xref: /spdk/lib/nvmf/rdma.c (revision bb488d2829a9b7863daab45917dd2174905cc0ae)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2018 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk/stdinc.h"
35 
36 #include <infiniband/verbs.h>
37 #include <rdma/rdma_cma.h>
38 #include <rdma/rdma_verbs.h>
39 
40 #include "nvmf_internal.h"
41 #include "transport.h"
42 
43 #include "spdk/config.h"
44 #include "spdk/assert.h"
45 #include "spdk/thread.h"
46 #include "spdk/nvmf.h"
47 #include "spdk/nvmf_spec.h"
48 #include "spdk/string.h"
49 #include "spdk/trace.h"
50 #include "spdk/util.h"
51 
52 #include "spdk_internal/log.h"
53 
54 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
55 
56 /*
57  RDMA Connection Resource Defaults
58  */
59 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
60 #define NVMF_DEFAULT_RSP_SGE		1
61 #define NVMF_DEFAULT_RX_SGE		2
62 
63 /* The RDMA completion queue size */
64 #define DEFAULT_NVMF_RDMA_CQ_SIZE	4096
65 #define MAX_WR_PER_QP(queue_depth)	(queue_depth * 3 + 2)
66 
67 /* Timeout for destroying defunct rqpairs */
68 #define NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US	4000000
69 
70 /* The maximum number of buffers per request */
71 #define NVMF_REQ_MAX_BUFFERS	(SPDK_NVMF_MAX_SGL_ENTRIES * 2)
72 
73 static int g_spdk_nvmf_ibv_query_mask =
74 	IBV_QP_STATE |
75 	IBV_QP_PKEY_INDEX |
76 	IBV_QP_PORT |
77 	IBV_QP_ACCESS_FLAGS |
78 	IBV_QP_AV |
79 	IBV_QP_PATH_MTU |
80 	IBV_QP_DEST_QPN |
81 	IBV_QP_RQ_PSN |
82 	IBV_QP_MAX_DEST_RD_ATOMIC |
83 	IBV_QP_MIN_RNR_TIMER |
84 	IBV_QP_SQ_PSN |
85 	IBV_QP_TIMEOUT |
86 	IBV_QP_RETRY_CNT |
87 	IBV_QP_RNR_RETRY |
88 	IBV_QP_MAX_QP_RD_ATOMIC;
89 
90 enum spdk_nvmf_rdma_request_state {
91 	/* The request is not currently in use */
92 	RDMA_REQUEST_STATE_FREE = 0,
93 
94 	/* Initial state when request first received */
95 	RDMA_REQUEST_STATE_NEW,
96 
97 	/* The request is queued until a data buffer is available. */
98 	RDMA_REQUEST_STATE_NEED_BUFFER,
99 
100 	/* The request is waiting on RDMA queue depth availability
101 	 * to transfer data from the host to the controller.
102 	 */
103 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
104 
105 	/* The request is currently transferring data from the host to the controller. */
106 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
107 
108 	/* The request is ready to execute at the block device */
109 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
110 
111 	/* The request is currently executing at the block device */
112 	RDMA_REQUEST_STATE_EXECUTING,
113 
114 	/* The request finished executing at the block device */
115 	RDMA_REQUEST_STATE_EXECUTED,
116 
117 	/* The request is waiting on RDMA queue depth availability
118 	 * to transfer data from the controller to the host.
119 	 */
120 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
121 
122 	/* The request is ready to send a completion */
123 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
124 
125 	/* The request is currently transferring data from the controller to the host. */
126 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
127 
128 	/* The request currently has an outstanding completion without an
129 	 * associated data transfer.
130 	 */
131 	RDMA_REQUEST_STATE_COMPLETING,
132 
133 	/* The request completed and can be marked free. */
134 	RDMA_REQUEST_STATE_COMPLETED,
135 
136 	/* Terminator */
137 	RDMA_REQUEST_NUM_STATES,
138 };
139 
140 #define OBJECT_NVMF_RDMA_IO				0x40
141 
142 #define TRACE_GROUP_NVMF_RDMA				0x4
143 #define TRACE_RDMA_REQUEST_STATE_NEW					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x0)
144 #define TRACE_RDMA_REQUEST_STATE_NEED_BUFFER				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x1)
145 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x2)
146 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x3)
147 #define TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE			SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x4)
148 #define TRACE_RDMA_REQUEST_STATE_EXECUTING				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x5)
149 #define TRACE_RDMA_REQUEST_STATE_EXECUTED				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x6)
150 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING		SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x7)
151 #define TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE			SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x8)
152 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x9)
153 #define TRACE_RDMA_REQUEST_STATE_COMPLETING				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xA)
154 #define TRACE_RDMA_REQUEST_STATE_COMPLETED				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xB)
155 #define TRACE_RDMA_QP_CREATE						SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xC)
156 #define TRACE_RDMA_IBV_ASYNC_EVENT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xD)
157 #define TRACE_RDMA_CM_ASYNC_EVENT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xE)
158 #define TRACE_RDMA_QP_STATE_CHANGE					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xF)
159 #define TRACE_RDMA_QP_DISCONNECT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x10)
160 #define TRACE_RDMA_QP_DESTROY						SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x11)
161 
162 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
163 {
164 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
165 	spdk_trace_register_description("RDMA_REQ_NEW", "",
166 					TRACE_RDMA_REQUEST_STATE_NEW,
167 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 1, "cmid:   ");
168 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", "",
169 					TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
170 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
171 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_C_TO_H", "",
172 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
173 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
174 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H_TO_C", "",
175 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
176 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
177 	spdk_trace_register_description("RDMA_REQ_TX_H_TO_C", "",
178 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
179 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
180 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE", "",
181 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
182 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
183 	spdk_trace_register_description("RDMA_REQ_EXECUTING", "",
184 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
185 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
186 	spdk_trace_register_description("RDMA_REQ_EXECUTED", "",
187 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
188 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
189 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPLETE", "",
190 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
191 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
192 	spdk_trace_register_description("RDMA_REQ_COMPLETING_CONTROLLER_TO_HOST", "",
193 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
194 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
195 	spdk_trace_register_description("RDMA_REQ_COMPLETING_INCAPSULE", "",
196 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
197 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
198 	spdk_trace_register_description("RDMA_REQ_COMPLETED", "",
199 					TRACE_RDMA_REQUEST_STATE_COMPLETED,
200 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
201 
202 	spdk_trace_register_description("RDMA_QP_CREATE", "", TRACE_RDMA_QP_CREATE,
203 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
204 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", "", TRACE_RDMA_IBV_ASYNC_EVENT,
205 					OWNER_NONE, OBJECT_NONE, 0, 0, "type:   ");
206 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", "", TRACE_RDMA_CM_ASYNC_EVENT,
207 					OWNER_NONE, OBJECT_NONE, 0, 0, "type:   ");
208 	spdk_trace_register_description("RDMA_QP_STATE_CHANGE", "", TRACE_RDMA_QP_STATE_CHANGE,
209 					OWNER_NONE, OBJECT_NONE, 0, 1, "state:  ");
210 	spdk_trace_register_description("RDMA_QP_DISCONNECT", "", TRACE_RDMA_QP_DISCONNECT,
211 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
212 	spdk_trace_register_description("RDMA_QP_DESTROY", "", TRACE_RDMA_QP_DESTROY,
213 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
214 }
215 
216 enum spdk_nvmf_rdma_wr_type {
217 	RDMA_WR_TYPE_RECV,
218 	RDMA_WR_TYPE_SEND,
219 	RDMA_WR_TYPE_DATA,
220 };
221 
222 struct spdk_nvmf_rdma_wr {
223 	enum spdk_nvmf_rdma_wr_type	type;
224 };
225 
226 /* This structure holds commands as they are received off the wire.
227  * It must be dynamically paired with a full request object
228  * (spdk_nvmf_rdma_request) to service a request. It is separate
229  * from the request because RDMA does not appear to order
230  * completions, so occasionally we'll get a new incoming
231  * command when there aren't any free request objects.
232  */
233 struct spdk_nvmf_rdma_recv {
234 	struct ibv_recv_wr			wr;
235 	struct ibv_sge				sgl[NVMF_DEFAULT_RX_SGE];
236 
237 	struct spdk_nvmf_rdma_qpair		*qpair;
238 
239 	/* In-capsule data buffer */
240 	uint8_t					*buf;
241 
242 	struct spdk_nvmf_rdma_wr		rdma_wr;
243 
244 	STAILQ_ENTRY(spdk_nvmf_rdma_recv)	link;
245 };
246 
247 struct spdk_nvmf_rdma_request_data {
248 	struct spdk_nvmf_rdma_wr	rdma_wr;
249 	struct ibv_send_wr		wr;
250 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
251 };
252 
253 struct spdk_nvmf_rdma_request {
254 	struct spdk_nvmf_request		req;
255 	bool					data_from_pool;
256 
257 	enum spdk_nvmf_rdma_request_state	state;
258 
259 	struct spdk_nvmf_rdma_recv		*recv;
260 
261 	struct {
262 		struct spdk_nvmf_rdma_wr	rdma_wr;
263 		struct	ibv_send_wr		wr;
264 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
265 	} rsp;
266 
267 	struct spdk_nvmf_rdma_request_data	data;
268 	void					*buffers[NVMF_REQ_MAX_BUFFERS];
269 
270 	uint32_t				num_outstanding_data_wr;
271 
272 	STAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
273 };
274 
275 enum spdk_nvmf_rdma_qpair_disconnect_flags {
276 	RDMA_QP_DISCONNECTING		= 1,
277 	RDMA_QP_RECV_DRAINED		= 1 << 1,
278 	RDMA_QP_SEND_DRAINED		= 1 << 2
279 };
280 
281 struct spdk_nvmf_rdma_resource_opts {
282 	struct spdk_nvmf_rdma_qpair	*qpair;
283 	/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
284 	void				*qp;
285 	struct ibv_pd			*pd;
286 	uint32_t			max_queue_depth;
287 	uint32_t			in_capsule_data_size;
288 	bool				shared;
289 };
290 
291 struct spdk_nvmf_rdma_resources {
292 	/* Array of size "max_queue_depth" containing RDMA requests. */
293 	struct spdk_nvmf_rdma_request		*reqs;
294 
295 	/* Array of size "max_queue_depth" containing RDMA recvs. */
296 	struct spdk_nvmf_rdma_recv		*recvs;
297 
298 	/* Array of size "max_queue_depth" containing 64 byte capsules
299 	 * used for receive.
300 	 */
301 	union nvmf_h2c_msg			*cmds;
302 	struct ibv_mr				*cmds_mr;
303 
304 	/* Array of size "max_queue_depth" containing 16 byte completions
305 	 * to be sent back to the user.
306 	 */
307 	union nvmf_c2h_msg			*cpls;
308 	struct ibv_mr				*cpls_mr;
309 
310 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
311 	 * buffers to be used for in capsule data.
312 	 */
313 	void					*bufs;
314 	struct ibv_mr				*bufs_mr;
315 
316 	/* Receives that are waiting for a request object */
317 	STAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
318 
319 	/* Queue to track free requests */
320 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	free_queue;
321 };
322 
323 struct spdk_nvmf_rdma_qpair {
324 	struct spdk_nvmf_qpair			qpair;
325 
326 	struct spdk_nvmf_rdma_port		*port;
327 	struct spdk_nvmf_rdma_poller		*poller;
328 
329 	struct rdma_cm_id			*cm_id;
330 	struct ibv_srq				*srq;
331 	struct rdma_cm_id			*listen_id;
332 
333 	/* The maximum number of I/O outstanding on this connection at one time */
334 	uint16_t				max_queue_depth;
335 
336 	/* The maximum number of active RDMA READ and ATOMIC operations at one time */
337 	uint16_t				max_read_depth;
338 
339 	/* The maximum number of RDMA SEND operations at one time */
340 	uint32_t				max_send_depth;
341 
342 	/* The current number of outstanding WRs from this qpair's
343 	 * recv queue. Should not exceed device->attr.max_queue_depth.
344 	 */
345 	uint16_t				current_recv_depth;
346 
347 	/* The current number of active RDMA READ operations */
348 	uint16_t				current_read_depth;
349 
350 	/* The current number of posted WRs from this qpair's
351 	 * send queue. Should not exceed max_send_depth.
352 	 */
353 	uint32_t				current_send_depth;
354 
355 	/* The maximum number of SGEs per WR on the send queue */
356 	uint32_t				max_send_sge;
357 
358 	/* The maximum number of SGEs per WR on the recv queue */
359 	uint32_t				max_recv_sge;
360 
361 	struct spdk_nvmf_rdma_resources		*resources;
362 
363 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_read_queue;
364 
365 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_write_queue;
366 
367 	/* Number of requests not in the free state */
368 	uint32_t				qd;
369 
370 	TAILQ_ENTRY(spdk_nvmf_rdma_qpair)	link;
371 
372 	/* IBV queue pair attributes: they are used to manage
373 	 * qp state and recover from errors.
374 	 */
375 	enum ibv_qp_state			ibv_state;
376 
377 	uint32_t				disconnect_flags;
378 
379 	/* Poller registered in case the qpair doesn't properly
380 	 * complete the qpair destruct process and becomes defunct.
381 	 */
382 
383 	struct spdk_poller			*destruct_poller;
384 
385 	/* There are several ways a disconnect can start on a qpair
386 	 * and they are not all mutually exclusive. It is important
387 	 * that we only initialize one of these paths.
388 	 */
389 	bool					disconnect_started;
390 	/* Lets us know that we have received the last_wqe event. */
391 	bool					last_wqe_reached;
392 };
393 
394 struct spdk_nvmf_rdma_poller {
395 	struct spdk_nvmf_rdma_device		*device;
396 	struct spdk_nvmf_rdma_poll_group	*group;
397 
398 	int					num_cqe;
399 	int					required_num_wr;
400 	struct ibv_cq				*cq;
401 
402 	/* The maximum number of I/O outstanding on the shared receive queue at one time */
403 	uint16_t				max_srq_depth;
404 
405 	/* Shared receive queue */
406 	struct ibv_srq				*srq;
407 
408 	struct spdk_nvmf_rdma_resources		*resources;
409 
410 	TAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs;
411 
412 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
413 };
414 
415 struct spdk_nvmf_rdma_poll_group {
416 	struct spdk_nvmf_transport_poll_group	group;
417 
418 	/* Requests that are waiting to obtain a data buffer */
419 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_data_buf_queue;
420 
421 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)	pollers;
422 };
423 
424 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
425 struct spdk_nvmf_rdma_device {
426 	struct ibv_device_attr			attr;
427 	struct ibv_context			*context;
428 
429 	struct spdk_mem_map			*map;
430 	struct ibv_pd				*pd;
431 
432 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
433 };
434 
435 struct spdk_nvmf_rdma_port {
436 	struct spdk_nvme_transport_id		trid;
437 	struct rdma_cm_id			*id;
438 	struct spdk_nvmf_rdma_device		*device;
439 	uint32_t				ref;
440 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
441 };
442 
443 struct spdk_nvmf_rdma_transport {
444 	struct spdk_nvmf_transport	transport;
445 
446 	struct rdma_event_channel	*event_channel;
447 
448 	struct spdk_mempool		*data_wr_pool;
449 
450 	pthread_mutex_t			lock;
451 
452 	/* fields used to poll RDMA/IB events */
453 	nfds_t			npoll_fds;
454 	struct pollfd		*poll_fds;
455 
456 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
457 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
458 };
459 
460 static inline int
461 spdk_nvmf_rdma_check_ibv_state(enum ibv_qp_state state)
462 {
463 	switch (state) {
464 	case IBV_QPS_RESET:
465 	case IBV_QPS_INIT:
466 	case IBV_QPS_RTR:
467 	case IBV_QPS_RTS:
468 	case IBV_QPS_SQD:
469 	case IBV_QPS_SQE:
470 	case IBV_QPS_ERR:
471 		return 0;
472 	default:
473 		return -1;
474 	}
475 }
476 
477 static enum ibv_qp_state
478 spdk_nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) {
479 	enum ibv_qp_state old_state, new_state;
480 	struct ibv_qp_attr qp_attr;
481 	struct ibv_qp_init_attr init_attr;
482 	int rc;
483 
484 	old_state = rqpair->ibv_state;
485 	rc = ibv_query_qp(rqpair->cm_id->qp, &qp_attr,
486 			  g_spdk_nvmf_ibv_query_mask, &init_attr);
487 
488 	if (rc)
489 	{
490 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
491 		return IBV_QPS_ERR + 1;
492 	}
493 
494 	new_state = qp_attr.qp_state;
495 	rqpair->ibv_state = new_state;
496 	qp_attr.ah_attr.port_num = qp_attr.port_num;
497 
498 	rc = spdk_nvmf_rdma_check_ibv_state(new_state);
499 	if (rc)
500 	{
501 		SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state);
502 		/*
503 		 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8
504 		 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR
505 		 */
506 		return IBV_QPS_ERR + 1;
507 	}
508 
509 	if (old_state != new_state)
510 	{
511 		spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0,
512 				  (uintptr_t)rqpair->cm_id, new_state);
513 	}
514 	return new_state;
515 }
516 
517 static const char *str_ibv_qp_state[] = {
518 	"IBV_QPS_RESET",
519 	"IBV_QPS_INIT",
520 	"IBV_QPS_RTR",
521 	"IBV_QPS_RTS",
522 	"IBV_QPS_SQD",
523 	"IBV_QPS_SQE",
524 	"IBV_QPS_ERR",
525 	"IBV_QPS_UNKNOWN"
526 };
527 
528 static int
529 spdk_nvmf_rdma_set_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair,
530 			     enum ibv_qp_state new_state)
531 {
532 	struct ibv_qp_attr qp_attr;
533 	struct ibv_qp_init_attr init_attr;
534 	int rc;
535 	enum ibv_qp_state state;
536 	static int attr_mask_rc[] = {
537 		[IBV_QPS_RESET] = IBV_QP_STATE,
538 		[IBV_QPS_INIT] = (IBV_QP_STATE |
539 				  IBV_QP_PKEY_INDEX |
540 				  IBV_QP_PORT |
541 				  IBV_QP_ACCESS_FLAGS),
542 		[IBV_QPS_RTR] = (IBV_QP_STATE |
543 				 IBV_QP_AV |
544 				 IBV_QP_PATH_MTU |
545 				 IBV_QP_DEST_QPN |
546 				 IBV_QP_RQ_PSN |
547 				 IBV_QP_MAX_DEST_RD_ATOMIC |
548 				 IBV_QP_MIN_RNR_TIMER),
549 		[IBV_QPS_RTS] = (IBV_QP_STATE |
550 				 IBV_QP_SQ_PSN |
551 				 IBV_QP_TIMEOUT |
552 				 IBV_QP_RETRY_CNT |
553 				 IBV_QP_RNR_RETRY |
554 				 IBV_QP_MAX_QP_RD_ATOMIC),
555 		[IBV_QPS_SQD] = IBV_QP_STATE,
556 		[IBV_QPS_SQE] = IBV_QP_STATE,
557 		[IBV_QPS_ERR] = IBV_QP_STATE,
558 	};
559 
560 	rc = spdk_nvmf_rdma_check_ibv_state(new_state);
561 	if (rc) {
562 		SPDK_ERRLOG("QP#%d: bad state requested: %u\n",
563 			    rqpair->qpair.qid, new_state);
564 		return rc;
565 	}
566 
567 	rc = ibv_query_qp(rqpair->cm_id->qp, &qp_attr,
568 			  g_spdk_nvmf_ibv_query_mask, &init_attr);
569 
570 	if (rc) {
571 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
572 		assert(false);
573 	}
574 
575 	qp_attr.cur_qp_state = rqpair->ibv_state;
576 	qp_attr.qp_state = new_state;
577 
578 	rc = ibv_modify_qp(rqpair->cm_id->qp, &qp_attr,
579 			   attr_mask_rc[new_state]);
580 
581 	if (rc) {
582 		SPDK_ERRLOG("QP#%d: failed to set state to: %s, %d (%s)\n",
583 			    rqpair->qpair.qid, str_ibv_qp_state[new_state], errno, strerror(errno));
584 		return rc;
585 	}
586 
587 	state = spdk_nvmf_rdma_update_ibv_state(rqpair);
588 
589 	if (state != new_state) {
590 		SPDK_ERRLOG("QP#%d: expected state: %s, actual state: %s\n",
591 			    rqpair->qpair.qid, str_ibv_qp_state[new_state],
592 			    str_ibv_qp_state[state]);
593 		return -1;
594 	}
595 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "IBV QP#%u changed to: %s\n", rqpair->qpair.qid,
596 		      str_ibv_qp_state[state]);
597 	return 0;
598 }
599 
600 static void
601 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
602 			    struct spdk_nvmf_rdma_transport *rtransport)
603 {
604 	struct spdk_nvmf_rdma_request_data	*current_data_wr = NULL, *next_data_wr = NULL;
605 	struct ibv_send_wr			*send_wr;
606 	int					i;
607 
608 	rdma_req->num_outstanding_data_wr = 0;
609 	current_data_wr = &rdma_req->data;
610 	for (i = 0; i < current_data_wr->wr.num_sge; i++) {
611 		current_data_wr->wr.sg_list[i].addr = 0;
612 		current_data_wr->wr.sg_list[i].length = 0;
613 		current_data_wr->wr.sg_list[i].lkey = 0;
614 	}
615 	current_data_wr->wr.num_sge = 0;
616 
617 	send_wr = current_data_wr->wr.next;
618 	if (send_wr != NULL && send_wr != &rdma_req->rsp.wr) {
619 		next_data_wr = SPDK_CONTAINEROF(send_wr, struct spdk_nvmf_rdma_request_data, wr);
620 	}
621 	while (next_data_wr) {
622 		current_data_wr = next_data_wr;
623 		send_wr = current_data_wr->wr.next;
624 		if (send_wr != NULL && send_wr != &rdma_req->rsp.wr) {
625 			next_data_wr = SPDK_CONTAINEROF(send_wr, struct spdk_nvmf_rdma_request_data, wr);
626 		} else {
627 			next_data_wr = NULL;
628 		}
629 
630 		for (i = 0; i < current_data_wr->wr.num_sge; i++) {
631 			current_data_wr->wr.sg_list[i].addr = 0;
632 			current_data_wr->wr.sg_list[i].length = 0;
633 			current_data_wr->wr.sg_list[i].lkey = 0;
634 		}
635 		current_data_wr->wr.num_sge = 0;
636 		spdk_mempool_put(rtransport->data_wr_pool, current_data_wr);
637 	}
638 }
639 
640 static void
641 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
642 {
643 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->data_from_pool);
644 	if (req->req.cmd) {
645 		SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
646 	}
647 	if (req->recv) {
648 		SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
649 	}
650 }
651 
652 static void
653 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
654 {
655 	int i;
656 
657 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
658 	for (i = 0; i < rqpair->max_queue_depth; i++) {
659 		if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
660 			nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
661 		}
662 	}
663 }
664 
665 static void
666 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
667 {
668 	if (resources->cmds_mr) {
669 		ibv_dereg_mr(resources->cmds_mr);
670 	}
671 
672 	if (resources->cpls_mr) {
673 		ibv_dereg_mr(resources->cpls_mr);
674 	}
675 
676 	if (resources->bufs_mr) {
677 		ibv_dereg_mr(resources->bufs_mr);
678 	}
679 
680 	spdk_dma_free(resources->cmds);
681 	spdk_dma_free(resources->cpls);
682 	spdk_dma_free(resources->bufs);
683 	free(resources->reqs);
684 	free(resources->recvs);
685 	free(resources);
686 }
687 
688 
689 static struct spdk_nvmf_rdma_resources *
690 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
691 {
692 	struct spdk_nvmf_rdma_resources	*resources;
693 	struct spdk_nvmf_rdma_request	*rdma_req;
694 	struct spdk_nvmf_rdma_recv	*rdma_recv;
695 	struct ibv_qp			*qp;
696 	struct ibv_srq			*srq;
697 	uint32_t			i;
698 	int				rc;
699 
700 	resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
701 	if (!resources) {
702 		SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
703 		return NULL;
704 	}
705 
706 	resources->reqs = calloc(opts->max_queue_depth, sizeof(*resources->reqs));
707 	resources->recvs = calloc(opts->max_queue_depth, sizeof(*resources->recvs));
708 	resources->cmds = spdk_dma_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
709 					   0x1000, NULL);
710 	resources->cpls = spdk_dma_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
711 					   0x1000, NULL);
712 
713 	if (opts->in_capsule_data_size > 0) {
714 		resources->bufs = spdk_dma_zmalloc(opts->max_queue_depth *
715 						   opts->in_capsule_data_size,
716 						   0x1000, NULL);
717 	}
718 
719 	if (!resources->reqs || !resources->recvs || !resources->cmds ||
720 	    !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
721 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
722 		goto cleanup;
723 	}
724 
725 	resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds,
726 					opts->max_queue_depth * sizeof(*resources->cmds),
727 					IBV_ACCESS_LOCAL_WRITE);
728 	resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls,
729 					opts->max_queue_depth * sizeof(*resources->cpls),
730 					0);
731 
732 	if (opts->in_capsule_data_size) {
733 		resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs,
734 						opts->max_queue_depth *
735 						opts->in_capsule_data_size,
736 						IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
737 	}
738 
739 	if (!resources->cmds_mr || !resources->cpls_mr ||
740 	    (opts->in_capsule_data_size &&
741 	     !resources->bufs_mr)) {
742 		goto cleanup;
743 	}
744 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Command Array: %p Length: %lx LKey: %x\n",
745 		      resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds),
746 		      resources->cmds_mr->lkey);
747 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Completion Array: %p Length: %lx LKey: %x\n",
748 		      resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls),
749 		      resources->cpls_mr->lkey);
750 	if (resources->bufs && resources->bufs_mr) {
751 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "In Capsule Data Array: %p Length: %x LKey: %x\n",
752 			      resources->bufs, opts->max_queue_depth *
753 			      opts->in_capsule_data_size, resources->bufs_mr->lkey);
754 	}
755 
756 	/* Initialize queues */
757 	STAILQ_INIT(&resources->incoming_queue);
758 	STAILQ_INIT(&resources->free_queue);
759 
760 	for (i = 0; i < opts->max_queue_depth; i++) {
761 		struct ibv_recv_wr *bad_wr = NULL;
762 
763 		rdma_recv = &resources->recvs[i];
764 		rdma_recv->qpair = opts->qpair;
765 
766 		/* Set up memory to receive commands */
767 		if (resources->bufs) {
768 			rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
769 						  opts->in_capsule_data_size));
770 		}
771 
772 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
773 
774 		rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
775 		rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
776 		rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey;
777 		rdma_recv->wr.num_sge = 1;
778 
779 		if (rdma_recv->buf && resources->bufs_mr) {
780 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
781 			rdma_recv->sgl[1].length = opts->in_capsule_data_size;
782 			rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey;
783 			rdma_recv->wr.num_sge++;
784 		}
785 
786 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
787 		rdma_recv->wr.sg_list = rdma_recv->sgl;
788 		if (opts->shared) {
789 			srq = (struct ibv_srq *)opts->qp;
790 			rc = ibv_post_srq_recv(srq, &rdma_recv->wr, &bad_wr);
791 		} else {
792 			qp = (struct ibv_qp *)opts->qp;
793 			rc = ibv_post_recv(qp, &rdma_recv->wr, &bad_wr);
794 		}
795 		if (rc) {
796 			goto cleanup;
797 		}
798 	}
799 
800 	for (i = 0; i < opts->max_queue_depth; i++) {
801 		rdma_req = &resources->reqs[i];
802 
803 		if (opts->qpair != NULL) {
804 			rdma_req->req.qpair = &opts->qpair->qpair;
805 		} else {
806 			rdma_req->req.qpair = NULL;
807 		}
808 		rdma_req->req.cmd = NULL;
809 
810 		/* Set up memory to send responses */
811 		rdma_req->req.rsp = &resources->cpls[i];
812 
813 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
814 		rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
815 		rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey;
816 
817 		rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND;
818 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr;
819 		rdma_req->rsp.wr.next = NULL;
820 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
821 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
822 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
823 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
824 
825 		/* Set up memory for data buffers */
826 		rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA;
827 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
828 		rdma_req->data.wr.next = NULL;
829 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
830 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
831 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
832 
833 		/* Initialize request state to FREE */
834 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
835 		STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
836 	}
837 
838 	return resources;
839 
840 cleanup:
841 	nvmf_rdma_resources_destroy(resources);
842 	return NULL;
843 }
844 
845 static void
846 spdk_nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
847 {
848 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
849 	struct ibv_recv_wr		*bad_recv_wr = NULL;
850 	int				rc;
851 
852 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair->cm_id, 0);
853 
854 	spdk_poller_unregister(&rqpair->destruct_poller);
855 
856 	if (rqpair->qd != 0) {
857 		if (rqpair->srq == NULL) {
858 			nvmf_rdma_dump_qpair_contents(rqpair);
859 		}
860 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
861 	}
862 
863 	if (rqpair->poller) {
864 		TAILQ_REMOVE(&rqpair->poller->qpairs, rqpair, link);
865 
866 		if (rqpair->srq != NULL && rqpair->resources != NULL) {
867 			/* Drop all received but unprocessed commands for this queue and return them to SRQ */
868 			STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
869 				if (rqpair == rdma_recv->qpair) {
870 					STAILQ_REMOVE_HEAD(&rqpair->resources->incoming_queue, link);
871 					rc = ibv_post_srq_recv(rqpair->srq, &rdma_recv->wr, &bad_recv_wr);
872 					if (rc) {
873 						SPDK_ERRLOG("Unable to re-post rx descriptor\n");
874 					}
875 				}
876 			}
877 		}
878 	}
879 
880 	if (rqpair->cm_id) {
881 		if (rqpair->cm_id->qp != NULL) {
882 			rdma_destroy_qp(rqpair->cm_id);
883 		}
884 		rdma_destroy_id(rqpair->cm_id);
885 
886 		if (rqpair->poller != NULL && rqpair->srq == NULL) {
887 			rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
888 		}
889 	}
890 
891 	if (rqpair->srq == NULL && rqpair->resources != NULL) {
892 		nvmf_rdma_resources_destroy(rqpair->resources);
893 	}
894 
895 	free(rqpair);
896 }
897 
898 static int
899 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
900 {
901 	struct spdk_nvmf_rdma_poller	*rpoller;
902 	int				rc, num_cqe, required_num_wr;
903 
904 	/* Enlarge CQ size dynamically */
905 	rpoller = rqpair->poller;
906 	required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
907 	num_cqe = rpoller->num_cqe;
908 	if (num_cqe < required_num_wr) {
909 		num_cqe = spdk_max(num_cqe * 2, required_num_wr);
910 		num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
911 	}
912 
913 	if (rpoller->num_cqe != num_cqe) {
914 		if (required_num_wr > device->attr.max_cqe) {
915 			SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
916 				    required_num_wr, device->attr.max_cqe);
917 			return -1;
918 		}
919 
920 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
921 		rc = ibv_resize_cq(rpoller->cq, num_cqe);
922 		if (rc) {
923 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
924 			return -1;
925 		}
926 
927 		rpoller->num_cqe = num_cqe;
928 	}
929 
930 	rpoller->required_num_wr = required_num_wr;
931 	return 0;
932 }
933 
934 static int
935 spdk_nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
936 {
937 	struct spdk_nvmf_rdma_qpair		*rqpair;
938 	int					rc;
939 	struct spdk_nvmf_rdma_transport		*rtransport;
940 	struct spdk_nvmf_transport		*transport;
941 	struct spdk_nvmf_rdma_resource_opts	opts;
942 	struct spdk_nvmf_rdma_device		*device;
943 	struct ibv_qp_init_attr			ibv_init_attr;
944 
945 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
946 	device = rqpair->port->device;
947 
948 	memset(&ibv_init_attr, 0, sizeof(struct ibv_qp_init_attr));
949 	ibv_init_attr.qp_context	= rqpair;
950 	ibv_init_attr.qp_type		= IBV_QPT_RC;
951 	ibv_init_attr.send_cq		= rqpair->poller->cq;
952 	ibv_init_attr.recv_cq		= rqpair->poller->cq;
953 
954 	if (rqpair->srq) {
955 		ibv_init_attr.srq		= rqpair->srq;
956 	} else {
957 		ibv_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth +
958 						  1; /* RECV operations + dummy drain WR */
959 	}
960 
961 	ibv_init_attr.cap.max_send_wr	= rqpair->max_queue_depth *
962 					  2 + 1; /* SEND, READ, and WRITE operations + dummy drain WR */
963 	ibv_init_attr.cap.max_send_sge	= spdk_min(device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
964 	ibv_init_attr.cap.max_recv_sge	= spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
965 
966 	if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
967 		SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
968 		goto error;
969 	}
970 
971 	rc = rdma_create_qp(rqpair->cm_id, rqpair->port->device->pd, &ibv_init_attr);
972 	if (rc) {
973 		SPDK_ERRLOG("rdma_create_qp failed: errno %d: %s\n", errno, spdk_strerror(errno));
974 		goto error;
975 	}
976 
977 	rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2 + 1),
978 					  ibv_init_attr.cap.max_send_wr);
979 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, ibv_init_attr.cap.max_send_sge);
980 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, ibv_init_attr.cap.max_recv_sge);
981 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair->cm_id, 0);
982 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "New RDMA Connection: %p\n", qpair);
983 
984 	if (rqpair->poller->srq == NULL) {
985 		rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
986 		transport = &rtransport->transport;
987 
988 		opts.qp = rqpair->cm_id->qp;
989 		opts.pd = rqpair->cm_id->pd;
990 		opts.qpair = rqpair;
991 		opts.shared = false;
992 		opts.max_queue_depth = rqpair->max_queue_depth;
993 		opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
994 
995 		rqpair->resources = nvmf_rdma_resources_create(&opts);
996 
997 		if (!rqpair->resources) {
998 			SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
999 			goto error;
1000 		}
1001 	} else {
1002 		rqpair->resources = rqpair->poller->resources;
1003 	}
1004 
1005 	rqpair->current_recv_depth = 0;
1006 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1007 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1008 
1009 	return 0;
1010 
1011 error:
1012 	rdma_destroy_id(rqpair->cm_id);
1013 	rqpair->cm_id = NULL;
1014 	spdk_nvmf_rdma_qpair_destroy(rqpair);
1015 	return -1;
1016 }
1017 
1018 static int
1019 request_transfer_in(struct spdk_nvmf_request *req)
1020 {
1021 	int				rc;
1022 	struct spdk_nvmf_rdma_request	*rdma_req;
1023 	struct spdk_nvmf_qpair		*qpair;
1024 	struct spdk_nvmf_rdma_qpair	*rqpair;
1025 	struct ibv_send_wr		*bad_wr = NULL;
1026 
1027 	qpair = req->qpair;
1028 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1029 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1030 
1031 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1032 	assert(rdma_req != NULL);
1033 
1034 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA READ POSTED. Request: %p Connection: %p\n", req, qpair);
1035 
1036 	rc = ibv_post_send(rqpair->cm_id->qp, &rdma_req->data.wr, &bad_wr);
1037 	if (rc) {
1038 		SPDK_ERRLOG("Unable to transfer data from host to target\n");
1039 		return -1;
1040 	}
1041 	rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1042 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1043 	return 0;
1044 }
1045 
1046 static int
1047 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1048 {
1049 	int				rc;
1050 	int				num_outstanding_data_wr = 0;
1051 	struct spdk_nvmf_rdma_request	*rdma_req;
1052 	struct spdk_nvmf_qpair		*qpair;
1053 	struct spdk_nvmf_rdma_qpair	*rqpair;
1054 	struct spdk_nvme_cpl		*rsp;
1055 	struct ibv_recv_wr		*bad_recv_wr = NULL;
1056 	struct ibv_send_wr		*send_wr, *bad_send_wr = NULL;
1057 
1058 	*data_posted = 0;
1059 	qpair = req->qpair;
1060 	rsp = &req->rsp->nvme_cpl;
1061 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1062 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1063 
1064 	/* Advance our sq_head pointer */
1065 	if (qpair->sq_head == qpair->sq_head_max) {
1066 		qpair->sq_head = 0;
1067 	} else {
1068 		qpair->sq_head++;
1069 	}
1070 	rsp->sqhd = qpair->sq_head;
1071 
1072 	/* Post the capsule to the recv buffer */
1073 	assert(rdma_req->recv != NULL);
1074 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA RECV POSTED. Recv: %p Connection: %p\n", rdma_req->recv,
1075 		      rqpair);
1076 	if (rqpair->srq == NULL) {
1077 		rc = ibv_post_recv(rqpair->cm_id->qp, &rdma_req->recv->wr, &bad_recv_wr);
1078 	} else {
1079 		rdma_req->recv->qpair = NULL;
1080 		rc = ibv_post_srq_recv(rqpair->srq, &rdma_req->recv->wr, &bad_recv_wr);
1081 	}
1082 
1083 	if (rc) {
1084 		SPDK_ERRLOG("Unable to re-post rx descriptor\n");
1085 		return rc;
1086 	}
1087 	rdma_req->recv = NULL;
1088 	assert(rqpair->current_recv_depth > 0);
1089 	rqpair->current_recv_depth--;
1090 
1091 	/* Build the response which consists of optional
1092 	 * RDMA WRITEs to transfer data, plus an RDMA SEND
1093 	 * containing the response.
1094 	 */
1095 	send_wr = &rdma_req->rsp.wr;
1096 
1097 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
1098 	    req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1099 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA WRITE POSTED. Request: %p Connection: %p\n", req, qpair);
1100 		send_wr = &rdma_req->data.wr;
1101 		*data_posted = 1;
1102 		num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
1103 	}
1104 
1105 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA SEND POSTED. Request: %p Connection: %p\n", req, qpair);
1106 
1107 	/* Send the completion */
1108 	rc = ibv_post_send(rqpair->cm_id->qp, send_wr, &bad_send_wr);
1109 	if (rc) {
1110 		SPDK_ERRLOG("Unable to send response capsule\n");
1111 		return rc;
1112 	}
1113 	/* +1 for the rsp wr */
1114 	rqpair->current_send_depth += num_outstanding_data_wr + 1;
1115 
1116 	return 0;
1117 }
1118 
1119 static int
1120 spdk_nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1121 {
1122 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
1123 	struct rdma_conn_param				ctrlr_event_data = {};
1124 	int						rc;
1125 
1126 	accept_data.recfmt = 0;
1127 	accept_data.crqsize = rqpair->max_queue_depth;
1128 
1129 	ctrlr_event_data.private_data = &accept_data;
1130 	ctrlr_event_data.private_data_len = sizeof(accept_data);
1131 	if (id->ps == RDMA_PS_TCP) {
1132 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1133 		ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1134 	}
1135 
1136 	rc = rdma_accept(id, &ctrlr_event_data);
1137 	if (rc) {
1138 		SPDK_ERRLOG("Error %d on rdma_accept\n", errno);
1139 	} else {
1140 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Sent back the accept\n");
1141 	}
1142 
1143 	return rc;
1144 }
1145 
1146 static void
1147 spdk_nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1148 {
1149 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
1150 
1151 	rej_data.recfmt = 0;
1152 	rej_data.sts = error;
1153 
1154 	rdma_reject(id, &rej_data, sizeof(rej_data));
1155 }
1156 
1157 static int
1158 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event,
1159 		  new_qpair_fn cb_fn)
1160 {
1161 	struct spdk_nvmf_rdma_transport *rtransport;
1162 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
1163 	struct spdk_nvmf_rdma_port	*port;
1164 	struct rdma_conn_param		*rdma_param = NULL;
1165 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1166 	uint16_t			max_queue_depth;
1167 	uint16_t			max_read_depth;
1168 
1169 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1170 
1171 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1172 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1173 
1174 	rdma_param = &event->param.conn;
1175 	if (rdma_param->private_data == NULL ||
1176 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1177 		SPDK_ERRLOG("connect request: no private data provided\n");
1178 		spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1179 		return -1;
1180 	}
1181 
1182 	private_data = rdma_param->private_data;
1183 	if (private_data->recfmt != 0) {
1184 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1185 		spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1186 		return -1;
1187 	}
1188 
1189 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Connect Recv on fabric intf name %s, dev_name %s\n",
1190 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1191 
1192 	port = event->listen_id->context;
1193 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1194 		      event->listen_id, event->listen_id->verbs, port);
1195 
1196 	/* Figure out the supported queue depth. This is a multi-step process
1197 	 * that takes into account hardware maximums, host provided values,
1198 	 * and our target's internal memory limits */
1199 
1200 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Calculating Queue Depth\n");
1201 
1202 	/* Start with the maximum queue depth allowed by the target */
1203 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1204 	max_read_depth = rtransport->transport.opts.max_queue_depth;
1205 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Target Max Queue Depth: %d\n",
1206 		      rtransport->transport.opts.max_queue_depth);
1207 
1208 	/* Next check the local NIC's hardware limitations */
1209 	SPDK_DEBUGLOG(SPDK_LOG_RDMA,
1210 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1211 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1212 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1213 	max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1214 
1215 	/* Next check the remote NIC's hardware limitations */
1216 	SPDK_DEBUGLOG(SPDK_LOG_RDMA,
1217 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1218 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1219 	if (rdma_param->initiator_depth > 0) {
1220 		max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1221 	}
1222 
1223 	/* Finally check for the host software requested values, which are
1224 	 * optional. */
1225 	if (rdma_param->private_data != NULL &&
1226 	    rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1227 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1228 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Send Queue Size: %d\n", private_data->hsqsize);
1229 		max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1230 		max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1231 	}
1232 
1233 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1234 		      max_queue_depth, max_read_depth);
1235 
1236 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1237 	if (rqpair == NULL) {
1238 		SPDK_ERRLOG("Could not allocate new connection.\n");
1239 		spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1240 		return -1;
1241 	}
1242 
1243 	rqpair->port = port;
1244 	rqpair->max_queue_depth = max_queue_depth;
1245 	rqpair->max_read_depth = max_read_depth;
1246 	rqpair->cm_id = event->id;
1247 	rqpair->listen_id = event->listen_id;
1248 	rqpair->qpair.transport = transport;
1249 
1250 	event->id->context = &rqpair->qpair;
1251 
1252 	cb_fn(&rqpair->qpair);
1253 
1254 	return 0;
1255 }
1256 
1257 static int
1258 spdk_nvmf_rdma_mem_notify(void *cb_ctx, struct spdk_mem_map *map,
1259 			  enum spdk_mem_map_notify_action action,
1260 			  void *vaddr, size_t size)
1261 {
1262 	struct ibv_pd *pd = cb_ctx;
1263 	struct ibv_mr *mr;
1264 
1265 	switch (action) {
1266 	case SPDK_MEM_MAP_NOTIFY_REGISTER:
1267 		if (!g_nvmf_hooks.get_rkey) {
1268 			mr = ibv_reg_mr(pd, vaddr, size,
1269 					IBV_ACCESS_LOCAL_WRITE |
1270 					IBV_ACCESS_REMOTE_READ |
1271 					IBV_ACCESS_REMOTE_WRITE);
1272 			if (mr == NULL) {
1273 				SPDK_ERRLOG("ibv_reg_mr() failed\n");
1274 				return -1;
1275 			} else {
1276 				spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr);
1277 			}
1278 		} else {
1279 			spdk_mem_map_set_translation(map, (uint64_t)vaddr, size,
1280 						     g_nvmf_hooks.get_rkey(pd, vaddr, size));
1281 		}
1282 		break;
1283 	case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
1284 		if (!g_nvmf_hooks.get_rkey) {
1285 			mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL);
1286 			spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size);
1287 			if (mr) {
1288 				ibv_dereg_mr(mr);
1289 			}
1290 		}
1291 		break;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 static int
1298 spdk_nvmf_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2)
1299 {
1300 	/* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */
1301 	return addr_1 == addr_2;
1302 }
1303 
1304 static void
1305 spdk_nvmf_rdma_request_free_buffers(struct spdk_nvmf_rdma_request *rdma_req,
1306 				    struct spdk_nvmf_transport_poll_group *group, struct spdk_nvmf_transport *transport,
1307 				    uint32_t num_buffers)
1308 {
1309 	uint32_t i;
1310 
1311 	for (i = 0; i < num_buffers; i++) {
1312 		if (group->buf_cache_count < group->buf_cache_size) {
1313 			STAILQ_INSERT_HEAD(&group->buf_cache,
1314 					   (struct spdk_nvmf_transport_pg_cache_buf *)rdma_req->buffers[i], link);
1315 			group->buf_cache_count++;
1316 		} else {
1317 			spdk_mempool_put(transport->data_buf_pool, rdma_req->buffers[i]);
1318 		}
1319 		rdma_req->req.iov[i].iov_base = NULL;
1320 		rdma_req->buffers[i] = NULL;
1321 		rdma_req->req.iov[i].iov_len = 0;
1322 
1323 	}
1324 	rdma_req->data_from_pool = false;
1325 }
1326 
1327 static int
1328 nvmf_rdma_request_get_buffers(struct spdk_nvmf_rdma_request *rdma_req,
1329 			      struct spdk_nvmf_transport_poll_group *group, struct spdk_nvmf_transport *transport,
1330 			      uint32_t num_buffers)
1331 {
1332 	uint32_t i = 0;
1333 
1334 	while (i < num_buffers) {
1335 		if (!(STAILQ_EMPTY(&group->buf_cache))) {
1336 			group->buf_cache_count--;
1337 			rdma_req->buffers[i] = STAILQ_FIRST(&group->buf_cache);
1338 			STAILQ_REMOVE_HEAD(&group->buf_cache, link);
1339 			assert(rdma_req->buffers[i] != NULL);
1340 			i++;
1341 		} else {
1342 			if (spdk_mempool_get_bulk(transport->data_buf_pool, &rdma_req->buffers[i], num_buffers - i)) {
1343 				goto err_exit;
1344 			}
1345 			i += num_buffers - i;
1346 		}
1347 	}
1348 
1349 	return 0;
1350 
1351 err_exit:
1352 	spdk_nvmf_rdma_request_free_buffers(rdma_req, group, transport, i);
1353 	return -ENOMEM;
1354 }
1355 
1356 typedef enum spdk_nvme_data_transfer spdk_nvme_data_transfer_t;
1357 
1358 static spdk_nvme_data_transfer_t
1359 spdk_nvmf_rdma_request_get_xfer(struct spdk_nvmf_rdma_request *rdma_req)
1360 {
1361 	enum spdk_nvme_data_transfer xfer;
1362 	struct spdk_nvme_cmd *cmd = &rdma_req->req.cmd->nvme_cmd;
1363 	struct spdk_nvme_sgl_descriptor *sgl = &cmd->dptr.sgl1;
1364 
1365 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1366 	rdma_req->rsp.wr.opcode = IBV_WR_SEND;
1367 	rdma_req->rsp.wr.imm_data = 0;
1368 #endif
1369 
1370 	/* Figure out data transfer direction */
1371 	if (cmd->opc == SPDK_NVME_OPC_FABRIC) {
1372 		xfer = spdk_nvme_opc_get_data_transfer(rdma_req->req.cmd->nvmf_cmd.fctype);
1373 	} else {
1374 		xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
1375 
1376 		/* Some admin commands are special cases */
1377 		if ((rdma_req->req.qpair->qid == 0) &&
1378 		    ((cmd->opc == SPDK_NVME_OPC_GET_FEATURES) ||
1379 		     (cmd->opc == SPDK_NVME_OPC_SET_FEATURES))) {
1380 			switch (cmd->cdw10 & 0xff) {
1381 			case SPDK_NVME_FEAT_LBA_RANGE_TYPE:
1382 			case SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
1383 			case SPDK_NVME_FEAT_HOST_IDENTIFIER:
1384 				break;
1385 			default:
1386 				xfer = SPDK_NVME_DATA_NONE;
1387 			}
1388 		}
1389 	}
1390 
1391 	if (xfer == SPDK_NVME_DATA_NONE) {
1392 		return xfer;
1393 	}
1394 
1395 	/* Even for commands that may transfer data, they could have specified 0 length.
1396 	 * We want those to show up with xfer SPDK_NVME_DATA_NONE.
1397 	 */
1398 	switch (sgl->generic.type) {
1399 	case SPDK_NVME_SGL_TYPE_DATA_BLOCK:
1400 	case SPDK_NVME_SGL_TYPE_BIT_BUCKET:
1401 	case SPDK_NVME_SGL_TYPE_SEGMENT:
1402 	case SPDK_NVME_SGL_TYPE_LAST_SEGMENT:
1403 	case SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK:
1404 		if (sgl->unkeyed.length == 0) {
1405 			xfer = SPDK_NVME_DATA_NONE;
1406 		}
1407 		break;
1408 	case SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK:
1409 		if (sgl->keyed.length == 0) {
1410 			xfer = SPDK_NVME_DATA_NONE;
1411 		}
1412 		break;
1413 	}
1414 
1415 	return xfer;
1416 }
1417 
1418 static int
1419 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1420 		       struct spdk_nvmf_rdma_request *rdma_req,
1421 		       uint32_t num_sgl_descriptors)
1422 {
1423 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1424 	struct spdk_nvmf_rdma_request_data	*current_data_wr;
1425 	uint32_t				i;
1426 
1427 	if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) {
1428 		return -ENOMEM;
1429 	}
1430 
1431 	current_data_wr = &rdma_req->data;
1432 
1433 	for (i = 0; i < num_sgl_descriptors; i++) {
1434 		if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1435 			current_data_wr->wr.opcode = IBV_WR_RDMA_WRITE;
1436 		} else if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1437 			current_data_wr->wr.opcode = IBV_WR_RDMA_READ;
1438 		} else {
1439 			assert(false);
1440 		}
1441 		work_requests[i]->wr.send_flags = IBV_SEND_SIGNALED;
1442 		work_requests[i]->wr.sg_list = work_requests[i]->sgl;
1443 		work_requests[i]->wr.wr_id = rdma_req->data.wr.wr_id;
1444 		current_data_wr->wr.next = &work_requests[i]->wr;
1445 		current_data_wr = work_requests[i];
1446 	}
1447 
1448 	if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1449 		current_data_wr->wr.opcode = IBV_WR_RDMA_WRITE;
1450 		current_data_wr->wr.next = &rdma_req->rsp.wr;
1451 	} else if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1452 		current_data_wr->wr.opcode = IBV_WR_RDMA_READ;
1453 		current_data_wr->wr.next = NULL;
1454 	}
1455 	return 0;
1456 }
1457 
1458 static int
1459 nvmf_rdma_fill_buffers(struct spdk_nvmf_rdma_transport *rtransport,
1460 		       struct spdk_nvmf_rdma_poll_group *rgroup,
1461 		       struct spdk_nvmf_rdma_device *device,
1462 		       struct spdk_nvmf_rdma_request *rdma_req,
1463 		       struct ibv_send_wr *wr,
1464 		       uint32_t length)
1465 {
1466 	uint64_t	translation_len;
1467 	uint32_t	remaining_length = length;
1468 	uint32_t	iovcnt;
1469 	uint32_t	i = 0;
1470 
1471 
1472 	while (remaining_length) {
1473 		iovcnt = rdma_req->req.iovcnt;
1474 		rdma_req->req.iov[iovcnt].iov_base = (void *)((uintptr_t)(rdma_req->buffers[iovcnt] +
1475 						     NVMF_DATA_BUFFER_MASK) &
1476 						     ~NVMF_DATA_BUFFER_MASK);
1477 		rdma_req->req.iov[iovcnt].iov_len  = spdk_min(remaining_length,
1478 						     rtransport->transport.opts.io_unit_size);
1479 		rdma_req->req.iovcnt++;
1480 		wr->sg_list[i].addr = (uintptr_t)(rdma_req->req.iov[iovcnt].iov_base);
1481 		wr->sg_list[i].length = rdma_req->req.iov[iovcnt].iov_len;
1482 		translation_len = rdma_req->req.iov[iovcnt].iov_len;
1483 
1484 		if (!g_nvmf_hooks.get_rkey) {
1485 			wr->sg_list[i].lkey = ((struct ibv_mr *)spdk_mem_map_translate(device->map,
1486 					       (uint64_t)rdma_req->buffers[iovcnt], &translation_len))->lkey;
1487 		} else {
1488 			wr->sg_list[i].lkey = spdk_mem_map_translate(device->map,
1489 					      (uint64_t)rdma_req->buffers[iovcnt], &translation_len);
1490 		}
1491 
1492 		remaining_length -= rdma_req->req.iov[iovcnt].iov_len;
1493 
1494 		if (translation_len < rdma_req->req.iov[iovcnt].iov_len) {
1495 			SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions\n");
1496 			return -EINVAL;
1497 		}
1498 		i++;
1499 	}
1500 	wr->num_sge = i;
1501 
1502 	return 0;
1503 }
1504 
1505 static int
1506 spdk_nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1507 				 struct spdk_nvmf_rdma_device *device,
1508 				 struct spdk_nvmf_rdma_request *rdma_req)
1509 {
1510 	struct spdk_nvmf_rdma_qpair		*rqpair;
1511 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1512 	uint32_t				num_buffers;
1513 	uint32_t				i = 0;
1514 	int					rc = 0;
1515 
1516 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1517 	rgroup = rqpair->poller->group;
1518 	rdma_req->req.iovcnt = 0;
1519 
1520 	num_buffers = rdma_req->req.length / rtransport->transport.opts.io_unit_size;
1521 	if (rdma_req->req.length % rtransport->transport.opts.io_unit_size) {
1522 		num_buffers++;
1523 	}
1524 
1525 	if (nvmf_rdma_request_get_buffers(rdma_req, &rgroup->group, &rtransport->transport, num_buffers)) {
1526 		return -ENOMEM;
1527 	}
1528 
1529 	rdma_req->req.iovcnt = 0;
1530 
1531 	rc = nvmf_rdma_fill_buffers(rtransport, rgroup, device, rdma_req, &rdma_req->data.wr,
1532 				    rdma_req->req.length);
1533 	if (rc != 0) {
1534 		goto err_exit;
1535 	}
1536 
1537 	assert(rdma_req->req.iovcnt <= rqpair->max_send_sge);
1538 
1539 	rdma_req->data_from_pool = true;
1540 
1541 	return rc;
1542 
1543 err_exit:
1544 	spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport, num_buffers);
1545 	while (i) {
1546 		i--;
1547 		rdma_req->data.wr.sg_list[i].addr = 0;
1548 		rdma_req->data.wr.sg_list[i].length = 0;
1549 		rdma_req->data.wr.sg_list[i].lkey = 0;
1550 	}
1551 	rdma_req->req.iovcnt = 0;
1552 	return rc;
1553 }
1554 
1555 static int
1556 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1557 				      struct spdk_nvmf_rdma_device *device,
1558 				      struct spdk_nvmf_rdma_request *rdma_req)
1559 {
1560 	struct spdk_nvmf_rdma_qpair		*rqpair;
1561 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1562 	struct ibv_send_wr			*current_wr;
1563 	struct spdk_nvmf_request		*req = &rdma_req->req;
1564 	struct spdk_nvme_sgl_descriptor		*inline_segment, *desc;
1565 	uint32_t				num_sgl_descriptors;
1566 	uint32_t				num_buffers = 0;
1567 	uint32_t				i;
1568 	int					rc;
1569 
1570 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1571 	rgroup = rqpair->poller->group;
1572 
1573 	inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1574 	assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1575 	assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1576 
1577 	num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1578 	assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1579 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1580 
1581 	for (i = 0; i < num_sgl_descriptors; i++) {
1582 		num_buffers += desc->keyed.length / rtransport->transport.opts.io_unit_size;
1583 		if (desc->keyed.length % rtransport->transport.opts.io_unit_size) {
1584 			num_buffers++;
1585 		}
1586 		desc++;
1587 	}
1588 	/* If the number of buffers is too large, then we know the I/O is larger than allowed. Fail it. */
1589 	if (num_buffers > NVMF_REQ_MAX_BUFFERS) {
1590 		return -EINVAL;
1591 	}
1592 	if (nvmf_rdma_request_get_buffers(rdma_req, &rgroup->group, &rtransport->transport,
1593 					  num_buffers) != 0) {
1594 		return -ENOMEM;
1595 	}
1596 
1597 	if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) {
1598 		spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport, num_buffers);
1599 		return -ENOMEM;
1600 	}
1601 
1602 	/* The first WR must always be the embedded data WR. This is how we unwind them later. */
1603 	current_wr = &rdma_req->data.wr;
1604 
1605 	req->iovcnt = 0;
1606 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1607 	for (i = 0; i < num_sgl_descriptors; i++) {
1608 		/* The descriptors must be keyed data block descriptors with an address, not an offset. */
1609 		if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1610 				  desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1611 			rc = -EINVAL;
1612 			goto err_exit;
1613 		}
1614 
1615 		current_wr->num_sge = 0;
1616 		req->length += desc->keyed.length;
1617 
1618 		rc = nvmf_rdma_fill_buffers(rtransport, rgroup, device, rdma_req, current_wr,
1619 					    desc->keyed.length);
1620 		if (rc != 0) {
1621 			rc = -ENOMEM;
1622 			goto err_exit;
1623 		}
1624 
1625 		current_wr->wr.rdma.rkey = desc->keyed.key;
1626 		current_wr->wr.rdma.remote_addr = desc->address;
1627 		current_wr = current_wr->next;
1628 		desc++;
1629 	}
1630 
1631 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1632 	/* Go back to the last descriptor in the list. */
1633 	desc--;
1634 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1635 		if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1636 			rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1637 			rdma_req->rsp.wr.imm_data = desc->keyed.key;
1638 		}
1639 	}
1640 #endif
1641 
1642 	rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1643 	rdma_req->data_from_pool = true;
1644 
1645 	return 0;
1646 
1647 err_exit:
1648 	spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport, num_buffers);
1649 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1650 	return rc;
1651 }
1652 
1653 static int
1654 spdk_nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1655 				 struct spdk_nvmf_rdma_device *device,
1656 				 struct spdk_nvmf_rdma_request *rdma_req)
1657 {
1658 	struct spdk_nvme_cmd			*cmd;
1659 	struct spdk_nvme_cpl			*rsp;
1660 	struct spdk_nvme_sgl_descriptor		*sgl;
1661 	int					rc;
1662 
1663 	cmd = &rdma_req->req.cmd->nvme_cmd;
1664 	rsp = &rdma_req->req.rsp->nvme_cpl;
1665 	sgl = &cmd->dptr.sgl1;
1666 
1667 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1668 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1669 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1670 		if (sgl->keyed.length > rtransport->transport.opts.max_io_size) {
1671 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1672 				    sgl->keyed.length, rtransport->transport.opts.max_io_size);
1673 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1674 			return -1;
1675 		}
1676 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1677 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1678 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1679 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1680 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1681 			}
1682 		}
1683 #endif
1684 
1685 		/* fill request length and populate iovs */
1686 		rdma_req->req.length = sgl->keyed.length;
1687 
1688 		if (spdk_nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req) < 0) {
1689 			/* No available buffers. Queue this request up. */
1690 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req);
1691 			return 0;
1692 		}
1693 
1694 		/* backward compatible */
1695 		rdma_req->req.data = rdma_req->req.iov[0].iov_base;
1696 
1697 		/* rdma wr specifics */
1698 		rdma_req->data.wr.num_sge = rdma_req->req.iovcnt;
1699 		rdma_req->data.wr.wr.rdma.rkey = sgl->keyed.key;
1700 		rdma_req->data.wr.wr.rdma.remote_addr = sgl->address;
1701 		if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1702 			rdma_req->data.wr.opcode = IBV_WR_RDMA_WRITE;
1703 			rdma_req->data.wr.next = &rdma_req->rsp.wr;
1704 		} else if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1705 			rdma_req->data.wr.opcode = IBV_WR_RDMA_READ;
1706 			rdma_req->data.wr.next = NULL;
1707 		}
1708 
1709 		/* set the number of outstanding data WRs for this request. */
1710 		rdma_req->num_outstanding_data_wr = 1;
1711 
1712 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req,
1713 			      rdma_req->req.iovcnt);
1714 
1715 		return 0;
1716 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1717 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1718 		uint64_t offset = sgl->address;
1719 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1720 
1721 		SPDK_DEBUGLOG(SPDK_LOG_NVMF, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1722 			      offset, sgl->unkeyed.length);
1723 
1724 		if (offset > max_len) {
1725 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1726 				    offset, max_len);
1727 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1728 			return -1;
1729 		}
1730 		max_len -= (uint32_t)offset;
1731 
1732 		if (sgl->unkeyed.length > max_len) {
1733 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1734 				    sgl->unkeyed.length, max_len);
1735 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1736 			return -1;
1737 		}
1738 
1739 		rdma_req->num_outstanding_data_wr = 0;
1740 		rdma_req->req.data = rdma_req->recv->buf + offset;
1741 		rdma_req->data_from_pool = false;
1742 		rdma_req->req.length = sgl->unkeyed.length;
1743 
1744 		rdma_req->req.iov[0].iov_base = rdma_req->req.data;
1745 		rdma_req->req.iov[0].iov_len = rdma_req->req.length;
1746 		rdma_req->req.iovcnt = 1;
1747 
1748 		return 0;
1749 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1750 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1751 
1752 		rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1753 		if (rc == -ENOMEM) {
1754 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req);
1755 			return 0;
1756 		} else if (rc == -EINVAL) {
1757 			SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1758 			return -1;
1759 		}
1760 
1761 		/* backward compatible */
1762 		rdma_req->req.data = rdma_req->req.iov[0].iov_base;
1763 
1764 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req,
1765 			      rdma_req->req.iovcnt);
1766 
1767 		return 0;
1768 	}
1769 
1770 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
1771 		    sgl->generic.type, sgl->generic.subtype);
1772 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1773 	return -1;
1774 }
1775 
1776 static void
1777 nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1778 		       struct spdk_nvmf_rdma_transport	*rtransport)
1779 {
1780 	struct spdk_nvmf_rdma_qpair		*rqpair;
1781 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1782 
1783 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1784 	if (rdma_req->data_from_pool) {
1785 		rgroup = rqpair->poller->group;
1786 
1787 		spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport,
1788 						    rdma_req->req.iovcnt);
1789 	}
1790 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1791 	rdma_req->req.length = 0;
1792 	rdma_req->req.iovcnt = 0;
1793 	rdma_req->req.data = NULL;
1794 	rdma_req->data.wr.next = NULL;
1795 	rqpair->qd--;
1796 
1797 	STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
1798 	rdma_req->state = RDMA_REQUEST_STATE_FREE;
1799 }
1800 
1801 static bool
1802 spdk_nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
1803 			       struct spdk_nvmf_rdma_request *rdma_req)
1804 {
1805 	struct spdk_nvmf_rdma_qpair	*rqpair;
1806 	struct spdk_nvmf_rdma_device	*device;
1807 	struct spdk_nvmf_rdma_poll_group *rgroup;
1808 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
1809 	int				rc;
1810 	struct spdk_nvmf_rdma_recv	*rdma_recv;
1811 	enum spdk_nvmf_rdma_request_state prev_state;
1812 	bool				progress = false;
1813 	int				data_posted;
1814 
1815 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1816 	device = rqpair->port->device;
1817 	rgroup = rqpair->poller->group;
1818 
1819 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
1820 
1821 	/* If the queue pair is in an error state, force the request to the completed state
1822 	 * to release resources. */
1823 	if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
1824 		if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) {
1825 			STAILQ_REMOVE(&rgroup->pending_data_buf_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
1826 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) {
1827 			STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
1828 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) {
1829 			STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
1830 		}
1831 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
1832 	}
1833 
1834 	/* The loop here is to allow for several back-to-back state changes. */
1835 	do {
1836 		prev_state = rdma_req->state;
1837 
1838 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p entering state %d\n", rdma_req, prev_state);
1839 
1840 		switch (rdma_req->state) {
1841 		case RDMA_REQUEST_STATE_FREE:
1842 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
1843 			 * to escape this state. */
1844 			break;
1845 		case RDMA_REQUEST_STATE_NEW:
1846 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
1847 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1848 			rdma_recv = rdma_req->recv;
1849 
1850 			/* The first element of the SGL is the NVMe command */
1851 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
1852 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
1853 
1854 			if (rqpair->ibv_state == IBV_QPS_ERR  || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
1855 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
1856 				break;
1857 			}
1858 
1859 			/* The next state transition depends on the data transfer needs of this request. */
1860 			rdma_req->req.xfer = spdk_nvmf_rdma_request_get_xfer(rdma_req);
1861 
1862 			/* If no data to transfer, ready to execute. */
1863 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
1864 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
1865 				break;
1866 			}
1867 
1868 			rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
1869 			STAILQ_INSERT_TAIL(&rgroup->pending_data_buf_queue, rdma_req, state_link);
1870 			break;
1871 		case RDMA_REQUEST_STATE_NEED_BUFFER:
1872 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
1873 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1874 
1875 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
1876 
1877 			if (rdma_req != STAILQ_FIRST(&rgroup->pending_data_buf_queue)) {
1878 				/* This request needs to wait in line to obtain a buffer */
1879 				break;
1880 			}
1881 
1882 			/* Try to get a data buffer */
1883 			rc = spdk_nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
1884 			if (rc < 0) {
1885 				STAILQ_REMOVE_HEAD(&rgroup->pending_data_buf_queue, state_link);
1886 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
1887 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
1888 				break;
1889 			}
1890 
1891 			if (!rdma_req->req.data) {
1892 				/* No buffers available. */
1893 				break;
1894 			}
1895 
1896 			STAILQ_REMOVE_HEAD(&rgroup->pending_data_buf_queue, state_link);
1897 
1898 			/* If data is transferring from host to controller and the data didn't
1899 			 * arrive using in capsule data, we need to do a transfer from the host.
1900 			 */
1901 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && rdma_req->data_from_pool) {
1902 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
1903 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
1904 				break;
1905 			}
1906 
1907 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
1908 			break;
1909 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
1910 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
1911 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1912 
1913 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
1914 				/* This request needs to wait in line to perform RDMA */
1915 				break;
1916 			}
1917 			if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth
1918 			    || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) {
1919 				/* We can only have so many WRs outstanding. we have to wait until some finish. */
1920 				break;
1921 			}
1922 
1923 			/* We have already verified that this request is the head of the queue. */
1924 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
1925 
1926 			rc = request_transfer_in(&rdma_req->req);
1927 			if (!rc) {
1928 				rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
1929 			} else {
1930 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
1931 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
1932 			}
1933 			break;
1934 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
1935 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
1936 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1937 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
1938 			 * to escape this state. */
1939 			break;
1940 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
1941 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
1942 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1943 			rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
1944 			spdk_nvmf_request_exec(&rdma_req->req);
1945 			break;
1946 		case RDMA_REQUEST_STATE_EXECUTING:
1947 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
1948 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1949 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
1950 			 * to escape this state. */
1951 			break;
1952 		case RDMA_REQUEST_STATE_EXECUTED:
1953 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
1954 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1955 			if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1956 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
1957 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
1958 			} else {
1959 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
1960 			}
1961 			break;
1962 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
1963 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
1964 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1965 
1966 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
1967 				/* This request needs to wait in line to perform RDMA */
1968 				break;
1969 			}
1970 			if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
1971 			    rqpair->max_send_depth) {
1972 				/* We can only have so many WRs outstanding. we have to wait until some finish.
1973 				 * +1 since each request has an additional wr in the resp. */
1974 				break;
1975 			}
1976 
1977 			/* We have already verified that this request is the head of the queue. */
1978 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
1979 
1980 			/* The data transfer will be kicked off from
1981 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
1982 			 */
1983 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
1984 			break;
1985 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
1986 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
1987 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1988 			rc = request_transfer_out(&rdma_req->req, &data_posted);
1989 			assert(rc == 0); /* No good way to handle this currently */
1990 			if (rc) {
1991 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
1992 			} else {
1993 				rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
1994 						  RDMA_REQUEST_STATE_COMPLETING;
1995 			}
1996 			break;
1997 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
1998 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
1999 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2000 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2001 			 * to escape this state. */
2002 			break;
2003 		case RDMA_REQUEST_STATE_COMPLETING:
2004 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
2005 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2006 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2007 			 * to escape this state. */
2008 			break;
2009 		case RDMA_REQUEST_STATE_COMPLETED:
2010 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2011 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2012 
2013 			nvmf_rdma_request_free(rdma_req, rtransport);
2014 			break;
2015 		case RDMA_REQUEST_NUM_STATES:
2016 		default:
2017 			assert(0);
2018 			break;
2019 		}
2020 
2021 		if (rdma_req->state != prev_state) {
2022 			progress = true;
2023 		}
2024 	} while (rdma_req->state != prev_state);
2025 
2026 	return progress;
2027 }
2028 
2029 /* Public API callbacks begin here */
2030 
2031 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2032 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2033 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2034 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 64
2035 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2036 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2037 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2038 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4096
2039 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32
2040 
2041 static void
2042 spdk_nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2043 {
2044 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2045 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2046 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2047 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2048 	opts->io_unit_size =		SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2049 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2050 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2051 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2052 	opts->max_srq_depth =		SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2053 }
2054 
2055 const struct spdk_mem_map_ops g_nvmf_rdma_map_ops = {
2056 	.notify_cb = spdk_nvmf_rdma_mem_notify,
2057 	.are_contiguous = spdk_nvmf_rdma_check_contiguous_entries
2058 };
2059 
2060 static int spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport);
2061 
2062 static struct spdk_nvmf_transport *
2063 spdk_nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2064 {
2065 	int rc;
2066 	struct spdk_nvmf_rdma_transport *rtransport;
2067 	struct spdk_nvmf_rdma_device	*device, *tmp;
2068 	struct ibv_pd			*pd;
2069 	struct ibv_context		**contexts;
2070 	uint32_t			i;
2071 	int				flag;
2072 	uint32_t			sge_count;
2073 	uint32_t			min_shared_buffers;
2074 	int				max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2075 
2076 	rtransport = calloc(1, sizeof(*rtransport));
2077 	if (!rtransport) {
2078 		return NULL;
2079 	}
2080 
2081 	if (pthread_mutex_init(&rtransport->lock, NULL)) {
2082 		SPDK_ERRLOG("pthread_mutex_init() failed\n");
2083 		free(rtransport);
2084 		return NULL;
2085 	}
2086 
2087 	TAILQ_INIT(&rtransport->devices);
2088 	TAILQ_INIT(&rtransport->ports);
2089 
2090 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2091 
2092 	SPDK_INFOLOG(SPDK_LOG_RDMA, "*** RDMA Transport Init ***\n"
2093 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
2094 		     "  max_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2095 		     "  in_capsule_data_size=%d, max_aq_depth=%d,\n"
2096 		     "  num_shared_buffers=%d, max_srq_depth=%d\n",
2097 		     opts->max_queue_depth,
2098 		     opts->max_io_size,
2099 		     opts->max_qpairs_per_ctrlr,
2100 		     opts->io_unit_size,
2101 		     opts->in_capsule_data_size,
2102 		     opts->max_aq_depth,
2103 		     opts->num_shared_buffers,
2104 		     opts->max_srq_depth);
2105 
2106 	/* I/O unit size cannot be larger than max I/O size */
2107 	if (opts->io_unit_size > opts->max_io_size) {
2108 		opts->io_unit_size = opts->max_io_size;
2109 	}
2110 
2111 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2112 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2113 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
2114 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2115 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2116 		return NULL;
2117 	}
2118 
2119 	min_shared_buffers = spdk_thread_get_count() * opts->buf_cache_size;
2120 	if (min_shared_buffers > opts->num_shared_buffers) {
2121 		SPDK_ERRLOG("There are not enough buffers to satisfy"
2122 			    "per-poll group caches for each thread. (%" PRIu32 ")"
2123 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2124 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2125 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2126 		return NULL;
2127 	}
2128 
2129 	sge_count = opts->max_io_size / opts->io_unit_size;
2130 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
2131 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2132 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2133 		return NULL;
2134 	}
2135 
2136 	rtransport->event_channel = rdma_create_event_channel();
2137 	if (rtransport->event_channel == NULL) {
2138 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2139 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2140 		return NULL;
2141 	}
2142 
2143 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2144 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2145 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2146 			    rtransport->event_channel->fd, spdk_strerror(errno));
2147 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2148 		return NULL;
2149 	}
2150 
2151 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
2152 				   opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES,
2153 				   sizeof(struct spdk_nvmf_rdma_request_data),
2154 				   SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2155 				   SPDK_ENV_SOCKET_ID_ANY);
2156 	if (!rtransport->data_wr_pool) {
2157 		SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2158 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2159 		return NULL;
2160 	}
2161 
2162 	contexts = rdma_get_devices(NULL);
2163 	if (contexts == NULL) {
2164 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2165 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2166 		return NULL;
2167 	}
2168 
2169 	i = 0;
2170 	rc = 0;
2171 	while (contexts[i] != NULL) {
2172 		device = calloc(1, sizeof(*device));
2173 		if (!device) {
2174 			SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2175 			rc = -ENOMEM;
2176 			break;
2177 		}
2178 		device->context = contexts[i];
2179 		rc = ibv_query_device(device->context, &device->attr);
2180 		if (rc < 0) {
2181 			SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2182 			free(device);
2183 			break;
2184 
2185 		}
2186 
2187 		max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2188 
2189 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2190 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2191 			SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2192 			SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2193 		}
2194 
2195 		/**
2196 		 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2197 		 * The Soft-RoCE RXE driver does not currently support send with invalidate,
2198 		 * but incorrectly reports that it does. There are changes making their way
2199 		 * through the kernel now that will enable this feature. When they are merged,
2200 		 * we can conditionally enable this feature.
2201 		 *
2202 		 * TODO: enable this for versions of the kernel rxe driver that support it.
2203 		 */
2204 		if (device->attr.vendor_id == 0) {
2205 			device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2206 		}
2207 #endif
2208 
2209 		/* set up device context async ev fd as NON_BLOCKING */
2210 		flag = fcntl(device->context->async_fd, F_GETFL);
2211 		rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2212 		if (rc < 0) {
2213 			SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2214 			free(device);
2215 			break;
2216 		}
2217 
2218 		TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2219 		i++;
2220 
2221 		pd = NULL;
2222 		if (g_nvmf_hooks.get_ibv_pd) {
2223 			pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2224 		}
2225 
2226 		if (!g_nvmf_hooks.get_ibv_pd) {
2227 			device->pd = ibv_alloc_pd(device->context);
2228 			if (!device->pd) {
2229 				SPDK_ERRLOG("Unable to allocate protection domain.\n");
2230 				spdk_nvmf_rdma_destroy(&rtransport->transport);
2231 				return NULL;
2232 			}
2233 		} else {
2234 			device->pd = pd;
2235 		}
2236 
2237 		assert(device->map == NULL);
2238 
2239 		device->map = spdk_mem_map_alloc(0, &g_nvmf_rdma_map_ops, device->pd);
2240 		if (!device->map) {
2241 			SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2242 			spdk_nvmf_rdma_destroy(&rtransport->transport);
2243 			return NULL;
2244 		}
2245 
2246 		assert(device->map != NULL);
2247 		assert(device->pd != NULL);
2248 	}
2249 	rdma_free_devices(contexts);
2250 
2251 	if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2252 		/* divide and round up. */
2253 		opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2254 
2255 		/* round up to the nearest 4k. */
2256 		opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2257 
2258 		opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2259 		SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2260 			       opts->io_unit_size);
2261 	}
2262 
2263 	if (rc < 0) {
2264 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2265 		return NULL;
2266 	}
2267 
2268 	/* Set up poll descriptor array to monitor events from RDMA and IB
2269 	 * in a single poll syscall
2270 	 */
2271 	rtransport->npoll_fds = i + 1;
2272 	i = 0;
2273 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2274 	if (rtransport->poll_fds == NULL) {
2275 		SPDK_ERRLOG("poll_fds allocation failed\n");
2276 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2277 		return NULL;
2278 	}
2279 
2280 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2281 	rtransport->poll_fds[i++].events = POLLIN;
2282 
2283 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2284 		rtransport->poll_fds[i].fd = device->context->async_fd;
2285 		rtransport->poll_fds[i++].events = POLLIN;
2286 	}
2287 
2288 	return &rtransport->transport;
2289 }
2290 
2291 static int
2292 spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport)
2293 {
2294 	struct spdk_nvmf_rdma_transport	*rtransport;
2295 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
2296 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
2297 
2298 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2299 
2300 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2301 		TAILQ_REMOVE(&rtransport->ports, port, link);
2302 		rdma_destroy_id(port->id);
2303 		free(port);
2304 	}
2305 
2306 	if (rtransport->poll_fds != NULL) {
2307 		free(rtransport->poll_fds);
2308 	}
2309 
2310 	if (rtransport->event_channel != NULL) {
2311 		rdma_destroy_event_channel(rtransport->event_channel);
2312 	}
2313 
2314 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2315 		TAILQ_REMOVE(&rtransport->devices, device, link);
2316 		if (device->map) {
2317 			spdk_mem_map_free(&device->map);
2318 		}
2319 		if (device->pd) {
2320 			if (!g_nvmf_hooks.get_ibv_pd) {
2321 				ibv_dealloc_pd(device->pd);
2322 			}
2323 		}
2324 		free(device);
2325 	}
2326 
2327 	if (rtransport->data_wr_pool != NULL) {
2328 		if (spdk_mempool_count(rtransport->data_wr_pool) !=
2329 		    (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) {
2330 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2331 				    spdk_mempool_count(rtransport->data_wr_pool),
2332 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2333 		}
2334 	}
2335 
2336 	spdk_mempool_free(rtransport->data_wr_pool);
2337 	pthread_mutex_destroy(&rtransport->lock);
2338 	free(rtransport);
2339 
2340 	return 0;
2341 }
2342 
2343 static int
2344 spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2345 			       struct spdk_nvme_transport_id *trid,
2346 			       bool peer);
2347 
2348 static int
2349 spdk_nvmf_rdma_listen(struct spdk_nvmf_transport *transport,
2350 		      const struct spdk_nvme_transport_id *trid)
2351 {
2352 	struct spdk_nvmf_rdma_transport	*rtransport;
2353 	struct spdk_nvmf_rdma_device	*device;
2354 	struct spdk_nvmf_rdma_port	*port_tmp, *port;
2355 	struct addrinfo			*res;
2356 	struct addrinfo			hints;
2357 	int				family;
2358 	int				rc;
2359 
2360 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2361 
2362 	port = calloc(1, sizeof(*port));
2363 	if (!port) {
2364 		return -ENOMEM;
2365 	}
2366 
2367 	/* Selectively copy the trid. Things like NQN don't matter here - that
2368 	 * mapping is enforced elsewhere.
2369 	 */
2370 	port->trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
2371 	port->trid.adrfam = trid->adrfam;
2372 	snprintf(port->trid.traddr, sizeof(port->trid.traddr), "%s", trid->traddr);
2373 	snprintf(port->trid.trsvcid, sizeof(port->trid.trsvcid), "%s", trid->trsvcid);
2374 
2375 	pthread_mutex_lock(&rtransport->lock);
2376 	assert(rtransport->event_channel != NULL);
2377 	TAILQ_FOREACH(port_tmp, &rtransport->ports, link) {
2378 		if (spdk_nvme_transport_id_compare(&port_tmp->trid, &port->trid) == 0) {
2379 			port_tmp->ref++;
2380 			free(port);
2381 			/* Already listening at this address */
2382 			pthread_mutex_unlock(&rtransport->lock);
2383 			return 0;
2384 		}
2385 	}
2386 
2387 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
2388 	if (rc < 0) {
2389 		SPDK_ERRLOG("rdma_create_id() failed\n");
2390 		free(port);
2391 		pthread_mutex_unlock(&rtransport->lock);
2392 		return rc;
2393 	}
2394 
2395 	switch (port->trid.adrfam) {
2396 	case SPDK_NVMF_ADRFAM_IPV4:
2397 		family = AF_INET;
2398 		break;
2399 	case SPDK_NVMF_ADRFAM_IPV6:
2400 		family = AF_INET6;
2401 		break;
2402 	default:
2403 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", port->trid.adrfam);
2404 		free(port);
2405 		pthread_mutex_unlock(&rtransport->lock);
2406 		return -EINVAL;
2407 	}
2408 
2409 	memset(&hints, 0, sizeof(hints));
2410 	hints.ai_family = family;
2411 	hints.ai_flags = AI_NUMERICSERV;
2412 	hints.ai_socktype = SOCK_STREAM;
2413 	hints.ai_protocol = 0;
2414 
2415 	rc = getaddrinfo(port->trid.traddr, port->trid.trsvcid, &hints, &res);
2416 	if (rc) {
2417 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
2418 		free(port);
2419 		pthread_mutex_unlock(&rtransport->lock);
2420 		return -EINVAL;
2421 	}
2422 
2423 	rc = rdma_bind_addr(port->id, res->ai_addr);
2424 	freeaddrinfo(res);
2425 
2426 	if (rc < 0) {
2427 		SPDK_ERRLOG("rdma_bind_addr() failed\n");
2428 		rdma_destroy_id(port->id);
2429 		free(port);
2430 		pthread_mutex_unlock(&rtransport->lock);
2431 		return rc;
2432 	}
2433 
2434 	if (!port->id->verbs) {
2435 		SPDK_ERRLOG("ibv_context is null\n");
2436 		rdma_destroy_id(port->id);
2437 		free(port);
2438 		pthread_mutex_unlock(&rtransport->lock);
2439 		return -1;
2440 	}
2441 
2442 	rc = rdma_listen(port->id, 10); /* 10 = backlog */
2443 	if (rc < 0) {
2444 		SPDK_ERRLOG("rdma_listen() failed\n");
2445 		rdma_destroy_id(port->id);
2446 		free(port);
2447 		pthread_mutex_unlock(&rtransport->lock);
2448 		return rc;
2449 	}
2450 
2451 	TAILQ_FOREACH(device, &rtransport->devices, link) {
2452 		if (device->context == port->id->verbs) {
2453 			port->device = device;
2454 			break;
2455 		}
2456 	}
2457 	if (!port->device) {
2458 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
2459 			    port->id->verbs);
2460 		rdma_destroy_id(port->id);
2461 		free(port);
2462 		pthread_mutex_unlock(&rtransport->lock);
2463 		return -EINVAL;
2464 	}
2465 
2466 	SPDK_INFOLOG(SPDK_LOG_RDMA, "*** NVMf Target Listening on %s port %d ***\n",
2467 		     port->trid.traddr, ntohs(rdma_get_src_port(port->id)));
2468 
2469 	port->ref = 1;
2470 
2471 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
2472 	pthread_mutex_unlock(&rtransport->lock);
2473 
2474 	return 0;
2475 }
2476 
2477 static int
2478 spdk_nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
2479 			   const struct spdk_nvme_transport_id *_trid)
2480 {
2481 	struct spdk_nvmf_rdma_transport *rtransport;
2482 	struct spdk_nvmf_rdma_port *port, *tmp;
2483 	struct spdk_nvme_transport_id trid = {};
2484 
2485 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2486 
2487 	/* Selectively copy the trid. Things like NQN don't matter here - that
2488 	 * mapping is enforced elsewhere.
2489 	 */
2490 	trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
2491 	trid.adrfam = _trid->adrfam;
2492 	snprintf(trid.traddr, sizeof(port->trid.traddr), "%s", _trid->traddr);
2493 	snprintf(trid.trsvcid, sizeof(port->trid.trsvcid), "%s", _trid->trsvcid);
2494 
2495 	pthread_mutex_lock(&rtransport->lock);
2496 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
2497 		if (spdk_nvme_transport_id_compare(&port->trid, &trid) == 0) {
2498 			assert(port->ref > 0);
2499 			port->ref--;
2500 			if (port->ref == 0) {
2501 				TAILQ_REMOVE(&rtransport->ports, port, link);
2502 				rdma_destroy_id(port->id);
2503 				free(port);
2504 			}
2505 			break;
2506 		}
2507 	}
2508 
2509 	pthread_mutex_unlock(&rtransport->lock);
2510 	return 0;
2511 }
2512 
2513 static void
2514 spdk_nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
2515 				     struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
2516 {
2517 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
2518 	struct spdk_nvmf_rdma_resources *resources;
2519 
2520 	/* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */
2521 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
2522 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2523 			break;
2524 		}
2525 	}
2526 
2527 	/* Then RDMA writes since reads have stronger restrictions than writes */
2528 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
2529 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2530 			break;
2531 		}
2532 	}
2533 
2534 	/* The second highest priority is I/O waiting on memory buffers. */
2535 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->poller->group->pending_data_buf_queue, state_link,
2536 			    req_tmp) {
2537 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2538 			break;
2539 		}
2540 	}
2541 
2542 	resources = rqpair->resources;
2543 	while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
2544 		rdma_req = STAILQ_FIRST(&resources->free_queue);
2545 		STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
2546 		rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
2547 		STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
2548 
2549 		if (rqpair->srq != NULL) {
2550 			rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
2551 			rdma_req->recv->qpair->qd++;
2552 		} else {
2553 			rqpair->qd++;
2554 		}
2555 
2556 		rdma_req->state = RDMA_REQUEST_STATE_NEW;
2557 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false) {
2558 			break;
2559 		}
2560 	}
2561 }
2562 
2563 static void
2564 _nvmf_rdma_qpair_disconnect(void *ctx)
2565 {
2566 	struct spdk_nvmf_qpair *qpair = ctx;
2567 
2568 	spdk_nvmf_qpair_disconnect(qpair, NULL, NULL);
2569 }
2570 
2571 static void
2572 _nvmf_rdma_try_disconnect(void *ctx)
2573 {
2574 	struct spdk_nvmf_qpair *qpair = ctx;
2575 	struct spdk_nvmf_poll_group *group;
2576 
2577 	/* Read the group out of the qpair. This is normally set and accessed only from
2578 	 * the thread that created the group. Here, we're not on that thread necessarily.
2579 	 * The data member qpair->group begins it's life as NULL and then is assigned to
2580 	 * a pointer and never changes. So fortunately reading this and checking for
2581 	 * non-NULL is thread safe in the x86_64 memory model. */
2582 	group = qpair->group;
2583 
2584 	if (group == NULL) {
2585 		/* The qpair hasn't been assigned to a group yet, so we can't
2586 		 * process a disconnect. Send a message to ourself and try again. */
2587 		spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_try_disconnect, qpair);
2588 		return;
2589 	}
2590 
2591 	spdk_thread_send_msg(group->thread, _nvmf_rdma_qpair_disconnect, qpair);
2592 }
2593 
2594 static inline void
2595 spdk_nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair)
2596 {
2597 	if (__sync_bool_compare_and_swap(&rqpair->disconnect_started, false, true)) {
2598 		_nvmf_rdma_try_disconnect(&rqpair->qpair);
2599 	}
2600 }
2601 
2602 static void nvmf_rdma_destroy_drained_qpair(void *ctx)
2603 {
2604 	struct spdk_nvmf_rdma_qpair *rqpair = ctx;
2605 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
2606 			struct spdk_nvmf_rdma_transport, transport);
2607 
2608 	/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
2609 	if (rqpair->current_send_depth != 0) {
2610 		return;
2611 	}
2612 
2613 	if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
2614 		return;
2615 	}
2616 
2617 	if (rqpair->srq != NULL && rqpair->last_wqe_reached == false) {
2618 		return;
2619 	}
2620 
2621 	spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
2622 	spdk_nvmf_rdma_qpair_destroy(rqpair);
2623 }
2624 
2625 
2626 static int
2627 nvmf_rdma_disconnect(struct rdma_cm_event *evt)
2628 {
2629 	struct spdk_nvmf_qpair		*qpair;
2630 	struct spdk_nvmf_rdma_qpair	*rqpair;
2631 
2632 	if (evt->id == NULL) {
2633 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
2634 		return -1;
2635 	}
2636 
2637 	qpair = evt->id->context;
2638 	if (qpair == NULL) {
2639 		SPDK_ERRLOG("disconnect request: no active connection\n");
2640 		return -1;
2641 	}
2642 
2643 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
2644 
2645 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair->cm_id, 0);
2646 
2647 	spdk_nvmf_rdma_update_ibv_state(rqpair);
2648 
2649 	spdk_nvmf_rdma_start_disconnect(rqpair);
2650 
2651 	return 0;
2652 }
2653 
2654 #ifdef DEBUG
2655 static const char *CM_EVENT_STR[] = {
2656 	"RDMA_CM_EVENT_ADDR_RESOLVED",
2657 	"RDMA_CM_EVENT_ADDR_ERROR",
2658 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
2659 	"RDMA_CM_EVENT_ROUTE_ERROR",
2660 	"RDMA_CM_EVENT_CONNECT_REQUEST",
2661 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
2662 	"RDMA_CM_EVENT_CONNECT_ERROR",
2663 	"RDMA_CM_EVENT_UNREACHABLE",
2664 	"RDMA_CM_EVENT_REJECTED",
2665 	"RDMA_CM_EVENT_ESTABLISHED",
2666 	"RDMA_CM_EVENT_DISCONNECTED",
2667 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
2668 	"RDMA_CM_EVENT_MULTICAST_JOIN",
2669 	"RDMA_CM_EVENT_MULTICAST_ERROR",
2670 	"RDMA_CM_EVENT_ADDR_CHANGE",
2671 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
2672 };
2673 #endif /* DEBUG */
2674 
2675 static void
2676 spdk_nvmf_process_cm_event(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn)
2677 {
2678 	struct spdk_nvmf_rdma_transport *rtransport;
2679 	struct rdma_cm_event		*event;
2680 	int				rc;
2681 
2682 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2683 
2684 	if (rtransport->event_channel == NULL) {
2685 		return;
2686 	}
2687 
2688 	while (1) {
2689 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
2690 		if (rc == 0) {
2691 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
2692 
2693 			spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
2694 
2695 			switch (event->event) {
2696 			case RDMA_CM_EVENT_ADDR_RESOLVED:
2697 			case RDMA_CM_EVENT_ADDR_ERROR:
2698 			case RDMA_CM_EVENT_ROUTE_RESOLVED:
2699 			case RDMA_CM_EVENT_ROUTE_ERROR:
2700 				/* No action required. The target never attempts to resolve routes. */
2701 				break;
2702 			case RDMA_CM_EVENT_CONNECT_REQUEST:
2703 				rc = nvmf_rdma_connect(transport, event, cb_fn);
2704 				if (rc < 0) {
2705 					SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
2706 					break;
2707 				}
2708 				break;
2709 			case RDMA_CM_EVENT_CONNECT_RESPONSE:
2710 				/* The target never initiates a new connection. So this will not occur. */
2711 				break;
2712 			case RDMA_CM_EVENT_CONNECT_ERROR:
2713 				/* Can this happen? The docs say it can, but not sure what causes it. */
2714 				break;
2715 			case RDMA_CM_EVENT_UNREACHABLE:
2716 			case RDMA_CM_EVENT_REJECTED:
2717 				/* These only occur on the client side. */
2718 				break;
2719 			case RDMA_CM_EVENT_ESTABLISHED:
2720 				/* TODO: Should we be waiting for this event anywhere? */
2721 				break;
2722 			case RDMA_CM_EVENT_DISCONNECTED:
2723 			case RDMA_CM_EVENT_DEVICE_REMOVAL:
2724 				rc = nvmf_rdma_disconnect(event);
2725 				if (rc < 0) {
2726 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
2727 					break;
2728 				}
2729 				break;
2730 			case RDMA_CM_EVENT_MULTICAST_JOIN:
2731 			case RDMA_CM_EVENT_MULTICAST_ERROR:
2732 				/* Multicast is not used */
2733 				break;
2734 			case RDMA_CM_EVENT_ADDR_CHANGE:
2735 				/* Not utilizing this event */
2736 				break;
2737 			case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2738 				/* For now, do nothing. The target never re-uses queue pairs. */
2739 				break;
2740 			default:
2741 				SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
2742 				break;
2743 			}
2744 
2745 			rdma_ack_cm_event(event);
2746 		} else {
2747 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
2748 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
2749 			}
2750 			break;
2751 		}
2752 	}
2753 }
2754 
2755 static void
2756 spdk_nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
2757 {
2758 	int				rc;
2759 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
2760 	struct ibv_async_event		event;
2761 	enum ibv_qp_state		state;
2762 
2763 	rc = ibv_get_async_event(device->context, &event);
2764 
2765 	if (rc) {
2766 		SPDK_ERRLOG("Failed to get async_event (%d): %s\n",
2767 			    errno, spdk_strerror(errno));
2768 		return;
2769 	}
2770 
2771 	SPDK_NOTICELOG("Async event: %s\n",
2772 		       ibv_event_type_str(event.event_type));
2773 
2774 	switch (event.event_type) {
2775 	case IBV_EVENT_QP_FATAL:
2776 		rqpair = event.element.qp->qp_context;
2777 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
2778 				  (uintptr_t)rqpair->cm_id, event.event_type);
2779 		spdk_nvmf_rdma_update_ibv_state(rqpair);
2780 		spdk_nvmf_rdma_start_disconnect(rqpair);
2781 		break;
2782 	case IBV_EVENT_QP_LAST_WQE_REACHED:
2783 		/* This event only occurs for shared receive queues. */
2784 		rqpair = event.element.qp->qp_context;
2785 		rqpair->last_wqe_reached = true;
2786 
2787 		/* This must be handled on the polling thread if it exists. Otherwise the timeout will catch it. */
2788 		if (rqpair->qpair.group) {
2789 			spdk_thread_send_msg(rqpair->qpair.group->thread, nvmf_rdma_destroy_drained_qpair, rqpair);
2790 		} else {
2791 			SPDK_ERRLOG("Unable to destroy the qpair %p since it does not have a poll group.\n", rqpair);
2792 		}
2793 
2794 		break;
2795 	case IBV_EVENT_SQ_DRAINED:
2796 		/* This event occurs frequently in both error and non-error states.
2797 		 * Check if the qpair is in an error state before sending a message.
2798 		 * Note that we're not on the correct thread to access the qpair, but
2799 		 * the operations that the below calls make all happen to be thread
2800 		 * safe. */
2801 		rqpair = event.element.qp->qp_context;
2802 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
2803 				  (uintptr_t)rqpair->cm_id, event.event_type);
2804 		state = spdk_nvmf_rdma_update_ibv_state(rqpair);
2805 		if (state == IBV_QPS_ERR) {
2806 			spdk_nvmf_rdma_start_disconnect(rqpair);
2807 		}
2808 		break;
2809 	case IBV_EVENT_QP_REQ_ERR:
2810 	case IBV_EVENT_QP_ACCESS_ERR:
2811 	case IBV_EVENT_COMM_EST:
2812 	case IBV_EVENT_PATH_MIG:
2813 	case IBV_EVENT_PATH_MIG_ERR:
2814 		rqpair = event.element.qp->qp_context;
2815 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
2816 				  (uintptr_t)rqpair->cm_id, event.event_type);
2817 		spdk_nvmf_rdma_update_ibv_state(rqpair);
2818 		break;
2819 	case IBV_EVENT_CQ_ERR:
2820 	case IBV_EVENT_DEVICE_FATAL:
2821 	case IBV_EVENT_PORT_ACTIVE:
2822 	case IBV_EVENT_PORT_ERR:
2823 	case IBV_EVENT_LID_CHANGE:
2824 	case IBV_EVENT_PKEY_CHANGE:
2825 	case IBV_EVENT_SM_CHANGE:
2826 	case IBV_EVENT_SRQ_ERR:
2827 	case IBV_EVENT_SRQ_LIMIT_REACHED:
2828 	case IBV_EVENT_CLIENT_REREGISTER:
2829 	case IBV_EVENT_GID_CHANGE:
2830 	default:
2831 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
2832 		break;
2833 	}
2834 	ibv_ack_async_event(&event);
2835 }
2836 
2837 static void
2838 spdk_nvmf_rdma_accept(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn)
2839 {
2840 	int	nfds, i = 0;
2841 	struct spdk_nvmf_rdma_transport *rtransport;
2842 	struct spdk_nvmf_rdma_device *device, *tmp;
2843 
2844 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2845 	nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
2846 
2847 	if (nfds <= 0) {
2848 		return;
2849 	}
2850 
2851 	/* The first poll descriptor is RDMA CM event */
2852 	if (rtransport->poll_fds[i++].revents & POLLIN) {
2853 		spdk_nvmf_process_cm_event(transport, cb_fn);
2854 		nfds--;
2855 	}
2856 
2857 	if (nfds == 0) {
2858 		return;
2859 	}
2860 
2861 	/* Second and subsequent poll descriptors are IB async events */
2862 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2863 		if (rtransport->poll_fds[i++].revents & POLLIN) {
2864 			spdk_nvmf_process_ib_event(device);
2865 			nfds--;
2866 		}
2867 	}
2868 	/* check all flagged fd's have been served */
2869 	assert(nfds == 0);
2870 }
2871 
2872 static void
2873 spdk_nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
2874 			struct spdk_nvme_transport_id *trid,
2875 			struct spdk_nvmf_discovery_log_page_entry *entry)
2876 {
2877 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
2878 	entry->adrfam = trid->adrfam;
2879 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_SPECIFIED;
2880 
2881 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
2882 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
2883 
2884 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
2885 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
2886 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
2887 }
2888 
2889 static void
2890 spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
2891 
2892 static struct spdk_nvmf_transport_poll_group *
2893 spdk_nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport)
2894 {
2895 	struct spdk_nvmf_rdma_transport		*rtransport;
2896 	struct spdk_nvmf_rdma_poll_group	*rgroup;
2897 	struct spdk_nvmf_rdma_poller		*poller;
2898 	struct spdk_nvmf_rdma_device		*device;
2899 	struct ibv_srq_init_attr		srq_init_attr;
2900 	struct spdk_nvmf_rdma_resource_opts	opts;
2901 	int					num_cqe;
2902 
2903 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2904 
2905 	rgroup = calloc(1, sizeof(*rgroup));
2906 	if (!rgroup) {
2907 		return NULL;
2908 	}
2909 
2910 	TAILQ_INIT(&rgroup->pollers);
2911 	STAILQ_INIT(&rgroup->pending_data_buf_queue);
2912 
2913 	pthread_mutex_lock(&rtransport->lock);
2914 	TAILQ_FOREACH(device, &rtransport->devices, link) {
2915 		poller = calloc(1, sizeof(*poller));
2916 		if (!poller) {
2917 			SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
2918 			spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
2919 			pthread_mutex_unlock(&rtransport->lock);
2920 			return NULL;
2921 		}
2922 
2923 		poller->device = device;
2924 		poller->group = rgroup;
2925 
2926 		TAILQ_INIT(&poller->qpairs);
2927 
2928 		TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
2929 		if (device->attr.max_srq != 0) {
2930 			poller->max_srq_depth = transport->opts.max_srq_depth;
2931 
2932 			memset(&srq_init_attr, 0, sizeof(struct ibv_srq_init_attr));
2933 			srq_init_attr.attr.max_wr = poller->max_srq_depth;
2934 			srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
2935 			poller->srq = ibv_create_srq(device->pd, &srq_init_attr);
2936 			if (!poller->srq) {
2937 				SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
2938 				spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
2939 				pthread_mutex_unlock(&rtransport->lock);
2940 				return NULL;
2941 			}
2942 
2943 			opts.qp = poller->srq;
2944 			opts.pd = device->pd;
2945 			opts.qpair = NULL;
2946 			opts.shared = true;
2947 			opts.max_queue_depth = poller->max_srq_depth;
2948 			opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
2949 
2950 			poller->resources = nvmf_rdma_resources_create(&opts);
2951 			if (!poller->resources) {
2952 				SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
2953 				spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
2954 				pthread_mutex_unlock(&rtransport->lock);
2955 			}
2956 		}
2957 
2958 		/*
2959 		 * When using an srq, we can limit the completion queue at startup.
2960 		 * The following formula represents the calculation:
2961 		 * num_cqe = num_recv + num_data_wr + num_send_wr.
2962 		 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
2963 		 */
2964 		if (poller->srq) {
2965 			num_cqe = poller->max_srq_depth * 3;
2966 		} else {
2967 			num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
2968 		}
2969 
2970 		poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
2971 		if (!poller->cq) {
2972 			SPDK_ERRLOG("Unable to create completion queue\n");
2973 			spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
2974 			pthread_mutex_unlock(&rtransport->lock);
2975 			return NULL;
2976 		}
2977 		poller->num_cqe = num_cqe;
2978 	}
2979 
2980 	pthread_mutex_unlock(&rtransport->lock);
2981 	return &rgroup->group;
2982 }
2983 
2984 static void
2985 spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
2986 {
2987 	struct spdk_nvmf_rdma_poll_group	*rgroup;
2988 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
2989 	struct spdk_nvmf_rdma_qpair		*qpair, *tmp_qpair;
2990 
2991 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
2992 
2993 	if (!rgroup) {
2994 		return;
2995 	}
2996 
2997 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
2998 		TAILQ_REMOVE(&rgroup->pollers, poller, link);
2999 
3000 		TAILQ_FOREACH_SAFE(qpair, &poller->qpairs, link, tmp_qpair) {
3001 			spdk_nvmf_rdma_qpair_destroy(qpair);
3002 		}
3003 
3004 		if (poller->srq) {
3005 			nvmf_rdma_resources_destroy(poller->resources);
3006 			ibv_destroy_srq(poller->srq);
3007 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Destroyed RDMA shared queue %p\n", poller->srq);
3008 		}
3009 
3010 		if (poller->cq) {
3011 			ibv_destroy_cq(poller->cq);
3012 		}
3013 
3014 		free(poller);
3015 	}
3016 
3017 	if (!STAILQ_EMPTY(&rgroup->pending_data_buf_queue)) {
3018 		SPDK_ERRLOG("Pending I/O list wasn't empty on poll group destruction\n");
3019 	}
3020 
3021 	free(rgroup);
3022 }
3023 
3024 static void
3025 spdk_nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
3026 {
3027 	spdk_nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
3028 	spdk_nvmf_rdma_qpair_destroy(rqpair);
3029 }
3030 
3031 static int
3032 spdk_nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3033 			      struct spdk_nvmf_qpair *qpair)
3034 {
3035 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3036 	struct spdk_nvmf_rdma_qpair		*rqpair;
3037 	struct spdk_nvmf_rdma_device		*device;
3038 	struct spdk_nvmf_rdma_poller		*poller;
3039 	int					rc;
3040 
3041 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3042 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3043 
3044 	device = rqpair->port->device;
3045 
3046 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
3047 		if (poller->device == device) {
3048 			break;
3049 		}
3050 	}
3051 
3052 	if (!poller) {
3053 		SPDK_ERRLOG("No poller found for device.\n");
3054 		return -1;
3055 	}
3056 
3057 	TAILQ_INSERT_TAIL(&poller->qpairs, rqpair, link);
3058 	rqpair->poller = poller;
3059 	rqpair->srq = rqpair->poller->srq;
3060 
3061 	rc = spdk_nvmf_rdma_qpair_initialize(qpair);
3062 	if (rc < 0) {
3063 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
3064 		return -1;
3065 	}
3066 
3067 	rc = spdk_nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
3068 	if (rc) {
3069 		/* Try to reject, but we probably can't */
3070 		spdk_nvmf_rdma_qpair_reject_connection(rqpair);
3071 		return -1;
3072 	}
3073 
3074 	spdk_nvmf_rdma_update_ibv_state(rqpair);
3075 
3076 	return 0;
3077 }
3078 
3079 static int
3080 spdk_nvmf_rdma_request_free(struct spdk_nvmf_request *req)
3081 {
3082 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3083 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3084 			struct spdk_nvmf_rdma_transport, transport);
3085 
3086 	nvmf_rdma_request_free(rdma_req, rtransport);
3087 	return 0;
3088 }
3089 
3090 static int
3091 spdk_nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
3092 {
3093 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3094 			struct spdk_nvmf_rdma_transport, transport);
3095 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
3096 			struct spdk_nvmf_rdma_request, req);
3097 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
3098 			struct spdk_nvmf_rdma_qpair, qpair);
3099 
3100 	if (rqpair->ibv_state != IBV_QPS_ERR) {
3101 		/* The connection is alive, so process the request as normal */
3102 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
3103 	} else {
3104 		/* The connection is dead. Move the request directly to the completed state. */
3105 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3106 	}
3107 
3108 	spdk_nvmf_rdma_request_process(rtransport, rdma_req);
3109 
3110 	return 0;
3111 }
3112 
3113 static int
3114 spdk_nvmf_rdma_destroy_defunct_qpair(void *ctx)
3115 {
3116 	struct spdk_nvmf_rdma_qpair	*rqpair = ctx;
3117 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
3118 			struct spdk_nvmf_rdma_transport, transport);
3119 
3120 	spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
3121 	spdk_nvmf_rdma_qpair_destroy(rqpair);
3122 
3123 	return 0;
3124 }
3125 
3126 static void
3127 spdk_nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair)
3128 {
3129 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3130 
3131 	if (rqpair->disconnect_flags & RDMA_QP_DISCONNECTING) {
3132 		return;
3133 	}
3134 
3135 	rqpair->disconnect_flags |= RDMA_QP_DISCONNECTING;
3136 
3137 	/* This happens only when the qpair is disconnected before
3138 	 * it is added to the poll group. Since there is no poll group,
3139 	 * the RDMA qp has not been initialized yet and the RDMA CM
3140 	 * event has not yet been acknowledged, so we need to reject it.
3141 	 */
3142 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
3143 		spdk_nvmf_rdma_qpair_reject_connection(rqpair);
3144 		return;
3145 	}
3146 
3147 	if (rqpair->ibv_state != IBV_QPS_ERR) {
3148 		spdk_nvmf_rdma_set_ibv_state(rqpair, IBV_QPS_ERR);
3149 	}
3150 
3151 	rqpair->destruct_poller = spdk_poller_register(spdk_nvmf_rdma_destroy_defunct_qpair, (void *)rqpair,
3152 				  NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US);
3153 }
3154 
3155 static struct spdk_nvmf_rdma_qpair *
3156 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
3157 {
3158 	struct spdk_nvmf_rdma_qpair *rqpair;
3159 	/* @todo: improve QP search */
3160 	TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) {
3161 		if (wc->qp_num == rqpair->cm_id->qp->qp_num) {
3162 			return rqpair;
3163 		}
3164 	}
3165 	SPDK_ERRLOG("Didn't find QP with qp_num %u\n", wc->qp_num);
3166 	return NULL;
3167 }
3168 
3169 #ifdef DEBUG
3170 static int
3171 spdk_nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
3172 {
3173 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
3174 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
3175 }
3176 #endif
3177 
3178 static int
3179 spdk_nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
3180 			   struct spdk_nvmf_rdma_poller *rpoller)
3181 {
3182 	struct ibv_wc wc[32];
3183 	struct spdk_nvmf_rdma_wr	*rdma_wr;
3184 	struct spdk_nvmf_rdma_request	*rdma_req;
3185 	struct spdk_nvmf_rdma_recv	*rdma_recv;
3186 	struct spdk_nvmf_rdma_qpair	*rqpair;
3187 	int reaped, i;
3188 	int count = 0;
3189 	bool error = false;
3190 
3191 	/* Poll for completing operations. */
3192 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
3193 	if (reaped < 0) {
3194 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
3195 			    errno, spdk_strerror(errno));
3196 		return -1;
3197 	}
3198 
3199 	for (i = 0; i < reaped; i++) {
3200 
3201 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
3202 
3203 		switch (rdma_wr->type) {
3204 		case RDMA_WR_TYPE_SEND:
3205 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
3206 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
3207 
3208 			if (!wc[i].status) {
3209 				count++;
3210 				assert(wc[i].opcode == IBV_WC_SEND);
3211 				assert(spdk_nvmf_rdma_req_is_completing(rdma_req));
3212 			} else {
3213 				SPDK_ERRLOG("data=%p length=%u\n", rdma_req->req.data, rdma_req->req.length);
3214 			}
3215 
3216 			rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3217 			rqpair->current_send_depth--;
3218 
3219 			spdk_nvmf_rdma_request_process(rtransport, rdma_req);
3220 			assert(rdma_req->num_outstanding_data_wr == 0);
3221 			break;
3222 		case RDMA_WR_TYPE_RECV:
3223 			/* rdma_recv->qpair will be NULL if using an SRQ.  In that case we have to get the qpair from the wc. */
3224 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
3225 			if (rdma_recv->qpair == NULL) {
3226 				rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
3227 			}
3228 			rqpair = rdma_recv->qpair;
3229 
3230 			assert(rqpair != NULL);
3231 			if (!wc[i].status) {
3232 				assert(wc[i].opcode == IBV_WC_RECV);
3233 				if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
3234 					spdk_nvmf_rdma_start_disconnect(rqpair);
3235 					break;
3236 				}
3237 			}
3238 
3239 			rqpair->current_recv_depth++;
3240 			STAILQ_INSERT_TAIL(&rqpair->resources->incoming_queue, rdma_recv, link);
3241 			break;
3242 		case RDMA_WR_TYPE_DATA:
3243 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
3244 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
3245 
3246 			assert(rdma_req->num_outstanding_data_wr > 0);
3247 
3248 			rqpair->current_send_depth--;
3249 			rdma_req->num_outstanding_data_wr--;
3250 			if (!wc[i].status) {
3251 				if (wc[i].opcode == IBV_WC_RDMA_READ) {
3252 					rqpair->current_read_depth--;
3253 					/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
3254 					if (rdma_req->num_outstanding_data_wr == 0) {
3255 						rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
3256 						spdk_nvmf_rdma_request_process(rtransport, rdma_req);
3257 					}
3258 				} else {
3259 					assert(wc[i].opcode == IBV_WC_RDMA_WRITE);
3260 				}
3261 			} else {
3262 				/* If the data transfer fails still force the queue into the error state,
3263 				 * if we were performing an RDMA_READ, we need to force the request into a
3264 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
3265 				 * case, we should wait for the SEND to complete. */
3266 				SPDK_ERRLOG("data=%p length=%u\n", rdma_req->req.data, rdma_req->req.length);
3267 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
3268 					rqpair->current_read_depth--;
3269 					if (rdma_req->num_outstanding_data_wr == 0) {
3270 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3271 					}
3272 				}
3273 			}
3274 			break;
3275 		default:
3276 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
3277 			continue;
3278 		}
3279 
3280 		/* Handle error conditions */
3281 		if (wc[i].status) {
3282 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "CQ error on CQ %p, Request 0x%lu (%d): %s\n",
3283 				      rpoller->cq, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
3284 
3285 			error = true;
3286 
3287 			if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
3288 				/* Disconnect the connection. */
3289 				spdk_nvmf_rdma_start_disconnect(rqpair);
3290 			} else {
3291 				nvmf_rdma_destroy_drained_qpair(rqpair);
3292 			}
3293 			continue;
3294 		}
3295 
3296 		spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
3297 
3298 		if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
3299 			nvmf_rdma_destroy_drained_qpair(rqpair);
3300 		}
3301 	}
3302 
3303 	if (error == true) {
3304 		return -1;
3305 	}
3306 
3307 	return count;
3308 }
3309 
3310 static int
3311 spdk_nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3312 {
3313 	struct spdk_nvmf_rdma_transport *rtransport;
3314 	struct spdk_nvmf_rdma_poll_group *rgroup;
3315 	struct spdk_nvmf_rdma_poller	*rpoller;
3316 	int				count, rc;
3317 
3318 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
3319 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3320 
3321 	count = 0;
3322 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3323 		rc = spdk_nvmf_rdma_poller_poll(rtransport, rpoller);
3324 		if (rc < 0) {
3325 			return rc;
3326 		}
3327 		count += rc;
3328 	}
3329 
3330 	return count;
3331 }
3332 
3333 static int
3334 spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
3335 			       struct spdk_nvme_transport_id *trid,
3336 			       bool peer)
3337 {
3338 	struct sockaddr *saddr;
3339 	uint16_t port;
3340 
3341 	trid->trtype = SPDK_NVME_TRANSPORT_RDMA;
3342 
3343 	if (peer) {
3344 		saddr = rdma_get_peer_addr(id);
3345 	} else {
3346 		saddr = rdma_get_local_addr(id);
3347 	}
3348 	switch (saddr->sa_family) {
3349 	case AF_INET: {
3350 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
3351 
3352 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3353 		inet_ntop(AF_INET, &saddr_in->sin_addr,
3354 			  trid->traddr, sizeof(trid->traddr));
3355 		if (peer) {
3356 			port = ntohs(rdma_get_dst_port(id));
3357 		} else {
3358 			port = ntohs(rdma_get_src_port(id));
3359 		}
3360 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
3361 		break;
3362 	}
3363 	case AF_INET6: {
3364 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
3365 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3366 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
3367 			  trid->traddr, sizeof(trid->traddr));
3368 		if (peer) {
3369 			port = ntohs(rdma_get_dst_port(id));
3370 		} else {
3371 			port = ntohs(rdma_get_src_port(id));
3372 		}
3373 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
3374 		break;
3375 	}
3376 	default:
3377 		return -1;
3378 
3379 	}
3380 
3381 	return 0;
3382 }
3383 
3384 static int
3385 spdk_nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3386 				   struct spdk_nvme_transport_id *trid)
3387 {
3388 	struct spdk_nvmf_rdma_qpair	*rqpair;
3389 
3390 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3391 
3392 	return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
3393 }
3394 
3395 static int
3396 spdk_nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3397 				    struct spdk_nvme_transport_id *trid)
3398 {
3399 	struct spdk_nvmf_rdma_qpair	*rqpair;
3400 
3401 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3402 
3403 	return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
3404 }
3405 
3406 static int
3407 spdk_nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3408 				     struct spdk_nvme_transport_id *trid)
3409 {
3410 	struct spdk_nvmf_rdma_qpair	*rqpair;
3411 
3412 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3413 
3414 	return spdk_nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
3415 }
3416 
3417 void
3418 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
3419 {
3420 	g_nvmf_hooks = *hooks;
3421 }
3422 
3423 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
3424 	.type = SPDK_NVME_TRANSPORT_RDMA,
3425 	.opts_init = spdk_nvmf_rdma_opts_init,
3426 	.create = spdk_nvmf_rdma_create,
3427 	.destroy = spdk_nvmf_rdma_destroy,
3428 
3429 	.listen = spdk_nvmf_rdma_listen,
3430 	.stop_listen = spdk_nvmf_rdma_stop_listen,
3431 	.accept = spdk_nvmf_rdma_accept,
3432 
3433 	.listener_discover = spdk_nvmf_rdma_discover,
3434 
3435 	.poll_group_create = spdk_nvmf_rdma_poll_group_create,
3436 	.poll_group_destroy = spdk_nvmf_rdma_poll_group_destroy,
3437 	.poll_group_add = spdk_nvmf_rdma_poll_group_add,
3438 	.poll_group_poll = spdk_nvmf_rdma_poll_group_poll,
3439 
3440 	.req_free = spdk_nvmf_rdma_request_free,
3441 	.req_complete = spdk_nvmf_rdma_request_complete,
3442 
3443 	.qpair_fini = spdk_nvmf_rdma_close_qpair,
3444 	.qpair_get_peer_trid = spdk_nvmf_rdma_qpair_get_peer_trid,
3445 	.qpair_get_local_trid = spdk_nvmf_rdma_qpair_get_local_trid,
3446 	.qpair_get_listen_trid = spdk_nvmf_rdma_qpair_get_listen_trid,
3447 
3448 };
3449 
3450 SPDK_LOG_REGISTER_COMPONENT("rdma", SPDK_LOG_RDMA)
3451