xref: /spdk/lib/nvmf/rdma.c (revision e05a4871294b304317f41c11011e5ff666ba28c4)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2018 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk/stdinc.h"
35 
36 #include <infiniband/verbs.h>
37 #include <rdma/rdma_cma.h>
38 #include <rdma/rdma_verbs.h>
39 
40 #include "nvmf_internal.h"
41 #include "transport.h"
42 
43 #include "spdk/config.h"
44 #include "spdk/assert.h"
45 #include "spdk/thread.h"
46 #include "spdk/nvmf.h"
47 #include "spdk/nvmf_spec.h"
48 #include "spdk/string.h"
49 #include "spdk/trace.h"
50 #include "spdk/util.h"
51 
52 #include "spdk_internal/log.h"
53 
54 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
55 
56 /*
57  RDMA Connection Resource Defaults
58  */
59 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
60 #define NVMF_DEFAULT_RSP_SGE		1
61 #define NVMF_DEFAULT_RX_SGE		2
62 
63 /* The RDMA completion queue size */
64 #define DEFAULT_NVMF_RDMA_CQ_SIZE	4096
65 #define MAX_WR_PER_QP(queue_depth)	(queue_depth * 3 + 2)
66 
67 /* Timeout for destroying defunct rqpairs */
68 #define NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US	4000000
69 
70 /* The maximum number of buffers per request */
71 #define NVMF_REQ_MAX_BUFFERS	(SPDK_NVMF_MAX_SGL_ENTRIES * 2)
72 
73 static int g_spdk_nvmf_ibv_query_mask =
74 	IBV_QP_STATE |
75 	IBV_QP_PKEY_INDEX |
76 	IBV_QP_PORT |
77 	IBV_QP_ACCESS_FLAGS |
78 	IBV_QP_AV |
79 	IBV_QP_PATH_MTU |
80 	IBV_QP_DEST_QPN |
81 	IBV_QP_RQ_PSN |
82 	IBV_QP_MAX_DEST_RD_ATOMIC |
83 	IBV_QP_MIN_RNR_TIMER |
84 	IBV_QP_SQ_PSN |
85 	IBV_QP_TIMEOUT |
86 	IBV_QP_RETRY_CNT |
87 	IBV_QP_RNR_RETRY |
88 	IBV_QP_MAX_QP_RD_ATOMIC;
89 
90 enum spdk_nvmf_rdma_request_state {
91 	/* The request is not currently in use */
92 	RDMA_REQUEST_STATE_FREE = 0,
93 
94 	/* Initial state when request first received */
95 	RDMA_REQUEST_STATE_NEW,
96 
97 	/* The request is queued until a data buffer is available. */
98 	RDMA_REQUEST_STATE_NEED_BUFFER,
99 
100 	/* The request is waiting on RDMA queue depth availability
101 	 * to transfer data from the host to the controller.
102 	 */
103 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
104 
105 	/* The request is currently transferring data from the host to the controller. */
106 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
107 
108 	/* The request is ready to execute at the block device */
109 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
110 
111 	/* The request is currently executing at the block device */
112 	RDMA_REQUEST_STATE_EXECUTING,
113 
114 	/* The request finished executing at the block device */
115 	RDMA_REQUEST_STATE_EXECUTED,
116 
117 	/* The request is waiting on RDMA queue depth availability
118 	 * to transfer data from the controller to the host.
119 	 */
120 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
121 
122 	/* The request is ready to send a completion */
123 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
124 
125 	/* The request is currently transferring data from the controller to the host. */
126 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
127 
128 	/* The request currently has an outstanding completion without an
129 	 * associated data transfer.
130 	 */
131 	RDMA_REQUEST_STATE_COMPLETING,
132 
133 	/* The request completed and can be marked free. */
134 	RDMA_REQUEST_STATE_COMPLETED,
135 
136 	/* Terminator */
137 	RDMA_REQUEST_NUM_STATES,
138 };
139 
140 #define OBJECT_NVMF_RDMA_IO				0x40
141 
142 #define TRACE_GROUP_NVMF_RDMA				0x4
143 #define TRACE_RDMA_REQUEST_STATE_NEW					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x0)
144 #define TRACE_RDMA_REQUEST_STATE_NEED_BUFFER				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x1)
145 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x2)
146 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x3)
147 #define TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE			SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x4)
148 #define TRACE_RDMA_REQUEST_STATE_EXECUTING				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x5)
149 #define TRACE_RDMA_REQUEST_STATE_EXECUTED				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x6)
150 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING		SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x7)
151 #define TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE			SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x8)
152 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x9)
153 #define TRACE_RDMA_REQUEST_STATE_COMPLETING				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xA)
154 #define TRACE_RDMA_REQUEST_STATE_COMPLETED				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xB)
155 #define TRACE_RDMA_QP_CREATE						SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xC)
156 #define TRACE_RDMA_IBV_ASYNC_EVENT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xD)
157 #define TRACE_RDMA_CM_ASYNC_EVENT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xE)
158 #define TRACE_RDMA_QP_STATE_CHANGE					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xF)
159 #define TRACE_RDMA_QP_DISCONNECT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x10)
160 #define TRACE_RDMA_QP_DESTROY						SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x11)
161 
162 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
163 {
164 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
165 	spdk_trace_register_description("RDMA_REQ_NEW", "",
166 					TRACE_RDMA_REQUEST_STATE_NEW,
167 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 1, "cmid:   ");
168 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", "",
169 					TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
170 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
171 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_C_TO_H", "",
172 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
173 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
174 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H_TO_C", "",
175 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
176 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
177 	spdk_trace_register_description("RDMA_REQ_TX_H_TO_C", "",
178 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
179 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
180 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE", "",
181 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
182 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
183 	spdk_trace_register_description("RDMA_REQ_EXECUTING", "",
184 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
185 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
186 	spdk_trace_register_description("RDMA_REQ_EXECUTED", "",
187 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
188 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
189 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPLETE", "",
190 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
191 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
192 	spdk_trace_register_description("RDMA_REQ_COMPLETING_CONTROLLER_TO_HOST", "",
193 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
194 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
195 	spdk_trace_register_description("RDMA_REQ_COMPLETING_INCAPSULE", "",
196 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
197 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
198 	spdk_trace_register_description("RDMA_REQ_COMPLETED", "",
199 					TRACE_RDMA_REQUEST_STATE_COMPLETED,
200 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
201 
202 	spdk_trace_register_description("RDMA_QP_CREATE", "", TRACE_RDMA_QP_CREATE,
203 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
204 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", "", TRACE_RDMA_IBV_ASYNC_EVENT,
205 					OWNER_NONE, OBJECT_NONE, 0, 0, "type:   ");
206 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", "", TRACE_RDMA_CM_ASYNC_EVENT,
207 					OWNER_NONE, OBJECT_NONE, 0, 0, "type:   ");
208 	spdk_trace_register_description("RDMA_QP_STATE_CHANGE", "", TRACE_RDMA_QP_STATE_CHANGE,
209 					OWNER_NONE, OBJECT_NONE, 0, 1, "state:  ");
210 	spdk_trace_register_description("RDMA_QP_DISCONNECT", "", TRACE_RDMA_QP_DISCONNECT,
211 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
212 	spdk_trace_register_description("RDMA_QP_DESTROY", "", TRACE_RDMA_QP_DESTROY,
213 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
214 }
215 
216 enum spdk_nvmf_rdma_wr_type {
217 	RDMA_WR_TYPE_RECV,
218 	RDMA_WR_TYPE_SEND,
219 	RDMA_WR_TYPE_DATA,
220 };
221 
222 struct spdk_nvmf_rdma_wr {
223 	enum spdk_nvmf_rdma_wr_type	type;
224 };
225 
226 /* This structure holds commands as they are received off the wire.
227  * It must be dynamically paired with a full request object
228  * (spdk_nvmf_rdma_request) to service a request. It is separate
229  * from the request because RDMA does not appear to order
230  * completions, so occasionally we'll get a new incoming
231  * command when there aren't any free request objects.
232  */
233 struct spdk_nvmf_rdma_recv {
234 	struct ibv_recv_wr			wr;
235 	struct ibv_sge				sgl[NVMF_DEFAULT_RX_SGE];
236 
237 	struct spdk_nvmf_rdma_qpair		*qpair;
238 
239 	/* In-capsule data buffer */
240 	uint8_t					*buf;
241 
242 	struct spdk_nvmf_rdma_wr		rdma_wr;
243 
244 	STAILQ_ENTRY(spdk_nvmf_rdma_recv)	link;
245 };
246 
247 struct spdk_nvmf_rdma_request_data {
248 	struct spdk_nvmf_rdma_wr	rdma_wr;
249 	struct ibv_send_wr		wr;
250 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
251 };
252 
253 struct spdk_nvmf_rdma_request {
254 	struct spdk_nvmf_request		req;
255 	bool					data_from_pool;
256 
257 	enum spdk_nvmf_rdma_request_state	state;
258 
259 	struct spdk_nvmf_rdma_recv		*recv;
260 
261 	struct {
262 		struct spdk_nvmf_rdma_wr	rdma_wr;
263 		struct	ibv_send_wr		wr;
264 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
265 	} rsp;
266 
267 	struct spdk_nvmf_rdma_request_data	data;
268 	void					*buffers[NVMF_REQ_MAX_BUFFERS];
269 
270 	uint32_t				num_outstanding_data_wr;
271 
272 	STAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
273 };
274 
275 enum spdk_nvmf_rdma_qpair_disconnect_flags {
276 	RDMA_QP_DISCONNECTING		= 1,
277 	RDMA_QP_RECV_DRAINED		= 1 << 1,
278 	RDMA_QP_SEND_DRAINED		= 1 << 2
279 };
280 
281 struct spdk_nvmf_rdma_resource_opts {
282 	struct spdk_nvmf_rdma_qpair	*qpair;
283 	/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
284 	void				*qp;
285 	struct ibv_pd			*pd;
286 	uint32_t			max_queue_depth;
287 	uint32_t			in_capsule_data_size;
288 	bool				shared;
289 };
290 
291 struct spdk_nvmf_rdma_resources {
292 	/* Array of size "max_queue_depth" containing RDMA requests. */
293 	struct spdk_nvmf_rdma_request		*reqs;
294 
295 	/* Array of size "max_queue_depth" containing RDMA recvs. */
296 	struct spdk_nvmf_rdma_recv		*recvs;
297 
298 	/* Array of size "max_queue_depth" containing 64 byte capsules
299 	 * used for receive.
300 	 */
301 	union nvmf_h2c_msg			*cmds;
302 	struct ibv_mr				*cmds_mr;
303 
304 	/* Array of size "max_queue_depth" containing 16 byte completions
305 	 * to be sent back to the user.
306 	 */
307 	union nvmf_c2h_msg			*cpls;
308 	struct ibv_mr				*cpls_mr;
309 
310 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
311 	 * buffers to be used for in capsule data.
312 	 */
313 	void					*bufs;
314 	struct ibv_mr				*bufs_mr;
315 
316 	/* Receives that are waiting for a request object */
317 	STAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
318 
319 	/* Queue to track free requests */
320 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	free_queue;
321 };
322 
323 struct spdk_nvmf_rdma_qpair {
324 	struct spdk_nvmf_qpair			qpair;
325 
326 	struct spdk_nvmf_rdma_port		*port;
327 	struct spdk_nvmf_rdma_poller		*poller;
328 
329 	struct rdma_cm_id			*cm_id;
330 	struct ibv_srq				*srq;
331 	struct rdma_cm_id			*listen_id;
332 
333 	/* The maximum number of I/O outstanding on this connection at one time */
334 	uint16_t				max_queue_depth;
335 
336 	/* The maximum number of active RDMA READ and ATOMIC operations at one time */
337 	uint16_t				max_read_depth;
338 
339 	/* The maximum number of RDMA SEND operations at one time */
340 	uint32_t				max_send_depth;
341 
342 	/* The current number of outstanding WRs from this qpair's
343 	 * recv queue. Should not exceed device->attr.max_queue_depth.
344 	 */
345 	uint16_t				current_recv_depth;
346 
347 	/* The current number of active RDMA READ operations */
348 	uint16_t				current_read_depth;
349 
350 	/* The current number of posted WRs from this qpair's
351 	 * send queue. Should not exceed max_send_depth.
352 	 */
353 	uint32_t				current_send_depth;
354 
355 	/* The maximum number of SGEs per WR on the send queue */
356 	uint32_t				max_send_sge;
357 
358 	/* The maximum number of SGEs per WR on the recv queue */
359 	uint32_t				max_recv_sge;
360 
361 	struct spdk_nvmf_rdma_resources		*resources;
362 
363 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_read_queue;
364 
365 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_write_queue;
366 
367 	/* Number of requests not in the free state */
368 	uint32_t				qd;
369 
370 	TAILQ_ENTRY(spdk_nvmf_rdma_qpair)	link;
371 
372 	/* IBV queue pair attributes: they are used to manage
373 	 * qp state and recover from errors.
374 	 */
375 	enum ibv_qp_state			ibv_state;
376 
377 	uint32_t				disconnect_flags;
378 
379 	/* Poller registered in case the qpair doesn't properly
380 	 * complete the qpair destruct process and becomes defunct.
381 	 */
382 
383 	struct spdk_poller			*destruct_poller;
384 
385 	/* There are several ways a disconnect can start on a qpair
386 	 * and they are not all mutually exclusive. It is important
387 	 * that we only initialize one of these paths.
388 	 */
389 	bool					disconnect_started;
390 	/* Lets us know that we have received the last_wqe event. */
391 	bool					last_wqe_reached;
392 };
393 
394 struct spdk_nvmf_rdma_poller {
395 	struct spdk_nvmf_rdma_device		*device;
396 	struct spdk_nvmf_rdma_poll_group	*group;
397 
398 	int					num_cqe;
399 	int					required_num_wr;
400 	struct ibv_cq				*cq;
401 
402 	/* The maximum number of I/O outstanding on the shared receive queue at one time */
403 	uint16_t				max_srq_depth;
404 
405 	/* Shared receive queue */
406 	struct ibv_srq				*srq;
407 
408 	struct spdk_nvmf_rdma_resources		*resources;
409 
410 	TAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs;
411 
412 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
413 };
414 
415 struct spdk_nvmf_rdma_poll_group {
416 	struct spdk_nvmf_transport_poll_group	group;
417 
418 	/* Requests that are waiting to obtain a data buffer */
419 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_data_buf_queue;
420 
421 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)	pollers;
422 };
423 
424 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
425 struct spdk_nvmf_rdma_device {
426 	struct ibv_device_attr			attr;
427 	struct ibv_context			*context;
428 
429 	struct spdk_mem_map			*map;
430 	struct ibv_pd				*pd;
431 
432 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
433 };
434 
435 struct spdk_nvmf_rdma_port {
436 	struct spdk_nvme_transport_id		trid;
437 	struct rdma_cm_id			*id;
438 	struct spdk_nvmf_rdma_device		*device;
439 	uint32_t				ref;
440 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
441 };
442 
443 struct spdk_nvmf_rdma_transport {
444 	struct spdk_nvmf_transport	transport;
445 
446 	struct rdma_event_channel	*event_channel;
447 
448 	struct spdk_mempool		*data_wr_pool;
449 
450 	pthread_mutex_t			lock;
451 
452 	/* fields used to poll RDMA/IB events */
453 	nfds_t			npoll_fds;
454 	struct pollfd		*poll_fds;
455 
456 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
457 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
458 };
459 
460 static inline int
461 spdk_nvmf_rdma_check_ibv_state(enum ibv_qp_state state)
462 {
463 	switch (state) {
464 	case IBV_QPS_RESET:
465 	case IBV_QPS_INIT:
466 	case IBV_QPS_RTR:
467 	case IBV_QPS_RTS:
468 	case IBV_QPS_SQD:
469 	case IBV_QPS_SQE:
470 	case IBV_QPS_ERR:
471 		return 0;
472 	default:
473 		return -1;
474 	}
475 }
476 
477 static enum ibv_qp_state
478 spdk_nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) {
479 	enum ibv_qp_state old_state, new_state;
480 	struct ibv_qp_attr qp_attr;
481 	struct ibv_qp_init_attr init_attr;
482 	int rc;
483 
484 	old_state = rqpair->ibv_state;
485 	rc = ibv_query_qp(rqpair->cm_id->qp, &qp_attr,
486 			  g_spdk_nvmf_ibv_query_mask, &init_attr);
487 
488 	if (rc)
489 	{
490 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
491 		return IBV_QPS_ERR + 1;
492 	}
493 
494 	new_state = qp_attr.qp_state;
495 	rqpair->ibv_state = new_state;
496 	qp_attr.ah_attr.port_num = qp_attr.port_num;
497 
498 	rc = spdk_nvmf_rdma_check_ibv_state(new_state);
499 	if (rc)
500 	{
501 		SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state);
502 		/*
503 		 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8
504 		 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR
505 		 */
506 		return IBV_QPS_ERR + 1;
507 	}
508 
509 	if (old_state != new_state)
510 	{
511 		spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0,
512 				  (uintptr_t)rqpair->cm_id, new_state);
513 	}
514 	return new_state;
515 }
516 
517 static const char *str_ibv_qp_state[] = {
518 	"IBV_QPS_RESET",
519 	"IBV_QPS_INIT",
520 	"IBV_QPS_RTR",
521 	"IBV_QPS_RTS",
522 	"IBV_QPS_SQD",
523 	"IBV_QPS_SQE",
524 	"IBV_QPS_ERR",
525 	"IBV_QPS_UNKNOWN"
526 };
527 
528 static int
529 spdk_nvmf_rdma_set_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair,
530 			     enum ibv_qp_state new_state)
531 {
532 	struct ibv_qp_attr qp_attr;
533 	struct ibv_qp_init_attr init_attr;
534 	int rc;
535 	enum ibv_qp_state state;
536 	static int attr_mask_rc[] = {
537 		[IBV_QPS_RESET] = IBV_QP_STATE,
538 		[IBV_QPS_INIT] = (IBV_QP_STATE |
539 				  IBV_QP_PKEY_INDEX |
540 				  IBV_QP_PORT |
541 				  IBV_QP_ACCESS_FLAGS),
542 		[IBV_QPS_RTR] = (IBV_QP_STATE |
543 				 IBV_QP_AV |
544 				 IBV_QP_PATH_MTU |
545 				 IBV_QP_DEST_QPN |
546 				 IBV_QP_RQ_PSN |
547 				 IBV_QP_MAX_DEST_RD_ATOMIC |
548 				 IBV_QP_MIN_RNR_TIMER),
549 		[IBV_QPS_RTS] = (IBV_QP_STATE |
550 				 IBV_QP_SQ_PSN |
551 				 IBV_QP_TIMEOUT |
552 				 IBV_QP_RETRY_CNT |
553 				 IBV_QP_RNR_RETRY |
554 				 IBV_QP_MAX_QP_RD_ATOMIC),
555 		[IBV_QPS_SQD] = IBV_QP_STATE,
556 		[IBV_QPS_SQE] = IBV_QP_STATE,
557 		[IBV_QPS_ERR] = IBV_QP_STATE,
558 	};
559 
560 	rc = spdk_nvmf_rdma_check_ibv_state(new_state);
561 	if (rc) {
562 		SPDK_ERRLOG("QP#%d: bad state requested: %u\n",
563 			    rqpair->qpair.qid, new_state);
564 		return rc;
565 	}
566 
567 	rc = ibv_query_qp(rqpair->cm_id->qp, &qp_attr,
568 			  g_spdk_nvmf_ibv_query_mask, &init_attr);
569 
570 	if (rc) {
571 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
572 		assert(false);
573 	}
574 
575 	qp_attr.cur_qp_state = rqpair->ibv_state;
576 	qp_attr.qp_state = new_state;
577 
578 	rc = ibv_modify_qp(rqpair->cm_id->qp, &qp_attr,
579 			   attr_mask_rc[new_state]);
580 
581 	if (rc) {
582 		SPDK_ERRLOG("QP#%d: failed to set state to: %s, %d (%s)\n",
583 			    rqpair->qpair.qid, str_ibv_qp_state[new_state], errno, strerror(errno));
584 		return rc;
585 	}
586 
587 	state = spdk_nvmf_rdma_update_ibv_state(rqpair);
588 
589 	if (state != new_state) {
590 		SPDK_ERRLOG("QP#%d: expected state: %s, actual state: %s\n",
591 			    rqpair->qpair.qid, str_ibv_qp_state[new_state],
592 			    str_ibv_qp_state[state]);
593 		return -1;
594 	}
595 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "IBV QP#%u changed to: %s\n", rqpair->qpair.qid,
596 		      str_ibv_qp_state[state]);
597 	return 0;
598 }
599 
600 static void
601 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
602 			    struct spdk_nvmf_rdma_transport *rtransport)
603 {
604 	struct spdk_nvmf_rdma_request_data	*current_data_wr = NULL, *next_data_wr = NULL;
605 	struct ibv_send_wr			*send_wr;
606 	int					i;
607 
608 	rdma_req->num_outstanding_data_wr = 0;
609 	current_data_wr = &rdma_req->data;
610 	for (i = 0; i < current_data_wr->wr.num_sge; i++) {
611 		current_data_wr->wr.sg_list[i].addr = 0;
612 		current_data_wr->wr.sg_list[i].length = 0;
613 		current_data_wr->wr.sg_list[i].lkey = 0;
614 	}
615 	current_data_wr->wr.num_sge = 0;
616 
617 	send_wr = current_data_wr->wr.next;
618 	if (send_wr != NULL && send_wr != &rdma_req->rsp.wr) {
619 		next_data_wr = SPDK_CONTAINEROF(send_wr, struct spdk_nvmf_rdma_request_data, wr);
620 	}
621 	while (next_data_wr) {
622 		current_data_wr = next_data_wr;
623 		send_wr = current_data_wr->wr.next;
624 		if (send_wr != NULL && send_wr != &rdma_req->rsp.wr) {
625 			next_data_wr = SPDK_CONTAINEROF(send_wr, struct spdk_nvmf_rdma_request_data, wr);
626 		} else {
627 			next_data_wr = NULL;
628 		}
629 
630 		for (i = 0; i < current_data_wr->wr.num_sge; i++) {
631 			current_data_wr->wr.sg_list[i].addr = 0;
632 			current_data_wr->wr.sg_list[i].length = 0;
633 			current_data_wr->wr.sg_list[i].lkey = 0;
634 		}
635 		current_data_wr->wr.num_sge = 0;
636 		spdk_mempool_put(rtransport->data_wr_pool, current_data_wr);
637 	}
638 }
639 
640 static void
641 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
642 {
643 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->data_from_pool);
644 	if (req->req.cmd) {
645 		SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
646 	}
647 	if (req->recv) {
648 		SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
649 	}
650 }
651 
652 static void
653 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
654 {
655 	int i;
656 
657 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
658 	for (i = 0; i < rqpair->max_queue_depth; i++) {
659 		if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
660 			nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
661 		}
662 	}
663 }
664 
665 static void
666 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
667 {
668 	if (resources->cmds_mr) {
669 		ibv_dereg_mr(resources->cmds_mr);
670 	}
671 
672 	if (resources->cpls_mr) {
673 		ibv_dereg_mr(resources->cpls_mr);
674 	}
675 
676 	if (resources->bufs_mr) {
677 		ibv_dereg_mr(resources->bufs_mr);
678 	}
679 
680 	spdk_dma_free(resources->cmds);
681 	spdk_dma_free(resources->cpls);
682 	spdk_dma_free(resources->bufs);
683 	free(resources->reqs);
684 	free(resources->recvs);
685 	free(resources);
686 }
687 
688 
689 static struct spdk_nvmf_rdma_resources *
690 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
691 {
692 	struct spdk_nvmf_rdma_resources	*resources;
693 	struct spdk_nvmf_rdma_request	*rdma_req;
694 	struct spdk_nvmf_rdma_recv	*rdma_recv;
695 	struct ibv_qp			*qp;
696 	struct ibv_srq			*srq;
697 	uint32_t			i;
698 	int				rc;
699 
700 	resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
701 	if (!resources) {
702 		SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
703 		return NULL;
704 	}
705 
706 	resources->reqs = calloc(opts->max_queue_depth, sizeof(*resources->reqs));
707 	resources->recvs = calloc(opts->max_queue_depth, sizeof(*resources->recvs));
708 	resources->cmds = spdk_dma_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
709 					   0x1000, NULL);
710 	resources->cpls = spdk_dma_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
711 					   0x1000, NULL);
712 
713 	if (opts->in_capsule_data_size > 0) {
714 		resources->bufs = spdk_dma_zmalloc(opts->max_queue_depth *
715 						   opts->in_capsule_data_size,
716 						   0x1000, NULL);
717 	}
718 
719 	if (!resources->reqs || !resources->recvs || !resources->cmds ||
720 	    !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
721 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
722 		goto cleanup;
723 	}
724 
725 	resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds,
726 					opts->max_queue_depth * sizeof(*resources->cmds),
727 					IBV_ACCESS_LOCAL_WRITE);
728 	resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls,
729 					opts->max_queue_depth * sizeof(*resources->cpls),
730 					0);
731 
732 	if (opts->in_capsule_data_size) {
733 		resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs,
734 						opts->max_queue_depth *
735 						opts->in_capsule_data_size,
736 						IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
737 	}
738 
739 	if (!resources->cmds_mr || !resources->cpls_mr ||
740 	    (opts->in_capsule_data_size &&
741 	     !resources->bufs_mr)) {
742 		goto cleanup;
743 	}
744 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Command Array: %p Length: %lx LKey: %x\n",
745 		      resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds),
746 		      resources->cmds_mr->lkey);
747 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Completion Array: %p Length: %lx LKey: %x\n",
748 		      resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls),
749 		      resources->cpls_mr->lkey);
750 	if (resources->bufs && resources->bufs_mr) {
751 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "In Capsule Data Array: %p Length: %x LKey: %x\n",
752 			      resources->bufs, opts->max_queue_depth *
753 			      opts->in_capsule_data_size, resources->bufs_mr->lkey);
754 	}
755 
756 	/* Initialize queues */
757 	STAILQ_INIT(&resources->incoming_queue);
758 	STAILQ_INIT(&resources->free_queue);
759 
760 	for (i = 0; i < opts->max_queue_depth; i++) {
761 		struct ibv_recv_wr *bad_wr = NULL;
762 
763 		rdma_recv = &resources->recvs[i];
764 		rdma_recv->qpair = opts->qpair;
765 
766 		/* Set up memory to receive commands */
767 		if (resources->bufs) {
768 			rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
769 						  opts->in_capsule_data_size));
770 		}
771 
772 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
773 
774 		rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
775 		rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
776 		rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey;
777 		rdma_recv->wr.num_sge = 1;
778 
779 		if (rdma_recv->buf && resources->bufs_mr) {
780 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
781 			rdma_recv->sgl[1].length = opts->in_capsule_data_size;
782 			rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey;
783 			rdma_recv->wr.num_sge++;
784 		}
785 
786 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
787 		rdma_recv->wr.sg_list = rdma_recv->sgl;
788 		if (opts->shared) {
789 			srq = (struct ibv_srq *)opts->qp;
790 			rc = ibv_post_srq_recv(srq, &rdma_recv->wr, &bad_wr);
791 		} else {
792 			qp = (struct ibv_qp *)opts->qp;
793 			rc = ibv_post_recv(qp, &rdma_recv->wr, &bad_wr);
794 		}
795 		if (rc) {
796 			goto cleanup;
797 		}
798 	}
799 
800 	for (i = 0; i < opts->max_queue_depth; i++) {
801 		rdma_req = &resources->reqs[i];
802 
803 		if (opts->qpair != NULL) {
804 			rdma_req->req.qpair = &opts->qpair->qpair;
805 		} else {
806 			rdma_req->req.qpair = NULL;
807 		}
808 		rdma_req->req.cmd = NULL;
809 
810 		/* Set up memory to send responses */
811 		rdma_req->req.rsp = &resources->cpls[i];
812 
813 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
814 		rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
815 		rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey;
816 
817 		rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND;
818 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr;
819 		rdma_req->rsp.wr.next = NULL;
820 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
821 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
822 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
823 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
824 
825 		/* Set up memory for data buffers */
826 		rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA;
827 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
828 		rdma_req->data.wr.next = NULL;
829 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
830 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
831 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
832 
833 		/* Initialize request state to FREE */
834 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
835 		STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
836 	}
837 
838 	return resources;
839 
840 cleanup:
841 	nvmf_rdma_resources_destroy(resources);
842 	return NULL;
843 }
844 
845 static void
846 spdk_nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
847 {
848 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
849 	struct ibv_recv_wr		*bad_recv_wr = NULL;
850 	int				rc;
851 
852 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair->cm_id, 0);
853 
854 	spdk_poller_unregister(&rqpair->destruct_poller);
855 
856 	if (rqpair->qd != 0) {
857 		if (rqpair->srq == NULL) {
858 			nvmf_rdma_dump_qpair_contents(rqpair);
859 		}
860 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
861 	}
862 
863 	if (rqpair->poller) {
864 		TAILQ_REMOVE(&rqpair->poller->qpairs, rqpair, link);
865 
866 		if (rqpair->srq != NULL) {
867 			/* Drop all received but unprocessed commands for this queue and return them to SRQ */
868 			STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
869 				if (rqpair == rdma_recv->qpair) {
870 					STAILQ_REMOVE_HEAD(&rqpair->resources->incoming_queue, link);
871 					rc = ibv_post_srq_recv(rqpair->srq, &rdma_recv->wr, &bad_recv_wr);
872 					if (rc) {
873 						SPDK_ERRLOG("Unable to re-post rx descriptor\n");
874 					}
875 				}
876 			}
877 		}
878 	}
879 
880 	if (rqpair->cm_id) {
881 		rdma_destroy_qp(rqpair->cm_id);
882 		rdma_destroy_id(rqpair->cm_id);
883 
884 		if (rqpair->poller != NULL && rqpair->srq == NULL) {
885 			rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
886 		}
887 	}
888 
889 	if (rqpair->srq == NULL) {
890 		nvmf_rdma_resources_destroy(rqpair->resources);
891 	}
892 
893 	free(rqpair);
894 }
895 
896 static int
897 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
898 {
899 	struct spdk_nvmf_rdma_poller	*rpoller;
900 	int				rc, num_cqe, required_num_wr;
901 
902 	/* Enlarge CQ size dynamically */
903 	rpoller = rqpair->poller;
904 	required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
905 	num_cqe = rpoller->num_cqe;
906 	if (num_cqe < required_num_wr) {
907 		num_cqe = spdk_max(num_cqe * 2, required_num_wr);
908 		num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
909 	}
910 
911 	if (rpoller->num_cqe != num_cqe) {
912 		if (required_num_wr > device->attr.max_cqe) {
913 			SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
914 				    required_num_wr, device->attr.max_cqe);
915 			return -1;
916 		}
917 
918 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
919 		rc = ibv_resize_cq(rpoller->cq, num_cqe);
920 		if (rc) {
921 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
922 			return -1;
923 		}
924 
925 		rpoller->num_cqe = num_cqe;
926 	}
927 
928 	rpoller->required_num_wr = required_num_wr;
929 	return 0;
930 }
931 
932 static int
933 spdk_nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
934 {
935 	struct spdk_nvmf_rdma_qpair		*rqpair;
936 	int					rc;
937 	struct spdk_nvmf_rdma_transport		*rtransport;
938 	struct spdk_nvmf_transport		*transport;
939 	struct spdk_nvmf_rdma_resource_opts	opts;
940 	struct spdk_nvmf_rdma_device		*device;
941 	struct ibv_qp_init_attr			ibv_init_attr;
942 
943 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
944 	device = rqpair->port->device;
945 
946 	memset(&ibv_init_attr, 0, sizeof(struct ibv_qp_init_attr));
947 	ibv_init_attr.qp_context	= rqpair;
948 	ibv_init_attr.qp_type		= IBV_QPT_RC;
949 	ibv_init_attr.send_cq		= rqpair->poller->cq;
950 	ibv_init_attr.recv_cq		= rqpair->poller->cq;
951 
952 	if (rqpair->srq) {
953 		ibv_init_attr.srq		= rqpair->srq;
954 	} else {
955 		ibv_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth +
956 						  1; /* RECV operations + dummy drain WR */
957 	}
958 
959 	ibv_init_attr.cap.max_send_wr	= rqpair->max_queue_depth *
960 					  2 + 1; /* SEND, READ, and WRITE operations + dummy drain WR */
961 	ibv_init_attr.cap.max_send_sge	= spdk_min(device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
962 	ibv_init_attr.cap.max_recv_sge	= spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
963 
964 	if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
965 		SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
966 		goto error;
967 	}
968 
969 	rc = rdma_create_qp(rqpair->cm_id, rqpair->port->device->pd, &ibv_init_attr);
970 	if (rc) {
971 		SPDK_ERRLOG("rdma_create_qp failed: errno %d: %s\n", errno, spdk_strerror(errno));
972 		goto error;
973 	}
974 
975 	rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2 + 1),
976 					  ibv_init_attr.cap.max_send_wr);
977 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, ibv_init_attr.cap.max_send_sge);
978 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, ibv_init_attr.cap.max_recv_sge);
979 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair->cm_id, 0);
980 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "New RDMA Connection: %p\n", qpair);
981 
982 	if (rqpair->poller->srq == NULL) {
983 		rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
984 		transport = &rtransport->transport;
985 
986 		opts.qp = rqpair->cm_id->qp;
987 		opts.pd = rqpair->cm_id->pd;
988 		opts.qpair = rqpair;
989 		opts.shared = false;
990 		opts.max_queue_depth = rqpair->max_queue_depth;
991 		opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
992 
993 		rqpair->resources = nvmf_rdma_resources_create(&opts);
994 
995 		if (!rqpair->resources) {
996 			SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
997 			goto error;
998 		}
999 	} else {
1000 		rqpair->resources = rqpair->poller->resources;
1001 	}
1002 
1003 	rqpair->current_recv_depth = 0;
1004 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1005 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1006 
1007 	return 0;
1008 
1009 error:
1010 	rdma_destroy_id(rqpair->cm_id);
1011 	rqpair->cm_id = NULL;
1012 	spdk_nvmf_rdma_qpair_destroy(rqpair);
1013 	return -1;
1014 }
1015 
1016 static int
1017 request_transfer_in(struct spdk_nvmf_request *req)
1018 {
1019 	int				rc;
1020 	struct spdk_nvmf_rdma_request	*rdma_req;
1021 	struct spdk_nvmf_qpair		*qpair;
1022 	struct spdk_nvmf_rdma_qpair	*rqpair;
1023 	struct ibv_send_wr		*bad_wr = NULL;
1024 
1025 	qpair = req->qpair;
1026 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1027 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1028 
1029 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1030 	assert(rdma_req != NULL);
1031 
1032 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA READ POSTED. Request: %p Connection: %p\n", req, qpair);
1033 
1034 	rc = ibv_post_send(rqpair->cm_id->qp, &rdma_req->data.wr, &bad_wr);
1035 	if (rc) {
1036 		SPDK_ERRLOG("Unable to transfer data from host to target\n");
1037 		return -1;
1038 	}
1039 	rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1040 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1041 	return 0;
1042 }
1043 
1044 static int
1045 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1046 {
1047 	int				rc;
1048 	struct spdk_nvmf_rdma_request	*rdma_req;
1049 	struct spdk_nvmf_qpair		*qpair;
1050 	struct spdk_nvmf_rdma_qpair	*rqpair;
1051 	struct spdk_nvme_cpl		*rsp;
1052 	struct ibv_recv_wr		*bad_recv_wr = NULL;
1053 	struct ibv_send_wr		*send_wr, *bad_send_wr = NULL;
1054 
1055 	*data_posted = 0;
1056 	qpair = req->qpair;
1057 	rsp = &req->rsp->nvme_cpl;
1058 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1059 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1060 
1061 	/* Advance our sq_head pointer */
1062 	if (qpair->sq_head == qpair->sq_head_max) {
1063 		qpair->sq_head = 0;
1064 	} else {
1065 		qpair->sq_head++;
1066 	}
1067 	rsp->sqhd = qpair->sq_head;
1068 
1069 	/* Post the capsule to the recv buffer */
1070 	assert(rdma_req->recv != NULL);
1071 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA RECV POSTED. Recv: %p Connection: %p\n", rdma_req->recv,
1072 		      rqpair);
1073 	if (rqpair->srq == NULL) {
1074 		rc = ibv_post_recv(rqpair->cm_id->qp, &rdma_req->recv->wr, &bad_recv_wr);
1075 	} else {
1076 		rdma_req->recv->qpair = NULL;
1077 		rc = ibv_post_srq_recv(rqpair->srq, &rdma_req->recv->wr, &bad_recv_wr);
1078 	}
1079 
1080 	if (rc) {
1081 		SPDK_ERRLOG("Unable to re-post rx descriptor\n");
1082 		return rc;
1083 	}
1084 	rdma_req->recv = NULL;
1085 	assert(rqpair->current_recv_depth > 0);
1086 	rqpair->current_recv_depth--;
1087 
1088 	/* Build the response which consists of optional
1089 	 * RDMA WRITEs to transfer data, plus an RDMA SEND
1090 	 * containing the response.
1091 	 */
1092 	send_wr = &rdma_req->rsp.wr;
1093 
1094 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
1095 	    req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1096 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA WRITE POSTED. Request: %p Connection: %p\n", req, qpair);
1097 		send_wr = &rdma_req->data.wr;
1098 		*data_posted = 1;
1099 	}
1100 
1101 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA SEND POSTED. Request: %p Connection: %p\n", req, qpair);
1102 
1103 	/* Send the completion */
1104 	rc = ibv_post_send(rqpair->cm_id->qp, send_wr, &bad_send_wr);
1105 	if (rc) {
1106 		SPDK_ERRLOG("Unable to send response capsule\n");
1107 		return rc;
1108 	}
1109 	/* +1 for the rsp wr */
1110 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr + 1;
1111 
1112 	return 0;
1113 }
1114 
1115 static int
1116 spdk_nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1117 {
1118 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
1119 	struct rdma_conn_param				ctrlr_event_data = {};
1120 	int						rc;
1121 
1122 	accept_data.recfmt = 0;
1123 	accept_data.crqsize = rqpair->max_queue_depth;
1124 
1125 	ctrlr_event_data.private_data = &accept_data;
1126 	ctrlr_event_data.private_data_len = sizeof(accept_data);
1127 	if (id->ps == RDMA_PS_TCP) {
1128 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1129 		ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1130 	}
1131 
1132 	rc = rdma_accept(id, &ctrlr_event_data);
1133 	if (rc) {
1134 		SPDK_ERRLOG("Error %d on rdma_accept\n", errno);
1135 	} else {
1136 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Sent back the accept\n");
1137 	}
1138 
1139 	return rc;
1140 }
1141 
1142 static void
1143 spdk_nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1144 {
1145 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
1146 
1147 	rej_data.recfmt = 0;
1148 	rej_data.sts = error;
1149 
1150 	rdma_reject(id, &rej_data, sizeof(rej_data));
1151 }
1152 
1153 static int
1154 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event,
1155 		  new_qpair_fn cb_fn)
1156 {
1157 	struct spdk_nvmf_rdma_transport *rtransport;
1158 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
1159 	struct spdk_nvmf_rdma_port	*port;
1160 	struct rdma_conn_param		*rdma_param = NULL;
1161 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1162 	uint16_t			max_queue_depth;
1163 	uint16_t			max_read_depth;
1164 
1165 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1166 
1167 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1168 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1169 
1170 	rdma_param = &event->param.conn;
1171 	if (rdma_param->private_data == NULL ||
1172 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1173 		SPDK_ERRLOG("connect request: no private data provided\n");
1174 		spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1175 		return -1;
1176 	}
1177 
1178 	private_data = rdma_param->private_data;
1179 	if (private_data->recfmt != 0) {
1180 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1181 		spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1182 		return -1;
1183 	}
1184 
1185 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Connect Recv on fabric intf name %s, dev_name %s\n",
1186 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1187 
1188 	port = event->listen_id->context;
1189 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1190 		      event->listen_id, event->listen_id->verbs, port);
1191 
1192 	/* Figure out the supported queue depth. This is a multi-step process
1193 	 * that takes into account hardware maximums, host provided values,
1194 	 * and our target's internal memory limits */
1195 
1196 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Calculating Queue Depth\n");
1197 
1198 	/* Start with the maximum queue depth allowed by the target */
1199 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1200 	max_read_depth = rtransport->transport.opts.max_queue_depth;
1201 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Target Max Queue Depth: %d\n",
1202 		      rtransport->transport.opts.max_queue_depth);
1203 
1204 	/* Next check the local NIC's hardware limitations */
1205 	SPDK_DEBUGLOG(SPDK_LOG_RDMA,
1206 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1207 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1208 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1209 	max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1210 
1211 	/* Next check the remote NIC's hardware limitations */
1212 	SPDK_DEBUGLOG(SPDK_LOG_RDMA,
1213 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1214 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1215 	if (rdma_param->initiator_depth > 0) {
1216 		max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1217 	}
1218 
1219 	/* Finally check for the host software requested values, which are
1220 	 * optional. */
1221 	if (rdma_param->private_data != NULL &&
1222 	    rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1223 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1224 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Send Queue Size: %d\n", private_data->hsqsize);
1225 		max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1226 		max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1227 	}
1228 
1229 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1230 		      max_queue_depth, max_read_depth);
1231 
1232 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1233 	if (rqpair == NULL) {
1234 		SPDK_ERRLOG("Could not allocate new connection.\n");
1235 		spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1236 		return -1;
1237 	}
1238 
1239 	rqpair->port = port;
1240 	rqpair->max_queue_depth = max_queue_depth;
1241 	rqpair->max_read_depth = max_read_depth;
1242 	rqpair->cm_id = event->id;
1243 	rqpair->listen_id = event->listen_id;
1244 	rqpair->qpair.transport = transport;
1245 
1246 	event->id->context = &rqpair->qpair;
1247 
1248 	cb_fn(&rqpair->qpair);
1249 
1250 	return 0;
1251 }
1252 
1253 static int
1254 spdk_nvmf_rdma_mem_notify(void *cb_ctx, struct spdk_mem_map *map,
1255 			  enum spdk_mem_map_notify_action action,
1256 			  void *vaddr, size_t size)
1257 {
1258 	struct ibv_pd *pd = cb_ctx;
1259 	struct ibv_mr *mr;
1260 
1261 	switch (action) {
1262 	case SPDK_MEM_MAP_NOTIFY_REGISTER:
1263 		if (!g_nvmf_hooks.get_rkey) {
1264 			mr = ibv_reg_mr(pd, vaddr, size,
1265 					IBV_ACCESS_LOCAL_WRITE |
1266 					IBV_ACCESS_REMOTE_READ |
1267 					IBV_ACCESS_REMOTE_WRITE);
1268 			if (mr == NULL) {
1269 				SPDK_ERRLOG("ibv_reg_mr() failed\n");
1270 				return -1;
1271 			} else {
1272 				spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr);
1273 			}
1274 		} else {
1275 			spdk_mem_map_set_translation(map, (uint64_t)vaddr, size,
1276 						     g_nvmf_hooks.get_rkey(pd, vaddr, size));
1277 		}
1278 		break;
1279 	case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
1280 		if (!g_nvmf_hooks.get_rkey) {
1281 			mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL);
1282 			spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size);
1283 			if (mr) {
1284 				ibv_dereg_mr(mr);
1285 			}
1286 		}
1287 		break;
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 static int
1294 spdk_nvmf_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2)
1295 {
1296 	/* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */
1297 	return addr_1 == addr_2;
1298 }
1299 
1300 static void
1301 spdk_nvmf_rdma_request_free_buffers(struct spdk_nvmf_rdma_request *rdma_req,
1302 				    struct spdk_nvmf_transport_poll_group *group, struct spdk_nvmf_transport *transport,
1303 				    uint32_t num_buffers)
1304 {
1305 	uint32_t i;
1306 
1307 	for (i = 0; i < num_buffers; i++) {
1308 		if (group->buf_cache_count < group->buf_cache_size) {
1309 			STAILQ_INSERT_HEAD(&group->buf_cache,
1310 					   (struct spdk_nvmf_transport_pg_cache_buf *)rdma_req->buffers[i], link);
1311 			group->buf_cache_count++;
1312 		} else {
1313 			spdk_mempool_put(transport->data_buf_pool, rdma_req->buffers[i]);
1314 		}
1315 		rdma_req->req.iov[i].iov_base = NULL;
1316 		rdma_req->buffers[i] = NULL;
1317 		rdma_req->req.iov[i].iov_len = 0;
1318 
1319 	}
1320 	rdma_req->data_from_pool = false;
1321 }
1322 
1323 static int
1324 nvmf_rdma_request_get_buffers(struct spdk_nvmf_rdma_request *rdma_req,
1325 			      struct spdk_nvmf_transport_poll_group *group, struct spdk_nvmf_transport *transport,
1326 			      uint32_t num_buffers)
1327 {
1328 	uint32_t i = 0;
1329 
1330 	while (i < num_buffers) {
1331 		if (!(STAILQ_EMPTY(&group->buf_cache))) {
1332 			group->buf_cache_count--;
1333 			rdma_req->buffers[i] = STAILQ_FIRST(&group->buf_cache);
1334 			STAILQ_REMOVE_HEAD(&group->buf_cache, link);
1335 			assert(rdma_req->buffers[i] != NULL);
1336 			i++;
1337 		} else {
1338 			if (spdk_mempool_get_bulk(transport->data_buf_pool, &rdma_req->buffers[i], num_buffers - i)) {
1339 				goto err_exit;
1340 			}
1341 			i += num_buffers - i;
1342 		}
1343 	}
1344 
1345 	return 0;
1346 
1347 err_exit:
1348 	spdk_nvmf_rdma_request_free_buffers(rdma_req, group, transport, i);
1349 	return -ENOMEM;
1350 }
1351 
1352 typedef enum spdk_nvme_data_transfer spdk_nvme_data_transfer_t;
1353 
1354 static spdk_nvme_data_transfer_t
1355 spdk_nvmf_rdma_request_get_xfer(struct spdk_nvmf_rdma_request *rdma_req)
1356 {
1357 	enum spdk_nvme_data_transfer xfer;
1358 	struct spdk_nvme_cmd *cmd = &rdma_req->req.cmd->nvme_cmd;
1359 	struct spdk_nvme_sgl_descriptor *sgl = &cmd->dptr.sgl1;
1360 
1361 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1362 	rdma_req->rsp.wr.opcode = IBV_WR_SEND;
1363 	rdma_req->rsp.wr.imm_data = 0;
1364 #endif
1365 
1366 	/* Figure out data transfer direction */
1367 	if (cmd->opc == SPDK_NVME_OPC_FABRIC) {
1368 		xfer = spdk_nvme_opc_get_data_transfer(rdma_req->req.cmd->nvmf_cmd.fctype);
1369 	} else {
1370 		xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
1371 
1372 		/* Some admin commands are special cases */
1373 		if ((rdma_req->req.qpair->qid == 0) &&
1374 		    ((cmd->opc == SPDK_NVME_OPC_GET_FEATURES) ||
1375 		     (cmd->opc == SPDK_NVME_OPC_SET_FEATURES))) {
1376 			switch (cmd->cdw10 & 0xff) {
1377 			case SPDK_NVME_FEAT_LBA_RANGE_TYPE:
1378 			case SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
1379 			case SPDK_NVME_FEAT_HOST_IDENTIFIER:
1380 				break;
1381 			default:
1382 				xfer = SPDK_NVME_DATA_NONE;
1383 			}
1384 		}
1385 	}
1386 
1387 	if (xfer == SPDK_NVME_DATA_NONE) {
1388 		return xfer;
1389 	}
1390 
1391 	/* Even for commands that may transfer data, they could have specified 0 length.
1392 	 * We want those to show up with xfer SPDK_NVME_DATA_NONE.
1393 	 */
1394 	switch (sgl->generic.type) {
1395 	case SPDK_NVME_SGL_TYPE_DATA_BLOCK:
1396 	case SPDK_NVME_SGL_TYPE_BIT_BUCKET:
1397 	case SPDK_NVME_SGL_TYPE_SEGMENT:
1398 	case SPDK_NVME_SGL_TYPE_LAST_SEGMENT:
1399 	case SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK:
1400 		if (sgl->unkeyed.length == 0) {
1401 			xfer = SPDK_NVME_DATA_NONE;
1402 		}
1403 		break;
1404 	case SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK:
1405 		if (sgl->keyed.length == 0) {
1406 			xfer = SPDK_NVME_DATA_NONE;
1407 		}
1408 		break;
1409 	}
1410 
1411 	return xfer;
1412 }
1413 
1414 static int
1415 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1416 		       struct spdk_nvmf_rdma_request *rdma_req,
1417 		       uint32_t num_sgl_descriptors)
1418 {
1419 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1420 	struct spdk_nvmf_rdma_request_data	*current_data_wr;
1421 	uint32_t				i;
1422 
1423 	if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) {
1424 		return -ENOMEM;
1425 	}
1426 
1427 	current_data_wr = &rdma_req->data;
1428 
1429 	for (i = 0; i < num_sgl_descriptors; i++) {
1430 		if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1431 			current_data_wr->wr.opcode = IBV_WR_RDMA_WRITE;
1432 		} else if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1433 			current_data_wr->wr.opcode = IBV_WR_RDMA_READ;
1434 		} else {
1435 			assert(false);
1436 		}
1437 		work_requests[i]->wr.send_flags = IBV_SEND_SIGNALED;
1438 		work_requests[i]->wr.sg_list = work_requests[i]->sgl;
1439 		work_requests[i]->wr.wr_id = rdma_req->data.wr.wr_id;
1440 		current_data_wr->wr.next = &work_requests[i]->wr;
1441 		current_data_wr = work_requests[i];
1442 	}
1443 
1444 	if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1445 		current_data_wr->wr.opcode = IBV_WR_RDMA_WRITE;
1446 		current_data_wr->wr.next = &rdma_req->rsp.wr;
1447 	} else if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1448 		current_data_wr->wr.opcode = IBV_WR_RDMA_READ;
1449 		current_data_wr->wr.next = NULL;
1450 	}
1451 	return 0;
1452 }
1453 
1454 static int
1455 nvmf_rdma_fill_buffers(struct spdk_nvmf_rdma_transport *rtransport,
1456 		       struct spdk_nvmf_rdma_poll_group *rgroup,
1457 		       struct spdk_nvmf_rdma_device *device,
1458 		       struct spdk_nvmf_rdma_request *rdma_req,
1459 		       struct ibv_send_wr *wr,
1460 		       uint32_t length)
1461 {
1462 	uint64_t	translation_len;
1463 	uint32_t	remaining_length = length;
1464 	uint32_t	iovcnt;
1465 	uint32_t	i = 0;
1466 
1467 
1468 	while (remaining_length) {
1469 		iovcnt = rdma_req->req.iovcnt;
1470 		rdma_req->req.iov[iovcnt].iov_base = (void *)((uintptr_t)(rdma_req->buffers[iovcnt] +
1471 						     NVMF_DATA_BUFFER_MASK) &
1472 						     ~NVMF_DATA_BUFFER_MASK);
1473 		rdma_req->req.iov[iovcnt].iov_len  = spdk_min(remaining_length,
1474 						     rtransport->transport.opts.io_unit_size);
1475 		rdma_req->req.iovcnt++;
1476 		wr->sg_list[i].addr = (uintptr_t)(rdma_req->req.iov[iovcnt].iov_base);
1477 		wr->sg_list[i].length = rdma_req->req.iov[iovcnt].iov_len;
1478 		translation_len = rdma_req->req.iov[iovcnt].iov_len;
1479 
1480 		if (!g_nvmf_hooks.get_rkey) {
1481 			wr->sg_list[i].lkey = ((struct ibv_mr *)spdk_mem_map_translate(device->map,
1482 					       (uint64_t)rdma_req->buffers[iovcnt], &translation_len))->lkey;
1483 		} else {
1484 			wr->sg_list[i].lkey = spdk_mem_map_translate(device->map,
1485 					      (uint64_t)rdma_req->buffers[iovcnt], &translation_len);
1486 		}
1487 
1488 		remaining_length -= rdma_req->req.iov[iovcnt].iov_len;
1489 
1490 		if (translation_len < rdma_req->req.iov[iovcnt].iov_len) {
1491 			SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions\n");
1492 			return -EINVAL;
1493 		}
1494 		i++;
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static int
1501 spdk_nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1502 				 struct spdk_nvmf_rdma_device *device,
1503 				 struct spdk_nvmf_rdma_request *rdma_req)
1504 {
1505 	struct spdk_nvmf_rdma_qpair		*rqpair;
1506 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1507 	uint32_t				num_buffers;
1508 	uint32_t				i = 0;
1509 	int					rc = 0;
1510 
1511 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1512 	rgroup = rqpair->poller->group;
1513 	rdma_req->req.iovcnt = 0;
1514 
1515 	num_buffers = rdma_req->req.length / rtransport->transport.opts.io_unit_size;
1516 	if (rdma_req->req.length % rtransport->transport.opts.io_unit_size) {
1517 		num_buffers++;
1518 	}
1519 
1520 	if (nvmf_rdma_request_get_buffers(rdma_req, &rgroup->group, &rtransport->transport, num_buffers)) {
1521 		return -ENOMEM;
1522 	}
1523 
1524 	rdma_req->req.iovcnt = 0;
1525 
1526 	rc = nvmf_rdma_fill_buffers(rtransport, rgroup, device, rdma_req, &rdma_req->data.wr,
1527 				    rdma_req->req.length);
1528 	if (rc != 0) {
1529 		goto err_exit;
1530 	}
1531 
1532 	assert(rdma_req->req.iovcnt <= rqpair->max_send_sge);
1533 
1534 	rdma_req->data_from_pool = true;
1535 
1536 	return rc;
1537 
1538 err_exit:
1539 	spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport, num_buffers);
1540 	while (i) {
1541 		i--;
1542 		rdma_req->data.wr.sg_list[i].addr = 0;
1543 		rdma_req->data.wr.sg_list[i].length = 0;
1544 		rdma_req->data.wr.sg_list[i].lkey = 0;
1545 	}
1546 	rdma_req->req.iovcnt = 0;
1547 	return rc;
1548 }
1549 
1550 static int
1551 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1552 				      struct spdk_nvmf_rdma_device *device,
1553 				      struct spdk_nvmf_rdma_request *rdma_req)
1554 {
1555 	struct spdk_nvmf_rdma_qpair		*rqpair;
1556 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1557 	struct ibv_send_wr			*current_wr;
1558 	struct spdk_nvmf_request		*req = &rdma_req->req;
1559 	struct spdk_nvme_sgl_descriptor		*inline_segment, *desc;
1560 	uint32_t				num_sgl_descriptors;
1561 	uint32_t				num_buffers = 0;
1562 	uint32_t				i;
1563 	int					rc;
1564 
1565 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1566 	rgroup = rqpair->poller->group;
1567 
1568 	inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1569 	assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1570 	assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1571 
1572 	num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1573 	assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1574 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1575 
1576 	for (i = 0; i < num_sgl_descriptors; i++) {
1577 		num_buffers += desc->keyed.length / rtransport->transport.opts.io_unit_size;
1578 		if (desc->keyed.length % rtransport->transport.opts.io_unit_size) {
1579 			num_buffers++;
1580 		}
1581 		desc++;
1582 	}
1583 	/* If the number of buffers is too large, then we know the I/O is larger than allowed. Fail it. */
1584 	if (num_buffers > NVMF_REQ_MAX_BUFFERS) {
1585 		return -EINVAL;
1586 	}
1587 	if (nvmf_rdma_request_get_buffers(rdma_req, &rgroup->group, &rtransport->transport,
1588 					  num_buffers) != 0) {
1589 		return -ENOMEM;
1590 	}
1591 
1592 	if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) {
1593 		spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport, num_buffers);
1594 		return -ENOMEM;
1595 	}
1596 
1597 	/* The first WR must always be the embedded data WR. This is how we unwind them later. */
1598 	current_wr = &rdma_req->data.wr;
1599 
1600 	req->iovcnt = 0;
1601 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1602 	for (i = 0; i < num_sgl_descriptors; i++) {
1603 		/* The descriptors must be keyed data block descriptors with an address, not an offset. */
1604 		if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1605 				  desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1606 			rc = -EINVAL;
1607 			goto err_exit;
1608 		}
1609 
1610 		current_wr->num_sge = 0;
1611 		req->length += desc->keyed.length;
1612 
1613 		rc = nvmf_rdma_fill_buffers(rtransport, rgroup, device, rdma_req, current_wr,
1614 					    desc->keyed.length);
1615 		if (rc != 0) {
1616 			rc = -ENOMEM;
1617 			goto err_exit;
1618 		}
1619 
1620 		current_wr->wr.rdma.rkey = desc->keyed.key;
1621 		current_wr->wr.rdma.remote_addr = desc->address;
1622 		current_wr = current_wr->next;
1623 		desc++;
1624 	}
1625 
1626 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1627 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1628 		if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1629 			rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1630 			rdma_req->rsp.wr.imm_data = desc->keyed.key;
1631 		}
1632 	}
1633 #endif
1634 
1635 	rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1636 	rdma_req->data_from_pool = true;
1637 
1638 	return 0;
1639 
1640 err_exit:
1641 	spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport, num_buffers);
1642 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1643 	return rc;
1644 }
1645 
1646 static int
1647 spdk_nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1648 				 struct spdk_nvmf_rdma_device *device,
1649 				 struct spdk_nvmf_rdma_request *rdma_req)
1650 {
1651 	struct spdk_nvme_cmd			*cmd;
1652 	struct spdk_nvme_cpl			*rsp;
1653 	struct spdk_nvme_sgl_descriptor		*sgl;
1654 	int					rc;
1655 
1656 	cmd = &rdma_req->req.cmd->nvme_cmd;
1657 	rsp = &rdma_req->req.rsp->nvme_cpl;
1658 	sgl = &cmd->dptr.sgl1;
1659 
1660 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1661 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1662 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1663 		if (sgl->keyed.length > rtransport->transport.opts.max_io_size) {
1664 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1665 				    sgl->keyed.length, rtransport->transport.opts.max_io_size);
1666 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1667 			return -1;
1668 		}
1669 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1670 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1671 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1672 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1673 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1674 			}
1675 		}
1676 #endif
1677 
1678 		/* fill request length and populate iovs */
1679 		rdma_req->req.length = sgl->keyed.length;
1680 
1681 		if (spdk_nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req) < 0) {
1682 			/* No available buffers. Queue this request up. */
1683 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req);
1684 			return 0;
1685 		}
1686 
1687 		/* backward compatible */
1688 		rdma_req->req.data = rdma_req->req.iov[0].iov_base;
1689 
1690 		/* rdma wr specifics */
1691 		rdma_req->data.wr.num_sge = rdma_req->req.iovcnt;
1692 		rdma_req->data.wr.wr.rdma.rkey = sgl->keyed.key;
1693 		rdma_req->data.wr.wr.rdma.remote_addr = sgl->address;
1694 		if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1695 			rdma_req->data.wr.opcode = IBV_WR_RDMA_WRITE;
1696 			rdma_req->data.wr.next = &rdma_req->rsp.wr;
1697 		} else if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1698 			rdma_req->data.wr.opcode = IBV_WR_RDMA_READ;
1699 			rdma_req->data.wr.next = NULL;
1700 		}
1701 
1702 		/* set the number of outstanding data WRs for this request. */
1703 		rdma_req->num_outstanding_data_wr = 1;
1704 
1705 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req,
1706 			      rdma_req->req.iovcnt);
1707 
1708 		return 0;
1709 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1710 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1711 		uint64_t offset = sgl->address;
1712 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1713 
1714 		SPDK_DEBUGLOG(SPDK_LOG_NVMF, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1715 			      offset, sgl->unkeyed.length);
1716 
1717 		if (offset > max_len) {
1718 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1719 				    offset, max_len);
1720 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1721 			return -1;
1722 		}
1723 		max_len -= (uint32_t)offset;
1724 
1725 		if (sgl->unkeyed.length > max_len) {
1726 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1727 				    sgl->unkeyed.length, max_len);
1728 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1729 			return -1;
1730 		}
1731 
1732 		rdma_req->num_outstanding_data_wr = 0;
1733 		rdma_req->req.data = rdma_req->recv->buf + offset;
1734 		rdma_req->data_from_pool = false;
1735 		rdma_req->req.length = sgl->unkeyed.length;
1736 
1737 		rdma_req->req.iov[0].iov_base = rdma_req->req.data;
1738 		rdma_req->req.iov[0].iov_len = rdma_req->req.length;
1739 		rdma_req->req.iovcnt = 1;
1740 
1741 		return 0;
1742 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1743 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1744 
1745 		rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1746 		if (rc == -ENOMEM) {
1747 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req);
1748 			return 0;
1749 		} else if (rc == -EINVAL) {
1750 			SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1751 			return -1;
1752 		}
1753 
1754 		/* backward compatible */
1755 		rdma_req->req.data = rdma_req->req.iov[0].iov_base;
1756 
1757 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req,
1758 			      rdma_req->req.iovcnt);
1759 
1760 		return 0;
1761 	}
1762 
1763 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
1764 		    sgl->generic.type, sgl->generic.subtype);
1765 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1766 	return -1;
1767 }
1768 
1769 static void
1770 nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1771 		       struct spdk_nvmf_rdma_transport	*rtransport)
1772 {
1773 	struct spdk_nvmf_rdma_qpair		*rqpair;
1774 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1775 
1776 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1777 	if (rdma_req->data_from_pool) {
1778 		rgroup = rqpair->poller->group;
1779 
1780 		spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport,
1781 						    rdma_req->req.iovcnt);
1782 	}
1783 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1784 	rdma_req->req.length = 0;
1785 	rdma_req->req.iovcnt = 0;
1786 	rdma_req->req.data = NULL;
1787 	rdma_req->data.wr.next = NULL;
1788 	rqpair->qd--;
1789 
1790 	STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
1791 	rdma_req->state = RDMA_REQUEST_STATE_FREE;
1792 }
1793 
1794 static bool
1795 spdk_nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
1796 			       struct spdk_nvmf_rdma_request *rdma_req)
1797 {
1798 	struct spdk_nvmf_rdma_qpair	*rqpair;
1799 	struct spdk_nvmf_rdma_device	*device;
1800 	struct spdk_nvmf_rdma_poll_group *rgroup;
1801 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
1802 	int				rc;
1803 	struct spdk_nvmf_rdma_recv	*rdma_recv;
1804 	enum spdk_nvmf_rdma_request_state prev_state;
1805 	bool				progress = false;
1806 	int				data_posted;
1807 
1808 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1809 	device = rqpair->port->device;
1810 	rgroup = rqpair->poller->group;
1811 
1812 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
1813 
1814 	/* If the queue pair is in an error state, force the request to the completed state
1815 	 * to release resources. */
1816 	if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
1817 		if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) {
1818 			STAILQ_REMOVE(&rgroup->pending_data_buf_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
1819 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) {
1820 			STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
1821 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) {
1822 			STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
1823 		}
1824 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
1825 	}
1826 
1827 	/* The loop here is to allow for several back-to-back state changes. */
1828 	do {
1829 		prev_state = rdma_req->state;
1830 
1831 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p entering state %d\n", rdma_req, prev_state);
1832 
1833 		switch (rdma_req->state) {
1834 		case RDMA_REQUEST_STATE_FREE:
1835 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
1836 			 * to escape this state. */
1837 			break;
1838 		case RDMA_REQUEST_STATE_NEW:
1839 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
1840 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1841 			rdma_recv = rdma_req->recv;
1842 
1843 			/* The first element of the SGL is the NVMe command */
1844 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
1845 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
1846 
1847 			if (rqpair->ibv_state == IBV_QPS_ERR  || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
1848 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
1849 				break;
1850 			}
1851 
1852 			/* The next state transition depends on the data transfer needs of this request. */
1853 			rdma_req->req.xfer = spdk_nvmf_rdma_request_get_xfer(rdma_req);
1854 
1855 			/* If no data to transfer, ready to execute. */
1856 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
1857 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
1858 				break;
1859 			}
1860 
1861 			rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
1862 			STAILQ_INSERT_TAIL(&rgroup->pending_data_buf_queue, rdma_req, state_link);
1863 			break;
1864 		case RDMA_REQUEST_STATE_NEED_BUFFER:
1865 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
1866 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1867 
1868 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
1869 
1870 			if (rdma_req != STAILQ_FIRST(&rgroup->pending_data_buf_queue)) {
1871 				/* This request needs to wait in line to obtain a buffer */
1872 				break;
1873 			}
1874 
1875 			/* Try to get a data buffer */
1876 			rc = spdk_nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
1877 			if (rc < 0) {
1878 				STAILQ_REMOVE_HEAD(&rgroup->pending_data_buf_queue, state_link);
1879 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
1880 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
1881 				break;
1882 			}
1883 
1884 			if (!rdma_req->req.data) {
1885 				/* No buffers available. */
1886 				break;
1887 			}
1888 
1889 			STAILQ_REMOVE_HEAD(&rgroup->pending_data_buf_queue, state_link);
1890 
1891 			/* If data is transferring from host to controller and the data didn't
1892 			 * arrive using in capsule data, we need to do a transfer from the host.
1893 			 */
1894 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && rdma_req->data_from_pool) {
1895 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
1896 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
1897 				break;
1898 			}
1899 
1900 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
1901 			break;
1902 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
1903 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
1904 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1905 
1906 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
1907 				/* This request needs to wait in line to perform RDMA */
1908 				break;
1909 			}
1910 			if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth
1911 			    || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) {
1912 				/* We can only have so many WRs outstanding. we have to wait until some finish. */
1913 				break;
1914 			}
1915 
1916 			/* We have already verified that this request is the head of the queue. */
1917 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
1918 
1919 			rc = request_transfer_in(&rdma_req->req);
1920 			if (!rc) {
1921 				rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
1922 			} else {
1923 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
1924 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
1925 			}
1926 			break;
1927 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
1928 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
1929 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1930 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
1931 			 * to escape this state. */
1932 			break;
1933 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
1934 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
1935 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1936 			rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
1937 			spdk_nvmf_request_exec(&rdma_req->req);
1938 			break;
1939 		case RDMA_REQUEST_STATE_EXECUTING:
1940 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
1941 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1942 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
1943 			 * to escape this state. */
1944 			break;
1945 		case RDMA_REQUEST_STATE_EXECUTED:
1946 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
1947 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1948 			if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1949 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
1950 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
1951 			} else {
1952 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
1953 			}
1954 			break;
1955 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
1956 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
1957 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1958 
1959 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
1960 				/* This request needs to wait in line to perform RDMA */
1961 				break;
1962 			}
1963 			if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
1964 			    rqpair->max_send_depth) {
1965 				/* We can only have so many WRs outstanding. we have to wait until some finish.
1966 				 * +1 since each request has an additional wr in the resp. */
1967 				break;
1968 			}
1969 
1970 			/* We have already verified that this request is the head of the queue. */
1971 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
1972 
1973 			/* The data transfer will be kicked off from
1974 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
1975 			 */
1976 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
1977 			break;
1978 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
1979 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
1980 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1981 			rc = request_transfer_out(&rdma_req->req, &data_posted);
1982 			assert(rc == 0); /* No good way to handle this currently */
1983 			if (rc) {
1984 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
1985 			} else {
1986 				rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
1987 						  RDMA_REQUEST_STATE_COMPLETING;
1988 			}
1989 			break;
1990 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
1991 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
1992 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1993 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
1994 			 * to escape this state. */
1995 			break;
1996 		case RDMA_REQUEST_STATE_COMPLETING:
1997 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
1998 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1999 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2000 			 * to escape this state. */
2001 			break;
2002 		case RDMA_REQUEST_STATE_COMPLETED:
2003 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2004 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2005 
2006 			nvmf_rdma_request_free(rdma_req, rtransport);
2007 			break;
2008 		case RDMA_REQUEST_NUM_STATES:
2009 		default:
2010 			assert(0);
2011 			break;
2012 		}
2013 
2014 		if (rdma_req->state != prev_state) {
2015 			progress = true;
2016 		}
2017 	} while (rdma_req->state != prev_state);
2018 
2019 	return progress;
2020 }
2021 
2022 /* Public API callbacks begin here */
2023 
2024 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2025 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2026 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2027 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 64
2028 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2029 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2030 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2031 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4096
2032 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32
2033 
2034 static void
2035 spdk_nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2036 {
2037 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2038 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2039 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2040 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2041 	opts->io_unit_size =		SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2042 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2043 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2044 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2045 	opts->max_srq_depth =		SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2046 }
2047 
2048 const struct spdk_mem_map_ops g_nvmf_rdma_map_ops = {
2049 	.notify_cb = spdk_nvmf_rdma_mem_notify,
2050 	.are_contiguous = spdk_nvmf_rdma_check_contiguous_entries
2051 };
2052 
2053 static int spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport);
2054 
2055 static struct spdk_nvmf_transport *
2056 spdk_nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2057 {
2058 	int rc;
2059 	struct spdk_nvmf_rdma_transport *rtransport;
2060 	struct spdk_nvmf_rdma_device	*device, *tmp;
2061 	struct ibv_pd			*pd;
2062 	struct ibv_context		**contexts;
2063 	uint32_t			i;
2064 	int				flag;
2065 	uint32_t			sge_count;
2066 	uint32_t			min_shared_buffers;
2067 	int				max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2068 
2069 	rtransport = calloc(1, sizeof(*rtransport));
2070 	if (!rtransport) {
2071 		return NULL;
2072 	}
2073 
2074 	if (pthread_mutex_init(&rtransport->lock, NULL)) {
2075 		SPDK_ERRLOG("pthread_mutex_init() failed\n");
2076 		free(rtransport);
2077 		return NULL;
2078 	}
2079 
2080 	TAILQ_INIT(&rtransport->devices);
2081 	TAILQ_INIT(&rtransport->ports);
2082 
2083 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2084 
2085 	SPDK_INFOLOG(SPDK_LOG_RDMA, "*** RDMA Transport Init ***\n"
2086 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
2087 		     "  max_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2088 		     "  in_capsule_data_size=%d, max_aq_depth=%d,\n"
2089 		     "  num_shared_buffers=%d, max_srq_depth=%d\n",
2090 		     opts->max_queue_depth,
2091 		     opts->max_io_size,
2092 		     opts->max_qpairs_per_ctrlr,
2093 		     opts->io_unit_size,
2094 		     opts->in_capsule_data_size,
2095 		     opts->max_aq_depth,
2096 		     opts->num_shared_buffers,
2097 		     opts->max_srq_depth);
2098 
2099 	/* I/O unit size cannot be larger than max I/O size */
2100 	if (opts->io_unit_size > opts->max_io_size) {
2101 		opts->io_unit_size = opts->max_io_size;
2102 	}
2103 
2104 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2105 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2106 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
2107 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2108 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2109 		return NULL;
2110 	}
2111 
2112 	min_shared_buffers = spdk_thread_get_count() * opts->buf_cache_size;
2113 	if (min_shared_buffers > opts->num_shared_buffers) {
2114 		SPDK_ERRLOG("There are not enough buffers to satisfy"
2115 			    "per-poll group caches for each thread. (%" PRIu32 ")"
2116 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2117 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2118 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2119 		return NULL;
2120 	}
2121 
2122 	sge_count = opts->max_io_size / opts->io_unit_size;
2123 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
2124 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2125 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2126 		return NULL;
2127 	}
2128 
2129 	rtransport->event_channel = rdma_create_event_channel();
2130 	if (rtransport->event_channel == NULL) {
2131 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2132 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2133 		return NULL;
2134 	}
2135 
2136 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2137 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2138 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2139 			    rtransport->event_channel->fd, spdk_strerror(errno));
2140 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2141 		return NULL;
2142 	}
2143 
2144 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
2145 				   opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES,
2146 				   sizeof(struct spdk_nvmf_rdma_request_data),
2147 				   SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2148 				   SPDK_ENV_SOCKET_ID_ANY);
2149 	if (!rtransport->data_wr_pool) {
2150 		SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2151 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2152 		return NULL;
2153 	}
2154 
2155 	contexts = rdma_get_devices(NULL);
2156 	if (contexts == NULL) {
2157 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2158 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2159 		return NULL;
2160 	}
2161 
2162 	i = 0;
2163 	rc = 0;
2164 	while (contexts[i] != NULL) {
2165 		device = calloc(1, sizeof(*device));
2166 		if (!device) {
2167 			SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2168 			rc = -ENOMEM;
2169 			break;
2170 		}
2171 		device->context = contexts[i];
2172 		rc = ibv_query_device(device->context, &device->attr);
2173 		if (rc < 0) {
2174 			SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2175 			free(device);
2176 			break;
2177 
2178 		}
2179 
2180 		max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2181 
2182 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2183 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2184 			SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2185 			SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2186 		}
2187 
2188 		/**
2189 		 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2190 		 * The Soft-RoCE RXE driver does not currently support send with invalidate,
2191 		 * but incorrectly reports that it does. There are changes making their way
2192 		 * through the kernel now that will enable this feature. When they are merged,
2193 		 * we can conditionally enable this feature.
2194 		 *
2195 		 * TODO: enable this for versions of the kernel rxe driver that support it.
2196 		 */
2197 		if (device->attr.vendor_id == 0) {
2198 			device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2199 		}
2200 #endif
2201 
2202 		/* set up device context async ev fd as NON_BLOCKING */
2203 		flag = fcntl(device->context->async_fd, F_GETFL);
2204 		rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2205 		if (rc < 0) {
2206 			SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2207 			free(device);
2208 			break;
2209 		}
2210 
2211 		TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2212 		i++;
2213 
2214 		pd = NULL;
2215 		if (g_nvmf_hooks.get_ibv_pd) {
2216 			pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2217 		}
2218 
2219 		if (!g_nvmf_hooks.get_ibv_pd) {
2220 			device->pd = ibv_alloc_pd(device->context);
2221 			if (!device->pd) {
2222 				SPDK_ERRLOG("Unable to allocate protection domain.\n");
2223 				spdk_nvmf_rdma_destroy(&rtransport->transport);
2224 				return NULL;
2225 			}
2226 		} else {
2227 			device->pd = pd;
2228 		}
2229 
2230 		assert(device->map == NULL);
2231 
2232 		device->map = spdk_mem_map_alloc(0, &g_nvmf_rdma_map_ops, device->pd);
2233 		if (!device->map) {
2234 			SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2235 			spdk_nvmf_rdma_destroy(&rtransport->transport);
2236 			return NULL;
2237 		}
2238 
2239 		assert(device->map != NULL);
2240 		assert(device->pd != NULL);
2241 	}
2242 	rdma_free_devices(contexts);
2243 
2244 	if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2245 		/* divide and round up. */
2246 		opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2247 
2248 		/* round up to the nearest 4k. */
2249 		opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2250 
2251 		opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2252 		SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2253 			       opts->io_unit_size);
2254 	}
2255 
2256 	if (rc < 0) {
2257 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2258 		return NULL;
2259 	}
2260 
2261 	/* Set up poll descriptor array to monitor events from RDMA and IB
2262 	 * in a single poll syscall
2263 	 */
2264 	rtransport->npoll_fds = i + 1;
2265 	i = 0;
2266 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2267 	if (rtransport->poll_fds == NULL) {
2268 		SPDK_ERRLOG("poll_fds allocation failed\n");
2269 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2270 		return NULL;
2271 	}
2272 
2273 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2274 	rtransport->poll_fds[i++].events = POLLIN;
2275 
2276 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2277 		rtransport->poll_fds[i].fd = device->context->async_fd;
2278 		rtransport->poll_fds[i++].events = POLLIN;
2279 	}
2280 
2281 	return &rtransport->transport;
2282 }
2283 
2284 static int
2285 spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport)
2286 {
2287 	struct spdk_nvmf_rdma_transport	*rtransport;
2288 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
2289 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
2290 
2291 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2292 
2293 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2294 		TAILQ_REMOVE(&rtransport->ports, port, link);
2295 		rdma_destroy_id(port->id);
2296 		free(port);
2297 	}
2298 
2299 	if (rtransport->poll_fds != NULL) {
2300 		free(rtransport->poll_fds);
2301 	}
2302 
2303 	if (rtransport->event_channel != NULL) {
2304 		rdma_destroy_event_channel(rtransport->event_channel);
2305 	}
2306 
2307 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2308 		TAILQ_REMOVE(&rtransport->devices, device, link);
2309 		if (device->map) {
2310 			spdk_mem_map_free(&device->map);
2311 		}
2312 		if (device->pd) {
2313 			if (!g_nvmf_hooks.get_ibv_pd) {
2314 				ibv_dealloc_pd(device->pd);
2315 			}
2316 		}
2317 		free(device);
2318 	}
2319 
2320 	if (rtransport->data_wr_pool != NULL) {
2321 		if (spdk_mempool_count(rtransport->data_wr_pool) !=
2322 		    (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) {
2323 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2324 				    spdk_mempool_count(rtransport->data_wr_pool),
2325 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2326 		}
2327 	}
2328 
2329 	spdk_mempool_free(rtransport->data_wr_pool);
2330 	pthread_mutex_destroy(&rtransport->lock);
2331 	free(rtransport);
2332 
2333 	return 0;
2334 }
2335 
2336 static int
2337 spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2338 			       struct spdk_nvme_transport_id *trid,
2339 			       bool peer);
2340 
2341 static int
2342 spdk_nvmf_rdma_listen(struct spdk_nvmf_transport *transport,
2343 		      const struct spdk_nvme_transport_id *trid)
2344 {
2345 	struct spdk_nvmf_rdma_transport	*rtransport;
2346 	struct spdk_nvmf_rdma_device	*device;
2347 	struct spdk_nvmf_rdma_port	*port_tmp, *port;
2348 	struct addrinfo			*res;
2349 	struct addrinfo			hints;
2350 	int				family;
2351 	int				rc;
2352 
2353 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2354 
2355 	port = calloc(1, sizeof(*port));
2356 	if (!port) {
2357 		return -ENOMEM;
2358 	}
2359 
2360 	/* Selectively copy the trid. Things like NQN don't matter here - that
2361 	 * mapping is enforced elsewhere.
2362 	 */
2363 	port->trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
2364 	port->trid.adrfam = trid->adrfam;
2365 	snprintf(port->trid.traddr, sizeof(port->trid.traddr), "%s", trid->traddr);
2366 	snprintf(port->trid.trsvcid, sizeof(port->trid.trsvcid), "%s", trid->trsvcid);
2367 
2368 	pthread_mutex_lock(&rtransport->lock);
2369 	assert(rtransport->event_channel != NULL);
2370 	TAILQ_FOREACH(port_tmp, &rtransport->ports, link) {
2371 		if (spdk_nvme_transport_id_compare(&port_tmp->trid, &port->trid) == 0) {
2372 			port_tmp->ref++;
2373 			free(port);
2374 			/* Already listening at this address */
2375 			pthread_mutex_unlock(&rtransport->lock);
2376 			return 0;
2377 		}
2378 	}
2379 
2380 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
2381 	if (rc < 0) {
2382 		SPDK_ERRLOG("rdma_create_id() failed\n");
2383 		free(port);
2384 		pthread_mutex_unlock(&rtransport->lock);
2385 		return rc;
2386 	}
2387 
2388 	switch (port->trid.adrfam) {
2389 	case SPDK_NVMF_ADRFAM_IPV4:
2390 		family = AF_INET;
2391 		break;
2392 	case SPDK_NVMF_ADRFAM_IPV6:
2393 		family = AF_INET6;
2394 		break;
2395 	default:
2396 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", port->trid.adrfam);
2397 		free(port);
2398 		pthread_mutex_unlock(&rtransport->lock);
2399 		return -EINVAL;
2400 	}
2401 
2402 	memset(&hints, 0, sizeof(hints));
2403 	hints.ai_family = family;
2404 	hints.ai_flags = AI_NUMERICSERV;
2405 	hints.ai_socktype = SOCK_STREAM;
2406 	hints.ai_protocol = 0;
2407 
2408 	rc = getaddrinfo(port->trid.traddr, port->trid.trsvcid, &hints, &res);
2409 	if (rc) {
2410 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
2411 		free(port);
2412 		pthread_mutex_unlock(&rtransport->lock);
2413 		return -EINVAL;
2414 	}
2415 
2416 	rc = rdma_bind_addr(port->id, res->ai_addr);
2417 	freeaddrinfo(res);
2418 
2419 	if (rc < 0) {
2420 		SPDK_ERRLOG("rdma_bind_addr() failed\n");
2421 		rdma_destroy_id(port->id);
2422 		free(port);
2423 		pthread_mutex_unlock(&rtransport->lock);
2424 		return rc;
2425 	}
2426 
2427 	if (!port->id->verbs) {
2428 		SPDK_ERRLOG("ibv_context is null\n");
2429 		rdma_destroy_id(port->id);
2430 		free(port);
2431 		pthread_mutex_unlock(&rtransport->lock);
2432 		return -1;
2433 	}
2434 
2435 	rc = rdma_listen(port->id, 10); /* 10 = backlog */
2436 	if (rc < 0) {
2437 		SPDK_ERRLOG("rdma_listen() failed\n");
2438 		rdma_destroy_id(port->id);
2439 		free(port);
2440 		pthread_mutex_unlock(&rtransport->lock);
2441 		return rc;
2442 	}
2443 
2444 	TAILQ_FOREACH(device, &rtransport->devices, link) {
2445 		if (device->context == port->id->verbs) {
2446 			port->device = device;
2447 			break;
2448 		}
2449 	}
2450 	if (!port->device) {
2451 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
2452 			    port->id->verbs);
2453 		rdma_destroy_id(port->id);
2454 		free(port);
2455 		pthread_mutex_unlock(&rtransport->lock);
2456 		return -EINVAL;
2457 	}
2458 
2459 	SPDK_INFOLOG(SPDK_LOG_RDMA, "*** NVMf Target Listening on %s port %d ***\n",
2460 		     port->trid.traddr, ntohs(rdma_get_src_port(port->id)));
2461 
2462 	port->ref = 1;
2463 
2464 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
2465 	pthread_mutex_unlock(&rtransport->lock);
2466 
2467 	return 0;
2468 }
2469 
2470 static int
2471 spdk_nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
2472 			   const struct spdk_nvme_transport_id *_trid)
2473 {
2474 	struct spdk_nvmf_rdma_transport *rtransport;
2475 	struct spdk_nvmf_rdma_port *port, *tmp;
2476 	struct spdk_nvme_transport_id trid = {};
2477 
2478 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2479 
2480 	/* Selectively copy the trid. Things like NQN don't matter here - that
2481 	 * mapping is enforced elsewhere.
2482 	 */
2483 	trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
2484 	trid.adrfam = _trid->adrfam;
2485 	snprintf(trid.traddr, sizeof(port->trid.traddr), "%s", _trid->traddr);
2486 	snprintf(trid.trsvcid, sizeof(port->trid.trsvcid), "%s", _trid->trsvcid);
2487 
2488 	pthread_mutex_lock(&rtransport->lock);
2489 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
2490 		if (spdk_nvme_transport_id_compare(&port->trid, &trid) == 0) {
2491 			assert(port->ref > 0);
2492 			port->ref--;
2493 			if (port->ref == 0) {
2494 				TAILQ_REMOVE(&rtransport->ports, port, link);
2495 				rdma_destroy_id(port->id);
2496 				free(port);
2497 			}
2498 			break;
2499 		}
2500 	}
2501 
2502 	pthread_mutex_unlock(&rtransport->lock);
2503 	return 0;
2504 }
2505 
2506 static void
2507 spdk_nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
2508 				     struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
2509 {
2510 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
2511 	struct spdk_nvmf_rdma_resources *resources;
2512 
2513 	/* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */
2514 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
2515 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2516 			break;
2517 		}
2518 	}
2519 
2520 	/* Then RDMA writes since reads have stronger restrictions than writes */
2521 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
2522 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2523 			break;
2524 		}
2525 	}
2526 
2527 	/* The second highest priority is I/O waiting on memory buffers. */
2528 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->poller->group->pending_data_buf_queue, state_link,
2529 			    req_tmp) {
2530 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2531 			break;
2532 		}
2533 	}
2534 
2535 	resources = rqpair->resources;
2536 	while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
2537 		rdma_req = STAILQ_FIRST(&resources->free_queue);
2538 		STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
2539 		rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
2540 		STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
2541 
2542 		if (rqpair->srq != NULL) {
2543 			rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
2544 			rdma_req->recv->qpair->qd++;
2545 		} else {
2546 			rqpair->qd++;
2547 		}
2548 
2549 		rdma_req->state = RDMA_REQUEST_STATE_NEW;
2550 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false) {
2551 			break;
2552 		}
2553 	}
2554 }
2555 
2556 static void
2557 _nvmf_rdma_qpair_disconnect(void *ctx)
2558 {
2559 	struct spdk_nvmf_qpair *qpair = ctx;
2560 
2561 	spdk_nvmf_qpair_disconnect(qpair, NULL, NULL);
2562 }
2563 
2564 static void
2565 _nvmf_rdma_try_disconnect(void *ctx)
2566 {
2567 	struct spdk_nvmf_qpair *qpair = ctx;
2568 	struct spdk_nvmf_poll_group *group;
2569 
2570 	/* Read the group out of the qpair. This is normally set and accessed only from
2571 	 * the thread that created the group. Here, we're not on that thread necessarily.
2572 	 * The data member qpair->group begins it's life as NULL and then is assigned to
2573 	 * a pointer and never changes. So fortunately reading this and checking for
2574 	 * non-NULL is thread safe in the x86_64 memory model. */
2575 	group = qpair->group;
2576 
2577 	if (group == NULL) {
2578 		/* The qpair hasn't been assigned to a group yet, so we can't
2579 		 * process a disconnect. Send a message to ourself and try again. */
2580 		spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_try_disconnect, qpair);
2581 		return;
2582 	}
2583 
2584 	spdk_thread_send_msg(group->thread, _nvmf_rdma_qpair_disconnect, qpair);
2585 }
2586 
2587 static inline void
2588 spdk_nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair)
2589 {
2590 	if (__sync_bool_compare_and_swap(&rqpair->disconnect_started, false, true)) {
2591 		_nvmf_rdma_try_disconnect(&rqpair->qpair);
2592 	}
2593 }
2594 
2595 static void nvmf_rdma_destroy_drained_qpair(void *ctx)
2596 {
2597 	struct spdk_nvmf_rdma_qpair *rqpair = ctx;
2598 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
2599 			struct spdk_nvmf_rdma_transport, transport);
2600 
2601 	/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
2602 	if (rqpair->current_send_depth != 0) {
2603 		return;
2604 	}
2605 
2606 	if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
2607 		return;
2608 	}
2609 
2610 	if (rqpair->srq != NULL && rqpair->last_wqe_reached == false) {
2611 		return;
2612 	}
2613 
2614 	spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
2615 	spdk_nvmf_rdma_qpair_destroy(rqpair);
2616 }
2617 
2618 
2619 static int
2620 nvmf_rdma_disconnect(struct rdma_cm_event *evt)
2621 {
2622 	struct spdk_nvmf_qpair		*qpair;
2623 	struct spdk_nvmf_rdma_qpair	*rqpair;
2624 
2625 	if (evt->id == NULL) {
2626 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
2627 		return -1;
2628 	}
2629 
2630 	qpair = evt->id->context;
2631 	if (qpair == NULL) {
2632 		SPDK_ERRLOG("disconnect request: no active connection\n");
2633 		return -1;
2634 	}
2635 
2636 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
2637 
2638 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair->cm_id, 0);
2639 
2640 	spdk_nvmf_rdma_update_ibv_state(rqpair);
2641 
2642 	spdk_nvmf_rdma_start_disconnect(rqpair);
2643 
2644 	return 0;
2645 }
2646 
2647 #ifdef DEBUG
2648 static const char *CM_EVENT_STR[] = {
2649 	"RDMA_CM_EVENT_ADDR_RESOLVED",
2650 	"RDMA_CM_EVENT_ADDR_ERROR",
2651 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
2652 	"RDMA_CM_EVENT_ROUTE_ERROR",
2653 	"RDMA_CM_EVENT_CONNECT_REQUEST",
2654 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
2655 	"RDMA_CM_EVENT_CONNECT_ERROR",
2656 	"RDMA_CM_EVENT_UNREACHABLE",
2657 	"RDMA_CM_EVENT_REJECTED",
2658 	"RDMA_CM_EVENT_ESTABLISHED",
2659 	"RDMA_CM_EVENT_DISCONNECTED",
2660 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
2661 	"RDMA_CM_EVENT_MULTICAST_JOIN",
2662 	"RDMA_CM_EVENT_MULTICAST_ERROR",
2663 	"RDMA_CM_EVENT_ADDR_CHANGE",
2664 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
2665 };
2666 #endif /* DEBUG */
2667 
2668 static void
2669 spdk_nvmf_process_cm_event(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn)
2670 {
2671 	struct spdk_nvmf_rdma_transport *rtransport;
2672 	struct rdma_cm_event		*event;
2673 	int				rc;
2674 
2675 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2676 
2677 	if (rtransport->event_channel == NULL) {
2678 		return;
2679 	}
2680 
2681 	while (1) {
2682 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
2683 		if (rc == 0) {
2684 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
2685 
2686 			spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
2687 
2688 			switch (event->event) {
2689 			case RDMA_CM_EVENT_ADDR_RESOLVED:
2690 			case RDMA_CM_EVENT_ADDR_ERROR:
2691 			case RDMA_CM_EVENT_ROUTE_RESOLVED:
2692 			case RDMA_CM_EVENT_ROUTE_ERROR:
2693 				/* No action required. The target never attempts to resolve routes. */
2694 				break;
2695 			case RDMA_CM_EVENT_CONNECT_REQUEST:
2696 				rc = nvmf_rdma_connect(transport, event, cb_fn);
2697 				if (rc < 0) {
2698 					SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
2699 					break;
2700 				}
2701 				break;
2702 			case RDMA_CM_EVENT_CONNECT_RESPONSE:
2703 				/* The target never initiates a new connection. So this will not occur. */
2704 				break;
2705 			case RDMA_CM_EVENT_CONNECT_ERROR:
2706 				/* Can this happen? The docs say it can, but not sure what causes it. */
2707 				break;
2708 			case RDMA_CM_EVENT_UNREACHABLE:
2709 			case RDMA_CM_EVENT_REJECTED:
2710 				/* These only occur on the client side. */
2711 				break;
2712 			case RDMA_CM_EVENT_ESTABLISHED:
2713 				/* TODO: Should we be waiting for this event anywhere? */
2714 				break;
2715 			case RDMA_CM_EVENT_DISCONNECTED:
2716 			case RDMA_CM_EVENT_DEVICE_REMOVAL:
2717 				rc = nvmf_rdma_disconnect(event);
2718 				if (rc < 0) {
2719 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
2720 					break;
2721 				}
2722 				break;
2723 			case RDMA_CM_EVENT_MULTICAST_JOIN:
2724 			case RDMA_CM_EVENT_MULTICAST_ERROR:
2725 				/* Multicast is not used */
2726 				break;
2727 			case RDMA_CM_EVENT_ADDR_CHANGE:
2728 				/* Not utilizing this event */
2729 				break;
2730 			case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2731 				/* For now, do nothing. The target never re-uses queue pairs. */
2732 				break;
2733 			default:
2734 				SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
2735 				break;
2736 			}
2737 
2738 			rdma_ack_cm_event(event);
2739 		} else {
2740 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
2741 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
2742 			}
2743 			break;
2744 		}
2745 	}
2746 }
2747 
2748 static void
2749 spdk_nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
2750 {
2751 	int				rc;
2752 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
2753 	struct ibv_async_event		event;
2754 	enum ibv_qp_state		state;
2755 
2756 	rc = ibv_get_async_event(device->context, &event);
2757 
2758 	if (rc) {
2759 		SPDK_ERRLOG("Failed to get async_event (%d): %s\n",
2760 			    errno, spdk_strerror(errno));
2761 		return;
2762 	}
2763 
2764 	SPDK_NOTICELOG("Async event: %s\n",
2765 		       ibv_event_type_str(event.event_type));
2766 
2767 	switch (event.event_type) {
2768 	case IBV_EVENT_QP_FATAL:
2769 		rqpair = event.element.qp->qp_context;
2770 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
2771 				  (uintptr_t)rqpair->cm_id, event.event_type);
2772 		spdk_nvmf_rdma_update_ibv_state(rqpair);
2773 		spdk_nvmf_rdma_start_disconnect(rqpair);
2774 		break;
2775 	case IBV_EVENT_QP_LAST_WQE_REACHED:
2776 		/* This event only occurs for shared receive queues. */
2777 		rqpair = event.element.qp->qp_context;
2778 		rqpair->last_wqe_reached = true;
2779 
2780 		/* This must be handled on the polling thread if it exists. Otherwise the timeout will catch it. */
2781 		if (rqpair->qpair.group) {
2782 			spdk_thread_send_msg(rqpair->qpair.group->thread, nvmf_rdma_destroy_drained_qpair, rqpair);
2783 		} else {
2784 			SPDK_ERRLOG("Unable to destroy the qpair %p since it does not have a poll group.\n", rqpair);
2785 		}
2786 
2787 		break;
2788 	case IBV_EVENT_SQ_DRAINED:
2789 		/* This event occurs frequently in both error and non-error states.
2790 		 * Check if the qpair is in an error state before sending a message.
2791 		 * Note that we're not on the correct thread to access the qpair, but
2792 		 * the operations that the below calls make all happen to be thread
2793 		 * safe. */
2794 		rqpair = event.element.qp->qp_context;
2795 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
2796 				  (uintptr_t)rqpair->cm_id, event.event_type);
2797 		state = spdk_nvmf_rdma_update_ibv_state(rqpair);
2798 		if (state == IBV_QPS_ERR) {
2799 			spdk_nvmf_rdma_start_disconnect(rqpair);
2800 		}
2801 		break;
2802 	case IBV_EVENT_QP_REQ_ERR:
2803 	case IBV_EVENT_QP_ACCESS_ERR:
2804 	case IBV_EVENT_COMM_EST:
2805 	case IBV_EVENT_PATH_MIG:
2806 	case IBV_EVENT_PATH_MIG_ERR:
2807 		rqpair = event.element.qp->qp_context;
2808 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
2809 				  (uintptr_t)rqpair->cm_id, event.event_type);
2810 		spdk_nvmf_rdma_update_ibv_state(rqpair);
2811 		break;
2812 	case IBV_EVENT_CQ_ERR:
2813 	case IBV_EVENT_DEVICE_FATAL:
2814 	case IBV_EVENT_PORT_ACTIVE:
2815 	case IBV_EVENT_PORT_ERR:
2816 	case IBV_EVENT_LID_CHANGE:
2817 	case IBV_EVENT_PKEY_CHANGE:
2818 	case IBV_EVENT_SM_CHANGE:
2819 	case IBV_EVENT_SRQ_ERR:
2820 	case IBV_EVENT_SRQ_LIMIT_REACHED:
2821 	case IBV_EVENT_CLIENT_REREGISTER:
2822 	case IBV_EVENT_GID_CHANGE:
2823 	default:
2824 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
2825 		break;
2826 	}
2827 	ibv_ack_async_event(&event);
2828 }
2829 
2830 static void
2831 spdk_nvmf_rdma_accept(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn)
2832 {
2833 	int	nfds, i = 0;
2834 	struct spdk_nvmf_rdma_transport *rtransport;
2835 	struct spdk_nvmf_rdma_device *device, *tmp;
2836 
2837 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2838 	nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
2839 
2840 	if (nfds <= 0) {
2841 		return;
2842 	}
2843 
2844 	/* The first poll descriptor is RDMA CM event */
2845 	if (rtransport->poll_fds[i++].revents & POLLIN) {
2846 		spdk_nvmf_process_cm_event(transport, cb_fn);
2847 		nfds--;
2848 	}
2849 
2850 	if (nfds == 0) {
2851 		return;
2852 	}
2853 
2854 	/* Second and subsequent poll descriptors are IB async events */
2855 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2856 		if (rtransport->poll_fds[i++].revents & POLLIN) {
2857 			spdk_nvmf_process_ib_event(device);
2858 			nfds--;
2859 		}
2860 	}
2861 	/* check all flagged fd's have been served */
2862 	assert(nfds == 0);
2863 }
2864 
2865 static void
2866 spdk_nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
2867 			struct spdk_nvme_transport_id *trid,
2868 			struct spdk_nvmf_discovery_log_page_entry *entry)
2869 {
2870 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
2871 	entry->adrfam = trid->adrfam;
2872 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_SPECIFIED;
2873 
2874 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
2875 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
2876 
2877 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
2878 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
2879 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
2880 }
2881 
2882 static void
2883 spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
2884 
2885 static struct spdk_nvmf_transport_poll_group *
2886 spdk_nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport)
2887 {
2888 	struct spdk_nvmf_rdma_transport		*rtransport;
2889 	struct spdk_nvmf_rdma_poll_group	*rgroup;
2890 	struct spdk_nvmf_rdma_poller		*poller;
2891 	struct spdk_nvmf_rdma_device		*device;
2892 	struct ibv_srq_init_attr		srq_init_attr;
2893 	struct spdk_nvmf_rdma_resource_opts	opts;
2894 	int					num_cqe;
2895 
2896 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2897 
2898 	rgroup = calloc(1, sizeof(*rgroup));
2899 	if (!rgroup) {
2900 		return NULL;
2901 	}
2902 
2903 	TAILQ_INIT(&rgroup->pollers);
2904 	STAILQ_INIT(&rgroup->pending_data_buf_queue);
2905 
2906 	pthread_mutex_lock(&rtransport->lock);
2907 	TAILQ_FOREACH(device, &rtransport->devices, link) {
2908 		poller = calloc(1, sizeof(*poller));
2909 		if (!poller) {
2910 			SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
2911 			spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
2912 			pthread_mutex_unlock(&rtransport->lock);
2913 			return NULL;
2914 		}
2915 
2916 		poller->device = device;
2917 		poller->group = rgroup;
2918 
2919 		TAILQ_INIT(&poller->qpairs);
2920 
2921 		TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
2922 		if (device->attr.max_srq != 0) {
2923 			poller->max_srq_depth = transport->opts.max_srq_depth;
2924 
2925 			memset(&srq_init_attr, 0, sizeof(struct ibv_srq_init_attr));
2926 			srq_init_attr.attr.max_wr = poller->max_srq_depth;
2927 			srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
2928 			poller->srq = ibv_create_srq(device->pd, &srq_init_attr);
2929 			if (!poller->srq) {
2930 				SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
2931 				spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
2932 				pthread_mutex_unlock(&rtransport->lock);
2933 				return NULL;
2934 			}
2935 
2936 			opts.qp = poller->srq;
2937 			opts.pd = device->pd;
2938 			opts.qpair = NULL;
2939 			opts.shared = true;
2940 			opts.max_queue_depth = poller->max_srq_depth;
2941 			opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
2942 
2943 			poller->resources = nvmf_rdma_resources_create(&opts);
2944 			if (!poller->resources) {
2945 				SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
2946 				spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
2947 				pthread_mutex_unlock(&rtransport->lock);
2948 			}
2949 		}
2950 
2951 		/*
2952 		 * When using an srq, we can limit the completion queue at startup.
2953 		 * The following formula represents the calculation:
2954 		 * num_cqe = num_recv + num_data_wr + num_send_wr.
2955 		 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
2956 		 */
2957 		if (poller->srq) {
2958 			num_cqe = poller->max_srq_depth * 3;
2959 		} else {
2960 			num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
2961 		}
2962 
2963 		poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
2964 		if (!poller->cq) {
2965 			SPDK_ERRLOG("Unable to create completion queue\n");
2966 			spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
2967 			pthread_mutex_unlock(&rtransport->lock);
2968 			return NULL;
2969 		}
2970 		poller->num_cqe = num_cqe;
2971 	}
2972 
2973 	pthread_mutex_unlock(&rtransport->lock);
2974 	return &rgroup->group;
2975 }
2976 
2977 static void
2978 spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
2979 {
2980 	struct spdk_nvmf_rdma_poll_group	*rgroup;
2981 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
2982 	struct spdk_nvmf_rdma_qpair		*qpair, *tmp_qpair;
2983 
2984 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
2985 
2986 	if (!rgroup) {
2987 		return;
2988 	}
2989 
2990 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
2991 		TAILQ_REMOVE(&rgroup->pollers, poller, link);
2992 
2993 		TAILQ_FOREACH_SAFE(qpair, &poller->qpairs, link, tmp_qpair) {
2994 			spdk_nvmf_rdma_qpair_destroy(qpair);
2995 		}
2996 
2997 		if (poller->srq) {
2998 			nvmf_rdma_resources_destroy(poller->resources);
2999 			ibv_destroy_srq(poller->srq);
3000 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Destroyed RDMA shared queue %p\n", poller->srq);
3001 		}
3002 
3003 		if (poller->cq) {
3004 			ibv_destroy_cq(poller->cq);
3005 		}
3006 
3007 		free(poller);
3008 	}
3009 
3010 	if (!STAILQ_EMPTY(&rgroup->pending_data_buf_queue)) {
3011 		SPDK_ERRLOG("Pending I/O list wasn't empty on poll group destruction\n");
3012 	}
3013 
3014 	free(rgroup);
3015 }
3016 
3017 static void
3018 spdk_nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
3019 {
3020 	spdk_nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
3021 	spdk_nvmf_rdma_qpair_destroy(rqpair);
3022 }
3023 
3024 static int
3025 spdk_nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3026 			      struct spdk_nvmf_qpair *qpair)
3027 {
3028 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3029 	struct spdk_nvmf_rdma_qpair		*rqpair;
3030 	struct spdk_nvmf_rdma_device		*device;
3031 	struct spdk_nvmf_rdma_poller		*poller;
3032 	int					rc;
3033 
3034 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3035 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3036 
3037 	device = rqpair->port->device;
3038 
3039 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
3040 		if (poller->device == device) {
3041 			break;
3042 		}
3043 	}
3044 
3045 	if (!poller) {
3046 		SPDK_ERRLOG("No poller found for device.\n");
3047 		return -1;
3048 	}
3049 
3050 	TAILQ_INSERT_TAIL(&poller->qpairs, rqpair, link);
3051 	rqpair->poller = poller;
3052 	rqpair->srq = rqpair->poller->srq;
3053 
3054 	rc = spdk_nvmf_rdma_qpair_initialize(qpair);
3055 	if (rc < 0) {
3056 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
3057 		return -1;
3058 	}
3059 
3060 	rc = spdk_nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
3061 	if (rc) {
3062 		/* Try to reject, but we probably can't */
3063 		spdk_nvmf_rdma_qpair_reject_connection(rqpair);
3064 		return -1;
3065 	}
3066 
3067 	spdk_nvmf_rdma_update_ibv_state(rqpair);
3068 
3069 	return 0;
3070 }
3071 
3072 static int
3073 spdk_nvmf_rdma_request_free(struct spdk_nvmf_request *req)
3074 {
3075 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3076 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3077 			struct spdk_nvmf_rdma_transport, transport);
3078 
3079 	nvmf_rdma_request_free(rdma_req, rtransport);
3080 	return 0;
3081 }
3082 
3083 static int
3084 spdk_nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
3085 {
3086 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3087 			struct spdk_nvmf_rdma_transport, transport);
3088 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
3089 			struct spdk_nvmf_rdma_request, req);
3090 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
3091 			struct spdk_nvmf_rdma_qpair, qpair);
3092 
3093 	if (rqpair->ibv_state != IBV_QPS_ERR) {
3094 		/* The connection is alive, so process the request as normal */
3095 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
3096 	} else {
3097 		/* The connection is dead. Move the request directly to the completed state. */
3098 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3099 	}
3100 
3101 	spdk_nvmf_rdma_request_process(rtransport, rdma_req);
3102 
3103 	return 0;
3104 }
3105 
3106 static int
3107 spdk_nvmf_rdma_destroy_defunct_qpair(void *ctx)
3108 {
3109 	struct spdk_nvmf_rdma_qpair	*rqpair = ctx;
3110 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
3111 			struct spdk_nvmf_rdma_transport, transport);
3112 
3113 	spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
3114 	spdk_nvmf_rdma_qpair_destroy(rqpair);
3115 
3116 	return 0;
3117 }
3118 
3119 static void
3120 spdk_nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair)
3121 {
3122 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3123 
3124 	if (rqpair->disconnect_flags & RDMA_QP_DISCONNECTING) {
3125 		return;
3126 	}
3127 
3128 	rqpair->disconnect_flags |= RDMA_QP_DISCONNECTING;
3129 
3130 	/* This happens only when the qpair is disconnected before
3131 	 * it is added to the poll group. Since there is no poll group,
3132 	 * the RDMA qp has not been initialized yet and the RDMA CM
3133 	 * event has not yet been acknowledged, so we need to reject it.
3134 	 */
3135 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
3136 		spdk_nvmf_rdma_qpair_reject_connection(rqpair);
3137 		return;
3138 	}
3139 
3140 	if (rqpair->ibv_state != IBV_QPS_ERR) {
3141 		spdk_nvmf_rdma_set_ibv_state(rqpair, IBV_QPS_ERR);
3142 	}
3143 
3144 	rqpair->destruct_poller = spdk_poller_register(spdk_nvmf_rdma_destroy_defunct_qpair, (void *)rqpair,
3145 				  NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US);
3146 }
3147 
3148 static struct spdk_nvmf_rdma_qpair *
3149 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
3150 {
3151 	struct spdk_nvmf_rdma_qpair *rqpair;
3152 	/* @todo: improve QP search */
3153 	TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) {
3154 		if (wc->qp_num == rqpair->cm_id->qp->qp_num) {
3155 			return rqpair;
3156 		}
3157 	}
3158 	SPDK_ERRLOG("Didn't find QP with qp_num %u\n", wc->qp_num);
3159 	return NULL;
3160 }
3161 
3162 #ifdef DEBUG
3163 static int
3164 spdk_nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
3165 {
3166 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
3167 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
3168 }
3169 #endif
3170 
3171 static int
3172 spdk_nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
3173 			   struct spdk_nvmf_rdma_poller *rpoller)
3174 {
3175 	struct ibv_wc wc[32];
3176 	struct spdk_nvmf_rdma_wr	*rdma_wr;
3177 	struct spdk_nvmf_rdma_request	*rdma_req;
3178 	struct spdk_nvmf_rdma_recv	*rdma_recv;
3179 	struct spdk_nvmf_rdma_qpair	*rqpair;
3180 	int reaped, i;
3181 	int count = 0;
3182 	bool error = false;
3183 
3184 	/* Poll for completing operations. */
3185 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
3186 	if (reaped < 0) {
3187 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
3188 			    errno, spdk_strerror(errno));
3189 		return -1;
3190 	}
3191 
3192 	for (i = 0; i < reaped; i++) {
3193 
3194 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
3195 
3196 		switch (rdma_wr->type) {
3197 		case RDMA_WR_TYPE_SEND:
3198 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
3199 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
3200 
3201 			if (!wc[i].status) {
3202 				count++;
3203 				assert(wc[i].opcode == IBV_WC_SEND);
3204 				assert(spdk_nvmf_rdma_req_is_completing(rdma_req));
3205 			} else {
3206 				SPDK_ERRLOG("data=%p length=%u\n", rdma_req->req.data, rdma_req->req.length);
3207 			}
3208 
3209 			rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3210 			rqpair->current_send_depth--;
3211 
3212 			spdk_nvmf_rdma_request_process(rtransport, rdma_req);
3213 			assert(rdma_req->num_outstanding_data_wr == 0);
3214 			break;
3215 		case RDMA_WR_TYPE_RECV:
3216 			/* rdma_recv->qpair will be NULL if using an SRQ.  In that case we have to get the qpair from the wc. */
3217 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
3218 			if (rdma_recv->qpair == NULL) {
3219 				rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
3220 			}
3221 			rqpair = rdma_recv->qpair;
3222 
3223 			assert(rqpair != NULL);
3224 			if (!wc[i].status) {
3225 				assert(wc[i].opcode == IBV_WC_RECV);
3226 				if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
3227 					spdk_nvmf_rdma_start_disconnect(rqpair);
3228 					break;
3229 				}
3230 			}
3231 
3232 			rqpair->current_recv_depth++;
3233 			STAILQ_INSERT_TAIL(&rqpair->resources->incoming_queue, rdma_recv, link);
3234 			break;
3235 		case RDMA_WR_TYPE_DATA:
3236 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
3237 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
3238 
3239 			assert(rdma_req->num_outstanding_data_wr > 0);
3240 
3241 			rqpair->current_send_depth--;
3242 			rdma_req->num_outstanding_data_wr--;
3243 			if (!wc[i].status) {
3244 				if (wc[i].opcode == IBV_WC_RDMA_READ) {
3245 					rqpair->current_read_depth--;
3246 					/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
3247 					if (rdma_req->num_outstanding_data_wr == 0) {
3248 						rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
3249 						spdk_nvmf_rdma_request_process(rtransport, rdma_req);
3250 					}
3251 				} else {
3252 					assert(wc[i].opcode == IBV_WC_RDMA_WRITE);
3253 				}
3254 			} else {
3255 				/* If the data transfer fails still force the queue into the error state,
3256 				 * if we were performing an RDMA_READ, we need to force the request into a
3257 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
3258 				 * case, we should wait for the SEND to complete. */
3259 				SPDK_ERRLOG("data=%p length=%u\n", rdma_req->req.data, rdma_req->req.length);
3260 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
3261 					rqpair->current_read_depth--;
3262 					if (rdma_req->num_outstanding_data_wr == 0) {
3263 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3264 					}
3265 				}
3266 			}
3267 			break;
3268 		default:
3269 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
3270 			continue;
3271 		}
3272 
3273 		/* Handle error conditions */
3274 		if (wc[i].status) {
3275 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "CQ error on CQ %p, Request 0x%lu (%d): %s\n",
3276 				      rpoller->cq, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
3277 
3278 			error = true;
3279 
3280 			if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
3281 				/* Disconnect the connection. */
3282 				spdk_nvmf_rdma_start_disconnect(rqpair);
3283 			} else {
3284 				nvmf_rdma_destroy_drained_qpair(rqpair);
3285 			}
3286 			continue;
3287 		}
3288 
3289 		spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
3290 
3291 		if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
3292 			nvmf_rdma_destroy_drained_qpair(rqpair);
3293 		}
3294 	}
3295 
3296 	if (error == true) {
3297 		return -1;
3298 	}
3299 
3300 	return count;
3301 }
3302 
3303 static int
3304 spdk_nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3305 {
3306 	struct spdk_nvmf_rdma_transport *rtransport;
3307 	struct spdk_nvmf_rdma_poll_group *rgroup;
3308 	struct spdk_nvmf_rdma_poller	*rpoller;
3309 	int				count, rc;
3310 
3311 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
3312 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3313 
3314 	count = 0;
3315 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3316 		rc = spdk_nvmf_rdma_poller_poll(rtransport, rpoller);
3317 		if (rc < 0) {
3318 			return rc;
3319 		}
3320 		count += rc;
3321 	}
3322 
3323 	return count;
3324 }
3325 
3326 static int
3327 spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
3328 			       struct spdk_nvme_transport_id *trid,
3329 			       bool peer)
3330 {
3331 	struct sockaddr *saddr;
3332 	uint16_t port;
3333 
3334 	trid->trtype = SPDK_NVME_TRANSPORT_RDMA;
3335 
3336 	if (peer) {
3337 		saddr = rdma_get_peer_addr(id);
3338 	} else {
3339 		saddr = rdma_get_local_addr(id);
3340 	}
3341 	switch (saddr->sa_family) {
3342 	case AF_INET: {
3343 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
3344 
3345 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3346 		inet_ntop(AF_INET, &saddr_in->sin_addr,
3347 			  trid->traddr, sizeof(trid->traddr));
3348 		if (peer) {
3349 			port = ntohs(rdma_get_dst_port(id));
3350 		} else {
3351 			port = ntohs(rdma_get_src_port(id));
3352 		}
3353 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
3354 		break;
3355 	}
3356 	case AF_INET6: {
3357 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
3358 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3359 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
3360 			  trid->traddr, sizeof(trid->traddr));
3361 		if (peer) {
3362 			port = ntohs(rdma_get_dst_port(id));
3363 		} else {
3364 			port = ntohs(rdma_get_src_port(id));
3365 		}
3366 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
3367 		break;
3368 	}
3369 	default:
3370 		return -1;
3371 
3372 	}
3373 
3374 	return 0;
3375 }
3376 
3377 static int
3378 spdk_nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3379 				   struct spdk_nvme_transport_id *trid)
3380 {
3381 	struct spdk_nvmf_rdma_qpair	*rqpair;
3382 
3383 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3384 
3385 	return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
3386 }
3387 
3388 static int
3389 spdk_nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3390 				    struct spdk_nvme_transport_id *trid)
3391 {
3392 	struct spdk_nvmf_rdma_qpair	*rqpair;
3393 
3394 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3395 
3396 	return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
3397 }
3398 
3399 static int
3400 spdk_nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3401 				     struct spdk_nvme_transport_id *trid)
3402 {
3403 	struct spdk_nvmf_rdma_qpair	*rqpair;
3404 
3405 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3406 
3407 	return spdk_nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
3408 }
3409 
3410 void
3411 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
3412 {
3413 	g_nvmf_hooks = *hooks;
3414 }
3415 
3416 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
3417 	.type = SPDK_NVME_TRANSPORT_RDMA,
3418 	.opts_init = spdk_nvmf_rdma_opts_init,
3419 	.create = spdk_nvmf_rdma_create,
3420 	.destroy = spdk_nvmf_rdma_destroy,
3421 
3422 	.listen = spdk_nvmf_rdma_listen,
3423 	.stop_listen = spdk_nvmf_rdma_stop_listen,
3424 	.accept = spdk_nvmf_rdma_accept,
3425 
3426 	.listener_discover = spdk_nvmf_rdma_discover,
3427 
3428 	.poll_group_create = spdk_nvmf_rdma_poll_group_create,
3429 	.poll_group_destroy = spdk_nvmf_rdma_poll_group_destroy,
3430 	.poll_group_add = spdk_nvmf_rdma_poll_group_add,
3431 	.poll_group_poll = spdk_nvmf_rdma_poll_group_poll,
3432 
3433 	.req_free = spdk_nvmf_rdma_request_free,
3434 	.req_complete = spdk_nvmf_rdma_request_complete,
3435 
3436 	.qpair_fini = spdk_nvmf_rdma_close_qpair,
3437 	.qpair_get_peer_trid = spdk_nvmf_rdma_qpair_get_peer_trid,
3438 	.qpair_get_local_trid = spdk_nvmf_rdma_qpair_get_local_trid,
3439 	.qpair_get_listen_trid = spdk_nvmf_rdma_qpair_get_listen_trid,
3440 
3441 };
3442 
3443 SPDK_LOG_REGISTER_COMPONENT("rdma", SPDK_LOG_RDMA)
3444