 }
4212 
4213 static void
4214 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
4215 {
4216 	struct spdk_nvmf_rdma_poll_group	*rgroup, *next_rgroup;
4217 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
4218 	struct spdk_nvmf_rdma_transport		*rtransport;
4219 
4220 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4221 	if (!rgroup) {
4222 		return;
4223 	}
4224 
4225 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
4226 		nvmf_rdma_poller_destroy(poller);
4227 	}
4228 
4229 	if (rgroup->group.transport == NULL) {
4230 		/* Transport can be NULL when nvmf_rdma_poll_group_create()
4231 		 * calls this function directly in a failure path. */
4232 		free(rgroup);
4233 		return;
4234 	}
4235 
4236 	rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport);
4237 
4238 	next_rgroup = TAILQ_NEXT(rgroup, link);
4239 	TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link);
4240 	if (next_rgroup == NULL) {
4241 		next_rgroup = TAILQ_FIRST(&rtransport->poll_groups);
4242 	}
4243 	if (rtransport->conn_sched.next_admin_pg == rgroup) {
4244 		rtransport->conn_sched.next_admin_pg = next_rgroup;
4245 	}
4246 	if (rtransport->conn_sched.next_io_pg == rgroup) {
4247 		rtransport->conn_sched.next_io_pg = next_rgroup;
4248 	}
4249 
4250 	free(rgroup);
4251 }
4252 
4253 static void
4254 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
4255 {
4256 	if (rqpair->cm_id != NULL) {
4257 		nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
4258 	}
4259 }
4260 
4261 static int
4262 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
4263 			 struct spdk_nvmf_qpair *qpair)
4264 {
4265 	struct spdk_nvmf_rdma_poll_group	*rgroup;
4266 	struct spdk_nvmf_rdma_qpair		*rqpair;
4267 	struct spdk_nvmf_rdma_device		*device;
4268 	struct spdk_nvmf_rdma_poller		*poller;
4269 	int					rc;
4270 
4271 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4272 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4273 
4274 	device = rqpair->device;
4275 
4276 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
4277 		if (poller->device == device) {
4278 			break;
4279 		}
4280 	}
4281 
4282 	if (!poller) {
4283 		SPDK_ERRLOG("No poller found for device.\n");
4284 		return -1;
4285 	}
4286 
4287 	if (poller->need_destroy) {
4288 		SPDK_ERRLOG("Poller is destroying.\n");
4289 		return -1;
4290 	}
4291 
4292 	rqpair->poller = poller;
4293 	rqpair->srq = rqpair->poller->srq;
4294 
4295 	rc = nvmf_rdma_qpair_initialize(qpair);
4296 	if (rc < 0) {
4297 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
4298 		rqpair->poller = NULL;
4299 		rqpair->srq = NULL;
4300 		return -1;
4301 	}
4302 
4303 	RB_INSERT(qpairs_tree, &poller->qpairs, rqpair);
4304 
4305 	rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
4306 	if (rc) {
4307 		/* Try to reject, but we probably can't */
4308 		nvmf_rdma_qpair_reject_connection(rqpair);
4309 		return -1;
4310 	}
4311 
4312 	return 0;
4313 }
4314 
4315 static int
4316 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
4317 			    struct spdk_nvmf_qpair *qpair)
4318 {
4319 	struct spdk_nvmf_rdma_qpair		*rqpair;
4320 
4321 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4322 	assert(group->transport->tgt != NULL);
4323 
4324 	rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt);
4325 
4326 	if (!rqpair->destruct_channel) {
4327 		SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair);
4328 		return 0;
4329 	}
4330 
4331 	/* Sanity check that we get io_channel on the correct thread */
4332 	if (qpair->group) {
4333 		assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel));
4334 	}
4335 
4336 	return 0;
4337 }
4338 
4339 static int
4340 nvmf_rdma_request_free(struct spdk_nvmf_request *req)
4341 {
4342 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
4343 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
4344 			struct spdk_nvmf_rdma_transport, transport);
4345 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
4346 					      struct spdk_nvmf_rdma_qpair, qpair);
4347 
4348 	/*
4349 	 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request
4350 	 * needs to be returned to the shared receive queue or the poll group will eventually be
4351 	 * starved of RECV structures.
4352 	 */
4353 	if (rqpair->srq && rdma_req->recv) {
4354 		int rc;
4355 		struct ibv_recv_wr *bad_recv_wr;
4356 
4357 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr);
4358 		rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
4359 		if (rc) {
4360 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
4361 		}
4362 	}
4363 
4364 	_nvmf_rdma_request_free(rdma_req, rtransport);
4365 	return 0;
4366 }
4367 
4368 static int
4369 nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
4370 {
4371 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
4372 			struct spdk_nvmf_rdma_transport, transport);
4373 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
4374 			struct spdk_nvmf_rdma_request, req);
4375 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
4376 			struct spdk_nvmf_rdma_qpair, qpair);
4377 
4378 	if (spdk_unlikely(rqpair->ibv_in_error_state)) {
4379 		/* The connection is dead. Move the request directly to the completed state. */
4380 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4381 	} else {
4382 		/* The connection is alive, so process the request as normal */
4383 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
4384 	}
4385 
4386 	nvmf_rdma_request_process(rtransport, rdma_req);
4387 
4388 	return 0;
4389 }
4390 
4391 static void
4392 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair,
4393 		      spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
4394 {
4395 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4396 
4397 	rqpair->to_close = true;
4398 
4399 	/* This happens only when the qpair is disconnected before
4400 	 * it is added to the poll group. Since there is no poll group,
4401 	 * the RDMA qp has not been initialized yet and the RDMA CM
4402 	 * event has not yet been acknowledged, so we need to reject it.
4403 	 */
4404 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
4405 		nvmf_rdma_qpair_reject_connection(rqpair);
4406 		nvmf_rdma_qpair_destroy(rqpair);
4407 		return;
4408 	}
4409 
4410 	if (rqpair->rdma_qp) {
4411 		spdk_rdma_qp_disconnect(rqpair->rdma_qp);
4412 	}
4413 
4414 	nvmf_rdma_destroy_drained_qpair(rqpair);
4415 
4416 	if (cb_fn) {
4417 		cb_fn(cb_arg);
4418 	}
4419 }
4420 
4421 static struct spdk_nvmf_rdma_qpair *
4422 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
4423 {
4424 	struct spdk_nvmf_rdma_qpair find;
4425 
4426 	find.qp_num = wc->qp_num;
4427 
4428 	return RB_FIND(qpairs_tree, &rpoller->qpairs, &find);
4429 }
4430 
4431 #ifdef DEBUG
4432 static int
4433 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
4434 {
4435 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
4436 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
4437 }
4438 #endif
4439 
4440 static void
4441 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr,
4442 			   int rc)
4443 {
4444 	struct spdk_nvmf_rdma_recv	*rdma_recv;
4445 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
4446 
4447 	SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc);
4448 	while (bad_recv_wr != NULL) {
4449 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id;
4450 		rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4451 
4452 		rdma_recv->qpair->current_recv_depth++;
4453 		bad_recv_wr = bad_recv_wr->next;
4454 		SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc);
4455 		spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair);
4456 	}
4457 }
4458 
4459 static void
4460 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc)
4461 {
4462 	SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc);
4463 	while (bad_recv_wr != NULL) {
4464 		bad_recv_wr = bad_recv_wr->next;
4465 		rqpair->current_recv_depth++;
4466 	}
4467 	spdk_nvmf_qpair_disconnect(&rqpair->qpair);
4468 }
4469 
4470 static void
4471 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
4472 		     struct spdk_nvmf_rdma_poller *rpoller)
4473 {
4474 	struct spdk_nvmf_rdma_qpair	*rqpair;
4475 	struct ibv_recv_wr		*bad_recv_wr;
4476 	int				rc;
4477 
4478 	if (rpoller->srq) {
4479 		rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr);
4480 		if (spdk_unlikely(rc)) {
4481 			_poller_reset_failed_recvs(rpoller, bad_recv_wr, rc);
4482 		}
4483 	} else {
4484 		while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) {
4485 			rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv);
4486 			rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
4487 			if (spdk_unlikely(rc)) {
4488 				_qp_reset_failed_recvs(rqpair, bad_recv_wr, rc);
4489 			}
4490 			STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link);
4491 		}
4492 	}
4493 }
4494 
4495 static void
4496 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport,
4497 		       struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc)
4498 {
4499 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
4500 	struct spdk_nvmf_rdma_request	*prev_rdma_req = NULL, *cur_rdma_req = NULL;
4501 
4502 	SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc);
4503 	for (; bad_wr != NULL; bad_wr = bad_wr->next) {
4504 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id;
4505 		assert(rqpair->current_send_depth > 0);
4506 		rqpair->current_send_depth--;
4507 		switch (bad_rdma_wr->type) {
4508 		case RDMA_WR_TYPE_DATA:
4509 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data_wr);
4510 			if (bad_wr->opcode == IBV_WR_RDMA_READ) {
4511 				assert(rqpair->current_read_depth > 0);
4512 				rqpair->current_read_depth--;
4513 			}
4514 			break;
4515 		case RDMA_WR_TYPE_SEND:
4516 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr);
4517 			break;
4518 		default:
4519 			SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair);
4520 			prev_rdma_req = cur_rdma_req;
4521 			continue;
4522 		}
4523 
4524 		if (prev_rdma_req == cur_rdma_req) {
4525 			/* this request was handled by an earlier wr. i.e. we were performing an nvme read. */
4526 			/* We only have to check against prev_wr since each requests wrs are contiguous in this list. */
4527 			continue;
4528 		}
4529 
4530 		switch (cur_rdma_req->state) {
4531 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
4532 			cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
4533 			STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, cur_rdma_req, state_link);
4534 			cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
4535 			break;
4536 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
4537 		case RDMA_REQUEST_STATE_COMPLETING:
4538 			cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4539 			break;
4540 		default:
4541 			SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n",
4542 				    cur_rdma_req->state, rqpair);
4543 			continue;
4544 		}
4545 
4546 		nvmf_rdma_request_process(rtransport, cur_rdma_req);
4547 		prev_rdma_req = cur_rdma_req;
4548 	}
4549 
4550 	if (spdk_nvmf_qpair_is_active(&rqpair->qpair)) {
4551 		/* Disconnect the connection. */
4552 		spdk_nvmf_qpair_disconnect(&rqpair->qpair);
4553 	}
4554 
4555 }
4556 
4557 static void
4558 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
4559 		     struct spdk_nvmf_rdma_poller *rpoller)
4560 {
4561 	struct spdk_nvmf_rdma_qpair	*rqpair;
4562 	struct ibv_send_wr		*bad_wr = NULL;
4563 	int				rc;
4564 
4565 	while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) {
4566 		rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send);
4567 		rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr);
4568 
4569 		/* bad wr always points to the first wr that failed. */
4570 		if (spdk_unlikely(rc)) {
4571 			_qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc);
4572 		}
4573 		STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link);
4574 	}
4575 }
4576 
4577 static const char *
4578 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type)
4579 {
4580 	switch (wr_type) {
4581 	case RDMA_WR_TYPE_RECV:
4582 		return "RECV";
4583 	case RDMA_WR_TYPE_SEND:
4584 		return "SEND";
4585 	case RDMA_WR_TYPE_DATA:
4586 		return "DATA";
4587 	default:
4588 		SPDK_ERRLOG("Unknown WR type %d\n", wr_type);
4589 		SPDK_UNREACHABLE();
4590 	}
4591 }
4592 
4593 static inline void
4594 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc)
4595 {
4596 	enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type;
4597 
4598 	if (wc->status == IBV_WC_WR_FLUSH_ERR) {
4599 		/* If qpair is in ERR state, we will receive completions for all posted and not completed
4600 		 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
4601 		SPDK_DEBUGLOG(rdma,
4602 			      "Error on CQ %p, (qp state %d, in_error %d) request 0x%lu, type %s, status: (%d): %s\n",
4603 			      rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_in_error_state, wc->wr_id,
4604 			      nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
4605 	} else {
4606 		SPDK_ERRLOG("Error on CQ %p, (qp state %d, in_error %d) request 0x%lu, type %s, status: (%d): %s\n",
4607 			    rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_in_error_state, wc->wr_id,
4608 			    nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
4609 	}
4610 }
4611 
4612 static int
4613 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
4614 		      struct spdk_nvmf_rdma_poller *rpoller)
4615 {
4616 	struct ibv_wc wc[32];
4617 	struct spdk_nvmf_rdma_wr	*rdma_wr;
4618 	struct spdk_nvmf_rdma_request	*rdma_req;
4619 	struct spdk_nvmf_rdma_recv	*rdma_recv;
4620 	struct spdk_nvmf_rdma_qpair	*rqpair, *tmp_rqpair;
4621 	int reaped, i;
4622 	int count = 0;
4623 	int rc;
4624 	bool error = false;
4625 	uint64_t poll_tsc = spdk_get_ticks();
4626 
4627 	if (spdk_unlikely(rpoller->need_destroy)) {
4628 		/* If qpair is closed before poller destroy, nvmf_rdma_destroy_drained_qpair may not
4629 		 * be called because we cannot poll anything from cq. So we call that here to force
4630 		 * destroy the qpair after to_close turning true.
4631 		 */
4632 		RB_FOREACH_SAFE(rqpair, qpairs_tree, &rpoller->qpairs, tmp_rqpair) {
4633 			nvmf_rdma_destroy_drained_qpair(rqpair);
4634 		}
4635 		return 0;
4636 	}
4637 
4638 	/* Poll for completing operations. */
4639 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
4640 	if (spdk_unlikely(reaped < 0)) {
4641 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
4642 			    errno, spdk_strerror(errno));
4643 		return -1;
4644 	} else if (reaped == 0) {
4645 		rpoller->stat.idle_polls++;
4646 	}
4647 
4648 	rpoller->stat.polls++;
4649 	rpoller->stat.completions += reaped;
4650 
4651 	for (i = 0; i < reaped; i++) {
4652 
4653 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
4654 
4655 		switch (rdma_wr->type) {
4656 		case RDMA_WR_TYPE_SEND:
4657 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr);
4658 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4659 
4660 			if (spdk_likely(!wc[i].status)) {
4661 				count++;
4662 				assert(wc[i].opcode == IBV_WC_SEND);
4663 				assert(nvmf_rdma_req_is_completing(rdma_req));
4664 			}
4665 
4666 			rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4667 			/* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */
4668 			assert(rqpair->current_send_depth >= (uint32_t)rdma_req->num_outstanding_data_wr + 1);
4669 			rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1;
4670 			rdma_req->num_outstanding_data_wr = 0;
4671 
4672 			nvmf_rdma_request_process(rtransport, rdma_req);
4673 			break;
4674 		case RDMA_WR_TYPE_RECV:
4675 			/* rdma_recv->qpair will be invalid if using an SRQ.  In that case we have to get the qpair from the wc. */
4676 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4677 			if (rpoller->srq != NULL) {
4678 				rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
4679 				/* It is possible that there are still some completions for destroyed QP
4680 				 * associated with SRQ. We just ignore these late completions and re-post
4681 				 * receive WRs back to SRQ.
4682 				 */
4683 				if (spdk_unlikely(NULL == rdma_recv->qpair)) {
4684 					struct ibv_recv_wr *bad_wr;
4685 
4686 					rdma_recv->wr.next = NULL;
4687 					spdk_rdma_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr);
4688 					rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_wr);
4689 					if (rc) {
4690 						SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc);
4691 					}
4692 					continue;
4693 				}
4694 			}
4695 			rqpair = rdma_recv->qpair;
4696 
4697 			assert(rqpair != NULL);
4698 			if (spdk_likely(!wc[i].status)) {
4699 				assert(wc[i].opcode == IBV_WC_RECV);
4700 				if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
4701 					spdk_nvmf_qpair_disconnect(&rqpair->qpair);
4702 					break;
4703 				}
4704 			}
4705 
4706 			rdma_recv->wr.next = NULL;
4707 			rqpair->current_recv_depth++;
4708 			rdma_recv->receive_tsc = poll_tsc;
4709 			rpoller->stat.requests++;
4710 			STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link);
4711 			rqpair->qpair.queue_depth++;
4712 			break;
4713 		case RDMA_WR_TYPE_DATA:
4714 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data_wr);
4715 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4716 
4717 			assert(rdma_req->num_outstanding_data_wr > 0);
4718 
4719 			rqpair->current_send_depth--;
4720 			rdma_req->num_outstanding_data_wr--;
4721 			if (spdk_likely(!wc[i].status)) {
4722 				assert(wc[i].opcode == IBV_WC_RDMA_READ);
4723 				rqpair->current_read_depth--;
4724 				/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
4725 				if (rdma_req->num_outstanding_data_wr == 0) {
4726 					if (spdk_unlikely(rdma_req->num_remaining_data_wr)) {
4727 						/* Only part of RDMA_READ operations was submitted, process the rest */
4728 						nvmf_rdma_request_reset_transfer_in(rdma_req, rtransport);
4729 						STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
4730 						rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
4731 						nvmf_rdma_request_process(rtransport, rdma_req);
4732 						break;
4733 					}
4734 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
4735 					nvmf_rdma_request_process(rtransport, rdma_req);
4736 				}
4737 			} else {
4738 				/* If the data transfer fails still force the queue into the error state,
4739 				 * if we were performing an RDMA_READ, we need to force the request into a
4740 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
4741 				 * case, we should wait for the SEND to complete. */
4742 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
4743 					rqpair->current_read_depth--;
4744 					if (rdma_req->num_outstanding_data_wr == 0) {
4745 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4746 					}
4747 				}
4748 			}
4749 			break;
4750 		default:
4751 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
4752 			continue;
4753 		}
4754 
4755 		/* Handle error conditions */
4756 		if (spdk_unlikely(wc[i].status)) {
4757 			rqpair->ibv_in_error_state = true;
4758 			nvmf_rdma_log_wc_status(rqpair, &wc[i]);
4759 
4760 			error = true;
4761 
4762 			if (spdk_nvmf_qpair_is_active(&rqpair->qpair)) {
4763 				/* Disconnect the connection. */
4764 				spdk_nvmf_qpair_disconnect(&rqpair->qpair);
4765 			} else {
4766 				nvmf_rdma_destroy_drained_qpair(rqpair);
4767 			}
4768 			continue;
4769 		}
4770 
4771 		nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
4772 
4773 		if (spdk_unlikely(!spdk_nvmf_qpair_is_active(&rqpair->qpair))) {
4774 			nvmf_rdma_destroy_drained_qpair(rqpair);
4775 		}
4776 	}
4777 
4778 	if (spdk_unlikely(error == true)) {
4779 		return -1;
4780 	}
4781 
4782 	if (reaped == 0) {
4783 		/* In some cases we may not receive any CQE but we still may have pending IO requests waiting for
4784 		 * a resource (e.g. a WR from the data_wr_pool).
4785 		 * We need to start processing of such requests if no CQE reaped */
4786 		nvmf_rdma_poller_process_pending_buf_queue(rtransport, rpoller);
4787 	}
4788 
4789 	/* submit outstanding work requests. */
4790 	_poller_submit_recvs(rtransport, rpoller);
4791 	_poller_submit_sends(rtransport, rpoller);
4792 
4793 	return count;
4794 }
4795 
4796 static void
4797 _nvmf_rdma_remove_destroyed_device(void *c)
4798 {
4799 	struct spdk_nvmf_rdma_transport	*rtransport = c;
4800 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
4801 	int				rc;
4802 
4803 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
4804 		if (device->ready_to_destroy) {
4805 			destroy_ib_device(rtransport, device);
4806 		}
4807 	}
4808 
4809 	free_poll_fds(rtransport);
4810 	rc = generate_poll_fds(rtransport);
4811 	/* cannot handle fd allocation error here */
4812 	if (rc != 0) {
4813 		SPDK_ERRLOG("Failed to generate poll fds after remove ib device.\n");
4814 	}
4815 }
4816 
4817 static void
4818 _nvmf_rdma_remove_poller_in_group_cb(void *c)
4819 {
4820 	struct poller_manage_ctx	*ctx = c;
4821 	struct spdk_nvmf_rdma_transport	*rtransport = ctx->rtransport;
4822 	struct spdk_nvmf_rdma_device	*device = ctx->device;
4823 	struct spdk_thread		*thread = ctx->thread;
4824 
4825 	if (nvmf_rdma_all_pollers_management_done(c)) {
4826 		/* destroy device when last poller is destroyed */
4827 		device->ready_to_destroy = true;
4828 		spdk_thread_send_msg(thread, _nvmf_rdma_remove_destroyed_device, rtransport);
4829 	}
4830 }
4831 
4832 static void
4833 _nvmf_rdma_remove_poller_in_group(void *c)
4834 {
4835 	struct poller_manage_ctx		*ctx = c;
4836 
4837 	ctx->rpoller->need_destroy = true;
4838 	ctx->rpoller->destroy_cb_ctx = ctx;
4839 	ctx->rpoller->destroy_cb = _nvmf_rdma_remove_poller_in_group_cb;
4840 
4841 	/* qp will be disconnected after receiving a RDMA_CM_EVENT_DEVICE_REMOVAL event. */
4842 	if (RB_EMPTY(&ctx->rpoller->qpairs)) {
4843 		nvmf_rdma_poller_destroy(ctx->rpoller);
4844 	}
4845 }
4846 
4847 static int
4848 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
4849 {
4850 	struct spdk_nvmf_rdma_transport *rtransport;
4851 	struct spdk_nvmf_rdma_poll_group *rgroup;
4852 	struct spdk_nvmf_rdma_poller	*rpoller, *tmp;
4853 	int				count = 0, rc, rc2 = 0;
4854 
4855 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
4856 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4857 
4858 	TAILQ_FOREACH_SAFE(rpoller, &rgroup->pollers, link, tmp) {
4859 		rc = nvmf_rdma_poller_poll(rtransport, rpoller);
4860 		if (spdk_unlikely(rc < 0)) {
4861 			if (rc2 == 0) {
4862 				rc2 = rc;
4863 			}
4864 			continue;
4865 		}
4866 		count += rc;
4867 	}
4868 
4869 	return rc2 ? rc2 : count;
4870 }
4871 
4872 static int
4873 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
4874 			  struct spdk_nvme_transport_id *trid,
4875 			  bool peer)
4876 {
4877 	struct sockaddr *saddr;
4878 	uint16_t port;
4879 
4880 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA);
4881 
4882 	if (peer) {
4883 		saddr = rdma_get_peer_addr(id);
4884 	} else {
4885 		saddr = rdma_get_local_addr(id);
4886 	}
4887 	switch (saddr->sa_family) {
4888 	case AF_INET: {
4889 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
4890 
4891 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
4892 		inet_ntop(AF_INET, &saddr_in->sin_addr,
4893 			  trid->traddr, sizeof(trid->traddr));
4894 		if (peer) {
4895 			port = ntohs(rdma_get_dst_port(id));
4896 		} else {
4897 			port = ntohs(rdma_get_src_port(id));
4898 		}
4899 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4900 		break;
4901 	}
4902 	case AF_INET6: {
4903 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
4904 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
4905 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
4906 			  trid->traddr, sizeof(trid->traddr));
4907 		if (peer) {
4908 			port = ntohs(rdma_get_dst_port(id));
4909 		} else {
4910 			port = ntohs(rdma_get_src_port(id));
4911 		}
4912 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4913 		break;
4914 	}
4915 	default:
4916 		return -1;
4917 
4918 	}
4919 
4920 	return 0;
4921 }
4922 
4923 static int
4924 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
4925 			      struct spdk_nvme_transport_id *trid)
4926 {
4927 	struct spdk_nvmf_rdma_qpair	*rqpair;
4928 
4929 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4930 
4931 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
4932 }
4933 
4934 static int
4935 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
4936 			       struct spdk_nvme_transport_id *trid)
4937 {
4938 	struct spdk_nvmf_rdma_qpair	*rqpair;
4939 
4940 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4941 
4942 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
4943 }
4944 
4945 static int
4946 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
4947 				struct spdk_nvme_transport_id *trid)
4948 {
4949 	struct spdk_nvmf_rdma_qpair	*rqpair;
4950 
4951 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4952 
4953 	return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
4954 }
4955 
4956 void
4957 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
4958 {
4959 	g_nvmf_hooks = *hooks;
4960 }
4961 
4962 static void
4963 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req,
4964 				   struct spdk_nvmf_rdma_request *rdma_req_to_abort,
4965 				   struct spdk_nvmf_rdma_qpair *rqpair)
4966 {
4967 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
4968 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
4969 
4970 	STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req_to_abort, state_link);
4971 	rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
4972 
4973 	req->rsp->nvme_cpl.cdw0 &= ~1U;	/* Command was successfully aborted. */
4974 }
4975 
4976 static int
4977 _nvmf_rdma_qpair_abort_request(void *ctx)
4978 {
4979 	struct spdk_nvmf_request *req = ctx;
4980 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF(
4981 				req->req_to_abort, struct spdk_nvmf_rdma_request, req);
4982 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
4983 					      struct spdk_nvmf_rdma_qpair, qpair);
4984 	int rc;
4985 
4986 	spdk_poller_unregister(&req->poller);
4987 
4988 	switch (rdma_req_to_abort->state) {
4989 	case RDMA_REQUEST_STATE_EXECUTING:
4990 		rc = nvmf_ctrlr_abort_request(req);
4991 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
4992 			return SPDK_POLLER_BUSY;
4993 		}
4994 		break;
4995 
4996 	case RDMA_REQUEST_STATE_NEED_BUFFER:
4997 		STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue,
4998 			      &rdma_req_to_abort->req, spdk_nvmf_request, buf_link);
4999 
5000 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5001 		break;
5002 
5003 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
5004 		STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort,
5005 			      spdk_nvmf_rdma_request, state_link);
5006 
5007 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5008 		break;
5009 
5010 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
5011 		STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort,
5012 			      spdk_nvmf_rdma_request, state_link);
5013 
5014 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5015 		break;
5016 
5017 	case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING:
5018 		/* Remove req from the list here to re-use common function */
5019 		STAILQ_REMOVE(&rqpair->pending_rdma_send_queue, rdma_req_to_abort,
5020 			      spdk_nvmf_rdma_request, state_link);
5021 
5022 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5023 		break;
5024 
5025 	case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
5026 		if (spdk_get_ticks() < req->timeout_tsc) {
5027 			req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0);
5028 			return SPDK_POLLER_BUSY;
5029 		}
5030 		break;
5031 
5032 	default:
5033 		break;
5034 	}
5035 
5036 	spdk_nvmf_request_complete(req);
5037 	return SPDK_POLLER_BUSY;
5038 }
5039 
5040 static void
5041 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
5042 			      struct spdk_nvmf_request *req)
5043 {
5044 	struct spdk_nvmf_rdma_qpair *rqpair;
5045 	struct spdk_nvmf_rdma_transport *rtransport;
5046 	struct spdk_nvmf_transport *transport;
5047 	uint16_t cid;
5048 	uint32_t i, max_req_count;
5049 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req;
5050 
5051 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
5052 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
5053 	transport = &rtransport->transport;
5054 
5055 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
5056 	max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth;
5057 
5058 	for (i = 0; i < max_req_count; i++) {
5059 		rdma_req = &rqpair->resources->reqs[i];
5060 		/* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair
5061 		 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to
5062 		 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */
5063 		if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid &&
5064 		    rdma_req->req.qpair == qpair) {
5065 			rdma_req_to_abort = rdma_req;
5066 			break;
5067 		}
5068 	}
5069 
5070 	if (rdma_req_to_abort == NULL) {
5071 		spdk_nvmf_request_complete(req);
5072 		return;
5073 	}
5074 
5075 	req->req_to_abort = &rdma_req_to_abort->req;
5076 	req->timeout_tsc = spdk_get_ticks() +
5077 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
5078 	req->poller = NULL;
5079 
5080 	_nvmf_rdma_qpair_abort_request(req);
5081 }
5082 
5083 static void
5084 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group,
5085 			       struct spdk_json_write_ctx *w)
5086 {
5087 	struct spdk_nvmf_rdma_poll_group *rgroup;
5088 	struct spdk_nvmf_rdma_poller *rpoller;
5089 
5090 	assert(w != NULL);
5091 
5092 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
5093 
5094 	spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer);
5095 
5096 	spdk_json_write_named_array_begin(w, "devices");
5097 
5098 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
5099 		spdk_json_write_object_begin(w);
5100 		spdk_json_write_named_string(w, "name",
5101 					     ibv_get_device_name(rpoller->device->context->device));
5102 		spdk_json_write_named_uint64(w, "polls",
5103 					     rpoller->stat.polls);
5104 		spdk_json_write_named_uint64(w, "idle_polls",
5105 					     rpoller->stat.idle_polls);
5106 		spdk_json_write_named_uint64(w, "completions",
5107 					     rpoller->stat.completions);
5108 		spdk_json_write_named_uint64(w, "requests",
5109 					     rpoller->stat.requests);
5110 		spdk_json_write_named_uint64(w, "request_latency",
5111 					     rpoller->stat.request_latency);
5112 		spdk_json_write_named_uint64(w, "pending_free_request",
5113 					     rpoller->stat.pending_free_request);
5114 		spdk_json_write_named_uint64(w, "pending_rdma_read",
5115 					     rpoller->stat.pending_rdma_read);
5116 		spdk_json_write_named_uint64(w, "pending_rdma_write",
5117 					     rpoller->stat.pending_rdma_write);
5118 		spdk_json_write_named_uint64(w, "pending_rdma_send",
5119 					     rpoller->stat.pending_rdma_send);
5120 		spdk_json_write_named_uint64(w, "total_send_wrs",
5121 					     rpoller->stat.qp_stats.send.num_submitted_wrs);
5122 		spdk_json_write_named_uint64(w, "send_doorbell_updates",
5123 					     rpoller->stat.qp_stats.send.doorbell_updates);
5124 		spdk_json_write_named_uint64(w, "total_recv_wrs",
5125 					     rpoller->stat.qp_stats.recv.num_submitted_wrs);
5126 		spdk_json_write_named_uint64(w, "recv_doorbell_updates",
5127 					     rpoller->stat.qp_stats.recv.doorbell_updates);
5128 		spdk_json_write_object_end(w);
5129 	}
5130 
5131 	spdk_json_write_array_end(w);
5132 }
5133 
5134 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
5135 	.name = "RDMA",
5136 	.type = SPDK_NVME_TRANSPORT_RDMA,
5137 	.opts_init = nvmf_rdma_opts_init,
5138 	.create = nvmf_rdma_create,
5139 	.dump_opts = nvmf_rdma_dump_opts,
5140 	.destroy = nvmf_rdma_destroy,
5141 
5142 	.listen = nvmf_rdma_listen,
5143 	.stop_listen = nvmf_rdma_stop_listen,
5144 	.cdata_init = nvmf_rdma_cdata_init,
5145 
5146 	.listener_discover = nvmf_rdma_discover,
5147 
5148 	.poll_group_create = nvmf_rdma_poll_group_create,
5149 	.get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group,
5150 	.poll_group_destroy = nvmf_rdma_poll_group_destroy,
5151 	.poll_group_add = nvmf_rdma_poll_group_add,
5152 	.poll_group_remove = nvmf_rdma_poll_group_remove,
5153 	.poll_group_poll = nvmf_rdma_poll_group_poll,
5154 
5155 	.req_free = nvmf_rdma_request_free,
5156 	.req_complete = nvmf_rdma_request_complete,
5157 
5158 	.qpair_fini = nvmf_rdma_close_qpair,
5159 	.qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid,
5160 	.qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid,
5161 	.qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid,
5162 	.qpair_abort_request = nvmf_rdma_qpair_abort_request,
5163 
5164 	.poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat,
5165 };
5166 
5167 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma);
5168 SPDK_LOG_REGISTER_COMPONENT(rdma)
5169