xref: /spdk/lib/nvmf/rdma.c (revision 927f1fd57bd004df581518466ec4c1b8083e5d23)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
6  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include "spdk/stdinc.h"
36 
37 #include "spdk/config.h"
38 #include "spdk/thread.h"
39 #include "spdk/likely.h"
40 #include "spdk/nvmf_transport.h"
41 #include "spdk/string.h"
42 #include "spdk/trace.h"
43 #include "spdk/tree.h"
44 #include "spdk/util.h"
45 
46 #include "spdk_internal/assert.h"
47 #include "spdk/log.h"
48 #include "spdk_internal/rdma.h"
49 
50 #include "nvmf_internal.h"
51 #include "transport.h"
52 
53 #include "spdk_internal/trace_defs.h"
54 
55 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
56 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma;
57 
58 /*
59  RDMA Connection Resource Defaults
60  */
61 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
62 #define NVMF_DEFAULT_RSP_SGE		1
63 #define NVMF_DEFAULT_RX_SGE		2
64 
65 /* The RDMA completion queue size */
66 #define DEFAULT_NVMF_RDMA_CQ_SIZE	4096
67 #define MAX_WR_PER_QP(queue_depth)	(queue_depth * 3 + 2)
68 
69 static int g_spdk_nvmf_ibv_query_mask =
70 	IBV_QP_STATE |
71 	IBV_QP_PKEY_INDEX |
72 	IBV_QP_PORT |
73 	IBV_QP_ACCESS_FLAGS |
74 	IBV_QP_AV |
75 	IBV_QP_PATH_MTU |
76 	IBV_QP_DEST_QPN |
77 	IBV_QP_RQ_PSN |
78 	IBV_QP_MAX_DEST_RD_ATOMIC |
79 	IBV_QP_MIN_RNR_TIMER |
80 	IBV_QP_SQ_PSN |
81 	IBV_QP_TIMEOUT |
82 	IBV_QP_RETRY_CNT |
83 	IBV_QP_RNR_RETRY |
84 	IBV_QP_MAX_QP_RD_ATOMIC;
85 
86 enum spdk_nvmf_rdma_request_state {
87 	/* The request is not currently in use */
88 	RDMA_REQUEST_STATE_FREE = 0,
89 
90 	/* Initial state when request first received */
91 	RDMA_REQUEST_STATE_NEW,
92 
93 	/* The request is queued until a data buffer is available. */
94 	RDMA_REQUEST_STATE_NEED_BUFFER,
95 
96 	/* The request is waiting on RDMA queue depth availability
97 	 * to transfer data from the host to the controller.
98 	 */
99 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
100 
101 	/* The request is currently transferring data from the host to the controller. */
102 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
103 
104 	/* The request is ready to execute at the block device */
105 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
106 
107 	/* The request is currently executing at the block device */
108 	RDMA_REQUEST_STATE_EXECUTING,
109 
110 	/* The request finished executing at the block device */
111 	RDMA_REQUEST_STATE_EXECUTED,
112 
113 	/* The request is waiting on RDMA queue depth availability
114 	 * to transfer data from the controller to the host.
115 	 */
116 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
117 
118 	/* The request is ready to send a completion */
119 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
120 
121 	/* The request is currently transferring data from the controller to the host. */
122 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
123 
124 	/* The request currently has an outstanding completion without an
125 	 * associated data transfer.
126 	 */
127 	RDMA_REQUEST_STATE_COMPLETING,
128 
129 	/* The request completed and can be marked free. */
130 	RDMA_REQUEST_STATE_COMPLETED,
131 
132 	/* Terminator */
133 	RDMA_REQUEST_NUM_STATES,
134 };
135 
136 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
137 {
138 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
139 	spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW,
140 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1,
141 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
142 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
143 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
144 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
145 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H",
146 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
147 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
148 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
149 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C",
150 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
151 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
152 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
153 	spdk_trace_register_description("RDMA_REQ_TX_H2C",
154 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
155 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
156 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
157 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE",
158 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
159 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
160 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
161 	spdk_trace_register_description("RDMA_REQ_EXECUTING",
162 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
163 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
164 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
165 	spdk_trace_register_description("RDMA_REQ_EXECUTED",
166 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
167 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
168 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
169 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL",
170 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
171 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
172 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
173 	spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H",
174 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
175 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
176 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
177 	spdk_trace_register_description("RDMA_REQ_COMPLETING",
178 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
179 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
180 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
181 	spdk_trace_register_description("RDMA_REQ_COMPLETED",
182 					TRACE_RDMA_REQUEST_STATE_COMPLETED,
183 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
184 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
185 
186 	spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE,
187 					OWNER_NONE, OBJECT_NONE, 0,
188 					SPDK_TRACE_ARG_TYPE_INT, "");
189 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT,
190 					OWNER_NONE, OBJECT_NONE, 0,
191 					SPDK_TRACE_ARG_TYPE_INT, "type");
192 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT,
193 					OWNER_NONE, OBJECT_NONE, 0,
194 					SPDK_TRACE_ARG_TYPE_INT, "type");
195 	spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE,
196 					OWNER_NONE, OBJECT_NONE, 0,
197 					SPDK_TRACE_ARG_TYPE_PTR, "state");
198 	spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT,
199 					OWNER_NONE, OBJECT_NONE, 0,
200 					SPDK_TRACE_ARG_TYPE_INT, "");
201 	spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY,
202 					OWNER_NONE, OBJECT_NONE, 0,
203 					SPDK_TRACE_ARG_TYPE_INT, "");
204 }
205 
206 enum spdk_nvmf_rdma_wr_type {
207 	RDMA_WR_TYPE_RECV,
208 	RDMA_WR_TYPE_SEND,
209 	RDMA_WR_TYPE_DATA,
210 };
211 
212 struct spdk_nvmf_rdma_wr {
213 	enum spdk_nvmf_rdma_wr_type	type;
214 };
215 
216 /* This structure holds commands as they are received off the wire.
217  * It must be dynamically paired with a full request object
218  * (spdk_nvmf_rdma_request) to service a request. It is separate
219  * from the request because RDMA does not appear to order
220  * completions, so occasionally we'll get a new incoming
221  * command when there aren't any free request objects.
222  */
223 struct spdk_nvmf_rdma_recv {
224 	struct ibv_recv_wr			wr;
225 	struct ibv_sge				sgl[NVMF_DEFAULT_RX_SGE];
226 
227 	struct spdk_nvmf_rdma_qpair		*qpair;
228 
229 	/* In-capsule data buffer */
230 	uint8_t					*buf;
231 
232 	struct spdk_nvmf_rdma_wr		rdma_wr;
233 	uint64_t				receive_tsc;
234 
235 	STAILQ_ENTRY(spdk_nvmf_rdma_recv)	link;
236 };
237 
238 struct spdk_nvmf_rdma_request_data {
239 	struct spdk_nvmf_rdma_wr	rdma_wr;
240 	struct ibv_send_wr		wr;
241 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
242 };
243 
244 struct spdk_nvmf_rdma_request {
245 	struct spdk_nvmf_request		req;
246 
247 	enum spdk_nvmf_rdma_request_state	state;
248 
249 	/* Data offset in req.iov */
250 	uint32_t				offset;
251 
252 	struct spdk_nvmf_rdma_recv		*recv;
253 
254 	struct {
255 		struct spdk_nvmf_rdma_wr	rdma_wr;
256 		struct	ibv_send_wr		wr;
257 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
258 	} rsp;
259 
260 	struct spdk_nvmf_rdma_request_data	data;
261 
262 	uint32_t				iovpos;
263 
264 	uint32_t				num_outstanding_data_wr;
265 	uint64_t				receive_tsc;
266 
267 	bool					fused_failed;
268 	struct spdk_nvmf_rdma_request		*fused_pair;
269 
270 	STAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
271 };
272 
273 struct spdk_nvmf_rdma_resource_opts {
274 	struct spdk_nvmf_rdma_qpair	*qpair;
275 	/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
276 	void				*qp;
277 	struct ibv_pd			*pd;
278 	uint32_t			max_queue_depth;
279 	uint32_t			in_capsule_data_size;
280 	bool				shared;
281 };
282 
283 struct spdk_nvmf_rdma_resources {
284 	/* Array of size "max_queue_depth" containing RDMA requests. */
285 	struct spdk_nvmf_rdma_request		*reqs;
286 
287 	/* Array of size "max_queue_depth" containing RDMA recvs. */
288 	struct spdk_nvmf_rdma_recv		*recvs;
289 
290 	/* Array of size "max_queue_depth" containing 64 byte capsules
291 	 * used for receive.
292 	 */
293 	union nvmf_h2c_msg			*cmds;
294 	struct ibv_mr				*cmds_mr;
295 
296 	/* Array of size "max_queue_depth" containing 16 byte completions
297 	 * to be sent back to the user.
298 	 */
299 	union nvmf_c2h_msg			*cpls;
300 	struct ibv_mr				*cpls_mr;
301 
302 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
303 	 * buffers to be used for in capsule data.
304 	 */
305 	void					*bufs;
306 	struct ibv_mr				*bufs_mr;
307 
308 	/* Receives that are waiting for a request object */
309 	STAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
310 
311 	/* Queue to track free requests */
312 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	free_queue;
313 };
314 
315 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair);
316 
317 struct spdk_nvmf_rdma_ibv_event_ctx {
318 	struct spdk_nvmf_rdma_qpair			*rqpair;
319 	spdk_nvmf_rdma_qpair_ibv_event			cb_fn;
320 	/* Link to other ibv events associated with this qpair */
321 	STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx)	link;
322 };
323 
324 struct spdk_nvmf_rdma_qpair {
325 	struct spdk_nvmf_qpair			qpair;
326 
327 	struct spdk_nvmf_rdma_device		*device;
328 	struct spdk_nvmf_rdma_poller		*poller;
329 
330 	struct spdk_rdma_qp			*rdma_qp;
331 	struct rdma_cm_id			*cm_id;
332 	struct spdk_rdma_srq			*srq;
333 	struct rdma_cm_id			*listen_id;
334 
335 	/* Cache the QP number to improve QP search by RB tree. */
336 	uint32_t				qp_num;
337 
338 	/* The maximum number of I/O outstanding on this connection at one time */
339 	uint16_t				max_queue_depth;
340 
341 	/* The maximum number of active RDMA READ and ATOMIC operations at one time */
342 	uint16_t				max_read_depth;
343 
344 	/* The maximum number of RDMA SEND operations at one time */
345 	uint32_t				max_send_depth;
346 
347 	/* The current number of outstanding WRs from this qpair's
348 	 * recv queue. Should not exceed device->attr.max_queue_depth.
349 	 */
350 	uint16_t				current_recv_depth;
351 
352 	/* The current number of active RDMA READ operations */
353 	uint16_t				current_read_depth;
354 
355 	/* The current number of posted WRs from this qpair's
356 	 * send queue. Should not exceed max_send_depth.
357 	 */
358 	uint32_t				current_send_depth;
359 
360 	/* The maximum number of SGEs per WR on the send queue */
361 	uint32_t				max_send_sge;
362 
363 	/* The maximum number of SGEs per WR on the recv queue */
364 	uint32_t				max_recv_sge;
365 
366 	struct spdk_nvmf_rdma_resources		*resources;
367 
368 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_read_queue;
369 
370 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_write_queue;
371 
372 	/* Number of requests not in the free state */
373 	uint32_t				qd;
374 
375 	RB_ENTRY(spdk_nvmf_rdma_qpair)		node;
376 
377 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	recv_link;
378 
379 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	send_link;
380 
381 	/* IBV queue pair attributes: they are used to manage
382 	 * qp state and recover from errors.
383 	 */
384 	enum ibv_qp_state			ibv_state;
385 
386 	/* Points to the a request that has fuse bits set to
387 	 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting
388 	 * for the request that has SPDK_NVME_CMD_FUSE_SECOND.
389 	 */
390 	struct spdk_nvmf_rdma_request		*fused_first;
391 
392 	/*
393 	 * io_channel which is used to destroy qpair when it is removed from poll group
394 	 */
395 	struct spdk_io_channel		*destruct_channel;
396 
397 	/* List of ibv async events */
398 	STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx)	ibv_events;
399 
400 	/* Lets us know that we have received the last_wqe event. */
401 	bool					last_wqe_reached;
402 
403 	/* Indicate that nvmf_rdma_close_qpair is called */
404 	bool					to_close;
405 };
406 
407 struct spdk_nvmf_rdma_poller_stat {
408 	uint64_t				completions;
409 	uint64_t				polls;
410 	uint64_t				idle_polls;
411 	uint64_t				requests;
412 	uint64_t				request_latency;
413 	uint64_t				pending_free_request;
414 	uint64_t				pending_rdma_read;
415 	uint64_t				pending_rdma_write;
416 	struct spdk_rdma_qp_stats		qp_stats;
417 };
418 
419 struct spdk_nvmf_rdma_poller {
420 	struct spdk_nvmf_rdma_device		*device;
421 	struct spdk_nvmf_rdma_poll_group	*group;
422 
423 	int					num_cqe;
424 	int					required_num_wr;
425 	struct ibv_cq				*cq;
426 
427 	/* The maximum number of I/O outstanding on the shared receive queue at one time */
428 	uint16_t				max_srq_depth;
429 
430 	/* Shared receive queue */
431 	struct spdk_rdma_srq			*srq;
432 
433 	struct spdk_nvmf_rdma_resources		*resources;
434 	struct spdk_nvmf_rdma_poller_stat	stat;
435 
436 	RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs;
437 
438 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_recv;
439 
440 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_send;
441 
442 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
443 };
444 
445 struct spdk_nvmf_rdma_poll_group_stat {
446 	uint64_t				pending_data_buffer;
447 };
448 
449 struct spdk_nvmf_rdma_poll_group {
450 	struct spdk_nvmf_transport_poll_group		group;
451 	struct spdk_nvmf_rdma_poll_group_stat		stat;
452 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)		pollers;
453 	TAILQ_ENTRY(spdk_nvmf_rdma_poll_group)		link;
454 };
455 
456 struct spdk_nvmf_rdma_conn_sched {
457 	struct spdk_nvmf_rdma_poll_group *next_admin_pg;
458 	struct spdk_nvmf_rdma_poll_group *next_io_pg;
459 };
460 
461 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
462 struct spdk_nvmf_rdma_device {
463 	struct ibv_device_attr			attr;
464 	struct ibv_context			*context;
465 
466 	struct spdk_rdma_mem_map		*map;
467 	struct ibv_pd				*pd;
468 
469 	int					num_srq;
470 
471 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
472 };
473 
474 struct spdk_nvmf_rdma_port {
475 	const struct spdk_nvme_transport_id	*trid;
476 	struct rdma_cm_id			*id;
477 	struct spdk_nvmf_rdma_device		*device;
478 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
479 };
480 
481 struct rdma_transport_opts {
482 	int		num_cqe;
483 	uint32_t	max_srq_depth;
484 	bool		no_srq;
485 	bool		no_wr_batching;
486 	int		acceptor_backlog;
487 };
488 
489 struct spdk_nvmf_rdma_transport {
490 	struct spdk_nvmf_transport	transport;
491 	struct rdma_transport_opts	rdma_opts;
492 
493 	struct spdk_nvmf_rdma_conn_sched conn_sched;
494 
495 	struct rdma_event_channel	*event_channel;
496 
497 	struct spdk_mempool		*data_wr_pool;
498 
499 	struct spdk_poller		*accept_poller;
500 	pthread_mutex_t			lock;
501 
502 	/* fields used to poll RDMA/IB events */
503 	nfds_t			npoll_fds;
504 	struct pollfd		*poll_fds;
505 
506 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
507 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
508 	TAILQ_HEAD(, spdk_nvmf_rdma_poll_group)	poll_groups;
509 };
510 
511 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = {
512 	{
513 		"num_cqe", offsetof(struct rdma_transport_opts, num_cqe),
514 		spdk_json_decode_int32, true
515 	},
516 	{
517 		"max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth),
518 		spdk_json_decode_uint32, true
519 	},
520 	{
521 		"no_srq", offsetof(struct rdma_transport_opts, no_srq),
522 		spdk_json_decode_bool, true
523 	},
524 	{
525 		"no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching),
526 		spdk_json_decode_bool, true
527 	},
528 	{
529 		"acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog),
530 		spdk_json_decode_int32, true
531 	},
532 };
533 
534 static int
535 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2)
536 {
537 	return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num;
538 }
539 
540 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare);
541 
542 static bool
543 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
544 			  struct spdk_nvmf_rdma_request *rdma_req);
545 
546 static void
547 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
548 		     struct spdk_nvmf_rdma_poller *rpoller);
549 
550 static void
551 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
552 		     struct spdk_nvmf_rdma_poller *rpoller);
553 
554 static inline int
555 nvmf_rdma_check_ibv_state(enum ibv_qp_state state)
556 {
557 	switch (state) {
558 	case IBV_QPS_RESET:
559 	case IBV_QPS_INIT:
560 	case IBV_QPS_RTR:
561 	case IBV_QPS_RTS:
562 	case IBV_QPS_SQD:
563 	case IBV_QPS_SQE:
564 	case IBV_QPS_ERR:
565 		return 0;
566 	default:
567 		return -1;
568 	}
569 }
570 
571 static inline enum spdk_nvme_media_error_status_code
572 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) {
573 	enum spdk_nvme_media_error_status_code result;
574 	switch (err_type)
575 	{
576 	case SPDK_DIF_REFTAG_ERROR:
577 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
578 		break;
579 	case SPDK_DIF_APPTAG_ERROR:
580 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
581 		break;
582 	case SPDK_DIF_GUARD_ERROR:
583 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
584 		break;
585 	default:
586 		SPDK_UNREACHABLE();
587 	}
588 
589 	return result;
590 }
591 
592 static enum ibv_qp_state
593 nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) {
594 	enum ibv_qp_state old_state, new_state;
595 	struct ibv_qp_attr qp_attr;
596 	struct ibv_qp_init_attr init_attr;
597 	int rc;
598 
599 	old_state = rqpair->ibv_state;
600 	rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr,
601 			  g_spdk_nvmf_ibv_query_mask, &init_attr);
602 
603 	if (rc)
604 	{
605 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
606 		return IBV_QPS_ERR + 1;
607 	}
608 
609 	new_state = qp_attr.qp_state;
610 	rqpair->ibv_state = new_state;
611 	qp_attr.ah_attr.port_num = qp_attr.port_num;
612 
613 	rc = nvmf_rdma_check_ibv_state(new_state);
614 	if (rc)
615 	{
616 		SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state);
617 		/*
618 		 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8
619 		 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR
620 		 */
621 		return IBV_QPS_ERR + 1;
622 	}
623 
624 	if (old_state != new_state)
625 	{
626 		spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, (uintptr_t)rqpair, new_state);
627 	}
628 	return new_state;
629 }
630 
631 static void
632 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
633 			    struct spdk_nvmf_rdma_transport *rtransport)
634 {
635 	struct spdk_nvmf_rdma_request_data	*data_wr;
636 	struct ibv_send_wr			*next_send_wr;
637 	uint64_t				req_wrid;
638 
639 	rdma_req->num_outstanding_data_wr = 0;
640 	data_wr = &rdma_req->data;
641 	req_wrid = data_wr->wr.wr_id;
642 	while (data_wr && data_wr->wr.wr_id == req_wrid) {
643 		memset(data_wr->sgl, 0, sizeof(data_wr->wr.sg_list[0]) * data_wr->wr.num_sge);
644 		data_wr->wr.num_sge = 0;
645 		next_send_wr = data_wr->wr.next;
646 		if (data_wr != &rdma_req->data) {
647 			spdk_mempool_put(rtransport->data_wr_pool, data_wr);
648 		}
649 		data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL :
650 			  SPDK_CONTAINEROF(next_send_wr, struct spdk_nvmf_rdma_request_data, wr);
651 	}
652 }
653 
654 static void
655 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
656 {
657 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool);
658 	if (req->req.cmd) {
659 		SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
660 	}
661 	if (req->recv) {
662 		SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
663 	}
664 }
665 
666 static void
667 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
668 {
669 	int i;
670 
671 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
672 	for (i = 0; i < rqpair->max_queue_depth; i++) {
673 		if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
674 			nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
675 		}
676 	}
677 }
678 
679 static void
680 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
681 {
682 	if (resources->cmds_mr) {
683 		ibv_dereg_mr(resources->cmds_mr);
684 	}
685 
686 	if (resources->cpls_mr) {
687 		ibv_dereg_mr(resources->cpls_mr);
688 	}
689 
690 	if (resources->bufs_mr) {
691 		ibv_dereg_mr(resources->bufs_mr);
692 	}
693 
694 	spdk_free(resources->cmds);
695 	spdk_free(resources->cpls);
696 	spdk_free(resources->bufs);
697 	spdk_free(resources->reqs);
698 	spdk_free(resources->recvs);
699 	free(resources);
700 }
701 
702 
703 static struct spdk_nvmf_rdma_resources *
704 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
705 {
706 	struct spdk_nvmf_rdma_resources	*resources;
707 	struct spdk_nvmf_rdma_request	*rdma_req;
708 	struct spdk_nvmf_rdma_recv	*rdma_recv;
709 	struct spdk_rdma_qp		*qp = NULL;
710 	struct spdk_rdma_srq		*srq = NULL;
711 	struct ibv_recv_wr		*bad_wr = NULL;
712 	uint32_t			i;
713 	int				rc = 0;
714 
715 	resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
716 	if (!resources) {
717 		SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
718 		return NULL;
719 	}
720 
721 	resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs),
722 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
723 	resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs),
724 					0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
725 	resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
726 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
727 	resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
728 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
729 
730 	if (opts->in_capsule_data_size > 0) {
731 		resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size,
732 					       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY,
733 					       SPDK_MALLOC_DMA);
734 	}
735 
736 	if (!resources->reqs || !resources->recvs || !resources->cmds ||
737 	    !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
738 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
739 		goto cleanup;
740 	}
741 
742 	resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds,
743 					opts->max_queue_depth * sizeof(*resources->cmds),
744 					IBV_ACCESS_LOCAL_WRITE);
745 	resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls,
746 					opts->max_queue_depth * sizeof(*resources->cpls),
747 					0);
748 
749 	if (opts->in_capsule_data_size) {
750 		resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs,
751 						opts->max_queue_depth *
752 						opts->in_capsule_data_size,
753 						IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
754 	}
755 
756 	if (!resources->cmds_mr || !resources->cpls_mr ||
757 	    (opts->in_capsule_data_size &&
758 	     !resources->bufs_mr)) {
759 		goto cleanup;
760 	}
761 	SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx LKey: %x\n",
762 		      resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds),
763 		      resources->cmds_mr->lkey);
764 	SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx LKey: %x\n",
765 		      resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls),
766 		      resources->cpls_mr->lkey);
767 	if (resources->bufs && resources->bufs_mr) {
768 		SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x LKey: %x\n",
769 			      resources->bufs, opts->max_queue_depth *
770 			      opts->in_capsule_data_size, resources->bufs_mr->lkey);
771 	}
772 
773 	/* Initialize queues */
774 	STAILQ_INIT(&resources->incoming_queue);
775 	STAILQ_INIT(&resources->free_queue);
776 
777 	if (opts->shared) {
778 		srq = (struct spdk_rdma_srq *)opts->qp;
779 	} else {
780 		qp = (struct spdk_rdma_qp *)opts->qp;
781 	}
782 
783 	for (i = 0; i < opts->max_queue_depth; i++) {
784 		rdma_recv = &resources->recvs[i];
785 		rdma_recv->qpair = opts->qpair;
786 
787 		/* Set up memory to receive commands */
788 		if (resources->bufs) {
789 			rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
790 						  opts->in_capsule_data_size));
791 		}
792 
793 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
794 
795 		rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
796 		rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
797 		rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey;
798 		rdma_recv->wr.num_sge = 1;
799 
800 		if (rdma_recv->buf && resources->bufs_mr) {
801 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
802 			rdma_recv->sgl[1].length = opts->in_capsule_data_size;
803 			rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey;
804 			rdma_recv->wr.num_sge++;
805 		}
806 
807 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
808 		rdma_recv->wr.sg_list = rdma_recv->sgl;
809 		if (srq) {
810 			spdk_rdma_srq_queue_recv_wrs(srq, &rdma_recv->wr);
811 		} else {
812 			spdk_rdma_qp_queue_recv_wrs(qp, &rdma_recv->wr);
813 		}
814 	}
815 
816 	for (i = 0; i < opts->max_queue_depth; i++) {
817 		rdma_req = &resources->reqs[i];
818 
819 		if (opts->qpair != NULL) {
820 			rdma_req->req.qpair = &opts->qpair->qpair;
821 		} else {
822 			rdma_req->req.qpair = NULL;
823 		}
824 		rdma_req->req.cmd = NULL;
825 		rdma_req->req.iovcnt = 0;
826 		rdma_req->req.stripped_data = NULL;
827 
828 		/* Set up memory to send responses */
829 		rdma_req->req.rsp = &resources->cpls[i];
830 
831 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
832 		rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
833 		rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey;
834 
835 		rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND;
836 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr;
837 		rdma_req->rsp.wr.next = NULL;
838 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
839 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
840 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
841 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
842 
843 		/* Set up memory for data buffers */
844 		rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA;
845 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
846 		rdma_req->data.wr.next = NULL;
847 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
848 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
849 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
850 
851 		/* Initialize request state to FREE */
852 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
853 		STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
854 	}
855 
856 	if (srq) {
857 		rc = spdk_rdma_srq_flush_recv_wrs(srq, &bad_wr);
858 	} else {
859 		rc = spdk_rdma_qp_flush_recv_wrs(qp, &bad_wr);
860 	}
861 
862 	if (rc) {
863 		goto cleanup;
864 	}
865 
866 	return resources;
867 
868 cleanup:
869 	nvmf_rdma_resources_destroy(resources);
870 	return NULL;
871 }
872 
873 static void
874 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair)
875 {
876 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx;
877 	STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) {
878 		ctx->rqpair = NULL;
879 		/* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */
880 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
881 	}
882 }
883 
884 static void
885 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
886 {
887 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
888 	struct ibv_recv_wr		*bad_recv_wr = NULL;
889 	int				rc;
890 
891 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair);
892 
893 	if (rqpair->qd != 0) {
894 		struct spdk_nvmf_qpair *qpair = &rqpair->qpair;
895 		struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(qpair->transport,
896 				struct spdk_nvmf_rdma_transport, transport);
897 		struct spdk_nvmf_rdma_request *req;
898 		uint32_t i, max_req_count = 0;
899 
900 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
901 
902 		if (rqpair->srq == NULL) {
903 			nvmf_rdma_dump_qpair_contents(rqpair);
904 			max_req_count = rqpair->max_queue_depth;
905 		} else if (rqpair->poller && rqpair->resources) {
906 			max_req_count = rqpair->poller->max_srq_depth;
907 		}
908 
909 		SPDK_DEBUGLOG(rdma, "Release incomplete requests\n");
910 		for (i = 0; i < max_req_count; i++) {
911 			req = &rqpair->resources->reqs[i];
912 			if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) {
913 				/* nvmf_rdma_request_process checks qpair ibv and internal state
914 				 * and completes a request */
915 				nvmf_rdma_request_process(rtransport, req);
916 			}
917 		}
918 		assert(rqpair->qd == 0);
919 	}
920 
921 	if (rqpair->poller) {
922 		RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair);
923 
924 		if (rqpair->srq != NULL && rqpair->resources != NULL) {
925 			/* Drop all received but unprocessed commands for this queue and return them to SRQ */
926 			STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
927 				if (rqpair == rdma_recv->qpair) {
928 					STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link);
929 					spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr);
930 					rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
931 					if (rc) {
932 						SPDK_ERRLOG("Unable to re-post rx descriptor\n");
933 					}
934 				}
935 			}
936 		}
937 	}
938 
939 	if (rqpair->cm_id) {
940 		if (rqpair->rdma_qp != NULL) {
941 			spdk_rdma_qp_destroy(rqpair->rdma_qp);
942 			rqpair->rdma_qp = NULL;
943 		}
944 		rdma_destroy_id(rqpair->cm_id);
945 
946 		if (rqpair->poller != NULL && rqpair->srq == NULL) {
947 			rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
948 		}
949 	}
950 
951 	if (rqpair->srq == NULL && rqpair->resources != NULL) {
952 		nvmf_rdma_resources_destroy(rqpair->resources);
953 	}
954 
955 	nvmf_rdma_qpair_clean_ibv_events(rqpair);
956 
957 	if (rqpair->destruct_channel) {
958 		spdk_put_io_channel(rqpair->destruct_channel);
959 		rqpair->destruct_channel = NULL;
960 	}
961 
962 	free(rqpair);
963 }
964 
965 static int
966 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
967 {
968 	struct spdk_nvmf_rdma_poller	*rpoller;
969 	int				rc, num_cqe, required_num_wr;
970 
971 	/* Enlarge CQ size dynamically */
972 	rpoller = rqpair->poller;
973 	required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
974 	num_cqe = rpoller->num_cqe;
975 	if (num_cqe < required_num_wr) {
976 		num_cqe = spdk_max(num_cqe * 2, required_num_wr);
977 		num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
978 	}
979 
980 	if (rpoller->num_cqe != num_cqe) {
981 		if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) {
982 			SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n"
983 				    "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe);
984 			return -1;
985 		}
986 		if (required_num_wr > device->attr.max_cqe) {
987 			SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
988 				    required_num_wr, device->attr.max_cqe);
989 			return -1;
990 		}
991 
992 		SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
993 		rc = ibv_resize_cq(rpoller->cq, num_cqe);
994 		if (rc) {
995 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
996 			return -1;
997 		}
998 
999 		rpoller->num_cqe = num_cqe;
1000 	}
1001 
1002 	rpoller->required_num_wr = required_num_wr;
1003 	return 0;
1004 }
1005 
1006 static int
1007 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
1008 {
1009 	struct spdk_nvmf_rdma_qpair		*rqpair;
1010 	struct spdk_nvmf_rdma_transport		*rtransport;
1011 	struct spdk_nvmf_transport		*transport;
1012 	struct spdk_nvmf_rdma_resource_opts	opts;
1013 	struct spdk_nvmf_rdma_device		*device;
1014 	struct spdk_rdma_qp_init_attr		qp_init_attr = {};
1015 
1016 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1017 	device = rqpair->device;
1018 
1019 	qp_init_attr.qp_context	= rqpair;
1020 	qp_init_attr.pd		= device->pd;
1021 	qp_init_attr.send_cq	= rqpair->poller->cq;
1022 	qp_init_attr.recv_cq	= rqpair->poller->cq;
1023 
1024 	if (rqpair->srq) {
1025 		qp_init_attr.srq		= rqpair->srq->srq;
1026 	} else {
1027 		qp_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth;
1028 	}
1029 
1030 	/* SEND, READ, and WRITE operations */
1031 	qp_init_attr.cap.max_send_wr	= (uint32_t)rqpair->max_queue_depth * 2;
1032 	qp_init_attr.cap.max_send_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
1033 	qp_init_attr.cap.max_recv_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
1034 	qp_init_attr.stats		= &rqpair->poller->stat.qp_stats;
1035 
1036 	if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
1037 		SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
1038 		goto error;
1039 	}
1040 
1041 	rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr);
1042 	if (!rqpair->rdma_qp) {
1043 		goto error;
1044 	}
1045 
1046 	rqpair->qp_num = rqpair->rdma_qp->qp->qp_num;
1047 
1048 	rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2),
1049 					  qp_init_attr.cap.max_send_wr);
1050 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge);
1051 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge);
1052 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair);
1053 	SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair);
1054 
1055 	if (rqpair->poller->srq == NULL) {
1056 		rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
1057 		transport = &rtransport->transport;
1058 
1059 		opts.qp = rqpair->rdma_qp;
1060 		opts.pd = rqpair->cm_id->pd;
1061 		opts.qpair = rqpair;
1062 		opts.shared = false;
1063 		opts.max_queue_depth = rqpair->max_queue_depth;
1064 		opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
1065 
1066 		rqpair->resources = nvmf_rdma_resources_create(&opts);
1067 
1068 		if (!rqpair->resources) {
1069 			SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
1070 			rdma_destroy_qp(rqpair->cm_id);
1071 			goto error;
1072 		}
1073 	} else {
1074 		rqpair->resources = rqpair->poller->resources;
1075 	}
1076 
1077 	rqpair->current_recv_depth = 0;
1078 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1079 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1080 
1081 	return 0;
1082 
1083 error:
1084 	rdma_destroy_id(rqpair->cm_id);
1085 	rqpair->cm_id = NULL;
1086 	return -1;
1087 }
1088 
1089 /* Append the given recv wr structure to the resource structs outstanding recvs list. */
1090 /* This function accepts either a single wr or the first wr in a linked list. */
1091 static void
1092 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first)
1093 {
1094 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1095 			struct spdk_nvmf_rdma_transport, transport);
1096 
1097 	if (rqpair->srq != NULL) {
1098 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, first);
1099 	} else {
1100 		if (spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, first)) {
1101 			STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link);
1102 		}
1103 	}
1104 
1105 	if (rtransport->rdma_opts.no_wr_batching) {
1106 		_poller_submit_recvs(rtransport, rqpair->poller);
1107 	}
1108 }
1109 
1110 static int
1111 request_transfer_in(struct spdk_nvmf_request *req)
1112 {
1113 	struct spdk_nvmf_rdma_request	*rdma_req;
1114 	struct spdk_nvmf_qpair		*qpair;
1115 	struct spdk_nvmf_rdma_qpair	*rqpair;
1116 	struct spdk_nvmf_rdma_transport *rtransport;
1117 
1118 	qpair = req->qpair;
1119 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1120 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1121 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1122 				      struct spdk_nvmf_rdma_transport, transport);
1123 
1124 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1125 	assert(rdma_req != NULL);
1126 
1127 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, &rdma_req->data.wr)) {
1128 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1129 	}
1130 	if (rtransport->rdma_opts.no_wr_batching) {
1131 		_poller_submit_sends(rtransport, rqpair->poller);
1132 	}
1133 
1134 	rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1135 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1136 	return 0;
1137 }
1138 
1139 static int
1140 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1141 {
1142 	int				num_outstanding_data_wr = 0;
1143 	struct spdk_nvmf_rdma_request	*rdma_req;
1144 	struct spdk_nvmf_qpair		*qpair;
1145 	struct spdk_nvmf_rdma_qpair	*rqpair;
1146 	struct spdk_nvme_cpl		*rsp;
1147 	struct ibv_send_wr		*first = NULL;
1148 	struct spdk_nvmf_rdma_transport *rtransport;
1149 
1150 	*data_posted = 0;
1151 	qpair = req->qpair;
1152 	rsp = &req->rsp->nvme_cpl;
1153 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1154 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1155 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1156 				      struct spdk_nvmf_rdma_transport, transport);
1157 
1158 	/* Advance our sq_head pointer */
1159 	if (qpair->sq_head == qpair->sq_head_max) {
1160 		qpair->sq_head = 0;
1161 	} else {
1162 		qpair->sq_head++;
1163 	}
1164 	rsp->sqhd = qpair->sq_head;
1165 
1166 	/* queue the capsule for the recv buffer */
1167 	assert(rdma_req->recv != NULL);
1168 
1169 	nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr);
1170 
1171 	rdma_req->recv = NULL;
1172 	assert(rqpair->current_recv_depth > 0);
1173 	rqpair->current_recv_depth--;
1174 
1175 	/* Build the response which consists of optional
1176 	 * RDMA WRITEs to transfer data, plus an RDMA SEND
1177 	 * containing the response.
1178 	 */
1179 	first = &rdma_req->rsp.wr;
1180 
1181 	if (rsp->status.sc != SPDK_NVME_SC_SUCCESS) {
1182 		/* On failure, data was not read from the controller. So clear the
1183 		 * number of outstanding data WRs to zero.
1184 		 */
1185 		rdma_req->num_outstanding_data_wr = 0;
1186 	} else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1187 		first = &rdma_req->data.wr;
1188 		*data_posted = 1;
1189 		num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
1190 	}
1191 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) {
1192 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1193 	}
1194 	if (rtransport->rdma_opts.no_wr_batching) {
1195 		_poller_submit_sends(rtransport, rqpair->poller);
1196 	}
1197 
1198 	/* +1 for the rsp wr */
1199 	rqpair->current_send_depth += num_outstanding_data_wr + 1;
1200 
1201 	return 0;
1202 }
1203 
1204 static int
1205 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1206 {
1207 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
1208 	struct rdma_conn_param				ctrlr_event_data = {};
1209 	int						rc;
1210 
1211 	accept_data.recfmt = 0;
1212 	accept_data.crqsize = rqpair->max_queue_depth;
1213 
1214 	ctrlr_event_data.private_data = &accept_data;
1215 	ctrlr_event_data.private_data_len = sizeof(accept_data);
1216 	if (id->ps == RDMA_PS_TCP) {
1217 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1218 		ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1219 	}
1220 
1221 	/* Configure infinite retries for the initiator side qpair.
1222 	 * We need to pass this value to the initiator to prevent the
1223 	 * initiator side NIC from completing SEND requests back to the
1224 	 * initiator with status rnr_retry_count_exceeded. */
1225 	ctrlr_event_data.rnr_retry_count = 0x7;
1226 
1227 	/* When qpair is created without use of rdma cm API, an additional
1228 	 * information must be provided to initiator in the connection response:
1229 	 * whether qpair is using SRQ and its qp_num
1230 	 * Fields below are ignored by rdma cm if qpair has been
1231 	 * created using rdma cm API. */
1232 	ctrlr_event_data.srq = rqpair->srq ? 1 : 0;
1233 	ctrlr_event_data.qp_num = rqpair->qp_num;
1234 
1235 	rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data);
1236 	if (rc) {
1237 		SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno);
1238 	} else {
1239 		SPDK_DEBUGLOG(rdma, "Sent back the accept\n");
1240 	}
1241 
1242 	return rc;
1243 }
1244 
1245 static void
1246 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1247 {
1248 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
1249 
1250 	rej_data.recfmt = 0;
1251 	rej_data.sts = error;
1252 
1253 	rdma_reject(id, &rej_data, sizeof(rej_data));
1254 }
1255 
1256 static int
1257 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event)
1258 {
1259 	struct spdk_nvmf_rdma_transport *rtransport;
1260 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
1261 	struct spdk_nvmf_rdma_port	*port;
1262 	struct rdma_conn_param		*rdma_param = NULL;
1263 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1264 	uint16_t			max_queue_depth;
1265 	uint16_t			max_read_depth;
1266 
1267 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1268 
1269 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1270 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1271 
1272 	rdma_param = &event->param.conn;
1273 	if (rdma_param->private_data == NULL ||
1274 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1275 		SPDK_ERRLOG("connect request: no private data provided\n");
1276 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1277 		return -1;
1278 	}
1279 
1280 	private_data = rdma_param->private_data;
1281 	if (private_data->recfmt != 0) {
1282 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1283 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1284 		return -1;
1285 	}
1286 
1287 	SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n",
1288 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1289 
1290 	port = event->listen_id->context;
1291 	SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1292 		      event->listen_id, event->listen_id->verbs, port);
1293 
1294 	/* Figure out the supported queue depth. This is a multi-step process
1295 	 * that takes into account hardware maximums, host provided values,
1296 	 * and our target's internal memory limits */
1297 
1298 	SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n");
1299 
1300 	/* Start with the maximum queue depth allowed by the target */
1301 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1302 	max_read_depth = rtransport->transport.opts.max_queue_depth;
1303 	SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n",
1304 		      rtransport->transport.opts.max_queue_depth);
1305 
1306 	/* Next check the local NIC's hardware limitations */
1307 	SPDK_DEBUGLOG(rdma,
1308 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1309 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1310 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1311 	max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1312 
1313 	/* Next check the remote NIC's hardware limitations */
1314 	SPDK_DEBUGLOG(rdma,
1315 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1316 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1317 	if (rdma_param->initiator_depth > 0) {
1318 		max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1319 	}
1320 
1321 	/* Finally check for the host software requested values, which are
1322 	 * optional. */
1323 	if (rdma_param->private_data != NULL &&
1324 	    rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1325 		SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1326 		SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize);
1327 		max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1328 		max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1329 	}
1330 
1331 	SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1332 		      max_queue_depth, max_read_depth);
1333 
1334 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1335 	if (rqpair == NULL) {
1336 		SPDK_ERRLOG("Could not allocate new connection.\n");
1337 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1338 		return -1;
1339 	}
1340 
1341 	rqpair->device = port->device;
1342 	rqpair->max_queue_depth = max_queue_depth;
1343 	rqpair->max_read_depth = max_read_depth;
1344 	rqpair->cm_id = event->id;
1345 	rqpair->listen_id = event->listen_id;
1346 	rqpair->qpair.transport = transport;
1347 	STAILQ_INIT(&rqpair->ibv_events);
1348 	/* use qid from the private data to determine the qpair type
1349 	   qid will be set to the appropriate value when the controller is created */
1350 	rqpair->qpair.qid = private_data->qid;
1351 
1352 	event->id->context = &rqpair->qpair;
1353 
1354 	spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair);
1355 
1356 	return 0;
1357 }
1358 
1359 static inline void
1360 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next,
1361 		   enum spdk_nvme_data_transfer xfer)
1362 {
1363 	if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1364 		wr->opcode = IBV_WR_RDMA_WRITE;
1365 		wr->send_flags = 0;
1366 		wr->next = next;
1367 	} else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1368 		wr->opcode = IBV_WR_RDMA_READ;
1369 		wr->send_flags = IBV_SEND_SIGNALED;
1370 		wr->next = NULL;
1371 	} else {
1372 		assert(0);
1373 	}
1374 }
1375 
1376 static int
1377 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1378 		       struct spdk_nvmf_rdma_request *rdma_req,
1379 		       uint32_t num_sgl_descriptors)
1380 {
1381 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1382 	struct spdk_nvmf_rdma_request_data	*current_data_wr;
1383 	uint32_t				i;
1384 
1385 	if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) {
1386 		SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n",
1387 			    num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES);
1388 		return -EINVAL;
1389 	}
1390 
1391 	if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) {
1392 		return -ENOMEM;
1393 	}
1394 
1395 	current_data_wr = &rdma_req->data;
1396 
1397 	for (i = 0; i < num_sgl_descriptors; i++) {
1398 		nvmf_rdma_setup_wr(&current_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer);
1399 		current_data_wr->wr.next = &work_requests[i]->wr;
1400 		current_data_wr = work_requests[i];
1401 		current_data_wr->wr.sg_list = current_data_wr->sgl;
1402 		current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id;
1403 	}
1404 
1405 	nvmf_rdma_setup_wr(&current_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1406 
1407 	return 0;
1408 }
1409 
1410 static inline void
1411 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req)
1412 {
1413 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1414 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1415 
1416 	wr->wr.rdma.rkey = sgl->keyed.key;
1417 	wr->wr.rdma.remote_addr = sgl->address;
1418 	nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1419 }
1420 
1421 static inline void
1422 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs)
1423 {
1424 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1425 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1426 	uint32_t			i;
1427 	int				j;
1428 	uint64_t			remote_addr_offset = 0;
1429 
1430 	for (i = 0; i < num_wrs; ++i) {
1431 		wr->wr.rdma.rkey = sgl->keyed.key;
1432 		wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset;
1433 		for (j = 0; j < wr->num_sge; ++j) {
1434 			remote_addr_offset += wr->sg_list[j].length;
1435 		}
1436 		wr = wr->next;
1437 	}
1438 }
1439 
1440 static int
1441 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup,
1442 		      struct spdk_nvmf_rdma_device *device,
1443 		      struct spdk_nvmf_rdma_request *rdma_req,
1444 		      struct ibv_send_wr *wr,
1445 		      uint32_t total_length)
1446 {
1447 	struct spdk_rdma_memory_translation mem_translation;
1448 	struct ibv_sge	*sg_ele;
1449 	struct iovec *iov;
1450 	uint32_t lkey, remaining;
1451 	int rc;
1452 
1453 	wr->num_sge = 0;
1454 
1455 	while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) {
1456 		iov = &rdma_req->req.iov[rdma_req->iovpos];
1457 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1458 		if (spdk_unlikely(rc)) {
1459 			return rc;
1460 		}
1461 
1462 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1463 		sg_ele = &wr->sg_list[wr->num_sge];
1464 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1465 
1466 		sg_ele->lkey = lkey;
1467 		sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset;
1468 		sg_ele->length = remaining;
1469 		SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr,
1470 			      sg_ele->length);
1471 		rdma_req->offset += sg_ele->length;
1472 		total_length -= sg_ele->length;
1473 		wr->num_sge++;
1474 
1475 		if (rdma_req->offset == iov->iov_len) {
1476 			rdma_req->offset = 0;
1477 			rdma_req->iovpos++;
1478 		}
1479 	}
1480 
1481 	if (total_length) {
1482 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1483 		return -EINVAL;
1484 	}
1485 
1486 	return 0;
1487 }
1488 
1489 static int
1490 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_poll_group *rgroup,
1491 			       struct spdk_nvmf_rdma_device *device,
1492 			       struct spdk_nvmf_rdma_request *rdma_req,
1493 			       struct ibv_send_wr *wr,
1494 			       uint32_t total_length,
1495 			       uint32_t num_extra_wrs)
1496 {
1497 	struct spdk_rdma_memory_translation mem_translation;
1498 	struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx;
1499 	struct ibv_sge *sg_ele;
1500 	struct iovec *iov;
1501 	struct iovec *rdma_iov;
1502 	uint32_t lkey, remaining;
1503 	uint32_t remaining_data_block, data_block_size, md_size;
1504 	uint32_t sge_len;
1505 	int rc;
1506 
1507 	data_block_size = dif_ctx->block_size - dif_ctx->md_size;
1508 
1509 	if (spdk_likely(!rdma_req->req.stripped_data)) {
1510 		rdma_iov = rdma_req->req.iov;
1511 		remaining_data_block = data_block_size;
1512 		md_size = dif_ctx->md_size;
1513 	} else {
1514 		rdma_iov = rdma_req->req.stripped_data->iov;
1515 		total_length = total_length / dif_ctx->block_size * data_block_size;
1516 		remaining_data_block = total_length;
1517 		md_size = 0;
1518 	}
1519 
1520 	wr->num_sge = 0;
1521 
1522 	while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) {
1523 		iov = rdma_iov + rdma_req->iovpos;
1524 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1525 		if (spdk_unlikely(rc)) {
1526 			return rc;
1527 		}
1528 
1529 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1530 		sg_ele = &wr->sg_list[wr->num_sge];
1531 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1532 
1533 		while (remaining) {
1534 			if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) {
1535 				if (num_extra_wrs > 0 && wr->next) {
1536 					wr = wr->next;
1537 					wr->num_sge = 0;
1538 					sg_ele = &wr->sg_list[wr->num_sge];
1539 					num_extra_wrs--;
1540 				} else {
1541 					break;
1542 				}
1543 			}
1544 			sg_ele->lkey = lkey;
1545 			sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset);
1546 			sge_len = spdk_min(remaining, remaining_data_block);
1547 			sg_ele->length = sge_len;
1548 			SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele,
1549 				      sg_ele->addr, sg_ele->length);
1550 			remaining -= sge_len;
1551 			remaining_data_block -= sge_len;
1552 			rdma_req->offset += sge_len;
1553 			total_length -= sge_len;
1554 
1555 			sg_ele++;
1556 			wr->num_sge++;
1557 
1558 			if (remaining_data_block == 0) {
1559 				/* skip metadata */
1560 				rdma_req->offset += md_size;
1561 				total_length -= md_size;
1562 				/* Metadata that do not fit this IO buffer will be included in the next IO buffer */
1563 				remaining -= spdk_min(remaining, md_size);
1564 				remaining_data_block = data_block_size;
1565 			}
1566 
1567 			if (remaining == 0) {
1568 				/* By subtracting the size of the last IOV from the offset, we ensure that we skip
1569 				   the remaining metadata bits at the beginning of the next buffer */
1570 				rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset);
1571 				rdma_req->iovpos++;
1572 			}
1573 		}
1574 	}
1575 
1576 	if (total_length) {
1577 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1578 		return -EINVAL;
1579 	}
1580 
1581 	return 0;
1582 }
1583 
1584 static inline uint32_t
1585 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size)
1586 {
1587 	/* estimate the number of SG entries and WRs needed to process the request */
1588 	uint32_t num_sge = 0;
1589 	uint32_t i;
1590 	uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size);
1591 
1592 	for (i = 0; i < num_buffers && length > 0; i++) {
1593 		uint32_t buffer_len = spdk_min(length, io_unit_size);
1594 		uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size);
1595 
1596 		if (num_sge_in_block * block_size > buffer_len) {
1597 			++num_sge_in_block;
1598 		}
1599 		num_sge += num_sge_in_block;
1600 		length -= buffer_len;
1601 	}
1602 	return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES);
1603 }
1604 
1605 static int
1606 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1607 			    struct spdk_nvmf_rdma_device *device,
1608 			    struct spdk_nvmf_rdma_request *rdma_req)
1609 {
1610 	struct spdk_nvmf_rdma_qpair		*rqpair;
1611 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1612 	struct spdk_nvmf_request		*req = &rdma_req->req;
1613 	struct ibv_send_wr			*wr = &rdma_req->data.wr;
1614 	int					rc;
1615 	uint32_t				num_wrs = 1;
1616 	uint32_t				length;
1617 
1618 	rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair);
1619 	rgroup = rqpair->poller->group;
1620 
1621 	/* rdma wr specifics */
1622 	nvmf_rdma_setup_request(rdma_req);
1623 
1624 	length = req->length;
1625 	if (spdk_unlikely(req->dif_enabled)) {
1626 		req->dif.orig_length = length;
1627 		length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
1628 		req->dif.elba_length = length;
1629 	}
1630 
1631 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
1632 					   length);
1633 	if (rc != 0) {
1634 		return rc;
1635 	}
1636 
1637 	assert(req->iovcnt <= rqpair->max_send_sge);
1638 
1639 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1640 	 * the stripped_buffers are got for DIF stripping. */
1641 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1642 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1643 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1644 						       &rtransport->transport, req->dif.orig_length);
1645 		if (rc != 0) {
1646 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1647 		}
1648 	}
1649 
1650 	rdma_req->iovpos = 0;
1651 
1652 	if (spdk_unlikely(req->dif_enabled)) {
1653 		num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size,
1654 						 req->dif.dif_ctx.block_size);
1655 		if (num_wrs > 1) {
1656 			rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1);
1657 			if (rc != 0) {
1658 				goto err_exit;
1659 			}
1660 		}
1661 
1662 		rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, wr, length, num_wrs - 1);
1663 		if (spdk_unlikely(rc != 0)) {
1664 			goto err_exit;
1665 		}
1666 
1667 		if (num_wrs > 1) {
1668 			nvmf_rdma_update_remote_addr(rdma_req, num_wrs);
1669 		}
1670 	} else {
1671 		rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length);
1672 		if (spdk_unlikely(rc != 0)) {
1673 			goto err_exit;
1674 		}
1675 	}
1676 
1677 	/* set the number of outstanding data WRs for this request. */
1678 	rdma_req->num_outstanding_data_wr = num_wrs;
1679 
1680 	return rc;
1681 
1682 err_exit:
1683 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1684 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1685 	req->iovcnt = 0;
1686 	return rc;
1687 }
1688 
1689 static int
1690 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1691 				      struct spdk_nvmf_rdma_device *device,
1692 				      struct spdk_nvmf_rdma_request *rdma_req)
1693 {
1694 	struct spdk_nvmf_rdma_qpair		*rqpair;
1695 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1696 	struct ibv_send_wr			*current_wr;
1697 	struct spdk_nvmf_request		*req = &rdma_req->req;
1698 	struct spdk_nvme_sgl_descriptor		*inline_segment, *desc;
1699 	uint32_t				num_sgl_descriptors;
1700 	uint32_t				lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0;
1701 	uint32_t				i;
1702 	int					rc;
1703 
1704 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1705 	rgroup = rqpair->poller->group;
1706 
1707 	inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1708 	assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1709 	assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1710 
1711 	num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1712 	assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1713 
1714 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1715 	for (i = 0; i < num_sgl_descriptors; i++) {
1716 		if (spdk_likely(!req->dif_enabled)) {
1717 			lengths[i] = desc->keyed.length;
1718 		} else {
1719 			req->dif.orig_length += desc->keyed.length;
1720 			lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx);
1721 			req->dif.elba_length += lengths[i];
1722 		}
1723 		total_length += lengths[i];
1724 		desc++;
1725 	}
1726 
1727 	if (total_length > rtransport->transport.opts.max_io_size) {
1728 		SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n",
1729 			    total_length, rtransport->transport.opts.max_io_size);
1730 		req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1731 		return -EINVAL;
1732 	}
1733 
1734 	if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) {
1735 		return -ENOMEM;
1736 	}
1737 
1738 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length);
1739 	if (rc != 0) {
1740 		nvmf_rdma_request_free_data(rdma_req, rtransport);
1741 		return rc;
1742 	}
1743 
1744 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1745 	 * the stripped_buffers are got for DIF stripping. */
1746 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1747 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1748 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1749 						       &rtransport->transport, req->dif.orig_length);
1750 		if (rc != 0) {
1751 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1752 		}
1753 	}
1754 
1755 	/* The first WR must always be the embedded data WR. This is how we unwind them later. */
1756 	current_wr = &rdma_req->data.wr;
1757 	assert(current_wr != NULL);
1758 
1759 	req->length = 0;
1760 	rdma_req->iovpos = 0;
1761 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1762 	for (i = 0; i < num_sgl_descriptors; i++) {
1763 		/* The descriptors must be keyed data block descriptors with an address, not an offset. */
1764 		if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1765 				  desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1766 			rc = -EINVAL;
1767 			goto err_exit;
1768 		}
1769 
1770 		if (spdk_likely(!req->dif_enabled)) {
1771 			rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i]);
1772 		} else {
1773 			rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, current_wr,
1774 							    lengths[i], 0);
1775 		}
1776 		if (rc != 0) {
1777 			rc = -ENOMEM;
1778 			goto err_exit;
1779 		}
1780 
1781 		req->length += desc->keyed.length;
1782 		current_wr->wr.rdma.rkey = desc->keyed.key;
1783 		current_wr->wr.rdma.remote_addr = desc->address;
1784 		current_wr = current_wr->next;
1785 		desc++;
1786 	}
1787 
1788 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1789 	/* Go back to the last descriptor in the list. */
1790 	desc--;
1791 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1792 		if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1793 			rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1794 			rdma_req->rsp.wr.imm_data = desc->keyed.key;
1795 		}
1796 	}
1797 #endif
1798 
1799 	rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1800 
1801 	return 0;
1802 
1803 err_exit:
1804 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1805 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1806 	return rc;
1807 }
1808 
1809 static int
1810 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1811 			    struct spdk_nvmf_rdma_device *device,
1812 			    struct spdk_nvmf_rdma_request *rdma_req)
1813 {
1814 	struct spdk_nvmf_request		*req = &rdma_req->req;
1815 	struct spdk_nvme_cpl			*rsp;
1816 	struct spdk_nvme_sgl_descriptor		*sgl;
1817 	int					rc;
1818 	uint32_t				length;
1819 
1820 	rsp = &req->rsp->nvme_cpl;
1821 	sgl = &req->cmd->nvme_cmd.dptr.sgl1;
1822 
1823 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1824 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1825 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1826 
1827 		length = sgl->keyed.length;
1828 		if (length > rtransport->transport.opts.max_io_size) {
1829 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1830 				    length, rtransport->transport.opts.max_io_size);
1831 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1832 			return -1;
1833 		}
1834 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1835 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1836 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1837 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1838 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1839 			}
1840 		}
1841 #endif
1842 
1843 		/* fill request length and populate iovs */
1844 		req->length = length;
1845 
1846 		rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req);
1847 		if (spdk_unlikely(rc < 0)) {
1848 			if (rc == -EINVAL) {
1849 				SPDK_ERRLOG("SGL length exceeds the max I/O size\n");
1850 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1851 				return -1;
1852 			}
1853 			/* No available buffers. Queue this request up. */
1854 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1855 			return 0;
1856 		}
1857 
1858 		/* backward compatible */
1859 		req->data = req->iov[0].iov_base;
1860 
1861 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1862 			      req->iovcnt);
1863 
1864 		return 0;
1865 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1866 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1867 		uint64_t offset = sgl->address;
1868 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1869 
1870 		SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1871 			      offset, sgl->unkeyed.length);
1872 
1873 		if (offset > max_len) {
1874 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1875 				    offset, max_len);
1876 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1877 			return -1;
1878 		}
1879 		max_len -= (uint32_t)offset;
1880 
1881 		if (sgl->unkeyed.length > max_len) {
1882 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1883 				    sgl->unkeyed.length, max_len);
1884 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1885 			return -1;
1886 		}
1887 
1888 		rdma_req->num_outstanding_data_wr = 0;
1889 		req->data = rdma_req->recv->buf + offset;
1890 		req->data_from_pool = false;
1891 		req->length = sgl->unkeyed.length;
1892 
1893 		req->iov[0].iov_base = req->data;
1894 		req->iov[0].iov_len = req->length;
1895 		req->iovcnt = 1;
1896 
1897 		return 0;
1898 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1899 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1900 
1901 		rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1902 		if (rc == -ENOMEM) {
1903 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1904 			return 0;
1905 		} else if (rc == -EINVAL) {
1906 			SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1907 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1908 			return -1;
1909 		}
1910 
1911 		/* backward compatible */
1912 		req->data = req->iov[0].iov_base;
1913 
1914 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1915 			      req->iovcnt);
1916 
1917 		return 0;
1918 	}
1919 
1920 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
1921 		    sgl->generic.type, sgl->generic.subtype);
1922 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1923 	return -1;
1924 }
1925 
1926 static void
1927 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1928 			struct spdk_nvmf_rdma_transport	*rtransport)
1929 {
1930 	struct spdk_nvmf_rdma_qpair		*rqpair;
1931 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1932 
1933 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1934 	if (rdma_req->req.data_from_pool) {
1935 		rgroup = rqpair->poller->group;
1936 
1937 		spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport);
1938 	}
1939 	if (rdma_req->req.stripped_data) {
1940 		nvmf_request_free_stripped_buffers(&rdma_req->req,
1941 						   &rqpair->poller->group->group,
1942 						   &rtransport->transport);
1943 	}
1944 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1945 	rdma_req->req.length = 0;
1946 	rdma_req->req.iovcnt = 0;
1947 	rdma_req->req.data = NULL;
1948 	rdma_req->rsp.wr.next = NULL;
1949 	rdma_req->data.wr.next = NULL;
1950 	rdma_req->offset = 0;
1951 	rdma_req->req.dif_enabled = false;
1952 	rdma_req->fused_failed = false;
1953 	if (rdma_req->fused_pair) {
1954 		/* This req was part of a valid fused pair, but failed before it got to
1955 		 * READ_TO_EXECUTE state.  This means we need to fail the other request
1956 		 * in the pair, because it is no longer part of a valid pair.  If the pair
1957 		 * already reached READY_TO_EXECUTE state, we need to kick it.
1958 		 */
1959 		rdma_req->fused_pair->fused_failed = true;
1960 		if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
1961 			nvmf_rdma_request_process(rtransport, rdma_req->fused_pair);
1962 		}
1963 		rdma_req->fused_pair = NULL;
1964 	}
1965 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
1966 	rqpair->qd--;
1967 
1968 	STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
1969 	rdma_req->state = RDMA_REQUEST_STATE_FREE;
1970 }
1971 
1972 static void
1973 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport,
1974 			       struct spdk_nvmf_rdma_qpair *rqpair,
1975 			       struct spdk_nvmf_rdma_request *rdma_req)
1976 {
1977 	enum spdk_nvme_cmd_fuse last, next;
1978 
1979 	last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
1980 	next = rdma_req->req.cmd->nvme_cmd.fuse;
1981 
1982 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
1983 
1984 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
1985 		return;
1986 	}
1987 
1988 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
1989 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
1990 			/* This is a valid pair of fused commands.  Point them at each other
1991 			 * so they can be submitted consecutively once ready to be executed.
1992 			 */
1993 			rqpair->fused_first->fused_pair = rdma_req;
1994 			rdma_req->fused_pair = rqpair->fused_first;
1995 			rqpair->fused_first = NULL;
1996 			return;
1997 		} else {
1998 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
1999 			rqpair->fused_first->fused_failed = true;
2000 
2001 			/* If the last req is in READY_TO_EXECUTE state, then call
2002 			 * nvmf_rdma_request_process(), otherwise nothing else will kick it.
2003 			 */
2004 			if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2005 				nvmf_rdma_request_process(rtransport, rqpair->fused_first);
2006 			}
2007 
2008 			rqpair->fused_first = NULL;
2009 		}
2010 	}
2011 
2012 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2013 		/* Set rqpair->fused_first here so that we know to check that the next request
2014 		 * is a SECOND (and to fail this one if it isn't).
2015 		 */
2016 		rqpair->fused_first = rdma_req;
2017 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2018 		/* Mark this req failed since it ia SECOND and the last one was not a FIRST. */
2019 		rdma_req->fused_failed = true;
2020 	}
2021 }
2022 
2023 bool
2024 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
2025 			  struct spdk_nvmf_rdma_request *rdma_req)
2026 {
2027 	struct spdk_nvmf_rdma_qpair	*rqpair;
2028 	struct spdk_nvmf_rdma_device	*device;
2029 	struct spdk_nvmf_rdma_poll_group *rgroup;
2030 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
2031 	int				rc;
2032 	struct spdk_nvmf_rdma_recv	*rdma_recv;
2033 	enum spdk_nvmf_rdma_request_state prev_state;
2034 	bool				progress = false;
2035 	int				data_posted;
2036 	uint32_t			num_blocks;
2037 
2038 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2039 	device = rqpair->device;
2040 	rgroup = rqpair->poller->group;
2041 
2042 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
2043 
2044 	/* If the queue pair is in an error state, force the request to the completed state
2045 	 * to release resources. */
2046 	if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2047 		if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) {
2048 			STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link);
2049 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) {
2050 			STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2051 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) {
2052 			STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2053 		}
2054 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2055 	}
2056 
2057 	/* The loop here is to allow for several back-to-back state changes. */
2058 	do {
2059 		prev_state = rdma_req->state;
2060 
2061 		SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state);
2062 
2063 		switch (rdma_req->state) {
2064 		case RDMA_REQUEST_STATE_FREE:
2065 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
2066 			 * to escape this state. */
2067 			break;
2068 		case RDMA_REQUEST_STATE_NEW:
2069 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
2070 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2071 			rdma_recv = rdma_req->recv;
2072 
2073 			/* The first element of the SGL is the NVMe command */
2074 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
2075 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
2076 
2077 			if (rqpair->ibv_state == IBV_QPS_ERR  || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2078 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2079 				break;
2080 			}
2081 
2082 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) {
2083 				rdma_req->req.dif_enabled = true;
2084 			}
2085 
2086 			nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req);
2087 
2088 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2089 			rdma_req->rsp.wr.opcode = IBV_WR_SEND;
2090 			rdma_req->rsp.wr.imm_data = 0;
2091 #endif
2092 
2093 			/* The next state transition depends on the data transfer needs of this request. */
2094 			rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req);
2095 
2096 			if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2097 				rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2098 				rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE;
2099 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2100 				SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req);
2101 				break;
2102 			}
2103 
2104 			/* If no data to transfer, ready to execute. */
2105 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
2106 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2107 				break;
2108 			}
2109 
2110 			rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
2111 			STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link);
2112 			break;
2113 		case RDMA_REQUEST_STATE_NEED_BUFFER:
2114 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
2115 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2116 
2117 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
2118 
2119 			if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) {
2120 				/* This request needs to wait in line to obtain a buffer */
2121 				break;
2122 			}
2123 
2124 			/* Try to get a data buffer */
2125 			rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
2126 			if (rc < 0) {
2127 				STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2128 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2129 				break;
2130 			}
2131 
2132 			if (!rdma_req->req.data) {
2133 				/* No buffers available. */
2134 				rgroup->stat.pending_data_buffer++;
2135 				break;
2136 			}
2137 
2138 			STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2139 
2140 			/* If data is transferring from host to controller and the data didn't
2141 			 * arrive using in capsule data, we need to do a transfer from the host.
2142 			 */
2143 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER &&
2144 			    rdma_req->req.data_from_pool) {
2145 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
2146 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
2147 				break;
2148 			}
2149 
2150 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2151 			break;
2152 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2153 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
2154 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2155 
2156 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
2157 				/* This request needs to wait in line to perform RDMA */
2158 				break;
2159 			}
2160 			if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth
2161 			    || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) {
2162 				/* We can only have so many WRs outstanding. we have to wait until some finish. */
2163 				rqpair->poller->stat.pending_rdma_read++;
2164 				break;
2165 			}
2166 
2167 			/* We have already verified that this request is the head of the queue. */
2168 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
2169 
2170 			rc = request_transfer_in(&rdma_req->req);
2171 			if (!rc) {
2172 				rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
2173 			} else {
2174 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2175 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2176 			}
2177 			break;
2178 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2179 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
2180 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2181 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
2182 			 * to escape this state. */
2183 			break;
2184 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
2185 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
2186 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2187 
2188 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2189 				if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2190 					/* generate DIF for write operation */
2191 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2192 					assert(num_blocks > 0);
2193 
2194 					rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt,
2195 							       num_blocks, &rdma_req->req.dif.dif_ctx);
2196 					if (rc != 0) {
2197 						SPDK_ERRLOG("DIF generation failed\n");
2198 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2199 						spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
2200 						break;
2201 					}
2202 				}
2203 
2204 				assert(rdma_req->req.dif.elba_length >= rdma_req->req.length);
2205 				/* set extended length before IO operation */
2206 				rdma_req->req.length = rdma_req->req.dif.elba_length;
2207 			}
2208 
2209 			if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2210 				if (rdma_req->fused_failed) {
2211 					/* This request failed FUSED semantics.  Fail it immediately, without
2212 					 * even sending it to the target layer.
2213 					 */
2214 					rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2215 					rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2216 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2217 					break;
2218 				}
2219 
2220 				if (rdma_req->fused_pair == NULL ||
2221 				    rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2222 					/* This request is ready to execute, but either we don't know yet if it's
2223 					 * valid - i.e. this is a FIRST but we haven't received the next
2224 					 * request yet or the other request of this fused pair isn't ready to
2225 					 * execute.  So break here and this request will get processed later either
2226 					 * when the other request is ready or we find that this request isn't valid.
2227 					 */
2228 					break;
2229 				}
2230 			}
2231 
2232 			/* If we get to this point, and this request is a fused command, we know that
2233 			 * it is part of valid sequence (FIRST followed by a SECOND) and that both
2234 			 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this
2235 			 * request, and the other request of the fused pair, in the correct order.
2236 			 * Also clear the ->fused_pair pointers on both requests, since after this point
2237 			 * we no longer need to maintain the relationship between these two requests.
2238 			 */
2239 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2240 				assert(rdma_req->fused_pair != NULL);
2241 				assert(rdma_req->fused_pair->fused_pair != NULL);
2242 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2243 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2244 				rdma_req->fused_pair->fused_pair = NULL;
2245 				rdma_req->fused_pair = NULL;
2246 			}
2247 			rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
2248 			spdk_nvmf_request_exec(&rdma_req->req);
2249 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2250 				assert(rdma_req->fused_pair != NULL);
2251 				assert(rdma_req->fused_pair->fused_pair != NULL);
2252 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2253 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2254 				rdma_req->fused_pair->fused_pair = NULL;
2255 				rdma_req->fused_pair = NULL;
2256 			}
2257 			break;
2258 		case RDMA_REQUEST_STATE_EXECUTING:
2259 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
2260 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2261 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
2262 			 * to escape this state. */
2263 			break;
2264 		case RDMA_REQUEST_STATE_EXECUTED:
2265 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
2266 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2267 			if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
2268 			    rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2269 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
2270 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
2271 			} else {
2272 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2273 			}
2274 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2275 				/* restore the original length */
2276 				rdma_req->req.length = rdma_req->req.dif.orig_length;
2277 
2278 				if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2279 					struct spdk_dif_error error_blk;
2280 
2281 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2282 					if (!rdma_req->req.stripped_data) {
2283 						rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2284 								     &rdma_req->req.dif.dif_ctx, &error_blk);
2285 					} else {
2286 						rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov,
2287 									  rdma_req->req.stripped_data->iovcnt,
2288 									  rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2289 									  &rdma_req->req.dif.dif_ctx, &error_blk);
2290 					}
2291 					if (rc) {
2292 						struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
2293 
2294 						SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type,
2295 							    error_blk.err_offset);
2296 						rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2297 						rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type);
2298 						rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2299 						STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2300 					}
2301 				}
2302 			}
2303 			break;
2304 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2305 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
2306 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2307 
2308 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
2309 				/* This request needs to wait in line to perform RDMA */
2310 				break;
2311 			}
2312 			if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
2313 			    rqpair->max_send_depth) {
2314 				/* We can only have so many WRs outstanding. we have to wait until some finish.
2315 				 * +1 since each request has an additional wr in the resp. */
2316 				rqpair->poller->stat.pending_rdma_write++;
2317 				break;
2318 			}
2319 
2320 			/* We have already verified that this request is the head of the queue. */
2321 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
2322 
2323 			/* The data transfer will be kicked off from
2324 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2325 			 */
2326 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2327 			break;
2328 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
2329 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
2330 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2331 			rc = request_transfer_out(&rdma_req->req, &data_posted);
2332 			assert(rc == 0); /* No good way to handle this currently */
2333 			if (rc) {
2334 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2335 			} else {
2336 				rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
2337 						  RDMA_REQUEST_STATE_COMPLETING;
2338 			}
2339 			break;
2340 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2341 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
2342 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2343 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2344 			 * to escape this state. */
2345 			break;
2346 		case RDMA_REQUEST_STATE_COMPLETING:
2347 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
2348 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2349 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2350 			 * to escape this state. */
2351 			break;
2352 		case RDMA_REQUEST_STATE_COMPLETED:
2353 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2354 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2355 
2356 			rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc;
2357 			_nvmf_rdma_request_free(rdma_req, rtransport);
2358 			break;
2359 		case RDMA_REQUEST_NUM_STATES:
2360 		default:
2361 			assert(0);
2362 			break;
2363 		}
2364 
2365 		if (rdma_req->state != prev_state) {
2366 			progress = true;
2367 		}
2368 	} while (rdma_req->state != prev_state);
2369 
2370 	return progress;
2371 }
2372 
2373 /* Public API callbacks begin here */
2374 
2375 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2376 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2377 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2378 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
2379 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2380 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2381 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2382 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095
2383 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32
2384 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false
2385 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false
2386 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100
2387 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1
2388 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false
2389 
2390 static void
2391 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2392 {
2393 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2394 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2395 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2396 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2397 	opts->io_unit_size =		SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2398 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2399 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2400 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2401 	opts->dif_insert_or_strip =	SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP;
2402 	opts->abort_timeout_sec =	SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC;
2403 	opts->transport_specific =      NULL;
2404 }
2405 
2406 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2407 			     spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg);
2408 
2409 static inline bool
2410 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device)
2411 {
2412 	return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD ||
2413 	       device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW;
2414 }
2415 
2416 static int
2417 nvmf_rdma_accept(void *ctx);
2418 
2419 static struct spdk_nvmf_transport *
2420 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2421 {
2422 	int rc;
2423 	struct spdk_nvmf_rdma_transport *rtransport;
2424 	struct spdk_nvmf_rdma_device	*device, *tmp;
2425 	struct ibv_context		**contexts;
2426 	uint32_t			i;
2427 	int				flag;
2428 	uint32_t			sge_count;
2429 	uint32_t			min_shared_buffers;
2430 	uint32_t			min_in_capsule_data_size;
2431 	int				max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2432 	pthread_mutexattr_t		attr;
2433 
2434 	rtransport = calloc(1, sizeof(*rtransport));
2435 	if (!rtransport) {
2436 		return NULL;
2437 	}
2438 
2439 	if (pthread_mutexattr_init(&attr)) {
2440 		SPDK_ERRLOG("pthread_mutexattr_init() failed\n");
2441 		free(rtransport);
2442 		return NULL;
2443 	}
2444 
2445 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) {
2446 		SPDK_ERRLOG("pthread_mutexattr_settype() failed\n");
2447 		pthread_mutexattr_destroy(&attr);
2448 		free(rtransport);
2449 		return NULL;
2450 	}
2451 
2452 	if (pthread_mutex_init(&rtransport->lock, &attr)) {
2453 		SPDK_ERRLOG("pthread_mutex_init() failed\n");
2454 		pthread_mutexattr_destroy(&attr);
2455 		free(rtransport);
2456 		return NULL;
2457 	}
2458 
2459 	pthread_mutexattr_destroy(&attr);
2460 
2461 	TAILQ_INIT(&rtransport->devices);
2462 	TAILQ_INIT(&rtransport->ports);
2463 	TAILQ_INIT(&rtransport->poll_groups);
2464 
2465 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2466 	rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
2467 	rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2468 	rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ;
2469 	rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2470 	rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING;
2471 	if (opts->transport_specific != NULL &&
2472 	    spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder,
2473 					    SPDK_COUNTOF(rdma_transport_opts_decoder),
2474 					    &rtransport->rdma_opts)) {
2475 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
2476 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2477 		return NULL;
2478 	}
2479 
2480 	SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n"
2481 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
2482 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2483 		     "  in_capsule_data_size=%d, max_aq_depth=%d,\n"
2484 		     "  num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d,"
2485 		     "  acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n",
2486 		     opts->max_queue_depth,
2487 		     opts->max_io_size,
2488 		     opts->max_qpairs_per_ctrlr - 1,
2489 		     opts->io_unit_size,
2490 		     opts->in_capsule_data_size,
2491 		     opts->max_aq_depth,
2492 		     opts->num_shared_buffers,
2493 		     rtransport->rdma_opts.num_cqe,
2494 		     rtransport->rdma_opts.max_srq_depth,
2495 		     rtransport->rdma_opts.no_srq,
2496 		     rtransport->rdma_opts.acceptor_backlog,
2497 		     rtransport->rdma_opts.no_wr_batching,
2498 		     opts->abort_timeout_sec);
2499 
2500 	/* I/O unit size cannot be larger than max I/O size */
2501 	if (opts->io_unit_size > opts->max_io_size) {
2502 		opts->io_unit_size = opts->max_io_size;
2503 	}
2504 
2505 	if (rtransport->rdma_opts.acceptor_backlog <= 0) {
2506 		SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n",
2507 			    SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG);
2508 		rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2509 	}
2510 
2511 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2512 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2513 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
2514 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2515 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2516 		return NULL;
2517 	}
2518 
2519 	min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
2520 	if (min_shared_buffers > opts->num_shared_buffers) {
2521 		SPDK_ERRLOG("There are not enough buffers to satisfy"
2522 			    "per-poll group caches for each thread. (%" PRIu32 ")"
2523 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2524 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2525 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2526 		return NULL;
2527 	}
2528 
2529 	sge_count = opts->max_io_size / opts->io_unit_size;
2530 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
2531 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2532 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2533 		return NULL;
2534 	}
2535 
2536 	min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES;
2537 	if (opts->in_capsule_data_size < min_in_capsule_data_size) {
2538 		SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n",
2539 			     min_in_capsule_data_size);
2540 		opts->in_capsule_data_size = min_in_capsule_data_size;
2541 	}
2542 
2543 	rtransport->event_channel = rdma_create_event_channel();
2544 	if (rtransport->event_channel == NULL) {
2545 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2546 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2547 		return NULL;
2548 	}
2549 
2550 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2551 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2552 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2553 			    rtransport->event_channel->fd, spdk_strerror(errno));
2554 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2555 		return NULL;
2556 	}
2557 
2558 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
2559 				   opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES,
2560 				   sizeof(struct spdk_nvmf_rdma_request_data),
2561 				   SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2562 				   SPDK_ENV_SOCKET_ID_ANY);
2563 	if (!rtransport->data_wr_pool) {
2564 		SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2565 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2566 		return NULL;
2567 	}
2568 
2569 	contexts = rdma_get_devices(NULL);
2570 	if (contexts == NULL) {
2571 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2572 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2573 		return NULL;
2574 	}
2575 
2576 	i = 0;
2577 	rc = 0;
2578 	while (contexts[i] != NULL) {
2579 		device = calloc(1, sizeof(*device));
2580 		if (!device) {
2581 			SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2582 			rc = -ENOMEM;
2583 			break;
2584 		}
2585 		device->context = contexts[i];
2586 		rc = ibv_query_device(device->context, &device->attr);
2587 		if (rc < 0) {
2588 			SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2589 			free(device);
2590 			break;
2591 
2592 		}
2593 
2594 		max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2595 
2596 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2597 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2598 			SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2599 			SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2600 		}
2601 
2602 		/**
2603 		 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2604 		 * The Soft-RoCE RXE driver does not currently support send with invalidate,
2605 		 * but incorrectly reports that it does. There are changes making their way
2606 		 * through the kernel now that will enable this feature. When they are merged,
2607 		 * we can conditionally enable this feature.
2608 		 *
2609 		 * TODO: enable this for versions of the kernel rxe driver that support it.
2610 		 */
2611 		if (nvmf_rdma_is_rxe_device(device)) {
2612 			device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2613 		}
2614 #endif
2615 
2616 		/* set up device context async ev fd as NON_BLOCKING */
2617 		flag = fcntl(device->context->async_fd, F_GETFL);
2618 		rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2619 		if (rc < 0) {
2620 			SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2621 			free(device);
2622 			break;
2623 		}
2624 
2625 		TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2626 		i++;
2627 
2628 		if (g_nvmf_hooks.get_ibv_pd) {
2629 			device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2630 		} else {
2631 			device->pd = ibv_alloc_pd(device->context);
2632 		}
2633 
2634 		if (!device->pd) {
2635 			SPDK_ERRLOG("Unable to allocate protection domain.\n");
2636 			rc = -ENOMEM;
2637 			break;
2638 		}
2639 
2640 		assert(device->map == NULL);
2641 
2642 		device->map = spdk_rdma_create_mem_map(device->pd, &g_nvmf_hooks, SPDK_RDMA_MEMORY_MAP_ROLE_TARGET);
2643 		if (!device->map) {
2644 			SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2645 			rc = -ENOMEM;
2646 			break;
2647 		}
2648 
2649 		assert(device->map != NULL);
2650 		assert(device->pd != NULL);
2651 	}
2652 	rdma_free_devices(contexts);
2653 
2654 	if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2655 		/* divide and round up. */
2656 		opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2657 
2658 		/* round up to the nearest 4k. */
2659 		opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2660 
2661 		opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2662 		SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2663 			       opts->io_unit_size);
2664 	}
2665 
2666 	if (rc < 0) {
2667 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2668 		return NULL;
2669 	}
2670 
2671 	/* Set up poll descriptor array to monitor events from RDMA and IB
2672 	 * in a single poll syscall
2673 	 */
2674 	rtransport->npoll_fds = i + 1;
2675 	i = 0;
2676 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2677 	if (rtransport->poll_fds == NULL) {
2678 		SPDK_ERRLOG("poll_fds allocation failed\n");
2679 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2680 		return NULL;
2681 	}
2682 
2683 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2684 	rtransport->poll_fds[i++].events = POLLIN;
2685 
2686 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2687 		rtransport->poll_fds[i].fd = device->context->async_fd;
2688 		rtransport->poll_fds[i++].events = POLLIN;
2689 	}
2690 
2691 	rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport,
2692 				    opts->acceptor_poll_rate);
2693 	if (!rtransport->accept_poller) {
2694 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2695 		return NULL;
2696 	}
2697 
2698 	return &rtransport->transport;
2699 }
2700 
2701 static void
2702 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
2703 {
2704 	struct spdk_nvmf_rdma_transport	*rtransport;
2705 	assert(w != NULL);
2706 
2707 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2708 	spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth);
2709 	spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq);
2710 	if (rtransport->rdma_opts.no_srq == true) {
2711 		spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe);
2712 	}
2713 	spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog);
2714 	spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching);
2715 }
2716 
2717 static int
2718 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2719 		  spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
2720 {
2721 	struct spdk_nvmf_rdma_transport	*rtransport;
2722 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
2723 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
2724 
2725 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2726 
2727 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2728 		TAILQ_REMOVE(&rtransport->ports, port, link);
2729 		rdma_destroy_id(port->id);
2730 		free(port);
2731 	}
2732 
2733 	if (rtransport->poll_fds != NULL) {
2734 		free(rtransport->poll_fds);
2735 	}
2736 
2737 	if (rtransport->event_channel != NULL) {
2738 		rdma_destroy_event_channel(rtransport->event_channel);
2739 	}
2740 
2741 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2742 		TAILQ_REMOVE(&rtransport->devices, device, link);
2743 		spdk_rdma_free_mem_map(&device->map);
2744 		if (device->pd) {
2745 			if (!g_nvmf_hooks.get_ibv_pd) {
2746 				ibv_dealloc_pd(device->pd);
2747 			}
2748 		}
2749 		free(device);
2750 	}
2751 
2752 	if (rtransport->data_wr_pool != NULL) {
2753 		if (spdk_mempool_count(rtransport->data_wr_pool) !=
2754 		    (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) {
2755 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2756 				    spdk_mempool_count(rtransport->data_wr_pool),
2757 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2758 		}
2759 	}
2760 
2761 	spdk_mempool_free(rtransport->data_wr_pool);
2762 
2763 	spdk_poller_unregister(&rtransport->accept_poller);
2764 	pthread_mutex_destroy(&rtransport->lock);
2765 	free(rtransport);
2766 
2767 	if (cb_fn) {
2768 		cb_fn(cb_arg);
2769 	}
2770 	return 0;
2771 }
2772 
2773 static int
2774 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2775 			  struct spdk_nvme_transport_id *trid,
2776 			  bool peer);
2777 
2778 static int
2779 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
2780 		 struct spdk_nvmf_listen_opts *listen_opts)
2781 {
2782 	struct spdk_nvmf_rdma_transport	*rtransport;
2783 	struct spdk_nvmf_rdma_device	*device;
2784 	struct spdk_nvmf_rdma_port	*port;
2785 	struct addrinfo			*res;
2786 	struct addrinfo			hints;
2787 	int				family;
2788 	int				rc;
2789 
2790 	if (!strlen(trid->trsvcid)) {
2791 		SPDK_ERRLOG("Service id is required\n");
2792 		return -EINVAL;
2793 	}
2794 
2795 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2796 	assert(rtransport->event_channel != NULL);
2797 
2798 	pthread_mutex_lock(&rtransport->lock);
2799 	port = calloc(1, sizeof(*port));
2800 	if (!port) {
2801 		SPDK_ERRLOG("Port allocation failed\n");
2802 		pthread_mutex_unlock(&rtransport->lock);
2803 		return -ENOMEM;
2804 	}
2805 
2806 	port->trid = trid;
2807 
2808 	switch (trid->adrfam) {
2809 	case SPDK_NVMF_ADRFAM_IPV4:
2810 		family = AF_INET;
2811 		break;
2812 	case SPDK_NVMF_ADRFAM_IPV6:
2813 		family = AF_INET6;
2814 		break;
2815 	default:
2816 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam);
2817 		free(port);
2818 		pthread_mutex_unlock(&rtransport->lock);
2819 		return -EINVAL;
2820 	}
2821 
2822 	memset(&hints, 0, sizeof(hints));
2823 	hints.ai_family = family;
2824 	hints.ai_flags = AI_NUMERICSERV;
2825 	hints.ai_socktype = SOCK_STREAM;
2826 	hints.ai_protocol = 0;
2827 
2828 	rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res);
2829 	if (rc) {
2830 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
2831 		free(port);
2832 		pthread_mutex_unlock(&rtransport->lock);
2833 		return -EINVAL;
2834 	}
2835 
2836 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
2837 	if (rc < 0) {
2838 		SPDK_ERRLOG("rdma_create_id() failed\n");
2839 		freeaddrinfo(res);
2840 		free(port);
2841 		pthread_mutex_unlock(&rtransport->lock);
2842 		return rc;
2843 	}
2844 
2845 	rc = rdma_bind_addr(port->id, res->ai_addr);
2846 	freeaddrinfo(res);
2847 
2848 	if (rc < 0) {
2849 		SPDK_ERRLOG("rdma_bind_addr() failed\n");
2850 		rdma_destroy_id(port->id);
2851 		free(port);
2852 		pthread_mutex_unlock(&rtransport->lock);
2853 		return rc;
2854 	}
2855 
2856 	if (!port->id->verbs) {
2857 		SPDK_ERRLOG("ibv_context is null\n");
2858 		rdma_destroy_id(port->id);
2859 		free(port);
2860 		pthread_mutex_unlock(&rtransport->lock);
2861 		return -1;
2862 	}
2863 
2864 	rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog);
2865 	if (rc < 0) {
2866 		SPDK_ERRLOG("rdma_listen() failed\n");
2867 		rdma_destroy_id(port->id);
2868 		free(port);
2869 		pthread_mutex_unlock(&rtransport->lock);
2870 		return rc;
2871 	}
2872 
2873 	TAILQ_FOREACH(device, &rtransport->devices, link) {
2874 		if (device->context == port->id->verbs) {
2875 			port->device = device;
2876 			break;
2877 		}
2878 	}
2879 	if (!port->device) {
2880 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
2881 			    port->id->verbs);
2882 		rdma_destroy_id(port->id);
2883 		free(port);
2884 		pthread_mutex_unlock(&rtransport->lock);
2885 		return -EINVAL;
2886 	}
2887 
2888 	SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n",
2889 		       trid->traddr, trid->trsvcid);
2890 
2891 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
2892 	pthread_mutex_unlock(&rtransport->lock);
2893 	return 0;
2894 }
2895 
2896 static void
2897 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
2898 		      const struct spdk_nvme_transport_id *trid)
2899 {
2900 	struct spdk_nvmf_rdma_transport *rtransport;
2901 	struct spdk_nvmf_rdma_port *port, *tmp;
2902 
2903 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2904 
2905 	pthread_mutex_lock(&rtransport->lock);
2906 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
2907 		if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
2908 			TAILQ_REMOVE(&rtransport->ports, port, link);
2909 			rdma_destroy_id(port->id);
2910 			free(port);
2911 			break;
2912 		}
2913 	}
2914 
2915 	pthread_mutex_unlock(&rtransport->lock);
2916 }
2917 
2918 static void
2919 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
2920 				struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
2921 {
2922 	struct spdk_nvmf_request *req, *tmp;
2923 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
2924 	struct spdk_nvmf_rdma_resources *resources;
2925 
2926 	/* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */
2927 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
2928 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2929 			break;
2930 		}
2931 	}
2932 
2933 	/* Then RDMA writes since reads have stronger restrictions than writes */
2934 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
2935 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2936 			break;
2937 		}
2938 	}
2939 
2940 	/* Then we handle request waiting on memory buffers. */
2941 	STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) {
2942 		rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
2943 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2944 			break;
2945 		}
2946 	}
2947 
2948 	resources = rqpair->resources;
2949 	while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
2950 		rdma_req = STAILQ_FIRST(&resources->free_queue);
2951 		STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
2952 		rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
2953 		STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
2954 
2955 		if (rqpair->srq != NULL) {
2956 			rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
2957 			rdma_req->recv->qpair->qd++;
2958 		} else {
2959 			rqpair->qd++;
2960 		}
2961 
2962 		rdma_req->receive_tsc = rdma_req->recv->receive_tsc;
2963 		rdma_req->state = RDMA_REQUEST_STATE_NEW;
2964 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
2965 			break;
2966 		}
2967 	}
2968 	if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) {
2969 		rqpair->poller->stat.pending_free_request++;
2970 	}
2971 }
2972 
2973 static inline bool
2974 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device)
2975 {
2976 	/* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */
2977 	return nvmf_rdma_is_rxe_device(device) ||
2978 	       device->context->device->transport_type == IBV_TRANSPORT_IWARP;
2979 }
2980 
2981 static void
2982 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair)
2983 {
2984 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
2985 			struct spdk_nvmf_rdma_transport, transport);
2986 
2987 	nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
2988 
2989 	/* nvmr_rdma_close_qpair is not called */
2990 	if (!rqpair->to_close) {
2991 		return;
2992 	}
2993 
2994 	/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
2995 	if (rqpair->current_send_depth != 0) {
2996 		return;
2997 	}
2998 
2999 	if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
3000 		return;
3001 	}
3002 
3003 	if (rqpair->srq != NULL && rqpair->last_wqe_reached == false &&
3004 	    !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) {
3005 		return;
3006 	}
3007 
3008 	assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR);
3009 
3010 	nvmf_rdma_qpair_destroy(rqpair);
3011 }
3012 
3013 static int
3014 nvmf_rdma_disconnect(struct rdma_cm_event *evt)
3015 {
3016 	struct spdk_nvmf_qpair		*qpair;
3017 	struct spdk_nvmf_rdma_qpair	*rqpair;
3018 
3019 	if (evt->id == NULL) {
3020 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
3021 		return -1;
3022 	}
3023 
3024 	qpair = evt->id->context;
3025 	if (qpair == NULL) {
3026 		SPDK_ERRLOG("disconnect request: no active connection\n");
3027 		return -1;
3028 	}
3029 
3030 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3031 
3032 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair);
3033 
3034 	spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3035 
3036 	return 0;
3037 }
3038 
3039 #ifdef DEBUG
3040 static const char *CM_EVENT_STR[] = {
3041 	"RDMA_CM_EVENT_ADDR_RESOLVED",
3042 	"RDMA_CM_EVENT_ADDR_ERROR",
3043 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
3044 	"RDMA_CM_EVENT_ROUTE_ERROR",
3045 	"RDMA_CM_EVENT_CONNECT_REQUEST",
3046 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
3047 	"RDMA_CM_EVENT_CONNECT_ERROR",
3048 	"RDMA_CM_EVENT_UNREACHABLE",
3049 	"RDMA_CM_EVENT_REJECTED",
3050 	"RDMA_CM_EVENT_ESTABLISHED",
3051 	"RDMA_CM_EVENT_DISCONNECTED",
3052 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
3053 	"RDMA_CM_EVENT_MULTICAST_JOIN",
3054 	"RDMA_CM_EVENT_MULTICAST_ERROR",
3055 	"RDMA_CM_EVENT_ADDR_CHANGE",
3056 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
3057 };
3058 #endif /* DEBUG */
3059 
3060 static void
3061 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport,
3062 				    struct spdk_nvmf_rdma_port *port)
3063 {
3064 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3065 	struct spdk_nvmf_rdma_poller		*rpoller;
3066 	struct spdk_nvmf_rdma_qpair		*rqpair;
3067 
3068 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3069 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3070 			RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) {
3071 				if (rqpair->listen_id == port->id) {
3072 					spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3073 				}
3074 			}
3075 		}
3076 	}
3077 }
3078 
3079 static bool
3080 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport,
3081 				      struct rdma_cm_event *event)
3082 {
3083 	const struct spdk_nvme_transport_id	*trid;
3084 	struct spdk_nvmf_rdma_port		*port;
3085 	struct spdk_nvmf_rdma_transport		*rtransport;
3086 	bool					event_acked = false;
3087 
3088 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3089 	TAILQ_FOREACH(port, &rtransport->ports, link) {
3090 		if (port->id == event->id) {
3091 			SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid);
3092 			rdma_ack_cm_event(event);
3093 			event_acked = true;
3094 			trid = port->trid;
3095 			break;
3096 		}
3097 	}
3098 
3099 	if (event_acked) {
3100 		nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
3101 
3102 		nvmf_rdma_stop_listen(transport, trid);
3103 		nvmf_rdma_listen(transport, trid, NULL);
3104 	}
3105 
3106 	return event_acked;
3107 }
3108 
3109 static void
3110 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport,
3111 				       struct rdma_cm_event *event)
3112 {
3113 	struct spdk_nvmf_rdma_port		*port;
3114 	struct spdk_nvmf_rdma_transport		*rtransport;
3115 
3116 	port = event->id->context;
3117 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3118 
3119 	SPDK_NOTICELOG("Port %s:%s is being removed\n", port->trid->traddr, port->trid->trsvcid);
3120 
3121 	nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
3122 
3123 	rdma_ack_cm_event(event);
3124 
3125 	while (spdk_nvmf_transport_stop_listen(transport, port->trid) == 0) {
3126 		;
3127 	}
3128 }
3129 
3130 static void
3131 nvmf_process_cm_event(struct spdk_nvmf_transport *transport)
3132 {
3133 	struct spdk_nvmf_rdma_transport *rtransport;
3134 	struct rdma_cm_event		*event;
3135 	int				rc;
3136 	bool				event_acked;
3137 
3138 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3139 
3140 	if (rtransport->event_channel == NULL) {
3141 		return;
3142 	}
3143 
3144 	while (1) {
3145 		event_acked = false;
3146 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
3147 		if (rc) {
3148 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
3149 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
3150 			}
3151 			break;
3152 		}
3153 
3154 		SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
3155 
3156 		spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
3157 
3158 		switch (event->event) {
3159 		case RDMA_CM_EVENT_ADDR_RESOLVED:
3160 		case RDMA_CM_EVENT_ADDR_ERROR:
3161 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
3162 		case RDMA_CM_EVENT_ROUTE_ERROR:
3163 			/* No action required. The target never attempts to resolve routes. */
3164 			break;
3165 		case RDMA_CM_EVENT_CONNECT_REQUEST:
3166 			rc = nvmf_rdma_connect(transport, event);
3167 			if (rc < 0) {
3168 				SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
3169 				break;
3170 			}
3171 			break;
3172 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
3173 			/* The target never initiates a new connection. So this will not occur. */
3174 			break;
3175 		case RDMA_CM_EVENT_CONNECT_ERROR:
3176 			/* Can this happen? The docs say it can, but not sure what causes it. */
3177 			break;
3178 		case RDMA_CM_EVENT_UNREACHABLE:
3179 		case RDMA_CM_EVENT_REJECTED:
3180 			/* These only occur on the client side. */
3181 			break;
3182 		case RDMA_CM_EVENT_ESTABLISHED:
3183 			/* TODO: Should we be waiting for this event anywhere? */
3184 			break;
3185 		case RDMA_CM_EVENT_DISCONNECTED:
3186 			rc = nvmf_rdma_disconnect(event);
3187 			if (rc < 0) {
3188 				SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3189 				break;
3190 			}
3191 			break;
3192 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
3193 			/* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL
3194 			 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s.
3195 			 * Once these events are sent to SPDK, we should release all IB resources and
3196 			 * don't make attempts to call any ibv_query/modify/create functions. We can only call
3197 			 * ibv_destroy* functions to release user space memory allocated by IB. All kernel
3198 			 * resources are already cleaned. */
3199 			if (event->id->qp) {
3200 				/* If rdma_cm event has a valid `qp` pointer then the event refers to the
3201 				 * corresponding qpair. Otherwise the event refers to a listening device */
3202 				rc = nvmf_rdma_disconnect(event);
3203 				if (rc < 0) {
3204 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3205 					break;
3206 				}
3207 			} else {
3208 				nvmf_rdma_handle_cm_event_port_removal(transport, event);
3209 				event_acked = true;
3210 			}
3211 			break;
3212 		case RDMA_CM_EVENT_MULTICAST_JOIN:
3213 		case RDMA_CM_EVENT_MULTICAST_ERROR:
3214 			/* Multicast is not used */
3215 			break;
3216 		case RDMA_CM_EVENT_ADDR_CHANGE:
3217 			event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event);
3218 			break;
3219 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
3220 			/* For now, do nothing. The target never re-uses queue pairs. */
3221 			break;
3222 		default:
3223 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
3224 			break;
3225 		}
3226 		if (!event_acked) {
3227 			rdma_ack_cm_event(event);
3228 		}
3229 	}
3230 }
3231 
3232 static void
3233 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair)
3234 {
3235 	rqpair->last_wqe_reached = true;
3236 	nvmf_rdma_destroy_drained_qpair(rqpair);
3237 }
3238 
3239 static void
3240 nvmf_rdma_qpair_process_ibv_event(void *ctx)
3241 {
3242 	struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx;
3243 
3244 	if (event_ctx->rqpair) {
3245 		STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3246 		if (event_ctx->cb_fn) {
3247 			event_ctx->cb_fn(event_ctx->rqpair);
3248 		}
3249 	}
3250 	free(event_ctx);
3251 }
3252 
3253 static int
3254 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair,
3255 				 spdk_nvmf_rdma_qpair_ibv_event fn)
3256 {
3257 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx;
3258 	struct spdk_thread *thr = NULL;
3259 	int rc;
3260 
3261 	if (rqpair->qpair.group) {
3262 		thr = rqpair->qpair.group->thread;
3263 	} else if (rqpair->destruct_channel) {
3264 		thr = spdk_io_channel_get_thread(rqpair->destruct_channel);
3265 	}
3266 
3267 	if (!thr) {
3268 		SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair);
3269 		return -EINVAL;
3270 	}
3271 
3272 	ctx = calloc(1, sizeof(*ctx));
3273 	if (!ctx) {
3274 		return -ENOMEM;
3275 	}
3276 
3277 	ctx->rqpair = rqpair;
3278 	ctx->cb_fn = fn;
3279 	STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link);
3280 
3281 	rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx);
3282 	if (rc) {
3283 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3284 		free(ctx);
3285 	}
3286 
3287 	return rc;
3288 }
3289 
3290 static int
3291 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
3292 {
3293 	int				rc;
3294 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
3295 	struct ibv_async_event		event;
3296 
3297 	rc = ibv_get_async_event(device->context, &event);
3298 
3299 	if (rc) {
3300 		/* In non-blocking mode -1 means there are no events available */
3301 		return rc;
3302 	}
3303 
3304 	switch (event.event_type) {
3305 	case IBV_EVENT_QP_FATAL:
3306 		rqpair = event.element.qp->qp_context;
3307 		SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
3308 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3309 				  (uintptr_t)rqpair, event.event_type);
3310 		nvmf_rdma_update_ibv_state(rqpair);
3311 		spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3312 		break;
3313 	case IBV_EVENT_QP_LAST_WQE_REACHED:
3314 		/* This event only occurs for shared receive queues. */
3315 		rqpair = event.element.qp->qp_context;
3316 		SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair);
3317 		rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached);
3318 		if (rc) {
3319 			SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc);
3320 			rqpair->last_wqe_reached = true;
3321 		}
3322 		break;
3323 	case IBV_EVENT_SQ_DRAINED:
3324 		/* This event occurs frequently in both error and non-error states.
3325 		 * Check if the qpair is in an error state before sending a message. */
3326 		rqpair = event.element.qp->qp_context;
3327 		SPDK_DEBUGLOG(rdma, "Last sq drained event received for rqpair %p\n", rqpair);
3328 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3329 				  (uintptr_t)rqpair, event.event_type);
3330 		if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) {
3331 			spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3332 		}
3333 		break;
3334 	case IBV_EVENT_QP_REQ_ERR:
3335 	case IBV_EVENT_QP_ACCESS_ERR:
3336 	case IBV_EVENT_COMM_EST:
3337 	case IBV_EVENT_PATH_MIG:
3338 	case IBV_EVENT_PATH_MIG_ERR:
3339 		SPDK_NOTICELOG("Async event: %s\n",
3340 			       ibv_event_type_str(event.event_type));
3341 		rqpair = event.element.qp->qp_context;
3342 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3343 				  (uintptr_t)rqpair, event.event_type);
3344 		nvmf_rdma_update_ibv_state(rqpair);
3345 		break;
3346 	case IBV_EVENT_CQ_ERR:
3347 	case IBV_EVENT_DEVICE_FATAL:
3348 	case IBV_EVENT_PORT_ACTIVE:
3349 	case IBV_EVENT_PORT_ERR:
3350 	case IBV_EVENT_LID_CHANGE:
3351 	case IBV_EVENT_PKEY_CHANGE:
3352 	case IBV_EVENT_SM_CHANGE:
3353 	case IBV_EVENT_SRQ_ERR:
3354 	case IBV_EVENT_SRQ_LIMIT_REACHED:
3355 	case IBV_EVENT_CLIENT_REREGISTER:
3356 	case IBV_EVENT_GID_CHANGE:
3357 	default:
3358 		SPDK_NOTICELOG("Async event: %s\n",
3359 			       ibv_event_type_str(event.event_type));
3360 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
3361 		break;
3362 	}
3363 	ibv_ack_async_event(&event);
3364 
3365 	return 0;
3366 }
3367 
3368 static void
3369 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events)
3370 {
3371 	int rc = 0;
3372 	uint32_t i = 0;
3373 
3374 	for (i = 0; i < max_events; i++) {
3375 		rc = nvmf_process_ib_event(device);
3376 		if (rc) {
3377 			break;
3378 		}
3379 	}
3380 
3381 	SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i);
3382 }
3383 
3384 static int
3385 nvmf_rdma_accept(void *ctx)
3386 {
3387 	int	nfds, i = 0;
3388 	struct spdk_nvmf_transport *transport = ctx;
3389 	struct spdk_nvmf_rdma_transport *rtransport;
3390 	struct spdk_nvmf_rdma_device *device, *tmp;
3391 	uint32_t count;
3392 
3393 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3394 	count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
3395 
3396 	if (nfds <= 0) {
3397 		return SPDK_POLLER_IDLE;
3398 	}
3399 
3400 	/* The first poll descriptor is RDMA CM event */
3401 	if (rtransport->poll_fds[i++].revents & POLLIN) {
3402 		nvmf_process_cm_event(transport);
3403 		nfds--;
3404 	}
3405 
3406 	if (nfds == 0) {
3407 		return SPDK_POLLER_BUSY;
3408 	}
3409 
3410 	/* Second and subsequent poll descriptors are IB async events */
3411 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
3412 		if (rtransport->poll_fds[i++].revents & POLLIN) {
3413 			nvmf_process_ib_events(device, 32);
3414 			nfds--;
3415 		}
3416 	}
3417 	/* check all flagged fd's have been served */
3418 	assert(nfds == 0);
3419 
3420 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3421 }
3422 
3423 static void
3424 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem,
3425 		     struct spdk_nvmf_ctrlr_data *cdata)
3426 {
3427 	cdata->nvmf_specific.msdbd = SPDK_NVMF_MAX_SGL_ENTRIES;
3428 
3429 	/* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled
3430 	since in-capsule data only works with NVME drives that support SGL memory layout */
3431 	if (transport->opts.dif_insert_or_strip) {
3432 		cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16;
3433 	}
3434 
3435 	if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) {
3436 		SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule"
3437 			     " data is greater than 4KiB.\n");
3438 		SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux "
3439 			     "kernel between versions 5.4 and 5.12 data corruption may occur for "
3440 			     "writes that are not a multiple of 4KiB in size.\n");
3441 	}
3442 }
3443 
3444 static void
3445 nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
3446 		   struct spdk_nvme_transport_id *trid,
3447 		   struct spdk_nvmf_discovery_log_page_entry *entry)
3448 {
3449 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
3450 	entry->adrfam = trid->adrfam;
3451 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
3452 
3453 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
3454 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
3455 
3456 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
3457 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
3458 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
3459 }
3460 
3461 static void
3462 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
3463 
3464 static struct spdk_nvmf_transport_poll_group *
3465 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport,
3466 			    struct spdk_nvmf_poll_group *group)
3467 {
3468 	struct spdk_nvmf_rdma_transport		*rtransport;
3469 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3470 	struct spdk_nvmf_rdma_poller		*poller;
3471 	struct spdk_nvmf_rdma_device		*device;
3472 	struct spdk_rdma_srq_init_attr		srq_init_attr;
3473 	struct spdk_nvmf_rdma_resource_opts	opts;
3474 	int					num_cqe;
3475 
3476 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3477 
3478 	rgroup = calloc(1, sizeof(*rgroup));
3479 	if (!rgroup) {
3480 		return NULL;
3481 	}
3482 
3483 	TAILQ_INIT(&rgroup->pollers);
3484 
3485 	pthread_mutex_lock(&rtransport->lock);
3486 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3487 		poller = calloc(1, sizeof(*poller));
3488 		if (!poller) {
3489 			SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
3490 			nvmf_rdma_poll_group_destroy(&rgroup->group);
3491 			pthread_mutex_unlock(&rtransport->lock);
3492 			return NULL;
3493 		}
3494 
3495 		poller->device = device;
3496 		poller->group = rgroup;
3497 
3498 		RB_INIT(&poller->qpairs);
3499 		STAILQ_INIT(&poller->qpairs_pending_send);
3500 		STAILQ_INIT(&poller->qpairs_pending_recv);
3501 
3502 		TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
3503 		if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) {
3504 			if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) {
3505 				SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n",
3506 					     rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr);
3507 			}
3508 			poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr);
3509 
3510 			device->num_srq++;
3511 			memset(&srq_init_attr, 0, sizeof(srq_init_attr));
3512 			srq_init_attr.pd = device->pd;
3513 			srq_init_attr.stats = &poller->stat.qp_stats.recv;
3514 			srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth;
3515 			srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
3516 			poller->srq = spdk_rdma_srq_create(&srq_init_attr);
3517 			if (!poller->srq) {
3518 				SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
3519 				nvmf_rdma_poll_group_destroy(&rgroup->group);
3520 				pthread_mutex_unlock(&rtransport->lock);
3521 				return NULL;
3522 			}
3523 
3524 			opts.qp = poller->srq;
3525 			opts.pd = device->pd;
3526 			opts.qpair = NULL;
3527 			opts.shared = true;
3528 			opts.max_queue_depth = poller->max_srq_depth;
3529 			opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
3530 
3531 			poller->resources = nvmf_rdma_resources_create(&opts);
3532 			if (!poller->resources) {
3533 				SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
3534 				nvmf_rdma_poll_group_destroy(&rgroup->group);
3535 				pthread_mutex_unlock(&rtransport->lock);
3536 				return NULL;
3537 			}
3538 		}
3539 
3540 		/*
3541 		 * When using an srq, we can limit the completion queue at startup.
3542 		 * The following formula represents the calculation:
3543 		 * num_cqe = num_recv + num_data_wr + num_send_wr.
3544 		 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
3545 		 */
3546 		if (poller->srq) {
3547 			num_cqe = poller->max_srq_depth * 3;
3548 		} else {
3549 			num_cqe = rtransport->rdma_opts.num_cqe;
3550 		}
3551 
3552 		poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
3553 		if (!poller->cq) {
3554 			SPDK_ERRLOG("Unable to create completion queue\n");
3555 			nvmf_rdma_poll_group_destroy(&rgroup->group);
3556 			pthread_mutex_unlock(&rtransport->lock);
3557 			return NULL;
3558 		}
3559 		poller->num_cqe = num_cqe;
3560 	}
3561 
3562 	TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link);
3563 	if (rtransport->conn_sched.next_admin_pg == NULL) {
3564 		rtransport->conn_sched.next_admin_pg = rgroup;
3565 		rtransport->conn_sched.next_io_pg = rgroup;
3566 	}
3567 
3568 	pthread_mutex_unlock(&rtransport->lock);
3569 	return &rgroup->group;
3570 }
3571 
3572 static struct spdk_nvmf_transport_poll_group *
3573 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
3574 {
3575 	struct spdk_nvmf_rdma_transport *rtransport;
3576 	struct spdk_nvmf_rdma_poll_group **pg;
3577 	struct spdk_nvmf_transport_poll_group *result;
3578 
3579 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
3580 
3581 	pthread_mutex_lock(&rtransport->lock);
3582 
3583 	if (TAILQ_EMPTY(&rtransport->poll_groups)) {
3584 		pthread_mutex_unlock(&rtransport->lock);
3585 		return NULL;
3586 	}
3587 
3588 	if (qpair->qid == 0) {
3589 		pg = &rtransport->conn_sched.next_admin_pg;
3590 	} else {
3591 		pg = &rtransport->conn_sched.next_io_pg;
3592 	}
3593 
3594 	assert(*pg != NULL);
3595 
3596 	result = &(*pg)->group;
3597 
3598 	*pg = TAILQ_NEXT(*pg, link);
3599 	if (*pg == NULL) {
3600 		*pg = TAILQ_FIRST(&rtransport->poll_groups);
3601 	}
3602 
3603 	pthread_mutex_unlock(&rtransport->lock);
3604 
3605 	return result;
3606 }
3607 
3608 static void
3609 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
3610 {
3611 	struct spdk_nvmf_rdma_poll_group	*rgroup, *next_rgroup;
3612 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
3613 	struct spdk_nvmf_rdma_qpair		*qpair, *tmp_qpair;
3614 	struct spdk_nvmf_rdma_transport		*rtransport;
3615 
3616 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3617 	if (!rgroup) {
3618 		return;
3619 	}
3620 
3621 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
3622 		TAILQ_REMOVE(&rgroup->pollers, poller, link);
3623 
3624 		RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) {
3625 			nvmf_rdma_qpair_destroy(qpair);
3626 		}
3627 
3628 		if (poller->srq) {
3629 			if (poller->resources) {
3630 				nvmf_rdma_resources_destroy(poller->resources);
3631 			}
3632 			spdk_rdma_srq_destroy(poller->srq);
3633 			SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq);
3634 		}
3635 
3636 		if (poller->cq) {
3637 			ibv_destroy_cq(poller->cq);
3638 		}
3639 
3640 		free(poller);
3641 	}
3642 
3643 	if (rgroup->group.transport == NULL) {
3644 		/* Transport can be NULL when nvmf_rdma_poll_group_create()
3645 		 * calls this function directly in a failure path. */
3646 		free(rgroup);
3647 		return;
3648 	}
3649 
3650 	rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport);
3651 
3652 	pthread_mutex_lock(&rtransport->lock);
3653 	next_rgroup = TAILQ_NEXT(rgroup, link);
3654 	TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link);
3655 	if (next_rgroup == NULL) {
3656 		next_rgroup = TAILQ_FIRST(&rtransport->poll_groups);
3657 	}
3658 	if (rtransport->conn_sched.next_admin_pg == rgroup) {
3659 		rtransport->conn_sched.next_admin_pg = next_rgroup;
3660 	}
3661 	if (rtransport->conn_sched.next_io_pg == rgroup) {
3662 		rtransport->conn_sched.next_io_pg = next_rgroup;
3663 	}
3664 	pthread_mutex_unlock(&rtransport->lock);
3665 
3666 	free(rgroup);
3667 }
3668 
3669 static void
3670 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
3671 {
3672 	if (rqpair->cm_id != NULL) {
3673 		nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
3674 	}
3675 }
3676 
3677 static int
3678 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3679 			 struct spdk_nvmf_qpair *qpair)
3680 {
3681 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3682 	struct spdk_nvmf_rdma_qpair		*rqpair;
3683 	struct spdk_nvmf_rdma_device		*device;
3684 	struct spdk_nvmf_rdma_poller		*poller;
3685 	int					rc;
3686 
3687 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3688 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3689 
3690 	device = rqpair->device;
3691 
3692 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
3693 		if (poller->device == device) {
3694 			break;
3695 		}
3696 	}
3697 
3698 	if (!poller) {
3699 		SPDK_ERRLOG("No poller found for device.\n");
3700 		return -1;
3701 	}
3702 
3703 	rqpair->poller = poller;
3704 	rqpair->srq = rqpair->poller->srq;
3705 
3706 	rc = nvmf_rdma_qpair_initialize(qpair);
3707 	if (rc < 0) {
3708 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
3709 		rqpair->poller = NULL;
3710 		rqpair->srq = NULL;
3711 		return -1;
3712 	}
3713 
3714 	RB_INSERT(qpairs_tree, &poller->qpairs, rqpair);
3715 
3716 	rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
3717 	if (rc) {
3718 		/* Try to reject, but we probably can't */
3719 		nvmf_rdma_qpair_reject_connection(rqpair);
3720 		return -1;
3721 	}
3722 
3723 	nvmf_rdma_update_ibv_state(rqpair);
3724 
3725 	return 0;
3726 }
3727 
3728 static int
3729 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3730 			    struct spdk_nvmf_qpair *qpair)
3731 {
3732 	struct spdk_nvmf_rdma_qpair		*rqpair;
3733 
3734 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3735 	assert(group->transport->tgt != NULL);
3736 
3737 	rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt);
3738 
3739 	if (!rqpair->destruct_channel) {
3740 		SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair);
3741 		return 0;
3742 	}
3743 
3744 	/* Sanity check that we get io_channel on the correct thread */
3745 	if (qpair->group) {
3746 		assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel));
3747 	}
3748 
3749 	return 0;
3750 }
3751 
3752 static int
3753 nvmf_rdma_request_free(struct spdk_nvmf_request *req)
3754 {
3755 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3756 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3757 			struct spdk_nvmf_rdma_transport, transport);
3758 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
3759 					      struct spdk_nvmf_rdma_qpair, qpair);
3760 
3761 	/*
3762 	 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request
3763 	 * needs to be returned to the shared receive queue or the poll group will eventually be
3764 	 * starved of RECV structures.
3765 	 */
3766 	if (rqpair->srq && rdma_req->recv) {
3767 		int rc;
3768 		struct ibv_recv_wr *bad_recv_wr;
3769 
3770 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr);
3771 		rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
3772 		if (rc) {
3773 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
3774 		}
3775 	}
3776 
3777 	_nvmf_rdma_request_free(rdma_req, rtransport);
3778 	return 0;
3779 }
3780 
3781 static int
3782 nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
3783 {
3784 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3785 			struct spdk_nvmf_rdma_transport, transport);
3786 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
3787 			struct spdk_nvmf_rdma_request, req);
3788 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
3789 			struct spdk_nvmf_rdma_qpair, qpair);
3790 
3791 	if (rqpair->ibv_state != IBV_QPS_ERR) {
3792 		/* The connection is alive, so process the request as normal */
3793 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
3794 	} else {
3795 		/* The connection is dead. Move the request directly to the completed state. */
3796 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3797 	}
3798 
3799 	nvmf_rdma_request_process(rtransport, rdma_req);
3800 
3801 	return 0;
3802 }
3803 
3804 static void
3805 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair,
3806 		      spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3807 {
3808 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3809 
3810 	rqpair->to_close = true;
3811 
3812 	/* This happens only when the qpair is disconnected before
3813 	 * it is added to the poll group. Since there is no poll group,
3814 	 * the RDMA qp has not been initialized yet and the RDMA CM
3815 	 * event has not yet been acknowledged, so we need to reject it.
3816 	 */
3817 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
3818 		nvmf_rdma_qpair_reject_connection(rqpair);
3819 		nvmf_rdma_qpair_destroy(rqpair);
3820 		return;
3821 	}
3822 
3823 	if (rqpair->rdma_qp) {
3824 		spdk_rdma_qp_disconnect(rqpair->rdma_qp);
3825 	}
3826 
3827 	nvmf_rdma_destroy_drained_qpair(rqpair);
3828 
3829 	if (cb_fn) {
3830 		cb_fn(cb_arg);
3831 	}
3832 }
3833 
3834 static struct spdk_nvmf_rdma_qpair *
3835 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
3836 {
3837 	struct spdk_nvmf_rdma_qpair find;
3838 
3839 	find.qp_num = wc->qp_num;
3840 
3841 	return RB_FIND(qpairs_tree, &rpoller->qpairs, &find);
3842 }
3843 
3844 #ifdef DEBUG
3845 static int
3846 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
3847 {
3848 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
3849 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
3850 }
3851 #endif
3852 
3853 static void
3854 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr,
3855 			   int rc)
3856 {
3857 	struct spdk_nvmf_rdma_recv	*rdma_recv;
3858 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
3859 
3860 	SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc);
3861 	while (bad_recv_wr != NULL) {
3862 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id;
3863 		rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
3864 
3865 		rdma_recv->qpair->current_recv_depth++;
3866 		bad_recv_wr = bad_recv_wr->next;
3867 		SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc);
3868 		spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair, NULL, NULL);
3869 	}
3870 }
3871 
3872 static void
3873 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc)
3874 {
3875 	SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc);
3876 	while (bad_recv_wr != NULL) {
3877 		bad_recv_wr = bad_recv_wr->next;
3878 		rqpair->current_recv_depth++;
3879 	}
3880 	spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3881 }
3882 
3883 static void
3884 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
3885 		     struct spdk_nvmf_rdma_poller *rpoller)
3886 {
3887 	struct spdk_nvmf_rdma_qpair	*rqpair;
3888 	struct ibv_recv_wr		*bad_recv_wr;
3889 	int				rc;
3890 
3891 	if (rpoller->srq) {
3892 		rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr);
3893 		if (rc) {
3894 			_poller_reset_failed_recvs(rpoller, bad_recv_wr, rc);
3895 		}
3896 	} else {
3897 		while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) {
3898 			rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv);
3899 			rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
3900 			if (rc) {
3901 				_qp_reset_failed_recvs(rqpair, bad_recv_wr, rc);
3902 			}
3903 			STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link);
3904 		}
3905 	}
3906 }
3907 
3908 static void
3909 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport,
3910 		       struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc)
3911 {
3912 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
3913 	struct spdk_nvmf_rdma_request	*prev_rdma_req = NULL, *cur_rdma_req = NULL;
3914 
3915 	SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc);
3916 	for (; bad_wr != NULL; bad_wr = bad_wr->next) {
3917 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id;
3918 		assert(rqpair->current_send_depth > 0);
3919 		rqpair->current_send_depth--;
3920 		switch (bad_rdma_wr->type) {
3921 		case RDMA_WR_TYPE_DATA:
3922 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
3923 			if (bad_wr->opcode == IBV_WR_RDMA_READ) {
3924 				assert(rqpair->current_read_depth > 0);
3925 				rqpair->current_read_depth--;
3926 			}
3927 			break;
3928 		case RDMA_WR_TYPE_SEND:
3929 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
3930 			break;
3931 		default:
3932 			SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair);
3933 			prev_rdma_req = cur_rdma_req;
3934 			continue;
3935 		}
3936 
3937 		if (prev_rdma_req == cur_rdma_req) {
3938 			/* this request was handled by an earlier wr. i.e. we were performing an nvme read. */
3939 			/* We only have to check against prev_wr since each requests wrs are contiguous in this list. */
3940 			continue;
3941 		}
3942 
3943 		switch (cur_rdma_req->state) {
3944 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3945 			cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
3946 			cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
3947 			break;
3948 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3949 		case RDMA_REQUEST_STATE_COMPLETING:
3950 			cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3951 			break;
3952 		default:
3953 			SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n",
3954 				    cur_rdma_req->state, rqpair);
3955 			continue;
3956 		}
3957 
3958 		nvmf_rdma_request_process(rtransport, cur_rdma_req);
3959 		prev_rdma_req = cur_rdma_req;
3960 	}
3961 
3962 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
3963 		/* Disconnect the connection. */
3964 		spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3965 	}
3966 
3967 }
3968 
3969 static void
3970 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
3971 		     struct spdk_nvmf_rdma_poller *rpoller)
3972 {
3973 	struct spdk_nvmf_rdma_qpair	*rqpair;
3974 	struct ibv_send_wr		*bad_wr = NULL;
3975 	int				rc;
3976 
3977 	while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) {
3978 		rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send);
3979 		rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr);
3980 
3981 		/* bad wr always points to the first wr that failed. */
3982 		if (rc) {
3983 			_qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc);
3984 		}
3985 		STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link);
3986 	}
3987 }
3988 
3989 static const char *
3990 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type)
3991 {
3992 	switch (wr_type) {
3993 	case RDMA_WR_TYPE_RECV:
3994 		return "RECV";
3995 	case RDMA_WR_TYPE_SEND:
3996 		return "SEND";
3997 	case RDMA_WR_TYPE_DATA:
3998 		return "DATA";
3999 	default:
4000 		SPDK_ERRLOG("Unknown WR type %d\n", wr_type);
4001 		SPDK_UNREACHABLE();
4002 	}
4003 }
4004 
4005 static inline void
4006 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc)
4007 {
4008 	enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type;
4009 
4010 	if (wc->status == IBV_WC_WR_FLUSH_ERR) {
4011 		/* If qpair is in ERR state, we will receive completions for all posted and not completed
4012 		 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
4013 		SPDK_DEBUGLOG(rdma,
4014 			      "Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n",
4015 			      rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id,
4016 			      nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
4017 	} else {
4018 		SPDK_ERRLOG("Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n",
4019 			    rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id,
4020 			    nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
4021 	}
4022 }
4023 
4024 static int
4025 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
4026 		      struct spdk_nvmf_rdma_poller *rpoller)
4027 {
4028 	struct ibv_wc wc[32];
4029 	struct spdk_nvmf_rdma_wr	*rdma_wr;
4030 	struct spdk_nvmf_rdma_request	*rdma_req;
4031 	struct spdk_nvmf_rdma_recv	*rdma_recv;
4032 	struct spdk_nvmf_rdma_qpair	*rqpair;
4033 	int reaped, i;
4034 	int count = 0;
4035 	bool error = false;
4036 	uint64_t poll_tsc = spdk_get_ticks();
4037 
4038 	/* Poll for completing operations. */
4039 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
4040 	if (reaped < 0) {
4041 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
4042 			    errno, spdk_strerror(errno));
4043 		return -1;
4044 	} else if (reaped == 0) {
4045 		rpoller->stat.idle_polls++;
4046 	}
4047 
4048 	rpoller->stat.polls++;
4049 	rpoller->stat.completions += reaped;
4050 
4051 	for (i = 0; i < reaped; i++) {
4052 
4053 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
4054 
4055 		switch (rdma_wr->type) {
4056 		case RDMA_WR_TYPE_SEND:
4057 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
4058 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4059 
4060 			if (!wc[i].status) {
4061 				count++;
4062 				assert(wc[i].opcode == IBV_WC_SEND);
4063 				assert(nvmf_rdma_req_is_completing(rdma_req));
4064 			}
4065 
4066 			rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4067 			/* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */
4068 			rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1;
4069 			rdma_req->num_outstanding_data_wr = 0;
4070 
4071 			nvmf_rdma_request_process(rtransport, rdma_req);
4072 			break;
4073 		case RDMA_WR_TYPE_RECV:
4074 			/* rdma_recv->qpair will be invalid if using an SRQ.  In that case we have to get the qpair from the wc. */
4075 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4076 			if (rpoller->srq != NULL) {
4077 				rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
4078 				/* It is possible that there are still some completions for destroyed QP
4079 				 * associated with SRQ. We just ignore these late completions and re-post
4080 				 * receive WRs back to SRQ.
4081 				 */
4082 				if (spdk_unlikely(NULL == rdma_recv->qpair)) {
4083 					struct ibv_recv_wr *bad_wr;
4084 					int rc;
4085 
4086 					rdma_recv->wr.next = NULL;
4087 					spdk_rdma_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr);
4088 					rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_wr);
4089 					if (rc) {
4090 						SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc);
4091 					}
4092 					continue;
4093 				}
4094 			}
4095 			rqpair = rdma_recv->qpair;
4096 
4097 			assert(rqpair != NULL);
4098 			if (!wc[i].status) {
4099 				assert(wc[i].opcode == IBV_WC_RECV);
4100 				if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
4101 					spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4102 					break;
4103 				}
4104 			}
4105 
4106 			rdma_recv->wr.next = NULL;
4107 			rqpair->current_recv_depth++;
4108 			rdma_recv->receive_tsc = poll_tsc;
4109 			rpoller->stat.requests++;
4110 			STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link);
4111 			break;
4112 		case RDMA_WR_TYPE_DATA:
4113 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
4114 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4115 
4116 			assert(rdma_req->num_outstanding_data_wr > 0);
4117 
4118 			rqpair->current_send_depth--;
4119 			rdma_req->num_outstanding_data_wr--;
4120 			if (!wc[i].status) {
4121 				assert(wc[i].opcode == IBV_WC_RDMA_READ);
4122 				rqpair->current_read_depth--;
4123 				/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
4124 				if (rdma_req->num_outstanding_data_wr == 0) {
4125 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
4126 					nvmf_rdma_request_process(rtransport, rdma_req);
4127 				}
4128 			} else {
4129 				/* If the data transfer fails still force the queue into the error state,
4130 				 * if we were performing an RDMA_READ, we need to force the request into a
4131 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
4132 				 * case, we should wait for the SEND to complete. */
4133 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
4134 					rqpair->current_read_depth--;
4135 					if (rdma_req->num_outstanding_data_wr == 0) {
4136 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4137 					}
4138 				}
4139 			}
4140 			break;
4141 		default:
4142 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
4143 			continue;
4144 		}
4145 
4146 		/* Handle error conditions */
4147 		if (wc[i].status) {
4148 			nvmf_rdma_update_ibv_state(rqpair);
4149 			nvmf_rdma_log_wc_status(rqpair, &wc[i]);
4150 
4151 			error = true;
4152 
4153 			if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
4154 				/* Disconnect the connection. */
4155 				spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4156 			} else {
4157 				nvmf_rdma_destroy_drained_qpair(rqpair);
4158 			}
4159 			continue;
4160 		}
4161 
4162 		nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
4163 
4164 		if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
4165 			nvmf_rdma_destroy_drained_qpair(rqpair);
4166 		}
4167 	}
4168 
4169 	if (error == true) {
4170 		return -1;
4171 	}
4172 
4173 	/* submit outstanding work requests. */
4174 	_poller_submit_recvs(rtransport, rpoller);
4175 	_poller_submit_sends(rtransport, rpoller);
4176 
4177 	return count;
4178 }
4179 
4180 static int
4181 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
4182 {
4183 	struct spdk_nvmf_rdma_transport *rtransport;
4184 	struct spdk_nvmf_rdma_poll_group *rgroup;
4185 	struct spdk_nvmf_rdma_poller	*rpoller;
4186 	int				count, rc;
4187 
4188 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
4189 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4190 
4191 	count = 0;
4192 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
4193 		rc = nvmf_rdma_poller_poll(rtransport, rpoller);
4194 		if (rc < 0) {
4195 			return rc;
4196 		}
4197 		count += rc;
4198 	}
4199 
4200 	return count;
4201 }
4202 
4203 static int
4204 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
4205 			  struct spdk_nvme_transport_id *trid,
4206 			  bool peer)
4207 {
4208 	struct sockaddr *saddr;
4209 	uint16_t port;
4210 
4211 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA);
4212 
4213 	if (peer) {
4214 		saddr = rdma_get_peer_addr(id);
4215 	} else {
4216 		saddr = rdma_get_local_addr(id);
4217 	}
4218 	switch (saddr->sa_family) {
4219 	case AF_INET: {
4220 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
4221 
4222 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
4223 		inet_ntop(AF_INET, &saddr_in->sin_addr,
4224 			  trid->traddr, sizeof(trid->traddr));
4225 		if (peer) {
4226 			port = ntohs(rdma_get_dst_port(id));
4227 		} else {
4228 			port = ntohs(rdma_get_src_port(id));
4229 		}
4230 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4231 		break;
4232 	}
4233 	case AF_INET6: {
4234 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
4235 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
4236 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
4237 			  trid->traddr, sizeof(trid->traddr));
4238 		if (peer) {
4239 			port = ntohs(rdma_get_dst_port(id));
4240 		} else {
4241 			port = ntohs(rdma_get_src_port(id));
4242 		}
4243 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4244 		break;
4245 	}
4246 	default:
4247 		return -1;
4248 
4249 	}
4250 
4251 	return 0;
4252 }
4253 
4254 static int
4255 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
4256 			      struct spdk_nvme_transport_id *trid)
4257 {
4258 	struct spdk_nvmf_rdma_qpair	*rqpair;
4259 
4260 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4261 
4262 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
4263 }
4264 
4265 static int
4266 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
4267 			       struct spdk_nvme_transport_id *trid)
4268 {
4269 	struct spdk_nvmf_rdma_qpair	*rqpair;
4270 
4271 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4272 
4273 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
4274 }
4275 
4276 static int
4277 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
4278 				struct spdk_nvme_transport_id *trid)
4279 {
4280 	struct spdk_nvmf_rdma_qpair	*rqpair;
4281 
4282 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4283 
4284 	return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
4285 }
4286 
4287 void
4288 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
4289 {
4290 	g_nvmf_hooks = *hooks;
4291 }
4292 
4293 static void
4294 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req,
4295 				   struct spdk_nvmf_rdma_request *rdma_req_to_abort)
4296 {
4297 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
4298 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
4299 
4300 	rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
4301 
4302 	req->rsp->nvme_cpl.cdw0 &= ~1U;	/* Command was successfully aborted. */
4303 }
4304 
4305 static int
4306 _nvmf_rdma_qpair_abort_request(void *ctx)
4307 {
4308 	struct spdk_nvmf_request *req = ctx;
4309 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF(
4310 				req->req_to_abort, struct spdk_nvmf_rdma_request, req);
4311 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
4312 					      struct spdk_nvmf_rdma_qpair, qpair);
4313 	int rc;
4314 
4315 	spdk_poller_unregister(&req->poller);
4316 
4317 	switch (rdma_req_to_abort->state) {
4318 	case RDMA_REQUEST_STATE_EXECUTING:
4319 		rc = nvmf_ctrlr_abort_request(req);
4320 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
4321 			return SPDK_POLLER_BUSY;
4322 		}
4323 		break;
4324 
4325 	case RDMA_REQUEST_STATE_NEED_BUFFER:
4326 		STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue,
4327 			      &rdma_req_to_abort->req, spdk_nvmf_request, buf_link);
4328 
4329 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4330 		break;
4331 
4332 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
4333 		STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort,
4334 			      spdk_nvmf_rdma_request, state_link);
4335 
4336 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4337 		break;
4338 
4339 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
4340 		STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort,
4341 			      spdk_nvmf_rdma_request, state_link);
4342 
4343 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4344 		break;
4345 
4346 	case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
4347 		if (spdk_get_ticks() < req->timeout_tsc) {
4348 			req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0);
4349 			return SPDK_POLLER_BUSY;
4350 		}
4351 		break;
4352 
4353 	default:
4354 		break;
4355 	}
4356 
4357 	spdk_nvmf_request_complete(req);
4358 	return SPDK_POLLER_BUSY;
4359 }
4360 
4361 static void
4362 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
4363 			      struct spdk_nvmf_request *req)
4364 {
4365 	struct spdk_nvmf_rdma_qpair *rqpair;
4366 	struct spdk_nvmf_rdma_transport *rtransport;
4367 	struct spdk_nvmf_transport *transport;
4368 	uint16_t cid;
4369 	uint32_t i, max_req_count;
4370 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req;
4371 
4372 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4373 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
4374 	transport = &rtransport->transport;
4375 
4376 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
4377 	max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth;
4378 
4379 	for (i = 0; i < max_req_count; i++) {
4380 		rdma_req = &rqpair->resources->reqs[i];
4381 		/* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair
4382 		 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to
4383 		 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */
4384 		if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid &&
4385 		    rdma_req->req.qpair == qpair) {
4386 			rdma_req_to_abort = rdma_req;
4387 			break;
4388 		}
4389 	}
4390 
4391 	if (rdma_req_to_abort == NULL) {
4392 		spdk_nvmf_request_complete(req);
4393 		return;
4394 	}
4395 
4396 	req->req_to_abort = &rdma_req_to_abort->req;
4397 	req->timeout_tsc = spdk_get_ticks() +
4398 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
4399 	req->poller = NULL;
4400 
4401 	_nvmf_rdma_qpair_abort_request(req);
4402 }
4403 
4404 static void
4405 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group,
4406 			       struct spdk_json_write_ctx *w)
4407 {
4408 	struct spdk_nvmf_rdma_poll_group *rgroup;
4409 	struct spdk_nvmf_rdma_poller *rpoller;
4410 
4411 	assert(w != NULL);
4412 
4413 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4414 
4415 	spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer);
4416 
4417 	spdk_json_write_named_array_begin(w, "devices");
4418 
4419 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
4420 		spdk_json_write_object_begin(w);
4421 		spdk_json_write_named_string(w, "name",
4422 					     ibv_get_device_name(rpoller->device->context->device));
4423 		spdk_json_write_named_uint64(w, "polls",
4424 					     rpoller->stat.polls);
4425 		spdk_json_write_named_uint64(w, "idle_polls",
4426 					     rpoller->stat.idle_polls);
4427 		spdk_json_write_named_uint64(w, "completions",
4428 					     rpoller->stat.completions);
4429 		spdk_json_write_named_uint64(w, "requests",
4430 					     rpoller->stat.requests);
4431 		spdk_json_write_named_uint64(w, "request_latency",
4432 					     rpoller->stat.request_latency);
4433 		spdk_json_write_named_uint64(w, "pending_free_request",
4434 					     rpoller->stat.pending_free_request);
4435 		spdk_json_write_named_uint64(w, "pending_rdma_read",
4436 					     rpoller->stat.pending_rdma_read);
4437 		spdk_json_write_named_uint64(w, "pending_rdma_write",
4438 					     rpoller->stat.pending_rdma_write);
4439 		spdk_json_write_named_uint64(w, "total_send_wrs",
4440 					     rpoller->stat.qp_stats.send.num_submitted_wrs);
4441 		spdk_json_write_named_uint64(w, "send_doorbell_updates",
4442 					     rpoller->stat.qp_stats.send.doorbell_updates);
4443 		spdk_json_write_named_uint64(w, "total_recv_wrs",
4444 					     rpoller->stat.qp_stats.recv.num_submitted_wrs);
4445 		spdk_json_write_named_uint64(w, "recv_doorbell_updates",
4446 					     rpoller->stat.qp_stats.recv.doorbell_updates);
4447 		spdk_json_write_object_end(w);
4448 	}
4449 
4450 	spdk_json_write_array_end(w);
4451 }
4452 
4453 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
4454 	.name = "RDMA",
4455 	.type = SPDK_NVME_TRANSPORT_RDMA,
4456 	.opts_init = nvmf_rdma_opts_init,
4457 	.create = nvmf_rdma_create,
4458 	.dump_opts = nvmf_rdma_dump_opts,
4459 	.destroy = nvmf_rdma_destroy,
4460 
4461 	.listen = nvmf_rdma_listen,
4462 	.stop_listen = nvmf_rdma_stop_listen,
4463 	.cdata_init = nvmf_rdma_cdata_init,
4464 
4465 	.listener_discover = nvmf_rdma_discover,
4466 
4467 	.poll_group_create = nvmf_rdma_poll_group_create,
4468 	.get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group,
4469 	.poll_group_destroy = nvmf_rdma_poll_group_destroy,
4470 	.poll_group_add = nvmf_rdma_poll_group_add,
4471 	.poll_group_remove = nvmf_rdma_poll_group_remove,
4472 	.poll_group_poll = nvmf_rdma_poll_group_poll,
4473 
4474 	.req_free = nvmf_rdma_request_free,
4475 	.req_complete = nvmf_rdma_request_complete,
4476 
4477 	.qpair_fini = nvmf_rdma_close_qpair,
4478 	.qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid,
4479 	.qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid,
4480 	.qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid,
4481 	.qpair_abort_request = nvmf_rdma_qpair_abort_request,
4482 
4483 	.poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat,
4484 };
4485 
4486 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma);
4487 SPDK_LOG_REGISTER_COMPONENT(rdma)
4488