xref: /spdk/lib/nvmf/rdma.c (revision 9b562bdf50151b749f4ccd777783d41e2cd06a4b)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "spdk/config.h"
10 #include "spdk/thread.h"
11 #include "spdk/likely.h"
12 #include "spdk/nvmf_transport.h"
13 #include "spdk/string.h"
14 #include "spdk/trace.h"
15 #include "spdk/tree.h"
16 #include "spdk/util.h"
17 
18 #include "spdk_internal/assert.h"
19 #include "spdk/log.h"
20 #include "spdk_internal/rdma.h"
21 
22 #include "nvmf_internal.h"
23 #include "transport.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
28 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma;
29 
30 /*
31  RDMA Connection Resource Defaults
32  */
33 #define NVMF_DEFAULT_MSDBD		16
34 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
35 #define NVMF_DEFAULT_RSP_SGE		1
36 #define NVMF_DEFAULT_RX_SGE		2
37 
38 SPDK_STATIC_ASSERT(NVMF_DEFAULT_MSDBD <= SPDK_NVMF_MAX_SGL_ENTRIES,
39 		   "MSDBD must not exceed SPDK_NVMF_MAX_SGL_ENTRIES");
40 
41 /* The RDMA completion queue size */
42 #define DEFAULT_NVMF_RDMA_CQ_SIZE	4096
43 #define MAX_WR_PER_QP(queue_depth)	(queue_depth * 3 + 2)
44 
45 static int g_spdk_nvmf_ibv_query_mask =
46 	IBV_QP_STATE |
47 	IBV_QP_PKEY_INDEX |
48 	IBV_QP_PORT |
49 	IBV_QP_ACCESS_FLAGS |
50 	IBV_QP_AV |
51 	IBV_QP_PATH_MTU |
52 	IBV_QP_DEST_QPN |
53 	IBV_QP_RQ_PSN |
54 	IBV_QP_MAX_DEST_RD_ATOMIC |
55 	IBV_QP_MIN_RNR_TIMER |
56 	IBV_QP_SQ_PSN |
57 	IBV_QP_TIMEOUT |
58 	IBV_QP_RETRY_CNT |
59 	IBV_QP_RNR_RETRY |
60 	IBV_QP_MAX_QP_RD_ATOMIC;
61 
62 enum spdk_nvmf_rdma_request_state {
63 	/* The request is not currently in use */
64 	RDMA_REQUEST_STATE_FREE = 0,
65 
66 	/* Initial state when request first received */
67 	RDMA_REQUEST_STATE_NEW,
68 
69 	/* The request is queued until a data buffer is available. */
70 	RDMA_REQUEST_STATE_NEED_BUFFER,
71 
72 	/* The request is waiting on RDMA queue depth availability
73 	 * to transfer data from the host to the controller.
74 	 */
75 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
76 
77 	/* The request is currently transferring data from the host to the controller. */
78 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
79 
80 	/* The request is ready to execute at the block device */
81 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
82 
83 	/* The request is currently executing at the block device */
84 	RDMA_REQUEST_STATE_EXECUTING,
85 
86 	/* The request finished executing at the block device */
87 	RDMA_REQUEST_STATE_EXECUTED,
88 
89 	/* The request is waiting on RDMA queue depth availability
90 	 * to transfer data from the controller to the host.
91 	 */
92 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
93 
94 	/* The request is waiting on RDMA queue depth availability
95 	 * to send response to the host.
96 	 */
97 	RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING,
98 
99 	/* The request is ready to send a completion */
100 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
101 
102 	/* The request is currently transferring data from the controller to the host. */
103 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
104 
105 	/* The request currently has an outstanding completion without an
106 	 * associated data transfer.
107 	 */
108 	RDMA_REQUEST_STATE_COMPLETING,
109 
110 	/* The request completed and can be marked free. */
111 	RDMA_REQUEST_STATE_COMPLETED,
112 
113 	/* Terminator */
114 	RDMA_REQUEST_NUM_STATES,
115 };
116 
117 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
118 {
119 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
120 	spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW,
121 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1,
122 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
123 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
124 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
125 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
126 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H",
127 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
128 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
129 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
130 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C",
131 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
132 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
133 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
134 	spdk_trace_register_description("RDMA_REQ_TX_H2C",
135 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
136 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
137 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
138 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE",
139 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
140 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
141 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
142 	spdk_trace_register_description("RDMA_REQ_EXECUTING",
143 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
144 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
145 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
146 	spdk_trace_register_description("RDMA_REQ_EXECUTED",
147 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
148 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
149 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
150 	spdk_trace_register_description("RDMA_REQ_RDY2COMPL_PEND",
151 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING,
152 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
153 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
154 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL",
155 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
156 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
157 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
158 	spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H",
159 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
160 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
161 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
162 	spdk_trace_register_description("RDMA_REQ_COMPLETING",
163 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
164 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
165 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
166 	spdk_trace_register_description("RDMA_REQ_COMPLETED",
167 					TRACE_RDMA_REQUEST_STATE_COMPLETED,
168 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
169 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
170 
171 	spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE,
172 					OWNER_NONE, OBJECT_NONE, 0,
173 					SPDK_TRACE_ARG_TYPE_INT, "");
174 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT,
175 					OWNER_NONE, OBJECT_NONE, 0,
176 					SPDK_TRACE_ARG_TYPE_INT, "type");
177 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT,
178 					OWNER_NONE, OBJECT_NONE, 0,
179 					SPDK_TRACE_ARG_TYPE_INT, "type");
180 	spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE,
181 					OWNER_NONE, OBJECT_NONE, 0,
182 					SPDK_TRACE_ARG_TYPE_PTR, "state");
183 	spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT,
184 					OWNER_NONE, OBJECT_NONE, 0,
185 					SPDK_TRACE_ARG_TYPE_INT, "");
186 	spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY,
187 					OWNER_NONE, OBJECT_NONE, 0,
188 					SPDK_TRACE_ARG_TYPE_INT, "");
189 }
190 
191 enum spdk_nvmf_rdma_wr_type {
192 	RDMA_WR_TYPE_RECV,
193 	RDMA_WR_TYPE_SEND,
194 	RDMA_WR_TYPE_DATA,
195 };
196 
197 struct spdk_nvmf_rdma_wr {
198 	/* Uses enum spdk_nvmf_rdma_wr_type */
199 	uint8_t type;
200 };
201 
202 /* This structure holds commands as they are received off the wire.
203  * It must be dynamically paired with a full request object
204  * (spdk_nvmf_rdma_request) to service a request. It is separate
205  * from the request because RDMA does not appear to order
206  * completions, so occasionally we'll get a new incoming
207  * command when there aren't any free request objects.
208  */
209 struct spdk_nvmf_rdma_recv {
210 	struct ibv_recv_wr			wr;
211 	struct ibv_sge				sgl[NVMF_DEFAULT_RX_SGE];
212 
213 	struct spdk_nvmf_rdma_qpair		*qpair;
214 
215 	/* In-capsule data buffer */
216 	uint8_t					*buf;
217 
218 	struct spdk_nvmf_rdma_wr		rdma_wr;
219 	uint64_t				receive_tsc;
220 
221 	STAILQ_ENTRY(spdk_nvmf_rdma_recv)	link;
222 };
223 
224 struct spdk_nvmf_rdma_request_data {
225 	struct ibv_send_wr		wr;
226 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
227 };
228 
229 struct spdk_nvmf_rdma_request {
230 	struct spdk_nvmf_request		req;
231 
232 	bool					fused_failed;
233 
234 	struct spdk_nvmf_rdma_wr		data_wr;
235 	struct spdk_nvmf_rdma_wr		rsp_wr;
236 
237 	/* Uses enum spdk_nvmf_rdma_request_state */
238 	uint8_t					state;
239 
240 	/* Data offset in req.iov */
241 	uint32_t				offset;
242 
243 	struct spdk_nvmf_rdma_recv		*recv;
244 
245 	struct {
246 		struct	ibv_send_wr		wr;
247 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
248 	} rsp;
249 
250 	uint16_t				iovpos;
251 	uint16_t				num_outstanding_data_wr;
252 	/* Used to split Write IO with multi SGL payload */
253 	uint16_t				num_remaining_data_wr;
254 	uint64_t				receive_tsc;
255 	struct spdk_nvmf_rdma_request		*fused_pair;
256 	STAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
257 	struct ibv_send_wr			*remaining_tranfer_in_wrs;
258 	struct ibv_send_wr			*transfer_wr;
259 	struct spdk_nvmf_rdma_request_data	data;
260 };
261 
262 struct spdk_nvmf_rdma_resource_opts {
263 	struct spdk_nvmf_rdma_qpair	*qpair;
264 	/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
265 	void				*qp;
266 	struct spdk_rdma_mem_map	*map;
267 	uint32_t			max_queue_depth;
268 	uint32_t			in_capsule_data_size;
269 	bool				shared;
270 };
271 
272 struct spdk_nvmf_rdma_resources {
273 	/* Array of size "max_queue_depth" containing RDMA requests. */
274 	struct spdk_nvmf_rdma_request		*reqs;
275 
276 	/* Array of size "max_queue_depth" containing RDMA recvs. */
277 	struct spdk_nvmf_rdma_recv		*recvs;
278 
279 	/* Array of size "max_queue_depth" containing 64 byte capsules
280 	 * used for receive.
281 	 */
282 	union nvmf_h2c_msg			*cmds;
283 
284 	/* Array of size "max_queue_depth" containing 16 byte completions
285 	 * to be sent back to the user.
286 	 */
287 	union nvmf_c2h_msg			*cpls;
288 
289 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
290 	 * buffers to be used for in capsule data.
291 	 */
292 	void					*bufs;
293 
294 	/* Receives that are waiting for a request object */
295 	STAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
296 
297 	/* Queue to track free requests */
298 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	free_queue;
299 };
300 
301 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair);
302 
303 typedef void (*spdk_poller_destroy_cb)(void *ctx);
304 
305 struct spdk_nvmf_rdma_ibv_event_ctx {
306 	struct spdk_nvmf_rdma_qpair			*rqpair;
307 	spdk_nvmf_rdma_qpair_ibv_event			cb_fn;
308 	/* Link to other ibv events associated with this qpair */
309 	STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx)	link;
310 };
311 
312 struct spdk_nvmf_rdma_qpair {
313 	struct spdk_nvmf_qpair			qpair;
314 
315 	struct spdk_nvmf_rdma_device		*device;
316 	struct spdk_nvmf_rdma_poller		*poller;
317 
318 	struct spdk_rdma_qp			*rdma_qp;
319 	struct rdma_cm_id			*cm_id;
320 	struct spdk_rdma_srq			*srq;
321 	struct rdma_cm_id			*listen_id;
322 
323 	/* Cache the QP number to improve QP search by RB tree. */
324 	uint32_t				qp_num;
325 
326 	/* The maximum number of I/O outstanding on this connection at one time */
327 	uint16_t				max_queue_depth;
328 
329 	/* The maximum number of active RDMA READ and ATOMIC operations at one time */
330 	uint16_t				max_read_depth;
331 
332 	/* The maximum number of RDMA SEND operations at one time */
333 	uint32_t				max_send_depth;
334 
335 	/* The current number of outstanding WRs from this qpair's
336 	 * recv queue. Should not exceed device->attr.max_queue_depth.
337 	 */
338 	uint16_t				current_recv_depth;
339 
340 	/* The current number of active RDMA READ operations */
341 	uint16_t				current_read_depth;
342 
343 	/* The current number of posted WRs from this qpair's
344 	 * send queue. Should not exceed max_send_depth.
345 	 */
346 	uint32_t				current_send_depth;
347 
348 	/* The maximum number of SGEs per WR on the send queue */
349 	uint32_t				max_send_sge;
350 
351 	/* The maximum number of SGEs per WR on the recv queue */
352 	uint32_t				max_recv_sge;
353 
354 	struct spdk_nvmf_rdma_resources		*resources;
355 
356 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_read_queue;
357 
358 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_write_queue;
359 
360 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_send_queue;
361 
362 	/* Number of requests not in the free state */
363 	uint32_t				qd;
364 
365 	RB_ENTRY(spdk_nvmf_rdma_qpair)		node;
366 
367 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	recv_link;
368 
369 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	send_link;
370 
371 	/* IBV queue pair attributes: they are used to manage
372 	 * qp state and recover from errors.
373 	 */
374 	enum ibv_qp_state			ibv_state;
375 
376 	/* Points to the a request that has fuse bits set to
377 	 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting
378 	 * for the request that has SPDK_NVME_CMD_FUSE_SECOND.
379 	 */
380 	struct spdk_nvmf_rdma_request		*fused_first;
381 
382 	/*
383 	 * io_channel which is used to destroy qpair when it is removed from poll group
384 	 */
385 	struct spdk_io_channel		*destruct_channel;
386 
387 	/* List of ibv async events */
388 	STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx)	ibv_events;
389 
390 	/* Lets us know that we have received the last_wqe event. */
391 	bool					last_wqe_reached;
392 
393 	/* Indicate that nvmf_rdma_close_qpair is called */
394 	bool					to_close;
395 };
396 
397 struct spdk_nvmf_rdma_poller_stat {
398 	uint64_t				completions;
399 	uint64_t				polls;
400 	uint64_t				idle_polls;
401 	uint64_t				requests;
402 	uint64_t				request_latency;
403 	uint64_t				pending_free_request;
404 	uint64_t				pending_rdma_read;
405 	uint64_t				pending_rdma_write;
406 	uint64_t				pending_rdma_send;
407 	struct spdk_rdma_qp_stats		qp_stats;
408 };
409 
410 struct spdk_nvmf_rdma_poller {
411 	struct spdk_nvmf_rdma_device		*device;
412 	struct spdk_nvmf_rdma_poll_group	*group;
413 
414 	int					num_cqe;
415 	int					required_num_wr;
416 	struct ibv_cq				*cq;
417 
418 	/* The maximum number of I/O outstanding on the shared receive queue at one time */
419 	uint16_t				max_srq_depth;
420 	bool					need_destroy;
421 
422 	/* Shared receive queue */
423 	struct spdk_rdma_srq			*srq;
424 
425 	struct spdk_nvmf_rdma_resources		*resources;
426 	struct spdk_nvmf_rdma_poller_stat	stat;
427 
428 	spdk_poller_destroy_cb			destroy_cb;
429 	void					*destroy_cb_ctx;
430 
431 	RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs;
432 
433 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_recv;
434 
435 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_send;
436 
437 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
438 };
439 
440 struct spdk_nvmf_rdma_poll_group_stat {
441 	uint64_t				pending_data_buffer;
442 };
443 
444 struct spdk_nvmf_rdma_poll_group {
445 	struct spdk_nvmf_transport_poll_group		group;
446 	struct spdk_nvmf_rdma_poll_group_stat		stat;
447 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)		pollers;
448 	TAILQ_ENTRY(spdk_nvmf_rdma_poll_group)		link;
449 };
450 
451 struct spdk_nvmf_rdma_conn_sched {
452 	struct spdk_nvmf_rdma_poll_group *next_admin_pg;
453 	struct spdk_nvmf_rdma_poll_group *next_io_pg;
454 };
455 
456 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
457 struct spdk_nvmf_rdma_device {
458 	struct ibv_device_attr			attr;
459 	struct ibv_context			*context;
460 
461 	struct spdk_rdma_mem_map		*map;
462 	struct ibv_pd				*pd;
463 
464 	int					num_srq;
465 	bool					need_destroy;
466 	bool					ready_to_destroy;
467 	bool					is_ready;
468 
469 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
470 };
471 
472 struct spdk_nvmf_rdma_port {
473 	const struct spdk_nvme_transport_id	*trid;
474 	struct rdma_cm_id			*id;
475 	struct spdk_nvmf_rdma_device		*device;
476 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
477 };
478 
479 struct rdma_transport_opts {
480 	int		num_cqe;
481 	uint32_t	max_srq_depth;
482 	bool		no_srq;
483 	bool		no_wr_batching;
484 	int		acceptor_backlog;
485 };
486 
487 struct spdk_nvmf_rdma_transport {
488 	struct spdk_nvmf_transport	transport;
489 	struct rdma_transport_opts	rdma_opts;
490 
491 	struct spdk_nvmf_rdma_conn_sched conn_sched;
492 
493 	struct rdma_event_channel	*event_channel;
494 
495 	struct spdk_mempool		*data_wr_pool;
496 
497 	struct spdk_poller		*accept_poller;
498 
499 	/* fields used to poll RDMA/IB events */
500 	nfds_t			npoll_fds;
501 	struct pollfd		*poll_fds;
502 
503 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
504 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
505 	TAILQ_HEAD(, spdk_nvmf_rdma_poll_group)	poll_groups;
506 
507 	/* ports that are removed unexpectedly and need retry listen */
508 	TAILQ_HEAD(, spdk_nvmf_rdma_port)		retry_ports;
509 };
510 
511 struct poller_manage_ctx {
512 	struct spdk_nvmf_rdma_transport		*rtransport;
513 	struct spdk_nvmf_rdma_poll_group	*rgroup;
514 	struct spdk_nvmf_rdma_poller		*rpoller;
515 	struct spdk_nvmf_rdma_device		*device;
516 
517 	struct spdk_thread			*thread;
518 	volatile int				*inflight_op_counter;
519 };
520 
521 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = {
522 	{
523 		"num_cqe", offsetof(struct rdma_transport_opts, num_cqe),
524 		spdk_json_decode_int32, true
525 	},
526 	{
527 		"max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth),
528 		spdk_json_decode_uint32, true
529 	},
530 	{
531 		"no_srq", offsetof(struct rdma_transport_opts, no_srq),
532 		spdk_json_decode_bool, true
533 	},
534 	{
535 		"no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching),
536 		spdk_json_decode_bool, true
537 	},
538 	{
539 		"acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog),
540 		spdk_json_decode_int32, true
541 	},
542 };
543 
544 static int
545 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2)
546 {
547 	return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num;
548 }
549 
550 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare);
551 
552 static bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
553 				      struct spdk_nvmf_rdma_request *rdma_req);
554 
555 static void _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
556 				 struct spdk_nvmf_rdma_poller *rpoller);
557 
558 static void _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
559 				 struct spdk_nvmf_rdma_poller *rpoller);
560 
561 static void _nvmf_rdma_remove_destroyed_device(void *c);
562 
563 static inline int
564 nvmf_rdma_check_ibv_state(enum ibv_qp_state state)
565 {
566 	switch (state) {
567 	case IBV_QPS_RESET:
568 	case IBV_QPS_INIT:
569 	case IBV_QPS_RTR:
570 	case IBV_QPS_RTS:
571 	case IBV_QPS_SQD:
572 	case IBV_QPS_SQE:
573 	case IBV_QPS_ERR:
574 		return 0;
575 	default:
576 		return -1;
577 	}
578 }
579 
580 static inline enum spdk_nvme_media_error_status_code
581 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) {
582 	enum spdk_nvme_media_error_status_code result;
583 	switch (err_type)
584 	{
585 	case SPDK_DIF_REFTAG_ERROR:
586 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
587 		break;
588 	case SPDK_DIF_APPTAG_ERROR:
589 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
590 		break;
591 	case SPDK_DIF_GUARD_ERROR:
592 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
593 		break;
594 	default:
595 		SPDK_UNREACHABLE();
596 	}
597 
598 	return result;
599 }
600 
601 static enum ibv_qp_state
602 nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) {
603 	enum ibv_qp_state old_state, new_state;
604 	struct ibv_qp_attr qp_attr;
605 	struct ibv_qp_init_attr init_attr;
606 	int rc;
607 
608 	old_state = rqpair->ibv_state;
609 	rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr,
610 			  g_spdk_nvmf_ibv_query_mask, &init_attr);
611 
612 	if (rc)
613 	{
614 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
615 		return IBV_QPS_ERR + 1;
616 	}
617 
618 	new_state = qp_attr.qp_state;
619 	rqpair->ibv_state = new_state;
620 	qp_attr.ah_attr.port_num = qp_attr.port_num;
621 
622 	rc = nvmf_rdma_check_ibv_state(new_state);
623 	if (rc)
624 	{
625 		SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state);
626 		/*
627 		 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8
628 		 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR
629 		 */
630 		return IBV_QPS_ERR + 1;
631 	}
632 
633 	if (old_state != new_state)
634 	{
635 		spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, (uintptr_t)rqpair, new_state);
636 	}
637 	return new_state;
638 }
639 
640 /*
641  * Return data_wrs to pool starting from \b data_wr
642  * Request's own response and data WR are excluded
643  */
644 static void
645 _nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
646 			     struct ibv_send_wr *data_wr,
647 			     struct spdk_mempool *pool)
648 {
649 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
650 	struct spdk_nvmf_rdma_request_data	*nvmf_data;
651 	struct ibv_send_wr			*next_send_wr;
652 	uint64_t				req_wrid = (uint64_t)&rdma_req->data_wr;
653 	uint32_t				num_wrs = 0;
654 
655 	while (data_wr && data_wr->wr_id == req_wrid) {
656 		nvmf_data = SPDK_CONTAINEROF(data_wr, struct spdk_nvmf_rdma_request_data, wr);
657 		memset(nvmf_data->sgl, 0, sizeof(data_wr->sg_list[0]) * data_wr->num_sge);
658 		data_wr->num_sge = 0;
659 		next_send_wr = data_wr->next;
660 		if (data_wr != &rdma_req->data.wr) {
661 			data_wr->next = NULL;
662 			assert(num_wrs < SPDK_NVMF_MAX_SGL_ENTRIES);
663 			work_requests[num_wrs] = nvmf_data;
664 			num_wrs++;
665 		}
666 		data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : next_send_wr;
667 	}
668 
669 	if (num_wrs) {
670 		spdk_mempool_put_bulk(pool, (void **) work_requests, num_wrs);
671 	}
672 }
673 
674 static void
675 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
676 			    struct spdk_nvmf_rdma_transport *rtransport)
677 {
678 	rdma_req->num_outstanding_data_wr = 0;
679 
680 	_nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool);
681 
682 	rdma_req->data.wr.next = NULL;
683 	rdma_req->rsp.wr.next = NULL;
684 }
685 
686 static void
687 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
688 {
689 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool);
690 	if (req->req.cmd) {
691 		SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
692 	}
693 	if (req->recv) {
694 		SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
695 	}
696 }
697 
698 static void
699 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
700 {
701 	int i;
702 
703 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
704 	for (i = 0; i < rqpair->max_queue_depth; i++) {
705 		if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
706 			nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
707 		}
708 	}
709 }
710 
711 static void
712 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
713 {
714 	spdk_free(resources->cmds);
715 	spdk_free(resources->cpls);
716 	spdk_free(resources->bufs);
717 	spdk_free(resources->reqs);
718 	spdk_free(resources->recvs);
719 	free(resources);
720 }
721 
722 
723 static struct spdk_nvmf_rdma_resources *
724 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
725 {
726 	struct spdk_nvmf_rdma_resources		*resources;
727 	struct spdk_nvmf_rdma_request		*rdma_req;
728 	struct spdk_nvmf_rdma_recv		*rdma_recv;
729 	struct spdk_rdma_qp			*qp = NULL;
730 	struct spdk_rdma_srq			*srq = NULL;
731 	struct ibv_recv_wr			*bad_wr = NULL;
732 	struct spdk_rdma_memory_translation	translation;
733 	uint32_t				i;
734 	int					rc = 0;
735 
736 	resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
737 	if (!resources) {
738 		SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
739 		return NULL;
740 	}
741 
742 	resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs),
743 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
744 	resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs),
745 					0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
746 	resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
747 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
748 	resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
749 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
750 
751 	if (opts->in_capsule_data_size > 0) {
752 		resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size,
753 					       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY,
754 					       SPDK_MALLOC_DMA);
755 	}
756 
757 	if (!resources->reqs || !resources->recvs || !resources->cmds ||
758 	    !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
759 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
760 		goto cleanup;
761 	}
762 
763 	SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx\n",
764 		      resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds));
765 	SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx\n",
766 		      resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls));
767 	if (resources->bufs) {
768 		SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x\n",
769 			      resources->bufs, opts->max_queue_depth *
770 			      opts->in_capsule_data_size);
771 	}
772 
773 	/* Initialize queues */
774 	STAILQ_INIT(&resources->incoming_queue);
775 	STAILQ_INIT(&resources->free_queue);
776 
777 	if (opts->shared) {
778 		srq = (struct spdk_rdma_srq *)opts->qp;
779 	} else {
780 		qp = (struct spdk_rdma_qp *)opts->qp;
781 	}
782 
783 	for (i = 0; i < opts->max_queue_depth; i++) {
784 		rdma_recv = &resources->recvs[i];
785 		rdma_recv->qpair = opts->qpair;
786 
787 		/* Set up memory to receive commands */
788 		if (resources->bufs) {
789 			rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
790 						  opts->in_capsule_data_size));
791 		}
792 
793 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
794 
795 		rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
796 		rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
797 		rc = spdk_rdma_get_translation(opts->map, &resources->cmds[i], sizeof(resources->cmds[i]),
798 					       &translation);
799 		if (rc) {
800 			goto cleanup;
801 		}
802 		rdma_recv->sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
803 		rdma_recv->wr.num_sge = 1;
804 
805 		if (rdma_recv->buf) {
806 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
807 			rdma_recv->sgl[1].length = opts->in_capsule_data_size;
808 			rc = spdk_rdma_get_translation(opts->map, rdma_recv->buf, opts->in_capsule_data_size, &translation);
809 			if (rc) {
810 				goto cleanup;
811 			}
812 			rdma_recv->sgl[1].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
813 			rdma_recv->wr.num_sge++;
814 		}
815 
816 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
817 		rdma_recv->wr.sg_list = rdma_recv->sgl;
818 		if (srq) {
819 			spdk_rdma_srq_queue_recv_wrs(srq, &rdma_recv->wr);
820 		} else {
821 			spdk_rdma_qp_queue_recv_wrs(qp, &rdma_recv->wr);
822 		}
823 	}
824 
825 	for (i = 0; i < opts->max_queue_depth; i++) {
826 		rdma_req = &resources->reqs[i];
827 
828 		if (opts->qpair != NULL) {
829 			rdma_req->req.qpair = &opts->qpair->qpair;
830 		} else {
831 			rdma_req->req.qpair = NULL;
832 		}
833 		rdma_req->req.cmd = NULL;
834 		rdma_req->req.iovcnt = 0;
835 		rdma_req->req.stripped_data = NULL;
836 
837 		/* Set up memory to send responses */
838 		rdma_req->req.rsp = &resources->cpls[i];
839 
840 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
841 		rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
842 		rc = spdk_rdma_get_translation(opts->map, &resources->cpls[i], sizeof(resources->cpls[i]),
843 					       &translation);
844 		if (rc) {
845 			goto cleanup;
846 		}
847 		rdma_req->rsp.sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
848 
849 		rdma_req->rsp_wr.type = RDMA_WR_TYPE_SEND;
850 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp_wr;
851 		rdma_req->rsp.wr.next = NULL;
852 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
853 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
854 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
855 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
856 
857 		/* Set up memory for data buffers */
858 		rdma_req->data_wr.type = RDMA_WR_TYPE_DATA;
859 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data_wr;
860 		rdma_req->data.wr.next = NULL;
861 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
862 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
863 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
864 
865 		/* Initialize request state to FREE */
866 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
867 		STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
868 	}
869 
870 	if (srq) {
871 		rc = spdk_rdma_srq_flush_recv_wrs(srq, &bad_wr);
872 	} else {
873 		rc = spdk_rdma_qp_flush_recv_wrs(qp, &bad_wr);
874 	}
875 
876 	if (rc) {
877 		goto cleanup;
878 	}
879 
880 	return resources;
881 
882 cleanup:
883 	nvmf_rdma_resources_destroy(resources);
884 	return NULL;
885 }
886 
887 static void
888 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair)
889 {
890 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx;
891 	STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) {
892 		ctx->rqpair = NULL;
893 		/* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */
894 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
895 	}
896 }
897 
898 static void nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller);
899 
900 static void
901 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
902 {
903 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
904 	struct ibv_recv_wr		*bad_recv_wr = NULL;
905 	int				rc;
906 
907 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair);
908 
909 	if (rqpair->qd != 0) {
910 		struct spdk_nvmf_qpair *qpair = &rqpair->qpair;
911 		struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(qpair->transport,
912 				struct spdk_nvmf_rdma_transport, transport);
913 		struct spdk_nvmf_rdma_request *req;
914 		uint32_t i, max_req_count = 0;
915 
916 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
917 
918 		if (rqpair->srq == NULL) {
919 			nvmf_rdma_dump_qpair_contents(rqpair);
920 			max_req_count = rqpair->max_queue_depth;
921 		} else if (rqpair->poller && rqpair->resources) {
922 			max_req_count = rqpair->poller->max_srq_depth;
923 		}
924 
925 		SPDK_DEBUGLOG(rdma, "Release incomplete requests\n");
926 		for (i = 0; i < max_req_count; i++) {
927 			req = &rqpair->resources->reqs[i];
928 			if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) {
929 				/* nvmf_rdma_request_process checks qpair ibv and internal state
930 				 * and completes a request */
931 				nvmf_rdma_request_process(rtransport, req);
932 			}
933 		}
934 		assert(rqpair->qd == 0);
935 	}
936 
937 	if (rqpair->poller) {
938 		RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair);
939 
940 		if (rqpair->srq != NULL && rqpair->resources != NULL) {
941 			/* Drop all received but unprocessed commands for this queue and return them to SRQ */
942 			STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
943 				if (rqpair == rdma_recv->qpair) {
944 					STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link);
945 					spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr);
946 					rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
947 					if (rc) {
948 						SPDK_ERRLOG("Unable to re-post rx descriptor\n");
949 					}
950 				}
951 			}
952 		}
953 	}
954 
955 	if (rqpair->cm_id) {
956 		if (rqpair->rdma_qp != NULL) {
957 			spdk_rdma_qp_destroy(rqpair->rdma_qp);
958 			rqpair->rdma_qp = NULL;
959 		}
960 
961 		if (rqpair->poller != NULL && rqpair->srq == NULL) {
962 			rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
963 		}
964 	}
965 
966 	if (rqpair->srq == NULL && rqpair->resources != NULL) {
967 		nvmf_rdma_resources_destroy(rqpair->resources);
968 	}
969 
970 	nvmf_rdma_qpair_clean_ibv_events(rqpair);
971 
972 	if (rqpair->destruct_channel) {
973 		spdk_put_io_channel(rqpair->destruct_channel);
974 		rqpair->destruct_channel = NULL;
975 	}
976 
977 	if (rqpair->poller && rqpair->poller->need_destroy && RB_EMPTY(&rqpair->poller->qpairs)) {
978 		nvmf_rdma_poller_destroy(rqpair->poller);
979 	}
980 
981 	/* destroy cm_id last so cma device will not be freed before we destroy the cq. */
982 	if (rqpair->cm_id) {
983 		rdma_destroy_id(rqpair->cm_id);
984 	}
985 
986 	free(rqpair);
987 }
988 
989 static int
990 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
991 {
992 	struct spdk_nvmf_rdma_poller	*rpoller;
993 	int				rc, num_cqe, required_num_wr;
994 
995 	/* Enlarge CQ size dynamically */
996 	rpoller = rqpair->poller;
997 	required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
998 	num_cqe = rpoller->num_cqe;
999 	if (num_cqe < required_num_wr) {
1000 		num_cqe = spdk_max(num_cqe * 2, required_num_wr);
1001 		num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
1002 	}
1003 
1004 	if (rpoller->num_cqe != num_cqe) {
1005 		if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) {
1006 			SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n"
1007 				    "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe);
1008 			return -1;
1009 		}
1010 		if (required_num_wr > device->attr.max_cqe) {
1011 			SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
1012 				    required_num_wr, device->attr.max_cqe);
1013 			return -1;
1014 		}
1015 
1016 		SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
1017 		rc = ibv_resize_cq(rpoller->cq, num_cqe);
1018 		if (rc) {
1019 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
1020 			return -1;
1021 		}
1022 
1023 		rpoller->num_cqe = num_cqe;
1024 	}
1025 
1026 	rpoller->required_num_wr = required_num_wr;
1027 	return 0;
1028 }
1029 
1030 static int
1031 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
1032 {
1033 	struct spdk_nvmf_rdma_qpair		*rqpair;
1034 	struct spdk_nvmf_rdma_transport		*rtransport;
1035 	struct spdk_nvmf_transport		*transport;
1036 	struct spdk_nvmf_rdma_resource_opts	opts;
1037 	struct spdk_nvmf_rdma_device		*device;
1038 	struct spdk_rdma_qp_init_attr		qp_init_attr = {};
1039 
1040 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1041 	device = rqpair->device;
1042 
1043 	qp_init_attr.qp_context	= rqpair;
1044 	qp_init_attr.pd		= device->pd;
1045 	qp_init_attr.send_cq	= rqpair->poller->cq;
1046 	qp_init_attr.recv_cq	= rqpair->poller->cq;
1047 
1048 	if (rqpair->srq) {
1049 		qp_init_attr.srq		= rqpair->srq->srq;
1050 	} else {
1051 		qp_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth;
1052 	}
1053 
1054 	/* SEND, READ, and WRITE operations */
1055 	qp_init_attr.cap.max_send_wr	= (uint32_t)rqpair->max_queue_depth * 2;
1056 	qp_init_attr.cap.max_send_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
1057 	qp_init_attr.cap.max_recv_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
1058 	qp_init_attr.stats		= &rqpair->poller->stat.qp_stats;
1059 
1060 	if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
1061 		SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
1062 		goto error;
1063 	}
1064 
1065 	rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr);
1066 	if (!rqpair->rdma_qp) {
1067 		goto error;
1068 	}
1069 
1070 	rqpair->qp_num = rqpair->rdma_qp->qp->qp_num;
1071 
1072 	rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2),
1073 					  qp_init_attr.cap.max_send_wr);
1074 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge);
1075 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge);
1076 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair);
1077 	SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair);
1078 
1079 	if (rqpair->poller->srq == NULL) {
1080 		rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
1081 		transport = &rtransport->transport;
1082 
1083 		opts.qp = rqpair->rdma_qp;
1084 		opts.map = device->map;
1085 		opts.qpair = rqpair;
1086 		opts.shared = false;
1087 		opts.max_queue_depth = rqpair->max_queue_depth;
1088 		opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
1089 
1090 		rqpair->resources = nvmf_rdma_resources_create(&opts);
1091 
1092 		if (!rqpair->resources) {
1093 			SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
1094 			rdma_destroy_qp(rqpair->cm_id);
1095 			goto error;
1096 		}
1097 	} else {
1098 		rqpair->resources = rqpair->poller->resources;
1099 	}
1100 
1101 	rqpair->current_recv_depth = 0;
1102 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1103 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1104 	STAILQ_INIT(&rqpair->pending_rdma_send_queue);
1105 
1106 	return 0;
1107 
1108 error:
1109 	rdma_destroy_id(rqpair->cm_id);
1110 	rqpair->cm_id = NULL;
1111 	return -1;
1112 }
1113 
1114 /* Append the given recv wr structure to the resource structs outstanding recvs list. */
1115 /* This function accepts either a single wr or the first wr in a linked list. */
1116 static void
1117 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first)
1118 {
1119 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1120 			struct spdk_nvmf_rdma_transport, transport);
1121 
1122 	if (rqpair->srq != NULL) {
1123 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, first);
1124 	} else {
1125 		if (spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, first)) {
1126 			STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link);
1127 		}
1128 	}
1129 
1130 	if (rtransport->rdma_opts.no_wr_batching) {
1131 		_poller_submit_recvs(rtransport, rqpair->poller);
1132 	}
1133 }
1134 
1135 static int
1136 request_transfer_in(struct spdk_nvmf_request *req)
1137 {
1138 	struct spdk_nvmf_rdma_request	*rdma_req;
1139 	struct spdk_nvmf_qpair		*qpair;
1140 	struct spdk_nvmf_rdma_qpair	*rqpair;
1141 	struct spdk_nvmf_rdma_transport *rtransport;
1142 
1143 	qpair = req->qpair;
1144 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1145 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1146 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1147 				      struct spdk_nvmf_rdma_transport, transport);
1148 
1149 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1150 	assert(rdma_req != NULL);
1151 
1152 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, rdma_req->transfer_wr)) {
1153 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1154 	}
1155 	if (rtransport->rdma_opts.no_wr_batching) {
1156 		_poller_submit_sends(rtransport, rqpair->poller);
1157 	}
1158 
1159 	assert(rqpair->current_read_depth + rdma_req->num_outstanding_data_wr <= rqpair->max_read_depth);
1160 	rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1161 	assert(rqpair->current_send_depth + rdma_req->num_outstanding_data_wr <= rqpair->max_send_depth);
1162 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1163 	return 0;
1164 }
1165 
1166 static inline int
1167 nvmf_rdma_request_reset_transfer_in(struct spdk_nvmf_rdma_request *rdma_req,
1168 				    struct spdk_nvmf_rdma_transport *rtransport)
1169 {
1170 	/* Put completed WRs back to pool and move transfer_wr pointer */
1171 	_nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool);
1172 	rdma_req->transfer_wr = rdma_req->remaining_tranfer_in_wrs;
1173 	rdma_req->remaining_tranfer_in_wrs = NULL;
1174 	rdma_req->num_outstanding_data_wr = rdma_req->num_remaining_data_wr;
1175 	rdma_req->num_remaining_data_wr = 0;
1176 
1177 	return 0;
1178 }
1179 
1180 static inline int
1181 request_prepare_transfer_in_part(struct spdk_nvmf_request *req, uint32_t num_reads_available)
1182 {
1183 	struct spdk_nvmf_rdma_request	*rdma_req;
1184 	struct ibv_send_wr		*wr;
1185 	uint32_t i;
1186 
1187 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1188 
1189 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1190 	assert(rdma_req != NULL);
1191 	assert(num_reads_available > 0);
1192 	assert(rdma_req->num_outstanding_data_wr > num_reads_available);
1193 	wr = rdma_req->transfer_wr;
1194 
1195 	for (i = 0; i < num_reads_available - 1; i++) {
1196 		wr = wr->next;
1197 	}
1198 
1199 	rdma_req->remaining_tranfer_in_wrs = wr->next;
1200 	rdma_req->num_remaining_data_wr = rdma_req->num_outstanding_data_wr - num_reads_available;
1201 	rdma_req->num_outstanding_data_wr = num_reads_available;
1202 	/* Break chain of WRs to send only part. Once this portion completes, we continue sending RDMA_READs */
1203 	wr->next = NULL;
1204 
1205 	return 0;
1206 }
1207 
1208 static int
1209 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1210 {
1211 	int				num_outstanding_data_wr = 0;
1212 	struct spdk_nvmf_rdma_request	*rdma_req;
1213 	struct spdk_nvmf_qpair		*qpair;
1214 	struct spdk_nvmf_rdma_qpair	*rqpair;
1215 	struct spdk_nvme_cpl		*rsp;
1216 	struct ibv_send_wr		*first = NULL;
1217 	struct spdk_nvmf_rdma_transport *rtransport;
1218 
1219 	*data_posted = 0;
1220 	qpair = req->qpair;
1221 	rsp = &req->rsp->nvme_cpl;
1222 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1223 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1224 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1225 				      struct spdk_nvmf_rdma_transport, transport);
1226 
1227 	/* Advance our sq_head pointer */
1228 	if (qpair->sq_head == qpair->sq_head_max) {
1229 		qpair->sq_head = 0;
1230 	} else {
1231 		qpair->sq_head++;
1232 	}
1233 	rsp->sqhd = qpair->sq_head;
1234 
1235 	/* queue the capsule for the recv buffer */
1236 	assert(rdma_req->recv != NULL);
1237 
1238 	nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr);
1239 
1240 	rdma_req->recv = NULL;
1241 	assert(rqpair->current_recv_depth > 0);
1242 	rqpair->current_recv_depth--;
1243 
1244 	/* Build the response which consists of optional
1245 	 * RDMA WRITEs to transfer data, plus an RDMA SEND
1246 	 * containing the response.
1247 	 */
1248 	first = &rdma_req->rsp.wr;
1249 
1250 	if (rsp->status.sc != SPDK_NVME_SC_SUCCESS) {
1251 		/* On failure, data was not read from the controller. So clear the
1252 		 * number of outstanding data WRs to zero.
1253 		 */
1254 		rdma_req->num_outstanding_data_wr = 0;
1255 	} else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1256 		first = rdma_req->transfer_wr;
1257 		*data_posted = 1;
1258 		num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
1259 	}
1260 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) {
1261 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1262 	}
1263 	if (rtransport->rdma_opts.no_wr_batching) {
1264 		_poller_submit_sends(rtransport, rqpair->poller);
1265 	}
1266 
1267 	/* +1 for the rsp wr */
1268 	assert(rqpair->current_send_depth + num_outstanding_data_wr + 1 <= rqpair->max_send_depth);
1269 	rqpair->current_send_depth += num_outstanding_data_wr + 1;
1270 
1271 	return 0;
1272 }
1273 
1274 static int
1275 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1276 {
1277 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
1278 	struct rdma_conn_param				ctrlr_event_data = {};
1279 	int						rc;
1280 
1281 	accept_data.recfmt = 0;
1282 	accept_data.crqsize = rqpair->max_queue_depth;
1283 
1284 	ctrlr_event_data.private_data = &accept_data;
1285 	ctrlr_event_data.private_data_len = sizeof(accept_data);
1286 	if (id->ps == RDMA_PS_TCP) {
1287 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1288 		ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1289 	}
1290 
1291 	/* Configure infinite retries for the initiator side qpair.
1292 	 * We need to pass this value to the initiator to prevent the
1293 	 * initiator side NIC from completing SEND requests back to the
1294 	 * initiator with status rnr_retry_count_exceeded. */
1295 	ctrlr_event_data.rnr_retry_count = 0x7;
1296 
1297 	/* When qpair is created without use of rdma cm API, an additional
1298 	 * information must be provided to initiator in the connection response:
1299 	 * whether qpair is using SRQ and its qp_num
1300 	 * Fields below are ignored by rdma cm if qpair has been
1301 	 * created using rdma cm API. */
1302 	ctrlr_event_data.srq = rqpair->srq ? 1 : 0;
1303 	ctrlr_event_data.qp_num = rqpair->qp_num;
1304 
1305 	rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data);
1306 	if (rc) {
1307 		SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno);
1308 	} else {
1309 		SPDK_DEBUGLOG(rdma, "Sent back the accept\n");
1310 	}
1311 
1312 	return rc;
1313 }
1314 
1315 static void
1316 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1317 {
1318 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
1319 
1320 	rej_data.recfmt = 0;
1321 	rej_data.sts = error;
1322 
1323 	rdma_reject(id, &rej_data, sizeof(rej_data));
1324 }
1325 
1326 static int
1327 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event)
1328 {
1329 	struct spdk_nvmf_rdma_transport *rtransport;
1330 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
1331 	struct spdk_nvmf_rdma_port	*port;
1332 	struct rdma_conn_param		*rdma_param = NULL;
1333 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1334 	uint16_t			max_queue_depth;
1335 	uint16_t			max_read_depth;
1336 
1337 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1338 
1339 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1340 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1341 
1342 	rdma_param = &event->param.conn;
1343 	if (rdma_param->private_data == NULL ||
1344 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1345 		SPDK_ERRLOG("connect request: no private data provided\n");
1346 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1347 		return -1;
1348 	}
1349 
1350 	private_data = rdma_param->private_data;
1351 	if (private_data->recfmt != 0) {
1352 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1353 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1354 		return -1;
1355 	}
1356 
1357 	SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n",
1358 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1359 
1360 	port = event->listen_id->context;
1361 	SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1362 		      event->listen_id, event->listen_id->verbs, port);
1363 
1364 	/* Figure out the supported queue depth. This is a multi-step process
1365 	 * that takes into account hardware maximums, host provided values,
1366 	 * and our target's internal memory limits */
1367 
1368 	SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n");
1369 
1370 	/* Start with the maximum queue depth allowed by the target */
1371 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1372 	max_read_depth = rtransport->transport.opts.max_queue_depth;
1373 	SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n",
1374 		      rtransport->transport.opts.max_queue_depth);
1375 
1376 	/* Next check the local NIC's hardware limitations */
1377 	SPDK_DEBUGLOG(rdma,
1378 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1379 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1380 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1381 	max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1382 
1383 	/* Next check the remote NIC's hardware limitations */
1384 	SPDK_DEBUGLOG(rdma,
1385 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1386 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1387 	/* from man3 rdma_get_cm_event
1388 	 * responder_resources - Specifies the number of responder resources that is requested by the recipient.
1389 	 * The responder_resources field must match the initiator depth specified by the remote node when running
1390 	 * the rdma_connect and rdma_accept functions. */
1391 	if (rdma_param->responder_resources != 0) {
1392 		if (private_data->qid) {
1393 			SPDK_DEBUGLOG(rdma, "Host (Initiator) is not allowed to use RDMA operations,"
1394 				      " responder_resources must be 0 but set to %u\n",
1395 				      rdma_param->responder_resources);
1396 		} else {
1397 			SPDK_WARNLOG("Host (Initiator) is not allowed to use RDMA operations,"
1398 				     " responder_resources must be 0 but set to %u\n",
1399 				     rdma_param->responder_resources);
1400 		}
1401 	}
1402 	/* from man3 rdma_get_cm_event
1403 	 * initiator_depth - Specifies the maximum number of outstanding RDMA read operations that the recipient holds.
1404 	 * The initiator_depth field must match the responder resources specified by the remote node when running
1405 	 * the rdma_connect and rdma_accept functions. */
1406 	if (rdma_param->initiator_depth == 0) {
1407 		SPDK_ERRLOG("Host (Initiator) doesn't support RDMA_READ or atomic operations\n");
1408 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_IRD);
1409 		return -1;
1410 	}
1411 	max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1412 
1413 	SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1414 	SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize);
1415 	max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1416 	max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1417 
1418 	SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1419 		      max_queue_depth, max_read_depth);
1420 
1421 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1422 	if (rqpair == NULL) {
1423 		SPDK_ERRLOG("Could not allocate new connection.\n");
1424 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1425 		return -1;
1426 	}
1427 
1428 	rqpair->device = port->device;
1429 	rqpair->max_queue_depth = max_queue_depth;
1430 	rqpair->max_read_depth = max_read_depth;
1431 	rqpair->cm_id = event->id;
1432 	rqpair->listen_id = event->listen_id;
1433 	rqpair->qpair.transport = transport;
1434 	STAILQ_INIT(&rqpair->ibv_events);
1435 	/* use qid from the private data to determine the qpair type
1436 	   qid will be set to the appropriate value when the controller is created */
1437 	rqpair->qpair.qid = private_data->qid;
1438 
1439 	event->id->context = &rqpair->qpair;
1440 
1441 	spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair);
1442 
1443 	return 0;
1444 }
1445 
1446 static inline void
1447 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next,
1448 		   enum spdk_nvme_data_transfer xfer)
1449 {
1450 	if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1451 		wr->opcode = IBV_WR_RDMA_WRITE;
1452 		wr->send_flags = 0;
1453 		wr->next = next;
1454 	} else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1455 		wr->opcode = IBV_WR_RDMA_READ;
1456 		wr->send_flags = IBV_SEND_SIGNALED;
1457 		wr->next = NULL;
1458 	} else {
1459 		assert(0);
1460 	}
1461 }
1462 
1463 static int
1464 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1465 		       struct spdk_nvmf_rdma_request *rdma_req,
1466 		       uint32_t num_sgl_descriptors)
1467 {
1468 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1469 	struct spdk_nvmf_rdma_request_data	*current_data_wr;
1470 	uint32_t				i;
1471 
1472 	if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) {
1473 		SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n",
1474 			    num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES);
1475 		return -EINVAL;
1476 	}
1477 
1478 	if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) {
1479 		return -ENOMEM;
1480 	}
1481 
1482 	current_data_wr = &rdma_req->data;
1483 
1484 	for (i = 0; i < num_sgl_descriptors; i++) {
1485 		nvmf_rdma_setup_wr(&current_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer);
1486 		current_data_wr->wr.next = &work_requests[i]->wr;
1487 		current_data_wr = work_requests[i];
1488 		current_data_wr->wr.sg_list = current_data_wr->sgl;
1489 		current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id;
1490 	}
1491 
1492 	nvmf_rdma_setup_wr(&current_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1493 
1494 	return 0;
1495 }
1496 
1497 static inline void
1498 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req)
1499 {
1500 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1501 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1502 
1503 	wr->wr.rdma.rkey = sgl->keyed.key;
1504 	wr->wr.rdma.remote_addr = sgl->address;
1505 	nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1506 }
1507 
1508 static inline void
1509 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs)
1510 {
1511 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1512 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1513 	uint32_t			i;
1514 	int				j;
1515 	uint64_t			remote_addr_offset = 0;
1516 
1517 	for (i = 0; i < num_wrs; ++i) {
1518 		wr->wr.rdma.rkey = sgl->keyed.key;
1519 		wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset;
1520 		for (j = 0; j < wr->num_sge; ++j) {
1521 			remote_addr_offset += wr->sg_list[j].length;
1522 		}
1523 		wr = wr->next;
1524 	}
1525 }
1526 
1527 static int
1528 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup,
1529 		      struct spdk_nvmf_rdma_device *device,
1530 		      struct spdk_nvmf_rdma_request *rdma_req,
1531 		      struct ibv_send_wr *wr,
1532 		      uint32_t total_length)
1533 {
1534 	struct spdk_rdma_memory_translation mem_translation;
1535 	struct ibv_sge	*sg_ele;
1536 	struct iovec *iov;
1537 	uint32_t lkey, remaining;
1538 	int rc;
1539 
1540 	wr->num_sge = 0;
1541 
1542 	while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) {
1543 		iov = &rdma_req->req.iov[rdma_req->iovpos];
1544 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1545 		if (spdk_unlikely(rc)) {
1546 			return rc;
1547 		}
1548 
1549 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1550 		sg_ele = &wr->sg_list[wr->num_sge];
1551 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1552 
1553 		sg_ele->lkey = lkey;
1554 		sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset;
1555 		sg_ele->length = remaining;
1556 		SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr,
1557 			      sg_ele->length);
1558 		rdma_req->offset += sg_ele->length;
1559 		total_length -= sg_ele->length;
1560 		wr->num_sge++;
1561 
1562 		if (rdma_req->offset == iov->iov_len) {
1563 			rdma_req->offset = 0;
1564 			rdma_req->iovpos++;
1565 		}
1566 	}
1567 
1568 	if (total_length) {
1569 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1570 		return -EINVAL;
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 static int
1577 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_poll_group *rgroup,
1578 			       struct spdk_nvmf_rdma_device *device,
1579 			       struct spdk_nvmf_rdma_request *rdma_req,
1580 			       struct ibv_send_wr *wr,
1581 			       uint32_t total_length,
1582 			       uint32_t num_extra_wrs)
1583 {
1584 	struct spdk_rdma_memory_translation mem_translation;
1585 	struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx;
1586 	struct ibv_sge *sg_ele;
1587 	struct iovec *iov;
1588 	struct iovec *rdma_iov;
1589 	uint32_t lkey, remaining;
1590 	uint32_t remaining_data_block, data_block_size, md_size;
1591 	uint32_t sge_len;
1592 	int rc;
1593 
1594 	data_block_size = dif_ctx->block_size - dif_ctx->md_size;
1595 
1596 	if (spdk_likely(!rdma_req->req.stripped_data)) {
1597 		rdma_iov = rdma_req->req.iov;
1598 		remaining_data_block = data_block_size;
1599 		md_size = dif_ctx->md_size;
1600 	} else {
1601 		rdma_iov = rdma_req->req.stripped_data->iov;
1602 		total_length = total_length / dif_ctx->block_size * data_block_size;
1603 		remaining_data_block = total_length;
1604 		md_size = 0;
1605 	}
1606 
1607 	wr->num_sge = 0;
1608 
1609 	while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) {
1610 		iov = rdma_iov + rdma_req->iovpos;
1611 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1612 		if (spdk_unlikely(rc)) {
1613 			return rc;
1614 		}
1615 
1616 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1617 		sg_ele = &wr->sg_list[wr->num_sge];
1618 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1619 
1620 		while (remaining) {
1621 			if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) {
1622 				if (num_extra_wrs > 0 && wr->next) {
1623 					wr = wr->next;
1624 					wr->num_sge = 0;
1625 					sg_ele = &wr->sg_list[wr->num_sge];
1626 					num_extra_wrs--;
1627 				} else {
1628 					break;
1629 				}
1630 			}
1631 			sg_ele->lkey = lkey;
1632 			sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset);
1633 			sge_len = spdk_min(remaining, remaining_data_block);
1634 			sg_ele->length = sge_len;
1635 			SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele,
1636 				      sg_ele->addr, sg_ele->length);
1637 			remaining -= sge_len;
1638 			remaining_data_block -= sge_len;
1639 			rdma_req->offset += sge_len;
1640 			total_length -= sge_len;
1641 
1642 			sg_ele++;
1643 			wr->num_sge++;
1644 
1645 			if (remaining_data_block == 0) {
1646 				/* skip metadata */
1647 				rdma_req->offset += md_size;
1648 				total_length -= md_size;
1649 				/* Metadata that do not fit this IO buffer will be included in the next IO buffer */
1650 				remaining -= spdk_min(remaining, md_size);
1651 				remaining_data_block = data_block_size;
1652 			}
1653 
1654 			if (remaining == 0) {
1655 				/* By subtracting the size of the last IOV from the offset, we ensure that we skip
1656 				   the remaining metadata bits at the beginning of the next buffer */
1657 				rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset);
1658 				rdma_req->iovpos++;
1659 			}
1660 		}
1661 	}
1662 
1663 	if (total_length) {
1664 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1665 		return -EINVAL;
1666 	}
1667 
1668 	return 0;
1669 }
1670 
1671 static inline uint32_t
1672 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size)
1673 {
1674 	/* estimate the number of SG entries and WRs needed to process the request */
1675 	uint32_t num_sge = 0;
1676 	uint32_t i;
1677 	uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size);
1678 
1679 	for (i = 0; i < num_buffers && length > 0; i++) {
1680 		uint32_t buffer_len = spdk_min(length, io_unit_size);
1681 		uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size);
1682 
1683 		if (num_sge_in_block * block_size > buffer_len) {
1684 			++num_sge_in_block;
1685 		}
1686 		num_sge += num_sge_in_block;
1687 		length -= buffer_len;
1688 	}
1689 	return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES);
1690 }
1691 
1692 static int
1693 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1694 			    struct spdk_nvmf_rdma_device *device,
1695 			    struct spdk_nvmf_rdma_request *rdma_req)
1696 {
1697 	struct spdk_nvmf_rdma_qpair		*rqpair;
1698 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1699 	struct spdk_nvmf_request		*req = &rdma_req->req;
1700 	struct ibv_send_wr			*wr = &rdma_req->data.wr;
1701 	int					rc;
1702 	uint32_t				num_wrs = 1;
1703 	uint32_t				length;
1704 
1705 	rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair);
1706 	rgroup = rqpair->poller->group;
1707 
1708 	/* rdma wr specifics */
1709 	nvmf_rdma_setup_request(rdma_req);
1710 
1711 	length = req->length;
1712 	if (spdk_unlikely(req->dif_enabled)) {
1713 		req->dif.orig_length = length;
1714 		length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
1715 		req->dif.elba_length = length;
1716 	}
1717 
1718 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
1719 					   length);
1720 	if (rc != 0) {
1721 		return rc;
1722 	}
1723 
1724 	assert(req->iovcnt <= rqpair->max_send_sge);
1725 
1726 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1727 	 * the stripped_buffers are got for DIF stripping. */
1728 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1729 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1730 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1731 						       &rtransport->transport, req->dif.orig_length);
1732 		if (rc != 0) {
1733 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1734 		}
1735 	}
1736 
1737 	rdma_req->iovpos = 0;
1738 
1739 	if (spdk_unlikely(req->dif_enabled)) {
1740 		num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size,
1741 						 req->dif.dif_ctx.block_size);
1742 		if (num_wrs > 1) {
1743 			rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1);
1744 			if (rc != 0) {
1745 				goto err_exit;
1746 			}
1747 		}
1748 
1749 		rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, wr, length, num_wrs - 1);
1750 		if (spdk_unlikely(rc != 0)) {
1751 			goto err_exit;
1752 		}
1753 
1754 		if (num_wrs > 1) {
1755 			nvmf_rdma_update_remote_addr(rdma_req, num_wrs);
1756 		}
1757 	} else {
1758 		rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length);
1759 		if (spdk_unlikely(rc != 0)) {
1760 			goto err_exit;
1761 		}
1762 	}
1763 
1764 	/* set the number of outstanding data WRs for this request. */
1765 	rdma_req->num_outstanding_data_wr = num_wrs;
1766 
1767 	return rc;
1768 
1769 err_exit:
1770 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1771 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1772 	req->iovcnt = 0;
1773 	return rc;
1774 }
1775 
1776 static int
1777 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1778 				      struct spdk_nvmf_rdma_device *device,
1779 				      struct spdk_nvmf_rdma_request *rdma_req)
1780 {
1781 	struct spdk_nvmf_rdma_qpair		*rqpair;
1782 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1783 	struct ibv_send_wr			*current_wr;
1784 	struct spdk_nvmf_request		*req = &rdma_req->req;
1785 	struct spdk_nvme_sgl_descriptor		*inline_segment, *desc;
1786 	uint32_t				num_sgl_descriptors;
1787 	uint32_t				lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0;
1788 	uint32_t				i;
1789 	int					rc;
1790 
1791 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1792 	rgroup = rqpair->poller->group;
1793 
1794 	inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1795 	assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1796 	assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1797 
1798 	num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1799 	assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1800 
1801 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1802 	for (i = 0; i < num_sgl_descriptors; i++) {
1803 		if (spdk_likely(!req->dif_enabled)) {
1804 			lengths[i] = desc->keyed.length;
1805 		} else {
1806 			req->dif.orig_length += desc->keyed.length;
1807 			lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx);
1808 			req->dif.elba_length += lengths[i];
1809 		}
1810 		total_length += lengths[i];
1811 		desc++;
1812 	}
1813 
1814 	if (total_length > rtransport->transport.opts.max_io_size) {
1815 		SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n",
1816 			    total_length, rtransport->transport.opts.max_io_size);
1817 		req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1818 		return -EINVAL;
1819 	}
1820 
1821 	if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) {
1822 		return -ENOMEM;
1823 	}
1824 
1825 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length);
1826 	if (rc != 0) {
1827 		nvmf_rdma_request_free_data(rdma_req, rtransport);
1828 		return rc;
1829 	}
1830 
1831 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1832 	 * the stripped_buffers are got for DIF stripping. */
1833 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1834 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1835 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1836 						       &rtransport->transport, req->dif.orig_length);
1837 		if (rc != 0) {
1838 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1839 		}
1840 	}
1841 
1842 	/* The first WR must always be the embedded data WR. This is how we unwind them later. */
1843 	current_wr = &rdma_req->data.wr;
1844 	assert(current_wr != NULL);
1845 
1846 	req->length = 0;
1847 	rdma_req->iovpos = 0;
1848 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1849 	for (i = 0; i < num_sgl_descriptors; i++) {
1850 		/* The descriptors must be keyed data block descriptors with an address, not an offset. */
1851 		if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1852 				  desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1853 			rc = -EINVAL;
1854 			goto err_exit;
1855 		}
1856 
1857 		if (spdk_likely(!req->dif_enabled)) {
1858 			rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i]);
1859 		} else {
1860 			rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, current_wr,
1861 							    lengths[i], 0);
1862 		}
1863 		if (rc != 0) {
1864 			rc = -ENOMEM;
1865 			goto err_exit;
1866 		}
1867 
1868 		req->length += desc->keyed.length;
1869 		current_wr->wr.rdma.rkey = desc->keyed.key;
1870 		current_wr->wr.rdma.remote_addr = desc->address;
1871 		current_wr = current_wr->next;
1872 		desc++;
1873 	}
1874 
1875 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1876 	/* Go back to the last descriptor in the list. */
1877 	desc--;
1878 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1879 		if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1880 			rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1881 			rdma_req->rsp.wr.imm_data = desc->keyed.key;
1882 		}
1883 	}
1884 #endif
1885 
1886 	rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1887 
1888 	return 0;
1889 
1890 err_exit:
1891 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1892 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1893 	return rc;
1894 }
1895 
1896 static int
1897 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1898 			    struct spdk_nvmf_rdma_device *device,
1899 			    struct spdk_nvmf_rdma_request *rdma_req)
1900 {
1901 	struct spdk_nvmf_request		*req = &rdma_req->req;
1902 	struct spdk_nvme_cpl			*rsp;
1903 	struct spdk_nvme_sgl_descriptor		*sgl;
1904 	int					rc;
1905 	uint32_t				length;
1906 
1907 	rsp = &req->rsp->nvme_cpl;
1908 	sgl = &req->cmd->nvme_cmd.dptr.sgl1;
1909 
1910 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1911 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1912 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1913 
1914 		length = sgl->keyed.length;
1915 		if (length > rtransport->transport.opts.max_io_size) {
1916 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1917 				    length, rtransport->transport.opts.max_io_size);
1918 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1919 			return -1;
1920 		}
1921 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1922 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1923 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1924 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1925 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1926 			}
1927 		}
1928 #endif
1929 
1930 		/* fill request length and populate iovs */
1931 		req->length = length;
1932 
1933 		rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req);
1934 		if (spdk_unlikely(rc < 0)) {
1935 			if (rc == -EINVAL) {
1936 				SPDK_ERRLOG("SGL length exceeds the max I/O size\n");
1937 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1938 				return -1;
1939 			}
1940 			/* No available buffers. Queue this request up. */
1941 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1942 			return 0;
1943 		}
1944 
1945 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1946 			      req->iovcnt);
1947 
1948 		return 0;
1949 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1950 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1951 		uint64_t offset = sgl->address;
1952 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1953 
1954 		SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1955 			      offset, sgl->unkeyed.length);
1956 
1957 		if (offset > max_len) {
1958 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1959 				    offset, max_len);
1960 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1961 			return -1;
1962 		}
1963 		max_len -= (uint32_t)offset;
1964 
1965 		if (sgl->unkeyed.length > max_len) {
1966 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1967 				    sgl->unkeyed.length, max_len);
1968 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1969 			return -1;
1970 		}
1971 
1972 		rdma_req->num_outstanding_data_wr = 0;
1973 		req->data_from_pool = false;
1974 		req->length = sgl->unkeyed.length;
1975 
1976 		req->iov[0].iov_base = rdma_req->recv->buf + offset;
1977 		req->iov[0].iov_len = req->length;
1978 		req->iovcnt = 1;
1979 
1980 		return 0;
1981 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1982 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1983 
1984 		rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1985 		if (rc == -ENOMEM) {
1986 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1987 			return 0;
1988 		} else if (rc == -EINVAL) {
1989 			SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1990 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1991 			return -1;
1992 		}
1993 
1994 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1995 			      req->iovcnt);
1996 
1997 		return 0;
1998 	}
1999 
2000 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2001 		    sgl->generic.type, sgl->generic.subtype);
2002 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
2003 	return -1;
2004 }
2005 
2006 static void
2007 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
2008 			struct spdk_nvmf_rdma_transport	*rtransport)
2009 {
2010 	struct spdk_nvmf_rdma_qpair		*rqpair;
2011 	struct spdk_nvmf_rdma_poll_group	*rgroup;
2012 
2013 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2014 	if (rdma_req->req.data_from_pool) {
2015 		rgroup = rqpair->poller->group;
2016 
2017 		spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport);
2018 	}
2019 	if (rdma_req->req.stripped_data) {
2020 		nvmf_request_free_stripped_buffers(&rdma_req->req,
2021 						   &rqpair->poller->group->group,
2022 						   &rtransport->transport);
2023 	}
2024 	nvmf_rdma_request_free_data(rdma_req, rtransport);
2025 	rdma_req->req.length = 0;
2026 	rdma_req->req.iovcnt = 0;
2027 	rdma_req->offset = 0;
2028 	rdma_req->req.dif_enabled = false;
2029 	rdma_req->fused_failed = false;
2030 	rdma_req->transfer_wr = NULL;
2031 	if (rdma_req->fused_pair) {
2032 		/* This req was part of a valid fused pair, but failed before it got to
2033 		 * READ_TO_EXECUTE state.  This means we need to fail the other request
2034 		 * in the pair, because it is no longer part of a valid pair.  If the pair
2035 		 * already reached READY_TO_EXECUTE state, we need to kick it.
2036 		 */
2037 		rdma_req->fused_pair->fused_failed = true;
2038 		if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2039 			nvmf_rdma_request_process(rtransport, rdma_req->fused_pair);
2040 		}
2041 		rdma_req->fused_pair = NULL;
2042 	}
2043 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
2044 	rqpair->qd--;
2045 
2046 	STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
2047 	rdma_req->state = RDMA_REQUEST_STATE_FREE;
2048 }
2049 
2050 static void
2051 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport,
2052 			       struct spdk_nvmf_rdma_qpair *rqpair,
2053 			       struct spdk_nvmf_rdma_request *rdma_req)
2054 {
2055 	enum spdk_nvme_cmd_fuse last, next;
2056 
2057 	last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2058 	next = rdma_req->req.cmd->nvme_cmd.fuse;
2059 
2060 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2061 
2062 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2063 		return;
2064 	}
2065 
2066 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2067 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2068 			/* This is a valid pair of fused commands.  Point them at each other
2069 			 * so they can be submitted consecutively once ready to be executed.
2070 			 */
2071 			rqpair->fused_first->fused_pair = rdma_req;
2072 			rdma_req->fused_pair = rqpair->fused_first;
2073 			rqpair->fused_first = NULL;
2074 			return;
2075 		} else {
2076 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2077 			rqpair->fused_first->fused_failed = true;
2078 
2079 			/* If the last req is in READY_TO_EXECUTE state, then call
2080 			 * nvmf_rdma_request_process(), otherwise nothing else will kick it.
2081 			 */
2082 			if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2083 				nvmf_rdma_request_process(rtransport, rqpair->fused_first);
2084 			}
2085 
2086 			rqpair->fused_first = NULL;
2087 		}
2088 	}
2089 
2090 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2091 		/* Set rqpair->fused_first here so that we know to check that the next request
2092 		 * is a SECOND (and to fail this one if it isn't).
2093 		 */
2094 		rqpair->fused_first = rdma_req;
2095 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2096 		/* Mark this req failed since it ia SECOND and the last one was not a FIRST. */
2097 		rdma_req->fused_failed = true;
2098 	}
2099 }
2100 
2101 bool
2102 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
2103 			  struct spdk_nvmf_rdma_request *rdma_req)
2104 {
2105 	struct spdk_nvmf_rdma_qpair	*rqpair;
2106 	struct spdk_nvmf_rdma_device	*device;
2107 	struct spdk_nvmf_rdma_poll_group *rgroup;
2108 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
2109 	int				rc;
2110 	struct spdk_nvmf_rdma_recv	*rdma_recv;
2111 	enum spdk_nvmf_rdma_request_state prev_state;
2112 	bool				progress = false;
2113 	int				data_posted;
2114 	uint32_t			num_blocks, num_rdma_reads_available, qdepth;
2115 
2116 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2117 	device = rqpair->device;
2118 	rgroup = rqpair->poller->group;
2119 
2120 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
2121 
2122 	/* If the queue pair is in an error state, force the request to the completed state
2123 	 * to release resources. */
2124 	if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2125 		switch (rdma_req->state) {
2126 		case RDMA_REQUEST_STATE_NEED_BUFFER:
2127 			STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link);
2128 			break;
2129 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2130 			STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2131 			break;
2132 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2133 			STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2134 			break;
2135 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING:
2136 			STAILQ_REMOVE(&rqpair->pending_rdma_send_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2137 			break;
2138 		default:
2139 			break;
2140 		}
2141 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2142 	}
2143 
2144 	/* The loop here is to allow for several back-to-back state changes. */
2145 	do {
2146 		prev_state = rdma_req->state;
2147 
2148 		SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state);
2149 
2150 		switch (rdma_req->state) {
2151 		case RDMA_REQUEST_STATE_FREE:
2152 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
2153 			 * to escape this state. */
2154 			break;
2155 		case RDMA_REQUEST_STATE_NEW:
2156 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
2157 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2158 			rdma_recv = rdma_req->recv;
2159 
2160 			/* The first element of the SGL is the NVMe command */
2161 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
2162 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
2163 			rdma_req->transfer_wr = &rdma_req->data.wr;
2164 
2165 			if (rqpair->ibv_state == IBV_QPS_ERR  || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2166 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2167 				break;
2168 			}
2169 
2170 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) {
2171 				rdma_req->req.dif_enabled = true;
2172 			}
2173 
2174 			nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req);
2175 
2176 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2177 			rdma_req->rsp.wr.opcode = IBV_WR_SEND;
2178 			rdma_req->rsp.wr.imm_data = 0;
2179 #endif
2180 
2181 			/* The next state transition depends on the data transfer needs of this request. */
2182 			rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req);
2183 
2184 			if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2185 				rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2186 				rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE;
2187 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2188 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2189 				SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req);
2190 				break;
2191 			}
2192 
2193 			/* If no data to transfer, ready to execute. */
2194 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
2195 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2196 				break;
2197 			}
2198 
2199 			rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
2200 			STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link);
2201 			break;
2202 		case RDMA_REQUEST_STATE_NEED_BUFFER:
2203 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
2204 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2205 
2206 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
2207 
2208 			if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) {
2209 				/* This request needs to wait in line to obtain a buffer */
2210 				break;
2211 			}
2212 
2213 			/* Try to get a data buffer */
2214 			rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
2215 			if (rc < 0) {
2216 				STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2217 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2218 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2219 				break;
2220 			}
2221 
2222 			if (rdma_req->req.iovcnt == 0) {
2223 				/* No buffers available. */
2224 				rgroup->stat.pending_data_buffer++;
2225 				break;
2226 			}
2227 
2228 			STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2229 
2230 			/* If data is transferring from host to controller and the data didn't
2231 			 * arrive using in capsule data, we need to do a transfer from the host.
2232 			 */
2233 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER &&
2234 			    rdma_req->req.data_from_pool) {
2235 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
2236 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
2237 				break;
2238 			}
2239 
2240 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2241 			break;
2242 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2243 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
2244 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2245 
2246 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
2247 				/* This request needs to wait in line to perform RDMA */
2248 				break;
2249 			}
2250 			assert(rqpair->max_send_depth >= rqpair->current_send_depth);
2251 			qdepth = rqpair->max_send_depth - rqpair->current_send_depth;
2252 			assert(rqpair->max_read_depth >= rqpair->current_read_depth);
2253 			num_rdma_reads_available = rqpair->max_read_depth - rqpair->current_read_depth;
2254 			if (rdma_req->num_outstanding_data_wr > qdepth ||
2255 			    rdma_req->num_outstanding_data_wr > num_rdma_reads_available) {
2256 				if (num_rdma_reads_available && qdepth) {
2257 					/* Send as much as we can */
2258 					request_prepare_transfer_in_part(&rdma_req->req, spdk_min(num_rdma_reads_available, qdepth));
2259 				} else {
2260 					/* We can only have so many WRs outstanding. we have to wait until some finish. */
2261 					rqpair->poller->stat.pending_rdma_read++;
2262 					break;
2263 				}
2264 			}
2265 
2266 			/* We have already verified that this request is the head of the queue. */
2267 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
2268 
2269 			rc = request_transfer_in(&rdma_req->req);
2270 			if (!rc) {
2271 				rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
2272 			} else {
2273 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2274 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2275 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2276 			}
2277 			break;
2278 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2279 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
2280 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2281 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
2282 			 * to escape this state. */
2283 			break;
2284 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
2285 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
2286 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2287 
2288 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2289 				if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2290 					/* generate DIF for write operation */
2291 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2292 					assert(num_blocks > 0);
2293 
2294 					rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt,
2295 							       num_blocks, &rdma_req->req.dif.dif_ctx);
2296 					if (rc != 0) {
2297 						SPDK_ERRLOG("DIF generation failed\n");
2298 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2299 						spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
2300 						break;
2301 					}
2302 				}
2303 
2304 				assert(rdma_req->req.dif.elba_length >= rdma_req->req.length);
2305 				/* set extended length before IO operation */
2306 				rdma_req->req.length = rdma_req->req.dif.elba_length;
2307 			}
2308 
2309 			if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2310 				if (rdma_req->fused_failed) {
2311 					/* This request failed FUSED semantics.  Fail it immediately, without
2312 					 * even sending it to the target layer.
2313 					 */
2314 					rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2315 					rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2316 					STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2317 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2318 					break;
2319 				}
2320 
2321 				if (rdma_req->fused_pair == NULL ||
2322 				    rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2323 					/* This request is ready to execute, but either we don't know yet if it's
2324 					 * valid - i.e. this is a FIRST but we haven't received the next
2325 					 * request yet or the other request of this fused pair isn't ready to
2326 					 * execute.  So break here and this request will get processed later either
2327 					 * when the other request is ready or we find that this request isn't valid.
2328 					 */
2329 					break;
2330 				}
2331 			}
2332 
2333 			/* If we get to this point, and this request is a fused command, we know that
2334 			 * it is part of valid sequence (FIRST followed by a SECOND) and that both
2335 			 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this
2336 			 * request, and the other request of the fused pair, in the correct order.
2337 			 * Also clear the ->fused_pair pointers on both requests, since after this point
2338 			 * we no longer need to maintain the relationship between these two requests.
2339 			 */
2340 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2341 				assert(rdma_req->fused_pair != NULL);
2342 				assert(rdma_req->fused_pair->fused_pair != NULL);
2343 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2344 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2345 				rdma_req->fused_pair->fused_pair = NULL;
2346 				rdma_req->fused_pair = NULL;
2347 			}
2348 			rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
2349 			spdk_nvmf_request_exec(&rdma_req->req);
2350 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2351 				assert(rdma_req->fused_pair != NULL);
2352 				assert(rdma_req->fused_pair->fused_pair != NULL);
2353 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2354 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2355 				rdma_req->fused_pair->fused_pair = NULL;
2356 				rdma_req->fused_pair = NULL;
2357 			}
2358 			break;
2359 		case RDMA_REQUEST_STATE_EXECUTING:
2360 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
2361 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2362 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
2363 			 * to escape this state. */
2364 			break;
2365 		case RDMA_REQUEST_STATE_EXECUTED:
2366 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
2367 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2368 			if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
2369 			    rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2370 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
2371 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
2372 			} else {
2373 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2374 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2375 			}
2376 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2377 				/* restore the original length */
2378 				rdma_req->req.length = rdma_req->req.dif.orig_length;
2379 
2380 				if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2381 					struct spdk_dif_error error_blk;
2382 
2383 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2384 					if (!rdma_req->req.stripped_data) {
2385 						rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2386 								     &rdma_req->req.dif.dif_ctx, &error_blk);
2387 					} else {
2388 						rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov,
2389 									  rdma_req->req.stripped_data->iovcnt,
2390 									  rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2391 									  &rdma_req->req.dif.dif_ctx, &error_blk);
2392 					}
2393 					if (rc) {
2394 						struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
2395 
2396 						SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type,
2397 							    error_blk.err_offset);
2398 						rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2399 						rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type);
2400 						STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2401 						STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2402 						rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2403 					}
2404 				}
2405 			}
2406 			break;
2407 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2408 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
2409 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2410 
2411 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
2412 				/* This request needs to wait in line to perform RDMA */
2413 				break;
2414 			}
2415 			if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
2416 			    rqpair->max_send_depth) {
2417 				/* We can only have so many WRs outstanding. we have to wait until some finish.
2418 				 * +1 since each request has an additional wr in the resp. */
2419 				rqpair->poller->stat.pending_rdma_write++;
2420 				break;
2421 			}
2422 
2423 			/* We have already verified that this request is the head of the queue. */
2424 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
2425 
2426 			/* The data transfer will be kicked off from
2427 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2428 			 * We verified that data + response fit into send queue, so we can go to the next state directly
2429 			 */
2430 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2431 			break;
2432 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING:
2433 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING, 0, 0,
2434 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2435 
2436 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_send_queue)) {
2437 				/* This request needs to wait in line to send the completion */
2438 				break;
2439 			}
2440 
2441 			assert(rqpair->current_send_depth <= rqpair->max_send_depth);
2442 			if (rqpair->current_send_depth == rqpair->max_send_depth) {
2443 				/* We can only have so many WRs outstanding. we have to wait until some finish */
2444 				rqpair->poller->stat.pending_rdma_send++;
2445 				break;
2446 			}
2447 
2448 			/* We have already verified that this request is the head of the queue. */
2449 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_send_queue, state_link);
2450 
2451 			/* The response sending will be kicked off from
2452 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2453 			 */
2454 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2455 			break;
2456 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
2457 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
2458 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2459 			rc = request_transfer_out(&rdma_req->req, &data_posted);
2460 			assert(rc == 0); /* No good way to handle this currently */
2461 			if (rc) {
2462 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2463 			} else {
2464 				rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
2465 						  RDMA_REQUEST_STATE_COMPLETING;
2466 			}
2467 			break;
2468 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2469 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
2470 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2471 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2472 			 * to escape this state. */
2473 			break;
2474 		case RDMA_REQUEST_STATE_COMPLETING:
2475 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
2476 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2477 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2478 			 * to escape this state. */
2479 			break;
2480 		case RDMA_REQUEST_STATE_COMPLETED:
2481 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2482 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2483 
2484 			rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc;
2485 			_nvmf_rdma_request_free(rdma_req, rtransport);
2486 			break;
2487 		case RDMA_REQUEST_NUM_STATES:
2488 		default:
2489 			assert(0);
2490 			break;
2491 		}
2492 
2493 		if (rdma_req->state != prev_state) {
2494 			progress = true;
2495 		}
2496 	} while (rdma_req->state != prev_state);
2497 
2498 	return progress;
2499 }
2500 
2501 /* Public API callbacks begin here */
2502 
2503 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2504 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2505 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2506 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
2507 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2508 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2509 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2510 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095
2511 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
2512 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false
2513 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false
2514 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100
2515 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1
2516 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false
2517 
2518 static void
2519 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2520 {
2521 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2522 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2523 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2524 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2525 	opts->io_unit_size =		SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2526 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2527 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2528 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2529 	opts->dif_insert_or_strip =	SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP;
2530 	opts->abort_timeout_sec =	SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC;
2531 	opts->transport_specific =      NULL;
2532 }
2533 
2534 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2535 			     spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg);
2536 
2537 static inline bool
2538 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device)
2539 {
2540 	return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD ||
2541 	       device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW;
2542 }
2543 
2544 static int nvmf_rdma_accept(void *ctx);
2545 static bool nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport);
2546 static void destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
2547 			      struct spdk_nvmf_rdma_device *device);
2548 
2549 static int
2550 create_ib_device(struct spdk_nvmf_rdma_transport *rtransport, struct ibv_context *context,
2551 		 struct spdk_nvmf_rdma_device **new_device)
2552 {
2553 	struct spdk_nvmf_rdma_device	*device;
2554 	int				flag = 0;
2555 	int				rc = 0;
2556 
2557 	device = calloc(1, sizeof(*device));
2558 	if (!device) {
2559 		SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2560 		return -ENOMEM;
2561 	}
2562 	device->context = context;
2563 	rc = ibv_query_device(device->context, &device->attr);
2564 	if (rc < 0) {
2565 		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2566 		free(device);
2567 		return rc;
2568 	}
2569 
2570 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2571 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2572 		SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2573 		SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2574 	}
2575 
2576 	/**
2577 	 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2578 	 * The Soft-RoCE RXE driver does not currently support send with invalidate,
2579 	 * but incorrectly reports that it does. There are changes making their way
2580 	 * through the kernel now that will enable this feature. When they are merged,
2581 	 * we can conditionally enable this feature.
2582 	 *
2583 	 * TODO: enable this for versions of the kernel rxe driver that support it.
2584 	 */
2585 	if (nvmf_rdma_is_rxe_device(device)) {
2586 		device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2587 	}
2588 #endif
2589 
2590 	/* set up device context async ev fd as NON_BLOCKING */
2591 	flag = fcntl(device->context->async_fd, F_GETFL);
2592 	rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2593 	if (rc < 0) {
2594 		SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2595 		free(device);
2596 		return rc;
2597 	}
2598 
2599 	TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2600 	SPDK_DEBUGLOG(rdma, "New device %p is added to RDMA trasport\n", device);
2601 
2602 	if (g_nvmf_hooks.get_ibv_pd) {
2603 		device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2604 	} else {
2605 		device->pd = ibv_alloc_pd(device->context);
2606 	}
2607 
2608 	if (!device->pd) {
2609 		SPDK_ERRLOG("Unable to allocate protection domain.\n");
2610 		destroy_ib_device(rtransport, device);
2611 		return -ENOMEM;
2612 	}
2613 
2614 	assert(device->map == NULL);
2615 
2616 	device->map = spdk_rdma_create_mem_map(device->pd, &g_nvmf_hooks, SPDK_RDMA_MEMORY_MAP_ROLE_TARGET);
2617 	if (!device->map) {
2618 		SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2619 		destroy_ib_device(rtransport, device);
2620 		return -ENOMEM;
2621 	}
2622 
2623 	assert(device->map != NULL);
2624 	assert(device->pd != NULL);
2625 
2626 	if (new_device) {
2627 		*new_device = device;
2628 	}
2629 	SPDK_NOTICELOG("Create IB device %s(%p/%p) succeed.\n", ibv_get_device_name(context->device),
2630 		       device, context);
2631 
2632 	return 0;
2633 }
2634 
2635 static void
2636 free_poll_fds(struct spdk_nvmf_rdma_transport *rtransport)
2637 {
2638 	if (rtransport->poll_fds) {
2639 		free(rtransport->poll_fds);
2640 		rtransport->poll_fds = NULL;
2641 	}
2642 	rtransport->npoll_fds = 0;
2643 }
2644 
2645 static int
2646 generate_poll_fds(struct spdk_nvmf_rdma_transport *rtransport)
2647 {
2648 	/* Set up poll descriptor array to monitor events from RDMA and IB
2649 	 * in a single poll syscall
2650 	 */
2651 	int device_count = 0;
2652 	int i = 0;
2653 	struct spdk_nvmf_rdma_device *device, *tmp;
2654 
2655 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2656 		device_count++;
2657 	}
2658 
2659 	rtransport->npoll_fds = device_count + 1;
2660 
2661 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2662 	if (rtransport->poll_fds == NULL) {
2663 		SPDK_ERRLOG("poll_fds allocation failed\n");
2664 		return -ENOMEM;
2665 	}
2666 
2667 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2668 	rtransport->poll_fds[i++].events = POLLIN;
2669 
2670 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2671 		rtransport->poll_fds[i].fd = device->context->async_fd;
2672 		rtransport->poll_fds[i++].events = POLLIN;
2673 	}
2674 
2675 	return 0;
2676 }
2677 
2678 static struct spdk_nvmf_transport *
2679 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2680 {
2681 	int rc;
2682 	struct spdk_nvmf_rdma_transport *rtransport;
2683 	struct spdk_nvmf_rdma_device	*device;
2684 	struct ibv_context		**contexts;
2685 	uint32_t			i;
2686 	int				flag;
2687 	uint32_t			sge_count;
2688 	uint32_t			min_shared_buffers;
2689 	uint32_t			min_in_capsule_data_size;
2690 	int				max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2691 
2692 	rtransport = calloc(1, sizeof(*rtransport));
2693 	if (!rtransport) {
2694 		return NULL;
2695 	}
2696 
2697 	TAILQ_INIT(&rtransport->devices);
2698 	TAILQ_INIT(&rtransport->ports);
2699 	TAILQ_INIT(&rtransport->poll_groups);
2700 	TAILQ_INIT(&rtransport->retry_ports);
2701 
2702 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2703 	rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
2704 	rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2705 	rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ;
2706 	rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2707 	rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING;
2708 	if (opts->transport_specific != NULL &&
2709 	    spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder,
2710 					    SPDK_COUNTOF(rdma_transport_opts_decoder),
2711 					    &rtransport->rdma_opts)) {
2712 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
2713 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2714 		return NULL;
2715 	}
2716 
2717 	SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n"
2718 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
2719 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2720 		     "  in_capsule_data_size=%d, max_aq_depth=%d,\n"
2721 		     "  num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d,"
2722 		     "  acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n",
2723 		     opts->max_queue_depth,
2724 		     opts->max_io_size,
2725 		     opts->max_qpairs_per_ctrlr - 1,
2726 		     opts->io_unit_size,
2727 		     opts->in_capsule_data_size,
2728 		     opts->max_aq_depth,
2729 		     opts->num_shared_buffers,
2730 		     rtransport->rdma_opts.num_cqe,
2731 		     rtransport->rdma_opts.max_srq_depth,
2732 		     rtransport->rdma_opts.no_srq,
2733 		     rtransport->rdma_opts.acceptor_backlog,
2734 		     rtransport->rdma_opts.no_wr_batching,
2735 		     opts->abort_timeout_sec);
2736 
2737 	/* I/O unit size cannot be larger than max I/O size */
2738 	if (opts->io_unit_size > opts->max_io_size) {
2739 		opts->io_unit_size = opts->max_io_size;
2740 	}
2741 
2742 	if (rtransport->rdma_opts.acceptor_backlog <= 0) {
2743 		SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n",
2744 			    SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG);
2745 		rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2746 	}
2747 
2748 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2749 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2750 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
2751 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2752 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2753 		return NULL;
2754 	}
2755 
2756 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
2757 	if (opts->buf_cache_size < UINT32_MAX) {
2758 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
2759 		if (min_shared_buffers > opts->num_shared_buffers) {
2760 			SPDK_ERRLOG("There are not enough buffers to satisfy"
2761 				    "per-poll group caches for each thread. (%" PRIu32 ")"
2762 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2763 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2764 			nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2765 			return NULL;
2766 		}
2767 	}
2768 
2769 	sge_count = opts->max_io_size / opts->io_unit_size;
2770 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
2771 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2772 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2773 		return NULL;
2774 	}
2775 
2776 	min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES;
2777 	if (opts->in_capsule_data_size < min_in_capsule_data_size) {
2778 		SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n",
2779 			     min_in_capsule_data_size);
2780 		opts->in_capsule_data_size = min_in_capsule_data_size;
2781 	}
2782 
2783 	rtransport->event_channel = rdma_create_event_channel();
2784 	if (rtransport->event_channel == NULL) {
2785 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2786 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2787 		return NULL;
2788 	}
2789 
2790 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2791 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2792 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2793 			    rtransport->event_channel->fd, spdk_strerror(errno));
2794 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2795 		return NULL;
2796 	}
2797 
2798 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
2799 				   opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES,
2800 				   sizeof(struct spdk_nvmf_rdma_request_data),
2801 				   SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2802 				   SPDK_ENV_SOCKET_ID_ANY);
2803 	if (!rtransport->data_wr_pool) {
2804 		if (spdk_mempool_lookup("spdk_nvmf_rdma_wr_data") != NULL) {
2805 			SPDK_ERRLOG("Unable to allocate work request pool for poll group: already exists\n");
2806 			SPDK_ERRLOG("Probably running in multiprocess environment, which is "
2807 				    "unsupported by the nvmf library\n");
2808 		} else {
2809 			SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2810 		}
2811 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2812 		return NULL;
2813 	}
2814 
2815 	contexts = rdma_get_devices(NULL);
2816 	if (contexts == NULL) {
2817 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2818 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2819 		return NULL;
2820 	}
2821 
2822 	i = 0;
2823 	rc = 0;
2824 	while (contexts[i] != NULL) {
2825 		rc = create_ib_device(rtransport, contexts[i], &device);
2826 		if (rc < 0) {
2827 			break;
2828 		}
2829 		i++;
2830 		max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2831 		device->is_ready = true;
2832 	}
2833 	rdma_free_devices(contexts);
2834 
2835 	if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2836 		/* divide and round up. */
2837 		opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2838 
2839 		/* round up to the nearest 4k. */
2840 		opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2841 
2842 		opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2843 		SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2844 			       opts->io_unit_size);
2845 	}
2846 
2847 	if (rc < 0) {
2848 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2849 		return NULL;
2850 	}
2851 
2852 	rc = generate_poll_fds(rtransport);
2853 	if (rc < 0) {
2854 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2855 		return NULL;
2856 	}
2857 
2858 	rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport,
2859 				    opts->acceptor_poll_rate);
2860 	if (!rtransport->accept_poller) {
2861 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2862 		return NULL;
2863 	}
2864 
2865 	return &rtransport->transport;
2866 }
2867 
2868 static void
2869 destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
2870 		  struct spdk_nvmf_rdma_device *device)
2871 {
2872 	TAILQ_REMOVE(&rtransport->devices, device, link);
2873 	spdk_rdma_free_mem_map(&device->map);
2874 	if (device->pd) {
2875 		if (!g_nvmf_hooks.get_ibv_pd) {
2876 			ibv_dealloc_pd(device->pd);
2877 		}
2878 	}
2879 	SPDK_DEBUGLOG(rdma, "IB device [%p] is destroyed.\n", device);
2880 	free(device);
2881 }
2882 
2883 static void
2884 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
2885 {
2886 	struct spdk_nvmf_rdma_transport	*rtransport;
2887 	assert(w != NULL);
2888 
2889 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2890 	spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth);
2891 	spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq);
2892 	if (rtransport->rdma_opts.no_srq == true) {
2893 		spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe);
2894 	}
2895 	spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog);
2896 	spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching);
2897 }
2898 
2899 static int
2900 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2901 		  spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
2902 {
2903 	struct spdk_nvmf_rdma_transport	*rtransport;
2904 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
2905 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
2906 
2907 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2908 
2909 	TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, port_tmp) {
2910 		TAILQ_REMOVE(&rtransport->retry_ports, port, link);
2911 		free(port);
2912 	}
2913 
2914 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2915 		TAILQ_REMOVE(&rtransport->ports, port, link);
2916 		rdma_destroy_id(port->id);
2917 		free(port);
2918 	}
2919 
2920 	free_poll_fds(rtransport);
2921 
2922 	if (rtransport->event_channel != NULL) {
2923 		rdma_destroy_event_channel(rtransport->event_channel);
2924 	}
2925 
2926 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2927 		destroy_ib_device(rtransport, device);
2928 	}
2929 
2930 	if (rtransport->data_wr_pool != NULL) {
2931 		if (spdk_mempool_count(rtransport->data_wr_pool) !=
2932 		    (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) {
2933 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2934 				    spdk_mempool_count(rtransport->data_wr_pool),
2935 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2936 		}
2937 	}
2938 
2939 	spdk_mempool_free(rtransport->data_wr_pool);
2940 
2941 	spdk_poller_unregister(&rtransport->accept_poller);
2942 	free(rtransport);
2943 
2944 	if (cb_fn) {
2945 		cb_fn(cb_arg);
2946 	}
2947 	return 0;
2948 }
2949 
2950 static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2951 				     struct spdk_nvme_transport_id *trid,
2952 				     bool peer);
2953 
2954 static bool nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport);
2955 
2956 static int
2957 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
2958 		 struct spdk_nvmf_listen_opts *listen_opts)
2959 {
2960 	struct spdk_nvmf_rdma_transport	*rtransport;
2961 	struct spdk_nvmf_rdma_device	*device;
2962 	struct spdk_nvmf_rdma_port	*port, *tmp_port;
2963 	struct addrinfo			*res;
2964 	struct addrinfo			hints;
2965 	int				family;
2966 	int				rc;
2967 	long int			port_val;
2968 	bool				is_retry = false;
2969 
2970 	if (!strlen(trid->trsvcid)) {
2971 		SPDK_ERRLOG("Service id is required\n");
2972 		return -EINVAL;
2973 	}
2974 
2975 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2976 	assert(rtransport->event_channel != NULL);
2977 
2978 	port = calloc(1, sizeof(*port));
2979 	if (!port) {
2980 		SPDK_ERRLOG("Port allocation failed\n");
2981 		return -ENOMEM;
2982 	}
2983 
2984 	port->trid = trid;
2985 
2986 	switch (trid->adrfam) {
2987 	case SPDK_NVMF_ADRFAM_IPV4:
2988 		family = AF_INET;
2989 		break;
2990 	case SPDK_NVMF_ADRFAM_IPV6:
2991 		family = AF_INET6;
2992 		break;
2993 	default:
2994 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam);
2995 		free(port);
2996 		return -EINVAL;
2997 	}
2998 
2999 	memset(&hints, 0, sizeof(hints));
3000 	hints.ai_family = family;
3001 	hints.ai_flags = AI_NUMERICSERV;
3002 	hints.ai_socktype = SOCK_STREAM;
3003 	hints.ai_protocol = 0;
3004 
3005 	/* Range check the trsvcid. Fail in 3 cases:
3006 	 * < 0: means that spdk_strtol hit an error
3007 	 * 0: this results in ephemeral port which we don't want
3008 	 * > 65535: port too high
3009 	 */
3010 	port_val = spdk_strtol(trid->trsvcid, 10);
3011 	if (port_val <= 0 || port_val > 65535) {
3012 		SPDK_ERRLOG("invalid trsvcid %s\n", trid->trsvcid);
3013 		free(port);
3014 		return -EINVAL;
3015 	}
3016 
3017 	rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res);
3018 	if (rc) {
3019 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
3020 		free(port);
3021 		return -(abs(rc));
3022 	}
3023 
3024 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
3025 	if (rc < 0) {
3026 		SPDK_ERRLOG("rdma_create_id() failed\n");
3027 		freeaddrinfo(res);
3028 		free(port);
3029 		return rc;
3030 	}
3031 
3032 	rc = rdma_bind_addr(port->id, res->ai_addr);
3033 	freeaddrinfo(res);
3034 
3035 	if (rc < 0) {
3036 		TAILQ_FOREACH(tmp_port, &rtransport->retry_ports, link) {
3037 			if (spdk_nvme_transport_id_compare(tmp_port->trid, trid) == 0) {
3038 				is_retry = true;
3039 				break;
3040 			}
3041 		}
3042 		if (!is_retry) {
3043 			SPDK_ERRLOG("rdma_bind_addr() failed\n");
3044 		}
3045 		rdma_destroy_id(port->id);
3046 		free(port);
3047 		return rc;
3048 	}
3049 
3050 	if (!port->id->verbs) {
3051 		SPDK_ERRLOG("ibv_context is null\n");
3052 		rdma_destroy_id(port->id);
3053 		free(port);
3054 		return -1;
3055 	}
3056 
3057 	rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog);
3058 	if (rc < 0) {
3059 		SPDK_ERRLOG("rdma_listen() failed\n");
3060 		rdma_destroy_id(port->id);
3061 		free(port);
3062 		return rc;
3063 	}
3064 
3065 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3066 		if (device->context == port->id->verbs && device->is_ready) {
3067 			port->device = device;
3068 			break;
3069 		}
3070 	}
3071 	if (!port->device) {
3072 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
3073 			    port->id->verbs);
3074 		rdma_destroy_id(port->id);
3075 		free(port);
3076 		nvmf_rdma_rescan_devices(rtransport);
3077 		return -EINVAL;
3078 	}
3079 
3080 	SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n",
3081 		       trid->traddr, trid->trsvcid);
3082 
3083 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
3084 	return 0;
3085 }
3086 
3087 static void
3088 nvmf_rdma_stop_listen_ex(struct spdk_nvmf_transport *transport,
3089 			 const struct spdk_nvme_transport_id *trid, bool need_retry)
3090 {
3091 	struct spdk_nvmf_rdma_transport	*rtransport;
3092 	struct spdk_nvmf_rdma_port	*port, *tmp;
3093 
3094 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3095 
3096 	if (!need_retry) {
3097 		TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp) {
3098 			if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
3099 				TAILQ_REMOVE(&rtransport->retry_ports, port, link);
3100 				free(port);
3101 			}
3102 		}
3103 	}
3104 
3105 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
3106 		if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
3107 			SPDK_DEBUGLOG(rdma, "Port %s:%s removed. need retry: %d\n",
3108 				      port->trid->traddr, port->trid->trsvcid, need_retry);
3109 			TAILQ_REMOVE(&rtransport->ports, port, link);
3110 			rdma_destroy_id(port->id);
3111 			port->id = NULL;
3112 			port->device = NULL;
3113 			if (need_retry) {
3114 				TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link);
3115 			} else {
3116 				free(port);
3117 			}
3118 			break;
3119 		}
3120 	}
3121 }
3122 
3123 static void
3124 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
3125 		      const struct spdk_nvme_transport_id *trid)
3126 {
3127 	nvmf_rdma_stop_listen_ex(transport, trid, false);
3128 }
3129 
3130 static void _nvmf_rdma_register_poller_in_group(void *c);
3131 static void _nvmf_rdma_remove_poller_in_group(void *c);
3132 
3133 static bool
3134 nvmf_rdma_all_pollers_management_done(void *c)
3135 {
3136 	struct poller_manage_ctx	*ctx = c;
3137 	int				counter;
3138 
3139 	counter = __atomic_sub_fetch(ctx->inflight_op_counter, 1, __ATOMIC_SEQ_CST);
3140 	SPDK_DEBUGLOG(rdma, "nvmf_rdma_all_pollers_management_done called. counter: %d, poller: %p\n",
3141 		      counter, ctx->rpoller);
3142 
3143 	if (counter == 0) {
3144 		free((void *)ctx->inflight_op_counter);
3145 	}
3146 	free(ctx);
3147 
3148 	return counter == 0;
3149 }
3150 
3151 static int
3152 nvmf_rdma_manage_poller(struct spdk_nvmf_rdma_transport *rtransport,
3153 			struct spdk_nvmf_rdma_device *device, bool *has_inflight, bool is_add)
3154 {
3155 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3156 	struct spdk_nvmf_rdma_poller		*rpoller;
3157 	struct spdk_nvmf_poll_group		*poll_group;
3158 	struct poller_manage_ctx		*ctx;
3159 	bool					found;
3160 	int					*inflight_counter;
3161 	spdk_msg_fn				do_fn;
3162 
3163 	*has_inflight = false;
3164 	do_fn = is_add ? _nvmf_rdma_register_poller_in_group : _nvmf_rdma_remove_poller_in_group;
3165 	inflight_counter = calloc(1, sizeof(int));
3166 	if (!inflight_counter) {
3167 		SPDK_ERRLOG("Failed to allocate inflight counter when removing pollers\n");
3168 		return -ENOMEM;
3169 	}
3170 
3171 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3172 		(*inflight_counter)++;
3173 	}
3174 
3175 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3176 		found = false;
3177 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3178 			if (rpoller->device == device) {
3179 				found = true;
3180 				break;
3181 			}
3182 		}
3183 		if (found == is_add) {
3184 			__atomic_fetch_sub(inflight_counter, 1, __ATOMIC_SEQ_CST);
3185 			continue;
3186 		}
3187 
3188 		ctx = calloc(1, sizeof(struct poller_manage_ctx));
3189 		if (!ctx) {
3190 			SPDK_ERRLOG("Failed to allocate poller_manage_ctx when removing pollers\n");
3191 			if (!*has_inflight) {
3192 				free(inflight_counter);
3193 			}
3194 			return -ENOMEM;
3195 		}
3196 
3197 		ctx->rtransport = rtransport;
3198 		ctx->rgroup = rgroup;
3199 		ctx->rpoller = rpoller;
3200 		ctx->device = device;
3201 		ctx->thread = spdk_get_thread();
3202 		ctx->inflight_op_counter = inflight_counter;
3203 		*has_inflight = true;
3204 
3205 		poll_group = rgroup->group.group;
3206 		if (poll_group->thread != spdk_get_thread()) {
3207 			spdk_thread_send_msg(poll_group->thread, do_fn, ctx);
3208 		} else {
3209 			do_fn(ctx);
3210 		}
3211 	}
3212 
3213 	if (!*has_inflight) {
3214 		free(inflight_counter);
3215 	}
3216 
3217 	return 0;
3218 }
3219 
3220 static void nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport,
3221 		struct spdk_nvmf_rdma_device *device);
3222 
3223 static struct spdk_nvmf_rdma_device *
3224 nvmf_rdma_find_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
3225 			 struct ibv_context *context)
3226 {
3227 	struct spdk_nvmf_rdma_device	*device, *tmp_device;
3228 
3229 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp_device) {
3230 		if (device->need_destroy) {
3231 			continue;
3232 		}
3233 
3234 		if (strcmp(device->context->device->dev_name, context->device->dev_name) == 0) {
3235 			return device;
3236 		}
3237 	}
3238 
3239 	return NULL;
3240 }
3241 
3242 static bool
3243 nvmf_rdma_check_devices_context(struct spdk_nvmf_rdma_transport *rtransport,
3244 				struct ibv_context *context)
3245 {
3246 	struct spdk_nvmf_rdma_device	*old_device, *new_device;
3247 	int				rc = 0;
3248 	bool				has_inflight;
3249 
3250 	old_device = nvmf_rdma_find_ib_device(rtransport, context);
3251 
3252 	if (old_device) {
3253 		if (old_device->context != context && !old_device->need_destroy && old_device->is_ready) {
3254 			/* context may not have time to be cleaned when rescan. exactly one context
3255 			 * is valid for a device so this context must be invalid and just remove it. */
3256 			SPDK_WARNLOG("Device %p has a invalid context %p\n", old_device, old_device->context);
3257 			old_device->need_destroy = true;
3258 			nvmf_rdma_handle_device_removal(rtransport, old_device);
3259 		}
3260 		return false;
3261 	}
3262 
3263 	rc = create_ib_device(rtransport, context, &new_device);
3264 	/* TODO: update transport opts. */
3265 	if (rc < 0) {
3266 		SPDK_ERRLOG("Failed to create ib device for context: %s(%p)\n",
3267 			    ibv_get_device_name(context->device), context);
3268 		return false;
3269 	}
3270 
3271 	rc = nvmf_rdma_manage_poller(rtransport, new_device, &has_inflight, true);
3272 	if (rc < 0) {
3273 		SPDK_ERRLOG("Failed to add poller for device context: %s(%p)\n",
3274 			    ibv_get_device_name(context->device), context);
3275 		return false;
3276 	}
3277 
3278 	if (has_inflight) {
3279 		new_device->is_ready = true;
3280 	}
3281 
3282 	return true;
3283 }
3284 
3285 static bool
3286 nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport)
3287 {
3288 	struct spdk_nvmf_rdma_device	*device;
3289 	struct ibv_device		**ibv_device_list = NULL;
3290 	struct ibv_context		**contexts = NULL;
3291 	int				i = 0;
3292 	int				num_dev = 0;
3293 	bool				new_create = false, has_new_device = false;
3294 	struct ibv_context		*tmp_verbs = NULL;
3295 
3296 	/* do not rescan when any device is destroying, or context may be freed when
3297 	 * regenerating the poll fds.
3298 	 */
3299 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3300 		if (device->need_destroy) {
3301 			return false;
3302 		}
3303 	}
3304 
3305 	ibv_device_list = ibv_get_device_list(&num_dev);
3306 
3307 	/* There is a bug in librdmacm. If verbs init failed in rdma_get_devices, it'll be
3308 	 * marked as dead verbs and never be init again. So we need to make sure the
3309 	 * verbs is available before we call rdma_get_devices. */
3310 	if (num_dev >= 0) {
3311 		for (i = 0; i < num_dev; i++) {
3312 			tmp_verbs = ibv_open_device(ibv_device_list[i]);
3313 			if (!tmp_verbs) {
3314 				SPDK_WARNLOG("Failed to init ibv device %p, err %d. Skip rescan.\n", ibv_device_list[i], errno);
3315 				break;
3316 			}
3317 			if (nvmf_rdma_find_ib_device(rtransport, tmp_verbs) == NULL) {
3318 				SPDK_DEBUGLOG(rdma, "Find new verbs init ibv device %p(%s).\n", ibv_device_list[i],
3319 					      tmp_verbs->device->dev_name);
3320 				has_new_device = true;
3321 			}
3322 			ibv_close_device(tmp_verbs);
3323 		}
3324 		ibv_free_device_list(ibv_device_list);
3325 		if (!tmp_verbs || !has_new_device) {
3326 			return false;
3327 		}
3328 	}
3329 
3330 	contexts = rdma_get_devices(NULL);
3331 
3332 	for (i = 0; contexts && contexts[i] != NULL; i++) {
3333 		new_create |= nvmf_rdma_check_devices_context(rtransport, contexts[i]);
3334 	}
3335 
3336 	if (new_create) {
3337 		free_poll_fds(rtransport);
3338 		generate_poll_fds(rtransport);
3339 	}
3340 
3341 	if (contexts) {
3342 		rdma_free_devices(contexts);
3343 	}
3344 
3345 	return new_create;
3346 }
3347 
3348 static bool
3349 nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport)
3350 {
3351 	struct spdk_nvmf_rdma_port	*port, *tmp_port;
3352 	int				rc = 0;
3353 	bool				new_create = false;
3354 
3355 	if (TAILQ_EMPTY(&rtransport->retry_ports)) {
3356 		return false;
3357 	}
3358 
3359 	new_create = nvmf_rdma_rescan_devices(rtransport);
3360 
3361 	TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp_port) {
3362 		rc = nvmf_rdma_listen(&rtransport->transport, port->trid, NULL);
3363 
3364 		TAILQ_REMOVE(&rtransport->retry_ports, port, link);
3365 		if (rc) {
3366 			if (new_create) {
3367 				SPDK_ERRLOG("Found new IB device but port %s:%s is still failed(%d) to listen.\n",
3368 					    port->trid->traddr, port->trid->trsvcid, rc);
3369 			}
3370 			TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link);
3371 			break;
3372 		} else {
3373 			SPDK_NOTICELOG("Port %s:%s come back\n", port->trid->traddr, port->trid->trsvcid);
3374 			free(port);
3375 		}
3376 	}
3377 
3378 	return true;
3379 }
3380 
3381 static void
3382 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
3383 				struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
3384 {
3385 	struct spdk_nvmf_request *req, *tmp;
3386 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
3387 	struct spdk_nvmf_rdma_resources *resources;
3388 
3389 	/* First process requests which are waiting for response to be sent */
3390 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_send_queue, state_link, req_tmp) {
3391 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3392 			break;
3393 		}
3394 	}
3395 
3396 	/* We process I/O in the data transfer pending queue at the highest priority. */
3397 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
3398 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3399 			break;
3400 		}
3401 	}
3402 
3403 	/* Then RDMA writes since reads have stronger restrictions than writes */
3404 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
3405 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3406 			break;
3407 		}
3408 	}
3409 
3410 	/* Then we handle request waiting on memory buffers. */
3411 	STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) {
3412 		rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3413 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3414 			break;
3415 		}
3416 	}
3417 
3418 	resources = rqpair->resources;
3419 	while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
3420 		rdma_req = STAILQ_FIRST(&resources->free_queue);
3421 		STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
3422 		rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
3423 		STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
3424 
3425 		if (rqpair->srq != NULL) {
3426 			rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
3427 			rdma_req->recv->qpair->qd++;
3428 		} else {
3429 			rqpair->qd++;
3430 		}
3431 
3432 		rdma_req->receive_tsc = rdma_req->recv->receive_tsc;
3433 		rdma_req->state = RDMA_REQUEST_STATE_NEW;
3434 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
3435 			break;
3436 		}
3437 	}
3438 	if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) {
3439 		rqpair->poller->stat.pending_free_request++;
3440 	}
3441 }
3442 
3443 static inline bool
3444 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device)
3445 {
3446 	/* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */
3447 	return nvmf_rdma_is_rxe_device(device) ||
3448 	       device->context->device->transport_type == IBV_TRANSPORT_IWARP;
3449 }
3450 
3451 static void
3452 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair)
3453 {
3454 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
3455 			struct spdk_nvmf_rdma_transport, transport);
3456 
3457 	nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
3458 
3459 	/* nvmf_rdma_close_qpair is not called */
3460 	if (!rqpair->to_close) {
3461 		return;
3462 	}
3463 
3464 	/* device is already destroyed and we should force destroy this qpair. */
3465 	if (rqpair->poller && rqpair->poller->need_destroy) {
3466 		nvmf_rdma_qpair_destroy(rqpair);
3467 		return;
3468 	}
3469 
3470 	/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
3471 	if (rqpair->current_send_depth != 0) {
3472 		return;
3473 	}
3474 
3475 	if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
3476 		return;
3477 	}
3478 
3479 	if (rqpair->srq != NULL && rqpair->last_wqe_reached == false &&
3480 	    !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) {
3481 		return;
3482 	}
3483 
3484 	assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR);
3485 
3486 	nvmf_rdma_qpair_destroy(rqpair);
3487 }
3488 
3489 static int
3490 nvmf_rdma_disconnect(struct rdma_cm_event *evt, bool *event_acked)
3491 {
3492 	struct spdk_nvmf_qpair		*qpair;
3493 	struct spdk_nvmf_rdma_qpair	*rqpair;
3494 
3495 	if (evt->id == NULL) {
3496 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
3497 		return -1;
3498 	}
3499 
3500 	qpair = evt->id->context;
3501 	if (qpair == NULL) {
3502 		SPDK_ERRLOG("disconnect request: no active connection\n");
3503 		return -1;
3504 	}
3505 
3506 	rdma_ack_cm_event(evt);
3507 	*event_acked = true;
3508 
3509 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3510 
3511 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair);
3512 
3513 	spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3514 
3515 	return 0;
3516 }
3517 
3518 #ifdef DEBUG
3519 static const char *CM_EVENT_STR[] = {
3520 	"RDMA_CM_EVENT_ADDR_RESOLVED",
3521 	"RDMA_CM_EVENT_ADDR_ERROR",
3522 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
3523 	"RDMA_CM_EVENT_ROUTE_ERROR",
3524 	"RDMA_CM_EVENT_CONNECT_REQUEST",
3525 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
3526 	"RDMA_CM_EVENT_CONNECT_ERROR",
3527 	"RDMA_CM_EVENT_UNREACHABLE",
3528 	"RDMA_CM_EVENT_REJECTED",
3529 	"RDMA_CM_EVENT_ESTABLISHED",
3530 	"RDMA_CM_EVENT_DISCONNECTED",
3531 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
3532 	"RDMA_CM_EVENT_MULTICAST_JOIN",
3533 	"RDMA_CM_EVENT_MULTICAST_ERROR",
3534 	"RDMA_CM_EVENT_ADDR_CHANGE",
3535 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
3536 };
3537 #endif /* DEBUG */
3538 
3539 static void
3540 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport,
3541 				    struct spdk_nvmf_rdma_port *port)
3542 {
3543 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3544 	struct spdk_nvmf_rdma_poller		*rpoller;
3545 	struct spdk_nvmf_rdma_qpair		*rqpair;
3546 
3547 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3548 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3549 			RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) {
3550 				if (rqpair->listen_id == port->id) {
3551 					spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3552 				}
3553 			}
3554 		}
3555 	}
3556 }
3557 
3558 static bool
3559 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport,
3560 				      struct rdma_cm_event *event)
3561 {
3562 	const struct spdk_nvme_transport_id	*trid;
3563 	struct spdk_nvmf_rdma_port		*port;
3564 	struct spdk_nvmf_rdma_transport		*rtransport;
3565 	bool					event_acked = false;
3566 
3567 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3568 	TAILQ_FOREACH(port, &rtransport->ports, link) {
3569 		if (port->id == event->id) {
3570 			SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid);
3571 			rdma_ack_cm_event(event);
3572 			event_acked = true;
3573 			trid = port->trid;
3574 			break;
3575 		}
3576 	}
3577 
3578 	if (event_acked) {
3579 		nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
3580 
3581 		nvmf_rdma_stop_listen(transport, trid);
3582 		nvmf_rdma_listen(transport, trid, NULL);
3583 	}
3584 
3585 	return event_acked;
3586 }
3587 
3588 static void
3589 nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport,
3590 				struct spdk_nvmf_rdma_device *device)
3591 {
3592 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
3593 	int				rc;
3594 	bool				has_inflight;
3595 
3596 	rc = nvmf_rdma_manage_poller(rtransport, device, &has_inflight, false);
3597 	if (rc) {
3598 		SPDK_ERRLOG("Failed to handle device removal, rc %d\n", rc);
3599 		return;
3600 	}
3601 
3602 	if (!has_inflight) {
3603 		/* no pollers, destroy the device */
3604 		device->ready_to_destroy = true;
3605 		spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_remove_destroyed_device, rtransport);
3606 	}
3607 
3608 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
3609 		if (port->device == device) {
3610 			SPDK_NOTICELOG("Port %s:%s on device %s is being removed.\n",
3611 				       port->trid->traddr,
3612 				       port->trid->trsvcid,
3613 				       ibv_get_device_name(port->device->context->device));
3614 
3615 			/* keep NVMF listener and only destroy structures of the
3616 			 * RDMA transport. when the device comes back we can retry listening
3617 			 * and the application's workflow will not be interrupted.
3618 			 */
3619 			nvmf_rdma_stop_listen_ex(&rtransport->transport, port->trid, true);
3620 		}
3621 	}
3622 }
3623 
3624 static void
3625 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport,
3626 				       struct rdma_cm_event *event)
3627 {
3628 	struct spdk_nvmf_rdma_port		*port, *tmp_port;
3629 	struct spdk_nvmf_rdma_transport		*rtransport;
3630 
3631 	port = event->id->context;
3632 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3633 
3634 	rdma_ack_cm_event(event);
3635 
3636 	/* if device removal happens during ctrl qpair disconnecting, it's possible that we receive
3637 	 * an DEVICE_REMOVAL event on qpair but the id->qp is just NULL. So we should make sure that
3638 	 * we are handling a port event here.
3639 	 */
3640 	TAILQ_FOREACH(tmp_port, &rtransport->ports, link) {
3641 		if (port == tmp_port && port->device && !port->device->need_destroy) {
3642 			port->device->need_destroy = true;
3643 			nvmf_rdma_handle_device_removal(rtransport, port->device);
3644 		}
3645 	}
3646 }
3647 
3648 static void
3649 nvmf_process_cm_event(struct spdk_nvmf_transport *transport)
3650 {
3651 	struct spdk_nvmf_rdma_transport *rtransport;
3652 	struct rdma_cm_event		*event;
3653 	int				rc;
3654 	bool				event_acked;
3655 
3656 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3657 
3658 	if (rtransport->event_channel == NULL) {
3659 		return;
3660 	}
3661 
3662 	while (1) {
3663 		event_acked = false;
3664 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
3665 		if (rc) {
3666 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
3667 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
3668 			}
3669 			break;
3670 		}
3671 
3672 		SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
3673 
3674 		spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
3675 
3676 		switch (event->event) {
3677 		case RDMA_CM_EVENT_ADDR_RESOLVED:
3678 		case RDMA_CM_EVENT_ADDR_ERROR:
3679 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
3680 		case RDMA_CM_EVENT_ROUTE_ERROR:
3681 			/* No action required. The target never attempts to resolve routes. */
3682 			break;
3683 		case RDMA_CM_EVENT_CONNECT_REQUEST:
3684 			rc = nvmf_rdma_connect(transport, event);
3685 			if (rc < 0) {
3686 				SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
3687 				break;
3688 			}
3689 			break;
3690 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
3691 			/* The target never initiates a new connection. So this will not occur. */
3692 			break;
3693 		case RDMA_CM_EVENT_CONNECT_ERROR:
3694 			/* Can this happen? The docs say it can, but not sure what causes it. */
3695 			break;
3696 		case RDMA_CM_EVENT_UNREACHABLE:
3697 		case RDMA_CM_EVENT_REJECTED:
3698 			/* These only occur on the client side. */
3699 			break;
3700 		case RDMA_CM_EVENT_ESTABLISHED:
3701 			/* TODO: Should we be waiting for this event anywhere? */
3702 			break;
3703 		case RDMA_CM_EVENT_DISCONNECTED:
3704 			rc = nvmf_rdma_disconnect(event, &event_acked);
3705 			if (rc < 0) {
3706 				SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3707 				break;
3708 			}
3709 			break;
3710 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
3711 			/* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL
3712 			 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s.
3713 			 * Once these events are sent to SPDK, we should release all IB resources and
3714 			 * don't make attempts to call any ibv_query/modify/create functions. We can only call
3715 			 * ibv_destroy* functions to release user space memory allocated by IB. All kernel
3716 			 * resources are already cleaned. */
3717 			if (event->id->qp) {
3718 				/* If rdma_cm event has a valid `qp` pointer then the event refers to the
3719 				 * corresponding qpair. Otherwise the event refers to a listening device. */
3720 				rc = nvmf_rdma_disconnect(event, &event_acked);
3721 				if (rc < 0) {
3722 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3723 					break;
3724 				}
3725 			} else {
3726 				nvmf_rdma_handle_cm_event_port_removal(transport, event);
3727 				event_acked = true;
3728 			}
3729 			break;
3730 		case RDMA_CM_EVENT_MULTICAST_JOIN:
3731 		case RDMA_CM_EVENT_MULTICAST_ERROR:
3732 			/* Multicast is not used */
3733 			break;
3734 		case RDMA_CM_EVENT_ADDR_CHANGE:
3735 			event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event);
3736 			break;
3737 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
3738 			/* For now, do nothing. The target never re-uses queue pairs. */
3739 			break;
3740 		default:
3741 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
3742 			break;
3743 		}
3744 		if (!event_acked) {
3745 			rdma_ack_cm_event(event);
3746 		}
3747 	}
3748 }
3749 
3750 static void
3751 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair)
3752 {
3753 	rqpair->last_wqe_reached = true;
3754 	nvmf_rdma_destroy_drained_qpair(rqpair);
3755 }
3756 
3757 static void
3758 nvmf_rdma_qpair_process_ibv_event(void *ctx)
3759 {
3760 	struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx;
3761 
3762 	if (event_ctx->rqpair) {
3763 		STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3764 		if (event_ctx->cb_fn) {
3765 			event_ctx->cb_fn(event_ctx->rqpair);
3766 		}
3767 	}
3768 	free(event_ctx);
3769 }
3770 
3771 static int
3772 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair,
3773 				 spdk_nvmf_rdma_qpair_ibv_event fn)
3774 {
3775 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx;
3776 	struct spdk_thread *thr = NULL;
3777 	int rc;
3778 
3779 	if (rqpair->qpair.group) {
3780 		thr = rqpair->qpair.group->thread;
3781 	} else if (rqpair->destruct_channel) {
3782 		thr = spdk_io_channel_get_thread(rqpair->destruct_channel);
3783 	}
3784 
3785 	if (!thr) {
3786 		SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair);
3787 		return -EINVAL;
3788 	}
3789 
3790 	ctx = calloc(1, sizeof(*ctx));
3791 	if (!ctx) {
3792 		return -ENOMEM;
3793 	}
3794 
3795 	ctx->rqpair = rqpair;
3796 	ctx->cb_fn = fn;
3797 	STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link);
3798 
3799 	rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx);
3800 	if (rc) {
3801 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3802 		free(ctx);
3803 	}
3804 
3805 	return rc;
3806 }
3807 
3808 static int
3809 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
3810 {
3811 	int				rc;
3812 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
3813 	struct ibv_async_event		event;
3814 
3815 	rc = ibv_get_async_event(device->context, &event);
3816 
3817 	if (rc) {
3818 		/* In non-blocking mode -1 means there are no events available */
3819 		return rc;
3820 	}
3821 
3822 	switch (event.event_type) {
3823 	case IBV_EVENT_QP_FATAL:
3824 	case IBV_EVENT_QP_LAST_WQE_REACHED:
3825 	case IBV_EVENT_SQ_DRAINED:
3826 	case IBV_EVENT_QP_REQ_ERR:
3827 	case IBV_EVENT_QP_ACCESS_ERR:
3828 	case IBV_EVENT_COMM_EST:
3829 	case IBV_EVENT_PATH_MIG:
3830 	case IBV_EVENT_PATH_MIG_ERR:
3831 		rqpair = event.element.qp->qp_context;
3832 		if (!rqpair) {
3833 			/* Any QP event for NVMe-RDMA initiator may be returned. */
3834 			SPDK_NOTICELOG("Async QP event for unknown QP: %s\n",
3835 				       ibv_event_type_str(event.event_type));
3836 			break;
3837 		}
3838 
3839 		switch (event.event_type) {
3840 		case IBV_EVENT_QP_FATAL:
3841 			SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
3842 			spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3843 					  (uintptr_t)rqpair, event.event_type);
3844 			nvmf_rdma_update_ibv_state(rqpair);
3845 			spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3846 			break;
3847 		case IBV_EVENT_QP_LAST_WQE_REACHED:
3848 			/* This event only occurs for shared receive queues. */
3849 			SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair);
3850 			rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached);
3851 			if (rc) {
3852 				SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc);
3853 				rqpair->last_wqe_reached = true;
3854 			}
3855 			break;
3856 		case IBV_EVENT_SQ_DRAINED:
3857 			/* This event occurs frequently in both error and non-error states.
3858 			 * Check if the qpair is in an error state before sending a message. */
3859 			SPDK_DEBUGLOG(rdma, "Last sq drained event received for rqpair %p\n", rqpair);
3860 			spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3861 					  (uintptr_t)rqpair, event.event_type);
3862 			if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) {
3863 				spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3864 			}
3865 			break;
3866 		case IBV_EVENT_QP_REQ_ERR:
3867 		case IBV_EVENT_QP_ACCESS_ERR:
3868 		case IBV_EVENT_COMM_EST:
3869 		case IBV_EVENT_PATH_MIG:
3870 		case IBV_EVENT_PATH_MIG_ERR:
3871 			SPDK_NOTICELOG("Async QP event: %s\n",
3872 				       ibv_event_type_str(event.event_type));
3873 			spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3874 					  (uintptr_t)rqpair, event.event_type);
3875 			nvmf_rdma_update_ibv_state(rqpair);
3876 			break;
3877 		default:
3878 			break;
3879 		}
3880 		break;
3881 	case IBV_EVENT_DEVICE_FATAL:
3882 		SPDK_ERRLOG("Device Fatal event[%s] received on %s. device: %p\n",
3883 			    ibv_event_type_str(event.event_type), ibv_get_device_name(device->context->device), device);
3884 		device->need_destroy = true;
3885 		break;
3886 	case IBV_EVENT_CQ_ERR:
3887 	case IBV_EVENT_PORT_ACTIVE:
3888 	case IBV_EVENT_PORT_ERR:
3889 	case IBV_EVENT_LID_CHANGE:
3890 	case IBV_EVENT_PKEY_CHANGE:
3891 	case IBV_EVENT_SM_CHANGE:
3892 	case IBV_EVENT_SRQ_ERR:
3893 	case IBV_EVENT_SRQ_LIMIT_REACHED:
3894 	case IBV_EVENT_CLIENT_REREGISTER:
3895 	case IBV_EVENT_GID_CHANGE:
3896 	default:
3897 		SPDK_NOTICELOG("Async event: %s\n",
3898 			       ibv_event_type_str(event.event_type));
3899 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
3900 		break;
3901 	}
3902 	ibv_ack_async_event(&event);
3903 
3904 	return 0;
3905 }
3906 
3907 static void
3908 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events)
3909 {
3910 	int rc = 0;
3911 	uint32_t i = 0;
3912 
3913 	for (i = 0; i < max_events; i++) {
3914 		rc = nvmf_process_ib_event(device);
3915 		if (rc) {
3916 			break;
3917 		}
3918 	}
3919 
3920 	SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i);
3921 }
3922 
3923 static int
3924 nvmf_rdma_accept(void *ctx)
3925 {
3926 	int	nfds, i = 0;
3927 	struct spdk_nvmf_transport *transport = ctx;
3928 	struct spdk_nvmf_rdma_transport *rtransport;
3929 	struct spdk_nvmf_rdma_device *device, *tmp;
3930 	uint32_t count;
3931 	short revents;
3932 	bool do_retry;
3933 
3934 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3935 	do_retry = nvmf_rdma_retry_listen_port(rtransport);
3936 
3937 	count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
3938 
3939 	if (nfds <= 0) {
3940 		return do_retry ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3941 	}
3942 
3943 	/* The first poll descriptor is RDMA CM event */
3944 	if (rtransport->poll_fds[i++].revents & POLLIN) {
3945 		nvmf_process_cm_event(transport);
3946 		nfds--;
3947 	}
3948 
3949 	if (nfds == 0) {
3950 		return SPDK_POLLER_BUSY;
3951 	}
3952 
3953 	/* Second and subsequent poll descriptors are IB async events */
3954 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
3955 		revents = rtransport->poll_fds[i++].revents;
3956 		if (revents & POLLIN) {
3957 			if (spdk_likely(!device->need_destroy)) {
3958 				nvmf_process_ib_events(device, 32);
3959 				if (spdk_unlikely(device->need_destroy)) {
3960 					nvmf_rdma_handle_device_removal(rtransport, device);
3961 				}
3962 			}
3963 			nfds--;
3964 		} else if (revents & POLLNVAL || revents & POLLHUP) {
3965 			SPDK_ERRLOG("Receive unknown revent %x on device %p\n", (int)revents, device);
3966 			nfds--;
3967 		}
3968 	}
3969 	/* check all flagged fd's have been served */
3970 	assert(nfds == 0);
3971 
3972 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3973 }
3974 
3975 static void
3976 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem,
3977 		     struct spdk_nvmf_ctrlr_data *cdata)
3978 {
3979 	cdata->nvmf_specific.msdbd = NVMF_DEFAULT_MSDBD;
3980 
3981 	/* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled
3982 	since in-capsule data only works with NVME drives that support SGL memory layout */
3983 	if (transport->opts.dif_insert_or_strip) {
3984 		cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16;
3985 	}
3986 
3987 	if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) {
3988 		SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule"
3989 			     " data is greater than 4KiB.\n");
3990 		SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux "
3991 			     "kernel between versions 5.4 and 5.12 data corruption may occur for "
3992 			     "writes that are not a multiple of 4KiB in size.\n");
3993 	}
3994 }
3995 
3996 static void
3997 nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
3998 		   struct spdk_nvme_transport_id *trid,
3999 		   struct spdk_nvmf_discovery_log_page_entry *entry)
4000 {
4001 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
4002 	entry->adrfam = trid->adrfam;
4003 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
4004 
4005 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
4006 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
4007 
4008 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
4009 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
4010 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
4011 }
4012 
4013 static int
4014 nvmf_rdma_poller_create(struct spdk_nvmf_rdma_transport *rtransport,
4015 			struct spdk_nvmf_rdma_poll_group *rgroup, struct spdk_nvmf_rdma_device *device,
4016 			struct spdk_nvmf_rdma_poller **out_poller)
4017 {
4018 	struct spdk_nvmf_rdma_poller		*poller;
4019 	struct spdk_rdma_srq_init_attr		srq_init_attr;
4020 	struct spdk_nvmf_rdma_resource_opts	opts;
4021 	int					num_cqe;
4022 
4023 	poller = calloc(1, sizeof(*poller));
4024 	if (!poller) {
4025 		SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
4026 		return -1;
4027 	}
4028 
4029 	poller->device = device;
4030 	poller->group = rgroup;
4031 	*out_poller = poller;
4032 
4033 	RB_INIT(&poller->qpairs);
4034 	STAILQ_INIT(&poller->qpairs_pending_send);
4035 	STAILQ_INIT(&poller->qpairs_pending_recv);
4036 
4037 	TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
4038 	SPDK_DEBUGLOG(rdma, "Create poller %p on device %p in poll group %p.\n", poller, device, rgroup);
4039 	if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) {
4040 		if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) {
4041 			SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n",
4042 				     rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr);
4043 		}
4044 		poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr);
4045 
4046 		device->num_srq++;
4047 		memset(&srq_init_attr, 0, sizeof(srq_init_attr));
4048 		srq_init_attr.pd = device->pd;
4049 		srq_init_attr.stats = &poller->stat.qp_stats.recv;
4050 		srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth;
4051 		srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
4052 		poller->srq = spdk_rdma_srq_create(&srq_init_attr);
4053 		if (!poller->srq) {
4054 			SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
4055 			return -1;
4056 		}
4057 
4058 		opts.qp = poller->srq;
4059 		opts.map = device->map;
4060 		opts.qpair = NULL;
4061 		opts.shared = true;
4062 		opts.max_queue_depth = poller->max_srq_depth;
4063 		opts.in_capsule_data_size = rtransport->transport.opts.in_capsule_data_size;
4064 
4065 		poller->resources = nvmf_rdma_resources_create(&opts);
4066 		if (!poller->resources) {
4067 			SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
4068 			return -1;
4069 		}
4070 	}
4071 
4072 	/*
4073 	 * When using an srq, we can limit the completion queue at startup.
4074 	 * The following formula represents the calculation:
4075 	 * num_cqe = num_recv + num_data_wr + num_send_wr.
4076 	 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
4077 	 */
4078 	if (poller->srq) {
4079 		num_cqe = poller->max_srq_depth * 3;
4080 	} else {
4081 		num_cqe = rtransport->rdma_opts.num_cqe;
4082 	}
4083 
4084 	poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
4085 	if (!poller->cq) {
4086 		SPDK_ERRLOG("Unable to create completion queue\n");
4087 		return -1;
4088 	}
4089 	poller->num_cqe = num_cqe;
4090 	return 0;
4091 }
4092 
4093 static void
4094 _nvmf_rdma_register_poller_in_group(void *c)
4095 {
4096 	struct spdk_nvmf_rdma_poller	*poller;
4097 	struct poller_manage_ctx	*ctx = c;
4098 	struct spdk_nvmf_rdma_device	*device;
4099 	int				rc;
4100 
4101 	rc = nvmf_rdma_poller_create(ctx->rtransport, ctx->rgroup, ctx->device, &poller);
4102 	if (rc < 0 && poller) {
4103 		nvmf_rdma_poller_destroy(poller);
4104 	}
4105 
4106 	device = ctx->device;
4107 	if (nvmf_rdma_all_pollers_management_done(ctx)) {
4108 		device->is_ready = true;
4109 	}
4110 }
4111 
4112 static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
4113 
4114 static struct spdk_nvmf_transport_poll_group *
4115 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport,
4116 			    struct spdk_nvmf_poll_group *group)
4117 {
4118 	struct spdk_nvmf_rdma_transport		*rtransport;
4119 	struct spdk_nvmf_rdma_poll_group	*rgroup;
4120 	struct spdk_nvmf_rdma_poller		*poller;
4121 	struct spdk_nvmf_rdma_device		*device;
4122 	int					rc;
4123 
4124 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
4125 
4126 	rgroup = calloc(1, sizeof(*rgroup));
4127 	if (!rgroup) {
4128 		return NULL;
4129 	}
4130 
4131 	TAILQ_INIT(&rgroup->pollers);
4132 
4133 	TAILQ_FOREACH(device, &rtransport->devices, link) {
4134 		rc = nvmf_rdma_poller_create(rtransport, rgroup, device, &poller);
4135 		if (rc < 0) {
4136 			nvmf_rdma_poll_group_destroy(&rgroup->group);
4137 			return NULL;
4138 		}
4139 	}
4140 
4141 	TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link);
4142 	if (rtransport->conn_sched.next_admin_pg == NULL) {
4143 		rtransport->conn_sched.next_admin_pg = rgroup;
4144 		rtransport->conn_sched.next_io_pg = rgroup;
4145 	}
4146 
4147 	return &rgroup->group;
4148 }
4149 
4150 static uint32_t
4151 nvmf_poll_group_get_io_qpair_count(struct spdk_nvmf_poll_group *pg)
4152 {
4153 	uint32_t count;
4154 
4155 	/* Just assume that unassociated qpairs will eventually be io
4156 	 * qpairs.  This is close enough for the use cases for this
4157 	 * function.
4158 	 */
4159 	pthread_mutex_lock(&pg->mutex);
4160 	count = pg->stat.current_io_qpairs + pg->current_unassociated_qpairs;
4161 	pthread_mutex_unlock(&pg->mutex);
4162 
4163 	return count;
4164 }
4165 
4166 static struct spdk_nvmf_transport_poll_group *
4167 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
4168 {
4169 	struct spdk_nvmf_rdma_transport *rtransport;
4170 	struct spdk_nvmf_rdma_poll_group **pg;
4171 	struct spdk_nvmf_transport_poll_group *result;
4172 	uint32_t count;
4173 
4174 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
4175 
4176 	if (TAILQ_EMPTY(&rtransport->poll_groups)) {
4177 		return NULL;
4178 	}
4179 
4180 	if (qpair->qid == 0) {
4181 		pg = &rtransport->conn_sched.next_admin_pg;
4182 	} else {
4183 		struct spdk_nvmf_rdma_poll_group *pg_min, *pg_start, *pg_current;
4184 		uint32_t min_value;
4185 
4186 		pg = &rtransport->conn_sched.next_io_pg;
4187 		pg_min = *pg;
4188 		pg_start = *pg;
4189 		pg_current = *pg;
4190 		min_value = nvmf_poll_group_get_io_qpair_count(pg_current->group.group);
4191 
4192 		while (1) {
4193 			count = nvmf_poll_group_get_io_qpair_count(pg_current->group.group);
4194 
4195 			if (count < min_value) {
4196 				min_value = count;
4197 				pg_min = pg_current;
4198 			}
4199 
4200 			pg_current = TAILQ_NEXT(pg_current, link);
4201 			if (pg_current == NULL) {
4202 				pg_current = TAILQ_FIRST(&rtransport->poll_groups);
4203 			}
4204 
4205 			if (pg_current == pg_start || min_value == 0) {
4206 				break;
4207 			}
4208 		}
4209 		*pg = pg_min;
4210 	}
4211 
4212 	assert(*pg != NULL);
4213 
4214 	result = &(*pg)->group;
4215 
4216 	*pg = TAILQ_NEXT(*pg, link);
4217 	if (*pg == NULL) {
4218 		*pg = TAILQ_FIRST(&rtransport->poll_groups);
4219 	}
4220 
4221 	return result;
4222 }
4223 
4224 static void
4225 nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller)
4226 {
4227 	struct spdk_nvmf_rdma_qpair	*qpair, *tmp_qpair;
4228 	int				rc;
4229 
4230 	TAILQ_REMOVE(&poller->group->pollers, poller, link);
4231 	RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) {
4232 		nvmf_rdma_qpair_destroy(qpair);
4233 	}
4234 
4235 	if (poller->srq) {
4236 		if (poller->resources) {
4237 			nvmf_rdma_resources_destroy(poller->resources);
4238 		}
4239 		spdk_rdma_srq_destroy(poller->srq);
4240 		SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq);
4241 	}
4242 
4243 	if (poller->cq) {
4244 		rc = ibv_destroy_cq(poller->cq);
4245 		if (rc != 0) {
4246 			SPDK_ERRLOG("Destroy cq return %d, error: %s\n", rc, strerror(errno));
4247 		}
4248 	}
4249 
4250 	if (poller->destroy_cb) {
4251 		poller->destroy_cb(poller->destroy_cb_ctx);
4252 		poller->destroy_cb = NULL;
4253 	}
4254 
4255 	free(poller);
4256 }
4257 
4258 static void
4259 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
4260 {
4261 	struct spdk_nvmf_rdma_poll_group	*rgroup, *next_rgroup;
4262 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
4263 	struct spdk_nvmf_rdma_transport		*rtransport;
4264 
4265 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4266 	if (!rgroup) {
4267 		return;
4268 	}
4269 
4270 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
4271 		nvmf_rdma_poller_destroy(poller);
4272 	}
4273 
4274 	if (rgroup->group.transport == NULL) {
4275 		/* Transport can be NULL when nvmf_rdma_poll_group_create()
4276 		 * calls this function directly in a failure path. */
4277 		free(rgroup);
4278 		return;
4279 	}
4280 
4281 	rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport);
4282 
4283 	next_rgroup = TAILQ_NEXT(rgroup, link);
4284 	TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link);
4285 	if (next_rgroup == NULL) {
4286 		next_rgroup = TAILQ_FIRST(&rtransport->poll_groups);
4287 	}
4288 	if (rtransport->conn_sched.next_admin_pg == rgroup) {
4289 		rtransport->conn_sched.next_admin_pg = next_rgroup;
4290 	}
4291 	if (rtransport->conn_sched.next_io_pg == rgroup) {
4292 		rtransport->conn_sched.next_io_pg = next_rgroup;
4293 	}
4294 
4295 	free(rgroup);
4296 }
4297 
4298 static void
4299 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
4300 {
4301 	if (rqpair->cm_id != NULL) {
4302 		nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
4303 	}
4304 }
4305 
4306 static int
4307 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
4308 			 struct spdk_nvmf_qpair *qpair)
4309 {
4310 	struct spdk_nvmf_rdma_poll_group	*rgroup;
4311 	struct spdk_nvmf_rdma_qpair		*rqpair;
4312 	struct spdk_nvmf_rdma_device		*device;
4313 	struct spdk_nvmf_rdma_poller		*poller;
4314 	int					rc;
4315 
4316 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4317 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4318 
4319 	device = rqpair->device;
4320 
4321 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
4322 		if (poller->device == device) {
4323 			break;
4324 		}
4325 	}
4326 
4327 	if (!poller) {
4328 		SPDK_ERRLOG("No poller found for device.\n");
4329 		return -1;
4330 	}
4331 
4332 	if (poller->need_destroy) {
4333 		SPDK_ERRLOG("Poller is destroying.\n");
4334 		return -1;
4335 	}
4336 
4337 	rqpair->poller = poller;
4338 	rqpair->srq = rqpair->poller->srq;
4339 
4340 	rc = nvmf_rdma_qpair_initialize(qpair);
4341 	if (rc < 0) {
4342 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
4343 		rqpair->poller = NULL;
4344 		rqpair->srq = NULL;
4345 		return -1;
4346 	}
4347 
4348 	RB_INSERT(qpairs_tree, &poller->qpairs, rqpair);
4349 
4350 	rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
4351 	if (rc) {
4352 		/* Try to reject, but we probably can't */
4353 		nvmf_rdma_qpair_reject_connection(rqpair);
4354 		return -1;
4355 	}
4356 
4357 	nvmf_rdma_update_ibv_state(rqpair);
4358 
4359 	return 0;
4360 }
4361 
4362 static int
4363 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
4364 			    struct spdk_nvmf_qpair *qpair)
4365 {
4366 	struct spdk_nvmf_rdma_qpair		*rqpair;
4367 
4368 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4369 	assert(group->transport->tgt != NULL);
4370 
4371 	rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt);
4372 
4373 	if (!rqpair->destruct_channel) {
4374 		SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair);
4375 		return 0;
4376 	}
4377 
4378 	/* Sanity check that we get io_channel on the correct thread */
4379 	if (qpair->group) {
4380 		assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel));
4381 	}
4382 
4383 	return 0;
4384 }
4385 
4386 static int
4387 nvmf_rdma_request_free(struct spdk_nvmf_request *req)
4388 {
4389 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
4390 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
4391 			struct spdk_nvmf_rdma_transport, transport);
4392 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
4393 					      struct spdk_nvmf_rdma_qpair, qpair);
4394 
4395 	/*
4396 	 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request
4397 	 * needs to be returned to the shared receive queue or the poll group will eventually be
4398 	 * starved of RECV structures.
4399 	 */
4400 	if (rqpair->srq && rdma_req->recv) {
4401 		int rc;
4402 		struct ibv_recv_wr *bad_recv_wr;
4403 
4404 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr);
4405 		rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
4406 		if (rc) {
4407 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
4408 		}
4409 	}
4410 
4411 	_nvmf_rdma_request_free(rdma_req, rtransport);
4412 	return 0;
4413 }
4414 
4415 static int
4416 nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
4417 {
4418 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
4419 			struct spdk_nvmf_rdma_transport, transport);
4420 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
4421 			struct spdk_nvmf_rdma_request, req);
4422 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
4423 			struct spdk_nvmf_rdma_qpair, qpair);
4424 
4425 	if (rqpair->ibv_state != IBV_QPS_ERR) {
4426 		/* The connection is alive, so process the request as normal */
4427 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
4428 	} else {
4429 		/* The connection is dead. Move the request directly to the completed state. */
4430 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4431 	}
4432 
4433 	nvmf_rdma_request_process(rtransport, rdma_req);
4434 
4435 	return 0;
4436 }
4437 
4438 static void
4439 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair,
4440 		      spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
4441 {
4442 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4443 
4444 	rqpair->to_close = true;
4445 
4446 	/* This happens only when the qpair is disconnected before
4447 	 * it is added to the poll group. Since there is no poll group,
4448 	 * the RDMA qp has not been initialized yet and the RDMA CM
4449 	 * event has not yet been acknowledged, so we need to reject it.
4450 	 */
4451 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
4452 		nvmf_rdma_qpair_reject_connection(rqpair);
4453 		nvmf_rdma_qpair_destroy(rqpair);
4454 		return;
4455 	}
4456 
4457 	if (rqpair->rdma_qp) {
4458 		spdk_rdma_qp_disconnect(rqpair->rdma_qp);
4459 	}
4460 
4461 	nvmf_rdma_destroy_drained_qpair(rqpair);
4462 
4463 	if (cb_fn) {
4464 		cb_fn(cb_arg);
4465 	}
4466 }
4467 
4468 static struct spdk_nvmf_rdma_qpair *
4469 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
4470 {
4471 	struct spdk_nvmf_rdma_qpair find;
4472 
4473 	find.qp_num = wc->qp_num;
4474 
4475 	return RB_FIND(qpairs_tree, &rpoller->qpairs, &find);
4476 }
4477 
4478 #ifdef DEBUG
4479 static int
4480 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
4481 {
4482 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
4483 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
4484 }
4485 #endif
4486 
4487 static void
4488 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr,
4489 			   int rc)
4490 {
4491 	struct spdk_nvmf_rdma_recv	*rdma_recv;
4492 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
4493 
4494 	SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc);
4495 	while (bad_recv_wr != NULL) {
4496 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id;
4497 		rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4498 
4499 		rdma_recv->qpair->current_recv_depth++;
4500 		bad_recv_wr = bad_recv_wr->next;
4501 		SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc);
4502 		spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair, NULL, NULL);
4503 	}
4504 }
4505 
4506 static void
4507 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc)
4508 {
4509 	SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc);
4510 	while (bad_recv_wr != NULL) {
4511 		bad_recv_wr = bad_recv_wr->next;
4512 		rqpair->current_recv_depth++;
4513 	}
4514 	spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4515 }
4516 
4517 static void
4518 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
4519 		     struct spdk_nvmf_rdma_poller *rpoller)
4520 {
4521 	struct spdk_nvmf_rdma_qpair	*rqpair;
4522 	struct ibv_recv_wr		*bad_recv_wr;
4523 	int				rc;
4524 
4525 	if (rpoller->srq) {
4526 		rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr);
4527 		if (rc) {
4528 			_poller_reset_failed_recvs(rpoller, bad_recv_wr, rc);
4529 		}
4530 	} else {
4531 		while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) {
4532 			rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv);
4533 			rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
4534 			if (rc) {
4535 				_qp_reset_failed_recvs(rqpair, bad_recv_wr, rc);
4536 			}
4537 			STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link);
4538 		}
4539 	}
4540 }
4541 
4542 static void
4543 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport,
4544 		       struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc)
4545 {
4546 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
4547 	struct spdk_nvmf_rdma_request	*prev_rdma_req = NULL, *cur_rdma_req = NULL;
4548 
4549 	SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc);
4550 	for (; bad_wr != NULL; bad_wr = bad_wr->next) {
4551 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id;
4552 		assert(rqpair->current_send_depth > 0);
4553 		rqpair->current_send_depth--;
4554 		switch (bad_rdma_wr->type) {
4555 		case RDMA_WR_TYPE_DATA:
4556 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data_wr);
4557 			if (bad_wr->opcode == IBV_WR_RDMA_READ) {
4558 				assert(rqpair->current_read_depth > 0);
4559 				rqpair->current_read_depth--;
4560 			}
4561 			break;
4562 		case RDMA_WR_TYPE_SEND:
4563 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr);
4564 			break;
4565 		default:
4566 			SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair);
4567 			prev_rdma_req = cur_rdma_req;
4568 			continue;
4569 		}
4570 
4571 		if (prev_rdma_req == cur_rdma_req) {
4572 			/* this request was handled by an earlier wr. i.e. we were performing an nvme read. */
4573 			/* We only have to check against prev_wr since each requests wrs are contiguous in this list. */
4574 			continue;
4575 		}
4576 
4577 		switch (cur_rdma_req->state) {
4578 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
4579 			cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
4580 			STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, cur_rdma_req, state_link);
4581 			cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
4582 			break;
4583 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
4584 		case RDMA_REQUEST_STATE_COMPLETING:
4585 			cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4586 			break;
4587 		default:
4588 			SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n",
4589 				    cur_rdma_req->state, rqpair);
4590 			continue;
4591 		}
4592 
4593 		nvmf_rdma_request_process(rtransport, cur_rdma_req);
4594 		prev_rdma_req = cur_rdma_req;
4595 	}
4596 
4597 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
4598 		/* Disconnect the connection. */
4599 		spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4600 	}
4601 
4602 }
4603 
4604 static void
4605 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
4606 		     struct spdk_nvmf_rdma_poller *rpoller)
4607 {
4608 	struct spdk_nvmf_rdma_qpair	*rqpair;
4609 	struct ibv_send_wr		*bad_wr = NULL;
4610 	int				rc;
4611 
4612 	while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) {
4613 		rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send);
4614 		rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr);
4615 
4616 		/* bad wr always points to the first wr that failed. */
4617 		if (rc) {
4618 			_qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc);
4619 		}
4620 		STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link);
4621 	}
4622 }
4623 
4624 static const char *
4625 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type)
4626 {
4627 	switch (wr_type) {
4628 	case RDMA_WR_TYPE_RECV:
4629 		return "RECV";
4630 	case RDMA_WR_TYPE_SEND:
4631 		return "SEND";
4632 	case RDMA_WR_TYPE_DATA:
4633 		return "DATA";
4634 	default:
4635 		SPDK_ERRLOG("Unknown WR type %d\n", wr_type);
4636 		SPDK_UNREACHABLE();
4637 	}
4638 }
4639 
4640 static inline void
4641 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc)
4642 {
4643 	enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type;
4644 
4645 	if (wc->status == IBV_WC_WR_FLUSH_ERR) {
4646 		/* If qpair is in ERR state, we will receive completions for all posted and not completed
4647 		 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
4648 		SPDK_DEBUGLOG(rdma,
4649 			      "Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n",
4650 			      rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id,
4651 			      nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
4652 	} else {
4653 		SPDK_ERRLOG("Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n",
4654 			    rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id,
4655 			    nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
4656 	}
4657 }
4658 
4659 static int
4660 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
4661 		      struct spdk_nvmf_rdma_poller *rpoller)
4662 {
4663 	struct ibv_wc wc[32];
4664 	struct spdk_nvmf_rdma_wr	*rdma_wr;
4665 	struct spdk_nvmf_rdma_request	*rdma_req;
4666 	struct spdk_nvmf_rdma_recv	*rdma_recv;
4667 	struct spdk_nvmf_rdma_qpair	*rqpair, *tmp_rqpair;
4668 	int reaped, i;
4669 	int count = 0;
4670 	int rc;
4671 	bool error = false;
4672 	uint64_t poll_tsc = spdk_get_ticks();
4673 
4674 	if (spdk_unlikely(rpoller->need_destroy)) {
4675 		/* If qpair is closed before poller destroy, nvmf_rdma_destroy_drained_qpair may not
4676 		 * be called because we cannot poll anything from cq. So we call that here to force
4677 		 * destroy the qpair after to_close turning true.
4678 		 */
4679 		RB_FOREACH_SAFE(rqpair, qpairs_tree, &rpoller->qpairs, tmp_rqpair) {
4680 			nvmf_rdma_destroy_drained_qpair(rqpair);
4681 		}
4682 		return 0;
4683 	}
4684 
4685 	/* Poll for completing operations. */
4686 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
4687 	if (reaped < 0) {
4688 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
4689 			    errno, spdk_strerror(errno));
4690 		return -1;
4691 	} else if (reaped == 0) {
4692 		rpoller->stat.idle_polls++;
4693 	}
4694 
4695 	rpoller->stat.polls++;
4696 	rpoller->stat.completions += reaped;
4697 
4698 	for (i = 0; i < reaped; i++) {
4699 
4700 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
4701 
4702 		switch (rdma_wr->type) {
4703 		case RDMA_WR_TYPE_SEND:
4704 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr);
4705 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4706 
4707 			if (!wc[i].status) {
4708 				count++;
4709 				assert(wc[i].opcode == IBV_WC_SEND);
4710 				assert(nvmf_rdma_req_is_completing(rdma_req));
4711 			}
4712 
4713 			rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4714 			/* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */
4715 			assert(rqpair->current_send_depth >= (uint32_t)rdma_req->num_outstanding_data_wr + 1);
4716 			rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1;
4717 			rdma_req->num_outstanding_data_wr = 0;
4718 
4719 			nvmf_rdma_request_process(rtransport, rdma_req);
4720 			break;
4721 		case RDMA_WR_TYPE_RECV:
4722 			/* rdma_recv->qpair will be invalid if using an SRQ.  In that case we have to get the qpair from the wc. */
4723 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4724 			if (rpoller->srq != NULL) {
4725 				rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
4726 				/* It is possible that there are still some completions for destroyed QP
4727 				 * associated with SRQ. We just ignore these late completions and re-post
4728 				 * receive WRs back to SRQ.
4729 				 */
4730 				if (spdk_unlikely(NULL == rdma_recv->qpair)) {
4731 					struct ibv_recv_wr *bad_wr;
4732 
4733 					rdma_recv->wr.next = NULL;
4734 					spdk_rdma_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr);
4735 					rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_wr);
4736 					if (rc) {
4737 						SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc);
4738 					}
4739 					continue;
4740 				}
4741 			}
4742 			rqpair = rdma_recv->qpair;
4743 
4744 			assert(rqpair != NULL);
4745 			if (!wc[i].status) {
4746 				assert(wc[i].opcode == IBV_WC_RECV);
4747 				if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
4748 					spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4749 					break;
4750 				}
4751 			}
4752 
4753 			rdma_recv->wr.next = NULL;
4754 			rqpair->current_recv_depth++;
4755 			rdma_recv->receive_tsc = poll_tsc;
4756 			rpoller->stat.requests++;
4757 			STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link);
4758 			break;
4759 		case RDMA_WR_TYPE_DATA:
4760 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data_wr);
4761 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4762 
4763 			assert(rdma_req->num_outstanding_data_wr > 0);
4764 
4765 			rqpair->current_send_depth--;
4766 			rdma_req->num_outstanding_data_wr--;
4767 			if (!wc[i].status) {
4768 				assert(wc[i].opcode == IBV_WC_RDMA_READ);
4769 				rqpair->current_read_depth--;
4770 				/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
4771 				if (rdma_req->num_outstanding_data_wr == 0) {
4772 					if (spdk_unlikely(rdma_req->num_remaining_data_wr)) {
4773 						/* Only part of RDMA_READ operations was submitted, process the rest */
4774 						rc = nvmf_rdma_request_reset_transfer_in(rdma_req, rtransport);
4775 						if (spdk_likely(!rc)) {
4776 							STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
4777 							rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
4778 						} else {
4779 							STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
4780 							rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
4781 							rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
4782 						}
4783 						nvmf_rdma_request_process(rtransport, rdma_req);
4784 						break;
4785 					}
4786 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
4787 					nvmf_rdma_request_process(rtransport, rdma_req);
4788 				}
4789 			} else {
4790 				/* If the data transfer fails still force the queue into the error state,
4791 				 * if we were performing an RDMA_READ, we need to force the request into a
4792 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
4793 				 * case, we should wait for the SEND to complete. */
4794 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
4795 					rqpair->current_read_depth--;
4796 					if (rdma_req->num_outstanding_data_wr == 0) {
4797 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4798 					}
4799 				}
4800 			}
4801 			break;
4802 		default:
4803 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
4804 			continue;
4805 		}
4806 
4807 		/* Handle error conditions */
4808 		if (wc[i].status) {
4809 			nvmf_rdma_update_ibv_state(rqpair);
4810 			nvmf_rdma_log_wc_status(rqpair, &wc[i]);
4811 
4812 			error = true;
4813 
4814 			if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
4815 				/* Disconnect the connection. */
4816 				spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4817 			} else {
4818 				nvmf_rdma_destroy_drained_qpair(rqpair);
4819 			}
4820 			continue;
4821 		}
4822 
4823 		nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
4824 
4825 		if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
4826 			nvmf_rdma_destroy_drained_qpair(rqpair);
4827 		}
4828 	}
4829 
4830 	if (error == true) {
4831 		return -1;
4832 	}
4833 
4834 	/* submit outstanding work requests. */
4835 	_poller_submit_recvs(rtransport, rpoller);
4836 	_poller_submit_sends(rtransport, rpoller);
4837 
4838 	return count;
4839 }
4840 
4841 static void
4842 _nvmf_rdma_remove_destroyed_device(void *c)
4843 {
4844 	struct spdk_nvmf_rdma_transport	*rtransport = c;
4845 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
4846 	int				rc;
4847 
4848 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
4849 		if (device->ready_to_destroy) {
4850 			destroy_ib_device(rtransport, device);
4851 		}
4852 	}
4853 
4854 	free_poll_fds(rtransport);
4855 	rc = generate_poll_fds(rtransport);
4856 	/* cannot handle fd allocation error here */
4857 	if (rc != 0) {
4858 		SPDK_ERRLOG("Failed to generate poll fds after remove ib device.\n");
4859 	}
4860 }
4861 
4862 static void
4863 _nvmf_rdma_remove_poller_in_group_cb(void *c)
4864 {
4865 	struct poller_manage_ctx	*ctx = c;
4866 	struct spdk_nvmf_rdma_transport	*rtransport = ctx->rtransport;
4867 	struct spdk_nvmf_rdma_device	*device = ctx->device;
4868 	struct spdk_thread		*thread = ctx->thread;
4869 
4870 	if (nvmf_rdma_all_pollers_management_done(c)) {
4871 		/* destroy device when last poller is destroyed */
4872 		device->ready_to_destroy = true;
4873 		spdk_thread_send_msg(thread, _nvmf_rdma_remove_destroyed_device, rtransport);
4874 	}
4875 }
4876 
4877 static void
4878 _nvmf_rdma_remove_poller_in_group(void *c)
4879 {
4880 	struct poller_manage_ctx		*ctx = c;
4881 
4882 	ctx->rpoller->need_destroy = true;
4883 	ctx->rpoller->destroy_cb_ctx = ctx;
4884 	ctx->rpoller->destroy_cb = _nvmf_rdma_remove_poller_in_group_cb;
4885 
4886 	/* qp will be disconnected after receiving a RDMA_CM_EVENT_DEVICE_REMOVAL event. */
4887 	if (RB_EMPTY(&ctx->rpoller->qpairs)) {
4888 		nvmf_rdma_poller_destroy(ctx->rpoller);
4889 	}
4890 }
4891 
4892 static int
4893 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
4894 {
4895 	struct spdk_nvmf_rdma_transport *rtransport;
4896 	struct spdk_nvmf_rdma_poll_group *rgroup;
4897 	struct spdk_nvmf_rdma_poller	*rpoller, *tmp;
4898 	int				count, rc;
4899 
4900 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
4901 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4902 
4903 	count = 0;
4904 	TAILQ_FOREACH_SAFE(rpoller, &rgroup->pollers, link, tmp) {
4905 		rc = nvmf_rdma_poller_poll(rtransport, rpoller);
4906 		if (rc < 0) {
4907 			return rc;
4908 		}
4909 		count += rc;
4910 	}
4911 
4912 	return count;
4913 }
4914 
4915 static int
4916 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
4917 			  struct spdk_nvme_transport_id *trid,
4918 			  bool peer)
4919 {
4920 	struct sockaddr *saddr;
4921 	uint16_t port;
4922 
4923 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA);
4924 
4925 	if (peer) {
4926 		saddr = rdma_get_peer_addr(id);
4927 	} else {
4928 		saddr = rdma_get_local_addr(id);
4929 	}
4930 	switch (saddr->sa_family) {
4931 	case AF_INET: {
4932 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
4933 
4934 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
4935 		inet_ntop(AF_INET, &saddr_in->sin_addr,
4936 			  trid->traddr, sizeof(trid->traddr));
4937 		if (peer) {
4938 			port = ntohs(rdma_get_dst_port(id));
4939 		} else {
4940 			port = ntohs(rdma_get_src_port(id));
4941 		}
4942 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4943 		break;
4944 	}
4945 	case AF_INET6: {
4946 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
4947 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
4948 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
4949 			  trid->traddr, sizeof(trid->traddr));
4950 		if (peer) {
4951 			port = ntohs(rdma_get_dst_port(id));
4952 		} else {
4953 			port = ntohs(rdma_get_src_port(id));
4954 		}
4955 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4956 		break;
4957 	}
4958 	default:
4959 		return -1;
4960 
4961 	}
4962 
4963 	return 0;
4964 }
4965 
4966 static int
4967 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
4968 			      struct spdk_nvme_transport_id *trid)
4969 {
4970 	struct spdk_nvmf_rdma_qpair	*rqpair;
4971 
4972 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4973 
4974 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
4975 }
4976 
4977 static int
4978 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
4979 			       struct spdk_nvme_transport_id *trid)
4980 {
4981 	struct spdk_nvmf_rdma_qpair	*rqpair;
4982 
4983 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4984 
4985 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
4986 }
4987 
4988 static int
4989 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
4990 				struct spdk_nvme_transport_id *trid)
4991 {
4992 	struct spdk_nvmf_rdma_qpair	*rqpair;
4993 
4994 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4995 
4996 	return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
4997 }
4998 
4999 void
5000 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
5001 {
5002 	g_nvmf_hooks = *hooks;
5003 }
5004 
5005 static void
5006 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req,
5007 				   struct spdk_nvmf_rdma_request *rdma_req_to_abort,
5008 				   struct spdk_nvmf_rdma_qpair *rqpair)
5009 {
5010 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
5011 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
5012 
5013 	STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req_to_abort, state_link);
5014 	rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
5015 
5016 	req->rsp->nvme_cpl.cdw0 &= ~1U;	/* Command was successfully aborted. */
5017 }
5018 
5019 static int
5020 _nvmf_rdma_qpair_abort_request(void *ctx)
5021 {
5022 	struct spdk_nvmf_request *req = ctx;
5023 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF(
5024 				req->req_to_abort, struct spdk_nvmf_rdma_request, req);
5025 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
5026 					      struct spdk_nvmf_rdma_qpair, qpair);
5027 	int rc;
5028 
5029 	spdk_poller_unregister(&req->poller);
5030 
5031 	switch (rdma_req_to_abort->state) {
5032 	case RDMA_REQUEST_STATE_EXECUTING:
5033 		rc = nvmf_ctrlr_abort_request(req);
5034 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
5035 			return SPDK_POLLER_BUSY;
5036 		}
5037 		break;
5038 
5039 	case RDMA_REQUEST_STATE_NEED_BUFFER:
5040 		STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue,
5041 			      &rdma_req_to_abort->req, spdk_nvmf_request, buf_link);
5042 
5043 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5044 		break;
5045 
5046 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
5047 		STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort,
5048 			      spdk_nvmf_rdma_request, state_link);
5049 
5050 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5051 		break;
5052 
5053 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
5054 		STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort,
5055 			      spdk_nvmf_rdma_request, state_link);
5056 
5057 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5058 		break;
5059 
5060 	case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING:
5061 		/* Remove req from the list here to re-use common function */
5062 		STAILQ_REMOVE(&rqpair->pending_rdma_send_queue, rdma_req_to_abort,
5063 			      spdk_nvmf_rdma_request, state_link);
5064 
5065 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5066 		break;
5067 
5068 	case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
5069 		if (spdk_get_ticks() < req->timeout_tsc) {
5070 			req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0);
5071 			return SPDK_POLLER_BUSY;
5072 		}
5073 		break;
5074 
5075 	default:
5076 		break;
5077 	}
5078 
5079 	spdk_nvmf_request_complete(req);
5080 	return SPDK_POLLER_BUSY;
5081 }
5082 
5083 static void
5084 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
5085 			      struct spdk_nvmf_request *req)
5086 {
5087 	struct spdk_nvmf_rdma_qpair *rqpair;
5088 	struct spdk_nvmf_rdma_transport *rtransport;
5089 	struct spdk_nvmf_transport *transport;
5090 	uint16_t cid;
5091 	uint32_t i, max_req_count;
5092 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req;
5093 
5094 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
5095 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
5096 	transport = &rtransport->transport;
5097 
5098 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
5099 	max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth;
5100 
5101 	for (i = 0; i < max_req_count; i++) {
5102 		rdma_req = &rqpair->resources->reqs[i];
5103 		/* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair
5104 		 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to
5105 		 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */
5106 		if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid &&
5107 		    rdma_req->req.qpair == qpair) {
5108 			rdma_req_to_abort = rdma_req;
5109 			break;
5110 		}
5111 	}
5112 
5113 	if (rdma_req_to_abort == NULL) {
5114 		spdk_nvmf_request_complete(req);
5115 		return;
5116 	}
5117 
5118 	req->req_to_abort = &rdma_req_to_abort->req;
5119 	req->timeout_tsc = spdk_get_ticks() +
5120 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
5121 	req->poller = NULL;
5122 
5123 	_nvmf_rdma_qpair_abort_request(req);
5124 }
5125 
5126 static void
5127 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group,
5128 			       struct spdk_json_write_ctx *w)
5129 {
5130 	struct spdk_nvmf_rdma_poll_group *rgroup;
5131 	struct spdk_nvmf_rdma_poller *rpoller;
5132 
5133 	assert(w != NULL);
5134 
5135 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
5136 
5137 	spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer);
5138 
5139 	spdk_json_write_named_array_begin(w, "devices");
5140 
5141 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
5142 		spdk_json_write_object_begin(w);
5143 		spdk_json_write_named_string(w, "name",
5144 					     ibv_get_device_name(rpoller->device->context->device));
5145 		spdk_json_write_named_uint64(w, "polls",
5146 					     rpoller->stat.polls);
5147 		spdk_json_write_named_uint64(w, "idle_polls",
5148 					     rpoller->stat.idle_polls);
5149 		spdk_json_write_named_uint64(w, "completions",
5150 					     rpoller->stat.completions);
5151 		spdk_json_write_named_uint64(w, "requests",
5152 					     rpoller->stat.requests);
5153 		spdk_json_write_named_uint64(w, "request_latency",
5154 					     rpoller->stat.request_latency);
5155 		spdk_json_write_named_uint64(w, "pending_free_request",
5156 					     rpoller->stat.pending_free_request);
5157 		spdk_json_write_named_uint64(w, "pending_rdma_read",
5158 					     rpoller->stat.pending_rdma_read);
5159 		spdk_json_write_named_uint64(w, "pending_rdma_write",
5160 					     rpoller->stat.pending_rdma_write);
5161 		spdk_json_write_named_uint64(w, "pending_rdma_send",
5162 					     rpoller->stat.pending_rdma_send);
5163 		spdk_json_write_named_uint64(w, "total_send_wrs",
5164 					     rpoller->stat.qp_stats.send.num_submitted_wrs);
5165 		spdk_json_write_named_uint64(w, "send_doorbell_updates",
5166 					     rpoller->stat.qp_stats.send.doorbell_updates);
5167 		spdk_json_write_named_uint64(w, "total_recv_wrs",
5168 					     rpoller->stat.qp_stats.recv.num_submitted_wrs);
5169 		spdk_json_write_named_uint64(w, "recv_doorbell_updates",
5170 					     rpoller->stat.qp_stats.recv.doorbell_updates);
5171 		spdk_json_write_object_end(w);
5172 	}
5173 
5174 	spdk_json_write_array_end(w);
5175 }
5176 
5177 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
5178 	.name = "RDMA",
5179 	.type = SPDK_NVME_TRANSPORT_RDMA,
5180 	.opts_init = nvmf_rdma_opts_init,
5181 	.create = nvmf_rdma_create,
5182 	.dump_opts = nvmf_rdma_dump_opts,
5183 	.destroy = nvmf_rdma_destroy,
5184 
5185 	.listen = nvmf_rdma_listen,
5186 	.stop_listen = nvmf_rdma_stop_listen,
5187 	.cdata_init = nvmf_rdma_cdata_init,
5188 
5189 	.listener_discover = nvmf_rdma_discover,
5190 
5191 	.poll_group_create = nvmf_rdma_poll_group_create,
5192 	.get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group,
5193 	.poll_group_destroy = nvmf_rdma_poll_group_destroy,
5194 	.poll_group_add = nvmf_rdma_poll_group_add,
5195 	.poll_group_remove = nvmf_rdma_poll_group_remove,
5196 	.poll_group_poll = nvmf_rdma_poll_group_poll,
5197 
5198 	.req_free = nvmf_rdma_request_free,
5199 	.req_complete = nvmf_rdma_request_complete,
5200 
5201 	.qpair_fini = nvmf_rdma_close_qpair,
5202 	.qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid,
5203 	.qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid,
5204 	.qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid,
5205 	.qpair_abort_request = nvmf_rdma_qpair_abort_request,
5206 
5207 	.poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat,
5208 };
5209 
5210 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma);
5211 SPDK_LOG_REGISTER_COMPONENT(rdma)
5212