xref: /spdk/lib/nvmf/rdma.c (revision cfa0a248e28dc42bd51b24c4d4ab64e0b5dd7854)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "spdk/config.h"
10 #include "spdk/thread.h"
11 #include "spdk/likely.h"
12 #include "spdk/nvmf_transport.h"
13 #include "spdk/string.h"
14 #include "spdk/trace.h"
15 #include "spdk/tree.h"
16 #include "spdk/util.h"
17 
18 #include "spdk_internal/assert.h"
19 #include "spdk/log.h"
20 #include "spdk_internal/rdma_provider.h"
21 #include "spdk_internal/rdma_utils.h"
22 
23 #include "nvmf_internal.h"
24 #include "transport.h"
25 
26 #include "spdk_internal/trace_defs.h"
27 
28 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
29 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma;
30 
31 /*
32  RDMA Connection Resource Defaults
33  */
34 #define NVMF_DEFAULT_MSDBD		16
35 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
36 #define NVMF_DEFAULT_RSP_SGE		1
37 #define NVMF_DEFAULT_RX_SGE		2
38 
39 #define NVMF_RDMA_MAX_EVENTS_PER_POLL	32
40 
41 SPDK_STATIC_ASSERT(NVMF_DEFAULT_MSDBD <= SPDK_NVMF_MAX_SGL_ENTRIES,
42 		   "MSDBD must not exceed SPDK_NVMF_MAX_SGL_ENTRIES");
43 
44 /* The RDMA completion queue size */
45 #define DEFAULT_NVMF_RDMA_CQ_SIZE	4096
46 #define MAX_WR_PER_QP(queue_depth)	(queue_depth * 3 + 2)
47 
48 enum spdk_nvmf_rdma_request_state {
49 	/* The request is not currently in use */
50 	RDMA_REQUEST_STATE_FREE = 0,
51 
52 	/* Initial state when request first received */
53 	RDMA_REQUEST_STATE_NEW,
54 
55 	/* The request is queued until a data buffer is available. */
56 	RDMA_REQUEST_STATE_NEED_BUFFER,
57 
58 	/* The request is waiting on RDMA queue depth availability
59 	 * to transfer data from the host to the controller.
60 	 */
61 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
62 
63 	/* The request is currently transferring data from the host to the controller. */
64 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
65 
66 	/* The request is ready to execute at the block device */
67 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
68 
69 	/* The request is currently executing at the block device */
70 	RDMA_REQUEST_STATE_EXECUTING,
71 
72 	/* The request finished executing at the block device */
73 	RDMA_REQUEST_STATE_EXECUTED,
74 
75 	/* The request is waiting on RDMA queue depth availability
76 	 * to transfer data from the controller to the host.
77 	 */
78 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
79 
80 	/* The request is waiting on RDMA queue depth availability
81 	 * to send response to the host.
82 	 */
83 	RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING,
84 
85 	/* The request is ready to send a completion */
86 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
87 
88 	/* The request is currently transferring data from the controller to the host. */
89 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
90 
91 	/* The request currently has an outstanding completion without an
92 	 * associated data transfer.
93 	 */
94 	RDMA_REQUEST_STATE_COMPLETING,
95 
96 	/* The request completed and can be marked free. */
97 	RDMA_REQUEST_STATE_COMPLETED,
98 
99 	/* Terminator */
100 	RDMA_REQUEST_NUM_STATES,
101 };
102 
103 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
104 {
105 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
106 
107 	struct spdk_trace_tpoint_opts opts[] = {
108 		{
109 			"RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW,
110 			OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 1,
111 			{
112 				{ "qpair", SPDK_TRACE_ARG_TYPE_PTR, 8 },
113 				{ "qd", SPDK_TRACE_ARG_TYPE_INT, 4 }
114 			}
115 		},
116 		{
117 			"RDMA_REQ_COMPLETED", TRACE_RDMA_REQUEST_STATE_COMPLETED,
118 			OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
119 			{
120 				{ "qpair", SPDK_TRACE_ARG_TYPE_PTR, 8 },
121 				{ "qd", SPDK_TRACE_ARG_TYPE_INT, 4 }
122 			}
123 		},
124 	};
125 
126 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
127 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
128 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
129 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
130 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H",
131 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
132 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
133 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
134 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C",
135 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
136 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
137 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
138 	spdk_trace_register_description("RDMA_REQ_TX_H2C",
139 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
140 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
141 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
142 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE",
143 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
144 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
145 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
146 	spdk_trace_register_description("RDMA_REQ_EXECUTING",
147 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
148 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
149 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
150 	spdk_trace_register_description("RDMA_REQ_EXECUTED",
151 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
152 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
153 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
154 	spdk_trace_register_description("RDMA_REQ_RDY2COMPL_PEND",
155 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING,
156 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
157 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
158 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL",
159 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
160 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
161 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
162 	spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H",
163 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
164 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
165 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
166 	spdk_trace_register_description("RDMA_REQ_COMPLETING",
167 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
168 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
169 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
170 
171 	spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE,
172 					OWNER_TYPE_NONE, OBJECT_NONE, 0,
173 					SPDK_TRACE_ARG_TYPE_INT, "");
174 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT,
175 					OWNER_TYPE_NONE, OBJECT_NONE, 0,
176 					SPDK_TRACE_ARG_TYPE_INT, "type");
177 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT,
178 					OWNER_TYPE_NONE, OBJECT_NONE, 0,
179 					SPDK_TRACE_ARG_TYPE_INT, "type");
180 	spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT,
181 					OWNER_TYPE_NONE, OBJECT_NONE, 0,
182 					SPDK_TRACE_ARG_TYPE_INT, "");
183 	spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY,
184 					OWNER_TYPE_NONE, OBJECT_NONE, 0,
185 					SPDK_TRACE_ARG_TYPE_INT, "");
186 
187 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_RDMA_IO, 1);
188 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_RDMA_IO, 0);
189 }
190 
191 enum spdk_nvmf_rdma_wr_type {
192 	RDMA_WR_TYPE_RECV,
193 	RDMA_WR_TYPE_SEND,
194 	RDMA_WR_TYPE_DATA,
195 };
196 
197 struct spdk_nvmf_rdma_wr {
198 	/* Uses enum spdk_nvmf_rdma_wr_type */
199 	uint8_t type;
200 };
201 
202 /* This structure holds commands as they are received off the wire.
203  * It must be dynamically paired with a full request object
204  * (spdk_nvmf_rdma_request) to service a request. It is separate
205  * from the request because RDMA does not appear to order
206  * completions, so occasionally we'll get a new incoming
207  * command when there aren't any free request objects.
208  */
209 struct spdk_nvmf_rdma_recv {
210 	struct ibv_recv_wr			wr;
211 	struct ibv_sge				sgl[NVMF_DEFAULT_RX_SGE];
212 
213 	struct spdk_nvmf_rdma_qpair		*qpair;
214 
215 	/* In-capsule data buffer */
216 	uint8_t					*buf;
217 
218 	struct spdk_nvmf_rdma_wr		rdma_wr;
219 	uint64_t				receive_tsc;
220 
221 	STAILQ_ENTRY(spdk_nvmf_rdma_recv)	link;
222 };
223 
224 struct spdk_nvmf_rdma_request_data {
225 	struct ibv_send_wr		wr;
226 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
227 };
228 
229 struct spdk_nvmf_rdma_request {
230 	struct spdk_nvmf_request		req;
231 
232 	bool					fused_failed;
233 
234 	struct spdk_nvmf_rdma_wr		data_wr;
235 	struct spdk_nvmf_rdma_wr		rsp_wr;
236 
237 	/* Uses enum spdk_nvmf_rdma_request_state */
238 	uint8_t					state;
239 
240 	/* Data offset in req.iov */
241 	uint32_t				offset;
242 
243 	struct spdk_nvmf_rdma_recv		*recv;
244 
245 	struct {
246 		struct	ibv_send_wr		wr;
247 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
248 	} rsp;
249 
250 	uint16_t				iovpos;
251 	uint16_t				num_outstanding_data_wr;
252 	/* Used to split Write IO with multi SGL payload */
253 	uint16_t				num_remaining_data_wr;
254 	uint64_t				receive_tsc;
255 	struct spdk_nvmf_rdma_request		*fused_pair;
256 	STAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
257 	struct ibv_send_wr			*remaining_tranfer_in_wrs;
258 	struct ibv_send_wr			*transfer_wr;
259 	struct spdk_nvmf_rdma_request_data	data;
260 };
261 
262 struct spdk_nvmf_rdma_resource_opts {
263 	struct spdk_nvmf_rdma_qpair	*qpair;
264 	/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
265 	void				*qp;
266 	struct spdk_rdma_utils_mem_map	*map;
267 	uint32_t			max_queue_depth;
268 	uint32_t			in_capsule_data_size;
269 	bool				shared;
270 };
271 
272 struct spdk_nvmf_rdma_resources {
273 	/* Array of size "max_queue_depth" containing RDMA requests. */
274 	struct spdk_nvmf_rdma_request		*reqs;
275 
276 	/* Array of size "max_queue_depth" containing RDMA recvs. */
277 	struct spdk_nvmf_rdma_recv		*recvs;
278 
279 	/* Array of size "max_queue_depth" containing 64 byte capsules
280 	 * used for receive.
281 	 */
282 	union nvmf_h2c_msg			*cmds;
283 
284 	/* Array of size "max_queue_depth" containing 16 byte completions
285 	 * to be sent back to the user.
286 	 */
287 	union nvmf_c2h_msg			*cpls;
288 
289 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
290 	 * buffers to be used for in capsule data.
291 	 */
292 	void					*bufs;
293 
294 	/* Receives that are waiting for a request object */
295 	STAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
296 
297 	/* Queue to track free requests */
298 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	free_queue;
299 };
300 
301 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair);
302 
303 typedef void (*spdk_poller_destroy_cb)(void *ctx);
304 
305 struct spdk_nvmf_rdma_ibv_event_ctx {
306 	struct spdk_nvmf_rdma_qpair			*rqpair;
307 	spdk_nvmf_rdma_qpair_ibv_event			cb_fn;
308 	/* Link to other ibv events associated with this qpair */
309 	STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx)	link;
310 };
311 
312 struct spdk_nvmf_rdma_qpair {
313 	struct spdk_nvmf_qpair			qpair;
314 
315 	struct spdk_nvmf_rdma_device		*device;
316 	struct spdk_nvmf_rdma_poller		*poller;
317 
318 	struct spdk_rdma_provider_qp		*rdma_qp;
319 	struct rdma_cm_id			*cm_id;
320 	struct spdk_rdma_provider_srq		*srq;
321 	struct rdma_cm_id			*listen_id;
322 
323 	/* Cache the QP number to improve QP search by RB tree. */
324 	uint32_t				qp_num;
325 
326 	/* The maximum number of I/O outstanding on this connection at one time */
327 	uint16_t				max_queue_depth;
328 
329 	/* The maximum number of active RDMA READ and ATOMIC operations at one time */
330 	uint16_t				max_read_depth;
331 
332 	/* The maximum number of RDMA SEND operations at one time */
333 	uint32_t				max_send_depth;
334 
335 	/* The current number of outstanding WRs from this qpair's
336 	 * recv queue. Should not exceed device->attr.max_queue_depth.
337 	 */
338 	uint16_t				current_recv_depth;
339 
340 	/* The current number of active RDMA READ operations */
341 	uint16_t				current_read_depth;
342 
343 	/* The current number of posted WRs from this qpair's
344 	 * send queue. Should not exceed max_send_depth.
345 	 */
346 	uint32_t				current_send_depth;
347 
348 	/* The maximum number of SGEs per WR on the send queue */
349 	uint32_t				max_send_sge;
350 
351 	/* The maximum number of SGEs per WR on the recv queue */
352 	uint32_t				max_recv_sge;
353 
354 	struct spdk_nvmf_rdma_resources		*resources;
355 
356 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_read_queue;
357 
358 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_write_queue;
359 
360 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_send_queue;
361 
362 	/* Number of requests not in the free state */
363 	uint32_t				qd;
364 
365 	bool					ibv_in_error_state;
366 
367 	RB_ENTRY(spdk_nvmf_rdma_qpair)		node;
368 
369 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	recv_link;
370 
371 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	send_link;
372 
373 	/* Points to the a request that has fuse bits set to
374 	 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting
375 	 * for the request that has SPDK_NVME_CMD_FUSE_SECOND.
376 	 */
377 	struct spdk_nvmf_rdma_request		*fused_first;
378 
379 	/*
380 	 * io_channel which is used to destroy qpair when it is removed from poll group
381 	 */
382 	struct spdk_io_channel		*destruct_channel;
383 
384 	/* List of ibv async events */
385 	STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx)	ibv_events;
386 
387 	/* Lets us know that we have received the last_wqe event. */
388 	bool					last_wqe_reached;
389 
390 	/* Indicate that nvmf_rdma_close_qpair is called */
391 	bool					to_close;
392 };
393 
394 struct spdk_nvmf_rdma_poller_stat {
395 	uint64_t				completions;
396 	uint64_t				polls;
397 	uint64_t				idle_polls;
398 	uint64_t				requests;
399 	uint64_t				request_latency;
400 	uint64_t				pending_free_request;
401 	uint64_t				pending_rdma_read;
402 	uint64_t				pending_rdma_write;
403 	uint64_t				pending_rdma_send;
404 	struct spdk_rdma_provider_qp_stats	qp_stats;
405 };
406 
407 struct spdk_nvmf_rdma_poller {
408 	struct spdk_nvmf_rdma_device		*device;
409 	struct spdk_nvmf_rdma_poll_group	*group;
410 
411 	int					num_cqe;
412 	int					required_num_wr;
413 	struct ibv_cq				*cq;
414 
415 	/* The maximum number of I/O outstanding on the shared receive queue at one time */
416 	uint16_t				max_srq_depth;
417 	bool					need_destroy;
418 
419 	/* Shared receive queue */
420 	struct spdk_rdma_provider_srq		*srq;
421 
422 	struct spdk_nvmf_rdma_resources		*resources;
423 	struct spdk_nvmf_rdma_poller_stat	stat;
424 
425 	spdk_poller_destroy_cb			destroy_cb;
426 	void					*destroy_cb_ctx;
427 
428 	RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs;
429 
430 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_recv;
431 
432 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_send;
433 
434 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
435 };
436 
437 struct spdk_nvmf_rdma_poll_group_stat {
438 	uint64_t				pending_data_buffer;
439 };
440 
441 struct spdk_nvmf_rdma_poll_group {
442 	struct spdk_nvmf_transport_poll_group		group;
443 	struct spdk_nvmf_rdma_poll_group_stat		stat;
444 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)		pollers;
445 	TAILQ_ENTRY(spdk_nvmf_rdma_poll_group)		link;
446 };
447 
448 struct spdk_nvmf_rdma_conn_sched {
449 	struct spdk_nvmf_rdma_poll_group *next_admin_pg;
450 	struct spdk_nvmf_rdma_poll_group *next_io_pg;
451 };
452 
453 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
454 struct spdk_nvmf_rdma_device {
455 	struct ibv_device_attr			attr;
456 	struct ibv_context			*context;
457 
458 	struct spdk_rdma_utils_mem_map		*map;
459 	struct ibv_pd				*pd;
460 
461 	int					num_srq;
462 	bool					need_destroy;
463 	bool					ready_to_destroy;
464 	bool					is_ready;
465 
466 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
467 };
468 
469 struct spdk_nvmf_rdma_port {
470 	const struct spdk_nvme_transport_id	*trid;
471 	struct rdma_cm_id			*id;
472 	struct spdk_nvmf_rdma_device		*device;
473 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
474 };
475 
476 struct rdma_transport_opts {
477 	int		num_cqe;
478 	uint32_t	max_srq_depth;
479 	bool		no_srq;
480 	bool		no_wr_batching;
481 	int		acceptor_backlog;
482 };
483 
484 struct spdk_nvmf_rdma_transport {
485 	struct spdk_nvmf_transport	transport;
486 	struct rdma_transport_opts	rdma_opts;
487 
488 	struct spdk_nvmf_rdma_conn_sched conn_sched;
489 
490 	struct rdma_event_channel	*event_channel;
491 
492 	struct spdk_mempool		*data_wr_pool;
493 
494 	struct spdk_poller		*accept_poller;
495 
496 	/* fields used to poll RDMA/IB events */
497 	nfds_t			npoll_fds;
498 	struct pollfd		*poll_fds;
499 
500 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
501 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
502 	TAILQ_HEAD(, spdk_nvmf_rdma_poll_group)	poll_groups;
503 
504 	/* ports that are removed unexpectedly and need retry listen */
505 	TAILQ_HEAD(, spdk_nvmf_rdma_port)		retry_ports;
506 };
507 
508 struct poller_manage_ctx {
509 	struct spdk_nvmf_rdma_transport		*rtransport;
510 	struct spdk_nvmf_rdma_poll_group	*rgroup;
511 	struct spdk_nvmf_rdma_poller		*rpoller;
512 	struct spdk_nvmf_rdma_device		*device;
513 
514 	struct spdk_thread			*thread;
515 	volatile int				*inflight_op_counter;
516 };
517 
518 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = {
519 	{
520 		"num_cqe", offsetof(struct rdma_transport_opts, num_cqe),
521 		spdk_json_decode_int32, true
522 	},
523 	{
524 		"max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth),
525 		spdk_json_decode_uint32, true
526 	},
527 	{
528 		"no_srq", offsetof(struct rdma_transport_opts, no_srq),
529 		spdk_json_decode_bool, true
530 	},
531 	{
532 		"no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching),
533 		spdk_json_decode_bool, true
534 	},
535 	{
536 		"acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog),
537 		spdk_json_decode_int32, true
538 	},
539 };
540 
541 static int
542 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2)
543 {
544 	return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num;
545 }
546 
547 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare);
548 
549 static bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
550 				      struct spdk_nvmf_rdma_request *rdma_req);
551 
552 static void _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
553 				 struct spdk_nvmf_rdma_poller *rpoller);
554 
555 static void _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
556 				 struct spdk_nvmf_rdma_poller *rpoller);
557 
558 static void _nvmf_rdma_remove_destroyed_device(void *c);
559 
560 static inline enum spdk_nvme_media_error_status_code
561 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) {
562 	enum spdk_nvme_media_error_status_code result;
563 	switch (err_type)
564 	{
565 	case SPDK_DIF_REFTAG_ERROR:
566 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
567 		break;
568 	case SPDK_DIF_APPTAG_ERROR:
569 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
570 		break;
571 	case SPDK_DIF_GUARD_ERROR:
572 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
573 		break;
574 	default:
575 		SPDK_UNREACHABLE();
576 	}
577 
578 	return result;
579 }
580 
581 /*
582  * Return data_wrs to pool starting from \b data_wr
583  * Request's own response and data WR are excluded
584  */
585 static void
586 _nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
587 			     struct ibv_send_wr *data_wr,
588 			     struct spdk_mempool *pool)
589 {
590 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
591 	struct spdk_nvmf_rdma_request_data	*nvmf_data;
592 	struct ibv_send_wr			*next_send_wr;
593 	uint64_t				req_wrid = (uint64_t)&rdma_req->data_wr;
594 	uint32_t				num_wrs = 0;
595 
596 	while (data_wr && data_wr->wr_id == req_wrid) {
597 		nvmf_data = SPDK_CONTAINEROF(data_wr, struct spdk_nvmf_rdma_request_data, wr);
598 		memset(nvmf_data->sgl, 0, sizeof(data_wr->sg_list[0]) * data_wr->num_sge);
599 		data_wr->num_sge = 0;
600 		next_send_wr = data_wr->next;
601 		if (data_wr != &rdma_req->data.wr) {
602 			data_wr->next = NULL;
603 			assert(num_wrs < SPDK_NVMF_MAX_SGL_ENTRIES);
604 			work_requests[num_wrs] = nvmf_data;
605 			num_wrs++;
606 		}
607 		data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : next_send_wr;
608 	}
609 
610 	if (num_wrs) {
611 		spdk_mempool_put_bulk(pool, (void **) work_requests, num_wrs);
612 	}
613 }
614 
615 static void
616 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
617 			    struct spdk_nvmf_rdma_transport *rtransport)
618 {
619 	rdma_req->num_outstanding_data_wr = 0;
620 
621 	_nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool);
622 
623 	if (rdma_req->remaining_tranfer_in_wrs) {
624 		_nvmf_rdma_request_free_data(rdma_req, rdma_req->remaining_tranfer_in_wrs,
625 					     rtransport->data_wr_pool);
626 		rdma_req->remaining_tranfer_in_wrs = NULL;
627 	}
628 
629 	rdma_req->data.wr.next = NULL;
630 	rdma_req->rsp.wr.next = NULL;
631 }
632 
633 static void
634 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
635 {
636 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool);
637 	if (req->req.cmd) {
638 		SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
639 	}
640 	if (req->recv) {
641 		SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
642 	}
643 }
644 
645 static void
646 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
647 {
648 	int i;
649 
650 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
651 	for (i = 0; i < rqpair->max_queue_depth; i++) {
652 		if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
653 			nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
654 		}
655 	}
656 }
657 
658 static void
659 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
660 {
661 	spdk_free(resources->cmds);
662 	spdk_free(resources->cpls);
663 	spdk_free(resources->bufs);
664 	spdk_free(resources->reqs);
665 	spdk_free(resources->recvs);
666 	free(resources);
667 }
668 
669 
670 static struct spdk_nvmf_rdma_resources *
671 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
672 {
673 	struct spdk_nvmf_rdma_resources		*resources;
674 	struct spdk_nvmf_rdma_request		*rdma_req;
675 	struct spdk_nvmf_rdma_recv		*rdma_recv;
676 	struct spdk_rdma_provider_qp		*qp = NULL;
677 	struct spdk_rdma_provider_srq		*srq = NULL;
678 	struct ibv_recv_wr			*bad_wr = NULL;
679 	struct spdk_rdma_utils_memory_translation translation;
680 	uint32_t				i;
681 	int					rc = 0;
682 
683 	resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
684 	if (!resources) {
685 		SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
686 		return NULL;
687 	}
688 
689 	resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs),
690 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
691 	resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs),
692 					0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
693 	resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
694 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
695 	resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
696 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
697 
698 	if (opts->in_capsule_data_size > 0) {
699 		resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size,
700 					       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY,
701 					       SPDK_MALLOC_DMA);
702 	}
703 
704 	if (!resources->reqs || !resources->recvs || !resources->cmds ||
705 	    !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
706 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
707 		goto cleanup;
708 	}
709 
710 	SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx\n",
711 		      resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds));
712 	SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx\n",
713 		      resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls));
714 	if (resources->bufs) {
715 		SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x\n",
716 			      resources->bufs, opts->max_queue_depth *
717 			      opts->in_capsule_data_size);
718 	}
719 
720 	/* Initialize queues */
721 	STAILQ_INIT(&resources->incoming_queue);
722 	STAILQ_INIT(&resources->free_queue);
723 
724 	if (opts->shared) {
725 		srq = (struct spdk_rdma_provider_srq *)opts->qp;
726 	} else {
727 		qp = (struct spdk_rdma_provider_qp *)opts->qp;
728 	}
729 
730 	for (i = 0; i < opts->max_queue_depth; i++) {
731 		rdma_recv = &resources->recvs[i];
732 		rdma_recv->qpair = opts->qpair;
733 
734 		/* Set up memory to receive commands */
735 		if (resources->bufs) {
736 			rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
737 						  opts->in_capsule_data_size));
738 		}
739 
740 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
741 
742 		rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
743 		rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
744 		rc = spdk_rdma_utils_get_translation(opts->map, &resources->cmds[i], sizeof(resources->cmds[i]),
745 						     &translation);
746 		if (rc) {
747 			goto cleanup;
748 		}
749 		rdma_recv->sgl[0].lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation);
750 		rdma_recv->wr.num_sge = 1;
751 
752 		if (rdma_recv->buf) {
753 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
754 			rdma_recv->sgl[1].length = opts->in_capsule_data_size;
755 			rc = spdk_rdma_utils_get_translation(opts->map, rdma_recv->buf, opts->in_capsule_data_size,
756 							     &translation);
757 			if (rc) {
758 				goto cleanup;
759 			}
760 			rdma_recv->sgl[1].lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation);
761 			rdma_recv->wr.num_sge++;
762 		}
763 
764 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
765 		rdma_recv->wr.sg_list = rdma_recv->sgl;
766 		if (srq) {
767 			spdk_rdma_provider_srq_queue_recv_wrs(srq, &rdma_recv->wr);
768 		} else {
769 			spdk_rdma_provider_qp_queue_recv_wrs(qp, &rdma_recv->wr);
770 		}
771 	}
772 
773 	for (i = 0; i < opts->max_queue_depth; i++) {
774 		rdma_req = &resources->reqs[i];
775 
776 		if (opts->qpair != NULL) {
777 			rdma_req->req.qpair = &opts->qpair->qpair;
778 		} else {
779 			rdma_req->req.qpair = NULL;
780 		}
781 		rdma_req->req.cmd = NULL;
782 		rdma_req->req.iovcnt = 0;
783 		rdma_req->req.stripped_data = NULL;
784 
785 		/* Set up memory to send responses */
786 		rdma_req->req.rsp = &resources->cpls[i];
787 
788 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
789 		rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
790 		rc = spdk_rdma_utils_get_translation(opts->map, &resources->cpls[i], sizeof(resources->cpls[i]),
791 						     &translation);
792 		if (rc) {
793 			goto cleanup;
794 		}
795 		rdma_req->rsp.sgl[0].lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation);
796 
797 		rdma_req->rsp_wr.type = RDMA_WR_TYPE_SEND;
798 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp_wr;
799 		rdma_req->rsp.wr.next = NULL;
800 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
801 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
802 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
803 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
804 
805 		/* Set up memory for data buffers */
806 		rdma_req->data_wr.type = RDMA_WR_TYPE_DATA;
807 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data_wr;
808 		rdma_req->data.wr.next = NULL;
809 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
810 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
811 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
812 
813 		/* Initialize request state to FREE */
814 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
815 		STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
816 	}
817 
818 	if (srq) {
819 		rc = spdk_rdma_provider_srq_flush_recv_wrs(srq, &bad_wr);
820 	} else {
821 		rc = spdk_rdma_provider_qp_flush_recv_wrs(qp, &bad_wr);
822 	}
823 
824 	if (rc) {
825 		goto cleanup;
826 	}
827 
828 	return resources;
829 
830 cleanup:
831 	nvmf_rdma_resources_destroy(resources);
832 	return NULL;
833 }
834 
835 static void
836 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair)
837 {
838 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx;
839 	STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) {
840 		ctx->rqpair = NULL;
841 		/* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */
842 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
843 	}
844 }
845 
846 static void nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller);
847 
848 static void
849 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
850 {
851 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
852 	struct ibv_recv_wr		*bad_recv_wr = NULL;
853 	int				rc;
854 
855 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair);
856 
857 	if (rqpair->qd != 0) {
858 		struct spdk_nvmf_qpair *qpair = &rqpair->qpair;
859 		struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(qpair->transport,
860 				struct spdk_nvmf_rdma_transport, transport);
861 		struct spdk_nvmf_rdma_request *req;
862 		uint32_t i, max_req_count = 0;
863 
864 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
865 
866 		if (rqpair->srq == NULL) {
867 			nvmf_rdma_dump_qpair_contents(rqpair);
868 			max_req_count = rqpair->max_queue_depth;
869 		} else if (rqpair->poller && rqpair->resources) {
870 			max_req_count = rqpair->poller->max_srq_depth;
871 		}
872 
873 		SPDK_DEBUGLOG(rdma, "Release incomplete requests\n");
874 		for (i = 0; i < max_req_count; i++) {
875 			req = &rqpair->resources->reqs[i];
876 			if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) {
877 				/* nvmf_rdma_request_process checks qpair ibv and internal state
878 				 * and completes a request */
879 				nvmf_rdma_request_process(rtransport, req);
880 			}
881 		}
882 		assert(rqpair->qd == 0);
883 	}
884 
885 	if (rqpair->poller) {
886 		RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair);
887 
888 		if (rqpair->srq != NULL && rqpair->resources != NULL) {
889 			/* Drop all received but unprocessed commands for this queue and return them to SRQ */
890 			STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
891 				if (rqpair == rdma_recv->qpair) {
892 					STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link);
893 					spdk_rdma_provider_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr);
894 					rc = spdk_rdma_provider_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
895 					if (rc) {
896 						SPDK_ERRLOG("Unable to re-post rx descriptor\n");
897 					}
898 				}
899 			}
900 		}
901 	}
902 
903 	if (rqpair->cm_id) {
904 		if (rqpair->rdma_qp != NULL) {
905 			spdk_rdma_provider_qp_destroy(rqpair->rdma_qp);
906 			rqpair->rdma_qp = NULL;
907 		}
908 
909 		if (rqpair->poller != NULL && rqpair->srq == NULL) {
910 			rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
911 		}
912 	}
913 
914 	if (rqpair->srq == NULL && rqpair->resources != NULL) {
915 		nvmf_rdma_resources_destroy(rqpair->resources);
916 	}
917 
918 	nvmf_rdma_qpair_clean_ibv_events(rqpair);
919 
920 	if (rqpair->destruct_channel) {
921 		spdk_put_io_channel(rqpair->destruct_channel);
922 		rqpair->destruct_channel = NULL;
923 	}
924 
925 	if (rqpair->poller && rqpair->poller->need_destroy && RB_EMPTY(&rqpair->poller->qpairs)) {
926 		nvmf_rdma_poller_destroy(rqpair->poller);
927 	}
928 
929 	/* destroy cm_id last so cma device will not be freed before we destroy the cq. */
930 	if (rqpair->cm_id) {
931 		rdma_destroy_id(rqpair->cm_id);
932 	}
933 
934 	free(rqpair);
935 }
936 
937 static int
938 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
939 {
940 	struct spdk_nvmf_rdma_poller	*rpoller;
941 	int				rc, num_cqe, required_num_wr;
942 
943 	/* Enlarge CQ size dynamically */
944 	rpoller = rqpair->poller;
945 	required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
946 	num_cqe = rpoller->num_cqe;
947 	if (num_cqe < required_num_wr) {
948 		num_cqe = spdk_max(num_cqe * 2, required_num_wr);
949 		num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
950 	}
951 
952 	if (rpoller->num_cqe != num_cqe) {
953 		if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) {
954 			SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n"
955 				    "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe);
956 			return -1;
957 		}
958 		if (required_num_wr > device->attr.max_cqe) {
959 			SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
960 				    required_num_wr, device->attr.max_cqe);
961 			return -1;
962 		}
963 
964 		SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
965 		rc = ibv_resize_cq(rpoller->cq, num_cqe);
966 		if (rc) {
967 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
968 			return -1;
969 		}
970 
971 		rpoller->num_cqe = num_cqe;
972 	}
973 
974 	rpoller->required_num_wr = required_num_wr;
975 	return 0;
976 }
977 
978 static int
979 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
980 {
981 	struct spdk_nvmf_rdma_qpair		*rqpair;
982 	struct spdk_nvmf_rdma_transport		*rtransport;
983 	struct spdk_nvmf_transport		*transport;
984 	struct spdk_nvmf_rdma_resource_opts	opts;
985 	struct spdk_nvmf_rdma_device		*device;
986 	struct spdk_rdma_provider_qp_init_attr	qp_init_attr = {};
987 
988 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
989 	device = rqpair->device;
990 
991 	qp_init_attr.qp_context	= rqpair;
992 	qp_init_attr.pd		= device->pd;
993 	qp_init_attr.send_cq	= rqpair->poller->cq;
994 	qp_init_attr.recv_cq	= rqpair->poller->cq;
995 
996 	if (rqpair->srq) {
997 		qp_init_attr.srq		= rqpair->srq->srq;
998 	} else {
999 		qp_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth;
1000 	}
1001 
1002 	/* SEND, READ, and WRITE operations */
1003 	qp_init_attr.cap.max_send_wr	= (uint32_t)rqpair->max_queue_depth * 2;
1004 	qp_init_attr.cap.max_send_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
1005 	qp_init_attr.cap.max_recv_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
1006 	qp_init_attr.stats		= &rqpair->poller->stat.qp_stats;
1007 
1008 	if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
1009 		SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
1010 		goto error;
1011 	}
1012 
1013 	rqpair->rdma_qp = spdk_rdma_provider_qp_create(rqpair->cm_id, &qp_init_attr);
1014 	if (!rqpair->rdma_qp) {
1015 		goto error;
1016 	}
1017 
1018 	rqpair->qp_num = rqpair->rdma_qp->qp->qp_num;
1019 
1020 	rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2),
1021 					  qp_init_attr.cap.max_send_wr);
1022 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge);
1023 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge);
1024 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair);
1025 	SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair);
1026 
1027 	if (rqpair->poller->srq == NULL) {
1028 		rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
1029 		transport = &rtransport->transport;
1030 
1031 		opts.qp = rqpair->rdma_qp;
1032 		opts.map = device->map;
1033 		opts.qpair = rqpair;
1034 		opts.shared = false;
1035 		opts.max_queue_depth = rqpair->max_queue_depth;
1036 		opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
1037 
1038 		rqpair->resources = nvmf_rdma_resources_create(&opts);
1039 
1040 		if (!rqpair->resources) {
1041 			SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
1042 			rdma_destroy_qp(rqpair->cm_id);
1043 			goto error;
1044 		}
1045 	} else {
1046 		rqpair->resources = rqpair->poller->resources;
1047 	}
1048 
1049 	rqpair->current_recv_depth = 0;
1050 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1051 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1052 	STAILQ_INIT(&rqpair->pending_rdma_send_queue);
1053 	rqpair->qpair.queue_depth = 0;
1054 
1055 	return 0;
1056 
1057 error:
1058 	rdma_destroy_id(rqpair->cm_id);
1059 	rqpair->cm_id = NULL;
1060 	return -1;
1061 }
1062 
1063 /* Append the given recv wr structure to the resource structs outstanding recvs list. */
1064 /* This function accepts either a single wr or the first wr in a linked list. */
1065 static void
1066 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first)
1067 {
1068 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1069 			struct spdk_nvmf_rdma_transport, transport);
1070 
1071 	if (rqpair->srq != NULL) {
1072 		spdk_rdma_provider_srq_queue_recv_wrs(rqpair->srq, first);
1073 	} else {
1074 		if (spdk_rdma_provider_qp_queue_recv_wrs(rqpair->rdma_qp, first)) {
1075 			STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link);
1076 		}
1077 	}
1078 
1079 	if (rtransport->rdma_opts.no_wr_batching) {
1080 		_poller_submit_recvs(rtransport, rqpair->poller);
1081 	}
1082 }
1083 
1084 static inline void
1085 request_transfer_in(struct spdk_nvmf_request *req)
1086 {
1087 	struct spdk_nvmf_rdma_request	*rdma_req;
1088 	struct spdk_nvmf_qpair		*qpair;
1089 	struct spdk_nvmf_rdma_qpair	*rqpair;
1090 	struct spdk_nvmf_rdma_transport *rtransport;
1091 
1092 	qpair = req->qpair;
1093 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1094 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1095 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1096 				      struct spdk_nvmf_rdma_transport, transport);
1097 
1098 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1099 	assert(rdma_req != NULL);
1100 
1101 	if (spdk_rdma_provider_qp_queue_send_wrs(rqpair->rdma_qp, rdma_req->transfer_wr)) {
1102 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1103 	}
1104 	if (rtransport->rdma_opts.no_wr_batching) {
1105 		_poller_submit_sends(rtransport, rqpair->poller);
1106 	}
1107 
1108 	assert(rqpair->current_read_depth + rdma_req->num_outstanding_data_wr <= rqpair->max_read_depth);
1109 	rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1110 	assert(rqpair->current_send_depth + rdma_req->num_outstanding_data_wr <= rqpair->max_send_depth);
1111 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1112 }
1113 
1114 static inline void
1115 nvmf_rdma_request_reset_transfer_in(struct spdk_nvmf_rdma_request *rdma_req,
1116 				    struct spdk_nvmf_rdma_transport *rtransport)
1117 {
1118 	/* Put completed WRs back to pool and move transfer_wr pointer */
1119 	_nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool);
1120 	rdma_req->transfer_wr = rdma_req->remaining_tranfer_in_wrs;
1121 	rdma_req->remaining_tranfer_in_wrs = NULL;
1122 	rdma_req->num_outstanding_data_wr = rdma_req->num_remaining_data_wr;
1123 	rdma_req->num_remaining_data_wr = 0;
1124 }
1125 
1126 static inline int
1127 request_prepare_transfer_in_part(struct spdk_nvmf_request *req, uint32_t num_reads_available)
1128 {
1129 	struct spdk_nvmf_rdma_request	*rdma_req;
1130 	struct ibv_send_wr		*wr;
1131 	uint32_t i;
1132 
1133 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1134 
1135 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1136 	assert(rdma_req != NULL);
1137 	assert(num_reads_available > 0);
1138 	assert(rdma_req->num_outstanding_data_wr > num_reads_available);
1139 	wr = rdma_req->transfer_wr;
1140 
1141 	for (i = 0; i < num_reads_available - 1; i++) {
1142 		wr = wr->next;
1143 	}
1144 
1145 	rdma_req->remaining_tranfer_in_wrs = wr->next;
1146 	rdma_req->num_remaining_data_wr = rdma_req->num_outstanding_data_wr - num_reads_available;
1147 	rdma_req->num_outstanding_data_wr = num_reads_available;
1148 	/* Break chain of WRs to send only part. Once this portion completes, we continue sending RDMA_READs */
1149 	wr->next = NULL;
1150 
1151 	return 0;
1152 }
1153 
1154 static int
1155 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1156 {
1157 	int				num_outstanding_data_wr = 0;
1158 	struct spdk_nvmf_rdma_request	*rdma_req;
1159 	struct spdk_nvmf_qpair		*qpair;
1160 	struct spdk_nvmf_rdma_qpair	*rqpair;
1161 	struct spdk_nvme_cpl		*rsp;
1162 	struct ibv_send_wr		*first = NULL;
1163 	struct spdk_nvmf_rdma_transport *rtransport;
1164 
1165 	*data_posted = 0;
1166 	qpair = req->qpair;
1167 	rsp = &req->rsp->nvme_cpl;
1168 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1169 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1170 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1171 				      struct spdk_nvmf_rdma_transport, transport);
1172 
1173 	/* Advance our sq_head pointer */
1174 	if (qpair->sq_head == qpair->sq_head_max) {
1175 		qpair->sq_head = 0;
1176 	} else {
1177 		qpair->sq_head++;
1178 	}
1179 	rsp->sqhd = qpair->sq_head;
1180 
1181 	/* queue the capsule for the recv buffer */
1182 	assert(rdma_req->recv != NULL);
1183 
1184 	nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr);
1185 
1186 	rdma_req->recv = NULL;
1187 	assert(rqpair->current_recv_depth > 0);
1188 	rqpair->current_recv_depth--;
1189 
1190 	/* Build the response which consists of optional
1191 	 * RDMA WRITEs to transfer data, plus an RDMA SEND
1192 	 * containing the response.
1193 	 */
1194 	first = &rdma_req->rsp.wr;
1195 
1196 	if (spdk_unlikely(rsp->status.sc != SPDK_NVME_SC_SUCCESS)) {
1197 		/* On failure, data was not read from the controller. So clear the
1198 		 * number of outstanding data WRs to zero.
1199 		 */
1200 		rdma_req->num_outstanding_data_wr = 0;
1201 	} else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1202 		first = rdma_req->transfer_wr;
1203 		*data_posted = 1;
1204 		num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
1205 	}
1206 	if (spdk_rdma_provider_qp_queue_send_wrs(rqpair->rdma_qp, first)) {
1207 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1208 	}
1209 	if (rtransport->rdma_opts.no_wr_batching) {
1210 		_poller_submit_sends(rtransport, rqpair->poller);
1211 	}
1212 
1213 	/* +1 for the rsp wr */
1214 	assert(rqpair->current_send_depth + num_outstanding_data_wr + 1 <= rqpair->max_send_depth);
1215 	rqpair->current_send_depth += num_outstanding_data_wr + 1;
1216 
1217 	return 0;
1218 }
1219 
1220 static int
1221 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1222 {
1223 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
1224 	struct rdma_conn_param				ctrlr_event_data = {};
1225 	int						rc;
1226 
1227 	accept_data.recfmt = 0;
1228 	accept_data.crqsize = rqpair->max_queue_depth;
1229 
1230 	ctrlr_event_data.private_data = &accept_data;
1231 	ctrlr_event_data.private_data_len = sizeof(accept_data);
1232 	if (id->ps == RDMA_PS_TCP) {
1233 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1234 		ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1235 	}
1236 
1237 	/* Configure infinite retries for the initiator side qpair.
1238 	 * We need to pass this value to the initiator to prevent the
1239 	 * initiator side NIC from completing SEND requests back to the
1240 	 * initiator with status rnr_retry_count_exceeded. */
1241 	ctrlr_event_data.rnr_retry_count = 0x7;
1242 
1243 	/* When qpair is created without use of rdma cm API, an additional
1244 	 * information must be provided to initiator in the connection response:
1245 	 * whether qpair is using SRQ and its qp_num
1246 	 * Fields below are ignored by rdma cm if qpair has been
1247 	 * created using rdma cm API. */
1248 	ctrlr_event_data.srq = rqpair->srq ? 1 : 0;
1249 	ctrlr_event_data.qp_num = rqpair->qp_num;
1250 
1251 	rc = spdk_rdma_provider_qp_accept(rqpair->rdma_qp, &ctrlr_event_data);
1252 	if (rc) {
1253 		SPDK_ERRLOG("Error %d on spdk_rdma_provider_qp_accept\n", errno);
1254 	} else {
1255 		SPDK_DEBUGLOG(rdma, "Sent back the accept\n");
1256 	}
1257 
1258 	return rc;
1259 }
1260 
1261 static void
1262 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1263 {
1264 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
1265 
1266 	rej_data.recfmt = 0;
1267 	rej_data.sts = error;
1268 
1269 	rdma_reject(id, &rej_data, sizeof(rej_data));
1270 }
1271 
1272 static int
1273 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event)
1274 {
1275 	struct spdk_nvmf_rdma_transport *rtransport;
1276 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
1277 	struct spdk_nvmf_rdma_port	*port;
1278 	struct rdma_conn_param		*rdma_param = NULL;
1279 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1280 	uint16_t			max_queue_depth;
1281 	uint16_t			max_read_depth;
1282 
1283 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1284 
1285 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1286 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1287 
1288 	rdma_param = &event->param.conn;
1289 	if (rdma_param->private_data == NULL ||
1290 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1291 		SPDK_ERRLOG("connect request: no private data provided\n");
1292 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1293 		return -1;
1294 	}
1295 
1296 	private_data = rdma_param->private_data;
1297 	if (private_data->recfmt != 0) {
1298 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1299 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1300 		return -1;
1301 	}
1302 
1303 	SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n",
1304 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1305 
1306 	port = event->listen_id->context;
1307 	SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1308 		      event->listen_id, event->listen_id->verbs, port);
1309 
1310 	/* Figure out the supported queue depth. This is a multi-step process
1311 	 * that takes into account hardware maximums, host provided values,
1312 	 * and our target's internal memory limits */
1313 
1314 	SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n");
1315 
1316 	/* Start with the maximum queue depth allowed by the target */
1317 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1318 	max_read_depth = rtransport->transport.opts.max_queue_depth;
1319 	SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n",
1320 		      rtransport->transport.opts.max_queue_depth);
1321 
1322 	/* Next check the local NIC's hardware limitations */
1323 	SPDK_DEBUGLOG(rdma,
1324 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1325 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1326 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1327 	max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1328 
1329 	/* Next check the remote NIC's hardware limitations */
1330 	SPDK_DEBUGLOG(rdma,
1331 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1332 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1333 	/* from man3 rdma_get_cm_event
1334 	 * responder_resources - Specifies the number of responder resources that is requested by the recipient.
1335 	 * The responder_resources field must match the initiator depth specified by the remote node when running
1336 	 * the rdma_connect and rdma_accept functions. */
1337 	if (rdma_param->responder_resources != 0) {
1338 		if (private_data->qid) {
1339 			SPDK_DEBUGLOG(rdma, "Host (Initiator) is not allowed to use RDMA operations,"
1340 				      " responder_resources must be 0 but set to %u\n",
1341 				      rdma_param->responder_resources);
1342 		} else {
1343 			SPDK_WARNLOG("Host (Initiator) is not allowed to use RDMA operations,"
1344 				     " responder_resources must be 0 but set to %u\n",
1345 				     rdma_param->responder_resources);
1346 		}
1347 	}
1348 	/* from man3 rdma_get_cm_event
1349 	 * initiator_depth - Specifies the maximum number of outstanding RDMA read operations that the recipient holds.
1350 	 * The initiator_depth field must match the responder resources specified by the remote node when running
1351 	 * the rdma_connect and rdma_accept functions. */
1352 	if (rdma_param->initiator_depth == 0) {
1353 		SPDK_ERRLOG("Host (Initiator) doesn't support RDMA_READ or atomic operations\n");
1354 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_IRD);
1355 		return -1;
1356 	}
1357 	max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1358 
1359 	SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1360 	SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize);
1361 	max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1362 	max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1363 
1364 	SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1365 		      max_queue_depth, max_read_depth);
1366 
1367 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1368 	if (rqpair == NULL) {
1369 		SPDK_ERRLOG("Could not allocate new connection.\n");
1370 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1371 		return -1;
1372 	}
1373 
1374 	rqpair->device = port->device;
1375 	rqpair->max_queue_depth = max_queue_depth;
1376 	rqpair->max_read_depth = max_read_depth;
1377 	rqpair->cm_id = event->id;
1378 	rqpair->listen_id = event->listen_id;
1379 	rqpair->qpair.transport = transport;
1380 	STAILQ_INIT(&rqpair->ibv_events);
1381 	/* use qid from the private data to determine the qpair type
1382 	   qid will be set to the appropriate value when the controller is created */
1383 	rqpair->qpair.qid = private_data->qid;
1384 	rqpair->qpair.numa.id_valid = 1;
1385 	rqpair->qpair.numa.id = spdk_rdma_cm_id_get_numa_id(rqpair->cm_id);
1386 
1387 	event->id->context = &rqpair->qpair;
1388 
1389 	spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair);
1390 
1391 	return 0;
1392 }
1393 
1394 static inline void
1395 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next,
1396 		   enum spdk_nvme_data_transfer xfer)
1397 {
1398 	if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1399 		wr->opcode = IBV_WR_RDMA_WRITE;
1400 		wr->send_flags = 0;
1401 		wr->next = next;
1402 	} else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1403 		wr->opcode = IBV_WR_RDMA_READ;
1404 		wr->send_flags = IBV_SEND_SIGNALED;
1405 		wr->next = NULL;
1406 	} else {
1407 		assert(0);
1408 	}
1409 }
1410 
1411 static int
1412 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1413 		       struct spdk_nvmf_rdma_request *rdma_req,
1414 		       uint32_t num_sgl_descriptors)
1415 {
1416 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1417 	struct spdk_nvmf_rdma_request_data	*current_data_wr;
1418 	uint32_t				i;
1419 
1420 	if (spdk_unlikely(num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES)) {
1421 		SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n",
1422 			    num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES);
1423 		return -EINVAL;
1424 	}
1425 
1426 	if (spdk_unlikely(spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests,
1427 						num_sgl_descriptors))) {
1428 		return -ENOMEM;
1429 	}
1430 
1431 	current_data_wr = &rdma_req->data;
1432 
1433 	for (i = 0; i < num_sgl_descriptors; i++) {
1434 		nvmf_rdma_setup_wr(&current_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer);
1435 		current_data_wr->wr.next = &work_requests[i]->wr;
1436 		current_data_wr = work_requests[i];
1437 		current_data_wr->wr.sg_list = current_data_wr->sgl;
1438 		current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id;
1439 	}
1440 
1441 	nvmf_rdma_setup_wr(&current_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1442 
1443 	return 0;
1444 }
1445 
1446 static inline void
1447 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req)
1448 {
1449 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1450 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1451 
1452 	wr->wr.rdma.rkey = sgl->keyed.key;
1453 	wr->wr.rdma.remote_addr = sgl->address;
1454 	nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1455 }
1456 
1457 static inline void
1458 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs)
1459 {
1460 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1461 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1462 	uint32_t			i;
1463 	int				j;
1464 	uint64_t			remote_addr_offset = 0;
1465 
1466 	for (i = 0; i < num_wrs; ++i) {
1467 		wr->wr.rdma.rkey = sgl->keyed.key;
1468 		wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset;
1469 		for (j = 0; j < wr->num_sge; ++j) {
1470 			remote_addr_offset += wr->sg_list[j].length;
1471 		}
1472 		wr = wr->next;
1473 	}
1474 }
1475 
1476 static int
1477 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_device *device,
1478 		      struct spdk_nvmf_rdma_request *rdma_req,
1479 		      struct ibv_send_wr *wr,
1480 		      uint32_t total_length)
1481 {
1482 	struct spdk_rdma_utils_memory_translation mem_translation;
1483 	struct ibv_sge	*sg_ele;
1484 	struct iovec *iov;
1485 	uint32_t lkey, remaining;
1486 	int rc;
1487 
1488 	wr->num_sge = 0;
1489 
1490 	while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) {
1491 		iov = &rdma_req->req.iov[rdma_req->iovpos];
1492 		rc = spdk_rdma_utils_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1493 		if (spdk_unlikely(rc)) {
1494 			return rc;
1495 		}
1496 
1497 		lkey = spdk_rdma_utils_memory_translation_get_lkey(&mem_translation);
1498 		sg_ele = &wr->sg_list[wr->num_sge];
1499 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1500 
1501 		sg_ele->lkey = lkey;
1502 		sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset;
1503 		sg_ele->length = remaining;
1504 		SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr,
1505 			      sg_ele->length);
1506 		rdma_req->offset += sg_ele->length;
1507 		total_length -= sg_ele->length;
1508 		wr->num_sge++;
1509 
1510 		if (rdma_req->offset == iov->iov_len) {
1511 			rdma_req->offset = 0;
1512 			rdma_req->iovpos++;
1513 		}
1514 	}
1515 
1516 	if (spdk_unlikely(total_length)) {
1517 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1518 		return -EINVAL;
1519 	}
1520 
1521 	return 0;
1522 }
1523 
1524 static int
1525 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_device *device,
1526 			       struct spdk_nvmf_rdma_request *rdma_req,
1527 			       struct ibv_send_wr *wr,
1528 			       uint32_t total_length,
1529 			       uint32_t num_extra_wrs)
1530 {
1531 	struct spdk_rdma_utils_memory_translation mem_translation;
1532 	struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx;
1533 	struct ibv_sge *sg_ele;
1534 	struct iovec *iov;
1535 	struct iovec *rdma_iov;
1536 	uint32_t lkey, remaining;
1537 	uint32_t remaining_data_block, data_block_size, md_size;
1538 	uint32_t sge_len;
1539 	int rc;
1540 
1541 	data_block_size = dif_ctx->block_size - dif_ctx->md_size;
1542 
1543 	if (spdk_likely(!rdma_req->req.stripped_data)) {
1544 		rdma_iov = rdma_req->req.iov;
1545 		remaining_data_block = data_block_size;
1546 		md_size = dif_ctx->md_size;
1547 	} else {
1548 		rdma_iov = rdma_req->req.stripped_data->iov;
1549 		total_length = total_length / dif_ctx->block_size * data_block_size;
1550 		remaining_data_block = total_length;
1551 		md_size = 0;
1552 	}
1553 
1554 	wr->num_sge = 0;
1555 
1556 	while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) {
1557 		iov = rdma_iov + rdma_req->iovpos;
1558 		rc = spdk_rdma_utils_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1559 		if (spdk_unlikely(rc)) {
1560 			return rc;
1561 		}
1562 
1563 		lkey = spdk_rdma_utils_memory_translation_get_lkey(&mem_translation);
1564 		sg_ele = &wr->sg_list[wr->num_sge];
1565 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1566 
1567 		while (remaining) {
1568 			if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) {
1569 				if (num_extra_wrs > 0 && wr->next) {
1570 					wr = wr->next;
1571 					wr->num_sge = 0;
1572 					sg_ele = &wr->sg_list[wr->num_sge];
1573 					num_extra_wrs--;
1574 				} else {
1575 					break;
1576 				}
1577 			}
1578 			sg_ele->lkey = lkey;
1579 			sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset);
1580 			sge_len = spdk_min(remaining, remaining_data_block);
1581 			sg_ele->length = sge_len;
1582 			SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele,
1583 				      sg_ele->addr, sg_ele->length);
1584 			remaining -= sge_len;
1585 			remaining_data_block -= sge_len;
1586 			rdma_req->offset += sge_len;
1587 			total_length -= sge_len;
1588 
1589 			sg_ele++;
1590 			wr->num_sge++;
1591 
1592 			if (remaining_data_block == 0) {
1593 				/* skip metadata */
1594 				rdma_req->offset += md_size;
1595 				total_length -= md_size;
1596 				/* Metadata that do not fit this IO buffer will be included in the next IO buffer */
1597 				remaining -= spdk_min(remaining, md_size);
1598 				remaining_data_block = data_block_size;
1599 			}
1600 
1601 			if (remaining == 0) {
1602 				/* By subtracting the size of the last IOV from the offset, we ensure that we skip
1603 				   the remaining metadata bits at the beginning of the next buffer */
1604 				rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset);
1605 				rdma_req->iovpos++;
1606 			}
1607 		}
1608 	}
1609 
1610 	if (spdk_unlikely(total_length)) {
1611 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1612 		return -EINVAL;
1613 	}
1614 
1615 	return 0;
1616 }
1617 
1618 static inline uint32_t
1619 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size)
1620 {
1621 	/* estimate the number of SG entries and WRs needed to process the request */
1622 	uint32_t num_sge = 0;
1623 	uint32_t i;
1624 	uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size);
1625 
1626 	for (i = 0; i < num_buffers && length > 0; i++) {
1627 		uint32_t buffer_len = spdk_min(length, io_unit_size);
1628 		uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size);
1629 
1630 		if (num_sge_in_block * block_size > buffer_len) {
1631 			++num_sge_in_block;
1632 		}
1633 		num_sge += num_sge_in_block;
1634 		length -= buffer_len;
1635 	}
1636 	return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES);
1637 }
1638 
1639 static int
1640 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1641 			    struct spdk_nvmf_rdma_device *device,
1642 			    struct spdk_nvmf_rdma_request *rdma_req)
1643 {
1644 	struct spdk_nvmf_rdma_qpair		*rqpair;
1645 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1646 	struct spdk_nvmf_request		*req = &rdma_req->req;
1647 	struct ibv_send_wr			*wr = &rdma_req->data.wr;
1648 	int					rc;
1649 	uint32_t				num_wrs = 1;
1650 	uint32_t				length;
1651 
1652 	rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair);
1653 	rgroup = rqpair->poller->group;
1654 
1655 	/* rdma wr specifics */
1656 	nvmf_rdma_setup_request(rdma_req);
1657 
1658 	length = req->length;
1659 	if (spdk_unlikely(req->dif_enabled)) {
1660 		req->dif.orig_length = length;
1661 		length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
1662 		req->dif.elba_length = length;
1663 	}
1664 
1665 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
1666 					   length);
1667 	if (spdk_unlikely(rc != 0)) {
1668 		return rc;
1669 	}
1670 
1671 	assert(req->iovcnt <= rqpair->max_send_sge);
1672 
1673 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1674 	 * the stripped_buffers are got for DIF stripping. */
1675 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1676 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1677 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1678 						       &rtransport->transport, req->dif.orig_length);
1679 		if (rc != 0) {
1680 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1681 		}
1682 	}
1683 
1684 	rdma_req->iovpos = 0;
1685 
1686 	if (spdk_unlikely(req->dif_enabled)) {
1687 		num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size,
1688 						 req->dif.dif_ctx.block_size);
1689 		if (num_wrs > 1) {
1690 			rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1);
1691 			if (spdk_unlikely(rc != 0)) {
1692 				goto err_exit;
1693 			}
1694 		}
1695 
1696 		rc = nvmf_rdma_fill_wr_sgl_with_dif(device, rdma_req, wr, length, num_wrs - 1);
1697 		if (spdk_unlikely(rc != 0)) {
1698 			goto err_exit;
1699 		}
1700 
1701 		if (num_wrs > 1) {
1702 			nvmf_rdma_update_remote_addr(rdma_req, num_wrs);
1703 		}
1704 	} else {
1705 		rc = nvmf_rdma_fill_wr_sgl(device, rdma_req, wr, length);
1706 		if (spdk_unlikely(rc != 0)) {
1707 			goto err_exit;
1708 		}
1709 	}
1710 
1711 	/* set the number of outstanding data WRs for this request. */
1712 	rdma_req->num_outstanding_data_wr = num_wrs;
1713 
1714 	return rc;
1715 
1716 err_exit:
1717 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1718 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1719 	req->iovcnt = 0;
1720 	return rc;
1721 }
1722 
1723 static int
1724 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1725 				      struct spdk_nvmf_rdma_device *device,
1726 				      struct spdk_nvmf_rdma_request *rdma_req)
1727 {
1728 	struct spdk_nvmf_rdma_qpair		*rqpair;
1729 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1730 	struct ibv_send_wr			*current_wr;
1731 	struct spdk_nvmf_request		*req = &rdma_req->req;
1732 	struct spdk_nvme_sgl_descriptor		*inline_segment, *desc;
1733 	uint32_t				num_sgl_descriptors;
1734 	uint32_t				lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0;
1735 	uint32_t				i;
1736 	int					rc;
1737 
1738 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1739 	rgroup = rqpair->poller->group;
1740 
1741 	inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1742 	assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1743 	assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1744 
1745 	num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1746 	assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1747 
1748 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1749 	for (i = 0; i < num_sgl_descriptors; i++) {
1750 		if (spdk_likely(!req->dif_enabled)) {
1751 			lengths[i] = desc->keyed.length;
1752 		} else {
1753 			req->dif.orig_length += desc->keyed.length;
1754 			lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx);
1755 			req->dif.elba_length += lengths[i];
1756 		}
1757 		total_length += lengths[i];
1758 		desc++;
1759 	}
1760 
1761 	if (spdk_unlikely(total_length > rtransport->transport.opts.max_io_size)) {
1762 		SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n",
1763 			    total_length, rtransport->transport.opts.max_io_size);
1764 		req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1765 		return -EINVAL;
1766 	}
1767 
1768 	rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1);
1769 	if (spdk_unlikely(rc != 0)) {
1770 		return -ENOMEM;
1771 	}
1772 
1773 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length);
1774 	if (spdk_unlikely(rc != 0)) {
1775 		nvmf_rdma_request_free_data(rdma_req, rtransport);
1776 		return rc;
1777 	}
1778 
1779 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1780 	 * the stripped_buffers are got for DIF stripping. */
1781 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1782 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1783 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1784 						       &rtransport->transport, req->dif.orig_length);
1785 		if (spdk_unlikely(rc != 0)) {
1786 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1787 		}
1788 	}
1789 
1790 	/* The first WR must always be the embedded data WR. This is how we unwind them later. */
1791 	current_wr = &rdma_req->data.wr;
1792 	assert(current_wr != NULL);
1793 
1794 	req->length = 0;
1795 	rdma_req->iovpos = 0;
1796 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1797 	for (i = 0; i < num_sgl_descriptors; i++) {
1798 		/* The descriptors must be keyed data block descriptors with an address, not an offset. */
1799 		if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1800 				  desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1801 			rc = -EINVAL;
1802 			goto err_exit;
1803 		}
1804 
1805 		if (spdk_likely(!req->dif_enabled)) {
1806 			rc = nvmf_rdma_fill_wr_sgl(device, rdma_req, current_wr, lengths[i]);
1807 		} else {
1808 			rc = nvmf_rdma_fill_wr_sgl_with_dif(device, rdma_req, current_wr,
1809 							    lengths[i], 0);
1810 		}
1811 		if (spdk_unlikely(rc != 0)) {
1812 			rc = -ENOMEM;
1813 			goto err_exit;
1814 		}
1815 
1816 		req->length += desc->keyed.length;
1817 		current_wr->wr.rdma.rkey = desc->keyed.key;
1818 		current_wr->wr.rdma.remote_addr = desc->address;
1819 		current_wr = current_wr->next;
1820 		desc++;
1821 	}
1822 
1823 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1824 	/* Go back to the last descriptor in the list. */
1825 	desc--;
1826 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1827 		if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1828 			rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1829 			rdma_req->rsp.wr.imm_data = desc->keyed.key;
1830 		}
1831 	}
1832 #endif
1833 
1834 	rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1835 
1836 	return 0;
1837 
1838 err_exit:
1839 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1840 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1841 	return rc;
1842 }
1843 
1844 static int
1845 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1846 			    struct spdk_nvmf_rdma_device *device,
1847 			    struct spdk_nvmf_rdma_request *rdma_req)
1848 {
1849 	struct spdk_nvmf_request		*req = &rdma_req->req;
1850 	struct spdk_nvme_cpl			*rsp;
1851 	struct spdk_nvme_sgl_descriptor		*sgl;
1852 	int					rc;
1853 	uint32_t				length;
1854 
1855 	rsp = &req->rsp->nvme_cpl;
1856 	sgl = &req->cmd->nvme_cmd.dptr.sgl1;
1857 
1858 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1859 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1860 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1861 
1862 		length = sgl->keyed.length;
1863 		if (spdk_unlikely(length > rtransport->transport.opts.max_io_size)) {
1864 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1865 				    length, rtransport->transport.opts.max_io_size);
1866 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1867 			return -1;
1868 		}
1869 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1870 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1871 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1872 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1873 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1874 			}
1875 		}
1876 #endif
1877 
1878 		/* fill request length and populate iovs */
1879 		req->length = length;
1880 
1881 		rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req);
1882 		if (spdk_unlikely(rc < 0)) {
1883 			if (rc == -EINVAL) {
1884 				SPDK_ERRLOG("SGL length exceeds the max I/O size\n");
1885 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1886 				return -1;
1887 			}
1888 			/* No available buffers. Queue this request up. */
1889 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1890 			return 0;
1891 		}
1892 
1893 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1894 			      req->iovcnt);
1895 
1896 		return 0;
1897 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1898 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1899 		uint64_t offset = sgl->address;
1900 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1901 
1902 		SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1903 			      offset, sgl->unkeyed.length);
1904 
1905 		if (spdk_unlikely(offset > max_len)) {
1906 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1907 				    offset, max_len);
1908 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1909 			return -1;
1910 		}
1911 		max_len -= (uint32_t)offset;
1912 
1913 		if (spdk_unlikely(sgl->unkeyed.length > max_len)) {
1914 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1915 				    sgl->unkeyed.length, max_len);
1916 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1917 			return -1;
1918 		}
1919 
1920 		rdma_req->num_outstanding_data_wr = 0;
1921 		req->data_from_pool = false;
1922 		req->length = sgl->unkeyed.length;
1923 
1924 		req->iov[0].iov_base = rdma_req->recv->buf + offset;
1925 		req->iov[0].iov_len = req->length;
1926 		req->iovcnt = 1;
1927 
1928 		return 0;
1929 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1930 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1931 
1932 		rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1933 		if (spdk_unlikely(rc == -ENOMEM)) {
1934 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1935 			return 0;
1936 		} else if (spdk_unlikely(rc == -EINVAL)) {
1937 			SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1938 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1939 			return -1;
1940 		}
1941 
1942 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1943 			      req->iovcnt);
1944 
1945 		return 0;
1946 	}
1947 
1948 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
1949 		    sgl->generic.type, sgl->generic.subtype);
1950 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1951 	return -1;
1952 }
1953 
1954 static void
1955 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1956 			struct spdk_nvmf_rdma_transport	*rtransport)
1957 {
1958 	struct spdk_nvmf_rdma_qpair		*rqpair;
1959 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1960 
1961 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1962 	if (rdma_req->req.data_from_pool) {
1963 		rgroup = rqpair->poller->group;
1964 
1965 		spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport);
1966 	}
1967 	if (rdma_req->req.stripped_data) {
1968 		nvmf_request_free_stripped_buffers(&rdma_req->req,
1969 						   &rqpair->poller->group->group,
1970 						   &rtransport->transport);
1971 	}
1972 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1973 	rdma_req->req.length = 0;
1974 	rdma_req->req.iovcnt = 0;
1975 	rdma_req->offset = 0;
1976 	rdma_req->req.dif_enabled = false;
1977 	rdma_req->fused_failed = false;
1978 	rdma_req->transfer_wr = NULL;
1979 	if (rdma_req->fused_pair) {
1980 		/* This req was part of a valid fused pair, but failed before it got to
1981 		 * READ_TO_EXECUTE state.  This means we need to fail the other request
1982 		 * in the pair, because it is no longer part of a valid pair.  If the pair
1983 		 * already reached READY_TO_EXECUTE state, we need to kick it.
1984 		 */
1985 		rdma_req->fused_pair->fused_failed = true;
1986 		if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
1987 			nvmf_rdma_request_process(rtransport, rdma_req->fused_pair);
1988 		}
1989 		rdma_req->fused_pair = NULL;
1990 	}
1991 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
1992 	rqpair->qd--;
1993 
1994 	STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
1995 	rqpair->qpair.queue_depth--;
1996 	rdma_req->state = RDMA_REQUEST_STATE_FREE;
1997 }
1998 
1999 static void
2000 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport,
2001 			       struct spdk_nvmf_rdma_qpair *rqpair,
2002 			       struct spdk_nvmf_rdma_request *rdma_req)
2003 {
2004 	enum spdk_nvme_cmd_fuse last, next;
2005 
2006 	last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2007 	next = rdma_req->req.cmd->nvme_cmd.fuse;
2008 
2009 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2010 
2011 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2012 		return;
2013 	}
2014 
2015 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2016 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2017 			/* This is a valid pair of fused commands.  Point them at each other
2018 			 * so they can be submitted consecutively once ready to be executed.
2019 			 */
2020 			rqpair->fused_first->fused_pair = rdma_req;
2021 			rdma_req->fused_pair = rqpair->fused_first;
2022 			rqpair->fused_first = NULL;
2023 			return;
2024 		} else {
2025 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2026 			rqpair->fused_first->fused_failed = true;
2027 
2028 			/* If the last req is in READY_TO_EXECUTE state, then call
2029 			 * nvmf_rdma_request_process(), otherwise nothing else will kick it.
2030 			 */
2031 			if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2032 				nvmf_rdma_request_process(rtransport, rqpair->fused_first);
2033 			}
2034 
2035 			rqpair->fused_first = NULL;
2036 		}
2037 	}
2038 
2039 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2040 		/* Set rqpair->fused_first here so that we know to check that the next request
2041 		 * is a SECOND (and to fail this one if it isn't).
2042 		 */
2043 		rqpair->fused_first = rdma_req;
2044 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2045 		/* Mark this req failed since it ia SECOND and the last one was not a FIRST. */
2046 		rdma_req->fused_failed = true;
2047 	}
2048 }
2049 
2050 bool
2051 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
2052 			  struct spdk_nvmf_rdma_request *rdma_req)
2053 {
2054 	struct spdk_nvmf_rdma_qpair	*rqpair;
2055 	struct spdk_nvmf_rdma_device	*device;
2056 	struct spdk_nvmf_rdma_poll_group *rgroup;
2057 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
2058 	int				rc;
2059 	struct spdk_nvmf_rdma_recv	*rdma_recv;
2060 	enum spdk_nvmf_rdma_request_state prev_state;
2061 	bool				progress = false;
2062 	int				data_posted;
2063 	uint32_t			num_blocks, num_rdma_reads_available, qdepth;
2064 
2065 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2066 	device = rqpair->device;
2067 	rgroup = rqpair->poller->group;
2068 
2069 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
2070 
2071 	/* If the queue pair is in an error state, force the request to the completed state
2072 	 * to release resources. */
2073 	if (spdk_unlikely(rqpair->ibv_in_error_state || !spdk_nvmf_qpair_is_active(&rqpair->qpair))) {
2074 		switch (rdma_req->state) {
2075 		case RDMA_REQUEST_STATE_NEED_BUFFER:
2076 			STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link);
2077 			break;
2078 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2079 			STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2080 			break;
2081 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2082 			if (rdma_req->num_remaining_data_wr) {
2083 				/* Partially sent request is still in the pending_rdma_read_queue,
2084 				 * remove it before completing */
2085 				rdma_req->num_remaining_data_wr = 0;
2086 				STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2087 			}
2088 			break;
2089 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2090 			STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2091 			break;
2092 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING:
2093 			STAILQ_REMOVE(&rqpair->pending_rdma_send_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2094 			break;
2095 		default:
2096 			break;
2097 		}
2098 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2099 	}
2100 
2101 	/* The loop here is to allow for several back-to-back state changes. */
2102 	do {
2103 		prev_state = rdma_req->state;
2104 
2105 		SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state);
2106 
2107 		switch (rdma_req->state) {
2108 		case RDMA_REQUEST_STATE_FREE:
2109 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
2110 			 * to escape this state. */
2111 			break;
2112 		case RDMA_REQUEST_STATE_NEW:
2113 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
2114 					  (uintptr_t)rdma_req, (uintptr_t)rqpair, rqpair->qpair.queue_depth);
2115 			rdma_recv = rdma_req->recv;
2116 
2117 			/* The first element of the SGL is the NVMe command */
2118 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
2119 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
2120 			rdma_req->transfer_wr = &rdma_req->data.wr;
2121 
2122 			if (spdk_unlikely(rqpair->ibv_in_error_state || !spdk_nvmf_qpair_is_active(&rqpair->qpair))) {
2123 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2124 				break;
2125 			}
2126 
2127 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) {
2128 				rdma_req->req.dif_enabled = true;
2129 			}
2130 
2131 			nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req);
2132 
2133 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2134 			rdma_req->rsp.wr.opcode = IBV_WR_SEND;
2135 			rdma_req->rsp.wr.imm_data = 0;
2136 #endif
2137 
2138 			/* The next state transition depends on the data transfer needs of this request. */
2139 			rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req);
2140 
2141 			if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2142 				rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2143 				rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE;
2144 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2145 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2146 				SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req);
2147 				break;
2148 			}
2149 
2150 			/* If no data to transfer, ready to execute. */
2151 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
2152 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2153 				break;
2154 			}
2155 
2156 			rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
2157 			STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link);
2158 			break;
2159 		case RDMA_REQUEST_STATE_NEED_BUFFER:
2160 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
2161 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2162 
2163 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
2164 
2165 			if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) {
2166 				/* This request needs to wait in line to obtain a buffer */
2167 				break;
2168 			}
2169 
2170 			/* Try to get a data buffer */
2171 			rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
2172 			if (spdk_unlikely(rc < 0)) {
2173 				STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2174 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2175 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2176 				break;
2177 			}
2178 
2179 			if (rdma_req->req.iovcnt == 0) {
2180 				/* No buffers available. */
2181 				rgroup->stat.pending_data_buffer++;
2182 				break;
2183 			}
2184 
2185 			STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2186 
2187 			/* If data is transferring from host to controller and the data didn't
2188 			 * arrive using in capsule data, we need to do a transfer from the host.
2189 			 */
2190 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER &&
2191 			    rdma_req->req.data_from_pool) {
2192 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
2193 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
2194 				break;
2195 			}
2196 
2197 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2198 			break;
2199 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2200 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
2201 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2202 
2203 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
2204 				/* This request needs to wait in line to perform RDMA */
2205 				break;
2206 			}
2207 			assert(rqpair->max_send_depth >= rqpair->current_send_depth);
2208 			qdepth = rqpair->max_send_depth - rqpair->current_send_depth;
2209 			assert(rqpair->max_read_depth >= rqpair->current_read_depth);
2210 			num_rdma_reads_available = rqpair->max_read_depth - rqpair->current_read_depth;
2211 			if (rdma_req->num_outstanding_data_wr > qdepth ||
2212 			    rdma_req->num_outstanding_data_wr > num_rdma_reads_available) {
2213 				if (num_rdma_reads_available && qdepth) {
2214 					/* Send as much as we can */
2215 					request_prepare_transfer_in_part(&rdma_req->req, spdk_min(num_rdma_reads_available, qdepth));
2216 				} else {
2217 					/* We can only have so many WRs outstanding. we have to wait until some finish. */
2218 					rqpair->poller->stat.pending_rdma_read++;
2219 					break;
2220 				}
2221 			}
2222 
2223 			/* We have already verified that this request is the head of the queue. */
2224 			if (rdma_req->num_remaining_data_wr == 0) {
2225 				STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
2226 			}
2227 
2228 			request_transfer_in(&rdma_req->req);
2229 			rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
2230 
2231 			break;
2232 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2233 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
2234 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2235 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
2236 			 * to escape this state. */
2237 			break;
2238 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
2239 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
2240 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2241 
2242 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2243 				if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2244 					/* generate DIF for write operation */
2245 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2246 					assert(num_blocks > 0);
2247 
2248 					rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt,
2249 							       num_blocks, &rdma_req->req.dif.dif_ctx);
2250 					if (rc != 0) {
2251 						SPDK_ERRLOG("DIF generation failed\n");
2252 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2253 						spdk_nvmf_qpair_disconnect(&rqpair->qpair);
2254 						break;
2255 					}
2256 				}
2257 
2258 				assert(rdma_req->req.dif.elba_length >= rdma_req->req.length);
2259 				/* set extended length before IO operation */
2260 				rdma_req->req.length = rdma_req->req.dif.elba_length;
2261 			}
2262 
2263 			if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2264 				if (rdma_req->fused_failed) {
2265 					/* This request failed FUSED semantics.  Fail it immediately, without
2266 					 * even sending it to the target layer.
2267 					 */
2268 					rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2269 					rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2270 					STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2271 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2272 					break;
2273 				}
2274 
2275 				if (rdma_req->fused_pair == NULL ||
2276 				    rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2277 					/* This request is ready to execute, but either we don't know yet if it's
2278 					 * valid - i.e. this is a FIRST but we haven't received the next
2279 					 * request yet or the other request of this fused pair isn't ready to
2280 					 * execute.  So break here and this request will get processed later either
2281 					 * when the other request is ready or we find that this request isn't valid.
2282 					 */
2283 					break;
2284 				}
2285 			}
2286 
2287 			/* If we get to this point, and this request is a fused command, we know that
2288 			 * it is part of valid sequence (FIRST followed by a SECOND) and that both
2289 			 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this
2290 			 * request, and the other request of the fused pair, in the correct order.
2291 			 * Also clear the ->fused_pair pointers on both requests, since after this point
2292 			 * we no longer need to maintain the relationship between these two requests.
2293 			 */
2294 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2295 				assert(rdma_req->fused_pair != NULL);
2296 				assert(rdma_req->fused_pair->fused_pair != NULL);
2297 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2298 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2299 				rdma_req->fused_pair->fused_pair = NULL;
2300 				rdma_req->fused_pair = NULL;
2301 			}
2302 			rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
2303 			spdk_nvmf_request_exec(&rdma_req->req);
2304 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2305 				assert(rdma_req->fused_pair != NULL);
2306 				assert(rdma_req->fused_pair->fused_pair != NULL);
2307 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2308 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2309 				rdma_req->fused_pair->fused_pair = NULL;
2310 				rdma_req->fused_pair = NULL;
2311 			}
2312 			break;
2313 		case RDMA_REQUEST_STATE_EXECUTING:
2314 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
2315 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2316 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
2317 			 * to escape this state. */
2318 			break;
2319 		case RDMA_REQUEST_STATE_EXECUTED:
2320 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
2321 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2322 			if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
2323 			    rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2324 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
2325 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
2326 			} else {
2327 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2328 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2329 			}
2330 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2331 				/* restore the original length */
2332 				rdma_req->req.length = rdma_req->req.dif.orig_length;
2333 
2334 				if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2335 					struct spdk_dif_error error_blk;
2336 
2337 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2338 					if (!rdma_req->req.stripped_data) {
2339 						rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2340 								     &rdma_req->req.dif.dif_ctx, &error_blk);
2341 					} else {
2342 						rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov,
2343 									  rdma_req->req.stripped_data->iovcnt,
2344 									  rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2345 									  &rdma_req->req.dif.dif_ctx, &error_blk);
2346 					}
2347 					if (rc) {
2348 						struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
2349 
2350 						SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type,
2351 							    error_blk.err_offset);
2352 						rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2353 						rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type);
2354 						STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2355 						STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2356 						rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2357 					}
2358 				}
2359 			}
2360 			break;
2361 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2362 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
2363 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2364 
2365 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
2366 				/* This request needs to wait in line to perform RDMA */
2367 				break;
2368 			}
2369 			if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
2370 			    rqpair->max_send_depth) {
2371 				/* We can only have so many WRs outstanding. we have to wait until some finish.
2372 				 * +1 since each request has an additional wr in the resp. */
2373 				rqpair->poller->stat.pending_rdma_write++;
2374 				break;
2375 			}
2376 
2377 			/* We have already verified that this request is the head of the queue. */
2378 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
2379 
2380 			/* The data transfer will be kicked off from
2381 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2382 			 * We verified that data + response fit into send queue, so we can go to the next state directly
2383 			 */
2384 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2385 			break;
2386 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING:
2387 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING, 0, 0,
2388 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2389 
2390 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_send_queue)) {
2391 				/* This request needs to wait in line to send the completion */
2392 				break;
2393 			}
2394 
2395 			assert(rqpair->current_send_depth <= rqpair->max_send_depth);
2396 			if (rqpair->current_send_depth == rqpair->max_send_depth) {
2397 				/* We can only have so many WRs outstanding. we have to wait until some finish */
2398 				rqpair->poller->stat.pending_rdma_send++;
2399 				break;
2400 			}
2401 
2402 			/* We have already verified that this request is the head of the queue. */
2403 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_send_queue, state_link);
2404 
2405 			/* The response sending will be kicked off from
2406 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2407 			 */
2408 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2409 			break;
2410 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
2411 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
2412 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2413 			rc = request_transfer_out(&rdma_req->req, &data_posted);
2414 			assert(rc == 0); /* No good way to handle this currently */
2415 			if (spdk_unlikely(rc)) {
2416 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2417 			} else {
2418 				rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
2419 						  RDMA_REQUEST_STATE_COMPLETING;
2420 			}
2421 			break;
2422 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2423 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
2424 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2425 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2426 			 * to escape this state. */
2427 			break;
2428 		case RDMA_REQUEST_STATE_COMPLETING:
2429 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
2430 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2431 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2432 			 * to escape this state. */
2433 			break;
2434 		case RDMA_REQUEST_STATE_COMPLETED:
2435 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2436 					  (uintptr_t)rdma_req, (uintptr_t)rqpair, rqpair->qpair.queue_depth);
2437 
2438 			rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc;
2439 			_nvmf_rdma_request_free(rdma_req, rtransport);
2440 			break;
2441 		case RDMA_REQUEST_NUM_STATES:
2442 		default:
2443 			assert(0);
2444 			break;
2445 		}
2446 
2447 		if (rdma_req->state != prev_state) {
2448 			progress = true;
2449 		}
2450 	} while (rdma_req->state != prev_state);
2451 
2452 	return progress;
2453 }
2454 
2455 /* Public API callbacks begin here */
2456 
2457 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2458 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2459 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2460 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
2461 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2462 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2463 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2464 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095
2465 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
2466 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false
2467 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false
2468 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100
2469 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1
2470 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false
2471 #define SPDK_NVMF_RDMA_DEFAULT_DATA_WR_POOL_SIZE 4095
2472 
2473 static void
2474 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2475 {
2476 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2477 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2478 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2479 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2480 	opts->io_unit_size =		SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2481 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2482 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2483 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2484 	opts->dif_insert_or_strip =	SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP;
2485 	opts->abort_timeout_sec =	SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC;
2486 	opts->transport_specific =      NULL;
2487 	opts->data_wr_pool_size	=	SPDK_NVMF_RDMA_DEFAULT_DATA_WR_POOL_SIZE;
2488 }
2489 
2490 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2491 			     spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg);
2492 
2493 static inline bool
2494 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device)
2495 {
2496 	return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD ||
2497 	       device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW;
2498 }
2499 
2500 static int nvmf_rdma_accept(void *ctx);
2501 static bool nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport);
2502 static void destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
2503 			      struct spdk_nvmf_rdma_device *device);
2504 
2505 static int
2506 create_ib_device(struct spdk_nvmf_rdma_transport *rtransport, struct ibv_context *context,
2507 		 struct spdk_nvmf_rdma_device **new_device)
2508 {
2509 	struct spdk_nvmf_rdma_device	*device;
2510 	int				flag = 0;
2511 	int				rc = 0;
2512 
2513 	device = calloc(1, sizeof(*device));
2514 	if (!device) {
2515 		SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2516 		return -ENOMEM;
2517 	}
2518 	device->context = context;
2519 	rc = ibv_query_device(device->context, &device->attr);
2520 	if (rc < 0) {
2521 		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2522 		free(device);
2523 		return rc;
2524 	}
2525 
2526 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2527 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2528 		SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2529 		SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2530 	}
2531 
2532 	/**
2533 	 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2534 	 * The Soft-RoCE RXE driver does not currently support send with invalidate,
2535 	 * but incorrectly reports that it does. There are changes making their way
2536 	 * through the kernel now that will enable this feature. When they are merged,
2537 	 * we can conditionally enable this feature.
2538 	 *
2539 	 * TODO: enable this for versions of the kernel rxe driver that support it.
2540 	 */
2541 	if (nvmf_rdma_is_rxe_device(device)) {
2542 		device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2543 	}
2544 #endif
2545 
2546 	/* set up device context async ev fd as NON_BLOCKING */
2547 	flag = fcntl(device->context->async_fd, F_GETFL);
2548 	rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2549 	if (rc < 0) {
2550 		SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2551 		free(device);
2552 		return rc;
2553 	}
2554 
2555 	TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2556 	SPDK_DEBUGLOG(rdma, "New device %p is added to RDMA transport\n", device);
2557 
2558 	if (g_nvmf_hooks.get_ibv_pd) {
2559 		device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2560 	} else {
2561 		device->pd = ibv_alloc_pd(device->context);
2562 	}
2563 
2564 	if (!device->pd) {
2565 		SPDK_ERRLOG("Unable to allocate protection domain.\n");
2566 		destroy_ib_device(rtransport, device);
2567 		return -ENOMEM;
2568 	}
2569 
2570 	assert(device->map == NULL);
2571 
2572 	device->map = spdk_rdma_utils_create_mem_map(device->pd, &g_nvmf_hooks, IBV_ACCESS_LOCAL_WRITE);
2573 	if (!device->map) {
2574 		SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2575 		destroy_ib_device(rtransport, device);
2576 		return -ENOMEM;
2577 	}
2578 
2579 	assert(device->map != NULL);
2580 	assert(device->pd != NULL);
2581 
2582 	if (new_device) {
2583 		*new_device = device;
2584 	}
2585 	SPDK_NOTICELOG("Create IB device %s(%p/%p) succeed.\n", ibv_get_device_name(context->device),
2586 		       device, context);
2587 
2588 	return 0;
2589 }
2590 
2591 static void
2592 free_poll_fds(struct spdk_nvmf_rdma_transport *rtransport)
2593 {
2594 	if (rtransport->poll_fds) {
2595 		free(rtransport->poll_fds);
2596 		rtransport->poll_fds = NULL;
2597 	}
2598 	rtransport->npoll_fds = 0;
2599 }
2600 
2601 static int
2602 generate_poll_fds(struct spdk_nvmf_rdma_transport *rtransport)
2603 {
2604 	/* Set up poll descriptor array to monitor events from RDMA and IB
2605 	 * in a single poll syscall
2606 	 */
2607 	int device_count = 0;
2608 	int i = 0;
2609 	struct spdk_nvmf_rdma_device *device, *tmp;
2610 
2611 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2612 		device_count++;
2613 	}
2614 
2615 	rtransport->npoll_fds = device_count + 1;
2616 
2617 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2618 	if (rtransport->poll_fds == NULL) {
2619 		SPDK_ERRLOG("poll_fds allocation failed\n");
2620 		return -ENOMEM;
2621 	}
2622 
2623 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2624 	rtransport->poll_fds[i++].events = POLLIN;
2625 
2626 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2627 		rtransport->poll_fds[i].fd = device->context->async_fd;
2628 		rtransport->poll_fds[i++].events = POLLIN;
2629 	}
2630 
2631 	return 0;
2632 }
2633 
2634 static struct spdk_nvmf_transport *
2635 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2636 {
2637 	int rc;
2638 	struct spdk_nvmf_rdma_transport *rtransport;
2639 	struct spdk_nvmf_rdma_device	*device;
2640 	struct ibv_context		**contexts;
2641 	size_t				data_wr_pool_size;
2642 	uint32_t			i;
2643 	int				flag;
2644 	uint32_t			sge_count;
2645 	uint32_t			min_shared_buffers;
2646 	uint32_t			min_in_capsule_data_size;
2647 	int				max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2648 
2649 	rtransport = calloc(1, sizeof(*rtransport));
2650 	if (!rtransport) {
2651 		return NULL;
2652 	}
2653 
2654 	TAILQ_INIT(&rtransport->devices);
2655 	TAILQ_INIT(&rtransport->ports);
2656 	TAILQ_INIT(&rtransport->poll_groups);
2657 	TAILQ_INIT(&rtransport->retry_ports);
2658 
2659 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2660 	rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
2661 	rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2662 	rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ;
2663 	rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2664 	rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING;
2665 	if (opts->transport_specific != NULL &&
2666 	    spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder,
2667 					    SPDK_COUNTOF(rdma_transport_opts_decoder),
2668 					    &rtransport->rdma_opts)) {
2669 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
2670 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2671 		return NULL;
2672 	}
2673 
2674 	SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n"
2675 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
2676 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2677 		     "  in_capsule_data_size=%d, max_aq_depth=%d,\n"
2678 		     "  num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d,"
2679 		     "  acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n",
2680 		     opts->max_queue_depth,
2681 		     opts->max_io_size,
2682 		     opts->max_qpairs_per_ctrlr - 1,
2683 		     opts->io_unit_size,
2684 		     opts->in_capsule_data_size,
2685 		     opts->max_aq_depth,
2686 		     opts->num_shared_buffers,
2687 		     rtransport->rdma_opts.num_cqe,
2688 		     rtransport->rdma_opts.max_srq_depth,
2689 		     rtransport->rdma_opts.no_srq,
2690 		     rtransport->rdma_opts.acceptor_backlog,
2691 		     rtransport->rdma_opts.no_wr_batching,
2692 		     opts->abort_timeout_sec);
2693 
2694 	/* I/O unit size cannot be larger than max I/O size */
2695 	if (opts->io_unit_size > opts->max_io_size) {
2696 		opts->io_unit_size = opts->max_io_size;
2697 	}
2698 
2699 	if (rtransport->rdma_opts.acceptor_backlog <= 0) {
2700 		SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n",
2701 			    SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG);
2702 		rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2703 	}
2704 
2705 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2706 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2707 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
2708 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2709 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2710 		return NULL;
2711 	}
2712 
2713 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
2714 	if (opts->buf_cache_size < UINT32_MAX) {
2715 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
2716 		if (min_shared_buffers > opts->num_shared_buffers) {
2717 			SPDK_ERRLOG("There are not enough buffers to satisfy"
2718 				    "per-poll group caches for each thread. (%" PRIu32 ")"
2719 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2720 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2721 			nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2722 			return NULL;
2723 		}
2724 	}
2725 
2726 	sge_count = opts->max_io_size / opts->io_unit_size;
2727 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
2728 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2729 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2730 		return NULL;
2731 	}
2732 
2733 	min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES;
2734 	if (opts->in_capsule_data_size < min_in_capsule_data_size) {
2735 		SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n",
2736 			     min_in_capsule_data_size);
2737 		opts->in_capsule_data_size = min_in_capsule_data_size;
2738 	}
2739 
2740 	rtransport->event_channel = rdma_create_event_channel();
2741 	if (rtransport->event_channel == NULL) {
2742 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2743 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2744 		return NULL;
2745 	}
2746 
2747 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2748 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2749 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2750 			    rtransport->event_channel->fd, spdk_strerror(errno));
2751 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2752 		return NULL;
2753 	}
2754 
2755 	data_wr_pool_size = opts->data_wr_pool_size;
2756 	if (data_wr_pool_size < SPDK_NVMF_MAX_SGL_ENTRIES * 2 * spdk_env_get_core_count()) {
2757 		data_wr_pool_size = SPDK_NVMF_MAX_SGL_ENTRIES * 2 * spdk_env_get_core_count();
2758 		SPDK_NOTICELOG("data_wr_pool_size is changed to %zu to guarantee enough cache for handling "
2759 			       "at least one IO in each core\n", data_wr_pool_size);
2760 	}
2761 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data", data_wr_pool_size,
2762 				   sizeof(struct spdk_nvmf_rdma_request_data), SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2763 				   SPDK_ENV_NUMA_ID_ANY);
2764 	if (!rtransport->data_wr_pool) {
2765 		if (spdk_mempool_lookup("spdk_nvmf_rdma_wr_data") != NULL) {
2766 			SPDK_ERRLOG("Unable to allocate work request pool for poll group: already exists\n");
2767 			SPDK_ERRLOG("Probably running in multiprocess environment, which is "
2768 				    "unsupported by the nvmf library\n");
2769 		} else {
2770 			SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2771 		}
2772 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2773 		return NULL;
2774 	}
2775 
2776 	contexts = rdma_get_devices(NULL);
2777 	if (contexts == NULL) {
2778 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2779 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2780 		return NULL;
2781 	}
2782 
2783 	i = 0;
2784 	rc = 0;
2785 	while (contexts[i] != NULL) {
2786 		rc = create_ib_device(rtransport, contexts[i], &device);
2787 		if (rc < 0) {
2788 			break;
2789 		}
2790 		i++;
2791 		max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2792 		device->is_ready = true;
2793 	}
2794 	rdma_free_devices(contexts);
2795 
2796 	if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2797 		/* divide and round up. */
2798 		opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2799 
2800 		/* round up to the nearest 4k. */
2801 		opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2802 
2803 		opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2804 		SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2805 			       opts->io_unit_size);
2806 	}
2807 
2808 	if (rc < 0) {
2809 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2810 		return NULL;
2811 	}
2812 
2813 	rc = generate_poll_fds(rtransport);
2814 	if (rc < 0) {
2815 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2816 		return NULL;
2817 	}
2818 
2819 	rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport,
2820 				    opts->acceptor_poll_rate);
2821 	if (!rtransport->accept_poller) {
2822 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2823 		return NULL;
2824 	}
2825 
2826 	return &rtransport->transport;
2827 }
2828 
2829 static void
2830 destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
2831 		  struct spdk_nvmf_rdma_device *device)
2832 {
2833 	TAILQ_REMOVE(&rtransport->devices, device, link);
2834 	spdk_rdma_utils_free_mem_map(&device->map);
2835 	if (device->pd) {
2836 		if (!g_nvmf_hooks.get_ibv_pd) {
2837 			ibv_dealloc_pd(device->pd);
2838 		}
2839 	}
2840 	SPDK_DEBUGLOG(rdma, "IB device [%p] is destroyed.\n", device);
2841 	free(device);
2842 }
2843 
2844 static void
2845 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
2846 {
2847 	struct spdk_nvmf_rdma_transport	*rtransport;
2848 	assert(w != NULL);
2849 
2850 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2851 	spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth);
2852 	spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq);
2853 	if (rtransport->rdma_opts.no_srq == true) {
2854 		spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe);
2855 	}
2856 	spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog);
2857 	spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching);
2858 }
2859 
2860 static int
2861 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2862 		  spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
2863 {
2864 	struct spdk_nvmf_rdma_transport	*rtransport;
2865 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
2866 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
2867 
2868 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2869 
2870 	TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, port_tmp) {
2871 		TAILQ_REMOVE(&rtransport->retry_ports, port, link);
2872 		free(port);
2873 	}
2874 
2875 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2876 		TAILQ_REMOVE(&rtransport->ports, port, link);
2877 		rdma_destroy_id(port->id);
2878 		free(port);
2879 	}
2880 
2881 	free_poll_fds(rtransport);
2882 
2883 	if (rtransport->event_channel != NULL) {
2884 		rdma_destroy_event_channel(rtransport->event_channel);
2885 	}
2886 
2887 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2888 		destroy_ib_device(rtransport, device);
2889 	}
2890 
2891 	if (rtransport->data_wr_pool != NULL) {
2892 		if (spdk_mempool_count(rtransport->data_wr_pool) != transport->opts.data_wr_pool_size) {
2893 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2894 				    spdk_mempool_count(rtransport->data_wr_pool),
2895 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2896 		}
2897 	}
2898 
2899 	spdk_mempool_free(rtransport->data_wr_pool);
2900 
2901 	spdk_poller_unregister(&rtransport->accept_poller);
2902 	free(rtransport);
2903 
2904 	if (cb_fn) {
2905 		cb_fn(cb_arg);
2906 	}
2907 	return 0;
2908 }
2909 
2910 static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2911 				     struct spdk_nvme_transport_id *trid,
2912 				     bool peer);
2913 
2914 static bool nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport);
2915 
2916 static int
2917 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
2918 		 struct spdk_nvmf_listen_opts *listen_opts)
2919 {
2920 	struct spdk_nvmf_rdma_transport	*rtransport;
2921 	struct spdk_nvmf_rdma_device	*device;
2922 	struct spdk_nvmf_rdma_port	*port, *tmp_port;
2923 	struct addrinfo			*res;
2924 	struct addrinfo			hints;
2925 	int				family;
2926 	int				rc;
2927 	long int			port_val;
2928 	bool				is_retry = false;
2929 
2930 	if (!strlen(trid->trsvcid)) {
2931 		SPDK_ERRLOG("Service id is required\n");
2932 		return -EINVAL;
2933 	}
2934 
2935 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2936 	assert(rtransport->event_channel != NULL);
2937 
2938 	port = calloc(1, sizeof(*port));
2939 	if (!port) {
2940 		SPDK_ERRLOG("Port allocation failed\n");
2941 		return -ENOMEM;
2942 	}
2943 
2944 	port->trid = trid;
2945 
2946 	switch (trid->adrfam) {
2947 	case SPDK_NVMF_ADRFAM_IPV4:
2948 		family = AF_INET;
2949 		break;
2950 	case SPDK_NVMF_ADRFAM_IPV6:
2951 		family = AF_INET6;
2952 		break;
2953 	default:
2954 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam);
2955 		free(port);
2956 		return -EINVAL;
2957 	}
2958 
2959 	memset(&hints, 0, sizeof(hints));
2960 	hints.ai_family = family;
2961 	hints.ai_flags = AI_NUMERICSERV;
2962 	hints.ai_socktype = SOCK_STREAM;
2963 	hints.ai_protocol = 0;
2964 
2965 	/* Range check the trsvcid. Fail in 3 cases:
2966 	 * < 0: means that spdk_strtol hit an error
2967 	 * 0: this results in ephemeral port which we don't want
2968 	 * > 65535: port too high
2969 	 */
2970 	port_val = spdk_strtol(trid->trsvcid, 10);
2971 	if (port_val <= 0 || port_val > 65535) {
2972 		SPDK_ERRLOG("invalid trsvcid %s\n", trid->trsvcid);
2973 		free(port);
2974 		return -EINVAL;
2975 	}
2976 
2977 	rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res);
2978 	if (rc) {
2979 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
2980 		free(port);
2981 		return -(abs(rc));
2982 	}
2983 
2984 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
2985 	if (rc < 0) {
2986 		SPDK_ERRLOG("rdma_create_id() failed\n");
2987 		freeaddrinfo(res);
2988 		free(port);
2989 		return rc;
2990 	}
2991 
2992 	rc = rdma_bind_addr(port->id, res->ai_addr);
2993 	freeaddrinfo(res);
2994 
2995 	if (rc < 0) {
2996 		TAILQ_FOREACH(tmp_port, &rtransport->retry_ports, link) {
2997 			if (spdk_nvme_transport_id_compare(tmp_port->trid, trid) == 0) {
2998 				is_retry = true;
2999 				break;
3000 			}
3001 		}
3002 		if (!is_retry) {
3003 			SPDK_ERRLOG("rdma_bind_addr() failed\n");
3004 		}
3005 		rdma_destroy_id(port->id);
3006 		free(port);
3007 		return rc;
3008 	}
3009 
3010 	if (!port->id->verbs) {
3011 		SPDK_ERRLOG("ibv_context is null\n");
3012 		rdma_destroy_id(port->id);
3013 		free(port);
3014 		return -1;
3015 	}
3016 
3017 	rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog);
3018 	if (rc < 0) {
3019 		SPDK_ERRLOG("rdma_listen() failed\n");
3020 		rdma_destroy_id(port->id);
3021 		free(port);
3022 		return rc;
3023 	}
3024 
3025 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3026 		if (device->context == port->id->verbs && device->is_ready) {
3027 			port->device = device;
3028 			break;
3029 		}
3030 	}
3031 	if (!port->device) {
3032 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
3033 			    port->id->verbs);
3034 		rdma_destroy_id(port->id);
3035 		free(port);
3036 		nvmf_rdma_rescan_devices(rtransport);
3037 		return -EINVAL;
3038 	}
3039 
3040 	SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n",
3041 		       trid->traddr, trid->trsvcid);
3042 
3043 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
3044 	return 0;
3045 }
3046 
3047 static void
3048 nvmf_rdma_stop_listen_ex(struct spdk_nvmf_transport *transport,
3049 			 const struct spdk_nvme_transport_id *trid, bool need_retry)
3050 {
3051 	struct spdk_nvmf_rdma_transport	*rtransport;
3052 	struct spdk_nvmf_rdma_port	*port, *tmp;
3053 
3054 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3055 
3056 	if (!need_retry) {
3057 		TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp) {
3058 			if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
3059 				TAILQ_REMOVE(&rtransport->retry_ports, port, link);
3060 				free(port);
3061 			}
3062 		}
3063 	}
3064 
3065 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
3066 		if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
3067 			SPDK_DEBUGLOG(rdma, "Port %s:%s removed. need retry: %d\n",
3068 				      port->trid->traddr, port->trid->trsvcid, need_retry);
3069 			TAILQ_REMOVE(&rtransport->ports, port, link);
3070 			rdma_destroy_id(port->id);
3071 			port->id = NULL;
3072 			port->device = NULL;
3073 			if (need_retry) {
3074 				TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link);
3075 			} else {
3076 				free(port);
3077 			}
3078 			break;
3079 		}
3080 	}
3081 }
3082 
3083 static void
3084 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
3085 		      const struct spdk_nvme_transport_id *trid)
3086 {
3087 	nvmf_rdma_stop_listen_ex(transport, trid, false);
3088 }
3089 
3090 static void _nvmf_rdma_register_poller_in_group(void *c);
3091 static void _nvmf_rdma_remove_poller_in_group(void *c);
3092 
3093 static bool
3094 nvmf_rdma_all_pollers_management_done(void *c)
3095 {
3096 	struct poller_manage_ctx	*ctx = c;
3097 	int				counter;
3098 
3099 	counter = __atomic_sub_fetch(ctx->inflight_op_counter, 1, __ATOMIC_SEQ_CST);
3100 	SPDK_DEBUGLOG(rdma, "nvmf_rdma_all_pollers_management_done called. counter: %d, poller: %p\n",
3101 		      counter, ctx->rpoller);
3102 
3103 	if (counter == 0) {
3104 		free((void *)ctx->inflight_op_counter);
3105 	}
3106 	free(ctx);
3107 
3108 	return counter == 0;
3109 }
3110 
3111 static int
3112 nvmf_rdma_manage_poller(struct spdk_nvmf_rdma_transport *rtransport,
3113 			struct spdk_nvmf_rdma_device *device, bool *has_inflight, bool is_add)
3114 {
3115 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3116 	struct spdk_nvmf_rdma_poller		*rpoller;
3117 	struct spdk_nvmf_poll_group		*poll_group;
3118 	struct poller_manage_ctx		*ctx;
3119 	bool					found;
3120 	int					*inflight_counter;
3121 	spdk_msg_fn				do_fn;
3122 
3123 	*has_inflight = false;
3124 	do_fn = is_add ? _nvmf_rdma_register_poller_in_group : _nvmf_rdma_remove_poller_in_group;
3125 	inflight_counter = calloc(1, sizeof(int));
3126 	if (!inflight_counter) {
3127 		SPDK_ERRLOG("Failed to allocate inflight counter when removing pollers\n");
3128 		return -ENOMEM;
3129 	}
3130 
3131 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3132 		(*inflight_counter)++;
3133 	}
3134 
3135 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3136 		found = false;
3137 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3138 			if (rpoller->device == device) {
3139 				found = true;
3140 				break;
3141 			}
3142 		}
3143 		if (found == is_add) {
3144 			__atomic_fetch_sub(inflight_counter, 1, __ATOMIC_SEQ_CST);
3145 			continue;
3146 		}
3147 
3148 		ctx = calloc(1, sizeof(struct poller_manage_ctx));
3149 		if (!ctx) {
3150 			SPDK_ERRLOG("Failed to allocate poller_manage_ctx when removing pollers\n");
3151 			if (!*has_inflight) {
3152 				free(inflight_counter);
3153 			}
3154 			return -ENOMEM;
3155 		}
3156 
3157 		ctx->rtransport = rtransport;
3158 		ctx->rgroup = rgroup;
3159 		ctx->rpoller = rpoller;
3160 		ctx->device = device;
3161 		ctx->thread = spdk_get_thread();
3162 		ctx->inflight_op_counter = inflight_counter;
3163 		*has_inflight = true;
3164 
3165 		poll_group = rgroup->group.group;
3166 		if (poll_group->thread != spdk_get_thread()) {
3167 			spdk_thread_send_msg(poll_group->thread, do_fn, ctx);
3168 		} else {
3169 			do_fn(ctx);
3170 		}
3171 	}
3172 
3173 	if (!*has_inflight) {
3174 		free(inflight_counter);
3175 	}
3176 
3177 	return 0;
3178 }
3179 
3180 static void nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport,
3181 		struct spdk_nvmf_rdma_device *device);
3182 
3183 static struct spdk_nvmf_rdma_device *
3184 nvmf_rdma_find_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
3185 			 struct ibv_context *context)
3186 {
3187 	struct spdk_nvmf_rdma_device	*device, *tmp_device;
3188 
3189 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp_device) {
3190 		if (device->need_destroy) {
3191 			continue;
3192 		}
3193 
3194 		if (strcmp(device->context->device->dev_name, context->device->dev_name) == 0) {
3195 			return device;
3196 		}
3197 	}
3198 
3199 	return NULL;
3200 }
3201 
3202 static bool
3203 nvmf_rdma_check_devices_context(struct spdk_nvmf_rdma_transport *rtransport,
3204 				struct ibv_context *context)
3205 {
3206 	struct spdk_nvmf_rdma_device	*old_device, *new_device;
3207 	int				rc = 0;
3208 	bool				has_inflight;
3209 
3210 	old_device = nvmf_rdma_find_ib_device(rtransport, context);
3211 
3212 	if (old_device) {
3213 		if (old_device->context != context && !old_device->need_destroy && old_device->is_ready) {
3214 			/* context may not have time to be cleaned when rescan. exactly one context
3215 			 * is valid for a device so this context must be invalid and just remove it. */
3216 			SPDK_WARNLOG("Device %p has a invalid context %p\n", old_device, old_device->context);
3217 			old_device->need_destroy = true;
3218 			nvmf_rdma_handle_device_removal(rtransport, old_device);
3219 		}
3220 		return false;
3221 	}
3222 
3223 	rc = create_ib_device(rtransport, context, &new_device);
3224 	/* TODO: update transport opts. */
3225 	if (rc < 0) {
3226 		SPDK_ERRLOG("Failed to create ib device for context: %s(%p)\n",
3227 			    ibv_get_device_name(context->device), context);
3228 		return false;
3229 	}
3230 
3231 	rc = nvmf_rdma_manage_poller(rtransport, new_device, &has_inflight, true);
3232 	if (rc < 0) {
3233 		SPDK_ERRLOG("Failed to add poller for device context: %s(%p)\n",
3234 			    ibv_get_device_name(context->device), context);
3235 		return false;
3236 	}
3237 
3238 	if (has_inflight) {
3239 		new_device->is_ready = true;
3240 	}
3241 
3242 	return true;
3243 }
3244 
3245 static bool
3246 nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport)
3247 {
3248 	struct spdk_nvmf_rdma_device	*device;
3249 	struct ibv_device		**ibv_device_list = NULL;
3250 	struct ibv_context		**contexts = NULL;
3251 	int				i = 0;
3252 	int				num_dev = 0;
3253 	bool				new_create = false, has_new_device = false;
3254 	struct ibv_context		*tmp_verbs = NULL;
3255 
3256 	/* do not rescan when any device is destroying, or context may be freed when
3257 	 * regenerating the poll fds.
3258 	 */
3259 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3260 		if (device->need_destroy) {
3261 			return false;
3262 		}
3263 	}
3264 
3265 	ibv_device_list = ibv_get_device_list(&num_dev);
3266 
3267 	/* There is a bug in librdmacm. If verbs init failed in rdma_get_devices, it'll be
3268 	 * marked as dead verbs and never be init again. So we need to make sure the
3269 	 * verbs is available before we call rdma_get_devices. */
3270 	if (num_dev >= 0) {
3271 		for (i = 0; i < num_dev; i++) {
3272 			tmp_verbs = ibv_open_device(ibv_device_list[i]);
3273 			if (!tmp_verbs) {
3274 				SPDK_WARNLOG("Failed to init ibv device %p, err %d. Skip rescan.\n", ibv_device_list[i], errno);
3275 				break;
3276 			}
3277 			if (nvmf_rdma_find_ib_device(rtransport, tmp_verbs) == NULL) {
3278 				SPDK_DEBUGLOG(rdma, "Find new verbs init ibv device %p(%s).\n", ibv_device_list[i],
3279 					      tmp_verbs->device->dev_name);
3280 				has_new_device = true;
3281 			}
3282 			ibv_close_device(tmp_verbs);
3283 		}
3284 		ibv_free_device_list(ibv_device_list);
3285 		if (!tmp_verbs || !has_new_device) {
3286 			return false;
3287 		}
3288 	}
3289 
3290 	contexts = rdma_get_devices(NULL);
3291 
3292 	for (i = 0; contexts && contexts[i] != NULL; i++) {
3293 		new_create |= nvmf_rdma_check_devices_context(rtransport, contexts[i]);
3294 	}
3295 
3296 	if (new_create) {
3297 		free_poll_fds(rtransport);
3298 		generate_poll_fds(rtransport);
3299 	}
3300 
3301 	if (contexts) {
3302 		rdma_free_devices(contexts);
3303 	}
3304 
3305 	return new_create;
3306 }
3307 
3308 static bool
3309 nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport)
3310 {
3311 	struct spdk_nvmf_rdma_port	*port, *tmp_port;
3312 	int				rc = 0;
3313 	bool				new_create = false;
3314 
3315 	if (TAILQ_EMPTY(&rtransport->retry_ports)) {
3316 		return false;
3317 	}
3318 
3319 	new_create = nvmf_rdma_rescan_devices(rtransport);
3320 
3321 	TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp_port) {
3322 		rc = nvmf_rdma_listen(&rtransport->transport, port->trid, NULL);
3323 
3324 		TAILQ_REMOVE(&rtransport->retry_ports, port, link);
3325 		if (rc) {
3326 			if (new_create) {
3327 				SPDK_ERRLOG("Found new IB device but port %s:%s is still failed(%d) to listen.\n",
3328 					    port->trid->traddr, port->trid->trsvcid, rc);
3329 			}
3330 			TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link);
3331 			break;
3332 		} else {
3333 			SPDK_NOTICELOG("Port %s:%s come back\n", port->trid->traddr, port->trid->trsvcid);
3334 			free(port);
3335 		}
3336 	}
3337 
3338 	return true;
3339 }
3340 
3341 static void
3342 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
3343 				struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
3344 {
3345 	struct spdk_nvmf_request *req, *tmp;
3346 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
3347 	struct spdk_nvmf_rdma_resources *resources;
3348 
3349 	/* First process requests which are waiting for response to be sent */
3350 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_send_queue, state_link, req_tmp) {
3351 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3352 			break;
3353 		}
3354 	}
3355 
3356 	/* We process I/O in the data transfer pending queue at the highest priority. */
3357 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
3358 		if (rdma_req->state != RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) {
3359 			/* Requests in this queue might be in state RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
3360 			 * they are transmitting data over network but we keep them in the list to guarantee
3361 			 * fair processing. */
3362 			continue;
3363 		}
3364 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3365 			break;
3366 		}
3367 	}
3368 
3369 	/* Then RDMA writes since reads have stronger restrictions than writes */
3370 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
3371 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3372 			break;
3373 		}
3374 	}
3375 
3376 	/* Then we handle request waiting on memory buffers. */
3377 	STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) {
3378 		rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3379 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3380 			break;
3381 		}
3382 	}
3383 
3384 	resources = rqpair->resources;
3385 	while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
3386 		rdma_req = STAILQ_FIRST(&resources->free_queue);
3387 		STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
3388 		rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
3389 		STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
3390 
3391 		if (rqpair->srq != NULL) {
3392 			rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
3393 			rdma_req->recv->qpair->qd++;
3394 		} else {
3395 			rqpair->qd++;
3396 		}
3397 
3398 		rdma_req->receive_tsc = rdma_req->recv->receive_tsc;
3399 		rdma_req->state = RDMA_REQUEST_STATE_NEW;
3400 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
3401 			break;
3402 		}
3403 	}
3404 	if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) {
3405 		rqpair->poller->stat.pending_free_request++;
3406 	}
3407 }
3408 
3409 static void
3410 nvmf_rdma_poller_process_pending_buf_queue(struct spdk_nvmf_rdma_transport *rtransport,
3411 		struct spdk_nvmf_rdma_poller *rpoller)
3412 {
3413 	struct spdk_nvmf_request *req, *tmp;
3414 	struct spdk_nvmf_rdma_request *rdma_req;
3415 
3416 	STAILQ_FOREACH_SAFE(req, &rpoller->group->group.pending_buf_queue, buf_link, tmp) {
3417 		rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3418 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
3419 			break;
3420 		}
3421 	}
3422 }
3423 
3424 static inline bool
3425 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device)
3426 {
3427 	/* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */
3428 	return nvmf_rdma_is_rxe_device(device) ||
3429 	       device->context->device->transport_type == IBV_TRANSPORT_IWARP;
3430 }
3431 
3432 static void
3433 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair)
3434 {
3435 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
3436 			struct spdk_nvmf_rdma_transport, transport);
3437 
3438 	nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
3439 
3440 	/* nvmf_rdma_close_qpair is not called */
3441 	if (!rqpair->to_close) {
3442 		return;
3443 	}
3444 
3445 	/* device is already destroyed and we should force destroy this qpair. */
3446 	if (rqpair->poller && rqpair->poller->need_destroy) {
3447 		nvmf_rdma_qpair_destroy(rqpair);
3448 		return;
3449 	}
3450 
3451 	/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
3452 	if (rqpair->current_send_depth != 0) {
3453 		return;
3454 	}
3455 
3456 	if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
3457 		return;
3458 	}
3459 
3460 	if (rqpair->srq != NULL && rqpair->last_wqe_reached == false &&
3461 	    !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) {
3462 		return;
3463 	}
3464 
3465 	assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR);
3466 
3467 	nvmf_rdma_qpair_destroy(rqpair);
3468 }
3469 
3470 static int
3471 nvmf_rdma_disconnect(struct rdma_cm_event *evt, bool *event_acked)
3472 {
3473 	struct spdk_nvmf_qpair		*qpair;
3474 	struct spdk_nvmf_rdma_qpair	*rqpair;
3475 
3476 	if (evt->id == NULL) {
3477 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
3478 		return -1;
3479 	}
3480 
3481 	qpair = evt->id->context;
3482 	if (qpair == NULL) {
3483 		SPDK_ERRLOG("disconnect request: no active connection\n");
3484 		return -1;
3485 	}
3486 
3487 	rdma_ack_cm_event(evt);
3488 	*event_acked = true;
3489 
3490 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3491 
3492 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair);
3493 
3494 	spdk_nvmf_qpair_disconnect(&rqpair->qpair);
3495 
3496 	return 0;
3497 }
3498 
3499 #ifdef DEBUG
3500 static const char *CM_EVENT_STR[] = {
3501 	"RDMA_CM_EVENT_ADDR_RESOLVED",
3502 	"RDMA_CM_EVENT_ADDR_ERROR",
3503 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
3504 	"RDMA_CM_EVENT_ROUTE_ERROR",
3505 	"RDMA_CM_EVENT_CONNECT_REQUEST",
3506 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
3507 	"RDMA_CM_EVENT_CONNECT_ERROR",
3508 	"RDMA_CM_EVENT_UNREACHABLE",
3509 	"RDMA_CM_EVENT_REJECTED",
3510 	"RDMA_CM_EVENT_ESTABLISHED",
3511 	"RDMA_CM_EVENT_DISCONNECTED",
3512 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
3513 	"RDMA_CM_EVENT_MULTICAST_JOIN",
3514 	"RDMA_CM_EVENT_MULTICAST_ERROR",
3515 	"RDMA_CM_EVENT_ADDR_CHANGE",
3516 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
3517 };
3518 #endif /* DEBUG */
3519 
3520 static void
3521 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport,
3522 				    struct spdk_nvmf_rdma_port *port)
3523 {
3524 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3525 	struct spdk_nvmf_rdma_poller		*rpoller;
3526 	struct spdk_nvmf_rdma_qpair		*rqpair;
3527 
3528 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3529 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3530 			RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) {
3531 				if (rqpair->listen_id == port->id) {
3532 					spdk_nvmf_qpair_disconnect(&rqpair->qpair);
3533 				}
3534 			}
3535 		}
3536 	}
3537 }
3538 
3539 static bool
3540 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport,
3541 				      struct rdma_cm_event *event)
3542 {
3543 	const struct spdk_nvme_transport_id	*trid;
3544 	struct spdk_nvmf_rdma_port		*port;
3545 	struct spdk_nvmf_rdma_transport		*rtransport;
3546 	bool					event_acked = false;
3547 
3548 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3549 	TAILQ_FOREACH(port, &rtransport->ports, link) {
3550 		if (port->id == event->id) {
3551 			SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid);
3552 			rdma_ack_cm_event(event);
3553 			event_acked = true;
3554 			trid = port->trid;
3555 			break;
3556 		}
3557 	}
3558 
3559 	if (event_acked) {
3560 		nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
3561 
3562 		nvmf_rdma_stop_listen(transport, trid);
3563 		nvmf_rdma_listen(transport, trid, NULL);
3564 	}
3565 
3566 	return event_acked;
3567 }
3568 
3569 static void
3570 nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport,
3571 				struct spdk_nvmf_rdma_device *device)
3572 {
3573 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
3574 	int				rc;
3575 	bool				has_inflight;
3576 
3577 	rc = nvmf_rdma_manage_poller(rtransport, device, &has_inflight, false);
3578 	if (rc) {
3579 		SPDK_ERRLOG("Failed to handle device removal, rc %d\n", rc);
3580 		return;
3581 	}
3582 
3583 	if (!has_inflight) {
3584 		/* no pollers, destroy the device */
3585 		device->ready_to_destroy = true;
3586 		spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_remove_destroyed_device, rtransport);
3587 	}
3588 
3589 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
3590 		if (port->device == device) {
3591 			SPDK_NOTICELOG("Port %s:%s on device %s is being removed.\n",
3592 				       port->trid->traddr,
3593 				       port->trid->trsvcid,
3594 				       ibv_get_device_name(port->device->context->device));
3595 
3596 			/* keep NVMF listener and only destroy structures of the
3597 			 * RDMA transport. when the device comes back we can retry listening
3598 			 * and the application's workflow will not be interrupted.
3599 			 */
3600 			nvmf_rdma_stop_listen_ex(&rtransport->transport, port->trid, true);
3601 		}
3602 	}
3603 }
3604 
3605 static void
3606 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport,
3607 				       struct rdma_cm_event *event)
3608 {
3609 	struct spdk_nvmf_rdma_port		*port, *tmp_port;
3610 	struct spdk_nvmf_rdma_transport		*rtransport;
3611 
3612 	port = event->id->context;
3613 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3614 
3615 	rdma_ack_cm_event(event);
3616 
3617 	/* if device removal happens during ctrl qpair disconnecting, it's possible that we receive
3618 	 * an DEVICE_REMOVAL event on qpair but the id->qp is just NULL. So we should make sure that
3619 	 * we are handling a port event here.
3620 	 */
3621 	TAILQ_FOREACH(tmp_port, &rtransport->ports, link) {
3622 		if (port == tmp_port && port->device && !port->device->need_destroy) {
3623 			port->device->need_destroy = true;
3624 			nvmf_rdma_handle_device_removal(rtransport, port->device);
3625 		}
3626 	}
3627 }
3628 
3629 static void
3630 nvmf_process_cm_events(struct spdk_nvmf_transport *transport, uint32_t max_events)
3631 {
3632 	struct spdk_nvmf_rdma_transport *rtransport;
3633 	struct rdma_cm_event		*event;
3634 	uint32_t			i;
3635 	int				rc;
3636 	bool				event_acked;
3637 
3638 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3639 
3640 	if (rtransport->event_channel == NULL) {
3641 		return;
3642 	}
3643 
3644 	for (i = 0; i < max_events; i++) {
3645 		event_acked = false;
3646 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
3647 		if (rc) {
3648 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
3649 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
3650 			}
3651 			break;
3652 		}
3653 
3654 		SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
3655 
3656 		spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
3657 
3658 		switch (event->event) {
3659 		case RDMA_CM_EVENT_ADDR_RESOLVED:
3660 		case RDMA_CM_EVENT_ADDR_ERROR:
3661 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
3662 		case RDMA_CM_EVENT_ROUTE_ERROR:
3663 			/* No action required. The target never attempts to resolve routes. */
3664 			break;
3665 		case RDMA_CM_EVENT_CONNECT_REQUEST:
3666 			rc = nvmf_rdma_connect(transport, event);
3667 			if (rc < 0) {
3668 				SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
3669 				break;
3670 			}
3671 			break;
3672 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
3673 			/* The target never initiates a new connection. So this will not occur. */
3674 			break;
3675 		case RDMA_CM_EVENT_CONNECT_ERROR:
3676 			/* Can this happen? The docs say it can, but not sure what causes it. */
3677 			break;
3678 		case RDMA_CM_EVENT_UNREACHABLE:
3679 		case RDMA_CM_EVENT_REJECTED:
3680 			/* These only occur on the client side. */
3681 			break;
3682 		case RDMA_CM_EVENT_ESTABLISHED:
3683 			/* TODO: Should we be waiting for this event anywhere? */
3684 			break;
3685 		case RDMA_CM_EVENT_DISCONNECTED:
3686 			rc = nvmf_rdma_disconnect(event, &event_acked);
3687 			if (rc < 0) {
3688 				SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3689 				break;
3690 			}
3691 			break;
3692 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
3693 			/* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL
3694 			 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s.
3695 			 * Once these events are sent to SPDK, we should release all IB resources and
3696 			 * don't make attempts to call any ibv_query/modify/create functions. We can only call
3697 			 * ibv_destroy* functions to release user space memory allocated by IB. All kernel
3698 			 * resources are already cleaned. */
3699 			if (event->id->qp) {
3700 				/* If rdma_cm event has a valid `qp` pointer then the event refers to the
3701 				 * corresponding qpair. Otherwise the event refers to a listening device. */
3702 				rc = nvmf_rdma_disconnect(event, &event_acked);
3703 				if (rc < 0) {
3704 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3705 					break;
3706 				}
3707 			} else {
3708 				nvmf_rdma_handle_cm_event_port_removal(transport, event);
3709 				event_acked = true;
3710 			}
3711 			break;
3712 		case RDMA_CM_EVENT_MULTICAST_JOIN:
3713 		case RDMA_CM_EVENT_MULTICAST_ERROR:
3714 			/* Multicast is not used */
3715 			break;
3716 		case RDMA_CM_EVENT_ADDR_CHANGE:
3717 			event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event);
3718 			break;
3719 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
3720 			/* For now, do nothing. The target never re-uses queue pairs. */
3721 			break;
3722 		default:
3723 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
3724 			break;
3725 		}
3726 		if (!event_acked) {
3727 			rdma_ack_cm_event(event);
3728 		}
3729 	}
3730 }
3731 
3732 static void
3733 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair)
3734 {
3735 	rqpair->last_wqe_reached = true;
3736 	nvmf_rdma_destroy_drained_qpair(rqpair);
3737 }
3738 
3739 static void
3740 nvmf_rdma_qpair_process_ibv_event(void *ctx)
3741 {
3742 	struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx;
3743 
3744 	if (event_ctx->rqpair) {
3745 		STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3746 		if (event_ctx->cb_fn) {
3747 			event_ctx->cb_fn(event_ctx->rqpair);
3748 		}
3749 	}
3750 	free(event_ctx);
3751 }
3752 
3753 static int
3754 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair,
3755 				 spdk_nvmf_rdma_qpair_ibv_event fn)
3756 {
3757 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx;
3758 	struct spdk_thread *thr = NULL;
3759 	int rc;
3760 
3761 	if (rqpair->qpair.group) {
3762 		thr = rqpair->qpair.group->thread;
3763 	} else if (rqpair->destruct_channel) {
3764 		thr = spdk_io_channel_get_thread(rqpair->destruct_channel);
3765 	}
3766 
3767 	if (!thr) {
3768 		SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair);
3769 		return -EINVAL;
3770 	}
3771 
3772 	ctx = calloc(1, sizeof(*ctx));
3773 	if (!ctx) {
3774 		return -ENOMEM;
3775 	}
3776 
3777 	ctx->rqpair = rqpair;
3778 	ctx->cb_fn = fn;
3779 	STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link);
3780 
3781 	rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx);
3782 	if (rc) {
3783 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3784 		free(ctx);
3785 	}
3786 
3787 	return rc;
3788 }
3789 
3790 static int
3791 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
3792 {
3793 	int				rc;
3794 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
3795 	struct ibv_async_event		event;
3796 
3797 	rc = ibv_get_async_event(device->context, &event);
3798 
3799 	if (rc) {
3800 		/* In non-blocking mode -1 means there are no events available */
3801 		return rc;
3802 	}
3803 
3804 	switch (event.event_type) {
3805 	case IBV_EVENT_QP_FATAL:
3806 	case IBV_EVENT_QP_LAST_WQE_REACHED:
3807 	case IBV_EVENT_QP_REQ_ERR:
3808 	case IBV_EVENT_QP_ACCESS_ERR:
3809 	case IBV_EVENT_COMM_EST:
3810 	case IBV_EVENT_PATH_MIG:
3811 	case IBV_EVENT_PATH_MIG_ERR:
3812 		rqpair = event.element.qp->qp_context;
3813 		if (!rqpair) {
3814 			/* Any QP event for NVMe-RDMA initiator may be returned. */
3815 			SPDK_NOTICELOG("Async QP event for unknown QP: %s\n",
3816 				       ibv_event_type_str(event.event_type));
3817 			break;
3818 		}
3819 
3820 		switch (event.event_type) {
3821 		case IBV_EVENT_QP_FATAL:
3822 			SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
3823 			spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3824 					  (uintptr_t)rqpair, event.event_type);
3825 			rqpair->ibv_in_error_state = true;
3826 			spdk_nvmf_qpair_disconnect(&rqpair->qpair);
3827 			break;
3828 		case IBV_EVENT_QP_LAST_WQE_REACHED:
3829 			/* This event only occurs for shared receive queues. */
3830 			SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair);
3831 			rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached);
3832 			if (rc) {
3833 				SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc);
3834 				rqpair->last_wqe_reached = true;
3835 			}
3836 			break;
3837 		case IBV_EVENT_QP_REQ_ERR:
3838 		case IBV_EVENT_QP_ACCESS_ERR:
3839 		case IBV_EVENT_COMM_EST:
3840 		case IBV_EVENT_PATH_MIG:
3841 		case IBV_EVENT_PATH_MIG_ERR:
3842 			SPDK_NOTICELOG("Async QP event: %s\n",
3843 				       ibv_event_type_str(event.event_type));
3844 			spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3845 					  (uintptr_t)rqpair, event.event_type);
3846 			rqpair->ibv_in_error_state = true;
3847 			break;
3848 		default:
3849 			break;
3850 		}
3851 		break;
3852 	case IBV_EVENT_DEVICE_FATAL:
3853 		SPDK_ERRLOG("Device Fatal event[%s] received on %s. device: %p\n",
3854 			    ibv_event_type_str(event.event_type), ibv_get_device_name(device->context->device), device);
3855 		device->need_destroy = true;
3856 		break;
3857 	case IBV_EVENT_CQ_ERR:
3858 	case IBV_EVENT_PORT_ACTIVE:
3859 	case IBV_EVENT_PORT_ERR:
3860 	case IBV_EVENT_LID_CHANGE:
3861 	case IBV_EVENT_PKEY_CHANGE:
3862 	case IBV_EVENT_SM_CHANGE:
3863 	case IBV_EVENT_SRQ_ERR:
3864 	case IBV_EVENT_SRQ_LIMIT_REACHED:
3865 	case IBV_EVENT_CLIENT_REREGISTER:
3866 	case IBV_EVENT_GID_CHANGE:
3867 	case IBV_EVENT_SQ_DRAINED:
3868 	default:
3869 		SPDK_NOTICELOG("Async event: %s\n",
3870 			       ibv_event_type_str(event.event_type));
3871 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
3872 		break;
3873 	}
3874 	ibv_ack_async_event(&event);
3875 
3876 	return 0;
3877 }
3878 
3879 static void
3880 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events)
3881 {
3882 	int rc = 0;
3883 	uint32_t i = 0;
3884 
3885 	for (i = 0; i < max_events; i++) {
3886 		rc = nvmf_process_ib_event(device);
3887 		if (rc) {
3888 			break;
3889 		}
3890 	}
3891 
3892 	SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i);
3893 }
3894 
3895 static int
3896 nvmf_rdma_accept(void *ctx)
3897 {
3898 	int	nfds, i = 0;
3899 	struct spdk_nvmf_transport *transport = ctx;
3900 	struct spdk_nvmf_rdma_transport *rtransport;
3901 	struct spdk_nvmf_rdma_device *device, *tmp;
3902 	uint32_t count;
3903 	short revents;
3904 	bool do_retry;
3905 
3906 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3907 	do_retry = nvmf_rdma_retry_listen_port(rtransport);
3908 
3909 	count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
3910 
3911 	if (nfds <= 0) {
3912 		return do_retry ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3913 	}
3914 
3915 	/* The first poll descriptor is RDMA CM event */
3916 	if (rtransport->poll_fds[i++].revents & POLLIN) {
3917 		nvmf_process_cm_events(transport, NVMF_RDMA_MAX_EVENTS_PER_POLL);
3918 		nfds--;
3919 	}
3920 
3921 	if (nfds == 0) {
3922 		return SPDK_POLLER_BUSY;
3923 	}
3924 
3925 	/* Second and subsequent poll descriptors are IB async events */
3926 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
3927 		revents = rtransport->poll_fds[i++].revents;
3928 		if (revents & POLLIN) {
3929 			if (spdk_likely(!device->need_destroy)) {
3930 				nvmf_process_ib_events(device, NVMF_RDMA_MAX_EVENTS_PER_POLL);
3931 				if (spdk_unlikely(device->need_destroy)) {
3932 					nvmf_rdma_handle_device_removal(rtransport, device);
3933 				}
3934 			}
3935 			nfds--;
3936 		} else if (revents & POLLNVAL || revents & POLLHUP) {
3937 			SPDK_ERRLOG("Receive unknown revent %x on device %p\n", (int)revents, device);
3938 			nfds--;
3939 		}
3940 	}
3941 	/* check all flagged fd's have been served */
3942 	assert(nfds == 0);
3943 
3944 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3945 }
3946 
3947 static void
3948 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem,
3949 		     struct spdk_nvmf_ctrlr_data *cdata)
3950 {
3951 	cdata->nvmf_specific.msdbd = NVMF_DEFAULT_MSDBD;
3952 
3953 	/* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled
3954 	since in-capsule data only works with NVME drives that support SGL memory layout */
3955 	if (transport->opts.dif_insert_or_strip) {
3956 		cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16;
3957 	}
3958 
3959 	if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) {
3960 		SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule"
3961 			     " data is greater than 4KiB.\n");
3962 		SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux "
3963 			     "kernel between versions 5.4 and 5.12 data corruption may occur for "
3964 			     "writes that are not a multiple of 4KiB in size.\n");
3965 	}
3966 }
3967 
3968 static void
3969 nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
3970 		   struct spdk_nvme_transport_id *trid,
3971 		   struct spdk_nvmf_discovery_log_page_entry *entry)
3972 {
3973 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
3974 	entry->adrfam = trid->adrfam;
3975 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
3976 
3977 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
3978 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
3979 
3980 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
3981 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
3982 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
3983 }
3984 
3985 static int
3986 nvmf_rdma_poller_create(struct spdk_nvmf_rdma_transport *rtransport,
3987 			struct spdk_nvmf_rdma_poll_group *rgroup, struct spdk_nvmf_rdma_device *device,
3988 			struct spdk_nvmf_rdma_poller **out_poller)
3989 {
3990 	struct spdk_nvmf_rdma_poller		*poller;
3991 	struct spdk_rdma_provider_srq_init_attr	srq_init_attr;
3992 	struct spdk_nvmf_rdma_resource_opts	opts;
3993 	int					num_cqe;
3994 
3995 	poller = calloc(1, sizeof(*poller));
3996 	if (!poller) {
3997 		SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
3998 		return -1;
3999 	}
4000 
4001 	poller->device = device;
4002 	poller->group = rgroup;
4003 	*out_poller = poller;
4004 
4005 	RB_INIT(&poller->qpairs);
4006 	STAILQ_INIT(&poller->qpairs_pending_send);
4007 	STAILQ_INIT(&poller->qpairs_pending_recv);
4008 
4009 	TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
4010 	SPDK_DEBUGLOG(rdma, "Create poller %p on device %p in poll group %p.\n", poller, device, rgroup);
4011 	if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) {
4012 		if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) {
4013 			SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n",
4014 				     rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr);
4015 		}
4016 		poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr);
4017 
4018 		device->num_srq++;
4019 		memset(&srq_init_attr, 0, sizeof(srq_init_attr));
4020 		srq_init_attr.pd = device->pd;
4021 		srq_init_attr.stats = &poller->stat.qp_stats.recv;
4022 		srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth;
4023 		srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
4024 		poller->srq = spdk_rdma_provider_srq_create(&srq_init_attr);
4025 		if (!poller->srq) {
4026 			SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
4027 			return -1;
4028 		}
4029 
4030 		opts.qp = poller->srq;
4031 		opts.map = device->map;
4032 		opts.qpair = NULL;
4033 		opts.shared = true;
4034 		opts.max_queue_depth = poller->max_srq_depth;
4035 		opts.in_capsule_data_size = rtransport->transport.opts.in_capsule_data_size;
4036 
4037 		poller->resources = nvmf_rdma_resources_create(&opts);
4038 		if (!poller->resources) {
4039 			SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
4040 			return -1;
4041 		}
4042 	}
4043 
4044 	/*
4045 	 * When using an srq, we can limit the completion queue at startup.
4046 	 * The following formula represents the calculation:
4047 	 * num_cqe = num_recv + num_data_wr + num_send_wr.
4048 	 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
4049 	 */
4050 	if (poller->srq) {
4051 		num_cqe = poller->max_srq_depth * 3;
4052 	} else {
4053 		num_cqe = rtransport->rdma_opts.num_cqe;
4054 	}
4055 
4056 	poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
4057 	if (!poller->cq) {
4058 		SPDK_ERRLOG("Unable to create completion queue\n");
4059 		return -1;
4060 	}
4061 	poller->num_cqe = num_cqe;
4062 	return 0;
4063 }
4064 
4065 static void
4066 _nvmf_rdma_register_poller_in_group(void *c)
4067 {
4068 	struct spdk_nvmf_rdma_poller	*poller;
4069 	struct poller_manage_ctx	*ctx = c;
4070 	struct spdk_nvmf_rdma_device	*device;
4071 	int				rc;
4072 
4073 	rc = nvmf_rdma_poller_create(ctx->rtransport, ctx->rgroup, ctx->device, &poller);
4074 	if (rc < 0 && poller) {
4075 		nvmf_rdma_poller_destroy(poller);
4076 	}
4077 
4078 	device = ctx->device;
4079 	if (nvmf_rdma_all_pollers_management_done(ctx)) {
4080 		device->is_ready = true;
4081 	}
4082 }
4083 
4084 static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
4085 
4086 static struct spdk_nvmf_transport_poll_group *
4087 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport,
4088 			    struct spdk_nvmf_poll_group *group)
4089 {
4090 	struct spdk_nvmf_rdma_transport		*rtransport;
4091 	struct spdk_nvmf_rdma_poll_group	*rgroup;
4092 	struct spdk_nvmf_rdma_poller		*poller;
4093 	struct spdk_nvmf_rdma_device		*device;
4094 	int					rc;
4095 
4096 	if (spdk_interrupt_mode_is_enabled()) {
4097 		SPDK_ERRLOG("RDMA transport does not support interrupt mode\n");
4098 		return NULL;
4099 	}
4100 
4101 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
4102 
4103 	rgroup = calloc(1, sizeof(*rgroup));
4104 	if (!rgroup) {
4105 		return NULL;
4106 	}
4107 
4108 	TAILQ_INIT(&rgroup->pollers);
4109 
4110 	TAILQ_FOREACH(device, &rtransport->devices, link) {
4111 		rc = nvmf_rdma_poller_create(rtransport, rgroup, device, &poller);
4112 		if (rc < 0) {
4113 			nvmf_rdma_poll_group_destroy(&rgroup->group);
4114 			return NULL;
4115 		}
4116 	}
4117 
4118 	TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link);
4119 	if (rtransport->conn_sched.next_admin_pg == NULL) {
4120 		rtransport->conn_sched.next_admin_pg = rgroup;
4121 		rtransport->conn_sched.next_io_pg = rgroup;
4122 	}
4123 
4124 	return &rgroup->group;
4125 }
4126 
4127 static uint32_t
4128 nvmf_poll_group_get_io_qpair_count(struct spdk_nvmf_poll_group *pg)
4129 {
4130 	uint32_t count;
4131 
4132 	/* Just assume that unassociated qpairs will eventually be io
4133 	 * qpairs.  This is close enough for the use cases for this
4134 	 * function.
4135 	 */
4136 	pthread_mutex_lock(&pg->mutex);
4137 	count = pg->stat.current_io_qpairs + pg->current_unassociated_qpairs;
4138 	pthread_mutex_unlock(&pg->mutex);
4139 
4140 	return count;
4141 }
4142 
4143 static struct spdk_nvmf_transport_poll_group *
4144 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
4145 {
4146 	struct spdk_nvmf_rdma_transport *rtransport;
4147 	struct spdk_nvmf_rdma_poll_group **pg;
4148 	struct spdk_nvmf_transport_poll_group *result;
4149 	uint32_t count;
4150 
4151 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
4152 
4153 	if (TAILQ_EMPTY(&rtransport->poll_groups)) {
4154 		return NULL;
4155 	}
4156 
4157 	if (qpair->qid == 0) {
4158 		pg = &rtransport->conn_sched.next_admin_pg;
4159 	} else {
4160 		struct spdk_nvmf_rdma_poll_group *pg_min, *pg_start, *pg_current;
4161 		uint32_t min_value;
4162 
4163 		pg = &rtransport->conn_sched.next_io_pg;
4164 		pg_min = *pg;
4165 		pg_start = *pg;
4166 		pg_current = *pg;
4167 		min_value = nvmf_poll_group_get_io_qpair_count(pg_current->group.group);
4168 
4169 		while (1) {
4170 			count = nvmf_poll_group_get_io_qpair_count(pg_current->group.group);
4171 
4172 			if (count < min_value) {
4173 				min_value = count;
4174 				pg_min = pg_current;
4175 			}
4176 
4177 			pg_current = TAILQ_NEXT(pg_current, link);
4178 			if (pg_current == NULL) {
4179 				pg_current = TAILQ_FIRST(&rtransport->poll_groups);
4180 			}
4181 
4182 			if (pg_current == pg_start || min_value == 0) {
4183 				break;
4184 			}
4185 		}
4186 		*pg = pg_min;
4187 	}
4188 
4189 	assert(*pg != NULL);
4190 
4191 	result = &(*pg)->group;
4192 
4193 	*pg = TAILQ_NEXT(*pg, link);
4194 	if (*pg == NULL) {
4195 		*pg = TAILQ_FIRST(&rtransport->poll_groups);
4196 	}
4197 
4198 	return result;
4199 }
4200 
4201 static void
4202 nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller)
4203 {
4204 	struct spdk_nvmf_rdma_qpair	*qpair, *tmp_qpair;
4205 	int				rc;
4206 
4207 	TAILQ_REMOVE(&poller->group->pollers, poller, link);
4208 	RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) {
4209 		nvmf_rdma_qpair_destroy(qpair);
4210 	}
4211 
4212 	if (poller->srq) {
4213 		if (poller->resources) {
4214 			nvmf_rdma_resources_destroy(poller->resources);
4215 		}
4216 		spdk_rdma_provider_srq_destroy(poller->srq);
4217 		SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq);
4218 	}
4219 
4220 	if (poller->cq) {
4221 		rc = ibv_destroy_cq(poller->cq);
4222 		if (rc != 0) {
4223 			SPDK_ERRLOG("Destroy cq return %d, error: %s\n", rc, strerror(errno));
4224 		}
4225 	}
4226 
4227 	if (poller->destroy_cb) {
4228 		poller->destroy_cb(poller->destroy_cb_ctx);
4229 		poller->destroy_cb = NULL;
4230 	}
4231 
4232 	free(poller);
4233 }
4234 
4235 static void
4236 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
4237 {
4238 	struct spdk_nvmf_rdma_poll_group	*rgroup, *next_rgroup;
4239 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
4240 	struct spdk_nvmf_rdma_transport		*rtransport;
4241 
4242 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4243 	if (!rgroup) {
4244 		return;
4245 	}
4246 
4247 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
4248 		nvmf_rdma_poller_destroy(poller);
4249 	}
4250 
4251 	if (rgroup->group.transport == NULL) {
4252 		/* Transport can be NULL when nvmf_rdma_poll_group_create()
4253 		 * calls this function directly in a failure path. */
4254 		free(rgroup);
4255 		return;
4256 	}
4257 
4258 	rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport);
4259 
4260 	next_rgroup = TAILQ_NEXT(rgroup, link);
4261 	TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link);
4262 	if (next_rgroup == NULL) {
4263 		next_rgroup = TAILQ_FIRST(&rtransport->poll_groups);
4264 	}
4265 	if (rtransport->conn_sched.next_admin_pg == rgroup) {
4266 		rtransport->conn_sched.next_admin_pg = next_rgroup;
4267 	}
4268 	if (rtransport->conn_sched.next_io_pg == rgroup) {
4269 		rtransport->conn_sched.next_io_pg = next_rgroup;
4270 	}
4271 
4272 	free(rgroup);
4273 }
4274 
4275 static void
4276 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
4277 {
4278 	if (rqpair->cm_id != NULL) {
4279 		nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
4280 	}
4281 }
4282 
4283 static int
4284 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
4285 			 struct spdk_nvmf_qpair *qpair)
4286 {
4287 	struct spdk_nvmf_rdma_poll_group	*rgroup;
4288 	struct spdk_nvmf_rdma_qpair		*rqpair;
4289 	struct spdk_nvmf_rdma_device		*device;
4290 	struct spdk_nvmf_rdma_poller		*poller;
4291 	int					rc;
4292 
4293 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4294 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4295 
4296 	device = rqpair->device;
4297 
4298 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
4299 		if (poller->device == device) {
4300 			break;
4301 		}
4302 	}
4303 
4304 	if (!poller) {
4305 		SPDK_ERRLOG("No poller found for device.\n");
4306 		return -1;
4307 	}
4308 
4309 	if (poller->need_destroy) {
4310 		SPDK_ERRLOG("Poller is destroying.\n");
4311 		return -1;
4312 	}
4313 
4314 	rqpair->poller = poller;
4315 	rqpair->srq = rqpair->poller->srq;
4316 
4317 	rc = nvmf_rdma_qpair_initialize(qpair);
4318 	if (rc < 0) {
4319 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
4320 		rqpair->poller = NULL;
4321 		rqpair->srq = NULL;
4322 		return -1;
4323 	}
4324 
4325 	RB_INSERT(qpairs_tree, &poller->qpairs, rqpair);
4326 
4327 	rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
4328 	if (rc) {
4329 		/* Try to reject, but we probably can't */
4330 		nvmf_rdma_qpair_reject_connection(rqpair);
4331 		return -1;
4332 	}
4333 
4334 	return 0;
4335 }
4336 
4337 static int
4338 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
4339 			    struct spdk_nvmf_qpair *qpair)
4340 {
4341 	struct spdk_nvmf_rdma_qpair		*rqpair;
4342 
4343 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4344 	assert(group->transport->tgt != NULL);
4345 
4346 	rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt);
4347 
4348 	if (!rqpair->destruct_channel) {
4349 		SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair);
4350 		return 0;
4351 	}
4352 
4353 	/* Sanity check that we get io_channel on the correct thread */
4354 	if (qpair->group) {
4355 		assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel));
4356 	}
4357 
4358 	return 0;
4359 }
4360 
4361 static int
4362 nvmf_rdma_request_free(struct spdk_nvmf_request *req)
4363 {
4364 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
4365 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
4366 			struct spdk_nvmf_rdma_transport, transport);
4367 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
4368 					      struct spdk_nvmf_rdma_qpair, qpair);
4369 
4370 	/*
4371 	 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request
4372 	 * needs to be returned to the shared receive queue or the poll group will eventually be
4373 	 * starved of RECV structures.
4374 	 */
4375 	if (rqpair->srq && rdma_req->recv) {
4376 		int rc;
4377 		struct ibv_recv_wr *bad_recv_wr;
4378 
4379 		spdk_rdma_provider_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr);
4380 		rc = spdk_rdma_provider_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
4381 		if (rc) {
4382 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
4383 		}
4384 	}
4385 
4386 	_nvmf_rdma_request_free(rdma_req, rtransport);
4387 	return 0;
4388 }
4389 
4390 static int
4391 nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
4392 {
4393 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
4394 			struct spdk_nvmf_rdma_transport, transport);
4395 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
4396 			struct spdk_nvmf_rdma_request, req);
4397 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
4398 			struct spdk_nvmf_rdma_qpair, qpair);
4399 
4400 	if (spdk_unlikely(rqpair->ibv_in_error_state)) {
4401 		/* The connection is dead. Move the request directly to the completed state. */
4402 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4403 	} else {
4404 		/* The connection is alive, so process the request as normal */
4405 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
4406 	}
4407 
4408 	nvmf_rdma_request_process(rtransport, rdma_req);
4409 
4410 	return 0;
4411 }
4412 
4413 static void
4414 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair,
4415 		      spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
4416 {
4417 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4418 
4419 	rqpair->to_close = true;
4420 
4421 	/* This happens only when the qpair is disconnected before
4422 	 * it is added to the poll group. Since there is no poll group,
4423 	 * the RDMA qp has not been initialized yet and the RDMA CM
4424 	 * event has not yet been acknowledged, so we need to reject it.
4425 	 */
4426 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
4427 		nvmf_rdma_qpair_reject_connection(rqpair);
4428 		nvmf_rdma_qpair_destroy(rqpair);
4429 		return;
4430 	}
4431 
4432 	if (rqpair->rdma_qp) {
4433 		spdk_rdma_provider_qp_disconnect(rqpair->rdma_qp);
4434 	}
4435 
4436 	nvmf_rdma_destroy_drained_qpair(rqpair);
4437 
4438 	if (cb_fn) {
4439 		cb_fn(cb_arg);
4440 	}
4441 }
4442 
4443 static struct spdk_nvmf_rdma_qpair *
4444 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
4445 {
4446 	struct spdk_nvmf_rdma_qpair find;
4447 
4448 	find.qp_num = wc->qp_num;
4449 
4450 	return RB_FIND(qpairs_tree, &rpoller->qpairs, &find);
4451 }
4452 
4453 #ifdef DEBUG
4454 static int
4455 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
4456 {
4457 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
4458 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
4459 }
4460 #endif
4461 
4462 static void
4463 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr,
4464 			   int rc)
4465 {
4466 	struct spdk_nvmf_rdma_recv	*rdma_recv;
4467 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
4468 
4469 	SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc);
4470 	while (bad_recv_wr != NULL) {
4471 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id;
4472 		rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4473 
4474 		rdma_recv->qpair->current_recv_depth++;
4475 		bad_recv_wr = bad_recv_wr->next;
4476 		SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc);
4477 		spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair);
4478 	}
4479 }
4480 
4481 static void
4482 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc)
4483 {
4484 	SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc);
4485 	while (bad_recv_wr != NULL) {
4486 		bad_recv_wr = bad_recv_wr->next;
4487 		rqpair->current_recv_depth++;
4488 	}
4489 	spdk_nvmf_qpair_disconnect(&rqpair->qpair);
4490 }
4491 
4492 static void
4493 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
4494 		     struct spdk_nvmf_rdma_poller *rpoller)
4495 {
4496 	struct spdk_nvmf_rdma_qpair	*rqpair;
4497 	struct ibv_recv_wr		*bad_recv_wr;
4498 	int				rc;
4499 
4500 	if (rpoller->srq) {
4501 		rc = spdk_rdma_provider_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr);
4502 		if (spdk_unlikely(rc)) {
4503 			_poller_reset_failed_recvs(rpoller, bad_recv_wr, rc);
4504 		}
4505 	} else {
4506 		while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) {
4507 			rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv);
4508 			rc = spdk_rdma_provider_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
4509 			if (spdk_unlikely(rc)) {
4510 				_qp_reset_failed_recvs(rqpair, bad_recv_wr, rc);
4511 			}
4512 			STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link);
4513 		}
4514 	}
4515 }
4516 
4517 static void
4518 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport,
4519 		       struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc)
4520 {
4521 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
4522 	struct spdk_nvmf_rdma_request	*prev_rdma_req = NULL, *cur_rdma_req = NULL;
4523 
4524 	SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc);
4525 	for (; bad_wr != NULL; bad_wr = bad_wr->next) {
4526 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id;
4527 		assert(rqpair->current_send_depth > 0);
4528 		rqpair->current_send_depth--;
4529 		switch (bad_rdma_wr->type) {
4530 		case RDMA_WR_TYPE_DATA:
4531 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data_wr);
4532 			if (bad_wr->opcode == IBV_WR_RDMA_READ) {
4533 				assert(rqpair->current_read_depth > 0);
4534 				rqpair->current_read_depth--;
4535 			}
4536 			break;
4537 		case RDMA_WR_TYPE_SEND:
4538 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr);
4539 			break;
4540 		default:
4541 			SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair);
4542 			prev_rdma_req = cur_rdma_req;
4543 			continue;
4544 		}
4545 
4546 		if (prev_rdma_req == cur_rdma_req) {
4547 			/* this request was handled by an earlier wr. i.e. we were performing an nvme read. */
4548 			/* We only have to check against prev_wr since each requests wrs are contiguous in this list. */
4549 			continue;
4550 		}
4551 
4552 		switch (cur_rdma_req->state) {
4553 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
4554 			cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
4555 			STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, cur_rdma_req, state_link);
4556 			cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
4557 			break;
4558 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
4559 		case RDMA_REQUEST_STATE_COMPLETING:
4560 			cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4561 			break;
4562 		default:
4563 			SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n",
4564 				    cur_rdma_req->state, rqpair);
4565 			continue;
4566 		}
4567 
4568 		nvmf_rdma_request_process(rtransport, cur_rdma_req);
4569 		prev_rdma_req = cur_rdma_req;
4570 	}
4571 
4572 	if (spdk_nvmf_qpair_is_active(&rqpair->qpair)) {
4573 		/* Disconnect the connection. */
4574 		spdk_nvmf_qpair_disconnect(&rqpair->qpair);
4575 	}
4576 
4577 }
4578 
4579 static void
4580 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
4581 		     struct spdk_nvmf_rdma_poller *rpoller)
4582 {
4583 	struct spdk_nvmf_rdma_qpair	*rqpair;
4584 	struct ibv_send_wr		*bad_wr = NULL;
4585 	int				rc;
4586 
4587 	while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) {
4588 		rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send);
4589 		rc = spdk_rdma_provider_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr);
4590 
4591 		/* bad wr always points to the first wr that failed. */
4592 		if (spdk_unlikely(rc)) {
4593 			_qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc);
4594 		}
4595 		STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link);
4596 	}
4597 }
4598 
4599 static const char *
4600 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type)
4601 {
4602 	switch (wr_type) {
4603 	case RDMA_WR_TYPE_RECV:
4604 		return "RECV";
4605 	case RDMA_WR_TYPE_SEND:
4606 		return "SEND";
4607 	case RDMA_WR_TYPE_DATA:
4608 		return "DATA";
4609 	default:
4610 		SPDK_ERRLOG("Unknown WR type %d\n", wr_type);
4611 		SPDK_UNREACHABLE();
4612 	}
4613 }
4614 
4615 static inline void
4616 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc)
4617 {
4618 	enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type;
4619 
4620 	if (wc->status == IBV_WC_WR_FLUSH_ERR) {
4621 		/* If qpair is in ERR state, we will receive completions for all posted and not completed
4622 		 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
4623 		SPDK_DEBUGLOG(rdma,
4624 			      "Error on CQ %p, (qp state %d, in_error %d) request 0x%lu, type %s, status: (%d): %s\n",
4625 			      rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_in_error_state, wc->wr_id,
4626 			      nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
4627 	} else {
4628 		SPDK_ERRLOG("Error on CQ %p, (qp state %d, in_error %d) request 0x%lu, type %s, status: (%d): %s\n",
4629 			    rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_in_error_state, wc->wr_id,
4630 			    nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
4631 	}
4632 }
4633 
4634 static int
4635 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
4636 		      struct spdk_nvmf_rdma_poller *rpoller)
4637 {
4638 	struct ibv_wc wc[32];
4639 	struct spdk_nvmf_rdma_wr	*rdma_wr;
4640 	struct spdk_nvmf_rdma_request	*rdma_req;
4641 	struct spdk_nvmf_rdma_recv	*rdma_recv;
4642 	struct spdk_nvmf_rdma_qpair	*rqpair, *tmp_rqpair;
4643 	int reaped, i;
4644 	int count = 0;
4645 	int rc;
4646 	bool error = false;
4647 	uint64_t poll_tsc = spdk_get_ticks();
4648 
4649 	if (spdk_unlikely(rpoller->need_destroy)) {
4650 		/* If qpair is closed before poller destroy, nvmf_rdma_destroy_drained_qpair may not
4651 		 * be called because we cannot poll anything from cq. So we call that here to force
4652 		 * destroy the qpair after to_close turning true.
4653 		 */
4654 		RB_FOREACH_SAFE(rqpair, qpairs_tree, &rpoller->qpairs, tmp_rqpair) {
4655 			nvmf_rdma_destroy_drained_qpair(rqpair);
4656 		}
4657 		return 0;
4658 	}
4659 
4660 	/* Poll for completing operations. */
4661 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
4662 	if (spdk_unlikely(reaped < 0)) {
4663 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
4664 			    errno, spdk_strerror(errno));
4665 		return -1;
4666 	} else if (reaped == 0) {
4667 		rpoller->stat.idle_polls++;
4668 	}
4669 
4670 	rpoller->stat.polls++;
4671 	rpoller->stat.completions += reaped;
4672 
4673 	for (i = 0; i < reaped; i++) {
4674 
4675 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
4676 
4677 		switch (rdma_wr->type) {
4678 		case RDMA_WR_TYPE_SEND:
4679 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr);
4680 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4681 
4682 			if (spdk_likely(!wc[i].status)) {
4683 				count++;
4684 				assert(wc[i].opcode == IBV_WC_SEND);
4685 				assert(nvmf_rdma_req_is_completing(rdma_req));
4686 			}
4687 
4688 			rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4689 			/* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */
4690 			assert(rqpair->current_send_depth >= (uint32_t)rdma_req->num_outstanding_data_wr + 1);
4691 			rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1;
4692 			rdma_req->num_outstanding_data_wr = 0;
4693 
4694 			nvmf_rdma_request_process(rtransport, rdma_req);
4695 			break;
4696 		case RDMA_WR_TYPE_RECV:
4697 			/* rdma_recv->qpair will be invalid if using an SRQ.  In that case we have to get the qpair from the wc. */
4698 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4699 			if (rpoller->srq != NULL) {
4700 				rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
4701 				/* It is possible that there are still some completions for destroyed QP
4702 				 * associated with SRQ. We just ignore these late completions and re-post
4703 				 * receive WRs back to SRQ.
4704 				 */
4705 				if (spdk_unlikely(NULL == rdma_recv->qpair)) {
4706 					struct ibv_recv_wr *bad_wr;
4707 
4708 					rdma_recv->wr.next = NULL;
4709 					spdk_rdma_provider_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr);
4710 					rc = spdk_rdma_provider_srq_flush_recv_wrs(rpoller->srq, &bad_wr);
4711 					if (rc) {
4712 						SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc);
4713 					}
4714 					continue;
4715 				}
4716 			}
4717 			rqpair = rdma_recv->qpair;
4718 
4719 			assert(rqpair != NULL);
4720 			if (spdk_likely(!wc[i].status)) {
4721 				assert(wc[i].opcode == IBV_WC_RECV);
4722 				if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
4723 					spdk_nvmf_qpair_disconnect(&rqpair->qpair);
4724 					break;
4725 				}
4726 			}
4727 
4728 			rdma_recv->wr.next = NULL;
4729 			rqpair->current_recv_depth++;
4730 			rdma_recv->receive_tsc = poll_tsc;
4731 			rpoller->stat.requests++;
4732 			STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link);
4733 			rqpair->qpair.queue_depth++;
4734 			break;
4735 		case RDMA_WR_TYPE_DATA:
4736 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data_wr);
4737 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4738 
4739 			assert(rdma_req->num_outstanding_data_wr > 0);
4740 
4741 			rqpair->current_send_depth--;
4742 			rdma_req->num_outstanding_data_wr--;
4743 			if (spdk_likely(!wc[i].status)) {
4744 				assert(wc[i].opcode == IBV_WC_RDMA_READ);
4745 				rqpair->current_read_depth--;
4746 				/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
4747 				if (rdma_req->num_outstanding_data_wr == 0) {
4748 					if (rdma_req->num_remaining_data_wr) {
4749 						/* Only part of RDMA_READ operations was submitted, process the rest */
4750 						nvmf_rdma_request_reset_transfer_in(rdma_req, rtransport);
4751 						rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
4752 						nvmf_rdma_request_process(rtransport, rdma_req);
4753 						break;
4754 					}
4755 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
4756 					nvmf_rdma_request_process(rtransport, rdma_req);
4757 				}
4758 			} else {
4759 				/* If the data transfer fails still force the queue into the error state,
4760 				 * if we were performing an RDMA_READ, we need to force the request into a
4761 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
4762 				 * case, we should wait for the SEND to complete. */
4763 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
4764 					rqpair->current_read_depth--;
4765 					if (rdma_req->num_outstanding_data_wr == 0) {
4766 						if (rdma_req->num_remaining_data_wr) {
4767 							/* Partially sent request is still in the pending_rdma_read_queue,
4768 							 * remove it now before completing */
4769 							rdma_req->num_remaining_data_wr = 0;
4770 							STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
4771 						}
4772 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4773 						nvmf_rdma_request_process(rtransport, rdma_req);
4774 					}
4775 				}
4776 			}
4777 			break;
4778 		default:
4779 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
4780 			continue;
4781 		}
4782 
4783 		/* Handle error conditions */
4784 		if (spdk_unlikely(wc[i].status)) {
4785 			rqpair->ibv_in_error_state = true;
4786 			nvmf_rdma_log_wc_status(rqpair, &wc[i]);
4787 
4788 			error = true;
4789 
4790 			if (spdk_nvmf_qpair_is_active(&rqpair->qpair)) {
4791 				/* Disconnect the connection. */
4792 				spdk_nvmf_qpair_disconnect(&rqpair->qpair);
4793 			} else {
4794 				nvmf_rdma_destroy_drained_qpair(rqpair);
4795 			}
4796 			continue;
4797 		}
4798 
4799 		nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
4800 
4801 		if (spdk_unlikely(!spdk_nvmf_qpair_is_active(&rqpair->qpair))) {
4802 			nvmf_rdma_destroy_drained_qpair(rqpair);
4803 		}
4804 	}
4805 
4806 	if (spdk_unlikely(error == true)) {
4807 		return -1;
4808 	}
4809 
4810 	if (reaped == 0) {
4811 		/* In some cases we may not receive any CQE but we still may have pending IO requests waiting for
4812 		 * a resource (e.g. a WR from the data_wr_pool).
4813 		 * We need to start processing of such requests if no CQE reaped */
4814 		nvmf_rdma_poller_process_pending_buf_queue(rtransport, rpoller);
4815 	}
4816 
4817 	/* submit outstanding work requests. */
4818 	_poller_submit_recvs(rtransport, rpoller);
4819 	_poller_submit_sends(rtransport, rpoller);
4820 
4821 	return count;
4822 }
4823 
4824 static void
4825 _nvmf_rdma_remove_destroyed_device(void *c)
4826 {
4827 	struct spdk_nvmf_rdma_transport	*rtransport = c;
4828 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
4829 	int				rc;
4830 
4831 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
4832 		if (device->ready_to_destroy) {
4833 			destroy_ib_device(rtransport, device);
4834 		}
4835 	}
4836 
4837 	free_poll_fds(rtransport);
4838 	rc = generate_poll_fds(rtransport);
4839 	/* cannot handle fd allocation error here */
4840 	if (rc != 0) {
4841 		SPDK_ERRLOG("Failed to generate poll fds after remove ib device.\n");
4842 	}
4843 }
4844 
4845 static void
4846 _nvmf_rdma_remove_poller_in_group_cb(void *c)
4847 {
4848 	struct poller_manage_ctx	*ctx = c;
4849 	struct spdk_nvmf_rdma_transport	*rtransport = ctx->rtransport;
4850 	struct spdk_nvmf_rdma_device	*device = ctx->device;
4851 	struct spdk_thread		*thread = ctx->thread;
4852 
4853 	if (nvmf_rdma_all_pollers_management_done(c)) {
4854 		/* destroy device when last poller is destroyed */
4855 		device->ready_to_destroy = true;
4856 		spdk_thread_send_msg(thread, _nvmf_rdma_remove_destroyed_device, rtransport);
4857 	}
4858 }
4859 
4860 static void
4861 _nvmf_rdma_remove_poller_in_group(void *c)
4862 {
4863 	struct poller_manage_ctx		*ctx = c;
4864 
4865 	ctx->rpoller->need_destroy = true;
4866 	ctx->rpoller->destroy_cb_ctx = ctx;
4867 	ctx->rpoller->destroy_cb = _nvmf_rdma_remove_poller_in_group_cb;
4868 
4869 	/* qp will be disconnected after receiving a RDMA_CM_EVENT_DEVICE_REMOVAL event. */
4870 	if (RB_EMPTY(&ctx->rpoller->qpairs)) {
4871 		nvmf_rdma_poller_destroy(ctx->rpoller);
4872 	}
4873 }
4874 
4875 static int
4876 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
4877 {
4878 	struct spdk_nvmf_rdma_transport *rtransport;
4879 	struct spdk_nvmf_rdma_poll_group *rgroup;
4880 	struct spdk_nvmf_rdma_poller	*rpoller, *tmp;
4881 	int				count = 0, rc, rc2 = 0;
4882 
4883 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
4884 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4885 
4886 	TAILQ_FOREACH_SAFE(rpoller, &rgroup->pollers, link, tmp) {
4887 		rc = nvmf_rdma_poller_poll(rtransport, rpoller);
4888 		if (spdk_unlikely(rc < 0)) {
4889 			if (rc2 == 0) {
4890 				rc2 = rc;
4891 			}
4892 			continue;
4893 		}
4894 		count += rc;
4895 	}
4896 
4897 	return rc2 ? rc2 : count;
4898 }
4899 
4900 static int
4901 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
4902 			  struct spdk_nvme_transport_id *trid,
4903 			  bool peer)
4904 {
4905 	struct sockaddr *saddr;
4906 	uint16_t port;
4907 
4908 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA);
4909 
4910 	if (peer) {
4911 		saddr = rdma_get_peer_addr(id);
4912 	} else {
4913 		saddr = rdma_get_local_addr(id);
4914 	}
4915 	switch (saddr->sa_family) {
4916 	case AF_INET: {
4917 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
4918 
4919 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
4920 		inet_ntop(AF_INET, &saddr_in->sin_addr,
4921 			  trid->traddr, sizeof(trid->traddr));
4922 		if (peer) {
4923 			port = ntohs(rdma_get_dst_port(id));
4924 		} else {
4925 			port = ntohs(rdma_get_src_port(id));
4926 		}
4927 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4928 		break;
4929 	}
4930 	case AF_INET6: {
4931 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
4932 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
4933 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
4934 			  trid->traddr, sizeof(trid->traddr));
4935 		if (peer) {
4936 			port = ntohs(rdma_get_dst_port(id));
4937 		} else {
4938 			port = ntohs(rdma_get_src_port(id));
4939 		}
4940 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4941 		break;
4942 	}
4943 	default:
4944 		return -1;
4945 
4946 	}
4947 
4948 	return 0;
4949 }
4950 
4951 static int
4952 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
4953 			      struct spdk_nvme_transport_id *trid)
4954 {
4955 	struct spdk_nvmf_rdma_qpair	*rqpair;
4956 
4957 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4958 
4959 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
4960 }
4961 
4962 static int
4963 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
4964 			       struct spdk_nvme_transport_id *trid)
4965 {
4966 	struct spdk_nvmf_rdma_qpair	*rqpair;
4967 
4968 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4969 
4970 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
4971 }
4972 
4973 static int
4974 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
4975 				struct spdk_nvme_transport_id *trid)
4976 {
4977 	struct spdk_nvmf_rdma_qpair	*rqpair;
4978 
4979 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4980 
4981 	return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
4982 }
4983 
4984 void
4985 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
4986 {
4987 	g_nvmf_hooks = *hooks;
4988 }
4989 
4990 static void
4991 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req,
4992 				   struct spdk_nvmf_rdma_request *rdma_req_to_abort,
4993 				   struct spdk_nvmf_rdma_qpair *rqpair)
4994 {
4995 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
4996 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
4997 
4998 	STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req_to_abort, state_link);
4999 	rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
5000 
5001 	req->rsp->nvme_cpl.cdw0 &= ~1U;	/* Command was successfully aborted. */
5002 }
5003 
5004 static int
5005 _nvmf_rdma_qpair_abort_request(void *ctx)
5006 {
5007 	struct spdk_nvmf_request *req = ctx;
5008 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF(
5009 				req->req_to_abort, struct spdk_nvmf_rdma_request, req);
5010 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
5011 					      struct spdk_nvmf_rdma_qpair, qpair);
5012 	int rc;
5013 
5014 	spdk_poller_unregister(&req->poller);
5015 
5016 	switch (rdma_req_to_abort->state) {
5017 	case RDMA_REQUEST_STATE_EXECUTING:
5018 		rc = nvmf_ctrlr_abort_request(req);
5019 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
5020 			return SPDK_POLLER_BUSY;
5021 		}
5022 		break;
5023 
5024 	case RDMA_REQUEST_STATE_NEED_BUFFER:
5025 		STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue,
5026 			      &rdma_req_to_abort->req, spdk_nvmf_request, buf_link);
5027 
5028 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5029 		break;
5030 
5031 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
5032 		STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort,
5033 			      spdk_nvmf_rdma_request, state_link);
5034 
5035 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5036 		break;
5037 
5038 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
5039 		STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort,
5040 			      spdk_nvmf_rdma_request, state_link);
5041 
5042 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5043 		break;
5044 
5045 	case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING:
5046 		/* Remove req from the list here to re-use common function */
5047 		STAILQ_REMOVE(&rqpair->pending_rdma_send_queue, rdma_req_to_abort,
5048 			      spdk_nvmf_rdma_request, state_link);
5049 
5050 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5051 		break;
5052 
5053 	case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
5054 		if (spdk_get_ticks() < req->timeout_tsc) {
5055 			req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0);
5056 			return SPDK_POLLER_BUSY;
5057 		}
5058 		break;
5059 
5060 	default:
5061 		break;
5062 	}
5063 
5064 	spdk_nvmf_request_complete(req);
5065 	return SPDK_POLLER_BUSY;
5066 }
5067 
5068 static void
5069 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
5070 			      struct spdk_nvmf_request *req)
5071 {
5072 	struct spdk_nvmf_rdma_qpair *rqpair;
5073 	struct spdk_nvmf_rdma_transport *rtransport;
5074 	struct spdk_nvmf_transport *transport;
5075 	uint16_t cid;
5076 	uint32_t i, max_req_count;
5077 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req;
5078 
5079 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
5080 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
5081 	transport = &rtransport->transport;
5082 
5083 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
5084 	max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth;
5085 
5086 	for (i = 0; i < max_req_count; i++) {
5087 		rdma_req = &rqpair->resources->reqs[i];
5088 		/* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair
5089 		 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to
5090 		 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */
5091 		if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid &&
5092 		    rdma_req->req.qpair == qpair) {
5093 			rdma_req_to_abort = rdma_req;
5094 			break;
5095 		}
5096 	}
5097 
5098 	if (rdma_req_to_abort == NULL) {
5099 		spdk_nvmf_request_complete(req);
5100 		return;
5101 	}
5102 
5103 	req->req_to_abort = &rdma_req_to_abort->req;
5104 	req->timeout_tsc = spdk_get_ticks() +
5105 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
5106 	req->poller = NULL;
5107 
5108 	_nvmf_rdma_qpair_abort_request(req);
5109 }
5110 
5111 static void
5112 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group,
5113 			       struct spdk_json_write_ctx *w)
5114 {
5115 	struct spdk_nvmf_rdma_poll_group *rgroup;
5116 	struct spdk_nvmf_rdma_poller *rpoller;
5117 
5118 	assert(w != NULL);
5119 
5120 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
5121 
5122 	spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer);
5123 
5124 	spdk_json_write_named_array_begin(w, "devices");
5125 
5126 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
5127 		spdk_json_write_object_begin(w);
5128 		spdk_json_write_named_string(w, "name",
5129 					     ibv_get_device_name(rpoller->device->context->device));
5130 		spdk_json_write_named_uint64(w, "polls",
5131 					     rpoller->stat.polls);
5132 		spdk_json_write_named_uint64(w, "idle_polls",
5133 					     rpoller->stat.idle_polls);
5134 		spdk_json_write_named_uint64(w, "completions",
5135 					     rpoller->stat.completions);
5136 		spdk_json_write_named_uint64(w, "requests",
5137 					     rpoller->stat.requests);
5138 		spdk_json_write_named_uint64(w, "request_latency",
5139 					     rpoller->stat.request_latency);
5140 		spdk_json_write_named_uint64(w, "pending_free_request",
5141 					     rpoller->stat.pending_free_request);
5142 		spdk_json_write_named_uint64(w, "pending_rdma_read",
5143 					     rpoller->stat.pending_rdma_read);
5144 		spdk_json_write_named_uint64(w, "pending_rdma_write",
5145 					     rpoller->stat.pending_rdma_write);
5146 		spdk_json_write_named_uint64(w, "pending_rdma_send",
5147 					     rpoller->stat.pending_rdma_send);
5148 		spdk_json_write_named_uint64(w, "total_send_wrs",
5149 					     rpoller->stat.qp_stats.send.num_submitted_wrs);
5150 		spdk_json_write_named_uint64(w, "send_doorbell_updates",
5151 					     rpoller->stat.qp_stats.send.doorbell_updates);
5152 		spdk_json_write_named_uint64(w, "total_recv_wrs",
5153 					     rpoller->stat.qp_stats.recv.num_submitted_wrs);
5154 		spdk_json_write_named_uint64(w, "recv_doorbell_updates",
5155 					     rpoller->stat.qp_stats.recv.doorbell_updates);
5156 		spdk_json_write_object_end(w);
5157 	}
5158 
5159 	spdk_json_write_array_end(w);
5160 }
5161 
5162 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
5163 	.name = "RDMA",
5164 	.type = SPDK_NVME_TRANSPORT_RDMA,
5165 	.opts_init = nvmf_rdma_opts_init,
5166 	.create = nvmf_rdma_create,
5167 	.dump_opts = nvmf_rdma_dump_opts,
5168 	.destroy = nvmf_rdma_destroy,
5169 
5170 	.listen = nvmf_rdma_listen,
5171 	.stop_listen = nvmf_rdma_stop_listen,
5172 	.cdata_init = nvmf_rdma_cdata_init,
5173 
5174 	.listener_discover = nvmf_rdma_discover,
5175 
5176 	.poll_group_create = nvmf_rdma_poll_group_create,
5177 	.get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group,
5178 	.poll_group_destroy = nvmf_rdma_poll_group_destroy,
5179 	.poll_group_add = nvmf_rdma_poll_group_add,
5180 	.poll_group_remove = nvmf_rdma_poll_group_remove,
5181 	.poll_group_poll = nvmf_rdma_poll_group_poll,
5182 
5183 	.req_free = nvmf_rdma_request_free,
5184 	.req_complete = nvmf_rdma_request_complete,
5185 
5186 	.qpair_fini = nvmf_rdma_close_qpair,
5187 	.qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid,
5188 	.qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid,
5189 	.qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid,
5190 	.qpair_abort_request = nvmf_rdma_qpair_abort_request,
5191 
5192 	.poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat,
5193 };
5194 
5195 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma);
5196 SPDK_LOG_REGISTER_COMPONENT(rdma)
5197