1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. All rights reserved. 5 * Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk/stdinc.h" 35 36 #include <infiniband/verbs.h> 37 #include <rdma/rdma_cma.h> 38 #include <rdma/rdma_verbs.h> 39 40 #include "spdk/config.h" 41 #include "spdk/thread.h" 42 #include "spdk/likely.h" 43 #include "spdk/nvmf_transport.h" 44 #include "spdk/string.h" 45 #include "spdk/trace.h" 46 #include "spdk/util.h" 47 48 #include "spdk_internal/assert.h" 49 #include "spdk_internal/log.h" 50 51 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {}; 52 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma; 53 54 /* 55 RDMA Connection Resource Defaults 56 */ 57 #define NVMF_DEFAULT_TX_SGE SPDK_NVMF_MAX_SGL_ENTRIES 58 #define NVMF_DEFAULT_RSP_SGE 1 59 #define NVMF_DEFAULT_RX_SGE 2 60 61 /* The RDMA completion queue size */ 62 #define DEFAULT_NVMF_RDMA_CQ_SIZE 4096 63 #define MAX_WR_PER_QP(queue_depth) (queue_depth * 3 + 2) 64 65 /* Timeout for destroying defunct rqpairs */ 66 #define NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US 4000000 67 68 static int g_spdk_nvmf_ibv_query_mask = 69 IBV_QP_STATE | 70 IBV_QP_PKEY_INDEX | 71 IBV_QP_PORT | 72 IBV_QP_ACCESS_FLAGS | 73 IBV_QP_AV | 74 IBV_QP_PATH_MTU | 75 IBV_QP_DEST_QPN | 76 IBV_QP_RQ_PSN | 77 IBV_QP_MAX_DEST_RD_ATOMIC | 78 IBV_QP_MIN_RNR_TIMER | 79 IBV_QP_SQ_PSN | 80 IBV_QP_TIMEOUT | 81 IBV_QP_RETRY_CNT | 82 IBV_QP_RNR_RETRY | 83 IBV_QP_MAX_QP_RD_ATOMIC; 84 85 enum spdk_nvmf_rdma_request_state { 86 /* The request is not currently in use */ 87 RDMA_REQUEST_STATE_FREE = 0, 88 89 /* Initial state when request first received */ 90 RDMA_REQUEST_STATE_NEW, 91 92 /* The request is queued until a data buffer is available. */ 93 RDMA_REQUEST_STATE_NEED_BUFFER, 94 95 /* The request is waiting on RDMA queue depth availability 96 * to transfer data from the host to the controller. 97 */ 98 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 99 100 /* The request is currently transferring data from the host to the controller. */ 101 RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 102 103 /* The request is ready to execute at the block device */ 104 RDMA_REQUEST_STATE_READY_TO_EXECUTE, 105 106 /* The request is currently executing at the block device */ 107 RDMA_REQUEST_STATE_EXECUTING, 108 109 /* The request finished executing at the block device */ 110 RDMA_REQUEST_STATE_EXECUTED, 111 112 /* The request is waiting on RDMA queue depth availability 113 * to transfer data from the controller to the host. 114 */ 115 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 116 117 /* The request is ready to send a completion */ 118 RDMA_REQUEST_STATE_READY_TO_COMPLETE, 119 120 /* The request is currently transferring data from the controller to the host. */ 121 RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 122 123 /* The request currently has an outstanding completion without an 124 * associated data transfer. 125 */ 126 RDMA_REQUEST_STATE_COMPLETING, 127 128 /* The request completed and can be marked free. */ 129 RDMA_REQUEST_STATE_COMPLETED, 130 131 /* Terminator */ 132 RDMA_REQUEST_NUM_STATES, 133 }; 134 135 #define OBJECT_NVMF_RDMA_IO 0x40 136 137 #define TRACE_GROUP_NVMF_RDMA 0x4 138 #define TRACE_RDMA_REQUEST_STATE_NEW SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x0) 139 #define TRACE_RDMA_REQUEST_STATE_NEED_BUFFER SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x1) 140 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x2) 141 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x3) 142 #define TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x4) 143 #define TRACE_RDMA_REQUEST_STATE_EXECUTING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x5) 144 #define TRACE_RDMA_REQUEST_STATE_EXECUTED SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x6) 145 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x7) 146 #define TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x8) 147 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x9) 148 #define TRACE_RDMA_REQUEST_STATE_COMPLETING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xA) 149 #define TRACE_RDMA_REQUEST_STATE_COMPLETED SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xB) 150 #define TRACE_RDMA_QP_CREATE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xC) 151 #define TRACE_RDMA_IBV_ASYNC_EVENT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xD) 152 #define TRACE_RDMA_CM_ASYNC_EVENT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xE) 153 #define TRACE_RDMA_QP_STATE_CHANGE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xF) 154 #define TRACE_RDMA_QP_DISCONNECT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x10) 155 #define TRACE_RDMA_QP_DESTROY SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x11) 156 157 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA) 158 { 159 spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r'); 160 spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW, 161 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 1, "cmid: "); 162 spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 163 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 164 spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H", 165 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 166 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 167 spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C", 168 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 169 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 170 spdk_trace_register_description("RDMA_REQ_TX_H2C", 171 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 172 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 173 spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE", 174 TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 175 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 176 spdk_trace_register_description("RDMA_REQ_EXECUTING", 177 TRACE_RDMA_REQUEST_STATE_EXECUTING, 178 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 179 spdk_trace_register_description("RDMA_REQ_EXECUTED", 180 TRACE_RDMA_REQUEST_STATE_EXECUTED, 181 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 182 spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL", 183 TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 184 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 185 spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H", 186 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 187 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 188 spdk_trace_register_description("RDMA_REQ_COMPLETING", 189 TRACE_RDMA_REQUEST_STATE_COMPLETING, 190 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 191 spdk_trace_register_description("RDMA_REQ_COMPLETED", 192 TRACE_RDMA_REQUEST_STATE_COMPLETED, 193 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 194 195 spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE, 196 OWNER_NONE, OBJECT_NONE, 0, 0, ""); 197 spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT, 198 OWNER_NONE, OBJECT_NONE, 0, 0, "type: "); 199 spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT, 200 OWNER_NONE, OBJECT_NONE, 0, 0, "type: "); 201 spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE, 202 OWNER_NONE, OBJECT_NONE, 0, 1, "state: "); 203 spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT, 204 OWNER_NONE, OBJECT_NONE, 0, 0, ""); 205 spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY, 206 OWNER_NONE, OBJECT_NONE, 0, 0, ""); 207 } 208 209 enum spdk_nvmf_rdma_wr_type { 210 RDMA_WR_TYPE_RECV, 211 RDMA_WR_TYPE_SEND, 212 RDMA_WR_TYPE_DATA, 213 }; 214 215 struct spdk_nvmf_rdma_wr { 216 enum spdk_nvmf_rdma_wr_type type; 217 }; 218 219 /* This structure holds commands as they are received off the wire. 220 * It must be dynamically paired with a full request object 221 * (spdk_nvmf_rdma_request) to service a request. It is separate 222 * from the request because RDMA does not appear to order 223 * completions, so occasionally we'll get a new incoming 224 * command when there aren't any free request objects. 225 */ 226 struct spdk_nvmf_rdma_recv { 227 struct ibv_recv_wr wr; 228 struct ibv_sge sgl[NVMF_DEFAULT_RX_SGE]; 229 230 struct spdk_nvmf_rdma_qpair *qpair; 231 232 /* In-capsule data buffer */ 233 uint8_t *buf; 234 235 struct spdk_nvmf_rdma_wr rdma_wr; 236 uint64_t receive_tsc; 237 238 STAILQ_ENTRY(spdk_nvmf_rdma_recv) link; 239 }; 240 241 struct spdk_nvmf_rdma_request_data { 242 struct spdk_nvmf_rdma_wr rdma_wr; 243 struct ibv_send_wr wr; 244 struct ibv_sge sgl[SPDK_NVMF_MAX_SGL_ENTRIES]; 245 }; 246 247 struct spdk_nvmf_rdma_request { 248 struct spdk_nvmf_request req; 249 250 enum spdk_nvmf_rdma_request_state state; 251 252 struct spdk_nvmf_rdma_recv *recv; 253 254 struct { 255 struct spdk_nvmf_rdma_wr rdma_wr; 256 struct ibv_send_wr wr; 257 struct ibv_sge sgl[NVMF_DEFAULT_RSP_SGE]; 258 } rsp; 259 260 struct spdk_nvmf_rdma_request_data data; 261 262 uint32_t iovpos; 263 264 uint32_t num_outstanding_data_wr; 265 uint64_t receive_tsc; 266 267 STAILQ_ENTRY(spdk_nvmf_rdma_request) state_link; 268 }; 269 270 enum spdk_nvmf_rdma_qpair_disconnect_flags { 271 RDMA_QP_DISCONNECTING = 1, 272 RDMA_QP_RECV_DRAINED = 1 << 1, 273 RDMA_QP_SEND_DRAINED = 1 << 2 274 }; 275 276 struct spdk_nvmf_rdma_resource_opts { 277 struct spdk_nvmf_rdma_qpair *qpair; 278 /* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */ 279 void *qp; 280 struct ibv_pd *pd; 281 uint32_t max_queue_depth; 282 uint32_t in_capsule_data_size; 283 bool shared; 284 }; 285 286 struct spdk_nvmf_send_wr_list { 287 struct ibv_send_wr *first; 288 struct ibv_send_wr *last; 289 }; 290 291 struct spdk_nvmf_recv_wr_list { 292 struct ibv_recv_wr *first; 293 struct ibv_recv_wr *last; 294 }; 295 296 struct spdk_nvmf_rdma_resources { 297 /* Array of size "max_queue_depth" containing RDMA requests. */ 298 struct spdk_nvmf_rdma_request *reqs; 299 300 /* Array of size "max_queue_depth" containing RDMA recvs. */ 301 struct spdk_nvmf_rdma_recv *recvs; 302 303 /* Array of size "max_queue_depth" containing 64 byte capsules 304 * used for receive. 305 */ 306 union nvmf_h2c_msg *cmds; 307 struct ibv_mr *cmds_mr; 308 309 /* Array of size "max_queue_depth" containing 16 byte completions 310 * to be sent back to the user. 311 */ 312 union nvmf_c2h_msg *cpls; 313 struct ibv_mr *cpls_mr; 314 315 /* Array of size "max_queue_depth * InCapsuleDataSize" containing 316 * buffers to be used for in capsule data. 317 */ 318 void *bufs; 319 struct ibv_mr *bufs_mr; 320 321 /* The list of pending recvs to transfer */ 322 struct spdk_nvmf_recv_wr_list recvs_to_post; 323 324 /* Receives that are waiting for a request object */ 325 STAILQ_HEAD(, spdk_nvmf_rdma_recv) incoming_queue; 326 327 /* Queue to track free requests */ 328 STAILQ_HEAD(, spdk_nvmf_rdma_request) free_queue; 329 }; 330 331 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair); 332 333 struct spdk_nvmf_rdma_ibv_event_ctx { 334 struct spdk_nvmf_rdma_qpair *rqpair; 335 spdk_nvmf_rdma_qpair_ibv_event cb_fn; 336 /* Link to other ibv events associated with this qpair */ 337 STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx) link; 338 }; 339 340 struct spdk_nvmf_rdma_qpair { 341 struct spdk_nvmf_qpair qpair; 342 343 struct spdk_nvmf_rdma_device *device; 344 struct spdk_nvmf_rdma_poller *poller; 345 346 struct rdma_cm_id *cm_id; 347 struct ibv_srq *srq; 348 struct rdma_cm_id *listen_id; 349 350 /* The maximum number of I/O outstanding on this connection at one time */ 351 uint16_t max_queue_depth; 352 353 /* The maximum number of active RDMA READ and ATOMIC operations at one time */ 354 uint16_t max_read_depth; 355 356 /* The maximum number of RDMA SEND operations at one time */ 357 uint32_t max_send_depth; 358 359 /* The current number of outstanding WRs from this qpair's 360 * recv queue. Should not exceed device->attr.max_queue_depth. 361 */ 362 uint16_t current_recv_depth; 363 364 /* The current number of active RDMA READ operations */ 365 uint16_t current_read_depth; 366 367 /* The current number of posted WRs from this qpair's 368 * send queue. Should not exceed max_send_depth. 369 */ 370 uint32_t current_send_depth; 371 372 /* The maximum number of SGEs per WR on the send queue */ 373 uint32_t max_send_sge; 374 375 /* The maximum number of SGEs per WR on the recv queue */ 376 uint32_t max_recv_sge; 377 378 /* The list of pending send requests for a transfer */ 379 struct spdk_nvmf_send_wr_list sends_to_post; 380 381 struct spdk_nvmf_rdma_resources *resources; 382 383 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_read_queue; 384 385 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_write_queue; 386 387 /* Number of requests not in the free state */ 388 uint32_t qd; 389 390 TAILQ_ENTRY(spdk_nvmf_rdma_qpair) link; 391 392 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) recv_link; 393 394 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) send_link; 395 396 /* IBV queue pair attributes: they are used to manage 397 * qp state and recover from errors. 398 */ 399 enum ibv_qp_state ibv_state; 400 401 uint32_t disconnect_flags; 402 403 /* Poller registered in case the qpair doesn't properly 404 * complete the qpair destruct process and becomes defunct. 405 */ 406 407 struct spdk_poller *destruct_poller; 408 409 /* List of ibv async events */ 410 STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx) ibv_events; 411 412 /* There are several ways a disconnect can start on a qpair 413 * and they are not all mutually exclusive. It is important 414 * that we only initialize one of these paths. 415 */ 416 bool disconnect_started; 417 /* Lets us know that we have received the last_wqe event. */ 418 bool last_wqe_reached; 419 }; 420 421 struct spdk_nvmf_rdma_poller_stat { 422 uint64_t completions; 423 uint64_t polls; 424 uint64_t requests; 425 uint64_t request_latency; 426 uint64_t pending_free_request; 427 uint64_t pending_rdma_read; 428 uint64_t pending_rdma_write; 429 }; 430 431 struct spdk_nvmf_rdma_poller { 432 struct spdk_nvmf_rdma_device *device; 433 struct spdk_nvmf_rdma_poll_group *group; 434 435 int num_cqe; 436 int required_num_wr; 437 struct ibv_cq *cq; 438 439 /* The maximum number of I/O outstanding on the shared receive queue at one time */ 440 uint16_t max_srq_depth; 441 442 /* Shared receive queue */ 443 struct ibv_srq *srq; 444 445 struct spdk_nvmf_rdma_resources *resources; 446 struct spdk_nvmf_rdma_poller_stat stat; 447 448 TAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs; 449 450 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_recv; 451 452 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_send; 453 454 TAILQ_ENTRY(spdk_nvmf_rdma_poller) link; 455 }; 456 457 struct spdk_nvmf_rdma_poll_group_stat { 458 uint64_t pending_data_buffer; 459 }; 460 461 struct spdk_nvmf_rdma_poll_group { 462 struct spdk_nvmf_transport_poll_group group; 463 struct spdk_nvmf_rdma_poll_group_stat stat; 464 TAILQ_HEAD(, spdk_nvmf_rdma_poller) pollers; 465 TAILQ_ENTRY(spdk_nvmf_rdma_poll_group) link; 466 /* 467 * buffers which are split across multiple RDMA 468 * memory regions cannot be used by this transport. 469 */ 470 STAILQ_HEAD(, spdk_nvmf_transport_pg_cache_buf) retired_bufs; 471 }; 472 473 struct spdk_nvmf_rdma_conn_sched { 474 struct spdk_nvmf_rdma_poll_group *next_admin_pg; 475 struct spdk_nvmf_rdma_poll_group *next_io_pg; 476 }; 477 478 /* Assuming rdma_cm uses just one protection domain per ibv_context. */ 479 struct spdk_nvmf_rdma_device { 480 struct ibv_device_attr attr; 481 struct ibv_context *context; 482 483 struct spdk_mem_map *map; 484 struct ibv_pd *pd; 485 486 int num_srq; 487 488 TAILQ_ENTRY(spdk_nvmf_rdma_device) link; 489 }; 490 491 struct spdk_nvmf_rdma_port { 492 const struct spdk_nvme_transport_id *trid; 493 struct rdma_cm_id *id; 494 struct spdk_nvmf_rdma_device *device; 495 TAILQ_ENTRY(spdk_nvmf_rdma_port) link; 496 }; 497 498 struct spdk_nvmf_rdma_transport { 499 struct spdk_nvmf_transport transport; 500 501 struct spdk_nvmf_rdma_conn_sched conn_sched; 502 503 struct rdma_event_channel *event_channel; 504 505 struct spdk_mempool *data_wr_pool; 506 507 pthread_mutex_t lock; 508 509 /* fields used to poll RDMA/IB events */ 510 nfds_t npoll_fds; 511 struct pollfd *poll_fds; 512 513 TAILQ_HEAD(, spdk_nvmf_rdma_device) devices; 514 TAILQ_HEAD(, spdk_nvmf_rdma_port) ports; 515 TAILQ_HEAD(, spdk_nvmf_rdma_poll_group) poll_groups; 516 }; 517 518 static inline void 519 spdk_nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair); 520 521 static bool 522 spdk_nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 523 struct spdk_nvmf_rdma_request *rdma_req); 524 525 static inline int 526 spdk_nvmf_rdma_check_ibv_state(enum ibv_qp_state state) 527 { 528 switch (state) { 529 case IBV_QPS_RESET: 530 case IBV_QPS_INIT: 531 case IBV_QPS_RTR: 532 case IBV_QPS_RTS: 533 case IBV_QPS_SQD: 534 case IBV_QPS_SQE: 535 case IBV_QPS_ERR: 536 return 0; 537 default: 538 return -1; 539 } 540 } 541 542 static inline enum spdk_nvme_media_error_status_code 543 spdk_nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) { 544 enum spdk_nvme_media_error_status_code result; 545 switch (err_type) 546 { 547 case SPDK_DIF_REFTAG_ERROR: 548 result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR; 549 break; 550 case SPDK_DIF_APPTAG_ERROR: 551 result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR; 552 break; 553 case SPDK_DIF_GUARD_ERROR: 554 result = SPDK_NVME_SC_GUARD_CHECK_ERROR; 555 break; 556 default: 557 SPDK_UNREACHABLE(); 558 } 559 560 return result; 561 } 562 563 static enum ibv_qp_state 564 spdk_nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) { 565 enum ibv_qp_state old_state, new_state; 566 struct ibv_qp_attr qp_attr; 567 struct ibv_qp_init_attr init_attr; 568 int rc; 569 570 old_state = rqpair->ibv_state; 571 rc = ibv_query_qp(rqpair->cm_id->qp, &qp_attr, 572 g_spdk_nvmf_ibv_query_mask, &init_attr); 573 574 if (rc) 575 { 576 SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n"); 577 return IBV_QPS_ERR + 1; 578 } 579 580 new_state = qp_attr.qp_state; 581 rqpair->ibv_state = new_state; 582 qp_attr.ah_attr.port_num = qp_attr.port_num; 583 584 rc = spdk_nvmf_rdma_check_ibv_state(new_state); 585 if (rc) 586 { 587 SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state); 588 /* 589 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8 590 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR 591 */ 592 return IBV_QPS_ERR + 1; 593 } 594 595 if (old_state != new_state) 596 { 597 spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, 598 (uintptr_t)rqpair->cm_id, new_state); 599 } 600 return new_state; 601 } 602 603 static const char *str_ibv_qp_state[] = { 604 "IBV_QPS_RESET", 605 "IBV_QPS_INIT", 606 "IBV_QPS_RTR", 607 "IBV_QPS_RTS", 608 "IBV_QPS_SQD", 609 "IBV_QPS_SQE", 610 "IBV_QPS_ERR", 611 "IBV_QPS_UNKNOWN" 612 }; 613 614 static int 615 spdk_nvmf_rdma_set_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair, 616 enum ibv_qp_state new_state) 617 { 618 struct ibv_qp_attr qp_attr; 619 struct ibv_qp_init_attr init_attr; 620 int rc; 621 enum ibv_qp_state state; 622 static int attr_mask_rc[] = { 623 [IBV_QPS_RESET] = IBV_QP_STATE, 624 [IBV_QPS_INIT] = (IBV_QP_STATE | 625 IBV_QP_PKEY_INDEX | 626 IBV_QP_PORT | 627 IBV_QP_ACCESS_FLAGS), 628 [IBV_QPS_RTR] = (IBV_QP_STATE | 629 IBV_QP_AV | 630 IBV_QP_PATH_MTU | 631 IBV_QP_DEST_QPN | 632 IBV_QP_RQ_PSN | 633 IBV_QP_MAX_DEST_RD_ATOMIC | 634 IBV_QP_MIN_RNR_TIMER), 635 [IBV_QPS_RTS] = (IBV_QP_STATE | 636 IBV_QP_SQ_PSN | 637 IBV_QP_TIMEOUT | 638 IBV_QP_RETRY_CNT | 639 IBV_QP_RNR_RETRY | 640 IBV_QP_MAX_QP_RD_ATOMIC), 641 [IBV_QPS_SQD] = IBV_QP_STATE, 642 [IBV_QPS_SQE] = IBV_QP_STATE, 643 [IBV_QPS_ERR] = IBV_QP_STATE, 644 }; 645 646 rc = spdk_nvmf_rdma_check_ibv_state(new_state); 647 if (rc) { 648 SPDK_ERRLOG("QP#%d: bad state requested: %u\n", 649 rqpair->qpair.qid, new_state); 650 return rc; 651 } 652 653 rc = ibv_query_qp(rqpair->cm_id->qp, &qp_attr, 654 g_spdk_nvmf_ibv_query_mask, &init_attr); 655 656 if (rc) { 657 SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n"); 658 } 659 660 qp_attr.cur_qp_state = rqpair->ibv_state; 661 qp_attr.qp_state = new_state; 662 663 rc = ibv_modify_qp(rqpair->cm_id->qp, &qp_attr, 664 attr_mask_rc[new_state]); 665 666 if (rc) { 667 SPDK_ERRLOG("QP#%d: failed to set state to: %s, %d (%s)\n", 668 rqpair->qpair.qid, str_ibv_qp_state[new_state], errno, strerror(errno)); 669 return rc; 670 } 671 672 state = spdk_nvmf_rdma_update_ibv_state(rqpair); 673 674 if (state != new_state) { 675 SPDK_ERRLOG("QP#%d: expected state: %s, actual state: %s\n", 676 rqpair->qpair.qid, str_ibv_qp_state[new_state], 677 str_ibv_qp_state[state]); 678 return -1; 679 } 680 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "IBV QP#%u changed to: %s\n", rqpair->qpair.qid, 681 str_ibv_qp_state[state]); 682 return 0; 683 } 684 685 static void 686 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req, 687 struct spdk_nvmf_rdma_transport *rtransport) 688 { 689 struct spdk_nvmf_rdma_request_data *data_wr; 690 struct ibv_send_wr *next_send_wr; 691 uint64_t req_wrid; 692 693 rdma_req->num_outstanding_data_wr = 0; 694 data_wr = &rdma_req->data; 695 req_wrid = data_wr->wr.wr_id; 696 while (data_wr && data_wr->wr.wr_id == req_wrid) { 697 memset(data_wr->sgl, 0, sizeof(data_wr->wr.sg_list[0]) * data_wr->wr.num_sge); 698 data_wr->wr.num_sge = 0; 699 next_send_wr = data_wr->wr.next; 700 if (data_wr != &rdma_req->data) { 701 spdk_mempool_put(rtransport->data_wr_pool, data_wr); 702 } 703 data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : 704 SPDK_CONTAINEROF(next_send_wr, struct spdk_nvmf_rdma_request_data, wr); 705 } 706 } 707 708 static void 709 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req) 710 { 711 SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool); 712 if (req->req.cmd) { 713 SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode); 714 } 715 if (req->recv) { 716 SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id); 717 } 718 } 719 720 static void 721 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair) 722 { 723 int i; 724 725 SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid); 726 for (i = 0; i < rqpair->max_queue_depth; i++) { 727 if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) { 728 nvmf_rdma_dump_request(&rqpair->resources->reqs[i]); 729 } 730 } 731 } 732 733 static void 734 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources) 735 { 736 if (resources->cmds_mr) { 737 ibv_dereg_mr(resources->cmds_mr); 738 } 739 740 if (resources->cpls_mr) { 741 ibv_dereg_mr(resources->cpls_mr); 742 } 743 744 if (resources->bufs_mr) { 745 ibv_dereg_mr(resources->bufs_mr); 746 } 747 748 spdk_free(resources->cmds); 749 spdk_free(resources->cpls); 750 spdk_free(resources->bufs); 751 free(resources->reqs); 752 free(resources->recvs); 753 free(resources); 754 } 755 756 757 static struct spdk_nvmf_rdma_resources * 758 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts) 759 { 760 struct spdk_nvmf_rdma_resources *resources; 761 struct spdk_nvmf_rdma_request *rdma_req; 762 struct spdk_nvmf_rdma_recv *rdma_recv; 763 struct ibv_qp *qp; 764 struct ibv_srq *srq; 765 uint32_t i; 766 int rc; 767 768 resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources)); 769 if (!resources) { 770 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 771 return NULL; 772 } 773 774 resources->reqs = calloc(opts->max_queue_depth, sizeof(*resources->reqs)); 775 resources->recvs = calloc(opts->max_queue_depth, sizeof(*resources->recvs)); 776 resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds), 777 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 778 resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls), 779 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 780 781 if (opts->in_capsule_data_size > 0) { 782 resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size, 783 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, 784 SPDK_MALLOC_DMA); 785 } 786 787 if (!resources->reqs || !resources->recvs || !resources->cmds || 788 !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) { 789 SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n"); 790 goto cleanup; 791 } 792 793 resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds, 794 opts->max_queue_depth * sizeof(*resources->cmds), 795 IBV_ACCESS_LOCAL_WRITE); 796 resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls, 797 opts->max_queue_depth * sizeof(*resources->cpls), 798 0); 799 800 if (opts->in_capsule_data_size) { 801 resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs, 802 opts->max_queue_depth * 803 opts->in_capsule_data_size, 804 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); 805 } 806 807 if (!resources->cmds_mr || !resources->cpls_mr || 808 (opts->in_capsule_data_size && 809 !resources->bufs_mr)) { 810 goto cleanup; 811 } 812 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Command Array: %p Length: %lx LKey: %x\n", 813 resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds), 814 resources->cmds_mr->lkey); 815 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Completion Array: %p Length: %lx LKey: %x\n", 816 resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls), 817 resources->cpls_mr->lkey); 818 if (resources->bufs && resources->bufs_mr) { 819 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "In Capsule Data Array: %p Length: %x LKey: %x\n", 820 resources->bufs, opts->max_queue_depth * 821 opts->in_capsule_data_size, resources->bufs_mr->lkey); 822 } 823 824 /* Initialize queues */ 825 STAILQ_INIT(&resources->incoming_queue); 826 STAILQ_INIT(&resources->free_queue); 827 828 for (i = 0; i < opts->max_queue_depth; i++) { 829 struct ibv_recv_wr *bad_wr = NULL; 830 831 rdma_recv = &resources->recvs[i]; 832 rdma_recv->qpair = opts->qpair; 833 834 /* Set up memory to receive commands */ 835 if (resources->bufs) { 836 rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i * 837 opts->in_capsule_data_size)); 838 } 839 840 rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV; 841 842 rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i]; 843 rdma_recv->sgl[0].length = sizeof(resources->cmds[i]); 844 rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey; 845 rdma_recv->wr.num_sge = 1; 846 847 if (rdma_recv->buf && resources->bufs_mr) { 848 rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf; 849 rdma_recv->sgl[1].length = opts->in_capsule_data_size; 850 rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey; 851 rdma_recv->wr.num_sge++; 852 } 853 854 rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr; 855 rdma_recv->wr.sg_list = rdma_recv->sgl; 856 if (opts->shared) { 857 srq = (struct ibv_srq *)opts->qp; 858 rc = ibv_post_srq_recv(srq, &rdma_recv->wr, &bad_wr); 859 } else { 860 qp = (struct ibv_qp *)opts->qp; 861 rc = ibv_post_recv(qp, &rdma_recv->wr, &bad_wr); 862 } 863 if (rc) { 864 goto cleanup; 865 } 866 } 867 868 for (i = 0; i < opts->max_queue_depth; i++) { 869 rdma_req = &resources->reqs[i]; 870 871 if (opts->qpair != NULL) { 872 rdma_req->req.qpair = &opts->qpair->qpair; 873 } else { 874 rdma_req->req.qpair = NULL; 875 } 876 rdma_req->req.cmd = NULL; 877 878 /* Set up memory to send responses */ 879 rdma_req->req.rsp = &resources->cpls[i]; 880 881 rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i]; 882 rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]); 883 rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey; 884 885 rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND; 886 rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr; 887 rdma_req->rsp.wr.next = NULL; 888 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 889 rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED; 890 rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl; 891 rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl); 892 893 /* Set up memory for data buffers */ 894 rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA; 895 rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr; 896 rdma_req->data.wr.next = NULL; 897 rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED; 898 rdma_req->data.wr.sg_list = rdma_req->data.sgl; 899 rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl); 900 901 /* Initialize request state to FREE */ 902 rdma_req->state = RDMA_REQUEST_STATE_FREE; 903 STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link); 904 } 905 906 return resources; 907 908 cleanup: 909 nvmf_rdma_resources_destroy(resources); 910 return NULL; 911 } 912 913 static void 914 spdk_nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair) 915 { 916 struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx; 917 STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) { 918 ctx->rqpair = NULL; 919 /* Memory allocated for ctx is freed in spdk_nvmf_rdma_qpair_process_ibv_event */ 920 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 921 } 922 } 923 924 static void 925 spdk_nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair) 926 { 927 struct spdk_nvmf_rdma_recv *rdma_recv, *recv_tmp; 928 struct ibv_recv_wr *bad_recv_wr = NULL; 929 int rc; 930 931 spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair->cm_id, 0); 932 933 spdk_poller_unregister(&rqpair->destruct_poller); 934 935 if (rqpair->qd != 0) { 936 struct spdk_nvmf_qpair *qpair = &rqpair->qpair; 937 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(qpair->transport, 938 struct spdk_nvmf_rdma_transport, transport); 939 struct spdk_nvmf_rdma_request *req; 940 uint32_t i, max_req_count = 0; 941 942 SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd); 943 944 if (rqpair->srq == NULL) { 945 nvmf_rdma_dump_qpair_contents(rqpair); 946 max_req_count = rqpair->max_queue_depth; 947 } else if (rqpair->poller && rqpair->resources) { 948 max_req_count = rqpair->poller->max_srq_depth; 949 } 950 951 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Release incomplete requests\n"); 952 for (i = 0; i < max_req_count; i++) { 953 req = &rqpair->resources->reqs[i]; 954 if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) { 955 /* spdk_nvmf_rdma_request_process checks qpair ibv and internal state 956 * and completes a request */ 957 spdk_nvmf_rdma_request_process(rtransport, req); 958 } 959 } 960 assert(rqpair->qd == 0); 961 } 962 963 if (rqpair->poller) { 964 TAILQ_REMOVE(&rqpair->poller->qpairs, rqpair, link); 965 966 if (rqpair->srq != NULL && rqpair->resources != NULL) { 967 /* Drop all received but unprocessed commands for this queue and return them to SRQ */ 968 STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) { 969 if (rqpair == rdma_recv->qpair) { 970 STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link); 971 rc = ibv_post_srq_recv(rqpair->srq, &rdma_recv->wr, &bad_recv_wr); 972 if (rc) { 973 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 974 } 975 } 976 } 977 } 978 } 979 980 if (rqpair->cm_id) { 981 if (rqpair->cm_id->qp != NULL) { 982 rdma_destroy_qp(rqpair->cm_id); 983 } 984 rdma_destroy_id(rqpair->cm_id); 985 986 if (rqpair->poller != NULL && rqpair->srq == NULL) { 987 rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth); 988 } 989 } 990 991 if (rqpair->srq == NULL && rqpair->resources != NULL) { 992 nvmf_rdma_resources_destroy(rqpair->resources); 993 } 994 995 spdk_nvmf_rdma_qpair_clean_ibv_events(rqpair); 996 997 free(rqpair); 998 } 999 1000 static int 1001 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device) 1002 { 1003 struct spdk_nvmf_rdma_poller *rpoller; 1004 int rc, num_cqe, required_num_wr; 1005 1006 /* Enlarge CQ size dynamically */ 1007 rpoller = rqpair->poller; 1008 required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth); 1009 num_cqe = rpoller->num_cqe; 1010 if (num_cqe < required_num_wr) { 1011 num_cqe = spdk_max(num_cqe * 2, required_num_wr); 1012 num_cqe = spdk_min(num_cqe, device->attr.max_cqe); 1013 } 1014 1015 if (rpoller->num_cqe != num_cqe) { 1016 if (required_num_wr > device->attr.max_cqe) { 1017 SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n", 1018 required_num_wr, device->attr.max_cqe); 1019 return -1; 1020 } 1021 1022 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe); 1023 rc = ibv_resize_cq(rpoller->cq, num_cqe); 1024 if (rc) { 1025 SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); 1026 return -1; 1027 } 1028 1029 rpoller->num_cqe = num_cqe; 1030 } 1031 1032 rpoller->required_num_wr = required_num_wr; 1033 return 0; 1034 } 1035 1036 static int 1037 spdk_nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair) 1038 { 1039 struct spdk_nvmf_rdma_qpair *rqpair; 1040 int rc; 1041 struct spdk_nvmf_rdma_transport *rtransport; 1042 struct spdk_nvmf_transport *transport; 1043 struct spdk_nvmf_rdma_resource_opts opts; 1044 struct spdk_nvmf_rdma_device *device; 1045 struct ibv_qp_init_attr ibv_init_attr; 1046 1047 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1048 device = rqpair->device; 1049 1050 memset(&ibv_init_attr, 0, sizeof(struct ibv_qp_init_attr)); 1051 ibv_init_attr.qp_context = rqpair; 1052 ibv_init_attr.qp_type = IBV_QPT_RC; 1053 ibv_init_attr.send_cq = rqpair->poller->cq; 1054 ibv_init_attr.recv_cq = rqpair->poller->cq; 1055 1056 if (rqpair->srq) { 1057 ibv_init_attr.srq = rqpair->srq; 1058 } else { 1059 ibv_init_attr.cap.max_recv_wr = rqpair->max_queue_depth + 1060 1; /* RECV operations + dummy drain WR */ 1061 } 1062 1063 ibv_init_attr.cap.max_send_wr = rqpair->max_queue_depth * 1064 2 + 1; /* SEND, READ, and WRITE operations + dummy drain WR */ 1065 ibv_init_attr.cap.max_send_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_TX_SGE); 1066 ibv_init_attr.cap.max_recv_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 1067 1068 if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) { 1069 SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n"); 1070 goto error; 1071 } 1072 1073 rc = rdma_create_qp(rqpair->cm_id, device->pd, &ibv_init_attr); 1074 if (rc) { 1075 SPDK_ERRLOG("rdma_create_qp failed: errno %d: %s\n", errno, spdk_strerror(errno)); 1076 goto error; 1077 } 1078 1079 rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2 + 1), 1080 ibv_init_attr.cap.max_send_wr); 1081 rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, ibv_init_attr.cap.max_send_sge); 1082 rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, ibv_init_attr.cap.max_recv_sge); 1083 spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair->cm_id, 0); 1084 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "New RDMA Connection: %p\n", qpair); 1085 1086 rqpair->sends_to_post.first = NULL; 1087 rqpair->sends_to_post.last = NULL; 1088 1089 if (rqpair->poller->srq == NULL) { 1090 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 1091 transport = &rtransport->transport; 1092 1093 opts.qp = rqpair->cm_id->qp; 1094 opts.pd = rqpair->cm_id->pd; 1095 opts.qpair = rqpair; 1096 opts.shared = false; 1097 opts.max_queue_depth = rqpair->max_queue_depth; 1098 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 1099 1100 rqpair->resources = nvmf_rdma_resources_create(&opts); 1101 1102 if (!rqpair->resources) { 1103 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 1104 rdma_destroy_qp(rqpair->cm_id); 1105 goto error; 1106 } 1107 } else { 1108 rqpair->resources = rqpair->poller->resources; 1109 } 1110 1111 rqpair->current_recv_depth = 0; 1112 STAILQ_INIT(&rqpair->pending_rdma_read_queue); 1113 STAILQ_INIT(&rqpair->pending_rdma_write_queue); 1114 1115 return 0; 1116 1117 error: 1118 rdma_destroy_id(rqpair->cm_id); 1119 rqpair->cm_id = NULL; 1120 return -1; 1121 } 1122 1123 /* Append the given recv wr structure to the resource structs outstanding recvs list. */ 1124 /* This function accepts either a single wr or the first wr in a linked list. */ 1125 static void 1126 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first) 1127 { 1128 struct ibv_recv_wr *last; 1129 1130 last = first; 1131 while (last->next != NULL) { 1132 last = last->next; 1133 } 1134 1135 if (rqpair->resources->recvs_to_post.first == NULL) { 1136 rqpair->resources->recvs_to_post.first = first; 1137 rqpair->resources->recvs_to_post.last = last; 1138 if (rqpair->srq == NULL) { 1139 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link); 1140 } 1141 } else { 1142 rqpair->resources->recvs_to_post.last->next = first; 1143 rqpair->resources->recvs_to_post.last = last; 1144 } 1145 } 1146 1147 /* Append the given send wr structure to the qpair's outstanding sends list. */ 1148 /* This function accepts either a single wr or the first wr in a linked list. */ 1149 static void 1150 nvmf_rdma_qpair_queue_send_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *first) 1151 { 1152 struct ibv_send_wr *last; 1153 1154 last = first; 1155 while (last->next != NULL) { 1156 last = last->next; 1157 } 1158 1159 if (rqpair->sends_to_post.first == NULL) { 1160 rqpair->sends_to_post.first = first; 1161 rqpair->sends_to_post.last = last; 1162 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1163 } else { 1164 rqpair->sends_to_post.last->next = first; 1165 rqpair->sends_to_post.last = last; 1166 } 1167 } 1168 1169 static int 1170 request_transfer_in(struct spdk_nvmf_request *req) 1171 { 1172 struct spdk_nvmf_rdma_request *rdma_req; 1173 struct spdk_nvmf_qpair *qpair; 1174 struct spdk_nvmf_rdma_qpair *rqpair; 1175 1176 qpair = req->qpair; 1177 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1178 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1179 1180 assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); 1181 assert(rdma_req != NULL); 1182 1183 nvmf_rdma_qpair_queue_send_wrs(rqpair, &rdma_req->data.wr); 1184 rqpair->current_read_depth += rdma_req->num_outstanding_data_wr; 1185 rqpair->current_send_depth += rdma_req->num_outstanding_data_wr; 1186 return 0; 1187 } 1188 1189 static int 1190 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted) 1191 { 1192 int num_outstanding_data_wr = 0; 1193 struct spdk_nvmf_rdma_request *rdma_req; 1194 struct spdk_nvmf_qpair *qpair; 1195 struct spdk_nvmf_rdma_qpair *rqpair; 1196 struct spdk_nvme_cpl *rsp; 1197 struct ibv_send_wr *first = NULL; 1198 1199 *data_posted = 0; 1200 qpair = req->qpair; 1201 rsp = &req->rsp->nvme_cpl; 1202 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1203 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1204 1205 /* Advance our sq_head pointer */ 1206 if (qpair->sq_head == qpair->sq_head_max) { 1207 qpair->sq_head = 0; 1208 } else { 1209 qpair->sq_head++; 1210 } 1211 rsp->sqhd = qpair->sq_head; 1212 1213 /* queue the capsule for the recv buffer */ 1214 assert(rdma_req->recv != NULL); 1215 1216 nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr); 1217 1218 rdma_req->recv = NULL; 1219 assert(rqpair->current_recv_depth > 0); 1220 rqpair->current_recv_depth--; 1221 1222 /* Build the response which consists of optional 1223 * RDMA WRITEs to transfer data, plus an RDMA SEND 1224 * containing the response. 1225 */ 1226 first = &rdma_req->rsp.wr; 1227 1228 if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && 1229 req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1230 first = &rdma_req->data.wr; 1231 *data_posted = 1; 1232 num_outstanding_data_wr = rdma_req->num_outstanding_data_wr; 1233 } 1234 nvmf_rdma_qpair_queue_send_wrs(rqpair, first); 1235 /* +1 for the rsp wr */ 1236 rqpair->current_send_depth += num_outstanding_data_wr + 1; 1237 1238 return 0; 1239 } 1240 1241 static int 1242 spdk_nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair) 1243 { 1244 struct spdk_nvmf_rdma_accept_private_data accept_data; 1245 struct rdma_conn_param ctrlr_event_data = {}; 1246 int rc; 1247 1248 accept_data.recfmt = 0; 1249 accept_data.crqsize = rqpair->max_queue_depth; 1250 1251 ctrlr_event_data.private_data = &accept_data; 1252 ctrlr_event_data.private_data_len = sizeof(accept_data); 1253 if (id->ps == RDMA_PS_TCP) { 1254 ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */ 1255 ctrlr_event_data.initiator_depth = rqpair->max_read_depth; 1256 } 1257 1258 /* Configure infinite retries for the initiator side qpair. 1259 * When using a shared receive queue on the target side, 1260 * we need to pass this value to the initiator to prevent the 1261 * initiator side NIC from completing SEND requests back to the 1262 * initiator with status rnr_retry_count_exceeded. */ 1263 if (rqpair->srq != NULL) { 1264 ctrlr_event_data.rnr_retry_count = 0x7; 1265 } 1266 1267 rc = rdma_accept(id, &ctrlr_event_data); 1268 if (rc) { 1269 SPDK_ERRLOG("Error %d on rdma_accept\n", errno); 1270 } else { 1271 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Sent back the accept\n"); 1272 } 1273 1274 return rc; 1275 } 1276 1277 static void 1278 spdk_nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error) 1279 { 1280 struct spdk_nvmf_rdma_reject_private_data rej_data; 1281 1282 rej_data.recfmt = 0; 1283 rej_data.sts = error; 1284 1285 rdma_reject(id, &rej_data, sizeof(rej_data)); 1286 } 1287 1288 static int 1289 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event, 1290 new_qpair_fn cb_fn, void *cb_arg) 1291 { 1292 struct spdk_nvmf_rdma_transport *rtransport; 1293 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 1294 struct spdk_nvmf_rdma_port *port; 1295 struct rdma_conn_param *rdma_param = NULL; 1296 const struct spdk_nvmf_rdma_request_private_data *private_data = NULL; 1297 uint16_t max_queue_depth; 1298 uint16_t max_read_depth; 1299 1300 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 1301 1302 assert(event->id != NULL); /* Impossible. Can't even reject the connection. */ 1303 assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */ 1304 1305 rdma_param = &event->param.conn; 1306 if (rdma_param->private_data == NULL || 1307 rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1308 SPDK_ERRLOG("connect request: no private data provided\n"); 1309 spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH); 1310 return -1; 1311 } 1312 1313 private_data = rdma_param->private_data; 1314 if (private_data->recfmt != 0) { 1315 SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n"); 1316 spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT); 1317 return -1; 1318 } 1319 1320 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Connect Recv on fabric intf name %s, dev_name %s\n", 1321 event->id->verbs->device->name, event->id->verbs->device->dev_name); 1322 1323 port = event->listen_id->context; 1324 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Listen Id was %p with verbs %p. ListenAddr: %p\n", 1325 event->listen_id, event->listen_id->verbs, port); 1326 1327 /* Figure out the supported queue depth. This is a multi-step process 1328 * that takes into account hardware maximums, host provided values, 1329 * and our target's internal memory limits */ 1330 1331 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Calculating Queue Depth\n"); 1332 1333 /* Start with the maximum queue depth allowed by the target */ 1334 max_queue_depth = rtransport->transport.opts.max_queue_depth; 1335 max_read_depth = rtransport->transport.opts.max_queue_depth; 1336 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Target Max Queue Depth: %d\n", 1337 rtransport->transport.opts.max_queue_depth); 1338 1339 /* Next check the local NIC's hardware limitations */ 1340 SPDK_DEBUGLOG(SPDK_LOG_RDMA, 1341 "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n", 1342 port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom); 1343 max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr); 1344 max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom); 1345 1346 /* Next check the remote NIC's hardware limitations */ 1347 SPDK_DEBUGLOG(SPDK_LOG_RDMA, 1348 "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n", 1349 rdma_param->initiator_depth, rdma_param->responder_resources); 1350 if (rdma_param->initiator_depth > 0) { 1351 max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth); 1352 } 1353 1354 /* Finally check for the host software requested values, which are 1355 * optional. */ 1356 if (rdma_param->private_data != NULL && 1357 rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1358 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Receive Queue Size: %d\n", private_data->hrqsize); 1359 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Send Queue Size: %d\n", private_data->hsqsize); 1360 max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize); 1361 max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1); 1362 } 1363 1364 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Final Negotiated Queue Depth: %d R/W Depth: %d\n", 1365 max_queue_depth, max_read_depth); 1366 1367 rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair)); 1368 if (rqpair == NULL) { 1369 SPDK_ERRLOG("Could not allocate new connection.\n"); 1370 spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 1371 return -1; 1372 } 1373 1374 rqpair->device = port->device; 1375 rqpair->max_queue_depth = max_queue_depth; 1376 rqpair->max_read_depth = max_read_depth; 1377 rqpair->cm_id = event->id; 1378 rqpair->listen_id = event->listen_id; 1379 rqpair->qpair.transport = transport; 1380 STAILQ_INIT(&rqpair->ibv_events); 1381 /* use qid from the private data to determine the qpair type 1382 qid will be set to the appropriate value when the controller is created */ 1383 rqpair->qpair.qid = private_data->qid; 1384 1385 event->id->context = &rqpair->qpair; 1386 1387 cb_fn(&rqpair->qpair, cb_arg); 1388 1389 return 0; 1390 } 1391 1392 static int 1393 spdk_nvmf_rdma_mem_notify(void *cb_ctx, struct spdk_mem_map *map, 1394 enum spdk_mem_map_notify_action action, 1395 void *vaddr, size_t size) 1396 { 1397 struct ibv_pd *pd = cb_ctx; 1398 struct ibv_mr *mr; 1399 int rc; 1400 1401 switch (action) { 1402 case SPDK_MEM_MAP_NOTIFY_REGISTER: 1403 if (!g_nvmf_hooks.get_rkey) { 1404 mr = ibv_reg_mr(pd, vaddr, size, 1405 IBV_ACCESS_LOCAL_WRITE | 1406 IBV_ACCESS_REMOTE_READ | 1407 IBV_ACCESS_REMOTE_WRITE); 1408 if (mr == NULL) { 1409 SPDK_ERRLOG("ibv_reg_mr() failed\n"); 1410 return -1; 1411 } else { 1412 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr); 1413 } 1414 } else { 1415 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, 1416 g_nvmf_hooks.get_rkey(pd, vaddr, size)); 1417 } 1418 break; 1419 case SPDK_MEM_MAP_NOTIFY_UNREGISTER: 1420 if (!g_nvmf_hooks.get_rkey) { 1421 mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL); 1422 if (mr) { 1423 ibv_dereg_mr(mr); 1424 } 1425 } 1426 rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size); 1427 break; 1428 default: 1429 SPDK_UNREACHABLE(); 1430 } 1431 1432 return rc; 1433 } 1434 1435 static int 1436 spdk_nvmf_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2) 1437 { 1438 /* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */ 1439 return addr_1 == addr_2; 1440 } 1441 1442 static inline void 1443 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next, 1444 enum spdk_nvme_data_transfer xfer) 1445 { 1446 if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1447 wr->opcode = IBV_WR_RDMA_WRITE; 1448 wr->send_flags = 0; 1449 wr->next = next; 1450 } else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 1451 wr->opcode = IBV_WR_RDMA_READ; 1452 wr->send_flags = IBV_SEND_SIGNALED; 1453 wr->next = NULL; 1454 } else { 1455 assert(0); 1456 } 1457 } 1458 1459 static int 1460 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport, 1461 struct spdk_nvmf_rdma_request *rdma_req, 1462 uint32_t num_sgl_descriptors) 1463 { 1464 struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES]; 1465 struct spdk_nvmf_rdma_request_data *current_data_wr; 1466 uint32_t i; 1467 1468 if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) { 1469 SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n", 1470 num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES); 1471 return -EINVAL; 1472 } 1473 1474 if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) { 1475 return -ENOMEM; 1476 } 1477 1478 current_data_wr = &rdma_req->data; 1479 1480 for (i = 0; i < num_sgl_descriptors; i++) { 1481 nvmf_rdma_setup_wr(¤t_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer); 1482 current_data_wr->wr.next = &work_requests[i]->wr; 1483 current_data_wr = work_requests[i]; 1484 current_data_wr->wr.sg_list = current_data_wr->sgl; 1485 current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id; 1486 } 1487 1488 nvmf_rdma_setup_wr(¤t_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1489 1490 return 0; 1491 } 1492 1493 static inline void 1494 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req) 1495 { 1496 struct ibv_send_wr *wr = &rdma_req->data.wr; 1497 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1498 1499 wr->wr.rdma.rkey = sgl->keyed.key; 1500 wr->wr.rdma.remote_addr = sgl->address; 1501 nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1502 } 1503 1504 static inline void 1505 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs) 1506 { 1507 struct ibv_send_wr *wr = &rdma_req->data.wr; 1508 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1509 uint32_t i; 1510 int j; 1511 uint64_t remote_addr_offset = 0; 1512 1513 for (i = 0; i < num_wrs; ++i) { 1514 wr->wr.rdma.rkey = sgl->keyed.key; 1515 wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset; 1516 for (j = 0; j < wr->num_sge; ++j) { 1517 remote_addr_offset += wr->sg_list[j].length; 1518 } 1519 wr = wr->next; 1520 } 1521 } 1522 1523 /* This function is used in the rare case that we have a buffer split over multiple memory regions. */ 1524 static int 1525 nvmf_rdma_replace_buffer(struct spdk_nvmf_rdma_poll_group *rgroup, void **buf) 1526 { 1527 struct spdk_nvmf_transport_poll_group *group = &rgroup->group; 1528 struct spdk_nvmf_transport *transport = group->transport; 1529 struct spdk_nvmf_transport_pg_cache_buf *old_buf; 1530 void *new_buf; 1531 1532 if (!(STAILQ_EMPTY(&group->buf_cache))) { 1533 group->buf_cache_count--; 1534 new_buf = STAILQ_FIRST(&group->buf_cache); 1535 STAILQ_REMOVE_HEAD(&group->buf_cache, link); 1536 assert(*buf != NULL); 1537 } else { 1538 new_buf = spdk_mempool_get(transport->data_buf_pool); 1539 } 1540 1541 if (*buf == NULL) { 1542 return -ENOMEM; 1543 } 1544 1545 old_buf = *buf; 1546 STAILQ_INSERT_HEAD(&rgroup->retired_bufs, old_buf, link); 1547 *buf = new_buf; 1548 return 0; 1549 } 1550 1551 static bool 1552 nvmf_rdma_get_lkey(struct spdk_nvmf_rdma_device *device, struct iovec *iov, 1553 uint32_t *_lkey) 1554 { 1555 uint64_t translation_len; 1556 uint32_t lkey; 1557 1558 translation_len = iov->iov_len; 1559 1560 if (!g_nvmf_hooks.get_rkey) { 1561 lkey = ((struct ibv_mr *)spdk_mem_map_translate(device->map, 1562 (uint64_t)iov->iov_base, &translation_len))->lkey; 1563 } else { 1564 lkey = spdk_mem_map_translate(device->map, 1565 (uint64_t)iov->iov_base, &translation_len); 1566 } 1567 1568 if (spdk_unlikely(translation_len < iov->iov_len)) { 1569 return false; 1570 } 1571 1572 *_lkey = lkey; 1573 return true; 1574 } 1575 1576 static bool 1577 nvmf_rdma_fill_wr_sge(struct spdk_nvmf_rdma_device *device, 1578 struct iovec *iov, struct ibv_send_wr **_wr, 1579 uint32_t *_remaining_data_block, uint32_t *_offset, 1580 uint32_t *_num_extra_wrs, 1581 const struct spdk_dif_ctx *dif_ctx) 1582 { 1583 struct ibv_send_wr *wr = *_wr; 1584 struct ibv_sge *sg_ele = &wr->sg_list[wr->num_sge]; 1585 uint32_t lkey = 0; 1586 uint32_t remaining, data_block_size, md_size, sge_len; 1587 1588 if (spdk_unlikely(!nvmf_rdma_get_lkey(device, iov, &lkey))) { 1589 /* This is a very rare case that can occur when using DPDK version < 19.05 */ 1590 SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions. Removing it from circulation.\n"); 1591 return false; 1592 } 1593 1594 if (spdk_likely(!dif_ctx)) { 1595 sg_ele->lkey = lkey; 1596 sg_ele->addr = (uintptr_t)(iov->iov_base); 1597 sg_ele->length = iov->iov_len; 1598 wr->num_sge++; 1599 } else { 1600 remaining = iov->iov_len - *_offset; 1601 data_block_size = dif_ctx->block_size - dif_ctx->md_size; 1602 md_size = dif_ctx->md_size; 1603 1604 while (remaining) { 1605 if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) { 1606 if (*_num_extra_wrs > 0 && wr->next) { 1607 *_wr = wr->next; 1608 wr = *_wr; 1609 wr->num_sge = 0; 1610 sg_ele = &wr->sg_list[wr->num_sge]; 1611 (*_num_extra_wrs)--; 1612 } else { 1613 break; 1614 } 1615 } 1616 sg_ele->lkey = lkey; 1617 sg_ele->addr = (uintptr_t)((char *)iov->iov_base + *_offset); 1618 sge_len = spdk_min(remaining, *_remaining_data_block); 1619 sg_ele->length = sge_len; 1620 remaining -= sge_len; 1621 *_remaining_data_block -= sge_len; 1622 *_offset += sge_len; 1623 1624 sg_ele++; 1625 wr->num_sge++; 1626 1627 if (*_remaining_data_block == 0) { 1628 /* skip metadata */ 1629 *_offset += md_size; 1630 /* Metadata that do not fit this IO buffer will be included in the next IO buffer */ 1631 remaining -= spdk_min(remaining, md_size); 1632 *_remaining_data_block = data_block_size; 1633 } 1634 1635 if (remaining == 0) { 1636 /* By subtracting the size of the last IOV from the offset, we ensure that we skip 1637 the remaining metadata bits at the beginning of the next buffer */ 1638 *_offset -= iov->iov_len; 1639 } 1640 } 1641 } 1642 1643 return true; 1644 } 1645 1646 static int 1647 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup, 1648 struct spdk_nvmf_rdma_device *device, 1649 struct spdk_nvmf_rdma_request *rdma_req, 1650 struct ibv_send_wr *wr, 1651 uint32_t length, 1652 uint32_t num_extra_wrs) 1653 { 1654 struct spdk_nvmf_request *req = &rdma_req->req; 1655 struct spdk_dif_ctx *dif_ctx = NULL; 1656 uint32_t remaining_data_block = 0; 1657 uint32_t offset = 0; 1658 1659 if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) { 1660 dif_ctx = &rdma_req->req.dif.dif_ctx; 1661 remaining_data_block = dif_ctx->block_size - dif_ctx->md_size; 1662 } 1663 1664 wr->num_sge = 0; 1665 1666 while (length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) { 1667 while (spdk_unlikely(!nvmf_rdma_fill_wr_sge(device, &req->iov[rdma_req->iovpos], &wr, 1668 &remaining_data_block, &offset, &num_extra_wrs, dif_ctx))) { 1669 if (nvmf_rdma_replace_buffer(rgroup, &req->buffers[rdma_req->iovpos]) == -ENOMEM) { 1670 return -ENOMEM; 1671 } 1672 req->iov[rdma_req->iovpos].iov_base = (void *)((uintptr_t)(req->buffers[rdma_req->iovpos] + 1673 NVMF_DATA_BUFFER_MASK) & 1674 ~NVMF_DATA_BUFFER_MASK); 1675 } 1676 1677 length -= req->iov[rdma_req->iovpos].iov_len; 1678 rdma_req->iovpos++; 1679 } 1680 1681 if (length) { 1682 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1683 return -EINVAL; 1684 } 1685 1686 return 0; 1687 } 1688 1689 static inline uint32_t 1690 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size) 1691 { 1692 /* estimate the number of SG entries and WRs needed to process the request */ 1693 uint32_t num_sge = 0; 1694 uint32_t i; 1695 uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size); 1696 1697 for (i = 0; i < num_buffers && length > 0; i++) { 1698 uint32_t buffer_len = spdk_min(length, io_unit_size); 1699 uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size); 1700 1701 if (num_sge_in_block * block_size > buffer_len) { 1702 ++num_sge_in_block; 1703 } 1704 num_sge += num_sge_in_block; 1705 length -= buffer_len; 1706 } 1707 return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES); 1708 } 1709 1710 static int 1711 spdk_nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport, 1712 struct spdk_nvmf_rdma_device *device, 1713 struct spdk_nvmf_rdma_request *rdma_req, 1714 uint32_t length) 1715 { 1716 struct spdk_nvmf_rdma_qpair *rqpair; 1717 struct spdk_nvmf_rdma_poll_group *rgroup; 1718 struct spdk_nvmf_request *req = &rdma_req->req; 1719 struct ibv_send_wr *wr = &rdma_req->data.wr; 1720 int rc; 1721 uint32_t num_wrs = 1; 1722 1723 rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair); 1724 rgroup = rqpair->poller->group; 1725 1726 /* rdma wr specifics */ 1727 nvmf_rdma_setup_request(rdma_req); 1728 1729 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, 1730 length); 1731 if (rc != 0) { 1732 return rc; 1733 } 1734 1735 assert(req->iovcnt <= rqpair->max_send_sge); 1736 1737 rdma_req->iovpos = 0; 1738 1739 if (spdk_unlikely(req->dif.dif_insert_or_strip)) { 1740 num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size, 1741 req->dif.dif_ctx.block_size); 1742 if (num_wrs > 1) { 1743 rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1); 1744 if (rc != 0) { 1745 goto err_exit; 1746 } 1747 } 1748 } 1749 1750 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length, num_wrs - 1); 1751 if (spdk_unlikely(rc != 0)) { 1752 goto err_exit; 1753 } 1754 1755 if (spdk_unlikely(num_wrs > 1)) { 1756 nvmf_rdma_update_remote_addr(rdma_req, num_wrs); 1757 } 1758 1759 /* set the number of outstanding data WRs for this request. */ 1760 rdma_req->num_outstanding_data_wr = num_wrs; 1761 1762 return rc; 1763 1764 err_exit: 1765 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1766 nvmf_rdma_request_free_data(rdma_req, rtransport); 1767 req->iovcnt = 0; 1768 return rc; 1769 } 1770 1771 static int 1772 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1773 struct spdk_nvmf_rdma_device *device, 1774 struct spdk_nvmf_rdma_request *rdma_req) 1775 { 1776 struct spdk_nvmf_rdma_qpair *rqpair; 1777 struct spdk_nvmf_rdma_poll_group *rgroup; 1778 struct ibv_send_wr *current_wr; 1779 struct spdk_nvmf_request *req = &rdma_req->req; 1780 struct spdk_nvme_sgl_descriptor *inline_segment, *desc; 1781 uint32_t num_sgl_descriptors; 1782 uint32_t lengths[SPDK_NVMF_MAX_SGL_ENTRIES]; 1783 uint32_t i; 1784 int rc; 1785 1786 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1787 rgroup = rqpair->poller->group; 1788 1789 inline_segment = &req->cmd->nvme_cmd.dptr.sgl1; 1790 assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT); 1791 assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET); 1792 1793 num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor); 1794 assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES); 1795 1796 if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) { 1797 return -ENOMEM; 1798 } 1799 1800 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1801 for (i = 0; i < num_sgl_descriptors; i++) { 1802 if (spdk_likely(!req->dif.dif_insert_or_strip)) { 1803 lengths[i] = desc->keyed.length; 1804 } else { 1805 req->dif.orig_length += desc->keyed.length; 1806 lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx); 1807 req->dif.elba_length += lengths[i]; 1808 } 1809 desc++; 1810 } 1811 1812 rc = spdk_nvmf_request_get_buffers_multi(req, &rgroup->group, &rtransport->transport, 1813 lengths, num_sgl_descriptors); 1814 if (rc != 0) { 1815 nvmf_rdma_request_free_data(rdma_req, rtransport); 1816 return rc; 1817 } 1818 1819 /* The first WR must always be the embedded data WR. This is how we unwind them later. */ 1820 current_wr = &rdma_req->data.wr; 1821 assert(current_wr != NULL); 1822 1823 req->length = 0; 1824 rdma_req->iovpos = 0; 1825 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1826 for (i = 0; i < num_sgl_descriptors; i++) { 1827 /* The descriptors must be keyed data block descriptors with an address, not an offset. */ 1828 if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK || 1829 desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) { 1830 rc = -EINVAL; 1831 goto err_exit; 1832 } 1833 1834 current_wr->num_sge = 0; 1835 1836 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i], 0); 1837 if (rc != 0) { 1838 rc = -ENOMEM; 1839 goto err_exit; 1840 } 1841 1842 req->length += desc->keyed.length; 1843 current_wr->wr.rdma.rkey = desc->keyed.key; 1844 current_wr->wr.rdma.remote_addr = desc->address; 1845 current_wr = current_wr->next; 1846 desc++; 1847 } 1848 1849 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1850 /* Go back to the last descriptor in the list. */ 1851 desc--; 1852 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1853 if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1854 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1855 rdma_req->rsp.wr.imm_data = desc->keyed.key; 1856 } 1857 } 1858 #endif 1859 1860 rdma_req->num_outstanding_data_wr = num_sgl_descriptors; 1861 1862 return 0; 1863 1864 err_exit: 1865 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1866 nvmf_rdma_request_free_data(rdma_req, rtransport); 1867 return rc; 1868 } 1869 1870 static int 1871 spdk_nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1872 struct spdk_nvmf_rdma_device *device, 1873 struct spdk_nvmf_rdma_request *rdma_req) 1874 { 1875 struct spdk_nvmf_request *req = &rdma_req->req; 1876 struct spdk_nvme_cpl *rsp; 1877 struct spdk_nvme_sgl_descriptor *sgl; 1878 int rc; 1879 uint32_t length; 1880 1881 rsp = &req->rsp->nvme_cpl; 1882 sgl = &req->cmd->nvme_cmd.dptr.sgl1; 1883 1884 if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK && 1885 (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS || 1886 sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) { 1887 1888 length = sgl->keyed.length; 1889 if (length > rtransport->transport.opts.max_io_size) { 1890 SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n", 1891 length, rtransport->transport.opts.max_io_size); 1892 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1893 return -1; 1894 } 1895 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1896 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1897 if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1898 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1899 rdma_req->rsp.wr.imm_data = sgl->keyed.key; 1900 } 1901 } 1902 #endif 1903 1904 /* fill request length and populate iovs */ 1905 req->length = length; 1906 1907 if (spdk_unlikely(req->dif.dif_insert_or_strip)) { 1908 req->dif.orig_length = length; 1909 length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx); 1910 req->dif.elba_length = length; 1911 } 1912 1913 rc = spdk_nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req, length); 1914 if (spdk_unlikely(rc < 0)) { 1915 if (rc == -EINVAL) { 1916 SPDK_ERRLOG("SGL length exceeds the max I/O size\n"); 1917 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1918 return -1; 1919 } 1920 /* No available buffers. Queue this request up. */ 1921 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req); 1922 return 0; 1923 } 1924 1925 /* backward compatible */ 1926 req->data = req->iov[0].iov_base; 1927 1928 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req, 1929 req->iovcnt); 1930 1931 return 0; 1932 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK && 1933 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1934 uint64_t offset = sgl->address; 1935 uint32_t max_len = rtransport->transport.opts.in_capsule_data_size; 1936 1937 SPDK_DEBUGLOG(SPDK_LOG_NVMF, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n", 1938 offset, sgl->unkeyed.length); 1939 1940 if (offset > max_len) { 1941 SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n", 1942 offset, max_len); 1943 rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET; 1944 return -1; 1945 } 1946 max_len -= (uint32_t)offset; 1947 1948 if (sgl->unkeyed.length > max_len) { 1949 SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n", 1950 sgl->unkeyed.length, max_len); 1951 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1952 return -1; 1953 } 1954 1955 rdma_req->num_outstanding_data_wr = 0; 1956 req->data = rdma_req->recv->buf + offset; 1957 req->data_from_pool = false; 1958 req->length = sgl->unkeyed.length; 1959 1960 req->iov[0].iov_base = req->data; 1961 req->iov[0].iov_len = req->length; 1962 req->iovcnt = 1; 1963 1964 return 0; 1965 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT && 1966 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1967 1968 rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req); 1969 if (rc == -ENOMEM) { 1970 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req); 1971 return 0; 1972 } else if (rc == -EINVAL) { 1973 SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n"); 1974 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1975 return -1; 1976 } 1977 1978 /* backward compatible */ 1979 req->data = req->iov[0].iov_base; 1980 1981 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req, 1982 req->iovcnt); 1983 1984 return 0; 1985 } 1986 1987 SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n", 1988 sgl->generic.type, sgl->generic.subtype); 1989 rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID; 1990 return -1; 1991 } 1992 1993 static void 1994 nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req, 1995 struct spdk_nvmf_rdma_transport *rtransport) 1996 { 1997 struct spdk_nvmf_rdma_qpair *rqpair; 1998 struct spdk_nvmf_rdma_poll_group *rgroup; 1999 2000 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 2001 if (rdma_req->req.data_from_pool) { 2002 rgroup = rqpair->poller->group; 2003 2004 spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport); 2005 } 2006 nvmf_rdma_request_free_data(rdma_req, rtransport); 2007 rdma_req->req.length = 0; 2008 rdma_req->req.iovcnt = 0; 2009 rdma_req->req.data = NULL; 2010 rdma_req->rsp.wr.next = NULL; 2011 rdma_req->data.wr.next = NULL; 2012 memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif)); 2013 rqpair->qd--; 2014 2015 STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link); 2016 rdma_req->state = RDMA_REQUEST_STATE_FREE; 2017 } 2018 2019 bool 2020 spdk_nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 2021 struct spdk_nvmf_rdma_request *rdma_req) 2022 { 2023 struct spdk_nvmf_rdma_qpair *rqpair; 2024 struct spdk_nvmf_rdma_device *device; 2025 struct spdk_nvmf_rdma_poll_group *rgroup; 2026 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2027 int rc; 2028 struct spdk_nvmf_rdma_recv *rdma_recv; 2029 enum spdk_nvmf_rdma_request_state prev_state; 2030 bool progress = false; 2031 int data_posted; 2032 uint32_t num_blocks; 2033 2034 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 2035 device = rqpair->device; 2036 rgroup = rqpair->poller->group; 2037 2038 assert(rdma_req->state != RDMA_REQUEST_STATE_FREE); 2039 2040 /* If the queue pair is in an error state, force the request to the completed state 2041 * to release resources. */ 2042 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 2043 if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) { 2044 STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link); 2045 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) { 2046 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2047 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) { 2048 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2049 } 2050 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2051 } 2052 2053 /* The loop here is to allow for several back-to-back state changes. */ 2054 do { 2055 prev_state = rdma_req->state; 2056 2057 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p entering state %d\n", rdma_req, prev_state); 2058 2059 switch (rdma_req->state) { 2060 case RDMA_REQUEST_STATE_FREE: 2061 /* Some external code must kick a request into RDMA_REQUEST_STATE_NEW 2062 * to escape this state. */ 2063 break; 2064 case RDMA_REQUEST_STATE_NEW: 2065 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0, 2066 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2067 rdma_recv = rdma_req->recv; 2068 2069 /* The first element of the SGL is the NVMe command */ 2070 rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr; 2071 memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp)); 2072 2073 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 2074 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2075 break; 2076 } 2077 2078 if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) { 2079 rdma_req->req.dif.dif_insert_or_strip = true; 2080 } 2081 2082 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2083 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 2084 rdma_req->rsp.wr.imm_data = 0; 2085 #endif 2086 2087 /* The next state transition depends on the data transfer needs of this request. */ 2088 rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req); 2089 2090 /* If no data to transfer, ready to execute. */ 2091 if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) { 2092 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2093 break; 2094 } 2095 2096 rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER; 2097 STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link); 2098 break; 2099 case RDMA_REQUEST_STATE_NEED_BUFFER: 2100 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0, 2101 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2102 2103 assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE); 2104 2105 if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) { 2106 /* This request needs to wait in line to obtain a buffer */ 2107 break; 2108 } 2109 2110 /* Try to get a data buffer */ 2111 rc = spdk_nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req); 2112 if (rc < 0) { 2113 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2114 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2115 break; 2116 } 2117 2118 if (!rdma_req->req.data) { 2119 /* No buffers available. */ 2120 rgroup->stat.pending_data_buffer++; 2121 break; 2122 } 2123 2124 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2125 2126 /* If data is transferring from host to controller and the data didn't 2127 * arrive using in capsule data, we need to do a transfer from the host. 2128 */ 2129 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && 2130 rdma_req->req.data_from_pool) { 2131 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link); 2132 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING; 2133 break; 2134 } 2135 2136 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2137 break; 2138 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 2139 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0, 2140 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2141 2142 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) { 2143 /* This request needs to wait in line to perform RDMA */ 2144 break; 2145 } 2146 if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth 2147 || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) { 2148 /* We can only have so many WRs outstanding. we have to wait until some finish. */ 2149 rqpair->poller->stat.pending_rdma_read++; 2150 break; 2151 } 2152 2153 /* We have already verified that this request is the head of the queue. */ 2154 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link); 2155 2156 rc = request_transfer_in(&rdma_req->req); 2157 if (!rc) { 2158 rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER; 2159 } else { 2160 rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 2161 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2162 } 2163 break; 2164 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 2165 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0, 2166 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2167 /* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE 2168 * to escape this state. */ 2169 break; 2170 case RDMA_REQUEST_STATE_READY_TO_EXECUTE: 2171 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0, 2172 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2173 2174 if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) { 2175 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 2176 /* generate DIF for write operation */ 2177 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2178 assert(num_blocks > 0); 2179 2180 rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt, 2181 num_blocks, &rdma_req->req.dif.dif_ctx); 2182 if (rc != 0) { 2183 SPDK_ERRLOG("DIF generation failed\n"); 2184 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2185 spdk_nvmf_rdma_start_disconnect(rqpair); 2186 break; 2187 } 2188 } 2189 2190 assert(rdma_req->req.dif.elba_length >= rdma_req->req.length); 2191 /* set extended length before IO operation */ 2192 rdma_req->req.length = rdma_req->req.dif.elba_length; 2193 } 2194 2195 rdma_req->state = RDMA_REQUEST_STATE_EXECUTING; 2196 spdk_nvmf_request_exec(&rdma_req->req); 2197 break; 2198 case RDMA_REQUEST_STATE_EXECUTING: 2199 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0, 2200 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2201 /* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED 2202 * to escape this state. */ 2203 break; 2204 case RDMA_REQUEST_STATE_EXECUTED: 2205 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0, 2206 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2207 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2208 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link); 2209 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING; 2210 } else { 2211 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2212 } 2213 if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) { 2214 /* restore the original length */ 2215 rdma_req->req.length = rdma_req->req.dif.orig_length; 2216 2217 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2218 struct spdk_dif_error error_blk; 2219 2220 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2221 2222 rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2223 &rdma_req->req.dif.dif_ctx, &error_blk); 2224 if (rc) { 2225 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2226 2227 SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type, 2228 error_blk.err_offset); 2229 rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR; 2230 rsp->status.sc = spdk_nvmf_rdma_dif_error_to_compl_status(error_blk.err_type); 2231 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2232 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2233 } 2234 } 2235 } 2236 break; 2237 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 2238 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0, 2239 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2240 2241 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) { 2242 /* This request needs to wait in line to perform RDMA */ 2243 break; 2244 } 2245 if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) > 2246 rqpair->max_send_depth) { 2247 /* We can only have so many WRs outstanding. we have to wait until some finish. 2248 * +1 since each request has an additional wr in the resp. */ 2249 rqpair->poller->stat.pending_rdma_write++; 2250 break; 2251 } 2252 2253 /* We have already verified that this request is the head of the queue. */ 2254 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link); 2255 2256 /* The data transfer will be kicked off from 2257 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state. 2258 */ 2259 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2260 break; 2261 case RDMA_REQUEST_STATE_READY_TO_COMPLETE: 2262 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0, 2263 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2264 rc = request_transfer_out(&rdma_req->req, &data_posted); 2265 assert(rc == 0); /* No good way to handle this currently */ 2266 if (rc) { 2267 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2268 } else { 2269 rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST : 2270 RDMA_REQUEST_STATE_COMPLETING; 2271 } 2272 break; 2273 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 2274 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0, 2275 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2276 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2277 * to escape this state. */ 2278 break; 2279 case RDMA_REQUEST_STATE_COMPLETING: 2280 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0, 2281 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2282 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2283 * to escape this state. */ 2284 break; 2285 case RDMA_REQUEST_STATE_COMPLETED: 2286 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0, 2287 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2288 2289 rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc; 2290 nvmf_rdma_request_free(rdma_req, rtransport); 2291 break; 2292 case RDMA_REQUEST_NUM_STATES: 2293 default: 2294 assert(0); 2295 break; 2296 } 2297 2298 if (rdma_req->state != prev_state) { 2299 progress = true; 2300 } 2301 } while (rdma_req->state != prev_state); 2302 2303 return progress; 2304 } 2305 2306 /* Public API callbacks begin here */ 2307 2308 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128 2309 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128 2310 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096 2311 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128 2312 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096 2313 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072 2314 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES) 2315 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095 2316 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32 2317 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false 2318 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false 2319 2320 static void 2321 spdk_nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts) 2322 { 2323 opts->max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH; 2324 opts->max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR; 2325 opts->in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE; 2326 opts->max_io_size = SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE; 2327 opts->io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE; 2328 opts->max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH; 2329 opts->num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS; 2330 opts->buf_cache_size = SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE; 2331 opts->max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH; 2332 opts->no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ; 2333 opts->dif_insert_or_strip = SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP; 2334 } 2335 2336 const struct spdk_mem_map_ops g_nvmf_rdma_map_ops = { 2337 .notify_cb = spdk_nvmf_rdma_mem_notify, 2338 .are_contiguous = spdk_nvmf_rdma_check_contiguous_entries 2339 }; 2340 2341 static int spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport); 2342 2343 static struct spdk_nvmf_transport * 2344 spdk_nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts) 2345 { 2346 int rc; 2347 struct spdk_nvmf_rdma_transport *rtransport; 2348 struct spdk_nvmf_rdma_device *device, *tmp; 2349 struct ibv_context **contexts; 2350 uint32_t i; 2351 int flag; 2352 uint32_t sge_count; 2353 uint32_t min_shared_buffers; 2354 int max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES; 2355 pthread_mutexattr_t attr; 2356 2357 rtransport = calloc(1, sizeof(*rtransport)); 2358 if (!rtransport) { 2359 return NULL; 2360 } 2361 2362 if (pthread_mutexattr_init(&attr)) { 2363 SPDK_ERRLOG("pthread_mutexattr_init() failed\n"); 2364 free(rtransport); 2365 return NULL; 2366 } 2367 2368 if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) { 2369 SPDK_ERRLOG("pthread_mutexattr_settype() failed\n"); 2370 pthread_mutexattr_destroy(&attr); 2371 free(rtransport); 2372 return NULL; 2373 } 2374 2375 if (pthread_mutex_init(&rtransport->lock, &attr)) { 2376 SPDK_ERRLOG("pthread_mutex_init() failed\n"); 2377 pthread_mutexattr_destroy(&attr); 2378 free(rtransport); 2379 return NULL; 2380 } 2381 2382 pthread_mutexattr_destroy(&attr); 2383 2384 TAILQ_INIT(&rtransport->devices); 2385 TAILQ_INIT(&rtransport->ports); 2386 TAILQ_INIT(&rtransport->poll_groups); 2387 2388 rtransport->transport.ops = &spdk_nvmf_transport_rdma; 2389 2390 SPDK_INFOLOG(SPDK_LOG_RDMA, "*** RDMA Transport Init ***\n" 2391 " Transport opts: max_ioq_depth=%d, max_io_size=%d,\n" 2392 " max_qpairs_per_ctrlr=%d, io_unit_size=%d,\n" 2393 " in_capsule_data_size=%d, max_aq_depth=%d,\n" 2394 " num_shared_buffers=%d, max_srq_depth=%d, no_srq=%d\n", 2395 opts->max_queue_depth, 2396 opts->max_io_size, 2397 opts->max_qpairs_per_ctrlr, 2398 opts->io_unit_size, 2399 opts->in_capsule_data_size, 2400 opts->max_aq_depth, 2401 opts->num_shared_buffers, 2402 opts->max_srq_depth, 2403 opts->no_srq); 2404 2405 /* I/O unit size cannot be larger than max I/O size */ 2406 if (opts->io_unit_size > opts->max_io_size) { 2407 opts->io_unit_size = opts->max_io_size; 2408 } 2409 2410 if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) { 2411 SPDK_ERRLOG("The number of shared data buffers (%d) is less than" 2412 "the minimum number required to guarantee that forward progress can be made (%d)\n", 2413 opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2)); 2414 spdk_nvmf_rdma_destroy(&rtransport->transport); 2415 return NULL; 2416 } 2417 2418 min_shared_buffers = spdk_thread_get_count() * opts->buf_cache_size; 2419 if (min_shared_buffers > opts->num_shared_buffers) { 2420 SPDK_ERRLOG("There are not enough buffers to satisfy" 2421 "per-poll group caches for each thread. (%" PRIu32 ")" 2422 "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers); 2423 SPDK_ERRLOG("Please specify a larger number of shared buffers\n"); 2424 spdk_nvmf_rdma_destroy(&rtransport->transport); 2425 return NULL; 2426 } 2427 2428 sge_count = opts->max_io_size / opts->io_unit_size; 2429 if (sge_count > NVMF_DEFAULT_TX_SGE) { 2430 SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size); 2431 spdk_nvmf_rdma_destroy(&rtransport->transport); 2432 return NULL; 2433 } 2434 2435 rtransport->event_channel = rdma_create_event_channel(); 2436 if (rtransport->event_channel == NULL) { 2437 SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno)); 2438 spdk_nvmf_rdma_destroy(&rtransport->transport); 2439 return NULL; 2440 } 2441 2442 flag = fcntl(rtransport->event_channel->fd, F_GETFL); 2443 if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { 2444 SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n", 2445 rtransport->event_channel->fd, spdk_strerror(errno)); 2446 spdk_nvmf_rdma_destroy(&rtransport->transport); 2447 return NULL; 2448 } 2449 2450 rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data", 2451 opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES, 2452 sizeof(struct spdk_nvmf_rdma_request_data), 2453 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 2454 SPDK_ENV_SOCKET_ID_ANY); 2455 if (!rtransport->data_wr_pool) { 2456 SPDK_ERRLOG("Unable to allocate work request pool for poll group\n"); 2457 spdk_nvmf_rdma_destroy(&rtransport->transport); 2458 return NULL; 2459 } 2460 2461 contexts = rdma_get_devices(NULL); 2462 if (contexts == NULL) { 2463 SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); 2464 spdk_nvmf_rdma_destroy(&rtransport->transport); 2465 return NULL; 2466 } 2467 2468 i = 0; 2469 rc = 0; 2470 while (contexts[i] != NULL) { 2471 device = calloc(1, sizeof(*device)); 2472 if (!device) { 2473 SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n"); 2474 rc = -ENOMEM; 2475 break; 2476 } 2477 device->context = contexts[i]; 2478 rc = ibv_query_device(device->context, &device->attr); 2479 if (rc < 0) { 2480 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 2481 free(device); 2482 break; 2483 2484 } 2485 2486 max_device_sge = spdk_min(max_device_sge, device->attr.max_sge); 2487 2488 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2489 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) { 2490 SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,"); 2491 SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id); 2492 } 2493 2494 /** 2495 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE. 2496 * The Soft-RoCE RXE driver does not currently support send with invalidate, 2497 * but incorrectly reports that it does. There are changes making their way 2498 * through the kernel now that will enable this feature. When they are merged, 2499 * we can conditionally enable this feature. 2500 * 2501 * TODO: enable this for versions of the kernel rxe driver that support it. 2502 */ 2503 if (device->attr.vendor_id == 0) { 2504 device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS); 2505 } 2506 #endif 2507 2508 /* set up device context async ev fd as NON_BLOCKING */ 2509 flag = fcntl(device->context->async_fd, F_GETFL); 2510 rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK); 2511 if (rc < 0) { 2512 SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n"); 2513 free(device); 2514 break; 2515 } 2516 2517 TAILQ_INSERT_TAIL(&rtransport->devices, device, link); 2518 i++; 2519 2520 if (g_nvmf_hooks.get_ibv_pd) { 2521 device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context); 2522 } else { 2523 device->pd = ibv_alloc_pd(device->context); 2524 } 2525 2526 if (!device->pd) { 2527 SPDK_ERRLOG("Unable to allocate protection domain.\n"); 2528 rc = -ENOMEM; 2529 break; 2530 } 2531 2532 assert(device->map == NULL); 2533 2534 device->map = spdk_mem_map_alloc(0, &g_nvmf_rdma_map_ops, device->pd); 2535 if (!device->map) { 2536 SPDK_ERRLOG("Unable to allocate memory map for listen address\n"); 2537 rc = -ENOMEM; 2538 break; 2539 } 2540 2541 assert(device->map != NULL); 2542 assert(device->pd != NULL); 2543 } 2544 rdma_free_devices(contexts); 2545 2546 if (opts->io_unit_size * max_device_sge < opts->max_io_size) { 2547 /* divide and round up. */ 2548 opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge; 2549 2550 /* round up to the nearest 4k. */ 2551 opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK; 2552 2553 opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE); 2554 SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n", 2555 opts->io_unit_size); 2556 } 2557 2558 if (rc < 0) { 2559 spdk_nvmf_rdma_destroy(&rtransport->transport); 2560 return NULL; 2561 } 2562 2563 /* Set up poll descriptor array to monitor events from RDMA and IB 2564 * in a single poll syscall 2565 */ 2566 rtransport->npoll_fds = i + 1; 2567 i = 0; 2568 rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd)); 2569 if (rtransport->poll_fds == NULL) { 2570 SPDK_ERRLOG("poll_fds allocation failed\n"); 2571 spdk_nvmf_rdma_destroy(&rtransport->transport); 2572 return NULL; 2573 } 2574 2575 rtransport->poll_fds[i].fd = rtransport->event_channel->fd; 2576 rtransport->poll_fds[i++].events = POLLIN; 2577 2578 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 2579 rtransport->poll_fds[i].fd = device->context->async_fd; 2580 rtransport->poll_fds[i++].events = POLLIN; 2581 } 2582 2583 return &rtransport->transport; 2584 } 2585 2586 static int 2587 spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport) 2588 { 2589 struct spdk_nvmf_rdma_transport *rtransport; 2590 struct spdk_nvmf_rdma_port *port, *port_tmp; 2591 struct spdk_nvmf_rdma_device *device, *device_tmp; 2592 2593 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2594 2595 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) { 2596 TAILQ_REMOVE(&rtransport->ports, port, link); 2597 rdma_destroy_id(port->id); 2598 free(port); 2599 } 2600 2601 if (rtransport->poll_fds != NULL) { 2602 free(rtransport->poll_fds); 2603 } 2604 2605 if (rtransport->event_channel != NULL) { 2606 rdma_destroy_event_channel(rtransport->event_channel); 2607 } 2608 2609 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) { 2610 TAILQ_REMOVE(&rtransport->devices, device, link); 2611 if (device->map) { 2612 spdk_mem_map_free(&device->map); 2613 } 2614 if (device->pd) { 2615 if (!g_nvmf_hooks.get_ibv_pd) { 2616 ibv_dealloc_pd(device->pd); 2617 } 2618 } 2619 free(device); 2620 } 2621 2622 if (rtransport->data_wr_pool != NULL) { 2623 if (spdk_mempool_count(rtransport->data_wr_pool) != 2624 (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) { 2625 SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n", 2626 spdk_mempool_count(rtransport->data_wr_pool), 2627 transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES); 2628 } 2629 } 2630 2631 spdk_mempool_free(rtransport->data_wr_pool); 2632 2633 pthread_mutex_destroy(&rtransport->lock); 2634 free(rtransport); 2635 2636 return 0; 2637 } 2638 2639 static int 2640 spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 2641 struct spdk_nvme_transport_id *trid, 2642 bool peer); 2643 2644 static int 2645 spdk_nvmf_rdma_listen(struct spdk_nvmf_transport *transport, 2646 const struct spdk_nvme_transport_id *trid, 2647 spdk_nvmf_tgt_listen_done_fn cb_fn, 2648 void *cb_arg) 2649 { 2650 struct spdk_nvmf_rdma_transport *rtransport; 2651 struct spdk_nvmf_rdma_device *device; 2652 struct spdk_nvmf_rdma_port *port; 2653 struct addrinfo *res; 2654 struct addrinfo hints; 2655 int family; 2656 int rc; 2657 2658 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2659 assert(rtransport->event_channel != NULL); 2660 2661 pthread_mutex_lock(&rtransport->lock); 2662 port = calloc(1, sizeof(*port)); 2663 if (!port) { 2664 SPDK_ERRLOG("Port allocation failed\n"); 2665 pthread_mutex_unlock(&rtransport->lock); 2666 return -ENOMEM; 2667 } 2668 2669 port->trid = trid; 2670 2671 switch (trid->adrfam) { 2672 case SPDK_NVMF_ADRFAM_IPV4: 2673 family = AF_INET; 2674 break; 2675 case SPDK_NVMF_ADRFAM_IPV6: 2676 family = AF_INET6; 2677 break; 2678 default: 2679 SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam); 2680 free(port); 2681 pthread_mutex_unlock(&rtransport->lock); 2682 return -EINVAL; 2683 } 2684 2685 memset(&hints, 0, sizeof(hints)); 2686 hints.ai_family = family; 2687 hints.ai_flags = AI_NUMERICSERV; 2688 hints.ai_socktype = SOCK_STREAM; 2689 hints.ai_protocol = 0; 2690 2691 rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res); 2692 if (rc) { 2693 SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc); 2694 free(port); 2695 pthread_mutex_unlock(&rtransport->lock); 2696 return -EINVAL; 2697 } 2698 2699 rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP); 2700 if (rc < 0) { 2701 SPDK_ERRLOG("rdma_create_id() failed\n"); 2702 freeaddrinfo(res); 2703 free(port); 2704 pthread_mutex_unlock(&rtransport->lock); 2705 return rc; 2706 } 2707 2708 rc = rdma_bind_addr(port->id, res->ai_addr); 2709 freeaddrinfo(res); 2710 2711 if (rc < 0) { 2712 SPDK_ERRLOG("rdma_bind_addr() failed\n"); 2713 rdma_destroy_id(port->id); 2714 free(port); 2715 pthread_mutex_unlock(&rtransport->lock); 2716 return rc; 2717 } 2718 2719 if (!port->id->verbs) { 2720 SPDK_ERRLOG("ibv_context is null\n"); 2721 rdma_destroy_id(port->id); 2722 free(port); 2723 pthread_mutex_unlock(&rtransport->lock); 2724 return -1; 2725 } 2726 2727 rc = rdma_listen(port->id, 10); /* 10 = backlog */ 2728 if (rc < 0) { 2729 SPDK_ERRLOG("rdma_listen() failed\n"); 2730 rdma_destroy_id(port->id); 2731 free(port); 2732 pthread_mutex_unlock(&rtransport->lock); 2733 return rc; 2734 } 2735 2736 TAILQ_FOREACH(device, &rtransport->devices, link) { 2737 if (device->context == port->id->verbs) { 2738 port->device = device; 2739 break; 2740 } 2741 } 2742 if (!port->device) { 2743 SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n", 2744 port->id->verbs); 2745 rdma_destroy_id(port->id); 2746 free(port); 2747 pthread_mutex_unlock(&rtransport->lock); 2748 return -EINVAL; 2749 } 2750 2751 SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n", 2752 trid->traddr, trid->trsvcid); 2753 2754 TAILQ_INSERT_TAIL(&rtransport->ports, port, link); 2755 pthread_mutex_unlock(&rtransport->lock); 2756 2757 if (cb_fn != NULL) { 2758 cb_fn(cb_arg, 0); 2759 } 2760 2761 return 0; 2762 } 2763 2764 static void 2765 spdk_nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport, 2766 const struct spdk_nvme_transport_id *trid) 2767 { 2768 struct spdk_nvmf_rdma_transport *rtransport; 2769 struct spdk_nvmf_rdma_port *port, *tmp; 2770 2771 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2772 2773 pthread_mutex_lock(&rtransport->lock); 2774 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) { 2775 if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) { 2776 TAILQ_REMOVE(&rtransport->ports, port, link); 2777 rdma_destroy_id(port->id); 2778 free(port); 2779 break; 2780 } 2781 } 2782 2783 pthread_mutex_unlock(&rtransport->lock); 2784 } 2785 2786 static void 2787 spdk_nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport, 2788 struct spdk_nvmf_rdma_qpair *rqpair, bool drain) 2789 { 2790 struct spdk_nvmf_request *req, *tmp; 2791 struct spdk_nvmf_rdma_request *rdma_req, *req_tmp; 2792 struct spdk_nvmf_rdma_resources *resources; 2793 2794 /* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */ 2795 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) { 2796 if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2797 break; 2798 } 2799 } 2800 2801 /* Then RDMA writes since reads have stronger restrictions than writes */ 2802 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) { 2803 if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2804 break; 2805 } 2806 } 2807 2808 /* The second highest priority is I/O waiting on memory buffers. */ 2809 STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) { 2810 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 2811 if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2812 break; 2813 } 2814 } 2815 2816 resources = rqpair->resources; 2817 while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) { 2818 rdma_req = STAILQ_FIRST(&resources->free_queue); 2819 STAILQ_REMOVE_HEAD(&resources->free_queue, state_link); 2820 rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue); 2821 STAILQ_REMOVE_HEAD(&resources->incoming_queue, link); 2822 2823 if (rqpair->srq != NULL) { 2824 rdma_req->req.qpair = &rdma_req->recv->qpair->qpair; 2825 rdma_req->recv->qpair->qd++; 2826 } else { 2827 rqpair->qd++; 2828 } 2829 2830 rdma_req->receive_tsc = rdma_req->recv->receive_tsc; 2831 rdma_req->state = RDMA_REQUEST_STATE_NEW; 2832 if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false) { 2833 break; 2834 } 2835 } 2836 if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) { 2837 rqpair->poller->stat.pending_free_request++; 2838 } 2839 } 2840 2841 static void 2842 _nvmf_rdma_qpair_disconnect(void *ctx) 2843 { 2844 struct spdk_nvmf_qpair *qpair = ctx; 2845 2846 spdk_nvmf_qpair_disconnect(qpair, NULL, NULL); 2847 } 2848 2849 static void 2850 _nvmf_rdma_try_disconnect(void *ctx) 2851 { 2852 struct spdk_nvmf_qpair *qpair = ctx; 2853 struct spdk_nvmf_poll_group *group; 2854 2855 /* Read the group out of the qpair. This is normally set and accessed only from 2856 * the thread that created the group. Here, we're not on that thread necessarily. 2857 * The data member qpair->group begins it's life as NULL and then is assigned to 2858 * a pointer and never changes. So fortunately reading this and checking for 2859 * non-NULL is thread safe in the x86_64 memory model. */ 2860 group = qpair->group; 2861 2862 if (group == NULL) { 2863 /* The qpair hasn't been assigned to a group yet, so we can't 2864 * process a disconnect. Send a message to ourself and try again. */ 2865 spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_try_disconnect, qpair); 2866 return; 2867 } 2868 2869 spdk_thread_send_msg(group->thread, _nvmf_rdma_qpair_disconnect, qpair); 2870 } 2871 2872 static inline void 2873 spdk_nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair) 2874 { 2875 if (!__atomic_test_and_set(&rqpair->disconnect_started, __ATOMIC_RELAXED)) { 2876 _nvmf_rdma_try_disconnect(&rqpair->qpair); 2877 } 2878 } 2879 2880 static void nvmf_rdma_destroy_drained_qpair(void *ctx) 2881 { 2882 struct spdk_nvmf_rdma_qpair *rqpair = ctx; 2883 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 2884 struct spdk_nvmf_rdma_transport, transport); 2885 2886 /* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */ 2887 if (rqpair->current_send_depth != 0) { 2888 return; 2889 } 2890 2891 if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) { 2892 return; 2893 } 2894 2895 if (rqpair->srq != NULL && rqpair->last_wqe_reached == false) { 2896 return; 2897 } 2898 2899 spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); 2900 2901 /* Qpair will be destroyed after nvmf layer closes this qpair */ 2902 if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ERROR) { 2903 return; 2904 } 2905 2906 spdk_nvmf_rdma_qpair_destroy(rqpair); 2907 } 2908 2909 2910 static int 2911 nvmf_rdma_disconnect(struct rdma_cm_event *evt) 2912 { 2913 struct spdk_nvmf_qpair *qpair; 2914 struct spdk_nvmf_rdma_qpair *rqpair; 2915 2916 if (evt->id == NULL) { 2917 SPDK_ERRLOG("disconnect request: missing cm_id\n"); 2918 return -1; 2919 } 2920 2921 qpair = evt->id->context; 2922 if (qpair == NULL) { 2923 SPDK_ERRLOG("disconnect request: no active connection\n"); 2924 return -1; 2925 } 2926 2927 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 2928 2929 spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair->cm_id, 0); 2930 2931 spdk_nvmf_rdma_start_disconnect(rqpair); 2932 2933 return 0; 2934 } 2935 2936 #ifdef DEBUG 2937 static const char *CM_EVENT_STR[] = { 2938 "RDMA_CM_EVENT_ADDR_RESOLVED", 2939 "RDMA_CM_EVENT_ADDR_ERROR", 2940 "RDMA_CM_EVENT_ROUTE_RESOLVED", 2941 "RDMA_CM_EVENT_ROUTE_ERROR", 2942 "RDMA_CM_EVENT_CONNECT_REQUEST", 2943 "RDMA_CM_EVENT_CONNECT_RESPONSE", 2944 "RDMA_CM_EVENT_CONNECT_ERROR", 2945 "RDMA_CM_EVENT_UNREACHABLE", 2946 "RDMA_CM_EVENT_REJECTED", 2947 "RDMA_CM_EVENT_ESTABLISHED", 2948 "RDMA_CM_EVENT_DISCONNECTED", 2949 "RDMA_CM_EVENT_DEVICE_REMOVAL", 2950 "RDMA_CM_EVENT_MULTICAST_JOIN", 2951 "RDMA_CM_EVENT_MULTICAST_ERROR", 2952 "RDMA_CM_EVENT_ADDR_CHANGE", 2953 "RDMA_CM_EVENT_TIMEWAIT_EXIT" 2954 }; 2955 #endif /* DEBUG */ 2956 2957 static void 2958 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport, 2959 struct spdk_nvmf_rdma_port *port) 2960 { 2961 struct spdk_nvmf_rdma_poll_group *rgroup; 2962 struct spdk_nvmf_rdma_poller *rpoller; 2963 struct spdk_nvmf_rdma_qpair *rqpair; 2964 2965 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 2966 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 2967 TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) { 2968 if (rqpair->listen_id == port->id) { 2969 spdk_nvmf_rdma_start_disconnect(rqpair); 2970 } 2971 } 2972 } 2973 } 2974 } 2975 2976 static bool 2977 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport, 2978 struct rdma_cm_event *event) 2979 { 2980 const struct spdk_nvme_transport_id *trid; 2981 struct spdk_nvmf_rdma_port *port; 2982 struct spdk_nvmf_rdma_transport *rtransport; 2983 bool event_acked = false; 2984 2985 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2986 TAILQ_FOREACH(port, &rtransport->ports, link) { 2987 if (port->id == event->id) { 2988 SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid); 2989 rdma_ack_cm_event(event); 2990 event_acked = true; 2991 trid = port->trid; 2992 break; 2993 } 2994 } 2995 2996 if (event_acked) { 2997 nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); 2998 2999 spdk_nvmf_rdma_stop_listen(transport, trid); 3000 spdk_nvmf_rdma_listen(transport, trid, NULL, NULL); 3001 } 3002 3003 return event_acked; 3004 } 3005 3006 static void 3007 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport, 3008 struct rdma_cm_event *event) 3009 { 3010 struct spdk_nvmf_rdma_port *port; 3011 struct spdk_nvmf_rdma_transport *rtransport; 3012 3013 port = event->id->context; 3014 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3015 3016 SPDK_NOTICELOG("Port %s:%s is being removed\n", port->trid->traddr, port->trid->trsvcid); 3017 3018 nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); 3019 3020 rdma_ack_cm_event(event); 3021 3022 while (spdk_nvmf_transport_stop_listen(transport, port->trid) == 0) { 3023 ; 3024 } 3025 } 3026 3027 static void 3028 spdk_nvmf_process_cm_event(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn, void *cb_arg) 3029 { 3030 struct spdk_nvmf_rdma_transport *rtransport; 3031 struct rdma_cm_event *event; 3032 int rc; 3033 bool event_acked; 3034 3035 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3036 3037 if (rtransport->event_channel == NULL) { 3038 return; 3039 } 3040 3041 while (1) { 3042 event_acked = false; 3043 rc = rdma_get_cm_event(rtransport->event_channel, &event); 3044 if (rc) { 3045 if (errno != EAGAIN && errno != EWOULDBLOCK) { 3046 SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno)); 3047 } 3048 break; 3049 } 3050 3051 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]); 3052 3053 spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event); 3054 3055 switch (event->event) { 3056 case RDMA_CM_EVENT_ADDR_RESOLVED: 3057 case RDMA_CM_EVENT_ADDR_ERROR: 3058 case RDMA_CM_EVENT_ROUTE_RESOLVED: 3059 case RDMA_CM_EVENT_ROUTE_ERROR: 3060 /* No action required. The target never attempts to resolve routes. */ 3061 break; 3062 case RDMA_CM_EVENT_CONNECT_REQUEST: 3063 rc = nvmf_rdma_connect(transport, event, cb_fn, cb_arg); 3064 if (rc < 0) { 3065 SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc); 3066 break; 3067 } 3068 break; 3069 case RDMA_CM_EVENT_CONNECT_RESPONSE: 3070 /* The target never initiates a new connection. So this will not occur. */ 3071 break; 3072 case RDMA_CM_EVENT_CONNECT_ERROR: 3073 /* Can this happen? The docs say it can, but not sure what causes it. */ 3074 break; 3075 case RDMA_CM_EVENT_UNREACHABLE: 3076 case RDMA_CM_EVENT_REJECTED: 3077 /* These only occur on the client side. */ 3078 break; 3079 case RDMA_CM_EVENT_ESTABLISHED: 3080 /* TODO: Should we be waiting for this event anywhere? */ 3081 break; 3082 case RDMA_CM_EVENT_DISCONNECTED: 3083 rc = nvmf_rdma_disconnect(event); 3084 if (rc < 0) { 3085 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3086 break; 3087 } 3088 break; 3089 case RDMA_CM_EVENT_DEVICE_REMOVAL: 3090 /* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL 3091 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s. 3092 * Once these events are sent to SPDK, we should release all IB resources and 3093 * don't make attempts to call any ibv_query/modify/create functions. We can only call 3094 * ibv_destory* functions to release user space memory allocated by IB. All kernel 3095 * resources are already cleaned. */ 3096 if (event->id->qp) { 3097 /* If rdma_cm event has a valid `qp` pointer then the event refers to the 3098 * corresponding qpair. Otherwise the event refers to a listening device */ 3099 rc = nvmf_rdma_disconnect(event); 3100 if (rc < 0) { 3101 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3102 break; 3103 } 3104 } else { 3105 nvmf_rdma_handle_cm_event_port_removal(transport, event); 3106 event_acked = true; 3107 } 3108 break; 3109 case RDMA_CM_EVENT_MULTICAST_JOIN: 3110 case RDMA_CM_EVENT_MULTICAST_ERROR: 3111 /* Multicast is not used */ 3112 break; 3113 case RDMA_CM_EVENT_ADDR_CHANGE: 3114 event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event); 3115 break; 3116 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 3117 /* For now, do nothing. The target never re-uses queue pairs. */ 3118 break; 3119 default: 3120 SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); 3121 break; 3122 } 3123 if (!event_acked) { 3124 rdma_ack_cm_event(event); 3125 } 3126 } 3127 } 3128 3129 static void 3130 nvmf_rdma_handle_qp_fatal(struct spdk_nvmf_rdma_qpair *rqpair) 3131 { 3132 spdk_nvmf_rdma_update_ibv_state(rqpair); 3133 spdk_nvmf_rdma_start_disconnect(rqpair); 3134 } 3135 3136 static void 3137 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair) 3138 { 3139 rqpair->last_wqe_reached = true; 3140 nvmf_rdma_destroy_drained_qpair(rqpair); 3141 } 3142 3143 static void 3144 nvmf_rdma_handle_sq_drained(struct spdk_nvmf_rdma_qpair *rqpair) 3145 { 3146 spdk_nvmf_rdma_start_disconnect(rqpair); 3147 } 3148 3149 static void 3150 spdk_nvmf_rdma_qpair_process_ibv_event(void *ctx) 3151 { 3152 struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx; 3153 3154 if (event_ctx->rqpair) { 3155 STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3156 if (event_ctx->cb_fn) { 3157 event_ctx->cb_fn(event_ctx->rqpair); 3158 } 3159 } 3160 free(event_ctx); 3161 } 3162 3163 static int 3164 spdk_nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair, 3165 spdk_nvmf_rdma_qpair_ibv_event fn) 3166 { 3167 struct spdk_nvmf_rdma_ibv_event_ctx *ctx; 3168 3169 if (!rqpair->qpair.group) { 3170 return EINVAL; 3171 } 3172 3173 ctx = calloc(1, sizeof(*ctx)); 3174 if (!ctx) { 3175 return ENOMEM; 3176 } 3177 3178 ctx->rqpair = rqpair; 3179 ctx->cb_fn = fn; 3180 STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link); 3181 3182 return spdk_thread_send_msg(rqpair->qpair.group->thread, spdk_nvmf_rdma_qpair_process_ibv_event, 3183 ctx); 3184 } 3185 3186 static void 3187 spdk_nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device) 3188 { 3189 int rc; 3190 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 3191 struct ibv_async_event event; 3192 3193 rc = ibv_get_async_event(device->context, &event); 3194 3195 if (rc) { 3196 SPDK_ERRLOG("Failed to get async_event (%d): %s\n", 3197 errno, spdk_strerror(errno)); 3198 return; 3199 } 3200 3201 switch (event.event_type) { 3202 case IBV_EVENT_QP_FATAL: 3203 rqpair = event.element.qp->qp_context; 3204 SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair); 3205 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3206 (uintptr_t)rqpair->cm_id, event.event_type); 3207 if (spdk_nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_qp_fatal)) { 3208 SPDK_ERRLOG("Failed to send QP_FATAL event for rqpair %p\n", rqpair); 3209 nvmf_rdma_handle_qp_fatal(rqpair); 3210 } 3211 break; 3212 case IBV_EVENT_QP_LAST_WQE_REACHED: 3213 /* This event only occurs for shared receive queues. */ 3214 rqpair = event.element.qp->qp_context; 3215 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last WQE reached event received for rqpair %p\n", rqpair); 3216 if (spdk_nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached)) { 3217 SPDK_ERRLOG("Failed to send LAST_WQE_REACHED event for rqpair %p\n", rqpair); 3218 rqpair->last_wqe_reached = true; 3219 } 3220 break; 3221 case IBV_EVENT_SQ_DRAINED: 3222 /* This event occurs frequently in both error and non-error states. 3223 * Check if the qpair is in an error state before sending a message. */ 3224 rqpair = event.element.qp->qp_context; 3225 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last sq drained event received for rqpair %p\n", rqpair); 3226 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3227 (uintptr_t)rqpair->cm_id, event.event_type); 3228 if (spdk_nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) { 3229 if (spdk_nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_sq_drained)) { 3230 SPDK_ERRLOG("Failed to send SQ_DRAINED event for rqpair %p\n", rqpair); 3231 nvmf_rdma_handle_sq_drained(rqpair); 3232 } 3233 } 3234 break; 3235 case IBV_EVENT_QP_REQ_ERR: 3236 case IBV_EVENT_QP_ACCESS_ERR: 3237 case IBV_EVENT_COMM_EST: 3238 case IBV_EVENT_PATH_MIG: 3239 case IBV_EVENT_PATH_MIG_ERR: 3240 SPDK_NOTICELOG("Async event: %s\n", 3241 ibv_event_type_str(event.event_type)); 3242 rqpair = event.element.qp->qp_context; 3243 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3244 (uintptr_t)rqpair->cm_id, event.event_type); 3245 spdk_nvmf_rdma_update_ibv_state(rqpair); 3246 break; 3247 case IBV_EVENT_CQ_ERR: 3248 case IBV_EVENT_DEVICE_FATAL: 3249 case IBV_EVENT_PORT_ACTIVE: 3250 case IBV_EVENT_PORT_ERR: 3251 case IBV_EVENT_LID_CHANGE: 3252 case IBV_EVENT_PKEY_CHANGE: 3253 case IBV_EVENT_SM_CHANGE: 3254 case IBV_EVENT_SRQ_ERR: 3255 case IBV_EVENT_SRQ_LIMIT_REACHED: 3256 case IBV_EVENT_CLIENT_REREGISTER: 3257 case IBV_EVENT_GID_CHANGE: 3258 default: 3259 SPDK_NOTICELOG("Async event: %s\n", 3260 ibv_event_type_str(event.event_type)); 3261 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type); 3262 break; 3263 } 3264 ibv_ack_async_event(&event); 3265 } 3266 3267 static void 3268 spdk_nvmf_rdma_accept(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn, void *cb_arg) 3269 { 3270 int nfds, i = 0; 3271 struct spdk_nvmf_rdma_transport *rtransport; 3272 struct spdk_nvmf_rdma_device *device, *tmp; 3273 3274 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3275 nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0); 3276 3277 if (nfds <= 0) { 3278 return; 3279 } 3280 3281 /* The first poll descriptor is RDMA CM event */ 3282 if (rtransport->poll_fds[i++].revents & POLLIN) { 3283 spdk_nvmf_process_cm_event(transport, cb_fn, cb_arg); 3284 nfds--; 3285 } 3286 3287 if (nfds == 0) { 3288 return; 3289 } 3290 3291 /* Second and subsequent poll descriptors are IB async events */ 3292 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 3293 if (rtransport->poll_fds[i++].revents & POLLIN) { 3294 spdk_nvmf_process_ib_event(device); 3295 nfds--; 3296 } 3297 } 3298 /* check all flagged fd's have been served */ 3299 assert(nfds == 0); 3300 } 3301 3302 static void 3303 spdk_nvmf_rdma_discover(struct spdk_nvmf_transport *transport, 3304 struct spdk_nvme_transport_id *trid, 3305 struct spdk_nvmf_discovery_log_page_entry *entry) 3306 { 3307 entry->trtype = SPDK_NVMF_TRTYPE_RDMA; 3308 entry->adrfam = trid->adrfam; 3309 entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED; 3310 3311 spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' '); 3312 spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' '); 3313 3314 entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED; 3315 entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE; 3316 entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM; 3317 } 3318 3319 static void 3320 spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group); 3321 3322 static struct spdk_nvmf_transport_poll_group * 3323 spdk_nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport) 3324 { 3325 struct spdk_nvmf_rdma_transport *rtransport; 3326 struct spdk_nvmf_rdma_poll_group *rgroup; 3327 struct spdk_nvmf_rdma_poller *poller; 3328 struct spdk_nvmf_rdma_device *device; 3329 struct ibv_srq_init_attr srq_init_attr; 3330 struct spdk_nvmf_rdma_resource_opts opts; 3331 int num_cqe; 3332 3333 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3334 3335 rgroup = calloc(1, sizeof(*rgroup)); 3336 if (!rgroup) { 3337 return NULL; 3338 } 3339 3340 TAILQ_INIT(&rgroup->pollers); 3341 STAILQ_INIT(&rgroup->retired_bufs); 3342 3343 pthread_mutex_lock(&rtransport->lock); 3344 TAILQ_FOREACH(device, &rtransport->devices, link) { 3345 poller = calloc(1, sizeof(*poller)); 3346 if (!poller) { 3347 SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n"); 3348 spdk_nvmf_rdma_poll_group_destroy(&rgroup->group); 3349 pthread_mutex_unlock(&rtransport->lock); 3350 return NULL; 3351 } 3352 3353 poller->device = device; 3354 poller->group = rgroup; 3355 3356 TAILQ_INIT(&poller->qpairs); 3357 STAILQ_INIT(&poller->qpairs_pending_send); 3358 STAILQ_INIT(&poller->qpairs_pending_recv); 3359 3360 TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link); 3361 if (transport->opts.no_srq == false && device->num_srq < device->attr.max_srq) { 3362 poller->max_srq_depth = transport->opts.max_srq_depth; 3363 3364 device->num_srq++; 3365 memset(&srq_init_attr, 0, sizeof(struct ibv_srq_init_attr)); 3366 srq_init_attr.attr.max_wr = poller->max_srq_depth; 3367 srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 3368 poller->srq = ibv_create_srq(device->pd, &srq_init_attr); 3369 if (!poller->srq) { 3370 SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno); 3371 spdk_nvmf_rdma_poll_group_destroy(&rgroup->group); 3372 pthread_mutex_unlock(&rtransport->lock); 3373 return NULL; 3374 } 3375 3376 opts.qp = poller->srq; 3377 opts.pd = device->pd; 3378 opts.qpair = NULL; 3379 opts.shared = true; 3380 opts.max_queue_depth = poller->max_srq_depth; 3381 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 3382 3383 poller->resources = nvmf_rdma_resources_create(&opts); 3384 if (!poller->resources) { 3385 SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n"); 3386 spdk_nvmf_rdma_poll_group_destroy(&rgroup->group); 3387 pthread_mutex_unlock(&rtransport->lock); 3388 return NULL; 3389 } 3390 } 3391 3392 /* 3393 * When using an srq, we can limit the completion queue at startup. 3394 * The following formula represents the calculation: 3395 * num_cqe = num_recv + num_data_wr + num_send_wr. 3396 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth 3397 */ 3398 if (poller->srq) { 3399 num_cqe = poller->max_srq_depth * 3; 3400 } else { 3401 num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE; 3402 } 3403 3404 poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0); 3405 if (!poller->cq) { 3406 SPDK_ERRLOG("Unable to create completion queue\n"); 3407 spdk_nvmf_rdma_poll_group_destroy(&rgroup->group); 3408 pthread_mutex_unlock(&rtransport->lock); 3409 return NULL; 3410 } 3411 poller->num_cqe = num_cqe; 3412 } 3413 3414 TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link); 3415 if (rtransport->conn_sched.next_admin_pg == NULL) { 3416 rtransport->conn_sched.next_admin_pg = rgroup; 3417 rtransport->conn_sched.next_io_pg = rgroup; 3418 } 3419 3420 pthread_mutex_unlock(&rtransport->lock); 3421 return &rgroup->group; 3422 } 3423 3424 static struct spdk_nvmf_transport_poll_group * 3425 spdk_nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair) 3426 { 3427 struct spdk_nvmf_rdma_transport *rtransport; 3428 struct spdk_nvmf_rdma_poll_group **pg; 3429 struct spdk_nvmf_transport_poll_group *result; 3430 3431 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 3432 3433 pthread_mutex_lock(&rtransport->lock); 3434 3435 if (TAILQ_EMPTY(&rtransport->poll_groups)) { 3436 pthread_mutex_unlock(&rtransport->lock); 3437 return NULL; 3438 } 3439 3440 if (qpair->qid == 0) { 3441 pg = &rtransport->conn_sched.next_admin_pg; 3442 } else { 3443 pg = &rtransport->conn_sched.next_io_pg; 3444 } 3445 3446 assert(*pg != NULL); 3447 3448 result = &(*pg)->group; 3449 3450 *pg = TAILQ_NEXT(*pg, link); 3451 if (*pg == NULL) { 3452 *pg = TAILQ_FIRST(&rtransport->poll_groups); 3453 } 3454 3455 pthread_mutex_unlock(&rtransport->lock); 3456 3457 return result; 3458 } 3459 3460 static void 3461 spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group) 3462 { 3463 struct spdk_nvmf_rdma_poll_group *rgroup, *next_rgroup; 3464 struct spdk_nvmf_rdma_poller *poller, *tmp; 3465 struct spdk_nvmf_rdma_qpair *qpair, *tmp_qpair; 3466 struct spdk_nvmf_transport_pg_cache_buf *buf, *tmp_buf; 3467 struct spdk_nvmf_rdma_transport *rtransport; 3468 3469 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3470 if (!rgroup) { 3471 return; 3472 } 3473 3474 /* free all retired buffers back to the transport so we don't short the mempool. */ 3475 STAILQ_FOREACH_SAFE(buf, &rgroup->retired_bufs, link, tmp_buf) { 3476 STAILQ_REMOVE(&rgroup->retired_bufs, buf, spdk_nvmf_transport_pg_cache_buf, link); 3477 assert(group->transport != NULL); 3478 spdk_mempool_put(group->transport->data_buf_pool, buf); 3479 } 3480 3481 TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) { 3482 TAILQ_REMOVE(&rgroup->pollers, poller, link); 3483 3484 TAILQ_FOREACH_SAFE(qpair, &poller->qpairs, link, tmp_qpair) { 3485 spdk_nvmf_rdma_qpair_destroy(qpair); 3486 } 3487 3488 if (poller->srq) { 3489 nvmf_rdma_resources_destroy(poller->resources); 3490 ibv_destroy_srq(poller->srq); 3491 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Destroyed RDMA shared queue %p\n", poller->srq); 3492 } 3493 3494 if (poller->cq) { 3495 ibv_destroy_cq(poller->cq); 3496 } 3497 3498 free(poller); 3499 } 3500 3501 if (rgroup->group.transport == NULL) { 3502 /* Transport can be NULL when spdk_nvmf_rdma_poll_group_create() 3503 * calls this function directly in a failure path. */ 3504 free(rgroup); 3505 return; 3506 } 3507 3508 rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport); 3509 3510 pthread_mutex_lock(&rtransport->lock); 3511 next_rgroup = TAILQ_NEXT(rgroup, link); 3512 TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link); 3513 if (next_rgroup == NULL) { 3514 next_rgroup = TAILQ_FIRST(&rtransport->poll_groups); 3515 } 3516 if (rtransport->conn_sched.next_admin_pg == rgroup) { 3517 rtransport->conn_sched.next_admin_pg = next_rgroup; 3518 } 3519 if (rtransport->conn_sched.next_io_pg == rgroup) { 3520 rtransport->conn_sched.next_io_pg = next_rgroup; 3521 } 3522 pthread_mutex_unlock(&rtransport->lock); 3523 3524 free(rgroup); 3525 } 3526 3527 static void 3528 spdk_nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair) 3529 { 3530 if (rqpair->cm_id != NULL) { 3531 spdk_nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 3532 } 3533 spdk_nvmf_rdma_qpair_destroy(rqpair); 3534 } 3535 3536 static int 3537 spdk_nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group, 3538 struct spdk_nvmf_qpair *qpair) 3539 { 3540 struct spdk_nvmf_rdma_poll_group *rgroup; 3541 struct spdk_nvmf_rdma_qpair *rqpair; 3542 struct spdk_nvmf_rdma_device *device; 3543 struct spdk_nvmf_rdma_poller *poller; 3544 int rc; 3545 3546 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3547 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3548 3549 device = rqpair->device; 3550 3551 TAILQ_FOREACH(poller, &rgroup->pollers, link) { 3552 if (poller->device == device) { 3553 break; 3554 } 3555 } 3556 3557 if (!poller) { 3558 SPDK_ERRLOG("No poller found for device.\n"); 3559 return -1; 3560 } 3561 3562 TAILQ_INSERT_TAIL(&poller->qpairs, rqpair, link); 3563 rqpair->poller = poller; 3564 rqpair->srq = rqpair->poller->srq; 3565 3566 rc = spdk_nvmf_rdma_qpair_initialize(qpair); 3567 if (rc < 0) { 3568 SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair); 3569 return -1; 3570 } 3571 3572 rc = spdk_nvmf_rdma_event_accept(rqpair->cm_id, rqpair); 3573 if (rc) { 3574 /* Try to reject, but we probably can't */ 3575 spdk_nvmf_rdma_qpair_reject_connection(rqpair); 3576 return -1; 3577 } 3578 3579 spdk_nvmf_rdma_update_ibv_state(rqpair); 3580 3581 return 0; 3582 } 3583 3584 static int 3585 spdk_nvmf_rdma_request_free(struct spdk_nvmf_request *req) 3586 { 3587 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 3588 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 3589 struct spdk_nvmf_rdma_transport, transport); 3590 3591 nvmf_rdma_request_free(rdma_req, rtransport); 3592 return 0; 3593 } 3594 3595 static int 3596 spdk_nvmf_rdma_request_complete(struct spdk_nvmf_request *req) 3597 { 3598 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 3599 struct spdk_nvmf_rdma_transport, transport); 3600 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, 3601 struct spdk_nvmf_rdma_request, req); 3602 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 3603 struct spdk_nvmf_rdma_qpair, qpair); 3604 3605 if (rqpair->ibv_state != IBV_QPS_ERR) { 3606 /* The connection is alive, so process the request as normal */ 3607 rdma_req->state = RDMA_REQUEST_STATE_EXECUTED; 3608 } else { 3609 /* The connection is dead. Move the request directly to the completed state. */ 3610 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3611 } 3612 3613 spdk_nvmf_rdma_request_process(rtransport, rdma_req); 3614 3615 return 0; 3616 } 3617 3618 static int 3619 spdk_nvmf_rdma_destroy_defunct_qpair(void *ctx) 3620 { 3621 struct spdk_nvmf_rdma_qpair *rqpair = ctx; 3622 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 3623 struct spdk_nvmf_rdma_transport, transport); 3624 3625 SPDK_INFOLOG(SPDK_LOG_RDMA, "QP#%d hasn't been drained as expected, manually destroy it\n", 3626 rqpair->qpair.qid); 3627 3628 spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); 3629 spdk_nvmf_rdma_qpair_destroy(rqpair); 3630 3631 return 0; 3632 } 3633 3634 static void 3635 spdk_nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair) 3636 { 3637 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3638 3639 if (rqpair->disconnect_flags & RDMA_QP_DISCONNECTING) { 3640 return; 3641 } 3642 3643 rqpair->disconnect_flags |= RDMA_QP_DISCONNECTING; 3644 3645 /* This happens only when the qpair is disconnected before 3646 * it is added to the poll group. Since there is no poll group, 3647 * the RDMA qp has not been initialized yet and the RDMA CM 3648 * event has not yet been acknowledged, so we need to reject it. 3649 */ 3650 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) { 3651 spdk_nvmf_rdma_qpair_reject_connection(rqpair); 3652 return; 3653 } 3654 3655 if (rqpair->ibv_state != IBV_QPS_ERR) { 3656 spdk_nvmf_rdma_set_ibv_state(rqpair, IBV_QPS_ERR); 3657 } 3658 3659 rqpair->destruct_poller = spdk_poller_register(spdk_nvmf_rdma_destroy_defunct_qpair, (void *)rqpair, 3660 NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US); 3661 } 3662 3663 static struct spdk_nvmf_rdma_qpair * 3664 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc) 3665 { 3666 struct spdk_nvmf_rdma_qpair *rqpair; 3667 /* @todo: improve QP search */ 3668 TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) { 3669 if (wc->qp_num == rqpair->cm_id->qp->qp_num) { 3670 return rqpair; 3671 } 3672 } 3673 SPDK_ERRLOG("Didn't find QP with qp_num %u\n", wc->qp_num); 3674 return NULL; 3675 } 3676 3677 #ifdef DEBUG 3678 static int 3679 spdk_nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req) 3680 { 3681 return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST || 3682 rdma_req->state == RDMA_REQUEST_STATE_COMPLETING; 3683 } 3684 #endif 3685 3686 static void 3687 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr, 3688 int rc) 3689 { 3690 struct spdk_nvmf_rdma_recv *rdma_recv; 3691 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 3692 3693 SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc); 3694 while (bad_recv_wr != NULL) { 3695 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id; 3696 rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 3697 3698 rdma_recv->qpair->current_recv_depth++; 3699 bad_recv_wr = bad_recv_wr->next; 3700 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc); 3701 spdk_nvmf_rdma_start_disconnect(rdma_recv->qpair); 3702 } 3703 } 3704 3705 static void 3706 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc) 3707 { 3708 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc); 3709 while (bad_recv_wr != NULL) { 3710 bad_recv_wr = bad_recv_wr->next; 3711 rqpair->current_recv_depth++; 3712 } 3713 spdk_nvmf_rdma_start_disconnect(rqpair); 3714 } 3715 3716 static void 3717 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 3718 struct spdk_nvmf_rdma_poller *rpoller) 3719 { 3720 struct spdk_nvmf_rdma_qpair *rqpair; 3721 struct ibv_recv_wr *bad_recv_wr; 3722 int rc; 3723 3724 if (rpoller->srq) { 3725 if (rpoller->resources->recvs_to_post.first != NULL) { 3726 rc = ibv_post_srq_recv(rpoller->srq, rpoller->resources->recvs_to_post.first, &bad_recv_wr); 3727 if (rc) { 3728 _poller_reset_failed_recvs(rpoller, bad_recv_wr, rc); 3729 } 3730 rpoller->resources->recvs_to_post.first = NULL; 3731 rpoller->resources->recvs_to_post.last = NULL; 3732 } 3733 } else { 3734 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) { 3735 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv); 3736 assert(rqpair->resources->recvs_to_post.first != NULL); 3737 rc = ibv_post_recv(rqpair->cm_id->qp, rqpair->resources->recvs_to_post.first, &bad_recv_wr); 3738 if (rc) { 3739 _qp_reset_failed_recvs(rqpair, bad_recv_wr, rc); 3740 } 3741 rqpair->resources->recvs_to_post.first = NULL; 3742 rqpair->resources->recvs_to_post.last = NULL; 3743 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link); 3744 } 3745 } 3746 } 3747 3748 static void 3749 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport, 3750 struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc) 3751 { 3752 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 3753 struct spdk_nvmf_rdma_request *prev_rdma_req = NULL, *cur_rdma_req = NULL; 3754 3755 SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc); 3756 for (; bad_wr != NULL; bad_wr = bad_wr->next) { 3757 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id; 3758 assert(rqpair->current_send_depth > 0); 3759 rqpair->current_send_depth--; 3760 switch (bad_rdma_wr->type) { 3761 case RDMA_WR_TYPE_DATA: 3762 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr); 3763 if (bad_wr->opcode == IBV_WR_RDMA_READ) { 3764 assert(rqpair->current_read_depth > 0); 3765 rqpair->current_read_depth--; 3766 } 3767 break; 3768 case RDMA_WR_TYPE_SEND: 3769 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr); 3770 break; 3771 default: 3772 SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair); 3773 prev_rdma_req = cur_rdma_req; 3774 continue; 3775 } 3776 3777 if (prev_rdma_req == cur_rdma_req) { 3778 /* this request was handled by an earlier wr. i.e. we were performing an nvme read. */ 3779 /* We only have to check against prev_wr since each requests wrs are contiguous in this list. */ 3780 continue; 3781 } 3782 3783 switch (cur_rdma_req->state) { 3784 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 3785 cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 3786 cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 3787 break; 3788 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 3789 case RDMA_REQUEST_STATE_COMPLETING: 3790 cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3791 break; 3792 default: 3793 SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n", 3794 cur_rdma_req->state, rqpair); 3795 continue; 3796 } 3797 3798 spdk_nvmf_rdma_request_process(rtransport, cur_rdma_req); 3799 prev_rdma_req = cur_rdma_req; 3800 } 3801 3802 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 3803 /* Disconnect the connection. */ 3804 spdk_nvmf_rdma_start_disconnect(rqpair); 3805 } 3806 3807 } 3808 3809 static void 3810 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 3811 struct spdk_nvmf_rdma_poller *rpoller) 3812 { 3813 struct spdk_nvmf_rdma_qpair *rqpair; 3814 struct ibv_send_wr *bad_wr = NULL; 3815 int rc; 3816 3817 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) { 3818 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send); 3819 assert(rqpair->sends_to_post.first != NULL); 3820 rc = ibv_post_send(rqpair->cm_id->qp, rqpair->sends_to_post.first, &bad_wr); 3821 3822 /* bad wr always points to the first wr that failed. */ 3823 if (rc) { 3824 _qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc); 3825 } 3826 rqpair->sends_to_post.first = NULL; 3827 rqpair->sends_to_post.last = NULL; 3828 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link); 3829 } 3830 } 3831 3832 static int 3833 spdk_nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport, 3834 struct spdk_nvmf_rdma_poller *rpoller) 3835 { 3836 struct ibv_wc wc[32]; 3837 struct spdk_nvmf_rdma_wr *rdma_wr; 3838 struct spdk_nvmf_rdma_request *rdma_req; 3839 struct spdk_nvmf_rdma_recv *rdma_recv; 3840 struct spdk_nvmf_rdma_qpair *rqpair; 3841 int reaped, i; 3842 int count = 0; 3843 bool error = false; 3844 uint64_t poll_tsc = spdk_get_ticks(); 3845 3846 /* Poll for completing operations. */ 3847 reaped = ibv_poll_cq(rpoller->cq, 32, wc); 3848 if (reaped < 0) { 3849 SPDK_ERRLOG("Error polling CQ! (%d): %s\n", 3850 errno, spdk_strerror(errno)); 3851 return -1; 3852 } 3853 3854 rpoller->stat.polls++; 3855 rpoller->stat.completions += reaped; 3856 3857 for (i = 0; i < reaped; i++) { 3858 3859 rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id; 3860 3861 switch (rdma_wr->type) { 3862 case RDMA_WR_TYPE_SEND: 3863 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr); 3864 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 3865 3866 if (!wc[i].status) { 3867 count++; 3868 assert(wc[i].opcode == IBV_WC_SEND); 3869 assert(spdk_nvmf_rdma_req_is_completing(rdma_req)); 3870 } else { 3871 SPDK_ERRLOG("data=%p length=%u\n", rdma_req->req.data, rdma_req->req.length); 3872 } 3873 3874 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3875 /* +1 for the response wr */ 3876 rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1; 3877 rdma_req->num_outstanding_data_wr = 0; 3878 3879 spdk_nvmf_rdma_request_process(rtransport, rdma_req); 3880 break; 3881 case RDMA_WR_TYPE_RECV: 3882 /* rdma_recv->qpair will be invalid if using an SRQ. In that case we have to get the qpair from the wc. */ 3883 rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 3884 if (rpoller->srq != NULL) { 3885 rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]); 3886 /* It is possible that there are still some completions for destroyed QP 3887 * associated with SRQ. We just ignore these late completions and re-post 3888 * receive WRs back to SRQ. 3889 */ 3890 if (spdk_unlikely(NULL == rdma_recv->qpair)) { 3891 struct ibv_recv_wr *bad_wr; 3892 int rc; 3893 3894 rdma_recv->wr.next = NULL; 3895 rc = ibv_post_srq_recv(rpoller->srq, 3896 &rdma_recv->wr, 3897 &bad_wr); 3898 if (rc) { 3899 SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc); 3900 } 3901 continue; 3902 } 3903 } 3904 rqpair = rdma_recv->qpair; 3905 3906 assert(rqpair != NULL); 3907 if (!wc[i].status) { 3908 assert(wc[i].opcode == IBV_WC_RECV); 3909 if (rqpair->current_recv_depth >= rqpair->max_queue_depth) { 3910 spdk_nvmf_rdma_start_disconnect(rqpair); 3911 break; 3912 } 3913 } 3914 3915 rdma_recv->wr.next = NULL; 3916 rqpair->current_recv_depth++; 3917 rdma_recv->receive_tsc = poll_tsc; 3918 rpoller->stat.requests++; 3919 STAILQ_INSERT_TAIL(&rqpair->resources->incoming_queue, rdma_recv, link); 3920 break; 3921 case RDMA_WR_TYPE_DATA: 3922 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr); 3923 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 3924 3925 assert(rdma_req->num_outstanding_data_wr > 0); 3926 3927 rqpair->current_send_depth--; 3928 rdma_req->num_outstanding_data_wr--; 3929 if (!wc[i].status) { 3930 assert(wc[i].opcode == IBV_WC_RDMA_READ); 3931 rqpair->current_read_depth--; 3932 /* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */ 3933 if (rdma_req->num_outstanding_data_wr == 0) { 3934 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 3935 spdk_nvmf_rdma_request_process(rtransport, rdma_req); 3936 } 3937 } else { 3938 /* If the data transfer fails still force the queue into the error state, 3939 * if we were performing an RDMA_READ, we need to force the request into a 3940 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE 3941 * case, we should wait for the SEND to complete. */ 3942 SPDK_ERRLOG("data=%p length=%u\n", rdma_req->req.data, rdma_req->req.length); 3943 if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) { 3944 rqpair->current_read_depth--; 3945 if (rdma_req->num_outstanding_data_wr == 0) { 3946 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3947 } 3948 } 3949 } 3950 break; 3951 default: 3952 SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode); 3953 continue; 3954 } 3955 3956 /* Handle error conditions */ 3957 if (wc[i].status) { 3958 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "CQ error on CQ %p, Request 0x%lu (%d): %s\n", 3959 rpoller->cq, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status)); 3960 3961 error = true; 3962 3963 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 3964 /* Disconnect the connection. */ 3965 spdk_nvmf_rdma_start_disconnect(rqpair); 3966 } else { 3967 nvmf_rdma_destroy_drained_qpair(rqpair); 3968 } 3969 continue; 3970 } 3971 3972 spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, false); 3973 3974 if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 3975 nvmf_rdma_destroy_drained_qpair(rqpair); 3976 } 3977 } 3978 3979 if (error == true) { 3980 return -1; 3981 } 3982 3983 /* submit outstanding work requests. */ 3984 _poller_submit_recvs(rtransport, rpoller); 3985 _poller_submit_sends(rtransport, rpoller); 3986 3987 return count; 3988 } 3989 3990 static int 3991 spdk_nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group) 3992 { 3993 struct spdk_nvmf_rdma_transport *rtransport; 3994 struct spdk_nvmf_rdma_poll_group *rgroup; 3995 struct spdk_nvmf_rdma_poller *rpoller; 3996 int count, rc; 3997 3998 rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport); 3999 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4000 4001 count = 0; 4002 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 4003 rc = spdk_nvmf_rdma_poller_poll(rtransport, rpoller); 4004 if (rc < 0) { 4005 return rc; 4006 } 4007 count += rc; 4008 } 4009 4010 return count; 4011 } 4012 4013 static int 4014 spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 4015 struct spdk_nvme_transport_id *trid, 4016 bool peer) 4017 { 4018 struct sockaddr *saddr; 4019 uint16_t port; 4020 4021 spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA); 4022 4023 if (peer) { 4024 saddr = rdma_get_peer_addr(id); 4025 } else { 4026 saddr = rdma_get_local_addr(id); 4027 } 4028 switch (saddr->sa_family) { 4029 case AF_INET: { 4030 struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr; 4031 4032 trid->adrfam = SPDK_NVMF_ADRFAM_IPV4; 4033 inet_ntop(AF_INET, &saddr_in->sin_addr, 4034 trid->traddr, sizeof(trid->traddr)); 4035 if (peer) { 4036 port = ntohs(rdma_get_dst_port(id)); 4037 } else { 4038 port = ntohs(rdma_get_src_port(id)); 4039 } 4040 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 4041 break; 4042 } 4043 case AF_INET6: { 4044 struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr; 4045 trid->adrfam = SPDK_NVMF_ADRFAM_IPV6; 4046 inet_ntop(AF_INET6, &saddr_in->sin6_addr, 4047 trid->traddr, sizeof(trid->traddr)); 4048 if (peer) { 4049 port = ntohs(rdma_get_dst_port(id)); 4050 } else { 4051 port = ntohs(rdma_get_src_port(id)); 4052 } 4053 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 4054 break; 4055 } 4056 default: 4057 return -1; 4058 4059 } 4060 4061 return 0; 4062 } 4063 4064 static int 4065 spdk_nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair, 4066 struct spdk_nvme_transport_id *trid) 4067 { 4068 struct spdk_nvmf_rdma_qpair *rqpair; 4069 4070 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4071 4072 return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true); 4073 } 4074 4075 static int 4076 spdk_nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair, 4077 struct spdk_nvme_transport_id *trid) 4078 { 4079 struct spdk_nvmf_rdma_qpair *rqpair; 4080 4081 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4082 4083 return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false); 4084 } 4085 4086 static int 4087 spdk_nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair, 4088 struct spdk_nvme_transport_id *trid) 4089 { 4090 struct spdk_nvmf_rdma_qpair *rqpair; 4091 4092 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4093 4094 return spdk_nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false); 4095 } 4096 4097 void 4098 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) 4099 { 4100 g_nvmf_hooks = *hooks; 4101 } 4102 4103 static int 4104 spdk_nvmf_rdma_poll_group_get_stat(struct spdk_nvmf_tgt *tgt, 4105 struct spdk_nvmf_transport_poll_group_stat **stat) 4106 { 4107 struct spdk_io_channel *ch; 4108 struct spdk_nvmf_poll_group *group; 4109 struct spdk_nvmf_transport_poll_group *tgroup; 4110 struct spdk_nvmf_rdma_poll_group *rgroup; 4111 struct spdk_nvmf_rdma_poller *rpoller; 4112 struct spdk_nvmf_rdma_device_stat *device_stat; 4113 uint64_t num_devices = 0; 4114 4115 if (tgt == NULL || stat == NULL) { 4116 return -EINVAL; 4117 } 4118 4119 ch = spdk_get_io_channel(tgt); 4120 group = spdk_io_channel_get_ctx(ch);; 4121 spdk_put_io_channel(ch); 4122 TAILQ_FOREACH(tgroup, &group->tgroups, link) { 4123 if (SPDK_NVME_TRANSPORT_RDMA == tgroup->transport->ops->type) { 4124 *stat = calloc(1, sizeof(struct spdk_nvmf_transport_poll_group_stat)); 4125 if (!*stat) { 4126 SPDK_ERRLOG("Failed to allocate memory for NVMf RDMA statistics\n"); 4127 return -ENOMEM; 4128 } 4129 (*stat)->trtype = SPDK_NVME_TRANSPORT_RDMA; 4130 4131 rgroup = SPDK_CONTAINEROF(tgroup, struct spdk_nvmf_rdma_poll_group, group); 4132 /* Count devices to allocate enough memory */ 4133 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 4134 ++num_devices; 4135 } 4136 (*stat)->rdma.devices = calloc(num_devices, sizeof(struct spdk_nvmf_rdma_device_stat)); 4137 if (!(*stat)->rdma.devices) { 4138 SPDK_ERRLOG("Failed to allocate NVMf RDMA devices statistics\n"); 4139 free(*stat); 4140 return -ENOMEM; 4141 } 4142 4143 (*stat)->rdma.pending_data_buffer = rgroup->stat.pending_data_buffer; 4144 (*stat)->rdma.num_devices = num_devices; 4145 num_devices = 0; 4146 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 4147 device_stat = &(*stat)->rdma.devices[num_devices++]; 4148 device_stat->name = ibv_get_device_name(rpoller->device->context->device); 4149 device_stat->polls = rpoller->stat.polls; 4150 device_stat->completions = rpoller->stat.completions; 4151 device_stat->requests = rpoller->stat.requests; 4152 device_stat->request_latency = rpoller->stat.request_latency; 4153 device_stat->pending_free_request = rpoller->stat.pending_free_request; 4154 device_stat->pending_rdma_read = rpoller->stat.pending_rdma_read; 4155 device_stat->pending_rdma_write = rpoller->stat.pending_rdma_write; 4156 } 4157 return 0; 4158 } 4159 } 4160 return -ENOENT; 4161 } 4162 4163 static void 4164 spdk_nvmf_rdma_poll_group_free_stat(struct spdk_nvmf_transport_poll_group_stat *stat) 4165 { 4166 if (stat) { 4167 free(stat->rdma.devices); 4168 } 4169 free(stat); 4170 } 4171 4172 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = { 4173 .name = "RDMA", 4174 .type = SPDK_NVME_TRANSPORT_RDMA, 4175 .opts_init = spdk_nvmf_rdma_opts_init, 4176 .create = spdk_nvmf_rdma_create, 4177 .destroy = spdk_nvmf_rdma_destroy, 4178 4179 .listen = spdk_nvmf_rdma_listen, 4180 .stop_listen = spdk_nvmf_rdma_stop_listen, 4181 .accept = spdk_nvmf_rdma_accept, 4182 4183 .listener_discover = spdk_nvmf_rdma_discover, 4184 4185 .poll_group_create = spdk_nvmf_rdma_poll_group_create, 4186 .get_optimal_poll_group = spdk_nvmf_rdma_get_optimal_poll_group, 4187 .poll_group_destroy = spdk_nvmf_rdma_poll_group_destroy, 4188 .poll_group_add = spdk_nvmf_rdma_poll_group_add, 4189 .poll_group_poll = spdk_nvmf_rdma_poll_group_poll, 4190 4191 .req_free = spdk_nvmf_rdma_request_free, 4192 .req_complete = spdk_nvmf_rdma_request_complete, 4193 4194 .qpair_fini = spdk_nvmf_rdma_close_qpair, 4195 .qpair_get_peer_trid = spdk_nvmf_rdma_qpair_get_peer_trid, 4196 .qpair_get_local_trid = spdk_nvmf_rdma_qpair_get_local_trid, 4197 .qpair_get_listen_trid = spdk_nvmf_rdma_qpair_get_listen_trid, 4198 4199 .poll_group_get_stat = spdk_nvmf_rdma_poll_group_get_stat, 4200 .poll_group_free_stat = spdk_nvmf_rdma_poll_group_free_stat, 4201 }; 4202 4203 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma); 4204 SPDK_LOG_REGISTER_COMPONENT("rdma", SPDK_LOG_RDMA) 4205