1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2016 Intel Corporation. All rights reserved. 3 * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk/stdinc.h" 8 9 #include "spdk/config.h" 10 #include "spdk/thread.h" 11 #include "spdk/likely.h" 12 #include "spdk/nvmf_transport.h" 13 #include "spdk/string.h" 14 #include "spdk/trace.h" 15 #include "spdk/tree.h" 16 #include "spdk/util.h" 17 18 #include "spdk_internal/assert.h" 19 #include "spdk/log.h" 20 #include "spdk_internal/rdma_provider.h" 21 #include "spdk_internal/rdma_utils.h" 22 23 #include "nvmf_internal.h" 24 #include "transport.h" 25 26 #include "spdk_internal/trace_defs.h" 27 28 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {}; 29 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma; 30 31 /* 32 RDMA Connection Resource Defaults 33 */ 34 #define NVMF_DEFAULT_MSDBD 16 35 #define NVMF_DEFAULT_TX_SGE SPDK_NVMF_MAX_SGL_ENTRIES 36 #define NVMF_DEFAULT_RSP_SGE 1 37 #define NVMF_DEFAULT_RX_SGE 2 38 39 #define NVMF_RDMA_MAX_EVENTS_PER_POLL 32 40 41 SPDK_STATIC_ASSERT(NVMF_DEFAULT_MSDBD <= SPDK_NVMF_MAX_SGL_ENTRIES, 42 "MSDBD must not exceed SPDK_NVMF_MAX_SGL_ENTRIES"); 43 44 /* The RDMA completion queue size */ 45 #define DEFAULT_NVMF_RDMA_CQ_SIZE 4096 46 #define MAX_WR_PER_QP(queue_depth) (queue_depth * 3 + 2) 47 48 enum spdk_nvmf_rdma_request_state { 49 /* The request is not currently in use */ 50 RDMA_REQUEST_STATE_FREE = 0, 51 52 /* Initial state when request first received */ 53 RDMA_REQUEST_STATE_NEW, 54 55 /* The request is queued until a data buffer is available. */ 56 RDMA_REQUEST_STATE_NEED_BUFFER, 57 58 /* The request is waiting on RDMA queue depth availability 59 * to transfer data from the host to the controller. 60 */ 61 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 62 63 /* The request is currently transferring data from the host to the controller. */ 64 RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 65 66 /* The request is ready to execute at the block device */ 67 RDMA_REQUEST_STATE_READY_TO_EXECUTE, 68 69 /* The request is currently executing at the block device */ 70 RDMA_REQUEST_STATE_EXECUTING, 71 72 /* The request finished executing at the block device */ 73 RDMA_REQUEST_STATE_EXECUTED, 74 75 /* The request is waiting on RDMA queue depth availability 76 * to transfer data from the controller to the host. 77 */ 78 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 79 80 /* The request is waiting on RDMA queue depth availability 81 * to send response to the host. 82 */ 83 RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING, 84 85 /* The request is ready to send a completion */ 86 RDMA_REQUEST_STATE_READY_TO_COMPLETE, 87 88 /* The request is currently transferring data from the controller to the host. */ 89 RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 90 91 /* The request currently has an outstanding completion without an 92 * associated data transfer. 93 */ 94 RDMA_REQUEST_STATE_COMPLETING, 95 96 /* The request completed and can be marked free. */ 97 RDMA_REQUEST_STATE_COMPLETED, 98 99 /* Terminator */ 100 RDMA_REQUEST_NUM_STATES, 101 }; 102 103 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA) 104 { 105 spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r'); 106 107 struct spdk_trace_tpoint_opts opts[] = { 108 { 109 "RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW, 110 OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 1, 111 { 112 { "qpair", SPDK_TRACE_ARG_TYPE_PTR, 8 }, 113 { "qd", SPDK_TRACE_ARG_TYPE_INT, 4 } 114 } 115 }, 116 { 117 "RDMA_REQ_COMPLETED", TRACE_RDMA_REQUEST_STATE_COMPLETED, 118 OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0, 119 { 120 { "qpair", SPDK_TRACE_ARG_TYPE_PTR, 8 }, 121 { "qd", SPDK_TRACE_ARG_TYPE_INT, 4 } 122 } 123 }, 124 }; 125 126 spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts)); 127 spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 128 OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0, 129 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 130 spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H", 131 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 132 OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0, 133 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 134 spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C", 135 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 136 OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0, 137 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 138 spdk_trace_register_description("RDMA_REQ_TX_H2C", 139 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 140 OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0, 141 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 142 spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE", 143 TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 144 OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0, 145 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 146 spdk_trace_register_description("RDMA_REQ_EXECUTING", 147 TRACE_RDMA_REQUEST_STATE_EXECUTING, 148 OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0, 149 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 150 spdk_trace_register_description("RDMA_REQ_EXECUTED", 151 TRACE_RDMA_REQUEST_STATE_EXECUTED, 152 OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0, 153 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 154 spdk_trace_register_description("RDMA_REQ_RDY2COMPL_PEND", 155 TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING, 156 OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0, 157 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 158 spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL", 159 TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 160 OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0, 161 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 162 spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H", 163 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 164 OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0, 165 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 166 spdk_trace_register_description("RDMA_REQ_COMPLETING", 167 TRACE_RDMA_REQUEST_STATE_COMPLETING, 168 OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0, 169 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 170 171 spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE, 172 OWNER_TYPE_NONE, OBJECT_NONE, 0, 173 SPDK_TRACE_ARG_TYPE_INT, ""); 174 spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT, 175 OWNER_TYPE_NONE, OBJECT_NONE, 0, 176 SPDK_TRACE_ARG_TYPE_INT, "type"); 177 spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT, 178 OWNER_TYPE_NONE, OBJECT_NONE, 0, 179 SPDK_TRACE_ARG_TYPE_INT, "type"); 180 spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT, 181 OWNER_TYPE_NONE, OBJECT_NONE, 0, 182 SPDK_TRACE_ARG_TYPE_INT, ""); 183 spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY, 184 OWNER_TYPE_NONE, OBJECT_NONE, 0, 185 SPDK_TRACE_ARG_TYPE_INT, ""); 186 187 spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_RDMA_IO, 1); 188 spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_RDMA_IO, 0); 189 } 190 191 enum spdk_nvmf_rdma_wr_type { 192 RDMA_WR_TYPE_RECV, 193 RDMA_WR_TYPE_SEND, 194 RDMA_WR_TYPE_DATA, 195 }; 196 197 struct spdk_nvmf_rdma_wr { 198 /* Uses enum spdk_nvmf_rdma_wr_type */ 199 uint8_t type; 200 }; 201 202 /* This structure holds commands as they are received off the wire. 203 * It must be dynamically paired with a full request object 204 * (spdk_nvmf_rdma_request) to service a request. It is separate 205 * from the request because RDMA does not appear to order 206 * completions, so occasionally we'll get a new incoming 207 * command when there aren't any free request objects. 208 */ 209 struct spdk_nvmf_rdma_recv { 210 struct ibv_recv_wr wr; 211 struct ibv_sge sgl[NVMF_DEFAULT_RX_SGE]; 212 213 struct spdk_nvmf_rdma_qpair *qpair; 214 215 /* In-capsule data buffer */ 216 uint8_t *buf; 217 218 struct spdk_nvmf_rdma_wr rdma_wr; 219 uint64_t receive_tsc; 220 221 STAILQ_ENTRY(spdk_nvmf_rdma_recv) link; 222 }; 223 224 struct spdk_nvmf_rdma_request_data { 225 struct ibv_send_wr wr; 226 struct ibv_sge sgl[SPDK_NVMF_MAX_SGL_ENTRIES]; 227 }; 228 229 struct spdk_nvmf_rdma_request { 230 struct spdk_nvmf_request req; 231 232 bool fused_failed; 233 234 struct spdk_nvmf_rdma_wr data_wr; 235 struct spdk_nvmf_rdma_wr rsp_wr; 236 237 /* Uses enum spdk_nvmf_rdma_request_state */ 238 uint8_t state; 239 240 /* Data offset in req.iov */ 241 uint32_t offset; 242 243 struct spdk_nvmf_rdma_recv *recv; 244 245 struct { 246 struct ibv_send_wr wr; 247 struct ibv_sge sgl[NVMF_DEFAULT_RSP_SGE]; 248 } rsp; 249 250 uint16_t iovpos; 251 uint16_t num_outstanding_data_wr; 252 /* Used to split Write IO with multi SGL payload */ 253 uint16_t num_remaining_data_wr; 254 uint64_t receive_tsc; 255 struct spdk_nvmf_rdma_request *fused_pair; 256 STAILQ_ENTRY(spdk_nvmf_rdma_request) state_link; 257 struct ibv_send_wr *remaining_tranfer_in_wrs; 258 struct ibv_send_wr *transfer_wr; 259 struct spdk_nvmf_rdma_request_data data; 260 }; 261 262 struct spdk_nvmf_rdma_resource_opts { 263 struct spdk_nvmf_rdma_qpair *qpair; 264 /* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */ 265 void *qp; 266 struct spdk_rdma_utils_mem_map *map; 267 uint32_t max_queue_depth; 268 uint32_t in_capsule_data_size; 269 bool shared; 270 }; 271 272 struct spdk_nvmf_rdma_resources { 273 /* Array of size "max_queue_depth" containing RDMA requests. */ 274 struct spdk_nvmf_rdma_request *reqs; 275 276 /* Array of size "max_queue_depth" containing RDMA recvs. */ 277 struct spdk_nvmf_rdma_recv *recvs; 278 279 /* Array of size "max_queue_depth" containing 64 byte capsules 280 * used for receive. 281 */ 282 union nvmf_h2c_msg *cmds; 283 284 /* Array of size "max_queue_depth" containing 16 byte completions 285 * to be sent back to the user. 286 */ 287 union nvmf_c2h_msg *cpls; 288 289 /* Array of size "max_queue_depth * InCapsuleDataSize" containing 290 * buffers to be used for in capsule data. 291 */ 292 void *bufs; 293 294 /* Receives that are waiting for a request object */ 295 STAILQ_HEAD(, spdk_nvmf_rdma_recv) incoming_queue; 296 297 /* Queue to track free requests */ 298 STAILQ_HEAD(, spdk_nvmf_rdma_request) free_queue; 299 }; 300 301 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair); 302 303 typedef void (*spdk_poller_destroy_cb)(void *ctx); 304 305 struct spdk_nvmf_rdma_ibv_event_ctx { 306 struct spdk_nvmf_rdma_qpair *rqpair; 307 spdk_nvmf_rdma_qpair_ibv_event cb_fn; 308 /* Link to other ibv events associated with this qpair */ 309 STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx) link; 310 }; 311 312 struct spdk_nvmf_rdma_qpair { 313 struct spdk_nvmf_qpair qpair; 314 315 struct spdk_nvmf_rdma_device *device; 316 struct spdk_nvmf_rdma_poller *poller; 317 318 struct spdk_rdma_provider_qp *rdma_qp; 319 struct rdma_cm_id *cm_id; 320 struct spdk_rdma_provider_srq *srq; 321 struct rdma_cm_id *listen_id; 322 323 /* Cache the QP number to improve QP search by RB tree. */ 324 uint32_t qp_num; 325 326 /* The maximum number of I/O outstanding on this connection at one time */ 327 uint16_t max_queue_depth; 328 329 /* The maximum number of active RDMA READ and ATOMIC operations at one time */ 330 uint16_t max_read_depth; 331 332 /* The maximum number of RDMA SEND operations at one time */ 333 uint32_t max_send_depth; 334 335 /* The current number of outstanding WRs from this qpair's 336 * recv queue. Should not exceed device->attr.max_queue_depth. 337 */ 338 uint16_t current_recv_depth; 339 340 /* The current number of active RDMA READ operations */ 341 uint16_t current_read_depth; 342 343 /* The current number of posted WRs from this qpair's 344 * send queue. Should not exceed max_send_depth. 345 */ 346 uint32_t current_send_depth; 347 348 /* The maximum number of SGEs per WR on the send queue */ 349 uint32_t max_send_sge; 350 351 /* The maximum number of SGEs per WR on the recv queue */ 352 uint32_t max_recv_sge; 353 354 struct spdk_nvmf_rdma_resources *resources; 355 356 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_read_queue; 357 358 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_write_queue; 359 360 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_send_queue; 361 362 /* Number of requests not in the free state */ 363 uint32_t qd; 364 365 bool ibv_in_error_state; 366 367 RB_ENTRY(spdk_nvmf_rdma_qpair) node; 368 369 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) recv_link; 370 371 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) send_link; 372 373 /* Points to the a request that has fuse bits set to 374 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting 375 * for the request that has SPDK_NVME_CMD_FUSE_SECOND. 376 */ 377 struct spdk_nvmf_rdma_request *fused_first; 378 379 /* 380 * io_channel which is used to destroy qpair when it is removed from poll group 381 */ 382 struct spdk_io_channel *destruct_channel; 383 384 /* List of ibv async events */ 385 STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx) ibv_events; 386 387 /* Lets us know that we have received the last_wqe event. */ 388 bool last_wqe_reached; 389 390 /* Indicate that nvmf_rdma_close_qpair is called */ 391 bool to_close; 392 }; 393 394 struct spdk_nvmf_rdma_poller_stat { 395 uint64_t completions; 396 uint64_t polls; 397 uint64_t idle_polls; 398 uint64_t requests; 399 uint64_t request_latency; 400 uint64_t pending_free_request; 401 uint64_t pending_rdma_read; 402 uint64_t pending_rdma_write; 403 uint64_t pending_rdma_send; 404 struct spdk_rdma_provider_qp_stats qp_stats; 405 }; 406 407 struct spdk_nvmf_rdma_poller { 408 struct spdk_nvmf_rdma_device *device; 409 struct spdk_nvmf_rdma_poll_group *group; 410 411 int num_cqe; 412 int required_num_wr; 413 struct ibv_cq *cq; 414 415 /* The maximum number of I/O outstanding on the shared receive queue at one time */ 416 uint16_t max_srq_depth; 417 bool need_destroy; 418 419 /* Shared receive queue */ 420 struct spdk_rdma_provider_srq *srq; 421 422 struct spdk_nvmf_rdma_resources *resources; 423 struct spdk_nvmf_rdma_poller_stat stat; 424 425 spdk_poller_destroy_cb destroy_cb; 426 void *destroy_cb_ctx; 427 428 RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs; 429 430 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_recv; 431 432 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_send; 433 434 TAILQ_ENTRY(spdk_nvmf_rdma_poller) link; 435 }; 436 437 struct spdk_nvmf_rdma_poll_group_stat { 438 uint64_t pending_data_buffer; 439 }; 440 441 struct spdk_nvmf_rdma_poll_group { 442 struct spdk_nvmf_transport_poll_group group; 443 struct spdk_nvmf_rdma_poll_group_stat stat; 444 TAILQ_HEAD(, spdk_nvmf_rdma_poller) pollers; 445 TAILQ_ENTRY(spdk_nvmf_rdma_poll_group) link; 446 }; 447 448 struct spdk_nvmf_rdma_conn_sched { 449 struct spdk_nvmf_rdma_poll_group *next_admin_pg; 450 struct spdk_nvmf_rdma_poll_group *next_io_pg; 451 }; 452 453 /* Assuming rdma_cm uses just one protection domain per ibv_context. */ 454 struct spdk_nvmf_rdma_device { 455 struct ibv_device_attr attr; 456 struct ibv_context *context; 457 458 struct spdk_rdma_utils_mem_map *map; 459 struct ibv_pd *pd; 460 461 int num_srq; 462 bool need_destroy; 463 bool ready_to_destroy; 464 bool is_ready; 465 466 TAILQ_ENTRY(spdk_nvmf_rdma_device) link; 467 }; 468 469 struct spdk_nvmf_rdma_port { 470 const struct spdk_nvme_transport_id *trid; 471 struct rdma_cm_id *id; 472 struct spdk_nvmf_rdma_device *device; 473 TAILQ_ENTRY(spdk_nvmf_rdma_port) link; 474 }; 475 476 struct rdma_transport_opts { 477 int num_cqe; 478 uint32_t max_srq_depth; 479 bool no_srq; 480 bool no_wr_batching; 481 int acceptor_backlog; 482 }; 483 484 struct spdk_nvmf_rdma_transport { 485 struct spdk_nvmf_transport transport; 486 struct rdma_transport_opts rdma_opts; 487 488 struct spdk_nvmf_rdma_conn_sched conn_sched; 489 490 struct rdma_event_channel *event_channel; 491 492 struct spdk_mempool *data_wr_pool; 493 494 struct spdk_poller *accept_poller; 495 496 /* fields used to poll RDMA/IB events */ 497 nfds_t npoll_fds; 498 struct pollfd *poll_fds; 499 500 TAILQ_HEAD(, spdk_nvmf_rdma_device) devices; 501 TAILQ_HEAD(, spdk_nvmf_rdma_port) ports; 502 TAILQ_HEAD(, spdk_nvmf_rdma_poll_group) poll_groups; 503 504 /* ports that are removed unexpectedly and need retry listen */ 505 TAILQ_HEAD(, spdk_nvmf_rdma_port) retry_ports; 506 }; 507 508 struct poller_manage_ctx { 509 struct spdk_nvmf_rdma_transport *rtransport; 510 struct spdk_nvmf_rdma_poll_group *rgroup; 511 struct spdk_nvmf_rdma_poller *rpoller; 512 struct spdk_nvmf_rdma_device *device; 513 514 struct spdk_thread *thread; 515 volatile int *inflight_op_counter; 516 }; 517 518 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = { 519 { 520 "num_cqe", offsetof(struct rdma_transport_opts, num_cqe), 521 spdk_json_decode_int32, true 522 }, 523 { 524 "max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth), 525 spdk_json_decode_uint32, true 526 }, 527 { 528 "no_srq", offsetof(struct rdma_transport_opts, no_srq), 529 spdk_json_decode_bool, true 530 }, 531 { 532 "no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching), 533 spdk_json_decode_bool, true 534 }, 535 { 536 "acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog), 537 spdk_json_decode_int32, true 538 }, 539 }; 540 541 static int 542 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2) 543 { 544 return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num; 545 } 546 547 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare); 548 549 static bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 550 struct spdk_nvmf_rdma_request *rdma_req); 551 552 static void _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 553 struct spdk_nvmf_rdma_poller *rpoller); 554 555 static void _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 556 struct spdk_nvmf_rdma_poller *rpoller); 557 558 static void _nvmf_rdma_remove_destroyed_device(void *c); 559 560 static inline enum spdk_nvme_media_error_status_code 561 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) { 562 enum spdk_nvme_media_error_status_code result; 563 switch (err_type) 564 { 565 case SPDK_DIF_REFTAG_ERROR: 566 result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR; 567 break; 568 case SPDK_DIF_APPTAG_ERROR: 569 result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR; 570 break; 571 case SPDK_DIF_GUARD_ERROR: 572 result = SPDK_NVME_SC_GUARD_CHECK_ERROR; 573 break; 574 default: 575 SPDK_UNREACHABLE(); 576 } 577 578 return result; 579 } 580 581 /* 582 * Return data_wrs to pool starting from \b data_wr 583 * Request's own response and data WR are excluded 584 */ 585 static void 586 _nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req, 587 struct ibv_send_wr *data_wr, 588 struct spdk_mempool *pool) 589 { 590 struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES]; 591 struct spdk_nvmf_rdma_request_data *nvmf_data; 592 struct ibv_send_wr *next_send_wr; 593 uint64_t req_wrid = (uint64_t)&rdma_req->data_wr; 594 uint32_t num_wrs = 0; 595 596 while (data_wr && data_wr->wr_id == req_wrid) { 597 nvmf_data = SPDK_CONTAINEROF(data_wr, struct spdk_nvmf_rdma_request_data, wr); 598 memset(nvmf_data->sgl, 0, sizeof(data_wr->sg_list[0]) * data_wr->num_sge); 599 data_wr->num_sge = 0; 600 next_send_wr = data_wr->next; 601 if (data_wr != &rdma_req->data.wr) { 602 data_wr->next = NULL; 603 assert(num_wrs < SPDK_NVMF_MAX_SGL_ENTRIES); 604 work_requests[num_wrs] = nvmf_data; 605 num_wrs++; 606 } 607 data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : next_send_wr; 608 } 609 610 if (num_wrs) { 611 spdk_mempool_put_bulk(pool, (void **) work_requests, num_wrs); 612 } 613 } 614 615 static void 616 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req, 617 struct spdk_nvmf_rdma_transport *rtransport) 618 { 619 rdma_req->num_outstanding_data_wr = 0; 620 621 _nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool); 622 623 if (rdma_req->remaining_tranfer_in_wrs) { 624 _nvmf_rdma_request_free_data(rdma_req, rdma_req->remaining_tranfer_in_wrs, 625 rtransport->data_wr_pool); 626 rdma_req->remaining_tranfer_in_wrs = NULL; 627 } 628 629 rdma_req->data.wr.next = NULL; 630 rdma_req->rsp.wr.next = NULL; 631 } 632 633 static void 634 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req) 635 { 636 SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool); 637 if (req->req.cmd) { 638 SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode); 639 } 640 if (req->recv) { 641 SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id); 642 } 643 } 644 645 static void 646 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair) 647 { 648 int i; 649 650 SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid); 651 for (i = 0; i < rqpair->max_queue_depth; i++) { 652 if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) { 653 nvmf_rdma_dump_request(&rqpair->resources->reqs[i]); 654 } 655 } 656 } 657 658 static void 659 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources) 660 { 661 spdk_free(resources->cmds); 662 spdk_free(resources->cpls); 663 spdk_free(resources->bufs); 664 spdk_free(resources->reqs); 665 spdk_free(resources->recvs); 666 free(resources); 667 } 668 669 670 static struct spdk_nvmf_rdma_resources * 671 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts) 672 { 673 struct spdk_nvmf_rdma_resources *resources; 674 struct spdk_nvmf_rdma_request *rdma_req; 675 struct spdk_nvmf_rdma_recv *rdma_recv; 676 struct spdk_rdma_provider_qp *qp = NULL; 677 struct spdk_rdma_provider_srq *srq = NULL; 678 struct ibv_recv_wr *bad_wr = NULL; 679 struct spdk_rdma_utils_memory_translation translation; 680 uint32_t i; 681 int rc = 0; 682 683 resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources)); 684 if (!resources) { 685 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 686 return NULL; 687 } 688 689 resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs), 690 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 691 resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs), 692 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 693 resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds), 694 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 695 resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls), 696 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 697 698 if (opts->in_capsule_data_size > 0) { 699 resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size, 700 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, 701 SPDK_MALLOC_DMA); 702 } 703 704 if (!resources->reqs || !resources->recvs || !resources->cmds || 705 !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) { 706 SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n"); 707 goto cleanup; 708 } 709 710 SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx\n", 711 resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds)); 712 SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx\n", 713 resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls)); 714 if (resources->bufs) { 715 SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x\n", 716 resources->bufs, opts->max_queue_depth * 717 opts->in_capsule_data_size); 718 } 719 720 /* Initialize queues */ 721 STAILQ_INIT(&resources->incoming_queue); 722 STAILQ_INIT(&resources->free_queue); 723 724 if (opts->shared) { 725 srq = (struct spdk_rdma_provider_srq *)opts->qp; 726 } else { 727 qp = (struct spdk_rdma_provider_qp *)opts->qp; 728 } 729 730 for (i = 0; i < opts->max_queue_depth; i++) { 731 rdma_recv = &resources->recvs[i]; 732 rdma_recv->qpair = opts->qpair; 733 734 /* Set up memory to receive commands */ 735 if (resources->bufs) { 736 rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i * 737 opts->in_capsule_data_size)); 738 } 739 740 rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV; 741 742 rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i]; 743 rdma_recv->sgl[0].length = sizeof(resources->cmds[i]); 744 rc = spdk_rdma_utils_get_translation(opts->map, &resources->cmds[i], sizeof(resources->cmds[i]), 745 &translation); 746 if (rc) { 747 goto cleanup; 748 } 749 rdma_recv->sgl[0].lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation); 750 rdma_recv->wr.num_sge = 1; 751 752 if (rdma_recv->buf) { 753 rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf; 754 rdma_recv->sgl[1].length = opts->in_capsule_data_size; 755 rc = spdk_rdma_utils_get_translation(opts->map, rdma_recv->buf, opts->in_capsule_data_size, 756 &translation); 757 if (rc) { 758 goto cleanup; 759 } 760 rdma_recv->sgl[1].lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation); 761 rdma_recv->wr.num_sge++; 762 } 763 764 rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr; 765 rdma_recv->wr.sg_list = rdma_recv->sgl; 766 if (srq) { 767 spdk_rdma_provider_srq_queue_recv_wrs(srq, &rdma_recv->wr); 768 } else { 769 spdk_rdma_provider_qp_queue_recv_wrs(qp, &rdma_recv->wr); 770 } 771 } 772 773 for (i = 0; i < opts->max_queue_depth; i++) { 774 rdma_req = &resources->reqs[i]; 775 776 if (opts->qpair != NULL) { 777 rdma_req->req.qpair = &opts->qpair->qpair; 778 } else { 779 rdma_req->req.qpair = NULL; 780 } 781 rdma_req->req.cmd = NULL; 782 rdma_req->req.iovcnt = 0; 783 rdma_req->req.stripped_data = NULL; 784 785 /* Set up memory to send responses */ 786 rdma_req->req.rsp = &resources->cpls[i]; 787 788 rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i]; 789 rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]); 790 rc = spdk_rdma_utils_get_translation(opts->map, &resources->cpls[i], sizeof(resources->cpls[i]), 791 &translation); 792 if (rc) { 793 goto cleanup; 794 } 795 rdma_req->rsp.sgl[0].lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation); 796 797 rdma_req->rsp_wr.type = RDMA_WR_TYPE_SEND; 798 rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp_wr; 799 rdma_req->rsp.wr.next = NULL; 800 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 801 rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED; 802 rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl; 803 rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl); 804 805 /* Set up memory for data buffers */ 806 rdma_req->data_wr.type = RDMA_WR_TYPE_DATA; 807 rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data_wr; 808 rdma_req->data.wr.next = NULL; 809 rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED; 810 rdma_req->data.wr.sg_list = rdma_req->data.sgl; 811 rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl); 812 813 /* Initialize request state to FREE */ 814 rdma_req->state = RDMA_REQUEST_STATE_FREE; 815 STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link); 816 } 817 818 if (srq) { 819 rc = spdk_rdma_provider_srq_flush_recv_wrs(srq, &bad_wr); 820 } else { 821 rc = spdk_rdma_provider_qp_flush_recv_wrs(qp, &bad_wr); 822 } 823 824 if (rc) { 825 goto cleanup; 826 } 827 828 return resources; 829 830 cleanup: 831 nvmf_rdma_resources_destroy(resources); 832 return NULL; 833 } 834 835 static void 836 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair) 837 { 838 struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx; 839 STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) { 840 ctx->rqpair = NULL; 841 /* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */ 842 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 843 } 844 } 845 846 static void nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller); 847 848 static void 849 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair) 850 { 851 struct spdk_nvmf_rdma_recv *rdma_recv, *recv_tmp; 852 struct ibv_recv_wr *bad_recv_wr = NULL; 853 int rc; 854 855 spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair); 856 857 if (rqpair->qd != 0) { 858 struct spdk_nvmf_qpair *qpair = &rqpair->qpair; 859 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(qpair->transport, 860 struct spdk_nvmf_rdma_transport, transport); 861 struct spdk_nvmf_rdma_request *req; 862 uint32_t i, max_req_count = 0; 863 864 SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd); 865 866 if (rqpair->srq == NULL) { 867 nvmf_rdma_dump_qpair_contents(rqpair); 868 max_req_count = rqpair->max_queue_depth; 869 } else if (rqpair->poller && rqpair->resources) { 870 max_req_count = rqpair->poller->max_srq_depth; 871 } 872 873 SPDK_DEBUGLOG(rdma, "Release incomplete requests\n"); 874 for (i = 0; i < max_req_count; i++) { 875 req = &rqpair->resources->reqs[i]; 876 if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) { 877 /* nvmf_rdma_request_process checks qpair ibv and internal state 878 * and completes a request */ 879 nvmf_rdma_request_process(rtransport, req); 880 } 881 } 882 assert(rqpair->qd == 0); 883 } 884 885 if (rqpair->poller) { 886 RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair); 887 888 if (rqpair->srq != NULL && rqpair->resources != NULL) { 889 /* Drop all received but unprocessed commands for this queue and return them to SRQ */ 890 STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) { 891 if (rqpair == rdma_recv->qpair) { 892 STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link); 893 spdk_rdma_provider_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr); 894 rc = spdk_rdma_provider_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr); 895 if (rc) { 896 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 897 } 898 } 899 } 900 } 901 } 902 903 if (rqpair->cm_id) { 904 if (rqpair->rdma_qp != NULL) { 905 spdk_rdma_provider_qp_destroy(rqpair->rdma_qp); 906 rqpair->rdma_qp = NULL; 907 } 908 909 if (rqpair->poller != NULL && rqpair->srq == NULL) { 910 rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth); 911 } 912 } 913 914 if (rqpair->srq == NULL && rqpair->resources != NULL) { 915 nvmf_rdma_resources_destroy(rqpair->resources); 916 } 917 918 nvmf_rdma_qpair_clean_ibv_events(rqpair); 919 920 if (rqpair->destruct_channel) { 921 spdk_put_io_channel(rqpair->destruct_channel); 922 rqpair->destruct_channel = NULL; 923 } 924 925 if (rqpair->poller && rqpair->poller->need_destroy && RB_EMPTY(&rqpair->poller->qpairs)) { 926 nvmf_rdma_poller_destroy(rqpair->poller); 927 } 928 929 /* destroy cm_id last so cma device will not be freed before we destroy the cq. */ 930 if (rqpair->cm_id) { 931 rdma_destroy_id(rqpair->cm_id); 932 } 933 934 free(rqpair); 935 } 936 937 static int 938 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device) 939 { 940 struct spdk_nvmf_rdma_poller *rpoller; 941 int rc, num_cqe, required_num_wr; 942 943 /* Enlarge CQ size dynamically */ 944 rpoller = rqpair->poller; 945 required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth); 946 num_cqe = rpoller->num_cqe; 947 if (num_cqe < required_num_wr) { 948 num_cqe = spdk_max(num_cqe * 2, required_num_wr); 949 num_cqe = spdk_min(num_cqe, device->attr.max_cqe); 950 } 951 952 if (rpoller->num_cqe != num_cqe) { 953 if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) { 954 SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n" 955 "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe); 956 return -1; 957 } 958 if (required_num_wr > device->attr.max_cqe) { 959 SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n", 960 required_num_wr, device->attr.max_cqe); 961 return -1; 962 } 963 964 SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe); 965 rc = ibv_resize_cq(rpoller->cq, num_cqe); 966 if (rc) { 967 SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); 968 return -1; 969 } 970 971 rpoller->num_cqe = num_cqe; 972 } 973 974 rpoller->required_num_wr = required_num_wr; 975 return 0; 976 } 977 978 static int 979 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair) 980 { 981 struct spdk_nvmf_rdma_qpair *rqpair; 982 struct spdk_nvmf_rdma_transport *rtransport; 983 struct spdk_nvmf_transport *transport; 984 struct spdk_nvmf_rdma_resource_opts opts; 985 struct spdk_nvmf_rdma_device *device; 986 struct spdk_rdma_provider_qp_init_attr qp_init_attr = {}; 987 988 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 989 device = rqpair->device; 990 991 qp_init_attr.qp_context = rqpair; 992 qp_init_attr.pd = device->pd; 993 qp_init_attr.send_cq = rqpair->poller->cq; 994 qp_init_attr.recv_cq = rqpair->poller->cq; 995 996 if (rqpair->srq) { 997 qp_init_attr.srq = rqpair->srq->srq; 998 } else { 999 qp_init_attr.cap.max_recv_wr = rqpair->max_queue_depth; 1000 } 1001 1002 /* SEND, READ, and WRITE operations */ 1003 qp_init_attr.cap.max_send_wr = (uint32_t)rqpair->max_queue_depth * 2; 1004 qp_init_attr.cap.max_send_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE); 1005 qp_init_attr.cap.max_recv_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 1006 qp_init_attr.stats = &rqpair->poller->stat.qp_stats; 1007 1008 if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) { 1009 SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n"); 1010 goto error; 1011 } 1012 1013 rqpair->rdma_qp = spdk_rdma_provider_qp_create(rqpair->cm_id, &qp_init_attr); 1014 if (!rqpair->rdma_qp) { 1015 goto error; 1016 } 1017 1018 rqpair->qp_num = rqpair->rdma_qp->qp->qp_num; 1019 1020 rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2), 1021 qp_init_attr.cap.max_send_wr); 1022 rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge); 1023 rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge); 1024 spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair); 1025 SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair); 1026 1027 if (rqpair->poller->srq == NULL) { 1028 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 1029 transport = &rtransport->transport; 1030 1031 opts.qp = rqpair->rdma_qp; 1032 opts.map = device->map; 1033 opts.qpair = rqpair; 1034 opts.shared = false; 1035 opts.max_queue_depth = rqpair->max_queue_depth; 1036 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 1037 1038 rqpair->resources = nvmf_rdma_resources_create(&opts); 1039 1040 if (!rqpair->resources) { 1041 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 1042 rdma_destroy_qp(rqpair->cm_id); 1043 goto error; 1044 } 1045 } else { 1046 rqpair->resources = rqpair->poller->resources; 1047 } 1048 1049 rqpair->current_recv_depth = 0; 1050 STAILQ_INIT(&rqpair->pending_rdma_read_queue); 1051 STAILQ_INIT(&rqpair->pending_rdma_write_queue); 1052 STAILQ_INIT(&rqpair->pending_rdma_send_queue); 1053 rqpair->qpair.queue_depth = 0; 1054 1055 return 0; 1056 1057 error: 1058 rdma_destroy_id(rqpair->cm_id); 1059 rqpair->cm_id = NULL; 1060 return -1; 1061 } 1062 1063 /* Append the given recv wr structure to the resource structs outstanding recvs list. */ 1064 /* This function accepts either a single wr or the first wr in a linked list. */ 1065 static void 1066 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first) 1067 { 1068 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1069 struct spdk_nvmf_rdma_transport, transport); 1070 1071 if (rqpair->srq != NULL) { 1072 spdk_rdma_provider_srq_queue_recv_wrs(rqpair->srq, first); 1073 } else { 1074 if (spdk_rdma_provider_qp_queue_recv_wrs(rqpair->rdma_qp, first)) { 1075 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link); 1076 } 1077 } 1078 1079 if (rtransport->rdma_opts.no_wr_batching) { 1080 _poller_submit_recvs(rtransport, rqpair->poller); 1081 } 1082 } 1083 1084 static inline void 1085 request_transfer_in(struct spdk_nvmf_request *req) 1086 { 1087 struct spdk_nvmf_rdma_request *rdma_req; 1088 struct spdk_nvmf_qpair *qpair; 1089 struct spdk_nvmf_rdma_qpair *rqpair; 1090 struct spdk_nvmf_rdma_transport *rtransport; 1091 1092 qpair = req->qpair; 1093 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1094 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1095 rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1096 struct spdk_nvmf_rdma_transport, transport); 1097 1098 assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); 1099 assert(rdma_req != NULL); 1100 1101 if (spdk_rdma_provider_qp_queue_send_wrs(rqpair->rdma_qp, rdma_req->transfer_wr)) { 1102 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1103 } 1104 if (rtransport->rdma_opts.no_wr_batching) { 1105 _poller_submit_sends(rtransport, rqpair->poller); 1106 } 1107 1108 assert(rqpair->current_read_depth + rdma_req->num_outstanding_data_wr <= rqpair->max_read_depth); 1109 rqpair->current_read_depth += rdma_req->num_outstanding_data_wr; 1110 assert(rqpair->current_send_depth + rdma_req->num_outstanding_data_wr <= rqpair->max_send_depth); 1111 rqpair->current_send_depth += rdma_req->num_outstanding_data_wr; 1112 } 1113 1114 static inline void 1115 nvmf_rdma_request_reset_transfer_in(struct spdk_nvmf_rdma_request *rdma_req, 1116 struct spdk_nvmf_rdma_transport *rtransport) 1117 { 1118 /* Put completed WRs back to pool and move transfer_wr pointer */ 1119 _nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool); 1120 rdma_req->transfer_wr = rdma_req->remaining_tranfer_in_wrs; 1121 rdma_req->remaining_tranfer_in_wrs = NULL; 1122 rdma_req->num_outstanding_data_wr = rdma_req->num_remaining_data_wr; 1123 rdma_req->num_remaining_data_wr = 0; 1124 } 1125 1126 static inline int 1127 request_prepare_transfer_in_part(struct spdk_nvmf_request *req, uint32_t num_reads_available) 1128 { 1129 struct spdk_nvmf_rdma_request *rdma_req; 1130 struct ibv_send_wr *wr; 1131 uint32_t i; 1132 1133 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1134 1135 assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); 1136 assert(rdma_req != NULL); 1137 assert(num_reads_available > 0); 1138 assert(rdma_req->num_outstanding_data_wr > num_reads_available); 1139 wr = rdma_req->transfer_wr; 1140 1141 for (i = 0; i < num_reads_available - 1; i++) { 1142 wr = wr->next; 1143 } 1144 1145 rdma_req->remaining_tranfer_in_wrs = wr->next; 1146 rdma_req->num_remaining_data_wr = rdma_req->num_outstanding_data_wr - num_reads_available; 1147 rdma_req->num_outstanding_data_wr = num_reads_available; 1148 /* Break chain of WRs to send only part. Once this portion completes, we continue sending RDMA_READs */ 1149 wr->next = NULL; 1150 1151 return 0; 1152 } 1153 1154 static int 1155 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted) 1156 { 1157 int num_outstanding_data_wr = 0; 1158 struct spdk_nvmf_rdma_request *rdma_req; 1159 struct spdk_nvmf_qpair *qpair; 1160 struct spdk_nvmf_rdma_qpair *rqpair; 1161 struct spdk_nvme_cpl *rsp; 1162 struct ibv_send_wr *first = NULL; 1163 struct spdk_nvmf_rdma_transport *rtransport; 1164 1165 *data_posted = 0; 1166 qpair = req->qpair; 1167 rsp = &req->rsp->nvme_cpl; 1168 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1169 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1170 rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1171 struct spdk_nvmf_rdma_transport, transport); 1172 1173 /* Advance our sq_head pointer */ 1174 if (qpair->sq_head == qpair->sq_head_max) { 1175 qpair->sq_head = 0; 1176 } else { 1177 qpair->sq_head++; 1178 } 1179 rsp->sqhd = qpair->sq_head; 1180 1181 /* queue the capsule for the recv buffer */ 1182 assert(rdma_req->recv != NULL); 1183 1184 nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr); 1185 1186 rdma_req->recv = NULL; 1187 assert(rqpair->current_recv_depth > 0); 1188 rqpair->current_recv_depth--; 1189 1190 /* Build the response which consists of optional 1191 * RDMA WRITEs to transfer data, plus an RDMA SEND 1192 * containing the response. 1193 */ 1194 first = &rdma_req->rsp.wr; 1195 1196 if (spdk_unlikely(rsp->status.sc != SPDK_NVME_SC_SUCCESS)) { 1197 /* On failure, data was not read from the controller. So clear the 1198 * number of outstanding data WRs to zero. 1199 */ 1200 rdma_req->num_outstanding_data_wr = 0; 1201 } else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1202 first = rdma_req->transfer_wr; 1203 *data_posted = 1; 1204 num_outstanding_data_wr = rdma_req->num_outstanding_data_wr; 1205 } 1206 if (spdk_rdma_provider_qp_queue_send_wrs(rqpair->rdma_qp, first)) { 1207 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1208 } 1209 if (rtransport->rdma_opts.no_wr_batching) { 1210 _poller_submit_sends(rtransport, rqpair->poller); 1211 } 1212 1213 /* +1 for the rsp wr */ 1214 assert(rqpair->current_send_depth + num_outstanding_data_wr + 1 <= rqpair->max_send_depth); 1215 rqpair->current_send_depth += num_outstanding_data_wr + 1; 1216 1217 return 0; 1218 } 1219 1220 static int 1221 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair) 1222 { 1223 struct spdk_nvmf_rdma_accept_private_data accept_data; 1224 struct rdma_conn_param ctrlr_event_data = {}; 1225 int rc; 1226 1227 accept_data.recfmt = 0; 1228 accept_data.crqsize = rqpair->max_queue_depth; 1229 1230 ctrlr_event_data.private_data = &accept_data; 1231 ctrlr_event_data.private_data_len = sizeof(accept_data); 1232 if (id->ps == RDMA_PS_TCP) { 1233 ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */ 1234 ctrlr_event_data.initiator_depth = rqpair->max_read_depth; 1235 } 1236 1237 /* Configure infinite retries for the initiator side qpair. 1238 * We need to pass this value to the initiator to prevent the 1239 * initiator side NIC from completing SEND requests back to the 1240 * initiator with status rnr_retry_count_exceeded. */ 1241 ctrlr_event_data.rnr_retry_count = 0x7; 1242 1243 /* When qpair is created without use of rdma cm API, an additional 1244 * information must be provided to initiator in the connection response: 1245 * whether qpair is using SRQ and its qp_num 1246 * Fields below are ignored by rdma cm if qpair has been 1247 * created using rdma cm API. */ 1248 ctrlr_event_data.srq = rqpair->srq ? 1 : 0; 1249 ctrlr_event_data.qp_num = rqpair->qp_num; 1250 1251 rc = spdk_rdma_provider_qp_accept(rqpair->rdma_qp, &ctrlr_event_data); 1252 if (rc) { 1253 SPDK_ERRLOG("Error %d on spdk_rdma_provider_qp_accept\n", errno); 1254 } else { 1255 SPDK_DEBUGLOG(rdma, "Sent back the accept\n"); 1256 } 1257 1258 return rc; 1259 } 1260 1261 static void 1262 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error) 1263 { 1264 struct spdk_nvmf_rdma_reject_private_data rej_data; 1265 1266 rej_data.recfmt = 0; 1267 rej_data.sts = error; 1268 1269 rdma_reject(id, &rej_data, sizeof(rej_data)); 1270 } 1271 1272 static int 1273 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event) 1274 { 1275 struct spdk_nvmf_rdma_transport *rtransport; 1276 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 1277 struct spdk_nvmf_rdma_port *port; 1278 struct rdma_conn_param *rdma_param = NULL; 1279 const struct spdk_nvmf_rdma_request_private_data *private_data = NULL; 1280 uint16_t max_queue_depth; 1281 uint16_t max_read_depth; 1282 1283 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 1284 1285 assert(event->id != NULL); /* Impossible. Can't even reject the connection. */ 1286 assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */ 1287 1288 rdma_param = &event->param.conn; 1289 if (rdma_param->private_data == NULL || 1290 rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1291 SPDK_ERRLOG("connect request: no private data provided\n"); 1292 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH); 1293 return -1; 1294 } 1295 1296 private_data = rdma_param->private_data; 1297 if (private_data->recfmt != 0) { 1298 SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n"); 1299 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT); 1300 return -1; 1301 } 1302 1303 SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n", 1304 event->id->verbs->device->name, event->id->verbs->device->dev_name); 1305 1306 port = event->listen_id->context; 1307 SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n", 1308 event->listen_id, event->listen_id->verbs, port); 1309 1310 /* Figure out the supported queue depth. This is a multi-step process 1311 * that takes into account hardware maximums, host provided values, 1312 * and our target's internal memory limits */ 1313 1314 SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n"); 1315 1316 /* Start with the maximum queue depth allowed by the target */ 1317 max_queue_depth = rtransport->transport.opts.max_queue_depth; 1318 max_read_depth = rtransport->transport.opts.max_queue_depth; 1319 SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n", 1320 rtransport->transport.opts.max_queue_depth); 1321 1322 /* Next check the local NIC's hardware limitations */ 1323 SPDK_DEBUGLOG(rdma, 1324 "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n", 1325 port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom); 1326 max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr); 1327 max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom); 1328 1329 /* Next check the remote NIC's hardware limitations */ 1330 SPDK_DEBUGLOG(rdma, 1331 "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n", 1332 rdma_param->initiator_depth, rdma_param->responder_resources); 1333 /* from man3 rdma_get_cm_event 1334 * responder_resources - Specifies the number of responder resources that is requested by the recipient. 1335 * The responder_resources field must match the initiator depth specified by the remote node when running 1336 * the rdma_connect and rdma_accept functions. */ 1337 if (rdma_param->responder_resources != 0) { 1338 if (private_data->qid) { 1339 SPDK_DEBUGLOG(rdma, "Host (Initiator) is not allowed to use RDMA operations," 1340 " responder_resources must be 0 but set to %u\n", 1341 rdma_param->responder_resources); 1342 } else { 1343 SPDK_WARNLOG("Host (Initiator) is not allowed to use RDMA operations," 1344 " responder_resources must be 0 but set to %u\n", 1345 rdma_param->responder_resources); 1346 } 1347 } 1348 /* from man3 rdma_get_cm_event 1349 * initiator_depth - Specifies the maximum number of outstanding RDMA read operations that the recipient holds. 1350 * The initiator_depth field must match the responder resources specified by the remote node when running 1351 * the rdma_connect and rdma_accept functions. */ 1352 if (rdma_param->initiator_depth == 0) { 1353 SPDK_ERRLOG("Host (Initiator) doesn't support RDMA_READ or atomic operations\n"); 1354 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_IRD); 1355 return -1; 1356 } 1357 max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth); 1358 1359 SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize); 1360 SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize); 1361 max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize); 1362 max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1); 1363 1364 SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n", 1365 max_queue_depth, max_read_depth); 1366 1367 rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair)); 1368 if (rqpair == NULL) { 1369 SPDK_ERRLOG("Could not allocate new connection.\n"); 1370 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 1371 return -1; 1372 } 1373 1374 rqpair->device = port->device; 1375 rqpair->max_queue_depth = max_queue_depth; 1376 rqpair->max_read_depth = max_read_depth; 1377 rqpair->cm_id = event->id; 1378 rqpair->listen_id = event->listen_id; 1379 rqpair->qpair.transport = transport; 1380 STAILQ_INIT(&rqpair->ibv_events); 1381 /* use qid from the private data to determine the qpair type 1382 qid will be set to the appropriate value when the controller is created */ 1383 rqpair->qpair.qid = private_data->qid; 1384 rqpair->qpair.numa.id_valid = 1; 1385 rqpair->qpair.numa.id = spdk_rdma_cm_id_get_numa_id(rqpair->cm_id); 1386 1387 event->id->context = &rqpair->qpair; 1388 1389 spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair); 1390 1391 return 0; 1392 } 1393 1394 static inline void 1395 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next, 1396 enum spdk_nvme_data_transfer xfer) 1397 { 1398 if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1399 wr->opcode = IBV_WR_RDMA_WRITE; 1400 wr->send_flags = 0; 1401 wr->next = next; 1402 } else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 1403 wr->opcode = IBV_WR_RDMA_READ; 1404 wr->send_flags = IBV_SEND_SIGNALED; 1405 wr->next = NULL; 1406 } else { 1407 assert(0); 1408 } 1409 } 1410 1411 static int 1412 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport, 1413 struct spdk_nvmf_rdma_request *rdma_req, 1414 uint32_t num_sgl_descriptors) 1415 { 1416 struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES]; 1417 struct spdk_nvmf_rdma_request_data *current_data_wr; 1418 uint32_t i; 1419 1420 if (spdk_unlikely(num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES)) { 1421 SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n", 1422 num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES); 1423 return -EINVAL; 1424 } 1425 1426 if (spdk_unlikely(spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, 1427 num_sgl_descriptors))) { 1428 return -ENOMEM; 1429 } 1430 1431 current_data_wr = &rdma_req->data; 1432 1433 for (i = 0; i < num_sgl_descriptors; i++) { 1434 nvmf_rdma_setup_wr(¤t_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer); 1435 current_data_wr->wr.next = &work_requests[i]->wr; 1436 current_data_wr = work_requests[i]; 1437 current_data_wr->wr.sg_list = current_data_wr->sgl; 1438 current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id; 1439 } 1440 1441 nvmf_rdma_setup_wr(¤t_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1442 1443 return 0; 1444 } 1445 1446 static inline void 1447 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req) 1448 { 1449 struct ibv_send_wr *wr = &rdma_req->data.wr; 1450 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1451 1452 wr->wr.rdma.rkey = sgl->keyed.key; 1453 wr->wr.rdma.remote_addr = sgl->address; 1454 nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1455 } 1456 1457 static inline void 1458 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs) 1459 { 1460 struct ibv_send_wr *wr = &rdma_req->data.wr; 1461 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1462 uint32_t i; 1463 int j; 1464 uint64_t remote_addr_offset = 0; 1465 1466 for (i = 0; i < num_wrs; ++i) { 1467 wr->wr.rdma.rkey = sgl->keyed.key; 1468 wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset; 1469 for (j = 0; j < wr->num_sge; ++j) { 1470 remote_addr_offset += wr->sg_list[j].length; 1471 } 1472 wr = wr->next; 1473 } 1474 } 1475 1476 static int 1477 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_device *device, 1478 struct spdk_nvmf_rdma_request *rdma_req, 1479 struct ibv_send_wr *wr, 1480 uint32_t total_length) 1481 { 1482 struct spdk_rdma_utils_memory_translation mem_translation; 1483 struct ibv_sge *sg_ele; 1484 struct iovec *iov; 1485 uint32_t lkey, remaining; 1486 int rc; 1487 1488 wr->num_sge = 0; 1489 1490 while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) { 1491 iov = &rdma_req->req.iov[rdma_req->iovpos]; 1492 rc = spdk_rdma_utils_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation); 1493 if (spdk_unlikely(rc)) { 1494 return rc; 1495 } 1496 1497 lkey = spdk_rdma_utils_memory_translation_get_lkey(&mem_translation); 1498 sg_ele = &wr->sg_list[wr->num_sge]; 1499 remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length); 1500 1501 sg_ele->lkey = lkey; 1502 sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset; 1503 sg_ele->length = remaining; 1504 SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr, 1505 sg_ele->length); 1506 rdma_req->offset += sg_ele->length; 1507 total_length -= sg_ele->length; 1508 wr->num_sge++; 1509 1510 if (rdma_req->offset == iov->iov_len) { 1511 rdma_req->offset = 0; 1512 rdma_req->iovpos++; 1513 } 1514 } 1515 1516 if (spdk_unlikely(total_length)) { 1517 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1518 return -EINVAL; 1519 } 1520 1521 return 0; 1522 } 1523 1524 static int 1525 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_device *device, 1526 struct spdk_nvmf_rdma_request *rdma_req, 1527 struct ibv_send_wr *wr, 1528 uint32_t total_length, 1529 uint32_t num_extra_wrs) 1530 { 1531 struct spdk_rdma_utils_memory_translation mem_translation; 1532 struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx; 1533 struct ibv_sge *sg_ele; 1534 struct iovec *iov; 1535 struct iovec *rdma_iov; 1536 uint32_t lkey, remaining; 1537 uint32_t remaining_data_block, data_block_size, md_size; 1538 uint32_t sge_len; 1539 int rc; 1540 1541 data_block_size = dif_ctx->block_size - dif_ctx->md_size; 1542 1543 if (spdk_likely(!rdma_req->req.stripped_data)) { 1544 rdma_iov = rdma_req->req.iov; 1545 remaining_data_block = data_block_size; 1546 md_size = dif_ctx->md_size; 1547 } else { 1548 rdma_iov = rdma_req->req.stripped_data->iov; 1549 total_length = total_length / dif_ctx->block_size * data_block_size; 1550 remaining_data_block = total_length; 1551 md_size = 0; 1552 } 1553 1554 wr->num_sge = 0; 1555 1556 while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) { 1557 iov = rdma_iov + rdma_req->iovpos; 1558 rc = spdk_rdma_utils_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation); 1559 if (spdk_unlikely(rc)) { 1560 return rc; 1561 } 1562 1563 lkey = spdk_rdma_utils_memory_translation_get_lkey(&mem_translation); 1564 sg_ele = &wr->sg_list[wr->num_sge]; 1565 remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length); 1566 1567 while (remaining) { 1568 if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) { 1569 if (num_extra_wrs > 0 && wr->next) { 1570 wr = wr->next; 1571 wr->num_sge = 0; 1572 sg_ele = &wr->sg_list[wr->num_sge]; 1573 num_extra_wrs--; 1574 } else { 1575 break; 1576 } 1577 } 1578 sg_ele->lkey = lkey; 1579 sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset); 1580 sge_len = spdk_min(remaining, remaining_data_block); 1581 sg_ele->length = sge_len; 1582 SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, 1583 sg_ele->addr, sg_ele->length); 1584 remaining -= sge_len; 1585 remaining_data_block -= sge_len; 1586 rdma_req->offset += sge_len; 1587 total_length -= sge_len; 1588 1589 sg_ele++; 1590 wr->num_sge++; 1591 1592 if (remaining_data_block == 0) { 1593 /* skip metadata */ 1594 rdma_req->offset += md_size; 1595 total_length -= md_size; 1596 /* Metadata that do not fit this IO buffer will be included in the next IO buffer */ 1597 remaining -= spdk_min(remaining, md_size); 1598 remaining_data_block = data_block_size; 1599 } 1600 1601 if (remaining == 0) { 1602 /* By subtracting the size of the last IOV from the offset, we ensure that we skip 1603 the remaining metadata bits at the beginning of the next buffer */ 1604 rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset); 1605 rdma_req->iovpos++; 1606 } 1607 } 1608 } 1609 1610 if (spdk_unlikely(total_length)) { 1611 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1612 return -EINVAL; 1613 } 1614 1615 return 0; 1616 } 1617 1618 static inline uint32_t 1619 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size) 1620 { 1621 /* estimate the number of SG entries and WRs needed to process the request */ 1622 uint32_t num_sge = 0; 1623 uint32_t i; 1624 uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size); 1625 1626 for (i = 0; i < num_buffers && length > 0; i++) { 1627 uint32_t buffer_len = spdk_min(length, io_unit_size); 1628 uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size); 1629 1630 if (num_sge_in_block * block_size > buffer_len) { 1631 ++num_sge_in_block; 1632 } 1633 num_sge += num_sge_in_block; 1634 length -= buffer_len; 1635 } 1636 return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES); 1637 } 1638 1639 static int 1640 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport, 1641 struct spdk_nvmf_rdma_device *device, 1642 struct spdk_nvmf_rdma_request *rdma_req) 1643 { 1644 struct spdk_nvmf_rdma_qpair *rqpair; 1645 struct spdk_nvmf_rdma_poll_group *rgroup; 1646 struct spdk_nvmf_request *req = &rdma_req->req; 1647 struct ibv_send_wr *wr = &rdma_req->data.wr; 1648 int rc; 1649 uint32_t num_wrs = 1; 1650 uint32_t length; 1651 1652 rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair); 1653 rgroup = rqpair->poller->group; 1654 1655 /* rdma wr specifics */ 1656 nvmf_rdma_setup_request(rdma_req); 1657 1658 length = req->length; 1659 if (spdk_unlikely(req->dif_enabled)) { 1660 req->dif.orig_length = length; 1661 length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx); 1662 req->dif.elba_length = length; 1663 } 1664 1665 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, 1666 length); 1667 if (spdk_unlikely(rc != 0)) { 1668 return rc; 1669 } 1670 1671 assert(req->iovcnt <= rqpair->max_send_sge); 1672 1673 /* When dif_insert_or_strip is true and the I/O data length is greater than one block, 1674 * the stripped_buffers are got for DIF stripping. */ 1675 if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) 1676 && (req->dif.elba_length > req->dif.dif_ctx.block_size))) { 1677 rc = nvmf_request_get_stripped_buffers(req, &rgroup->group, 1678 &rtransport->transport, req->dif.orig_length); 1679 if (rc != 0) { 1680 SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc); 1681 } 1682 } 1683 1684 rdma_req->iovpos = 0; 1685 1686 if (spdk_unlikely(req->dif_enabled)) { 1687 num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size, 1688 req->dif.dif_ctx.block_size); 1689 if (num_wrs > 1) { 1690 rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1); 1691 if (spdk_unlikely(rc != 0)) { 1692 goto err_exit; 1693 } 1694 } 1695 1696 rc = nvmf_rdma_fill_wr_sgl_with_dif(device, rdma_req, wr, length, num_wrs - 1); 1697 if (spdk_unlikely(rc != 0)) { 1698 goto err_exit; 1699 } 1700 1701 if (num_wrs > 1) { 1702 nvmf_rdma_update_remote_addr(rdma_req, num_wrs); 1703 } 1704 } else { 1705 rc = nvmf_rdma_fill_wr_sgl(device, rdma_req, wr, length); 1706 if (spdk_unlikely(rc != 0)) { 1707 goto err_exit; 1708 } 1709 } 1710 1711 /* set the number of outstanding data WRs for this request. */ 1712 rdma_req->num_outstanding_data_wr = num_wrs; 1713 1714 return rc; 1715 1716 err_exit: 1717 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1718 nvmf_rdma_request_free_data(rdma_req, rtransport); 1719 req->iovcnt = 0; 1720 return rc; 1721 } 1722 1723 static int 1724 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1725 struct spdk_nvmf_rdma_device *device, 1726 struct spdk_nvmf_rdma_request *rdma_req) 1727 { 1728 struct spdk_nvmf_rdma_qpair *rqpair; 1729 struct spdk_nvmf_rdma_poll_group *rgroup; 1730 struct ibv_send_wr *current_wr; 1731 struct spdk_nvmf_request *req = &rdma_req->req; 1732 struct spdk_nvme_sgl_descriptor *inline_segment, *desc; 1733 uint32_t num_sgl_descriptors; 1734 uint32_t lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0; 1735 uint32_t i; 1736 int rc; 1737 1738 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1739 rgroup = rqpair->poller->group; 1740 1741 inline_segment = &req->cmd->nvme_cmd.dptr.sgl1; 1742 assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT); 1743 assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET); 1744 1745 num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor); 1746 assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES); 1747 1748 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1749 for (i = 0; i < num_sgl_descriptors; i++) { 1750 if (spdk_likely(!req->dif_enabled)) { 1751 lengths[i] = desc->keyed.length; 1752 } else { 1753 req->dif.orig_length += desc->keyed.length; 1754 lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx); 1755 req->dif.elba_length += lengths[i]; 1756 } 1757 total_length += lengths[i]; 1758 desc++; 1759 } 1760 1761 if (spdk_unlikely(total_length > rtransport->transport.opts.max_io_size)) { 1762 SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n", 1763 total_length, rtransport->transport.opts.max_io_size); 1764 req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1765 return -EINVAL; 1766 } 1767 1768 rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1); 1769 if (spdk_unlikely(rc != 0)) { 1770 return -ENOMEM; 1771 } 1772 1773 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length); 1774 if (spdk_unlikely(rc != 0)) { 1775 nvmf_rdma_request_free_data(rdma_req, rtransport); 1776 return rc; 1777 } 1778 1779 /* When dif_insert_or_strip is true and the I/O data length is greater than one block, 1780 * the stripped_buffers are got for DIF stripping. */ 1781 if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) 1782 && (req->dif.elba_length > req->dif.dif_ctx.block_size))) { 1783 rc = nvmf_request_get_stripped_buffers(req, &rgroup->group, 1784 &rtransport->transport, req->dif.orig_length); 1785 if (spdk_unlikely(rc != 0)) { 1786 SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc); 1787 } 1788 } 1789 1790 /* The first WR must always be the embedded data WR. This is how we unwind them later. */ 1791 current_wr = &rdma_req->data.wr; 1792 assert(current_wr != NULL); 1793 1794 req->length = 0; 1795 rdma_req->iovpos = 0; 1796 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1797 for (i = 0; i < num_sgl_descriptors; i++) { 1798 /* The descriptors must be keyed data block descriptors with an address, not an offset. */ 1799 if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK || 1800 desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) { 1801 rc = -EINVAL; 1802 goto err_exit; 1803 } 1804 1805 if (spdk_likely(!req->dif_enabled)) { 1806 rc = nvmf_rdma_fill_wr_sgl(device, rdma_req, current_wr, lengths[i]); 1807 } else { 1808 rc = nvmf_rdma_fill_wr_sgl_with_dif(device, rdma_req, current_wr, 1809 lengths[i], 0); 1810 } 1811 if (spdk_unlikely(rc != 0)) { 1812 rc = -ENOMEM; 1813 goto err_exit; 1814 } 1815 1816 req->length += desc->keyed.length; 1817 current_wr->wr.rdma.rkey = desc->keyed.key; 1818 current_wr->wr.rdma.remote_addr = desc->address; 1819 current_wr = current_wr->next; 1820 desc++; 1821 } 1822 1823 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1824 /* Go back to the last descriptor in the list. */ 1825 desc--; 1826 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1827 if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1828 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1829 rdma_req->rsp.wr.imm_data = desc->keyed.key; 1830 } 1831 } 1832 #endif 1833 1834 rdma_req->num_outstanding_data_wr = num_sgl_descriptors; 1835 1836 return 0; 1837 1838 err_exit: 1839 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1840 nvmf_rdma_request_free_data(rdma_req, rtransport); 1841 return rc; 1842 } 1843 1844 static int 1845 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1846 struct spdk_nvmf_rdma_device *device, 1847 struct spdk_nvmf_rdma_request *rdma_req) 1848 { 1849 struct spdk_nvmf_request *req = &rdma_req->req; 1850 struct spdk_nvme_cpl *rsp; 1851 struct spdk_nvme_sgl_descriptor *sgl; 1852 int rc; 1853 uint32_t length; 1854 1855 rsp = &req->rsp->nvme_cpl; 1856 sgl = &req->cmd->nvme_cmd.dptr.sgl1; 1857 1858 if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK && 1859 (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS || 1860 sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) { 1861 1862 length = sgl->keyed.length; 1863 if (spdk_unlikely(length > rtransport->transport.opts.max_io_size)) { 1864 SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n", 1865 length, rtransport->transport.opts.max_io_size); 1866 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1867 return -1; 1868 } 1869 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1870 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1871 if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1872 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1873 rdma_req->rsp.wr.imm_data = sgl->keyed.key; 1874 } 1875 } 1876 #endif 1877 1878 /* fill request length and populate iovs */ 1879 req->length = length; 1880 1881 rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req); 1882 if (spdk_unlikely(rc < 0)) { 1883 if (rc == -EINVAL) { 1884 SPDK_ERRLOG("SGL length exceeds the max I/O size\n"); 1885 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1886 return -1; 1887 } 1888 /* No available buffers. Queue this request up. */ 1889 SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req); 1890 return 0; 1891 } 1892 1893 SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req, 1894 req->iovcnt); 1895 1896 return 0; 1897 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK && 1898 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1899 uint64_t offset = sgl->address; 1900 uint32_t max_len = rtransport->transport.opts.in_capsule_data_size; 1901 1902 SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n", 1903 offset, sgl->unkeyed.length); 1904 1905 if (spdk_unlikely(offset > max_len)) { 1906 SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n", 1907 offset, max_len); 1908 rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET; 1909 return -1; 1910 } 1911 max_len -= (uint32_t)offset; 1912 1913 if (spdk_unlikely(sgl->unkeyed.length > max_len)) { 1914 SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n", 1915 sgl->unkeyed.length, max_len); 1916 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1917 return -1; 1918 } 1919 1920 rdma_req->num_outstanding_data_wr = 0; 1921 req->data_from_pool = false; 1922 req->length = sgl->unkeyed.length; 1923 1924 req->iov[0].iov_base = rdma_req->recv->buf + offset; 1925 req->iov[0].iov_len = req->length; 1926 req->iovcnt = 1; 1927 1928 return 0; 1929 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT && 1930 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1931 1932 rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req); 1933 if (spdk_unlikely(rc == -ENOMEM)) { 1934 SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req); 1935 return 0; 1936 } else if (spdk_unlikely(rc == -EINVAL)) { 1937 SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n"); 1938 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1939 return -1; 1940 } 1941 1942 SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req, 1943 req->iovcnt); 1944 1945 return 0; 1946 } 1947 1948 SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n", 1949 sgl->generic.type, sgl->generic.subtype); 1950 rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID; 1951 return -1; 1952 } 1953 1954 static void 1955 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req, 1956 struct spdk_nvmf_rdma_transport *rtransport) 1957 { 1958 struct spdk_nvmf_rdma_qpair *rqpair; 1959 struct spdk_nvmf_rdma_poll_group *rgroup; 1960 1961 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1962 if (rdma_req->req.data_from_pool) { 1963 rgroup = rqpair->poller->group; 1964 1965 spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport); 1966 } 1967 if (rdma_req->req.stripped_data) { 1968 nvmf_request_free_stripped_buffers(&rdma_req->req, 1969 &rqpair->poller->group->group, 1970 &rtransport->transport); 1971 } 1972 nvmf_rdma_request_free_data(rdma_req, rtransport); 1973 rdma_req->req.length = 0; 1974 rdma_req->req.iovcnt = 0; 1975 rdma_req->offset = 0; 1976 rdma_req->req.dif_enabled = false; 1977 rdma_req->fused_failed = false; 1978 rdma_req->transfer_wr = NULL; 1979 if (rdma_req->fused_pair) { 1980 /* This req was part of a valid fused pair, but failed before it got to 1981 * READ_TO_EXECUTE state. This means we need to fail the other request 1982 * in the pair, because it is no longer part of a valid pair. If the pair 1983 * already reached READY_TO_EXECUTE state, we need to kick it. 1984 */ 1985 rdma_req->fused_pair->fused_failed = true; 1986 if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 1987 nvmf_rdma_request_process(rtransport, rdma_req->fused_pair); 1988 } 1989 rdma_req->fused_pair = NULL; 1990 } 1991 memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif)); 1992 rqpair->qd--; 1993 1994 STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link); 1995 rqpair->qpair.queue_depth--; 1996 rdma_req->state = RDMA_REQUEST_STATE_FREE; 1997 } 1998 1999 static void 2000 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport, 2001 struct spdk_nvmf_rdma_qpair *rqpair, 2002 struct spdk_nvmf_rdma_request *rdma_req) 2003 { 2004 enum spdk_nvme_cmd_fuse last, next; 2005 2006 last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE; 2007 next = rdma_req->req.cmd->nvme_cmd.fuse; 2008 2009 assert(last != SPDK_NVME_CMD_FUSE_SECOND); 2010 2011 if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) { 2012 return; 2013 } 2014 2015 if (last == SPDK_NVME_CMD_FUSE_FIRST) { 2016 if (next == SPDK_NVME_CMD_FUSE_SECOND) { 2017 /* This is a valid pair of fused commands. Point them at each other 2018 * so they can be submitted consecutively once ready to be executed. 2019 */ 2020 rqpair->fused_first->fused_pair = rdma_req; 2021 rdma_req->fused_pair = rqpair->fused_first; 2022 rqpair->fused_first = NULL; 2023 return; 2024 } else { 2025 /* Mark the last req as failed since it wasn't followed by a SECOND. */ 2026 rqpair->fused_first->fused_failed = true; 2027 2028 /* If the last req is in READY_TO_EXECUTE state, then call 2029 * nvmf_rdma_request_process(), otherwise nothing else will kick it. 2030 */ 2031 if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 2032 nvmf_rdma_request_process(rtransport, rqpair->fused_first); 2033 } 2034 2035 rqpair->fused_first = NULL; 2036 } 2037 } 2038 2039 if (next == SPDK_NVME_CMD_FUSE_FIRST) { 2040 /* Set rqpair->fused_first here so that we know to check that the next request 2041 * is a SECOND (and to fail this one if it isn't). 2042 */ 2043 rqpair->fused_first = rdma_req; 2044 } else if (next == SPDK_NVME_CMD_FUSE_SECOND) { 2045 /* Mark this req failed since it ia SECOND and the last one was not a FIRST. */ 2046 rdma_req->fused_failed = true; 2047 } 2048 } 2049 2050 bool 2051 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 2052 struct spdk_nvmf_rdma_request *rdma_req) 2053 { 2054 struct spdk_nvmf_rdma_qpair *rqpair; 2055 struct spdk_nvmf_rdma_device *device; 2056 struct spdk_nvmf_rdma_poll_group *rgroup; 2057 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2058 int rc; 2059 struct spdk_nvmf_rdma_recv *rdma_recv; 2060 enum spdk_nvmf_rdma_request_state prev_state; 2061 bool progress = false; 2062 int data_posted; 2063 uint32_t num_blocks, num_rdma_reads_available, qdepth; 2064 2065 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 2066 device = rqpair->device; 2067 rgroup = rqpair->poller->group; 2068 2069 assert(rdma_req->state != RDMA_REQUEST_STATE_FREE); 2070 2071 /* If the queue pair is in an error state, force the request to the completed state 2072 * to release resources. */ 2073 if (spdk_unlikely(rqpair->ibv_in_error_state || !spdk_nvmf_qpair_is_active(&rqpair->qpair))) { 2074 switch (rdma_req->state) { 2075 case RDMA_REQUEST_STATE_NEED_BUFFER: 2076 STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link); 2077 break; 2078 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 2079 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2080 break; 2081 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 2082 if (rdma_req->num_remaining_data_wr) { 2083 /* Partially sent request is still in the pending_rdma_read_queue, 2084 * remove it before completing */ 2085 rdma_req->num_remaining_data_wr = 0; 2086 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2087 } 2088 break; 2089 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 2090 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2091 break; 2092 case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING: 2093 STAILQ_REMOVE(&rqpair->pending_rdma_send_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2094 break; 2095 default: 2096 break; 2097 } 2098 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2099 } 2100 2101 /* The loop here is to allow for several back-to-back state changes. */ 2102 do { 2103 prev_state = rdma_req->state; 2104 2105 SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state); 2106 2107 switch (rdma_req->state) { 2108 case RDMA_REQUEST_STATE_FREE: 2109 /* Some external code must kick a request into RDMA_REQUEST_STATE_NEW 2110 * to escape this state. */ 2111 break; 2112 case RDMA_REQUEST_STATE_NEW: 2113 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0, 2114 (uintptr_t)rdma_req, (uintptr_t)rqpair, rqpair->qpair.queue_depth); 2115 rdma_recv = rdma_req->recv; 2116 2117 /* The first element of the SGL is the NVMe command */ 2118 rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr; 2119 memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp)); 2120 rdma_req->transfer_wr = &rdma_req->data.wr; 2121 2122 if (spdk_unlikely(rqpair->ibv_in_error_state || !spdk_nvmf_qpair_is_active(&rqpair->qpair))) { 2123 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2124 break; 2125 } 2126 2127 if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) { 2128 rdma_req->req.dif_enabled = true; 2129 } 2130 2131 nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req); 2132 2133 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2134 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 2135 rdma_req->rsp.wr.imm_data = 0; 2136 #endif 2137 2138 /* The next state transition depends on the data transfer needs of this request. */ 2139 rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req); 2140 2141 if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) { 2142 rsp->status.sct = SPDK_NVME_SCT_GENERIC; 2143 rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE; 2144 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link); 2145 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING; 2146 SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req); 2147 break; 2148 } 2149 2150 /* If no data to transfer, ready to execute. */ 2151 if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) { 2152 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2153 break; 2154 } 2155 2156 rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER; 2157 STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link); 2158 break; 2159 case RDMA_REQUEST_STATE_NEED_BUFFER: 2160 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0, 2161 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2162 2163 assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE); 2164 2165 if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) { 2166 /* This request needs to wait in line to obtain a buffer */ 2167 break; 2168 } 2169 2170 /* Try to get a data buffer */ 2171 rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req); 2172 if (spdk_unlikely(rc < 0)) { 2173 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2174 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link); 2175 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING; 2176 break; 2177 } 2178 2179 if (rdma_req->req.iovcnt == 0) { 2180 /* No buffers available. */ 2181 rgroup->stat.pending_data_buffer++; 2182 break; 2183 } 2184 2185 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2186 2187 /* If data is transferring from host to controller and the data didn't 2188 * arrive using in capsule data, we need to do a transfer from the host. 2189 */ 2190 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && 2191 rdma_req->req.data_from_pool) { 2192 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link); 2193 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING; 2194 break; 2195 } 2196 2197 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2198 break; 2199 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 2200 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0, 2201 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2202 2203 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) { 2204 /* This request needs to wait in line to perform RDMA */ 2205 break; 2206 } 2207 assert(rqpair->max_send_depth >= rqpair->current_send_depth); 2208 qdepth = rqpair->max_send_depth - rqpair->current_send_depth; 2209 assert(rqpair->max_read_depth >= rqpair->current_read_depth); 2210 num_rdma_reads_available = rqpair->max_read_depth - rqpair->current_read_depth; 2211 if (rdma_req->num_outstanding_data_wr > qdepth || 2212 rdma_req->num_outstanding_data_wr > num_rdma_reads_available) { 2213 if (num_rdma_reads_available && qdepth) { 2214 /* Send as much as we can */ 2215 request_prepare_transfer_in_part(&rdma_req->req, spdk_min(num_rdma_reads_available, qdepth)); 2216 } else { 2217 /* We can only have so many WRs outstanding. we have to wait until some finish. */ 2218 rqpair->poller->stat.pending_rdma_read++; 2219 break; 2220 } 2221 } 2222 2223 /* We have already verified that this request is the head of the queue. */ 2224 if (rdma_req->num_remaining_data_wr == 0) { 2225 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link); 2226 } 2227 2228 request_transfer_in(&rdma_req->req); 2229 rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER; 2230 2231 break; 2232 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 2233 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0, 2234 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2235 /* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE 2236 * to escape this state. */ 2237 break; 2238 case RDMA_REQUEST_STATE_READY_TO_EXECUTE: 2239 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0, 2240 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2241 2242 if (spdk_unlikely(rdma_req->req.dif_enabled)) { 2243 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 2244 /* generate DIF for write operation */ 2245 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2246 assert(num_blocks > 0); 2247 2248 rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt, 2249 num_blocks, &rdma_req->req.dif.dif_ctx); 2250 if (rc != 0) { 2251 SPDK_ERRLOG("DIF generation failed\n"); 2252 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2253 spdk_nvmf_qpair_disconnect(&rqpair->qpair); 2254 break; 2255 } 2256 } 2257 2258 assert(rdma_req->req.dif.elba_length >= rdma_req->req.length); 2259 /* set extended length before IO operation */ 2260 rdma_req->req.length = rdma_req->req.dif.elba_length; 2261 } 2262 2263 if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) { 2264 if (rdma_req->fused_failed) { 2265 /* This request failed FUSED semantics. Fail it immediately, without 2266 * even sending it to the target layer. 2267 */ 2268 rsp->status.sct = SPDK_NVME_SCT_GENERIC; 2269 rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED; 2270 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link); 2271 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING; 2272 break; 2273 } 2274 2275 if (rdma_req->fused_pair == NULL || 2276 rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 2277 /* This request is ready to execute, but either we don't know yet if it's 2278 * valid - i.e. this is a FIRST but we haven't received the next 2279 * request yet or the other request of this fused pair isn't ready to 2280 * execute. So break here and this request will get processed later either 2281 * when the other request is ready or we find that this request isn't valid. 2282 */ 2283 break; 2284 } 2285 } 2286 2287 /* If we get to this point, and this request is a fused command, we know that 2288 * it is part of valid sequence (FIRST followed by a SECOND) and that both 2289 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this 2290 * request, and the other request of the fused pair, in the correct order. 2291 * Also clear the ->fused_pair pointers on both requests, since after this point 2292 * we no longer need to maintain the relationship between these two requests. 2293 */ 2294 if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) { 2295 assert(rdma_req->fused_pair != NULL); 2296 assert(rdma_req->fused_pair->fused_pair != NULL); 2297 rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING; 2298 spdk_nvmf_request_exec(&rdma_req->fused_pair->req); 2299 rdma_req->fused_pair->fused_pair = NULL; 2300 rdma_req->fused_pair = NULL; 2301 } 2302 rdma_req->state = RDMA_REQUEST_STATE_EXECUTING; 2303 spdk_nvmf_request_exec(&rdma_req->req); 2304 if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) { 2305 assert(rdma_req->fused_pair != NULL); 2306 assert(rdma_req->fused_pair->fused_pair != NULL); 2307 rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING; 2308 spdk_nvmf_request_exec(&rdma_req->fused_pair->req); 2309 rdma_req->fused_pair->fused_pair = NULL; 2310 rdma_req->fused_pair = NULL; 2311 } 2312 break; 2313 case RDMA_REQUEST_STATE_EXECUTING: 2314 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0, 2315 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2316 /* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED 2317 * to escape this state. */ 2318 break; 2319 case RDMA_REQUEST_STATE_EXECUTED: 2320 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0, 2321 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2322 if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && 2323 rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2324 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link); 2325 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING; 2326 } else { 2327 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link); 2328 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING; 2329 } 2330 if (spdk_unlikely(rdma_req->req.dif_enabled)) { 2331 /* restore the original length */ 2332 rdma_req->req.length = rdma_req->req.dif.orig_length; 2333 2334 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2335 struct spdk_dif_error error_blk; 2336 2337 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2338 if (!rdma_req->req.stripped_data) { 2339 rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2340 &rdma_req->req.dif.dif_ctx, &error_blk); 2341 } else { 2342 rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov, 2343 rdma_req->req.stripped_data->iovcnt, 2344 rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2345 &rdma_req->req.dif.dif_ctx, &error_blk); 2346 } 2347 if (rc) { 2348 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2349 2350 SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type, 2351 error_blk.err_offset); 2352 rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR; 2353 rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type); 2354 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2355 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link); 2356 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING; 2357 } 2358 } 2359 } 2360 break; 2361 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 2362 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0, 2363 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2364 2365 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) { 2366 /* This request needs to wait in line to perform RDMA */ 2367 break; 2368 } 2369 if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) > 2370 rqpair->max_send_depth) { 2371 /* We can only have so many WRs outstanding. we have to wait until some finish. 2372 * +1 since each request has an additional wr in the resp. */ 2373 rqpair->poller->stat.pending_rdma_write++; 2374 break; 2375 } 2376 2377 /* We have already verified that this request is the head of the queue. */ 2378 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link); 2379 2380 /* The data transfer will be kicked off from 2381 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state. 2382 * We verified that data + response fit into send queue, so we can go to the next state directly 2383 */ 2384 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2385 break; 2386 case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING: 2387 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING, 0, 0, 2388 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2389 2390 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_send_queue)) { 2391 /* This request needs to wait in line to send the completion */ 2392 break; 2393 } 2394 2395 assert(rqpair->current_send_depth <= rqpair->max_send_depth); 2396 if (rqpair->current_send_depth == rqpair->max_send_depth) { 2397 /* We can only have so many WRs outstanding. we have to wait until some finish */ 2398 rqpair->poller->stat.pending_rdma_send++; 2399 break; 2400 } 2401 2402 /* We have already verified that this request is the head of the queue. */ 2403 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_send_queue, state_link); 2404 2405 /* The response sending will be kicked off from 2406 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state. 2407 */ 2408 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2409 break; 2410 case RDMA_REQUEST_STATE_READY_TO_COMPLETE: 2411 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0, 2412 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2413 rc = request_transfer_out(&rdma_req->req, &data_posted); 2414 assert(rc == 0); /* No good way to handle this currently */ 2415 if (spdk_unlikely(rc)) { 2416 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2417 } else { 2418 rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST : 2419 RDMA_REQUEST_STATE_COMPLETING; 2420 } 2421 break; 2422 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 2423 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0, 2424 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2425 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2426 * to escape this state. */ 2427 break; 2428 case RDMA_REQUEST_STATE_COMPLETING: 2429 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0, 2430 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2431 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2432 * to escape this state. */ 2433 break; 2434 case RDMA_REQUEST_STATE_COMPLETED: 2435 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0, 2436 (uintptr_t)rdma_req, (uintptr_t)rqpair, rqpair->qpair.queue_depth); 2437 2438 rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc; 2439 _nvmf_rdma_request_free(rdma_req, rtransport); 2440 break; 2441 case RDMA_REQUEST_NUM_STATES: 2442 default: 2443 assert(0); 2444 break; 2445 } 2446 2447 if (rdma_req->state != prev_state) { 2448 progress = true; 2449 } 2450 } while (rdma_req->state != prev_state); 2451 2452 return progress; 2453 } 2454 2455 /* Public API callbacks begin here */ 2456 2457 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128 2458 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128 2459 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096 2460 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128 2461 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096 2462 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072 2463 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES) 2464 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095 2465 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX 2466 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false 2467 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false 2468 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100 2469 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1 2470 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false 2471 #define SPDK_NVMF_RDMA_DEFAULT_DATA_WR_POOL_SIZE 4095 2472 2473 static void 2474 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts) 2475 { 2476 opts->max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH; 2477 opts->max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR; 2478 opts->in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE; 2479 opts->max_io_size = SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE; 2480 opts->io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE; 2481 opts->max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH; 2482 opts->num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS; 2483 opts->buf_cache_size = SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE; 2484 opts->dif_insert_or_strip = SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP; 2485 opts->abort_timeout_sec = SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC; 2486 opts->transport_specific = NULL; 2487 opts->data_wr_pool_size = SPDK_NVMF_RDMA_DEFAULT_DATA_WR_POOL_SIZE; 2488 } 2489 2490 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport, 2491 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg); 2492 2493 static inline bool 2494 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device) 2495 { 2496 return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD || 2497 device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW; 2498 } 2499 2500 static int nvmf_rdma_accept(void *ctx); 2501 static bool nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport); 2502 static void destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport, 2503 struct spdk_nvmf_rdma_device *device); 2504 2505 static int 2506 create_ib_device(struct spdk_nvmf_rdma_transport *rtransport, struct ibv_context *context, 2507 struct spdk_nvmf_rdma_device **new_device) 2508 { 2509 struct spdk_nvmf_rdma_device *device; 2510 int flag = 0; 2511 int rc = 0; 2512 2513 device = calloc(1, sizeof(*device)); 2514 if (!device) { 2515 SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n"); 2516 return -ENOMEM; 2517 } 2518 device->context = context; 2519 rc = ibv_query_device(device->context, &device->attr); 2520 if (rc < 0) { 2521 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 2522 free(device); 2523 return rc; 2524 } 2525 2526 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2527 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) { 2528 SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,"); 2529 SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id); 2530 } 2531 2532 /** 2533 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE. 2534 * The Soft-RoCE RXE driver does not currently support send with invalidate, 2535 * but incorrectly reports that it does. There are changes making their way 2536 * through the kernel now that will enable this feature. When they are merged, 2537 * we can conditionally enable this feature. 2538 * 2539 * TODO: enable this for versions of the kernel rxe driver that support it. 2540 */ 2541 if (nvmf_rdma_is_rxe_device(device)) { 2542 device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS); 2543 } 2544 #endif 2545 2546 /* set up device context async ev fd as NON_BLOCKING */ 2547 flag = fcntl(device->context->async_fd, F_GETFL); 2548 rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK); 2549 if (rc < 0) { 2550 SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n"); 2551 free(device); 2552 return rc; 2553 } 2554 2555 TAILQ_INSERT_TAIL(&rtransport->devices, device, link); 2556 SPDK_DEBUGLOG(rdma, "New device %p is added to RDMA transport\n", device); 2557 2558 if (g_nvmf_hooks.get_ibv_pd) { 2559 device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context); 2560 } else { 2561 device->pd = ibv_alloc_pd(device->context); 2562 } 2563 2564 if (!device->pd) { 2565 SPDK_ERRLOG("Unable to allocate protection domain.\n"); 2566 destroy_ib_device(rtransport, device); 2567 return -ENOMEM; 2568 } 2569 2570 assert(device->map == NULL); 2571 2572 device->map = spdk_rdma_utils_create_mem_map(device->pd, &g_nvmf_hooks, IBV_ACCESS_LOCAL_WRITE); 2573 if (!device->map) { 2574 SPDK_ERRLOG("Unable to allocate memory map for listen address\n"); 2575 destroy_ib_device(rtransport, device); 2576 return -ENOMEM; 2577 } 2578 2579 assert(device->map != NULL); 2580 assert(device->pd != NULL); 2581 2582 if (new_device) { 2583 *new_device = device; 2584 } 2585 SPDK_NOTICELOG("Create IB device %s(%p/%p) succeed.\n", ibv_get_device_name(context->device), 2586 device, context); 2587 2588 return 0; 2589 } 2590 2591 static void 2592 free_poll_fds(struct spdk_nvmf_rdma_transport *rtransport) 2593 { 2594 if (rtransport->poll_fds) { 2595 free(rtransport->poll_fds); 2596 rtransport->poll_fds = NULL; 2597 } 2598 rtransport->npoll_fds = 0; 2599 } 2600 2601 static int 2602 generate_poll_fds(struct spdk_nvmf_rdma_transport *rtransport) 2603 { 2604 /* Set up poll descriptor array to monitor events from RDMA and IB 2605 * in a single poll syscall 2606 */ 2607 int device_count = 0; 2608 int i = 0; 2609 struct spdk_nvmf_rdma_device *device, *tmp; 2610 2611 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 2612 device_count++; 2613 } 2614 2615 rtransport->npoll_fds = device_count + 1; 2616 2617 rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd)); 2618 if (rtransport->poll_fds == NULL) { 2619 SPDK_ERRLOG("poll_fds allocation failed\n"); 2620 return -ENOMEM; 2621 } 2622 2623 rtransport->poll_fds[i].fd = rtransport->event_channel->fd; 2624 rtransport->poll_fds[i++].events = POLLIN; 2625 2626 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 2627 rtransport->poll_fds[i].fd = device->context->async_fd; 2628 rtransport->poll_fds[i++].events = POLLIN; 2629 } 2630 2631 return 0; 2632 } 2633 2634 static struct spdk_nvmf_transport * 2635 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts) 2636 { 2637 int rc; 2638 struct spdk_nvmf_rdma_transport *rtransport; 2639 struct spdk_nvmf_rdma_device *device; 2640 struct ibv_context **contexts; 2641 size_t data_wr_pool_size; 2642 uint32_t i; 2643 int flag; 2644 uint32_t sge_count; 2645 uint32_t min_shared_buffers; 2646 uint32_t min_in_capsule_data_size; 2647 int max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES; 2648 2649 rtransport = calloc(1, sizeof(*rtransport)); 2650 if (!rtransport) { 2651 return NULL; 2652 } 2653 2654 TAILQ_INIT(&rtransport->devices); 2655 TAILQ_INIT(&rtransport->ports); 2656 TAILQ_INIT(&rtransport->poll_groups); 2657 TAILQ_INIT(&rtransport->retry_ports); 2658 2659 rtransport->transport.ops = &spdk_nvmf_transport_rdma; 2660 rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE; 2661 rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH; 2662 rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ; 2663 rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG; 2664 rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING; 2665 if (opts->transport_specific != NULL && 2666 spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder, 2667 SPDK_COUNTOF(rdma_transport_opts_decoder), 2668 &rtransport->rdma_opts)) { 2669 SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n"); 2670 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2671 return NULL; 2672 } 2673 2674 SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n" 2675 " Transport opts: max_ioq_depth=%d, max_io_size=%d,\n" 2676 " max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n" 2677 " in_capsule_data_size=%d, max_aq_depth=%d,\n" 2678 " num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d," 2679 " acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n", 2680 opts->max_queue_depth, 2681 opts->max_io_size, 2682 opts->max_qpairs_per_ctrlr - 1, 2683 opts->io_unit_size, 2684 opts->in_capsule_data_size, 2685 opts->max_aq_depth, 2686 opts->num_shared_buffers, 2687 rtransport->rdma_opts.num_cqe, 2688 rtransport->rdma_opts.max_srq_depth, 2689 rtransport->rdma_opts.no_srq, 2690 rtransport->rdma_opts.acceptor_backlog, 2691 rtransport->rdma_opts.no_wr_batching, 2692 opts->abort_timeout_sec); 2693 2694 /* I/O unit size cannot be larger than max I/O size */ 2695 if (opts->io_unit_size > opts->max_io_size) { 2696 opts->io_unit_size = opts->max_io_size; 2697 } 2698 2699 if (rtransport->rdma_opts.acceptor_backlog <= 0) { 2700 SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n", 2701 SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG); 2702 rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG; 2703 } 2704 2705 if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) { 2706 SPDK_ERRLOG("The number of shared data buffers (%d) is less than" 2707 "the minimum number required to guarantee that forward progress can be made (%d)\n", 2708 opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2)); 2709 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2710 return NULL; 2711 } 2712 2713 /* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */ 2714 if (opts->buf_cache_size < UINT32_MAX) { 2715 min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size; 2716 if (min_shared_buffers > opts->num_shared_buffers) { 2717 SPDK_ERRLOG("There are not enough buffers to satisfy" 2718 "per-poll group caches for each thread. (%" PRIu32 ")" 2719 "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers); 2720 SPDK_ERRLOG("Please specify a larger number of shared buffers\n"); 2721 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2722 return NULL; 2723 } 2724 } 2725 2726 sge_count = opts->max_io_size / opts->io_unit_size; 2727 if (sge_count > NVMF_DEFAULT_TX_SGE) { 2728 SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size); 2729 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2730 return NULL; 2731 } 2732 2733 min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES; 2734 if (opts->in_capsule_data_size < min_in_capsule_data_size) { 2735 SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n", 2736 min_in_capsule_data_size); 2737 opts->in_capsule_data_size = min_in_capsule_data_size; 2738 } 2739 2740 rtransport->event_channel = rdma_create_event_channel(); 2741 if (rtransport->event_channel == NULL) { 2742 SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno)); 2743 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2744 return NULL; 2745 } 2746 2747 flag = fcntl(rtransport->event_channel->fd, F_GETFL); 2748 if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { 2749 SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n", 2750 rtransport->event_channel->fd, spdk_strerror(errno)); 2751 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2752 return NULL; 2753 } 2754 2755 data_wr_pool_size = opts->data_wr_pool_size; 2756 if (data_wr_pool_size < SPDK_NVMF_MAX_SGL_ENTRIES * 2 * spdk_env_get_core_count()) { 2757 data_wr_pool_size = SPDK_NVMF_MAX_SGL_ENTRIES * 2 * spdk_env_get_core_count(); 2758 SPDK_NOTICELOG("data_wr_pool_size is changed to %zu to guarantee enough cache for handling " 2759 "at least one IO in each core\n", data_wr_pool_size); 2760 } 2761 rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data", data_wr_pool_size, 2762 sizeof(struct spdk_nvmf_rdma_request_data), SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 2763 SPDK_ENV_NUMA_ID_ANY); 2764 if (!rtransport->data_wr_pool) { 2765 if (spdk_mempool_lookup("spdk_nvmf_rdma_wr_data") != NULL) { 2766 SPDK_ERRLOG("Unable to allocate work request pool for poll group: already exists\n"); 2767 SPDK_ERRLOG("Probably running in multiprocess environment, which is " 2768 "unsupported by the nvmf library\n"); 2769 } else { 2770 SPDK_ERRLOG("Unable to allocate work request pool for poll group\n"); 2771 } 2772 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2773 return NULL; 2774 } 2775 2776 contexts = rdma_get_devices(NULL); 2777 if (contexts == NULL) { 2778 SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); 2779 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2780 return NULL; 2781 } 2782 2783 i = 0; 2784 rc = 0; 2785 while (contexts[i] != NULL) { 2786 rc = create_ib_device(rtransport, contexts[i], &device); 2787 if (rc < 0) { 2788 break; 2789 } 2790 i++; 2791 max_device_sge = spdk_min(max_device_sge, device->attr.max_sge); 2792 device->is_ready = true; 2793 } 2794 rdma_free_devices(contexts); 2795 2796 if (opts->io_unit_size * max_device_sge < opts->max_io_size) { 2797 /* divide and round up. */ 2798 opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge; 2799 2800 /* round up to the nearest 4k. */ 2801 opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK; 2802 2803 opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE); 2804 SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n", 2805 opts->io_unit_size); 2806 } 2807 2808 if (rc < 0) { 2809 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2810 return NULL; 2811 } 2812 2813 rc = generate_poll_fds(rtransport); 2814 if (rc < 0) { 2815 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2816 return NULL; 2817 } 2818 2819 rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport, 2820 opts->acceptor_poll_rate); 2821 if (!rtransport->accept_poller) { 2822 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2823 return NULL; 2824 } 2825 2826 return &rtransport->transport; 2827 } 2828 2829 static void 2830 destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport, 2831 struct spdk_nvmf_rdma_device *device) 2832 { 2833 TAILQ_REMOVE(&rtransport->devices, device, link); 2834 spdk_rdma_utils_free_mem_map(&device->map); 2835 if (device->pd) { 2836 if (!g_nvmf_hooks.get_ibv_pd) { 2837 ibv_dealloc_pd(device->pd); 2838 } 2839 } 2840 SPDK_DEBUGLOG(rdma, "IB device [%p] is destroyed.\n", device); 2841 free(device); 2842 } 2843 2844 static void 2845 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w) 2846 { 2847 struct spdk_nvmf_rdma_transport *rtransport; 2848 assert(w != NULL); 2849 2850 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2851 spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth); 2852 spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq); 2853 if (rtransport->rdma_opts.no_srq == true) { 2854 spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe); 2855 } 2856 spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog); 2857 spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching); 2858 } 2859 2860 static int 2861 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport, 2862 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg) 2863 { 2864 struct spdk_nvmf_rdma_transport *rtransport; 2865 struct spdk_nvmf_rdma_port *port, *port_tmp; 2866 struct spdk_nvmf_rdma_device *device, *device_tmp; 2867 2868 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2869 2870 TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, port_tmp) { 2871 TAILQ_REMOVE(&rtransport->retry_ports, port, link); 2872 free(port); 2873 } 2874 2875 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) { 2876 TAILQ_REMOVE(&rtransport->ports, port, link); 2877 rdma_destroy_id(port->id); 2878 free(port); 2879 } 2880 2881 free_poll_fds(rtransport); 2882 2883 if (rtransport->event_channel != NULL) { 2884 rdma_destroy_event_channel(rtransport->event_channel); 2885 } 2886 2887 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) { 2888 destroy_ib_device(rtransport, device); 2889 } 2890 2891 if (rtransport->data_wr_pool != NULL) { 2892 if (spdk_mempool_count(rtransport->data_wr_pool) != transport->opts.data_wr_pool_size) { 2893 SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n", 2894 spdk_mempool_count(rtransport->data_wr_pool), 2895 transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES); 2896 } 2897 } 2898 2899 spdk_mempool_free(rtransport->data_wr_pool); 2900 2901 spdk_poller_unregister(&rtransport->accept_poller); 2902 free(rtransport); 2903 2904 if (cb_fn) { 2905 cb_fn(cb_arg); 2906 } 2907 return 0; 2908 } 2909 2910 static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 2911 struct spdk_nvme_transport_id *trid, 2912 bool peer); 2913 2914 static bool nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport); 2915 2916 static int 2917 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid, 2918 struct spdk_nvmf_listen_opts *listen_opts) 2919 { 2920 struct spdk_nvmf_rdma_transport *rtransport; 2921 struct spdk_nvmf_rdma_device *device; 2922 struct spdk_nvmf_rdma_port *port, *tmp_port; 2923 struct addrinfo *res; 2924 struct addrinfo hints; 2925 int family; 2926 int rc; 2927 long int port_val; 2928 bool is_retry = false; 2929 2930 if (!strlen(trid->trsvcid)) { 2931 SPDK_ERRLOG("Service id is required\n"); 2932 return -EINVAL; 2933 } 2934 2935 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2936 assert(rtransport->event_channel != NULL); 2937 2938 port = calloc(1, sizeof(*port)); 2939 if (!port) { 2940 SPDK_ERRLOG("Port allocation failed\n"); 2941 return -ENOMEM; 2942 } 2943 2944 port->trid = trid; 2945 2946 switch (trid->adrfam) { 2947 case SPDK_NVMF_ADRFAM_IPV4: 2948 family = AF_INET; 2949 break; 2950 case SPDK_NVMF_ADRFAM_IPV6: 2951 family = AF_INET6; 2952 break; 2953 default: 2954 SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam); 2955 free(port); 2956 return -EINVAL; 2957 } 2958 2959 memset(&hints, 0, sizeof(hints)); 2960 hints.ai_family = family; 2961 hints.ai_flags = AI_NUMERICSERV; 2962 hints.ai_socktype = SOCK_STREAM; 2963 hints.ai_protocol = 0; 2964 2965 /* Range check the trsvcid. Fail in 3 cases: 2966 * < 0: means that spdk_strtol hit an error 2967 * 0: this results in ephemeral port which we don't want 2968 * > 65535: port too high 2969 */ 2970 port_val = spdk_strtol(trid->trsvcid, 10); 2971 if (port_val <= 0 || port_val > 65535) { 2972 SPDK_ERRLOG("invalid trsvcid %s\n", trid->trsvcid); 2973 free(port); 2974 return -EINVAL; 2975 } 2976 2977 rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res); 2978 if (rc) { 2979 SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc); 2980 free(port); 2981 return -(abs(rc)); 2982 } 2983 2984 rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP); 2985 if (rc < 0) { 2986 SPDK_ERRLOG("rdma_create_id() failed\n"); 2987 freeaddrinfo(res); 2988 free(port); 2989 return rc; 2990 } 2991 2992 rc = rdma_bind_addr(port->id, res->ai_addr); 2993 freeaddrinfo(res); 2994 2995 if (rc < 0) { 2996 TAILQ_FOREACH(tmp_port, &rtransport->retry_ports, link) { 2997 if (spdk_nvme_transport_id_compare(tmp_port->trid, trid) == 0) { 2998 is_retry = true; 2999 break; 3000 } 3001 } 3002 if (!is_retry) { 3003 SPDK_ERRLOG("rdma_bind_addr() failed\n"); 3004 } 3005 rdma_destroy_id(port->id); 3006 free(port); 3007 return rc; 3008 } 3009 3010 if (!port->id->verbs) { 3011 SPDK_ERRLOG("ibv_context is null\n"); 3012 rdma_destroy_id(port->id); 3013 free(port); 3014 return -1; 3015 } 3016 3017 rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog); 3018 if (rc < 0) { 3019 SPDK_ERRLOG("rdma_listen() failed\n"); 3020 rdma_destroy_id(port->id); 3021 free(port); 3022 return rc; 3023 } 3024 3025 TAILQ_FOREACH(device, &rtransport->devices, link) { 3026 if (device->context == port->id->verbs && device->is_ready) { 3027 port->device = device; 3028 break; 3029 } 3030 } 3031 if (!port->device) { 3032 SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n", 3033 port->id->verbs); 3034 rdma_destroy_id(port->id); 3035 free(port); 3036 nvmf_rdma_rescan_devices(rtransport); 3037 return -EINVAL; 3038 } 3039 3040 SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n", 3041 trid->traddr, trid->trsvcid); 3042 3043 TAILQ_INSERT_TAIL(&rtransport->ports, port, link); 3044 return 0; 3045 } 3046 3047 static void 3048 nvmf_rdma_stop_listen_ex(struct spdk_nvmf_transport *transport, 3049 const struct spdk_nvme_transport_id *trid, bool need_retry) 3050 { 3051 struct spdk_nvmf_rdma_transport *rtransport; 3052 struct spdk_nvmf_rdma_port *port, *tmp; 3053 3054 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3055 3056 if (!need_retry) { 3057 TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp) { 3058 if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) { 3059 TAILQ_REMOVE(&rtransport->retry_ports, port, link); 3060 free(port); 3061 } 3062 } 3063 } 3064 3065 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) { 3066 if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) { 3067 SPDK_DEBUGLOG(rdma, "Port %s:%s removed. need retry: %d\n", 3068 port->trid->traddr, port->trid->trsvcid, need_retry); 3069 TAILQ_REMOVE(&rtransport->ports, port, link); 3070 rdma_destroy_id(port->id); 3071 port->id = NULL; 3072 port->device = NULL; 3073 if (need_retry) { 3074 TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link); 3075 } else { 3076 free(port); 3077 } 3078 break; 3079 } 3080 } 3081 } 3082 3083 static void 3084 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport, 3085 const struct spdk_nvme_transport_id *trid) 3086 { 3087 nvmf_rdma_stop_listen_ex(transport, trid, false); 3088 } 3089 3090 static void _nvmf_rdma_register_poller_in_group(void *c); 3091 static void _nvmf_rdma_remove_poller_in_group(void *c); 3092 3093 static bool 3094 nvmf_rdma_all_pollers_management_done(void *c) 3095 { 3096 struct poller_manage_ctx *ctx = c; 3097 int counter; 3098 3099 counter = __atomic_sub_fetch(ctx->inflight_op_counter, 1, __ATOMIC_SEQ_CST); 3100 SPDK_DEBUGLOG(rdma, "nvmf_rdma_all_pollers_management_done called. counter: %d, poller: %p\n", 3101 counter, ctx->rpoller); 3102 3103 if (counter == 0) { 3104 free((void *)ctx->inflight_op_counter); 3105 } 3106 free(ctx); 3107 3108 return counter == 0; 3109 } 3110 3111 static int 3112 nvmf_rdma_manage_poller(struct spdk_nvmf_rdma_transport *rtransport, 3113 struct spdk_nvmf_rdma_device *device, bool *has_inflight, bool is_add) 3114 { 3115 struct spdk_nvmf_rdma_poll_group *rgroup; 3116 struct spdk_nvmf_rdma_poller *rpoller; 3117 struct spdk_nvmf_poll_group *poll_group; 3118 struct poller_manage_ctx *ctx; 3119 bool found; 3120 int *inflight_counter; 3121 spdk_msg_fn do_fn; 3122 3123 *has_inflight = false; 3124 do_fn = is_add ? _nvmf_rdma_register_poller_in_group : _nvmf_rdma_remove_poller_in_group; 3125 inflight_counter = calloc(1, sizeof(int)); 3126 if (!inflight_counter) { 3127 SPDK_ERRLOG("Failed to allocate inflight counter when removing pollers\n"); 3128 return -ENOMEM; 3129 } 3130 3131 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 3132 (*inflight_counter)++; 3133 } 3134 3135 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 3136 found = false; 3137 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 3138 if (rpoller->device == device) { 3139 found = true; 3140 break; 3141 } 3142 } 3143 if (found == is_add) { 3144 __atomic_fetch_sub(inflight_counter, 1, __ATOMIC_SEQ_CST); 3145 continue; 3146 } 3147 3148 ctx = calloc(1, sizeof(struct poller_manage_ctx)); 3149 if (!ctx) { 3150 SPDK_ERRLOG("Failed to allocate poller_manage_ctx when removing pollers\n"); 3151 if (!*has_inflight) { 3152 free(inflight_counter); 3153 } 3154 return -ENOMEM; 3155 } 3156 3157 ctx->rtransport = rtransport; 3158 ctx->rgroup = rgroup; 3159 ctx->rpoller = rpoller; 3160 ctx->device = device; 3161 ctx->thread = spdk_get_thread(); 3162 ctx->inflight_op_counter = inflight_counter; 3163 *has_inflight = true; 3164 3165 poll_group = rgroup->group.group; 3166 if (poll_group->thread != spdk_get_thread()) { 3167 spdk_thread_send_msg(poll_group->thread, do_fn, ctx); 3168 } else { 3169 do_fn(ctx); 3170 } 3171 } 3172 3173 if (!*has_inflight) { 3174 free(inflight_counter); 3175 } 3176 3177 return 0; 3178 } 3179 3180 static void nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport, 3181 struct spdk_nvmf_rdma_device *device); 3182 3183 static struct spdk_nvmf_rdma_device * 3184 nvmf_rdma_find_ib_device(struct spdk_nvmf_rdma_transport *rtransport, 3185 struct ibv_context *context) 3186 { 3187 struct spdk_nvmf_rdma_device *device, *tmp_device; 3188 3189 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp_device) { 3190 if (device->need_destroy) { 3191 continue; 3192 } 3193 3194 if (strcmp(device->context->device->dev_name, context->device->dev_name) == 0) { 3195 return device; 3196 } 3197 } 3198 3199 return NULL; 3200 } 3201 3202 static bool 3203 nvmf_rdma_check_devices_context(struct spdk_nvmf_rdma_transport *rtransport, 3204 struct ibv_context *context) 3205 { 3206 struct spdk_nvmf_rdma_device *old_device, *new_device; 3207 int rc = 0; 3208 bool has_inflight; 3209 3210 old_device = nvmf_rdma_find_ib_device(rtransport, context); 3211 3212 if (old_device) { 3213 if (old_device->context != context && !old_device->need_destroy && old_device->is_ready) { 3214 /* context may not have time to be cleaned when rescan. exactly one context 3215 * is valid for a device so this context must be invalid and just remove it. */ 3216 SPDK_WARNLOG("Device %p has a invalid context %p\n", old_device, old_device->context); 3217 old_device->need_destroy = true; 3218 nvmf_rdma_handle_device_removal(rtransport, old_device); 3219 } 3220 return false; 3221 } 3222 3223 rc = create_ib_device(rtransport, context, &new_device); 3224 /* TODO: update transport opts. */ 3225 if (rc < 0) { 3226 SPDK_ERRLOG("Failed to create ib device for context: %s(%p)\n", 3227 ibv_get_device_name(context->device), context); 3228 return false; 3229 } 3230 3231 rc = nvmf_rdma_manage_poller(rtransport, new_device, &has_inflight, true); 3232 if (rc < 0) { 3233 SPDK_ERRLOG("Failed to add poller for device context: %s(%p)\n", 3234 ibv_get_device_name(context->device), context); 3235 return false; 3236 } 3237 3238 if (has_inflight) { 3239 new_device->is_ready = true; 3240 } 3241 3242 return true; 3243 } 3244 3245 static bool 3246 nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport) 3247 { 3248 struct spdk_nvmf_rdma_device *device; 3249 struct ibv_device **ibv_device_list = NULL; 3250 struct ibv_context **contexts = NULL; 3251 int i = 0; 3252 int num_dev = 0; 3253 bool new_create = false, has_new_device = false; 3254 struct ibv_context *tmp_verbs = NULL; 3255 3256 /* do not rescan when any device is destroying, or context may be freed when 3257 * regenerating the poll fds. 3258 */ 3259 TAILQ_FOREACH(device, &rtransport->devices, link) { 3260 if (device->need_destroy) { 3261 return false; 3262 } 3263 } 3264 3265 ibv_device_list = ibv_get_device_list(&num_dev); 3266 3267 /* There is a bug in librdmacm. If verbs init failed in rdma_get_devices, it'll be 3268 * marked as dead verbs and never be init again. So we need to make sure the 3269 * verbs is available before we call rdma_get_devices. */ 3270 if (num_dev >= 0) { 3271 for (i = 0; i < num_dev; i++) { 3272 tmp_verbs = ibv_open_device(ibv_device_list[i]); 3273 if (!tmp_verbs) { 3274 SPDK_WARNLOG("Failed to init ibv device %p, err %d. Skip rescan.\n", ibv_device_list[i], errno); 3275 break; 3276 } 3277 if (nvmf_rdma_find_ib_device(rtransport, tmp_verbs) == NULL) { 3278 SPDK_DEBUGLOG(rdma, "Find new verbs init ibv device %p(%s).\n", ibv_device_list[i], 3279 tmp_verbs->device->dev_name); 3280 has_new_device = true; 3281 } 3282 ibv_close_device(tmp_verbs); 3283 } 3284 ibv_free_device_list(ibv_device_list); 3285 if (!tmp_verbs || !has_new_device) { 3286 return false; 3287 } 3288 } 3289 3290 contexts = rdma_get_devices(NULL); 3291 3292 for (i = 0; contexts && contexts[i] != NULL; i++) { 3293 new_create |= nvmf_rdma_check_devices_context(rtransport, contexts[i]); 3294 } 3295 3296 if (new_create) { 3297 free_poll_fds(rtransport); 3298 generate_poll_fds(rtransport); 3299 } 3300 3301 if (contexts) { 3302 rdma_free_devices(contexts); 3303 } 3304 3305 return new_create; 3306 } 3307 3308 static bool 3309 nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport) 3310 { 3311 struct spdk_nvmf_rdma_port *port, *tmp_port; 3312 int rc = 0; 3313 bool new_create = false; 3314 3315 if (TAILQ_EMPTY(&rtransport->retry_ports)) { 3316 return false; 3317 } 3318 3319 new_create = nvmf_rdma_rescan_devices(rtransport); 3320 3321 TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp_port) { 3322 rc = nvmf_rdma_listen(&rtransport->transport, port->trid, NULL); 3323 3324 TAILQ_REMOVE(&rtransport->retry_ports, port, link); 3325 if (rc) { 3326 if (new_create) { 3327 SPDK_ERRLOG("Found new IB device but port %s:%s is still failed(%d) to listen.\n", 3328 port->trid->traddr, port->trid->trsvcid, rc); 3329 } 3330 TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link); 3331 break; 3332 } else { 3333 SPDK_NOTICELOG("Port %s:%s come back\n", port->trid->traddr, port->trid->trsvcid); 3334 free(port); 3335 } 3336 } 3337 3338 return true; 3339 } 3340 3341 static void 3342 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport, 3343 struct spdk_nvmf_rdma_qpair *rqpair, bool drain) 3344 { 3345 struct spdk_nvmf_request *req, *tmp; 3346 struct spdk_nvmf_rdma_request *rdma_req, *req_tmp; 3347 struct spdk_nvmf_rdma_resources *resources; 3348 3349 /* First process requests which are waiting for response to be sent */ 3350 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_send_queue, state_link, req_tmp) { 3351 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 3352 break; 3353 } 3354 } 3355 3356 /* We process I/O in the data transfer pending queue at the highest priority. */ 3357 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) { 3358 if (rdma_req->state != RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) { 3359 /* Requests in this queue might be in state RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 3360 * they are transmitting data over network but we keep them in the list to guarantee 3361 * fair processing. */ 3362 continue; 3363 } 3364 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 3365 break; 3366 } 3367 } 3368 3369 /* Then RDMA writes since reads have stronger restrictions than writes */ 3370 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) { 3371 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 3372 break; 3373 } 3374 } 3375 3376 /* Then we handle request waiting on memory buffers. */ 3377 STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) { 3378 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 3379 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 3380 break; 3381 } 3382 } 3383 3384 resources = rqpair->resources; 3385 while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) { 3386 rdma_req = STAILQ_FIRST(&resources->free_queue); 3387 STAILQ_REMOVE_HEAD(&resources->free_queue, state_link); 3388 rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue); 3389 STAILQ_REMOVE_HEAD(&resources->incoming_queue, link); 3390 3391 if (rqpair->srq != NULL) { 3392 rdma_req->req.qpair = &rdma_req->recv->qpair->qpair; 3393 rdma_req->recv->qpair->qd++; 3394 } else { 3395 rqpair->qd++; 3396 } 3397 3398 rdma_req->receive_tsc = rdma_req->recv->receive_tsc; 3399 rdma_req->state = RDMA_REQUEST_STATE_NEW; 3400 if (nvmf_rdma_request_process(rtransport, rdma_req) == false) { 3401 break; 3402 } 3403 } 3404 if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) { 3405 rqpair->poller->stat.pending_free_request++; 3406 } 3407 } 3408 3409 static void 3410 nvmf_rdma_poller_process_pending_buf_queue(struct spdk_nvmf_rdma_transport *rtransport, 3411 struct spdk_nvmf_rdma_poller *rpoller) 3412 { 3413 struct spdk_nvmf_request *req, *tmp; 3414 struct spdk_nvmf_rdma_request *rdma_req; 3415 3416 STAILQ_FOREACH_SAFE(req, &rpoller->group->group.pending_buf_queue, buf_link, tmp) { 3417 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 3418 if (nvmf_rdma_request_process(rtransport, rdma_req) == false) { 3419 break; 3420 } 3421 } 3422 } 3423 3424 static inline bool 3425 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device) 3426 { 3427 /* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */ 3428 return nvmf_rdma_is_rxe_device(device) || 3429 device->context->device->transport_type == IBV_TRANSPORT_IWARP; 3430 } 3431 3432 static void 3433 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair) 3434 { 3435 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 3436 struct spdk_nvmf_rdma_transport, transport); 3437 3438 nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); 3439 3440 /* nvmf_rdma_close_qpair is not called */ 3441 if (!rqpair->to_close) { 3442 return; 3443 } 3444 3445 /* device is already destroyed and we should force destroy this qpair. */ 3446 if (rqpair->poller && rqpair->poller->need_destroy) { 3447 nvmf_rdma_qpair_destroy(rqpair); 3448 return; 3449 } 3450 3451 /* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */ 3452 if (rqpair->current_send_depth != 0) { 3453 return; 3454 } 3455 3456 if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) { 3457 return; 3458 } 3459 3460 if (rqpair->srq != NULL && rqpair->last_wqe_reached == false && 3461 !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) { 3462 return; 3463 } 3464 3465 assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR); 3466 3467 nvmf_rdma_qpair_destroy(rqpair); 3468 } 3469 3470 static int 3471 nvmf_rdma_disconnect(struct rdma_cm_event *evt, bool *event_acked) 3472 { 3473 struct spdk_nvmf_qpair *qpair; 3474 struct spdk_nvmf_rdma_qpair *rqpair; 3475 3476 if (evt->id == NULL) { 3477 SPDK_ERRLOG("disconnect request: missing cm_id\n"); 3478 return -1; 3479 } 3480 3481 qpair = evt->id->context; 3482 if (qpair == NULL) { 3483 SPDK_ERRLOG("disconnect request: no active connection\n"); 3484 return -1; 3485 } 3486 3487 rdma_ack_cm_event(evt); 3488 *event_acked = true; 3489 3490 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3491 3492 spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair); 3493 3494 spdk_nvmf_qpair_disconnect(&rqpair->qpair); 3495 3496 return 0; 3497 } 3498 3499 #ifdef DEBUG 3500 static const char *CM_EVENT_STR[] = { 3501 "RDMA_CM_EVENT_ADDR_RESOLVED", 3502 "RDMA_CM_EVENT_ADDR_ERROR", 3503 "RDMA_CM_EVENT_ROUTE_RESOLVED", 3504 "RDMA_CM_EVENT_ROUTE_ERROR", 3505 "RDMA_CM_EVENT_CONNECT_REQUEST", 3506 "RDMA_CM_EVENT_CONNECT_RESPONSE", 3507 "RDMA_CM_EVENT_CONNECT_ERROR", 3508 "RDMA_CM_EVENT_UNREACHABLE", 3509 "RDMA_CM_EVENT_REJECTED", 3510 "RDMA_CM_EVENT_ESTABLISHED", 3511 "RDMA_CM_EVENT_DISCONNECTED", 3512 "RDMA_CM_EVENT_DEVICE_REMOVAL", 3513 "RDMA_CM_EVENT_MULTICAST_JOIN", 3514 "RDMA_CM_EVENT_MULTICAST_ERROR", 3515 "RDMA_CM_EVENT_ADDR_CHANGE", 3516 "RDMA_CM_EVENT_TIMEWAIT_EXIT" 3517 }; 3518 #endif /* DEBUG */ 3519 3520 static void 3521 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport, 3522 struct spdk_nvmf_rdma_port *port) 3523 { 3524 struct spdk_nvmf_rdma_poll_group *rgroup; 3525 struct spdk_nvmf_rdma_poller *rpoller; 3526 struct spdk_nvmf_rdma_qpair *rqpair; 3527 3528 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 3529 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 3530 RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) { 3531 if (rqpair->listen_id == port->id) { 3532 spdk_nvmf_qpair_disconnect(&rqpair->qpair); 3533 } 3534 } 3535 } 3536 } 3537 } 3538 3539 static bool 3540 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport, 3541 struct rdma_cm_event *event) 3542 { 3543 const struct spdk_nvme_transport_id *trid; 3544 struct spdk_nvmf_rdma_port *port; 3545 struct spdk_nvmf_rdma_transport *rtransport; 3546 bool event_acked = false; 3547 3548 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3549 TAILQ_FOREACH(port, &rtransport->ports, link) { 3550 if (port->id == event->id) { 3551 SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid); 3552 rdma_ack_cm_event(event); 3553 event_acked = true; 3554 trid = port->trid; 3555 break; 3556 } 3557 } 3558 3559 if (event_acked) { 3560 nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); 3561 3562 nvmf_rdma_stop_listen(transport, trid); 3563 nvmf_rdma_listen(transport, trid, NULL); 3564 } 3565 3566 return event_acked; 3567 } 3568 3569 static void 3570 nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport, 3571 struct spdk_nvmf_rdma_device *device) 3572 { 3573 struct spdk_nvmf_rdma_port *port, *port_tmp; 3574 int rc; 3575 bool has_inflight; 3576 3577 rc = nvmf_rdma_manage_poller(rtransport, device, &has_inflight, false); 3578 if (rc) { 3579 SPDK_ERRLOG("Failed to handle device removal, rc %d\n", rc); 3580 return; 3581 } 3582 3583 if (!has_inflight) { 3584 /* no pollers, destroy the device */ 3585 device->ready_to_destroy = true; 3586 spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_remove_destroyed_device, rtransport); 3587 } 3588 3589 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) { 3590 if (port->device == device) { 3591 SPDK_NOTICELOG("Port %s:%s on device %s is being removed.\n", 3592 port->trid->traddr, 3593 port->trid->trsvcid, 3594 ibv_get_device_name(port->device->context->device)); 3595 3596 /* keep NVMF listener and only destroy structures of the 3597 * RDMA transport. when the device comes back we can retry listening 3598 * and the application's workflow will not be interrupted. 3599 */ 3600 nvmf_rdma_stop_listen_ex(&rtransport->transport, port->trid, true); 3601 } 3602 } 3603 } 3604 3605 static void 3606 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport, 3607 struct rdma_cm_event *event) 3608 { 3609 struct spdk_nvmf_rdma_port *port, *tmp_port; 3610 struct spdk_nvmf_rdma_transport *rtransport; 3611 3612 port = event->id->context; 3613 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3614 3615 rdma_ack_cm_event(event); 3616 3617 /* if device removal happens during ctrl qpair disconnecting, it's possible that we receive 3618 * an DEVICE_REMOVAL event on qpair but the id->qp is just NULL. So we should make sure that 3619 * we are handling a port event here. 3620 */ 3621 TAILQ_FOREACH(tmp_port, &rtransport->ports, link) { 3622 if (port == tmp_port && port->device && !port->device->need_destroy) { 3623 port->device->need_destroy = true; 3624 nvmf_rdma_handle_device_removal(rtransport, port->device); 3625 } 3626 } 3627 } 3628 3629 static void 3630 nvmf_process_cm_events(struct spdk_nvmf_transport *transport, uint32_t max_events) 3631 { 3632 struct spdk_nvmf_rdma_transport *rtransport; 3633 struct rdma_cm_event *event; 3634 uint32_t i; 3635 int rc; 3636 bool event_acked; 3637 3638 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3639 3640 if (rtransport->event_channel == NULL) { 3641 return; 3642 } 3643 3644 for (i = 0; i < max_events; i++) { 3645 event_acked = false; 3646 rc = rdma_get_cm_event(rtransport->event_channel, &event); 3647 if (rc) { 3648 if (errno != EAGAIN && errno != EWOULDBLOCK) { 3649 SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno)); 3650 } 3651 break; 3652 } 3653 3654 SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]); 3655 3656 spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event); 3657 3658 switch (event->event) { 3659 case RDMA_CM_EVENT_ADDR_RESOLVED: 3660 case RDMA_CM_EVENT_ADDR_ERROR: 3661 case RDMA_CM_EVENT_ROUTE_RESOLVED: 3662 case RDMA_CM_EVENT_ROUTE_ERROR: 3663 /* No action required. The target never attempts to resolve routes. */ 3664 break; 3665 case RDMA_CM_EVENT_CONNECT_REQUEST: 3666 rc = nvmf_rdma_connect(transport, event); 3667 if (rc < 0) { 3668 SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc); 3669 break; 3670 } 3671 break; 3672 case RDMA_CM_EVENT_CONNECT_RESPONSE: 3673 /* The target never initiates a new connection. So this will not occur. */ 3674 break; 3675 case RDMA_CM_EVENT_CONNECT_ERROR: 3676 /* Can this happen? The docs say it can, but not sure what causes it. */ 3677 break; 3678 case RDMA_CM_EVENT_UNREACHABLE: 3679 case RDMA_CM_EVENT_REJECTED: 3680 /* These only occur on the client side. */ 3681 break; 3682 case RDMA_CM_EVENT_ESTABLISHED: 3683 /* TODO: Should we be waiting for this event anywhere? */ 3684 break; 3685 case RDMA_CM_EVENT_DISCONNECTED: 3686 rc = nvmf_rdma_disconnect(event, &event_acked); 3687 if (rc < 0) { 3688 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3689 break; 3690 } 3691 break; 3692 case RDMA_CM_EVENT_DEVICE_REMOVAL: 3693 /* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL 3694 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s. 3695 * Once these events are sent to SPDK, we should release all IB resources and 3696 * don't make attempts to call any ibv_query/modify/create functions. We can only call 3697 * ibv_destroy* functions to release user space memory allocated by IB. All kernel 3698 * resources are already cleaned. */ 3699 if (event->id->qp) { 3700 /* If rdma_cm event has a valid `qp` pointer then the event refers to the 3701 * corresponding qpair. Otherwise the event refers to a listening device. */ 3702 rc = nvmf_rdma_disconnect(event, &event_acked); 3703 if (rc < 0) { 3704 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3705 break; 3706 } 3707 } else { 3708 nvmf_rdma_handle_cm_event_port_removal(transport, event); 3709 event_acked = true; 3710 } 3711 break; 3712 case RDMA_CM_EVENT_MULTICAST_JOIN: 3713 case RDMA_CM_EVENT_MULTICAST_ERROR: 3714 /* Multicast is not used */ 3715 break; 3716 case RDMA_CM_EVENT_ADDR_CHANGE: 3717 event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event); 3718 break; 3719 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 3720 /* For now, do nothing. The target never re-uses queue pairs. */ 3721 break; 3722 default: 3723 SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); 3724 break; 3725 } 3726 if (!event_acked) { 3727 rdma_ack_cm_event(event); 3728 } 3729 } 3730 } 3731 3732 static void 3733 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair) 3734 { 3735 rqpair->last_wqe_reached = true; 3736 nvmf_rdma_destroy_drained_qpair(rqpair); 3737 } 3738 3739 static void 3740 nvmf_rdma_qpair_process_ibv_event(void *ctx) 3741 { 3742 struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx; 3743 3744 if (event_ctx->rqpair) { 3745 STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3746 if (event_ctx->cb_fn) { 3747 event_ctx->cb_fn(event_ctx->rqpair); 3748 } 3749 } 3750 free(event_ctx); 3751 } 3752 3753 static int 3754 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair, 3755 spdk_nvmf_rdma_qpair_ibv_event fn) 3756 { 3757 struct spdk_nvmf_rdma_ibv_event_ctx *ctx; 3758 struct spdk_thread *thr = NULL; 3759 int rc; 3760 3761 if (rqpair->qpair.group) { 3762 thr = rqpair->qpair.group->thread; 3763 } else if (rqpair->destruct_channel) { 3764 thr = spdk_io_channel_get_thread(rqpair->destruct_channel); 3765 } 3766 3767 if (!thr) { 3768 SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair); 3769 return -EINVAL; 3770 } 3771 3772 ctx = calloc(1, sizeof(*ctx)); 3773 if (!ctx) { 3774 return -ENOMEM; 3775 } 3776 3777 ctx->rqpair = rqpair; 3778 ctx->cb_fn = fn; 3779 STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link); 3780 3781 rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx); 3782 if (rc) { 3783 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3784 free(ctx); 3785 } 3786 3787 return rc; 3788 } 3789 3790 static int 3791 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device) 3792 { 3793 int rc; 3794 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 3795 struct ibv_async_event event; 3796 3797 rc = ibv_get_async_event(device->context, &event); 3798 3799 if (rc) { 3800 /* In non-blocking mode -1 means there are no events available */ 3801 return rc; 3802 } 3803 3804 switch (event.event_type) { 3805 case IBV_EVENT_QP_FATAL: 3806 case IBV_EVENT_QP_LAST_WQE_REACHED: 3807 case IBV_EVENT_QP_REQ_ERR: 3808 case IBV_EVENT_QP_ACCESS_ERR: 3809 case IBV_EVENT_COMM_EST: 3810 case IBV_EVENT_PATH_MIG: 3811 case IBV_EVENT_PATH_MIG_ERR: 3812 rqpair = event.element.qp->qp_context; 3813 if (!rqpair) { 3814 /* Any QP event for NVMe-RDMA initiator may be returned. */ 3815 SPDK_NOTICELOG("Async QP event for unknown QP: %s\n", 3816 ibv_event_type_str(event.event_type)); 3817 break; 3818 } 3819 3820 switch (event.event_type) { 3821 case IBV_EVENT_QP_FATAL: 3822 SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair); 3823 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3824 (uintptr_t)rqpair, event.event_type); 3825 rqpair->ibv_in_error_state = true; 3826 spdk_nvmf_qpair_disconnect(&rqpair->qpair); 3827 break; 3828 case IBV_EVENT_QP_LAST_WQE_REACHED: 3829 /* This event only occurs for shared receive queues. */ 3830 SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair); 3831 rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached); 3832 if (rc) { 3833 SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc); 3834 rqpair->last_wqe_reached = true; 3835 } 3836 break; 3837 case IBV_EVENT_QP_REQ_ERR: 3838 case IBV_EVENT_QP_ACCESS_ERR: 3839 case IBV_EVENT_COMM_EST: 3840 case IBV_EVENT_PATH_MIG: 3841 case IBV_EVENT_PATH_MIG_ERR: 3842 SPDK_NOTICELOG("Async QP event: %s\n", 3843 ibv_event_type_str(event.event_type)); 3844 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3845 (uintptr_t)rqpair, event.event_type); 3846 rqpair->ibv_in_error_state = true; 3847 break; 3848 default: 3849 break; 3850 } 3851 break; 3852 case IBV_EVENT_DEVICE_FATAL: 3853 SPDK_ERRLOG("Device Fatal event[%s] received on %s. device: %p\n", 3854 ibv_event_type_str(event.event_type), ibv_get_device_name(device->context->device), device); 3855 device->need_destroy = true; 3856 break; 3857 case IBV_EVENT_CQ_ERR: 3858 case IBV_EVENT_PORT_ACTIVE: 3859 case IBV_EVENT_PORT_ERR: 3860 case IBV_EVENT_LID_CHANGE: 3861 case IBV_EVENT_PKEY_CHANGE: 3862 case IBV_EVENT_SM_CHANGE: 3863 case IBV_EVENT_SRQ_ERR: 3864 case IBV_EVENT_SRQ_LIMIT_REACHED: 3865 case IBV_EVENT_CLIENT_REREGISTER: 3866 case IBV_EVENT_GID_CHANGE: 3867 case IBV_EVENT_SQ_DRAINED: 3868 default: 3869 SPDK_NOTICELOG("Async event: %s\n", 3870 ibv_event_type_str(event.event_type)); 3871 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type); 3872 break; 3873 } 3874 ibv_ack_async_event(&event); 3875 3876 return 0; 3877 } 3878 3879 static void 3880 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events) 3881 { 3882 int rc = 0; 3883 uint32_t i = 0; 3884 3885 for (i = 0; i < max_events; i++) { 3886 rc = nvmf_process_ib_event(device); 3887 if (rc) { 3888 break; 3889 } 3890 } 3891 3892 SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i); 3893 } 3894 3895 static int 3896 nvmf_rdma_accept(void *ctx) 3897 { 3898 int nfds, i = 0; 3899 struct spdk_nvmf_transport *transport = ctx; 3900 struct spdk_nvmf_rdma_transport *rtransport; 3901 struct spdk_nvmf_rdma_device *device, *tmp; 3902 uint32_t count; 3903 short revents; 3904 bool do_retry; 3905 3906 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3907 do_retry = nvmf_rdma_retry_listen_port(rtransport); 3908 3909 count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0); 3910 3911 if (nfds <= 0) { 3912 return do_retry ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE; 3913 } 3914 3915 /* The first poll descriptor is RDMA CM event */ 3916 if (rtransport->poll_fds[i++].revents & POLLIN) { 3917 nvmf_process_cm_events(transport, NVMF_RDMA_MAX_EVENTS_PER_POLL); 3918 nfds--; 3919 } 3920 3921 if (nfds == 0) { 3922 return SPDK_POLLER_BUSY; 3923 } 3924 3925 /* Second and subsequent poll descriptors are IB async events */ 3926 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 3927 revents = rtransport->poll_fds[i++].revents; 3928 if (revents & POLLIN) { 3929 if (spdk_likely(!device->need_destroy)) { 3930 nvmf_process_ib_events(device, NVMF_RDMA_MAX_EVENTS_PER_POLL); 3931 if (spdk_unlikely(device->need_destroy)) { 3932 nvmf_rdma_handle_device_removal(rtransport, device); 3933 } 3934 } 3935 nfds--; 3936 } else if (revents & POLLNVAL || revents & POLLHUP) { 3937 SPDK_ERRLOG("Receive unknown revent %x on device %p\n", (int)revents, device); 3938 nfds--; 3939 } 3940 } 3941 /* check all flagged fd's have been served */ 3942 assert(nfds == 0); 3943 3944 return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE; 3945 } 3946 3947 static void 3948 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem, 3949 struct spdk_nvmf_ctrlr_data *cdata) 3950 { 3951 cdata->nvmf_specific.msdbd = NVMF_DEFAULT_MSDBD; 3952 3953 /* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled 3954 since in-capsule data only works with NVME drives that support SGL memory layout */ 3955 if (transport->opts.dif_insert_or_strip) { 3956 cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16; 3957 } 3958 3959 if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) { 3960 SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule" 3961 " data is greater than 4KiB.\n"); 3962 SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux " 3963 "kernel between versions 5.4 and 5.12 data corruption may occur for " 3964 "writes that are not a multiple of 4KiB in size.\n"); 3965 } 3966 } 3967 3968 static void 3969 nvmf_rdma_discover(struct spdk_nvmf_transport *transport, 3970 struct spdk_nvme_transport_id *trid, 3971 struct spdk_nvmf_discovery_log_page_entry *entry) 3972 { 3973 entry->trtype = SPDK_NVMF_TRTYPE_RDMA; 3974 entry->adrfam = trid->adrfam; 3975 entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED; 3976 3977 spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' '); 3978 spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' '); 3979 3980 entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED; 3981 entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE; 3982 entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM; 3983 } 3984 3985 static int 3986 nvmf_rdma_poller_create(struct spdk_nvmf_rdma_transport *rtransport, 3987 struct spdk_nvmf_rdma_poll_group *rgroup, struct spdk_nvmf_rdma_device *device, 3988 struct spdk_nvmf_rdma_poller **out_poller) 3989 { 3990 struct spdk_nvmf_rdma_poller *poller; 3991 struct spdk_rdma_provider_srq_init_attr srq_init_attr; 3992 struct spdk_nvmf_rdma_resource_opts opts; 3993 int num_cqe; 3994 3995 poller = calloc(1, sizeof(*poller)); 3996 if (!poller) { 3997 SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n"); 3998 return -1; 3999 } 4000 4001 poller->device = device; 4002 poller->group = rgroup; 4003 *out_poller = poller; 4004 4005 RB_INIT(&poller->qpairs); 4006 STAILQ_INIT(&poller->qpairs_pending_send); 4007 STAILQ_INIT(&poller->qpairs_pending_recv); 4008 4009 TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link); 4010 SPDK_DEBUGLOG(rdma, "Create poller %p on device %p in poll group %p.\n", poller, device, rgroup); 4011 if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) { 4012 if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) { 4013 SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n", 4014 rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr); 4015 } 4016 poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr); 4017 4018 device->num_srq++; 4019 memset(&srq_init_attr, 0, sizeof(srq_init_attr)); 4020 srq_init_attr.pd = device->pd; 4021 srq_init_attr.stats = &poller->stat.qp_stats.recv; 4022 srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth; 4023 srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 4024 poller->srq = spdk_rdma_provider_srq_create(&srq_init_attr); 4025 if (!poller->srq) { 4026 SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno); 4027 return -1; 4028 } 4029 4030 opts.qp = poller->srq; 4031 opts.map = device->map; 4032 opts.qpair = NULL; 4033 opts.shared = true; 4034 opts.max_queue_depth = poller->max_srq_depth; 4035 opts.in_capsule_data_size = rtransport->transport.opts.in_capsule_data_size; 4036 4037 poller->resources = nvmf_rdma_resources_create(&opts); 4038 if (!poller->resources) { 4039 SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n"); 4040 return -1; 4041 } 4042 } 4043 4044 /* 4045 * When using an srq, we can limit the completion queue at startup. 4046 * The following formula represents the calculation: 4047 * num_cqe = num_recv + num_data_wr + num_send_wr. 4048 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth 4049 */ 4050 if (poller->srq) { 4051 num_cqe = poller->max_srq_depth * 3; 4052 } else { 4053 num_cqe = rtransport->rdma_opts.num_cqe; 4054 } 4055 4056 poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0); 4057 if (!poller->cq) { 4058 SPDK_ERRLOG("Unable to create completion queue\n"); 4059 return -1; 4060 } 4061 poller->num_cqe = num_cqe; 4062 return 0; 4063 } 4064 4065 static void 4066 _nvmf_rdma_register_poller_in_group(void *c) 4067 { 4068 struct spdk_nvmf_rdma_poller *poller; 4069 struct poller_manage_ctx *ctx = c; 4070 struct spdk_nvmf_rdma_device *device; 4071 int rc; 4072 4073 rc = nvmf_rdma_poller_create(ctx->rtransport, ctx->rgroup, ctx->device, &poller); 4074 if (rc < 0 && poller) { 4075 nvmf_rdma_poller_destroy(poller); 4076 } 4077 4078 device = ctx->device; 4079 if (nvmf_rdma_all_pollers_management_done(ctx)) { 4080 device->is_ready = true; 4081 } 4082 } 4083 4084 static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group); 4085 4086 static struct spdk_nvmf_transport_poll_group * 4087 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport, 4088 struct spdk_nvmf_poll_group *group) 4089 { 4090 struct spdk_nvmf_rdma_transport *rtransport; 4091 struct spdk_nvmf_rdma_poll_group *rgroup; 4092 struct spdk_nvmf_rdma_poller *poller; 4093 struct spdk_nvmf_rdma_device *device; 4094 int rc; 4095 4096 if (spdk_interrupt_mode_is_enabled()) { 4097 SPDK_ERRLOG("RDMA transport does not support interrupt mode\n"); 4098 return NULL; 4099 } 4100 4101 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 4102 4103 rgroup = calloc(1, sizeof(*rgroup)); 4104 if (!rgroup) { 4105 return NULL; 4106 } 4107 4108 TAILQ_INIT(&rgroup->pollers); 4109 4110 TAILQ_FOREACH(device, &rtransport->devices, link) { 4111 rc = nvmf_rdma_poller_create(rtransport, rgroup, device, &poller); 4112 if (rc < 0) { 4113 nvmf_rdma_poll_group_destroy(&rgroup->group); 4114 return NULL; 4115 } 4116 } 4117 4118 TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link); 4119 if (rtransport->conn_sched.next_admin_pg == NULL) { 4120 rtransport->conn_sched.next_admin_pg = rgroup; 4121 rtransport->conn_sched.next_io_pg = rgroup; 4122 } 4123 4124 return &rgroup->group; 4125 } 4126 4127 static uint32_t 4128 nvmf_poll_group_get_io_qpair_count(struct spdk_nvmf_poll_group *pg) 4129 { 4130 uint32_t count; 4131 4132 /* Just assume that unassociated qpairs will eventually be io 4133 * qpairs. This is close enough for the use cases for this 4134 * function. 4135 */ 4136 pthread_mutex_lock(&pg->mutex); 4137 count = pg->stat.current_io_qpairs + pg->current_unassociated_qpairs; 4138 pthread_mutex_unlock(&pg->mutex); 4139 4140 return count; 4141 } 4142 4143 static struct spdk_nvmf_transport_poll_group * 4144 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair) 4145 { 4146 struct spdk_nvmf_rdma_transport *rtransport; 4147 struct spdk_nvmf_rdma_poll_group **pg; 4148 struct spdk_nvmf_transport_poll_group *result; 4149 uint32_t count; 4150 4151 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 4152 4153 if (TAILQ_EMPTY(&rtransport->poll_groups)) { 4154 return NULL; 4155 } 4156 4157 if (qpair->qid == 0) { 4158 pg = &rtransport->conn_sched.next_admin_pg; 4159 } else { 4160 struct spdk_nvmf_rdma_poll_group *pg_min, *pg_start, *pg_current; 4161 uint32_t min_value; 4162 4163 pg = &rtransport->conn_sched.next_io_pg; 4164 pg_min = *pg; 4165 pg_start = *pg; 4166 pg_current = *pg; 4167 min_value = nvmf_poll_group_get_io_qpair_count(pg_current->group.group); 4168 4169 while (1) { 4170 count = nvmf_poll_group_get_io_qpair_count(pg_current->group.group); 4171 4172 if (count < min_value) { 4173 min_value = count; 4174 pg_min = pg_current; 4175 } 4176 4177 pg_current = TAILQ_NEXT(pg_current, link); 4178 if (pg_current == NULL) { 4179 pg_current = TAILQ_FIRST(&rtransport->poll_groups); 4180 } 4181 4182 if (pg_current == pg_start || min_value == 0) { 4183 break; 4184 } 4185 } 4186 *pg = pg_min; 4187 } 4188 4189 assert(*pg != NULL); 4190 4191 result = &(*pg)->group; 4192 4193 *pg = TAILQ_NEXT(*pg, link); 4194 if (*pg == NULL) { 4195 *pg = TAILQ_FIRST(&rtransport->poll_groups); 4196 } 4197 4198 return result; 4199 } 4200 4201 static void 4202 nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller) 4203 { 4204 struct spdk_nvmf_rdma_qpair *qpair, *tmp_qpair; 4205 int rc; 4206 4207 TAILQ_REMOVE(&poller->group->pollers, poller, link); 4208 RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) { 4209 nvmf_rdma_qpair_destroy(qpair); 4210 } 4211 4212 if (poller->srq) { 4213 if (poller->resources) { 4214 nvmf_rdma_resources_destroy(poller->resources); 4215 } 4216 spdk_rdma_provider_srq_destroy(poller->srq); 4217 SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq); 4218 } 4219 4220 if (poller->cq) { 4221 rc = ibv_destroy_cq(poller->cq); 4222 if (rc != 0) { 4223 SPDK_ERRLOG("Destroy cq return %d, error: %s\n", rc, strerror(errno)); 4224 } 4225 } 4226 4227 if (poller->destroy_cb) { 4228 poller->destroy_cb(poller->destroy_cb_ctx); 4229 poller->destroy_cb = NULL; 4230 } 4231 4232 free(poller); 4233 } 4234 4235 static void 4236 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group) 4237 { 4238 struct spdk_nvmf_rdma_poll_group *rgroup, *next_rgroup; 4239 struct spdk_nvmf_rdma_poller *poller, *tmp; 4240 struct spdk_nvmf_rdma_transport *rtransport; 4241 4242 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4243 if (!rgroup) { 4244 return; 4245 } 4246 4247 TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) { 4248 nvmf_rdma_poller_destroy(poller); 4249 } 4250 4251 if (rgroup->group.transport == NULL) { 4252 /* Transport can be NULL when nvmf_rdma_poll_group_create() 4253 * calls this function directly in a failure path. */ 4254 free(rgroup); 4255 return; 4256 } 4257 4258 rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport); 4259 4260 next_rgroup = TAILQ_NEXT(rgroup, link); 4261 TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link); 4262 if (next_rgroup == NULL) { 4263 next_rgroup = TAILQ_FIRST(&rtransport->poll_groups); 4264 } 4265 if (rtransport->conn_sched.next_admin_pg == rgroup) { 4266 rtransport->conn_sched.next_admin_pg = next_rgroup; 4267 } 4268 if (rtransport->conn_sched.next_io_pg == rgroup) { 4269 rtransport->conn_sched.next_io_pg = next_rgroup; 4270 } 4271 4272 free(rgroup); 4273 } 4274 4275 static void 4276 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair) 4277 { 4278 if (rqpair->cm_id != NULL) { 4279 nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 4280 } 4281 } 4282 4283 static int 4284 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group, 4285 struct spdk_nvmf_qpair *qpair) 4286 { 4287 struct spdk_nvmf_rdma_poll_group *rgroup; 4288 struct spdk_nvmf_rdma_qpair *rqpair; 4289 struct spdk_nvmf_rdma_device *device; 4290 struct spdk_nvmf_rdma_poller *poller; 4291 int rc; 4292 4293 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4294 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4295 4296 device = rqpair->device; 4297 4298 TAILQ_FOREACH(poller, &rgroup->pollers, link) { 4299 if (poller->device == device) { 4300 break; 4301 } 4302 } 4303 4304 if (!poller) { 4305 SPDK_ERRLOG("No poller found for device.\n"); 4306 return -1; 4307 } 4308 4309 if (poller->need_destroy) { 4310 SPDK_ERRLOG("Poller is destroying.\n"); 4311 return -1; 4312 } 4313 4314 rqpair->poller = poller; 4315 rqpair->srq = rqpair->poller->srq; 4316 4317 rc = nvmf_rdma_qpair_initialize(qpair); 4318 if (rc < 0) { 4319 SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair); 4320 rqpair->poller = NULL; 4321 rqpair->srq = NULL; 4322 return -1; 4323 } 4324 4325 RB_INSERT(qpairs_tree, &poller->qpairs, rqpair); 4326 4327 rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair); 4328 if (rc) { 4329 /* Try to reject, but we probably can't */ 4330 nvmf_rdma_qpair_reject_connection(rqpair); 4331 return -1; 4332 } 4333 4334 return 0; 4335 } 4336 4337 static int 4338 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group, 4339 struct spdk_nvmf_qpair *qpair) 4340 { 4341 struct spdk_nvmf_rdma_qpair *rqpair; 4342 4343 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4344 assert(group->transport->tgt != NULL); 4345 4346 rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt); 4347 4348 if (!rqpair->destruct_channel) { 4349 SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair); 4350 return 0; 4351 } 4352 4353 /* Sanity check that we get io_channel on the correct thread */ 4354 if (qpair->group) { 4355 assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel)); 4356 } 4357 4358 return 0; 4359 } 4360 4361 static int 4362 nvmf_rdma_request_free(struct spdk_nvmf_request *req) 4363 { 4364 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 4365 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 4366 struct spdk_nvmf_rdma_transport, transport); 4367 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 4368 struct spdk_nvmf_rdma_qpair, qpair); 4369 4370 /* 4371 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request 4372 * needs to be returned to the shared receive queue or the poll group will eventually be 4373 * starved of RECV structures. 4374 */ 4375 if (rqpair->srq && rdma_req->recv) { 4376 int rc; 4377 struct ibv_recv_wr *bad_recv_wr; 4378 4379 spdk_rdma_provider_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr); 4380 rc = spdk_rdma_provider_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr); 4381 if (rc) { 4382 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 4383 } 4384 } 4385 4386 _nvmf_rdma_request_free(rdma_req, rtransport); 4387 return 0; 4388 } 4389 4390 static int 4391 nvmf_rdma_request_complete(struct spdk_nvmf_request *req) 4392 { 4393 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 4394 struct spdk_nvmf_rdma_transport, transport); 4395 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, 4396 struct spdk_nvmf_rdma_request, req); 4397 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 4398 struct spdk_nvmf_rdma_qpair, qpair); 4399 4400 if (spdk_unlikely(rqpair->ibv_in_error_state)) { 4401 /* The connection is dead. Move the request directly to the completed state. */ 4402 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4403 } else { 4404 /* The connection is alive, so process the request as normal */ 4405 rdma_req->state = RDMA_REQUEST_STATE_EXECUTED; 4406 } 4407 4408 nvmf_rdma_request_process(rtransport, rdma_req); 4409 4410 return 0; 4411 } 4412 4413 static void 4414 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair, 4415 spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg) 4416 { 4417 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4418 4419 rqpair->to_close = true; 4420 4421 /* This happens only when the qpair is disconnected before 4422 * it is added to the poll group. Since there is no poll group, 4423 * the RDMA qp has not been initialized yet and the RDMA CM 4424 * event has not yet been acknowledged, so we need to reject it. 4425 */ 4426 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) { 4427 nvmf_rdma_qpair_reject_connection(rqpair); 4428 nvmf_rdma_qpair_destroy(rqpair); 4429 return; 4430 } 4431 4432 if (rqpair->rdma_qp) { 4433 spdk_rdma_provider_qp_disconnect(rqpair->rdma_qp); 4434 } 4435 4436 nvmf_rdma_destroy_drained_qpair(rqpair); 4437 4438 if (cb_fn) { 4439 cb_fn(cb_arg); 4440 } 4441 } 4442 4443 static struct spdk_nvmf_rdma_qpair * 4444 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc) 4445 { 4446 struct spdk_nvmf_rdma_qpair find; 4447 4448 find.qp_num = wc->qp_num; 4449 4450 return RB_FIND(qpairs_tree, &rpoller->qpairs, &find); 4451 } 4452 4453 #ifdef DEBUG 4454 static int 4455 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req) 4456 { 4457 return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST || 4458 rdma_req->state == RDMA_REQUEST_STATE_COMPLETING; 4459 } 4460 #endif 4461 4462 static void 4463 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr, 4464 int rc) 4465 { 4466 struct spdk_nvmf_rdma_recv *rdma_recv; 4467 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 4468 4469 SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc); 4470 while (bad_recv_wr != NULL) { 4471 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id; 4472 rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 4473 4474 rdma_recv->qpair->current_recv_depth++; 4475 bad_recv_wr = bad_recv_wr->next; 4476 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc); 4477 spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair); 4478 } 4479 } 4480 4481 static void 4482 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc) 4483 { 4484 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc); 4485 while (bad_recv_wr != NULL) { 4486 bad_recv_wr = bad_recv_wr->next; 4487 rqpair->current_recv_depth++; 4488 } 4489 spdk_nvmf_qpair_disconnect(&rqpair->qpair); 4490 } 4491 4492 static void 4493 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 4494 struct spdk_nvmf_rdma_poller *rpoller) 4495 { 4496 struct spdk_nvmf_rdma_qpair *rqpair; 4497 struct ibv_recv_wr *bad_recv_wr; 4498 int rc; 4499 4500 if (rpoller->srq) { 4501 rc = spdk_rdma_provider_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr); 4502 if (spdk_unlikely(rc)) { 4503 _poller_reset_failed_recvs(rpoller, bad_recv_wr, rc); 4504 } 4505 } else { 4506 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) { 4507 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv); 4508 rc = spdk_rdma_provider_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr); 4509 if (spdk_unlikely(rc)) { 4510 _qp_reset_failed_recvs(rqpair, bad_recv_wr, rc); 4511 } 4512 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link); 4513 } 4514 } 4515 } 4516 4517 static void 4518 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport, 4519 struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc) 4520 { 4521 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 4522 struct spdk_nvmf_rdma_request *prev_rdma_req = NULL, *cur_rdma_req = NULL; 4523 4524 SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc); 4525 for (; bad_wr != NULL; bad_wr = bad_wr->next) { 4526 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id; 4527 assert(rqpair->current_send_depth > 0); 4528 rqpair->current_send_depth--; 4529 switch (bad_rdma_wr->type) { 4530 case RDMA_WR_TYPE_DATA: 4531 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data_wr); 4532 if (bad_wr->opcode == IBV_WR_RDMA_READ) { 4533 assert(rqpair->current_read_depth > 0); 4534 rqpair->current_read_depth--; 4535 } 4536 break; 4537 case RDMA_WR_TYPE_SEND: 4538 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr); 4539 break; 4540 default: 4541 SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair); 4542 prev_rdma_req = cur_rdma_req; 4543 continue; 4544 } 4545 4546 if (prev_rdma_req == cur_rdma_req) { 4547 /* this request was handled by an earlier wr. i.e. we were performing an nvme read. */ 4548 /* We only have to check against prev_wr since each requests wrs are contiguous in this list. */ 4549 continue; 4550 } 4551 4552 switch (cur_rdma_req->state) { 4553 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 4554 cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 4555 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, cur_rdma_req, state_link); 4556 cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING; 4557 break; 4558 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 4559 case RDMA_REQUEST_STATE_COMPLETING: 4560 cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4561 break; 4562 default: 4563 SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n", 4564 cur_rdma_req->state, rqpair); 4565 continue; 4566 } 4567 4568 nvmf_rdma_request_process(rtransport, cur_rdma_req); 4569 prev_rdma_req = cur_rdma_req; 4570 } 4571 4572 if (spdk_nvmf_qpair_is_active(&rqpair->qpair)) { 4573 /* Disconnect the connection. */ 4574 spdk_nvmf_qpair_disconnect(&rqpair->qpair); 4575 } 4576 4577 } 4578 4579 static void 4580 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 4581 struct spdk_nvmf_rdma_poller *rpoller) 4582 { 4583 struct spdk_nvmf_rdma_qpair *rqpair; 4584 struct ibv_send_wr *bad_wr = NULL; 4585 int rc; 4586 4587 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) { 4588 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send); 4589 rc = spdk_rdma_provider_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr); 4590 4591 /* bad wr always points to the first wr that failed. */ 4592 if (spdk_unlikely(rc)) { 4593 _qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc); 4594 } 4595 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link); 4596 } 4597 } 4598 4599 static const char * 4600 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type) 4601 { 4602 switch (wr_type) { 4603 case RDMA_WR_TYPE_RECV: 4604 return "RECV"; 4605 case RDMA_WR_TYPE_SEND: 4606 return "SEND"; 4607 case RDMA_WR_TYPE_DATA: 4608 return "DATA"; 4609 default: 4610 SPDK_ERRLOG("Unknown WR type %d\n", wr_type); 4611 SPDK_UNREACHABLE(); 4612 } 4613 } 4614 4615 static inline void 4616 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc) 4617 { 4618 enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type; 4619 4620 if (wc->status == IBV_WC_WR_FLUSH_ERR) { 4621 /* If qpair is in ERR state, we will receive completions for all posted and not completed 4622 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */ 4623 SPDK_DEBUGLOG(rdma, 4624 "Error on CQ %p, (qp state %d, in_error %d) request 0x%lu, type %s, status: (%d): %s\n", 4625 rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_in_error_state, wc->wr_id, 4626 nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status)); 4627 } else { 4628 SPDK_ERRLOG("Error on CQ %p, (qp state %d, in_error %d) request 0x%lu, type %s, status: (%d): %s\n", 4629 rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_in_error_state, wc->wr_id, 4630 nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status)); 4631 } 4632 } 4633 4634 static int 4635 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport, 4636 struct spdk_nvmf_rdma_poller *rpoller) 4637 { 4638 struct ibv_wc wc[32]; 4639 struct spdk_nvmf_rdma_wr *rdma_wr; 4640 struct spdk_nvmf_rdma_request *rdma_req; 4641 struct spdk_nvmf_rdma_recv *rdma_recv; 4642 struct spdk_nvmf_rdma_qpair *rqpair, *tmp_rqpair; 4643 int reaped, i; 4644 int count = 0; 4645 int rc; 4646 bool error = false; 4647 uint64_t poll_tsc = spdk_get_ticks(); 4648 4649 if (spdk_unlikely(rpoller->need_destroy)) { 4650 /* If qpair is closed before poller destroy, nvmf_rdma_destroy_drained_qpair may not 4651 * be called because we cannot poll anything from cq. So we call that here to force 4652 * destroy the qpair after to_close turning true. 4653 */ 4654 RB_FOREACH_SAFE(rqpair, qpairs_tree, &rpoller->qpairs, tmp_rqpair) { 4655 nvmf_rdma_destroy_drained_qpair(rqpair); 4656 } 4657 return 0; 4658 } 4659 4660 /* Poll for completing operations. */ 4661 reaped = ibv_poll_cq(rpoller->cq, 32, wc); 4662 if (spdk_unlikely(reaped < 0)) { 4663 SPDK_ERRLOG("Error polling CQ! (%d): %s\n", 4664 errno, spdk_strerror(errno)); 4665 return -1; 4666 } else if (reaped == 0) { 4667 rpoller->stat.idle_polls++; 4668 } 4669 4670 rpoller->stat.polls++; 4671 rpoller->stat.completions += reaped; 4672 4673 for (i = 0; i < reaped; i++) { 4674 4675 rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id; 4676 4677 switch (rdma_wr->type) { 4678 case RDMA_WR_TYPE_SEND: 4679 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr); 4680 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 4681 4682 if (spdk_likely(!wc[i].status)) { 4683 count++; 4684 assert(wc[i].opcode == IBV_WC_SEND); 4685 assert(nvmf_rdma_req_is_completing(rdma_req)); 4686 } 4687 4688 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4689 /* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */ 4690 assert(rqpair->current_send_depth >= (uint32_t)rdma_req->num_outstanding_data_wr + 1); 4691 rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1; 4692 rdma_req->num_outstanding_data_wr = 0; 4693 4694 nvmf_rdma_request_process(rtransport, rdma_req); 4695 break; 4696 case RDMA_WR_TYPE_RECV: 4697 /* rdma_recv->qpair will be invalid if using an SRQ. In that case we have to get the qpair from the wc. */ 4698 rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 4699 if (rpoller->srq != NULL) { 4700 rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]); 4701 /* It is possible that there are still some completions for destroyed QP 4702 * associated with SRQ. We just ignore these late completions and re-post 4703 * receive WRs back to SRQ. 4704 */ 4705 if (spdk_unlikely(NULL == rdma_recv->qpair)) { 4706 struct ibv_recv_wr *bad_wr; 4707 4708 rdma_recv->wr.next = NULL; 4709 spdk_rdma_provider_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr); 4710 rc = spdk_rdma_provider_srq_flush_recv_wrs(rpoller->srq, &bad_wr); 4711 if (rc) { 4712 SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc); 4713 } 4714 continue; 4715 } 4716 } 4717 rqpair = rdma_recv->qpair; 4718 4719 assert(rqpair != NULL); 4720 if (spdk_likely(!wc[i].status)) { 4721 assert(wc[i].opcode == IBV_WC_RECV); 4722 if (rqpair->current_recv_depth >= rqpair->max_queue_depth) { 4723 spdk_nvmf_qpair_disconnect(&rqpair->qpair); 4724 break; 4725 } 4726 } 4727 4728 rdma_recv->wr.next = NULL; 4729 rqpair->current_recv_depth++; 4730 rdma_recv->receive_tsc = poll_tsc; 4731 rpoller->stat.requests++; 4732 STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link); 4733 rqpair->qpair.queue_depth++; 4734 break; 4735 case RDMA_WR_TYPE_DATA: 4736 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data_wr); 4737 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 4738 4739 assert(rdma_req->num_outstanding_data_wr > 0); 4740 4741 rqpair->current_send_depth--; 4742 rdma_req->num_outstanding_data_wr--; 4743 if (spdk_likely(!wc[i].status)) { 4744 assert(wc[i].opcode == IBV_WC_RDMA_READ); 4745 rqpair->current_read_depth--; 4746 /* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */ 4747 if (rdma_req->num_outstanding_data_wr == 0) { 4748 if (rdma_req->num_remaining_data_wr) { 4749 /* Only part of RDMA_READ operations was submitted, process the rest */ 4750 nvmf_rdma_request_reset_transfer_in(rdma_req, rtransport); 4751 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING; 4752 nvmf_rdma_request_process(rtransport, rdma_req); 4753 break; 4754 } 4755 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 4756 nvmf_rdma_request_process(rtransport, rdma_req); 4757 } 4758 } else { 4759 /* If the data transfer fails still force the queue into the error state, 4760 * if we were performing an RDMA_READ, we need to force the request into a 4761 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE 4762 * case, we should wait for the SEND to complete. */ 4763 if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) { 4764 rqpair->current_read_depth--; 4765 if (rdma_req->num_outstanding_data_wr == 0) { 4766 if (rdma_req->num_remaining_data_wr) { 4767 /* Partially sent request is still in the pending_rdma_read_queue, 4768 * remove it now before completing */ 4769 rdma_req->num_remaining_data_wr = 0; 4770 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 4771 } 4772 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4773 nvmf_rdma_request_process(rtransport, rdma_req); 4774 } 4775 } 4776 } 4777 break; 4778 default: 4779 SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode); 4780 continue; 4781 } 4782 4783 /* Handle error conditions */ 4784 if (spdk_unlikely(wc[i].status)) { 4785 rqpair->ibv_in_error_state = true; 4786 nvmf_rdma_log_wc_status(rqpair, &wc[i]); 4787 4788 error = true; 4789 4790 if (spdk_nvmf_qpair_is_active(&rqpair->qpair)) { 4791 /* Disconnect the connection. */ 4792 spdk_nvmf_qpair_disconnect(&rqpair->qpair); 4793 } else { 4794 nvmf_rdma_destroy_drained_qpair(rqpair); 4795 } 4796 continue; 4797 } 4798 4799 nvmf_rdma_qpair_process_pending(rtransport, rqpair, false); 4800 4801 if (spdk_unlikely(!spdk_nvmf_qpair_is_active(&rqpair->qpair))) { 4802 nvmf_rdma_destroy_drained_qpair(rqpair); 4803 } 4804 } 4805 4806 if (spdk_unlikely(error == true)) { 4807 return -1; 4808 } 4809 4810 if (reaped == 0) { 4811 /* In some cases we may not receive any CQE but we still may have pending IO requests waiting for 4812 * a resource (e.g. a WR from the data_wr_pool). 4813 * We need to start processing of such requests if no CQE reaped */ 4814 nvmf_rdma_poller_process_pending_buf_queue(rtransport, rpoller); 4815 } 4816 4817 /* submit outstanding work requests. */ 4818 _poller_submit_recvs(rtransport, rpoller); 4819 _poller_submit_sends(rtransport, rpoller); 4820 4821 return count; 4822 } 4823 4824 static void 4825 _nvmf_rdma_remove_destroyed_device(void *c) 4826 { 4827 struct spdk_nvmf_rdma_transport *rtransport = c; 4828 struct spdk_nvmf_rdma_device *device, *device_tmp; 4829 int rc; 4830 4831 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) { 4832 if (device->ready_to_destroy) { 4833 destroy_ib_device(rtransport, device); 4834 } 4835 } 4836 4837 free_poll_fds(rtransport); 4838 rc = generate_poll_fds(rtransport); 4839 /* cannot handle fd allocation error here */ 4840 if (rc != 0) { 4841 SPDK_ERRLOG("Failed to generate poll fds after remove ib device.\n"); 4842 } 4843 } 4844 4845 static void 4846 _nvmf_rdma_remove_poller_in_group_cb(void *c) 4847 { 4848 struct poller_manage_ctx *ctx = c; 4849 struct spdk_nvmf_rdma_transport *rtransport = ctx->rtransport; 4850 struct spdk_nvmf_rdma_device *device = ctx->device; 4851 struct spdk_thread *thread = ctx->thread; 4852 4853 if (nvmf_rdma_all_pollers_management_done(c)) { 4854 /* destroy device when last poller is destroyed */ 4855 device->ready_to_destroy = true; 4856 spdk_thread_send_msg(thread, _nvmf_rdma_remove_destroyed_device, rtransport); 4857 } 4858 } 4859 4860 static void 4861 _nvmf_rdma_remove_poller_in_group(void *c) 4862 { 4863 struct poller_manage_ctx *ctx = c; 4864 4865 ctx->rpoller->need_destroy = true; 4866 ctx->rpoller->destroy_cb_ctx = ctx; 4867 ctx->rpoller->destroy_cb = _nvmf_rdma_remove_poller_in_group_cb; 4868 4869 /* qp will be disconnected after receiving a RDMA_CM_EVENT_DEVICE_REMOVAL event. */ 4870 if (RB_EMPTY(&ctx->rpoller->qpairs)) { 4871 nvmf_rdma_poller_destroy(ctx->rpoller); 4872 } 4873 } 4874 4875 static int 4876 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group) 4877 { 4878 struct spdk_nvmf_rdma_transport *rtransport; 4879 struct spdk_nvmf_rdma_poll_group *rgroup; 4880 struct spdk_nvmf_rdma_poller *rpoller, *tmp; 4881 int count = 0, rc, rc2 = 0; 4882 4883 rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport); 4884 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4885 4886 TAILQ_FOREACH_SAFE(rpoller, &rgroup->pollers, link, tmp) { 4887 rc = nvmf_rdma_poller_poll(rtransport, rpoller); 4888 if (spdk_unlikely(rc < 0)) { 4889 if (rc2 == 0) { 4890 rc2 = rc; 4891 } 4892 continue; 4893 } 4894 count += rc; 4895 } 4896 4897 return rc2 ? rc2 : count; 4898 } 4899 4900 static int 4901 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 4902 struct spdk_nvme_transport_id *trid, 4903 bool peer) 4904 { 4905 struct sockaddr *saddr; 4906 uint16_t port; 4907 4908 spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA); 4909 4910 if (peer) { 4911 saddr = rdma_get_peer_addr(id); 4912 } else { 4913 saddr = rdma_get_local_addr(id); 4914 } 4915 switch (saddr->sa_family) { 4916 case AF_INET: { 4917 struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr; 4918 4919 trid->adrfam = SPDK_NVMF_ADRFAM_IPV4; 4920 inet_ntop(AF_INET, &saddr_in->sin_addr, 4921 trid->traddr, sizeof(trid->traddr)); 4922 if (peer) { 4923 port = ntohs(rdma_get_dst_port(id)); 4924 } else { 4925 port = ntohs(rdma_get_src_port(id)); 4926 } 4927 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 4928 break; 4929 } 4930 case AF_INET6: { 4931 struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr; 4932 trid->adrfam = SPDK_NVMF_ADRFAM_IPV6; 4933 inet_ntop(AF_INET6, &saddr_in->sin6_addr, 4934 trid->traddr, sizeof(trid->traddr)); 4935 if (peer) { 4936 port = ntohs(rdma_get_dst_port(id)); 4937 } else { 4938 port = ntohs(rdma_get_src_port(id)); 4939 } 4940 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 4941 break; 4942 } 4943 default: 4944 return -1; 4945 4946 } 4947 4948 return 0; 4949 } 4950 4951 static int 4952 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair, 4953 struct spdk_nvme_transport_id *trid) 4954 { 4955 struct spdk_nvmf_rdma_qpair *rqpair; 4956 4957 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4958 4959 return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true); 4960 } 4961 4962 static int 4963 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair, 4964 struct spdk_nvme_transport_id *trid) 4965 { 4966 struct spdk_nvmf_rdma_qpair *rqpair; 4967 4968 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4969 4970 return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false); 4971 } 4972 4973 static int 4974 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair, 4975 struct spdk_nvme_transport_id *trid) 4976 { 4977 struct spdk_nvmf_rdma_qpair *rqpair; 4978 4979 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4980 4981 return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false); 4982 } 4983 4984 void 4985 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) 4986 { 4987 g_nvmf_hooks = *hooks; 4988 } 4989 4990 static void 4991 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req, 4992 struct spdk_nvmf_rdma_request *rdma_req_to_abort, 4993 struct spdk_nvmf_rdma_qpair *rqpair) 4994 { 4995 rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC; 4996 rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; 4997 4998 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req_to_abort, state_link); 4999 rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING; 5000 5001 req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */ 5002 } 5003 5004 static int 5005 _nvmf_rdma_qpair_abort_request(void *ctx) 5006 { 5007 struct spdk_nvmf_request *req = ctx; 5008 struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF( 5009 req->req_to_abort, struct spdk_nvmf_rdma_request, req); 5010 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair, 5011 struct spdk_nvmf_rdma_qpair, qpair); 5012 int rc; 5013 5014 spdk_poller_unregister(&req->poller); 5015 5016 switch (rdma_req_to_abort->state) { 5017 case RDMA_REQUEST_STATE_EXECUTING: 5018 rc = nvmf_ctrlr_abort_request(req); 5019 if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) { 5020 return SPDK_POLLER_BUSY; 5021 } 5022 break; 5023 5024 case RDMA_REQUEST_STATE_NEED_BUFFER: 5025 STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue, 5026 &rdma_req_to_abort->req, spdk_nvmf_request, buf_link); 5027 5028 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair); 5029 break; 5030 5031 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 5032 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort, 5033 spdk_nvmf_rdma_request, state_link); 5034 5035 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair); 5036 break; 5037 5038 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 5039 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort, 5040 spdk_nvmf_rdma_request, state_link); 5041 5042 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair); 5043 break; 5044 5045 case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING: 5046 /* Remove req from the list here to re-use common function */ 5047 STAILQ_REMOVE(&rqpair->pending_rdma_send_queue, rdma_req_to_abort, 5048 spdk_nvmf_rdma_request, state_link); 5049 5050 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair); 5051 break; 5052 5053 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 5054 if (spdk_get_ticks() < req->timeout_tsc) { 5055 req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0); 5056 return SPDK_POLLER_BUSY; 5057 } 5058 break; 5059 5060 default: 5061 break; 5062 } 5063 5064 spdk_nvmf_request_complete(req); 5065 return SPDK_POLLER_BUSY; 5066 } 5067 5068 static void 5069 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair, 5070 struct spdk_nvmf_request *req) 5071 { 5072 struct spdk_nvmf_rdma_qpair *rqpair; 5073 struct spdk_nvmf_rdma_transport *rtransport; 5074 struct spdk_nvmf_transport *transport; 5075 uint16_t cid; 5076 uint32_t i, max_req_count; 5077 struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req; 5078 5079 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 5080 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 5081 transport = &rtransport->transport; 5082 5083 cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid; 5084 max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth; 5085 5086 for (i = 0; i < max_req_count; i++) { 5087 rdma_req = &rqpair->resources->reqs[i]; 5088 /* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair 5089 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to 5090 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */ 5091 if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid && 5092 rdma_req->req.qpair == qpair) { 5093 rdma_req_to_abort = rdma_req; 5094 break; 5095 } 5096 } 5097 5098 if (rdma_req_to_abort == NULL) { 5099 spdk_nvmf_request_complete(req); 5100 return; 5101 } 5102 5103 req->req_to_abort = &rdma_req_to_abort->req; 5104 req->timeout_tsc = spdk_get_ticks() + 5105 transport->opts.abort_timeout_sec * spdk_get_ticks_hz(); 5106 req->poller = NULL; 5107 5108 _nvmf_rdma_qpair_abort_request(req); 5109 } 5110 5111 static void 5112 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group, 5113 struct spdk_json_write_ctx *w) 5114 { 5115 struct spdk_nvmf_rdma_poll_group *rgroup; 5116 struct spdk_nvmf_rdma_poller *rpoller; 5117 5118 assert(w != NULL); 5119 5120 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 5121 5122 spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer); 5123 5124 spdk_json_write_named_array_begin(w, "devices"); 5125 5126 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 5127 spdk_json_write_object_begin(w); 5128 spdk_json_write_named_string(w, "name", 5129 ibv_get_device_name(rpoller->device->context->device)); 5130 spdk_json_write_named_uint64(w, "polls", 5131 rpoller->stat.polls); 5132 spdk_json_write_named_uint64(w, "idle_polls", 5133 rpoller->stat.idle_polls); 5134 spdk_json_write_named_uint64(w, "completions", 5135 rpoller->stat.completions); 5136 spdk_json_write_named_uint64(w, "requests", 5137 rpoller->stat.requests); 5138 spdk_json_write_named_uint64(w, "request_latency", 5139 rpoller->stat.request_latency); 5140 spdk_json_write_named_uint64(w, "pending_free_request", 5141 rpoller->stat.pending_free_request); 5142 spdk_json_write_named_uint64(w, "pending_rdma_read", 5143 rpoller->stat.pending_rdma_read); 5144 spdk_json_write_named_uint64(w, "pending_rdma_write", 5145 rpoller->stat.pending_rdma_write); 5146 spdk_json_write_named_uint64(w, "pending_rdma_send", 5147 rpoller->stat.pending_rdma_send); 5148 spdk_json_write_named_uint64(w, "total_send_wrs", 5149 rpoller->stat.qp_stats.send.num_submitted_wrs); 5150 spdk_json_write_named_uint64(w, "send_doorbell_updates", 5151 rpoller->stat.qp_stats.send.doorbell_updates); 5152 spdk_json_write_named_uint64(w, "total_recv_wrs", 5153 rpoller->stat.qp_stats.recv.num_submitted_wrs); 5154 spdk_json_write_named_uint64(w, "recv_doorbell_updates", 5155 rpoller->stat.qp_stats.recv.doorbell_updates); 5156 spdk_json_write_object_end(w); 5157 } 5158 5159 spdk_json_write_array_end(w); 5160 } 5161 5162 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = { 5163 .name = "RDMA", 5164 .type = SPDK_NVME_TRANSPORT_RDMA, 5165 .opts_init = nvmf_rdma_opts_init, 5166 .create = nvmf_rdma_create, 5167 .dump_opts = nvmf_rdma_dump_opts, 5168 .destroy = nvmf_rdma_destroy, 5169 5170 .listen = nvmf_rdma_listen, 5171 .stop_listen = nvmf_rdma_stop_listen, 5172 .cdata_init = nvmf_rdma_cdata_init, 5173 5174 .listener_discover = nvmf_rdma_discover, 5175 5176 .poll_group_create = nvmf_rdma_poll_group_create, 5177 .get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group, 5178 .poll_group_destroy = nvmf_rdma_poll_group_destroy, 5179 .poll_group_add = nvmf_rdma_poll_group_add, 5180 .poll_group_remove = nvmf_rdma_poll_group_remove, 5181 .poll_group_poll = nvmf_rdma_poll_group_poll, 5182 5183 .req_free = nvmf_rdma_request_free, 5184 .req_complete = nvmf_rdma_request_complete, 5185 5186 .qpair_fini = nvmf_rdma_close_qpair, 5187 .qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid, 5188 .qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid, 5189 .qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid, 5190 .qpair_abort_request = nvmf_rdma_qpair_abort_request, 5191 5192 .poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat, 5193 }; 5194 5195 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma); 5196 SPDK_LOG_REGISTER_COMPONENT(rdma) 5197