xref: /spdk/lib/nvmf/rdma.c (revision bbcb35f58b3a9e78b7b69adf4179e2cbd7beb7b3)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2018 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk/stdinc.h"
35 
36 #include <infiniband/verbs.h>
37 #include <rdma/rdma_cma.h>
38 #include <rdma/rdma_verbs.h>
39 
40 #include "nvmf_internal.h"
41 #include "transport.h"
42 
43 #include "spdk/config.h"
44 #include "spdk/assert.h"
45 #include "spdk/thread.h"
46 #include "spdk/nvmf.h"
47 #include "spdk/nvmf_spec.h"
48 #include "spdk/string.h"
49 #include "spdk/trace.h"
50 #include "spdk/util.h"
51 
52 #include "spdk_internal/log.h"
53 
54 /*
55  RDMA Connection Resource Defaults
56  */
57 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
58 #define NVMF_DEFAULT_RSP_SGE		1
59 #define NVMF_DEFAULT_RX_SGE		2
60 
61 /* The RDMA completion queue size */
62 #define NVMF_RDMA_CQ_SIZE	4096
63 
64 enum spdk_nvmf_rdma_request_state {
65 	/* The request is not currently in use */
66 	RDMA_REQUEST_STATE_FREE = 0,
67 
68 	/* Initial state when request first received */
69 	RDMA_REQUEST_STATE_NEW,
70 
71 	/* The request is queued until a data buffer is available. */
72 	RDMA_REQUEST_STATE_NEED_BUFFER,
73 
74 	/* The request is waiting on RDMA queue depth availability
75 	 * to transfer data between the host and the controller.
76 	 */
77 	RDMA_REQUEST_STATE_DATA_TRANSFER_PENDING,
78 
79 	/* The request is currently transferring data from the host to the controller. */
80 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
81 
82 	/* The request is ready to execute at the block device */
83 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
84 
85 	/* The request is currently executing at the block device */
86 	RDMA_REQUEST_STATE_EXECUTING,
87 
88 	/* The request finished executing at the block device */
89 	RDMA_REQUEST_STATE_EXECUTED,
90 
91 	/* The request is ready to send a completion */
92 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
93 
94 	/* The request is currently transferring data from the controller to the host. */
95 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
96 
97 	/* The request currently has an outstanding completion without an
98 	 * associated data transfer.
99 	 */
100 	RDMA_REQUEST_STATE_COMPLETING,
101 
102 	/* The request completed and can be marked free. */
103 	RDMA_REQUEST_STATE_COMPLETED,
104 
105 	/* Terminator */
106 	RDMA_REQUEST_NUM_STATES,
107 };
108 
109 #define OBJECT_NVMF_RDMA_IO				0x40
110 
111 #define TRACE_GROUP_NVMF_RDMA				0x4
112 #define TRACE_RDMA_REQUEST_STATE_NEW					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x0)
113 #define TRACE_RDMA_REQUEST_STATE_NEED_BUFFER				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x1)
114 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_PENDING			SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x2)
115 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x3)
116 #define TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE			SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x4)
117 #define TRACE_RDMA_REQUEST_STATE_EXECUTING				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x5)
118 #define TRACE_RDMA_REQUEST_STATE_EXECUTED				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x6)
119 #define TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE			SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x7)
120 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x8)
121 #define TRACE_RDMA_REQUEST_STATE_COMPLETING				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x9)
122 #define TRACE_RDMA_REQUEST_STATE_COMPLETED				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xA)
123 #define TRACE_RDMA_QP_CREATE						SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xB)
124 #define TRACE_RDMA_IBV_ASYNC_EVENT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xC)
125 #define TRACE_RDMA_CM_ASYNC_EVENT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xD)
126 #define TRACE_RDMA_QP_STATE_CHANGE					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xE)
127 #define TRACE_RDMA_QP_DISCONNECT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xF)
128 #define TRACE_RDMA_QP_DESTROY						SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x10)
129 
130 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
131 {
132 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
133 	spdk_trace_register_description("RDMA_REQ_NEW", "",
134 					TRACE_RDMA_REQUEST_STATE_NEW,
135 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 1, "cmid:   ");
136 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", "",
137 					TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
138 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
139 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H_TO_C", "",
140 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_PENDING,
141 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
142 	spdk_trace_register_description("RDMA_REQ_TX_H_TO_C", "",
143 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
144 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
145 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE", "",
146 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
147 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
148 	spdk_trace_register_description("RDMA_REQ_EXECUTING", "",
149 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
150 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
151 	spdk_trace_register_description("RDMA_REQ_EXECUTED", "",
152 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
153 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
154 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPLETE", "",
155 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
156 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
157 	spdk_trace_register_description("RDMA_REQ_COMPLETING_CONTROLLER_TO_HOST", "",
158 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
159 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
160 	spdk_trace_register_description("RDMA_REQ_COMPLETING_INCAPSULE", "",
161 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
162 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
163 	spdk_trace_register_description("RDMA_REQ_COMPLETED", "",
164 					TRACE_RDMA_REQUEST_STATE_COMPLETED,
165 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
166 
167 	spdk_trace_register_description("RDMA_QP_CREATE", "", TRACE_RDMA_QP_CREATE,
168 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
169 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", "", TRACE_RDMA_IBV_ASYNC_EVENT,
170 					OWNER_NONE, OBJECT_NONE, 0, 0, "type:   ");
171 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", "", TRACE_RDMA_CM_ASYNC_EVENT,
172 					OWNER_NONE, OBJECT_NONE, 0, 0, "type:   ");
173 	spdk_trace_register_description("RDMA_QP_STATE_CHANGE", "", TRACE_RDMA_QP_STATE_CHANGE,
174 					OWNER_NONE, OBJECT_NONE, 0, 1, "state:  ");
175 	spdk_trace_register_description("RDMA_QP_DISCONNECT", "", TRACE_RDMA_QP_DISCONNECT,
176 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
177 	spdk_trace_register_description("RDMA_QP_DESTROY", "", TRACE_RDMA_QP_DESTROY,
178 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
179 }
180 
181 enum spdk_nvmf_rdma_wr_type {
182 	RDMA_WR_TYPE_RECV,
183 	RDMA_WR_TYPE_SEND,
184 	RDMA_WR_TYPE_DATA,
185 	RDMA_WR_TYPE_DRAIN_SEND,
186 	RDMA_WR_TYPE_DRAIN_RECV
187 };
188 
189 struct spdk_nvmf_rdma_wr {
190 	enum spdk_nvmf_rdma_wr_type	type;
191 };
192 
193 /* This structure holds commands as they are received off the wire.
194  * It must be dynamically paired with a full request object
195  * (spdk_nvmf_rdma_request) to service a request. It is separate
196  * from the request because RDMA does not appear to order
197  * completions, so occasionally we'll get a new incoming
198  * command when there aren't any free request objects.
199  */
200 struct spdk_nvmf_rdma_recv {
201 	struct ibv_recv_wr		wr;
202 	struct ibv_sge			sgl[NVMF_DEFAULT_RX_SGE];
203 
204 	struct spdk_nvmf_rdma_qpair	*qpair;
205 
206 	/* In-capsule data buffer */
207 	uint8_t				*buf;
208 
209 	struct spdk_nvmf_rdma_wr	rdma_wr;
210 
211 	TAILQ_ENTRY(spdk_nvmf_rdma_recv) link;
212 };
213 
214 struct spdk_nvmf_rdma_request_data {
215 	struct spdk_nvmf_rdma_wr	rdma_wr;
216 	struct ibv_send_wr		wr;
217 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
218 	void				*buffers[SPDK_NVMF_MAX_SGL_ENTRIES];
219 };
220 
221 struct spdk_nvmf_rdma_request {
222 	struct spdk_nvmf_request		req;
223 	bool					data_from_pool;
224 
225 	enum spdk_nvmf_rdma_request_state	state;
226 
227 	struct spdk_nvmf_rdma_recv		*recv;
228 
229 	struct {
230 		struct spdk_nvmf_rdma_wr	rdma_wr;
231 		struct	ibv_send_wr		wr;
232 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
233 	} rsp;
234 
235 	struct spdk_nvmf_rdma_request_data	data;
236 
237 	struct spdk_nvmf_rdma_wr		rdma_wr;
238 
239 	TAILQ_ENTRY(spdk_nvmf_rdma_request)	link;
240 	TAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
241 };
242 
243 enum spdk_nvmf_rdma_qpair_disconnect_flags {
244 	RDMA_QP_DISCONNECTING		= 1,
245 	RDMA_QP_RECV_DRAINED		= 1 << 1,
246 	RDMA_QP_SEND_DRAINED		= 1 << 2
247 };
248 
249 struct spdk_nvmf_rdma_qpair {
250 	struct spdk_nvmf_qpair			qpair;
251 
252 	struct spdk_nvmf_rdma_port		*port;
253 	struct spdk_nvmf_rdma_poller		*poller;
254 
255 	struct rdma_cm_id			*cm_id;
256 	struct rdma_cm_id			*listen_id;
257 
258 	/* The maximum number of I/O outstanding on this connection at one time */
259 	uint16_t				max_queue_depth;
260 
261 	/* The maximum number of active RDMA READ and WRITE operations at one time */
262 	uint16_t				max_rw_depth;
263 
264 	/* The maximum number of SGEs per WR on the send queue */
265 	uint32_t				max_send_sge;
266 
267 	/* The maximum number of SGEs per WR on the recv queue */
268 	uint32_t				max_recv_sge;
269 
270 	/* Receives that are waiting for a request object */
271 	TAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
272 
273 	/* Queues to track the requests in all states */
274 	TAILQ_HEAD(, spdk_nvmf_rdma_request)	state_queue[RDMA_REQUEST_NUM_STATES];
275 
276 	/* Number of requests in each state */
277 	uint32_t				state_cntr[RDMA_REQUEST_NUM_STATES];
278 
279 	/* Array of size "max_queue_depth" containing RDMA requests. */
280 	struct spdk_nvmf_rdma_request		*reqs;
281 
282 	/* Array of size "max_queue_depth" containing RDMA recvs. */
283 	struct spdk_nvmf_rdma_recv		*recvs;
284 
285 	/* Array of size "max_queue_depth" containing 64 byte capsules
286 	 * used for receive.
287 	 */
288 	union nvmf_h2c_msg			*cmds;
289 	struct ibv_mr				*cmds_mr;
290 
291 	/* Array of size "max_queue_depth" containing 16 byte completions
292 	 * to be sent back to the user.
293 	 */
294 	union nvmf_c2h_msg			*cpls;
295 	struct ibv_mr				*cpls_mr;
296 
297 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
298 	 * buffers to be used for in capsule data.
299 	 */
300 	void					*bufs;
301 	struct ibv_mr				*bufs_mr;
302 
303 	TAILQ_ENTRY(spdk_nvmf_rdma_qpair)	link;
304 
305 	/* Mgmt channel */
306 	struct spdk_io_channel			*mgmt_channel;
307 	struct spdk_nvmf_rdma_mgmt_channel	*ch;
308 
309 	/* IBV queue pair attributes: they are used to manage
310 	 * qp state and recover from errors.
311 	 */
312 	struct ibv_qp_attr			ibv_attr;
313 
314 	uint32_t				disconnect_flags;
315 	struct spdk_nvmf_rdma_wr		drain_send_wr;
316 	struct spdk_nvmf_rdma_wr		drain_recv_wr;
317 
318 	/* Reference counter for how many unprocessed messages
319 	 * from other threads are currently outstanding. The
320 	 * qpair cannot be destroyed until this is 0. This is
321 	 * atomically incremented from any thread, but only
322 	 * decremented and read from the thread that owns this
323 	 * qpair.
324 	 */
325 	uint32_t				refcnt;
326 };
327 
328 struct spdk_nvmf_rdma_poller {
329 	struct spdk_nvmf_rdma_device		*device;
330 	struct spdk_nvmf_rdma_poll_group	*group;
331 
332 	struct ibv_cq				*cq;
333 
334 	TAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs;
335 
336 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
337 };
338 
339 struct spdk_nvmf_rdma_poll_group {
340 	struct spdk_nvmf_transport_poll_group	group;
341 
342 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)	pollers;
343 };
344 
345 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
346 struct spdk_nvmf_rdma_device {
347 	struct ibv_device_attr			attr;
348 	struct ibv_context			*context;
349 
350 	struct spdk_mem_map			*map;
351 	struct ibv_pd				*pd;
352 
353 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
354 };
355 
356 struct spdk_nvmf_rdma_port {
357 	struct spdk_nvme_transport_id		trid;
358 	struct rdma_cm_id			*id;
359 	struct spdk_nvmf_rdma_device		*device;
360 	uint32_t				ref;
361 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
362 };
363 
364 struct spdk_nvmf_rdma_transport {
365 	struct spdk_nvmf_transport	transport;
366 
367 	struct rdma_event_channel	*event_channel;
368 
369 	struct spdk_mempool		*data_wr_pool;
370 
371 	pthread_mutex_t			lock;
372 
373 	/* fields used to poll RDMA/IB events */
374 	nfds_t			npoll_fds;
375 	struct pollfd		*poll_fds;
376 
377 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
378 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
379 };
380 
381 struct spdk_nvmf_rdma_mgmt_channel {
382 	/* Requests that are waiting to obtain a data buffer */
383 	TAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_data_buf_queue;
384 };
385 
386 static inline void
387 spdk_nvmf_rdma_qpair_inc_refcnt(struct spdk_nvmf_rdma_qpair *rqpair)
388 {
389 	__sync_fetch_and_add(&rqpair->refcnt, 1);
390 }
391 
392 static inline uint32_t
393 spdk_nvmf_rdma_qpair_dec_refcnt(struct spdk_nvmf_rdma_qpair *rqpair)
394 {
395 	uint32_t old_refcnt, new_refcnt;
396 
397 	do {
398 		old_refcnt = rqpair->refcnt;
399 		assert(old_refcnt > 0);
400 		new_refcnt = old_refcnt - 1;
401 	} while (__sync_bool_compare_and_swap(&rqpair->refcnt, old_refcnt, new_refcnt) == false);
402 
403 	return new_refcnt;
404 }
405 
406 static inline int
407 spdk_nvmf_rdma_check_ibv_state(enum ibv_qp_state state)
408 {
409 	switch (state) {
410 	case IBV_QPS_RESET:
411 	case IBV_QPS_INIT:
412 	case IBV_QPS_RTR:
413 	case IBV_QPS_RTS:
414 	case IBV_QPS_SQD:
415 	case IBV_QPS_SQE:
416 	case IBV_QPS_ERR:
417 		return 0;
418 	default:
419 		return -1;
420 	}
421 }
422 
423 static enum ibv_qp_state
424 spdk_nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) {
425 	enum ibv_qp_state old_state, new_state;
426 	struct ibv_qp_init_attr init_attr;
427 	int rc;
428 
429 	/* All the attributes needed for recovery */
430 	static int spdk_nvmf_ibv_attr_mask =
431 	IBV_QP_STATE |
432 	IBV_QP_PKEY_INDEX |
433 	IBV_QP_PORT |
434 	IBV_QP_ACCESS_FLAGS |
435 	IBV_QP_AV |
436 	IBV_QP_PATH_MTU |
437 	IBV_QP_DEST_QPN |
438 	IBV_QP_RQ_PSN |
439 	IBV_QP_MAX_DEST_RD_ATOMIC |
440 	IBV_QP_MIN_RNR_TIMER |
441 	IBV_QP_SQ_PSN |
442 	IBV_QP_TIMEOUT |
443 	IBV_QP_RETRY_CNT |
444 	IBV_QP_RNR_RETRY |
445 	IBV_QP_MAX_QP_RD_ATOMIC;
446 
447 	old_state = rqpair->ibv_attr.qp_state;
448 	rc = ibv_query_qp(rqpair->cm_id->qp, &rqpair->ibv_attr,
449 			  spdk_nvmf_ibv_attr_mask, &init_attr);
450 
451 	if (rc)
452 	{
453 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
454 		assert(false);
455 	}
456 
457 	new_state = rqpair->ibv_attr.qp_state;
458 
459 	rc = spdk_nvmf_rdma_check_ibv_state(new_state);
460 	if (rc)
461 	{
462 		SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state);
463 		/*
464 		 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8
465 		 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR
466 		 */
467 		return IBV_QPS_ERR + 1;
468 	}
469 
470 	if (old_state != new_state)
471 	{
472 		spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0,
473 				  (uintptr_t)rqpair->cm_id, new_state);
474 	}
475 	return new_state;
476 }
477 
478 static const char *str_ibv_qp_state[] = {
479 	"IBV_QPS_RESET",
480 	"IBV_QPS_INIT",
481 	"IBV_QPS_RTR",
482 	"IBV_QPS_RTS",
483 	"IBV_QPS_SQD",
484 	"IBV_QPS_SQE",
485 	"IBV_QPS_ERR",
486 	"IBV_QPS_UNKNOWN"
487 };
488 
489 static int
490 spdk_nvmf_rdma_set_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair,
491 			     enum ibv_qp_state new_state)
492 {
493 	int rc;
494 	enum ibv_qp_state state;
495 	static int attr_mask_rc[] = {
496 		[IBV_QPS_RESET] = IBV_QP_STATE,
497 		[IBV_QPS_INIT] = (IBV_QP_STATE |
498 				  IBV_QP_PKEY_INDEX |
499 				  IBV_QP_PORT |
500 				  IBV_QP_ACCESS_FLAGS),
501 		[IBV_QPS_RTR] = (IBV_QP_STATE |
502 				 IBV_QP_AV |
503 				 IBV_QP_PATH_MTU |
504 				 IBV_QP_DEST_QPN |
505 				 IBV_QP_RQ_PSN |
506 				 IBV_QP_MAX_DEST_RD_ATOMIC |
507 				 IBV_QP_MIN_RNR_TIMER),
508 		[IBV_QPS_RTS] = (IBV_QP_STATE |
509 				 IBV_QP_SQ_PSN |
510 				 IBV_QP_TIMEOUT |
511 				 IBV_QP_RETRY_CNT |
512 				 IBV_QP_RNR_RETRY |
513 				 IBV_QP_MAX_QP_RD_ATOMIC),
514 		[IBV_QPS_SQD] = IBV_QP_STATE,
515 		[IBV_QPS_SQE] = IBV_QP_STATE,
516 		[IBV_QPS_ERR] = IBV_QP_STATE,
517 	};
518 
519 	rc = spdk_nvmf_rdma_check_ibv_state(new_state);
520 	if (rc) {
521 		SPDK_ERRLOG("QP#%d: bad state requested: %u\n",
522 			    rqpair->qpair.qid, new_state);
523 		return rc;
524 	}
525 
526 	rqpair->ibv_attr.cur_qp_state = rqpair->ibv_attr.qp_state;
527 	rqpair->ibv_attr.qp_state = new_state;
528 	rqpair->ibv_attr.ah_attr.port_num = rqpair->ibv_attr.port_num;
529 
530 	rc = ibv_modify_qp(rqpair->cm_id->qp, &rqpair->ibv_attr,
531 			   attr_mask_rc[new_state]);
532 
533 	if (rc) {
534 		SPDK_ERRLOG("QP#%d: failed to set state to: %s, %d (%s)\n",
535 			    rqpair->qpair.qid, str_ibv_qp_state[new_state], errno, strerror(errno));
536 		return rc;
537 	}
538 
539 	state = spdk_nvmf_rdma_update_ibv_state(rqpair);
540 
541 	if (state != new_state) {
542 		SPDK_ERRLOG("QP#%d: expected state: %s, actual state: %s\n",
543 			    rqpair->qpair.qid, str_ibv_qp_state[new_state],
544 			    str_ibv_qp_state[state]);
545 		return -1;
546 	}
547 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "IBV QP#%u changed to: %s\n", rqpair->qpair.qid,
548 		      str_ibv_qp_state[state]);
549 	return 0;
550 }
551 
552 static void
553 spdk_nvmf_rdma_request_set_state(struct spdk_nvmf_rdma_request *rdma_req,
554 				 enum spdk_nvmf_rdma_request_state state)
555 {
556 	struct spdk_nvmf_qpair		*qpair;
557 	struct spdk_nvmf_rdma_qpair	*rqpair;
558 
559 	qpair = rdma_req->req.qpair;
560 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
561 
562 	TAILQ_REMOVE(&rqpair->state_queue[rdma_req->state], rdma_req, state_link);
563 	rqpair->state_cntr[rdma_req->state]--;
564 
565 	rdma_req->state = state;
566 
567 	TAILQ_INSERT_TAIL(&rqpair->state_queue[rdma_req->state], rdma_req, state_link);
568 	rqpair->state_cntr[rdma_req->state]++;
569 }
570 
571 static int
572 spdk_nvmf_rdma_mgmt_channel_create(void *io_device, void *ctx_buf)
573 {
574 	struct spdk_nvmf_rdma_mgmt_channel *ch = ctx_buf;
575 
576 	TAILQ_INIT(&ch->pending_data_buf_queue);
577 	return 0;
578 }
579 
580 static void
581 spdk_nvmf_rdma_mgmt_channel_destroy(void *io_device, void *ctx_buf)
582 {
583 	struct spdk_nvmf_rdma_mgmt_channel *ch = ctx_buf;
584 
585 	if (!TAILQ_EMPTY(&ch->pending_data_buf_queue)) {
586 		SPDK_ERRLOG("Pending I/O list wasn't empty on channel destruction\n");
587 	}
588 }
589 
590 static int
591 spdk_nvmf_rdma_cur_rw_depth(struct spdk_nvmf_rdma_qpair *rqpair)
592 {
593 	return rqpair->state_cntr[RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER] +
594 	       rqpair->state_cntr[RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST];
595 }
596 
597 static int
598 spdk_nvmf_rdma_cur_queue_depth(struct spdk_nvmf_rdma_qpair *rqpair)
599 {
600 	return rqpair->max_queue_depth -
601 	       rqpair->state_cntr[RDMA_REQUEST_STATE_FREE];
602 }
603 
604 static void
605 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
606 {
607 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->data_from_pool);
608 	SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
609 	SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
610 }
611 
612 static void
613 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
614 {
615 	int i;
616 	struct spdk_nvmf_rdma_request *req;
617 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
618 	for (i = 1; i < RDMA_REQUEST_NUM_STATES; i++) {
619 		SPDK_ERRLOG("\tdumping requests in state %d\n", i);
620 		TAILQ_FOREACH(req, &rqpair->state_queue[i], state_link) {
621 			nvmf_rdma_dump_request(req);
622 		}
623 	}
624 }
625 
626 static void
627 spdk_nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
628 {
629 	int qd;
630 
631 	if (rqpair->refcnt != 0) {
632 		return;
633 	}
634 
635 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair->cm_id, 0);
636 
637 	qd = spdk_nvmf_rdma_cur_queue_depth(rqpair);
638 	if (qd != 0) {
639 		nvmf_rdma_dump_qpair_contents(rqpair);
640 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", qd);
641 	}
642 
643 	if (rqpair->poller) {
644 		TAILQ_REMOVE(&rqpair->poller->qpairs, rqpair, link);
645 	}
646 
647 	if (rqpair->cmds_mr) {
648 		ibv_dereg_mr(rqpair->cmds_mr);
649 	}
650 
651 	if (rqpair->cpls_mr) {
652 		ibv_dereg_mr(rqpair->cpls_mr);
653 	}
654 
655 	if (rqpair->bufs_mr) {
656 		ibv_dereg_mr(rqpair->bufs_mr);
657 	}
658 
659 	if (rqpair->cm_id) {
660 		rdma_destroy_qp(rqpair->cm_id);
661 		rdma_destroy_id(rqpair->cm_id);
662 	}
663 
664 	if (rqpair->mgmt_channel) {
665 		spdk_put_io_channel(rqpair->mgmt_channel);
666 	}
667 
668 	/* Free all memory */
669 	spdk_dma_free(rqpair->cmds);
670 	spdk_dma_free(rqpair->cpls);
671 	spdk_dma_free(rqpair->bufs);
672 	free(rqpair->reqs);
673 	free(rqpair->recvs);
674 	free(rqpair);
675 }
676 
677 static int
678 spdk_nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
679 {
680 	struct spdk_nvmf_rdma_transport *rtransport;
681 	struct spdk_nvmf_rdma_qpair	*rqpair;
682 	int				rc, i;
683 	struct spdk_nvmf_rdma_recv	*rdma_recv;
684 	struct spdk_nvmf_rdma_request	*rdma_req;
685 	struct spdk_nvmf_transport	*transport;
686 	struct spdk_nvmf_rdma_device	*device;
687 	struct ibv_qp_init_attr		ibv_init_attr;
688 
689 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
690 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
691 	transport = &rtransport->transport;
692 	device = rqpair->port->device;
693 
694 	memset(&ibv_init_attr, 0, sizeof(struct ibv_qp_init_attr));
695 	ibv_init_attr.qp_context	= rqpair;
696 	ibv_init_attr.qp_type		= IBV_QPT_RC;
697 	ibv_init_attr.send_cq		= rqpair->poller->cq;
698 	ibv_init_attr.recv_cq		= rqpair->poller->cq;
699 	ibv_init_attr.cap.max_send_wr	= rqpair->max_queue_depth *
700 					  2 + 1; /* SEND, READ, and WRITE operations + dummy drain WR */
701 	ibv_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth +
702 					  1; /* RECV operations + dummy drain WR */
703 	ibv_init_attr.cap.max_send_sge	= spdk_min(device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
704 	ibv_init_attr.cap.max_recv_sge	= spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
705 
706 	rc = rdma_create_qp(rqpair->cm_id, rqpair->port->device->pd, &ibv_init_attr);
707 	if (rc) {
708 		SPDK_ERRLOG("rdma_create_qp failed: errno %d: %s\n", errno, spdk_strerror(errno));
709 		rdma_destroy_id(rqpair->cm_id);
710 		rqpair->cm_id = NULL;
711 		spdk_nvmf_rdma_qpair_destroy(rqpair);
712 		return -1;
713 	}
714 
715 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, ibv_init_attr.cap.max_send_sge);
716 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, ibv_init_attr.cap.max_recv_sge);
717 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair->cm_id, 0);
718 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "New RDMA Connection: %p\n", qpair);
719 
720 	rqpair->reqs = calloc(rqpair->max_queue_depth, sizeof(*rqpair->reqs));
721 	rqpair->recvs = calloc(rqpair->max_queue_depth, sizeof(*rqpair->recvs));
722 	rqpair->cmds = spdk_dma_zmalloc(rqpair->max_queue_depth * sizeof(*rqpair->cmds),
723 					0x1000, NULL);
724 	rqpair->cpls = spdk_dma_zmalloc(rqpair->max_queue_depth * sizeof(*rqpair->cpls),
725 					0x1000, NULL);
726 
727 
728 	if (transport->opts.in_capsule_data_size > 0) {
729 		rqpair->bufs = spdk_dma_zmalloc(rqpair->max_queue_depth *
730 						transport->opts.in_capsule_data_size,
731 						0x1000, NULL);
732 	}
733 
734 	if (!rqpair->reqs || !rqpair->recvs || !rqpair->cmds ||
735 	    !rqpair->cpls || (transport->opts.in_capsule_data_size && !rqpair->bufs)) {
736 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
737 		spdk_nvmf_rdma_qpair_destroy(rqpair);
738 		return -1;
739 	}
740 
741 	rqpair->cmds_mr = ibv_reg_mr(rqpair->cm_id->pd, rqpair->cmds,
742 				     rqpair->max_queue_depth * sizeof(*rqpair->cmds),
743 				     IBV_ACCESS_LOCAL_WRITE);
744 	rqpair->cpls_mr = ibv_reg_mr(rqpair->cm_id->pd, rqpair->cpls,
745 				     rqpair->max_queue_depth * sizeof(*rqpair->cpls),
746 				     0);
747 
748 	if (transport->opts.in_capsule_data_size) {
749 		rqpair->bufs_mr = ibv_reg_mr(rqpair->cm_id->pd, rqpair->bufs,
750 					     rqpair->max_queue_depth *
751 					     transport->opts.in_capsule_data_size,
752 					     IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
753 	}
754 
755 	if (!rqpair->cmds_mr || !rqpair->cpls_mr || (transport->opts.in_capsule_data_size &&
756 			!rqpair->bufs_mr)) {
757 		SPDK_ERRLOG("Unable to register required memory for RDMA queue.\n");
758 		spdk_nvmf_rdma_qpair_destroy(rqpair);
759 		return -1;
760 	}
761 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Command Array: %p Length: %lx LKey: %x\n",
762 		      rqpair->cmds, rqpair->max_queue_depth * sizeof(*rqpair->cmds), rqpair->cmds_mr->lkey);
763 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Completion Array: %p Length: %lx LKey: %x\n",
764 		      rqpair->cpls, rqpair->max_queue_depth * sizeof(*rqpair->cpls), rqpair->cpls_mr->lkey);
765 	if (rqpair->bufs && rqpair->bufs_mr) {
766 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "In Capsule Data Array: %p Length: %x LKey: %x\n",
767 			      rqpair->bufs, rqpair->max_queue_depth *
768 			      transport->opts.in_capsule_data_size, rqpair->bufs_mr->lkey);
769 	}
770 
771 	/* Initialise request state queues and counters of the queue pair */
772 	for (i = RDMA_REQUEST_STATE_FREE; i < RDMA_REQUEST_NUM_STATES; i++) {
773 		TAILQ_INIT(&rqpair->state_queue[i]);
774 		rqpair->state_cntr[i] = 0;
775 	}
776 
777 	for (i = 0; i < rqpair->max_queue_depth; i++) {
778 		struct ibv_recv_wr *bad_wr = NULL;
779 
780 		rdma_recv = &rqpair->recvs[i];
781 		rdma_recv->qpair = rqpair;
782 
783 		/* Set up memory to receive commands */
784 		if (rqpair->bufs) {
785 			rdma_recv->buf = (void *)((uintptr_t)rqpair->bufs + (i *
786 						  transport->opts.in_capsule_data_size));
787 		}
788 
789 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
790 
791 		rdma_recv->sgl[0].addr = (uintptr_t)&rqpair->cmds[i];
792 		rdma_recv->sgl[0].length = sizeof(rqpair->cmds[i]);
793 		rdma_recv->sgl[0].lkey = rqpair->cmds_mr->lkey;
794 		rdma_recv->wr.num_sge = 1;
795 
796 		if (rdma_recv->buf && rqpair->bufs_mr) {
797 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
798 			rdma_recv->sgl[1].length = transport->opts.in_capsule_data_size;
799 			rdma_recv->sgl[1].lkey = rqpair->bufs_mr->lkey;
800 			rdma_recv->wr.num_sge++;
801 		}
802 
803 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
804 		rdma_recv->wr.sg_list = rdma_recv->sgl;
805 
806 		rc = ibv_post_recv(rqpair->cm_id->qp, &rdma_recv->wr, &bad_wr);
807 		if (rc) {
808 			SPDK_ERRLOG("Unable to post capsule for RDMA RECV\n");
809 			spdk_nvmf_rdma_qpair_destroy(rqpair);
810 			return -1;
811 		}
812 	}
813 
814 	for (i = 0; i < rqpair->max_queue_depth; i++) {
815 		rdma_req = &rqpair->reqs[i];
816 
817 		rdma_req->req.qpair = &rqpair->qpair;
818 		rdma_req->req.cmd = NULL;
819 
820 		/* Set up memory to send responses */
821 		rdma_req->req.rsp = &rqpair->cpls[i];
822 
823 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&rqpair->cpls[i];
824 		rdma_req->rsp.sgl[0].length = sizeof(rqpair->cpls[i]);
825 		rdma_req->rsp.sgl[0].lkey = rqpair->cpls_mr->lkey;
826 
827 		rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND;
828 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr;
829 		rdma_req->rsp.wr.next = NULL;
830 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
831 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
832 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
833 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
834 
835 		/* Set up memory for data buffers */
836 		rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA;
837 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
838 		rdma_req->data.wr.next = NULL;
839 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
840 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
841 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
842 
843 		/* Initialize request state to FREE */
844 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
845 		TAILQ_INSERT_TAIL(&rqpair->state_queue[rdma_req->state], rdma_req, state_link);
846 		rqpair->state_cntr[rdma_req->state]++;
847 	}
848 
849 	return 0;
850 }
851 
852 static int
853 request_transfer_in(struct spdk_nvmf_request *req)
854 {
855 	int				rc;
856 	struct spdk_nvmf_rdma_request	*rdma_req;
857 	struct spdk_nvmf_qpair		*qpair;
858 	struct spdk_nvmf_rdma_qpair	*rqpair;
859 	struct ibv_send_wr		*bad_wr = NULL;
860 
861 	qpair = req->qpair;
862 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
863 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
864 
865 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
866 
867 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA READ POSTED. Request: %p Connection: %p\n", req, qpair);
868 
869 	rdma_req->data.wr.opcode = IBV_WR_RDMA_READ;
870 	rdma_req->data.wr.next = NULL;
871 	rc = ibv_post_send(rqpair->cm_id->qp, &rdma_req->data.wr, &bad_wr);
872 	if (rc) {
873 		SPDK_ERRLOG("Unable to transfer data from host to target\n");
874 		return -1;
875 	}
876 	return 0;
877 }
878 
879 static int
880 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
881 {
882 	int				rc;
883 	struct spdk_nvmf_rdma_request	*rdma_req;
884 	struct spdk_nvmf_qpair		*qpair;
885 	struct spdk_nvmf_rdma_qpair	*rqpair;
886 	struct spdk_nvme_cpl		*rsp;
887 	struct ibv_recv_wr		*bad_recv_wr = NULL;
888 	struct ibv_send_wr		*send_wr, *bad_send_wr = NULL;
889 
890 	*data_posted = 0;
891 	qpair = req->qpair;
892 	rsp = &req->rsp->nvme_cpl;
893 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
894 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
895 
896 	/* Advance our sq_head pointer */
897 	if (qpair->sq_head == qpair->sq_head_max) {
898 		qpair->sq_head = 0;
899 	} else {
900 		qpair->sq_head++;
901 	}
902 	rsp->sqhd = qpair->sq_head;
903 
904 	/* Post the capsule to the recv buffer */
905 	assert(rdma_req->recv != NULL);
906 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA RECV POSTED. Recv: %p Connection: %p\n", rdma_req->recv,
907 		      rqpair);
908 	rc = ibv_post_recv(rqpair->cm_id->qp, &rdma_req->recv->wr, &bad_recv_wr);
909 	if (rc) {
910 		SPDK_ERRLOG("Unable to re-post rx descriptor\n");
911 		return rc;
912 	}
913 	rdma_req->recv = NULL;
914 
915 	/* Build the response which consists of an optional
916 	 * RDMA WRITE to transfer data, plus an RDMA SEND
917 	 * containing the response.
918 	 */
919 	send_wr = &rdma_req->rsp.wr;
920 
921 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
922 	    req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
923 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA WRITE POSTED. Request: %p Connection: %p\n", req, qpair);
924 
925 		rdma_req->data.wr.opcode = IBV_WR_RDMA_WRITE;
926 
927 		rdma_req->data.wr.next = send_wr;
928 		*data_posted = 1;
929 		send_wr = &rdma_req->data.wr;
930 	}
931 
932 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA SEND POSTED. Request: %p Connection: %p\n", req, qpair);
933 
934 	/* Send the completion */
935 	rc = ibv_post_send(rqpair->cm_id->qp, send_wr, &bad_send_wr);
936 	if (rc) {
937 		SPDK_ERRLOG("Unable to send response capsule\n");
938 	}
939 
940 	return rc;
941 }
942 
943 static int
944 spdk_nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
945 {
946 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
947 	struct rdma_conn_param				ctrlr_event_data = {};
948 	int						rc;
949 
950 	accept_data.recfmt = 0;
951 	accept_data.crqsize = rqpair->max_queue_depth;
952 
953 	ctrlr_event_data.private_data = &accept_data;
954 	ctrlr_event_data.private_data_len = sizeof(accept_data);
955 	if (id->ps == RDMA_PS_TCP) {
956 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
957 		ctrlr_event_data.initiator_depth = rqpair->max_rw_depth;
958 	}
959 
960 	rc = rdma_accept(id, &ctrlr_event_data);
961 	if (rc) {
962 		SPDK_ERRLOG("Error %d on rdma_accept\n", errno);
963 	} else {
964 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Sent back the accept\n");
965 	}
966 
967 	return rc;
968 }
969 
970 static void
971 spdk_nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
972 {
973 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
974 
975 	rej_data.recfmt = 0;
976 	rej_data.sts = error;
977 
978 	rdma_reject(id, &rej_data, sizeof(rej_data));
979 }
980 
981 static int
982 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event,
983 		  new_qpair_fn cb_fn)
984 {
985 	struct spdk_nvmf_rdma_transport *rtransport;
986 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
987 	struct spdk_nvmf_rdma_port	*port;
988 	struct rdma_conn_param		*rdma_param = NULL;
989 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
990 	uint16_t			max_queue_depth;
991 	uint16_t			max_rw_depth;
992 
993 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
994 
995 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
996 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
997 
998 	rdma_param = &event->param.conn;
999 	if (rdma_param->private_data == NULL ||
1000 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1001 		SPDK_ERRLOG("connect request: no private data provided\n");
1002 		spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1003 		return -1;
1004 	}
1005 
1006 	private_data = rdma_param->private_data;
1007 	if (private_data->recfmt != 0) {
1008 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1009 		spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1010 		return -1;
1011 	}
1012 
1013 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Connect Recv on fabric intf name %s, dev_name %s\n",
1014 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1015 
1016 	port = event->listen_id->context;
1017 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1018 		      event->listen_id, event->listen_id->verbs, port);
1019 
1020 	/* Figure out the supported queue depth. This is a multi-step process
1021 	 * that takes into account hardware maximums, host provided values,
1022 	 * and our target's internal memory limits */
1023 
1024 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Calculating Queue Depth\n");
1025 
1026 	/* Start with the maximum queue depth allowed by the target */
1027 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1028 	max_rw_depth = rtransport->transport.opts.max_queue_depth;
1029 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Target Max Queue Depth: %d\n",
1030 		      rtransport->transport.opts.max_queue_depth);
1031 
1032 	/* Next check the local NIC's hardware limitations */
1033 	SPDK_DEBUGLOG(SPDK_LOG_RDMA,
1034 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1035 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1036 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1037 	max_rw_depth = spdk_min(max_rw_depth, port->device->attr.max_qp_rd_atom);
1038 
1039 	/* Next check the remote NIC's hardware limitations */
1040 	SPDK_DEBUGLOG(SPDK_LOG_RDMA,
1041 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1042 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1043 	if (rdma_param->initiator_depth > 0) {
1044 		max_rw_depth = spdk_min(max_rw_depth, rdma_param->initiator_depth);
1045 	}
1046 
1047 	/* Finally check for the host software requested values, which are
1048 	 * optional. */
1049 	if (rdma_param->private_data != NULL &&
1050 	    rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1051 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1052 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Send Queue Size: %d\n", private_data->hsqsize);
1053 		max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1054 		max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1055 	}
1056 
1057 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1058 		      max_queue_depth, max_rw_depth);
1059 
1060 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1061 	if (rqpair == NULL) {
1062 		SPDK_ERRLOG("Could not allocate new connection.\n");
1063 		spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1064 		return -1;
1065 	}
1066 
1067 	rqpair->port = port;
1068 	rqpair->max_queue_depth = max_queue_depth;
1069 	rqpair->max_rw_depth = max_rw_depth;
1070 	rqpair->cm_id = event->id;
1071 	rqpair->listen_id = event->listen_id;
1072 	rqpair->qpair.transport = transport;
1073 	TAILQ_INIT(&rqpair->incoming_queue);
1074 	event->id->context = &rqpair->qpair;
1075 
1076 	cb_fn(&rqpair->qpair);
1077 
1078 	return 0;
1079 }
1080 
1081 static int
1082 spdk_nvmf_rdma_mem_notify(void *cb_ctx, struct spdk_mem_map *map,
1083 			  enum spdk_mem_map_notify_action action,
1084 			  void *vaddr, size_t size)
1085 {
1086 	struct spdk_nvmf_rdma_device *device = cb_ctx;
1087 	struct ibv_pd *pd = device->pd;
1088 	struct ibv_mr *mr;
1089 
1090 	switch (action) {
1091 	case SPDK_MEM_MAP_NOTIFY_REGISTER:
1092 		mr = ibv_reg_mr(pd, vaddr, size,
1093 				IBV_ACCESS_LOCAL_WRITE |
1094 				IBV_ACCESS_REMOTE_READ |
1095 				IBV_ACCESS_REMOTE_WRITE);
1096 		if (mr == NULL) {
1097 			SPDK_ERRLOG("ibv_reg_mr() failed\n");
1098 			return -1;
1099 		} else {
1100 			spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr);
1101 		}
1102 		break;
1103 	case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
1104 		mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL);
1105 		spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size);
1106 		if (mr) {
1107 			ibv_dereg_mr(mr);
1108 		}
1109 		break;
1110 	}
1111 
1112 	return 0;
1113 }
1114 
1115 static int
1116 spdk_nvmf_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2)
1117 {
1118 	/* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */
1119 	return addr_1 == addr_2;
1120 }
1121 
1122 static void
1123 spdk_nvmf_rdma_request_free_buffers(struct spdk_nvmf_rdma_request *rdma_req,
1124 				    struct spdk_nvmf_transport_poll_group *group, struct spdk_nvmf_transport *transport)
1125 {
1126 	for (uint32_t i = 0; i < rdma_req->req.iovcnt; i++) {
1127 		if (group->buf_cache_count < group->buf_cache_size) {
1128 			STAILQ_INSERT_HEAD(&group->buf_cache,
1129 					   (struct spdk_nvmf_transport_pg_cache_buf *)rdma_req->data.buffers[i], link);
1130 			group->buf_cache_count++;
1131 		} else {
1132 			spdk_mempool_put(transport->data_buf_pool, rdma_req->data.buffers[i]);
1133 		}
1134 		rdma_req->req.iov[i].iov_base = NULL;
1135 		rdma_req->data.buffers[i] = NULL;
1136 		rdma_req->req.iov[i].iov_len = 0;
1137 
1138 	}
1139 	rdma_req->data_from_pool = false;
1140 }
1141 
1142 typedef enum spdk_nvme_data_transfer spdk_nvme_data_transfer_t;
1143 
1144 static spdk_nvme_data_transfer_t
1145 spdk_nvmf_rdma_request_get_xfer(struct spdk_nvmf_rdma_request *rdma_req)
1146 {
1147 	enum spdk_nvme_data_transfer xfer;
1148 	struct spdk_nvme_cmd *cmd = &rdma_req->req.cmd->nvme_cmd;
1149 	struct spdk_nvme_sgl_descriptor *sgl = &cmd->dptr.sgl1;
1150 
1151 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1152 	rdma_req->rsp.wr.opcode = IBV_WR_SEND;
1153 	rdma_req->rsp.wr.imm_data = 0;
1154 #endif
1155 
1156 	/* Figure out data transfer direction */
1157 	if (cmd->opc == SPDK_NVME_OPC_FABRIC) {
1158 		xfer = spdk_nvme_opc_get_data_transfer(rdma_req->req.cmd->nvmf_cmd.fctype);
1159 	} else {
1160 		xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
1161 
1162 		/* Some admin commands are special cases */
1163 		if ((rdma_req->req.qpair->qid == 0) &&
1164 		    ((cmd->opc == SPDK_NVME_OPC_GET_FEATURES) ||
1165 		     (cmd->opc == SPDK_NVME_OPC_SET_FEATURES))) {
1166 			switch (cmd->cdw10 & 0xff) {
1167 			case SPDK_NVME_FEAT_LBA_RANGE_TYPE:
1168 			case SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
1169 			case SPDK_NVME_FEAT_HOST_IDENTIFIER:
1170 				break;
1171 			default:
1172 				xfer = SPDK_NVME_DATA_NONE;
1173 			}
1174 		}
1175 	}
1176 
1177 	if (xfer == SPDK_NVME_DATA_NONE) {
1178 		return xfer;
1179 	}
1180 
1181 	/* Even for commands that may transfer data, they could have specified 0 length.
1182 	 * We want those to show up with xfer SPDK_NVME_DATA_NONE.
1183 	 */
1184 	switch (sgl->generic.type) {
1185 	case SPDK_NVME_SGL_TYPE_DATA_BLOCK:
1186 	case SPDK_NVME_SGL_TYPE_BIT_BUCKET:
1187 	case SPDK_NVME_SGL_TYPE_SEGMENT:
1188 	case SPDK_NVME_SGL_TYPE_LAST_SEGMENT:
1189 	case SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK:
1190 		if (sgl->unkeyed.length == 0) {
1191 			xfer = SPDK_NVME_DATA_NONE;
1192 		}
1193 		break;
1194 	case SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK:
1195 		if (sgl->keyed.length == 0) {
1196 			xfer = SPDK_NVME_DATA_NONE;
1197 		}
1198 		break;
1199 	}
1200 
1201 	return xfer;
1202 }
1203 
1204 static int
1205 spdk_nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1206 				 struct spdk_nvmf_rdma_device *device,
1207 				 struct spdk_nvmf_rdma_request *rdma_req)
1208 {
1209 	struct spdk_nvmf_rdma_qpair		*rqpair;
1210 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1211 	void					*buf = NULL;
1212 	uint32_t				length = rdma_req->req.length;
1213 	uint64_t				translation_len;
1214 	uint32_t				i = 0;
1215 	int					rc = 0;
1216 
1217 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1218 	rgroup = rqpair->poller->group;
1219 	rdma_req->req.iovcnt = 0;
1220 	while (length) {
1221 		if (!(STAILQ_EMPTY(&rgroup->group.buf_cache))) {
1222 			rgroup->group.buf_cache_count--;
1223 			buf = STAILQ_FIRST(&rgroup->group.buf_cache);
1224 			STAILQ_REMOVE_HEAD(&rgroup->group.buf_cache, link);
1225 			assert(buf != NULL);
1226 		} else {
1227 			buf = spdk_mempool_get(rtransport->transport.data_buf_pool);
1228 			if (!buf) {
1229 				rc = -ENOMEM;
1230 				goto err_exit;
1231 			}
1232 		}
1233 
1234 		rdma_req->req.iov[i].iov_base = (void *)((uintptr_t)(buf + NVMF_DATA_BUFFER_MASK) &
1235 						~NVMF_DATA_BUFFER_MASK);
1236 		rdma_req->req.iov[i].iov_len  = spdk_min(length, rtransport->transport.opts.io_unit_size);
1237 		rdma_req->req.iovcnt++;
1238 		rdma_req->data.buffers[i] = buf;
1239 		rdma_req->data.wr.sg_list[i].addr = (uintptr_t)(rdma_req->req.iov[i].iov_base);
1240 		rdma_req->data.wr.sg_list[i].length = rdma_req->req.iov[i].iov_len;
1241 		translation_len = rdma_req->req.iov[i].iov_len;
1242 		rdma_req->data.wr.sg_list[i].lkey = ((struct ibv_mr *)spdk_mem_map_translate(device->map,
1243 						     (uint64_t)buf, &translation_len))->lkey;
1244 		length -= rdma_req->req.iov[i].iov_len;
1245 
1246 		if (translation_len < rdma_req->req.iov[i].iov_len) {
1247 			SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions\n");
1248 			rc = -EINVAL;
1249 			goto err_exit;
1250 		}
1251 		i++;
1252 	}
1253 
1254 	rdma_req->data_from_pool = true;
1255 
1256 	return rc;
1257 
1258 err_exit:
1259 	spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport);
1260 	while (i) {
1261 		i--;
1262 		rdma_req->data.wr.sg_list[i].addr = 0;
1263 		rdma_req->data.wr.sg_list[i].length = 0;
1264 		rdma_req->data.wr.sg_list[i].lkey = 0;
1265 	}
1266 	rdma_req->req.iovcnt = 0;
1267 	return rc;
1268 }
1269 
1270 static int
1271 spdk_nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1272 				 struct spdk_nvmf_rdma_device *device,
1273 				 struct spdk_nvmf_rdma_request *rdma_req)
1274 {
1275 	struct spdk_nvme_cmd			*cmd;
1276 	struct spdk_nvme_cpl			*rsp;
1277 	struct spdk_nvme_sgl_descriptor		*sgl;
1278 
1279 	cmd = &rdma_req->req.cmd->nvme_cmd;
1280 	rsp = &rdma_req->req.rsp->nvme_cpl;
1281 	sgl = &cmd->dptr.sgl1;
1282 
1283 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1284 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1285 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1286 		if (sgl->keyed.length > rtransport->transport.opts.max_io_size) {
1287 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1288 				    sgl->keyed.length, rtransport->transport.opts.max_io_size);
1289 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1290 			return -1;
1291 		}
1292 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1293 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1294 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1295 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1296 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1297 			}
1298 		}
1299 #endif
1300 
1301 		/* fill request length and populate iovs */
1302 		rdma_req->req.length = sgl->keyed.length;
1303 
1304 		if (spdk_nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req) < 0) {
1305 			/* No available buffers. Queue this request up. */
1306 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req);
1307 			return 0;
1308 		}
1309 
1310 		/* backward compatible */
1311 		rdma_req->req.data = rdma_req->req.iov[0].iov_base;
1312 
1313 		/* rdma wr specifics */
1314 		rdma_req->data.wr.num_sge = rdma_req->req.iovcnt;
1315 		rdma_req->data.wr.wr.rdma.rkey = sgl->keyed.key;
1316 		rdma_req->data.wr.wr.rdma.remote_addr = sgl->address;
1317 
1318 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req,
1319 			      rdma_req->req.iovcnt);
1320 
1321 		return 0;
1322 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1323 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1324 		uint64_t offset = sgl->address;
1325 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1326 
1327 		SPDK_DEBUGLOG(SPDK_LOG_NVMF, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1328 			      offset, sgl->unkeyed.length);
1329 
1330 		if (offset > max_len) {
1331 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1332 				    offset, max_len);
1333 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1334 			return -1;
1335 		}
1336 		max_len -= (uint32_t)offset;
1337 
1338 		if (sgl->unkeyed.length > max_len) {
1339 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1340 				    sgl->unkeyed.length, max_len);
1341 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1342 			return -1;
1343 		}
1344 
1345 		rdma_req->req.data = rdma_req->recv->buf + offset;
1346 		rdma_req->data_from_pool = false;
1347 		rdma_req->req.length = sgl->unkeyed.length;
1348 
1349 		rdma_req->req.iov[0].iov_base = rdma_req->req.data;
1350 		rdma_req->req.iov[0].iov_len = rdma_req->req.length;
1351 		rdma_req->req.iovcnt = 1;
1352 
1353 		return 0;
1354 	}
1355 
1356 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
1357 		    sgl->generic.type, sgl->generic.subtype);
1358 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1359 	return -1;
1360 }
1361 
1362 static void
1363 nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1364 		       struct spdk_nvmf_rdma_transport	*rtransport)
1365 {
1366 	struct spdk_nvmf_rdma_qpair		*rqpair;
1367 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1368 
1369 	if (rdma_req->data_from_pool) {
1370 		rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1371 		rgroup = rqpair->poller->group;
1372 
1373 		spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport);
1374 	}
1375 	rdma_req->req.length = 0;
1376 	rdma_req->req.iovcnt = 0;
1377 	rdma_req->req.data = NULL;
1378 	spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_FREE);
1379 }
1380 
1381 static bool
1382 spdk_nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
1383 			       struct spdk_nvmf_rdma_request *rdma_req)
1384 {
1385 	struct spdk_nvmf_rdma_qpair	*rqpair;
1386 	struct spdk_nvmf_rdma_device	*device;
1387 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
1388 	int				rc;
1389 	struct spdk_nvmf_rdma_recv	*rdma_recv;
1390 	enum spdk_nvmf_rdma_request_state prev_state;
1391 	bool				progress = false;
1392 	int				data_posted;
1393 	int				cur_rdma_rw_depth;
1394 
1395 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1396 	device = rqpair->port->device;
1397 
1398 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
1399 
1400 	/* If the queue pair is in an error state, force the request to the completed state
1401 	 * to release resources. */
1402 	if (rqpair->ibv_attr.qp_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
1403 		if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) {
1404 			TAILQ_REMOVE(&rqpair->ch->pending_data_buf_queue, rdma_req, link);
1405 		}
1406 		spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_COMPLETED);
1407 	}
1408 
1409 	/* The loop here is to allow for several back-to-back state changes. */
1410 	do {
1411 		prev_state = rdma_req->state;
1412 
1413 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p entering state %d\n", rdma_req, prev_state);
1414 
1415 		switch (rdma_req->state) {
1416 		case RDMA_REQUEST_STATE_FREE:
1417 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
1418 			 * to escape this state. */
1419 			break;
1420 		case RDMA_REQUEST_STATE_NEW:
1421 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
1422 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1423 			rdma_recv = rdma_req->recv;
1424 
1425 			/* The first element of the SGL is the NVMe command */
1426 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
1427 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
1428 
1429 			TAILQ_REMOVE(&rqpair->incoming_queue, rdma_recv, link);
1430 
1431 			if (rqpair->ibv_attr.qp_state == IBV_QPS_ERR  || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
1432 				spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_COMPLETED);
1433 				break;
1434 			}
1435 
1436 			/* The next state transition depends on the data transfer needs of this request. */
1437 			rdma_req->req.xfer = spdk_nvmf_rdma_request_get_xfer(rdma_req);
1438 
1439 			/* If no data to transfer, ready to execute. */
1440 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
1441 				spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_READY_TO_EXECUTE);
1442 				break;
1443 			}
1444 
1445 			spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_NEED_BUFFER);
1446 			TAILQ_INSERT_TAIL(&rqpair->ch->pending_data_buf_queue, rdma_req, link);
1447 			break;
1448 		case RDMA_REQUEST_STATE_NEED_BUFFER:
1449 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
1450 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1451 
1452 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
1453 
1454 			if (rdma_req != TAILQ_FIRST(&rqpair->ch->pending_data_buf_queue)) {
1455 				/* This request needs to wait in line to obtain a buffer */
1456 				break;
1457 			}
1458 
1459 			/* Try to get a data buffer */
1460 			rc = spdk_nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
1461 			if (rc < 0) {
1462 				TAILQ_REMOVE(&rqpair->ch->pending_data_buf_queue, rdma_req, link);
1463 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
1464 				spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_READY_TO_COMPLETE);
1465 				break;
1466 			}
1467 
1468 			if (!rdma_req->req.data) {
1469 				/* No buffers available. */
1470 				break;
1471 			}
1472 
1473 			TAILQ_REMOVE(&rqpair->ch->pending_data_buf_queue, rdma_req, link);
1474 
1475 			/* If data is transferring from host to controller and the data didn't
1476 			 * arrive using in capsule data, we need to do a transfer from the host.
1477 			 */
1478 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && rdma_req->data_from_pool) {
1479 				spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_DATA_TRANSFER_PENDING);
1480 				break;
1481 			}
1482 
1483 			spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_READY_TO_EXECUTE);
1484 			break;
1485 		case RDMA_REQUEST_STATE_DATA_TRANSFER_PENDING:
1486 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_PENDING, 0, 0,
1487 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1488 
1489 			if (rdma_req != TAILQ_FIRST(&rqpair->state_queue[RDMA_REQUEST_STATE_DATA_TRANSFER_PENDING])) {
1490 				/* This request needs to wait in line to perform RDMA */
1491 				break;
1492 			}
1493 			cur_rdma_rw_depth = spdk_nvmf_rdma_cur_rw_depth(rqpair);
1494 
1495 			if (cur_rdma_rw_depth >= rqpair->max_rw_depth) {
1496 				/* R/W queue is full, need to wait */
1497 				break;
1498 			}
1499 
1500 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1501 				rc = request_transfer_in(&rdma_req->req);
1502 				if (!rc) {
1503 					spdk_nvmf_rdma_request_set_state(rdma_req,
1504 									 RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1505 				} else {
1506 					rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
1507 					spdk_nvmf_rdma_request_set_state(rdma_req,
1508 									 RDMA_REQUEST_STATE_READY_TO_COMPLETE);
1509 				}
1510 			} else if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1511 				/* The data transfer will be kicked off from
1512 				 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
1513 				 */
1514 				spdk_nvmf_rdma_request_set_state(rdma_req,
1515 								 RDMA_REQUEST_STATE_READY_TO_COMPLETE);
1516 			} else {
1517 				SPDK_ERRLOG("Cannot perform data transfer, unknown state: %u\n",
1518 					    rdma_req->req.xfer);
1519 				assert(0);
1520 			}
1521 			break;
1522 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
1523 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
1524 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1525 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
1526 			 * to escape this state. */
1527 			break;
1528 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
1529 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
1530 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1531 			spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_EXECUTING);
1532 			spdk_nvmf_request_exec(&rdma_req->req);
1533 			break;
1534 		case RDMA_REQUEST_STATE_EXECUTING:
1535 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
1536 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1537 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
1538 			 * to escape this state. */
1539 			break;
1540 		case RDMA_REQUEST_STATE_EXECUTED:
1541 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
1542 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1543 			if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1544 				spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_DATA_TRANSFER_PENDING);
1545 			} else {
1546 				spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_READY_TO_COMPLETE);
1547 			}
1548 			break;
1549 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
1550 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
1551 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1552 			rc = request_transfer_out(&rdma_req->req, &data_posted);
1553 			assert(rc == 0); /* No good way to handle this currently */
1554 			if (rc) {
1555 				spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_COMPLETED);
1556 			} else {
1557 				spdk_nvmf_rdma_request_set_state(rdma_req,
1558 								 data_posted ?
1559 								 RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
1560 								 RDMA_REQUEST_STATE_COMPLETING);
1561 			}
1562 			break;
1563 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
1564 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
1565 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1566 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
1567 			 * to escape this state. */
1568 			break;
1569 		case RDMA_REQUEST_STATE_COMPLETING:
1570 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
1571 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1572 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
1573 			 * to escape this state. */
1574 			break;
1575 		case RDMA_REQUEST_STATE_COMPLETED:
1576 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
1577 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1578 
1579 			nvmf_rdma_request_free(rdma_req, rtransport);
1580 			break;
1581 		case RDMA_REQUEST_NUM_STATES:
1582 		default:
1583 			assert(0);
1584 			break;
1585 		}
1586 
1587 		if (rdma_req->state != prev_state) {
1588 			progress = true;
1589 		}
1590 	} while (rdma_req->state != prev_state);
1591 
1592 	return progress;
1593 }
1594 
1595 /* Public API callbacks begin here */
1596 
1597 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
1598 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
1599 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 64
1600 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
1601 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
1602 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE 4096
1603 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 512
1604 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32
1605 #define SPDK_NVMF_RDMA_DEFAULT_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
1606 
1607 static void
1608 spdk_nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
1609 {
1610 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
1611 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
1612 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
1613 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
1614 	opts->io_unit_size =		spdk_max(SPDK_NVMF_RDMA_DEFAULT_IO_BUFFER_SIZE,
1615 					SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
1616 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
1617 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
1618 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
1619 }
1620 
1621 static int spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport);
1622 
1623 static struct spdk_nvmf_transport *
1624 spdk_nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
1625 {
1626 	int rc;
1627 	struct spdk_nvmf_rdma_transport *rtransport;
1628 	struct spdk_nvmf_rdma_device	*device, *tmp;
1629 	struct ibv_context		**contexts;
1630 	uint32_t			i;
1631 	int				flag;
1632 	uint32_t			sge_count;
1633 	uint32_t			min_shared_buffers;
1634 
1635 	const struct spdk_mem_map_ops nvmf_rdma_map_ops = {
1636 		.notify_cb = spdk_nvmf_rdma_mem_notify,
1637 		.are_contiguous = spdk_nvmf_rdma_check_contiguous_entries
1638 	};
1639 
1640 	rtransport = calloc(1, sizeof(*rtransport));
1641 	if (!rtransport) {
1642 		return NULL;
1643 	}
1644 
1645 	if (pthread_mutex_init(&rtransport->lock, NULL)) {
1646 		SPDK_ERRLOG("pthread_mutex_init() failed\n");
1647 		free(rtransport);
1648 		return NULL;
1649 	}
1650 
1651 	spdk_io_device_register(rtransport, spdk_nvmf_rdma_mgmt_channel_create,
1652 				spdk_nvmf_rdma_mgmt_channel_destroy,
1653 				sizeof(struct spdk_nvmf_rdma_mgmt_channel),
1654 				"rdma_transport");
1655 
1656 	TAILQ_INIT(&rtransport->devices);
1657 	TAILQ_INIT(&rtransport->ports);
1658 
1659 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
1660 
1661 	SPDK_INFOLOG(SPDK_LOG_RDMA, "*** RDMA Transport Init ***\n"
1662 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
1663 		     "  max_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
1664 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
1665 		     "  num_shared_buffers=%d\n",
1666 		     opts->max_queue_depth,
1667 		     opts->max_io_size,
1668 		     opts->max_qpairs_per_ctrlr,
1669 		     opts->io_unit_size,
1670 		     opts->in_capsule_data_size,
1671 		     opts->max_aq_depth,
1672 		     opts->num_shared_buffers);
1673 
1674 	/* I/O unit size cannot be larger than max I/O size */
1675 	if (opts->io_unit_size > opts->max_io_size) {
1676 		opts->io_unit_size = opts->max_io_size;
1677 	}
1678 
1679 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
1680 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
1681 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
1682 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
1683 		spdk_nvmf_rdma_destroy(&rtransport->transport);
1684 		return NULL;
1685 	}
1686 
1687 	min_shared_buffers = spdk_thread_get_count() * opts->buf_cache_size;
1688 	if (min_shared_buffers > opts->num_shared_buffers) {
1689 		SPDK_ERRLOG("There are not enough buffers to satisfy"
1690 			    "per-poll group caches for each thread. (%" PRIu32 ")"
1691 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
1692 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
1693 		spdk_nvmf_rdma_destroy(&rtransport->transport);
1694 		return NULL;
1695 	}
1696 
1697 	sge_count = opts->max_io_size / opts->io_unit_size;
1698 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
1699 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
1700 		spdk_nvmf_rdma_destroy(&rtransport->transport);
1701 		return NULL;
1702 	}
1703 
1704 	rtransport->event_channel = rdma_create_event_channel();
1705 	if (rtransport->event_channel == NULL) {
1706 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
1707 		spdk_nvmf_rdma_destroy(&rtransport->transport);
1708 		return NULL;
1709 	}
1710 
1711 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
1712 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
1713 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
1714 			    rtransport->event_channel->fd, spdk_strerror(errno));
1715 		spdk_nvmf_rdma_destroy(&rtransport->transport);
1716 		return NULL;
1717 	}
1718 
1719 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
1720 				   opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES,
1721 				   sizeof(struct spdk_nvmf_rdma_request_data),
1722 				   SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
1723 				   SPDK_ENV_SOCKET_ID_ANY);
1724 	if (!rtransport->data_wr_pool) {
1725 		SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
1726 		spdk_nvmf_rdma_destroy(&rtransport->transport);
1727 		return NULL;
1728 	}
1729 
1730 	contexts = rdma_get_devices(NULL);
1731 	if (contexts == NULL) {
1732 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
1733 		spdk_nvmf_rdma_destroy(&rtransport->transport);
1734 		return NULL;
1735 	}
1736 
1737 	i = 0;
1738 	rc = 0;
1739 	while (contexts[i] != NULL) {
1740 		device = calloc(1, sizeof(*device));
1741 		if (!device) {
1742 			SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
1743 			rc = -ENOMEM;
1744 			break;
1745 		}
1746 		device->context = contexts[i];
1747 		rc = ibv_query_device(device->context, &device->attr);
1748 		if (rc < 0) {
1749 			SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
1750 			free(device);
1751 			break;
1752 
1753 		}
1754 
1755 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1756 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
1757 			SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
1758 			SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
1759 		}
1760 
1761 		/**
1762 		 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
1763 		 * The Soft-RoCE RXE driver does not currently support send with invalidate,
1764 		 * but incorrectly reports that it does. There are changes making their way
1765 		 * through the kernel now that will enable this feature. When they are merged,
1766 		 * we can conditionally enable this feature.
1767 		 *
1768 		 * TODO: enable this for versions of the kernel rxe driver that support it.
1769 		 */
1770 		if (device->attr.vendor_id == 0) {
1771 			device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
1772 		}
1773 #endif
1774 
1775 		/* set up device context async ev fd as NON_BLOCKING */
1776 		flag = fcntl(device->context->async_fd, F_GETFL);
1777 		rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
1778 		if (rc < 0) {
1779 			SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
1780 			free(device);
1781 			break;
1782 		}
1783 
1784 		device->pd = ibv_alloc_pd(device->context);
1785 		if (!device->pd) {
1786 			SPDK_ERRLOG("Unable to allocate protection domain.\n");
1787 			free(device);
1788 			rc = -1;
1789 			break;
1790 		}
1791 
1792 		device->map = spdk_mem_map_alloc(0, &nvmf_rdma_map_ops, device);
1793 		if (!device->map) {
1794 			SPDK_ERRLOG("Unable to allocate memory map for new poll group\n");
1795 			ibv_dealloc_pd(device->pd);
1796 			free(device);
1797 			rc = -1;
1798 			break;
1799 		}
1800 
1801 		TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
1802 		i++;
1803 	}
1804 	rdma_free_devices(contexts);
1805 
1806 	if (rc < 0) {
1807 		spdk_nvmf_rdma_destroy(&rtransport->transport);
1808 		return NULL;
1809 	}
1810 
1811 	/* Set up poll descriptor array to monitor events from RDMA and IB
1812 	 * in a single poll syscall
1813 	 */
1814 	rtransport->npoll_fds = i + 1;
1815 	i = 0;
1816 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
1817 	if (rtransport->poll_fds == NULL) {
1818 		SPDK_ERRLOG("poll_fds allocation failed\n");
1819 		spdk_nvmf_rdma_destroy(&rtransport->transport);
1820 		return NULL;
1821 	}
1822 
1823 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
1824 	rtransport->poll_fds[i++].events = POLLIN;
1825 
1826 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
1827 		rtransport->poll_fds[i].fd = device->context->async_fd;
1828 		rtransport->poll_fds[i++].events = POLLIN;
1829 	}
1830 
1831 	return &rtransport->transport;
1832 }
1833 
1834 static int
1835 spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport)
1836 {
1837 	struct spdk_nvmf_rdma_transport	*rtransport;
1838 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
1839 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
1840 
1841 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1842 
1843 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
1844 		TAILQ_REMOVE(&rtransport->ports, port, link);
1845 		rdma_destroy_id(port->id);
1846 		free(port);
1847 	}
1848 
1849 	if (rtransport->poll_fds != NULL) {
1850 		free(rtransport->poll_fds);
1851 	}
1852 
1853 	if (rtransport->event_channel != NULL) {
1854 		rdma_destroy_event_channel(rtransport->event_channel);
1855 	}
1856 
1857 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
1858 		TAILQ_REMOVE(&rtransport->devices, device, link);
1859 		if (device->map) {
1860 			spdk_mem_map_free(&device->map);
1861 		}
1862 		if (device->pd) {
1863 			ibv_dealloc_pd(device->pd);
1864 		}
1865 		free(device);
1866 	}
1867 
1868 	if (rtransport->data_wr_pool != NULL) {
1869 		if (spdk_mempool_count(rtransport->data_wr_pool) !=
1870 		    (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) {
1871 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
1872 				    spdk_mempool_count(rtransport->data_wr_pool),
1873 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
1874 		}
1875 	}
1876 
1877 	spdk_mempool_free(rtransport->data_wr_pool);
1878 	spdk_io_device_unregister(rtransport, NULL);
1879 	pthread_mutex_destroy(&rtransport->lock);
1880 	free(rtransport);
1881 
1882 	return 0;
1883 }
1884 
1885 static int
1886 spdk_nvmf_rdma_listen(struct spdk_nvmf_transport *transport,
1887 		      const struct spdk_nvme_transport_id *trid)
1888 {
1889 	struct spdk_nvmf_rdma_transport	*rtransport;
1890 	struct spdk_nvmf_rdma_device	*device;
1891 	struct spdk_nvmf_rdma_port	*port_tmp, *port;
1892 	struct addrinfo			*res;
1893 	struct addrinfo			hints;
1894 	int				family;
1895 	int				rc;
1896 
1897 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1898 
1899 	port = calloc(1, sizeof(*port));
1900 	if (!port) {
1901 		return -ENOMEM;
1902 	}
1903 
1904 	/* Selectively copy the trid. Things like NQN don't matter here - that
1905 	 * mapping is enforced elsewhere.
1906 	 */
1907 	port->trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
1908 	port->trid.adrfam = trid->adrfam;
1909 	snprintf(port->trid.traddr, sizeof(port->trid.traddr), "%s", trid->traddr);
1910 	snprintf(port->trid.trsvcid, sizeof(port->trid.trsvcid), "%s", trid->trsvcid);
1911 
1912 	pthread_mutex_lock(&rtransport->lock);
1913 	assert(rtransport->event_channel != NULL);
1914 	TAILQ_FOREACH(port_tmp, &rtransport->ports, link) {
1915 		if (spdk_nvme_transport_id_compare(&port_tmp->trid, &port->trid) == 0) {
1916 			port_tmp->ref++;
1917 			free(port);
1918 			/* Already listening at this address */
1919 			pthread_mutex_unlock(&rtransport->lock);
1920 			return 0;
1921 		}
1922 	}
1923 
1924 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
1925 	if (rc < 0) {
1926 		SPDK_ERRLOG("rdma_create_id() failed\n");
1927 		free(port);
1928 		pthread_mutex_unlock(&rtransport->lock);
1929 		return rc;
1930 	}
1931 
1932 	switch (port->trid.adrfam) {
1933 	case SPDK_NVMF_ADRFAM_IPV4:
1934 		family = AF_INET;
1935 		break;
1936 	case SPDK_NVMF_ADRFAM_IPV6:
1937 		family = AF_INET6;
1938 		break;
1939 	default:
1940 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", port->trid.adrfam);
1941 		free(port);
1942 		pthread_mutex_unlock(&rtransport->lock);
1943 		return -EINVAL;
1944 	}
1945 
1946 	memset(&hints, 0, sizeof(hints));
1947 	hints.ai_family = family;
1948 	hints.ai_flags = AI_NUMERICSERV;
1949 	hints.ai_socktype = SOCK_STREAM;
1950 	hints.ai_protocol = 0;
1951 
1952 	rc = getaddrinfo(port->trid.traddr, port->trid.trsvcid, &hints, &res);
1953 	if (rc) {
1954 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
1955 		free(port);
1956 		pthread_mutex_unlock(&rtransport->lock);
1957 		return -EINVAL;
1958 	}
1959 
1960 	rc = rdma_bind_addr(port->id, res->ai_addr);
1961 	freeaddrinfo(res);
1962 
1963 	if (rc < 0) {
1964 		SPDK_ERRLOG("rdma_bind_addr() failed\n");
1965 		rdma_destroy_id(port->id);
1966 		free(port);
1967 		pthread_mutex_unlock(&rtransport->lock);
1968 		return rc;
1969 	}
1970 
1971 	if (!port->id->verbs) {
1972 		SPDK_ERRLOG("ibv_context is null\n");
1973 		rdma_destroy_id(port->id);
1974 		free(port);
1975 		pthread_mutex_unlock(&rtransport->lock);
1976 		return -1;
1977 	}
1978 
1979 	rc = rdma_listen(port->id, 10); /* 10 = backlog */
1980 	if (rc < 0) {
1981 		SPDK_ERRLOG("rdma_listen() failed\n");
1982 		rdma_destroy_id(port->id);
1983 		free(port);
1984 		pthread_mutex_unlock(&rtransport->lock);
1985 		return rc;
1986 	}
1987 
1988 	TAILQ_FOREACH(device, &rtransport->devices, link) {
1989 		if (device->context == port->id->verbs) {
1990 			port->device = device;
1991 			break;
1992 		}
1993 	}
1994 	if (!port->device) {
1995 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
1996 			    port->id->verbs);
1997 		rdma_destroy_id(port->id);
1998 		free(port);
1999 		pthread_mutex_unlock(&rtransport->lock);
2000 		return -EINVAL;
2001 	}
2002 
2003 	SPDK_INFOLOG(SPDK_LOG_RDMA, "*** NVMf Target Listening on %s port %d ***\n",
2004 		     port->trid.traddr, ntohs(rdma_get_src_port(port->id)));
2005 
2006 	port->ref = 1;
2007 
2008 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
2009 	pthread_mutex_unlock(&rtransport->lock);
2010 
2011 	return 0;
2012 }
2013 
2014 static int
2015 spdk_nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
2016 			   const struct spdk_nvme_transport_id *_trid)
2017 {
2018 	struct spdk_nvmf_rdma_transport *rtransport;
2019 	struct spdk_nvmf_rdma_port *port, *tmp;
2020 	struct spdk_nvme_transport_id trid = {};
2021 
2022 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2023 
2024 	/* Selectively copy the trid. Things like NQN don't matter here - that
2025 	 * mapping is enforced elsewhere.
2026 	 */
2027 	trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
2028 	trid.adrfam = _trid->adrfam;
2029 	snprintf(trid.traddr, sizeof(port->trid.traddr), "%s", _trid->traddr);
2030 	snprintf(trid.trsvcid, sizeof(port->trid.trsvcid), "%s", _trid->trsvcid);
2031 
2032 	pthread_mutex_lock(&rtransport->lock);
2033 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
2034 		if (spdk_nvme_transport_id_compare(&port->trid, &trid) == 0) {
2035 			assert(port->ref > 0);
2036 			port->ref--;
2037 			if (port->ref == 0) {
2038 				TAILQ_REMOVE(&rtransport->ports, port, link);
2039 				rdma_destroy_id(port->id);
2040 				free(port);
2041 			}
2042 			break;
2043 		}
2044 	}
2045 
2046 	pthread_mutex_unlock(&rtransport->lock);
2047 	return 0;
2048 }
2049 
2050 static bool
2051 spdk_nvmf_rdma_qpair_is_idle(struct spdk_nvmf_qpair *qpair)
2052 {
2053 	int cur_queue_depth, cur_rdma_rw_depth;
2054 	struct spdk_nvmf_rdma_qpair *rqpair;
2055 
2056 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
2057 	cur_queue_depth = spdk_nvmf_rdma_cur_queue_depth(rqpair);
2058 	cur_rdma_rw_depth = spdk_nvmf_rdma_cur_rw_depth(rqpair);
2059 
2060 	if (cur_queue_depth == 0 && cur_rdma_rw_depth == 0) {
2061 		return true;
2062 	}
2063 	return false;
2064 }
2065 
2066 static void
2067 spdk_nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
2068 				     struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
2069 {
2070 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
2071 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
2072 
2073 	/* We process I/O in the data transfer pending queue at the highest priority. */
2074 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->state_queue[RDMA_REQUEST_STATE_DATA_TRANSFER_PENDING],
2075 			   state_link, req_tmp) {
2076 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2077 			break;
2078 		}
2079 	}
2080 
2081 	/* The second highest priority is I/O waiting on memory buffers. */
2082 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->ch->pending_data_buf_queue, link,
2083 			   req_tmp) {
2084 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2085 			break;
2086 		}
2087 	}
2088 
2089 	/* The lowest priority is processing newly received commands */
2090 	TAILQ_FOREACH_SAFE(rdma_recv, &rqpair->incoming_queue, link, recv_tmp) {
2091 		if (TAILQ_EMPTY(&rqpair->state_queue[RDMA_REQUEST_STATE_FREE])) {
2092 			break;
2093 		}
2094 
2095 		rdma_req = TAILQ_FIRST(&rqpair->state_queue[RDMA_REQUEST_STATE_FREE]);
2096 		rdma_req->recv = rdma_recv;
2097 		spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_NEW);
2098 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false) {
2099 			break;
2100 		}
2101 	}
2102 }
2103 
2104 static void
2105 _nvmf_rdma_qpair_disconnect(void *ctx)
2106 {
2107 	struct spdk_nvmf_qpair *qpair = ctx;
2108 	struct spdk_nvmf_rdma_qpair *rqpair;
2109 
2110 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
2111 
2112 	spdk_nvmf_rdma_qpair_dec_refcnt(rqpair);
2113 
2114 	spdk_nvmf_qpair_disconnect(qpair, NULL, NULL);
2115 }
2116 
2117 static void
2118 _nvmf_rdma_disconnect_retry(void *ctx)
2119 {
2120 	struct spdk_nvmf_qpair *qpair = ctx;
2121 	struct spdk_nvmf_poll_group *group;
2122 
2123 	/* Read the group out of the qpair. This is normally set and accessed only from
2124 	 * the thread that created the group. Here, we're not on that thread necessarily.
2125 	 * The data member qpair->group begins it's life as NULL and then is assigned to
2126 	 * a pointer and never changes. So fortunately reading this and checking for
2127 	 * non-NULL is thread safe in the x86_64 memory model. */
2128 	group = qpair->group;
2129 
2130 	if (group == NULL) {
2131 		/* The qpair hasn't been assigned to a group yet, so we can't
2132 		 * process a disconnect. Send a message to ourself and try again. */
2133 		spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_disconnect_retry, qpair);
2134 		return;
2135 	}
2136 
2137 	spdk_thread_send_msg(group->thread, _nvmf_rdma_qpair_disconnect, qpair);
2138 }
2139 
2140 static int
2141 nvmf_rdma_disconnect(struct rdma_cm_event *evt)
2142 {
2143 	struct spdk_nvmf_qpair		*qpair;
2144 	struct spdk_nvmf_rdma_qpair	*rqpair;
2145 
2146 	if (evt->id == NULL) {
2147 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
2148 		return -1;
2149 	}
2150 
2151 	qpair = evt->id->context;
2152 	if (qpair == NULL) {
2153 		SPDK_ERRLOG("disconnect request: no active connection\n");
2154 		return -1;
2155 	}
2156 
2157 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
2158 
2159 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair->cm_id, 0);
2160 
2161 	spdk_nvmf_rdma_update_ibv_state(rqpair);
2162 	spdk_nvmf_rdma_qpair_inc_refcnt(rqpair);
2163 
2164 	_nvmf_rdma_disconnect_retry(qpair);
2165 
2166 	return 0;
2167 }
2168 
2169 #ifdef DEBUG
2170 static const char *CM_EVENT_STR[] = {
2171 	"RDMA_CM_EVENT_ADDR_RESOLVED",
2172 	"RDMA_CM_EVENT_ADDR_ERROR",
2173 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
2174 	"RDMA_CM_EVENT_ROUTE_ERROR",
2175 	"RDMA_CM_EVENT_CONNECT_REQUEST",
2176 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
2177 	"RDMA_CM_EVENT_CONNECT_ERROR",
2178 	"RDMA_CM_EVENT_UNREACHABLE",
2179 	"RDMA_CM_EVENT_REJECTED",
2180 	"RDMA_CM_EVENT_ESTABLISHED",
2181 	"RDMA_CM_EVENT_DISCONNECTED",
2182 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
2183 	"RDMA_CM_EVENT_MULTICAST_JOIN",
2184 	"RDMA_CM_EVENT_MULTICAST_ERROR",
2185 	"RDMA_CM_EVENT_ADDR_CHANGE",
2186 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
2187 };
2188 #endif /* DEBUG */
2189 
2190 static void
2191 spdk_nvmf_process_cm_event(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn)
2192 {
2193 	struct spdk_nvmf_rdma_transport *rtransport;
2194 	struct rdma_cm_event		*event;
2195 	int				rc;
2196 
2197 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2198 
2199 	if (rtransport->event_channel == NULL) {
2200 		return;
2201 	}
2202 
2203 	while (1) {
2204 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
2205 		if (rc == 0) {
2206 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
2207 
2208 			spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
2209 
2210 			switch (event->event) {
2211 			case RDMA_CM_EVENT_ADDR_RESOLVED:
2212 			case RDMA_CM_EVENT_ADDR_ERROR:
2213 			case RDMA_CM_EVENT_ROUTE_RESOLVED:
2214 			case RDMA_CM_EVENT_ROUTE_ERROR:
2215 				/* No action required. The target never attempts to resolve routes. */
2216 				break;
2217 			case RDMA_CM_EVENT_CONNECT_REQUEST:
2218 				rc = nvmf_rdma_connect(transport, event, cb_fn);
2219 				if (rc < 0) {
2220 					SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
2221 					break;
2222 				}
2223 				break;
2224 			case RDMA_CM_EVENT_CONNECT_RESPONSE:
2225 				/* The target never initiates a new connection. So this will not occur. */
2226 				break;
2227 			case RDMA_CM_EVENT_CONNECT_ERROR:
2228 				/* Can this happen? The docs say it can, but not sure what causes it. */
2229 				break;
2230 			case RDMA_CM_EVENT_UNREACHABLE:
2231 			case RDMA_CM_EVENT_REJECTED:
2232 				/* These only occur on the client side. */
2233 				break;
2234 			case RDMA_CM_EVENT_ESTABLISHED:
2235 				/* TODO: Should we be waiting for this event anywhere? */
2236 				break;
2237 			case RDMA_CM_EVENT_DISCONNECTED:
2238 			case RDMA_CM_EVENT_DEVICE_REMOVAL:
2239 				rc = nvmf_rdma_disconnect(event);
2240 				if (rc < 0) {
2241 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
2242 					break;
2243 				}
2244 				break;
2245 			case RDMA_CM_EVENT_MULTICAST_JOIN:
2246 			case RDMA_CM_EVENT_MULTICAST_ERROR:
2247 				/* Multicast is not used */
2248 				break;
2249 			case RDMA_CM_EVENT_ADDR_CHANGE:
2250 				/* Not utilizing this event */
2251 				break;
2252 			case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2253 				/* For now, do nothing. The target never re-uses queue pairs. */
2254 				break;
2255 			default:
2256 				SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
2257 				break;
2258 			}
2259 
2260 			rdma_ack_cm_event(event);
2261 		} else {
2262 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
2263 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
2264 			}
2265 			break;
2266 		}
2267 	}
2268 }
2269 
2270 static void
2271 spdk_nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
2272 {
2273 	int				rc;
2274 	struct spdk_nvmf_rdma_qpair	*rqpair;
2275 	struct ibv_async_event		event;
2276 	enum ibv_qp_state		state;
2277 
2278 	rc = ibv_get_async_event(device->context, &event);
2279 
2280 	if (rc) {
2281 		SPDK_ERRLOG("Failed to get async_event (%d): %s\n",
2282 			    errno, spdk_strerror(errno));
2283 		return;
2284 	}
2285 
2286 	SPDK_NOTICELOG("Async event: %s\n",
2287 		       ibv_event_type_str(event.event_type));
2288 
2289 	switch (event.event_type) {
2290 	case IBV_EVENT_QP_FATAL:
2291 		rqpair = event.element.qp->qp_context;
2292 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
2293 				  (uintptr_t)rqpair->cm_id, event.event_type);
2294 		spdk_nvmf_rdma_update_ibv_state(rqpair);
2295 		spdk_nvmf_rdma_qpair_inc_refcnt(rqpair);
2296 		_nvmf_rdma_disconnect_retry(&rqpair->qpair);
2297 		break;
2298 	case IBV_EVENT_QP_LAST_WQE_REACHED:
2299 		/* This event only occurs for shared receive queues, which are not currently supported. */
2300 		break;
2301 	case IBV_EVENT_SQ_DRAINED:
2302 		/* This event occurs frequently in both error and non-error states.
2303 		 * Check if the qpair is in an error state before sending a message.
2304 		 * Note that we're not on the correct thread to access the qpair, but
2305 		 * the operations that the below calls make all happen to be thread
2306 		 * safe. */
2307 		rqpair = event.element.qp->qp_context;
2308 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
2309 				  (uintptr_t)rqpair->cm_id, event.event_type);
2310 		state = spdk_nvmf_rdma_update_ibv_state(rqpair);
2311 		if (state == IBV_QPS_ERR) {
2312 			spdk_nvmf_rdma_qpair_inc_refcnt(rqpair);
2313 			_nvmf_rdma_disconnect_retry(&rqpair->qpair);
2314 		}
2315 		break;
2316 	case IBV_EVENT_QP_REQ_ERR:
2317 	case IBV_EVENT_QP_ACCESS_ERR:
2318 	case IBV_EVENT_COMM_EST:
2319 	case IBV_EVENT_PATH_MIG:
2320 	case IBV_EVENT_PATH_MIG_ERR:
2321 		rqpair = event.element.qp->qp_context;
2322 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
2323 				  (uintptr_t)rqpair->cm_id, event.event_type);
2324 		spdk_nvmf_rdma_update_ibv_state(rqpair);
2325 		break;
2326 	case IBV_EVENT_CQ_ERR:
2327 	case IBV_EVENT_DEVICE_FATAL:
2328 	case IBV_EVENT_PORT_ACTIVE:
2329 	case IBV_EVENT_PORT_ERR:
2330 	case IBV_EVENT_LID_CHANGE:
2331 	case IBV_EVENT_PKEY_CHANGE:
2332 	case IBV_EVENT_SM_CHANGE:
2333 	case IBV_EVENT_SRQ_ERR:
2334 	case IBV_EVENT_SRQ_LIMIT_REACHED:
2335 	case IBV_EVENT_CLIENT_REREGISTER:
2336 	case IBV_EVENT_GID_CHANGE:
2337 	default:
2338 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
2339 		break;
2340 	}
2341 	ibv_ack_async_event(&event);
2342 }
2343 
2344 static void
2345 spdk_nvmf_rdma_accept(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn)
2346 {
2347 	int	nfds, i = 0;
2348 	struct spdk_nvmf_rdma_transport *rtransport;
2349 	struct spdk_nvmf_rdma_device *device, *tmp;
2350 
2351 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2352 	nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
2353 
2354 	if (nfds <= 0) {
2355 		return;
2356 	}
2357 
2358 	/* The first poll descriptor is RDMA CM event */
2359 	if (rtransport->poll_fds[i++].revents & POLLIN) {
2360 		spdk_nvmf_process_cm_event(transport, cb_fn);
2361 		nfds--;
2362 	}
2363 
2364 	if (nfds == 0) {
2365 		return;
2366 	}
2367 
2368 	/* Second and subsequent poll descriptors are IB async events */
2369 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2370 		if (rtransport->poll_fds[i++].revents & POLLIN) {
2371 			spdk_nvmf_process_ib_event(device);
2372 			nfds--;
2373 		}
2374 	}
2375 	/* check all flagged fd's have been served */
2376 	assert(nfds == 0);
2377 }
2378 
2379 static void
2380 spdk_nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
2381 			struct spdk_nvme_transport_id *trid,
2382 			struct spdk_nvmf_discovery_log_page_entry *entry)
2383 {
2384 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
2385 	entry->adrfam = trid->adrfam;
2386 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_SPECIFIED;
2387 
2388 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
2389 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
2390 
2391 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
2392 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
2393 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
2394 }
2395 
2396 static struct spdk_nvmf_transport_poll_group *
2397 spdk_nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport)
2398 {
2399 	struct spdk_nvmf_rdma_transport		*rtransport;
2400 	struct spdk_nvmf_rdma_poll_group	*rgroup;
2401 	struct spdk_nvmf_rdma_poller		*poller, *tpoller;
2402 	struct spdk_nvmf_rdma_device		*device;
2403 
2404 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2405 
2406 	rgroup = calloc(1, sizeof(*rgroup));
2407 	if (!rgroup) {
2408 		return NULL;
2409 	}
2410 
2411 	TAILQ_INIT(&rgroup->pollers);
2412 
2413 	pthread_mutex_lock(&rtransport->lock);
2414 	TAILQ_FOREACH(device, &rtransport->devices, link) {
2415 		poller = calloc(1, sizeof(*poller));
2416 		if (!poller) {
2417 			SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
2418 			goto err_exit;
2419 		}
2420 
2421 		poller->device = device;
2422 		poller->group = rgroup;
2423 
2424 		TAILQ_INIT(&poller->qpairs);
2425 
2426 		poller->cq = ibv_create_cq(device->context, NVMF_RDMA_CQ_SIZE, poller, NULL, 0);
2427 		if (!poller->cq) {
2428 			SPDK_ERRLOG("Unable to create completion queue\n");
2429 			free(poller);
2430 			goto err_exit;
2431 		}
2432 
2433 		TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
2434 	}
2435 
2436 	pthread_mutex_unlock(&rtransport->lock);
2437 	return &rgroup->group;
2438 
2439 err_exit:
2440 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tpoller) {
2441 		TAILQ_REMOVE(&rgroup->pollers, poller, link);
2442 		if (poller->cq) {
2443 			ibv_destroy_cq(poller->cq);
2444 		}
2445 		free(poller);
2446 	}
2447 
2448 	free(rgroup);
2449 	pthread_mutex_unlock(&rtransport->lock);
2450 	return NULL;
2451 }
2452 
2453 static void
2454 spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
2455 {
2456 	struct spdk_nvmf_rdma_poll_group	*rgroup;
2457 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
2458 	struct spdk_nvmf_rdma_qpair		*qpair, *tmp_qpair;
2459 
2460 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
2461 
2462 	if (!rgroup) {
2463 		return;
2464 	}
2465 
2466 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
2467 		TAILQ_REMOVE(&rgroup->pollers, poller, link);
2468 
2469 		if (poller->cq) {
2470 			ibv_destroy_cq(poller->cq);
2471 		}
2472 		TAILQ_FOREACH_SAFE(qpair, &poller->qpairs, link, tmp_qpair) {
2473 			spdk_nvmf_rdma_qpair_destroy(qpair);
2474 		}
2475 
2476 		free(poller);
2477 	}
2478 
2479 	free(rgroup);
2480 }
2481 
2482 static int
2483 spdk_nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
2484 			      struct spdk_nvmf_qpair *qpair)
2485 {
2486 	struct spdk_nvmf_rdma_transport		*rtransport;
2487 	struct spdk_nvmf_rdma_poll_group	*rgroup;
2488 	struct spdk_nvmf_rdma_qpair		*rqpair;
2489 	struct spdk_nvmf_rdma_device		*device;
2490 	struct spdk_nvmf_rdma_poller		*poller;
2491 	int					rc;
2492 
2493 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
2494 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
2495 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
2496 
2497 	device = rqpair->port->device;
2498 
2499 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
2500 		if (poller->device == device) {
2501 			break;
2502 		}
2503 	}
2504 
2505 	if (!poller) {
2506 		SPDK_ERRLOG("No poller found for device.\n");
2507 		return -1;
2508 	}
2509 
2510 	TAILQ_INSERT_TAIL(&poller->qpairs, rqpair, link);
2511 	rqpair->poller = poller;
2512 
2513 	rc = spdk_nvmf_rdma_qpair_initialize(qpair);
2514 	if (rc < 0) {
2515 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
2516 		return -1;
2517 	}
2518 
2519 	rqpair->mgmt_channel = spdk_get_io_channel(rtransport);
2520 	if (!rqpair->mgmt_channel) {
2521 		spdk_nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
2522 		spdk_nvmf_rdma_qpair_destroy(rqpair);
2523 		return -1;
2524 	}
2525 
2526 	rqpair->ch = spdk_io_channel_get_ctx(rqpair->mgmt_channel);
2527 	assert(rqpair->ch != NULL);
2528 
2529 	rc = spdk_nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
2530 	if (rc) {
2531 		/* Try to reject, but we probably can't */
2532 		spdk_nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
2533 		spdk_nvmf_rdma_qpair_destroy(rqpair);
2534 		return -1;
2535 	}
2536 
2537 	spdk_nvmf_rdma_update_ibv_state(rqpair);
2538 
2539 	return 0;
2540 }
2541 
2542 static int
2543 spdk_nvmf_rdma_request_free(struct spdk_nvmf_request *req)
2544 {
2545 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
2546 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
2547 			struct spdk_nvmf_rdma_transport, transport);
2548 
2549 	nvmf_rdma_request_free(rdma_req, rtransport);
2550 	return 0;
2551 }
2552 
2553 static int
2554 spdk_nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
2555 {
2556 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
2557 			struct spdk_nvmf_rdma_transport, transport);
2558 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
2559 			struct spdk_nvmf_rdma_request, req);
2560 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
2561 			struct spdk_nvmf_rdma_qpair, qpair);
2562 
2563 	if (rqpair->ibv_attr.qp_state != IBV_QPS_ERR) {
2564 		/* The connection is alive, so process the request as normal */
2565 		spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_EXECUTED);
2566 	} else {
2567 		/* The connection is dead. Move the request directly to the completed state. */
2568 		spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_COMPLETED);
2569 	}
2570 
2571 	spdk_nvmf_rdma_request_process(rtransport, rdma_req);
2572 
2573 	return 0;
2574 }
2575 
2576 static void
2577 spdk_nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair)
2578 {
2579 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
2580 	struct ibv_recv_wr recv_wr = {};
2581 	struct ibv_recv_wr *bad_recv_wr;
2582 	struct ibv_send_wr send_wr = {};
2583 	struct ibv_send_wr *bad_send_wr;
2584 	int rc;
2585 
2586 	if (rqpair->disconnect_flags & RDMA_QP_DISCONNECTING) {
2587 		return;
2588 	}
2589 
2590 	rqpair->disconnect_flags |= RDMA_QP_DISCONNECTING;
2591 
2592 	if (rqpair->ibv_attr.qp_state != IBV_QPS_ERR) {
2593 		spdk_nvmf_rdma_set_ibv_state(rqpair, IBV_QPS_ERR);
2594 	}
2595 
2596 	rqpair->drain_recv_wr.type = RDMA_WR_TYPE_DRAIN_RECV;
2597 	recv_wr.wr_id = (uintptr_t)&rqpair->drain_recv_wr;
2598 	rc = ibv_post_recv(rqpair->cm_id->qp, &recv_wr, &bad_recv_wr);
2599 	if (rc) {
2600 		SPDK_ERRLOG("Failed to post dummy receive WR, errno %d\n", errno);
2601 		assert(false);
2602 		return;
2603 	}
2604 
2605 	rqpair->drain_send_wr.type = RDMA_WR_TYPE_DRAIN_SEND;
2606 	send_wr.wr_id = (uintptr_t)&rqpair->drain_send_wr;
2607 	send_wr.opcode = IBV_WR_SEND;
2608 	rc = ibv_post_send(rqpair->cm_id->qp, &send_wr, &bad_send_wr);
2609 	if (rc) {
2610 		SPDK_ERRLOG("Failed to post dummy send WR, errno %d\n", errno);
2611 		assert(false);
2612 		return;
2613 	}
2614 }
2615 
2616 #ifdef DEBUG
2617 static int
2618 spdk_nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
2619 {
2620 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
2621 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
2622 }
2623 #endif
2624 
2625 static int
2626 spdk_nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
2627 			   struct spdk_nvmf_rdma_poller *rpoller)
2628 {
2629 	struct ibv_wc wc[32];
2630 	struct spdk_nvmf_rdma_wr	*rdma_wr;
2631 	struct spdk_nvmf_rdma_request	*rdma_req;
2632 	struct spdk_nvmf_rdma_recv	*rdma_recv;
2633 	struct spdk_nvmf_rdma_qpair	*rqpair;
2634 	int reaped, i;
2635 	int count = 0;
2636 	bool error = false;
2637 
2638 	/* Poll for completing operations. */
2639 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
2640 	if (reaped < 0) {
2641 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
2642 			    errno, spdk_strerror(errno));
2643 		return -1;
2644 	}
2645 
2646 	for (i = 0; i < reaped; i++) {
2647 
2648 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
2649 
2650 		/* Handle error conditions */
2651 		if (wc[i].status) {
2652 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "CQ error on CQ %p, Request 0x%lu (%d): %s\n",
2653 				      rpoller->cq, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
2654 
2655 			error = true;
2656 
2657 			switch (rdma_wr->type) {
2658 			case RDMA_WR_TYPE_SEND:
2659 				rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
2660 				rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2661 
2662 				SPDK_ERRLOG("data=%p length=%u\n", rdma_req->req.data, rdma_req->req.length);
2663 				/* We're going to attempt an error recovery, so force the request into
2664 				 * the completed state. */
2665 				spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_COMPLETED);
2666 				spdk_nvmf_rdma_request_process(rtransport, rdma_req);
2667 				break;
2668 			case RDMA_WR_TYPE_RECV:
2669 				rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
2670 				rqpair = rdma_recv->qpair;
2671 
2672 				/* Dump this into the incoming queue. This gets cleaned up when
2673 				 * the queue pair disconnects or recovers. */
2674 				TAILQ_INSERT_TAIL(&rqpair->incoming_queue, rdma_recv, link);
2675 				break;
2676 			case RDMA_WR_TYPE_DATA:
2677 				/* If the data transfer fails still force the queue into the error state,
2678 				 * if we were performing an RDMA_READ, we need to force the request into a
2679 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
2680 				 * case, we should wait for the SEND to complete. */
2681 				rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
2682 				rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2683 
2684 				SPDK_ERRLOG("data=%p length=%u\n", rdma_req->req.data, rdma_req->req.length);
2685 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
2686 					spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_COMPLETED);
2687 				}
2688 				break;
2689 			case RDMA_WR_TYPE_DRAIN_RECV:
2690 				rqpair = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_qpair, drain_recv_wr);
2691 				assert(rqpair->disconnect_flags & RDMA_QP_DISCONNECTING);
2692 				SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Drained QP RECV %u (%p)\n", rqpair->qpair.qid, rqpair);
2693 				rqpair->disconnect_flags |= RDMA_QP_RECV_DRAINED;
2694 				if (rqpair->disconnect_flags & RDMA_QP_SEND_DRAINED) {
2695 					spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
2696 					spdk_nvmf_rdma_qpair_destroy(rqpair);
2697 				}
2698 				/* Continue so that this does not trigger the disconnect path below. */
2699 				continue;
2700 			case RDMA_WR_TYPE_DRAIN_SEND:
2701 				rqpair = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_qpair, drain_send_wr);
2702 				assert(rqpair->disconnect_flags & RDMA_QP_DISCONNECTING);
2703 				SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Drained QP SEND %u (%p)\n", rqpair->qpair.qid, rqpair);
2704 				rqpair->disconnect_flags |= RDMA_QP_SEND_DRAINED;
2705 				if (rqpair->disconnect_flags & RDMA_QP_RECV_DRAINED) {
2706 					spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
2707 					spdk_nvmf_rdma_qpair_destroy(rqpair);
2708 				}
2709 				/* Continue so that this does not trigger the disconnect path below. */
2710 				continue;
2711 			default:
2712 				SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
2713 				continue;
2714 			}
2715 
2716 			if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
2717 				/* Disconnect the connection. */
2718 				spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
2719 			}
2720 			continue;
2721 		}
2722 
2723 		switch (wc[i].opcode) {
2724 		case IBV_WC_SEND:
2725 			assert(rdma_wr->type == RDMA_WR_TYPE_SEND);
2726 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
2727 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2728 
2729 			assert(spdk_nvmf_rdma_req_is_completing(rdma_req));
2730 
2731 			spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_COMPLETED);
2732 			spdk_nvmf_rdma_request_process(rtransport, rdma_req);
2733 
2734 			count++;
2735 
2736 			/* Try to process other queued requests */
2737 			spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
2738 			break;
2739 
2740 		case IBV_WC_RDMA_WRITE:
2741 			assert(rdma_wr->type == RDMA_WR_TYPE_DATA);
2742 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
2743 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2744 
2745 			/* Try to process other queued requests */
2746 			spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
2747 			break;
2748 
2749 		case IBV_WC_RDMA_READ:
2750 			assert(rdma_wr->type == RDMA_WR_TYPE_DATA);
2751 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
2752 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2753 
2754 			assert(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2755 			spdk_nvmf_rdma_request_set_state(rdma_req, RDMA_REQUEST_STATE_READY_TO_EXECUTE);
2756 			spdk_nvmf_rdma_request_process(rtransport, rdma_req);
2757 
2758 			/* Try to process other queued requests */
2759 			spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
2760 			break;
2761 
2762 		case IBV_WC_RECV:
2763 			assert(rdma_wr->type == RDMA_WR_TYPE_RECV);
2764 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
2765 			rqpair = rdma_recv->qpair;
2766 
2767 			TAILQ_INSERT_TAIL(&rqpair->incoming_queue, rdma_recv, link);
2768 			/* Try to process other queued requests */
2769 			spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
2770 			break;
2771 
2772 		default:
2773 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
2774 			continue;
2775 		}
2776 	}
2777 
2778 	if (error == true) {
2779 		return -1;
2780 	}
2781 
2782 	return count;
2783 }
2784 
2785 static int
2786 spdk_nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
2787 {
2788 	struct spdk_nvmf_rdma_transport *rtransport;
2789 	struct spdk_nvmf_rdma_poll_group *rgroup;
2790 	struct spdk_nvmf_rdma_poller	*rpoller;
2791 	int				count, rc;
2792 
2793 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
2794 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
2795 
2796 	count = 0;
2797 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
2798 		rc = spdk_nvmf_rdma_poller_poll(rtransport, rpoller);
2799 		if (rc < 0) {
2800 			return rc;
2801 		}
2802 		count += rc;
2803 	}
2804 
2805 	return count;
2806 }
2807 
2808 static int
2809 spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2810 			       struct spdk_nvme_transport_id *trid,
2811 			       bool peer)
2812 {
2813 	struct sockaddr *saddr;
2814 	uint16_t port;
2815 
2816 	trid->trtype = SPDK_NVME_TRANSPORT_RDMA;
2817 
2818 	if (peer) {
2819 		saddr = rdma_get_peer_addr(id);
2820 	} else {
2821 		saddr = rdma_get_local_addr(id);
2822 	}
2823 	switch (saddr->sa_family) {
2824 	case AF_INET: {
2825 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
2826 
2827 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
2828 		inet_ntop(AF_INET, &saddr_in->sin_addr,
2829 			  trid->traddr, sizeof(trid->traddr));
2830 		if (peer) {
2831 			port = ntohs(rdma_get_dst_port(id));
2832 		} else {
2833 			port = ntohs(rdma_get_src_port(id));
2834 		}
2835 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
2836 		break;
2837 	}
2838 	case AF_INET6: {
2839 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
2840 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
2841 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
2842 			  trid->traddr, sizeof(trid->traddr));
2843 		if (peer) {
2844 			port = ntohs(rdma_get_dst_port(id));
2845 		} else {
2846 			port = ntohs(rdma_get_src_port(id));
2847 		}
2848 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
2849 		break;
2850 	}
2851 	default:
2852 		return -1;
2853 
2854 	}
2855 
2856 	return 0;
2857 }
2858 
2859 static int
2860 spdk_nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
2861 				   struct spdk_nvme_transport_id *trid)
2862 {
2863 	struct spdk_nvmf_rdma_qpair	*rqpair;
2864 
2865 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
2866 
2867 	return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
2868 }
2869 
2870 static int
2871 spdk_nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
2872 				    struct spdk_nvme_transport_id *trid)
2873 {
2874 	struct spdk_nvmf_rdma_qpair	*rqpair;
2875 
2876 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
2877 
2878 	return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
2879 }
2880 
2881 static int
2882 spdk_nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
2883 				     struct spdk_nvme_transport_id *trid)
2884 {
2885 	struct spdk_nvmf_rdma_qpair	*rqpair;
2886 
2887 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
2888 
2889 	return spdk_nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
2890 }
2891 
2892 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
2893 	.type = SPDK_NVME_TRANSPORT_RDMA,
2894 	.opts_init = spdk_nvmf_rdma_opts_init,
2895 	.create = spdk_nvmf_rdma_create,
2896 	.destroy = spdk_nvmf_rdma_destroy,
2897 
2898 	.listen = spdk_nvmf_rdma_listen,
2899 	.stop_listen = spdk_nvmf_rdma_stop_listen,
2900 	.accept = spdk_nvmf_rdma_accept,
2901 
2902 	.listener_discover = spdk_nvmf_rdma_discover,
2903 
2904 	.poll_group_create = spdk_nvmf_rdma_poll_group_create,
2905 	.poll_group_destroy = spdk_nvmf_rdma_poll_group_destroy,
2906 	.poll_group_add = spdk_nvmf_rdma_poll_group_add,
2907 	.poll_group_poll = spdk_nvmf_rdma_poll_group_poll,
2908 
2909 	.req_free = spdk_nvmf_rdma_request_free,
2910 	.req_complete = spdk_nvmf_rdma_request_complete,
2911 
2912 	.qpair_fini = spdk_nvmf_rdma_close_qpair,
2913 	.qpair_is_idle = spdk_nvmf_rdma_qpair_is_idle,
2914 	.qpair_get_peer_trid = spdk_nvmf_rdma_qpair_get_peer_trid,
2915 	.qpair_get_local_trid = spdk_nvmf_rdma_qpair_get_local_trid,
2916 	.qpair_get_listen_trid = spdk_nvmf_rdma_qpair_get_listen_trid,
2917 
2918 };
2919 
2920 SPDK_LOG_REGISTER_COMPONENT("rdma", SPDK_LOG_RDMA)
2921