1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2016 Intel Corporation. All rights reserved. 3 * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk/stdinc.h" 8 9 #include "spdk/config.h" 10 #include "spdk/thread.h" 11 #include "spdk/likely.h" 12 #include "spdk/nvmf_transport.h" 13 #include "spdk/string.h" 14 #include "spdk/trace.h" 15 #include "spdk/tree.h" 16 #include "spdk/util.h" 17 18 #include "spdk_internal/assert.h" 19 #include "spdk/log.h" 20 #include "spdk_internal/rdma.h" 21 22 #include "nvmf_internal.h" 23 #include "transport.h" 24 25 #include "spdk_internal/trace_defs.h" 26 27 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {}; 28 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma; 29 30 /* 31 RDMA Connection Resource Defaults 32 */ 33 #define NVMF_DEFAULT_MSDBD 16 34 #define NVMF_DEFAULT_TX_SGE SPDK_NVMF_MAX_SGL_ENTRIES 35 #define NVMF_DEFAULT_RSP_SGE 1 36 #define NVMF_DEFAULT_RX_SGE 2 37 38 SPDK_STATIC_ASSERT(NVMF_DEFAULT_MSDBD <= SPDK_NVMF_MAX_SGL_ENTRIES, 39 "MSDBD must not exceed SPDK_NVMF_MAX_SGL_ENTRIES"); 40 41 /* The RDMA completion queue size */ 42 #define DEFAULT_NVMF_RDMA_CQ_SIZE 4096 43 #define MAX_WR_PER_QP(queue_depth) (queue_depth * 3 + 2) 44 45 static int g_spdk_nvmf_ibv_query_mask = 46 IBV_QP_STATE | 47 IBV_QP_PKEY_INDEX | 48 IBV_QP_PORT | 49 IBV_QP_ACCESS_FLAGS | 50 IBV_QP_AV | 51 IBV_QP_PATH_MTU | 52 IBV_QP_DEST_QPN | 53 IBV_QP_RQ_PSN | 54 IBV_QP_MAX_DEST_RD_ATOMIC | 55 IBV_QP_MIN_RNR_TIMER | 56 IBV_QP_SQ_PSN | 57 IBV_QP_TIMEOUT | 58 IBV_QP_RETRY_CNT | 59 IBV_QP_RNR_RETRY | 60 IBV_QP_MAX_QP_RD_ATOMIC; 61 62 enum spdk_nvmf_rdma_request_state { 63 /* The request is not currently in use */ 64 RDMA_REQUEST_STATE_FREE = 0, 65 66 /* Initial state when request first received */ 67 RDMA_REQUEST_STATE_NEW, 68 69 /* The request is queued until a data buffer is available. */ 70 RDMA_REQUEST_STATE_NEED_BUFFER, 71 72 /* The request is waiting on RDMA queue depth availability 73 * to transfer data from the host to the controller. 74 */ 75 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 76 77 /* The request is currently transferring data from the host to the controller. */ 78 RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 79 80 /* The request is ready to execute at the block device */ 81 RDMA_REQUEST_STATE_READY_TO_EXECUTE, 82 83 /* The request is currently executing at the block device */ 84 RDMA_REQUEST_STATE_EXECUTING, 85 86 /* The request finished executing at the block device */ 87 RDMA_REQUEST_STATE_EXECUTED, 88 89 /* The request is waiting on RDMA queue depth availability 90 * to transfer data from the controller to the host. 91 */ 92 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 93 94 /* The request is waiting on RDMA queue depth availability 95 * to send response to the host. 96 */ 97 RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING, 98 99 /* The request is ready to send a completion */ 100 RDMA_REQUEST_STATE_READY_TO_COMPLETE, 101 102 /* The request is currently transferring data from the controller to the host. */ 103 RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 104 105 /* The request currently has an outstanding completion without an 106 * associated data transfer. 107 */ 108 RDMA_REQUEST_STATE_COMPLETING, 109 110 /* The request completed and can be marked free. */ 111 RDMA_REQUEST_STATE_COMPLETED, 112 113 /* Terminator */ 114 RDMA_REQUEST_NUM_STATES, 115 }; 116 117 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA) 118 { 119 spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r'); 120 spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW, 121 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 122 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 123 spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 124 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 125 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 126 spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H", 127 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 128 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 129 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 130 spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C", 131 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 132 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 133 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 134 spdk_trace_register_description("RDMA_REQ_TX_H2C", 135 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 136 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 137 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 138 spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE", 139 TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 140 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 141 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 142 spdk_trace_register_description("RDMA_REQ_EXECUTING", 143 TRACE_RDMA_REQUEST_STATE_EXECUTING, 144 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 145 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 146 spdk_trace_register_description("RDMA_REQ_EXECUTED", 147 TRACE_RDMA_REQUEST_STATE_EXECUTED, 148 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 149 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 150 spdk_trace_register_description("RDMA_REQ_RDY2COMPL_PEND", 151 TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING, 152 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 153 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 154 spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL", 155 TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 156 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 157 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 158 spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H", 159 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 160 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 161 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 162 spdk_trace_register_description("RDMA_REQ_COMPLETING", 163 TRACE_RDMA_REQUEST_STATE_COMPLETING, 164 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 165 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 166 spdk_trace_register_description("RDMA_REQ_COMPLETED", 167 TRACE_RDMA_REQUEST_STATE_COMPLETED, 168 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 169 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 170 171 spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE, 172 OWNER_NONE, OBJECT_NONE, 0, 173 SPDK_TRACE_ARG_TYPE_INT, ""); 174 spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT, 175 OWNER_NONE, OBJECT_NONE, 0, 176 SPDK_TRACE_ARG_TYPE_INT, "type"); 177 spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT, 178 OWNER_NONE, OBJECT_NONE, 0, 179 SPDK_TRACE_ARG_TYPE_INT, "type"); 180 spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE, 181 OWNER_NONE, OBJECT_NONE, 0, 182 SPDK_TRACE_ARG_TYPE_PTR, "state"); 183 spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT, 184 OWNER_NONE, OBJECT_NONE, 0, 185 SPDK_TRACE_ARG_TYPE_INT, ""); 186 spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY, 187 OWNER_NONE, OBJECT_NONE, 0, 188 SPDK_TRACE_ARG_TYPE_INT, ""); 189 } 190 191 enum spdk_nvmf_rdma_wr_type { 192 RDMA_WR_TYPE_RECV, 193 RDMA_WR_TYPE_SEND, 194 RDMA_WR_TYPE_DATA, 195 }; 196 197 struct spdk_nvmf_rdma_wr { 198 /* Uses enum spdk_nvmf_rdma_wr_type */ 199 uint8_t type; 200 }; 201 202 /* This structure holds commands as they are received off the wire. 203 * It must be dynamically paired with a full request object 204 * (spdk_nvmf_rdma_request) to service a request. It is separate 205 * from the request because RDMA does not appear to order 206 * completions, so occasionally we'll get a new incoming 207 * command when there aren't any free request objects. 208 */ 209 struct spdk_nvmf_rdma_recv { 210 struct ibv_recv_wr wr; 211 struct ibv_sge sgl[NVMF_DEFAULT_RX_SGE]; 212 213 struct spdk_nvmf_rdma_qpair *qpair; 214 215 /* In-capsule data buffer */ 216 uint8_t *buf; 217 218 struct spdk_nvmf_rdma_wr rdma_wr; 219 uint64_t receive_tsc; 220 221 STAILQ_ENTRY(spdk_nvmf_rdma_recv) link; 222 }; 223 224 struct spdk_nvmf_rdma_request_data { 225 struct ibv_send_wr wr; 226 struct ibv_sge sgl[SPDK_NVMF_MAX_SGL_ENTRIES]; 227 }; 228 229 struct spdk_nvmf_rdma_request { 230 struct spdk_nvmf_request req; 231 232 bool fused_failed; 233 234 struct spdk_nvmf_rdma_wr data_wr; 235 struct spdk_nvmf_rdma_wr rsp_wr; 236 237 /* Uses enum spdk_nvmf_rdma_request_state */ 238 uint8_t state; 239 240 /* Data offset in req.iov */ 241 uint32_t offset; 242 243 struct spdk_nvmf_rdma_recv *recv; 244 245 struct { 246 struct ibv_send_wr wr; 247 struct ibv_sge sgl[NVMF_DEFAULT_RSP_SGE]; 248 } rsp; 249 250 uint16_t iovpos; 251 uint16_t num_outstanding_data_wr; 252 /* Used to split Write IO with multi SGL payload */ 253 uint16_t num_remaining_data_wr; 254 uint64_t receive_tsc; 255 struct spdk_nvmf_rdma_request *fused_pair; 256 STAILQ_ENTRY(spdk_nvmf_rdma_request) state_link; 257 struct ibv_send_wr *remaining_tranfer_in_wrs; 258 struct ibv_send_wr *transfer_wr; 259 struct spdk_nvmf_rdma_request_data data; 260 }; 261 262 struct spdk_nvmf_rdma_resource_opts { 263 struct spdk_nvmf_rdma_qpair *qpair; 264 /* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */ 265 void *qp; 266 struct spdk_rdma_mem_map *map; 267 uint32_t max_queue_depth; 268 uint32_t in_capsule_data_size; 269 bool shared; 270 }; 271 272 struct spdk_nvmf_rdma_resources { 273 /* Array of size "max_queue_depth" containing RDMA requests. */ 274 struct spdk_nvmf_rdma_request *reqs; 275 276 /* Array of size "max_queue_depth" containing RDMA recvs. */ 277 struct spdk_nvmf_rdma_recv *recvs; 278 279 /* Array of size "max_queue_depth" containing 64 byte capsules 280 * used for receive. 281 */ 282 union nvmf_h2c_msg *cmds; 283 284 /* Array of size "max_queue_depth" containing 16 byte completions 285 * to be sent back to the user. 286 */ 287 union nvmf_c2h_msg *cpls; 288 289 /* Array of size "max_queue_depth * InCapsuleDataSize" containing 290 * buffers to be used for in capsule data. 291 */ 292 void *bufs; 293 294 /* Receives that are waiting for a request object */ 295 STAILQ_HEAD(, spdk_nvmf_rdma_recv) incoming_queue; 296 297 /* Queue to track free requests */ 298 STAILQ_HEAD(, spdk_nvmf_rdma_request) free_queue; 299 }; 300 301 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair); 302 303 typedef void (*spdk_poller_destroy_cb)(void *ctx); 304 305 struct spdk_nvmf_rdma_ibv_event_ctx { 306 struct spdk_nvmf_rdma_qpair *rqpair; 307 spdk_nvmf_rdma_qpair_ibv_event cb_fn; 308 /* Link to other ibv events associated with this qpair */ 309 STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx) link; 310 }; 311 312 struct spdk_nvmf_rdma_qpair { 313 struct spdk_nvmf_qpair qpair; 314 315 struct spdk_nvmf_rdma_device *device; 316 struct spdk_nvmf_rdma_poller *poller; 317 318 struct spdk_rdma_qp *rdma_qp; 319 struct rdma_cm_id *cm_id; 320 struct spdk_rdma_srq *srq; 321 struct rdma_cm_id *listen_id; 322 323 /* Cache the QP number to improve QP search by RB tree. */ 324 uint32_t qp_num; 325 326 /* The maximum number of I/O outstanding on this connection at one time */ 327 uint16_t max_queue_depth; 328 329 /* The maximum number of active RDMA READ and ATOMIC operations at one time */ 330 uint16_t max_read_depth; 331 332 /* The maximum number of RDMA SEND operations at one time */ 333 uint32_t max_send_depth; 334 335 /* The current number of outstanding WRs from this qpair's 336 * recv queue. Should not exceed device->attr.max_queue_depth. 337 */ 338 uint16_t current_recv_depth; 339 340 /* The current number of active RDMA READ operations */ 341 uint16_t current_read_depth; 342 343 /* The current number of posted WRs from this qpair's 344 * send queue. Should not exceed max_send_depth. 345 */ 346 uint32_t current_send_depth; 347 348 /* The maximum number of SGEs per WR on the send queue */ 349 uint32_t max_send_sge; 350 351 /* The maximum number of SGEs per WR on the recv queue */ 352 uint32_t max_recv_sge; 353 354 struct spdk_nvmf_rdma_resources *resources; 355 356 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_read_queue; 357 358 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_write_queue; 359 360 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_send_queue; 361 362 /* Number of requests not in the free state */ 363 uint32_t qd; 364 365 RB_ENTRY(spdk_nvmf_rdma_qpair) node; 366 367 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) recv_link; 368 369 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) send_link; 370 371 /* IBV queue pair attributes: they are used to manage 372 * qp state and recover from errors. 373 */ 374 enum ibv_qp_state ibv_state; 375 376 /* Points to the a request that has fuse bits set to 377 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting 378 * for the request that has SPDK_NVME_CMD_FUSE_SECOND. 379 */ 380 struct spdk_nvmf_rdma_request *fused_first; 381 382 /* 383 * io_channel which is used to destroy qpair when it is removed from poll group 384 */ 385 struct spdk_io_channel *destruct_channel; 386 387 /* List of ibv async events */ 388 STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx) ibv_events; 389 390 /* Lets us know that we have received the last_wqe event. */ 391 bool last_wqe_reached; 392 393 /* Indicate that nvmf_rdma_close_qpair is called */ 394 bool to_close; 395 }; 396 397 struct spdk_nvmf_rdma_poller_stat { 398 uint64_t completions; 399 uint64_t polls; 400 uint64_t idle_polls; 401 uint64_t requests; 402 uint64_t request_latency; 403 uint64_t pending_free_request; 404 uint64_t pending_rdma_read; 405 uint64_t pending_rdma_write; 406 uint64_t pending_rdma_send; 407 struct spdk_rdma_qp_stats qp_stats; 408 }; 409 410 struct spdk_nvmf_rdma_poller { 411 struct spdk_nvmf_rdma_device *device; 412 struct spdk_nvmf_rdma_poll_group *group; 413 414 int num_cqe; 415 int required_num_wr; 416 struct ibv_cq *cq; 417 418 /* The maximum number of I/O outstanding on the shared receive queue at one time */ 419 uint16_t max_srq_depth; 420 bool need_destroy; 421 422 /* Shared receive queue */ 423 struct spdk_rdma_srq *srq; 424 425 struct spdk_nvmf_rdma_resources *resources; 426 struct spdk_nvmf_rdma_poller_stat stat; 427 428 spdk_poller_destroy_cb destroy_cb; 429 void *destroy_cb_ctx; 430 431 RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs; 432 433 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_recv; 434 435 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_send; 436 437 TAILQ_ENTRY(spdk_nvmf_rdma_poller) link; 438 }; 439 440 struct spdk_nvmf_rdma_poll_group_stat { 441 uint64_t pending_data_buffer; 442 }; 443 444 struct spdk_nvmf_rdma_poll_group { 445 struct spdk_nvmf_transport_poll_group group; 446 struct spdk_nvmf_rdma_poll_group_stat stat; 447 TAILQ_HEAD(, spdk_nvmf_rdma_poller) pollers; 448 TAILQ_ENTRY(spdk_nvmf_rdma_poll_group) link; 449 }; 450 451 struct spdk_nvmf_rdma_conn_sched { 452 struct spdk_nvmf_rdma_poll_group *next_admin_pg; 453 struct spdk_nvmf_rdma_poll_group *next_io_pg; 454 }; 455 456 /* Assuming rdma_cm uses just one protection domain per ibv_context. */ 457 struct spdk_nvmf_rdma_device { 458 struct ibv_device_attr attr; 459 struct ibv_context *context; 460 461 struct spdk_rdma_mem_map *map; 462 struct ibv_pd *pd; 463 464 int num_srq; 465 bool need_destroy; 466 bool ready_to_destroy; 467 bool is_ready; 468 469 TAILQ_ENTRY(spdk_nvmf_rdma_device) link; 470 }; 471 472 struct spdk_nvmf_rdma_port { 473 const struct spdk_nvme_transport_id *trid; 474 struct rdma_cm_id *id; 475 struct spdk_nvmf_rdma_device *device; 476 TAILQ_ENTRY(spdk_nvmf_rdma_port) link; 477 }; 478 479 struct rdma_transport_opts { 480 int num_cqe; 481 uint32_t max_srq_depth; 482 bool no_srq; 483 bool no_wr_batching; 484 int acceptor_backlog; 485 }; 486 487 struct spdk_nvmf_rdma_transport { 488 struct spdk_nvmf_transport transport; 489 struct rdma_transport_opts rdma_opts; 490 491 struct spdk_nvmf_rdma_conn_sched conn_sched; 492 493 struct rdma_event_channel *event_channel; 494 495 struct spdk_mempool *data_wr_pool; 496 497 struct spdk_poller *accept_poller; 498 499 /* fields used to poll RDMA/IB events */ 500 nfds_t npoll_fds; 501 struct pollfd *poll_fds; 502 503 TAILQ_HEAD(, spdk_nvmf_rdma_device) devices; 504 TAILQ_HEAD(, spdk_nvmf_rdma_port) ports; 505 TAILQ_HEAD(, spdk_nvmf_rdma_poll_group) poll_groups; 506 507 /* ports that are removed unexpectedly and need retry listen */ 508 TAILQ_HEAD(, spdk_nvmf_rdma_port) retry_ports; 509 }; 510 511 struct poller_manage_ctx { 512 struct spdk_nvmf_rdma_transport *rtransport; 513 struct spdk_nvmf_rdma_poll_group *rgroup; 514 struct spdk_nvmf_rdma_poller *rpoller; 515 struct spdk_nvmf_rdma_device *device; 516 517 struct spdk_thread *thread; 518 volatile int *inflight_op_counter; 519 }; 520 521 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = { 522 { 523 "num_cqe", offsetof(struct rdma_transport_opts, num_cqe), 524 spdk_json_decode_int32, true 525 }, 526 { 527 "max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth), 528 spdk_json_decode_uint32, true 529 }, 530 { 531 "no_srq", offsetof(struct rdma_transport_opts, no_srq), 532 spdk_json_decode_bool, true 533 }, 534 { 535 "no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching), 536 spdk_json_decode_bool, true 537 }, 538 { 539 "acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog), 540 spdk_json_decode_int32, true 541 }, 542 }; 543 544 static int 545 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2) 546 { 547 return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num; 548 } 549 550 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare); 551 552 static bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 553 struct spdk_nvmf_rdma_request *rdma_req); 554 555 static void _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 556 struct spdk_nvmf_rdma_poller *rpoller); 557 558 static void _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 559 struct spdk_nvmf_rdma_poller *rpoller); 560 561 static void _nvmf_rdma_remove_destroyed_device(void *c); 562 563 static inline int 564 nvmf_rdma_check_ibv_state(enum ibv_qp_state state) 565 { 566 switch (state) { 567 case IBV_QPS_RESET: 568 case IBV_QPS_INIT: 569 case IBV_QPS_RTR: 570 case IBV_QPS_RTS: 571 case IBV_QPS_SQD: 572 case IBV_QPS_SQE: 573 case IBV_QPS_ERR: 574 return 0; 575 default: 576 return -1; 577 } 578 } 579 580 static inline enum spdk_nvme_media_error_status_code 581 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) { 582 enum spdk_nvme_media_error_status_code result; 583 switch (err_type) 584 { 585 case SPDK_DIF_REFTAG_ERROR: 586 result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR; 587 break; 588 case SPDK_DIF_APPTAG_ERROR: 589 result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR; 590 break; 591 case SPDK_DIF_GUARD_ERROR: 592 result = SPDK_NVME_SC_GUARD_CHECK_ERROR; 593 break; 594 default: 595 SPDK_UNREACHABLE(); 596 } 597 598 return result; 599 } 600 601 static enum ibv_qp_state 602 nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) { 603 enum ibv_qp_state old_state, new_state; 604 struct ibv_qp_attr qp_attr; 605 struct ibv_qp_init_attr init_attr; 606 int rc; 607 608 old_state = rqpair->ibv_state; 609 rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr, 610 g_spdk_nvmf_ibv_query_mask, &init_attr); 611 612 if (rc) 613 { 614 SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n"); 615 return IBV_QPS_ERR + 1; 616 } 617 618 new_state = qp_attr.qp_state; 619 rqpair->ibv_state = new_state; 620 qp_attr.ah_attr.port_num = qp_attr.port_num; 621 622 rc = nvmf_rdma_check_ibv_state(new_state); 623 if (rc) 624 { 625 SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state); 626 /* 627 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8 628 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR 629 */ 630 return IBV_QPS_ERR + 1; 631 } 632 633 if (old_state != new_state) 634 { 635 spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, (uintptr_t)rqpair, new_state); 636 } 637 return new_state; 638 } 639 640 /* 641 * Return data_wrs to pool starting from \b data_wr 642 * Request's own response and data WR are excluded 643 */ 644 static void 645 _nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req, 646 struct ibv_send_wr *data_wr, 647 struct spdk_mempool *pool) 648 { 649 struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES]; 650 struct spdk_nvmf_rdma_request_data *nvmf_data; 651 struct ibv_send_wr *next_send_wr; 652 uint64_t req_wrid = (uint64_t)&rdma_req->data_wr; 653 uint32_t num_wrs = 0; 654 655 while (data_wr && data_wr->wr_id == req_wrid) { 656 nvmf_data = SPDK_CONTAINEROF(data_wr, struct spdk_nvmf_rdma_request_data, wr); 657 memset(nvmf_data->sgl, 0, sizeof(data_wr->sg_list[0]) * data_wr->num_sge); 658 data_wr->num_sge = 0; 659 next_send_wr = data_wr->next; 660 if (data_wr != &rdma_req->data.wr) { 661 data_wr->next = NULL; 662 assert(num_wrs < SPDK_NVMF_MAX_SGL_ENTRIES); 663 work_requests[num_wrs] = nvmf_data; 664 num_wrs++; 665 } 666 data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : next_send_wr; 667 } 668 669 if (num_wrs) { 670 spdk_mempool_put_bulk(pool, (void **) work_requests, num_wrs); 671 } 672 } 673 674 static void 675 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req, 676 struct spdk_nvmf_rdma_transport *rtransport) 677 { 678 rdma_req->num_outstanding_data_wr = 0; 679 680 _nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool); 681 682 rdma_req->data.wr.next = NULL; 683 rdma_req->rsp.wr.next = NULL; 684 } 685 686 static void 687 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req) 688 { 689 SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool); 690 if (req->req.cmd) { 691 SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode); 692 } 693 if (req->recv) { 694 SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id); 695 } 696 } 697 698 static void 699 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair) 700 { 701 int i; 702 703 SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid); 704 for (i = 0; i < rqpair->max_queue_depth; i++) { 705 if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) { 706 nvmf_rdma_dump_request(&rqpair->resources->reqs[i]); 707 } 708 } 709 } 710 711 static void 712 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources) 713 { 714 spdk_free(resources->cmds); 715 spdk_free(resources->cpls); 716 spdk_free(resources->bufs); 717 spdk_free(resources->reqs); 718 spdk_free(resources->recvs); 719 free(resources); 720 } 721 722 723 static struct spdk_nvmf_rdma_resources * 724 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts) 725 { 726 struct spdk_nvmf_rdma_resources *resources; 727 struct spdk_nvmf_rdma_request *rdma_req; 728 struct spdk_nvmf_rdma_recv *rdma_recv; 729 struct spdk_rdma_qp *qp = NULL; 730 struct spdk_rdma_srq *srq = NULL; 731 struct ibv_recv_wr *bad_wr = NULL; 732 struct spdk_rdma_memory_translation translation; 733 uint32_t i; 734 int rc = 0; 735 736 resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources)); 737 if (!resources) { 738 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 739 return NULL; 740 } 741 742 resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs), 743 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 744 resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs), 745 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 746 resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds), 747 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 748 resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls), 749 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 750 751 if (opts->in_capsule_data_size > 0) { 752 resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size, 753 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, 754 SPDK_MALLOC_DMA); 755 } 756 757 if (!resources->reqs || !resources->recvs || !resources->cmds || 758 !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) { 759 SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n"); 760 goto cleanup; 761 } 762 763 SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx\n", 764 resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds)); 765 SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx\n", 766 resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls)); 767 if (resources->bufs) { 768 SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x\n", 769 resources->bufs, opts->max_queue_depth * 770 opts->in_capsule_data_size); 771 } 772 773 /* Initialize queues */ 774 STAILQ_INIT(&resources->incoming_queue); 775 STAILQ_INIT(&resources->free_queue); 776 777 if (opts->shared) { 778 srq = (struct spdk_rdma_srq *)opts->qp; 779 } else { 780 qp = (struct spdk_rdma_qp *)opts->qp; 781 } 782 783 for (i = 0; i < opts->max_queue_depth; i++) { 784 rdma_recv = &resources->recvs[i]; 785 rdma_recv->qpair = opts->qpair; 786 787 /* Set up memory to receive commands */ 788 if (resources->bufs) { 789 rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i * 790 opts->in_capsule_data_size)); 791 } 792 793 rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV; 794 795 rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i]; 796 rdma_recv->sgl[0].length = sizeof(resources->cmds[i]); 797 rc = spdk_rdma_get_translation(opts->map, &resources->cmds[i], sizeof(resources->cmds[i]), 798 &translation); 799 if (rc) { 800 goto cleanup; 801 } 802 rdma_recv->sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation); 803 rdma_recv->wr.num_sge = 1; 804 805 if (rdma_recv->buf) { 806 rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf; 807 rdma_recv->sgl[1].length = opts->in_capsule_data_size; 808 rc = spdk_rdma_get_translation(opts->map, rdma_recv->buf, opts->in_capsule_data_size, &translation); 809 if (rc) { 810 goto cleanup; 811 } 812 rdma_recv->sgl[1].lkey = spdk_rdma_memory_translation_get_lkey(&translation); 813 rdma_recv->wr.num_sge++; 814 } 815 816 rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr; 817 rdma_recv->wr.sg_list = rdma_recv->sgl; 818 if (srq) { 819 spdk_rdma_srq_queue_recv_wrs(srq, &rdma_recv->wr); 820 } else { 821 spdk_rdma_qp_queue_recv_wrs(qp, &rdma_recv->wr); 822 } 823 } 824 825 for (i = 0; i < opts->max_queue_depth; i++) { 826 rdma_req = &resources->reqs[i]; 827 828 if (opts->qpair != NULL) { 829 rdma_req->req.qpair = &opts->qpair->qpair; 830 } else { 831 rdma_req->req.qpair = NULL; 832 } 833 rdma_req->req.cmd = NULL; 834 rdma_req->req.iovcnt = 0; 835 rdma_req->req.stripped_data = NULL; 836 837 /* Set up memory to send responses */ 838 rdma_req->req.rsp = &resources->cpls[i]; 839 840 rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i]; 841 rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]); 842 rc = spdk_rdma_get_translation(opts->map, &resources->cpls[i], sizeof(resources->cpls[i]), 843 &translation); 844 if (rc) { 845 goto cleanup; 846 } 847 rdma_req->rsp.sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation); 848 849 rdma_req->rsp_wr.type = RDMA_WR_TYPE_SEND; 850 rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp_wr; 851 rdma_req->rsp.wr.next = NULL; 852 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 853 rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED; 854 rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl; 855 rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl); 856 857 /* Set up memory for data buffers */ 858 rdma_req->data_wr.type = RDMA_WR_TYPE_DATA; 859 rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data_wr; 860 rdma_req->data.wr.next = NULL; 861 rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED; 862 rdma_req->data.wr.sg_list = rdma_req->data.sgl; 863 rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl); 864 865 /* Initialize request state to FREE */ 866 rdma_req->state = RDMA_REQUEST_STATE_FREE; 867 STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link); 868 } 869 870 if (srq) { 871 rc = spdk_rdma_srq_flush_recv_wrs(srq, &bad_wr); 872 } else { 873 rc = spdk_rdma_qp_flush_recv_wrs(qp, &bad_wr); 874 } 875 876 if (rc) { 877 goto cleanup; 878 } 879 880 return resources; 881 882 cleanup: 883 nvmf_rdma_resources_destroy(resources); 884 return NULL; 885 } 886 887 static void 888 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair) 889 { 890 struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx; 891 STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) { 892 ctx->rqpair = NULL; 893 /* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */ 894 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 895 } 896 } 897 898 static void nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller); 899 900 static void 901 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair) 902 { 903 struct spdk_nvmf_rdma_recv *rdma_recv, *recv_tmp; 904 struct ibv_recv_wr *bad_recv_wr = NULL; 905 int rc; 906 907 spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair); 908 909 if (rqpair->qd != 0) { 910 struct spdk_nvmf_qpair *qpair = &rqpair->qpair; 911 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(qpair->transport, 912 struct spdk_nvmf_rdma_transport, transport); 913 struct spdk_nvmf_rdma_request *req; 914 uint32_t i, max_req_count = 0; 915 916 SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd); 917 918 if (rqpair->srq == NULL) { 919 nvmf_rdma_dump_qpair_contents(rqpair); 920 max_req_count = rqpair->max_queue_depth; 921 } else if (rqpair->poller && rqpair->resources) { 922 max_req_count = rqpair->poller->max_srq_depth; 923 } 924 925 SPDK_DEBUGLOG(rdma, "Release incomplete requests\n"); 926 for (i = 0; i < max_req_count; i++) { 927 req = &rqpair->resources->reqs[i]; 928 if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) { 929 /* nvmf_rdma_request_process checks qpair ibv and internal state 930 * and completes a request */ 931 nvmf_rdma_request_process(rtransport, req); 932 } 933 } 934 assert(rqpair->qd == 0); 935 } 936 937 if (rqpair->poller) { 938 RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair); 939 940 if (rqpair->srq != NULL && rqpair->resources != NULL) { 941 /* Drop all received but unprocessed commands for this queue and return them to SRQ */ 942 STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) { 943 if (rqpair == rdma_recv->qpair) { 944 STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link); 945 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr); 946 rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr); 947 if (rc) { 948 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 949 } 950 } 951 } 952 } 953 } 954 955 if (rqpair->cm_id) { 956 if (rqpair->rdma_qp != NULL) { 957 spdk_rdma_qp_destroy(rqpair->rdma_qp); 958 rqpair->rdma_qp = NULL; 959 } 960 961 if (rqpair->poller != NULL && rqpair->srq == NULL) { 962 rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth); 963 } 964 } 965 966 if (rqpair->srq == NULL && rqpair->resources != NULL) { 967 nvmf_rdma_resources_destroy(rqpair->resources); 968 } 969 970 nvmf_rdma_qpair_clean_ibv_events(rqpair); 971 972 if (rqpair->destruct_channel) { 973 spdk_put_io_channel(rqpair->destruct_channel); 974 rqpair->destruct_channel = NULL; 975 } 976 977 if (rqpair->poller && rqpair->poller->need_destroy && RB_EMPTY(&rqpair->poller->qpairs)) { 978 nvmf_rdma_poller_destroy(rqpair->poller); 979 } 980 981 /* destroy cm_id last so cma device will not be freed before we destroy the cq. */ 982 if (rqpair->cm_id) { 983 rdma_destroy_id(rqpair->cm_id); 984 } 985 986 free(rqpair); 987 } 988 989 static int 990 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device) 991 { 992 struct spdk_nvmf_rdma_poller *rpoller; 993 int rc, num_cqe, required_num_wr; 994 995 /* Enlarge CQ size dynamically */ 996 rpoller = rqpair->poller; 997 required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth); 998 num_cqe = rpoller->num_cqe; 999 if (num_cqe < required_num_wr) { 1000 num_cqe = spdk_max(num_cqe * 2, required_num_wr); 1001 num_cqe = spdk_min(num_cqe, device->attr.max_cqe); 1002 } 1003 1004 if (rpoller->num_cqe != num_cqe) { 1005 if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) { 1006 SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n" 1007 "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe); 1008 return -1; 1009 } 1010 if (required_num_wr > device->attr.max_cqe) { 1011 SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n", 1012 required_num_wr, device->attr.max_cqe); 1013 return -1; 1014 } 1015 1016 SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe); 1017 rc = ibv_resize_cq(rpoller->cq, num_cqe); 1018 if (rc) { 1019 SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); 1020 return -1; 1021 } 1022 1023 rpoller->num_cqe = num_cqe; 1024 } 1025 1026 rpoller->required_num_wr = required_num_wr; 1027 return 0; 1028 } 1029 1030 static int 1031 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair) 1032 { 1033 struct spdk_nvmf_rdma_qpair *rqpair; 1034 struct spdk_nvmf_rdma_transport *rtransport; 1035 struct spdk_nvmf_transport *transport; 1036 struct spdk_nvmf_rdma_resource_opts opts; 1037 struct spdk_nvmf_rdma_device *device; 1038 struct spdk_rdma_qp_init_attr qp_init_attr = {}; 1039 1040 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1041 device = rqpair->device; 1042 1043 qp_init_attr.qp_context = rqpair; 1044 qp_init_attr.pd = device->pd; 1045 qp_init_attr.send_cq = rqpair->poller->cq; 1046 qp_init_attr.recv_cq = rqpair->poller->cq; 1047 1048 if (rqpair->srq) { 1049 qp_init_attr.srq = rqpair->srq->srq; 1050 } else { 1051 qp_init_attr.cap.max_recv_wr = rqpair->max_queue_depth; 1052 } 1053 1054 /* SEND, READ, and WRITE operations */ 1055 qp_init_attr.cap.max_send_wr = (uint32_t)rqpair->max_queue_depth * 2; 1056 qp_init_attr.cap.max_send_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE); 1057 qp_init_attr.cap.max_recv_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 1058 qp_init_attr.stats = &rqpair->poller->stat.qp_stats; 1059 1060 if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) { 1061 SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n"); 1062 goto error; 1063 } 1064 1065 rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr); 1066 if (!rqpair->rdma_qp) { 1067 goto error; 1068 } 1069 1070 rqpair->qp_num = rqpair->rdma_qp->qp->qp_num; 1071 1072 rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2), 1073 qp_init_attr.cap.max_send_wr); 1074 rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge); 1075 rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge); 1076 spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair); 1077 SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair); 1078 1079 if (rqpair->poller->srq == NULL) { 1080 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 1081 transport = &rtransport->transport; 1082 1083 opts.qp = rqpair->rdma_qp; 1084 opts.map = device->map; 1085 opts.qpair = rqpair; 1086 opts.shared = false; 1087 opts.max_queue_depth = rqpair->max_queue_depth; 1088 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 1089 1090 rqpair->resources = nvmf_rdma_resources_create(&opts); 1091 1092 if (!rqpair->resources) { 1093 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 1094 rdma_destroy_qp(rqpair->cm_id); 1095 goto error; 1096 } 1097 } else { 1098 rqpair->resources = rqpair->poller->resources; 1099 } 1100 1101 rqpair->current_recv_depth = 0; 1102 STAILQ_INIT(&rqpair->pending_rdma_read_queue); 1103 STAILQ_INIT(&rqpair->pending_rdma_write_queue); 1104 STAILQ_INIT(&rqpair->pending_rdma_send_queue); 1105 1106 return 0; 1107 1108 error: 1109 rdma_destroy_id(rqpair->cm_id); 1110 rqpair->cm_id = NULL; 1111 return -1; 1112 } 1113 1114 /* Append the given recv wr structure to the resource structs outstanding recvs list. */ 1115 /* This function accepts either a single wr or the first wr in a linked list. */ 1116 static void 1117 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first) 1118 { 1119 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1120 struct spdk_nvmf_rdma_transport, transport); 1121 1122 if (rqpair->srq != NULL) { 1123 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, first); 1124 } else { 1125 if (spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, first)) { 1126 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link); 1127 } 1128 } 1129 1130 if (rtransport->rdma_opts.no_wr_batching) { 1131 _poller_submit_recvs(rtransport, rqpair->poller); 1132 } 1133 } 1134 1135 static int 1136 request_transfer_in(struct spdk_nvmf_request *req) 1137 { 1138 struct spdk_nvmf_rdma_request *rdma_req; 1139 struct spdk_nvmf_qpair *qpair; 1140 struct spdk_nvmf_rdma_qpair *rqpair; 1141 struct spdk_nvmf_rdma_transport *rtransport; 1142 1143 qpair = req->qpair; 1144 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1145 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1146 rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1147 struct spdk_nvmf_rdma_transport, transport); 1148 1149 assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); 1150 assert(rdma_req != NULL); 1151 1152 if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, rdma_req->transfer_wr)) { 1153 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1154 } 1155 if (rtransport->rdma_opts.no_wr_batching) { 1156 _poller_submit_sends(rtransport, rqpair->poller); 1157 } 1158 1159 assert(rqpair->current_read_depth + rdma_req->num_outstanding_data_wr <= rqpair->max_read_depth); 1160 rqpair->current_read_depth += rdma_req->num_outstanding_data_wr; 1161 assert(rqpair->current_send_depth + rdma_req->num_outstanding_data_wr <= rqpair->max_send_depth); 1162 rqpair->current_send_depth += rdma_req->num_outstanding_data_wr; 1163 return 0; 1164 } 1165 1166 static inline int 1167 nvmf_rdma_request_reset_transfer_in(struct spdk_nvmf_rdma_request *rdma_req, 1168 struct spdk_nvmf_rdma_transport *rtransport) 1169 { 1170 /* Put completed WRs back to pool and move transfer_wr pointer */ 1171 _nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool); 1172 rdma_req->transfer_wr = rdma_req->remaining_tranfer_in_wrs; 1173 rdma_req->remaining_tranfer_in_wrs = NULL; 1174 rdma_req->num_outstanding_data_wr = rdma_req->num_remaining_data_wr; 1175 rdma_req->num_remaining_data_wr = 0; 1176 1177 return 0; 1178 } 1179 1180 static inline int 1181 request_prepare_transfer_in_part(struct spdk_nvmf_request *req, uint32_t num_reads_available) 1182 { 1183 struct spdk_nvmf_rdma_request *rdma_req; 1184 struct ibv_send_wr *wr; 1185 uint32_t i; 1186 1187 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1188 1189 assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); 1190 assert(rdma_req != NULL); 1191 assert(num_reads_available > 0); 1192 assert(rdma_req->num_outstanding_data_wr > num_reads_available); 1193 wr = rdma_req->transfer_wr; 1194 1195 for (i = 0; i < num_reads_available - 1; i++) { 1196 wr = wr->next; 1197 } 1198 1199 rdma_req->remaining_tranfer_in_wrs = wr->next; 1200 rdma_req->num_remaining_data_wr = rdma_req->num_outstanding_data_wr - num_reads_available; 1201 rdma_req->num_outstanding_data_wr = num_reads_available; 1202 /* Break chain of WRs to send only part. Once this portion completes, we continue sending RDMA_READs */ 1203 wr->next = NULL; 1204 1205 return 0; 1206 } 1207 1208 static int 1209 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted) 1210 { 1211 int num_outstanding_data_wr = 0; 1212 struct spdk_nvmf_rdma_request *rdma_req; 1213 struct spdk_nvmf_qpair *qpair; 1214 struct spdk_nvmf_rdma_qpair *rqpair; 1215 struct spdk_nvme_cpl *rsp; 1216 struct ibv_send_wr *first = NULL; 1217 struct spdk_nvmf_rdma_transport *rtransport; 1218 1219 *data_posted = 0; 1220 qpair = req->qpair; 1221 rsp = &req->rsp->nvme_cpl; 1222 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1223 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1224 rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1225 struct spdk_nvmf_rdma_transport, transport); 1226 1227 /* Advance our sq_head pointer */ 1228 if (qpair->sq_head == qpair->sq_head_max) { 1229 qpair->sq_head = 0; 1230 } else { 1231 qpair->sq_head++; 1232 } 1233 rsp->sqhd = qpair->sq_head; 1234 1235 /* queue the capsule for the recv buffer */ 1236 assert(rdma_req->recv != NULL); 1237 1238 nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr); 1239 1240 rdma_req->recv = NULL; 1241 assert(rqpair->current_recv_depth > 0); 1242 rqpair->current_recv_depth--; 1243 1244 /* Build the response which consists of optional 1245 * RDMA WRITEs to transfer data, plus an RDMA SEND 1246 * containing the response. 1247 */ 1248 first = &rdma_req->rsp.wr; 1249 1250 if (rsp->status.sc != SPDK_NVME_SC_SUCCESS) { 1251 /* On failure, data was not read from the controller. So clear the 1252 * number of outstanding data WRs to zero. 1253 */ 1254 rdma_req->num_outstanding_data_wr = 0; 1255 } else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1256 first = rdma_req->transfer_wr; 1257 *data_posted = 1; 1258 num_outstanding_data_wr = rdma_req->num_outstanding_data_wr; 1259 } 1260 if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) { 1261 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1262 } 1263 if (rtransport->rdma_opts.no_wr_batching) { 1264 _poller_submit_sends(rtransport, rqpair->poller); 1265 } 1266 1267 /* +1 for the rsp wr */ 1268 assert(rqpair->current_send_depth + num_outstanding_data_wr + 1 <= rqpair->max_send_depth); 1269 rqpair->current_send_depth += num_outstanding_data_wr + 1; 1270 1271 return 0; 1272 } 1273 1274 static int 1275 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair) 1276 { 1277 struct spdk_nvmf_rdma_accept_private_data accept_data; 1278 struct rdma_conn_param ctrlr_event_data = {}; 1279 int rc; 1280 1281 accept_data.recfmt = 0; 1282 accept_data.crqsize = rqpair->max_queue_depth; 1283 1284 ctrlr_event_data.private_data = &accept_data; 1285 ctrlr_event_data.private_data_len = sizeof(accept_data); 1286 if (id->ps == RDMA_PS_TCP) { 1287 ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */ 1288 ctrlr_event_data.initiator_depth = rqpair->max_read_depth; 1289 } 1290 1291 /* Configure infinite retries for the initiator side qpair. 1292 * We need to pass this value to the initiator to prevent the 1293 * initiator side NIC from completing SEND requests back to the 1294 * initiator with status rnr_retry_count_exceeded. */ 1295 ctrlr_event_data.rnr_retry_count = 0x7; 1296 1297 /* When qpair is created without use of rdma cm API, an additional 1298 * information must be provided to initiator in the connection response: 1299 * whether qpair is using SRQ and its qp_num 1300 * Fields below are ignored by rdma cm if qpair has been 1301 * created using rdma cm API. */ 1302 ctrlr_event_data.srq = rqpair->srq ? 1 : 0; 1303 ctrlr_event_data.qp_num = rqpair->qp_num; 1304 1305 rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data); 1306 if (rc) { 1307 SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno); 1308 } else { 1309 SPDK_DEBUGLOG(rdma, "Sent back the accept\n"); 1310 } 1311 1312 return rc; 1313 } 1314 1315 static void 1316 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error) 1317 { 1318 struct spdk_nvmf_rdma_reject_private_data rej_data; 1319 1320 rej_data.recfmt = 0; 1321 rej_data.sts = error; 1322 1323 rdma_reject(id, &rej_data, sizeof(rej_data)); 1324 } 1325 1326 static int 1327 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event) 1328 { 1329 struct spdk_nvmf_rdma_transport *rtransport; 1330 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 1331 struct spdk_nvmf_rdma_port *port; 1332 struct rdma_conn_param *rdma_param = NULL; 1333 const struct spdk_nvmf_rdma_request_private_data *private_data = NULL; 1334 uint16_t max_queue_depth; 1335 uint16_t max_read_depth; 1336 1337 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 1338 1339 assert(event->id != NULL); /* Impossible. Can't even reject the connection. */ 1340 assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */ 1341 1342 rdma_param = &event->param.conn; 1343 if (rdma_param->private_data == NULL || 1344 rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1345 SPDK_ERRLOG("connect request: no private data provided\n"); 1346 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH); 1347 return -1; 1348 } 1349 1350 private_data = rdma_param->private_data; 1351 if (private_data->recfmt != 0) { 1352 SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n"); 1353 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT); 1354 return -1; 1355 } 1356 1357 SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n", 1358 event->id->verbs->device->name, event->id->verbs->device->dev_name); 1359 1360 port = event->listen_id->context; 1361 SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n", 1362 event->listen_id, event->listen_id->verbs, port); 1363 1364 /* Figure out the supported queue depth. This is a multi-step process 1365 * that takes into account hardware maximums, host provided values, 1366 * and our target's internal memory limits */ 1367 1368 SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n"); 1369 1370 /* Start with the maximum queue depth allowed by the target */ 1371 max_queue_depth = rtransport->transport.opts.max_queue_depth; 1372 max_read_depth = rtransport->transport.opts.max_queue_depth; 1373 SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n", 1374 rtransport->transport.opts.max_queue_depth); 1375 1376 /* Next check the local NIC's hardware limitations */ 1377 SPDK_DEBUGLOG(rdma, 1378 "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n", 1379 port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom); 1380 max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr); 1381 max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom); 1382 1383 /* Next check the remote NIC's hardware limitations */ 1384 SPDK_DEBUGLOG(rdma, 1385 "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n", 1386 rdma_param->initiator_depth, rdma_param->responder_resources); 1387 /* from man3 rdma_get_cm_event 1388 * responder_resources - Specifies the number of responder resources that is requested by the recipient. 1389 * The responder_resources field must match the initiator depth specified by the remote node when running 1390 * the rdma_connect and rdma_accept functions. */ 1391 if (rdma_param->responder_resources != 0) { 1392 if (private_data->qid) { 1393 SPDK_DEBUGLOG(rdma, "Host (Initiator) is not allowed to use RDMA operations," 1394 " responder_resources must be 0 but set to %u\n", 1395 rdma_param->responder_resources); 1396 } else { 1397 SPDK_WARNLOG("Host (Initiator) is not allowed to use RDMA operations," 1398 " responder_resources must be 0 but set to %u\n", 1399 rdma_param->responder_resources); 1400 } 1401 } 1402 /* from man3 rdma_get_cm_event 1403 * initiator_depth - Specifies the maximum number of outstanding RDMA read operations that the recipient holds. 1404 * The initiator_depth field must match the responder resources specified by the remote node when running 1405 * the rdma_connect and rdma_accept functions. */ 1406 if (rdma_param->initiator_depth == 0) { 1407 SPDK_ERRLOG("Host (Initiator) doesn't support RDMA_READ or atomic operations\n"); 1408 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_IRD); 1409 return -1; 1410 } 1411 max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth); 1412 1413 SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize); 1414 SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize); 1415 max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize); 1416 max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1); 1417 1418 SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n", 1419 max_queue_depth, max_read_depth); 1420 1421 rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair)); 1422 if (rqpair == NULL) { 1423 SPDK_ERRLOG("Could not allocate new connection.\n"); 1424 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 1425 return -1; 1426 } 1427 1428 rqpair->device = port->device; 1429 rqpair->max_queue_depth = max_queue_depth; 1430 rqpair->max_read_depth = max_read_depth; 1431 rqpair->cm_id = event->id; 1432 rqpair->listen_id = event->listen_id; 1433 rqpair->qpair.transport = transport; 1434 STAILQ_INIT(&rqpair->ibv_events); 1435 /* use qid from the private data to determine the qpair type 1436 qid will be set to the appropriate value when the controller is created */ 1437 rqpair->qpair.qid = private_data->qid; 1438 1439 event->id->context = &rqpair->qpair; 1440 1441 spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair); 1442 1443 return 0; 1444 } 1445 1446 static inline void 1447 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next, 1448 enum spdk_nvme_data_transfer xfer) 1449 { 1450 if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1451 wr->opcode = IBV_WR_RDMA_WRITE; 1452 wr->send_flags = 0; 1453 wr->next = next; 1454 } else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 1455 wr->opcode = IBV_WR_RDMA_READ; 1456 wr->send_flags = IBV_SEND_SIGNALED; 1457 wr->next = NULL; 1458 } else { 1459 assert(0); 1460 } 1461 } 1462 1463 static int 1464 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport, 1465 struct spdk_nvmf_rdma_request *rdma_req, 1466 uint32_t num_sgl_descriptors) 1467 { 1468 struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES]; 1469 struct spdk_nvmf_rdma_request_data *current_data_wr; 1470 uint32_t i; 1471 1472 if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) { 1473 SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n", 1474 num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES); 1475 return -EINVAL; 1476 } 1477 1478 if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) { 1479 return -ENOMEM; 1480 } 1481 1482 current_data_wr = &rdma_req->data; 1483 1484 for (i = 0; i < num_sgl_descriptors; i++) { 1485 nvmf_rdma_setup_wr(¤t_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer); 1486 current_data_wr->wr.next = &work_requests[i]->wr; 1487 current_data_wr = work_requests[i]; 1488 current_data_wr->wr.sg_list = current_data_wr->sgl; 1489 current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id; 1490 } 1491 1492 nvmf_rdma_setup_wr(¤t_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1493 1494 return 0; 1495 } 1496 1497 static inline void 1498 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req) 1499 { 1500 struct ibv_send_wr *wr = &rdma_req->data.wr; 1501 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1502 1503 wr->wr.rdma.rkey = sgl->keyed.key; 1504 wr->wr.rdma.remote_addr = sgl->address; 1505 nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1506 } 1507 1508 static inline void 1509 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs) 1510 { 1511 struct ibv_send_wr *wr = &rdma_req->data.wr; 1512 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1513 uint32_t i; 1514 int j; 1515 uint64_t remote_addr_offset = 0; 1516 1517 for (i = 0; i < num_wrs; ++i) { 1518 wr->wr.rdma.rkey = sgl->keyed.key; 1519 wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset; 1520 for (j = 0; j < wr->num_sge; ++j) { 1521 remote_addr_offset += wr->sg_list[j].length; 1522 } 1523 wr = wr->next; 1524 } 1525 } 1526 1527 static int 1528 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup, 1529 struct spdk_nvmf_rdma_device *device, 1530 struct spdk_nvmf_rdma_request *rdma_req, 1531 struct ibv_send_wr *wr, 1532 uint32_t total_length) 1533 { 1534 struct spdk_rdma_memory_translation mem_translation; 1535 struct ibv_sge *sg_ele; 1536 struct iovec *iov; 1537 uint32_t lkey, remaining; 1538 int rc; 1539 1540 wr->num_sge = 0; 1541 1542 while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) { 1543 iov = &rdma_req->req.iov[rdma_req->iovpos]; 1544 rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation); 1545 if (spdk_unlikely(rc)) { 1546 return rc; 1547 } 1548 1549 lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation); 1550 sg_ele = &wr->sg_list[wr->num_sge]; 1551 remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length); 1552 1553 sg_ele->lkey = lkey; 1554 sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset; 1555 sg_ele->length = remaining; 1556 SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr, 1557 sg_ele->length); 1558 rdma_req->offset += sg_ele->length; 1559 total_length -= sg_ele->length; 1560 wr->num_sge++; 1561 1562 if (rdma_req->offset == iov->iov_len) { 1563 rdma_req->offset = 0; 1564 rdma_req->iovpos++; 1565 } 1566 } 1567 1568 if (total_length) { 1569 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1570 return -EINVAL; 1571 } 1572 1573 return 0; 1574 } 1575 1576 static int 1577 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_poll_group *rgroup, 1578 struct spdk_nvmf_rdma_device *device, 1579 struct spdk_nvmf_rdma_request *rdma_req, 1580 struct ibv_send_wr *wr, 1581 uint32_t total_length, 1582 uint32_t num_extra_wrs) 1583 { 1584 struct spdk_rdma_memory_translation mem_translation; 1585 struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx; 1586 struct ibv_sge *sg_ele; 1587 struct iovec *iov; 1588 struct iovec *rdma_iov; 1589 uint32_t lkey, remaining; 1590 uint32_t remaining_data_block, data_block_size, md_size; 1591 uint32_t sge_len; 1592 int rc; 1593 1594 data_block_size = dif_ctx->block_size - dif_ctx->md_size; 1595 1596 if (spdk_likely(!rdma_req->req.stripped_data)) { 1597 rdma_iov = rdma_req->req.iov; 1598 remaining_data_block = data_block_size; 1599 md_size = dif_ctx->md_size; 1600 } else { 1601 rdma_iov = rdma_req->req.stripped_data->iov; 1602 total_length = total_length / dif_ctx->block_size * data_block_size; 1603 remaining_data_block = total_length; 1604 md_size = 0; 1605 } 1606 1607 wr->num_sge = 0; 1608 1609 while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) { 1610 iov = rdma_iov + rdma_req->iovpos; 1611 rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation); 1612 if (spdk_unlikely(rc)) { 1613 return rc; 1614 } 1615 1616 lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation); 1617 sg_ele = &wr->sg_list[wr->num_sge]; 1618 remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length); 1619 1620 while (remaining) { 1621 if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) { 1622 if (num_extra_wrs > 0 && wr->next) { 1623 wr = wr->next; 1624 wr->num_sge = 0; 1625 sg_ele = &wr->sg_list[wr->num_sge]; 1626 num_extra_wrs--; 1627 } else { 1628 break; 1629 } 1630 } 1631 sg_ele->lkey = lkey; 1632 sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset); 1633 sge_len = spdk_min(remaining, remaining_data_block); 1634 sg_ele->length = sge_len; 1635 SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, 1636 sg_ele->addr, sg_ele->length); 1637 remaining -= sge_len; 1638 remaining_data_block -= sge_len; 1639 rdma_req->offset += sge_len; 1640 total_length -= sge_len; 1641 1642 sg_ele++; 1643 wr->num_sge++; 1644 1645 if (remaining_data_block == 0) { 1646 /* skip metadata */ 1647 rdma_req->offset += md_size; 1648 total_length -= md_size; 1649 /* Metadata that do not fit this IO buffer will be included in the next IO buffer */ 1650 remaining -= spdk_min(remaining, md_size); 1651 remaining_data_block = data_block_size; 1652 } 1653 1654 if (remaining == 0) { 1655 /* By subtracting the size of the last IOV from the offset, we ensure that we skip 1656 the remaining metadata bits at the beginning of the next buffer */ 1657 rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset); 1658 rdma_req->iovpos++; 1659 } 1660 } 1661 } 1662 1663 if (total_length) { 1664 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1665 return -EINVAL; 1666 } 1667 1668 return 0; 1669 } 1670 1671 static inline uint32_t 1672 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size) 1673 { 1674 /* estimate the number of SG entries and WRs needed to process the request */ 1675 uint32_t num_sge = 0; 1676 uint32_t i; 1677 uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size); 1678 1679 for (i = 0; i < num_buffers && length > 0; i++) { 1680 uint32_t buffer_len = spdk_min(length, io_unit_size); 1681 uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size); 1682 1683 if (num_sge_in_block * block_size > buffer_len) { 1684 ++num_sge_in_block; 1685 } 1686 num_sge += num_sge_in_block; 1687 length -= buffer_len; 1688 } 1689 return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES); 1690 } 1691 1692 static int 1693 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport, 1694 struct spdk_nvmf_rdma_device *device, 1695 struct spdk_nvmf_rdma_request *rdma_req) 1696 { 1697 struct spdk_nvmf_rdma_qpair *rqpair; 1698 struct spdk_nvmf_rdma_poll_group *rgroup; 1699 struct spdk_nvmf_request *req = &rdma_req->req; 1700 struct ibv_send_wr *wr = &rdma_req->data.wr; 1701 int rc; 1702 uint32_t num_wrs = 1; 1703 uint32_t length; 1704 1705 rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair); 1706 rgroup = rqpair->poller->group; 1707 1708 /* rdma wr specifics */ 1709 nvmf_rdma_setup_request(rdma_req); 1710 1711 length = req->length; 1712 if (spdk_unlikely(req->dif_enabled)) { 1713 req->dif.orig_length = length; 1714 length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx); 1715 req->dif.elba_length = length; 1716 } 1717 1718 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, 1719 length); 1720 if (rc != 0) { 1721 return rc; 1722 } 1723 1724 assert(req->iovcnt <= rqpair->max_send_sge); 1725 1726 /* When dif_insert_or_strip is true and the I/O data length is greater than one block, 1727 * the stripped_buffers are got for DIF stripping. */ 1728 if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) 1729 && (req->dif.elba_length > req->dif.dif_ctx.block_size))) { 1730 rc = nvmf_request_get_stripped_buffers(req, &rgroup->group, 1731 &rtransport->transport, req->dif.orig_length); 1732 if (rc != 0) { 1733 SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc); 1734 } 1735 } 1736 1737 rdma_req->iovpos = 0; 1738 1739 if (spdk_unlikely(req->dif_enabled)) { 1740 num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size, 1741 req->dif.dif_ctx.block_size); 1742 if (num_wrs > 1) { 1743 rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1); 1744 if (rc != 0) { 1745 goto err_exit; 1746 } 1747 } 1748 1749 rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, wr, length, num_wrs - 1); 1750 if (spdk_unlikely(rc != 0)) { 1751 goto err_exit; 1752 } 1753 1754 if (num_wrs > 1) { 1755 nvmf_rdma_update_remote_addr(rdma_req, num_wrs); 1756 } 1757 } else { 1758 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length); 1759 if (spdk_unlikely(rc != 0)) { 1760 goto err_exit; 1761 } 1762 } 1763 1764 /* set the number of outstanding data WRs for this request. */ 1765 rdma_req->num_outstanding_data_wr = num_wrs; 1766 1767 return rc; 1768 1769 err_exit: 1770 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1771 nvmf_rdma_request_free_data(rdma_req, rtransport); 1772 req->iovcnt = 0; 1773 return rc; 1774 } 1775 1776 static int 1777 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1778 struct spdk_nvmf_rdma_device *device, 1779 struct spdk_nvmf_rdma_request *rdma_req) 1780 { 1781 struct spdk_nvmf_rdma_qpair *rqpair; 1782 struct spdk_nvmf_rdma_poll_group *rgroup; 1783 struct ibv_send_wr *current_wr; 1784 struct spdk_nvmf_request *req = &rdma_req->req; 1785 struct spdk_nvme_sgl_descriptor *inline_segment, *desc; 1786 uint32_t num_sgl_descriptors; 1787 uint32_t lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0; 1788 uint32_t i; 1789 int rc; 1790 1791 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1792 rgroup = rqpair->poller->group; 1793 1794 inline_segment = &req->cmd->nvme_cmd.dptr.sgl1; 1795 assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT); 1796 assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET); 1797 1798 num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor); 1799 assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES); 1800 1801 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1802 for (i = 0; i < num_sgl_descriptors; i++) { 1803 if (spdk_likely(!req->dif_enabled)) { 1804 lengths[i] = desc->keyed.length; 1805 } else { 1806 req->dif.orig_length += desc->keyed.length; 1807 lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx); 1808 req->dif.elba_length += lengths[i]; 1809 } 1810 total_length += lengths[i]; 1811 desc++; 1812 } 1813 1814 if (total_length > rtransport->transport.opts.max_io_size) { 1815 SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n", 1816 total_length, rtransport->transport.opts.max_io_size); 1817 req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1818 return -EINVAL; 1819 } 1820 1821 if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) { 1822 return -ENOMEM; 1823 } 1824 1825 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length); 1826 if (rc != 0) { 1827 nvmf_rdma_request_free_data(rdma_req, rtransport); 1828 return rc; 1829 } 1830 1831 /* When dif_insert_or_strip is true and the I/O data length is greater than one block, 1832 * the stripped_buffers are got for DIF stripping. */ 1833 if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) 1834 && (req->dif.elba_length > req->dif.dif_ctx.block_size))) { 1835 rc = nvmf_request_get_stripped_buffers(req, &rgroup->group, 1836 &rtransport->transport, req->dif.orig_length); 1837 if (rc != 0) { 1838 SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc); 1839 } 1840 } 1841 1842 /* The first WR must always be the embedded data WR. This is how we unwind them later. */ 1843 current_wr = &rdma_req->data.wr; 1844 assert(current_wr != NULL); 1845 1846 req->length = 0; 1847 rdma_req->iovpos = 0; 1848 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1849 for (i = 0; i < num_sgl_descriptors; i++) { 1850 /* The descriptors must be keyed data block descriptors with an address, not an offset. */ 1851 if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK || 1852 desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) { 1853 rc = -EINVAL; 1854 goto err_exit; 1855 } 1856 1857 if (spdk_likely(!req->dif_enabled)) { 1858 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i]); 1859 } else { 1860 rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, current_wr, 1861 lengths[i], 0); 1862 } 1863 if (rc != 0) { 1864 rc = -ENOMEM; 1865 goto err_exit; 1866 } 1867 1868 req->length += desc->keyed.length; 1869 current_wr->wr.rdma.rkey = desc->keyed.key; 1870 current_wr->wr.rdma.remote_addr = desc->address; 1871 current_wr = current_wr->next; 1872 desc++; 1873 } 1874 1875 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1876 /* Go back to the last descriptor in the list. */ 1877 desc--; 1878 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1879 if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1880 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1881 rdma_req->rsp.wr.imm_data = desc->keyed.key; 1882 } 1883 } 1884 #endif 1885 1886 rdma_req->num_outstanding_data_wr = num_sgl_descriptors; 1887 1888 return 0; 1889 1890 err_exit: 1891 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1892 nvmf_rdma_request_free_data(rdma_req, rtransport); 1893 return rc; 1894 } 1895 1896 static int 1897 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1898 struct spdk_nvmf_rdma_device *device, 1899 struct spdk_nvmf_rdma_request *rdma_req) 1900 { 1901 struct spdk_nvmf_request *req = &rdma_req->req; 1902 struct spdk_nvme_cpl *rsp; 1903 struct spdk_nvme_sgl_descriptor *sgl; 1904 int rc; 1905 uint32_t length; 1906 1907 rsp = &req->rsp->nvme_cpl; 1908 sgl = &req->cmd->nvme_cmd.dptr.sgl1; 1909 1910 if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK && 1911 (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS || 1912 sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) { 1913 1914 length = sgl->keyed.length; 1915 if (length > rtransport->transport.opts.max_io_size) { 1916 SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n", 1917 length, rtransport->transport.opts.max_io_size); 1918 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1919 return -1; 1920 } 1921 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1922 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1923 if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1924 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1925 rdma_req->rsp.wr.imm_data = sgl->keyed.key; 1926 } 1927 } 1928 #endif 1929 1930 /* fill request length and populate iovs */ 1931 req->length = length; 1932 1933 rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req); 1934 if (spdk_unlikely(rc < 0)) { 1935 if (rc == -EINVAL) { 1936 SPDK_ERRLOG("SGL length exceeds the max I/O size\n"); 1937 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1938 return -1; 1939 } 1940 /* No available buffers. Queue this request up. */ 1941 SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req); 1942 return 0; 1943 } 1944 1945 SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req, 1946 req->iovcnt); 1947 1948 return 0; 1949 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK && 1950 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1951 uint64_t offset = sgl->address; 1952 uint32_t max_len = rtransport->transport.opts.in_capsule_data_size; 1953 1954 SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n", 1955 offset, sgl->unkeyed.length); 1956 1957 if (offset > max_len) { 1958 SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n", 1959 offset, max_len); 1960 rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET; 1961 return -1; 1962 } 1963 max_len -= (uint32_t)offset; 1964 1965 if (sgl->unkeyed.length > max_len) { 1966 SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n", 1967 sgl->unkeyed.length, max_len); 1968 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1969 return -1; 1970 } 1971 1972 rdma_req->num_outstanding_data_wr = 0; 1973 req->data_from_pool = false; 1974 req->length = sgl->unkeyed.length; 1975 1976 req->iov[0].iov_base = rdma_req->recv->buf + offset; 1977 req->iov[0].iov_len = req->length; 1978 req->iovcnt = 1; 1979 1980 return 0; 1981 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT && 1982 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1983 1984 rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req); 1985 if (rc == -ENOMEM) { 1986 SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req); 1987 return 0; 1988 } else if (rc == -EINVAL) { 1989 SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n"); 1990 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1991 return -1; 1992 } 1993 1994 SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req, 1995 req->iovcnt); 1996 1997 return 0; 1998 } 1999 2000 SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n", 2001 sgl->generic.type, sgl->generic.subtype); 2002 rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID; 2003 return -1; 2004 } 2005 2006 static void 2007 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req, 2008 struct spdk_nvmf_rdma_transport *rtransport) 2009 { 2010 struct spdk_nvmf_rdma_qpair *rqpair; 2011 struct spdk_nvmf_rdma_poll_group *rgroup; 2012 2013 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 2014 if (rdma_req->req.data_from_pool) { 2015 rgroup = rqpair->poller->group; 2016 2017 spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport); 2018 } 2019 if (rdma_req->req.stripped_data) { 2020 nvmf_request_free_stripped_buffers(&rdma_req->req, 2021 &rqpair->poller->group->group, 2022 &rtransport->transport); 2023 } 2024 nvmf_rdma_request_free_data(rdma_req, rtransport); 2025 rdma_req->req.length = 0; 2026 rdma_req->req.iovcnt = 0; 2027 rdma_req->offset = 0; 2028 rdma_req->req.dif_enabled = false; 2029 rdma_req->fused_failed = false; 2030 rdma_req->transfer_wr = NULL; 2031 if (rdma_req->fused_pair) { 2032 /* This req was part of a valid fused pair, but failed before it got to 2033 * READ_TO_EXECUTE state. This means we need to fail the other request 2034 * in the pair, because it is no longer part of a valid pair. If the pair 2035 * already reached READY_TO_EXECUTE state, we need to kick it. 2036 */ 2037 rdma_req->fused_pair->fused_failed = true; 2038 if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 2039 nvmf_rdma_request_process(rtransport, rdma_req->fused_pair); 2040 } 2041 rdma_req->fused_pair = NULL; 2042 } 2043 memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif)); 2044 rqpair->qd--; 2045 2046 STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link); 2047 rdma_req->state = RDMA_REQUEST_STATE_FREE; 2048 } 2049 2050 static void 2051 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport, 2052 struct spdk_nvmf_rdma_qpair *rqpair, 2053 struct spdk_nvmf_rdma_request *rdma_req) 2054 { 2055 enum spdk_nvme_cmd_fuse last, next; 2056 2057 last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE; 2058 next = rdma_req->req.cmd->nvme_cmd.fuse; 2059 2060 assert(last != SPDK_NVME_CMD_FUSE_SECOND); 2061 2062 if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) { 2063 return; 2064 } 2065 2066 if (last == SPDK_NVME_CMD_FUSE_FIRST) { 2067 if (next == SPDK_NVME_CMD_FUSE_SECOND) { 2068 /* This is a valid pair of fused commands. Point them at each other 2069 * so they can be submitted consecutively once ready to be executed. 2070 */ 2071 rqpair->fused_first->fused_pair = rdma_req; 2072 rdma_req->fused_pair = rqpair->fused_first; 2073 rqpair->fused_first = NULL; 2074 return; 2075 } else { 2076 /* Mark the last req as failed since it wasn't followed by a SECOND. */ 2077 rqpair->fused_first->fused_failed = true; 2078 2079 /* If the last req is in READY_TO_EXECUTE state, then call 2080 * nvmf_rdma_request_process(), otherwise nothing else will kick it. 2081 */ 2082 if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 2083 nvmf_rdma_request_process(rtransport, rqpair->fused_first); 2084 } 2085 2086 rqpair->fused_first = NULL; 2087 } 2088 } 2089 2090 if (next == SPDK_NVME_CMD_FUSE_FIRST) { 2091 /* Set rqpair->fused_first here so that we know to check that the next request 2092 * is a SECOND (and to fail this one if it isn't). 2093 */ 2094 rqpair->fused_first = rdma_req; 2095 } else if (next == SPDK_NVME_CMD_FUSE_SECOND) { 2096 /* Mark this req failed since it ia SECOND and the last one was not a FIRST. */ 2097 rdma_req->fused_failed = true; 2098 } 2099 } 2100 2101 bool 2102 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 2103 struct spdk_nvmf_rdma_request *rdma_req) 2104 { 2105 struct spdk_nvmf_rdma_qpair *rqpair; 2106 struct spdk_nvmf_rdma_device *device; 2107 struct spdk_nvmf_rdma_poll_group *rgroup; 2108 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2109 int rc; 2110 struct spdk_nvmf_rdma_recv *rdma_recv; 2111 enum spdk_nvmf_rdma_request_state prev_state; 2112 bool progress = false; 2113 int data_posted; 2114 uint32_t num_blocks, num_rdma_reads_available, qdepth; 2115 2116 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 2117 device = rqpair->device; 2118 rgroup = rqpair->poller->group; 2119 2120 assert(rdma_req->state != RDMA_REQUEST_STATE_FREE); 2121 2122 /* If the queue pair is in an error state, force the request to the completed state 2123 * to release resources. */ 2124 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 2125 switch (rdma_req->state) { 2126 case RDMA_REQUEST_STATE_NEED_BUFFER: 2127 STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link); 2128 break; 2129 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 2130 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2131 break; 2132 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 2133 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2134 break; 2135 case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING: 2136 STAILQ_REMOVE(&rqpair->pending_rdma_send_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2137 break; 2138 default: 2139 break; 2140 } 2141 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2142 } 2143 2144 /* The loop here is to allow for several back-to-back state changes. */ 2145 do { 2146 prev_state = rdma_req->state; 2147 2148 SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state); 2149 2150 switch (rdma_req->state) { 2151 case RDMA_REQUEST_STATE_FREE: 2152 /* Some external code must kick a request into RDMA_REQUEST_STATE_NEW 2153 * to escape this state. */ 2154 break; 2155 case RDMA_REQUEST_STATE_NEW: 2156 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0, 2157 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2158 rdma_recv = rdma_req->recv; 2159 2160 /* The first element of the SGL is the NVMe command */ 2161 rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr; 2162 memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp)); 2163 rdma_req->transfer_wr = &rdma_req->data.wr; 2164 2165 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 2166 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2167 break; 2168 } 2169 2170 if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) { 2171 rdma_req->req.dif_enabled = true; 2172 } 2173 2174 nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req); 2175 2176 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2177 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 2178 rdma_req->rsp.wr.imm_data = 0; 2179 #endif 2180 2181 /* The next state transition depends on the data transfer needs of this request. */ 2182 rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req); 2183 2184 if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) { 2185 rsp->status.sct = SPDK_NVME_SCT_GENERIC; 2186 rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE; 2187 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link); 2188 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING; 2189 SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req); 2190 break; 2191 } 2192 2193 /* If no data to transfer, ready to execute. */ 2194 if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) { 2195 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2196 break; 2197 } 2198 2199 rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER; 2200 STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link); 2201 break; 2202 case RDMA_REQUEST_STATE_NEED_BUFFER: 2203 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0, 2204 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2205 2206 assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE); 2207 2208 if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) { 2209 /* This request needs to wait in line to obtain a buffer */ 2210 break; 2211 } 2212 2213 /* Try to get a data buffer */ 2214 rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req); 2215 if (rc < 0) { 2216 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2217 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link); 2218 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING; 2219 break; 2220 } 2221 2222 if (rdma_req->req.iovcnt == 0) { 2223 /* No buffers available. */ 2224 rgroup->stat.pending_data_buffer++; 2225 break; 2226 } 2227 2228 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2229 2230 /* If data is transferring from host to controller and the data didn't 2231 * arrive using in capsule data, we need to do a transfer from the host. 2232 */ 2233 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && 2234 rdma_req->req.data_from_pool) { 2235 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link); 2236 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING; 2237 break; 2238 } 2239 2240 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2241 break; 2242 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 2243 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0, 2244 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2245 2246 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) { 2247 /* This request needs to wait in line to perform RDMA */ 2248 break; 2249 } 2250 assert(rqpair->max_send_depth >= rqpair->current_send_depth); 2251 qdepth = rqpair->max_send_depth - rqpair->current_send_depth; 2252 assert(rqpair->max_read_depth >= rqpair->current_read_depth); 2253 num_rdma_reads_available = rqpair->max_read_depth - rqpair->current_read_depth; 2254 if (rdma_req->num_outstanding_data_wr > qdepth || 2255 rdma_req->num_outstanding_data_wr > num_rdma_reads_available) { 2256 if (num_rdma_reads_available && qdepth) { 2257 /* Send as much as we can */ 2258 request_prepare_transfer_in_part(&rdma_req->req, spdk_min(num_rdma_reads_available, qdepth)); 2259 } else { 2260 /* We can only have so many WRs outstanding. we have to wait until some finish. */ 2261 rqpair->poller->stat.pending_rdma_read++; 2262 break; 2263 } 2264 } 2265 2266 /* We have already verified that this request is the head of the queue. */ 2267 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link); 2268 2269 rc = request_transfer_in(&rdma_req->req); 2270 if (!rc) { 2271 rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER; 2272 } else { 2273 rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 2274 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link); 2275 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING; 2276 } 2277 break; 2278 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 2279 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0, 2280 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2281 /* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE 2282 * to escape this state. */ 2283 break; 2284 case RDMA_REQUEST_STATE_READY_TO_EXECUTE: 2285 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0, 2286 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2287 2288 if (spdk_unlikely(rdma_req->req.dif_enabled)) { 2289 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 2290 /* generate DIF for write operation */ 2291 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2292 assert(num_blocks > 0); 2293 2294 rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt, 2295 num_blocks, &rdma_req->req.dif.dif_ctx); 2296 if (rc != 0) { 2297 SPDK_ERRLOG("DIF generation failed\n"); 2298 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2299 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 2300 break; 2301 } 2302 } 2303 2304 assert(rdma_req->req.dif.elba_length >= rdma_req->req.length); 2305 /* set extended length before IO operation */ 2306 rdma_req->req.length = rdma_req->req.dif.elba_length; 2307 } 2308 2309 if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) { 2310 if (rdma_req->fused_failed) { 2311 /* This request failed FUSED semantics. Fail it immediately, without 2312 * even sending it to the target layer. 2313 */ 2314 rsp->status.sct = SPDK_NVME_SCT_GENERIC; 2315 rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED; 2316 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link); 2317 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING; 2318 break; 2319 } 2320 2321 if (rdma_req->fused_pair == NULL || 2322 rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 2323 /* This request is ready to execute, but either we don't know yet if it's 2324 * valid - i.e. this is a FIRST but we haven't received the next 2325 * request yet or the other request of this fused pair isn't ready to 2326 * execute. So break here and this request will get processed later either 2327 * when the other request is ready or we find that this request isn't valid. 2328 */ 2329 break; 2330 } 2331 } 2332 2333 /* If we get to this point, and this request is a fused command, we know that 2334 * it is part of valid sequence (FIRST followed by a SECOND) and that both 2335 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this 2336 * request, and the other request of the fused pair, in the correct order. 2337 * Also clear the ->fused_pair pointers on both requests, since after this point 2338 * we no longer need to maintain the relationship between these two requests. 2339 */ 2340 if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) { 2341 assert(rdma_req->fused_pair != NULL); 2342 assert(rdma_req->fused_pair->fused_pair != NULL); 2343 rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING; 2344 spdk_nvmf_request_exec(&rdma_req->fused_pair->req); 2345 rdma_req->fused_pair->fused_pair = NULL; 2346 rdma_req->fused_pair = NULL; 2347 } 2348 rdma_req->state = RDMA_REQUEST_STATE_EXECUTING; 2349 spdk_nvmf_request_exec(&rdma_req->req); 2350 if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) { 2351 assert(rdma_req->fused_pair != NULL); 2352 assert(rdma_req->fused_pair->fused_pair != NULL); 2353 rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING; 2354 spdk_nvmf_request_exec(&rdma_req->fused_pair->req); 2355 rdma_req->fused_pair->fused_pair = NULL; 2356 rdma_req->fused_pair = NULL; 2357 } 2358 break; 2359 case RDMA_REQUEST_STATE_EXECUTING: 2360 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0, 2361 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2362 /* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED 2363 * to escape this state. */ 2364 break; 2365 case RDMA_REQUEST_STATE_EXECUTED: 2366 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0, 2367 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2368 if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && 2369 rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2370 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link); 2371 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING; 2372 } else { 2373 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link); 2374 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING; 2375 } 2376 if (spdk_unlikely(rdma_req->req.dif_enabled)) { 2377 /* restore the original length */ 2378 rdma_req->req.length = rdma_req->req.dif.orig_length; 2379 2380 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2381 struct spdk_dif_error error_blk; 2382 2383 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2384 if (!rdma_req->req.stripped_data) { 2385 rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2386 &rdma_req->req.dif.dif_ctx, &error_blk); 2387 } else { 2388 rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov, 2389 rdma_req->req.stripped_data->iovcnt, 2390 rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2391 &rdma_req->req.dif.dif_ctx, &error_blk); 2392 } 2393 if (rc) { 2394 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2395 2396 SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type, 2397 error_blk.err_offset); 2398 rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR; 2399 rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type); 2400 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2401 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link); 2402 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING; 2403 } 2404 } 2405 } 2406 break; 2407 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 2408 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0, 2409 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2410 2411 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) { 2412 /* This request needs to wait in line to perform RDMA */ 2413 break; 2414 } 2415 if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) > 2416 rqpair->max_send_depth) { 2417 /* We can only have so many WRs outstanding. we have to wait until some finish. 2418 * +1 since each request has an additional wr in the resp. */ 2419 rqpair->poller->stat.pending_rdma_write++; 2420 break; 2421 } 2422 2423 /* We have already verified that this request is the head of the queue. */ 2424 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link); 2425 2426 /* The data transfer will be kicked off from 2427 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state. 2428 * We verified that data + response fit into send queue, so we can go to the next state directly 2429 */ 2430 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2431 break; 2432 case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING: 2433 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING, 0, 0, 2434 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2435 2436 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_send_queue)) { 2437 /* This request needs to wait in line to send the completion */ 2438 break; 2439 } 2440 2441 assert(rqpair->current_send_depth <= rqpair->max_send_depth); 2442 if (rqpair->current_send_depth == rqpair->max_send_depth) { 2443 /* We can only have so many WRs outstanding. we have to wait until some finish */ 2444 rqpair->poller->stat.pending_rdma_send++; 2445 break; 2446 } 2447 2448 /* We have already verified that this request is the head of the queue. */ 2449 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_send_queue, state_link); 2450 2451 /* The response sending will be kicked off from 2452 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state. 2453 */ 2454 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2455 break; 2456 case RDMA_REQUEST_STATE_READY_TO_COMPLETE: 2457 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0, 2458 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2459 rc = request_transfer_out(&rdma_req->req, &data_posted); 2460 assert(rc == 0); /* No good way to handle this currently */ 2461 if (rc) { 2462 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2463 } else { 2464 rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST : 2465 RDMA_REQUEST_STATE_COMPLETING; 2466 } 2467 break; 2468 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 2469 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0, 2470 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2471 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2472 * to escape this state. */ 2473 break; 2474 case RDMA_REQUEST_STATE_COMPLETING: 2475 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0, 2476 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2477 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2478 * to escape this state. */ 2479 break; 2480 case RDMA_REQUEST_STATE_COMPLETED: 2481 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0, 2482 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2483 2484 rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc; 2485 _nvmf_rdma_request_free(rdma_req, rtransport); 2486 break; 2487 case RDMA_REQUEST_NUM_STATES: 2488 default: 2489 assert(0); 2490 break; 2491 } 2492 2493 if (rdma_req->state != prev_state) { 2494 progress = true; 2495 } 2496 } while (rdma_req->state != prev_state); 2497 2498 return progress; 2499 } 2500 2501 /* Public API callbacks begin here */ 2502 2503 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128 2504 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128 2505 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096 2506 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128 2507 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096 2508 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072 2509 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES) 2510 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095 2511 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX 2512 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false 2513 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false 2514 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100 2515 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1 2516 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false 2517 2518 static void 2519 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts) 2520 { 2521 opts->max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH; 2522 opts->max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR; 2523 opts->in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE; 2524 opts->max_io_size = SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE; 2525 opts->io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE; 2526 opts->max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH; 2527 opts->num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS; 2528 opts->buf_cache_size = SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE; 2529 opts->dif_insert_or_strip = SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP; 2530 opts->abort_timeout_sec = SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC; 2531 opts->transport_specific = NULL; 2532 } 2533 2534 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport, 2535 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg); 2536 2537 static inline bool 2538 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device) 2539 { 2540 return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD || 2541 device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW; 2542 } 2543 2544 static int nvmf_rdma_accept(void *ctx); 2545 static bool nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport); 2546 static void destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport, 2547 struct spdk_nvmf_rdma_device *device); 2548 2549 static int 2550 create_ib_device(struct spdk_nvmf_rdma_transport *rtransport, struct ibv_context *context, 2551 struct spdk_nvmf_rdma_device **new_device) 2552 { 2553 struct spdk_nvmf_rdma_device *device; 2554 int flag = 0; 2555 int rc = 0; 2556 2557 device = calloc(1, sizeof(*device)); 2558 if (!device) { 2559 SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n"); 2560 return -ENOMEM; 2561 } 2562 device->context = context; 2563 rc = ibv_query_device(device->context, &device->attr); 2564 if (rc < 0) { 2565 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 2566 free(device); 2567 return rc; 2568 } 2569 2570 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2571 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) { 2572 SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,"); 2573 SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id); 2574 } 2575 2576 /** 2577 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE. 2578 * The Soft-RoCE RXE driver does not currently support send with invalidate, 2579 * but incorrectly reports that it does. There are changes making their way 2580 * through the kernel now that will enable this feature. When they are merged, 2581 * we can conditionally enable this feature. 2582 * 2583 * TODO: enable this for versions of the kernel rxe driver that support it. 2584 */ 2585 if (nvmf_rdma_is_rxe_device(device)) { 2586 device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS); 2587 } 2588 #endif 2589 2590 /* set up device context async ev fd as NON_BLOCKING */ 2591 flag = fcntl(device->context->async_fd, F_GETFL); 2592 rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK); 2593 if (rc < 0) { 2594 SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n"); 2595 free(device); 2596 return rc; 2597 } 2598 2599 TAILQ_INSERT_TAIL(&rtransport->devices, device, link); 2600 SPDK_DEBUGLOG(rdma, "New device %p is added to RDMA trasport\n", device); 2601 2602 if (g_nvmf_hooks.get_ibv_pd) { 2603 device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context); 2604 } else { 2605 device->pd = ibv_alloc_pd(device->context); 2606 } 2607 2608 if (!device->pd) { 2609 SPDK_ERRLOG("Unable to allocate protection domain.\n"); 2610 destroy_ib_device(rtransport, device); 2611 return -ENOMEM; 2612 } 2613 2614 assert(device->map == NULL); 2615 2616 device->map = spdk_rdma_create_mem_map(device->pd, &g_nvmf_hooks, SPDK_RDMA_MEMORY_MAP_ROLE_TARGET); 2617 if (!device->map) { 2618 SPDK_ERRLOG("Unable to allocate memory map for listen address\n"); 2619 destroy_ib_device(rtransport, device); 2620 return -ENOMEM; 2621 } 2622 2623 assert(device->map != NULL); 2624 assert(device->pd != NULL); 2625 2626 if (new_device) { 2627 *new_device = device; 2628 } 2629 SPDK_NOTICELOG("Create IB device %s(%p/%p) succeed.\n", ibv_get_device_name(context->device), 2630 device, context); 2631 2632 return 0; 2633 } 2634 2635 static void 2636 free_poll_fds(struct spdk_nvmf_rdma_transport *rtransport) 2637 { 2638 if (rtransport->poll_fds) { 2639 free(rtransport->poll_fds); 2640 rtransport->poll_fds = NULL; 2641 } 2642 rtransport->npoll_fds = 0; 2643 } 2644 2645 static int 2646 generate_poll_fds(struct spdk_nvmf_rdma_transport *rtransport) 2647 { 2648 /* Set up poll descriptor array to monitor events from RDMA and IB 2649 * in a single poll syscall 2650 */ 2651 int device_count = 0; 2652 int i = 0; 2653 struct spdk_nvmf_rdma_device *device, *tmp; 2654 2655 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 2656 device_count++; 2657 } 2658 2659 rtransport->npoll_fds = device_count + 1; 2660 2661 rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd)); 2662 if (rtransport->poll_fds == NULL) { 2663 SPDK_ERRLOG("poll_fds allocation failed\n"); 2664 return -ENOMEM; 2665 } 2666 2667 rtransport->poll_fds[i].fd = rtransport->event_channel->fd; 2668 rtransport->poll_fds[i++].events = POLLIN; 2669 2670 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 2671 rtransport->poll_fds[i].fd = device->context->async_fd; 2672 rtransport->poll_fds[i++].events = POLLIN; 2673 } 2674 2675 return 0; 2676 } 2677 2678 static struct spdk_nvmf_transport * 2679 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts) 2680 { 2681 int rc; 2682 struct spdk_nvmf_rdma_transport *rtransport; 2683 struct spdk_nvmf_rdma_device *device; 2684 struct ibv_context **contexts; 2685 uint32_t i; 2686 int flag; 2687 uint32_t sge_count; 2688 uint32_t min_shared_buffers; 2689 uint32_t min_in_capsule_data_size; 2690 int max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES; 2691 2692 rtransport = calloc(1, sizeof(*rtransport)); 2693 if (!rtransport) { 2694 return NULL; 2695 } 2696 2697 TAILQ_INIT(&rtransport->devices); 2698 TAILQ_INIT(&rtransport->ports); 2699 TAILQ_INIT(&rtransport->poll_groups); 2700 TAILQ_INIT(&rtransport->retry_ports); 2701 2702 rtransport->transport.ops = &spdk_nvmf_transport_rdma; 2703 rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE; 2704 rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH; 2705 rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ; 2706 rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG; 2707 rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING; 2708 if (opts->transport_specific != NULL && 2709 spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder, 2710 SPDK_COUNTOF(rdma_transport_opts_decoder), 2711 &rtransport->rdma_opts)) { 2712 SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n"); 2713 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2714 return NULL; 2715 } 2716 2717 SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n" 2718 " Transport opts: max_ioq_depth=%d, max_io_size=%d,\n" 2719 " max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n" 2720 " in_capsule_data_size=%d, max_aq_depth=%d,\n" 2721 " num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d," 2722 " acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n", 2723 opts->max_queue_depth, 2724 opts->max_io_size, 2725 opts->max_qpairs_per_ctrlr - 1, 2726 opts->io_unit_size, 2727 opts->in_capsule_data_size, 2728 opts->max_aq_depth, 2729 opts->num_shared_buffers, 2730 rtransport->rdma_opts.num_cqe, 2731 rtransport->rdma_opts.max_srq_depth, 2732 rtransport->rdma_opts.no_srq, 2733 rtransport->rdma_opts.acceptor_backlog, 2734 rtransport->rdma_opts.no_wr_batching, 2735 opts->abort_timeout_sec); 2736 2737 /* I/O unit size cannot be larger than max I/O size */ 2738 if (opts->io_unit_size > opts->max_io_size) { 2739 opts->io_unit_size = opts->max_io_size; 2740 } 2741 2742 if (rtransport->rdma_opts.acceptor_backlog <= 0) { 2743 SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n", 2744 SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG); 2745 rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG; 2746 } 2747 2748 if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) { 2749 SPDK_ERRLOG("The number of shared data buffers (%d) is less than" 2750 "the minimum number required to guarantee that forward progress can be made (%d)\n", 2751 opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2)); 2752 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2753 return NULL; 2754 } 2755 2756 /* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */ 2757 if (opts->buf_cache_size < UINT32_MAX) { 2758 min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size; 2759 if (min_shared_buffers > opts->num_shared_buffers) { 2760 SPDK_ERRLOG("There are not enough buffers to satisfy" 2761 "per-poll group caches for each thread. (%" PRIu32 ")" 2762 "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers); 2763 SPDK_ERRLOG("Please specify a larger number of shared buffers\n"); 2764 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2765 return NULL; 2766 } 2767 } 2768 2769 sge_count = opts->max_io_size / opts->io_unit_size; 2770 if (sge_count > NVMF_DEFAULT_TX_SGE) { 2771 SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size); 2772 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2773 return NULL; 2774 } 2775 2776 min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES; 2777 if (opts->in_capsule_data_size < min_in_capsule_data_size) { 2778 SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n", 2779 min_in_capsule_data_size); 2780 opts->in_capsule_data_size = min_in_capsule_data_size; 2781 } 2782 2783 rtransport->event_channel = rdma_create_event_channel(); 2784 if (rtransport->event_channel == NULL) { 2785 SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno)); 2786 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2787 return NULL; 2788 } 2789 2790 flag = fcntl(rtransport->event_channel->fd, F_GETFL); 2791 if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { 2792 SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n", 2793 rtransport->event_channel->fd, spdk_strerror(errno)); 2794 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2795 return NULL; 2796 } 2797 2798 rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data", 2799 opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES, 2800 sizeof(struct spdk_nvmf_rdma_request_data), 2801 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 2802 SPDK_ENV_SOCKET_ID_ANY); 2803 if (!rtransport->data_wr_pool) { 2804 if (spdk_mempool_lookup("spdk_nvmf_rdma_wr_data") != NULL) { 2805 SPDK_ERRLOG("Unable to allocate work request pool for poll group: already exists\n"); 2806 SPDK_ERRLOG("Probably running in multiprocess environment, which is " 2807 "unsupported by the nvmf library\n"); 2808 } else { 2809 SPDK_ERRLOG("Unable to allocate work request pool for poll group\n"); 2810 } 2811 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2812 return NULL; 2813 } 2814 2815 contexts = rdma_get_devices(NULL); 2816 if (contexts == NULL) { 2817 SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); 2818 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2819 return NULL; 2820 } 2821 2822 i = 0; 2823 rc = 0; 2824 while (contexts[i] != NULL) { 2825 rc = create_ib_device(rtransport, contexts[i], &device); 2826 if (rc < 0) { 2827 break; 2828 } 2829 i++; 2830 max_device_sge = spdk_min(max_device_sge, device->attr.max_sge); 2831 device->is_ready = true; 2832 } 2833 rdma_free_devices(contexts); 2834 2835 if (opts->io_unit_size * max_device_sge < opts->max_io_size) { 2836 /* divide and round up. */ 2837 opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge; 2838 2839 /* round up to the nearest 4k. */ 2840 opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK; 2841 2842 opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE); 2843 SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n", 2844 opts->io_unit_size); 2845 } 2846 2847 if (rc < 0) { 2848 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2849 return NULL; 2850 } 2851 2852 rc = generate_poll_fds(rtransport); 2853 if (rc < 0) { 2854 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2855 return NULL; 2856 } 2857 2858 rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport, 2859 opts->acceptor_poll_rate); 2860 if (!rtransport->accept_poller) { 2861 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2862 return NULL; 2863 } 2864 2865 return &rtransport->transport; 2866 } 2867 2868 static void 2869 destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport, 2870 struct spdk_nvmf_rdma_device *device) 2871 { 2872 TAILQ_REMOVE(&rtransport->devices, device, link); 2873 spdk_rdma_free_mem_map(&device->map); 2874 if (device->pd) { 2875 if (!g_nvmf_hooks.get_ibv_pd) { 2876 ibv_dealloc_pd(device->pd); 2877 } 2878 } 2879 SPDK_DEBUGLOG(rdma, "IB device [%p] is destroyed.\n", device); 2880 free(device); 2881 } 2882 2883 static void 2884 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w) 2885 { 2886 struct spdk_nvmf_rdma_transport *rtransport; 2887 assert(w != NULL); 2888 2889 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2890 spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth); 2891 spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq); 2892 if (rtransport->rdma_opts.no_srq == true) { 2893 spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe); 2894 } 2895 spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog); 2896 spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching); 2897 } 2898 2899 static int 2900 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport, 2901 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg) 2902 { 2903 struct spdk_nvmf_rdma_transport *rtransport; 2904 struct spdk_nvmf_rdma_port *port, *port_tmp; 2905 struct spdk_nvmf_rdma_device *device, *device_tmp; 2906 2907 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2908 2909 TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, port_tmp) { 2910 TAILQ_REMOVE(&rtransport->retry_ports, port, link); 2911 free(port); 2912 } 2913 2914 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) { 2915 TAILQ_REMOVE(&rtransport->ports, port, link); 2916 rdma_destroy_id(port->id); 2917 free(port); 2918 } 2919 2920 free_poll_fds(rtransport); 2921 2922 if (rtransport->event_channel != NULL) { 2923 rdma_destroy_event_channel(rtransport->event_channel); 2924 } 2925 2926 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) { 2927 destroy_ib_device(rtransport, device); 2928 } 2929 2930 if (rtransport->data_wr_pool != NULL) { 2931 if (spdk_mempool_count(rtransport->data_wr_pool) != 2932 (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) { 2933 SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n", 2934 spdk_mempool_count(rtransport->data_wr_pool), 2935 transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES); 2936 } 2937 } 2938 2939 spdk_mempool_free(rtransport->data_wr_pool); 2940 2941 spdk_poller_unregister(&rtransport->accept_poller); 2942 free(rtransport); 2943 2944 if (cb_fn) { 2945 cb_fn(cb_arg); 2946 } 2947 return 0; 2948 } 2949 2950 static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 2951 struct spdk_nvme_transport_id *trid, 2952 bool peer); 2953 2954 static bool nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport); 2955 2956 static int 2957 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid, 2958 struct spdk_nvmf_listen_opts *listen_opts) 2959 { 2960 struct spdk_nvmf_rdma_transport *rtransport; 2961 struct spdk_nvmf_rdma_device *device; 2962 struct spdk_nvmf_rdma_port *port, *tmp_port; 2963 struct addrinfo *res; 2964 struct addrinfo hints; 2965 int family; 2966 int rc; 2967 long int port_val; 2968 bool is_retry = false; 2969 2970 if (!strlen(trid->trsvcid)) { 2971 SPDK_ERRLOG("Service id is required\n"); 2972 return -EINVAL; 2973 } 2974 2975 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2976 assert(rtransport->event_channel != NULL); 2977 2978 port = calloc(1, sizeof(*port)); 2979 if (!port) { 2980 SPDK_ERRLOG("Port allocation failed\n"); 2981 return -ENOMEM; 2982 } 2983 2984 port->trid = trid; 2985 2986 switch (trid->adrfam) { 2987 case SPDK_NVMF_ADRFAM_IPV4: 2988 family = AF_INET; 2989 break; 2990 case SPDK_NVMF_ADRFAM_IPV6: 2991 family = AF_INET6; 2992 break; 2993 default: 2994 SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam); 2995 free(port); 2996 return -EINVAL; 2997 } 2998 2999 memset(&hints, 0, sizeof(hints)); 3000 hints.ai_family = family; 3001 hints.ai_flags = AI_NUMERICSERV; 3002 hints.ai_socktype = SOCK_STREAM; 3003 hints.ai_protocol = 0; 3004 3005 /* Range check the trsvcid. Fail in 3 cases: 3006 * < 0: means that spdk_strtol hit an error 3007 * 0: this results in ephemeral port which we don't want 3008 * > 65535: port too high 3009 */ 3010 port_val = spdk_strtol(trid->trsvcid, 10); 3011 if (port_val <= 0 || port_val > 65535) { 3012 SPDK_ERRLOG("invalid trsvcid %s\n", trid->trsvcid); 3013 free(port); 3014 return -EINVAL; 3015 } 3016 3017 rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res); 3018 if (rc) { 3019 SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc); 3020 free(port); 3021 return -(abs(rc)); 3022 } 3023 3024 rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP); 3025 if (rc < 0) { 3026 SPDK_ERRLOG("rdma_create_id() failed\n"); 3027 freeaddrinfo(res); 3028 free(port); 3029 return rc; 3030 } 3031 3032 rc = rdma_bind_addr(port->id, res->ai_addr); 3033 freeaddrinfo(res); 3034 3035 if (rc < 0) { 3036 TAILQ_FOREACH(tmp_port, &rtransport->retry_ports, link) { 3037 if (spdk_nvme_transport_id_compare(tmp_port->trid, trid) == 0) { 3038 is_retry = true; 3039 break; 3040 } 3041 } 3042 if (!is_retry) { 3043 SPDK_ERRLOG("rdma_bind_addr() failed\n"); 3044 } 3045 rdma_destroy_id(port->id); 3046 free(port); 3047 return rc; 3048 } 3049 3050 if (!port->id->verbs) { 3051 SPDK_ERRLOG("ibv_context is null\n"); 3052 rdma_destroy_id(port->id); 3053 free(port); 3054 return -1; 3055 } 3056 3057 rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog); 3058 if (rc < 0) { 3059 SPDK_ERRLOG("rdma_listen() failed\n"); 3060 rdma_destroy_id(port->id); 3061 free(port); 3062 return rc; 3063 } 3064 3065 TAILQ_FOREACH(device, &rtransport->devices, link) { 3066 if (device->context == port->id->verbs && device->is_ready) { 3067 port->device = device; 3068 break; 3069 } 3070 } 3071 if (!port->device) { 3072 SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n", 3073 port->id->verbs); 3074 rdma_destroy_id(port->id); 3075 free(port); 3076 nvmf_rdma_rescan_devices(rtransport); 3077 return -EINVAL; 3078 } 3079 3080 SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n", 3081 trid->traddr, trid->trsvcid); 3082 3083 TAILQ_INSERT_TAIL(&rtransport->ports, port, link); 3084 return 0; 3085 } 3086 3087 static void 3088 nvmf_rdma_stop_listen_ex(struct spdk_nvmf_transport *transport, 3089 const struct spdk_nvme_transport_id *trid, bool need_retry) 3090 { 3091 struct spdk_nvmf_rdma_transport *rtransport; 3092 struct spdk_nvmf_rdma_port *port, *tmp; 3093 3094 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3095 3096 if (!need_retry) { 3097 TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp) { 3098 if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) { 3099 TAILQ_REMOVE(&rtransport->retry_ports, port, link); 3100 free(port); 3101 } 3102 } 3103 } 3104 3105 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) { 3106 if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) { 3107 SPDK_DEBUGLOG(rdma, "Port %s:%s removed. need retry: %d\n", 3108 port->trid->traddr, port->trid->trsvcid, need_retry); 3109 TAILQ_REMOVE(&rtransport->ports, port, link); 3110 rdma_destroy_id(port->id); 3111 port->id = NULL; 3112 port->device = NULL; 3113 if (need_retry) { 3114 TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link); 3115 } else { 3116 free(port); 3117 } 3118 break; 3119 } 3120 } 3121 } 3122 3123 static void 3124 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport, 3125 const struct spdk_nvme_transport_id *trid) 3126 { 3127 nvmf_rdma_stop_listen_ex(transport, trid, false); 3128 } 3129 3130 static void _nvmf_rdma_register_poller_in_group(void *c); 3131 static void _nvmf_rdma_remove_poller_in_group(void *c); 3132 3133 static bool 3134 nvmf_rdma_all_pollers_management_done(void *c) 3135 { 3136 struct poller_manage_ctx *ctx = c; 3137 int counter; 3138 3139 counter = __atomic_sub_fetch(ctx->inflight_op_counter, 1, __ATOMIC_SEQ_CST); 3140 SPDK_DEBUGLOG(rdma, "nvmf_rdma_all_pollers_management_done called. counter: %d, poller: %p\n", 3141 counter, ctx->rpoller); 3142 3143 if (counter == 0) { 3144 free((void *)ctx->inflight_op_counter); 3145 } 3146 free(ctx); 3147 3148 return counter == 0; 3149 } 3150 3151 static int 3152 nvmf_rdma_manage_poller(struct spdk_nvmf_rdma_transport *rtransport, 3153 struct spdk_nvmf_rdma_device *device, bool *has_inflight, bool is_add) 3154 { 3155 struct spdk_nvmf_rdma_poll_group *rgroup; 3156 struct spdk_nvmf_rdma_poller *rpoller; 3157 struct spdk_nvmf_poll_group *poll_group; 3158 struct poller_manage_ctx *ctx; 3159 bool found; 3160 int *inflight_counter; 3161 spdk_msg_fn do_fn; 3162 3163 *has_inflight = false; 3164 do_fn = is_add ? _nvmf_rdma_register_poller_in_group : _nvmf_rdma_remove_poller_in_group; 3165 inflight_counter = calloc(1, sizeof(int)); 3166 if (!inflight_counter) { 3167 SPDK_ERRLOG("Failed to allocate inflight counter when removing pollers\n"); 3168 return -ENOMEM; 3169 } 3170 3171 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 3172 (*inflight_counter)++; 3173 } 3174 3175 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 3176 found = false; 3177 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 3178 if (rpoller->device == device) { 3179 found = true; 3180 break; 3181 } 3182 } 3183 if (found == is_add) { 3184 __atomic_fetch_sub(inflight_counter, 1, __ATOMIC_SEQ_CST); 3185 continue; 3186 } 3187 3188 ctx = calloc(1, sizeof(struct poller_manage_ctx)); 3189 if (!ctx) { 3190 SPDK_ERRLOG("Failed to allocate poller_manage_ctx when removing pollers\n"); 3191 if (!*has_inflight) { 3192 free(inflight_counter); 3193 } 3194 return -ENOMEM; 3195 } 3196 3197 ctx->rtransport = rtransport; 3198 ctx->rgroup = rgroup; 3199 ctx->rpoller = rpoller; 3200 ctx->device = device; 3201 ctx->thread = spdk_get_thread(); 3202 ctx->inflight_op_counter = inflight_counter; 3203 *has_inflight = true; 3204 3205 poll_group = rgroup->group.group; 3206 if (poll_group->thread != spdk_get_thread()) { 3207 spdk_thread_send_msg(poll_group->thread, do_fn, ctx); 3208 } else { 3209 do_fn(ctx); 3210 } 3211 } 3212 3213 if (!*has_inflight) { 3214 free(inflight_counter); 3215 } 3216 3217 return 0; 3218 } 3219 3220 static void nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport, 3221 struct spdk_nvmf_rdma_device *device); 3222 3223 static struct spdk_nvmf_rdma_device * 3224 nvmf_rdma_find_ib_device(struct spdk_nvmf_rdma_transport *rtransport, 3225 struct ibv_context *context) 3226 { 3227 struct spdk_nvmf_rdma_device *device, *tmp_device; 3228 3229 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp_device) { 3230 if (device->need_destroy) { 3231 continue; 3232 } 3233 3234 if (strcmp(device->context->device->dev_name, context->device->dev_name) == 0) { 3235 return device; 3236 } 3237 } 3238 3239 return NULL; 3240 } 3241 3242 static bool 3243 nvmf_rdma_check_devices_context(struct spdk_nvmf_rdma_transport *rtransport, 3244 struct ibv_context *context) 3245 { 3246 struct spdk_nvmf_rdma_device *old_device, *new_device; 3247 int rc = 0; 3248 bool has_inflight; 3249 3250 old_device = nvmf_rdma_find_ib_device(rtransport, context); 3251 3252 if (old_device) { 3253 if (old_device->context != context && !old_device->need_destroy && old_device->is_ready) { 3254 /* context may not have time to be cleaned when rescan. exactly one context 3255 * is valid for a device so this context must be invalid and just remove it. */ 3256 SPDK_WARNLOG("Device %p has a invalid context %p\n", old_device, old_device->context); 3257 old_device->need_destroy = true; 3258 nvmf_rdma_handle_device_removal(rtransport, old_device); 3259 } 3260 return false; 3261 } 3262 3263 rc = create_ib_device(rtransport, context, &new_device); 3264 /* TODO: update transport opts. */ 3265 if (rc < 0) { 3266 SPDK_ERRLOG("Failed to create ib device for context: %s(%p)\n", 3267 ibv_get_device_name(context->device), context); 3268 return false; 3269 } 3270 3271 rc = nvmf_rdma_manage_poller(rtransport, new_device, &has_inflight, true); 3272 if (rc < 0) { 3273 SPDK_ERRLOG("Failed to add poller for device context: %s(%p)\n", 3274 ibv_get_device_name(context->device), context); 3275 return false; 3276 } 3277 3278 if (has_inflight) { 3279 new_device->is_ready = true; 3280 } 3281 3282 return true; 3283 } 3284 3285 static bool 3286 nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport) 3287 { 3288 struct spdk_nvmf_rdma_device *device; 3289 struct ibv_device **ibv_device_list = NULL; 3290 struct ibv_context **contexts = NULL; 3291 int i = 0; 3292 int num_dev = 0; 3293 bool new_create = false, has_new_device = false; 3294 struct ibv_context *tmp_verbs = NULL; 3295 3296 /* do not rescan when any device is destroying, or context may be freed when 3297 * regenerating the poll fds. 3298 */ 3299 TAILQ_FOREACH(device, &rtransport->devices, link) { 3300 if (device->need_destroy) { 3301 return false; 3302 } 3303 } 3304 3305 ibv_device_list = ibv_get_device_list(&num_dev); 3306 3307 /* There is a bug in librdmacm. If verbs init failed in rdma_get_devices, it'll be 3308 * marked as dead verbs and never be init again. So we need to make sure the 3309 * verbs is available before we call rdma_get_devices. */ 3310 if (num_dev >= 0) { 3311 for (i = 0; i < num_dev; i++) { 3312 tmp_verbs = ibv_open_device(ibv_device_list[i]); 3313 if (!tmp_verbs) { 3314 SPDK_WARNLOG("Failed to init ibv device %p, err %d. Skip rescan.\n", ibv_device_list[i], errno); 3315 break; 3316 } 3317 if (nvmf_rdma_find_ib_device(rtransport, tmp_verbs) == NULL) { 3318 SPDK_DEBUGLOG(rdma, "Find new verbs init ibv device %p(%s).\n", ibv_device_list[i], 3319 tmp_verbs->device->dev_name); 3320 has_new_device = true; 3321 } 3322 ibv_close_device(tmp_verbs); 3323 } 3324 ibv_free_device_list(ibv_device_list); 3325 if (!tmp_verbs || !has_new_device) { 3326 return false; 3327 } 3328 } 3329 3330 contexts = rdma_get_devices(NULL); 3331 3332 for (i = 0; contexts && contexts[i] != NULL; i++) { 3333 new_create |= nvmf_rdma_check_devices_context(rtransport, contexts[i]); 3334 } 3335 3336 if (new_create) { 3337 free_poll_fds(rtransport); 3338 generate_poll_fds(rtransport); 3339 } 3340 3341 if (contexts) { 3342 rdma_free_devices(contexts); 3343 } 3344 3345 return new_create; 3346 } 3347 3348 static bool 3349 nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport) 3350 { 3351 struct spdk_nvmf_rdma_port *port, *tmp_port; 3352 int rc = 0; 3353 bool new_create = false; 3354 3355 if (TAILQ_EMPTY(&rtransport->retry_ports)) { 3356 return false; 3357 } 3358 3359 new_create = nvmf_rdma_rescan_devices(rtransport); 3360 3361 TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp_port) { 3362 rc = nvmf_rdma_listen(&rtransport->transport, port->trid, NULL); 3363 3364 TAILQ_REMOVE(&rtransport->retry_ports, port, link); 3365 if (rc) { 3366 if (new_create) { 3367 SPDK_ERRLOG("Found new IB device but port %s:%s is still failed(%d) to listen.\n", 3368 port->trid->traddr, port->trid->trsvcid, rc); 3369 } 3370 TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link); 3371 break; 3372 } else { 3373 SPDK_NOTICELOG("Port %s:%s come back\n", port->trid->traddr, port->trid->trsvcid); 3374 free(port); 3375 } 3376 } 3377 3378 return true; 3379 } 3380 3381 static void 3382 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport, 3383 struct spdk_nvmf_rdma_qpair *rqpair, bool drain) 3384 { 3385 struct spdk_nvmf_request *req, *tmp; 3386 struct spdk_nvmf_rdma_request *rdma_req, *req_tmp; 3387 struct spdk_nvmf_rdma_resources *resources; 3388 3389 /* First process requests which are waiting for response to be sent */ 3390 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_send_queue, state_link, req_tmp) { 3391 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 3392 break; 3393 } 3394 } 3395 3396 /* We process I/O in the data transfer pending queue at the highest priority. */ 3397 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) { 3398 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 3399 break; 3400 } 3401 } 3402 3403 /* Then RDMA writes since reads have stronger restrictions than writes */ 3404 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) { 3405 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 3406 break; 3407 } 3408 } 3409 3410 /* Then we handle request waiting on memory buffers. */ 3411 STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) { 3412 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 3413 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 3414 break; 3415 } 3416 } 3417 3418 resources = rqpair->resources; 3419 while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) { 3420 rdma_req = STAILQ_FIRST(&resources->free_queue); 3421 STAILQ_REMOVE_HEAD(&resources->free_queue, state_link); 3422 rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue); 3423 STAILQ_REMOVE_HEAD(&resources->incoming_queue, link); 3424 3425 if (rqpair->srq != NULL) { 3426 rdma_req->req.qpair = &rdma_req->recv->qpair->qpair; 3427 rdma_req->recv->qpair->qd++; 3428 } else { 3429 rqpair->qd++; 3430 } 3431 3432 rdma_req->receive_tsc = rdma_req->recv->receive_tsc; 3433 rdma_req->state = RDMA_REQUEST_STATE_NEW; 3434 if (nvmf_rdma_request_process(rtransport, rdma_req) == false) { 3435 break; 3436 } 3437 } 3438 if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) { 3439 rqpair->poller->stat.pending_free_request++; 3440 } 3441 } 3442 3443 static inline bool 3444 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device) 3445 { 3446 /* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */ 3447 return nvmf_rdma_is_rxe_device(device) || 3448 device->context->device->transport_type == IBV_TRANSPORT_IWARP; 3449 } 3450 3451 static void 3452 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair) 3453 { 3454 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 3455 struct spdk_nvmf_rdma_transport, transport); 3456 3457 nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); 3458 3459 /* nvmf_rdma_close_qpair is not called */ 3460 if (!rqpair->to_close) { 3461 return; 3462 } 3463 3464 /* device is already destroyed and we should force destroy this qpair. */ 3465 if (rqpair->poller && rqpair->poller->need_destroy) { 3466 nvmf_rdma_qpair_destroy(rqpair); 3467 return; 3468 } 3469 3470 /* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */ 3471 if (rqpair->current_send_depth != 0) { 3472 return; 3473 } 3474 3475 if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) { 3476 return; 3477 } 3478 3479 if (rqpair->srq != NULL && rqpair->last_wqe_reached == false && 3480 !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) { 3481 return; 3482 } 3483 3484 assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR); 3485 3486 nvmf_rdma_qpair_destroy(rqpair); 3487 } 3488 3489 static int 3490 nvmf_rdma_disconnect(struct rdma_cm_event *evt, bool *event_acked) 3491 { 3492 struct spdk_nvmf_qpair *qpair; 3493 struct spdk_nvmf_rdma_qpair *rqpair; 3494 3495 if (evt->id == NULL) { 3496 SPDK_ERRLOG("disconnect request: missing cm_id\n"); 3497 return -1; 3498 } 3499 3500 qpair = evt->id->context; 3501 if (qpair == NULL) { 3502 SPDK_ERRLOG("disconnect request: no active connection\n"); 3503 return -1; 3504 } 3505 3506 rdma_ack_cm_event(evt); 3507 *event_acked = true; 3508 3509 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3510 3511 spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair); 3512 3513 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3514 3515 return 0; 3516 } 3517 3518 #ifdef DEBUG 3519 static const char *CM_EVENT_STR[] = { 3520 "RDMA_CM_EVENT_ADDR_RESOLVED", 3521 "RDMA_CM_EVENT_ADDR_ERROR", 3522 "RDMA_CM_EVENT_ROUTE_RESOLVED", 3523 "RDMA_CM_EVENT_ROUTE_ERROR", 3524 "RDMA_CM_EVENT_CONNECT_REQUEST", 3525 "RDMA_CM_EVENT_CONNECT_RESPONSE", 3526 "RDMA_CM_EVENT_CONNECT_ERROR", 3527 "RDMA_CM_EVENT_UNREACHABLE", 3528 "RDMA_CM_EVENT_REJECTED", 3529 "RDMA_CM_EVENT_ESTABLISHED", 3530 "RDMA_CM_EVENT_DISCONNECTED", 3531 "RDMA_CM_EVENT_DEVICE_REMOVAL", 3532 "RDMA_CM_EVENT_MULTICAST_JOIN", 3533 "RDMA_CM_EVENT_MULTICAST_ERROR", 3534 "RDMA_CM_EVENT_ADDR_CHANGE", 3535 "RDMA_CM_EVENT_TIMEWAIT_EXIT" 3536 }; 3537 #endif /* DEBUG */ 3538 3539 static void 3540 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport, 3541 struct spdk_nvmf_rdma_port *port) 3542 { 3543 struct spdk_nvmf_rdma_poll_group *rgroup; 3544 struct spdk_nvmf_rdma_poller *rpoller; 3545 struct spdk_nvmf_rdma_qpair *rqpair; 3546 3547 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 3548 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 3549 RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) { 3550 if (rqpair->listen_id == port->id) { 3551 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3552 } 3553 } 3554 } 3555 } 3556 } 3557 3558 static bool 3559 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport, 3560 struct rdma_cm_event *event) 3561 { 3562 const struct spdk_nvme_transport_id *trid; 3563 struct spdk_nvmf_rdma_port *port; 3564 struct spdk_nvmf_rdma_transport *rtransport; 3565 bool event_acked = false; 3566 3567 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3568 TAILQ_FOREACH(port, &rtransport->ports, link) { 3569 if (port->id == event->id) { 3570 SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid); 3571 rdma_ack_cm_event(event); 3572 event_acked = true; 3573 trid = port->trid; 3574 break; 3575 } 3576 } 3577 3578 if (event_acked) { 3579 nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); 3580 3581 nvmf_rdma_stop_listen(transport, trid); 3582 nvmf_rdma_listen(transport, trid, NULL); 3583 } 3584 3585 return event_acked; 3586 } 3587 3588 static void 3589 nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport, 3590 struct spdk_nvmf_rdma_device *device) 3591 { 3592 struct spdk_nvmf_rdma_port *port, *port_tmp; 3593 int rc; 3594 bool has_inflight; 3595 3596 rc = nvmf_rdma_manage_poller(rtransport, device, &has_inflight, false); 3597 if (rc) { 3598 SPDK_ERRLOG("Failed to handle device removal, rc %d\n", rc); 3599 return; 3600 } 3601 3602 if (!has_inflight) { 3603 /* no pollers, destroy the device */ 3604 device->ready_to_destroy = true; 3605 spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_remove_destroyed_device, rtransport); 3606 } 3607 3608 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) { 3609 if (port->device == device) { 3610 SPDK_NOTICELOG("Port %s:%s on device %s is being removed.\n", 3611 port->trid->traddr, 3612 port->trid->trsvcid, 3613 ibv_get_device_name(port->device->context->device)); 3614 3615 /* keep NVMF listener and only destroy structures of the 3616 * RDMA transport. when the device comes back we can retry listening 3617 * and the application's workflow will not be interrupted. 3618 */ 3619 nvmf_rdma_stop_listen_ex(&rtransport->transport, port->trid, true); 3620 } 3621 } 3622 } 3623 3624 static void 3625 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport, 3626 struct rdma_cm_event *event) 3627 { 3628 struct spdk_nvmf_rdma_port *port, *tmp_port; 3629 struct spdk_nvmf_rdma_transport *rtransport; 3630 3631 port = event->id->context; 3632 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3633 3634 rdma_ack_cm_event(event); 3635 3636 /* if device removal happens during ctrl qpair disconnecting, it's possible that we receive 3637 * an DEVICE_REMOVAL event on qpair but the id->qp is just NULL. So we should make sure that 3638 * we are handling a port event here. 3639 */ 3640 TAILQ_FOREACH(tmp_port, &rtransport->ports, link) { 3641 if (port == tmp_port && port->device && !port->device->need_destroy) { 3642 port->device->need_destroy = true; 3643 nvmf_rdma_handle_device_removal(rtransport, port->device); 3644 } 3645 } 3646 } 3647 3648 static void 3649 nvmf_process_cm_event(struct spdk_nvmf_transport *transport) 3650 { 3651 struct spdk_nvmf_rdma_transport *rtransport; 3652 struct rdma_cm_event *event; 3653 int rc; 3654 bool event_acked; 3655 3656 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3657 3658 if (rtransport->event_channel == NULL) { 3659 return; 3660 } 3661 3662 while (1) { 3663 event_acked = false; 3664 rc = rdma_get_cm_event(rtransport->event_channel, &event); 3665 if (rc) { 3666 if (errno != EAGAIN && errno != EWOULDBLOCK) { 3667 SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno)); 3668 } 3669 break; 3670 } 3671 3672 SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]); 3673 3674 spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event); 3675 3676 switch (event->event) { 3677 case RDMA_CM_EVENT_ADDR_RESOLVED: 3678 case RDMA_CM_EVENT_ADDR_ERROR: 3679 case RDMA_CM_EVENT_ROUTE_RESOLVED: 3680 case RDMA_CM_EVENT_ROUTE_ERROR: 3681 /* No action required. The target never attempts to resolve routes. */ 3682 break; 3683 case RDMA_CM_EVENT_CONNECT_REQUEST: 3684 rc = nvmf_rdma_connect(transport, event); 3685 if (rc < 0) { 3686 SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc); 3687 break; 3688 } 3689 break; 3690 case RDMA_CM_EVENT_CONNECT_RESPONSE: 3691 /* The target never initiates a new connection. So this will not occur. */ 3692 break; 3693 case RDMA_CM_EVENT_CONNECT_ERROR: 3694 /* Can this happen? The docs say it can, but not sure what causes it. */ 3695 break; 3696 case RDMA_CM_EVENT_UNREACHABLE: 3697 case RDMA_CM_EVENT_REJECTED: 3698 /* These only occur on the client side. */ 3699 break; 3700 case RDMA_CM_EVENT_ESTABLISHED: 3701 /* TODO: Should we be waiting for this event anywhere? */ 3702 break; 3703 case RDMA_CM_EVENT_DISCONNECTED: 3704 rc = nvmf_rdma_disconnect(event, &event_acked); 3705 if (rc < 0) { 3706 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3707 break; 3708 } 3709 break; 3710 case RDMA_CM_EVENT_DEVICE_REMOVAL: 3711 /* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL 3712 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s. 3713 * Once these events are sent to SPDK, we should release all IB resources and 3714 * don't make attempts to call any ibv_query/modify/create functions. We can only call 3715 * ibv_destroy* functions to release user space memory allocated by IB. All kernel 3716 * resources are already cleaned. */ 3717 if (event->id->qp) { 3718 /* If rdma_cm event has a valid `qp` pointer then the event refers to the 3719 * corresponding qpair. Otherwise the event refers to a listening device. */ 3720 rc = nvmf_rdma_disconnect(event, &event_acked); 3721 if (rc < 0) { 3722 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3723 break; 3724 } 3725 } else { 3726 nvmf_rdma_handle_cm_event_port_removal(transport, event); 3727 event_acked = true; 3728 } 3729 break; 3730 case RDMA_CM_EVENT_MULTICAST_JOIN: 3731 case RDMA_CM_EVENT_MULTICAST_ERROR: 3732 /* Multicast is not used */ 3733 break; 3734 case RDMA_CM_EVENT_ADDR_CHANGE: 3735 event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event); 3736 break; 3737 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 3738 /* For now, do nothing. The target never re-uses queue pairs. */ 3739 break; 3740 default: 3741 SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); 3742 break; 3743 } 3744 if (!event_acked) { 3745 rdma_ack_cm_event(event); 3746 } 3747 } 3748 } 3749 3750 static void 3751 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair) 3752 { 3753 rqpair->last_wqe_reached = true; 3754 nvmf_rdma_destroy_drained_qpair(rqpair); 3755 } 3756 3757 static void 3758 nvmf_rdma_qpair_process_ibv_event(void *ctx) 3759 { 3760 struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx; 3761 3762 if (event_ctx->rqpair) { 3763 STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3764 if (event_ctx->cb_fn) { 3765 event_ctx->cb_fn(event_ctx->rqpair); 3766 } 3767 } 3768 free(event_ctx); 3769 } 3770 3771 static int 3772 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair, 3773 spdk_nvmf_rdma_qpair_ibv_event fn) 3774 { 3775 struct spdk_nvmf_rdma_ibv_event_ctx *ctx; 3776 struct spdk_thread *thr = NULL; 3777 int rc; 3778 3779 if (rqpair->qpair.group) { 3780 thr = rqpair->qpair.group->thread; 3781 } else if (rqpair->destruct_channel) { 3782 thr = spdk_io_channel_get_thread(rqpair->destruct_channel); 3783 } 3784 3785 if (!thr) { 3786 SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair); 3787 return -EINVAL; 3788 } 3789 3790 ctx = calloc(1, sizeof(*ctx)); 3791 if (!ctx) { 3792 return -ENOMEM; 3793 } 3794 3795 ctx->rqpair = rqpair; 3796 ctx->cb_fn = fn; 3797 STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link); 3798 3799 rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx); 3800 if (rc) { 3801 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3802 free(ctx); 3803 } 3804 3805 return rc; 3806 } 3807 3808 static int 3809 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device) 3810 { 3811 int rc; 3812 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 3813 struct ibv_async_event event; 3814 3815 rc = ibv_get_async_event(device->context, &event); 3816 3817 if (rc) { 3818 /* In non-blocking mode -1 means there are no events available */ 3819 return rc; 3820 } 3821 3822 switch (event.event_type) { 3823 case IBV_EVENT_QP_FATAL: 3824 case IBV_EVENT_QP_LAST_WQE_REACHED: 3825 case IBV_EVENT_SQ_DRAINED: 3826 case IBV_EVENT_QP_REQ_ERR: 3827 case IBV_EVENT_QP_ACCESS_ERR: 3828 case IBV_EVENT_COMM_EST: 3829 case IBV_EVENT_PATH_MIG: 3830 case IBV_EVENT_PATH_MIG_ERR: 3831 rqpair = event.element.qp->qp_context; 3832 if (!rqpair) { 3833 /* Any QP event for NVMe-RDMA initiator may be returned. */ 3834 SPDK_NOTICELOG("Async QP event for unknown QP: %s\n", 3835 ibv_event_type_str(event.event_type)); 3836 break; 3837 } 3838 3839 switch (event.event_type) { 3840 case IBV_EVENT_QP_FATAL: 3841 SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair); 3842 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3843 (uintptr_t)rqpair, event.event_type); 3844 nvmf_rdma_update_ibv_state(rqpair); 3845 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3846 break; 3847 case IBV_EVENT_QP_LAST_WQE_REACHED: 3848 /* This event only occurs for shared receive queues. */ 3849 SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair); 3850 rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached); 3851 if (rc) { 3852 SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc); 3853 rqpair->last_wqe_reached = true; 3854 } 3855 break; 3856 case IBV_EVENT_SQ_DRAINED: 3857 /* This event occurs frequently in both error and non-error states. 3858 * Check if the qpair is in an error state before sending a message. */ 3859 SPDK_DEBUGLOG(rdma, "Last sq drained event received for rqpair %p\n", rqpair); 3860 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3861 (uintptr_t)rqpair, event.event_type); 3862 if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) { 3863 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3864 } 3865 break; 3866 case IBV_EVENT_QP_REQ_ERR: 3867 case IBV_EVENT_QP_ACCESS_ERR: 3868 case IBV_EVENT_COMM_EST: 3869 case IBV_EVENT_PATH_MIG: 3870 case IBV_EVENT_PATH_MIG_ERR: 3871 SPDK_NOTICELOG("Async QP event: %s\n", 3872 ibv_event_type_str(event.event_type)); 3873 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3874 (uintptr_t)rqpair, event.event_type); 3875 nvmf_rdma_update_ibv_state(rqpair); 3876 break; 3877 default: 3878 break; 3879 } 3880 break; 3881 case IBV_EVENT_DEVICE_FATAL: 3882 SPDK_ERRLOG("Device Fatal event[%s] received on %s. device: %p\n", 3883 ibv_event_type_str(event.event_type), ibv_get_device_name(device->context->device), device); 3884 device->need_destroy = true; 3885 break; 3886 case IBV_EVENT_CQ_ERR: 3887 case IBV_EVENT_PORT_ACTIVE: 3888 case IBV_EVENT_PORT_ERR: 3889 case IBV_EVENT_LID_CHANGE: 3890 case IBV_EVENT_PKEY_CHANGE: 3891 case IBV_EVENT_SM_CHANGE: 3892 case IBV_EVENT_SRQ_ERR: 3893 case IBV_EVENT_SRQ_LIMIT_REACHED: 3894 case IBV_EVENT_CLIENT_REREGISTER: 3895 case IBV_EVENT_GID_CHANGE: 3896 default: 3897 SPDK_NOTICELOG("Async event: %s\n", 3898 ibv_event_type_str(event.event_type)); 3899 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type); 3900 break; 3901 } 3902 ibv_ack_async_event(&event); 3903 3904 return 0; 3905 } 3906 3907 static void 3908 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events) 3909 { 3910 int rc = 0; 3911 uint32_t i = 0; 3912 3913 for (i = 0; i < max_events; i++) { 3914 rc = nvmf_process_ib_event(device); 3915 if (rc) { 3916 break; 3917 } 3918 } 3919 3920 SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i); 3921 } 3922 3923 static int 3924 nvmf_rdma_accept(void *ctx) 3925 { 3926 int nfds, i = 0; 3927 struct spdk_nvmf_transport *transport = ctx; 3928 struct spdk_nvmf_rdma_transport *rtransport; 3929 struct spdk_nvmf_rdma_device *device, *tmp; 3930 uint32_t count; 3931 short revents; 3932 bool do_retry; 3933 3934 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3935 do_retry = nvmf_rdma_retry_listen_port(rtransport); 3936 3937 count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0); 3938 3939 if (nfds <= 0) { 3940 return do_retry ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE; 3941 } 3942 3943 /* The first poll descriptor is RDMA CM event */ 3944 if (rtransport->poll_fds[i++].revents & POLLIN) { 3945 nvmf_process_cm_event(transport); 3946 nfds--; 3947 } 3948 3949 if (nfds == 0) { 3950 return SPDK_POLLER_BUSY; 3951 } 3952 3953 /* Second and subsequent poll descriptors are IB async events */ 3954 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 3955 revents = rtransport->poll_fds[i++].revents; 3956 if (revents & POLLIN) { 3957 if (spdk_likely(!device->need_destroy)) { 3958 nvmf_process_ib_events(device, 32); 3959 if (spdk_unlikely(device->need_destroy)) { 3960 nvmf_rdma_handle_device_removal(rtransport, device); 3961 } 3962 } 3963 nfds--; 3964 } else if (revents & POLLNVAL || revents & POLLHUP) { 3965 SPDK_ERRLOG("Receive unknown revent %x on device %p\n", (int)revents, device); 3966 nfds--; 3967 } 3968 } 3969 /* check all flagged fd's have been served */ 3970 assert(nfds == 0); 3971 3972 return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE; 3973 } 3974 3975 static void 3976 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem, 3977 struct spdk_nvmf_ctrlr_data *cdata) 3978 { 3979 cdata->nvmf_specific.msdbd = NVMF_DEFAULT_MSDBD; 3980 3981 /* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled 3982 since in-capsule data only works with NVME drives that support SGL memory layout */ 3983 if (transport->opts.dif_insert_or_strip) { 3984 cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16; 3985 } 3986 3987 if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) { 3988 SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule" 3989 " data is greater than 4KiB.\n"); 3990 SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux " 3991 "kernel between versions 5.4 and 5.12 data corruption may occur for " 3992 "writes that are not a multiple of 4KiB in size.\n"); 3993 } 3994 } 3995 3996 static void 3997 nvmf_rdma_discover(struct spdk_nvmf_transport *transport, 3998 struct spdk_nvme_transport_id *trid, 3999 struct spdk_nvmf_discovery_log_page_entry *entry) 4000 { 4001 entry->trtype = SPDK_NVMF_TRTYPE_RDMA; 4002 entry->adrfam = trid->adrfam; 4003 entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED; 4004 4005 spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' '); 4006 spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' '); 4007 4008 entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED; 4009 entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE; 4010 entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM; 4011 } 4012 4013 static int 4014 nvmf_rdma_poller_create(struct spdk_nvmf_rdma_transport *rtransport, 4015 struct spdk_nvmf_rdma_poll_group *rgroup, struct spdk_nvmf_rdma_device *device, 4016 struct spdk_nvmf_rdma_poller **out_poller) 4017 { 4018 struct spdk_nvmf_rdma_poller *poller; 4019 struct spdk_rdma_srq_init_attr srq_init_attr; 4020 struct spdk_nvmf_rdma_resource_opts opts; 4021 int num_cqe; 4022 4023 poller = calloc(1, sizeof(*poller)); 4024 if (!poller) { 4025 SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n"); 4026 return -1; 4027 } 4028 4029 poller->device = device; 4030 poller->group = rgroup; 4031 *out_poller = poller; 4032 4033 RB_INIT(&poller->qpairs); 4034 STAILQ_INIT(&poller->qpairs_pending_send); 4035 STAILQ_INIT(&poller->qpairs_pending_recv); 4036 4037 TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link); 4038 SPDK_DEBUGLOG(rdma, "Create poller %p on device %p in poll group %p.\n", poller, device, rgroup); 4039 if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) { 4040 if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) { 4041 SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n", 4042 rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr); 4043 } 4044 poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr); 4045 4046 device->num_srq++; 4047 memset(&srq_init_attr, 0, sizeof(srq_init_attr)); 4048 srq_init_attr.pd = device->pd; 4049 srq_init_attr.stats = &poller->stat.qp_stats.recv; 4050 srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth; 4051 srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 4052 poller->srq = spdk_rdma_srq_create(&srq_init_attr); 4053 if (!poller->srq) { 4054 SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno); 4055 return -1; 4056 } 4057 4058 opts.qp = poller->srq; 4059 opts.map = device->map; 4060 opts.qpair = NULL; 4061 opts.shared = true; 4062 opts.max_queue_depth = poller->max_srq_depth; 4063 opts.in_capsule_data_size = rtransport->transport.opts.in_capsule_data_size; 4064 4065 poller->resources = nvmf_rdma_resources_create(&opts); 4066 if (!poller->resources) { 4067 SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n"); 4068 return -1; 4069 } 4070 } 4071 4072 /* 4073 * When using an srq, we can limit the completion queue at startup. 4074 * The following formula represents the calculation: 4075 * num_cqe = num_recv + num_data_wr + num_send_wr. 4076 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth 4077 */ 4078 if (poller->srq) { 4079 num_cqe = poller->max_srq_depth * 3; 4080 } else { 4081 num_cqe = rtransport->rdma_opts.num_cqe; 4082 } 4083 4084 poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0); 4085 if (!poller->cq) { 4086 SPDK_ERRLOG("Unable to create completion queue\n"); 4087 return -1; 4088 } 4089 poller->num_cqe = num_cqe; 4090 return 0; 4091 } 4092 4093 static void 4094 _nvmf_rdma_register_poller_in_group(void *c) 4095 { 4096 struct spdk_nvmf_rdma_poller *poller; 4097 struct poller_manage_ctx *ctx = c; 4098 struct spdk_nvmf_rdma_device *device; 4099 int rc; 4100 4101 rc = nvmf_rdma_poller_create(ctx->rtransport, ctx->rgroup, ctx->device, &poller); 4102 if (rc < 0 && poller) { 4103 nvmf_rdma_poller_destroy(poller); 4104 } 4105 4106 device = ctx->device; 4107 if (nvmf_rdma_all_pollers_management_done(ctx)) { 4108 device->is_ready = true; 4109 } 4110 } 4111 4112 static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group); 4113 4114 static struct spdk_nvmf_transport_poll_group * 4115 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport, 4116 struct spdk_nvmf_poll_group *group) 4117 { 4118 struct spdk_nvmf_rdma_transport *rtransport; 4119 struct spdk_nvmf_rdma_poll_group *rgroup; 4120 struct spdk_nvmf_rdma_poller *poller; 4121 struct spdk_nvmf_rdma_device *device; 4122 int rc; 4123 4124 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 4125 4126 rgroup = calloc(1, sizeof(*rgroup)); 4127 if (!rgroup) { 4128 return NULL; 4129 } 4130 4131 TAILQ_INIT(&rgroup->pollers); 4132 4133 TAILQ_FOREACH(device, &rtransport->devices, link) { 4134 rc = nvmf_rdma_poller_create(rtransport, rgroup, device, &poller); 4135 if (rc < 0) { 4136 nvmf_rdma_poll_group_destroy(&rgroup->group); 4137 return NULL; 4138 } 4139 } 4140 4141 TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link); 4142 if (rtransport->conn_sched.next_admin_pg == NULL) { 4143 rtransport->conn_sched.next_admin_pg = rgroup; 4144 rtransport->conn_sched.next_io_pg = rgroup; 4145 } 4146 4147 return &rgroup->group; 4148 } 4149 4150 static uint32_t 4151 nvmf_poll_group_get_io_qpair_count(struct spdk_nvmf_poll_group *pg) 4152 { 4153 uint32_t count; 4154 4155 /* Just assume that unassociated qpairs will eventually be io 4156 * qpairs. This is close enough for the use cases for this 4157 * function. 4158 */ 4159 pthread_mutex_lock(&pg->mutex); 4160 count = pg->stat.current_io_qpairs + pg->current_unassociated_qpairs; 4161 pthread_mutex_unlock(&pg->mutex); 4162 4163 return count; 4164 } 4165 4166 static struct spdk_nvmf_transport_poll_group * 4167 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair) 4168 { 4169 struct spdk_nvmf_rdma_transport *rtransport; 4170 struct spdk_nvmf_rdma_poll_group **pg; 4171 struct spdk_nvmf_transport_poll_group *result; 4172 uint32_t count; 4173 4174 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 4175 4176 if (TAILQ_EMPTY(&rtransport->poll_groups)) { 4177 return NULL; 4178 } 4179 4180 if (qpair->qid == 0) { 4181 pg = &rtransport->conn_sched.next_admin_pg; 4182 } else { 4183 struct spdk_nvmf_rdma_poll_group *pg_min, *pg_start, *pg_current; 4184 uint32_t min_value; 4185 4186 pg = &rtransport->conn_sched.next_io_pg; 4187 pg_min = *pg; 4188 pg_start = *pg; 4189 pg_current = *pg; 4190 min_value = nvmf_poll_group_get_io_qpair_count(pg_current->group.group); 4191 4192 while (1) { 4193 count = nvmf_poll_group_get_io_qpair_count(pg_current->group.group); 4194 4195 if (count < min_value) { 4196 min_value = count; 4197 pg_min = pg_current; 4198 } 4199 4200 pg_current = TAILQ_NEXT(pg_current, link); 4201 if (pg_current == NULL) { 4202 pg_current = TAILQ_FIRST(&rtransport->poll_groups); 4203 } 4204 4205 if (pg_current == pg_start || min_value == 0) { 4206 break; 4207 } 4208 } 4209 *pg = pg_min; 4210 } 4211 4212 assert(*pg != NULL); 4213 4214 result = &(*pg)->group; 4215 4216 *pg = TAILQ_NEXT(*pg, link); 4217 if (*pg == NULL) { 4218 *pg = TAILQ_FIRST(&rtransport->poll_groups); 4219 } 4220 4221 return result; 4222 } 4223 4224 static void 4225 nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller) 4226 { 4227 struct spdk_nvmf_rdma_qpair *qpair, *tmp_qpair; 4228 int rc; 4229 4230 TAILQ_REMOVE(&poller->group->pollers, poller, link); 4231 RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) { 4232 nvmf_rdma_qpair_destroy(qpair); 4233 } 4234 4235 if (poller->srq) { 4236 if (poller->resources) { 4237 nvmf_rdma_resources_destroy(poller->resources); 4238 } 4239 spdk_rdma_srq_destroy(poller->srq); 4240 SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq); 4241 } 4242 4243 if (poller->cq) { 4244 rc = ibv_destroy_cq(poller->cq); 4245 if (rc != 0) { 4246 SPDK_ERRLOG("Destroy cq return %d, error: %s\n", rc, strerror(errno)); 4247 } 4248 } 4249 4250 if (poller->destroy_cb) { 4251 poller->destroy_cb(poller->destroy_cb_ctx); 4252 poller->destroy_cb = NULL; 4253 } 4254 4255 free(poller); 4256 } 4257 4258 static void 4259 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group) 4260 { 4261 struct spdk_nvmf_rdma_poll_group *rgroup, *next_rgroup; 4262 struct spdk_nvmf_rdma_poller *poller, *tmp; 4263 struct spdk_nvmf_rdma_transport *rtransport; 4264 4265 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4266 if (!rgroup) { 4267 return; 4268 } 4269 4270 TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) { 4271 nvmf_rdma_poller_destroy(poller); 4272 } 4273 4274 if (rgroup->group.transport == NULL) { 4275 /* Transport can be NULL when nvmf_rdma_poll_group_create() 4276 * calls this function directly in a failure path. */ 4277 free(rgroup); 4278 return; 4279 } 4280 4281 rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport); 4282 4283 next_rgroup = TAILQ_NEXT(rgroup, link); 4284 TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link); 4285 if (next_rgroup == NULL) { 4286 next_rgroup = TAILQ_FIRST(&rtransport->poll_groups); 4287 } 4288 if (rtransport->conn_sched.next_admin_pg == rgroup) { 4289 rtransport->conn_sched.next_admin_pg = next_rgroup; 4290 } 4291 if (rtransport->conn_sched.next_io_pg == rgroup) { 4292 rtransport->conn_sched.next_io_pg = next_rgroup; 4293 } 4294 4295 free(rgroup); 4296 } 4297 4298 static void 4299 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair) 4300 { 4301 if (rqpair->cm_id != NULL) { 4302 nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 4303 } 4304 } 4305 4306 static int 4307 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group, 4308 struct spdk_nvmf_qpair *qpair) 4309 { 4310 struct spdk_nvmf_rdma_poll_group *rgroup; 4311 struct spdk_nvmf_rdma_qpair *rqpair; 4312 struct spdk_nvmf_rdma_device *device; 4313 struct spdk_nvmf_rdma_poller *poller; 4314 int rc; 4315 4316 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4317 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4318 4319 device = rqpair->device; 4320 4321 TAILQ_FOREACH(poller, &rgroup->pollers, link) { 4322 if (poller->device == device) { 4323 break; 4324 } 4325 } 4326 4327 if (!poller) { 4328 SPDK_ERRLOG("No poller found for device.\n"); 4329 return -1; 4330 } 4331 4332 if (poller->need_destroy) { 4333 SPDK_ERRLOG("Poller is destroying.\n"); 4334 return -1; 4335 } 4336 4337 rqpair->poller = poller; 4338 rqpair->srq = rqpair->poller->srq; 4339 4340 rc = nvmf_rdma_qpair_initialize(qpair); 4341 if (rc < 0) { 4342 SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair); 4343 rqpair->poller = NULL; 4344 rqpair->srq = NULL; 4345 return -1; 4346 } 4347 4348 RB_INSERT(qpairs_tree, &poller->qpairs, rqpair); 4349 4350 rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair); 4351 if (rc) { 4352 /* Try to reject, but we probably can't */ 4353 nvmf_rdma_qpair_reject_connection(rqpair); 4354 return -1; 4355 } 4356 4357 nvmf_rdma_update_ibv_state(rqpair); 4358 4359 return 0; 4360 } 4361 4362 static int 4363 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group, 4364 struct spdk_nvmf_qpair *qpair) 4365 { 4366 struct spdk_nvmf_rdma_qpair *rqpair; 4367 4368 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4369 assert(group->transport->tgt != NULL); 4370 4371 rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt); 4372 4373 if (!rqpair->destruct_channel) { 4374 SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair); 4375 return 0; 4376 } 4377 4378 /* Sanity check that we get io_channel on the correct thread */ 4379 if (qpair->group) { 4380 assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel)); 4381 } 4382 4383 return 0; 4384 } 4385 4386 static int 4387 nvmf_rdma_request_free(struct spdk_nvmf_request *req) 4388 { 4389 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 4390 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 4391 struct spdk_nvmf_rdma_transport, transport); 4392 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 4393 struct spdk_nvmf_rdma_qpair, qpair); 4394 4395 /* 4396 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request 4397 * needs to be returned to the shared receive queue or the poll group will eventually be 4398 * starved of RECV structures. 4399 */ 4400 if (rqpair->srq && rdma_req->recv) { 4401 int rc; 4402 struct ibv_recv_wr *bad_recv_wr; 4403 4404 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr); 4405 rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr); 4406 if (rc) { 4407 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 4408 } 4409 } 4410 4411 _nvmf_rdma_request_free(rdma_req, rtransport); 4412 return 0; 4413 } 4414 4415 static int 4416 nvmf_rdma_request_complete(struct spdk_nvmf_request *req) 4417 { 4418 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 4419 struct spdk_nvmf_rdma_transport, transport); 4420 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, 4421 struct spdk_nvmf_rdma_request, req); 4422 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 4423 struct spdk_nvmf_rdma_qpair, qpair); 4424 4425 if (rqpair->ibv_state != IBV_QPS_ERR) { 4426 /* The connection is alive, so process the request as normal */ 4427 rdma_req->state = RDMA_REQUEST_STATE_EXECUTED; 4428 } else { 4429 /* The connection is dead. Move the request directly to the completed state. */ 4430 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4431 } 4432 4433 nvmf_rdma_request_process(rtransport, rdma_req); 4434 4435 return 0; 4436 } 4437 4438 static void 4439 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair, 4440 spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg) 4441 { 4442 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4443 4444 rqpair->to_close = true; 4445 4446 /* This happens only when the qpair is disconnected before 4447 * it is added to the poll group. Since there is no poll group, 4448 * the RDMA qp has not been initialized yet and the RDMA CM 4449 * event has not yet been acknowledged, so we need to reject it. 4450 */ 4451 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) { 4452 nvmf_rdma_qpair_reject_connection(rqpair); 4453 nvmf_rdma_qpair_destroy(rqpair); 4454 return; 4455 } 4456 4457 if (rqpair->rdma_qp) { 4458 spdk_rdma_qp_disconnect(rqpair->rdma_qp); 4459 } 4460 4461 nvmf_rdma_destroy_drained_qpair(rqpair); 4462 4463 if (cb_fn) { 4464 cb_fn(cb_arg); 4465 } 4466 } 4467 4468 static struct spdk_nvmf_rdma_qpair * 4469 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc) 4470 { 4471 struct spdk_nvmf_rdma_qpair find; 4472 4473 find.qp_num = wc->qp_num; 4474 4475 return RB_FIND(qpairs_tree, &rpoller->qpairs, &find); 4476 } 4477 4478 #ifdef DEBUG 4479 static int 4480 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req) 4481 { 4482 return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST || 4483 rdma_req->state == RDMA_REQUEST_STATE_COMPLETING; 4484 } 4485 #endif 4486 4487 static void 4488 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr, 4489 int rc) 4490 { 4491 struct spdk_nvmf_rdma_recv *rdma_recv; 4492 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 4493 4494 SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc); 4495 while (bad_recv_wr != NULL) { 4496 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id; 4497 rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 4498 4499 rdma_recv->qpair->current_recv_depth++; 4500 bad_recv_wr = bad_recv_wr->next; 4501 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc); 4502 spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair, NULL, NULL); 4503 } 4504 } 4505 4506 static void 4507 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc) 4508 { 4509 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc); 4510 while (bad_recv_wr != NULL) { 4511 bad_recv_wr = bad_recv_wr->next; 4512 rqpair->current_recv_depth++; 4513 } 4514 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4515 } 4516 4517 static void 4518 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 4519 struct spdk_nvmf_rdma_poller *rpoller) 4520 { 4521 struct spdk_nvmf_rdma_qpair *rqpair; 4522 struct ibv_recv_wr *bad_recv_wr; 4523 int rc; 4524 4525 if (rpoller->srq) { 4526 rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr); 4527 if (rc) { 4528 _poller_reset_failed_recvs(rpoller, bad_recv_wr, rc); 4529 } 4530 } else { 4531 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) { 4532 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv); 4533 rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr); 4534 if (rc) { 4535 _qp_reset_failed_recvs(rqpair, bad_recv_wr, rc); 4536 } 4537 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link); 4538 } 4539 } 4540 } 4541 4542 static void 4543 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport, 4544 struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc) 4545 { 4546 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 4547 struct spdk_nvmf_rdma_request *prev_rdma_req = NULL, *cur_rdma_req = NULL; 4548 4549 SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc); 4550 for (; bad_wr != NULL; bad_wr = bad_wr->next) { 4551 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id; 4552 assert(rqpair->current_send_depth > 0); 4553 rqpair->current_send_depth--; 4554 switch (bad_rdma_wr->type) { 4555 case RDMA_WR_TYPE_DATA: 4556 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data_wr); 4557 if (bad_wr->opcode == IBV_WR_RDMA_READ) { 4558 assert(rqpair->current_read_depth > 0); 4559 rqpair->current_read_depth--; 4560 } 4561 break; 4562 case RDMA_WR_TYPE_SEND: 4563 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr); 4564 break; 4565 default: 4566 SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair); 4567 prev_rdma_req = cur_rdma_req; 4568 continue; 4569 } 4570 4571 if (prev_rdma_req == cur_rdma_req) { 4572 /* this request was handled by an earlier wr. i.e. we were performing an nvme read. */ 4573 /* We only have to check against prev_wr since each requests wrs are contiguous in this list. */ 4574 continue; 4575 } 4576 4577 switch (cur_rdma_req->state) { 4578 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 4579 cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 4580 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, cur_rdma_req, state_link); 4581 cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING; 4582 break; 4583 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 4584 case RDMA_REQUEST_STATE_COMPLETING: 4585 cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4586 break; 4587 default: 4588 SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n", 4589 cur_rdma_req->state, rqpair); 4590 continue; 4591 } 4592 4593 nvmf_rdma_request_process(rtransport, cur_rdma_req); 4594 prev_rdma_req = cur_rdma_req; 4595 } 4596 4597 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 4598 /* Disconnect the connection. */ 4599 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4600 } 4601 4602 } 4603 4604 static void 4605 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 4606 struct spdk_nvmf_rdma_poller *rpoller) 4607 { 4608 struct spdk_nvmf_rdma_qpair *rqpair; 4609 struct ibv_send_wr *bad_wr = NULL; 4610 int rc; 4611 4612 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) { 4613 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send); 4614 rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr); 4615 4616 /* bad wr always points to the first wr that failed. */ 4617 if (rc) { 4618 _qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc); 4619 } 4620 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link); 4621 } 4622 } 4623 4624 static const char * 4625 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type) 4626 { 4627 switch (wr_type) { 4628 case RDMA_WR_TYPE_RECV: 4629 return "RECV"; 4630 case RDMA_WR_TYPE_SEND: 4631 return "SEND"; 4632 case RDMA_WR_TYPE_DATA: 4633 return "DATA"; 4634 default: 4635 SPDK_ERRLOG("Unknown WR type %d\n", wr_type); 4636 SPDK_UNREACHABLE(); 4637 } 4638 } 4639 4640 static inline void 4641 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc) 4642 { 4643 enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type; 4644 4645 if (wc->status == IBV_WC_WR_FLUSH_ERR) { 4646 /* If qpair is in ERR state, we will receive completions for all posted and not completed 4647 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */ 4648 SPDK_DEBUGLOG(rdma, 4649 "Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n", 4650 rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id, 4651 nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status)); 4652 } else { 4653 SPDK_ERRLOG("Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n", 4654 rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id, 4655 nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status)); 4656 } 4657 } 4658 4659 static int 4660 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport, 4661 struct spdk_nvmf_rdma_poller *rpoller) 4662 { 4663 struct ibv_wc wc[32]; 4664 struct spdk_nvmf_rdma_wr *rdma_wr; 4665 struct spdk_nvmf_rdma_request *rdma_req; 4666 struct spdk_nvmf_rdma_recv *rdma_recv; 4667 struct spdk_nvmf_rdma_qpair *rqpair, *tmp_rqpair; 4668 int reaped, i; 4669 int count = 0; 4670 int rc; 4671 bool error = false; 4672 uint64_t poll_tsc = spdk_get_ticks(); 4673 4674 if (spdk_unlikely(rpoller->need_destroy)) { 4675 /* If qpair is closed before poller destroy, nvmf_rdma_destroy_drained_qpair may not 4676 * be called because we cannot poll anything from cq. So we call that here to force 4677 * destroy the qpair after to_close turning true. 4678 */ 4679 RB_FOREACH_SAFE(rqpair, qpairs_tree, &rpoller->qpairs, tmp_rqpair) { 4680 nvmf_rdma_destroy_drained_qpair(rqpair); 4681 } 4682 return 0; 4683 } 4684 4685 /* Poll for completing operations. */ 4686 reaped = ibv_poll_cq(rpoller->cq, 32, wc); 4687 if (reaped < 0) { 4688 SPDK_ERRLOG("Error polling CQ! (%d): %s\n", 4689 errno, spdk_strerror(errno)); 4690 return -1; 4691 } else if (reaped == 0) { 4692 rpoller->stat.idle_polls++; 4693 } 4694 4695 rpoller->stat.polls++; 4696 rpoller->stat.completions += reaped; 4697 4698 for (i = 0; i < reaped; i++) { 4699 4700 rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id; 4701 4702 switch (rdma_wr->type) { 4703 case RDMA_WR_TYPE_SEND: 4704 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr); 4705 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 4706 4707 if (!wc[i].status) { 4708 count++; 4709 assert(wc[i].opcode == IBV_WC_SEND); 4710 assert(nvmf_rdma_req_is_completing(rdma_req)); 4711 } 4712 4713 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4714 /* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */ 4715 assert(rqpair->current_send_depth >= (uint32_t)rdma_req->num_outstanding_data_wr + 1); 4716 rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1; 4717 rdma_req->num_outstanding_data_wr = 0; 4718 4719 nvmf_rdma_request_process(rtransport, rdma_req); 4720 break; 4721 case RDMA_WR_TYPE_RECV: 4722 /* rdma_recv->qpair will be invalid if using an SRQ. In that case we have to get the qpair from the wc. */ 4723 rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 4724 if (rpoller->srq != NULL) { 4725 rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]); 4726 /* It is possible that there are still some completions for destroyed QP 4727 * associated with SRQ. We just ignore these late completions and re-post 4728 * receive WRs back to SRQ. 4729 */ 4730 if (spdk_unlikely(NULL == rdma_recv->qpair)) { 4731 struct ibv_recv_wr *bad_wr; 4732 4733 rdma_recv->wr.next = NULL; 4734 spdk_rdma_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr); 4735 rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_wr); 4736 if (rc) { 4737 SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc); 4738 } 4739 continue; 4740 } 4741 } 4742 rqpair = rdma_recv->qpair; 4743 4744 assert(rqpair != NULL); 4745 if (!wc[i].status) { 4746 assert(wc[i].opcode == IBV_WC_RECV); 4747 if (rqpair->current_recv_depth >= rqpair->max_queue_depth) { 4748 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4749 break; 4750 } 4751 } 4752 4753 rdma_recv->wr.next = NULL; 4754 rqpair->current_recv_depth++; 4755 rdma_recv->receive_tsc = poll_tsc; 4756 rpoller->stat.requests++; 4757 STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link); 4758 break; 4759 case RDMA_WR_TYPE_DATA: 4760 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data_wr); 4761 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 4762 4763 assert(rdma_req->num_outstanding_data_wr > 0); 4764 4765 rqpair->current_send_depth--; 4766 rdma_req->num_outstanding_data_wr--; 4767 if (!wc[i].status) { 4768 assert(wc[i].opcode == IBV_WC_RDMA_READ); 4769 rqpair->current_read_depth--; 4770 /* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */ 4771 if (rdma_req->num_outstanding_data_wr == 0) { 4772 if (spdk_unlikely(rdma_req->num_remaining_data_wr)) { 4773 /* Only part of RDMA_READ operations was submitted, process the rest */ 4774 rc = nvmf_rdma_request_reset_transfer_in(rdma_req, rtransport); 4775 if (spdk_likely(!rc)) { 4776 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link); 4777 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING; 4778 } else { 4779 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link); 4780 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING; 4781 rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 4782 } 4783 nvmf_rdma_request_process(rtransport, rdma_req); 4784 break; 4785 } 4786 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 4787 nvmf_rdma_request_process(rtransport, rdma_req); 4788 } 4789 } else { 4790 /* If the data transfer fails still force the queue into the error state, 4791 * if we were performing an RDMA_READ, we need to force the request into a 4792 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE 4793 * case, we should wait for the SEND to complete. */ 4794 if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) { 4795 rqpair->current_read_depth--; 4796 if (rdma_req->num_outstanding_data_wr == 0) { 4797 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4798 } 4799 } 4800 } 4801 break; 4802 default: 4803 SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode); 4804 continue; 4805 } 4806 4807 /* Handle error conditions */ 4808 if (wc[i].status) { 4809 nvmf_rdma_update_ibv_state(rqpair); 4810 nvmf_rdma_log_wc_status(rqpair, &wc[i]); 4811 4812 error = true; 4813 4814 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 4815 /* Disconnect the connection. */ 4816 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4817 } else { 4818 nvmf_rdma_destroy_drained_qpair(rqpair); 4819 } 4820 continue; 4821 } 4822 4823 nvmf_rdma_qpair_process_pending(rtransport, rqpair, false); 4824 4825 if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 4826 nvmf_rdma_destroy_drained_qpair(rqpair); 4827 } 4828 } 4829 4830 if (error == true) { 4831 return -1; 4832 } 4833 4834 /* submit outstanding work requests. */ 4835 _poller_submit_recvs(rtransport, rpoller); 4836 _poller_submit_sends(rtransport, rpoller); 4837 4838 return count; 4839 } 4840 4841 static void 4842 _nvmf_rdma_remove_destroyed_device(void *c) 4843 { 4844 struct spdk_nvmf_rdma_transport *rtransport = c; 4845 struct spdk_nvmf_rdma_device *device, *device_tmp; 4846 int rc; 4847 4848 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) { 4849 if (device->ready_to_destroy) { 4850 destroy_ib_device(rtransport, device); 4851 } 4852 } 4853 4854 free_poll_fds(rtransport); 4855 rc = generate_poll_fds(rtransport); 4856 /* cannot handle fd allocation error here */ 4857 if (rc != 0) { 4858 SPDK_ERRLOG("Failed to generate poll fds after remove ib device.\n"); 4859 } 4860 } 4861 4862 static void 4863 _nvmf_rdma_remove_poller_in_group_cb(void *c) 4864 { 4865 struct poller_manage_ctx *ctx = c; 4866 struct spdk_nvmf_rdma_transport *rtransport = ctx->rtransport; 4867 struct spdk_nvmf_rdma_device *device = ctx->device; 4868 struct spdk_thread *thread = ctx->thread; 4869 4870 if (nvmf_rdma_all_pollers_management_done(c)) { 4871 /* destroy device when last poller is destroyed */ 4872 device->ready_to_destroy = true; 4873 spdk_thread_send_msg(thread, _nvmf_rdma_remove_destroyed_device, rtransport); 4874 } 4875 } 4876 4877 static void 4878 _nvmf_rdma_remove_poller_in_group(void *c) 4879 { 4880 struct poller_manage_ctx *ctx = c; 4881 4882 ctx->rpoller->need_destroy = true; 4883 ctx->rpoller->destroy_cb_ctx = ctx; 4884 ctx->rpoller->destroy_cb = _nvmf_rdma_remove_poller_in_group_cb; 4885 4886 /* qp will be disconnected after receiving a RDMA_CM_EVENT_DEVICE_REMOVAL event. */ 4887 if (RB_EMPTY(&ctx->rpoller->qpairs)) { 4888 nvmf_rdma_poller_destroy(ctx->rpoller); 4889 } 4890 } 4891 4892 static int 4893 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group) 4894 { 4895 struct spdk_nvmf_rdma_transport *rtransport; 4896 struct spdk_nvmf_rdma_poll_group *rgroup; 4897 struct spdk_nvmf_rdma_poller *rpoller, *tmp; 4898 int count, rc; 4899 4900 rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport); 4901 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4902 4903 count = 0; 4904 TAILQ_FOREACH_SAFE(rpoller, &rgroup->pollers, link, tmp) { 4905 rc = nvmf_rdma_poller_poll(rtransport, rpoller); 4906 if (rc < 0) { 4907 return rc; 4908 } 4909 count += rc; 4910 } 4911 4912 return count; 4913 } 4914 4915 static int 4916 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 4917 struct spdk_nvme_transport_id *trid, 4918 bool peer) 4919 { 4920 struct sockaddr *saddr; 4921 uint16_t port; 4922 4923 spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA); 4924 4925 if (peer) { 4926 saddr = rdma_get_peer_addr(id); 4927 } else { 4928 saddr = rdma_get_local_addr(id); 4929 } 4930 switch (saddr->sa_family) { 4931 case AF_INET: { 4932 struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr; 4933 4934 trid->adrfam = SPDK_NVMF_ADRFAM_IPV4; 4935 inet_ntop(AF_INET, &saddr_in->sin_addr, 4936 trid->traddr, sizeof(trid->traddr)); 4937 if (peer) { 4938 port = ntohs(rdma_get_dst_port(id)); 4939 } else { 4940 port = ntohs(rdma_get_src_port(id)); 4941 } 4942 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 4943 break; 4944 } 4945 case AF_INET6: { 4946 struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr; 4947 trid->adrfam = SPDK_NVMF_ADRFAM_IPV6; 4948 inet_ntop(AF_INET6, &saddr_in->sin6_addr, 4949 trid->traddr, sizeof(trid->traddr)); 4950 if (peer) { 4951 port = ntohs(rdma_get_dst_port(id)); 4952 } else { 4953 port = ntohs(rdma_get_src_port(id)); 4954 } 4955 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 4956 break; 4957 } 4958 default: 4959 return -1; 4960 4961 } 4962 4963 return 0; 4964 } 4965 4966 static int 4967 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair, 4968 struct spdk_nvme_transport_id *trid) 4969 { 4970 struct spdk_nvmf_rdma_qpair *rqpair; 4971 4972 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4973 4974 return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true); 4975 } 4976 4977 static int 4978 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair, 4979 struct spdk_nvme_transport_id *trid) 4980 { 4981 struct spdk_nvmf_rdma_qpair *rqpair; 4982 4983 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4984 4985 return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false); 4986 } 4987 4988 static int 4989 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair, 4990 struct spdk_nvme_transport_id *trid) 4991 { 4992 struct spdk_nvmf_rdma_qpair *rqpair; 4993 4994 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4995 4996 return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false); 4997 } 4998 4999 void 5000 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) 5001 { 5002 g_nvmf_hooks = *hooks; 5003 } 5004 5005 static void 5006 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req, 5007 struct spdk_nvmf_rdma_request *rdma_req_to_abort, 5008 struct spdk_nvmf_rdma_qpair *rqpair) 5009 { 5010 rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC; 5011 rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; 5012 5013 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req_to_abort, state_link); 5014 rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING; 5015 5016 req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */ 5017 } 5018 5019 static int 5020 _nvmf_rdma_qpair_abort_request(void *ctx) 5021 { 5022 struct spdk_nvmf_request *req = ctx; 5023 struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF( 5024 req->req_to_abort, struct spdk_nvmf_rdma_request, req); 5025 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair, 5026 struct spdk_nvmf_rdma_qpair, qpair); 5027 int rc; 5028 5029 spdk_poller_unregister(&req->poller); 5030 5031 switch (rdma_req_to_abort->state) { 5032 case RDMA_REQUEST_STATE_EXECUTING: 5033 rc = nvmf_ctrlr_abort_request(req); 5034 if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) { 5035 return SPDK_POLLER_BUSY; 5036 } 5037 break; 5038 5039 case RDMA_REQUEST_STATE_NEED_BUFFER: 5040 STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue, 5041 &rdma_req_to_abort->req, spdk_nvmf_request, buf_link); 5042 5043 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair); 5044 break; 5045 5046 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 5047 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort, 5048 spdk_nvmf_rdma_request, state_link); 5049 5050 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair); 5051 break; 5052 5053 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 5054 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort, 5055 spdk_nvmf_rdma_request, state_link); 5056 5057 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair); 5058 break; 5059 5060 case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING: 5061 /* Remove req from the list here to re-use common function */ 5062 STAILQ_REMOVE(&rqpair->pending_rdma_send_queue, rdma_req_to_abort, 5063 spdk_nvmf_rdma_request, state_link); 5064 5065 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair); 5066 break; 5067 5068 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 5069 if (spdk_get_ticks() < req->timeout_tsc) { 5070 req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0); 5071 return SPDK_POLLER_BUSY; 5072 } 5073 break; 5074 5075 default: 5076 break; 5077 } 5078 5079 spdk_nvmf_request_complete(req); 5080 return SPDK_POLLER_BUSY; 5081 } 5082 5083 static void 5084 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair, 5085 struct spdk_nvmf_request *req) 5086 { 5087 struct spdk_nvmf_rdma_qpair *rqpair; 5088 struct spdk_nvmf_rdma_transport *rtransport; 5089 struct spdk_nvmf_transport *transport; 5090 uint16_t cid; 5091 uint32_t i, max_req_count; 5092 struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req; 5093 5094 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 5095 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 5096 transport = &rtransport->transport; 5097 5098 cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid; 5099 max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth; 5100 5101 for (i = 0; i < max_req_count; i++) { 5102 rdma_req = &rqpair->resources->reqs[i]; 5103 /* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair 5104 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to 5105 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */ 5106 if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid && 5107 rdma_req->req.qpair == qpair) { 5108 rdma_req_to_abort = rdma_req; 5109 break; 5110 } 5111 } 5112 5113 if (rdma_req_to_abort == NULL) { 5114 spdk_nvmf_request_complete(req); 5115 return; 5116 } 5117 5118 req->req_to_abort = &rdma_req_to_abort->req; 5119 req->timeout_tsc = spdk_get_ticks() + 5120 transport->opts.abort_timeout_sec * spdk_get_ticks_hz(); 5121 req->poller = NULL; 5122 5123 _nvmf_rdma_qpair_abort_request(req); 5124 } 5125 5126 static void 5127 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group, 5128 struct spdk_json_write_ctx *w) 5129 { 5130 struct spdk_nvmf_rdma_poll_group *rgroup; 5131 struct spdk_nvmf_rdma_poller *rpoller; 5132 5133 assert(w != NULL); 5134 5135 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 5136 5137 spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer); 5138 5139 spdk_json_write_named_array_begin(w, "devices"); 5140 5141 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 5142 spdk_json_write_object_begin(w); 5143 spdk_json_write_named_string(w, "name", 5144 ibv_get_device_name(rpoller->device->context->device)); 5145 spdk_json_write_named_uint64(w, "polls", 5146 rpoller->stat.polls); 5147 spdk_json_write_named_uint64(w, "idle_polls", 5148 rpoller->stat.idle_polls); 5149 spdk_json_write_named_uint64(w, "completions", 5150 rpoller->stat.completions); 5151 spdk_json_write_named_uint64(w, "requests", 5152 rpoller->stat.requests); 5153 spdk_json_write_named_uint64(w, "request_latency", 5154 rpoller->stat.request_latency); 5155 spdk_json_write_named_uint64(w, "pending_free_request", 5156 rpoller->stat.pending_free_request); 5157 spdk_json_write_named_uint64(w, "pending_rdma_read", 5158 rpoller->stat.pending_rdma_read); 5159 spdk_json_write_named_uint64(w, "pending_rdma_write", 5160 rpoller->stat.pending_rdma_write); 5161 spdk_json_write_named_uint64(w, "pending_rdma_send", 5162 rpoller->stat.pending_rdma_send); 5163 spdk_json_write_named_uint64(w, "total_send_wrs", 5164 rpoller->stat.qp_stats.send.num_submitted_wrs); 5165 spdk_json_write_named_uint64(w, "send_doorbell_updates", 5166 rpoller->stat.qp_stats.send.doorbell_updates); 5167 spdk_json_write_named_uint64(w, "total_recv_wrs", 5168 rpoller->stat.qp_stats.recv.num_submitted_wrs); 5169 spdk_json_write_named_uint64(w, "recv_doorbell_updates", 5170 rpoller->stat.qp_stats.recv.doorbell_updates); 5171 spdk_json_write_object_end(w); 5172 } 5173 5174 spdk_json_write_array_end(w); 5175 } 5176 5177 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = { 5178 .name = "RDMA", 5179 .type = SPDK_NVME_TRANSPORT_RDMA, 5180 .opts_init = nvmf_rdma_opts_init, 5181 .create = nvmf_rdma_create, 5182 .dump_opts = nvmf_rdma_dump_opts, 5183 .destroy = nvmf_rdma_destroy, 5184 5185 .listen = nvmf_rdma_listen, 5186 .stop_listen = nvmf_rdma_stop_listen, 5187 .cdata_init = nvmf_rdma_cdata_init, 5188 5189 .listener_discover = nvmf_rdma_discover, 5190 5191 .poll_group_create = nvmf_rdma_poll_group_create, 5192 .get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group, 5193 .poll_group_destroy = nvmf_rdma_poll_group_destroy, 5194 .poll_group_add = nvmf_rdma_poll_group_add, 5195 .poll_group_remove = nvmf_rdma_poll_group_remove, 5196 .poll_group_poll = nvmf_rdma_poll_group_poll, 5197 5198 .req_free = nvmf_rdma_request_free, 5199 .req_complete = nvmf_rdma_request_complete, 5200 5201 .qpair_fini = nvmf_rdma_close_qpair, 5202 .qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid, 5203 .qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid, 5204 .qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid, 5205 .qpair_abort_request = nvmf_rdma_qpair_abort_request, 5206 5207 .poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat, 5208 }; 5209 5210 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma); 5211 SPDK_LOG_REGISTER_COMPONENT(rdma) 5212