xref: /spdk/lib/nvmf/rdma.c (revision dd1c38cc680e4e8ca2642e93bf289072bff7fc3d)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2018 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk/stdinc.h"
35 
36 #include <infiniband/verbs.h>
37 #include <rdma/rdma_cma.h>
38 #include <rdma/rdma_verbs.h>
39 
40 #include "nvmf_internal.h"
41 #include "transport.h"
42 
43 #include "spdk/config.h"
44 #include "spdk/assert.h"
45 #include "spdk/thread.h"
46 #include "spdk/nvmf.h"
47 #include "spdk/nvmf_spec.h"
48 #include "spdk/string.h"
49 #include "spdk/trace.h"
50 #include "spdk/util.h"
51 
52 #include "spdk_internal/log.h"
53 
54 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
55 
56 /*
57  RDMA Connection Resource Defaults
58  */
59 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
60 #define NVMF_DEFAULT_RSP_SGE		1
61 #define NVMF_DEFAULT_RX_SGE		2
62 
63 /* The RDMA completion queue size */
64 #define DEFAULT_NVMF_RDMA_CQ_SIZE	4096
65 #define MAX_WR_PER_QP(queue_depth)	(queue_depth * 3 + 2)
66 
67 /* Timeout for destroying defunct rqpairs */
68 #define NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US	4000000
69 
70 /* The maximum number of buffers per request */
71 #define NVMF_REQ_MAX_BUFFERS	(SPDK_NVMF_MAX_SGL_ENTRIES * 2)
72 
73 static int g_spdk_nvmf_ibv_query_mask =
74 	IBV_QP_STATE |
75 	IBV_QP_PKEY_INDEX |
76 	IBV_QP_PORT |
77 	IBV_QP_ACCESS_FLAGS |
78 	IBV_QP_AV |
79 	IBV_QP_PATH_MTU |
80 	IBV_QP_DEST_QPN |
81 	IBV_QP_RQ_PSN |
82 	IBV_QP_MAX_DEST_RD_ATOMIC |
83 	IBV_QP_MIN_RNR_TIMER |
84 	IBV_QP_SQ_PSN |
85 	IBV_QP_TIMEOUT |
86 	IBV_QP_RETRY_CNT |
87 	IBV_QP_RNR_RETRY |
88 	IBV_QP_MAX_QP_RD_ATOMIC;
89 
90 enum spdk_nvmf_rdma_request_state {
91 	/* The request is not currently in use */
92 	RDMA_REQUEST_STATE_FREE = 0,
93 
94 	/* Initial state when request first received */
95 	RDMA_REQUEST_STATE_NEW,
96 
97 	/* The request is queued until a data buffer is available. */
98 	RDMA_REQUEST_STATE_NEED_BUFFER,
99 
100 	/* The request is waiting on RDMA queue depth availability
101 	 * to transfer data from the host to the controller.
102 	 */
103 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
104 
105 	/* The request is currently transferring data from the host to the controller. */
106 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
107 
108 	/* The request is ready to execute at the block device */
109 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
110 
111 	/* The request is currently executing at the block device */
112 	RDMA_REQUEST_STATE_EXECUTING,
113 
114 	/* The request finished executing at the block device */
115 	RDMA_REQUEST_STATE_EXECUTED,
116 
117 	/* The request is waiting on RDMA queue depth availability
118 	 * to transfer data from the controller to the host.
119 	 */
120 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
121 
122 	/* The request is ready to send a completion */
123 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
124 
125 	/* The request is currently transferring data from the controller to the host. */
126 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
127 
128 	/* The request currently has an outstanding completion without an
129 	 * associated data transfer.
130 	 */
131 	RDMA_REQUEST_STATE_COMPLETING,
132 
133 	/* The request completed and can be marked free. */
134 	RDMA_REQUEST_STATE_COMPLETED,
135 
136 	/* Terminator */
137 	RDMA_REQUEST_NUM_STATES,
138 };
139 
140 #define OBJECT_NVMF_RDMA_IO				0x40
141 
142 #define TRACE_GROUP_NVMF_RDMA				0x4
143 #define TRACE_RDMA_REQUEST_STATE_NEW					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x0)
144 #define TRACE_RDMA_REQUEST_STATE_NEED_BUFFER				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x1)
145 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x2)
146 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x3)
147 #define TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE			SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x4)
148 #define TRACE_RDMA_REQUEST_STATE_EXECUTING				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x5)
149 #define TRACE_RDMA_REQUEST_STATE_EXECUTED				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x6)
150 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING		SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x7)
151 #define TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE			SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x8)
152 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x9)
153 #define TRACE_RDMA_REQUEST_STATE_COMPLETING				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xA)
154 #define TRACE_RDMA_REQUEST_STATE_COMPLETED				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xB)
155 #define TRACE_RDMA_QP_CREATE						SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xC)
156 #define TRACE_RDMA_IBV_ASYNC_EVENT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xD)
157 #define TRACE_RDMA_CM_ASYNC_EVENT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xE)
158 #define TRACE_RDMA_QP_STATE_CHANGE					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xF)
159 #define TRACE_RDMA_QP_DISCONNECT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x10)
160 #define TRACE_RDMA_QP_DESTROY						SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x11)
161 
162 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
163 {
164 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
165 	spdk_trace_register_description("RDMA_REQ_NEW", "",
166 					TRACE_RDMA_REQUEST_STATE_NEW,
167 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 1, "cmid:   ");
168 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", "",
169 					TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
170 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
171 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_C_TO_H", "",
172 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
173 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
174 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H_TO_C", "",
175 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
176 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
177 	spdk_trace_register_description("RDMA_REQ_TX_H_TO_C", "",
178 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
179 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
180 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE", "",
181 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
182 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
183 	spdk_trace_register_description("RDMA_REQ_EXECUTING", "",
184 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
185 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
186 	spdk_trace_register_description("RDMA_REQ_EXECUTED", "",
187 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
188 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
189 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPLETE", "",
190 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
191 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
192 	spdk_trace_register_description("RDMA_REQ_COMPLETING_CONTROLLER_TO_HOST", "",
193 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
194 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
195 	spdk_trace_register_description("RDMA_REQ_COMPLETING_INCAPSULE", "",
196 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
197 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
198 	spdk_trace_register_description("RDMA_REQ_COMPLETED", "",
199 					TRACE_RDMA_REQUEST_STATE_COMPLETED,
200 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
201 
202 	spdk_trace_register_description("RDMA_QP_CREATE", "", TRACE_RDMA_QP_CREATE,
203 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
204 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", "", TRACE_RDMA_IBV_ASYNC_EVENT,
205 					OWNER_NONE, OBJECT_NONE, 0, 0, "type:   ");
206 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", "", TRACE_RDMA_CM_ASYNC_EVENT,
207 					OWNER_NONE, OBJECT_NONE, 0, 0, "type:   ");
208 	spdk_trace_register_description("RDMA_QP_STATE_CHANGE", "", TRACE_RDMA_QP_STATE_CHANGE,
209 					OWNER_NONE, OBJECT_NONE, 0, 1, "state:  ");
210 	spdk_trace_register_description("RDMA_QP_DISCONNECT", "", TRACE_RDMA_QP_DISCONNECT,
211 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
212 	spdk_trace_register_description("RDMA_QP_DESTROY", "", TRACE_RDMA_QP_DESTROY,
213 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
214 }
215 
216 enum spdk_nvmf_rdma_wr_type {
217 	RDMA_WR_TYPE_RECV,
218 	RDMA_WR_TYPE_SEND,
219 	RDMA_WR_TYPE_DATA,
220 };
221 
222 struct spdk_nvmf_rdma_wr {
223 	enum spdk_nvmf_rdma_wr_type	type;
224 };
225 
226 /* This structure holds commands as they are received off the wire.
227  * It must be dynamically paired with a full request object
228  * (spdk_nvmf_rdma_request) to service a request. It is separate
229  * from the request because RDMA does not appear to order
230  * completions, so occasionally we'll get a new incoming
231  * command when there aren't any free request objects.
232  */
233 struct spdk_nvmf_rdma_recv {
234 	struct ibv_recv_wr			wr;
235 	struct ibv_sge				sgl[NVMF_DEFAULT_RX_SGE];
236 
237 	struct spdk_nvmf_rdma_qpair		*qpair;
238 
239 	/* In-capsule data buffer */
240 	uint8_t					*buf;
241 
242 	struct spdk_nvmf_rdma_wr		rdma_wr;
243 
244 	STAILQ_ENTRY(spdk_nvmf_rdma_recv)	link;
245 };
246 
247 struct spdk_nvmf_rdma_request_data {
248 	struct spdk_nvmf_rdma_wr	rdma_wr;
249 	struct ibv_send_wr		wr;
250 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
251 };
252 
253 struct spdk_nvmf_rdma_request {
254 	struct spdk_nvmf_request		req;
255 	bool					data_from_pool;
256 
257 	enum spdk_nvmf_rdma_request_state	state;
258 
259 	struct spdk_nvmf_rdma_recv		*recv;
260 
261 	struct {
262 		struct spdk_nvmf_rdma_wr	rdma_wr;
263 		struct	ibv_send_wr		wr;
264 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
265 	} rsp;
266 
267 	struct spdk_nvmf_rdma_request_data	data;
268 	void					*buffers[NVMF_REQ_MAX_BUFFERS];
269 
270 	uint32_t				num_outstanding_data_wr;
271 
272 	STAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
273 };
274 
275 enum spdk_nvmf_rdma_qpair_disconnect_flags {
276 	RDMA_QP_DISCONNECTING		= 1,
277 	RDMA_QP_RECV_DRAINED		= 1 << 1,
278 	RDMA_QP_SEND_DRAINED		= 1 << 2
279 };
280 
281 struct spdk_nvmf_rdma_resource_opts {
282 	struct spdk_nvmf_rdma_qpair	*qpair;
283 	/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
284 	void				*qp;
285 	struct ibv_pd			*pd;
286 	uint32_t			max_queue_depth;
287 	uint32_t			in_capsule_data_size;
288 	bool				shared;
289 };
290 
291 struct spdk_nvmf_rdma_resources {
292 	/* Array of size "max_queue_depth" containing RDMA requests. */
293 	struct spdk_nvmf_rdma_request		*reqs;
294 
295 	/* Array of size "max_queue_depth" containing RDMA recvs. */
296 	struct spdk_nvmf_rdma_recv		*recvs;
297 
298 	/* Array of size "max_queue_depth" containing 64 byte capsules
299 	 * used for receive.
300 	 */
301 	union nvmf_h2c_msg			*cmds;
302 	struct ibv_mr				*cmds_mr;
303 
304 	/* Array of size "max_queue_depth" containing 16 byte completions
305 	 * to be sent back to the user.
306 	 */
307 	union nvmf_c2h_msg			*cpls;
308 	struct ibv_mr				*cpls_mr;
309 
310 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
311 	 * buffers to be used for in capsule data.
312 	 */
313 	void					*bufs;
314 	struct ibv_mr				*bufs_mr;
315 
316 	/* Receives that are waiting for a request object */
317 	STAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
318 
319 	/* Queue to track free requests */
320 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	free_queue;
321 };
322 
323 struct spdk_nvmf_rdma_qpair {
324 	struct spdk_nvmf_qpair			qpair;
325 
326 	struct spdk_nvmf_rdma_port		*port;
327 	struct spdk_nvmf_rdma_poller		*poller;
328 
329 	struct rdma_cm_id			*cm_id;
330 	struct ibv_srq				*srq;
331 	struct rdma_cm_id			*listen_id;
332 
333 	/* The maximum number of I/O outstanding on this connection at one time */
334 	uint16_t				max_queue_depth;
335 
336 	/* The maximum number of active RDMA READ and ATOMIC operations at one time */
337 	uint16_t				max_read_depth;
338 
339 	/* The maximum number of RDMA SEND operations at one time */
340 	uint32_t				max_send_depth;
341 
342 	/* The current number of outstanding WRs from this qpair's
343 	 * recv queue. Should not exceed device->attr.max_queue_depth.
344 	 */
345 	uint16_t				current_recv_depth;
346 
347 	/* The current number of active RDMA READ operations */
348 	uint16_t				current_read_depth;
349 
350 	/* The current number of posted WRs from this qpair's
351 	 * send queue. Should not exceed max_send_depth.
352 	 */
353 	uint32_t				current_send_depth;
354 
355 	/* The maximum number of SGEs per WR on the send queue */
356 	uint32_t				max_send_sge;
357 
358 	/* The maximum number of SGEs per WR on the recv queue */
359 	uint32_t				max_recv_sge;
360 
361 	struct spdk_nvmf_rdma_resources		*resources;
362 
363 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_read_queue;
364 
365 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_write_queue;
366 
367 	/* Number of requests not in the free state */
368 	uint32_t				qd;
369 
370 	TAILQ_ENTRY(spdk_nvmf_rdma_qpair)	link;
371 
372 	/* IBV queue pair attributes: they are used to manage
373 	 * qp state and recover from errors.
374 	 */
375 	enum ibv_qp_state			ibv_state;
376 
377 	uint32_t				disconnect_flags;
378 
379 	/* Poller registered in case the qpair doesn't properly
380 	 * complete the qpair destruct process and becomes defunct.
381 	 */
382 
383 	struct spdk_poller			*destruct_poller;
384 
385 	/* There are several ways a disconnect can start on a qpair
386 	 * and they are not all mutually exclusive. It is important
387 	 * that we only initialize one of these paths.
388 	 */
389 	bool					disconnect_started;
390 	/* Lets us know that we have received the last_wqe event. */
391 	bool					last_wqe_reached;
392 };
393 
394 struct spdk_nvmf_rdma_poller {
395 	struct spdk_nvmf_rdma_device		*device;
396 	struct spdk_nvmf_rdma_poll_group	*group;
397 
398 	int					num_cqe;
399 	int					required_num_wr;
400 	struct ibv_cq				*cq;
401 
402 	/* The maximum number of I/O outstanding on the shared receive queue at one time */
403 	uint16_t				max_srq_depth;
404 
405 	/* Shared receive queue */
406 	struct ibv_srq				*srq;
407 
408 	struct spdk_nvmf_rdma_resources		*resources;
409 
410 	TAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs;
411 
412 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
413 };
414 
415 struct spdk_nvmf_rdma_poll_group {
416 	struct spdk_nvmf_transport_poll_group	group;
417 
418 	/* Requests that are waiting to obtain a data buffer */
419 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_data_buf_queue;
420 
421 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)	pollers;
422 };
423 
424 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
425 struct spdk_nvmf_rdma_device {
426 	struct ibv_device_attr			attr;
427 	struct ibv_context			*context;
428 
429 	struct spdk_mem_map			*map;
430 	struct ibv_pd				*pd;
431 
432 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
433 };
434 
435 struct spdk_nvmf_rdma_port {
436 	struct spdk_nvme_transport_id		trid;
437 	struct rdma_cm_id			*id;
438 	struct spdk_nvmf_rdma_device		*device;
439 	uint32_t				ref;
440 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
441 };
442 
443 struct spdk_nvmf_rdma_transport {
444 	struct spdk_nvmf_transport	transport;
445 
446 	struct rdma_event_channel	*event_channel;
447 
448 	struct spdk_mempool		*data_wr_pool;
449 
450 	pthread_mutex_t			lock;
451 
452 	/* fields used to poll RDMA/IB events */
453 	nfds_t			npoll_fds;
454 	struct pollfd		*poll_fds;
455 
456 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
457 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
458 };
459 
460 static inline int
461 spdk_nvmf_rdma_check_ibv_state(enum ibv_qp_state state)
462 {
463 	switch (state) {
464 	case IBV_QPS_RESET:
465 	case IBV_QPS_INIT:
466 	case IBV_QPS_RTR:
467 	case IBV_QPS_RTS:
468 	case IBV_QPS_SQD:
469 	case IBV_QPS_SQE:
470 	case IBV_QPS_ERR:
471 		return 0;
472 	default:
473 		return -1;
474 	}
475 }
476 
477 static enum ibv_qp_state
478 spdk_nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) {
479 	enum ibv_qp_state old_state, new_state;
480 	struct ibv_qp_attr qp_attr;
481 	struct ibv_qp_init_attr init_attr;
482 	int rc;
483 
484 	old_state = rqpair->ibv_state;
485 	rc = ibv_query_qp(rqpair->cm_id->qp, &qp_attr,
486 			  g_spdk_nvmf_ibv_query_mask, &init_attr);
487 
488 	if (rc)
489 	{
490 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
491 		return IBV_QPS_ERR + 1;
492 	}
493 
494 	new_state = qp_attr.qp_state;
495 	rqpair->ibv_state = new_state;
496 	qp_attr.ah_attr.port_num = qp_attr.port_num;
497 
498 	rc = spdk_nvmf_rdma_check_ibv_state(new_state);
499 	if (rc)
500 	{
501 		SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state);
502 		/*
503 		 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8
504 		 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR
505 		 */
506 		return IBV_QPS_ERR + 1;
507 	}
508 
509 	if (old_state != new_state)
510 	{
511 		spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0,
512 				  (uintptr_t)rqpair->cm_id, new_state);
513 	}
514 	return new_state;
515 }
516 
517 static const char *str_ibv_qp_state[] = {
518 	"IBV_QPS_RESET",
519 	"IBV_QPS_INIT",
520 	"IBV_QPS_RTR",
521 	"IBV_QPS_RTS",
522 	"IBV_QPS_SQD",
523 	"IBV_QPS_SQE",
524 	"IBV_QPS_ERR",
525 	"IBV_QPS_UNKNOWN"
526 };
527 
528 static int
529 spdk_nvmf_rdma_set_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair,
530 			     enum ibv_qp_state new_state)
531 {
532 	struct ibv_qp_attr qp_attr;
533 	struct ibv_qp_init_attr init_attr;
534 	int rc;
535 	enum ibv_qp_state state;
536 	static int attr_mask_rc[] = {
537 		[IBV_QPS_RESET] = IBV_QP_STATE,
538 		[IBV_QPS_INIT] = (IBV_QP_STATE |
539 				  IBV_QP_PKEY_INDEX |
540 				  IBV_QP_PORT |
541 				  IBV_QP_ACCESS_FLAGS),
542 		[IBV_QPS_RTR] = (IBV_QP_STATE |
543 				 IBV_QP_AV |
544 				 IBV_QP_PATH_MTU |
545 				 IBV_QP_DEST_QPN |
546 				 IBV_QP_RQ_PSN |
547 				 IBV_QP_MAX_DEST_RD_ATOMIC |
548 				 IBV_QP_MIN_RNR_TIMER),
549 		[IBV_QPS_RTS] = (IBV_QP_STATE |
550 				 IBV_QP_SQ_PSN |
551 				 IBV_QP_TIMEOUT |
552 				 IBV_QP_RETRY_CNT |
553 				 IBV_QP_RNR_RETRY |
554 				 IBV_QP_MAX_QP_RD_ATOMIC),
555 		[IBV_QPS_SQD] = IBV_QP_STATE,
556 		[IBV_QPS_SQE] = IBV_QP_STATE,
557 		[IBV_QPS_ERR] = IBV_QP_STATE,
558 	};
559 
560 	rc = spdk_nvmf_rdma_check_ibv_state(new_state);
561 	if (rc) {
562 		SPDK_ERRLOG("QP#%d: bad state requested: %u\n",
563 			    rqpair->qpair.qid, new_state);
564 		return rc;
565 	}
566 
567 	rc = ibv_query_qp(rqpair->cm_id->qp, &qp_attr,
568 			  g_spdk_nvmf_ibv_query_mask, &init_attr);
569 
570 	if (rc) {
571 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
572 		assert(false);
573 	}
574 
575 	qp_attr.cur_qp_state = rqpair->ibv_state;
576 	qp_attr.qp_state = new_state;
577 
578 	rc = ibv_modify_qp(rqpair->cm_id->qp, &qp_attr,
579 			   attr_mask_rc[new_state]);
580 
581 	if (rc) {
582 		SPDK_ERRLOG("QP#%d: failed to set state to: %s, %d (%s)\n",
583 			    rqpair->qpair.qid, str_ibv_qp_state[new_state], errno, strerror(errno));
584 		return rc;
585 	}
586 
587 	state = spdk_nvmf_rdma_update_ibv_state(rqpair);
588 
589 	if (state != new_state) {
590 		SPDK_ERRLOG("QP#%d: expected state: %s, actual state: %s\n",
591 			    rqpair->qpair.qid, str_ibv_qp_state[new_state],
592 			    str_ibv_qp_state[state]);
593 		return -1;
594 	}
595 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "IBV QP#%u changed to: %s\n", rqpair->qpair.qid,
596 		      str_ibv_qp_state[state]);
597 	return 0;
598 }
599 
600 static void
601 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
602 			    struct spdk_nvmf_rdma_transport *rtransport)
603 {
604 	struct spdk_nvmf_rdma_request_data	*current_data_wr = NULL, *next_data_wr = NULL;
605 	struct ibv_send_wr			*send_wr;
606 	int					i;
607 
608 	rdma_req->num_outstanding_data_wr = 0;
609 	current_data_wr = &rdma_req->data;
610 	for (i = 0; i < current_data_wr->wr.num_sge; i++) {
611 		current_data_wr->wr.sg_list[i].addr = 0;
612 		current_data_wr->wr.sg_list[i].length = 0;
613 		current_data_wr->wr.sg_list[i].lkey = 0;
614 	}
615 	current_data_wr->wr.num_sge = 0;
616 
617 	send_wr = current_data_wr->wr.next;
618 	if (send_wr != NULL && send_wr != &rdma_req->rsp.wr) {
619 		next_data_wr = SPDK_CONTAINEROF(send_wr, struct spdk_nvmf_rdma_request_data, wr);
620 	}
621 	while (next_data_wr) {
622 		current_data_wr = next_data_wr;
623 		send_wr = current_data_wr->wr.next;
624 		if (send_wr != NULL && send_wr != &rdma_req->rsp.wr) {
625 			next_data_wr = SPDK_CONTAINEROF(send_wr, struct spdk_nvmf_rdma_request_data, wr);
626 		} else {
627 			next_data_wr = NULL;
628 		}
629 
630 		for (i = 0; i < current_data_wr->wr.num_sge; i++) {
631 			current_data_wr->wr.sg_list[i].addr = 0;
632 			current_data_wr->wr.sg_list[i].length = 0;
633 			current_data_wr->wr.sg_list[i].lkey = 0;
634 		}
635 		current_data_wr->wr.num_sge = 0;
636 		spdk_mempool_put(rtransport->data_wr_pool, current_data_wr);
637 	}
638 }
639 
640 static void
641 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
642 {
643 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->data_from_pool);
644 	if (req->req.cmd) {
645 		SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
646 	}
647 	if (req->recv) {
648 		SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
649 	}
650 }
651 
652 static void
653 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
654 {
655 	int i;
656 
657 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
658 	for (i = 0; i < rqpair->max_queue_depth; i++) {
659 		if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
660 			nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
661 		}
662 	}
663 }
664 
665 static void
666 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
667 {
668 	if (resources->cmds_mr) {
669 		ibv_dereg_mr(resources->cmds_mr);
670 	}
671 
672 	if (resources->cpls_mr) {
673 		ibv_dereg_mr(resources->cpls_mr);
674 	}
675 
676 	if (resources->bufs_mr) {
677 		ibv_dereg_mr(resources->bufs_mr);
678 	}
679 
680 	spdk_dma_free(resources->cmds);
681 	spdk_dma_free(resources->cpls);
682 	spdk_dma_free(resources->bufs);
683 	free(resources->reqs);
684 	free(resources->recvs);
685 	free(resources);
686 }
687 
688 
689 static struct spdk_nvmf_rdma_resources *
690 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
691 {
692 	struct spdk_nvmf_rdma_resources	*resources;
693 	struct spdk_nvmf_rdma_request	*rdma_req;
694 	struct spdk_nvmf_rdma_recv	*rdma_recv;
695 	struct ibv_qp			*qp;
696 	struct ibv_srq			*srq;
697 	uint32_t			i;
698 	int				rc;
699 
700 	resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
701 	if (!resources) {
702 		SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
703 		return NULL;
704 	}
705 
706 	resources->reqs = calloc(opts->max_queue_depth, sizeof(*resources->reqs));
707 	resources->recvs = calloc(opts->max_queue_depth, sizeof(*resources->recvs));
708 	resources->cmds = spdk_dma_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
709 					   0x1000, NULL);
710 	resources->cpls = spdk_dma_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
711 					   0x1000, NULL);
712 
713 	if (opts->in_capsule_data_size > 0) {
714 		resources->bufs = spdk_dma_zmalloc(opts->max_queue_depth *
715 						   opts->in_capsule_data_size,
716 						   0x1000, NULL);
717 	}
718 
719 	if (!resources->reqs || !resources->recvs || !resources->cmds ||
720 	    !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
721 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
722 		goto cleanup;
723 	}
724 
725 	resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds,
726 					opts->max_queue_depth * sizeof(*resources->cmds),
727 					IBV_ACCESS_LOCAL_WRITE);
728 	resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls,
729 					opts->max_queue_depth * sizeof(*resources->cpls),
730 					0);
731 
732 	if (opts->in_capsule_data_size) {
733 		resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs,
734 						opts->max_queue_depth *
735 						opts->in_capsule_data_size,
736 						IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
737 	}
738 
739 	if (!resources->cmds_mr || !resources->cpls_mr ||
740 	    (opts->in_capsule_data_size &&
741 	     !resources->bufs_mr)) {
742 		goto cleanup;
743 	}
744 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Command Array: %p Length: %lx LKey: %x\n",
745 		      resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds),
746 		      resources->cmds_mr->lkey);
747 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Completion Array: %p Length: %lx LKey: %x\n",
748 		      resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls),
749 		      resources->cpls_mr->lkey);
750 	if (resources->bufs && resources->bufs_mr) {
751 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "In Capsule Data Array: %p Length: %x LKey: %x\n",
752 			      resources->bufs, opts->max_queue_depth *
753 			      opts->in_capsule_data_size, resources->bufs_mr->lkey);
754 	}
755 
756 	/* Initialize queues */
757 	STAILQ_INIT(&resources->incoming_queue);
758 	STAILQ_INIT(&resources->free_queue);
759 
760 	for (i = 0; i < opts->max_queue_depth; i++) {
761 		struct ibv_recv_wr *bad_wr = NULL;
762 
763 		rdma_recv = &resources->recvs[i];
764 		rdma_recv->qpair = opts->qpair;
765 
766 		/* Set up memory to receive commands */
767 		if (resources->bufs) {
768 			rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
769 						  opts->in_capsule_data_size));
770 		}
771 
772 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
773 
774 		rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
775 		rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
776 		rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey;
777 		rdma_recv->wr.num_sge = 1;
778 
779 		if (rdma_recv->buf && resources->bufs_mr) {
780 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
781 			rdma_recv->sgl[1].length = opts->in_capsule_data_size;
782 			rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey;
783 			rdma_recv->wr.num_sge++;
784 		}
785 
786 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
787 		rdma_recv->wr.sg_list = rdma_recv->sgl;
788 		if (opts->shared) {
789 			srq = (struct ibv_srq *)opts->qp;
790 			rc = ibv_post_srq_recv(srq, &rdma_recv->wr, &bad_wr);
791 		} else {
792 			qp = (struct ibv_qp *)opts->qp;
793 			rc = ibv_post_recv(qp, &rdma_recv->wr, &bad_wr);
794 		}
795 		if (rc) {
796 			goto cleanup;
797 		}
798 	}
799 
800 	for (i = 0; i < opts->max_queue_depth; i++) {
801 		rdma_req = &resources->reqs[i];
802 
803 		if (opts->qpair != NULL) {
804 			rdma_req->req.qpair = &opts->qpair->qpair;
805 		} else {
806 			rdma_req->req.qpair = NULL;
807 		}
808 		rdma_req->req.cmd = NULL;
809 
810 		/* Set up memory to send responses */
811 		rdma_req->req.rsp = &resources->cpls[i];
812 
813 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
814 		rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
815 		rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey;
816 
817 		rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND;
818 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr;
819 		rdma_req->rsp.wr.next = NULL;
820 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
821 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
822 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
823 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
824 
825 		/* Set up memory for data buffers */
826 		rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA;
827 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
828 		rdma_req->data.wr.next = NULL;
829 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
830 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
831 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
832 
833 		/* Initialize request state to FREE */
834 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
835 		STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
836 	}
837 
838 	return resources;
839 
840 cleanup:
841 	nvmf_rdma_resources_destroy(resources);
842 	return NULL;
843 }
844 
845 static void
846 spdk_nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
847 {
848 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
849 	struct ibv_recv_wr		*bad_recv_wr = NULL;
850 	int				rc;
851 
852 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair->cm_id, 0);
853 
854 	spdk_poller_unregister(&rqpair->destruct_poller);
855 
856 	if (rqpair->qd != 0) {
857 		if (rqpair->srq == NULL) {
858 			nvmf_rdma_dump_qpair_contents(rqpair);
859 		}
860 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
861 	}
862 
863 	if (rqpair->poller) {
864 		TAILQ_REMOVE(&rqpair->poller->qpairs, rqpair, link);
865 
866 		if (rqpair->srq != NULL && rqpair->resources != NULL) {
867 			/* Drop all received but unprocessed commands for this queue and return them to SRQ */
868 			STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
869 				if (rqpair == rdma_recv->qpair) {
870 					STAILQ_REMOVE_HEAD(&rqpair->resources->incoming_queue, link);
871 					rdma_recv->qpair = NULL;
872 					rc = ibv_post_srq_recv(rqpair->srq, &rdma_recv->wr, &bad_recv_wr);
873 					if (rc) {
874 						SPDK_ERRLOG("Unable to re-post rx descriptor\n");
875 					}
876 				}
877 			}
878 		}
879 	}
880 
881 	if (rqpair->cm_id) {
882 		if (rqpair->cm_id->qp != NULL) {
883 			rdma_destroy_qp(rqpair->cm_id);
884 		}
885 		rdma_destroy_id(rqpair->cm_id);
886 
887 		if (rqpair->poller != NULL && rqpair->srq == NULL) {
888 			rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
889 		}
890 	}
891 
892 	if (rqpair->srq == NULL && rqpair->resources != NULL) {
893 		nvmf_rdma_resources_destroy(rqpair->resources);
894 	}
895 
896 	free(rqpair);
897 }
898 
899 static int
900 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
901 {
902 	struct spdk_nvmf_rdma_poller	*rpoller;
903 	int				rc, num_cqe, required_num_wr;
904 
905 	/* Enlarge CQ size dynamically */
906 	rpoller = rqpair->poller;
907 	required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
908 	num_cqe = rpoller->num_cqe;
909 	if (num_cqe < required_num_wr) {
910 		num_cqe = spdk_max(num_cqe * 2, required_num_wr);
911 		num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
912 	}
913 
914 	if (rpoller->num_cqe != num_cqe) {
915 		if (required_num_wr > device->attr.max_cqe) {
916 			SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
917 				    required_num_wr, device->attr.max_cqe);
918 			return -1;
919 		}
920 
921 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
922 		rc = ibv_resize_cq(rpoller->cq, num_cqe);
923 		if (rc) {
924 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
925 			return -1;
926 		}
927 
928 		rpoller->num_cqe = num_cqe;
929 	}
930 
931 	rpoller->required_num_wr = required_num_wr;
932 	return 0;
933 }
934 
935 static int
936 spdk_nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
937 {
938 	struct spdk_nvmf_rdma_qpair		*rqpair;
939 	int					rc;
940 	struct spdk_nvmf_rdma_transport		*rtransport;
941 	struct spdk_nvmf_transport		*transport;
942 	struct spdk_nvmf_rdma_resource_opts	opts;
943 	struct spdk_nvmf_rdma_device		*device;
944 	struct ibv_qp_init_attr			ibv_init_attr;
945 
946 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
947 	device = rqpair->port->device;
948 
949 	memset(&ibv_init_attr, 0, sizeof(struct ibv_qp_init_attr));
950 	ibv_init_attr.qp_context	= rqpair;
951 	ibv_init_attr.qp_type		= IBV_QPT_RC;
952 	ibv_init_attr.send_cq		= rqpair->poller->cq;
953 	ibv_init_attr.recv_cq		= rqpair->poller->cq;
954 
955 	if (rqpair->srq) {
956 		ibv_init_attr.srq		= rqpair->srq;
957 	} else {
958 		ibv_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth +
959 						  1; /* RECV operations + dummy drain WR */
960 	}
961 
962 	ibv_init_attr.cap.max_send_wr	= rqpair->max_queue_depth *
963 					  2 + 1; /* SEND, READ, and WRITE operations + dummy drain WR */
964 	ibv_init_attr.cap.max_send_sge	= spdk_min(device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
965 	ibv_init_attr.cap.max_recv_sge	= spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
966 
967 	if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
968 		SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
969 		goto error;
970 	}
971 
972 	rc = rdma_create_qp(rqpair->cm_id, rqpair->port->device->pd, &ibv_init_attr);
973 	if (rc) {
974 		SPDK_ERRLOG("rdma_create_qp failed: errno %d: %s\n", errno, spdk_strerror(errno));
975 		goto error;
976 	}
977 
978 	rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2 + 1),
979 					  ibv_init_attr.cap.max_send_wr);
980 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, ibv_init_attr.cap.max_send_sge);
981 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, ibv_init_attr.cap.max_recv_sge);
982 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair->cm_id, 0);
983 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "New RDMA Connection: %p\n", qpair);
984 
985 	if (rqpair->poller->srq == NULL) {
986 		rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
987 		transport = &rtransport->transport;
988 
989 		opts.qp = rqpair->cm_id->qp;
990 		opts.pd = rqpair->cm_id->pd;
991 		opts.qpair = rqpair;
992 		opts.shared = false;
993 		opts.max_queue_depth = rqpair->max_queue_depth;
994 		opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
995 
996 		rqpair->resources = nvmf_rdma_resources_create(&opts);
997 
998 		if (!rqpair->resources) {
999 			SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
1000 			goto error;
1001 		}
1002 	} else {
1003 		rqpair->resources = rqpair->poller->resources;
1004 	}
1005 
1006 	rqpair->current_recv_depth = 0;
1007 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1008 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1009 
1010 	return 0;
1011 
1012 error:
1013 	rdma_destroy_id(rqpair->cm_id);
1014 	rqpair->cm_id = NULL;
1015 	spdk_nvmf_rdma_qpair_destroy(rqpair);
1016 	return -1;
1017 }
1018 
1019 static int
1020 request_transfer_in(struct spdk_nvmf_request *req)
1021 {
1022 	int				rc;
1023 	struct spdk_nvmf_rdma_request	*rdma_req;
1024 	struct spdk_nvmf_qpair		*qpair;
1025 	struct spdk_nvmf_rdma_qpair	*rqpair;
1026 	struct ibv_send_wr		*bad_wr = NULL;
1027 
1028 	qpair = req->qpair;
1029 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1030 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1031 
1032 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1033 	assert(rdma_req != NULL);
1034 
1035 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA READ POSTED. Request: %p Connection: %p\n", req, qpair);
1036 
1037 	rc = ibv_post_send(rqpair->cm_id->qp, &rdma_req->data.wr, &bad_wr);
1038 	if (rc) {
1039 		SPDK_ERRLOG("Unable to transfer data from host to target\n");
1040 		return -1;
1041 	}
1042 	rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1043 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1044 	return 0;
1045 }
1046 
1047 static int
1048 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1049 {
1050 	int				rc;
1051 	int				num_outstanding_data_wr = 0;
1052 	struct spdk_nvmf_rdma_request	*rdma_req;
1053 	struct spdk_nvmf_qpair		*qpair;
1054 	struct spdk_nvmf_rdma_qpair	*rqpair;
1055 	struct spdk_nvme_cpl		*rsp;
1056 	struct ibv_recv_wr		*bad_recv_wr = NULL;
1057 	struct ibv_send_wr		*send_wr, *bad_send_wr = NULL;
1058 
1059 	*data_posted = 0;
1060 	qpair = req->qpair;
1061 	rsp = &req->rsp->nvme_cpl;
1062 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1063 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1064 
1065 	/* Advance our sq_head pointer */
1066 	if (qpair->sq_head == qpair->sq_head_max) {
1067 		qpair->sq_head = 0;
1068 	} else {
1069 		qpair->sq_head++;
1070 	}
1071 	rsp->sqhd = qpair->sq_head;
1072 
1073 	/* Post the capsule to the recv buffer */
1074 	assert(rdma_req->recv != NULL);
1075 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA RECV POSTED. Recv: %p Connection: %p\n", rdma_req->recv,
1076 		      rqpair);
1077 	if (rqpair->srq == NULL) {
1078 		rc = ibv_post_recv(rqpair->cm_id->qp, &rdma_req->recv->wr, &bad_recv_wr);
1079 	} else {
1080 		rdma_req->recv->qpair = NULL;
1081 		rc = ibv_post_srq_recv(rqpair->srq, &rdma_req->recv->wr, &bad_recv_wr);
1082 	}
1083 
1084 	if (rc) {
1085 		SPDK_ERRLOG("Unable to re-post rx descriptor\n");
1086 		return rc;
1087 	}
1088 	rdma_req->recv = NULL;
1089 	assert(rqpair->current_recv_depth > 0);
1090 	rqpair->current_recv_depth--;
1091 
1092 	/* Build the response which consists of optional
1093 	 * RDMA WRITEs to transfer data, plus an RDMA SEND
1094 	 * containing the response.
1095 	 */
1096 	send_wr = &rdma_req->rsp.wr;
1097 
1098 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
1099 	    req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1100 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA WRITE POSTED. Request: %p Connection: %p\n", req, qpair);
1101 		send_wr = &rdma_req->data.wr;
1102 		*data_posted = 1;
1103 		num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
1104 	}
1105 
1106 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA SEND POSTED. Request: %p Connection: %p\n", req, qpair);
1107 
1108 	/* Send the completion */
1109 	rc = ibv_post_send(rqpair->cm_id->qp, send_wr, &bad_send_wr);
1110 	if (rc) {
1111 		SPDK_ERRLOG("Unable to send response capsule\n");
1112 		return rc;
1113 	}
1114 	/* +1 for the rsp wr */
1115 	rqpair->current_send_depth += num_outstanding_data_wr + 1;
1116 
1117 	return 0;
1118 }
1119 
1120 static int
1121 spdk_nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1122 {
1123 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
1124 	struct rdma_conn_param				ctrlr_event_data = {};
1125 	int						rc;
1126 
1127 	accept_data.recfmt = 0;
1128 	accept_data.crqsize = rqpair->max_queue_depth;
1129 
1130 	ctrlr_event_data.private_data = &accept_data;
1131 	ctrlr_event_data.private_data_len = sizeof(accept_data);
1132 	if (id->ps == RDMA_PS_TCP) {
1133 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1134 		ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1135 	}
1136 
1137 	/* Configure infinite retries for the initiator side qpair.
1138 	 * When using a shared receive queue on the target side,
1139 	 * we need to pass this value to the initiator to prevent the
1140 	 * initiator side NIC from completing SEND requests back to the
1141 	 * initiator with status rnr_retry_count_exceeded. */
1142 	if (rqpair->srq != NULL) {
1143 		ctrlr_event_data.rnr_retry_count = 0x7;
1144 	}
1145 
1146 	rc = rdma_accept(id, &ctrlr_event_data);
1147 	if (rc) {
1148 		SPDK_ERRLOG("Error %d on rdma_accept\n", errno);
1149 	} else {
1150 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Sent back the accept\n");
1151 	}
1152 
1153 	return rc;
1154 }
1155 
1156 static void
1157 spdk_nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1158 {
1159 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
1160 
1161 	rej_data.recfmt = 0;
1162 	rej_data.sts = error;
1163 
1164 	rdma_reject(id, &rej_data, sizeof(rej_data));
1165 }
1166 
1167 static int
1168 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event,
1169 		  new_qpair_fn cb_fn)
1170 {
1171 	struct spdk_nvmf_rdma_transport *rtransport;
1172 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
1173 	struct spdk_nvmf_rdma_port	*port;
1174 	struct rdma_conn_param		*rdma_param = NULL;
1175 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1176 	uint16_t			max_queue_depth;
1177 	uint16_t			max_read_depth;
1178 
1179 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1180 
1181 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1182 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1183 
1184 	rdma_param = &event->param.conn;
1185 	if (rdma_param->private_data == NULL ||
1186 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1187 		SPDK_ERRLOG("connect request: no private data provided\n");
1188 		spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1189 		return -1;
1190 	}
1191 
1192 	private_data = rdma_param->private_data;
1193 	if (private_data->recfmt != 0) {
1194 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1195 		spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1196 		return -1;
1197 	}
1198 
1199 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Connect Recv on fabric intf name %s, dev_name %s\n",
1200 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1201 
1202 	port = event->listen_id->context;
1203 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1204 		      event->listen_id, event->listen_id->verbs, port);
1205 
1206 	/* Figure out the supported queue depth. This is a multi-step process
1207 	 * that takes into account hardware maximums, host provided values,
1208 	 * and our target's internal memory limits */
1209 
1210 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Calculating Queue Depth\n");
1211 
1212 	/* Start with the maximum queue depth allowed by the target */
1213 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1214 	max_read_depth = rtransport->transport.opts.max_queue_depth;
1215 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Target Max Queue Depth: %d\n",
1216 		      rtransport->transport.opts.max_queue_depth);
1217 
1218 	/* Next check the local NIC's hardware limitations */
1219 	SPDK_DEBUGLOG(SPDK_LOG_RDMA,
1220 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1221 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1222 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1223 	max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1224 
1225 	/* Next check the remote NIC's hardware limitations */
1226 	SPDK_DEBUGLOG(SPDK_LOG_RDMA,
1227 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1228 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1229 	if (rdma_param->initiator_depth > 0) {
1230 		max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1231 	}
1232 
1233 	/* Finally check for the host software requested values, which are
1234 	 * optional. */
1235 	if (rdma_param->private_data != NULL &&
1236 	    rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1237 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1238 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Send Queue Size: %d\n", private_data->hsqsize);
1239 		max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1240 		max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1241 	}
1242 
1243 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1244 		      max_queue_depth, max_read_depth);
1245 
1246 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1247 	if (rqpair == NULL) {
1248 		SPDK_ERRLOG("Could not allocate new connection.\n");
1249 		spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1250 		return -1;
1251 	}
1252 
1253 	rqpair->port = port;
1254 	rqpair->max_queue_depth = max_queue_depth;
1255 	rqpair->max_read_depth = max_read_depth;
1256 	rqpair->cm_id = event->id;
1257 	rqpair->listen_id = event->listen_id;
1258 	rqpair->qpair.transport = transport;
1259 
1260 	event->id->context = &rqpair->qpair;
1261 
1262 	cb_fn(&rqpair->qpair);
1263 
1264 	return 0;
1265 }
1266 
1267 static int
1268 spdk_nvmf_rdma_mem_notify(void *cb_ctx, struct spdk_mem_map *map,
1269 			  enum spdk_mem_map_notify_action action,
1270 			  void *vaddr, size_t size)
1271 {
1272 	struct ibv_pd *pd = cb_ctx;
1273 	struct ibv_mr *mr;
1274 
1275 	switch (action) {
1276 	case SPDK_MEM_MAP_NOTIFY_REGISTER:
1277 		if (!g_nvmf_hooks.get_rkey) {
1278 			mr = ibv_reg_mr(pd, vaddr, size,
1279 					IBV_ACCESS_LOCAL_WRITE |
1280 					IBV_ACCESS_REMOTE_READ |
1281 					IBV_ACCESS_REMOTE_WRITE);
1282 			if (mr == NULL) {
1283 				SPDK_ERRLOG("ibv_reg_mr() failed\n");
1284 				return -1;
1285 			} else {
1286 				spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr);
1287 			}
1288 		} else {
1289 			spdk_mem_map_set_translation(map, (uint64_t)vaddr, size,
1290 						     g_nvmf_hooks.get_rkey(pd, vaddr, size));
1291 		}
1292 		break;
1293 	case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
1294 		if (!g_nvmf_hooks.get_rkey) {
1295 			mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL);
1296 			spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size);
1297 			if (mr) {
1298 				ibv_dereg_mr(mr);
1299 			}
1300 		}
1301 		break;
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 static int
1308 spdk_nvmf_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2)
1309 {
1310 	/* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */
1311 	return addr_1 == addr_2;
1312 }
1313 
1314 static void
1315 spdk_nvmf_rdma_request_free_buffers(struct spdk_nvmf_rdma_request *rdma_req,
1316 				    struct spdk_nvmf_transport_poll_group *group, struct spdk_nvmf_transport *transport,
1317 				    uint32_t num_buffers)
1318 {
1319 	uint32_t i;
1320 
1321 	for (i = 0; i < num_buffers; i++) {
1322 		if (group->buf_cache_count < group->buf_cache_size) {
1323 			STAILQ_INSERT_HEAD(&group->buf_cache,
1324 					   (struct spdk_nvmf_transport_pg_cache_buf *)rdma_req->buffers[i], link);
1325 			group->buf_cache_count++;
1326 		} else {
1327 			spdk_mempool_put(transport->data_buf_pool, rdma_req->buffers[i]);
1328 		}
1329 		rdma_req->req.iov[i].iov_base = NULL;
1330 		rdma_req->buffers[i] = NULL;
1331 		rdma_req->req.iov[i].iov_len = 0;
1332 
1333 	}
1334 	rdma_req->data_from_pool = false;
1335 }
1336 
1337 static int
1338 nvmf_rdma_request_get_buffers(struct spdk_nvmf_rdma_request *rdma_req,
1339 			      struct spdk_nvmf_transport_poll_group *group, struct spdk_nvmf_transport *transport,
1340 			      uint32_t num_buffers)
1341 {
1342 	uint32_t i = 0;
1343 
1344 	while (i < num_buffers) {
1345 		if (!(STAILQ_EMPTY(&group->buf_cache))) {
1346 			group->buf_cache_count--;
1347 			rdma_req->buffers[i] = STAILQ_FIRST(&group->buf_cache);
1348 			STAILQ_REMOVE_HEAD(&group->buf_cache, link);
1349 			assert(rdma_req->buffers[i] != NULL);
1350 			i++;
1351 		} else {
1352 			if (spdk_mempool_get_bulk(transport->data_buf_pool, &rdma_req->buffers[i], num_buffers - i)) {
1353 				goto err_exit;
1354 			}
1355 			i += num_buffers - i;
1356 		}
1357 	}
1358 
1359 	return 0;
1360 
1361 err_exit:
1362 	spdk_nvmf_rdma_request_free_buffers(rdma_req, group, transport, i);
1363 	return -ENOMEM;
1364 }
1365 
1366 typedef enum spdk_nvme_data_transfer spdk_nvme_data_transfer_t;
1367 
1368 static spdk_nvme_data_transfer_t
1369 spdk_nvmf_rdma_request_get_xfer(struct spdk_nvmf_rdma_request *rdma_req)
1370 {
1371 	enum spdk_nvme_data_transfer xfer;
1372 	struct spdk_nvme_cmd *cmd = &rdma_req->req.cmd->nvme_cmd;
1373 	struct spdk_nvme_sgl_descriptor *sgl = &cmd->dptr.sgl1;
1374 
1375 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1376 	rdma_req->rsp.wr.opcode = IBV_WR_SEND;
1377 	rdma_req->rsp.wr.imm_data = 0;
1378 #endif
1379 
1380 	/* Figure out data transfer direction */
1381 	if (cmd->opc == SPDK_NVME_OPC_FABRIC) {
1382 		xfer = spdk_nvme_opc_get_data_transfer(rdma_req->req.cmd->nvmf_cmd.fctype);
1383 	} else {
1384 		xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
1385 
1386 		/* Some admin commands are special cases */
1387 		if ((rdma_req->req.qpair->qid == 0) &&
1388 		    ((cmd->opc == SPDK_NVME_OPC_GET_FEATURES) ||
1389 		     (cmd->opc == SPDK_NVME_OPC_SET_FEATURES))) {
1390 			switch (cmd->cdw10 & 0xff) {
1391 			case SPDK_NVME_FEAT_LBA_RANGE_TYPE:
1392 			case SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
1393 			case SPDK_NVME_FEAT_HOST_IDENTIFIER:
1394 				break;
1395 			default:
1396 				xfer = SPDK_NVME_DATA_NONE;
1397 			}
1398 		}
1399 	}
1400 
1401 	if (xfer == SPDK_NVME_DATA_NONE) {
1402 		return xfer;
1403 	}
1404 
1405 	/* Even for commands that may transfer data, they could have specified 0 length.
1406 	 * We want those to show up with xfer SPDK_NVME_DATA_NONE.
1407 	 */
1408 	switch (sgl->generic.type) {
1409 	case SPDK_NVME_SGL_TYPE_DATA_BLOCK:
1410 	case SPDK_NVME_SGL_TYPE_BIT_BUCKET:
1411 	case SPDK_NVME_SGL_TYPE_SEGMENT:
1412 	case SPDK_NVME_SGL_TYPE_LAST_SEGMENT:
1413 	case SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK:
1414 		if (sgl->unkeyed.length == 0) {
1415 			xfer = SPDK_NVME_DATA_NONE;
1416 		}
1417 		break;
1418 	case SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK:
1419 		if (sgl->keyed.length == 0) {
1420 			xfer = SPDK_NVME_DATA_NONE;
1421 		}
1422 		break;
1423 	}
1424 
1425 	return xfer;
1426 }
1427 
1428 static int
1429 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1430 		       struct spdk_nvmf_rdma_request *rdma_req,
1431 		       uint32_t num_sgl_descriptors)
1432 {
1433 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1434 	struct spdk_nvmf_rdma_request_data	*current_data_wr;
1435 	uint32_t				i;
1436 
1437 	if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) {
1438 		return -ENOMEM;
1439 	}
1440 
1441 	current_data_wr = &rdma_req->data;
1442 
1443 	for (i = 0; i < num_sgl_descriptors; i++) {
1444 		if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1445 			current_data_wr->wr.opcode = IBV_WR_RDMA_WRITE;
1446 		} else if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1447 			current_data_wr->wr.opcode = IBV_WR_RDMA_READ;
1448 		} else {
1449 			assert(false);
1450 		}
1451 		work_requests[i]->wr.send_flags = IBV_SEND_SIGNALED;
1452 		work_requests[i]->wr.sg_list = work_requests[i]->sgl;
1453 		work_requests[i]->wr.wr_id = rdma_req->data.wr.wr_id;
1454 		current_data_wr->wr.next = &work_requests[i]->wr;
1455 		current_data_wr = work_requests[i];
1456 	}
1457 
1458 	if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1459 		current_data_wr->wr.opcode = IBV_WR_RDMA_WRITE;
1460 		current_data_wr->wr.next = &rdma_req->rsp.wr;
1461 	} else if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1462 		current_data_wr->wr.opcode = IBV_WR_RDMA_READ;
1463 		current_data_wr->wr.next = NULL;
1464 	}
1465 	return 0;
1466 }
1467 
1468 static int
1469 nvmf_rdma_fill_buffers(struct spdk_nvmf_rdma_transport *rtransport,
1470 		       struct spdk_nvmf_rdma_poll_group *rgroup,
1471 		       struct spdk_nvmf_rdma_device *device,
1472 		       struct spdk_nvmf_rdma_request *rdma_req,
1473 		       struct ibv_send_wr *wr,
1474 		       uint32_t length)
1475 {
1476 	uint64_t	translation_len;
1477 	uint32_t	remaining_length = length;
1478 	uint32_t	iovcnt;
1479 	uint32_t	i = 0;
1480 
1481 
1482 	while (remaining_length) {
1483 		iovcnt = rdma_req->req.iovcnt;
1484 		rdma_req->req.iov[iovcnt].iov_base = (void *)((uintptr_t)(rdma_req->buffers[iovcnt] +
1485 						     NVMF_DATA_BUFFER_MASK) &
1486 						     ~NVMF_DATA_BUFFER_MASK);
1487 		rdma_req->req.iov[iovcnt].iov_len  = spdk_min(remaining_length,
1488 						     rtransport->transport.opts.io_unit_size);
1489 		rdma_req->req.iovcnt++;
1490 		wr->sg_list[i].addr = (uintptr_t)(rdma_req->req.iov[iovcnt].iov_base);
1491 		wr->sg_list[i].length = rdma_req->req.iov[iovcnt].iov_len;
1492 		translation_len = rdma_req->req.iov[iovcnt].iov_len;
1493 
1494 		if (!g_nvmf_hooks.get_rkey) {
1495 			wr->sg_list[i].lkey = ((struct ibv_mr *)spdk_mem_map_translate(device->map,
1496 					       (uint64_t)rdma_req->buffers[iovcnt], &translation_len))->lkey;
1497 		} else {
1498 			wr->sg_list[i].lkey = spdk_mem_map_translate(device->map,
1499 					      (uint64_t)rdma_req->buffers[iovcnt], &translation_len);
1500 		}
1501 
1502 		remaining_length -= rdma_req->req.iov[iovcnt].iov_len;
1503 
1504 		if (translation_len < rdma_req->req.iov[iovcnt].iov_len) {
1505 			SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions\n");
1506 			return -EINVAL;
1507 		}
1508 		i++;
1509 	}
1510 	wr->num_sge = i;
1511 
1512 	return 0;
1513 }
1514 
1515 static int
1516 spdk_nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1517 				 struct spdk_nvmf_rdma_device *device,
1518 				 struct spdk_nvmf_rdma_request *rdma_req)
1519 {
1520 	struct spdk_nvmf_rdma_qpair		*rqpair;
1521 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1522 	uint32_t				num_buffers;
1523 	uint32_t				i = 0;
1524 	int					rc = 0;
1525 
1526 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1527 	rgroup = rqpair->poller->group;
1528 	rdma_req->req.iovcnt = 0;
1529 
1530 	num_buffers = rdma_req->req.length / rtransport->transport.opts.io_unit_size;
1531 	if (rdma_req->req.length % rtransport->transport.opts.io_unit_size) {
1532 		num_buffers++;
1533 	}
1534 
1535 	if (nvmf_rdma_request_get_buffers(rdma_req, &rgroup->group, &rtransport->transport, num_buffers)) {
1536 		return -ENOMEM;
1537 	}
1538 
1539 	rdma_req->req.iovcnt = 0;
1540 
1541 	rc = nvmf_rdma_fill_buffers(rtransport, rgroup, device, rdma_req, &rdma_req->data.wr,
1542 				    rdma_req->req.length);
1543 	if (rc != 0) {
1544 		goto err_exit;
1545 	}
1546 
1547 	assert(rdma_req->req.iovcnt <= rqpair->max_send_sge);
1548 
1549 	rdma_req->data_from_pool = true;
1550 
1551 	return rc;
1552 
1553 err_exit:
1554 	spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport, num_buffers);
1555 	while (i) {
1556 		i--;
1557 		rdma_req->data.wr.sg_list[i].addr = 0;
1558 		rdma_req->data.wr.sg_list[i].length = 0;
1559 		rdma_req->data.wr.sg_list[i].lkey = 0;
1560 	}
1561 	rdma_req->req.iovcnt = 0;
1562 	return rc;
1563 }
1564 
1565 static int
1566 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1567 				      struct spdk_nvmf_rdma_device *device,
1568 				      struct spdk_nvmf_rdma_request *rdma_req)
1569 {
1570 	struct spdk_nvmf_rdma_qpair		*rqpair;
1571 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1572 	struct ibv_send_wr			*current_wr;
1573 	struct spdk_nvmf_request		*req = &rdma_req->req;
1574 	struct spdk_nvme_sgl_descriptor		*inline_segment, *desc;
1575 	uint32_t				num_sgl_descriptors;
1576 	uint32_t				num_buffers = 0;
1577 	uint32_t				i;
1578 	int					rc;
1579 
1580 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1581 	rgroup = rqpair->poller->group;
1582 
1583 	inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1584 	assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1585 	assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1586 
1587 	num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1588 	assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1589 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1590 
1591 	for (i = 0; i < num_sgl_descriptors; i++) {
1592 		num_buffers += desc->keyed.length / rtransport->transport.opts.io_unit_size;
1593 		if (desc->keyed.length % rtransport->transport.opts.io_unit_size) {
1594 			num_buffers++;
1595 		}
1596 		desc++;
1597 	}
1598 	/* If the number of buffers is too large, then we know the I/O is larger than allowed. Fail it. */
1599 	if (num_buffers > NVMF_REQ_MAX_BUFFERS) {
1600 		return -EINVAL;
1601 	}
1602 	if (nvmf_rdma_request_get_buffers(rdma_req, &rgroup->group, &rtransport->transport,
1603 					  num_buffers) != 0) {
1604 		return -ENOMEM;
1605 	}
1606 
1607 	if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) {
1608 		spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport, num_buffers);
1609 		return -ENOMEM;
1610 	}
1611 
1612 	/* The first WR must always be the embedded data WR. This is how we unwind them later. */
1613 	current_wr = &rdma_req->data.wr;
1614 
1615 	req->iovcnt = 0;
1616 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1617 	for (i = 0; i < num_sgl_descriptors; i++) {
1618 		/* The descriptors must be keyed data block descriptors with an address, not an offset. */
1619 		if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1620 				  desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1621 			rc = -EINVAL;
1622 			goto err_exit;
1623 		}
1624 
1625 		current_wr->num_sge = 0;
1626 		req->length += desc->keyed.length;
1627 
1628 		rc = nvmf_rdma_fill_buffers(rtransport, rgroup, device, rdma_req, current_wr,
1629 					    desc->keyed.length);
1630 		if (rc != 0) {
1631 			rc = -ENOMEM;
1632 			goto err_exit;
1633 		}
1634 
1635 		current_wr->wr.rdma.rkey = desc->keyed.key;
1636 		current_wr->wr.rdma.remote_addr = desc->address;
1637 		current_wr = current_wr->next;
1638 		desc++;
1639 	}
1640 
1641 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1642 	/* Go back to the last descriptor in the list. */
1643 	desc--;
1644 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1645 		if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1646 			rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1647 			rdma_req->rsp.wr.imm_data = desc->keyed.key;
1648 		}
1649 	}
1650 #endif
1651 
1652 	rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1653 	rdma_req->data_from_pool = true;
1654 
1655 	return 0;
1656 
1657 err_exit:
1658 	spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport, num_buffers);
1659 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1660 	return rc;
1661 }
1662 
1663 static int
1664 spdk_nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1665 				 struct spdk_nvmf_rdma_device *device,
1666 				 struct spdk_nvmf_rdma_request *rdma_req)
1667 {
1668 	struct spdk_nvme_cmd			*cmd;
1669 	struct spdk_nvme_cpl			*rsp;
1670 	struct spdk_nvme_sgl_descriptor		*sgl;
1671 	int					rc;
1672 
1673 	cmd = &rdma_req->req.cmd->nvme_cmd;
1674 	rsp = &rdma_req->req.rsp->nvme_cpl;
1675 	sgl = &cmd->dptr.sgl1;
1676 
1677 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1678 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1679 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1680 		if (sgl->keyed.length > rtransport->transport.opts.max_io_size) {
1681 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1682 				    sgl->keyed.length, rtransport->transport.opts.max_io_size);
1683 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1684 			return -1;
1685 		}
1686 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1687 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1688 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1689 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1690 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1691 			}
1692 		}
1693 #endif
1694 
1695 		/* fill request length and populate iovs */
1696 		rdma_req->req.length = sgl->keyed.length;
1697 
1698 		if (spdk_nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req) < 0) {
1699 			/* No available buffers. Queue this request up. */
1700 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req);
1701 			return 0;
1702 		}
1703 
1704 		/* backward compatible */
1705 		rdma_req->req.data = rdma_req->req.iov[0].iov_base;
1706 
1707 		/* rdma wr specifics */
1708 		rdma_req->data.wr.num_sge = rdma_req->req.iovcnt;
1709 		rdma_req->data.wr.wr.rdma.rkey = sgl->keyed.key;
1710 		rdma_req->data.wr.wr.rdma.remote_addr = sgl->address;
1711 		if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1712 			rdma_req->data.wr.opcode = IBV_WR_RDMA_WRITE;
1713 			rdma_req->data.wr.next = &rdma_req->rsp.wr;
1714 		} else if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1715 			rdma_req->data.wr.opcode = IBV_WR_RDMA_READ;
1716 			rdma_req->data.wr.next = NULL;
1717 		}
1718 
1719 		/* set the number of outstanding data WRs for this request. */
1720 		rdma_req->num_outstanding_data_wr = 1;
1721 
1722 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req,
1723 			      rdma_req->req.iovcnt);
1724 
1725 		return 0;
1726 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1727 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1728 		uint64_t offset = sgl->address;
1729 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1730 
1731 		SPDK_DEBUGLOG(SPDK_LOG_NVMF, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1732 			      offset, sgl->unkeyed.length);
1733 
1734 		if (offset > max_len) {
1735 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1736 				    offset, max_len);
1737 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1738 			return -1;
1739 		}
1740 		max_len -= (uint32_t)offset;
1741 
1742 		if (sgl->unkeyed.length > max_len) {
1743 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1744 				    sgl->unkeyed.length, max_len);
1745 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1746 			return -1;
1747 		}
1748 
1749 		rdma_req->num_outstanding_data_wr = 0;
1750 		rdma_req->req.data = rdma_req->recv->buf + offset;
1751 		rdma_req->data_from_pool = false;
1752 		rdma_req->req.length = sgl->unkeyed.length;
1753 
1754 		rdma_req->req.iov[0].iov_base = rdma_req->req.data;
1755 		rdma_req->req.iov[0].iov_len = rdma_req->req.length;
1756 		rdma_req->req.iovcnt = 1;
1757 
1758 		return 0;
1759 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1760 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1761 
1762 		rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1763 		if (rc == -ENOMEM) {
1764 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req);
1765 			return 0;
1766 		} else if (rc == -EINVAL) {
1767 			SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1768 			return -1;
1769 		}
1770 
1771 		/* backward compatible */
1772 		rdma_req->req.data = rdma_req->req.iov[0].iov_base;
1773 
1774 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req,
1775 			      rdma_req->req.iovcnt);
1776 
1777 		return 0;
1778 	}
1779 
1780 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
1781 		    sgl->generic.type, sgl->generic.subtype);
1782 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1783 	return -1;
1784 }
1785 
1786 static void
1787 nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1788 		       struct spdk_nvmf_rdma_transport	*rtransport)
1789 {
1790 	struct spdk_nvmf_rdma_qpair		*rqpair;
1791 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1792 
1793 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1794 	if (rdma_req->data_from_pool) {
1795 		rgroup = rqpair->poller->group;
1796 
1797 		spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport,
1798 						    rdma_req->req.iovcnt);
1799 	}
1800 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1801 	rdma_req->req.length = 0;
1802 	rdma_req->req.iovcnt = 0;
1803 	rdma_req->req.data = NULL;
1804 	rdma_req->data.wr.next = NULL;
1805 	rqpair->qd--;
1806 
1807 	STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
1808 	rdma_req->state = RDMA_REQUEST_STATE_FREE;
1809 }
1810 
1811 static bool
1812 spdk_nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
1813 			       struct spdk_nvmf_rdma_request *rdma_req)
1814 {
1815 	struct spdk_nvmf_rdma_qpair	*rqpair;
1816 	struct spdk_nvmf_rdma_device	*device;
1817 	struct spdk_nvmf_rdma_poll_group *rgroup;
1818 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
1819 	int				rc;
1820 	struct spdk_nvmf_rdma_recv	*rdma_recv;
1821 	enum spdk_nvmf_rdma_request_state prev_state;
1822 	bool				progress = false;
1823 	int				data_posted;
1824 
1825 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1826 	device = rqpair->port->device;
1827 	rgroup = rqpair->poller->group;
1828 
1829 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
1830 
1831 	/* If the queue pair is in an error state, force the request to the completed state
1832 	 * to release resources. */
1833 	if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
1834 		if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) {
1835 			STAILQ_REMOVE(&rgroup->pending_data_buf_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
1836 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) {
1837 			STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
1838 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) {
1839 			STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
1840 		}
1841 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
1842 	}
1843 
1844 	/* The loop here is to allow for several back-to-back state changes. */
1845 	do {
1846 		prev_state = rdma_req->state;
1847 
1848 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p entering state %d\n", rdma_req, prev_state);
1849 
1850 		switch (rdma_req->state) {
1851 		case RDMA_REQUEST_STATE_FREE:
1852 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
1853 			 * to escape this state. */
1854 			break;
1855 		case RDMA_REQUEST_STATE_NEW:
1856 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
1857 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1858 			rdma_recv = rdma_req->recv;
1859 
1860 			/* The first element of the SGL is the NVMe command */
1861 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
1862 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
1863 
1864 			if (rqpair->ibv_state == IBV_QPS_ERR  || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
1865 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
1866 				break;
1867 			}
1868 
1869 			/* The next state transition depends on the data transfer needs of this request. */
1870 			rdma_req->req.xfer = spdk_nvmf_rdma_request_get_xfer(rdma_req);
1871 
1872 			/* If no data to transfer, ready to execute. */
1873 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
1874 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
1875 				break;
1876 			}
1877 
1878 			rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
1879 			STAILQ_INSERT_TAIL(&rgroup->pending_data_buf_queue, rdma_req, state_link);
1880 			break;
1881 		case RDMA_REQUEST_STATE_NEED_BUFFER:
1882 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
1883 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1884 
1885 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
1886 
1887 			if (rdma_req != STAILQ_FIRST(&rgroup->pending_data_buf_queue)) {
1888 				/* This request needs to wait in line to obtain a buffer */
1889 				break;
1890 			}
1891 
1892 			/* Try to get a data buffer */
1893 			rc = spdk_nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
1894 			if (rc < 0) {
1895 				STAILQ_REMOVE_HEAD(&rgroup->pending_data_buf_queue, state_link);
1896 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
1897 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
1898 				break;
1899 			}
1900 
1901 			if (!rdma_req->req.data) {
1902 				/* No buffers available. */
1903 				break;
1904 			}
1905 
1906 			STAILQ_REMOVE_HEAD(&rgroup->pending_data_buf_queue, state_link);
1907 
1908 			/* If data is transferring from host to controller and the data didn't
1909 			 * arrive using in capsule data, we need to do a transfer from the host.
1910 			 */
1911 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && rdma_req->data_from_pool) {
1912 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
1913 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
1914 				break;
1915 			}
1916 
1917 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
1918 			break;
1919 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
1920 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
1921 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1922 
1923 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
1924 				/* This request needs to wait in line to perform RDMA */
1925 				break;
1926 			}
1927 			if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth
1928 			    || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) {
1929 				/* We can only have so many WRs outstanding. we have to wait until some finish. */
1930 				break;
1931 			}
1932 
1933 			/* We have already verified that this request is the head of the queue. */
1934 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
1935 
1936 			rc = request_transfer_in(&rdma_req->req);
1937 			if (!rc) {
1938 				rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
1939 			} else {
1940 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
1941 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
1942 			}
1943 			break;
1944 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
1945 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
1946 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1947 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
1948 			 * to escape this state. */
1949 			break;
1950 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
1951 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
1952 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1953 			rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
1954 			spdk_nvmf_request_exec(&rdma_req->req);
1955 			break;
1956 		case RDMA_REQUEST_STATE_EXECUTING:
1957 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
1958 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1959 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
1960 			 * to escape this state. */
1961 			break;
1962 		case RDMA_REQUEST_STATE_EXECUTED:
1963 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
1964 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1965 			if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1966 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
1967 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
1968 			} else {
1969 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
1970 			}
1971 			break;
1972 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
1973 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
1974 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1975 
1976 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
1977 				/* This request needs to wait in line to perform RDMA */
1978 				break;
1979 			}
1980 			if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
1981 			    rqpair->max_send_depth) {
1982 				/* We can only have so many WRs outstanding. we have to wait until some finish.
1983 				 * +1 since each request has an additional wr in the resp. */
1984 				break;
1985 			}
1986 
1987 			/* We have already verified that this request is the head of the queue. */
1988 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
1989 
1990 			/* The data transfer will be kicked off from
1991 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
1992 			 */
1993 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
1994 			break;
1995 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
1996 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
1997 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1998 			rc = request_transfer_out(&rdma_req->req, &data_posted);
1999 			assert(rc == 0); /* No good way to handle this currently */
2000 			if (rc) {
2001 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2002 			} else {
2003 				rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
2004 						  RDMA_REQUEST_STATE_COMPLETING;
2005 			}
2006 			break;
2007 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2008 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
2009 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2010 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2011 			 * to escape this state. */
2012 			break;
2013 		case RDMA_REQUEST_STATE_COMPLETING:
2014 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
2015 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2016 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2017 			 * to escape this state. */
2018 			break;
2019 		case RDMA_REQUEST_STATE_COMPLETED:
2020 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2021 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2022 
2023 			nvmf_rdma_request_free(rdma_req, rtransport);
2024 			break;
2025 		case RDMA_REQUEST_NUM_STATES:
2026 		default:
2027 			assert(0);
2028 			break;
2029 		}
2030 
2031 		if (rdma_req->state != prev_state) {
2032 			progress = true;
2033 		}
2034 	} while (rdma_req->state != prev_state);
2035 
2036 	return progress;
2037 }
2038 
2039 /* Public API callbacks begin here */
2040 
2041 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2042 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2043 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2044 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 64
2045 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2046 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2047 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2048 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4096
2049 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32
2050 
2051 static void
2052 spdk_nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2053 {
2054 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2055 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2056 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2057 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2058 	opts->io_unit_size =		SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2059 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2060 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2061 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2062 	opts->max_srq_depth =		SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2063 }
2064 
2065 const struct spdk_mem_map_ops g_nvmf_rdma_map_ops = {
2066 	.notify_cb = spdk_nvmf_rdma_mem_notify,
2067 	.are_contiguous = spdk_nvmf_rdma_check_contiguous_entries
2068 };
2069 
2070 static int spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport);
2071 
2072 static struct spdk_nvmf_transport *
2073 spdk_nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2074 {
2075 	int rc;
2076 	struct spdk_nvmf_rdma_transport *rtransport;
2077 	struct spdk_nvmf_rdma_device	*device, *tmp;
2078 	struct ibv_pd			*pd;
2079 	struct ibv_context		**contexts;
2080 	uint32_t			i;
2081 	int				flag;
2082 	uint32_t			sge_count;
2083 	uint32_t			min_shared_buffers;
2084 	int				max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2085 
2086 	rtransport = calloc(1, sizeof(*rtransport));
2087 	if (!rtransport) {
2088 		return NULL;
2089 	}
2090 
2091 	if (pthread_mutex_init(&rtransport->lock, NULL)) {
2092 		SPDK_ERRLOG("pthread_mutex_init() failed\n");
2093 		free(rtransport);
2094 		return NULL;
2095 	}
2096 
2097 	TAILQ_INIT(&rtransport->devices);
2098 	TAILQ_INIT(&rtransport->ports);
2099 
2100 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2101 
2102 	SPDK_INFOLOG(SPDK_LOG_RDMA, "*** RDMA Transport Init ***\n"
2103 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
2104 		     "  max_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2105 		     "  in_capsule_data_size=%d, max_aq_depth=%d,\n"
2106 		     "  num_shared_buffers=%d, max_srq_depth=%d\n",
2107 		     opts->max_queue_depth,
2108 		     opts->max_io_size,
2109 		     opts->max_qpairs_per_ctrlr,
2110 		     opts->io_unit_size,
2111 		     opts->in_capsule_data_size,
2112 		     opts->max_aq_depth,
2113 		     opts->num_shared_buffers,
2114 		     opts->max_srq_depth);
2115 
2116 	/* I/O unit size cannot be larger than max I/O size */
2117 	if (opts->io_unit_size > opts->max_io_size) {
2118 		opts->io_unit_size = opts->max_io_size;
2119 	}
2120 
2121 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2122 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2123 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
2124 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2125 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2126 		return NULL;
2127 	}
2128 
2129 	min_shared_buffers = spdk_thread_get_count() * opts->buf_cache_size;
2130 	if (min_shared_buffers > opts->num_shared_buffers) {
2131 		SPDK_ERRLOG("There are not enough buffers to satisfy"
2132 			    "per-poll group caches for each thread. (%" PRIu32 ")"
2133 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2134 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2135 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2136 		return NULL;
2137 	}
2138 
2139 	sge_count = opts->max_io_size / opts->io_unit_size;
2140 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
2141 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2142 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2143 		return NULL;
2144 	}
2145 
2146 	rtransport->event_channel = rdma_create_event_channel();
2147 	if (rtransport->event_channel == NULL) {
2148 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2149 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2150 		return NULL;
2151 	}
2152 
2153 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2154 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2155 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2156 			    rtransport->event_channel->fd, spdk_strerror(errno));
2157 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2158 		return NULL;
2159 	}
2160 
2161 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
2162 				   opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES,
2163 				   sizeof(struct spdk_nvmf_rdma_request_data),
2164 				   SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2165 				   SPDK_ENV_SOCKET_ID_ANY);
2166 	if (!rtransport->data_wr_pool) {
2167 		SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2168 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2169 		return NULL;
2170 	}
2171 
2172 	contexts = rdma_get_devices(NULL);
2173 	if (contexts == NULL) {
2174 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2175 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2176 		return NULL;
2177 	}
2178 
2179 	i = 0;
2180 	rc = 0;
2181 	while (contexts[i] != NULL) {
2182 		device = calloc(1, sizeof(*device));
2183 		if (!device) {
2184 			SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2185 			rc = -ENOMEM;
2186 			break;
2187 		}
2188 		device->context = contexts[i];
2189 		rc = ibv_query_device(device->context, &device->attr);
2190 		if (rc < 0) {
2191 			SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2192 			free(device);
2193 			break;
2194 
2195 		}
2196 
2197 		max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2198 
2199 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2200 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2201 			SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2202 			SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2203 		}
2204 
2205 		/**
2206 		 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2207 		 * The Soft-RoCE RXE driver does not currently support send with invalidate,
2208 		 * but incorrectly reports that it does. There are changes making their way
2209 		 * through the kernel now that will enable this feature. When they are merged,
2210 		 * we can conditionally enable this feature.
2211 		 *
2212 		 * TODO: enable this for versions of the kernel rxe driver that support it.
2213 		 */
2214 		if (device->attr.vendor_id == 0) {
2215 			device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2216 		}
2217 #endif
2218 
2219 		/* set up device context async ev fd as NON_BLOCKING */
2220 		flag = fcntl(device->context->async_fd, F_GETFL);
2221 		rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2222 		if (rc < 0) {
2223 			SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2224 			free(device);
2225 			break;
2226 		}
2227 
2228 		TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2229 		i++;
2230 
2231 		pd = NULL;
2232 		if (g_nvmf_hooks.get_ibv_pd) {
2233 			pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2234 		}
2235 
2236 		if (!g_nvmf_hooks.get_ibv_pd) {
2237 			device->pd = ibv_alloc_pd(device->context);
2238 			if (!device->pd) {
2239 				SPDK_ERRLOG("Unable to allocate protection domain.\n");
2240 				spdk_nvmf_rdma_destroy(&rtransport->transport);
2241 				return NULL;
2242 			}
2243 		} else {
2244 			device->pd = pd;
2245 		}
2246 
2247 		assert(device->map == NULL);
2248 
2249 		device->map = spdk_mem_map_alloc(0, &g_nvmf_rdma_map_ops, device->pd);
2250 		if (!device->map) {
2251 			SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2252 			spdk_nvmf_rdma_destroy(&rtransport->transport);
2253 			return NULL;
2254 		}
2255 
2256 		assert(device->map != NULL);
2257 		assert(device->pd != NULL);
2258 	}
2259 	rdma_free_devices(contexts);
2260 
2261 	if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2262 		/* divide and round up. */
2263 		opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2264 
2265 		/* round up to the nearest 4k. */
2266 		opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2267 
2268 		opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2269 		SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2270 			       opts->io_unit_size);
2271 	}
2272 
2273 	if (rc < 0) {
2274 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2275 		return NULL;
2276 	}
2277 
2278 	/* Set up poll descriptor array to monitor events from RDMA and IB
2279 	 * in a single poll syscall
2280 	 */
2281 	rtransport->npoll_fds = i + 1;
2282 	i = 0;
2283 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2284 	if (rtransport->poll_fds == NULL) {
2285 		SPDK_ERRLOG("poll_fds allocation failed\n");
2286 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2287 		return NULL;
2288 	}
2289 
2290 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2291 	rtransport->poll_fds[i++].events = POLLIN;
2292 
2293 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2294 		rtransport->poll_fds[i].fd = device->context->async_fd;
2295 		rtransport->poll_fds[i++].events = POLLIN;
2296 	}
2297 
2298 	return &rtransport->transport;
2299 }
2300 
2301 static int
2302 spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport)
2303 {
2304 	struct spdk_nvmf_rdma_transport	*rtransport;
2305 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
2306 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
2307 
2308 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2309 
2310 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2311 		TAILQ_REMOVE(&rtransport->ports, port, link);
2312 		rdma_destroy_id(port->id);
2313 		free(port);
2314 	}
2315 
2316 	if (rtransport->poll_fds != NULL) {
2317 		free(rtransport->poll_fds);
2318 	}
2319 
2320 	if (rtransport->event_channel != NULL) {
2321 		rdma_destroy_event_channel(rtransport->event_channel);
2322 	}
2323 
2324 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2325 		TAILQ_REMOVE(&rtransport->devices, device, link);
2326 		if (device->map) {
2327 			spdk_mem_map_free(&device->map);
2328 		}
2329 		if (device->pd) {
2330 			if (!g_nvmf_hooks.get_ibv_pd) {
2331 				ibv_dealloc_pd(device->pd);
2332 			}
2333 		}
2334 		free(device);
2335 	}
2336 
2337 	if (rtransport->data_wr_pool != NULL) {
2338 		if (spdk_mempool_count(rtransport->data_wr_pool) !=
2339 		    (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) {
2340 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2341 				    spdk_mempool_count(rtransport->data_wr_pool),
2342 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2343 		}
2344 	}
2345 
2346 	spdk_mempool_free(rtransport->data_wr_pool);
2347 	pthread_mutex_destroy(&rtransport->lock);
2348 	free(rtransport);
2349 
2350 	return 0;
2351 }
2352 
2353 static int
2354 spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2355 			       struct spdk_nvme_transport_id *trid,
2356 			       bool peer);
2357 
2358 static int
2359 spdk_nvmf_rdma_listen(struct spdk_nvmf_transport *transport,
2360 		      const struct spdk_nvme_transport_id *trid)
2361 {
2362 	struct spdk_nvmf_rdma_transport	*rtransport;
2363 	struct spdk_nvmf_rdma_device	*device;
2364 	struct spdk_nvmf_rdma_port	*port_tmp, *port;
2365 	struct addrinfo			*res;
2366 	struct addrinfo			hints;
2367 	int				family;
2368 	int				rc;
2369 
2370 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2371 
2372 	port = calloc(1, sizeof(*port));
2373 	if (!port) {
2374 		return -ENOMEM;
2375 	}
2376 
2377 	/* Selectively copy the trid. Things like NQN don't matter here - that
2378 	 * mapping is enforced elsewhere.
2379 	 */
2380 	port->trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
2381 	port->trid.adrfam = trid->adrfam;
2382 	snprintf(port->trid.traddr, sizeof(port->trid.traddr), "%s", trid->traddr);
2383 	snprintf(port->trid.trsvcid, sizeof(port->trid.trsvcid), "%s", trid->trsvcid);
2384 
2385 	pthread_mutex_lock(&rtransport->lock);
2386 	assert(rtransport->event_channel != NULL);
2387 	TAILQ_FOREACH(port_tmp, &rtransport->ports, link) {
2388 		if (spdk_nvme_transport_id_compare(&port_tmp->trid, &port->trid) == 0) {
2389 			port_tmp->ref++;
2390 			free(port);
2391 			/* Already listening at this address */
2392 			pthread_mutex_unlock(&rtransport->lock);
2393 			return 0;
2394 		}
2395 	}
2396 
2397 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
2398 	if (rc < 0) {
2399 		SPDK_ERRLOG("rdma_create_id() failed\n");
2400 		free(port);
2401 		pthread_mutex_unlock(&rtransport->lock);
2402 		return rc;
2403 	}
2404 
2405 	switch (port->trid.adrfam) {
2406 	case SPDK_NVMF_ADRFAM_IPV4:
2407 		family = AF_INET;
2408 		break;
2409 	case SPDK_NVMF_ADRFAM_IPV6:
2410 		family = AF_INET6;
2411 		break;
2412 	default:
2413 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", port->trid.adrfam);
2414 		free(port);
2415 		pthread_mutex_unlock(&rtransport->lock);
2416 		return -EINVAL;
2417 	}
2418 
2419 	memset(&hints, 0, sizeof(hints));
2420 	hints.ai_family = family;
2421 	hints.ai_flags = AI_NUMERICSERV;
2422 	hints.ai_socktype = SOCK_STREAM;
2423 	hints.ai_protocol = 0;
2424 
2425 	rc = getaddrinfo(port->trid.traddr, port->trid.trsvcid, &hints, &res);
2426 	if (rc) {
2427 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
2428 		free(port);
2429 		pthread_mutex_unlock(&rtransport->lock);
2430 		return -EINVAL;
2431 	}
2432 
2433 	rc = rdma_bind_addr(port->id, res->ai_addr);
2434 	freeaddrinfo(res);
2435 
2436 	if (rc < 0) {
2437 		SPDK_ERRLOG("rdma_bind_addr() failed\n");
2438 		rdma_destroy_id(port->id);
2439 		free(port);
2440 		pthread_mutex_unlock(&rtransport->lock);
2441 		return rc;
2442 	}
2443 
2444 	if (!port->id->verbs) {
2445 		SPDK_ERRLOG("ibv_context is null\n");
2446 		rdma_destroy_id(port->id);
2447 		free(port);
2448 		pthread_mutex_unlock(&rtransport->lock);
2449 		return -1;
2450 	}
2451 
2452 	rc = rdma_listen(port->id, 10); /* 10 = backlog */
2453 	if (rc < 0) {
2454 		SPDK_ERRLOG("rdma_listen() failed\n");
2455 		rdma_destroy_id(port->id);
2456 		free(port);
2457 		pthread_mutex_unlock(&rtransport->lock);
2458 		return rc;
2459 	}
2460 
2461 	TAILQ_FOREACH(device, &rtransport->devices, link) {
2462 		if (device->context == port->id->verbs) {
2463 			port->device = device;
2464 			break;
2465 		}
2466 	}
2467 	if (!port->device) {
2468 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
2469 			    port->id->verbs);
2470 		rdma_destroy_id(port->id);
2471 		free(port);
2472 		pthread_mutex_unlock(&rtransport->lock);
2473 		return -EINVAL;
2474 	}
2475 
2476 	SPDK_INFOLOG(SPDK_LOG_RDMA, "*** NVMf Target Listening on %s port %d ***\n",
2477 		     port->trid.traddr, ntohs(rdma_get_src_port(port->id)));
2478 
2479 	port->ref = 1;
2480 
2481 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
2482 	pthread_mutex_unlock(&rtransport->lock);
2483 
2484 	return 0;
2485 }
2486 
2487 static int
2488 spdk_nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
2489 			   const struct spdk_nvme_transport_id *_trid)
2490 {
2491 	struct spdk_nvmf_rdma_transport *rtransport;
2492 	struct spdk_nvmf_rdma_port *port, *tmp;
2493 	struct spdk_nvme_transport_id trid = {};
2494 
2495 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2496 
2497 	/* Selectively copy the trid. Things like NQN don't matter here - that
2498 	 * mapping is enforced elsewhere.
2499 	 */
2500 	trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
2501 	trid.adrfam = _trid->adrfam;
2502 	snprintf(trid.traddr, sizeof(port->trid.traddr), "%s", _trid->traddr);
2503 	snprintf(trid.trsvcid, sizeof(port->trid.trsvcid), "%s", _trid->trsvcid);
2504 
2505 	pthread_mutex_lock(&rtransport->lock);
2506 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
2507 		if (spdk_nvme_transport_id_compare(&port->trid, &trid) == 0) {
2508 			assert(port->ref > 0);
2509 			port->ref--;
2510 			if (port->ref == 0) {
2511 				TAILQ_REMOVE(&rtransport->ports, port, link);
2512 				rdma_destroy_id(port->id);
2513 				free(port);
2514 			}
2515 			break;
2516 		}
2517 	}
2518 
2519 	pthread_mutex_unlock(&rtransport->lock);
2520 	return 0;
2521 }
2522 
2523 static void
2524 spdk_nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
2525 				     struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
2526 {
2527 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
2528 	struct spdk_nvmf_rdma_resources *resources;
2529 
2530 	/* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */
2531 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
2532 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2533 			break;
2534 		}
2535 	}
2536 
2537 	/* Then RDMA writes since reads have stronger restrictions than writes */
2538 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
2539 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2540 			break;
2541 		}
2542 	}
2543 
2544 	/* The second highest priority is I/O waiting on memory buffers. */
2545 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->poller->group->pending_data_buf_queue, state_link,
2546 			    req_tmp) {
2547 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2548 			break;
2549 		}
2550 	}
2551 
2552 	resources = rqpair->resources;
2553 	while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
2554 		rdma_req = STAILQ_FIRST(&resources->free_queue);
2555 		STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
2556 		rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
2557 		STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
2558 
2559 		if (rqpair->srq != NULL) {
2560 			rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
2561 			rdma_req->recv->qpair->qd++;
2562 		} else {
2563 			rqpair->qd++;
2564 		}
2565 
2566 		rdma_req->state = RDMA_REQUEST_STATE_NEW;
2567 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false) {
2568 			break;
2569 		}
2570 	}
2571 }
2572 
2573 static void
2574 _nvmf_rdma_qpair_disconnect(void *ctx)
2575 {
2576 	struct spdk_nvmf_qpair *qpair = ctx;
2577 
2578 	spdk_nvmf_qpair_disconnect(qpair, NULL, NULL);
2579 }
2580 
2581 static void
2582 _nvmf_rdma_try_disconnect(void *ctx)
2583 {
2584 	struct spdk_nvmf_qpair *qpair = ctx;
2585 	struct spdk_nvmf_poll_group *group;
2586 
2587 	/* Read the group out of the qpair. This is normally set and accessed only from
2588 	 * the thread that created the group. Here, we're not on that thread necessarily.
2589 	 * The data member qpair->group begins it's life as NULL and then is assigned to
2590 	 * a pointer and never changes. So fortunately reading this and checking for
2591 	 * non-NULL is thread safe in the x86_64 memory model. */
2592 	group = qpair->group;
2593 
2594 	if (group == NULL) {
2595 		/* The qpair hasn't been assigned to a group yet, so we can't
2596 		 * process a disconnect. Send a message to ourself and try again. */
2597 		spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_try_disconnect, qpair);
2598 		return;
2599 	}
2600 
2601 	spdk_thread_send_msg(group->thread, _nvmf_rdma_qpair_disconnect, qpair);
2602 }
2603 
2604 static inline void
2605 spdk_nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair)
2606 {
2607 	if (__sync_bool_compare_and_swap(&rqpair->disconnect_started, false, true)) {
2608 		_nvmf_rdma_try_disconnect(&rqpair->qpair);
2609 	}
2610 }
2611 
2612 static void nvmf_rdma_destroy_drained_qpair(void *ctx)
2613 {
2614 	struct spdk_nvmf_rdma_qpair *rqpair = ctx;
2615 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
2616 			struct spdk_nvmf_rdma_transport, transport);
2617 
2618 	/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
2619 	if (rqpair->current_send_depth != 0) {
2620 		return;
2621 	}
2622 
2623 	if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
2624 		return;
2625 	}
2626 
2627 	if (rqpair->srq != NULL && rqpair->last_wqe_reached == false) {
2628 		return;
2629 	}
2630 
2631 	spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
2632 	spdk_nvmf_rdma_qpair_destroy(rqpair);
2633 }
2634 
2635 
2636 static int
2637 nvmf_rdma_disconnect(struct rdma_cm_event *evt)
2638 {
2639 	struct spdk_nvmf_qpair		*qpair;
2640 	struct spdk_nvmf_rdma_qpair	*rqpair;
2641 
2642 	if (evt->id == NULL) {
2643 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
2644 		return -1;
2645 	}
2646 
2647 	qpair = evt->id->context;
2648 	if (qpair == NULL) {
2649 		SPDK_ERRLOG("disconnect request: no active connection\n");
2650 		return -1;
2651 	}
2652 
2653 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
2654 
2655 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair->cm_id, 0);
2656 
2657 	spdk_nvmf_rdma_update_ibv_state(rqpair);
2658 
2659 	spdk_nvmf_rdma_start_disconnect(rqpair);
2660 
2661 	return 0;
2662 }
2663 
2664 #ifdef DEBUG
2665 static const char *CM_EVENT_STR[] = {
2666 	"RDMA_CM_EVENT_ADDR_RESOLVED",
2667 	"RDMA_CM_EVENT_ADDR_ERROR",
2668 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
2669 	"RDMA_CM_EVENT_ROUTE_ERROR",
2670 	"RDMA_CM_EVENT_CONNECT_REQUEST",
2671 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
2672 	"RDMA_CM_EVENT_CONNECT_ERROR",
2673 	"RDMA_CM_EVENT_UNREACHABLE",
2674 	"RDMA_CM_EVENT_REJECTED",
2675 	"RDMA_CM_EVENT_ESTABLISHED",
2676 	"RDMA_CM_EVENT_DISCONNECTED",
2677 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
2678 	"RDMA_CM_EVENT_MULTICAST_JOIN",
2679 	"RDMA_CM_EVENT_MULTICAST_ERROR",
2680 	"RDMA_CM_EVENT_ADDR_CHANGE",
2681 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
2682 };
2683 #endif /* DEBUG */
2684 
2685 static void
2686 spdk_nvmf_process_cm_event(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn)
2687 {
2688 	struct spdk_nvmf_rdma_transport *rtransport;
2689 	struct rdma_cm_event		*event;
2690 	int				rc;
2691 
2692 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2693 
2694 	if (rtransport->event_channel == NULL) {
2695 		return;
2696 	}
2697 
2698 	while (1) {
2699 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
2700 		if (rc == 0) {
2701 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
2702 
2703 			spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
2704 
2705 			switch (event->event) {
2706 			case RDMA_CM_EVENT_ADDR_RESOLVED:
2707 			case RDMA_CM_EVENT_ADDR_ERROR:
2708 			case RDMA_CM_EVENT_ROUTE_RESOLVED:
2709 			case RDMA_CM_EVENT_ROUTE_ERROR:
2710 				/* No action required. The target never attempts to resolve routes. */
2711 				break;
2712 			case RDMA_CM_EVENT_CONNECT_REQUEST:
2713 				rc = nvmf_rdma_connect(transport, event, cb_fn);
2714 				if (rc < 0) {
2715 					SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
2716 					break;
2717 				}
2718 				break;
2719 			case RDMA_CM_EVENT_CONNECT_RESPONSE:
2720 				/* The target never initiates a new connection. So this will not occur. */
2721 				break;
2722 			case RDMA_CM_EVENT_CONNECT_ERROR:
2723 				/* Can this happen? The docs say it can, but not sure what causes it. */
2724 				break;
2725 			case RDMA_CM_EVENT_UNREACHABLE:
2726 			case RDMA_CM_EVENT_REJECTED:
2727 				/* These only occur on the client side. */
2728 				break;
2729 			case RDMA_CM_EVENT_ESTABLISHED:
2730 				/* TODO: Should we be waiting for this event anywhere? */
2731 				break;
2732 			case RDMA_CM_EVENT_DISCONNECTED:
2733 			case RDMA_CM_EVENT_DEVICE_REMOVAL:
2734 				rc = nvmf_rdma_disconnect(event);
2735 				if (rc < 0) {
2736 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
2737 					break;
2738 				}
2739 				break;
2740 			case RDMA_CM_EVENT_MULTICAST_JOIN:
2741 			case RDMA_CM_EVENT_MULTICAST_ERROR:
2742 				/* Multicast is not used */
2743 				break;
2744 			case RDMA_CM_EVENT_ADDR_CHANGE:
2745 				/* Not utilizing this event */
2746 				break;
2747 			case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2748 				/* For now, do nothing. The target never re-uses queue pairs. */
2749 				break;
2750 			default:
2751 				SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
2752 				break;
2753 			}
2754 
2755 			rdma_ack_cm_event(event);
2756 		} else {
2757 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
2758 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
2759 			}
2760 			break;
2761 		}
2762 	}
2763 }
2764 
2765 static void
2766 spdk_nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
2767 {
2768 	int				rc;
2769 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
2770 	struct ibv_async_event		event;
2771 	enum ibv_qp_state		state;
2772 
2773 	rc = ibv_get_async_event(device->context, &event);
2774 
2775 	if (rc) {
2776 		SPDK_ERRLOG("Failed to get async_event (%d): %s\n",
2777 			    errno, spdk_strerror(errno));
2778 		return;
2779 	}
2780 
2781 	switch (event.event_type) {
2782 	case IBV_EVENT_QP_FATAL:
2783 		rqpair = event.element.qp->qp_context;
2784 		SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
2785 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
2786 				  (uintptr_t)rqpair->cm_id, event.event_type);
2787 		spdk_nvmf_rdma_update_ibv_state(rqpair);
2788 		spdk_nvmf_rdma_start_disconnect(rqpair);
2789 		break;
2790 	case IBV_EVENT_QP_LAST_WQE_REACHED:
2791 		/* This event only occurs for shared receive queues. */
2792 		rqpair = event.element.qp->qp_context;
2793 		rqpair->last_wqe_reached = true;
2794 
2795 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last WQE reached event received for rqpair %p\n", rqpair);
2796 		/* This must be handled on the polling thread if it exists. Otherwise the timeout will catch it. */
2797 		if (rqpair->qpair.group) {
2798 			spdk_thread_send_msg(rqpair->qpair.group->thread, nvmf_rdma_destroy_drained_qpair, rqpair);
2799 		} else {
2800 			SPDK_ERRLOG("Unable to destroy the qpair %p since it does not have a poll group.\n", rqpair);
2801 		}
2802 
2803 		break;
2804 	case IBV_EVENT_SQ_DRAINED:
2805 		/* This event occurs frequently in both error and non-error states.
2806 		 * Check if the qpair is in an error state before sending a message.
2807 		 * Note that we're not on the correct thread to access the qpair, but
2808 		 * the operations that the below calls make all happen to be thread
2809 		 * safe. */
2810 		rqpair = event.element.qp->qp_context;
2811 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last sq drained event received for rqpair %p\n", rqpair);
2812 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
2813 				  (uintptr_t)rqpair->cm_id, event.event_type);
2814 		state = spdk_nvmf_rdma_update_ibv_state(rqpair);
2815 		if (state == IBV_QPS_ERR) {
2816 			spdk_nvmf_rdma_start_disconnect(rqpair);
2817 		}
2818 		break;
2819 	case IBV_EVENT_QP_REQ_ERR:
2820 	case IBV_EVENT_QP_ACCESS_ERR:
2821 	case IBV_EVENT_COMM_EST:
2822 	case IBV_EVENT_PATH_MIG:
2823 	case IBV_EVENT_PATH_MIG_ERR:
2824 		SPDK_NOTICELOG("Async event: %s\n",
2825 			       ibv_event_type_str(event.event_type));
2826 		rqpair = event.element.qp->qp_context;
2827 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
2828 				  (uintptr_t)rqpair->cm_id, event.event_type);
2829 		spdk_nvmf_rdma_update_ibv_state(rqpair);
2830 		break;
2831 	case IBV_EVENT_CQ_ERR:
2832 	case IBV_EVENT_DEVICE_FATAL:
2833 	case IBV_EVENT_PORT_ACTIVE:
2834 	case IBV_EVENT_PORT_ERR:
2835 	case IBV_EVENT_LID_CHANGE:
2836 	case IBV_EVENT_PKEY_CHANGE:
2837 	case IBV_EVENT_SM_CHANGE:
2838 	case IBV_EVENT_SRQ_ERR:
2839 	case IBV_EVENT_SRQ_LIMIT_REACHED:
2840 	case IBV_EVENT_CLIENT_REREGISTER:
2841 	case IBV_EVENT_GID_CHANGE:
2842 	default:
2843 		SPDK_NOTICELOG("Async event: %s\n",
2844 			       ibv_event_type_str(event.event_type));
2845 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
2846 		break;
2847 	}
2848 	ibv_ack_async_event(&event);
2849 }
2850 
2851 static void
2852 spdk_nvmf_rdma_accept(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn)
2853 {
2854 	int	nfds, i = 0;
2855 	struct spdk_nvmf_rdma_transport *rtransport;
2856 	struct spdk_nvmf_rdma_device *device, *tmp;
2857 
2858 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2859 	nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
2860 
2861 	if (nfds <= 0) {
2862 		return;
2863 	}
2864 
2865 	/* The first poll descriptor is RDMA CM event */
2866 	if (rtransport->poll_fds[i++].revents & POLLIN) {
2867 		spdk_nvmf_process_cm_event(transport, cb_fn);
2868 		nfds--;
2869 	}
2870 
2871 	if (nfds == 0) {
2872 		return;
2873 	}
2874 
2875 	/* Second and subsequent poll descriptors are IB async events */
2876 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2877 		if (rtransport->poll_fds[i++].revents & POLLIN) {
2878 			spdk_nvmf_process_ib_event(device);
2879 			nfds--;
2880 		}
2881 	}
2882 	/* check all flagged fd's have been served */
2883 	assert(nfds == 0);
2884 }
2885 
2886 static void
2887 spdk_nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
2888 			struct spdk_nvme_transport_id *trid,
2889 			struct spdk_nvmf_discovery_log_page_entry *entry)
2890 {
2891 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
2892 	entry->adrfam = trid->adrfam;
2893 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_SPECIFIED;
2894 
2895 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
2896 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
2897 
2898 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
2899 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
2900 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
2901 }
2902 
2903 static void
2904 spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
2905 
2906 static struct spdk_nvmf_transport_poll_group *
2907 spdk_nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport)
2908 {
2909 	struct spdk_nvmf_rdma_transport		*rtransport;
2910 	struct spdk_nvmf_rdma_poll_group	*rgroup;
2911 	struct spdk_nvmf_rdma_poller		*poller;
2912 	struct spdk_nvmf_rdma_device		*device;
2913 	struct ibv_srq_init_attr		srq_init_attr;
2914 	struct spdk_nvmf_rdma_resource_opts	opts;
2915 	int					num_cqe;
2916 
2917 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2918 
2919 	rgroup = calloc(1, sizeof(*rgroup));
2920 	if (!rgroup) {
2921 		return NULL;
2922 	}
2923 
2924 	TAILQ_INIT(&rgroup->pollers);
2925 	STAILQ_INIT(&rgroup->pending_data_buf_queue);
2926 
2927 	pthread_mutex_lock(&rtransport->lock);
2928 	TAILQ_FOREACH(device, &rtransport->devices, link) {
2929 		poller = calloc(1, sizeof(*poller));
2930 		if (!poller) {
2931 			SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
2932 			spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
2933 			pthread_mutex_unlock(&rtransport->lock);
2934 			return NULL;
2935 		}
2936 
2937 		poller->device = device;
2938 		poller->group = rgroup;
2939 
2940 		TAILQ_INIT(&poller->qpairs);
2941 
2942 		TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
2943 		if (device->attr.max_srq != 0) {
2944 			poller->max_srq_depth = transport->opts.max_srq_depth;
2945 
2946 			memset(&srq_init_attr, 0, sizeof(struct ibv_srq_init_attr));
2947 			srq_init_attr.attr.max_wr = poller->max_srq_depth;
2948 			srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
2949 			poller->srq = ibv_create_srq(device->pd, &srq_init_attr);
2950 			if (!poller->srq) {
2951 				SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
2952 				spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
2953 				pthread_mutex_unlock(&rtransport->lock);
2954 				return NULL;
2955 			}
2956 
2957 			opts.qp = poller->srq;
2958 			opts.pd = device->pd;
2959 			opts.qpair = NULL;
2960 			opts.shared = true;
2961 			opts.max_queue_depth = poller->max_srq_depth;
2962 			opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
2963 
2964 			poller->resources = nvmf_rdma_resources_create(&opts);
2965 			if (!poller->resources) {
2966 				SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
2967 				spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
2968 				pthread_mutex_unlock(&rtransport->lock);
2969 			}
2970 		}
2971 
2972 		/*
2973 		 * When using an srq, we can limit the completion queue at startup.
2974 		 * The following formula represents the calculation:
2975 		 * num_cqe = num_recv + num_data_wr + num_send_wr.
2976 		 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
2977 		 */
2978 		if (poller->srq) {
2979 			num_cqe = poller->max_srq_depth * 3;
2980 		} else {
2981 			num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
2982 		}
2983 
2984 		poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
2985 		if (!poller->cq) {
2986 			SPDK_ERRLOG("Unable to create completion queue\n");
2987 			spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
2988 			pthread_mutex_unlock(&rtransport->lock);
2989 			return NULL;
2990 		}
2991 		poller->num_cqe = num_cqe;
2992 	}
2993 
2994 	pthread_mutex_unlock(&rtransport->lock);
2995 	return &rgroup->group;
2996 }
2997 
2998 static void
2999 spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
3000 {
3001 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3002 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
3003 	struct spdk_nvmf_rdma_qpair		*qpair, *tmp_qpair;
3004 
3005 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3006 
3007 	if (!rgroup) {
3008 		return;
3009 	}
3010 
3011 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
3012 		TAILQ_REMOVE(&rgroup->pollers, poller, link);
3013 
3014 		TAILQ_FOREACH_SAFE(qpair, &poller->qpairs, link, tmp_qpair) {
3015 			spdk_nvmf_rdma_qpair_destroy(qpair);
3016 		}
3017 
3018 		if (poller->srq) {
3019 			nvmf_rdma_resources_destroy(poller->resources);
3020 			ibv_destroy_srq(poller->srq);
3021 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Destroyed RDMA shared queue %p\n", poller->srq);
3022 		}
3023 
3024 		if (poller->cq) {
3025 			ibv_destroy_cq(poller->cq);
3026 		}
3027 
3028 		free(poller);
3029 	}
3030 
3031 	if (!STAILQ_EMPTY(&rgroup->pending_data_buf_queue)) {
3032 		SPDK_ERRLOG("Pending I/O list wasn't empty on poll group destruction\n");
3033 	}
3034 
3035 	free(rgroup);
3036 }
3037 
3038 static void
3039 spdk_nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
3040 {
3041 	if (rqpair->cm_id != NULL) {
3042 		spdk_nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
3043 	}
3044 	spdk_nvmf_rdma_qpair_destroy(rqpair);
3045 }
3046 
3047 static int
3048 spdk_nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3049 			      struct spdk_nvmf_qpair *qpair)
3050 {
3051 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3052 	struct spdk_nvmf_rdma_qpair		*rqpair;
3053 	struct spdk_nvmf_rdma_device		*device;
3054 	struct spdk_nvmf_rdma_poller		*poller;
3055 	int					rc;
3056 
3057 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3058 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3059 
3060 	device = rqpair->port->device;
3061 
3062 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
3063 		if (poller->device == device) {
3064 			break;
3065 		}
3066 	}
3067 
3068 	if (!poller) {
3069 		SPDK_ERRLOG("No poller found for device.\n");
3070 		return -1;
3071 	}
3072 
3073 	TAILQ_INSERT_TAIL(&poller->qpairs, rqpair, link);
3074 	rqpair->poller = poller;
3075 	rqpair->srq = rqpair->poller->srq;
3076 
3077 	rc = spdk_nvmf_rdma_qpair_initialize(qpair);
3078 	if (rc < 0) {
3079 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
3080 		return -1;
3081 	}
3082 
3083 	rc = spdk_nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
3084 	if (rc) {
3085 		/* Try to reject, but we probably can't */
3086 		spdk_nvmf_rdma_qpair_reject_connection(rqpair);
3087 		return -1;
3088 	}
3089 
3090 	spdk_nvmf_rdma_update_ibv_state(rqpair);
3091 
3092 	return 0;
3093 }
3094 
3095 static int
3096 spdk_nvmf_rdma_request_free(struct spdk_nvmf_request *req)
3097 {
3098 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3099 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3100 			struct spdk_nvmf_rdma_transport, transport);
3101 
3102 	nvmf_rdma_request_free(rdma_req, rtransport);
3103 	return 0;
3104 }
3105 
3106 static int
3107 spdk_nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
3108 {
3109 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3110 			struct spdk_nvmf_rdma_transport, transport);
3111 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
3112 			struct spdk_nvmf_rdma_request, req);
3113 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
3114 			struct spdk_nvmf_rdma_qpair, qpair);
3115 
3116 	if (rqpair->ibv_state != IBV_QPS_ERR) {
3117 		/* The connection is alive, so process the request as normal */
3118 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
3119 	} else {
3120 		/* The connection is dead. Move the request directly to the completed state. */
3121 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3122 	}
3123 
3124 	spdk_nvmf_rdma_request_process(rtransport, rdma_req);
3125 
3126 	return 0;
3127 }
3128 
3129 static int
3130 spdk_nvmf_rdma_destroy_defunct_qpair(void *ctx)
3131 {
3132 	struct spdk_nvmf_rdma_qpair	*rqpair = ctx;
3133 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
3134 			struct spdk_nvmf_rdma_transport, transport);
3135 
3136 	spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
3137 	spdk_nvmf_rdma_qpair_destroy(rqpair);
3138 
3139 	return 0;
3140 }
3141 
3142 static void
3143 spdk_nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair)
3144 {
3145 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3146 
3147 	if (rqpair->disconnect_flags & RDMA_QP_DISCONNECTING) {
3148 		return;
3149 	}
3150 
3151 	rqpair->disconnect_flags |= RDMA_QP_DISCONNECTING;
3152 
3153 	/* This happens only when the qpair is disconnected before
3154 	 * it is added to the poll group. Since there is no poll group,
3155 	 * the RDMA qp has not been initialized yet and the RDMA CM
3156 	 * event has not yet been acknowledged, so we need to reject it.
3157 	 */
3158 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
3159 		spdk_nvmf_rdma_qpair_reject_connection(rqpair);
3160 		return;
3161 	}
3162 
3163 	if (rqpair->ibv_state != IBV_QPS_ERR) {
3164 		spdk_nvmf_rdma_set_ibv_state(rqpair, IBV_QPS_ERR);
3165 	}
3166 
3167 	rqpair->destruct_poller = spdk_poller_register(spdk_nvmf_rdma_destroy_defunct_qpair, (void *)rqpair,
3168 				  NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US);
3169 }
3170 
3171 static struct spdk_nvmf_rdma_qpair *
3172 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
3173 {
3174 	struct spdk_nvmf_rdma_qpair *rqpair;
3175 	/* @todo: improve QP search */
3176 	TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) {
3177 		if (wc->qp_num == rqpair->cm_id->qp->qp_num) {
3178 			return rqpair;
3179 		}
3180 	}
3181 	SPDK_ERRLOG("Didn't find QP with qp_num %u\n", wc->qp_num);
3182 	return NULL;
3183 }
3184 
3185 #ifdef DEBUG
3186 static int
3187 spdk_nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
3188 {
3189 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
3190 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
3191 }
3192 #endif
3193 
3194 static int
3195 spdk_nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
3196 			   struct spdk_nvmf_rdma_poller *rpoller)
3197 {
3198 	struct ibv_wc wc[32];
3199 	struct spdk_nvmf_rdma_wr	*rdma_wr;
3200 	struct spdk_nvmf_rdma_request	*rdma_req;
3201 	struct spdk_nvmf_rdma_recv	*rdma_recv;
3202 	struct spdk_nvmf_rdma_qpair	*rqpair;
3203 	int reaped, i;
3204 	int count = 0;
3205 	bool error = false;
3206 
3207 	/* Poll for completing operations. */
3208 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
3209 	if (reaped < 0) {
3210 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
3211 			    errno, spdk_strerror(errno));
3212 		return -1;
3213 	}
3214 
3215 	for (i = 0; i < reaped; i++) {
3216 
3217 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
3218 
3219 		switch (rdma_wr->type) {
3220 		case RDMA_WR_TYPE_SEND:
3221 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
3222 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
3223 
3224 			if (!wc[i].status) {
3225 				count++;
3226 				assert(wc[i].opcode == IBV_WC_SEND);
3227 				assert(spdk_nvmf_rdma_req_is_completing(rdma_req));
3228 			} else {
3229 				SPDK_ERRLOG("data=%p length=%u\n", rdma_req->req.data, rdma_req->req.length);
3230 			}
3231 
3232 			rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3233 			rqpair->current_send_depth--;
3234 
3235 			spdk_nvmf_rdma_request_process(rtransport, rdma_req);
3236 			assert(rdma_req->num_outstanding_data_wr == 0);
3237 			break;
3238 		case RDMA_WR_TYPE_RECV:
3239 			/* rdma_recv->qpair will be NULL if using an SRQ.  In that case we have to get the qpair from the wc. */
3240 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
3241 			if (rdma_recv->qpair == NULL) {
3242 				rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
3243 			}
3244 			rqpair = rdma_recv->qpair;
3245 
3246 			assert(rqpair != NULL);
3247 			if (!wc[i].status) {
3248 				assert(wc[i].opcode == IBV_WC_RECV);
3249 				if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
3250 					spdk_nvmf_rdma_start_disconnect(rqpair);
3251 					break;
3252 				}
3253 			}
3254 
3255 			rqpair->current_recv_depth++;
3256 			STAILQ_INSERT_TAIL(&rqpair->resources->incoming_queue, rdma_recv, link);
3257 			break;
3258 		case RDMA_WR_TYPE_DATA:
3259 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
3260 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
3261 
3262 			assert(rdma_req->num_outstanding_data_wr > 0);
3263 
3264 			rqpair->current_send_depth--;
3265 			rdma_req->num_outstanding_data_wr--;
3266 			if (!wc[i].status) {
3267 				if (wc[i].opcode == IBV_WC_RDMA_READ) {
3268 					rqpair->current_read_depth--;
3269 					/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
3270 					if (rdma_req->num_outstanding_data_wr == 0) {
3271 						rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
3272 						spdk_nvmf_rdma_request_process(rtransport, rdma_req);
3273 					}
3274 				} else {
3275 					assert(wc[i].opcode == IBV_WC_RDMA_WRITE);
3276 				}
3277 			} else {
3278 				/* If the data transfer fails still force the queue into the error state,
3279 				 * if we were performing an RDMA_READ, we need to force the request into a
3280 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
3281 				 * case, we should wait for the SEND to complete. */
3282 				SPDK_ERRLOG("data=%p length=%u\n", rdma_req->req.data, rdma_req->req.length);
3283 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
3284 					rqpair->current_read_depth--;
3285 					if (rdma_req->num_outstanding_data_wr == 0) {
3286 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3287 					}
3288 				}
3289 			}
3290 			break;
3291 		default:
3292 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
3293 			continue;
3294 		}
3295 
3296 		/* Handle error conditions */
3297 		if (wc[i].status) {
3298 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "CQ error on CQ %p, Request 0x%lu (%d): %s\n",
3299 				      rpoller->cq, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
3300 
3301 			error = true;
3302 
3303 			if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
3304 				/* Disconnect the connection. */
3305 				spdk_nvmf_rdma_start_disconnect(rqpair);
3306 			} else {
3307 				nvmf_rdma_destroy_drained_qpair(rqpair);
3308 			}
3309 			continue;
3310 		}
3311 
3312 		spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
3313 
3314 		if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
3315 			nvmf_rdma_destroy_drained_qpair(rqpair);
3316 		}
3317 	}
3318 
3319 	if (error == true) {
3320 		return -1;
3321 	}
3322 
3323 	return count;
3324 }
3325 
3326 static int
3327 spdk_nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3328 {
3329 	struct spdk_nvmf_rdma_transport *rtransport;
3330 	struct spdk_nvmf_rdma_poll_group *rgroup;
3331 	struct spdk_nvmf_rdma_poller	*rpoller;
3332 	int				count, rc;
3333 
3334 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
3335 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3336 
3337 	count = 0;
3338 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3339 		rc = spdk_nvmf_rdma_poller_poll(rtransport, rpoller);
3340 		if (rc < 0) {
3341 			return rc;
3342 		}
3343 		count += rc;
3344 	}
3345 
3346 	return count;
3347 }
3348 
3349 static int
3350 spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
3351 			       struct spdk_nvme_transport_id *trid,
3352 			       bool peer)
3353 {
3354 	struct sockaddr *saddr;
3355 	uint16_t port;
3356 
3357 	trid->trtype = SPDK_NVME_TRANSPORT_RDMA;
3358 
3359 	if (peer) {
3360 		saddr = rdma_get_peer_addr(id);
3361 	} else {
3362 		saddr = rdma_get_local_addr(id);
3363 	}
3364 	switch (saddr->sa_family) {
3365 	case AF_INET: {
3366 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
3367 
3368 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3369 		inet_ntop(AF_INET, &saddr_in->sin_addr,
3370 			  trid->traddr, sizeof(trid->traddr));
3371 		if (peer) {
3372 			port = ntohs(rdma_get_dst_port(id));
3373 		} else {
3374 			port = ntohs(rdma_get_src_port(id));
3375 		}
3376 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
3377 		break;
3378 	}
3379 	case AF_INET6: {
3380 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
3381 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3382 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
3383 			  trid->traddr, sizeof(trid->traddr));
3384 		if (peer) {
3385 			port = ntohs(rdma_get_dst_port(id));
3386 		} else {
3387 			port = ntohs(rdma_get_src_port(id));
3388 		}
3389 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
3390 		break;
3391 	}
3392 	default:
3393 		return -1;
3394 
3395 	}
3396 
3397 	return 0;
3398 }
3399 
3400 static int
3401 spdk_nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3402 				   struct spdk_nvme_transport_id *trid)
3403 {
3404 	struct spdk_nvmf_rdma_qpair	*rqpair;
3405 
3406 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3407 
3408 	return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
3409 }
3410 
3411 static int
3412 spdk_nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3413 				    struct spdk_nvme_transport_id *trid)
3414 {
3415 	struct spdk_nvmf_rdma_qpair	*rqpair;
3416 
3417 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3418 
3419 	return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
3420 }
3421 
3422 static int
3423 spdk_nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3424 				     struct spdk_nvme_transport_id *trid)
3425 {
3426 	struct spdk_nvmf_rdma_qpair	*rqpair;
3427 
3428 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3429 
3430 	return spdk_nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
3431 }
3432 
3433 void
3434 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
3435 {
3436 	g_nvmf_hooks = *hooks;
3437 }
3438 
3439 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
3440 	.type = SPDK_NVME_TRANSPORT_RDMA,
3441 	.opts_init = spdk_nvmf_rdma_opts_init,
3442 	.create = spdk_nvmf_rdma_create,
3443 	.destroy = spdk_nvmf_rdma_destroy,
3444 
3445 	.listen = spdk_nvmf_rdma_listen,
3446 	.stop_listen = spdk_nvmf_rdma_stop_listen,
3447 	.accept = spdk_nvmf_rdma_accept,
3448 
3449 	.listener_discover = spdk_nvmf_rdma_discover,
3450 
3451 	.poll_group_create = spdk_nvmf_rdma_poll_group_create,
3452 	.poll_group_destroy = spdk_nvmf_rdma_poll_group_destroy,
3453 	.poll_group_add = spdk_nvmf_rdma_poll_group_add,
3454 	.poll_group_poll = spdk_nvmf_rdma_poll_group_poll,
3455 
3456 	.req_free = spdk_nvmf_rdma_request_free,
3457 	.req_complete = spdk_nvmf_rdma_request_complete,
3458 
3459 	.qpair_fini = spdk_nvmf_rdma_close_qpair,
3460 	.qpair_get_peer_trid = spdk_nvmf_rdma_qpair_get_peer_trid,
3461 	.qpair_get_local_trid = spdk_nvmf_rdma_qpair_get_local_trid,
3462 	.qpair_get_listen_trid = spdk_nvmf_rdma_qpair_get_listen_trid,
3463 
3464 };
3465 
3466 SPDK_LOG_REGISTER_COMPONENT("rdma", SPDK_LOG_RDMA)
3467