xref: /spdk/lib/nvmf/rdma.c (revision 8af292d898481662ba17573b21b63f35fed2ced8)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "spdk/config.h"
10 #include "spdk/thread.h"
11 #include "spdk/likely.h"
12 #include "spdk/nvmf_transport.h"
13 #include "spdk/string.h"
14 #include "spdk/trace.h"
15 #include "spdk/tree.h"
16 #include "spdk/util.h"
17 
18 #include "spdk_internal/assert.h"
19 #include "spdk/log.h"
20 #include "spdk_internal/rdma_provider.h"
21 #include "spdk_internal/rdma_utils.h"
22 
23 #include "nvmf_internal.h"
24 #include "transport.h"
25 
26 #include "spdk_internal/trace_defs.h"
27 
28 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
29 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma;
30 
31 /*
32  RDMA Connection Resource Defaults
33  */
34 #define NVMF_DEFAULT_MSDBD		16
35 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
36 #define NVMF_DEFAULT_RSP_SGE		1
37 #define NVMF_DEFAULT_RX_SGE		2
38 
39 #define NVMF_RDMA_MAX_EVENTS_PER_POLL	32
40 
41 SPDK_STATIC_ASSERT(NVMF_DEFAULT_MSDBD <= SPDK_NVMF_MAX_SGL_ENTRIES,
42 		   "MSDBD must not exceed SPDK_NVMF_MAX_SGL_ENTRIES");
43 
44 /* The RDMA completion queue size */
45 #define DEFAULT_NVMF_RDMA_CQ_SIZE	4096
46 #define MAX_WR_PER_QP(queue_depth)	(queue_depth * 3 + 2)
47 
48 enum spdk_nvmf_rdma_request_state {
49 	/* The request is not currently in use */
50 	RDMA_REQUEST_STATE_FREE = 0,
51 
52 	/* Initial state when request first received */
53 	RDMA_REQUEST_STATE_NEW,
54 
55 	/* The request is queued until a data buffer is available. */
56 	RDMA_REQUEST_STATE_NEED_BUFFER,
57 
58 	/* The request is waiting on RDMA queue depth availability
59 	 * to transfer data from the host to the controller.
60 	 */
61 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
62 
63 	/* The request is currently transferring data from the host to the controller. */
64 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
65 
66 	/* The request is ready to execute at the block device */
67 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
68 
69 	/* The request is currently executing at the block device */
70 	RDMA_REQUEST_STATE_EXECUTING,
71 
72 	/* The request finished executing at the block device */
73 	RDMA_REQUEST_STATE_EXECUTED,
74 
75 	/* The request is waiting on RDMA queue depth availability
76 	 * to transfer data from the controller to the host.
77 	 */
78 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
79 
80 	/* The request is waiting on RDMA queue depth availability
81 	 * to send response to the host.
82 	 */
83 	RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING,
84 
85 	/* The request is ready to send a completion */
86 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
87 
88 	/* The request is currently transferring data from the controller to the host. */
89 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
90 
91 	/* The request currently has an outstanding completion without an
92 	 * associated data transfer.
93 	 */
94 	RDMA_REQUEST_STATE_COMPLETING,
95 
96 	/* The request completed and can be marked free. */
97 	RDMA_REQUEST_STATE_COMPLETED,
98 
99 	/* Terminator */
100 	RDMA_REQUEST_NUM_STATES,
101 };
102 
103 static void
104 nvmf_trace(void)
105 {
106 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
107 
108 	struct spdk_trace_tpoint_opts opts[] = {
109 		{
110 			"RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW,
111 			OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 1,
112 			{
113 				{ "qpair", SPDK_TRACE_ARG_TYPE_PTR, 8 },
114 				{ "qd", SPDK_TRACE_ARG_TYPE_INT, 4 }
115 			}
116 		},
117 		{
118 			"RDMA_REQ_COMPLETED", TRACE_RDMA_REQUEST_STATE_COMPLETED,
119 			OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
120 			{
121 				{ "qpair", SPDK_TRACE_ARG_TYPE_PTR, 8 },
122 				{ "qd", SPDK_TRACE_ARG_TYPE_INT, 4 }
123 			}
124 		},
125 	};
126 
127 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
128 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
129 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
130 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
131 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H",
132 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
133 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
134 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
135 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C",
136 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
137 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
138 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
139 	spdk_trace_register_description("RDMA_REQ_TX_H2C",
140 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
141 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
142 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
143 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE",
144 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
145 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
146 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
147 	spdk_trace_register_description("RDMA_REQ_EXECUTING",
148 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
149 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
150 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
151 	spdk_trace_register_description("RDMA_REQ_EXECUTED",
152 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
153 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
154 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
155 	spdk_trace_register_description("RDMA_REQ_RDY2COMPL_PEND",
156 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING,
157 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
158 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
159 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL",
160 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
161 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
162 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
163 	spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H",
164 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
165 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
166 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
167 	spdk_trace_register_description("RDMA_REQ_COMPLETING",
168 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
169 					OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
170 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
171 
172 	spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE,
173 					OWNER_TYPE_NONE, OBJECT_NONE, 0,
174 					SPDK_TRACE_ARG_TYPE_INT, "");
175 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT,
176 					OWNER_TYPE_NONE, OBJECT_NONE, 0,
177 					SPDK_TRACE_ARG_TYPE_INT, "type");
178 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT,
179 					OWNER_TYPE_NONE, OBJECT_NONE, 0,
180 					SPDK_TRACE_ARG_TYPE_INT, "type");
181 	spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT,
182 					OWNER_TYPE_NONE, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_INT, "");
184 	spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY,
185 					OWNER_TYPE_NONE, OBJECT_NONE, 0,
186 					SPDK_TRACE_ARG_TYPE_INT, "");
187 
188 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_RDMA_IO, 1);
189 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_RDMA_IO, 0);
190 }
191 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
192 
193 enum spdk_nvmf_rdma_wr_type {
194 	RDMA_WR_TYPE_RECV,
195 	RDMA_WR_TYPE_SEND,
196 	RDMA_WR_TYPE_DATA,
197 };
198 
199 struct spdk_nvmf_rdma_wr {
200 	/* Uses enum spdk_nvmf_rdma_wr_type */
201 	uint8_t type;
202 };
203 
204 /* This structure holds commands as they are received off the wire.
205  * It must be dynamically paired with a full request object
206  * (spdk_nvmf_rdma_request) to service a request. It is separate
207  * from the request because RDMA does not appear to order
208  * completions, so occasionally we'll get a new incoming
209  * command when there aren't any free request objects.
210  */
211 struct spdk_nvmf_rdma_recv {
212 	struct ibv_recv_wr			wr;
213 	struct ibv_sge				sgl[NVMF_DEFAULT_RX_SGE];
214 
215 	struct spdk_nvmf_rdma_qpair		*qpair;
216 
217 	/* In-capsule data buffer */
218 	uint8_t					*buf;
219 
220 	struct spdk_nvmf_rdma_wr		rdma_wr;
221 	uint64_t				receive_tsc;
222 
223 	STAILQ_ENTRY(spdk_nvmf_rdma_recv)	link;
224 };
225 
226 struct spdk_nvmf_rdma_request_data {
227 	struct ibv_send_wr		wr;
228 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
229 };
230 
231 struct spdk_nvmf_rdma_request {
232 	struct spdk_nvmf_request		req;
233 
234 	bool					fused_failed;
235 
236 	struct spdk_nvmf_rdma_wr		data_wr;
237 	struct spdk_nvmf_rdma_wr		rsp_wr;
238 
239 	/* Uses enum spdk_nvmf_rdma_request_state */
240 	uint8_t					state;
241 
242 	/* Data offset in req.iov */
243 	uint32_t				offset;
244 
245 	struct spdk_nvmf_rdma_recv		*recv;
246 
247 	struct {
248 		struct	ibv_send_wr		wr;
249 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
250 	} rsp;
251 
252 	uint16_t				iovpos;
253 	uint16_t				num_outstanding_data_wr;
254 	/* Used to split Write IO with multi SGL payload */
255 	uint16_t				num_remaining_data_wr;
256 	uint64_t				receive_tsc;
257 	struct spdk_nvmf_rdma_request		*fused_pair;
258 	STAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
259 	struct ibv_send_wr			*remaining_tranfer_in_wrs;
260 	struct ibv_send_wr			*transfer_wr;
261 	struct spdk_nvmf_rdma_request_data	data;
262 };
263 
264 struct spdk_nvmf_rdma_resource_opts {
265 	struct spdk_nvmf_rdma_qpair	*qpair;
266 	/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
267 	void				*qp;
268 	struct spdk_rdma_utils_mem_map	*map;
269 	uint32_t			max_queue_depth;
270 	uint32_t			in_capsule_data_size;
271 	bool				shared;
272 };
273 
274 struct spdk_nvmf_rdma_resources {
275 	/* Array of size "max_queue_depth" containing RDMA requests. */
276 	struct spdk_nvmf_rdma_request		*reqs;
277 
278 	/* Array of size "max_queue_depth" containing RDMA recvs. */
279 	struct spdk_nvmf_rdma_recv		*recvs;
280 
281 	/* Array of size "max_queue_depth" containing 64 byte capsules
282 	 * used for receive.
283 	 */
284 	union nvmf_h2c_msg			*cmds;
285 
286 	/* Array of size "max_queue_depth" containing 16 byte completions
287 	 * to be sent back to the user.
288 	 */
289 	union nvmf_c2h_msg			*cpls;
290 
291 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
292 	 * buffers to be used for in capsule data.
293 	 */
294 	void					*bufs;
295 
296 	/* Receives that are waiting for a request object */
297 	STAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
298 
299 	/* Queue to track free requests */
300 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	free_queue;
301 };
302 
303 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair);
304 
305 typedef void (*spdk_poller_destroy_cb)(void *ctx);
306 
307 struct spdk_nvmf_rdma_ibv_event_ctx {
308 	struct spdk_nvmf_rdma_qpair			*rqpair;
309 };
310 
311 struct spdk_nvmf_rdma_qpair {
312 	struct spdk_nvmf_qpair			qpair;
313 
314 	struct spdk_nvmf_rdma_device		*device;
315 	struct spdk_nvmf_rdma_poller		*poller;
316 
317 	struct spdk_rdma_provider_qp		*rdma_qp;
318 	struct rdma_cm_id			*cm_id;
319 	struct spdk_rdma_provider_srq		*srq;
320 	struct rdma_cm_id			*listen_id;
321 
322 	/* Cache the QP number to improve QP search by RB tree. */
323 	uint32_t				qp_num;
324 
325 	/* The maximum number of I/O outstanding on this connection at one time */
326 	uint16_t				max_queue_depth;
327 
328 	/* The maximum number of active RDMA READ and ATOMIC operations at one time */
329 	uint16_t				max_read_depth;
330 
331 	/* The maximum number of RDMA SEND operations at one time */
332 	uint32_t				max_send_depth;
333 
334 	/* The current number of outstanding WRs from this qpair's
335 	 * recv queue. Should not exceed device->attr.max_queue_depth.
336 	 */
337 	uint16_t				current_recv_depth;
338 
339 	/* The current number of active RDMA READ operations */
340 	uint16_t				current_read_depth;
341 
342 	/* The current number of posted WRs from this qpair's
343 	 * send queue. Should not exceed max_send_depth.
344 	 */
345 	uint32_t				current_send_depth;
346 
347 	/* The maximum number of SGEs per WR on the send queue */
348 	uint32_t				max_send_sge;
349 
350 	/* The maximum number of SGEs per WR on the recv queue */
351 	uint32_t				max_recv_sge;
352 
353 	struct spdk_nvmf_rdma_resources		*resources;
354 
355 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_read_queue;
356 
357 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_write_queue;
358 
359 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_send_queue;
360 
361 	/* Number of requests not in the free state */
362 	uint32_t				qd;
363 
364 	bool					ibv_in_error_state;
365 
366 	RB_ENTRY(spdk_nvmf_rdma_qpair)		node;
367 
368 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	recv_link;
369 
370 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	send_link;
371 
372 	/* Points to the a request that has fuse bits set to
373 	 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting
374 	 * for the request that has SPDK_NVME_CMD_FUSE_SECOND.
375 	 */
376 	struct spdk_nvmf_rdma_request		*fused_first;
377 
378 	/*
379 	 * io_channel which is used to destroy qpair when it is removed from poll group
380 	 */
381 	struct spdk_io_channel		*destruct_channel;
382 
383 	/* ctx for async processing of last_wqe_reached event */
384 	struct spdk_nvmf_rdma_ibv_event_ctx	*last_wqe_reached_ctx;
385 
386 	/* Lets us know that we have received the last_wqe event. */
387 	bool					last_wqe_reached;
388 
389 	/* Indicate that nvmf_rdma_close_qpair is called */
390 	bool					to_close;
391 };
392 
393 struct spdk_nvmf_rdma_poller_stat {
394 	uint64_t				completions;
395 	uint64_t				polls;
396 	uint64_t				idle_polls;
397 	uint64_t				requests;
398 	uint64_t				request_latency;
399 	uint64_t				pending_free_request;
400 	uint64_t				pending_rdma_read;
401 	uint64_t				pending_rdma_write;
402 	uint64_t				pending_rdma_send;
403 	struct spdk_rdma_provider_qp_stats	qp_stats;
404 };
405 
406 struct spdk_nvmf_rdma_poller {
407 	struct spdk_nvmf_rdma_device		*device;
408 	struct spdk_nvmf_rdma_poll_group	*group;
409 
410 	int					num_cqe;
411 	int					required_num_wr;
412 	struct ibv_cq				*cq;
413 
414 	/* The maximum number of I/O outstanding on the shared receive queue at one time */
415 	uint16_t				max_srq_depth;
416 	bool					need_destroy;
417 
418 	/* Shared receive queue */
419 	struct spdk_rdma_provider_srq		*srq;
420 
421 	struct spdk_nvmf_rdma_resources		*resources;
422 	struct spdk_nvmf_rdma_poller_stat	stat;
423 
424 	spdk_poller_destroy_cb			destroy_cb;
425 	void					*destroy_cb_ctx;
426 
427 	RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs;
428 
429 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_recv;
430 
431 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_send;
432 
433 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
434 };
435 
436 struct spdk_nvmf_rdma_poll_group_stat {
437 	uint64_t				pending_data_buffer;
438 };
439 
440 struct spdk_nvmf_rdma_poll_group {
441 	struct spdk_nvmf_transport_poll_group		group;
442 	struct spdk_nvmf_rdma_poll_group_stat		stat;
443 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)		pollers;
444 	TAILQ_ENTRY(spdk_nvmf_rdma_poll_group)		link;
445 };
446 
447 struct spdk_nvmf_rdma_conn_sched {
448 	struct spdk_nvmf_rdma_poll_group *next_admin_pg;
449 	struct spdk_nvmf_rdma_poll_group *next_io_pg;
450 };
451 
452 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
453 struct spdk_nvmf_rdma_device {
454 	struct ibv_device_attr			attr;
455 	struct ibv_context			*context;
456 
457 	struct spdk_rdma_utils_mem_map		*map;
458 	struct ibv_pd				*pd;
459 
460 	int					num_srq;
461 	bool					need_destroy;
462 	bool					ready_to_destroy;
463 	bool					is_ready;
464 
465 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
466 };
467 
468 struct spdk_nvmf_rdma_port {
469 	const struct spdk_nvme_transport_id	*trid;
470 	struct rdma_cm_id			*id;
471 	struct spdk_nvmf_rdma_device		*device;
472 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
473 };
474 
475 struct rdma_transport_opts {
476 	int		num_cqe;
477 	uint32_t	max_srq_depth;
478 	bool		no_srq;
479 	bool		no_wr_batching;
480 	int		acceptor_backlog;
481 };
482 
483 struct spdk_nvmf_rdma_transport {
484 	struct spdk_nvmf_transport	transport;
485 	struct rdma_transport_opts	rdma_opts;
486 
487 	struct spdk_nvmf_rdma_conn_sched conn_sched;
488 
489 	struct rdma_event_channel	*event_channel;
490 
491 	struct spdk_mempool		*data_wr_pool;
492 
493 	struct spdk_poller		*accept_poller;
494 
495 	/* fields used to poll RDMA/IB events */
496 	nfds_t			npoll_fds;
497 	struct pollfd		*poll_fds;
498 
499 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
500 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
501 	TAILQ_HEAD(, spdk_nvmf_rdma_poll_group)	poll_groups;
502 
503 	/* ports that are removed unexpectedly and need retry listen */
504 	TAILQ_HEAD(, spdk_nvmf_rdma_port)		retry_ports;
505 };
506 
507 struct poller_manage_ctx {
508 	struct spdk_nvmf_rdma_transport		*rtransport;
509 	struct spdk_nvmf_rdma_poll_group	*rgroup;
510 	struct spdk_nvmf_rdma_poller		*rpoller;
511 	struct spdk_nvmf_rdma_device		*device;
512 
513 	struct spdk_thread			*thread;
514 	volatile int				*inflight_op_counter;
515 };
516 
517 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = {
518 	{
519 		"num_cqe", offsetof(struct rdma_transport_opts, num_cqe),
520 		spdk_json_decode_int32, true
521 	},
522 	{
523 		"max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth),
524 		spdk_json_decode_uint32, true
525 	},
526 	{
527 		"no_srq", offsetof(struct rdma_transport_opts, no_srq),
528 		spdk_json_decode_bool, true
529 	},
530 	{
531 		"no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching),
532 		spdk_json_decode_bool, true
533 	},
534 	{
535 		"acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog),
536 		spdk_json_decode_int32, true
537 	},
538 };
539 
540 static int
541 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2)
542 {
543 	return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num;
544 }
545 
546 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare);
547 
548 static bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
549 				      struct spdk_nvmf_rdma_request *rdma_req);
550 
551 static void _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
552 				 struct spdk_nvmf_rdma_poller *rpoller);
553 
554 static void _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
555 				 struct spdk_nvmf_rdma_poller *rpoller);
556 
557 static void _nvmf_rdma_remove_destroyed_device(void *c);
558 
559 static inline enum spdk_nvme_media_error_status_code
560 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) {
561 	enum spdk_nvme_media_error_status_code result;
562 	switch (err_type)
563 	{
564 	case SPDK_DIF_REFTAG_ERROR:
565 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
566 		break;
567 	case SPDK_DIF_APPTAG_ERROR:
568 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
569 		break;
570 	case SPDK_DIF_GUARD_ERROR:
571 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
572 		break;
573 	default:
574 		SPDK_UNREACHABLE();
575 	}
576 
577 	return result;
578 }
579 
580 /*
581  * Return data_wrs to pool starting from \b data_wr
582  * Request's own response and data WR are excluded
583  */
584 static void
585 _nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
586 			     struct ibv_send_wr *data_wr,
587 			     struct spdk_mempool *pool)
588 {
589 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
590 	struct spdk_nvmf_rdma_request_data	*nvmf_data;
591 	struct ibv_send_wr			*next_send_wr;
592 	uint64_t				req_wrid = (uint64_t)&rdma_req->data_wr;
593 	uint32_t				num_wrs = 0;
594 
595 	while (data_wr && data_wr->wr_id == req_wrid) {
596 		nvmf_data = SPDK_CONTAINEROF(data_wr, struct spdk_nvmf_rdma_request_data, wr);
597 		memset(nvmf_data->sgl, 0, sizeof(data_wr->sg_list[0]) * data_wr->num_sge);
598 		data_wr->num_sge = 0;
599 		next_send_wr = data_wr->next;
600 		if (data_wr != &rdma_req->data.wr) {
601 			data_wr->next = NULL;
602 			assert(num_wrs < SPDK_NVMF_MAX_SGL_ENTRIES);
603 			work_requests[num_wrs] = nvmf_data;
604 			num_wrs++;
605 		}
606 		data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : next_send_wr;
607 	}
608 
609 	if (num_wrs) {
610 		spdk_mempool_put_bulk(pool, (void **) work_requests, num_wrs);
611 	}
612 }
613 
614 static void
615 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
616 			    struct spdk_nvmf_rdma_transport *rtransport)
617 {
618 	rdma_req->num_outstanding_data_wr = 0;
619 
620 	_nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool);
621 
622 	if (rdma_req->remaining_tranfer_in_wrs) {
623 		_nvmf_rdma_request_free_data(rdma_req, rdma_req->remaining_tranfer_in_wrs,
624 					     rtransport->data_wr_pool);
625 		rdma_req->remaining_tranfer_in_wrs = NULL;
626 	}
627 
628 	rdma_req->data.wr.next = NULL;
629 	rdma_req->rsp.wr.next = NULL;
630 }
631 
632 static void
633 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
634 {
635 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool);
636 	if (req->req.cmd) {
637 		SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
638 	}
639 	if (req->recv) {
640 		SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
641 	}
642 }
643 
644 static void
645 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
646 {
647 	int i;
648 
649 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
650 	for (i = 0; i < rqpair->max_queue_depth; i++) {
651 		if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
652 			nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
653 		}
654 	}
655 }
656 
657 static void
658 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
659 {
660 	spdk_free(resources->cmds);
661 	spdk_free(resources->cpls);
662 	spdk_free(resources->bufs);
663 	spdk_free(resources->reqs);
664 	spdk_free(resources->recvs);
665 	free(resources);
666 }
667 
668 
669 static struct spdk_nvmf_rdma_resources *
670 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
671 {
672 	struct spdk_nvmf_rdma_resources		*resources;
673 	struct spdk_nvmf_rdma_request		*rdma_req;
674 	struct spdk_nvmf_rdma_recv		*rdma_recv;
675 	struct spdk_rdma_provider_qp		*qp = NULL;
676 	struct spdk_rdma_provider_srq		*srq = NULL;
677 	struct ibv_recv_wr			*bad_wr = NULL;
678 	struct spdk_rdma_utils_memory_translation translation;
679 	uint32_t				i;
680 	int					rc = 0;
681 
682 	resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
683 	if (!resources) {
684 		SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
685 		return NULL;
686 	}
687 
688 	resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs),
689 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
690 	resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs),
691 					0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
692 	resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
693 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
694 	resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
695 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
696 
697 	if (opts->in_capsule_data_size > 0) {
698 		resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size,
699 					       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY,
700 					       SPDK_MALLOC_DMA);
701 	}
702 
703 	if (!resources->reqs || !resources->recvs || !resources->cmds ||
704 	    !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
705 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
706 		goto cleanup;
707 	}
708 
709 	SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx\n",
710 		      resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds));
711 	SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx\n",
712 		      resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls));
713 	if (resources->bufs) {
714 		SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x\n",
715 			      resources->bufs, opts->max_queue_depth *
716 			      opts->in_capsule_data_size);
717 	}
718 
719 	/* Initialize queues */
720 	STAILQ_INIT(&resources->incoming_queue);
721 	STAILQ_INIT(&resources->free_queue);
722 
723 	if (opts->shared) {
724 		srq = (struct spdk_rdma_provider_srq *)opts->qp;
725 	} else {
726 		qp = (struct spdk_rdma_provider_qp *)opts->qp;
727 	}
728 
729 	for (i = 0; i < opts->max_queue_depth; i++) {
730 		rdma_recv = &resources->recvs[i];
731 		rdma_recv->qpair = opts->qpair;
732 
733 		/* Set up memory to receive commands */
734 		if (resources->bufs) {
735 			rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
736 						  opts->in_capsule_data_size));
737 		}
738 
739 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
740 
741 		rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
742 		rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
743 		rc = spdk_rdma_utils_get_translation(opts->map, &resources->cmds[i], sizeof(resources->cmds[i]),
744 						     &translation);
745 		if (rc) {
746 			goto cleanup;
747 		}
748 		rdma_recv->sgl[0].lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation);
749 		rdma_recv->wr.num_sge = 1;
750 
751 		if (rdma_recv->buf) {
752 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
753 			rdma_recv->sgl[1].length = opts->in_capsule_data_size;
754 			rc = spdk_rdma_utils_get_translation(opts->map, rdma_recv->buf, opts->in_capsule_data_size,
755 							     &translation);
756 			if (rc) {
757 				goto cleanup;
758 			}
759 			rdma_recv->sgl[1].lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation);
760 			rdma_recv->wr.num_sge++;
761 		}
762 
763 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
764 		rdma_recv->wr.sg_list = rdma_recv->sgl;
765 		if (srq) {
766 			spdk_rdma_provider_srq_queue_recv_wrs(srq, &rdma_recv->wr);
767 		} else {
768 			spdk_rdma_provider_qp_queue_recv_wrs(qp, &rdma_recv->wr);
769 		}
770 	}
771 
772 	for (i = 0; i < opts->max_queue_depth; i++) {
773 		rdma_req = &resources->reqs[i];
774 
775 		if (opts->qpair != NULL) {
776 			rdma_req->req.qpair = &opts->qpair->qpair;
777 		} else {
778 			rdma_req->req.qpair = NULL;
779 		}
780 		rdma_req->req.cmd = NULL;
781 		rdma_req->req.iovcnt = 0;
782 		rdma_req->req.stripped_data = NULL;
783 
784 		/* Set up memory to send responses */
785 		rdma_req->req.rsp = &resources->cpls[i];
786 
787 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
788 		rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
789 		rc = spdk_rdma_utils_get_translation(opts->map, &resources->cpls[i], sizeof(resources->cpls[i]),
790 						     &translation);
791 		if (rc) {
792 			goto cleanup;
793 		}
794 		rdma_req->rsp.sgl[0].lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation);
795 
796 		rdma_req->rsp_wr.type = RDMA_WR_TYPE_SEND;
797 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp_wr;
798 		rdma_req->rsp.wr.next = NULL;
799 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
800 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
801 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
802 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
803 
804 		/* Set up memory for data buffers */
805 		rdma_req->data_wr.type = RDMA_WR_TYPE_DATA;
806 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data_wr;
807 		rdma_req->data.wr.next = NULL;
808 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
809 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
810 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
811 
812 		/* Initialize request state to FREE */
813 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
814 		STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
815 	}
816 
817 	if (srq) {
818 		rc = spdk_rdma_provider_srq_flush_recv_wrs(srq, &bad_wr);
819 	} else {
820 		rc = spdk_rdma_provider_qp_flush_recv_wrs(qp, &bad_wr);
821 	}
822 
823 	if (rc) {
824 		goto cleanup;
825 	}
826 
827 	return resources;
828 
829 cleanup:
830 	nvmf_rdma_resources_destroy(resources);
831 	return NULL;
832 }
833 
834 static void
835 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair)
836 {
837 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx;
838 
839 	ctx = rqpair->last_wqe_reached_ctx;
840 	if (ctx) {
841 		ctx->rqpair = NULL;
842 		/* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_last_wqe_event */
843 		rqpair->last_wqe_reached_ctx = NULL;
844 	}
845 }
846 
847 static void nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller);
848 
849 static void
850 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
851 {
852 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
853 	struct ibv_recv_wr		*bad_recv_wr = NULL;
854 	int				rc;
855 
856 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair);
857 
858 	if (rqpair->qd != 0) {
859 		struct spdk_nvmf_qpair *qpair = &rqpair->qpair;
860 		struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(qpair->transport,
861 				struct spdk_nvmf_rdma_transport, transport);
862 		struct spdk_nvmf_rdma_request *req;
863 		uint32_t i, max_req_count = 0;
864 
865 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
866 
867 		if (rqpair->srq == NULL) {
868 			nvmf_rdma_dump_qpair_contents(rqpair);
869 			max_req_count = rqpair->max_queue_depth;
870 		} else if (rqpair->poller && rqpair->resources) {
871 			max_req_count = rqpair->poller->max_srq_depth;
872 		}
873 
874 		SPDK_DEBUGLOG(rdma, "Release incomplete requests\n");
875 		for (i = 0; i < max_req_count; i++) {
876 			req = &rqpair->resources->reqs[i];
877 			if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) {
878 				/* nvmf_rdma_request_process checks qpair ibv and internal state
879 				 * and completes a request */
880 				nvmf_rdma_request_process(rtransport, req);
881 			}
882 		}
883 		assert(rqpair->qd == 0);
884 	}
885 
886 	if (rqpair->poller) {
887 		RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair);
888 
889 		if (rqpair->srq != NULL && rqpair->resources != NULL) {
890 			/* Drop all received but unprocessed commands for this queue and return them to SRQ */
891 			STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
892 				if (rqpair == rdma_recv->qpair) {
893 					STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link);
894 					spdk_rdma_provider_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr);
895 					rc = spdk_rdma_provider_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
896 					if (rc) {
897 						SPDK_ERRLOG("Unable to re-post rx descriptor\n");
898 					}
899 				}
900 			}
901 		}
902 	}
903 
904 	if (rqpair->cm_id) {
905 		if (rqpair->rdma_qp != NULL) {
906 			spdk_rdma_provider_qp_destroy(rqpair->rdma_qp);
907 			rqpair->rdma_qp = NULL;
908 		}
909 
910 		if (rqpair->poller != NULL && rqpair->srq == NULL) {
911 			rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
912 		}
913 	}
914 
915 	if (rqpair->srq == NULL && rqpair->resources != NULL) {
916 		nvmf_rdma_resources_destroy(rqpair->resources);
917 	}
918 
919 	nvmf_rdma_qpair_clean_ibv_events(rqpair);
920 
921 	if (rqpair->destruct_channel) {
922 		spdk_put_io_channel(rqpair->destruct_channel);
923 		rqpair->destruct_channel = NULL;
924 	}
925 
926 	if (rqpair->poller && rqpair->poller->need_destroy && RB_EMPTY(&rqpair->poller->qpairs)) {
927 		nvmf_rdma_poller_destroy(rqpair->poller);
928 	}
929 
930 	/* destroy cm_id last so cma device will not be freed before we destroy the cq. */
931 	if (rqpair->cm_id) {
932 		rdma_destroy_id(rqpair->cm_id);
933 	}
934 
935 	free(rqpair);
936 }
937 
938 static int
939 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
940 {
941 	struct spdk_nvmf_rdma_poller	*rpoller;
942 	int				rc, num_cqe, required_num_wr;
943 
944 	/* Enlarge CQ size dynamically */
945 	rpoller = rqpair->poller;
946 	required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
947 	num_cqe = rpoller->num_cqe;
948 	if (num_cqe < required_num_wr) {
949 		num_cqe = spdk_max(num_cqe * 2, required_num_wr);
950 		num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
951 	}
952 
953 	if (rpoller->num_cqe != num_cqe) {
954 		if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) {
955 			SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n"
956 				    "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe);
957 			return -1;
958 		}
959 		if (required_num_wr > device->attr.max_cqe) {
960 			SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
961 				    required_num_wr, device->attr.max_cqe);
962 			return -1;
963 		}
964 
965 		SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
966 		rc = ibv_resize_cq(rpoller->cq, num_cqe);
967 		if (rc) {
968 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
969 			return -1;
970 		}
971 
972 		rpoller->num_cqe = num_cqe;
973 	}
974 
975 	rpoller->required_num_wr = required_num_wr;
976 	return 0;
977 }
978 
979 static int
980 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
981 {
982 	struct spdk_nvmf_rdma_qpair		*rqpair;
983 	struct spdk_nvmf_rdma_transport		*rtransport;
984 	struct spdk_nvmf_transport		*transport;
985 	struct spdk_nvmf_rdma_resource_opts	opts;
986 	struct spdk_nvmf_rdma_device		*device;
987 	struct spdk_rdma_provider_qp_init_attr	qp_init_attr = {};
988 
989 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
990 	device = rqpair->device;
991 
992 	qp_init_attr.qp_context	= rqpair;
993 	qp_init_attr.pd		= device->pd;
994 	qp_init_attr.send_cq	= rqpair->poller->cq;
995 	qp_init_attr.recv_cq	= rqpair->poller->cq;
996 
997 	if (rqpair->srq) {
998 		qp_init_attr.srq		= rqpair->srq->srq;
999 	} else {
1000 		qp_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth;
1001 	}
1002 
1003 	/* SEND, READ, and WRITE operations */
1004 	qp_init_attr.cap.max_send_wr	= (uint32_t)rqpair->max_queue_depth * 2;
1005 	qp_init_attr.cap.max_send_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
1006 	qp_init_attr.cap.max_recv_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
1007 	qp_init_attr.stats		= &rqpair->poller->stat.qp_stats;
1008 
1009 	if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
1010 		SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
1011 		goto error;
1012 	}
1013 
1014 	rqpair->rdma_qp = spdk_rdma_provider_qp_create(rqpair->cm_id, &qp_init_attr);
1015 	if (!rqpair->rdma_qp) {
1016 		goto error;
1017 	}
1018 
1019 	rqpair->qp_num = rqpair->rdma_qp->qp->qp_num;
1020 
1021 	rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2),
1022 					  qp_init_attr.cap.max_send_wr);
1023 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge);
1024 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge);
1025 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair);
1026 	SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair);
1027 
1028 	if (rqpair->poller->srq == NULL) {
1029 		rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
1030 		transport = &rtransport->transport;
1031 
1032 		opts.qp = rqpair->rdma_qp;
1033 		opts.map = device->map;
1034 		opts.qpair = rqpair;
1035 		opts.shared = false;
1036 		opts.max_queue_depth = rqpair->max_queue_depth;
1037 		opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
1038 
1039 		rqpair->resources = nvmf_rdma_resources_create(&opts);
1040 
1041 		if (!rqpair->resources) {
1042 			SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
1043 			rdma_destroy_qp(rqpair->cm_id);
1044 			goto error;
1045 		}
1046 	} else {
1047 		rqpair->resources = rqpair->poller->resources;
1048 	}
1049 
1050 	rqpair->current_recv_depth = 0;
1051 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1052 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1053 	STAILQ_INIT(&rqpair->pending_rdma_send_queue);
1054 	rqpair->qpair.queue_depth = 0;
1055 
1056 	return 0;
1057 
1058 error:
1059 	rdma_destroy_id(rqpair->cm_id);
1060 	rqpair->cm_id = NULL;
1061 	return -1;
1062 }
1063 
1064 /* Append the given recv wr structure to the resource structs outstanding recvs list. */
1065 /* This function accepts either a single wr or the first wr in a linked list. */
1066 static void
1067 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first)
1068 {
1069 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1070 			struct spdk_nvmf_rdma_transport, transport);
1071 
1072 	if (rqpair->srq != NULL) {
1073 		spdk_rdma_provider_srq_queue_recv_wrs(rqpair->srq, first);
1074 	} else {
1075 		if (spdk_rdma_provider_qp_queue_recv_wrs(rqpair->rdma_qp, first)) {
1076 			STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link);
1077 		}
1078 	}
1079 
1080 	if (rtransport->rdma_opts.no_wr_batching) {
1081 		_poller_submit_recvs(rtransport, rqpair->poller);
1082 	}
1083 }
1084 
1085 static inline void
1086 request_transfer_in(struct spdk_nvmf_request *req)
1087 {
1088 	struct spdk_nvmf_rdma_request	*rdma_req;
1089 	struct spdk_nvmf_qpair		*qpair;
1090 	struct spdk_nvmf_rdma_qpair	*rqpair;
1091 	struct spdk_nvmf_rdma_transport *rtransport;
1092 
1093 	qpair = req->qpair;
1094 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1095 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1096 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1097 				      struct spdk_nvmf_rdma_transport, transport);
1098 
1099 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1100 	assert(rdma_req != NULL);
1101 
1102 	if (spdk_rdma_provider_qp_queue_send_wrs(rqpair->rdma_qp, rdma_req->transfer_wr)) {
1103 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1104 	}
1105 	if (rtransport->rdma_opts.no_wr_batching) {
1106 		_poller_submit_sends(rtransport, rqpair->poller);
1107 	}
1108 
1109 	assert(rqpair->current_read_depth + rdma_req->num_outstanding_data_wr <= rqpair->max_read_depth);
1110 	rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1111 	assert(rqpair->current_send_depth + rdma_req->num_outstanding_data_wr <= rqpair->max_send_depth);
1112 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1113 }
1114 
1115 static inline void
1116 nvmf_rdma_request_reset_transfer_in(struct spdk_nvmf_rdma_request *rdma_req,
1117 				    struct spdk_nvmf_rdma_transport *rtransport)
1118 {
1119 	/* Put completed WRs back to pool and move transfer_wr pointer */
1120 	_nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool);
1121 	rdma_req->transfer_wr = rdma_req->remaining_tranfer_in_wrs;
1122 	rdma_req->remaining_tranfer_in_wrs = NULL;
1123 	rdma_req->num_outstanding_data_wr = rdma_req->num_remaining_data_wr;
1124 	rdma_req->num_remaining_data_wr = 0;
1125 }
1126 
1127 static inline int
1128 request_prepare_transfer_in_part(struct spdk_nvmf_request *req, uint32_t num_reads_available)
1129 {
1130 	struct spdk_nvmf_rdma_request	*rdma_req;
1131 	struct ibv_send_wr		*wr;
1132 	uint32_t i;
1133 
1134 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1135 
1136 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1137 	assert(rdma_req != NULL);
1138 	assert(num_reads_available > 0);
1139 	assert(rdma_req->num_outstanding_data_wr > num_reads_available);
1140 	wr = rdma_req->transfer_wr;
1141 
1142 	for (i = 0; i < num_reads_available - 1; i++) {
1143 		wr = wr->next;
1144 	}
1145 
1146 	rdma_req->remaining_tranfer_in_wrs = wr->next;
1147 	rdma_req->num_remaining_data_wr = rdma_req->num_outstanding_data_wr - num_reads_available;
1148 	rdma_req->num_outstanding_data_wr = num_reads_available;
1149 	/* Break chain of WRs to send only part. Once this portion completes, we continue sending RDMA_READs */
1150 	wr->next = NULL;
1151 
1152 	return 0;
1153 }
1154 
1155 static int
1156 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1157 {
1158 	int				num_outstanding_data_wr = 0;
1159 	struct spdk_nvmf_rdma_request	*rdma_req;
1160 	struct spdk_nvmf_qpair		*qpair;
1161 	struct spdk_nvmf_rdma_qpair	*rqpair;
1162 	struct spdk_nvme_cpl		*rsp;
1163 	struct ibv_send_wr		*first = NULL;
1164 	struct spdk_nvmf_rdma_transport *rtransport;
1165 
1166 	*data_posted = 0;
1167 	qpair = req->qpair;
1168 	rsp = &req->rsp->nvme_cpl;
1169 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1170 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1171 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1172 				      struct spdk_nvmf_rdma_transport, transport);
1173 
1174 	/* Advance our sq_head pointer */
1175 	if (qpair->sq_head == qpair->sq_head_max) {
1176 		qpair->sq_head = 0;
1177 	} else {
1178 		qpair->sq_head++;
1179 	}
1180 	rsp->sqhd = qpair->sq_head;
1181 
1182 	/* queue the capsule for the recv buffer */
1183 	assert(rdma_req->recv != NULL);
1184 
1185 	nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr);
1186 
1187 	rdma_req->recv = NULL;
1188 	assert(rqpair->current_recv_depth > 0);
1189 	rqpair->current_recv_depth--;
1190 
1191 	/* Build the response which consists of optional
1192 	 * RDMA WRITEs to transfer data, plus an RDMA SEND
1193 	 * containing the response.
1194 	 */
1195 	first = &rdma_req->rsp.wr;
1196 
1197 	if (spdk_unlikely(rsp->status.sc != SPDK_NVME_SC_SUCCESS)) {
1198 		/* On failure, data was not read from the controller. So clear the
1199 		 * number of outstanding data WRs to zero.
1200 		 */
1201 		rdma_req->num_outstanding_data_wr = 0;
1202 	} else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1203 		first = rdma_req->transfer_wr;
1204 		*data_posted = 1;
1205 		num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
1206 	}
1207 	if (spdk_rdma_provider_qp_queue_send_wrs(rqpair->rdma_qp, first)) {
1208 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1209 	}
1210 	if (rtransport->rdma_opts.no_wr_batching) {
1211 		_poller_submit_sends(rtransport, rqpair->poller);
1212 	}
1213 
1214 	/* +1 for the rsp wr */
1215 	assert(rqpair->current_send_depth + num_outstanding_data_wr + 1 <= rqpair->max_send_depth);
1216 	rqpair->current_send_depth += num_outstanding_data_wr + 1;
1217 
1218 	return 0;
1219 }
1220 
1221 static int
1222 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1223 {
1224 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
1225 	struct rdma_conn_param				ctrlr_event_data = {};
1226 	int						rc;
1227 
1228 	accept_data.recfmt = 0;
1229 	accept_data.crqsize = rqpair->max_queue_depth;
1230 
1231 	ctrlr_event_data.private_data = &accept_data;
1232 	ctrlr_event_data.private_data_len = sizeof(accept_data);
1233 	if (id->ps == RDMA_PS_TCP) {
1234 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1235 		ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1236 	}
1237 
1238 	/* Configure infinite retries for the initiator side qpair.
1239 	 * We need to pass this value to the initiator to prevent the
1240 	 * initiator side NIC from completing SEND requests back to the
1241 	 * initiator with status rnr_retry_count_exceeded. */
1242 	ctrlr_event_data.rnr_retry_count = 0x7;
1243 
1244 	/* When qpair is created without use of rdma cm API, an additional
1245 	 * information must be provided to initiator in the connection response:
1246 	 * whether qpair is using SRQ and its qp_num
1247 	 * Fields below are ignored by rdma cm if qpair has been
1248 	 * created using rdma cm API. */
1249 	ctrlr_event_data.srq = rqpair->srq ? 1 : 0;
1250 	ctrlr_event_data.qp_num = rqpair->qp_num;
1251 
1252 	rc = spdk_rdma_provider_qp_accept(rqpair->rdma_qp, &ctrlr_event_data);
1253 	if (rc) {
1254 		SPDK_ERRLOG("Error %d on spdk_rdma_provider_qp_accept\n", errno);
1255 	} else {
1256 		SPDK_DEBUGLOG(rdma, "Sent back the accept\n");
1257 	}
1258 
1259 	return rc;
1260 }
1261 
1262 static void
1263 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1264 {
1265 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
1266 
1267 	rej_data.recfmt = 0;
1268 	rej_data.sts = error;
1269 
1270 	rdma_reject(id, &rej_data, sizeof(rej_data));
1271 }
1272 
1273 static int
1274 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event)
1275 {
1276 	struct spdk_nvmf_rdma_transport *rtransport;
1277 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
1278 	struct spdk_nvmf_rdma_port	*port;
1279 	struct rdma_conn_param		*rdma_param = NULL;
1280 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1281 	uint16_t			max_queue_depth;
1282 	uint16_t			max_read_depth;
1283 
1284 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1285 
1286 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1287 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1288 
1289 	rdma_param = &event->param.conn;
1290 	if (rdma_param->private_data == NULL ||
1291 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1292 		SPDK_ERRLOG("connect request: no private data provided\n");
1293 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1294 		return -1;
1295 	}
1296 
1297 	private_data = rdma_param->private_data;
1298 	if (private_data->recfmt != 0) {
1299 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1300 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1301 		return -1;
1302 	}
1303 
1304 	SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n",
1305 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1306 
1307 	port = event->listen_id->context;
1308 	SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1309 		      event->listen_id, event->listen_id->verbs, port);
1310 
1311 	/* Figure out the supported queue depth. This is a multi-step process
1312 	 * that takes into account hardware maximums, host provided values,
1313 	 * and our target's internal memory limits */
1314 
1315 	SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n");
1316 
1317 	/* Start with the maximum queue depth allowed by the target */
1318 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1319 	max_read_depth = rtransport->transport.opts.max_queue_depth;
1320 	SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n",
1321 		      rtransport->transport.opts.max_queue_depth);
1322 
1323 	/* Next check the local NIC's hardware limitations */
1324 	SPDK_DEBUGLOG(rdma,
1325 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1326 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1327 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1328 	max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1329 
1330 	/* Next check the remote NIC's hardware limitations */
1331 	SPDK_DEBUGLOG(rdma,
1332 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1333 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1334 	/* from man3 rdma_get_cm_event
1335 	 * responder_resources - Specifies the number of responder resources that is requested by the recipient.
1336 	 * The responder_resources field must match the initiator depth specified by the remote node when running
1337 	 * the rdma_connect and rdma_accept functions. */
1338 	if (rdma_param->responder_resources != 0) {
1339 		if (private_data->qid) {
1340 			SPDK_DEBUGLOG(rdma, "Host (Initiator) is not allowed to use RDMA operations,"
1341 				      " responder_resources must be 0 but set to %u\n",
1342 				      rdma_param->responder_resources);
1343 		} else {
1344 			SPDK_WARNLOG("Host (Initiator) is not allowed to use RDMA operations,"
1345 				     " responder_resources must be 0 but set to %u\n",
1346 				     rdma_param->responder_resources);
1347 		}
1348 	}
1349 	/* from man3 rdma_get_cm_event
1350 	 * initiator_depth - Specifies the maximum number of outstanding RDMA read operations that the recipient holds.
1351 	 * The initiator_depth field must match the responder resources specified by the remote node when running
1352 	 * the rdma_connect and rdma_accept functions. */
1353 	if (rdma_param->initiator_depth == 0) {
1354 		SPDK_ERRLOG("Host (Initiator) doesn't support RDMA_READ or atomic operations\n");
1355 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_IRD);
1356 		return -1;
1357 	}
1358 	max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1359 
1360 	SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1361 	SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize);
1362 	max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1363 	max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1364 
1365 	SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1366 		      max_queue_depth, max_read_depth);
1367 
1368 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1369 	if (rqpair == NULL) {
1370 		SPDK_ERRLOG("Could not allocate new connection.\n");
1371 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1372 		return -1;
1373 	}
1374 
1375 	rqpair->device = port->device;
1376 	rqpair->max_queue_depth = max_queue_depth;
1377 	rqpair->max_read_depth = max_read_depth;
1378 	rqpair->cm_id = event->id;
1379 	rqpair->listen_id = event->listen_id;
1380 	rqpair->qpair.transport = transport;
1381 	/* use qid from the private data to determine the qpair type
1382 	   qid will be set to the appropriate value when the controller is created */
1383 	rqpair->qpair.qid = private_data->qid;
1384 	rqpair->qpair.numa.id_valid = 1;
1385 	rqpair->qpair.numa.id = spdk_rdma_cm_id_get_numa_id(rqpair->cm_id);
1386 
1387 	event->id->context = &rqpair->qpair;
1388 
1389 	spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair);
1390 
1391 	return 0;
1392 }
1393 
1394 static inline void
1395 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next,
1396 		   enum spdk_nvme_data_transfer xfer)
1397 {
1398 	if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1399 		wr->opcode = IBV_WR_RDMA_WRITE;
1400 		wr->send_flags = 0;
1401 		wr->next = next;
1402 	} else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1403 		wr->opcode = IBV_WR_RDMA_READ;
1404 		wr->send_flags = IBV_SEND_SIGNALED;
1405 		wr->next = NULL;
1406 	} else {
1407 		assert(0);
1408 	}
1409 }
1410 
1411 static int
1412 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1413 		       struct spdk_nvmf_rdma_request *rdma_req,
1414 		       uint32_t num_sgl_descriptors)
1415 {
1416 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1417 	struct spdk_nvmf_rdma_request_data	*current_data_wr;
1418 	uint32_t				i;
1419 
1420 	if (spdk_unlikely(num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES)) {
1421 		SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n",
1422 			    num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES);
1423 		return -EINVAL;
1424 	}
1425 
1426 	if (spdk_unlikely(spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests,
1427 						num_sgl_descriptors))) {
1428 		return -ENOMEM;
1429 	}
1430 
1431 	current_data_wr = &rdma_req->data;
1432 
1433 	for (i = 0; i < num_sgl_descriptors; i++) {
1434 		nvmf_rdma_setup_wr(&current_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer);
1435 		current_data_wr->wr.next = &work_requests[i]->wr;
1436 		current_data_wr = work_requests[i];
1437 		current_data_wr->wr.sg_list = current_data_wr->sgl;
1438 		current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id;
1439 	}
1440 
1441 	nvmf_rdma_setup_wr(&current_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1442 
1443 	return 0;
1444 }
1445 
1446 static inline void
1447 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req)
1448 {
1449 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1450 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1451 
1452 	wr->wr.rdma.rkey = sgl->keyed.key;
1453 	wr->wr.rdma.remote_addr = sgl->address;
1454 	nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1455 }
1456 
1457 static inline void
1458 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs)
1459 {
1460 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1461 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1462 	uint32_t			i;
1463 	int				j;
1464 	uint64_t			remote_addr_offset = 0;
1465 
1466 	for (i = 0; i < num_wrs; ++i) {
1467 		wr->wr.rdma.rkey = sgl->keyed.key;
1468 		wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset;
1469 		for (j = 0; j < wr->num_sge; ++j) {
1470 			remote_addr_offset += wr->sg_list[j].length;
1471 		}
1472 		wr = wr->next;
1473 	}
1474 }
1475 
1476 static int
1477 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_device *device,
1478 		      struct spdk_nvmf_rdma_request *rdma_req,
1479 		      struct ibv_send_wr *wr,
1480 		      uint32_t total_length)
1481 {
1482 	struct spdk_rdma_utils_memory_translation mem_translation;
1483 	struct ibv_sge	*sg_ele;
1484 	struct iovec *iov;
1485 	uint32_t lkey, remaining;
1486 	int rc;
1487 
1488 	wr->num_sge = 0;
1489 
1490 	while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) {
1491 		iov = &rdma_req->req.iov[rdma_req->iovpos];
1492 		rc = spdk_rdma_utils_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1493 		if (spdk_unlikely(rc)) {
1494 			return rc;
1495 		}
1496 
1497 		lkey = spdk_rdma_utils_memory_translation_get_lkey(&mem_translation);
1498 		sg_ele = &wr->sg_list[wr->num_sge];
1499 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1500 
1501 		sg_ele->lkey = lkey;
1502 		sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset;
1503 		sg_ele->length = remaining;
1504 		SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr,
1505 			      sg_ele->length);
1506 		rdma_req->offset += sg_ele->length;
1507 		total_length -= sg_ele->length;
1508 		wr->num_sge++;
1509 
1510 		if (rdma_req->offset == iov->iov_len) {
1511 			rdma_req->offset = 0;
1512 			rdma_req->iovpos++;
1513 		}
1514 	}
1515 
1516 	if (spdk_unlikely(total_length)) {
1517 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1518 		return -EINVAL;
1519 	}
1520 
1521 	return 0;
1522 }
1523 
1524 static int
1525 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_device *device,
1526 			       struct spdk_nvmf_rdma_request *rdma_req,
1527 			       struct ibv_send_wr *wr,
1528 			       uint32_t total_length,
1529 			       uint32_t num_extra_wrs)
1530 {
1531 	struct spdk_rdma_utils_memory_translation mem_translation;
1532 	struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx;
1533 	struct ibv_sge *sg_ele;
1534 	struct iovec *iov;
1535 	struct iovec *rdma_iov;
1536 	uint32_t lkey, remaining;
1537 	uint32_t remaining_data_block, data_block_size, md_size;
1538 	uint32_t sge_len;
1539 	int rc;
1540 
1541 	data_block_size = dif_ctx->block_size - dif_ctx->md_size;
1542 
1543 	if (spdk_likely(!rdma_req->req.stripped_data)) {
1544 		rdma_iov = rdma_req->req.iov;
1545 		remaining_data_block = data_block_size;
1546 		md_size = dif_ctx->md_size;
1547 	} else {
1548 		rdma_iov = rdma_req->req.stripped_data->iov;
1549 		total_length = total_length / dif_ctx->block_size * data_block_size;
1550 		remaining_data_block = total_length;
1551 		md_size = 0;
1552 	}
1553 
1554 	wr->num_sge = 0;
1555 
1556 	while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) {
1557 		iov = rdma_iov + rdma_req->iovpos;
1558 		rc = spdk_rdma_utils_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1559 		if (spdk_unlikely(rc)) {
1560 			return rc;
1561 		}
1562 
1563 		lkey = spdk_rdma_utils_memory_translation_get_lkey(&mem_translation);
1564 		sg_ele = &wr->sg_list[wr->num_sge];
1565 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1566 
1567 		while (remaining) {
1568 			if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) {
1569 				if (num_extra_wrs > 0 && wr->next) {
1570 					wr = wr->next;
1571 					wr->num_sge = 0;
1572 					sg_ele = &wr->sg_list[wr->num_sge];
1573 					num_extra_wrs--;
1574 				} else {
1575 					break;
1576 				}
1577 			}
1578 			sg_ele->lkey = lkey;
1579 			sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset);
1580 			sge_len = spdk_min(remaining, remaining_data_block);
1581 			sg_ele->length = sge_len;
1582 			SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele,
1583 				      sg_ele->addr, sg_ele->length);
1584 			remaining -= sge_len;
1585 			remaining_data_block -= sge_len;
1586 			rdma_req->offset += sge_len;
1587 			total_length -= sge_len;
1588 
1589 			sg_ele++;
1590 			wr->num_sge++;
1591 
1592 			if (remaining_data_block == 0) {
1593 				/* skip metadata */
1594 				rdma_req->offset += md_size;
1595 				total_length -= md_size;
1596 				/* Metadata that do not fit this IO buffer will be included in the next IO buffer */
1597 				remaining -= spdk_min(remaining, md_size);
1598 				remaining_data_block = data_block_size;
1599 			}
1600 
1601 			if (remaining == 0) {
1602 				/* By subtracting the size of the last IOV from the offset, we ensure that we skip
1603 				   the remaining metadata bits at the beginning of the next buffer */
1604 				rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset);
1605 				rdma_req->iovpos++;
1606 			}
1607 		}
1608 	}
1609 
1610 	if (spdk_unlikely(total_length)) {
1611 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1612 		return -EINVAL;
1613 	}
1614 
1615 	return 0;
1616 }
1617 
1618 static inline uint32_t
1619 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size)
1620 {
1621 	/* estimate the number of SG entries and WRs needed to process the request */
1622 	uint32_t num_sge = 0;
1623 	uint32_t i;
1624 	uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size);
1625 
1626 	for (i = 0; i < num_buffers && length > 0; i++) {
1627 		uint32_t buffer_len = spdk_min(length, io_unit_size);
1628 		uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size);
1629 
1630 		if (num_sge_in_block * block_size > buffer_len) {
1631 			++num_sge_in_block;
1632 		}
1633 		num_sge += num_sge_in_block;
1634 		length -= buffer_len;
1635 	}
1636 	return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES);
1637 }
1638 
1639 static int
1640 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1641 			    struct spdk_nvmf_rdma_device *device,
1642 			    struct spdk_nvmf_rdma_request *rdma_req)
1643 {
1644 	struct spdk_nvmf_rdma_qpair		*rqpair;
1645 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1646 	struct spdk_nvmf_request		*req = &rdma_req->req;
1647 	struct ibv_send_wr			*wr = &rdma_req->data.wr;
1648 	int					rc;
1649 	uint32_t				num_wrs = 1;
1650 	uint32_t				length;
1651 
1652 	rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair);
1653 	rgroup = rqpair->poller->group;
1654 
1655 	/* rdma wr specifics */
1656 	nvmf_rdma_setup_request(rdma_req);
1657 
1658 	length = req->length;
1659 	if (spdk_unlikely(req->dif_enabled)) {
1660 		req->dif.orig_length = length;
1661 		length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
1662 		req->dif.elba_length = length;
1663 	}
1664 
1665 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
1666 					   length);
1667 	if (spdk_unlikely(rc != 0)) {
1668 		return rc;
1669 	}
1670 
1671 	assert(req->iovcnt <= rqpair->max_send_sge);
1672 
1673 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1674 	 * the stripped_buffers are got for DIF stripping. */
1675 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1676 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1677 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1678 						       &rtransport->transport, req->dif.orig_length);
1679 		if (rc != 0) {
1680 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1681 		}
1682 	}
1683 
1684 	rdma_req->iovpos = 0;
1685 
1686 	if (spdk_unlikely(req->dif_enabled)) {
1687 		num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size,
1688 						 req->dif.dif_ctx.block_size);
1689 		if (num_wrs > 1) {
1690 			rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1);
1691 			if (spdk_unlikely(rc != 0)) {
1692 				goto err_exit;
1693 			}
1694 		}
1695 
1696 		rc = nvmf_rdma_fill_wr_sgl_with_dif(device, rdma_req, wr, length, num_wrs - 1);
1697 		if (spdk_unlikely(rc != 0)) {
1698 			goto err_exit;
1699 		}
1700 
1701 		if (num_wrs > 1) {
1702 			nvmf_rdma_update_remote_addr(rdma_req, num_wrs);
1703 		}
1704 	} else {
1705 		rc = nvmf_rdma_fill_wr_sgl(device, rdma_req, wr, length);
1706 		if (spdk_unlikely(rc != 0)) {
1707 			goto err_exit;
1708 		}
1709 	}
1710 
1711 	/* set the number of outstanding data WRs for this request. */
1712 	rdma_req->num_outstanding_data_wr = num_wrs;
1713 
1714 	return rc;
1715 
1716 err_exit:
1717 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1718 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1719 	req->iovcnt = 0;
1720 	return rc;
1721 }
1722 
1723 static int
1724 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1725 				      struct spdk_nvmf_rdma_device *device,
1726 				      struct spdk_nvmf_rdma_request *rdma_req)
1727 {
1728 	struct spdk_nvmf_rdma_qpair		*rqpair;
1729 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1730 	struct ibv_send_wr			*current_wr;
1731 	struct spdk_nvmf_request		*req = &rdma_req->req;
1732 	struct spdk_nvme_sgl_descriptor		*inline_segment, *desc;
1733 	uint32_t				num_sgl_descriptors;
1734 	uint32_t				lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0;
1735 	uint32_t				i;
1736 	int					rc;
1737 
1738 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1739 	rgroup = rqpair->poller->group;
1740 
1741 	inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1742 	assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1743 	assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1744 
1745 	num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1746 	assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1747 
1748 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1749 	for (i = 0; i < num_sgl_descriptors; i++) {
1750 		if (spdk_likely(!req->dif_enabled)) {
1751 			lengths[i] = desc->keyed.length;
1752 		} else {
1753 			req->dif.orig_length += desc->keyed.length;
1754 			lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx);
1755 			req->dif.elba_length += lengths[i];
1756 		}
1757 		total_length += lengths[i];
1758 		desc++;
1759 	}
1760 
1761 	if (spdk_unlikely(total_length > rtransport->transport.opts.max_io_size)) {
1762 		SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n",
1763 			    total_length, rtransport->transport.opts.max_io_size);
1764 		req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1765 		return -EINVAL;
1766 	}
1767 
1768 	rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1);
1769 	if (spdk_unlikely(rc != 0)) {
1770 		return -ENOMEM;
1771 	}
1772 
1773 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length);
1774 	if (spdk_unlikely(rc != 0)) {
1775 		nvmf_rdma_request_free_data(rdma_req, rtransport);
1776 		return rc;
1777 	}
1778 
1779 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1780 	 * the stripped_buffers are got for DIF stripping. */
1781 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1782 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1783 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1784 						       &rtransport->transport, req->dif.orig_length);
1785 		if (spdk_unlikely(rc != 0)) {
1786 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1787 		}
1788 	}
1789 
1790 	/* The first WR must always be the embedded data WR. This is how we unwind them later. */
1791 	current_wr = &rdma_req->data.wr;
1792 	assert(current_wr != NULL);
1793 
1794 	req->length = 0;
1795 	rdma_req->iovpos = 0;
1796 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1797 	for (i = 0; i < num_sgl_descriptors; i++) {
1798 		/* The descriptors must be keyed data block descriptors with an address, not an offset. */
1799 		if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1800 				  desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1801 			rc = -EINVAL;
1802 			goto err_exit;
1803 		}
1804 
1805 		if (spdk_likely(!req->dif_enabled)) {
1806 			rc = nvmf_rdma_fill_wr_sgl(device, rdma_req, current_wr, lengths[i]);
1807 		} else {
1808 			rc = nvmf_rdma_fill_wr_sgl_with_dif(device, rdma_req, current_wr,
1809 							    lengths[i], 0);
1810 		}
1811 		if (spdk_unlikely(rc != 0)) {
1812 			rc = -ENOMEM;
1813 			goto err_exit;
1814 		}
1815 
1816 		req->length += desc->keyed.length;
1817 		current_wr->wr.rdma.rkey = desc->keyed.key;
1818 		current_wr->wr.rdma.remote_addr = desc->address;
1819 		current_wr = current_wr->next;
1820 		desc++;
1821 	}
1822 
1823 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1824 	/* Go back to the last descriptor in the list. */
1825 	desc--;
1826 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1827 		if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1828 			rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1829 			rdma_req->rsp.wr.imm_data = desc->keyed.key;
1830 		}
1831 	}
1832 #endif
1833 
1834 	rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1835 
1836 	return 0;
1837 
1838 err_exit:
1839 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1840 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1841 	return rc;
1842 }
1843 
1844 static int
1845 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1846 			    struct spdk_nvmf_rdma_device *device,
1847 			    struct spdk_nvmf_rdma_request *rdma_req)
1848 {
1849 	struct spdk_nvmf_request		*req = &rdma_req->req;
1850 	struct spdk_nvme_cpl			*rsp;
1851 	struct spdk_nvme_sgl_descriptor		*sgl;
1852 	int					rc;
1853 	uint32_t				length;
1854 
1855 	rsp = &req->rsp->nvme_cpl;
1856 	sgl = &req->cmd->nvme_cmd.dptr.sgl1;
1857 
1858 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1859 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1860 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1861 
1862 		length = sgl->keyed.length;
1863 		if (spdk_unlikely(length > rtransport->transport.opts.max_io_size)) {
1864 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1865 				    length, rtransport->transport.opts.max_io_size);
1866 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1867 			return -1;
1868 		}
1869 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1870 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1871 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1872 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1873 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1874 			}
1875 		}
1876 #endif
1877 
1878 		/* fill request length and populate iovs */
1879 		req->length = length;
1880 
1881 		rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req);
1882 		if (spdk_unlikely(rc < 0)) {
1883 			if (rc == -EINVAL) {
1884 				SPDK_ERRLOG("SGL length exceeds the max I/O size\n");
1885 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1886 				return -1;
1887 			}
1888 			/* No available buffers. Queue this request up. */
1889 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1890 			return 0;
1891 		}
1892 
1893 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1894 			      req->iovcnt);
1895 
1896 		return 0;
1897 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1898 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1899 		uint64_t offset = sgl->address;
1900 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1901 
1902 		SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1903 			      offset, sgl->unkeyed.length);
1904 
1905 		if (spdk_unlikely(offset > max_len)) {
1906 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1907 				    offset, max_len);
1908 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1909 			return -1;
1910 		}
1911 		max_len -= (uint32_t)offset;
1912 
1913 		if (spdk_unlikely(sgl->unkeyed.length > max_len)) {
1914 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1915 				    sgl->unkeyed.length, max_len);
1916 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1917 			return -1;
1918 		}
1919 
1920 		rdma_req->num_outstanding_data_wr = 0;
1921 		req->data_from_pool = false;
1922 		req->length = sgl->unkeyed.length;
1923 
1924 		req->iov[0].iov_base = rdma_req->recv->buf + offset;
1925 		req->iov[0].iov_len = req->length;
1926 		req->iovcnt = 1;
1927 
1928 		return 0;
1929 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1930 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1931 
1932 		rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1933 		if (spdk_unlikely(rc == -ENOMEM)) {
1934 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1935 			return 0;
1936 		} else if (spdk_unlikely(rc == -EINVAL)) {
1937 			SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1938 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1939 			return -1;
1940 		}
1941 
1942 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1943 			      req->iovcnt);
1944 
1945 		return 0;
1946 	}
1947 
1948 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
1949 		    sgl->generic.type, sgl->generic.subtype);
1950 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1951 	return -1;
1952 }
1953 
1954 static void
1955 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1956 			struct spdk_nvmf_rdma_transport	*rtransport)
1957 {
1958 	struct spdk_nvmf_rdma_qpair		*rqpair;
1959 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1960 
1961 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1962 	if (rdma_req->req.data_from_pool) {
1963 		rgroup = rqpair->poller->group;
1964 
1965 		spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport);
1966 	}
1967 	if (rdma_req->req.stripped_data) {
1968 		nvmf_request_free_stripped_buffers(&rdma_req->req,
1969 						   &rqpair->poller->group->group,
1970 						   &rtransport->transport);
1971 	}
1972 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1973 	rdma_req->req.length = 0;
1974 	rdma_req->req.iovcnt = 0;
1975 	rdma_req->offset = 0;
1976 	rdma_req->req.dif_enabled = false;
1977 	rdma_req->fused_failed = false;
1978 	rdma_req->transfer_wr = NULL;
1979 	if (rdma_req->fused_pair) {
1980 		/* This req was part of a valid fused pair, but failed before it got to
1981 		 * READ_TO_EXECUTE state.  This means we need to fail the other request
1982 		 * in the pair, because it is no longer part of a valid pair.  If the pair
1983 		 * already reached READY_TO_EXECUTE state, we need to kick it.
1984 		 */
1985 		rdma_req->fused_pair->fused_failed = true;
1986 		if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
1987 			nvmf_rdma_request_process(rtransport, rdma_req->fused_pair);
1988 		}
1989 		rdma_req->fused_pair = NULL;
1990 	}
1991 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
1992 	rqpair->qd--;
1993 
1994 	STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
1995 	rqpair->qpair.queue_depth--;
1996 	rdma_req->state = RDMA_REQUEST_STATE_FREE;
1997 }
1998 
1999 static void
2000 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport,
2001 			       struct spdk_nvmf_rdma_qpair *rqpair,
2002 			       struct spdk_nvmf_rdma_request *rdma_req)
2003 {
2004 	enum spdk_nvme_cmd_fuse last, next;
2005 
2006 	last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2007 	next = rdma_req->req.cmd->nvme_cmd.fuse;
2008 
2009 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2010 
2011 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2012 		return;
2013 	}
2014 
2015 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2016 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2017 			/* This is a valid pair of fused commands.  Point them at each other
2018 			 * so they can be submitted consecutively once ready to be executed.
2019 			 */
2020 			rqpair->fused_first->fused_pair = rdma_req;
2021 			rdma_req->fused_pair = rqpair->fused_first;
2022 			rqpair->fused_first = NULL;
2023 			return;
2024 		} else {
2025 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2026 			rqpair->fused_first->fused_failed = true;
2027 
2028 			/* If the last req is in READY_TO_EXECUTE state, then call
2029 			 * nvmf_rdma_request_process(), otherwise nothing else will kick it.
2030 			 */
2031 			if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2032 				nvmf_rdma_request_process(rtransport, rqpair->fused_first);
2033 			}
2034 
2035 			rqpair->fused_first = NULL;
2036 		}
2037 	}
2038 
2039 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2040 		/* Set rqpair->fused_first here so that we know to check that the next request
2041 		 * is a SECOND (and to fail this one if it isn't).
2042 		 */
2043 		rqpair->fused_first = rdma_req;
2044 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2045 		/* Mark this req failed since it ia SECOND and the last one was not a FIRST. */
2046 		rdma_req->fused_failed = true;
2047 	}
2048 }
2049 
2050 bool
2051 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
2052 			  struct spdk_nvmf_rdma_request *rdma_req)
2053 {
2054 	struct spdk_nvmf_rdma_qpair	*rqpair;
2055 	struct spdk_nvmf_rdma_device	*device;
2056 	struct spdk_nvmf_rdma_poll_group *rgroup;
2057 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
2058 	int				rc;
2059 	struct spdk_nvmf_rdma_recv	*rdma_recv;
2060 	enum spdk_nvmf_rdma_request_state prev_state;
2061 	bool				progress = false;
2062 	int				data_posted;
2063 	uint32_t			num_blocks, num_rdma_reads_available, qdepth;
2064 
2065 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2066 	device = rqpair->device;
2067 	rgroup = rqpair->poller->group;
2068 
2069 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
2070 
2071 	/* If the queue pair is in an error state, force the request to the completed state
2072 	 * to release resources. */
2073 	if (spdk_unlikely(rqpair->ibv_in_error_state || !spdk_nvmf_qpair_is_active(&rqpair->qpair))) {
2074 		switch (rdma_req->state) {
2075 		case RDMA_REQUEST_STATE_NEED_BUFFER:
2076 			STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link);
2077 			break;
2078 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2079 			STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2080 			break;
2081 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2082 			if (rdma_req->num_remaining_data_wr) {
2083 				/* Partially sent request is still in the pending_rdma_read_queue,
2084 				 * remove it before completing */
2085 				rdma_req->num_remaining_data_wr = 0;
2086 				STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2087 			}
2088 			break;
2089 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2090 			STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2091 			break;
2092 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING:
2093 			STAILQ_REMOVE(&rqpair->pending_rdma_send_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2094 			break;
2095 		default:
2096 			break;
2097 		}
2098 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2099 	}
2100 
2101 	/* The loop here is to allow for several back-to-back state changes. */
2102 	do {
2103 		prev_state = rdma_req->state;
2104 
2105 		SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state);
2106 
2107 		switch (rdma_req->state) {
2108 		case RDMA_REQUEST_STATE_FREE:
2109 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
2110 			 * to escape this state. */
2111 			break;
2112 		case RDMA_REQUEST_STATE_NEW:
2113 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
2114 					  (uintptr_t)rdma_req, (uintptr_t)rqpair, rqpair->qpair.queue_depth);
2115 			rdma_recv = rdma_req->recv;
2116 
2117 			/* The first element of the SGL is the NVMe command */
2118 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
2119 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
2120 			rdma_req->transfer_wr = &rdma_req->data.wr;
2121 
2122 			if (spdk_unlikely(rqpair->ibv_in_error_state || !spdk_nvmf_qpair_is_active(&rqpair->qpair))) {
2123 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2124 				break;
2125 			}
2126 
2127 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) {
2128 				rdma_req->req.dif_enabled = true;
2129 			}
2130 
2131 			nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req);
2132 
2133 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2134 			rdma_req->rsp.wr.opcode = IBV_WR_SEND;
2135 			rdma_req->rsp.wr.imm_data = 0;
2136 #endif
2137 
2138 			/* The next state transition depends on the data transfer needs of this request. */
2139 			rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req);
2140 
2141 			if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2142 				rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2143 				rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE;
2144 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2145 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2146 				SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req);
2147 				break;
2148 			}
2149 
2150 			/* If no data to transfer, ready to execute. */
2151 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
2152 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2153 				break;
2154 			}
2155 
2156 			rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
2157 			STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link);
2158 			break;
2159 		case RDMA_REQUEST_STATE_NEED_BUFFER:
2160 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
2161 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2162 
2163 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
2164 
2165 			if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) {
2166 				/* This request needs to wait in line to obtain a buffer */
2167 				break;
2168 			}
2169 
2170 			/* Try to get a data buffer */
2171 			rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
2172 			if (spdk_unlikely(rc < 0)) {
2173 				STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2174 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2175 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2176 				break;
2177 			}
2178 
2179 			if (rdma_req->req.iovcnt == 0) {
2180 				/* No buffers available. */
2181 				rgroup->stat.pending_data_buffer++;
2182 				break;
2183 			}
2184 
2185 			STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2186 
2187 			/* If data is transferring from host to controller and the data didn't
2188 			 * arrive using in capsule data, we need to do a transfer from the host.
2189 			 */
2190 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER &&
2191 			    rdma_req->req.data_from_pool) {
2192 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
2193 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
2194 				break;
2195 			}
2196 
2197 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2198 			break;
2199 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2200 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
2201 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2202 
2203 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
2204 				/* This request needs to wait in line to perform RDMA */
2205 				break;
2206 			}
2207 			assert(rqpair->max_send_depth >= rqpair->current_send_depth);
2208 			qdepth = rqpair->max_send_depth - rqpair->current_send_depth;
2209 			assert(rqpair->max_read_depth >= rqpair->current_read_depth);
2210 			num_rdma_reads_available = rqpair->max_read_depth - rqpair->current_read_depth;
2211 			if (rdma_req->num_outstanding_data_wr > qdepth ||
2212 			    rdma_req->num_outstanding_data_wr > num_rdma_reads_available) {
2213 				if (num_rdma_reads_available && qdepth) {
2214 					/* Send as much as we can */
2215 					request_prepare_transfer_in_part(&rdma_req->req, spdk_min(num_rdma_reads_available, qdepth));
2216 				} else {
2217 					/* We can only have so many WRs outstanding. we have to wait until some finish. */
2218 					rqpair->poller->stat.pending_rdma_read++;
2219 					break;
2220 				}
2221 			}
2222 
2223 			/* We have already verified that this request is the head of the queue. */
2224 			if (rdma_req->num_remaining_data_wr == 0) {
2225 				STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
2226 			}
2227 
2228 			request_transfer_in(&rdma_req->req);
2229 			rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
2230 
2231 			break;
2232 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2233 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
2234 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2235 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
2236 			 * to escape this state. */
2237 			break;
2238 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
2239 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
2240 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2241 
2242 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2243 				if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2244 					/* generate DIF for write operation */
2245 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2246 					assert(num_blocks > 0);
2247 
2248 					rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt,
2249 							       num_blocks, &rdma_req->req.dif.dif_ctx);
2250 					if (rc != 0) {
2251 						SPDK_ERRLOG("DIF generation failed\n");
2252 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2253 						spdk_nvmf_qpair_disconnect(&rqpair->qpair);
2254 						break;
2255 					}
2256 				}
2257 
2258 				assert(rdma_req->req.dif.elba_length >= rdma_req->req.length);
2259 				/* set extended length before IO operation */
2260 				rdma_req->req.length = rdma_req->req.dif.elba_length;
2261 			}
2262 
2263 			if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2264 				if (rdma_req->fused_failed) {
2265 					/* This request failed FUSED semantics.  Fail it immediately, without
2266 					 * even sending it to the target layer.
2267 					 */
2268 					rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2269 					rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2270 					STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2271 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2272 					break;
2273 				}
2274 
2275 				if (rdma_req->fused_pair == NULL ||
2276 				    rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2277 					/* This request is ready to execute, but either we don't know yet if it's
2278 					 * valid - i.e. this is a FIRST but we haven't received the next
2279 					 * request yet or the other request of this fused pair isn't ready to
2280 					 * execute.  So break here and this request will get processed later either
2281 					 * when the other request is ready or we find that this request isn't valid.
2282 					 */
2283 					break;
2284 				}
2285 			}
2286 
2287 			/* If we get to this point, and this request is a fused command, we know that
2288 			 * it is part of valid sequence (FIRST followed by a SECOND) and that both
2289 			 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this
2290 			 * request, and the other request of the fused pair, in the correct order.
2291 			 * Also clear the ->fused_pair pointers on both requests, since after this point
2292 			 * we no longer need to maintain the relationship between these two requests.
2293 			 */
2294 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2295 				assert(rdma_req->fused_pair != NULL);
2296 				assert(rdma_req->fused_pair->fused_pair != NULL);
2297 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2298 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2299 				rdma_req->fused_pair->fused_pair = NULL;
2300 				rdma_req->fused_pair = NULL;
2301 			}
2302 			rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
2303 			spdk_nvmf_request_exec(&rdma_req->req);
2304 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2305 				assert(rdma_req->fused_pair != NULL);
2306 				assert(rdma_req->fused_pair->fused_pair != NULL);
2307 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2308 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2309 				rdma_req->fused_pair->fused_pair = NULL;
2310 				rdma_req->fused_pair = NULL;
2311 			}
2312 			break;
2313 		case RDMA_REQUEST_STATE_EXECUTING:
2314 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
2315 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2316 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
2317 			 * to escape this state. */
2318 			break;
2319 		case RDMA_REQUEST_STATE_EXECUTED:
2320 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
2321 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2322 			if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
2323 			    rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2324 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
2325 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
2326 			} else {
2327 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2328 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2329 			}
2330 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2331 				/* restore the original length */
2332 				rdma_req->req.length = rdma_req->req.dif.orig_length;
2333 
2334 				if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2335 					struct spdk_dif_error error_blk;
2336 
2337 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2338 					if (!rdma_req->req.stripped_data) {
2339 						rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2340 								     &rdma_req->req.dif.dif_ctx, &error_blk);
2341 					} else {
2342 						rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov,
2343 									  rdma_req->req.stripped_data->iovcnt,
2344 									  rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2345 									  &rdma_req->req.dif.dif_ctx, &error_blk);
2346 					}
2347 					if (rc) {
2348 						struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
2349 
2350 						SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type,
2351 							    error_blk.err_offset);
2352 						rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2353 						rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type);
2354 						STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2355 						STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2356 						rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2357 					}
2358 				}
2359 			}
2360 			break;
2361 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2362 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
2363 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2364 
2365 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
2366 				/* This request needs to wait in line to perform RDMA */
2367 				break;
2368 			}
2369 			if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
2370 			    rqpair->max_send_depth) {
2371 				/* We can only have so many WRs outstanding. we have to wait until some finish.
2372 				 * +1 since each request has an additional wr in the resp. */
2373 				rqpair->poller->stat.pending_rdma_write++;
2374 				break;
2375 			}
2376 
2377 			/* We have already verified that this request is the head of the queue. */
2378 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
2379 
2380 			/* The data transfer will be kicked off from
2381 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2382 			 * We verified that data + response fit into send queue, so we can go to the next state directly
2383 			 */
2384 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2385 			break;
2386 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING:
2387 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING, 0, 0,
2388 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2389 
2390 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_send_queue)) {
2391 				/* This request needs to wait in line to send the completion */
2392 				break;
2393 			}
2394 
2395 			assert(rqpair->current_send_depth <= rqpair->max_send_depth);
2396 			if (rqpair->current_send_depth == rqpair->max_send_depth) {
2397 				/* We can only have so many WRs outstanding. we have to wait until some finish */
2398 				rqpair->poller->stat.pending_rdma_send++;
2399 				break;
2400 			}
2401 
2402 			/* We have already verified that this request is the head of the queue. */
2403 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_send_queue, state_link);
2404 
2405 			/* The response sending will be kicked off from
2406 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2407 			 */
2408 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2409 			break;
2410 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
2411 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
2412 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2413 			rc = request_transfer_out(&rdma_req->req, &data_posted);
2414 			assert(rc == 0); /* No good way to handle this currently */
2415 			if (spdk_unlikely(rc)) {
2416 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2417 			} else {
2418 				rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
2419 						  RDMA_REQUEST_STATE_COMPLETING;
2420 			}
2421 			break;
2422 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2423 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
2424 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2425 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2426 			 * to escape this state. */
2427 			break;
2428 		case RDMA_REQUEST_STATE_COMPLETING:
2429 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
2430 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2431 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2432 			 * to escape this state. */
2433 			break;
2434 		case RDMA_REQUEST_STATE_COMPLETED:
2435 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2436 					  (uintptr_t)rdma_req, (uintptr_t)rqpair, rqpair->qpair.queue_depth);
2437 
2438 			rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc;
2439 			_nvmf_rdma_request_free(rdma_req, rtransport);
2440 			break;
2441 		case RDMA_REQUEST_NUM_STATES:
2442 		default:
2443 			assert(0);
2444 			break;
2445 		}
2446 
2447 		if (rdma_req->state != prev_state) {
2448 			progress = true;
2449 		}
2450 	} while (rdma_req->state != prev_state);
2451 
2452 	return progress;
2453 }
2454 
2455 /* Public API callbacks begin here */
2456 
2457 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2458 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2459 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2460 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
2461 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2462 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2463 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2464 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095
2465 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
2466 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false
2467 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false
2468 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100
2469 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1
2470 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false
2471 #define SPDK_NVMF_RDMA_DEFAULT_DATA_WR_POOL_SIZE 4095
2472 
2473 static void
2474 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2475 {
2476 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2477 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2478 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2479 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2480 	opts->io_unit_size =		SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2481 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2482 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2483 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2484 	opts->dif_insert_or_strip =	SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP;
2485 	opts->abort_timeout_sec =	SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC;
2486 	opts->transport_specific =      NULL;
2487 	opts->data_wr_pool_size	=	SPDK_NVMF_RDMA_DEFAULT_DATA_WR_POOL_SIZE;
2488 }
2489 
2490 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2491 			     spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg);
2492 
2493 static inline bool
2494 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device)
2495 {
2496 	return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD ||
2497 	       device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW;
2498 }
2499 
2500 static int nvmf_rdma_accept(void *ctx);
2501 static bool nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport);
2502 static void destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
2503 			      struct spdk_nvmf_rdma_device *device);
2504 
2505 static int
2506 create_ib_device(struct spdk_nvmf_rdma_transport *rtransport, struct ibv_context *context,
2507 		 struct spdk_nvmf_rdma_device **new_device)
2508 {
2509 	struct spdk_nvmf_rdma_device	*device;
2510 	int				flag = 0;
2511 	int				rc = 0;
2512 
2513 	device = calloc(1, sizeof(*device));
2514 	if (!device) {
2515 		SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2516 		return -ENOMEM;
2517 	}
2518 	device->context = context;
2519 	rc = ibv_query_device(device->context, &device->attr);
2520 	if (rc < 0) {
2521 		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2522 		free(device);
2523 		return rc;
2524 	}
2525 
2526 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2527 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2528 		SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2529 		SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2530 	}
2531 
2532 	/**
2533 	 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2534 	 * The Soft-RoCE RXE driver does not currently support send with invalidate,
2535 	 * but incorrectly reports that it does. There are changes making their way
2536 	 * through the kernel now that will enable this feature. When they are merged,
2537 	 * we can conditionally enable this feature.
2538 	 *
2539 	 * TODO: enable this for versions of the kernel rxe driver that support it.
2540 	 */
2541 	if (nvmf_rdma_is_rxe_device(device)) {
2542 		device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2543 	}
2544 #endif
2545 
2546 	/* set up device context async ev fd as NON_BLOCKING */
2547 	flag = fcntl(device->context->async_fd, F_GETFL);
2548 	rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2549 	if (rc < 0) {
2550 		SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2551 		free(device);
2552 		return rc;
2553 	}
2554 
2555 	TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2556 	SPDK_DEBUGLOG(rdma, "New device %p is added to RDMA transport\n", device);
2557 
2558 	if (g_nvmf_hooks.get_ibv_pd) {
2559 		device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2560 	} else {
2561 		device->pd = ibv_alloc_pd(device->context);
2562 	}
2563 
2564 	if (!device->pd) {
2565 		SPDK_ERRLOG("Unable to allocate protection domain.\n");
2566 		destroy_ib_device(rtransport, device);
2567 		return -ENOMEM;
2568 	}
2569 
2570 	assert(device->map == NULL);
2571 
2572 	device->map = spdk_rdma_utils_create_mem_map(device->pd, &g_nvmf_hooks, IBV_ACCESS_LOCAL_WRITE);
2573 	if (!device->map) {
2574 		SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2575 		destroy_ib_device(rtransport, device);
2576 		return -ENOMEM;
2577 	}
2578 
2579 	assert(device->map != NULL);
2580 	assert(device->pd != NULL);
2581 
2582 	if (new_device) {
2583 		*new_device = device;
2584 	}
2585 	SPDK_NOTICELOG("Create IB device %s(%p/%p) succeed.\n", ibv_get_device_name(context->device),
2586 		       device, context);
2587 
2588 	return 0;
2589 }
2590 
2591 static void
2592 free_poll_fds(struct spdk_nvmf_rdma_transport *rtransport)
2593 {
2594 	if (rtransport->poll_fds) {
2595 		free(rtransport->poll_fds);
2596 		rtransport->poll_fds = NULL;
2597 	}
2598 	rtransport->npoll_fds = 0;
2599 }
2600 
2601 static int
2602 generate_poll_fds(struct spdk_nvmf_rdma_transport *rtransport)
2603 {
2604 	/* Set up poll descriptor array to monitor events from RDMA and IB
2605 	 * in a single poll syscall
2606 	 */
2607 	int device_count = 0;
2608 	int i = 0;
2609 	struct spdk_nvmf_rdma_device *device, *tmp;
2610 
2611 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2612 		device_count++;
2613 	}
2614 
2615 	rtransport->npoll_fds = device_count + 1;
2616 
2617 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2618 	if (rtransport->poll_fds == NULL) {
2619 		SPDK_ERRLOG("poll_fds allocation failed\n");
2620 		return -ENOMEM;
2621 	}
2622 
2623 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2624 	rtransport->poll_fds[i++].events = POLLIN;
2625 
2626 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2627 		rtransport->poll_fds[i].fd = device->context->async_fd;
2628 		rtransport->poll_fds[i++].events = POLLIN;
2629 	}
2630 
2631 	return 0;
2632 }
2633 
2634 static struct spdk_nvmf_transport *
2635 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2636 {
2637 	int rc;
2638 	struct spdk_nvmf_rdma_transport *rtransport;
2639 	struct spdk_nvmf_rdma_device	*device;
2640 	struct ibv_context		**contexts;
2641 	size_t				data_wr_pool_size;
2642 	uint32_t			i;
2643 	int				flag;
2644 	uint32_t			sge_count;
2645 	uint32_t			min_shared_buffers;
2646 	uint32_t			min_in_capsule_data_size;
2647 	int				max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2648 
2649 	rtransport = calloc(1, sizeof(*rtransport));
2650 	if (!rtransport) {
2651 		return NULL;
2652 	}
2653 
2654 	TAILQ_INIT(&rtransport->devices);
2655 	TAILQ_INIT(&rtransport->ports);
2656 	TAILQ_INIT(&rtransport->poll_groups);
2657 	TAILQ_INIT(&rtransport->retry_ports);
2658 
2659 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2660 	rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
2661 	rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2662 	rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ;
2663 	rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2664 	rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING;
2665 	if (opts->transport_specific != NULL &&
2666 	    spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder,
2667 					    SPDK_COUNTOF(rdma_transport_opts_decoder),
2668 					    &rtransport->rdma_opts)) {
2669 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
2670 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2671 		return NULL;
2672 	}
2673 
2674 	SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n"
2675 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
2676 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2677 		     "  in_capsule_data_size=%d, max_aq_depth=%d,\n"
2678 		     "  num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d,"
2679 		     "  acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n",
2680 		     opts->max_queue_depth,
2681 		     opts->max_io_size,
2682 		     opts->max_qpairs_per_ctrlr - 1,
2683 		     opts->io_unit_size,
2684 		     opts->in_capsule_data_size,
2685 		     opts->max_aq_depth,
2686 		     opts->num_shared_buffers,
2687 		     rtransport->rdma_opts.num_cqe,
2688 		     rtransport->rdma_opts.max_srq_depth,
2689 		     rtransport->rdma_opts.no_srq,
2690 		     rtransport->rdma_opts.acceptor_backlog,
2691 		     rtransport->rdma_opts.no_wr_batching,
2692 		     opts->abort_timeout_sec);
2693 
2694 	/* I/O unit size cannot be larger than max I/O size */
2695 	if (opts->io_unit_size > opts->max_io_size) {
2696 		opts->io_unit_size = opts->max_io_size;
2697 	}
2698 
2699 	if (rtransport->rdma_opts.acceptor_backlog <= 0) {
2700 		SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n",
2701 			    SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG);
2702 		rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2703 	}
2704 
2705 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2706 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2707 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
2708 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2709 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2710 		return NULL;
2711 	}
2712 
2713 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
2714 	if (opts->buf_cache_size < UINT32_MAX) {
2715 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
2716 		if (min_shared_buffers > opts->num_shared_buffers) {
2717 			SPDK_ERRLOG("There are not enough buffers to satisfy"
2718 				    "per-poll group caches for each thread. (%" PRIu32 ")"
2719 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2720 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2721 			nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2722 			return NULL;
2723 		}
2724 	}
2725 
2726 	sge_count = opts->max_io_size / opts->io_unit_size;
2727 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
2728 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2729 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2730 		return NULL;
2731 	}
2732 
2733 	min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES;
2734 	if (opts->in_capsule_data_size < min_in_capsule_data_size) {
2735 		SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n",
2736 			     min_in_capsule_data_size);
2737 		opts->in_capsule_data_size = min_in_capsule_data_size;
2738 	}
2739 
2740 	rtransport->event_channel = rdma_create_event_channel();
2741 	if (rtransport->event_channel == NULL) {
2742 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2743 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2744 		return NULL;
2745 	}
2746 
2747 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2748 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2749 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2750 			    rtransport->event_channel->fd, spdk_strerror(errno));
2751 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2752 		return NULL;
2753 	}
2754 
2755 	data_wr_pool_size = opts->data_wr_pool_size;
2756 	if (data_wr_pool_size < SPDK_NVMF_MAX_SGL_ENTRIES * 2 * spdk_env_get_core_count()) {
2757 		data_wr_pool_size = SPDK_NVMF_MAX_SGL_ENTRIES * 2 * spdk_env_get_core_count();
2758 		SPDK_NOTICELOG("data_wr_pool_size is changed to %zu to guarantee enough cache for handling "
2759 			       "at least one IO in each core\n", data_wr_pool_size);
2760 	}
2761 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data", data_wr_pool_size,
2762 				   sizeof(struct spdk_nvmf_rdma_request_data), SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2763 				   SPDK_ENV_NUMA_ID_ANY);
2764 	if (!rtransport->data_wr_pool) {
2765 		if (spdk_mempool_lookup("spdk_nvmf_rdma_wr_data") != NULL) {
2766 			SPDK_ERRLOG("Unable to allocate work request pool for poll group: already exists\n");
2767 			SPDK_ERRLOG("Probably running in multiprocess environment, which is "
2768 				    "unsupported by the nvmf library\n");
2769 		} else {
2770 			SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2771 		}
2772 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2773 		return NULL;
2774 	}
2775 
2776 	contexts = rdma_get_devices(NULL);
2777 	if (contexts == NULL) {
2778 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2779 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2780 		return NULL;
2781 	}
2782 
2783 	i = 0;
2784 	rc = 0;
2785 	while (contexts[i] != NULL) {
2786 		rc = create_ib_device(rtransport, contexts[i], &device);
2787 		if (rc < 0) {
2788 			break;
2789 		}
2790 		i++;
2791 		max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2792 		device->is_ready = true;
2793 	}
2794 	rdma_free_devices(contexts);
2795 
2796 	if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2797 		/* divide and round up. */
2798 		opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2799 
2800 		/* round up to the nearest 4k. */
2801 		opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2802 
2803 		opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2804 		SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2805 			       opts->io_unit_size);
2806 	}
2807 
2808 	if (rc < 0) {
2809 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2810 		return NULL;
2811 	}
2812 
2813 	rc = generate_poll_fds(rtransport);
2814 	if (rc < 0) {
2815 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2816 		return NULL;
2817 	}
2818 
2819 	rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport,
2820 				    opts->acceptor_poll_rate);
2821 	if (!rtransport->accept_poller) {
2822 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2823 		return NULL;
2824 	}
2825 
2826 	return &rtransport->transport;
2827 }
2828 
2829 static void
2830 destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
2831 		  struct spdk_nvmf_rdma_device *device)
2832 {
2833 	TAILQ_REMOVE(&rtransport->devices, device, link);
2834 	spdk_rdma_utils_free_mem_map(&device->map);
2835 	if (device->pd) {
2836 		if (!g_nvmf_hooks.get_ibv_pd) {
2837 			ibv_dealloc_pd(device->pd);
2838 		}
2839 	}
2840 	SPDK_DEBUGLOG(rdma, "IB device [%p] is destroyed.\n", device);
2841 	free(device);
2842 }
2843 
2844 static void
2845 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
2846 {
2847 	struct spdk_nvmf_rdma_transport	*rtransport;
2848 	assert(w != NULL);
2849 
2850 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2851 	spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth);
2852 	spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq);
2853 	if (rtransport->rdma_opts.no_srq == true) {
2854 		spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe);
2855 	}
2856 	spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog);
2857 	spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching);
2858 }
2859 
2860 static int
2861 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2862 		  spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
2863 {
2864 	struct spdk_nvmf_rdma_transport	*rtransport;
2865 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
2866 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
2867 
2868 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2869 
2870 	TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, port_tmp) {
2871 		TAILQ_REMOVE(&rtransport->retry_ports, port, link);
2872 		free(port);
2873 	}
2874 
2875 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2876 		TAILQ_REMOVE(&rtransport->ports, port, link);
2877 		rdma_destroy_id(port->id);
2878 		free(port);
2879 	}
2880 
2881 	free_poll_fds(rtransport);
2882 
2883 	if (rtransport->event_channel != NULL) {
2884 		rdma_destroy_event_channel(rtransport->event_channel);
2885 	}
2886 
2887 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2888 		destroy_ib_device(rtransport, device);
2889 	}
2890 
2891 	if (rtransport->data_wr_pool != NULL) {
2892 		if (spdk_mempool_count(rtransport->data_wr_pool) != transport->opts.data_wr_pool_size) {
2893 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2894 				    spdk_mempool_count(rtransport->data_wr_pool),
2895 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2896 		}
2897 	}
2898 
2899 	spdk_mempool_free(rtransport->data_wr_pool);
2900 
2901 	spdk_poller_unregister(&rtransport->accept_poller);
2902 	free(rtransport);
2903 
2904 	if (cb_fn) {
2905 		cb_fn(cb_arg);
2906 	}
2907 	return 0;
2908 }
2909 
2910 static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2911 				     struct spdk_nvme_transport_id *trid,
2912 				     bool peer);
2913 
2914 static bool nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport);
2915 
2916 static int
2917 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
2918 		 struct spdk_nvmf_listen_opts *listen_opts)
2919 {
2920 	struct spdk_nvmf_rdma_transport	*rtransport;
2921 	struct spdk_nvmf_rdma_device	*device;
2922 	struct spdk_nvmf_rdma_port	*port, *tmp_port;
2923 	struct addrinfo			*res;
2924 	struct addrinfo			hints;
2925 	int				family;
2926 	int				rc;
2927 	long int			port_val;
2928 	bool				is_retry = false;
2929 
2930 	if (!strlen(trid->trsvcid)) {
2931 		SPDK_ERRLOG("Service id is required\n");
2932 		return -EINVAL;
2933 	}
2934 
2935 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2936 	assert(rtransport->event_channel != NULL);
2937 
2938 	port = calloc(1, sizeof(*port));
2939 	if (!port) {
2940 		SPDK_ERRLOG("Port allocation failed\n");
2941 		return -ENOMEM;
2942 	}
2943 
2944 	port->trid = trid;
2945 
2946 	switch (trid->adrfam) {
2947 	case SPDK_NVMF_ADRFAM_IPV4:
2948 		family = AF_INET;
2949 		break;
2950 	case SPDK_NVMF_ADRFAM_IPV6:
2951 		family = AF_INET6;
2952 		break;
2953 	default:
2954 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam);
2955 		free(port);
2956 		return -EINVAL;
2957 	}
2958 
2959 	memset(&hints, 0, sizeof(hints));
2960 	hints.ai_family = family;
2961 	hints.ai_flags = AI_NUMERICSERV;
2962 	hints.ai_socktype = SOCK_STREAM;
2963 	hints.ai_protocol = 0;
2964 
2965 	/* Range check the trsvcid. Fail in 3 cases:
2966 	 * < 0: means that spdk_strtol hit an error
2967 	 * 0: this results in ephemeral port which we don't want
2968 	 * > 65535: port too high
2969 	 */
2970 	port_val = spdk_strtol(trid->trsvcid, 10);
2971 	if (port_val <= 0 || port_val > 65535) {
2972 		SPDK_ERRLOG("invalid trsvcid %s\n", trid->trsvcid);
2973 		free(port);
2974 		return -EINVAL;
2975 	}
2976 
2977 	rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res);
2978 	if (rc) {
2979 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
2980 		free(port);
2981 		return -(abs(rc));
2982 	}
2983 
2984 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
2985 	if (rc < 0) {
2986 		SPDK_ERRLOG("rdma_create_id() failed\n");
2987 		freeaddrinfo(res);
2988 		free(port);
2989 		return rc;
2990 	}
2991 
2992 	rc = rdma_bind_addr(port->id, res->ai_addr);
2993 	freeaddrinfo(res);
2994 
2995 	if (rc < 0) {
2996 		TAILQ_FOREACH(tmp_port, &rtransport->retry_ports, link) {
2997 			if (spdk_nvme_transport_id_compare(tmp_port->trid, trid) == 0) {
2998 				is_retry = true;
2999 				break;
3000 			}
3001 		}
3002 		if (!is_retry) {
3003 			SPDK_ERRLOG("rdma_bind_addr() failed\n");
3004 		}
3005 		rdma_destroy_id(port->id);
3006 		free(port);
3007 		return rc;
3008 	}
3009 
3010 	if (!port->id->verbs) {
3011 		SPDK_ERRLOG("ibv_context is null\n");
3012 		rdma_destroy_id(port->id);
3013 		free(port);
3014 		return -1;
3015 	}
3016 
3017 	rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog);
3018 	if (rc < 0) {
3019 		SPDK_ERRLOG("rdma_listen() failed\n");
3020 		rdma_destroy_id(port->id);
3021 		free(port);
3022 		return rc;
3023 	}
3024 
3025 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3026 		if (device->context == port->id->verbs && device->is_ready) {
3027 			port->device = device;
3028 			break;
3029 		}
3030 	}
3031 	if (!port->device) {
3032 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
3033 			    port->id->verbs);
3034 		rdma_destroy_id(port->id);
3035 		free(port);
3036 		nvmf_rdma_rescan_devices(rtransport);
3037 		return -EINVAL;
3038 	}
3039 
3040 	SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n",
3041 		       trid->traddr, trid->trsvcid);
3042 
3043 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
3044 	return 0;
3045 }
3046 
3047 static void
3048 nvmf_rdma_stop_listen_ex(struct spdk_nvmf_transport *transport,
3049 			 const struct spdk_nvme_transport_id *trid, bool need_retry)
3050 {
3051 	struct spdk_nvmf_rdma_transport	*rtransport;
3052 	struct spdk_nvmf_rdma_port	*port, *tmp;
3053 
3054 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3055 
3056 	if (!need_retry) {
3057 		TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp) {
3058 			if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
3059 				TAILQ_REMOVE(&rtransport->retry_ports, port, link);
3060 				free(port);
3061 			}
3062 		}
3063 	}
3064 
3065 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
3066 		if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
3067 			SPDK_DEBUGLOG(rdma, "Port %s:%s removed. need retry: %d\n",
3068 				      port->trid->traddr, port->trid->trsvcid, need_retry);
3069 			TAILQ_REMOVE(&rtransport->ports, port, link);
3070 			rdma_destroy_id(port->id);
3071 			port->id = NULL;
3072 			port->device = NULL;
3073 			if (need_retry) {
3074 				TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link);
3075 			} else {
3076 				free(port);
3077 			}
3078 			break;
3079 		}
3080 	}
3081 }
3082 
3083 static void
3084 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
3085 		      const struct spdk_nvme_transport_id *trid)
3086 {
3087 	nvmf_rdma_stop_listen_ex(transport, trid, false);
3088 }
3089 
3090 static void _nvmf_rdma_register_poller_in_group(void *c);
3091 static void _nvmf_rdma_remove_poller_in_group(void *c);
3092 
3093 static bool
3094 nvmf_rdma_all_pollers_management_done(void *c)
3095 {
3096 	struct poller_manage_ctx	*ctx = c;
3097 	int				counter;
3098 
3099 	counter = __atomic_sub_fetch(ctx->inflight_op_counter, 1, __ATOMIC_SEQ_CST);
3100 	SPDK_DEBUGLOG(rdma, "nvmf_rdma_all_pollers_management_done called. counter: %d, poller: %p\n",
3101 		      counter, ctx->rpoller);
3102 
3103 	if (counter == 0) {
3104 		free((void *)ctx->inflight_op_counter);
3105 	}
3106 	free(ctx);
3107 
3108 	return counter == 0;
3109 }
3110 
3111 static int
3112 nvmf_rdma_manage_poller(struct spdk_nvmf_rdma_transport *rtransport,
3113 			struct spdk_nvmf_rdma_device *device, bool *has_inflight, bool is_add)
3114 {
3115 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3116 	struct spdk_nvmf_rdma_poller		*rpoller;
3117 	struct spdk_nvmf_poll_group		*poll_group;
3118 	struct poller_manage_ctx		*ctx;
3119 	bool					found;
3120 	int					*inflight_counter;
3121 	spdk_msg_fn				do_fn;
3122 
3123 	*has_inflight = false;
3124 	do_fn = is_add ? _nvmf_rdma_register_poller_in_group : _nvmf_rdma_remove_poller_in_group;
3125 	inflight_counter = calloc(1, sizeof(int));
3126 	if (!inflight_counter) {
3127 		SPDK_ERRLOG("Failed to allocate inflight counter when removing pollers\n");
3128 		return -ENOMEM;
3129 	}
3130 
3131 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3132 		(*inflight_counter)++;
3133 	}
3134 
3135 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3136 		found = false;
3137 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3138 			if (rpoller->device == device) {
3139 				found = true;
3140 				break;
3141 			}
3142 		}
3143 		if (found == is_add) {
3144 			__atomic_fetch_sub(inflight_counter, 1, __ATOMIC_SEQ_CST);
3145 			continue;
3146 		}
3147 
3148 		ctx = calloc(1, sizeof(struct poller_manage_ctx));
3149 		if (!ctx) {
3150 			SPDK_ERRLOG("Failed to allocate poller_manage_ctx when removing pollers\n");
3151 			if (!*has_inflight) {
3152 				free(inflight_counter);
3153 			}
3154 			return -ENOMEM;
3155 		}
3156 
3157 		ctx->rtransport = rtransport;
3158 		ctx->rgroup = rgroup;
3159 		ctx->rpoller = rpoller;
3160 		ctx->device = device;
3161 		ctx->thread = spdk_get_thread();
3162 		ctx->inflight_op_counter = inflight_counter;
3163 		*has_inflight = true;
3164 
3165 		poll_group = rgroup->group.group;
3166 		if (poll_group->thread != spdk_get_thread()) {
3167 			spdk_thread_send_msg(poll_group->thread, do_fn, ctx);
3168 		} else {
3169 			do_fn(ctx);
3170 		}
3171 	}
3172 
3173 	if (!*has_inflight) {
3174 		free(inflight_counter);
3175 	}
3176 
3177 	return 0;
3178 }
3179 
3180 static void nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport,
3181 		struct spdk_nvmf_rdma_device *device);
3182 
3183 static struct spdk_nvmf_rdma_device *
3184 nvmf_rdma_find_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
3185 			 struct ibv_context *context)
3186 {
3187 	struct spdk_nvmf_rdma_device	*device, *tmp_device;
3188 
3189 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp_device) {
3190 		if (device->need_destroy) {
3191 			continue;
3192 		}
3193 
3194 		if (strcmp(device->context->device->dev_name, context->device->dev_name) == 0) {
3195 			return device;
3196 		}
3197 	}
3198 
3199 	return NULL;
3200 }
3201 
3202 static bool
3203 nvmf_rdma_check_devices_context(struct spdk_nvmf_rdma_transport *rtransport,
3204 				struct ibv_context *context)
3205 {
3206 	struct spdk_nvmf_rdma_device	*old_device, *new_device;
3207 	int				rc = 0;
3208 	bool				has_inflight;
3209 
3210 	old_device = nvmf_rdma_find_ib_device(rtransport, context);
3211 
3212 	if (old_device) {
3213 		if (old_device->context != context && !old_device->need_destroy && old_device->is_ready) {
3214 			/* context may not have time to be cleaned when rescan. exactly one context
3215 			 * is valid for a device so this context must be invalid and just remove it. */
3216 			SPDK_WARNLOG("Device %p has a invalid context %p\n", old_device, old_device->context);
3217 			old_device->need_destroy = true;
3218 			nvmf_rdma_handle_device_removal(rtransport, old_device);
3219 		}
3220 		return false;
3221 	}
3222 
3223 	rc = create_ib_device(rtransport, context, &new_device);
3224 	/* TODO: update transport opts. */
3225 	if (rc < 0) {
3226 		SPDK_ERRLOG("Failed to create ib device for context: %s(%p)\n",
3227 			    ibv_get_device_name(context->device), context);
3228 		return false;
3229 	}
3230 
3231 	rc = nvmf_rdma_manage_poller(rtransport, new_device, &has_inflight, true);
3232 	if (rc < 0) {
3233 		SPDK_ERRLOG("Failed to add poller for device context: %s(%p)\n",
3234 			    ibv_get_device_name(context->device), context);
3235 		return false;
3236 	}
3237 
3238 	if (has_inflight) {
3239 		new_device->is_ready = true;
3240 	}
3241 
3242 	return true;
3243 }
3244 
3245 static bool
3246 nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport)
3247 {
3248 	struct spdk_nvmf_rdma_device	*device;
3249 	struct ibv_device		**ibv_device_list = NULL;
3250 	struct ibv_context		**contexts = NULL;
3251 	int				i = 0;
3252 	int				num_dev = 0;
3253 	bool				new_create = false, has_new_device = false;
3254 	struct ibv_context		*tmp_verbs = NULL;
3255 
3256 	/* do not rescan when any device is destroying, or context may be freed when
3257 	 * regenerating the poll fds.
3258 	 */
3259 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3260 		if (device->need_destroy) {
3261 			return false;
3262 		}
3263 	}
3264 
3265 	ibv_device_list = ibv_get_device_list(&num_dev);
3266 
3267 	/* There is a bug in librdmacm. If verbs init failed in rdma_get_devices, it'll be
3268 	 * marked as dead verbs and never be init again. So we need to make sure the
3269 	 * verbs is available before we call rdma_get_devices. */
3270 	if (num_dev >= 0) {
3271 		for (i = 0; i < num_dev; i++) {
3272 			tmp_verbs = ibv_open_device(ibv_device_list[i]);
3273 			if (!tmp_verbs) {
3274 				SPDK_WARNLOG("Failed to init ibv device %p, err %d. Skip rescan.\n", ibv_device_list[i], errno);
3275 				break;
3276 			}
3277 			if (nvmf_rdma_find_ib_device(rtransport, tmp_verbs) == NULL) {
3278 				SPDK_DEBUGLOG(rdma, "Find new verbs init ibv device %p(%s).\n", ibv_device_list[i],
3279 					      tmp_verbs->device->dev_name);
3280 				has_new_device = true;
3281 			}
3282 			ibv_close_device(tmp_verbs);
3283 		}
3284 		ibv_free_device_list(ibv_device_list);
3285 		if (!tmp_verbs || !has_new_device) {
3286 			return false;
3287 		}
3288 	}
3289 
3290 	contexts = rdma_get_devices(NULL);
3291 
3292 	for (i = 0; contexts && contexts[i] != NULL; i++) {
3293 		new_create |= nvmf_rdma_check_devices_context(rtransport, contexts[i]);
3294 	}
3295 
3296 	if (new_create) {
3297 		free_poll_fds(rtransport);
3298 		generate_poll_fds(rtransport);
3299 	}
3300 
3301 	if (contexts) {
3302 		rdma_free_devices(contexts);
3303 	}
3304 
3305 	return new_create;
3306 }
3307 
3308 static bool
3309 nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport)
3310 {
3311 	struct spdk_nvmf_rdma_port	*port, *tmp_port;
3312 	int				rc = 0;
3313 	bool				new_create = false;
3314 
3315 	if (TAILQ_EMPTY(&rtransport->retry_ports)) {
3316 		return false;
3317 	}
3318 
3319 	new_create = nvmf_rdma_rescan_devices(rtransport);
3320 
3321 	TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp_port) {
3322 		rc = nvmf_rdma_listen(&rtransport->transport, port->trid, NULL);
3323 
3324 		TAILQ_REMOVE(&rtransport->retry_ports, port, link);
3325 		if (rc) {
3326 			if (new_create) {
3327 				SPDK_ERRLOG("Found new IB device but port %s:%s is still failed(%d) to listen.\n",
3328 					    port->trid->traddr, port->trid->trsvcid, rc);
3329 			}
3330 			TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link);
3331 			break;
3332 		} else {
3333 			SPDK_NOTICELOG("Port %s:%s come back\n", port->trid->traddr, port->trid->trsvcid);
3334 			free(port);
3335 		}
3336 	}
3337 
3338 	return true;
3339 }
3340 
3341 static void
3342 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
3343 				struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
3344 {
3345 	struct spdk_nvmf_request *req, *tmp;
3346 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
3347 	struct spdk_nvmf_rdma_resources *resources;
3348 
3349 	/* First process requests which are waiting for response to be sent */
3350 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_send_queue, state_link, req_tmp) {
3351 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3352 			break;
3353 		}
3354 	}
3355 
3356 	/* We process I/O in the data transfer pending queue at the highest priority. */
3357 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
3358 		if (rdma_req->state != RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) {
3359 			/* Requests in this queue might be in state RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
3360 			 * they are transmitting data over network but we keep them in the list to guarantee
3361 			 * fair processing. */
3362 			continue;
3363 		}
3364 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3365 			break;
3366 		}
3367 	}
3368 
3369 	/* Then RDMA writes since reads have stronger restrictions than writes */
3370 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
3371 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3372 			break;
3373 		}
3374 	}
3375 
3376 	/* Then we handle request waiting on memory buffers. */
3377 	STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) {
3378 		rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3379 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3380 			break;
3381 		}
3382 	}
3383 
3384 	resources = rqpair->resources;
3385 	while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
3386 		rdma_req = STAILQ_FIRST(&resources->free_queue);
3387 		STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
3388 		rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
3389 		STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
3390 
3391 		if (rqpair->srq != NULL) {
3392 			rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
3393 			rdma_req->recv->qpair->qd++;
3394 		} else {
3395 			rqpair->qd++;
3396 		}
3397 
3398 		rdma_req->receive_tsc = rdma_req->recv->receive_tsc;
3399 		rdma_req->state = RDMA_REQUEST_STATE_NEW;
3400 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
3401 			break;
3402 		}
3403 	}
3404 	if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) {
3405 		rqpair->poller->stat.pending_free_request++;
3406 	}
3407 }
3408 
3409 static void
3410 nvmf_rdma_poller_process_pending_buf_queue(struct spdk_nvmf_rdma_transport *rtransport,
3411 		struct spdk_nvmf_rdma_poller *rpoller)
3412 {
3413 	struct spdk_nvmf_request *req, *tmp;
3414 	struct spdk_nvmf_rdma_request *rdma_req;
3415 
3416 	STAILQ_FOREACH_SAFE(req, &rpoller->group->group.pending_buf_queue, buf_link, tmp) {
3417 		rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3418 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
3419 			break;
3420 		}
3421 	}
3422 }
3423 
3424 static inline bool
3425 nvmf_rdma_device_supports_last_wqe_reached(struct spdk_nvmf_rdma_device *device)
3426 {
3427 	/* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */
3428 	return !nvmf_rdma_is_rxe_device(device) &&
3429 	       device->context->device->transport_type != IBV_TRANSPORT_IWARP;
3430 }
3431 
3432 static void
3433 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair)
3434 {
3435 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
3436 			struct spdk_nvmf_rdma_transport, transport);
3437 
3438 	nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
3439 
3440 	/* nvmf_rdma_close_qpair is not called */
3441 	if (!rqpair->to_close) {
3442 		return;
3443 	}
3444 
3445 	/* device is already destroyed and we should force destroy this qpair. */
3446 	if (rqpair->poller && rqpair->poller->need_destroy) {
3447 		nvmf_rdma_qpair_destroy(rqpair);
3448 		return;
3449 	}
3450 
3451 	/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
3452 	if (rqpair->current_send_depth != 0) {
3453 		return;
3454 	}
3455 
3456 	if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
3457 		return;
3458 	}
3459 
3460 	/* For devices that support LAST_WQE_REACHED with srq, we need to
3461 	 * wait to destroy the qpair until that event has been received.
3462 	 */
3463 	if (rqpair->srq != NULL && rqpair->last_wqe_reached == false &&
3464 	    nvmf_rdma_device_supports_last_wqe_reached(rqpair->device)) {
3465 		return;
3466 	}
3467 
3468 	assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR);
3469 
3470 	nvmf_rdma_qpair_destroy(rqpair);
3471 }
3472 
3473 static int
3474 nvmf_rdma_disconnect(struct rdma_cm_event *evt, bool *event_acked)
3475 {
3476 	struct spdk_nvmf_qpair		*qpair;
3477 	struct spdk_nvmf_rdma_qpair	*rqpair;
3478 
3479 	if (evt->id == NULL) {
3480 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
3481 		return -1;
3482 	}
3483 
3484 	qpair = evt->id->context;
3485 	if (qpair == NULL) {
3486 		SPDK_ERRLOG("disconnect request: no active connection\n");
3487 		return -1;
3488 	}
3489 
3490 	rdma_ack_cm_event(evt);
3491 	*event_acked = true;
3492 
3493 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3494 
3495 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair);
3496 
3497 	spdk_nvmf_qpair_disconnect(&rqpair->qpair);
3498 
3499 	return 0;
3500 }
3501 
3502 #ifdef DEBUG
3503 static const char *CM_EVENT_STR[] = {
3504 	"RDMA_CM_EVENT_ADDR_RESOLVED",
3505 	"RDMA_CM_EVENT_ADDR_ERROR",
3506 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
3507 	"RDMA_CM_EVENT_ROUTE_ERROR",
3508 	"RDMA_CM_EVENT_CONNECT_REQUEST",
3509 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
3510 	"RDMA_CM_EVENT_CONNECT_ERROR",
3511 	"RDMA_CM_EVENT_UNREACHABLE",
3512 	"RDMA_CM_EVENT_REJECTED",
3513 	"RDMA_CM_EVENT_ESTABLISHED",
3514 	"RDMA_CM_EVENT_DISCONNECTED",
3515 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
3516 	"RDMA_CM_EVENT_MULTICAST_JOIN",
3517 	"RDMA_CM_EVENT_MULTICAST_ERROR",
3518 	"RDMA_CM_EVENT_ADDR_CHANGE",
3519 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
3520 };
3521 #endif /* DEBUG */
3522 
3523 static void
3524 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport,
3525 				    struct spdk_nvmf_rdma_port *port)
3526 {
3527 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3528 	struct spdk_nvmf_rdma_poller		*rpoller;
3529 	struct spdk_nvmf_rdma_qpair		*rqpair;
3530 
3531 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3532 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3533 			RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) {
3534 				if (rqpair->listen_id == port->id) {
3535 					spdk_nvmf_qpair_disconnect(&rqpair->qpair);
3536 				}
3537 			}
3538 		}
3539 	}
3540 }
3541 
3542 static bool
3543 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport,
3544 				      struct rdma_cm_event *event)
3545 {
3546 	const struct spdk_nvme_transport_id	*trid;
3547 	struct spdk_nvmf_rdma_port		*port;
3548 	struct spdk_nvmf_rdma_transport		*rtransport;
3549 	bool					event_acked = false;
3550 
3551 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3552 	TAILQ_FOREACH(port, &rtransport->ports, link) {
3553 		if (port->id == event->id) {
3554 			SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid);
3555 			rdma_ack_cm_event(event);
3556 			event_acked = true;
3557 			trid = port->trid;
3558 			break;
3559 		}
3560 	}
3561 
3562 	if (event_acked) {
3563 		nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
3564 
3565 		nvmf_rdma_stop_listen(transport, trid);
3566 		nvmf_rdma_listen(transport, trid, NULL);
3567 	}
3568 
3569 	return event_acked;
3570 }
3571 
3572 static void
3573 nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport,
3574 				struct spdk_nvmf_rdma_device *device)
3575 {
3576 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
3577 	int				rc;
3578 	bool				has_inflight;
3579 
3580 	rc = nvmf_rdma_manage_poller(rtransport, device, &has_inflight, false);
3581 	if (rc) {
3582 		SPDK_ERRLOG("Failed to handle device removal, rc %d\n", rc);
3583 		return;
3584 	}
3585 
3586 	if (!has_inflight) {
3587 		/* no pollers, destroy the device */
3588 		device->ready_to_destroy = true;
3589 		spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_remove_destroyed_device, rtransport);
3590 	}
3591 
3592 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
3593 		if (port->device == device) {
3594 			SPDK_NOTICELOG("Port %s:%s on device %s is being removed.\n",
3595 				       port->trid->traddr,
3596 				       port->trid->trsvcid,
3597 				       ibv_get_device_name(port->device->context->device));
3598 
3599 			/* keep NVMF listener and only destroy structures of the
3600 			 * RDMA transport. when the device comes back we can retry listening
3601 			 * and the application's workflow will not be interrupted.
3602 			 */
3603 			nvmf_rdma_stop_listen_ex(&rtransport->transport, port->trid, true);
3604 		}
3605 	}
3606 }
3607 
3608 static void
3609 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport,
3610 				       struct rdma_cm_event *event)
3611 {
3612 	struct spdk_nvmf_rdma_port		*port, *tmp_port;
3613 	struct spdk_nvmf_rdma_transport		*rtransport;
3614 
3615 	port = event->id->context;
3616 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3617 
3618 	rdma_ack_cm_event(event);
3619 
3620 	/* if device removal happens during ctrl qpair disconnecting, it's possible that we receive
3621 	 * an DEVICE_REMOVAL event on qpair but the id->qp is just NULL. So we should make sure that
3622 	 * we are handling a port event here.
3623 	 */
3624 	TAILQ_FOREACH(tmp_port, &rtransport->ports, link) {
3625 		if (port == tmp_port && port->device && !port->device->need_destroy) {
3626 			port->device->need_destroy = true;
3627 			nvmf_rdma_handle_device_removal(rtransport, port->device);
3628 		}
3629 	}
3630 }
3631 
3632 static void
3633 nvmf_process_cm_events(struct spdk_nvmf_transport *transport, uint32_t max_events)
3634 {
3635 	struct spdk_nvmf_rdma_transport *rtransport;
3636 	struct rdma_cm_event		*event;
3637 	uint32_t			i;
3638 	int				rc;
3639 	bool				event_acked;
3640 
3641 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3642 
3643 	if (rtransport->event_channel == NULL) {
3644 		return;
3645 	}
3646 
3647 	for (i = 0; i < max_events; i++) {
3648 		event_acked = false;
3649 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
3650 		if (rc) {
3651 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
3652 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
3653 			}
3654 			break;
3655 		}
3656 
3657 		SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
3658 
3659 		spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
3660 
3661 		switch (event->event) {
3662 		case RDMA_CM_EVENT_ADDR_RESOLVED:
3663 		case RDMA_CM_EVENT_ADDR_ERROR:
3664 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
3665 		case RDMA_CM_EVENT_ROUTE_ERROR:
3666 			/* No action required. The target never attempts to resolve routes. */
3667 			break;
3668 		case RDMA_CM_EVENT_CONNECT_REQUEST:
3669 			rc = nvmf_rdma_connect(transport, event);
3670 			if (rc < 0) {
3671 				SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
3672 				break;
3673 			}
3674 			break;
3675 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
3676 			/* The target never initiates a new connection. So this will not occur. */
3677 			break;
3678 		case RDMA_CM_EVENT_CONNECT_ERROR:
3679 			/* Can this happen? The docs say it can, but not sure what causes it. */
3680 			break;
3681 		case RDMA_CM_EVENT_UNREACHABLE:
3682 		case RDMA_CM_EVENT_REJECTED:
3683 			/* These only occur on the client side. */
3684 			break;
3685 		case RDMA_CM_EVENT_ESTABLISHED:
3686 			/* TODO: Should we be waiting for this event anywhere? */
3687 			break;
3688 		case RDMA_CM_EVENT_DISCONNECTED:
3689 			rc = nvmf_rdma_disconnect(event, &event_acked);
3690 			if (rc < 0) {
3691 				SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3692 				break;
3693 			}
3694 			break;
3695 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
3696 			/* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL
3697 			 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s.
3698 			 * Once these events are sent to SPDK, we should release all IB resources and
3699 			 * don't make attempts to call any ibv_query/modify/create functions. We can only call
3700 			 * ibv_destroy* functions to release user space memory allocated by IB. All kernel
3701 			 * resources are already cleaned. */
3702 			if (event->id->qp) {
3703 				/* If rdma_cm event has a valid `qp` pointer then the event refers to the
3704 				 * corresponding qpair. Otherwise the event refers to a listening device. */
3705 				rc = nvmf_rdma_disconnect(event, &event_acked);
3706 				if (rc < 0) {
3707 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3708 					break;
3709 				}
3710 			} else {
3711 				nvmf_rdma_handle_cm_event_port_removal(transport, event);
3712 				event_acked = true;
3713 			}
3714 			break;
3715 		case RDMA_CM_EVENT_MULTICAST_JOIN:
3716 		case RDMA_CM_EVENT_MULTICAST_ERROR:
3717 			/* Multicast is not used */
3718 			break;
3719 		case RDMA_CM_EVENT_ADDR_CHANGE:
3720 			event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event);
3721 			break;
3722 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
3723 			/* For now, do nothing. The target never re-uses queue pairs. */
3724 			break;
3725 		default:
3726 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
3727 			break;
3728 		}
3729 		if (!event_acked) {
3730 			rdma_ack_cm_event(event);
3731 		}
3732 	}
3733 }
3734 
3735 static void
3736 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair)
3737 {
3738 	rqpair->last_wqe_reached = true;
3739 	nvmf_rdma_destroy_drained_qpair(rqpair);
3740 }
3741 
3742 static void
3743 nvmf_rdma_qpair_process_last_wqe_event(void *ctx)
3744 {
3745 	struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx;
3746 	struct spdk_nvmf_rdma_qpair *rqpair;
3747 
3748 	rqpair = event_ctx->rqpair;
3749 
3750 	if (rqpair) {
3751 		assert(event_ctx == rqpair->last_wqe_reached_ctx);
3752 		rqpair->last_wqe_reached_ctx = NULL;
3753 		nvmf_rdma_handle_last_wqe_reached(rqpair);
3754 	}
3755 	free(event_ctx);
3756 }
3757 
3758 static int
3759 nvmf_rdma_send_qpair_last_wqe_event(struct spdk_nvmf_rdma_qpair *rqpair)
3760 {
3761 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx;
3762 	struct spdk_thread *thr = NULL;
3763 	int rc;
3764 
3765 	if (rqpair->qpair.group) {
3766 		thr = rqpair->qpair.group->thread;
3767 	} else if (rqpair->destruct_channel) {
3768 		thr = spdk_io_channel_get_thread(rqpair->destruct_channel);
3769 	}
3770 
3771 	if (!thr) {
3772 		SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair);
3773 		return -EINVAL;
3774 	}
3775 
3776 	if (rqpair->last_wqe_reached || rqpair->last_wqe_reached_ctx != NULL) {
3777 		SPDK_ERRLOG("LAST_WQE_REACHED already received for rqpair %p\n", rqpair);
3778 		return -EALREADY;
3779 	}
3780 
3781 	ctx = calloc(1, sizeof(*ctx));
3782 	if (!ctx) {
3783 		return -ENOMEM;
3784 	}
3785 
3786 	ctx->rqpair = rqpair;
3787 	rqpair->last_wqe_reached_ctx = ctx;
3788 
3789 	rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_last_wqe_event, ctx);
3790 	if (rc) {
3791 		rqpair->last_wqe_reached_ctx = NULL;
3792 		free(ctx);
3793 	}
3794 
3795 	return rc;
3796 }
3797 
3798 static int
3799 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
3800 {
3801 	int				rc;
3802 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
3803 	struct ibv_async_event		event;
3804 
3805 	rc = ibv_get_async_event(device->context, &event);
3806 
3807 	if (rc) {
3808 		/* In non-blocking mode -1 means there are no events available */
3809 		return rc;
3810 	}
3811 
3812 	switch (event.event_type) {
3813 	case IBV_EVENT_QP_FATAL:
3814 	case IBV_EVENT_QP_LAST_WQE_REACHED:
3815 	case IBV_EVENT_QP_REQ_ERR:
3816 	case IBV_EVENT_QP_ACCESS_ERR:
3817 	case IBV_EVENT_COMM_EST:
3818 	case IBV_EVENT_PATH_MIG:
3819 	case IBV_EVENT_PATH_MIG_ERR:
3820 		rqpair = event.element.qp->qp_context;
3821 		if (!rqpair) {
3822 			/* Any QP event for NVMe-RDMA initiator may be returned. */
3823 			SPDK_NOTICELOG("Async QP event for unknown QP: %s\n",
3824 				       ibv_event_type_str(event.event_type));
3825 			break;
3826 		}
3827 
3828 		switch (event.event_type) {
3829 		case IBV_EVENT_QP_FATAL:
3830 			SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
3831 			spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3832 					  (uintptr_t)rqpair, event.event_type);
3833 			rqpair->ibv_in_error_state = true;
3834 			spdk_nvmf_qpair_disconnect(&rqpair->qpair);
3835 			break;
3836 		case IBV_EVENT_QP_LAST_WQE_REACHED:
3837 			/* This event only occurs for shared receive queues. */
3838 			SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair);
3839 			rc = nvmf_rdma_send_qpair_last_wqe_event(rqpair);
3840 			if (rc) {
3841 				SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc);
3842 				rqpair->last_wqe_reached = true;
3843 			}
3844 			break;
3845 		case IBV_EVENT_QP_REQ_ERR:
3846 		case IBV_EVENT_QP_ACCESS_ERR:
3847 		case IBV_EVENT_COMM_EST:
3848 		case IBV_EVENT_PATH_MIG:
3849 		case IBV_EVENT_PATH_MIG_ERR:
3850 			SPDK_NOTICELOG("Async QP event: %s\n",
3851 				       ibv_event_type_str(event.event_type));
3852 			spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3853 					  (uintptr_t)rqpair, event.event_type);
3854 			rqpair->ibv_in_error_state = true;
3855 			break;
3856 		default:
3857 			break;
3858 		}
3859 		break;
3860 	case IBV_EVENT_DEVICE_FATAL:
3861 		SPDK_ERRLOG("Device Fatal event[%s] received on %s. device: %p\n",
3862 			    ibv_event_type_str(event.event_type), ibv_get_device_name(device->context->device), device);
3863 		device->need_destroy = true;
3864 		break;
3865 	case IBV_EVENT_CQ_ERR:
3866 	case IBV_EVENT_PORT_ACTIVE:
3867 	case IBV_EVENT_PORT_ERR:
3868 	case IBV_EVENT_LID_CHANGE:
3869 	case IBV_EVENT_PKEY_CHANGE:
3870 	case IBV_EVENT_SM_CHANGE:
3871 	case IBV_EVENT_SRQ_ERR:
3872 	case IBV_EVENT_SRQ_LIMIT_REACHED:
3873 	case IBV_EVENT_CLIENT_REREGISTER:
3874 	case IBV_EVENT_GID_CHANGE:
3875 	case IBV_EVENT_SQ_DRAINED:
3876 	default:
3877 		SPDK_NOTICELOG("Async event: %s\n",
3878 			       ibv_event_type_str(event.event_type));
3879 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
3880 		break;
3881 	}
3882 	ibv_ack_async_event(&event);
3883 
3884 	return 0;
3885 }
3886 
3887 static void
3888 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events)
3889 {
3890 	int rc = 0;
3891 	uint32_t i = 0;
3892 
3893 	for (i = 0; i < max_events; i++) {
3894 		rc = nvmf_process_ib_event(device);
3895 		if (rc) {
3896 			break;
3897 		}
3898 	}
3899 
3900 	SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i);
3901 }
3902 
3903 static int
3904 nvmf_rdma_accept(void *ctx)
3905 {
3906 	int	nfds, i = 0;
3907 	struct spdk_nvmf_transport *transport = ctx;
3908 	struct spdk_nvmf_rdma_transport *rtransport;
3909 	struct spdk_nvmf_rdma_device *device, *tmp;
3910 	uint32_t count;
3911 	short revents;
3912 	bool do_retry;
3913 
3914 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3915 	do_retry = nvmf_rdma_retry_listen_port(rtransport);
3916 
3917 	count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
3918 
3919 	if (nfds <= 0) {
3920 		return do_retry ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3921 	}
3922 
3923 	/* The first poll descriptor is RDMA CM event */
3924 	if (rtransport->poll_fds[i++].revents & POLLIN) {
3925 		nvmf_process_cm_events(transport, NVMF_RDMA_MAX_EVENTS_PER_POLL);
3926 		nfds--;
3927 	}
3928 
3929 	if (nfds == 0) {
3930 		return SPDK_POLLER_BUSY;
3931 	}
3932 
3933 	/* Second and subsequent poll descriptors are IB async events */
3934 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
3935 		revents = rtransport->poll_fds[i++].revents;
3936 		if (revents & POLLIN) {
3937 			if (spdk_likely(!device->need_destroy)) {
3938 				nvmf_process_ib_events(device, NVMF_RDMA_MAX_EVENTS_PER_POLL);
3939 				if (spdk_unlikely(device->need_destroy)) {
3940 					nvmf_rdma_handle_device_removal(rtransport, device);
3941 				}
3942 			}
3943 			nfds--;
3944 		} else if (revents & POLLNVAL || revents & POLLHUP) {
3945 			SPDK_ERRLOG("Receive unknown revent %x on device %p\n", (int)revents, device);
3946 			nfds--;
3947 		}
3948 	}
3949 	/* check all flagged fd's have been served */
3950 	assert(nfds == 0);
3951 
3952 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3953 }
3954 
3955 static void
3956 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem,
3957 		     struct spdk_nvmf_ctrlr_data *cdata)
3958 {
3959 	cdata->nvmf_specific.msdbd = NVMF_DEFAULT_MSDBD;
3960 
3961 	/* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled
3962 	since in-capsule data only works with NVME drives that support SGL memory layout */
3963 	if (transport->opts.dif_insert_or_strip) {
3964 		cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16;
3965 	}
3966 
3967 	if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) {
3968 		SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule"
3969 			     " data is greater than 4KiB.\n");
3970 		SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux "
3971 			     "kernel between versions 5.4 and 5.12 data corruption may occur for "
3972 			     "writes that are not a multiple of 4KiB in size.\n");
3973 	}
3974 }
3975 
3976 static void
3977 nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
3978 		   struct spdk_nvme_transport_id *trid,
3979 		   struct spdk_nvmf_discovery_log_page_entry *entry)
3980 {
3981 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
3982 	entry->adrfam = trid->adrfam;
3983 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
3984 
3985 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
3986 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
3987 
3988 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
3989 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
3990 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
3991 }
3992 
3993 static int
3994 nvmf_rdma_poller_create(struct spdk_nvmf_rdma_transport *rtransport,
3995 			struct spdk_nvmf_rdma_poll_group *rgroup, struct spdk_nvmf_rdma_device *device,
3996 			struct spdk_nvmf_rdma_poller **out_poller)
3997 {
3998 	struct spdk_nvmf_rdma_poller		*poller;
3999 	struct spdk_rdma_provider_srq_init_attr	srq_init_attr;
4000 	struct spdk_nvmf_rdma_resource_opts	opts;
4001 	int					num_cqe;
4002 
4003 	poller = calloc(1, sizeof(*poller));
4004 	if (!poller) {
4005 		SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
4006 		return -1;
4007 	}
4008 
4009 	poller->device = device;
4010 	poller->group = rgroup;
4011 	*out_poller = poller;
4012 
4013 	RB_INIT(&poller->qpairs);
4014 	STAILQ_INIT(&poller->qpairs_pending_send);
4015 	STAILQ_INIT(&poller->qpairs_pending_recv);
4016 
4017 	TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
4018 	SPDK_DEBUGLOG(rdma, "Create poller %p on device %p in poll group %p.\n", poller, device, rgroup);
4019 	if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) {
4020 		if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) {
4021 			SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n",
4022 				     rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr);
4023 		}
4024 		poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr);
4025 
4026 		device->num_srq++;
4027 		memset(&srq_init_attr, 0, sizeof(srq_init_attr));
4028 		srq_init_attr.pd = device->pd;
4029 		srq_init_attr.stats = &poller->stat.qp_stats.recv;
4030 		srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth;
4031 		srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
4032 		poller->srq = spdk_rdma_provider_srq_create(&srq_init_attr);
4033 		if (!poller->srq) {
4034 			SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
4035 			return -1;
4036 		}
4037 
4038 		opts.qp = poller->srq;
4039 		opts.map = device->map;
4040 		opts.qpair = NULL;
4041 		opts.shared = true;
4042 		opts.max_queue_depth = poller->max_srq_depth;
4043 		opts.in_capsule_data_size = rtransport->transport.opts.in_capsule_data_size;
4044 
4045 		poller->resources = nvmf_rdma_resources_create(&opts);
4046 		if (!poller->resources) {
4047 			SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
4048 			return -1;
4049 		}
4050 	}
4051 
4052 	/*
4053 	 * When using an srq, we can limit the completion queue at startup.
4054 	 * The following formula represents the calculation:
4055 	 * num_cqe = num_recv + num_data_wr + num_send_wr.
4056 	 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
4057 	 */
4058 	if (poller->srq) {
4059 		num_cqe = poller->max_srq_depth * 3;
4060 	} else {
4061 		num_cqe = rtransport->rdma_opts.num_cqe;
4062 	}
4063 
4064 	poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
4065 	if (!poller->cq) {
4066 		SPDK_ERRLOG("Unable to create completion queue\n");
4067 		return -1;
4068 	}
4069 	poller->num_cqe = num_cqe;
4070 	return 0;
4071 }
4072 
4073 static void
4074 _nvmf_rdma_register_poller_in_group(void *c)
4075 {
4076 	struct spdk_nvmf_rdma_poller	*poller;
4077 	struct poller_manage_ctx	*ctx = c;
4078 	struct spdk_nvmf_rdma_device	*device;
4079 	int				rc;
4080 
4081 	rc = nvmf_rdma_poller_create(ctx->rtransport, ctx->rgroup, ctx->device, &poller);
4082 	if (rc < 0 && poller) {
4083 		nvmf_rdma_poller_destroy(poller);
4084 	}
4085 
4086 	device = ctx->device;
4087 	if (nvmf_rdma_all_pollers_management_done(ctx)) {
4088 		device->is_ready = true;
4089 	}
4090 }
4091 
4092 static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
4093 
4094 static struct spdk_nvmf_transport_poll_group *
4095 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport,
4096 			    struct spdk_nvmf_poll_group *group)
4097 {
4098 	struct spdk_nvmf_rdma_transport		*rtransport;
4099 	struct spdk_nvmf_rdma_poll_group	*rgroup;
4100 	struct spdk_nvmf_rdma_poller		*poller;
4101 	struct spdk_nvmf_rdma_device		*device;
4102 	int					rc;
4103 
4104 	if (spdk_interrupt_mode_is_enabled()) {
4105 		SPDK_ERRLOG("RDMA transport does not support interrupt mode\n");
4106 		return NULL;
4107 	}
4108 
4109 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
4110 
4111 	rgroup = calloc(1, sizeof(*rgroup));
4112 	if (!rgroup) {
4113 		return NULL;
4114 	}
4115 
4116 	TAILQ_INIT(&rgroup->pollers);
4117 
4118 	TAILQ_FOREACH(device, &rtransport->devices, link) {
4119 		rc = nvmf_rdma_poller_create(rtransport, rgroup, device, &poller);
4120 		if (rc < 0) {
4121 			nvmf_rdma_poll_group_destroy(&rgroup->group);
4122 			return NULL;
4123 		}
4124 	}
4125 
4126 	TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link);
4127 	if (rtransport->conn_sched.next_admin_pg == NULL) {
4128 		rtransport->conn_sched.next_admin_pg = rgroup;
4129 		rtransport->conn_sched.next_io_pg = rgroup;
4130 	}
4131 
4132 	return &rgroup->group;
4133 }
4134 
4135 static uint32_t
4136 nvmf_poll_group_get_io_qpair_count(struct spdk_nvmf_poll_group *pg)
4137 {
4138 	uint32_t count;
4139 
4140 	/* Just assume that unassociated qpairs will eventually be io
4141 	 * qpairs.  This is close enough for the use cases for this
4142 	 * function.
4143 	 */
4144 	pthread_mutex_lock(&pg->mutex);
4145 	count = pg->stat.current_io_qpairs + pg->current_unassociated_qpairs;
4146 	pthread_mutex_unlock(&pg->mutex);
4147 
4148 	return count;
4149 }
4150 
4151 static struct spdk_nvmf_transport_poll_group *
4152 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
4153 {
4154 	struct spdk_nvmf_rdma_transport *rtransport;
4155 	struct spdk_nvmf_rdma_poll_group **pg;
4156 	struct spdk_nvmf_transport_poll_group *result;
4157 	uint32_t count;
4158 
4159 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
4160 
4161 	if (TAILQ_EMPTY(&rtransport->poll_groups)) {
4162 		return NULL;
4163 	}
4164 
4165 	if (qpair->qid == 0) {
4166 		pg = &rtransport->conn_sched.next_admin_pg;
4167 	} else {
4168 		struct spdk_nvmf_rdma_poll_group *pg_min, *pg_start, *pg_current;
4169 		uint32_t min_value;
4170 
4171 		pg = &rtransport->conn_sched.next_io_pg;
4172 		pg_min = *pg;
4173 		pg_start = *pg;
4174 		pg_current = *pg;
4175 		min_value = nvmf_poll_group_get_io_qpair_count(pg_current->group.group);
4176 
4177 		while (1) {
4178 			count = nvmf_poll_group_get_io_qpair_count(pg_current->group.group);
4179 
4180 			if (count < min_value) {
4181 				min_value = count;
4182 				pg_min = pg_current;
4183 			}
4184 
4185 			pg_current = TAILQ_NEXT(pg_current, link);
4186 			if (pg_current == NULL) {
4187 				pg_current = TAILQ_FIRST(&rtransport->poll_groups);
4188 			}
4189 
4190 			if (pg_current == pg_start || min_value == 0) {
4191 				break;
4192 			}
4193 		}
4194 		*pg = pg_min;
4195 	}
4196 
4197 	assert(*pg != NULL);
4198 
4199 	result = &(*pg)->group;
4200 
4201 	*pg = TAILQ_NEXT(*pg, link);
4202 	if (*pg == NULL) {
4203 		*pg = TAILQ_FIRST(&rtransport->poll_groups);
4204 	}
4205 
4206 	return result;
4207 }
4208 
4209 static void
4210 nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller)
4211 {
4212 	struct spdk_nvmf_rdma_qpair	*qpair, *tmp_qpair;
4213 	int				rc;
4214 
4215 	TAILQ_REMOVE(&poller->group->pollers, poller, link);
4216 	RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) {
4217 		nvmf_rdma_qpair_destroy(qpair);
4218 	}
4219 
4220 	if (poller->srq) {
4221 		if (poller->resources) {
4222 			nvmf_rdma_resources_destroy(poller->resources);
4223 		}
4224 		spdk_rdma_provider_srq_destroy(poller->srq);
4225 		SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq);
4226 	}
4227 
4228 	if (poller->cq) {
4229 		rc = ibv_destroy_cq(poller->cq);
4230 		if (rc != 0) {
4231 			SPDK_ERRLOG("Destroy cq return %d, error: %s\n", rc, strerror(errno));
4232 		}
4233 	}
4234 
4235 	if (poller->destroy_cb) {
4236 		poller->destroy_cb(poller->destroy_cb_ctx);
4237 		poller->destroy_cb = NULL;
4238 	}
4239 
4240 	free(poller);
4241 }
4242 
4243 static void
4244 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
4245 {
4246 	struct spdk_nvmf_rdma_poll_group	*rgroup, *next_rgroup;
4247 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
4248 	struct spdk_nvmf_rdma_transport		*rtransport;
4249 
4250 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4251 	if (!rgroup) {
4252 		return;
4253 	}
4254 
4255 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
4256 		nvmf_rdma_poller_destroy(poller);
4257 	}
4258 
4259 	if (rgroup->group.transport == NULL) {
4260 		/* Transport can be NULL when nvmf_rdma_poll_group_create()
4261 		 * calls this function directly in a failure path. */
4262 		free(rgroup);
4263 		return;
4264 	}
4265 
4266 	rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport);
4267 
4268 	next_rgroup = TAILQ_NEXT(rgroup, link);
4269 	TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link);
4270 	if (next_rgroup == NULL) {
4271 		next_rgroup = TAILQ_FIRST(&rtransport->poll_groups);
4272 	}
4273 	if (rtransport->conn_sched.next_admin_pg == rgroup) {
4274 		rtransport->conn_sched.next_admin_pg = next_rgroup;
4275 	}
4276 	if (rtransport->conn_sched.next_io_pg == rgroup) {
4277 		rtransport->conn_sched.next_io_pg = next_rgroup;
4278 	}
4279 
4280 	free(rgroup);
4281 }
4282 
4283 static void
4284 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
4285 {
4286 	if (rqpair->cm_id != NULL) {
4287 		nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
4288 	}
4289 }
4290 
4291 static int
4292 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
4293 			 struct spdk_nvmf_qpair *qpair)
4294 {
4295 	struct spdk_nvmf_rdma_poll_group	*rgroup;
4296 	struct spdk_nvmf_rdma_qpair		*rqpair;
4297 	struct spdk_nvmf_rdma_device		*device;
4298 	struct spdk_nvmf_rdma_poller		*poller;
4299 	int					rc;
4300 
4301 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4302 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4303 
4304 	device = rqpair->device;
4305 
4306 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
4307 		if (poller->device == device) {
4308 			break;
4309 		}
4310 	}
4311 
4312 	if (!poller) {
4313 		SPDK_ERRLOG("No poller found for device.\n");
4314 		return -1;
4315 	}
4316 
4317 	if (poller->need_destroy) {
4318 		SPDK_ERRLOG("Poller is destroying.\n");
4319 		return -1;
4320 	}
4321 
4322 	rqpair->poller = poller;
4323 	rqpair->srq = rqpair->poller->srq;
4324 
4325 	rc = nvmf_rdma_qpair_initialize(qpair);
4326 	if (rc < 0) {
4327 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
4328 		rqpair->poller = NULL;
4329 		rqpair->srq = NULL;
4330 		return -1;
4331 	}
4332 
4333 	RB_INSERT(qpairs_tree, &poller->qpairs, rqpair);
4334 
4335 	rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
4336 	if (rc) {
4337 		/* Try to reject, but we probably can't */
4338 		nvmf_rdma_qpair_reject_connection(rqpair);
4339 		return -1;
4340 	}
4341 
4342 	return 0;
4343 }
4344 
4345 static int
4346 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
4347 			    struct spdk_nvmf_qpair *qpair)
4348 {
4349 	struct spdk_nvmf_rdma_qpair		*rqpair;
4350 
4351 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4352 	assert(group->transport->tgt != NULL);
4353 
4354 	rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt);
4355 
4356 	if (!rqpair->destruct_channel) {
4357 		SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair);
4358 		return 0;
4359 	}
4360 
4361 	/* Sanity check that we get io_channel on the correct thread */
4362 	if (qpair->group) {
4363 		assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel));
4364 	}
4365 
4366 	return 0;
4367 }
4368 
4369 static int
4370 nvmf_rdma_request_free(struct spdk_nvmf_request *req)
4371 {
4372 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
4373 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
4374 			struct spdk_nvmf_rdma_transport, transport);
4375 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
4376 					      struct spdk_nvmf_rdma_qpair, qpair);
4377 
4378 	/*
4379 	 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request
4380 	 * needs to be returned to the shared receive queue or the poll group will eventually be
4381 	 * starved of RECV structures.
4382 	 */
4383 	if (rqpair->srq && rdma_req->recv) {
4384 		int rc;
4385 		struct ibv_recv_wr *bad_recv_wr;
4386 
4387 		spdk_rdma_provider_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr);
4388 		rc = spdk_rdma_provider_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
4389 		if (rc) {
4390 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
4391 		}
4392 	}
4393 
4394 	_nvmf_rdma_request_free(rdma_req, rtransport);
4395 	return 0;
4396 }
4397 
4398 static int
4399 nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
4400 {
4401 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
4402 			struct spdk_nvmf_rdma_transport, transport);
4403 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
4404 			struct spdk_nvmf_rdma_request, req);
4405 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
4406 			struct spdk_nvmf_rdma_qpair, qpair);
4407 
4408 	if (spdk_unlikely(rqpair->ibv_in_error_state)) {
4409 		/* The connection is dead. Move the request directly to the completed state. */
4410 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4411 	} else {
4412 		/* The connection is alive, so process the request as normal */
4413 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
4414 	}
4415 
4416 	nvmf_rdma_request_process(rtransport, rdma_req);
4417 
4418 	return 0;
4419 }
4420 
4421 static void
4422 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair,
4423 		      spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
4424 {
4425 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4426 
4427 	rqpair->to_close = true;
4428 
4429 	/* This happens only when the qpair is disconnected before
4430 	 * it is added to the poll group. Since there is no poll group,
4431 	 * the RDMA qp has not been initialized yet and the RDMA CM
4432 	 * event has not yet been acknowledged, so we need to reject it.
4433 	 */
4434 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
4435 		nvmf_rdma_qpair_reject_connection(rqpair);
4436 		nvmf_rdma_qpair_destroy(rqpair);
4437 		return;
4438 	}
4439 
4440 	if (rqpair->rdma_qp) {
4441 		spdk_rdma_provider_qp_disconnect(rqpair->rdma_qp);
4442 	}
4443 
4444 	nvmf_rdma_destroy_drained_qpair(rqpair);
4445 
4446 	if (cb_fn) {
4447 		cb_fn(cb_arg);
4448 	}
4449 }
4450 
4451 static struct spdk_nvmf_rdma_qpair *
4452 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
4453 {
4454 	struct spdk_nvmf_rdma_qpair find;
4455 
4456 	find.qp_num = wc->qp_num;
4457 
4458 	return RB_FIND(qpairs_tree, &rpoller->qpairs, &find);
4459 }
4460 
4461 #ifdef DEBUG
4462 static int
4463 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
4464 {
4465 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
4466 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
4467 }
4468 #endif
4469 
4470 static void
4471 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr,
4472 			   int rc)
4473 {
4474 	struct spdk_nvmf_rdma_recv	*rdma_recv;
4475 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
4476 
4477 	SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc);
4478 	while (bad_recv_wr != NULL) {
4479 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id;
4480 		rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4481 
4482 		rdma_recv->qpair->current_recv_depth++;
4483 		bad_recv_wr = bad_recv_wr->next;
4484 		SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc);
4485 		spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair);
4486 	}
4487 }
4488 
4489 static void
4490 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc)
4491 {
4492 	SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc);
4493 	while (bad_recv_wr != NULL) {
4494 		bad_recv_wr = bad_recv_wr->next;
4495 		rqpair->current_recv_depth++;
4496 	}
4497 	spdk_nvmf_qpair_disconnect(&rqpair->qpair);
4498 }
4499 
4500 static void
4501 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
4502 		     struct spdk_nvmf_rdma_poller *rpoller)
4503 {
4504 	struct spdk_nvmf_rdma_qpair	*rqpair;
4505 	struct ibv_recv_wr		*bad_recv_wr;
4506 	int				rc;
4507 
4508 	if (rpoller->srq) {
4509 		rc = spdk_rdma_provider_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr);
4510 		if (spdk_unlikely(rc)) {
4511 			_poller_reset_failed_recvs(rpoller, bad_recv_wr, rc);
4512 		}
4513 	} else {
4514 		while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) {
4515 			rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv);
4516 			rc = spdk_rdma_provider_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
4517 			if (spdk_unlikely(rc)) {
4518 				_qp_reset_failed_recvs(rqpair, bad_recv_wr, rc);
4519 			}
4520 			STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link);
4521 		}
4522 	}
4523 }
4524 
4525 static void
4526 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport,
4527 		       struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc)
4528 {
4529 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
4530 	struct spdk_nvmf_rdma_request	*prev_rdma_req = NULL, *cur_rdma_req = NULL;
4531 
4532 	SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc);
4533 	for (; bad_wr != NULL; bad_wr = bad_wr->next) {
4534 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id;
4535 		assert(rqpair->current_send_depth > 0);
4536 		rqpair->current_send_depth--;
4537 		switch (bad_rdma_wr->type) {
4538 		case RDMA_WR_TYPE_DATA:
4539 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data_wr);
4540 			if (bad_wr->opcode == IBV_WR_RDMA_READ) {
4541 				assert(rqpair->current_read_depth > 0);
4542 				rqpair->current_read_depth--;
4543 			}
4544 			break;
4545 		case RDMA_WR_TYPE_SEND:
4546 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr);
4547 			break;
4548 		default:
4549 			SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair);
4550 			prev_rdma_req = cur_rdma_req;
4551 			continue;
4552 		}
4553 
4554 		if (prev_rdma_req == cur_rdma_req) {
4555 			/* this request was handled by an earlier wr. i.e. we were performing an nvme read. */
4556 			/* We only have to check against prev_wr since each requests wrs are contiguous in this list. */
4557 			continue;
4558 		}
4559 
4560 		switch (cur_rdma_req->state) {
4561 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
4562 			cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
4563 			STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, cur_rdma_req, state_link);
4564 			cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
4565 			break;
4566 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
4567 		case RDMA_REQUEST_STATE_COMPLETING:
4568 			cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4569 			break;
4570 		default:
4571 			SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n",
4572 				    cur_rdma_req->state, rqpair);
4573 			continue;
4574 		}
4575 
4576 		nvmf_rdma_request_process(rtransport, cur_rdma_req);
4577 		prev_rdma_req = cur_rdma_req;
4578 	}
4579 
4580 	if (spdk_nvmf_qpair_is_active(&rqpair->qpair)) {
4581 		/* Disconnect the connection. */
4582 		spdk_nvmf_qpair_disconnect(&rqpair->qpair);
4583 	}
4584 
4585 }
4586 
4587 static void
4588 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
4589 		     struct spdk_nvmf_rdma_poller *rpoller)
4590 {
4591 	struct spdk_nvmf_rdma_qpair	*rqpair;
4592 	struct ibv_send_wr		*bad_wr = NULL;
4593 	int				rc;
4594 
4595 	while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) {
4596 		rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send);
4597 		rc = spdk_rdma_provider_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr);
4598 
4599 		/* bad wr always points to the first wr that failed. */
4600 		if (spdk_unlikely(rc)) {
4601 			_qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc);
4602 		}
4603 		STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link);
4604 	}
4605 }
4606 
4607 static const char *
4608 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type)
4609 {
4610 	switch (wr_type) {
4611 	case RDMA_WR_TYPE_RECV:
4612 		return "RECV";
4613 	case RDMA_WR_TYPE_SEND:
4614 		return "SEND";
4615 	case RDMA_WR_TYPE_DATA:
4616 		return "DATA";
4617 	default:
4618 		SPDK_ERRLOG("Unknown WR type %d\n", wr_type);
4619 		SPDK_UNREACHABLE();
4620 	}
4621 }
4622 
4623 static inline void
4624 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc)
4625 {
4626 	enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type;
4627 
4628 	if (wc->status == IBV_WC_WR_FLUSH_ERR) {
4629 		/* If qpair is in ERR state, we will receive completions for all posted and not completed
4630 		 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
4631 		SPDK_DEBUGLOG(rdma,
4632 			      "Error on CQ %p, (qp state %d, in_error %d) request 0x%lu, type %s, status: (%d): %s\n",
4633 			      rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_in_error_state, wc->wr_id,
4634 			      nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
4635 	} else {
4636 		SPDK_ERRLOG("Error on CQ %p, (qp state %d, in_error %d) request 0x%lu, type %s, status: (%d): %s\n",
4637 			    rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_in_error_state, wc->wr_id,
4638 			    nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
4639 	}
4640 }
4641 
4642 static int
4643 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
4644 		      struct spdk_nvmf_rdma_poller *rpoller)
4645 {
4646 	struct ibv_wc wc[32];
4647 	struct spdk_nvmf_rdma_wr	*rdma_wr;
4648 	struct spdk_nvmf_rdma_request	*rdma_req;
4649 	struct spdk_nvmf_rdma_recv	*rdma_recv;
4650 	struct spdk_nvmf_rdma_qpair	*rqpair, *tmp_rqpair;
4651 	int reaped, i;
4652 	int count = 0;
4653 	int rc;
4654 	bool error = false;
4655 	uint64_t poll_tsc = spdk_get_ticks();
4656 
4657 	if (spdk_unlikely(rpoller->need_destroy)) {
4658 		/* If qpair is closed before poller destroy, nvmf_rdma_destroy_drained_qpair may not
4659 		 * be called because we cannot poll anything from cq. So we call that here to force
4660 		 * destroy the qpair after to_close turning true.
4661 		 */
4662 		RB_FOREACH_SAFE(rqpair, qpairs_tree, &rpoller->qpairs, tmp_rqpair) {
4663 			nvmf_rdma_destroy_drained_qpair(rqpair);
4664 		}
4665 		return 0;
4666 	}
4667 
4668 	/* Poll for completing operations. */
4669 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
4670 	if (spdk_unlikely(reaped < 0)) {
4671 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
4672 			    errno, spdk_strerror(errno));
4673 		return -1;
4674 	} else if (reaped == 0) {
4675 		rpoller->stat.idle_polls++;
4676 	}
4677 
4678 	rpoller->stat.polls++;
4679 	rpoller->stat.completions += reaped;
4680 
4681 	for (i = 0; i < reaped; i++) {
4682 
4683 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
4684 
4685 		switch (rdma_wr->type) {
4686 		case RDMA_WR_TYPE_SEND:
4687 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr);
4688 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4689 
4690 			if (spdk_likely(!wc[i].status)) {
4691 				count++;
4692 				assert(wc[i].opcode == IBV_WC_SEND);
4693 				assert(nvmf_rdma_req_is_completing(rdma_req));
4694 			}
4695 
4696 			rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4697 			/* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */
4698 			assert(rqpair->current_send_depth >= (uint32_t)rdma_req->num_outstanding_data_wr + 1);
4699 			rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1;
4700 			rdma_req->num_outstanding_data_wr = 0;
4701 
4702 			nvmf_rdma_request_process(rtransport, rdma_req);
4703 			break;
4704 		case RDMA_WR_TYPE_RECV:
4705 			/* rdma_recv->qpair will be invalid if using an SRQ.  In that case we have to get the qpair from the wc. */
4706 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4707 			if (rpoller->srq != NULL) {
4708 				rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
4709 				/* It is possible that there are still some completions for destroyed QP
4710 				 * associated with SRQ. We just ignore these late completions and re-post
4711 				 * receive WRs back to SRQ.
4712 				 */
4713 				if (spdk_unlikely(NULL == rdma_recv->qpair)) {
4714 					struct ibv_recv_wr *bad_wr;
4715 
4716 					rdma_recv->wr.next = NULL;
4717 					spdk_rdma_provider_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr);
4718 					rc = spdk_rdma_provider_srq_flush_recv_wrs(rpoller->srq, &bad_wr);
4719 					if (rc) {
4720 						SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc);
4721 					}
4722 					continue;
4723 				}
4724 			}
4725 			rqpair = rdma_recv->qpair;
4726 
4727 			assert(rqpair != NULL);
4728 			if (spdk_likely(!wc[i].status)) {
4729 				assert(wc[i].opcode == IBV_WC_RECV);
4730 				if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
4731 					spdk_nvmf_qpair_disconnect(&rqpair->qpair);
4732 					break;
4733 				}
4734 			}
4735 
4736 			rdma_recv->wr.next = NULL;
4737 			rqpair->current_recv_depth++;
4738 			rdma_recv->receive_tsc = poll_tsc;
4739 			rpoller->stat.requests++;
4740 			STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link);
4741 			rqpair->qpair.queue_depth++;
4742 			break;
4743 		case RDMA_WR_TYPE_DATA:
4744 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data_wr);
4745 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4746 
4747 			assert(rdma_req->num_outstanding_data_wr > 0);
4748 
4749 			rqpair->current_send_depth--;
4750 			rdma_req->num_outstanding_data_wr--;
4751 			if (spdk_likely(!wc[i].status)) {
4752 				assert(wc[i].opcode == IBV_WC_RDMA_READ);
4753 				rqpair->current_read_depth--;
4754 				/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
4755 				if (rdma_req->num_outstanding_data_wr == 0) {
4756 					if (rdma_req->num_remaining_data_wr) {
4757 						/* Only part of RDMA_READ operations was submitted, process the rest */
4758 						nvmf_rdma_request_reset_transfer_in(rdma_req, rtransport);
4759 						rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
4760 						nvmf_rdma_request_process(rtransport, rdma_req);
4761 						break;
4762 					}
4763 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
4764 					nvmf_rdma_request_process(rtransport, rdma_req);
4765 				}
4766 			} else {
4767 				/* If the data transfer fails still force the queue into the error state,
4768 				 * if we were performing an RDMA_READ, we need to force the request into a
4769 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
4770 				 * case, we should wait for the SEND to complete. */
4771 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
4772 					rqpair->current_read_depth--;
4773 					if (rdma_req->num_outstanding_data_wr == 0) {
4774 						if (rdma_req->num_remaining_data_wr) {
4775 							/* Partially sent request is still in the pending_rdma_read_queue,
4776 							 * remove it now before completing */
4777 							rdma_req->num_remaining_data_wr = 0;
4778 							STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
4779 						}
4780 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4781 						nvmf_rdma_request_process(rtransport, rdma_req);
4782 					}
4783 				}
4784 			}
4785 			break;
4786 		default:
4787 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
4788 			continue;
4789 		}
4790 
4791 		/* Handle error conditions */
4792 		if (spdk_unlikely(wc[i].status)) {
4793 			rqpair->ibv_in_error_state = true;
4794 			nvmf_rdma_log_wc_status(rqpair, &wc[i]);
4795 
4796 			error = true;
4797 
4798 			if (spdk_nvmf_qpair_is_active(&rqpair->qpair)) {
4799 				/* Disconnect the connection. */
4800 				spdk_nvmf_qpair_disconnect(&rqpair->qpair);
4801 			} else {
4802 				nvmf_rdma_destroy_drained_qpair(rqpair);
4803 			}
4804 			continue;
4805 		}
4806 
4807 		nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
4808 
4809 		if (spdk_unlikely(!spdk_nvmf_qpair_is_active(&rqpair->qpair))) {
4810 			nvmf_rdma_destroy_drained_qpair(rqpair);
4811 		}
4812 	}
4813 
4814 	if (spdk_unlikely(error == true)) {
4815 		return -1;
4816 	}
4817 
4818 	if (reaped == 0) {
4819 		/* In some cases we may not receive any CQE but we still may have pending IO requests waiting for
4820 		 * a resource (e.g. a WR from the data_wr_pool).
4821 		 * We need to start processing of such requests if no CQE reaped */
4822 		nvmf_rdma_poller_process_pending_buf_queue(rtransport, rpoller);
4823 	}
4824 
4825 	/* submit outstanding work requests. */
4826 	_poller_submit_recvs(rtransport, rpoller);
4827 	_poller_submit_sends(rtransport, rpoller);
4828 
4829 	return count;
4830 }
4831 
4832 static void
4833 _nvmf_rdma_remove_destroyed_device(void *c)
4834 {
4835 	struct spdk_nvmf_rdma_transport	*rtransport = c;
4836 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
4837 	int				rc;
4838 
4839 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
4840 		if (device->ready_to_destroy) {
4841 			destroy_ib_device(rtransport, device);
4842 		}
4843 	}
4844 
4845 	free_poll_fds(rtransport);
4846 	rc = generate_poll_fds(rtransport);
4847 	/* cannot handle fd allocation error here */
4848 	if (rc != 0) {
4849 		SPDK_ERRLOG("Failed to generate poll fds after remove ib device.\n");
4850 	}
4851 }
4852 
4853 static void
4854 _nvmf_rdma_remove_poller_in_group_cb(void *c)
4855 {
4856 	struct poller_manage_ctx	*ctx = c;
4857 	struct spdk_nvmf_rdma_transport	*rtransport = ctx->rtransport;
4858 	struct spdk_nvmf_rdma_device	*device = ctx->device;
4859 	struct spdk_thread		*thread = ctx->thread;
4860 
4861 	if (nvmf_rdma_all_pollers_management_done(c)) {
4862 		/* destroy device when last poller is destroyed */
4863 		device->ready_to_destroy = true;
4864 		spdk_thread_send_msg(thread, _nvmf_rdma_remove_destroyed_device, rtransport);
4865 	}
4866 }
4867 
4868 static void
4869 _nvmf_rdma_remove_poller_in_group(void *c)
4870 {
4871 	struct poller_manage_ctx		*ctx = c;
4872 
4873 	ctx->rpoller->need_destroy = true;
4874 	ctx->rpoller->destroy_cb_ctx = ctx;
4875 	ctx->rpoller->destroy_cb = _nvmf_rdma_remove_poller_in_group_cb;
4876 
4877 	/* qp will be disconnected after receiving a RDMA_CM_EVENT_DEVICE_REMOVAL event. */
4878 	if (RB_EMPTY(&ctx->rpoller->qpairs)) {
4879 		nvmf_rdma_poller_destroy(ctx->rpoller);
4880 	}
4881 }
4882 
4883 static int
4884 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
4885 {
4886 	struct spdk_nvmf_rdma_transport *rtransport;
4887 	struct spdk_nvmf_rdma_poll_group *rgroup;
4888 	struct spdk_nvmf_rdma_poller	*rpoller, *tmp;
4889 	int				count = 0, rc, rc2 = 0;
4890 
4891 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
4892 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4893 
4894 	TAILQ_FOREACH_SAFE(rpoller, &rgroup->pollers, link, tmp) {
4895 		rc = nvmf_rdma_poller_poll(rtransport, rpoller);
4896 		if (spdk_unlikely(rc < 0)) {
4897 			if (rc2 == 0) {
4898 				rc2 = rc;
4899 			}
4900 			continue;
4901 		}
4902 		count += rc;
4903 	}
4904 
4905 	return rc2 ? rc2 : count;
4906 }
4907 
4908 static int
4909 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
4910 			  struct spdk_nvme_transport_id *trid,
4911 			  bool peer)
4912 {
4913 	struct sockaddr *saddr;
4914 	uint16_t port;
4915 
4916 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA);
4917 
4918 	if (peer) {
4919 		saddr = rdma_get_peer_addr(id);
4920 	} else {
4921 		saddr = rdma_get_local_addr(id);
4922 	}
4923 	switch (saddr->sa_family) {
4924 	case AF_INET: {
4925 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
4926 
4927 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
4928 		inet_ntop(AF_INET, &saddr_in->sin_addr,
4929 			  trid->traddr, sizeof(trid->traddr));
4930 		if (peer) {
4931 			port = ntohs(rdma_get_dst_port(id));
4932 		} else {
4933 			port = ntohs(rdma_get_src_port(id));
4934 		}
4935 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4936 		break;
4937 	}
4938 	case AF_INET6: {
4939 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
4940 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
4941 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
4942 			  trid->traddr, sizeof(trid->traddr));
4943 		if (peer) {
4944 			port = ntohs(rdma_get_dst_port(id));
4945 		} else {
4946 			port = ntohs(rdma_get_src_port(id));
4947 		}
4948 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4949 		break;
4950 	}
4951 	default:
4952 		return -1;
4953 
4954 	}
4955 
4956 	return 0;
4957 }
4958 
4959 static int
4960 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
4961 			      struct spdk_nvme_transport_id *trid)
4962 {
4963 	struct spdk_nvmf_rdma_qpair	*rqpair;
4964 
4965 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4966 
4967 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
4968 }
4969 
4970 static int
4971 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
4972 			       struct spdk_nvme_transport_id *trid)
4973 {
4974 	struct spdk_nvmf_rdma_qpair	*rqpair;
4975 
4976 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4977 
4978 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
4979 }
4980 
4981 static int
4982 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
4983 				struct spdk_nvme_transport_id *trid)
4984 {
4985 	struct spdk_nvmf_rdma_qpair	*rqpair;
4986 
4987 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4988 
4989 	return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
4990 }
4991 
4992 void
4993 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
4994 {
4995 	g_nvmf_hooks = *hooks;
4996 }
4997 
4998 static void
4999 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req,
5000 				   struct spdk_nvmf_rdma_request *rdma_req_to_abort,
5001 				   struct spdk_nvmf_rdma_qpair *rqpair)
5002 {
5003 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
5004 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
5005 
5006 	STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req_to_abort, state_link);
5007 	rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
5008 
5009 	req->rsp->nvme_cpl.cdw0 &= ~1U;	/* Command was successfully aborted. */
5010 }
5011 
5012 static int
5013 _nvmf_rdma_qpair_abort_request(void *ctx)
5014 {
5015 	struct spdk_nvmf_request *req = ctx;
5016 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF(
5017 				req->req_to_abort, struct spdk_nvmf_rdma_request, req);
5018 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
5019 					      struct spdk_nvmf_rdma_qpair, qpair);
5020 	int rc;
5021 
5022 	spdk_poller_unregister(&req->poller);
5023 
5024 	switch (rdma_req_to_abort->state) {
5025 	case RDMA_REQUEST_STATE_EXECUTING:
5026 		rc = nvmf_ctrlr_abort_request(req);
5027 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
5028 			return SPDK_POLLER_BUSY;
5029 		}
5030 		break;
5031 
5032 	case RDMA_REQUEST_STATE_NEED_BUFFER:
5033 		STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue,
5034 			      &rdma_req_to_abort->req, spdk_nvmf_request, buf_link);
5035 
5036 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5037 		break;
5038 
5039 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
5040 		STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort,
5041 			      spdk_nvmf_rdma_request, state_link);
5042 
5043 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5044 		break;
5045 
5046 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
5047 		STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort,
5048 			      spdk_nvmf_rdma_request, state_link);
5049 
5050 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5051 		break;
5052 
5053 	case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING:
5054 		/* Remove req from the list here to re-use common function */
5055 		STAILQ_REMOVE(&rqpair->pending_rdma_send_queue, rdma_req_to_abort,
5056 			      spdk_nvmf_rdma_request, state_link);
5057 
5058 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5059 		break;
5060 
5061 	case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
5062 		if (spdk_get_ticks() < req->timeout_tsc) {
5063 			req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0);
5064 			return SPDK_POLLER_BUSY;
5065 		}
5066 		break;
5067 
5068 	default:
5069 		break;
5070 	}
5071 
5072 	spdk_nvmf_request_complete(req);
5073 	return SPDK_POLLER_BUSY;
5074 }
5075 
5076 static void
5077 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
5078 			      struct spdk_nvmf_request *req)
5079 {
5080 	struct spdk_nvmf_rdma_qpair *rqpair;
5081 	struct spdk_nvmf_rdma_transport *rtransport;
5082 	struct spdk_nvmf_transport *transport;
5083 	uint16_t cid;
5084 	uint32_t i, max_req_count;
5085 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req;
5086 
5087 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
5088 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
5089 	transport = &rtransport->transport;
5090 
5091 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
5092 	max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth;
5093 
5094 	for (i = 0; i < max_req_count; i++) {
5095 		rdma_req = &rqpair->resources->reqs[i];
5096 		/* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair
5097 		 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to
5098 		 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */
5099 		if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid &&
5100 		    rdma_req->req.qpair == qpair) {
5101 			rdma_req_to_abort = rdma_req;
5102 			break;
5103 		}
5104 	}
5105 
5106 	if (rdma_req_to_abort == NULL) {
5107 		spdk_nvmf_request_complete(req);
5108 		return;
5109 	}
5110 
5111 	req->req_to_abort = &rdma_req_to_abort->req;
5112 	req->timeout_tsc = spdk_get_ticks() +
5113 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
5114 	req->poller = NULL;
5115 
5116 	_nvmf_rdma_qpair_abort_request(req);
5117 }
5118 
5119 static void
5120 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group,
5121 			       struct spdk_json_write_ctx *w)
5122 {
5123 	struct spdk_nvmf_rdma_poll_group *rgroup;
5124 	struct spdk_nvmf_rdma_poller *rpoller;
5125 
5126 	assert(w != NULL);
5127 
5128 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
5129 
5130 	spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer);
5131 
5132 	spdk_json_write_named_array_begin(w, "devices");
5133 
5134 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
5135 		spdk_json_write_object_begin(w);
5136 		spdk_json_write_named_string(w, "name",
5137 					     ibv_get_device_name(rpoller->device->context->device));
5138 		spdk_json_write_named_uint64(w, "polls",
5139 					     rpoller->stat.polls);
5140 		spdk_json_write_named_uint64(w, "idle_polls",
5141 					     rpoller->stat.idle_polls);
5142 		spdk_json_write_named_uint64(w, "completions",
5143 					     rpoller->stat.completions);
5144 		spdk_json_write_named_uint64(w, "requests",
5145 					     rpoller->stat.requests);
5146 		spdk_json_write_named_uint64(w, "request_latency",
5147 					     rpoller->stat.request_latency);
5148 		spdk_json_write_named_uint64(w, "pending_free_request",
5149 					     rpoller->stat.pending_free_request);
5150 		spdk_json_write_named_uint64(w, "pending_rdma_read",
5151 					     rpoller->stat.pending_rdma_read);
5152 		spdk_json_write_named_uint64(w, "pending_rdma_write",
5153 					     rpoller->stat.pending_rdma_write);
5154 		spdk_json_write_named_uint64(w, "pending_rdma_send",
5155 					     rpoller->stat.pending_rdma_send);
5156 		spdk_json_write_named_uint64(w, "total_send_wrs",
5157 					     rpoller->stat.qp_stats.send.num_submitted_wrs);
5158 		spdk_json_write_named_uint64(w, "send_doorbell_updates",
5159 					     rpoller->stat.qp_stats.send.doorbell_updates);
5160 		spdk_json_write_named_uint64(w, "total_recv_wrs",
5161 					     rpoller->stat.qp_stats.recv.num_submitted_wrs);
5162 		spdk_json_write_named_uint64(w, "recv_doorbell_updates",
5163 					     rpoller->stat.qp_stats.recv.doorbell_updates);
5164 		spdk_json_write_object_end(w);
5165 	}
5166 
5167 	spdk_json_write_array_end(w);
5168 }
5169 
5170 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
5171 	.name = "RDMA",
5172 	.type = SPDK_NVME_TRANSPORT_RDMA,
5173 	.opts_init = nvmf_rdma_opts_init,
5174 	.create = nvmf_rdma_create,
5175 	.dump_opts = nvmf_rdma_dump_opts,
5176 	.destroy = nvmf_rdma_destroy,
5177 
5178 	.listen = nvmf_rdma_listen,
5179 	.stop_listen = nvmf_rdma_stop_listen,
5180 	.cdata_init = nvmf_rdma_cdata_init,
5181 
5182 	.listener_discover = nvmf_rdma_discover,
5183 
5184 	.poll_group_create = nvmf_rdma_poll_group_create,
5185 	.get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group,
5186 	.poll_group_destroy = nvmf_rdma_poll_group_destroy,
5187 	.poll_group_add = nvmf_rdma_poll_group_add,
5188 	.poll_group_remove = nvmf_rdma_poll_group_remove,
5189 	.poll_group_poll = nvmf_rdma_poll_group_poll,
5190 
5191 	.req_free = nvmf_rdma_request_free,
5192 	.req_complete = nvmf_rdma_request_complete,
5193 
5194 	.qpair_fini = nvmf_rdma_close_qpair,
5195 	.qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid,
5196 	.qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid,
5197 	.qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid,
5198 	.qpair_abort_request = nvmf_rdma_qpair_abort_request,
5199 
5200 	.poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat,
5201 };
5202 
5203 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma);
5204 SPDK_LOG_REGISTER_COMPONENT(rdma)
5205