xref: /spdk/lib/nvmf/rdma.c (revision 6f338d4bf3a8a91b7abe377a605a321ea2b05bf7)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "spdk/config.h"
10 #include "spdk/thread.h"
11 #include "spdk/likely.h"
12 #include "spdk/nvmf_transport.h"
13 #include "spdk/string.h"
14 #include "spdk/trace.h"
15 #include "spdk/tree.h"
16 #include "spdk/util.h"
17 
18 #include "spdk_internal/assert.h"
19 #include "spdk/log.h"
20 #include "spdk_internal/rdma.h"
21 
22 #include "nvmf_internal.h"
23 #include "transport.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
28 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma;
29 
30 /*
31  RDMA Connection Resource Defaults
32  */
33 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
34 #define NVMF_DEFAULT_RSP_SGE		1
35 #define NVMF_DEFAULT_RX_SGE		2
36 
37 /* The RDMA completion queue size */
38 #define DEFAULT_NVMF_RDMA_CQ_SIZE	4096
39 #define MAX_WR_PER_QP(queue_depth)	(queue_depth * 3 + 2)
40 
41 static int g_spdk_nvmf_ibv_query_mask =
42 	IBV_QP_STATE |
43 	IBV_QP_PKEY_INDEX |
44 	IBV_QP_PORT |
45 	IBV_QP_ACCESS_FLAGS |
46 	IBV_QP_AV |
47 	IBV_QP_PATH_MTU |
48 	IBV_QP_DEST_QPN |
49 	IBV_QP_RQ_PSN |
50 	IBV_QP_MAX_DEST_RD_ATOMIC |
51 	IBV_QP_MIN_RNR_TIMER |
52 	IBV_QP_SQ_PSN |
53 	IBV_QP_TIMEOUT |
54 	IBV_QP_RETRY_CNT |
55 	IBV_QP_RNR_RETRY |
56 	IBV_QP_MAX_QP_RD_ATOMIC;
57 
58 enum spdk_nvmf_rdma_request_state {
59 	/* The request is not currently in use */
60 	RDMA_REQUEST_STATE_FREE = 0,
61 
62 	/* Initial state when request first received */
63 	RDMA_REQUEST_STATE_NEW,
64 
65 	/* The request is queued until a data buffer is available. */
66 	RDMA_REQUEST_STATE_NEED_BUFFER,
67 
68 	/* The request is waiting on RDMA queue depth availability
69 	 * to transfer data from the host to the controller.
70 	 */
71 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
72 
73 	/* The request is currently transferring data from the host to the controller. */
74 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
75 
76 	/* The request is ready to execute at the block device */
77 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
78 
79 	/* The request is currently executing at the block device */
80 	RDMA_REQUEST_STATE_EXECUTING,
81 
82 	/* The request finished executing at the block device */
83 	RDMA_REQUEST_STATE_EXECUTED,
84 
85 	/* The request is waiting on RDMA queue depth availability
86 	 * to transfer data from the controller to the host.
87 	 */
88 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
89 
90 	/* The request is ready to send a completion */
91 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
92 
93 	/* The request is currently transferring data from the controller to the host. */
94 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
95 
96 	/* The request currently has an outstanding completion without an
97 	 * associated data transfer.
98 	 */
99 	RDMA_REQUEST_STATE_COMPLETING,
100 
101 	/* The request completed and can be marked free. */
102 	RDMA_REQUEST_STATE_COMPLETED,
103 
104 	/* Terminator */
105 	RDMA_REQUEST_NUM_STATES,
106 };
107 
108 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
109 {
110 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
111 	spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW,
112 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1,
113 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
114 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
115 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
116 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
117 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H",
118 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
119 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
120 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
121 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C",
122 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
123 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
124 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
125 	spdk_trace_register_description("RDMA_REQ_TX_H2C",
126 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
127 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
128 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
129 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE",
130 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
131 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
132 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
133 	spdk_trace_register_description("RDMA_REQ_EXECUTING",
134 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
135 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
136 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
137 	spdk_trace_register_description("RDMA_REQ_EXECUTED",
138 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
139 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
140 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
141 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL",
142 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
143 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
144 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
145 	spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H",
146 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
147 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
148 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
149 	spdk_trace_register_description("RDMA_REQ_COMPLETING",
150 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
151 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
152 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
153 	spdk_trace_register_description("RDMA_REQ_COMPLETED",
154 					TRACE_RDMA_REQUEST_STATE_COMPLETED,
155 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
156 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
157 
158 	spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE,
159 					OWNER_NONE, OBJECT_NONE, 0,
160 					SPDK_TRACE_ARG_TYPE_INT, "");
161 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT,
162 					OWNER_NONE, OBJECT_NONE, 0,
163 					SPDK_TRACE_ARG_TYPE_INT, "type");
164 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT,
165 					OWNER_NONE, OBJECT_NONE, 0,
166 					SPDK_TRACE_ARG_TYPE_INT, "type");
167 	spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE,
168 					OWNER_NONE, OBJECT_NONE, 0,
169 					SPDK_TRACE_ARG_TYPE_PTR, "state");
170 	spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT,
171 					OWNER_NONE, OBJECT_NONE, 0,
172 					SPDK_TRACE_ARG_TYPE_INT, "");
173 	spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY,
174 					OWNER_NONE, OBJECT_NONE, 0,
175 					SPDK_TRACE_ARG_TYPE_INT, "");
176 }
177 
178 enum spdk_nvmf_rdma_wr_type {
179 	RDMA_WR_TYPE_RECV,
180 	RDMA_WR_TYPE_SEND,
181 	RDMA_WR_TYPE_DATA,
182 };
183 
184 struct spdk_nvmf_rdma_wr {
185 	enum spdk_nvmf_rdma_wr_type	type;
186 };
187 
188 /* This structure holds commands as they are received off the wire.
189  * It must be dynamically paired with a full request object
190  * (spdk_nvmf_rdma_request) to service a request. It is separate
191  * from the request because RDMA does not appear to order
192  * completions, so occasionally we'll get a new incoming
193  * command when there aren't any free request objects.
194  */
195 struct spdk_nvmf_rdma_recv {
196 	struct ibv_recv_wr			wr;
197 	struct ibv_sge				sgl[NVMF_DEFAULT_RX_SGE];
198 
199 	struct spdk_nvmf_rdma_qpair		*qpair;
200 
201 	/* In-capsule data buffer */
202 	uint8_t					*buf;
203 
204 	struct spdk_nvmf_rdma_wr		rdma_wr;
205 	uint64_t				receive_tsc;
206 
207 	STAILQ_ENTRY(spdk_nvmf_rdma_recv)	link;
208 };
209 
210 struct spdk_nvmf_rdma_request_data {
211 	struct spdk_nvmf_rdma_wr	rdma_wr;
212 	struct ibv_send_wr		wr;
213 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
214 };
215 
216 struct spdk_nvmf_rdma_request {
217 	struct spdk_nvmf_request		req;
218 
219 	enum spdk_nvmf_rdma_request_state	state;
220 
221 	/* Data offset in req.iov */
222 	uint32_t				offset;
223 
224 	struct spdk_nvmf_rdma_recv		*recv;
225 
226 	struct {
227 		struct spdk_nvmf_rdma_wr	rdma_wr;
228 		struct	ibv_send_wr		wr;
229 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
230 	} rsp;
231 
232 	struct spdk_nvmf_rdma_request_data	data;
233 
234 	uint32_t				iovpos;
235 
236 	uint32_t				num_outstanding_data_wr;
237 	uint64_t				receive_tsc;
238 
239 	bool					fused_failed;
240 	struct spdk_nvmf_rdma_request		*fused_pair;
241 
242 	STAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
243 };
244 
245 struct spdk_nvmf_rdma_resource_opts {
246 	struct spdk_nvmf_rdma_qpair	*qpair;
247 	/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
248 	void				*qp;
249 	struct ibv_pd			*pd;
250 	uint32_t			max_queue_depth;
251 	uint32_t			in_capsule_data_size;
252 	bool				shared;
253 };
254 
255 struct spdk_nvmf_rdma_resources {
256 	/* Array of size "max_queue_depth" containing RDMA requests. */
257 	struct spdk_nvmf_rdma_request		*reqs;
258 
259 	/* Array of size "max_queue_depth" containing RDMA recvs. */
260 	struct spdk_nvmf_rdma_recv		*recvs;
261 
262 	/* Array of size "max_queue_depth" containing 64 byte capsules
263 	 * used for receive.
264 	 */
265 	union nvmf_h2c_msg			*cmds;
266 	struct ibv_mr				*cmds_mr;
267 
268 	/* Array of size "max_queue_depth" containing 16 byte completions
269 	 * to be sent back to the user.
270 	 */
271 	union nvmf_c2h_msg			*cpls;
272 	struct ibv_mr				*cpls_mr;
273 
274 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
275 	 * buffers to be used for in capsule data.
276 	 */
277 	void					*bufs;
278 	struct ibv_mr				*bufs_mr;
279 
280 	/* Receives that are waiting for a request object */
281 	STAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
282 
283 	/* Queue to track free requests */
284 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	free_queue;
285 };
286 
287 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair);
288 
289 struct spdk_nvmf_rdma_ibv_event_ctx {
290 	struct spdk_nvmf_rdma_qpair			*rqpair;
291 	spdk_nvmf_rdma_qpair_ibv_event			cb_fn;
292 	/* Link to other ibv events associated with this qpair */
293 	STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx)	link;
294 };
295 
296 struct spdk_nvmf_rdma_qpair {
297 	struct spdk_nvmf_qpair			qpair;
298 
299 	struct spdk_nvmf_rdma_device		*device;
300 	struct spdk_nvmf_rdma_poller		*poller;
301 
302 	struct spdk_rdma_qp			*rdma_qp;
303 	struct rdma_cm_id			*cm_id;
304 	struct spdk_rdma_srq			*srq;
305 	struct rdma_cm_id			*listen_id;
306 
307 	/* Cache the QP number to improve QP search by RB tree. */
308 	uint32_t				qp_num;
309 
310 	/* The maximum number of I/O outstanding on this connection at one time */
311 	uint16_t				max_queue_depth;
312 
313 	/* The maximum number of active RDMA READ and ATOMIC operations at one time */
314 	uint16_t				max_read_depth;
315 
316 	/* The maximum number of RDMA SEND operations at one time */
317 	uint32_t				max_send_depth;
318 
319 	/* The current number of outstanding WRs from this qpair's
320 	 * recv queue. Should not exceed device->attr.max_queue_depth.
321 	 */
322 	uint16_t				current_recv_depth;
323 
324 	/* The current number of active RDMA READ operations */
325 	uint16_t				current_read_depth;
326 
327 	/* The current number of posted WRs from this qpair's
328 	 * send queue. Should not exceed max_send_depth.
329 	 */
330 	uint32_t				current_send_depth;
331 
332 	/* The maximum number of SGEs per WR on the send queue */
333 	uint32_t				max_send_sge;
334 
335 	/* The maximum number of SGEs per WR on the recv queue */
336 	uint32_t				max_recv_sge;
337 
338 	struct spdk_nvmf_rdma_resources		*resources;
339 
340 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_read_queue;
341 
342 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_write_queue;
343 
344 	/* Number of requests not in the free state */
345 	uint32_t				qd;
346 
347 	RB_ENTRY(spdk_nvmf_rdma_qpair)		node;
348 
349 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	recv_link;
350 
351 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	send_link;
352 
353 	/* IBV queue pair attributes: they are used to manage
354 	 * qp state and recover from errors.
355 	 */
356 	enum ibv_qp_state			ibv_state;
357 
358 	/* Points to the a request that has fuse bits set to
359 	 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting
360 	 * for the request that has SPDK_NVME_CMD_FUSE_SECOND.
361 	 */
362 	struct spdk_nvmf_rdma_request		*fused_first;
363 
364 	/*
365 	 * io_channel which is used to destroy qpair when it is removed from poll group
366 	 */
367 	struct spdk_io_channel		*destruct_channel;
368 
369 	/* List of ibv async events */
370 	STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx)	ibv_events;
371 
372 	/* Lets us know that we have received the last_wqe event. */
373 	bool					last_wqe_reached;
374 
375 	/* Indicate that nvmf_rdma_close_qpair is called */
376 	bool					to_close;
377 };
378 
379 struct spdk_nvmf_rdma_poller_stat {
380 	uint64_t				completions;
381 	uint64_t				polls;
382 	uint64_t				idle_polls;
383 	uint64_t				requests;
384 	uint64_t				request_latency;
385 	uint64_t				pending_free_request;
386 	uint64_t				pending_rdma_read;
387 	uint64_t				pending_rdma_write;
388 	struct spdk_rdma_qp_stats		qp_stats;
389 };
390 
391 struct spdk_nvmf_rdma_poller {
392 	struct spdk_nvmf_rdma_device		*device;
393 	struct spdk_nvmf_rdma_poll_group	*group;
394 
395 	int					num_cqe;
396 	int					required_num_wr;
397 	struct ibv_cq				*cq;
398 
399 	/* The maximum number of I/O outstanding on the shared receive queue at one time */
400 	uint16_t				max_srq_depth;
401 
402 	/* Shared receive queue */
403 	struct spdk_rdma_srq			*srq;
404 
405 	struct spdk_nvmf_rdma_resources		*resources;
406 	struct spdk_nvmf_rdma_poller_stat	stat;
407 
408 	RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs;
409 
410 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_recv;
411 
412 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_send;
413 
414 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
415 };
416 
417 struct spdk_nvmf_rdma_poll_group_stat {
418 	uint64_t				pending_data_buffer;
419 };
420 
421 struct spdk_nvmf_rdma_poll_group {
422 	struct spdk_nvmf_transport_poll_group		group;
423 	struct spdk_nvmf_rdma_poll_group_stat		stat;
424 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)		pollers;
425 	TAILQ_ENTRY(spdk_nvmf_rdma_poll_group)		link;
426 };
427 
428 struct spdk_nvmf_rdma_conn_sched {
429 	struct spdk_nvmf_rdma_poll_group *next_admin_pg;
430 	struct spdk_nvmf_rdma_poll_group *next_io_pg;
431 };
432 
433 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
434 struct spdk_nvmf_rdma_device {
435 	struct ibv_device_attr			attr;
436 	struct ibv_context			*context;
437 
438 	struct spdk_rdma_mem_map		*map;
439 	struct ibv_pd				*pd;
440 
441 	int					num_srq;
442 
443 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
444 };
445 
446 struct spdk_nvmf_rdma_port {
447 	const struct spdk_nvme_transport_id	*trid;
448 	struct rdma_cm_id			*id;
449 	struct spdk_nvmf_rdma_device		*device;
450 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
451 };
452 
453 struct rdma_transport_opts {
454 	int		num_cqe;
455 	uint32_t	max_srq_depth;
456 	bool		no_srq;
457 	bool		no_wr_batching;
458 	int		acceptor_backlog;
459 };
460 
461 struct spdk_nvmf_rdma_transport {
462 	struct spdk_nvmf_transport	transport;
463 	struct rdma_transport_opts	rdma_opts;
464 
465 	struct spdk_nvmf_rdma_conn_sched conn_sched;
466 
467 	struct rdma_event_channel	*event_channel;
468 
469 	struct spdk_mempool		*data_wr_pool;
470 
471 	struct spdk_poller		*accept_poller;
472 	pthread_mutex_t			lock;
473 
474 	/* fields used to poll RDMA/IB events */
475 	nfds_t			npoll_fds;
476 	struct pollfd		*poll_fds;
477 
478 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
479 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
480 	TAILQ_HEAD(, spdk_nvmf_rdma_poll_group)	poll_groups;
481 };
482 
483 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = {
484 	{
485 		"num_cqe", offsetof(struct rdma_transport_opts, num_cqe),
486 		spdk_json_decode_int32, true
487 	},
488 	{
489 		"max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth),
490 		spdk_json_decode_uint32, true
491 	},
492 	{
493 		"no_srq", offsetof(struct rdma_transport_opts, no_srq),
494 		spdk_json_decode_bool, true
495 	},
496 	{
497 		"no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching),
498 		spdk_json_decode_bool, true
499 	},
500 	{
501 		"acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog),
502 		spdk_json_decode_int32, true
503 	},
504 };
505 
506 static int
507 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2)
508 {
509 	return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num;
510 }
511 
512 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare);
513 
514 static bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
515 				      struct spdk_nvmf_rdma_request *rdma_req);
516 
517 static void _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
518 				 struct spdk_nvmf_rdma_poller *rpoller);
519 
520 static void _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
521 				 struct spdk_nvmf_rdma_poller *rpoller);
522 
523 static inline int
524 nvmf_rdma_check_ibv_state(enum ibv_qp_state state)
525 {
526 	switch (state) {
527 	case IBV_QPS_RESET:
528 	case IBV_QPS_INIT:
529 	case IBV_QPS_RTR:
530 	case IBV_QPS_RTS:
531 	case IBV_QPS_SQD:
532 	case IBV_QPS_SQE:
533 	case IBV_QPS_ERR:
534 		return 0;
535 	default:
536 		return -1;
537 	}
538 }
539 
540 static inline enum spdk_nvme_media_error_status_code
541 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) {
542 	enum spdk_nvme_media_error_status_code result;
543 	switch (err_type)
544 	{
545 	case SPDK_DIF_REFTAG_ERROR:
546 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
547 		break;
548 	case SPDK_DIF_APPTAG_ERROR:
549 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
550 		break;
551 	case SPDK_DIF_GUARD_ERROR:
552 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
553 		break;
554 	default:
555 		SPDK_UNREACHABLE();
556 	}
557 
558 	return result;
559 }
560 
561 static enum ibv_qp_state
562 nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) {
563 	enum ibv_qp_state old_state, new_state;
564 	struct ibv_qp_attr qp_attr;
565 	struct ibv_qp_init_attr init_attr;
566 	int rc;
567 
568 	old_state = rqpair->ibv_state;
569 	rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr,
570 			  g_spdk_nvmf_ibv_query_mask, &init_attr);
571 
572 	if (rc)
573 	{
574 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
575 		return IBV_QPS_ERR + 1;
576 	}
577 
578 	new_state = qp_attr.qp_state;
579 	rqpair->ibv_state = new_state;
580 	qp_attr.ah_attr.port_num = qp_attr.port_num;
581 
582 	rc = nvmf_rdma_check_ibv_state(new_state);
583 	if (rc)
584 	{
585 		SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state);
586 		/*
587 		 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8
588 		 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR
589 		 */
590 		return IBV_QPS_ERR + 1;
591 	}
592 
593 	if (old_state != new_state)
594 	{
595 		spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, (uintptr_t)rqpair, new_state);
596 	}
597 	return new_state;
598 }
599 
600 static void
601 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
602 			    struct spdk_nvmf_rdma_transport *rtransport)
603 {
604 	struct spdk_nvmf_rdma_request_data	*data_wr;
605 	struct ibv_send_wr			*next_send_wr;
606 	uint64_t				req_wrid;
607 
608 	rdma_req->num_outstanding_data_wr = 0;
609 	data_wr = &rdma_req->data;
610 	req_wrid = data_wr->wr.wr_id;
611 	while (data_wr && data_wr->wr.wr_id == req_wrid) {
612 		memset(data_wr->sgl, 0, sizeof(data_wr->wr.sg_list[0]) * data_wr->wr.num_sge);
613 		data_wr->wr.num_sge = 0;
614 		next_send_wr = data_wr->wr.next;
615 		if (data_wr != &rdma_req->data) {
616 			spdk_mempool_put(rtransport->data_wr_pool, data_wr);
617 		}
618 		data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL :
619 			  SPDK_CONTAINEROF(next_send_wr, struct spdk_nvmf_rdma_request_data, wr);
620 	}
621 }
622 
623 static void
624 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
625 {
626 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool);
627 	if (req->req.cmd) {
628 		SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
629 	}
630 	if (req->recv) {
631 		SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
632 	}
633 }
634 
635 static void
636 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
637 {
638 	int i;
639 
640 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
641 	for (i = 0; i < rqpair->max_queue_depth; i++) {
642 		if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
643 			nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
644 		}
645 	}
646 }
647 
648 static void
649 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
650 {
651 	if (resources->cmds_mr) {
652 		ibv_dereg_mr(resources->cmds_mr);
653 	}
654 
655 	if (resources->cpls_mr) {
656 		ibv_dereg_mr(resources->cpls_mr);
657 	}
658 
659 	if (resources->bufs_mr) {
660 		ibv_dereg_mr(resources->bufs_mr);
661 	}
662 
663 	spdk_free(resources->cmds);
664 	spdk_free(resources->cpls);
665 	spdk_free(resources->bufs);
666 	spdk_free(resources->reqs);
667 	spdk_free(resources->recvs);
668 	free(resources);
669 }
670 
671 
672 static struct spdk_nvmf_rdma_resources *
673 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
674 {
675 	struct spdk_nvmf_rdma_resources	*resources;
676 	struct spdk_nvmf_rdma_request	*rdma_req;
677 	struct spdk_nvmf_rdma_recv	*rdma_recv;
678 	struct spdk_rdma_qp		*qp = NULL;
679 	struct spdk_rdma_srq		*srq = NULL;
680 	struct ibv_recv_wr		*bad_wr = NULL;
681 	uint32_t			i;
682 	int				rc = 0;
683 
684 	resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
685 	if (!resources) {
686 		SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
687 		return NULL;
688 	}
689 
690 	resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs),
691 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
692 	resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs),
693 					0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
694 	resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
695 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
696 	resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
697 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
698 
699 	if (opts->in_capsule_data_size > 0) {
700 		resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size,
701 					       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY,
702 					       SPDK_MALLOC_DMA);
703 	}
704 
705 	if (!resources->reqs || !resources->recvs || !resources->cmds ||
706 	    !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
707 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
708 		goto cleanup;
709 	}
710 
711 	resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds,
712 					opts->max_queue_depth * sizeof(*resources->cmds),
713 					IBV_ACCESS_LOCAL_WRITE);
714 	resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls,
715 					opts->max_queue_depth * sizeof(*resources->cpls),
716 					0);
717 
718 	if (opts->in_capsule_data_size) {
719 		resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs,
720 						opts->max_queue_depth *
721 						opts->in_capsule_data_size,
722 						IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
723 	}
724 
725 	if (!resources->cmds_mr || !resources->cpls_mr ||
726 	    (opts->in_capsule_data_size &&
727 	     !resources->bufs_mr)) {
728 		goto cleanup;
729 	}
730 	SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx LKey: %x\n",
731 		      resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds),
732 		      resources->cmds_mr->lkey);
733 	SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx LKey: %x\n",
734 		      resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls),
735 		      resources->cpls_mr->lkey);
736 	if (resources->bufs && resources->bufs_mr) {
737 		SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x LKey: %x\n",
738 			      resources->bufs, opts->max_queue_depth *
739 			      opts->in_capsule_data_size, resources->bufs_mr->lkey);
740 	}
741 
742 	/* Initialize queues */
743 	STAILQ_INIT(&resources->incoming_queue);
744 	STAILQ_INIT(&resources->free_queue);
745 
746 	if (opts->shared) {
747 		srq = (struct spdk_rdma_srq *)opts->qp;
748 	} else {
749 		qp = (struct spdk_rdma_qp *)opts->qp;
750 	}
751 
752 	for (i = 0; i < opts->max_queue_depth; i++) {
753 		rdma_recv = &resources->recvs[i];
754 		rdma_recv->qpair = opts->qpair;
755 
756 		/* Set up memory to receive commands */
757 		if (resources->bufs) {
758 			rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
759 						  opts->in_capsule_data_size));
760 		}
761 
762 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
763 
764 		rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
765 		rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
766 		rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey;
767 		rdma_recv->wr.num_sge = 1;
768 
769 		if (rdma_recv->buf && resources->bufs_mr) {
770 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
771 			rdma_recv->sgl[1].length = opts->in_capsule_data_size;
772 			rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey;
773 			rdma_recv->wr.num_sge++;
774 		}
775 
776 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
777 		rdma_recv->wr.sg_list = rdma_recv->sgl;
778 		if (srq) {
779 			spdk_rdma_srq_queue_recv_wrs(srq, &rdma_recv->wr);
780 		} else {
781 			spdk_rdma_qp_queue_recv_wrs(qp, &rdma_recv->wr);
782 		}
783 	}
784 
785 	for (i = 0; i < opts->max_queue_depth; i++) {
786 		rdma_req = &resources->reqs[i];
787 
788 		if (opts->qpair != NULL) {
789 			rdma_req->req.qpair = &opts->qpair->qpair;
790 		} else {
791 			rdma_req->req.qpair = NULL;
792 		}
793 		rdma_req->req.cmd = NULL;
794 		rdma_req->req.iovcnt = 0;
795 		rdma_req->req.stripped_data = NULL;
796 
797 		/* Set up memory to send responses */
798 		rdma_req->req.rsp = &resources->cpls[i];
799 
800 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
801 		rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
802 		rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey;
803 
804 		rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND;
805 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr;
806 		rdma_req->rsp.wr.next = NULL;
807 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
808 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
809 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
810 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
811 
812 		/* Set up memory for data buffers */
813 		rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA;
814 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
815 		rdma_req->data.wr.next = NULL;
816 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
817 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
818 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
819 
820 		/* Initialize request state to FREE */
821 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
822 		STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
823 	}
824 
825 	if (srq) {
826 		rc = spdk_rdma_srq_flush_recv_wrs(srq, &bad_wr);
827 	} else {
828 		rc = spdk_rdma_qp_flush_recv_wrs(qp, &bad_wr);
829 	}
830 
831 	if (rc) {
832 		goto cleanup;
833 	}
834 
835 	return resources;
836 
837 cleanup:
838 	nvmf_rdma_resources_destroy(resources);
839 	return NULL;
840 }
841 
842 static void
843 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair)
844 {
845 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx;
846 	STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) {
847 		ctx->rqpair = NULL;
848 		/* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */
849 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
850 	}
851 }
852 
853 static void
854 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
855 {
856 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
857 	struct ibv_recv_wr		*bad_recv_wr = NULL;
858 	int				rc;
859 
860 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair);
861 
862 	if (rqpair->qd != 0) {
863 		struct spdk_nvmf_qpair *qpair = &rqpair->qpair;
864 		struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(qpair->transport,
865 				struct spdk_nvmf_rdma_transport, transport);
866 		struct spdk_nvmf_rdma_request *req;
867 		uint32_t i, max_req_count = 0;
868 
869 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
870 
871 		if (rqpair->srq == NULL) {
872 			nvmf_rdma_dump_qpair_contents(rqpair);
873 			max_req_count = rqpair->max_queue_depth;
874 		} else if (rqpair->poller && rqpair->resources) {
875 			max_req_count = rqpair->poller->max_srq_depth;
876 		}
877 
878 		SPDK_DEBUGLOG(rdma, "Release incomplete requests\n");
879 		for (i = 0; i < max_req_count; i++) {
880 			req = &rqpair->resources->reqs[i];
881 			if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) {
882 				/* nvmf_rdma_request_process checks qpair ibv and internal state
883 				 * and completes a request */
884 				nvmf_rdma_request_process(rtransport, req);
885 			}
886 		}
887 		assert(rqpair->qd == 0);
888 	}
889 
890 	if (rqpair->poller) {
891 		RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair);
892 
893 		if (rqpair->srq != NULL && rqpair->resources != NULL) {
894 			/* Drop all received but unprocessed commands for this queue and return them to SRQ */
895 			STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
896 				if (rqpair == rdma_recv->qpair) {
897 					STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link);
898 					spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr);
899 					rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
900 					if (rc) {
901 						SPDK_ERRLOG("Unable to re-post rx descriptor\n");
902 					}
903 				}
904 			}
905 		}
906 	}
907 
908 	if (rqpair->cm_id) {
909 		if (rqpair->rdma_qp != NULL) {
910 			spdk_rdma_qp_destroy(rqpair->rdma_qp);
911 			rqpair->rdma_qp = NULL;
912 		}
913 		rdma_destroy_id(rqpair->cm_id);
914 
915 		if (rqpair->poller != NULL && rqpair->srq == NULL) {
916 			rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
917 		}
918 	}
919 
920 	if (rqpair->srq == NULL && rqpair->resources != NULL) {
921 		nvmf_rdma_resources_destroy(rqpair->resources);
922 	}
923 
924 	nvmf_rdma_qpair_clean_ibv_events(rqpair);
925 
926 	if (rqpair->destruct_channel) {
927 		spdk_put_io_channel(rqpair->destruct_channel);
928 		rqpair->destruct_channel = NULL;
929 	}
930 
931 	free(rqpair);
932 }
933 
934 static int
935 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
936 {
937 	struct spdk_nvmf_rdma_poller	*rpoller;
938 	int				rc, num_cqe, required_num_wr;
939 
940 	/* Enlarge CQ size dynamically */
941 	rpoller = rqpair->poller;
942 	required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
943 	num_cqe = rpoller->num_cqe;
944 	if (num_cqe < required_num_wr) {
945 		num_cqe = spdk_max(num_cqe * 2, required_num_wr);
946 		num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
947 	}
948 
949 	if (rpoller->num_cqe != num_cqe) {
950 		if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) {
951 			SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n"
952 				    "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe);
953 			return -1;
954 		}
955 		if (required_num_wr > device->attr.max_cqe) {
956 			SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
957 				    required_num_wr, device->attr.max_cqe);
958 			return -1;
959 		}
960 
961 		SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
962 		rc = ibv_resize_cq(rpoller->cq, num_cqe);
963 		if (rc) {
964 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
965 			return -1;
966 		}
967 
968 		rpoller->num_cqe = num_cqe;
969 	}
970 
971 	rpoller->required_num_wr = required_num_wr;
972 	return 0;
973 }
974 
975 static int
976 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
977 {
978 	struct spdk_nvmf_rdma_qpair		*rqpair;
979 	struct spdk_nvmf_rdma_transport		*rtransport;
980 	struct spdk_nvmf_transport		*transport;
981 	struct spdk_nvmf_rdma_resource_opts	opts;
982 	struct spdk_nvmf_rdma_device		*device;
983 	struct spdk_rdma_qp_init_attr		qp_init_attr = {};
984 
985 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
986 	device = rqpair->device;
987 
988 	qp_init_attr.qp_context	= rqpair;
989 	qp_init_attr.pd		= device->pd;
990 	qp_init_attr.send_cq	= rqpair->poller->cq;
991 	qp_init_attr.recv_cq	= rqpair->poller->cq;
992 
993 	if (rqpair->srq) {
994 		qp_init_attr.srq		= rqpair->srq->srq;
995 	} else {
996 		qp_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth;
997 	}
998 
999 	/* SEND, READ, and WRITE operations */
1000 	qp_init_attr.cap.max_send_wr	= (uint32_t)rqpair->max_queue_depth * 2;
1001 	qp_init_attr.cap.max_send_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
1002 	qp_init_attr.cap.max_recv_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
1003 	qp_init_attr.stats		= &rqpair->poller->stat.qp_stats;
1004 
1005 	if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
1006 		SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
1007 		goto error;
1008 	}
1009 
1010 	rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr);
1011 	if (!rqpair->rdma_qp) {
1012 		goto error;
1013 	}
1014 
1015 	rqpair->qp_num = rqpair->rdma_qp->qp->qp_num;
1016 
1017 	rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2),
1018 					  qp_init_attr.cap.max_send_wr);
1019 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge);
1020 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge);
1021 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair);
1022 	SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair);
1023 
1024 	if (rqpair->poller->srq == NULL) {
1025 		rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
1026 		transport = &rtransport->transport;
1027 
1028 		opts.qp = rqpair->rdma_qp;
1029 		opts.pd = rqpair->cm_id->pd;
1030 		opts.qpair = rqpair;
1031 		opts.shared = false;
1032 		opts.max_queue_depth = rqpair->max_queue_depth;
1033 		opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
1034 
1035 		rqpair->resources = nvmf_rdma_resources_create(&opts);
1036 
1037 		if (!rqpair->resources) {
1038 			SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
1039 			rdma_destroy_qp(rqpair->cm_id);
1040 			goto error;
1041 		}
1042 	} else {
1043 		rqpair->resources = rqpair->poller->resources;
1044 	}
1045 
1046 	rqpair->current_recv_depth = 0;
1047 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1048 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1049 
1050 	return 0;
1051 
1052 error:
1053 	rdma_destroy_id(rqpair->cm_id);
1054 	rqpair->cm_id = NULL;
1055 	return -1;
1056 }
1057 
1058 /* Append the given recv wr structure to the resource structs outstanding recvs list. */
1059 /* This function accepts either a single wr or the first wr in a linked list. */
1060 static void
1061 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first)
1062 {
1063 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1064 			struct spdk_nvmf_rdma_transport, transport);
1065 
1066 	if (rqpair->srq != NULL) {
1067 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, first);
1068 	} else {
1069 		if (spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, first)) {
1070 			STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link);
1071 		}
1072 	}
1073 
1074 	if (rtransport->rdma_opts.no_wr_batching) {
1075 		_poller_submit_recvs(rtransport, rqpair->poller);
1076 	}
1077 }
1078 
1079 static int
1080 request_transfer_in(struct spdk_nvmf_request *req)
1081 {
1082 	struct spdk_nvmf_rdma_request	*rdma_req;
1083 	struct spdk_nvmf_qpair		*qpair;
1084 	struct spdk_nvmf_rdma_qpair	*rqpair;
1085 	struct spdk_nvmf_rdma_transport *rtransport;
1086 
1087 	qpair = req->qpair;
1088 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1089 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1090 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1091 				      struct spdk_nvmf_rdma_transport, transport);
1092 
1093 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1094 	assert(rdma_req != NULL);
1095 
1096 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, &rdma_req->data.wr)) {
1097 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1098 	}
1099 	if (rtransport->rdma_opts.no_wr_batching) {
1100 		_poller_submit_sends(rtransport, rqpair->poller);
1101 	}
1102 
1103 	rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1104 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1105 	return 0;
1106 }
1107 
1108 static int
1109 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1110 {
1111 	int				num_outstanding_data_wr = 0;
1112 	struct spdk_nvmf_rdma_request	*rdma_req;
1113 	struct spdk_nvmf_qpair		*qpair;
1114 	struct spdk_nvmf_rdma_qpair	*rqpair;
1115 	struct spdk_nvme_cpl		*rsp;
1116 	struct ibv_send_wr		*first = NULL;
1117 	struct spdk_nvmf_rdma_transport *rtransport;
1118 
1119 	*data_posted = 0;
1120 	qpair = req->qpair;
1121 	rsp = &req->rsp->nvme_cpl;
1122 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1123 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1124 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1125 				      struct spdk_nvmf_rdma_transport, transport);
1126 
1127 	/* Advance our sq_head pointer */
1128 	if (qpair->sq_head == qpair->sq_head_max) {
1129 		qpair->sq_head = 0;
1130 	} else {
1131 		qpair->sq_head++;
1132 	}
1133 	rsp->sqhd = qpair->sq_head;
1134 
1135 	/* queue the capsule for the recv buffer */
1136 	assert(rdma_req->recv != NULL);
1137 
1138 	nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr);
1139 
1140 	rdma_req->recv = NULL;
1141 	assert(rqpair->current_recv_depth > 0);
1142 	rqpair->current_recv_depth--;
1143 
1144 	/* Build the response which consists of optional
1145 	 * RDMA WRITEs to transfer data, plus an RDMA SEND
1146 	 * containing the response.
1147 	 */
1148 	first = &rdma_req->rsp.wr;
1149 
1150 	if (rsp->status.sc != SPDK_NVME_SC_SUCCESS) {
1151 		/* On failure, data was not read from the controller. So clear the
1152 		 * number of outstanding data WRs to zero.
1153 		 */
1154 		rdma_req->num_outstanding_data_wr = 0;
1155 	} else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1156 		first = &rdma_req->data.wr;
1157 		*data_posted = 1;
1158 		num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
1159 	}
1160 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) {
1161 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1162 	}
1163 	if (rtransport->rdma_opts.no_wr_batching) {
1164 		_poller_submit_sends(rtransport, rqpair->poller);
1165 	}
1166 
1167 	/* +1 for the rsp wr */
1168 	rqpair->current_send_depth += num_outstanding_data_wr + 1;
1169 
1170 	return 0;
1171 }
1172 
1173 static int
1174 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1175 {
1176 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
1177 	struct rdma_conn_param				ctrlr_event_data = {};
1178 	int						rc;
1179 
1180 	accept_data.recfmt = 0;
1181 	accept_data.crqsize = rqpair->max_queue_depth;
1182 
1183 	ctrlr_event_data.private_data = &accept_data;
1184 	ctrlr_event_data.private_data_len = sizeof(accept_data);
1185 	if (id->ps == RDMA_PS_TCP) {
1186 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1187 		ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1188 	}
1189 
1190 	/* Configure infinite retries for the initiator side qpair.
1191 	 * We need to pass this value to the initiator to prevent the
1192 	 * initiator side NIC from completing SEND requests back to the
1193 	 * initiator with status rnr_retry_count_exceeded. */
1194 	ctrlr_event_data.rnr_retry_count = 0x7;
1195 
1196 	/* When qpair is created without use of rdma cm API, an additional
1197 	 * information must be provided to initiator in the connection response:
1198 	 * whether qpair is using SRQ and its qp_num
1199 	 * Fields below are ignored by rdma cm if qpair has been
1200 	 * created using rdma cm API. */
1201 	ctrlr_event_data.srq = rqpair->srq ? 1 : 0;
1202 	ctrlr_event_data.qp_num = rqpair->qp_num;
1203 
1204 	rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data);
1205 	if (rc) {
1206 		SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno);
1207 	} else {
1208 		SPDK_DEBUGLOG(rdma, "Sent back the accept\n");
1209 	}
1210 
1211 	return rc;
1212 }
1213 
1214 static void
1215 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1216 {
1217 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
1218 
1219 	rej_data.recfmt = 0;
1220 	rej_data.sts = error;
1221 
1222 	rdma_reject(id, &rej_data, sizeof(rej_data));
1223 }
1224 
1225 static int
1226 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event)
1227 {
1228 	struct spdk_nvmf_rdma_transport *rtransport;
1229 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
1230 	struct spdk_nvmf_rdma_port	*port;
1231 	struct rdma_conn_param		*rdma_param = NULL;
1232 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1233 	uint16_t			max_queue_depth;
1234 	uint16_t			max_read_depth;
1235 
1236 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1237 
1238 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1239 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1240 
1241 	rdma_param = &event->param.conn;
1242 	if (rdma_param->private_data == NULL ||
1243 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1244 		SPDK_ERRLOG("connect request: no private data provided\n");
1245 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1246 		return -1;
1247 	}
1248 
1249 	private_data = rdma_param->private_data;
1250 	if (private_data->recfmt != 0) {
1251 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1252 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1253 		return -1;
1254 	}
1255 
1256 	SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n",
1257 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1258 
1259 	port = event->listen_id->context;
1260 	SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1261 		      event->listen_id, event->listen_id->verbs, port);
1262 
1263 	/* Figure out the supported queue depth. This is a multi-step process
1264 	 * that takes into account hardware maximums, host provided values,
1265 	 * and our target's internal memory limits */
1266 
1267 	SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n");
1268 
1269 	/* Start with the maximum queue depth allowed by the target */
1270 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1271 	max_read_depth = rtransport->transport.opts.max_queue_depth;
1272 	SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n",
1273 		      rtransport->transport.opts.max_queue_depth);
1274 
1275 	/* Next check the local NIC's hardware limitations */
1276 	SPDK_DEBUGLOG(rdma,
1277 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1278 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1279 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1280 	max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1281 
1282 	/* Next check the remote NIC's hardware limitations */
1283 	SPDK_DEBUGLOG(rdma,
1284 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1285 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1286 	if (rdma_param->initiator_depth > 0) {
1287 		max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1288 	}
1289 
1290 	/* Finally check for the host software requested values, which are
1291 	 * optional. */
1292 	if (rdma_param->private_data != NULL &&
1293 	    rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1294 		SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1295 		SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize);
1296 		max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1297 		max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1298 	}
1299 
1300 	SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1301 		      max_queue_depth, max_read_depth);
1302 
1303 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1304 	if (rqpair == NULL) {
1305 		SPDK_ERRLOG("Could not allocate new connection.\n");
1306 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1307 		return -1;
1308 	}
1309 
1310 	rqpair->device = port->device;
1311 	rqpair->max_queue_depth = max_queue_depth;
1312 	rqpair->max_read_depth = max_read_depth;
1313 	rqpair->cm_id = event->id;
1314 	rqpair->listen_id = event->listen_id;
1315 	rqpair->qpair.transport = transport;
1316 	STAILQ_INIT(&rqpair->ibv_events);
1317 	/* use qid from the private data to determine the qpair type
1318 	   qid will be set to the appropriate value when the controller is created */
1319 	rqpair->qpair.qid = private_data->qid;
1320 
1321 	event->id->context = &rqpair->qpair;
1322 
1323 	spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair);
1324 
1325 	return 0;
1326 }
1327 
1328 static inline void
1329 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next,
1330 		   enum spdk_nvme_data_transfer xfer)
1331 {
1332 	if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1333 		wr->opcode = IBV_WR_RDMA_WRITE;
1334 		wr->send_flags = 0;
1335 		wr->next = next;
1336 	} else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1337 		wr->opcode = IBV_WR_RDMA_READ;
1338 		wr->send_flags = IBV_SEND_SIGNALED;
1339 		wr->next = NULL;
1340 	} else {
1341 		assert(0);
1342 	}
1343 }
1344 
1345 static int
1346 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1347 		       struct spdk_nvmf_rdma_request *rdma_req,
1348 		       uint32_t num_sgl_descriptors)
1349 {
1350 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1351 	struct spdk_nvmf_rdma_request_data	*current_data_wr;
1352 	uint32_t				i;
1353 
1354 	if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) {
1355 		SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n",
1356 			    num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES);
1357 		return -EINVAL;
1358 	}
1359 
1360 	if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) {
1361 		return -ENOMEM;
1362 	}
1363 
1364 	current_data_wr = &rdma_req->data;
1365 
1366 	for (i = 0; i < num_sgl_descriptors; i++) {
1367 		nvmf_rdma_setup_wr(&current_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer);
1368 		current_data_wr->wr.next = &work_requests[i]->wr;
1369 		current_data_wr = work_requests[i];
1370 		current_data_wr->wr.sg_list = current_data_wr->sgl;
1371 		current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id;
1372 	}
1373 
1374 	nvmf_rdma_setup_wr(&current_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1375 
1376 	return 0;
1377 }
1378 
1379 static inline void
1380 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req)
1381 {
1382 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1383 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1384 
1385 	wr->wr.rdma.rkey = sgl->keyed.key;
1386 	wr->wr.rdma.remote_addr = sgl->address;
1387 	nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1388 }
1389 
1390 static inline void
1391 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs)
1392 {
1393 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1394 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1395 	uint32_t			i;
1396 	int				j;
1397 	uint64_t			remote_addr_offset = 0;
1398 
1399 	for (i = 0; i < num_wrs; ++i) {
1400 		wr->wr.rdma.rkey = sgl->keyed.key;
1401 		wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset;
1402 		for (j = 0; j < wr->num_sge; ++j) {
1403 			remote_addr_offset += wr->sg_list[j].length;
1404 		}
1405 		wr = wr->next;
1406 	}
1407 }
1408 
1409 static int
1410 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup,
1411 		      struct spdk_nvmf_rdma_device *device,
1412 		      struct spdk_nvmf_rdma_request *rdma_req,
1413 		      struct ibv_send_wr *wr,
1414 		      uint32_t total_length)
1415 {
1416 	struct spdk_rdma_memory_translation mem_translation;
1417 	struct ibv_sge	*sg_ele;
1418 	struct iovec *iov;
1419 	uint32_t lkey, remaining;
1420 	int rc;
1421 
1422 	wr->num_sge = 0;
1423 
1424 	while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) {
1425 		iov = &rdma_req->req.iov[rdma_req->iovpos];
1426 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1427 		if (spdk_unlikely(rc)) {
1428 			return rc;
1429 		}
1430 
1431 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1432 		sg_ele = &wr->sg_list[wr->num_sge];
1433 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1434 
1435 		sg_ele->lkey = lkey;
1436 		sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset;
1437 		sg_ele->length = remaining;
1438 		SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr,
1439 			      sg_ele->length);
1440 		rdma_req->offset += sg_ele->length;
1441 		total_length -= sg_ele->length;
1442 		wr->num_sge++;
1443 
1444 		if (rdma_req->offset == iov->iov_len) {
1445 			rdma_req->offset = 0;
1446 			rdma_req->iovpos++;
1447 		}
1448 	}
1449 
1450 	if (total_length) {
1451 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1452 		return -EINVAL;
1453 	}
1454 
1455 	return 0;
1456 }
1457 
1458 static int
1459 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_poll_group *rgroup,
1460 			       struct spdk_nvmf_rdma_device *device,
1461 			       struct spdk_nvmf_rdma_request *rdma_req,
1462 			       struct ibv_send_wr *wr,
1463 			       uint32_t total_length,
1464 			       uint32_t num_extra_wrs)
1465 {
1466 	struct spdk_rdma_memory_translation mem_translation;
1467 	struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx;
1468 	struct ibv_sge *sg_ele;
1469 	struct iovec *iov;
1470 	struct iovec *rdma_iov;
1471 	uint32_t lkey, remaining;
1472 	uint32_t remaining_data_block, data_block_size, md_size;
1473 	uint32_t sge_len;
1474 	int rc;
1475 
1476 	data_block_size = dif_ctx->block_size - dif_ctx->md_size;
1477 
1478 	if (spdk_likely(!rdma_req->req.stripped_data)) {
1479 		rdma_iov = rdma_req->req.iov;
1480 		remaining_data_block = data_block_size;
1481 		md_size = dif_ctx->md_size;
1482 	} else {
1483 		rdma_iov = rdma_req->req.stripped_data->iov;
1484 		total_length = total_length / dif_ctx->block_size * data_block_size;
1485 		remaining_data_block = total_length;
1486 		md_size = 0;
1487 	}
1488 
1489 	wr->num_sge = 0;
1490 
1491 	while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) {
1492 		iov = rdma_iov + rdma_req->iovpos;
1493 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1494 		if (spdk_unlikely(rc)) {
1495 			return rc;
1496 		}
1497 
1498 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1499 		sg_ele = &wr->sg_list[wr->num_sge];
1500 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1501 
1502 		while (remaining) {
1503 			if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) {
1504 				if (num_extra_wrs > 0 && wr->next) {
1505 					wr = wr->next;
1506 					wr->num_sge = 0;
1507 					sg_ele = &wr->sg_list[wr->num_sge];
1508 					num_extra_wrs--;
1509 				} else {
1510 					break;
1511 				}
1512 			}
1513 			sg_ele->lkey = lkey;
1514 			sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset);
1515 			sge_len = spdk_min(remaining, remaining_data_block);
1516 			sg_ele->length = sge_len;
1517 			SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele,
1518 				      sg_ele->addr, sg_ele->length);
1519 			remaining -= sge_len;
1520 			remaining_data_block -= sge_len;
1521 			rdma_req->offset += sge_len;
1522 			total_length -= sge_len;
1523 
1524 			sg_ele++;
1525 			wr->num_sge++;
1526 
1527 			if (remaining_data_block == 0) {
1528 				/* skip metadata */
1529 				rdma_req->offset += md_size;
1530 				total_length -= md_size;
1531 				/* Metadata that do not fit this IO buffer will be included in the next IO buffer */
1532 				remaining -= spdk_min(remaining, md_size);
1533 				remaining_data_block = data_block_size;
1534 			}
1535 
1536 			if (remaining == 0) {
1537 				/* By subtracting the size of the last IOV from the offset, we ensure that we skip
1538 				   the remaining metadata bits at the beginning of the next buffer */
1539 				rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset);
1540 				rdma_req->iovpos++;
1541 			}
1542 		}
1543 	}
1544 
1545 	if (total_length) {
1546 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1547 		return -EINVAL;
1548 	}
1549 
1550 	return 0;
1551 }
1552 
1553 static inline uint32_t
1554 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size)
1555 {
1556 	/* estimate the number of SG entries and WRs needed to process the request */
1557 	uint32_t num_sge = 0;
1558 	uint32_t i;
1559 	uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size);
1560 
1561 	for (i = 0; i < num_buffers && length > 0; i++) {
1562 		uint32_t buffer_len = spdk_min(length, io_unit_size);
1563 		uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size);
1564 
1565 		if (num_sge_in_block * block_size > buffer_len) {
1566 			++num_sge_in_block;
1567 		}
1568 		num_sge += num_sge_in_block;
1569 		length -= buffer_len;
1570 	}
1571 	return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES);
1572 }
1573 
1574 static int
1575 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1576 			    struct spdk_nvmf_rdma_device *device,
1577 			    struct spdk_nvmf_rdma_request *rdma_req)
1578 {
1579 	struct spdk_nvmf_rdma_qpair		*rqpair;
1580 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1581 	struct spdk_nvmf_request		*req = &rdma_req->req;
1582 	struct ibv_send_wr			*wr = &rdma_req->data.wr;
1583 	int					rc;
1584 	uint32_t				num_wrs = 1;
1585 	uint32_t				length;
1586 
1587 	rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair);
1588 	rgroup = rqpair->poller->group;
1589 
1590 	/* rdma wr specifics */
1591 	nvmf_rdma_setup_request(rdma_req);
1592 
1593 	length = req->length;
1594 	if (spdk_unlikely(req->dif_enabled)) {
1595 		req->dif.orig_length = length;
1596 		length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
1597 		req->dif.elba_length = length;
1598 	}
1599 
1600 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
1601 					   length);
1602 	if (rc != 0) {
1603 		return rc;
1604 	}
1605 
1606 	assert(req->iovcnt <= rqpair->max_send_sge);
1607 
1608 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1609 	 * the stripped_buffers are got for DIF stripping. */
1610 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1611 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1612 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1613 						       &rtransport->transport, req->dif.orig_length);
1614 		if (rc != 0) {
1615 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1616 		}
1617 	}
1618 
1619 	rdma_req->iovpos = 0;
1620 
1621 	if (spdk_unlikely(req->dif_enabled)) {
1622 		num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size,
1623 						 req->dif.dif_ctx.block_size);
1624 		if (num_wrs > 1) {
1625 			rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1);
1626 			if (rc != 0) {
1627 				goto err_exit;
1628 			}
1629 		}
1630 
1631 		rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, wr, length, num_wrs - 1);
1632 		if (spdk_unlikely(rc != 0)) {
1633 			goto err_exit;
1634 		}
1635 
1636 		if (num_wrs > 1) {
1637 			nvmf_rdma_update_remote_addr(rdma_req, num_wrs);
1638 		}
1639 	} else {
1640 		rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length);
1641 		if (spdk_unlikely(rc != 0)) {
1642 			goto err_exit;
1643 		}
1644 	}
1645 
1646 	/* set the number of outstanding data WRs for this request. */
1647 	rdma_req->num_outstanding_data_wr = num_wrs;
1648 
1649 	return rc;
1650 
1651 err_exit:
1652 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1653 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1654 	req->iovcnt = 0;
1655 	return rc;
1656 }
1657 
1658 static int
1659 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1660 				      struct spdk_nvmf_rdma_device *device,
1661 				      struct spdk_nvmf_rdma_request *rdma_req)
1662 {
1663 	struct spdk_nvmf_rdma_qpair		*rqpair;
1664 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1665 	struct ibv_send_wr			*current_wr;
1666 	struct spdk_nvmf_request		*req = &rdma_req->req;
1667 	struct spdk_nvme_sgl_descriptor		*inline_segment, *desc;
1668 	uint32_t				num_sgl_descriptors;
1669 	uint32_t				lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0;
1670 	uint32_t				i;
1671 	int					rc;
1672 
1673 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1674 	rgroup = rqpair->poller->group;
1675 
1676 	inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1677 	assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1678 	assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1679 
1680 	num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1681 	assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1682 
1683 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1684 	for (i = 0; i < num_sgl_descriptors; i++) {
1685 		if (spdk_likely(!req->dif_enabled)) {
1686 			lengths[i] = desc->keyed.length;
1687 		} else {
1688 			req->dif.orig_length += desc->keyed.length;
1689 			lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx);
1690 			req->dif.elba_length += lengths[i];
1691 		}
1692 		total_length += lengths[i];
1693 		desc++;
1694 	}
1695 
1696 	if (total_length > rtransport->transport.opts.max_io_size) {
1697 		SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n",
1698 			    total_length, rtransport->transport.opts.max_io_size);
1699 		req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1700 		return -EINVAL;
1701 	}
1702 
1703 	if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) {
1704 		return -ENOMEM;
1705 	}
1706 
1707 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length);
1708 	if (rc != 0) {
1709 		nvmf_rdma_request_free_data(rdma_req, rtransport);
1710 		return rc;
1711 	}
1712 
1713 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1714 	 * the stripped_buffers are got for DIF stripping. */
1715 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1716 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1717 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1718 						       &rtransport->transport, req->dif.orig_length);
1719 		if (rc != 0) {
1720 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1721 		}
1722 	}
1723 
1724 	/* The first WR must always be the embedded data WR. This is how we unwind them later. */
1725 	current_wr = &rdma_req->data.wr;
1726 	assert(current_wr != NULL);
1727 
1728 	req->length = 0;
1729 	rdma_req->iovpos = 0;
1730 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1731 	for (i = 0; i < num_sgl_descriptors; i++) {
1732 		/* The descriptors must be keyed data block descriptors with an address, not an offset. */
1733 		if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1734 				  desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1735 			rc = -EINVAL;
1736 			goto err_exit;
1737 		}
1738 
1739 		if (spdk_likely(!req->dif_enabled)) {
1740 			rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i]);
1741 		} else {
1742 			rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, current_wr,
1743 							    lengths[i], 0);
1744 		}
1745 		if (rc != 0) {
1746 			rc = -ENOMEM;
1747 			goto err_exit;
1748 		}
1749 
1750 		req->length += desc->keyed.length;
1751 		current_wr->wr.rdma.rkey = desc->keyed.key;
1752 		current_wr->wr.rdma.remote_addr = desc->address;
1753 		current_wr = current_wr->next;
1754 		desc++;
1755 	}
1756 
1757 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1758 	/* Go back to the last descriptor in the list. */
1759 	desc--;
1760 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1761 		if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1762 			rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1763 			rdma_req->rsp.wr.imm_data = desc->keyed.key;
1764 		}
1765 	}
1766 #endif
1767 
1768 	rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1769 
1770 	return 0;
1771 
1772 err_exit:
1773 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1774 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1775 	return rc;
1776 }
1777 
1778 static int
1779 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1780 			    struct spdk_nvmf_rdma_device *device,
1781 			    struct spdk_nvmf_rdma_request *rdma_req)
1782 {
1783 	struct spdk_nvmf_request		*req = &rdma_req->req;
1784 	struct spdk_nvme_cpl			*rsp;
1785 	struct spdk_nvme_sgl_descriptor		*sgl;
1786 	int					rc;
1787 	uint32_t				length;
1788 
1789 	rsp = &req->rsp->nvme_cpl;
1790 	sgl = &req->cmd->nvme_cmd.dptr.sgl1;
1791 
1792 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1793 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1794 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1795 
1796 		length = sgl->keyed.length;
1797 		if (length > rtransport->transport.opts.max_io_size) {
1798 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1799 				    length, rtransport->transport.opts.max_io_size);
1800 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1801 			return -1;
1802 		}
1803 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1804 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1805 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1806 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1807 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1808 			}
1809 		}
1810 #endif
1811 
1812 		/* fill request length and populate iovs */
1813 		req->length = length;
1814 
1815 		rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req);
1816 		if (spdk_unlikely(rc < 0)) {
1817 			if (rc == -EINVAL) {
1818 				SPDK_ERRLOG("SGL length exceeds the max I/O size\n");
1819 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1820 				return -1;
1821 			}
1822 			/* No available buffers. Queue this request up. */
1823 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1824 			return 0;
1825 		}
1826 
1827 		/* backward compatible */
1828 		req->data = req->iov[0].iov_base;
1829 
1830 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1831 			      req->iovcnt);
1832 
1833 		return 0;
1834 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1835 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1836 		uint64_t offset = sgl->address;
1837 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1838 
1839 		SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1840 			      offset, sgl->unkeyed.length);
1841 
1842 		if (offset > max_len) {
1843 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1844 				    offset, max_len);
1845 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1846 			return -1;
1847 		}
1848 		max_len -= (uint32_t)offset;
1849 
1850 		if (sgl->unkeyed.length > max_len) {
1851 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1852 				    sgl->unkeyed.length, max_len);
1853 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1854 			return -1;
1855 		}
1856 
1857 		rdma_req->num_outstanding_data_wr = 0;
1858 		req->data = rdma_req->recv->buf + offset;
1859 		req->data_from_pool = false;
1860 		req->length = sgl->unkeyed.length;
1861 
1862 		req->iov[0].iov_base = req->data;
1863 		req->iov[0].iov_len = req->length;
1864 		req->iovcnt = 1;
1865 
1866 		return 0;
1867 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1868 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1869 
1870 		rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1871 		if (rc == -ENOMEM) {
1872 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1873 			return 0;
1874 		} else if (rc == -EINVAL) {
1875 			SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1876 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1877 			return -1;
1878 		}
1879 
1880 		/* backward compatible */
1881 		req->data = req->iov[0].iov_base;
1882 
1883 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1884 			      req->iovcnt);
1885 
1886 		return 0;
1887 	}
1888 
1889 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
1890 		    sgl->generic.type, sgl->generic.subtype);
1891 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1892 	return -1;
1893 }
1894 
1895 static void
1896 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1897 			struct spdk_nvmf_rdma_transport	*rtransport)
1898 {
1899 	struct spdk_nvmf_rdma_qpair		*rqpair;
1900 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1901 
1902 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1903 	if (rdma_req->req.data_from_pool) {
1904 		rgroup = rqpair->poller->group;
1905 
1906 		spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport);
1907 	}
1908 	if (rdma_req->req.stripped_data) {
1909 		nvmf_request_free_stripped_buffers(&rdma_req->req,
1910 						   &rqpair->poller->group->group,
1911 						   &rtransport->transport);
1912 	}
1913 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1914 	rdma_req->req.length = 0;
1915 	rdma_req->req.iovcnt = 0;
1916 	rdma_req->req.data = NULL;
1917 	rdma_req->rsp.wr.next = NULL;
1918 	rdma_req->data.wr.next = NULL;
1919 	rdma_req->offset = 0;
1920 	rdma_req->req.dif_enabled = false;
1921 	rdma_req->fused_failed = false;
1922 	if (rdma_req->fused_pair) {
1923 		/* This req was part of a valid fused pair, but failed before it got to
1924 		 * READ_TO_EXECUTE state.  This means we need to fail the other request
1925 		 * in the pair, because it is no longer part of a valid pair.  If the pair
1926 		 * already reached READY_TO_EXECUTE state, we need to kick it.
1927 		 */
1928 		rdma_req->fused_pair->fused_failed = true;
1929 		if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
1930 			nvmf_rdma_request_process(rtransport, rdma_req->fused_pair);
1931 		}
1932 		rdma_req->fused_pair = NULL;
1933 	}
1934 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
1935 	rqpair->qd--;
1936 
1937 	STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
1938 	rdma_req->state = RDMA_REQUEST_STATE_FREE;
1939 }
1940 
1941 static void
1942 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport,
1943 			       struct spdk_nvmf_rdma_qpair *rqpair,
1944 			       struct spdk_nvmf_rdma_request *rdma_req)
1945 {
1946 	enum spdk_nvme_cmd_fuse last, next;
1947 
1948 	last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
1949 	next = rdma_req->req.cmd->nvme_cmd.fuse;
1950 
1951 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
1952 
1953 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
1954 		return;
1955 	}
1956 
1957 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
1958 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
1959 			/* This is a valid pair of fused commands.  Point them at each other
1960 			 * so they can be submitted consecutively once ready to be executed.
1961 			 */
1962 			rqpair->fused_first->fused_pair = rdma_req;
1963 			rdma_req->fused_pair = rqpair->fused_first;
1964 			rqpair->fused_first = NULL;
1965 			return;
1966 		} else {
1967 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
1968 			rqpair->fused_first->fused_failed = true;
1969 
1970 			/* If the last req is in READY_TO_EXECUTE state, then call
1971 			 * nvmf_rdma_request_process(), otherwise nothing else will kick it.
1972 			 */
1973 			if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
1974 				nvmf_rdma_request_process(rtransport, rqpair->fused_first);
1975 			}
1976 
1977 			rqpair->fused_first = NULL;
1978 		}
1979 	}
1980 
1981 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
1982 		/* Set rqpair->fused_first here so that we know to check that the next request
1983 		 * is a SECOND (and to fail this one if it isn't).
1984 		 */
1985 		rqpair->fused_first = rdma_req;
1986 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
1987 		/* Mark this req failed since it ia SECOND and the last one was not a FIRST. */
1988 		rdma_req->fused_failed = true;
1989 	}
1990 }
1991 
1992 bool
1993 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
1994 			  struct spdk_nvmf_rdma_request *rdma_req)
1995 {
1996 	struct spdk_nvmf_rdma_qpair	*rqpair;
1997 	struct spdk_nvmf_rdma_device	*device;
1998 	struct spdk_nvmf_rdma_poll_group *rgroup;
1999 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
2000 	int				rc;
2001 	struct spdk_nvmf_rdma_recv	*rdma_recv;
2002 	enum spdk_nvmf_rdma_request_state prev_state;
2003 	bool				progress = false;
2004 	int				data_posted;
2005 	uint32_t			num_blocks;
2006 
2007 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2008 	device = rqpair->device;
2009 	rgroup = rqpair->poller->group;
2010 
2011 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
2012 
2013 	/* If the queue pair is in an error state, force the request to the completed state
2014 	 * to release resources. */
2015 	if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2016 		if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) {
2017 			STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link);
2018 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) {
2019 			STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2020 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) {
2021 			STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2022 		}
2023 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2024 	}
2025 
2026 	/* The loop here is to allow for several back-to-back state changes. */
2027 	do {
2028 		prev_state = rdma_req->state;
2029 
2030 		SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state);
2031 
2032 		switch (rdma_req->state) {
2033 		case RDMA_REQUEST_STATE_FREE:
2034 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
2035 			 * to escape this state. */
2036 			break;
2037 		case RDMA_REQUEST_STATE_NEW:
2038 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
2039 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2040 			rdma_recv = rdma_req->recv;
2041 
2042 			/* The first element of the SGL is the NVMe command */
2043 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
2044 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
2045 
2046 			if (rqpair->ibv_state == IBV_QPS_ERR  || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2047 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2048 				break;
2049 			}
2050 
2051 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) {
2052 				rdma_req->req.dif_enabled = true;
2053 			}
2054 
2055 			nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req);
2056 
2057 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2058 			rdma_req->rsp.wr.opcode = IBV_WR_SEND;
2059 			rdma_req->rsp.wr.imm_data = 0;
2060 #endif
2061 
2062 			/* The next state transition depends on the data transfer needs of this request. */
2063 			rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req);
2064 
2065 			if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2066 				rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2067 				rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE;
2068 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2069 				SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req);
2070 				break;
2071 			}
2072 
2073 			/* If no data to transfer, ready to execute. */
2074 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
2075 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2076 				break;
2077 			}
2078 
2079 			rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
2080 			STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link);
2081 			break;
2082 		case RDMA_REQUEST_STATE_NEED_BUFFER:
2083 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
2084 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2085 
2086 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
2087 
2088 			if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) {
2089 				/* This request needs to wait in line to obtain a buffer */
2090 				break;
2091 			}
2092 
2093 			/* Try to get a data buffer */
2094 			rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
2095 			if (rc < 0) {
2096 				STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2097 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2098 				break;
2099 			}
2100 
2101 			if (!rdma_req->req.data) {
2102 				/* No buffers available. */
2103 				rgroup->stat.pending_data_buffer++;
2104 				break;
2105 			}
2106 
2107 			STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2108 
2109 			/* If data is transferring from host to controller and the data didn't
2110 			 * arrive using in capsule data, we need to do a transfer from the host.
2111 			 */
2112 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER &&
2113 			    rdma_req->req.data_from_pool) {
2114 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
2115 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
2116 				break;
2117 			}
2118 
2119 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2120 			break;
2121 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2122 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
2123 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2124 
2125 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
2126 				/* This request needs to wait in line to perform RDMA */
2127 				break;
2128 			}
2129 			if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth
2130 			    || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) {
2131 				/* We can only have so many WRs outstanding. we have to wait until some finish. */
2132 				rqpair->poller->stat.pending_rdma_read++;
2133 				break;
2134 			}
2135 
2136 			/* We have already verified that this request is the head of the queue. */
2137 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
2138 
2139 			rc = request_transfer_in(&rdma_req->req);
2140 			if (!rc) {
2141 				rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
2142 			} else {
2143 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2144 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2145 			}
2146 			break;
2147 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2148 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
2149 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2150 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
2151 			 * to escape this state. */
2152 			break;
2153 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
2154 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
2155 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2156 
2157 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2158 				if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2159 					/* generate DIF for write operation */
2160 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2161 					assert(num_blocks > 0);
2162 
2163 					rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt,
2164 							       num_blocks, &rdma_req->req.dif.dif_ctx);
2165 					if (rc != 0) {
2166 						SPDK_ERRLOG("DIF generation failed\n");
2167 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2168 						spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
2169 						break;
2170 					}
2171 				}
2172 
2173 				assert(rdma_req->req.dif.elba_length >= rdma_req->req.length);
2174 				/* set extended length before IO operation */
2175 				rdma_req->req.length = rdma_req->req.dif.elba_length;
2176 			}
2177 
2178 			if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2179 				if (rdma_req->fused_failed) {
2180 					/* This request failed FUSED semantics.  Fail it immediately, without
2181 					 * even sending it to the target layer.
2182 					 */
2183 					rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2184 					rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2185 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2186 					break;
2187 				}
2188 
2189 				if (rdma_req->fused_pair == NULL ||
2190 				    rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2191 					/* This request is ready to execute, but either we don't know yet if it's
2192 					 * valid - i.e. this is a FIRST but we haven't received the next
2193 					 * request yet or the other request of this fused pair isn't ready to
2194 					 * execute.  So break here and this request will get processed later either
2195 					 * when the other request is ready or we find that this request isn't valid.
2196 					 */
2197 					break;
2198 				}
2199 			}
2200 
2201 			/* If we get to this point, and this request is a fused command, we know that
2202 			 * it is part of valid sequence (FIRST followed by a SECOND) and that both
2203 			 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this
2204 			 * request, and the other request of the fused pair, in the correct order.
2205 			 * Also clear the ->fused_pair pointers on both requests, since after this point
2206 			 * we no longer need to maintain the relationship between these two requests.
2207 			 */
2208 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2209 				assert(rdma_req->fused_pair != NULL);
2210 				assert(rdma_req->fused_pair->fused_pair != NULL);
2211 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2212 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2213 				rdma_req->fused_pair->fused_pair = NULL;
2214 				rdma_req->fused_pair = NULL;
2215 			}
2216 			rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
2217 			spdk_nvmf_request_exec(&rdma_req->req);
2218 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2219 				assert(rdma_req->fused_pair != NULL);
2220 				assert(rdma_req->fused_pair->fused_pair != NULL);
2221 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2222 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2223 				rdma_req->fused_pair->fused_pair = NULL;
2224 				rdma_req->fused_pair = NULL;
2225 			}
2226 			break;
2227 		case RDMA_REQUEST_STATE_EXECUTING:
2228 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
2229 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2230 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
2231 			 * to escape this state. */
2232 			break;
2233 		case RDMA_REQUEST_STATE_EXECUTED:
2234 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
2235 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2236 			if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
2237 			    rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2238 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
2239 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
2240 			} else {
2241 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2242 			}
2243 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2244 				/* restore the original length */
2245 				rdma_req->req.length = rdma_req->req.dif.orig_length;
2246 
2247 				if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2248 					struct spdk_dif_error error_blk;
2249 
2250 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2251 					if (!rdma_req->req.stripped_data) {
2252 						rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2253 								     &rdma_req->req.dif.dif_ctx, &error_blk);
2254 					} else {
2255 						rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov,
2256 									  rdma_req->req.stripped_data->iovcnt,
2257 									  rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2258 									  &rdma_req->req.dif.dif_ctx, &error_blk);
2259 					}
2260 					if (rc) {
2261 						struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
2262 
2263 						SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type,
2264 							    error_blk.err_offset);
2265 						rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2266 						rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type);
2267 						rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2268 						STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2269 					}
2270 				}
2271 			}
2272 			break;
2273 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2274 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
2275 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2276 
2277 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
2278 				/* This request needs to wait in line to perform RDMA */
2279 				break;
2280 			}
2281 			if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
2282 			    rqpair->max_send_depth) {
2283 				/* We can only have so many WRs outstanding. we have to wait until some finish.
2284 				 * +1 since each request has an additional wr in the resp. */
2285 				rqpair->poller->stat.pending_rdma_write++;
2286 				break;
2287 			}
2288 
2289 			/* We have already verified that this request is the head of the queue. */
2290 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
2291 
2292 			/* The data transfer will be kicked off from
2293 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2294 			 */
2295 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2296 			break;
2297 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
2298 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
2299 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2300 			rc = request_transfer_out(&rdma_req->req, &data_posted);
2301 			assert(rc == 0); /* No good way to handle this currently */
2302 			if (rc) {
2303 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2304 			} else {
2305 				rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
2306 						  RDMA_REQUEST_STATE_COMPLETING;
2307 			}
2308 			break;
2309 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2310 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
2311 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2312 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2313 			 * to escape this state. */
2314 			break;
2315 		case RDMA_REQUEST_STATE_COMPLETING:
2316 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
2317 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2318 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2319 			 * to escape this state. */
2320 			break;
2321 		case RDMA_REQUEST_STATE_COMPLETED:
2322 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2323 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2324 
2325 			rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc;
2326 			_nvmf_rdma_request_free(rdma_req, rtransport);
2327 			break;
2328 		case RDMA_REQUEST_NUM_STATES:
2329 		default:
2330 			assert(0);
2331 			break;
2332 		}
2333 
2334 		if (rdma_req->state != prev_state) {
2335 			progress = true;
2336 		}
2337 	} while (rdma_req->state != prev_state);
2338 
2339 	return progress;
2340 }
2341 
2342 /* Public API callbacks begin here */
2343 
2344 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2345 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2346 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2347 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
2348 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2349 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2350 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2351 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095
2352 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32
2353 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false
2354 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false
2355 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100
2356 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1
2357 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false
2358 
2359 static void
2360 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2361 {
2362 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2363 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2364 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2365 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2366 	opts->io_unit_size =		SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2367 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2368 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2369 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2370 	opts->dif_insert_or_strip =	SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP;
2371 	opts->abort_timeout_sec =	SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC;
2372 	opts->transport_specific =      NULL;
2373 }
2374 
2375 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2376 			     spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg);
2377 
2378 static inline bool
2379 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device)
2380 {
2381 	return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD ||
2382 	       device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW;
2383 }
2384 
2385 static int nvmf_rdma_accept(void *ctx);
2386 
2387 static struct spdk_nvmf_transport *
2388 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2389 {
2390 	int rc;
2391 	struct spdk_nvmf_rdma_transport *rtransport;
2392 	struct spdk_nvmf_rdma_device	*device, *tmp;
2393 	struct ibv_context		**contexts;
2394 	uint32_t			i;
2395 	int				flag;
2396 	uint32_t			sge_count;
2397 	uint32_t			min_shared_buffers;
2398 	uint32_t			min_in_capsule_data_size;
2399 	int				max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2400 	pthread_mutexattr_t		attr;
2401 
2402 	rtransport = calloc(1, sizeof(*rtransport));
2403 	if (!rtransport) {
2404 		return NULL;
2405 	}
2406 
2407 	if (pthread_mutexattr_init(&attr)) {
2408 		SPDK_ERRLOG("pthread_mutexattr_init() failed\n");
2409 		free(rtransport);
2410 		return NULL;
2411 	}
2412 
2413 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) {
2414 		SPDK_ERRLOG("pthread_mutexattr_settype() failed\n");
2415 		pthread_mutexattr_destroy(&attr);
2416 		free(rtransport);
2417 		return NULL;
2418 	}
2419 
2420 	if (pthread_mutex_init(&rtransport->lock, &attr)) {
2421 		SPDK_ERRLOG("pthread_mutex_init() failed\n");
2422 		pthread_mutexattr_destroy(&attr);
2423 		free(rtransport);
2424 		return NULL;
2425 	}
2426 
2427 	pthread_mutexattr_destroy(&attr);
2428 
2429 	TAILQ_INIT(&rtransport->devices);
2430 	TAILQ_INIT(&rtransport->ports);
2431 	TAILQ_INIT(&rtransport->poll_groups);
2432 
2433 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2434 	rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
2435 	rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2436 	rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ;
2437 	rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2438 	rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING;
2439 	if (opts->transport_specific != NULL &&
2440 	    spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder,
2441 					    SPDK_COUNTOF(rdma_transport_opts_decoder),
2442 					    &rtransport->rdma_opts)) {
2443 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
2444 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2445 		return NULL;
2446 	}
2447 
2448 	SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n"
2449 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
2450 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2451 		     "  in_capsule_data_size=%d, max_aq_depth=%d,\n"
2452 		     "  num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d,"
2453 		     "  acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n",
2454 		     opts->max_queue_depth,
2455 		     opts->max_io_size,
2456 		     opts->max_qpairs_per_ctrlr - 1,
2457 		     opts->io_unit_size,
2458 		     opts->in_capsule_data_size,
2459 		     opts->max_aq_depth,
2460 		     opts->num_shared_buffers,
2461 		     rtransport->rdma_opts.num_cqe,
2462 		     rtransport->rdma_opts.max_srq_depth,
2463 		     rtransport->rdma_opts.no_srq,
2464 		     rtransport->rdma_opts.acceptor_backlog,
2465 		     rtransport->rdma_opts.no_wr_batching,
2466 		     opts->abort_timeout_sec);
2467 
2468 	/* I/O unit size cannot be larger than max I/O size */
2469 	if (opts->io_unit_size > opts->max_io_size) {
2470 		opts->io_unit_size = opts->max_io_size;
2471 	}
2472 
2473 	if (rtransport->rdma_opts.acceptor_backlog <= 0) {
2474 		SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n",
2475 			    SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG);
2476 		rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2477 	}
2478 
2479 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2480 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2481 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
2482 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2483 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2484 		return NULL;
2485 	}
2486 
2487 	min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
2488 	if (min_shared_buffers > opts->num_shared_buffers) {
2489 		SPDK_ERRLOG("There are not enough buffers to satisfy"
2490 			    "per-poll group caches for each thread. (%" PRIu32 ")"
2491 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2492 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2493 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2494 		return NULL;
2495 	}
2496 
2497 	sge_count = opts->max_io_size / opts->io_unit_size;
2498 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
2499 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2500 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2501 		return NULL;
2502 	}
2503 
2504 	min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES;
2505 	if (opts->in_capsule_data_size < min_in_capsule_data_size) {
2506 		SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n",
2507 			     min_in_capsule_data_size);
2508 		opts->in_capsule_data_size = min_in_capsule_data_size;
2509 	}
2510 
2511 	rtransport->event_channel = rdma_create_event_channel();
2512 	if (rtransport->event_channel == NULL) {
2513 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2514 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2515 		return NULL;
2516 	}
2517 
2518 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2519 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2520 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2521 			    rtransport->event_channel->fd, spdk_strerror(errno));
2522 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2523 		return NULL;
2524 	}
2525 
2526 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
2527 				   opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES,
2528 				   sizeof(struct spdk_nvmf_rdma_request_data),
2529 				   SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2530 				   SPDK_ENV_SOCKET_ID_ANY);
2531 	if (!rtransport->data_wr_pool) {
2532 		SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2533 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2534 		return NULL;
2535 	}
2536 
2537 	contexts = rdma_get_devices(NULL);
2538 	if (contexts == NULL) {
2539 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2540 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2541 		return NULL;
2542 	}
2543 
2544 	i = 0;
2545 	rc = 0;
2546 	while (contexts[i] != NULL) {
2547 		device = calloc(1, sizeof(*device));
2548 		if (!device) {
2549 			SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2550 			rc = -ENOMEM;
2551 			break;
2552 		}
2553 		device->context = contexts[i];
2554 		rc = ibv_query_device(device->context, &device->attr);
2555 		if (rc < 0) {
2556 			SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2557 			free(device);
2558 			break;
2559 
2560 		}
2561 
2562 		max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2563 
2564 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2565 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2566 			SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2567 			SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2568 		}
2569 
2570 		/**
2571 		 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2572 		 * The Soft-RoCE RXE driver does not currently support send with invalidate,
2573 		 * but incorrectly reports that it does. There are changes making their way
2574 		 * through the kernel now that will enable this feature. When they are merged,
2575 		 * we can conditionally enable this feature.
2576 		 *
2577 		 * TODO: enable this for versions of the kernel rxe driver that support it.
2578 		 */
2579 		if (nvmf_rdma_is_rxe_device(device)) {
2580 			device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2581 		}
2582 #endif
2583 
2584 		/* set up device context async ev fd as NON_BLOCKING */
2585 		flag = fcntl(device->context->async_fd, F_GETFL);
2586 		rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2587 		if (rc < 0) {
2588 			SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2589 			free(device);
2590 			break;
2591 		}
2592 
2593 		TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2594 		i++;
2595 
2596 		if (g_nvmf_hooks.get_ibv_pd) {
2597 			device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2598 		} else {
2599 			device->pd = ibv_alloc_pd(device->context);
2600 		}
2601 
2602 		if (!device->pd) {
2603 			SPDK_ERRLOG("Unable to allocate protection domain.\n");
2604 			rc = -ENOMEM;
2605 			break;
2606 		}
2607 
2608 		assert(device->map == NULL);
2609 
2610 		device->map = spdk_rdma_create_mem_map(device->pd, &g_nvmf_hooks, SPDK_RDMA_MEMORY_MAP_ROLE_TARGET);
2611 		if (!device->map) {
2612 			SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2613 			rc = -ENOMEM;
2614 			break;
2615 		}
2616 
2617 		assert(device->map != NULL);
2618 		assert(device->pd != NULL);
2619 	}
2620 	rdma_free_devices(contexts);
2621 
2622 	if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2623 		/* divide and round up. */
2624 		opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2625 
2626 		/* round up to the nearest 4k. */
2627 		opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2628 
2629 		opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2630 		SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2631 			       opts->io_unit_size);
2632 	}
2633 
2634 	if (rc < 0) {
2635 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2636 		return NULL;
2637 	}
2638 
2639 	/* Set up poll descriptor array to monitor events from RDMA and IB
2640 	 * in a single poll syscall
2641 	 */
2642 	rtransport->npoll_fds = i + 1;
2643 	i = 0;
2644 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2645 	if (rtransport->poll_fds == NULL) {
2646 		SPDK_ERRLOG("poll_fds allocation failed\n");
2647 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2648 		return NULL;
2649 	}
2650 
2651 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2652 	rtransport->poll_fds[i++].events = POLLIN;
2653 
2654 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2655 		rtransport->poll_fds[i].fd = device->context->async_fd;
2656 		rtransport->poll_fds[i++].events = POLLIN;
2657 	}
2658 
2659 	rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport,
2660 				    opts->acceptor_poll_rate);
2661 	if (!rtransport->accept_poller) {
2662 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2663 		return NULL;
2664 	}
2665 
2666 	return &rtransport->transport;
2667 }
2668 
2669 static void
2670 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
2671 {
2672 	struct spdk_nvmf_rdma_transport	*rtransport;
2673 	assert(w != NULL);
2674 
2675 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2676 	spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth);
2677 	spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq);
2678 	if (rtransport->rdma_opts.no_srq == true) {
2679 		spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe);
2680 	}
2681 	spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog);
2682 	spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching);
2683 }
2684 
2685 static int
2686 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2687 		  spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
2688 {
2689 	struct spdk_nvmf_rdma_transport	*rtransport;
2690 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
2691 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
2692 
2693 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2694 
2695 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2696 		TAILQ_REMOVE(&rtransport->ports, port, link);
2697 		rdma_destroy_id(port->id);
2698 		free(port);
2699 	}
2700 
2701 	if (rtransport->poll_fds != NULL) {
2702 		free(rtransport->poll_fds);
2703 	}
2704 
2705 	if (rtransport->event_channel != NULL) {
2706 		rdma_destroy_event_channel(rtransport->event_channel);
2707 	}
2708 
2709 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2710 		TAILQ_REMOVE(&rtransport->devices, device, link);
2711 		spdk_rdma_free_mem_map(&device->map);
2712 		if (device->pd) {
2713 			if (!g_nvmf_hooks.get_ibv_pd) {
2714 				ibv_dealloc_pd(device->pd);
2715 			}
2716 		}
2717 		free(device);
2718 	}
2719 
2720 	if (rtransport->data_wr_pool != NULL) {
2721 		if (spdk_mempool_count(rtransport->data_wr_pool) !=
2722 		    (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) {
2723 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2724 				    spdk_mempool_count(rtransport->data_wr_pool),
2725 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2726 		}
2727 	}
2728 
2729 	spdk_mempool_free(rtransport->data_wr_pool);
2730 
2731 	spdk_poller_unregister(&rtransport->accept_poller);
2732 	pthread_mutex_destroy(&rtransport->lock);
2733 	free(rtransport);
2734 
2735 	if (cb_fn) {
2736 		cb_fn(cb_arg);
2737 	}
2738 	return 0;
2739 }
2740 
2741 static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2742 				     struct spdk_nvme_transport_id *trid,
2743 				     bool peer);
2744 
2745 static int
2746 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
2747 		 struct spdk_nvmf_listen_opts *listen_opts)
2748 {
2749 	struct spdk_nvmf_rdma_transport	*rtransport;
2750 	struct spdk_nvmf_rdma_device	*device;
2751 	struct spdk_nvmf_rdma_port	*port;
2752 	struct addrinfo			*res;
2753 	struct addrinfo			hints;
2754 	int				family;
2755 	int				rc;
2756 
2757 	if (!strlen(trid->trsvcid)) {
2758 		SPDK_ERRLOG("Service id is required\n");
2759 		return -EINVAL;
2760 	}
2761 
2762 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2763 	assert(rtransport->event_channel != NULL);
2764 
2765 	pthread_mutex_lock(&rtransport->lock);
2766 	port = calloc(1, sizeof(*port));
2767 	if (!port) {
2768 		SPDK_ERRLOG("Port allocation failed\n");
2769 		pthread_mutex_unlock(&rtransport->lock);
2770 		return -ENOMEM;
2771 	}
2772 
2773 	port->trid = trid;
2774 
2775 	switch (trid->adrfam) {
2776 	case SPDK_NVMF_ADRFAM_IPV4:
2777 		family = AF_INET;
2778 		break;
2779 	case SPDK_NVMF_ADRFAM_IPV6:
2780 		family = AF_INET6;
2781 		break;
2782 	default:
2783 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam);
2784 		free(port);
2785 		pthread_mutex_unlock(&rtransport->lock);
2786 		return -EINVAL;
2787 	}
2788 
2789 	memset(&hints, 0, sizeof(hints));
2790 	hints.ai_family = family;
2791 	hints.ai_flags = AI_NUMERICSERV;
2792 	hints.ai_socktype = SOCK_STREAM;
2793 	hints.ai_protocol = 0;
2794 
2795 	rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res);
2796 	if (rc) {
2797 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
2798 		free(port);
2799 		pthread_mutex_unlock(&rtransport->lock);
2800 		return -EINVAL;
2801 	}
2802 
2803 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
2804 	if (rc < 0) {
2805 		SPDK_ERRLOG("rdma_create_id() failed\n");
2806 		freeaddrinfo(res);
2807 		free(port);
2808 		pthread_mutex_unlock(&rtransport->lock);
2809 		return rc;
2810 	}
2811 
2812 	rc = rdma_bind_addr(port->id, res->ai_addr);
2813 	freeaddrinfo(res);
2814 
2815 	if (rc < 0) {
2816 		SPDK_ERRLOG("rdma_bind_addr() failed\n");
2817 		rdma_destroy_id(port->id);
2818 		free(port);
2819 		pthread_mutex_unlock(&rtransport->lock);
2820 		return rc;
2821 	}
2822 
2823 	if (!port->id->verbs) {
2824 		SPDK_ERRLOG("ibv_context is null\n");
2825 		rdma_destroy_id(port->id);
2826 		free(port);
2827 		pthread_mutex_unlock(&rtransport->lock);
2828 		return -1;
2829 	}
2830 
2831 	rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog);
2832 	if (rc < 0) {
2833 		SPDK_ERRLOG("rdma_listen() failed\n");
2834 		rdma_destroy_id(port->id);
2835 		free(port);
2836 		pthread_mutex_unlock(&rtransport->lock);
2837 		return rc;
2838 	}
2839 
2840 	TAILQ_FOREACH(device, &rtransport->devices, link) {
2841 		if (device->context == port->id->verbs) {
2842 			port->device = device;
2843 			break;
2844 		}
2845 	}
2846 	if (!port->device) {
2847 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
2848 			    port->id->verbs);
2849 		rdma_destroy_id(port->id);
2850 		free(port);
2851 		pthread_mutex_unlock(&rtransport->lock);
2852 		return -EINVAL;
2853 	}
2854 
2855 	SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n",
2856 		       trid->traddr, trid->trsvcid);
2857 
2858 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
2859 	pthread_mutex_unlock(&rtransport->lock);
2860 	return 0;
2861 }
2862 
2863 static void
2864 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
2865 		      const struct spdk_nvme_transport_id *trid)
2866 {
2867 	struct spdk_nvmf_rdma_transport *rtransport;
2868 	struct spdk_nvmf_rdma_port *port, *tmp;
2869 
2870 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2871 
2872 	pthread_mutex_lock(&rtransport->lock);
2873 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
2874 		if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
2875 			TAILQ_REMOVE(&rtransport->ports, port, link);
2876 			rdma_destroy_id(port->id);
2877 			free(port);
2878 			break;
2879 		}
2880 	}
2881 
2882 	pthread_mutex_unlock(&rtransport->lock);
2883 }
2884 
2885 static void
2886 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
2887 				struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
2888 {
2889 	struct spdk_nvmf_request *req, *tmp;
2890 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
2891 	struct spdk_nvmf_rdma_resources *resources;
2892 
2893 	/* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */
2894 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
2895 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2896 			break;
2897 		}
2898 	}
2899 
2900 	/* Then RDMA writes since reads have stronger restrictions than writes */
2901 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
2902 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2903 			break;
2904 		}
2905 	}
2906 
2907 	/* Then we handle request waiting on memory buffers. */
2908 	STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) {
2909 		rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
2910 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2911 			break;
2912 		}
2913 	}
2914 
2915 	resources = rqpair->resources;
2916 	while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
2917 		rdma_req = STAILQ_FIRST(&resources->free_queue);
2918 		STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
2919 		rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
2920 		STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
2921 
2922 		if (rqpair->srq != NULL) {
2923 			rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
2924 			rdma_req->recv->qpair->qd++;
2925 		} else {
2926 			rqpair->qd++;
2927 		}
2928 
2929 		rdma_req->receive_tsc = rdma_req->recv->receive_tsc;
2930 		rdma_req->state = RDMA_REQUEST_STATE_NEW;
2931 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
2932 			break;
2933 		}
2934 	}
2935 	if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) {
2936 		rqpair->poller->stat.pending_free_request++;
2937 	}
2938 }
2939 
2940 static inline bool
2941 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device)
2942 {
2943 	/* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */
2944 	return nvmf_rdma_is_rxe_device(device) ||
2945 	       device->context->device->transport_type == IBV_TRANSPORT_IWARP;
2946 }
2947 
2948 static void
2949 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair)
2950 {
2951 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
2952 			struct spdk_nvmf_rdma_transport, transport);
2953 
2954 	nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
2955 
2956 	/* nvmr_rdma_close_qpair is not called */
2957 	if (!rqpair->to_close) {
2958 		return;
2959 	}
2960 
2961 	/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
2962 	if (rqpair->current_send_depth != 0) {
2963 		return;
2964 	}
2965 
2966 	if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
2967 		return;
2968 	}
2969 
2970 	if (rqpair->srq != NULL && rqpair->last_wqe_reached == false &&
2971 	    !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) {
2972 		return;
2973 	}
2974 
2975 	assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR);
2976 
2977 	nvmf_rdma_qpair_destroy(rqpair);
2978 }
2979 
2980 static int
2981 nvmf_rdma_disconnect(struct rdma_cm_event *evt)
2982 {
2983 	struct spdk_nvmf_qpair		*qpair;
2984 	struct spdk_nvmf_rdma_qpair	*rqpair;
2985 
2986 	if (evt->id == NULL) {
2987 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
2988 		return -1;
2989 	}
2990 
2991 	qpair = evt->id->context;
2992 	if (qpair == NULL) {
2993 		SPDK_ERRLOG("disconnect request: no active connection\n");
2994 		return -1;
2995 	}
2996 
2997 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
2998 
2999 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair);
3000 
3001 	spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3002 
3003 	return 0;
3004 }
3005 
3006 #ifdef DEBUG
3007 static const char *CM_EVENT_STR[] = {
3008 	"RDMA_CM_EVENT_ADDR_RESOLVED",
3009 	"RDMA_CM_EVENT_ADDR_ERROR",
3010 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
3011 	"RDMA_CM_EVENT_ROUTE_ERROR",
3012 	"RDMA_CM_EVENT_CONNECT_REQUEST",
3013 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
3014 	"RDMA_CM_EVENT_CONNECT_ERROR",
3015 	"RDMA_CM_EVENT_UNREACHABLE",
3016 	"RDMA_CM_EVENT_REJECTED",
3017 	"RDMA_CM_EVENT_ESTABLISHED",
3018 	"RDMA_CM_EVENT_DISCONNECTED",
3019 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
3020 	"RDMA_CM_EVENT_MULTICAST_JOIN",
3021 	"RDMA_CM_EVENT_MULTICAST_ERROR",
3022 	"RDMA_CM_EVENT_ADDR_CHANGE",
3023 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
3024 };
3025 #endif /* DEBUG */
3026 
3027 static void
3028 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport,
3029 				    struct spdk_nvmf_rdma_port *port)
3030 {
3031 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3032 	struct spdk_nvmf_rdma_poller		*rpoller;
3033 	struct spdk_nvmf_rdma_qpair		*rqpair;
3034 
3035 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3036 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3037 			RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) {
3038 				if (rqpair->listen_id == port->id) {
3039 					spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3040 				}
3041 			}
3042 		}
3043 	}
3044 }
3045 
3046 static bool
3047 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport,
3048 				      struct rdma_cm_event *event)
3049 {
3050 	const struct spdk_nvme_transport_id	*trid;
3051 	struct spdk_nvmf_rdma_port		*port;
3052 	struct spdk_nvmf_rdma_transport		*rtransport;
3053 	bool					event_acked = false;
3054 
3055 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3056 	TAILQ_FOREACH(port, &rtransport->ports, link) {
3057 		if (port->id == event->id) {
3058 			SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid);
3059 			rdma_ack_cm_event(event);
3060 			event_acked = true;
3061 			trid = port->trid;
3062 			break;
3063 		}
3064 	}
3065 
3066 	if (event_acked) {
3067 		nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
3068 
3069 		nvmf_rdma_stop_listen(transport, trid);
3070 		nvmf_rdma_listen(transport, trid, NULL);
3071 	}
3072 
3073 	return event_acked;
3074 }
3075 
3076 static void
3077 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport,
3078 				       struct rdma_cm_event *event)
3079 {
3080 	struct spdk_nvmf_rdma_port		*port;
3081 	struct spdk_nvmf_rdma_transport		*rtransport;
3082 
3083 	port = event->id->context;
3084 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3085 
3086 	SPDK_NOTICELOG("Port %s:%s is being removed\n", port->trid->traddr, port->trid->trsvcid);
3087 
3088 	nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
3089 
3090 	rdma_ack_cm_event(event);
3091 
3092 	while (spdk_nvmf_transport_stop_listen(transport, port->trid) == 0) {
3093 		;
3094 	}
3095 }
3096 
3097 static void
3098 nvmf_process_cm_event(struct spdk_nvmf_transport *transport)
3099 {
3100 	struct spdk_nvmf_rdma_transport *rtransport;
3101 	struct rdma_cm_event		*event;
3102 	int				rc;
3103 	bool				event_acked;
3104 
3105 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3106 
3107 	if (rtransport->event_channel == NULL) {
3108 		return;
3109 	}
3110 
3111 	while (1) {
3112 		event_acked = false;
3113 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
3114 		if (rc) {
3115 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
3116 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
3117 			}
3118 			break;
3119 		}
3120 
3121 		SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
3122 
3123 		spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
3124 
3125 		switch (event->event) {
3126 		case RDMA_CM_EVENT_ADDR_RESOLVED:
3127 		case RDMA_CM_EVENT_ADDR_ERROR:
3128 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
3129 		case RDMA_CM_EVENT_ROUTE_ERROR:
3130 			/* No action required. The target never attempts to resolve routes. */
3131 			break;
3132 		case RDMA_CM_EVENT_CONNECT_REQUEST:
3133 			rc = nvmf_rdma_connect(transport, event);
3134 			if (rc < 0) {
3135 				SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
3136 				break;
3137 			}
3138 			break;
3139 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
3140 			/* The target never initiates a new connection. So this will not occur. */
3141 			break;
3142 		case RDMA_CM_EVENT_CONNECT_ERROR:
3143 			/* Can this happen? The docs say it can, but not sure what causes it. */
3144 			break;
3145 		case RDMA_CM_EVENT_UNREACHABLE:
3146 		case RDMA_CM_EVENT_REJECTED:
3147 			/* These only occur on the client side. */
3148 			break;
3149 		case RDMA_CM_EVENT_ESTABLISHED:
3150 			/* TODO: Should we be waiting for this event anywhere? */
3151 			break;
3152 		case RDMA_CM_EVENT_DISCONNECTED:
3153 			rc = nvmf_rdma_disconnect(event);
3154 			if (rc < 0) {
3155 				SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3156 				break;
3157 			}
3158 			break;
3159 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
3160 			/* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL
3161 			 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s.
3162 			 * Once these events are sent to SPDK, we should release all IB resources and
3163 			 * don't make attempts to call any ibv_query/modify/create functions. We can only call
3164 			 * ibv_destroy* functions to release user space memory allocated by IB. All kernel
3165 			 * resources are already cleaned. */
3166 			if (event->id->qp) {
3167 				/* If rdma_cm event has a valid `qp` pointer then the event refers to the
3168 				 * corresponding qpair. Otherwise the event refers to a listening device */
3169 				rc = nvmf_rdma_disconnect(event);
3170 				if (rc < 0) {
3171 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3172 					break;
3173 				}
3174 			} else {
3175 				nvmf_rdma_handle_cm_event_port_removal(transport, event);
3176 				event_acked = true;
3177 			}
3178 			break;
3179 		case RDMA_CM_EVENT_MULTICAST_JOIN:
3180 		case RDMA_CM_EVENT_MULTICAST_ERROR:
3181 			/* Multicast is not used */
3182 			break;
3183 		case RDMA_CM_EVENT_ADDR_CHANGE:
3184 			event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event);
3185 			break;
3186 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
3187 			/* For now, do nothing. The target never re-uses queue pairs. */
3188 			break;
3189 		default:
3190 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
3191 			break;
3192 		}
3193 		if (!event_acked) {
3194 			rdma_ack_cm_event(event);
3195 		}
3196 	}
3197 }
3198 
3199 static void
3200 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair)
3201 {
3202 	rqpair->last_wqe_reached = true;
3203 	nvmf_rdma_destroy_drained_qpair(rqpair);
3204 }
3205 
3206 static void
3207 nvmf_rdma_qpair_process_ibv_event(void *ctx)
3208 {
3209 	struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx;
3210 
3211 	if (event_ctx->rqpair) {
3212 		STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3213 		if (event_ctx->cb_fn) {
3214 			event_ctx->cb_fn(event_ctx->rqpair);
3215 		}
3216 	}
3217 	free(event_ctx);
3218 }
3219 
3220 static int
3221 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair,
3222 				 spdk_nvmf_rdma_qpair_ibv_event fn)
3223 {
3224 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx;
3225 	struct spdk_thread *thr = NULL;
3226 	int rc;
3227 
3228 	if (rqpair->qpair.group) {
3229 		thr = rqpair->qpair.group->thread;
3230 	} else if (rqpair->destruct_channel) {
3231 		thr = spdk_io_channel_get_thread(rqpair->destruct_channel);
3232 	}
3233 
3234 	if (!thr) {
3235 		SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair);
3236 		return -EINVAL;
3237 	}
3238 
3239 	ctx = calloc(1, sizeof(*ctx));
3240 	if (!ctx) {
3241 		return -ENOMEM;
3242 	}
3243 
3244 	ctx->rqpair = rqpair;
3245 	ctx->cb_fn = fn;
3246 	STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link);
3247 
3248 	rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx);
3249 	if (rc) {
3250 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3251 		free(ctx);
3252 	}
3253 
3254 	return rc;
3255 }
3256 
3257 static int
3258 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
3259 {
3260 	int				rc;
3261 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
3262 	struct ibv_async_event		event;
3263 
3264 	rc = ibv_get_async_event(device->context, &event);
3265 
3266 	if (rc) {
3267 		/* In non-blocking mode -1 means there are no events available */
3268 		return rc;
3269 	}
3270 
3271 	switch (event.event_type) {
3272 	case IBV_EVENT_QP_FATAL:
3273 		rqpair = event.element.qp->qp_context;
3274 		SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
3275 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3276 				  (uintptr_t)rqpair, event.event_type);
3277 		nvmf_rdma_update_ibv_state(rqpair);
3278 		spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3279 		break;
3280 	case IBV_EVENT_QP_LAST_WQE_REACHED:
3281 		/* This event only occurs for shared receive queues. */
3282 		rqpair = event.element.qp->qp_context;
3283 		SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair);
3284 		rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached);
3285 		if (rc) {
3286 			SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc);
3287 			rqpair->last_wqe_reached = true;
3288 		}
3289 		break;
3290 	case IBV_EVENT_SQ_DRAINED:
3291 		/* This event occurs frequently in both error and non-error states.
3292 		 * Check if the qpair is in an error state before sending a message. */
3293 		rqpair = event.element.qp->qp_context;
3294 		SPDK_DEBUGLOG(rdma, "Last sq drained event received for rqpair %p\n", rqpair);
3295 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3296 				  (uintptr_t)rqpair, event.event_type);
3297 		if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) {
3298 			spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3299 		}
3300 		break;
3301 	case IBV_EVENT_QP_REQ_ERR:
3302 	case IBV_EVENT_QP_ACCESS_ERR:
3303 	case IBV_EVENT_COMM_EST:
3304 	case IBV_EVENT_PATH_MIG:
3305 	case IBV_EVENT_PATH_MIG_ERR:
3306 		SPDK_NOTICELOG("Async event: %s\n",
3307 			       ibv_event_type_str(event.event_type));
3308 		rqpair = event.element.qp->qp_context;
3309 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3310 				  (uintptr_t)rqpair, event.event_type);
3311 		nvmf_rdma_update_ibv_state(rqpair);
3312 		break;
3313 	case IBV_EVENT_CQ_ERR:
3314 	case IBV_EVENT_DEVICE_FATAL:
3315 	case IBV_EVENT_PORT_ACTIVE:
3316 	case IBV_EVENT_PORT_ERR:
3317 	case IBV_EVENT_LID_CHANGE:
3318 	case IBV_EVENT_PKEY_CHANGE:
3319 	case IBV_EVENT_SM_CHANGE:
3320 	case IBV_EVENT_SRQ_ERR:
3321 	case IBV_EVENT_SRQ_LIMIT_REACHED:
3322 	case IBV_EVENT_CLIENT_REREGISTER:
3323 	case IBV_EVENT_GID_CHANGE:
3324 	default:
3325 		SPDK_NOTICELOG("Async event: %s\n",
3326 			       ibv_event_type_str(event.event_type));
3327 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
3328 		break;
3329 	}
3330 	ibv_ack_async_event(&event);
3331 
3332 	return 0;
3333 }
3334 
3335 static void
3336 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events)
3337 {
3338 	int rc = 0;
3339 	uint32_t i = 0;
3340 
3341 	for (i = 0; i < max_events; i++) {
3342 		rc = nvmf_process_ib_event(device);
3343 		if (rc) {
3344 			break;
3345 		}
3346 	}
3347 
3348 	SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i);
3349 }
3350 
3351 static int
3352 nvmf_rdma_accept(void *ctx)
3353 {
3354 	int	nfds, i = 0;
3355 	struct spdk_nvmf_transport *transport = ctx;
3356 	struct spdk_nvmf_rdma_transport *rtransport;
3357 	struct spdk_nvmf_rdma_device *device, *tmp;
3358 	uint32_t count;
3359 
3360 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3361 	count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
3362 
3363 	if (nfds <= 0) {
3364 		return SPDK_POLLER_IDLE;
3365 	}
3366 
3367 	/* The first poll descriptor is RDMA CM event */
3368 	if (rtransport->poll_fds[i++].revents & POLLIN) {
3369 		nvmf_process_cm_event(transport);
3370 		nfds--;
3371 	}
3372 
3373 	if (nfds == 0) {
3374 		return SPDK_POLLER_BUSY;
3375 	}
3376 
3377 	/* Second and subsequent poll descriptors are IB async events */
3378 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
3379 		if (rtransport->poll_fds[i++].revents & POLLIN) {
3380 			nvmf_process_ib_events(device, 32);
3381 			nfds--;
3382 		}
3383 	}
3384 	/* check all flagged fd's have been served */
3385 	assert(nfds == 0);
3386 
3387 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3388 }
3389 
3390 static void
3391 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem,
3392 		     struct spdk_nvmf_ctrlr_data *cdata)
3393 {
3394 	cdata->nvmf_specific.msdbd = SPDK_NVMF_MAX_SGL_ENTRIES;
3395 
3396 	/* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled
3397 	since in-capsule data only works with NVME drives that support SGL memory layout */
3398 	if (transport->opts.dif_insert_or_strip) {
3399 		cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16;
3400 	}
3401 
3402 	if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) {
3403 		SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule"
3404 			     " data is greater than 4KiB.\n");
3405 		SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux "
3406 			     "kernel between versions 5.4 and 5.12 data corruption may occur for "
3407 			     "writes that are not a multiple of 4KiB in size.\n");
3408 	}
3409 }
3410 
3411 static void
3412 nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
3413 		   struct spdk_nvme_transport_id *trid,
3414 		   struct spdk_nvmf_discovery_log_page_entry *entry)
3415 {
3416 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
3417 	entry->adrfam = trid->adrfam;
3418 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
3419 
3420 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
3421 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
3422 
3423 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
3424 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
3425 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
3426 }
3427 
3428 static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
3429 
3430 static struct spdk_nvmf_transport_poll_group *
3431 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport,
3432 			    struct spdk_nvmf_poll_group *group)
3433 {
3434 	struct spdk_nvmf_rdma_transport		*rtransport;
3435 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3436 	struct spdk_nvmf_rdma_poller		*poller;
3437 	struct spdk_nvmf_rdma_device		*device;
3438 	struct spdk_rdma_srq_init_attr		srq_init_attr;
3439 	struct spdk_nvmf_rdma_resource_opts	opts;
3440 	int					num_cqe;
3441 
3442 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3443 
3444 	rgroup = calloc(1, sizeof(*rgroup));
3445 	if (!rgroup) {
3446 		return NULL;
3447 	}
3448 
3449 	TAILQ_INIT(&rgroup->pollers);
3450 
3451 	pthread_mutex_lock(&rtransport->lock);
3452 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3453 		poller = calloc(1, sizeof(*poller));
3454 		if (!poller) {
3455 			SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
3456 			nvmf_rdma_poll_group_destroy(&rgroup->group);
3457 			pthread_mutex_unlock(&rtransport->lock);
3458 			return NULL;
3459 		}
3460 
3461 		poller->device = device;
3462 		poller->group = rgroup;
3463 
3464 		RB_INIT(&poller->qpairs);
3465 		STAILQ_INIT(&poller->qpairs_pending_send);
3466 		STAILQ_INIT(&poller->qpairs_pending_recv);
3467 
3468 		TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
3469 		if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) {
3470 			if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) {
3471 				SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n",
3472 					     rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr);
3473 			}
3474 			poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr);
3475 
3476 			device->num_srq++;
3477 			memset(&srq_init_attr, 0, sizeof(srq_init_attr));
3478 			srq_init_attr.pd = device->pd;
3479 			srq_init_attr.stats = &poller->stat.qp_stats.recv;
3480 			srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth;
3481 			srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
3482 			poller->srq = spdk_rdma_srq_create(&srq_init_attr);
3483 			if (!poller->srq) {
3484 				SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
3485 				nvmf_rdma_poll_group_destroy(&rgroup->group);
3486 				pthread_mutex_unlock(&rtransport->lock);
3487 				return NULL;
3488 			}
3489 
3490 			opts.qp = poller->srq;
3491 			opts.pd = device->pd;
3492 			opts.qpair = NULL;
3493 			opts.shared = true;
3494 			opts.max_queue_depth = poller->max_srq_depth;
3495 			opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
3496 
3497 			poller->resources = nvmf_rdma_resources_create(&opts);
3498 			if (!poller->resources) {
3499 				SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
3500 				nvmf_rdma_poll_group_destroy(&rgroup->group);
3501 				pthread_mutex_unlock(&rtransport->lock);
3502 				return NULL;
3503 			}
3504 		}
3505 
3506 		/*
3507 		 * When using an srq, we can limit the completion queue at startup.
3508 		 * The following formula represents the calculation:
3509 		 * num_cqe = num_recv + num_data_wr + num_send_wr.
3510 		 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
3511 		 */
3512 		if (poller->srq) {
3513 			num_cqe = poller->max_srq_depth * 3;
3514 		} else {
3515 			num_cqe = rtransport->rdma_opts.num_cqe;
3516 		}
3517 
3518 		poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
3519 		if (!poller->cq) {
3520 			SPDK_ERRLOG("Unable to create completion queue\n");
3521 			nvmf_rdma_poll_group_destroy(&rgroup->group);
3522 			pthread_mutex_unlock(&rtransport->lock);
3523 			return NULL;
3524 		}
3525 		poller->num_cqe = num_cqe;
3526 	}
3527 
3528 	TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link);
3529 	if (rtransport->conn_sched.next_admin_pg == NULL) {
3530 		rtransport->conn_sched.next_admin_pg = rgroup;
3531 		rtransport->conn_sched.next_io_pg = rgroup;
3532 	}
3533 
3534 	pthread_mutex_unlock(&rtransport->lock);
3535 	return &rgroup->group;
3536 }
3537 
3538 static struct spdk_nvmf_transport_poll_group *
3539 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
3540 {
3541 	struct spdk_nvmf_rdma_transport *rtransport;
3542 	struct spdk_nvmf_rdma_poll_group **pg;
3543 	struct spdk_nvmf_transport_poll_group *result;
3544 
3545 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
3546 
3547 	pthread_mutex_lock(&rtransport->lock);
3548 
3549 	if (TAILQ_EMPTY(&rtransport->poll_groups)) {
3550 		pthread_mutex_unlock(&rtransport->lock);
3551 		return NULL;
3552 	}
3553 
3554 	if (qpair->qid == 0) {
3555 		pg = &rtransport->conn_sched.next_admin_pg;
3556 	} else {
3557 		pg = &rtransport->conn_sched.next_io_pg;
3558 	}
3559 
3560 	assert(*pg != NULL);
3561 
3562 	result = &(*pg)->group;
3563 
3564 	*pg = TAILQ_NEXT(*pg, link);
3565 	if (*pg == NULL) {
3566 		*pg = TAILQ_FIRST(&rtransport->poll_groups);
3567 	}
3568 
3569 	pthread_mutex_unlock(&rtransport->lock);
3570 
3571 	return result;
3572 }
3573 
3574 static void
3575 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
3576 {
3577 	struct spdk_nvmf_rdma_poll_group	*rgroup, *next_rgroup;
3578 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
3579 	struct spdk_nvmf_rdma_qpair		*qpair, *tmp_qpair;
3580 	struct spdk_nvmf_rdma_transport		*rtransport;
3581 
3582 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3583 	if (!rgroup) {
3584 		return;
3585 	}
3586 
3587 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
3588 		TAILQ_REMOVE(&rgroup->pollers, poller, link);
3589 
3590 		RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) {
3591 			nvmf_rdma_qpair_destroy(qpair);
3592 		}
3593 
3594 		if (poller->srq) {
3595 			if (poller->resources) {
3596 				nvmf_rdma_resources_destroy(poller->resources);
3597 			}
3598 			spdk_rdma_srq_destroy(poller->srq);
3599 			SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq);
3600 		}
3601 
3602 		if (poller->cq) {
3603 			ibv_destroy_cq(poller->cq);
3604 		}
3605 
3606 		free(poller);
3607 	}
3608 
3609 	if (rgroup->group.transport == NULL) {
3610 		/* Transport can be NULL when nvmf_rdma_poll_group_create()
3611 		 * calls this function directly in a failure path. */
3612 		free(rgroup);
3613 		return;
3614 	}
3615 
3616 	rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport);
3617 
3618 	pthread_mutex_lock(&rtransport->lock);
3619 	next_rgroup = TAILQ_NEXT(rgroup, link);
3620 	TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link);
3621 	if (next_rgroup == NULL) {
3622 		next_rgroup = TAILQ_FIRST(&rtransport->poll_groups);
3623 	}
3624 	if (rtransport->conn_sched.next_admin_pg == rgroup) {
3625 		rtransport->conn_sched.next_admin_pg = next_rgroup;
3626 	}
3627 	if (rtransport->conn_sched.next_io_pg == rgroup) {
3628 		rtransport->conn_sched.next_io_pg = next_rgroup;
3629 	}
3630 	pthread_mutex_unlock(&rtransport->lock);
3631 
3632 	free(rgroup);
3633 }
3634 
3635 static void
3636 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
3637 {
3638 	if (rqpair->cm_id != NULL) {
3639 		nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
3640 	}
3641 }
3642 
3643 static int
3644 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3645 			 struct spdk_nvmf_qpair *qpair)
3646 {
3647 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3648 	struct spdk_nvmf_rdma_qpair		*rqpair;
3649 	struct spdk_nvmf_rdma_device		*device;
3650 	struct spdk_nvmf_rdma_poller		*poller;
3651 	int					rc;
3652 
3653 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3654 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3655 
3656 	device = rqpair->device;
3657 
3658 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
3659 		if (poller->device == device) {
3660 			break;
3661 		}
3662 	}
3663 
3664 	if (!poller) {
3665 		SPDK_ERRLOG("No poller found for device.\n");
3666 		return -1;
3667 	}
3668 
3669 	rqpair->poller = poller;
3670 	rqpair->srq = rqpair->poller->srq;
3671 
3672 	rc = nvmf_rdma_qpair_initialize(qpair);
3673 	if (rc < 0) {
3674 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
3675 		rqpair->poller = NULL;
3676 		rqpair->srq = NULL;
3677 		return -1;
3678 	}
3679 
3680 	RB_INSERT(qpairs_tree, &poller->qpairs, rqpair);
3681 
3682 	rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
3683 	if (rc) {
3684 		/* Try to reject, but we probably can't */
3685 		nvmf_rdma_qpair_reject_connection(rqpair);
3686 		return -1;
3687 	}
3688 
3689 	nvmf_rdma_update_ibv_state(rqpair);
3690 
3691 	return 0;
3692 }
3693 
3694 static int
3695 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3696 			    struct spdk_nvmf_qpair *qpair)
3697 {
3698 	struct spdk_nvmf_rdma_qpair		*rqpair;
3699 
3700 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3701 	assert(group->transport->tgt != NULL);
3702 
3703 	rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt);
3704 
3705 	if (!rqpair->destruct_channel) {
3706 		SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair);
3707 		return 0;
3708 	}
3709 
3710 	/* Sanity check that we get io_channel on the correct thread */
3711 	if (qpair->group) {
3712 		assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel));
3713 	}
3714 
3715 	return 0;
3716 }
3717 
3718 static int
3719 nvmf_rdma_request_free(struct spdk_nvmf_request *req)
3720 {
3721 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3722 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3723 			struct spdk_nvmf_rdma_transport, transport);
3724 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
3725 					      struct spdk_nvmf_rdma_qpair, qpair);
3726 
3727 	/*
3728 	 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request
3729 	 * needs to be returned to the shared receive queue or the poll group will eventually be
3730 	 * starved of RECV structures.
3731 	 */
3732 	if (rqpair->srq && rdma_req->recv) {
3733 		int rc;
3734 		struct ibv_recv_wr *bad_recv_wr;
3735 
3736 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr);
3737 		rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
3738 		if (rc) {
3739 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
3740 		}
3741 	}
3742 
3743 	_nvmf_rdma_request_free(rdma_req, rtransport);
3744 	return 0;
3745 }
3746 
3747 static int
3748 nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
3749 {
3750 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3751 			struct spdk_nvmf_rdma_transport, transport);
3752 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
3753 			struct spdk_nvmf_rdma_request, req);
3754 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
3755 			struct spdk_nvmf_rdma_qpair, qpair);
3756 
3757 	if (rqpair->ibv_state != IBV_QPS_ERR) {
3758 		/* The connection is alive, so process the request as normal */
3759 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
3760 	} else {
3761 		/* The connection is dead. Move the request directly to the completed state. */
3762 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3763 	}
3764 
3765 	nvmf_rdma_request_process(rtransport, rdma_req);
3766 
3767 	return 0;
3768 }
3769 
3770 static void
3771 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair,
3772 		      spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3773 {
3774 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3775 
3776 	rqpair->to_close = true;
3777 
3778 	/* This happens only when the qpair is disconnected before
3779 	 * it is added to the poll group. Since there is no poll group,
3780 	 * the RDMA qp has not been initialized yet and the RDMA CM
3781 	 * event has not yet been acknowledged, so we need to reject it.
3782 	 */
3783 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
3784 		nvmf_rdma_qpair_reject_connection(rqpair);
3785 		nvmf_rdma_qpair_destroy(rqpair);
3786 		return;
3787 	}
3788 
3789 	if (rqpair->rdma_qp) {
3790 		spdk_rdma_qp_disconnect(rqpair->rdma_qp);
3791 	}
3792 
3793 	nvmf_rdma_destroy_drained_qpair(rqpair);
3794 
3795 	if (cb_fn) {
3796 		cb_fn(cb_arg);
3797 	}
3798 }
3799 
3800 static struct spdk_nvmf_rdma_qpair *
3801 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
3802 {
3803 	struct spdk_nvmf_rdma_qpair find;
3804 
3805 	find.qp_num = wc->qp_num;
3806 
3807 	return RB_FIND(qpairs_tree, &rpoller->qpairs, &find);
3808 }
3809 
3810 #ifdef DEBUG
3811 static int
3812 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
3813 {
3814 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
3815 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
3816 }
3817 #endif
3818 
3819 static void
3820 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr,
3821 			   int rc)
3822 {
3823 	struct spdk_nvmf_rdma_recv	*rdma_recv;
3824 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
3825 
3826 	SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc);
3827 	while (bad_recv_wr != NULL) {
3828 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id;
3829 		rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
3830 
3831 		rdma_recv->qpair->current_recv_depth++;
3832 		bad_recv_wr = bad_recv_wr->next;
3833 		SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc);
3834 		spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair, NULL, NULL);
3835 	}
3836 }
3837 
3838 static void
3839 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc)
3840 {
3841 	SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc);
3842 	while (bad_recv_wr != NULL) {
3843 		bad_recv_wr = bad_recv_wr->next;
3844 		rqpair->current_recv_depth++;
3845 	}
3846 	spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3847 }
3848 
3849 static void
3850 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
3851 		     struct spdk_nvmf_rdma_poller *rpoller)
3852 {
3853 	struct spdk_nvmf_rdma_qpair	*rqpair;
3854 	struct ibv_recv_wr		*bad_recv_wr;
3855 	int				rc;
3856 
3857 	if (rpoller->srq) {
3858 		rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr);
3859 		if (rc) {
3860 			_poller_reset_failed_recvs(rpoller, bad_recv_wr, rc);
3861 		}
3862 	} else {
3863 		while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) {
3864 			rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv);
3865 			rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
3866 			if (rc) {
3867 				_qp_reset_failed_recvs(rqpair, bad_recv_wr, rc);
3868 			}
3869 			STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link);
3870 		}
3871 	}
3872 }
3873 
3874 static void
3875 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport,
3876 		       struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc)
3877 {
3878 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
3879 	struct spdk_nvmf_rdma_request	*prev_rdma_req = NULL, *cur_rdma_req = NULL;
3880 
3881 	SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc);
3882 	for (; bad_wr != NULL; bad_wr = bad_wr->next) {
3883 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id;
3884 		assert(rqpair->current_send_depth > 0);
3885 		rqpair->current_send_depth--;
3886 		switch (bad_rdma_wr->type) {
3887 		case RDMA_WR_TYPE_DATA:
3888 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
3889 			if (bad_wr->opcode == IBV_WR_RDMA_READ) {
3890 				assert(rqpair->current_read_depth > 0);
3891 				rqpair->current_read_depth--;
3892 			}
3893 			break;
3894 		case RDMA_WR_TYPE_SEND:
3895 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
3896 			break;
3897 		default:
3898 			SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair);
3899 			prev_rdma_req = cur_rdma_req;
3900 			continue;
3901 		}
3902 
3903 		if (prev_rdma_req == cur_rdma_req) {
3904 			/* this request was handled by an earlier wr. i.e. we were performing an nvme read. */
3905 			/* We only have to check against prev_wr since each requests wrs are contiguous in this list. */
3906 			continue;
3907 		}
3908 
3909 		switch (cur_rdma_req->state) {
3910 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3911 			cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
3912 			cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
3913 			break;
3914 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3915 		case RDMA_REQUEST_STATE_COMPLETING:
3916 			cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3917 			break;
3918 		default:
3919 			SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n",
3920 				    cur_rdma_req->state, rqpair);
3921 			continue;
3922 		}
3923 
3924 		nvmf_rdma_request_process(rtransport, cur_rdma_req);
3925 		prev_rdma_req = cur_rdma_req;
3926 	}
3927 
3928 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
3929 		/* Disconnect the connection. */
3930 		spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3931 	}
3932 
3933 }
3934 
3935 static void
3936 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
3937 		     struct spdk_nvmf_rdma_poller *rpoller)
3938 {
3939 	struct spdk_nvmf_rdma_qpair	*rqpair;
3940 	struct ibv_send_wr		*bad_wr = NULL;
3941 	int				rc;
3942 
3943 	while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) {
3944 		rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send);
3945 		rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr);
3946 
3947 		/* bad wr always points to the first wr that failed. */
3948 		if (rc) {
3949 			_qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc);
3950 		}
3951 		STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link);
3952 	}
3953 }
3954 
3955 static const char *
3956 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type)
3957 {
3958 	switch (wr_type) {
3959 	case RDMA_WR_TYPE_RECV:
3960 		return "RECV";
3961 	case RDMA_WR_TYPE_SEND:
3962 		return "SEND";
3963 	case RDMA_WR_TYPE_DATA:
3964 		return "DATA";
3965 	default:
3966 		SPDK_ERRLOG("Unknown WR type %d\n", wr_type);
3967 		SPDK_UNREACHABLE();
3968 	}
3969 }
3970 
3971 static inline void
3972 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc)
3973 {
3974 	enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type;
3975 
3976 	if (wc->status == IBV_WC_WR_FLUSH_ERR) {
3977 		/* If qpair is in ERR state, we will receive completions for all posted and not completed
3978 		 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
3979 		SPDK_DEBUGLOG(rdma,
3980 			      "Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n",
3981 			      rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id,
3982 			      nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
3983 	} else {
3984 		SPDK_ERRLOG("Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n",
3985 			    rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id,
3986 			    nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
3987 	}
3988 }
3989 
3990 static int
3991 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
3992 		      struct spdk_nvmf_rdma_poller *rpoller)
3993 {
3994 	struct ibv_wc wc[32];
3995 	struct spdk_nvmf_rdma_wr	*rdma_wr;
3996 	struct spdk_nvmf_rdma_request	*rdma_req;
3997 	struct spdk_nvmf_rdma_recv	*rdma_recv;
3998 	struct spdk_nvmf_rdma_qpair	*rqpair;
3999 	int reaped, i;
4000 	int count = 0;
4001 	bool error = false;
4002 	uint64_t poll_tsc = spdk_get_ticks();
4003 
4004 	/* Poll for completing operations. */
4005 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
4006 	if (reaped < 0) {
4007 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
4008 			    errno, spdk_strerror(errno));
4009 		return -1;
4010 	} else if (reaped == 0) {
4011 		rpoller->stat.idle_polls++;
4012 	}
4013 
4014 	rpoller->stat.polls++;
4015 	rpoller->stat.completions += reaped;
4016 
4017 	for (i = 0; i < reaped; i++) {
4018 
4019 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
4020 
4021 		switch (rdma_wr->type) {
4022 		case RDMA_WR_TYPE_SEND:
4023 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
4024 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4025 
4026 			if (!wc[i].status) {
4027 				count++;
4028 				assert(wc[i].opcode == IBV_WC_SEND);
4029 				assert(nvmf_rdma_req_is_completing(rdma_req));
4030 			}
4031 
4032 			rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4033 			/* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */
4034 			rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1;
4035 			rdma_req->num_outstanding_data_wr = 0;
4036 
4037 			nvmf_rdma_request_process(rtransport, rdma_req);
4038 			break;
4039 		case RDMA_WR_TYPE_RECV:
4040 			/* rdma_recv->qpair will be invalid if using an SRQ.  In that case we have to get the qpair from the wc. */
4041 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4042 			if (rpoller->srq != NULL) {
4043 				rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
4044 				/* It is possible that there are still some completions for destroyed QP
4045 				 * associated with SRQ. We just ignore these late completions and re-post
4046 				 * receive WRs back to SRQ.
4047 				 */
4048 				if (spdk_unlikely(NULL == rdma_recv->qpair)) {
4049 					struct ibv_recv_wr *bad_wr;
4050 					int rc;
4051 
4052 					rdma_recv->wr.next = NULL;
4053 					spdk_rdma_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr);
4054 					rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_wr);
4055 					if (rc) {
4056 						SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc);
4057 					}
4058 					continue;
4059 				}
4060 			}
4061 			rqpair = rdma_recv->qpair;
4062 
4063 			assert(rqpair != NULL);
4064 			if (!wc[i].status) {
4065 				assert(wc[i].opcode == IBV_WC_RECV);
4066 				if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
4067 					spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4068 					break;
4069 				}
4070 			}
4071 
4072 			rdma_recv->wr.next = NULL;
4073 			rqpair->current_recv_depth++;
4074 			rdma_recv->receive_tsc = poll_tsc;
4075 			rpoller->stat.requests++;
4076 			STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link);
4077 			break;
4078 		case RDMA_WR_TYPE_DATA:
4079 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
4080 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4081 
4082 			assert(rdma_req->num_outstanding_data_wr > 0);
4083 
4084 			rqpair->current_send_depth--;
4085 			rdma_req->num_outstanding_data_wr--;
4086 			if (!wc[i].status) {
4087 				assert(wc[i].opcode == IBV_WC_RDMA_READ);
4088 				rqpair->current_read_depth--;
4089 				/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
4090 				if (rdma_req->num_outstanding_data_wr == 0) {
4091 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
4092 					nvmf_rdma_request_process(rtransport, rdma_req);
4093 				}
4094 			} else {
4095 				/* If the data transfer fails still force the queue into the error state,
4096 				 * if we were performing an RDMA_READ, we need to force the request into a
4097 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
4098 				 * case, we should wait for the SEND to complete. */
4099 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
4100 					rqpair->current_read_depth--;
4101 					if (rdma_req->num_outstanding_data_wr == 0) {
4102 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4103 					}
4104 				}
4105 			}
4106 			break;
4107 		default:
4108 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
4109 			continue;
4110 		}
4111 
4112 		/* Handle error conditions */
4113 		if (wc[i].status) {
4114 			nvmf_rdma_update_ibv_state(rqpair);
4115 			nvmf_rdma_log_wc_status(rqpair, &wc[i]);
4116 
4117 			error = true;
4118 
4119 			if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
4120 				/* Disconnect the connection. */
4121 				spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4122 			} else {
4123 				nvmf_rdma_destroy_drained_qpair(rqpair);
4124 			}
4125 			continue;
4126 		}
4127 
4128 		nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
4129 
4130 		if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
4131 			nvmf_rdma_destroy_drained_qpair(rqpair);
4132 		}
4133 	}
4134 
4135 	if (error == true) {
4136 		return -1;
4137 	}
4138 
4139 	/* submit outstanding work requests. */
4140 	_poller_submit_recvs(rtransport, rpoller);
4141 	_poller_submit_sends(rtransport, rpoller);
4142 
4143 	return count;
4144 }
4145 
4146 static int
4147 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
4148 {
4149 	struct spdk_nvmf_rdma_transport *rtransport;
4150 	struct spdk_nvmf_rdma_poll_group *rgroup;
4151 	struct spdk_nvmf_rdma_poller	*rpoller;
4152 	int				count, rc;
4153 
4154 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
4155 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4156 
4157 	count = 0;
4158 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
4159 		rc = nvmf_rdma_poller_poll(rtransport, rpoller);
4160 		if (rc < 0) {
4161 			return rc;
4162 		}
4163 		count += rc;
4164 	}
4165 
4166 	return count;
4167 }
4168 
4169 static int
4170 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
4171 			  struct spdk_nvme_transport_id *trid,
4172 			  bool peer)
4173 {
4174 	struct sockaddr *saddr;
4175 	uint16_t port;
4176 
4177 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA);
4178 
4179 	if (peer) {
4180 		saddr = rdma_get_peer_addr(id);
4181 	} else {
4182 		saddr = rdma_get_local_addr(id);
4183 	}
4184 	switch (saddr->sa_family) {
4185 	case AF_INET: {
4186 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
4187 
4188 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
4189 		inet_ntop(AF_INET, &saddr_in->sin_addr,
4190 			  trid->traddr, sizeof(trid->traddr));
4191 		if (peer) {
4192 			port = ntohs(rdma_get_dst_port(id));
4193 		} else {
4194 			port = ntohs(rdma_get_src_port(id));
4195 		}
4196 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4197 		break;
4198 	}
4199 	case AF_INET6: {
4200 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
4201 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
4202 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
4203 			  trid->traddr, sizeof(trid->traddr));
4204 		if (peer) {
4205 			port = ntohs(rdma_get_dst_port(id));
4206 		} else {
4207 			port = ntohs(rdma_get_src_port(id));
4208 		}
4209 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4210 		break;
4211 	}
4212 	default:
4213 		return -1;
4214 
4215 	}
4216 
4217 	return 0;
4218 }
4219 
4220 static int
4221 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
4222 			      struct spdk_nvme_transport_id *trid)
4223 {
4224 	struct spdk_nvmf_rdma_qpair	*rqpair;
4225 
4226 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4227 
4228 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
4229 }
4230 
4231 static int
4232 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
4233 			       struct spdk_nvme_transport_id *trid)
4234 {
4235 	struct spdk_nvmf_rdma_qpair	*rqpair;
4236 
4237 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4238 
4239 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
4240 }
4241 
4242 static int
4243 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
4244 				struct spdk_nvme_transport_id *trid)
4245 {
4246 	struct spdk_nvmf_rdma_qpair	*rqpair;
4247 
4248 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4249 
4250 	return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
4251 }
4252 
4253 void
4254 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
4255 {
4256 	g_nvmf_hooks = *hooks;
4257 }
4258 
4259 static void
4260 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req,
4261 				   struct spdk_nvmf_rdma_request *rdma_req_to_abort)
4262 {
4263 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
4264 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
4265 
4266 	rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
4267 
4268 	req->rsp->nvme_cpl.cdw0 &= ~1U;	/* Command was successfully aborted. */
4269 }
4270 
4271 static int
4272 _nvmf_rdma_qpair_abort_request(void *ctx)
4273 {
4274 	struct spdk_nvmf_request *req = ctx;
4275 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF(
4276 				req->req_to_abort, struct spdk_nvmf_rdma_request, req);
4277 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
4278 					      struct spdk_nvmf_rdma_qpair, qpair);
4279 	int rc;
4280 
4281 	spdk_poller_unregister(&req->poller);
4282 
4283 	switch (rdma_req_to_abort->state) {
4284 	case RDMA_REQUEST_STATE_EXECUTING:
4285 		rc = nvmf_ctrlr_abort_request(req);
4286 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
4287 			return SPDK_POLLER_BUSY;
4288 		}
4289 		break;
4290 
4291 	case RDMA_REQUEST_STATE_NEED_BUFFER:
4292 		STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue,
4293 			      &rdma_req_to_abort->req, spdk_nvmf_request, buf_link);
4294 
4295 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4296 		break;
4297 
4298 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
4299 		STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort,
4300 			      spdk_nvmf_rdma_request, state_link);
4301 
4302 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4303 		break;
4304 
4305 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
4306 		STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort,
4307 			      spdk_nvmf_rdma_request, state_link);
4308 
4309 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4310 		break;
4311 
4312 	case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
4313 		if (spdk_get_ticks() < req->timeout_tsc) {
4314 			req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0);
4315 			return SPDK_POLLER_BUSY;
4316 		}
4317 		break;
4318 
4319 	default:
4320 		break;
4321 	}
4322 
4323 	spdk_nvmf_request_complete(req);
4324 	return SPDK_POLLER_BUSY;
4325 }
4326 
4327 static void
4328 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
4329 			      struct spdk_nvmf_request *req)
4330 {
4331 	struct spdk_nvmf_rdma_qpair *rqpair;
4332 	struct spdk_nvmf_rdma_transport *rtransport;
4333 	struct spdk_nvmf_transport *transport;
4334 	uint16_t cid;
4335 	uint32_t i, max_req_count;
4336 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req;
4337 
4338 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4339 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
4340 	transport = &rtransport->transport;
4341 
4342 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
4343 	max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth;
4344 
4345 	for (i = 0; i < max_req_count; i++) {
4346 		rdma_req = &rqpair->resources->reqs[i];
4347 		/* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair
4348 		 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to
4349 		 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */
4350 		if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid &&
4351 		    rdma_req->req.qpair == qpair) {
4352 			rdma_req_to_abort = rdma_req;
4353 			break;
4354 		}
4355 	}
4356 
4357 	if (rdma_req_to_abort == NULL) {
4358 		spdk_nvmf_request_complete(req);
4359 		return;
4360 	}
4361 
4362 	req->req_to_abort = &rdma_req_to_abort->req;
4363 	req->timeout_tsc = spdk_get_ticks() +
4364 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
4365 	req->poller = NULL;
4366 
4367 	_nvmf_rdma_qpair_abort_request(req);
4368 }
4369 
4370 static void
4371 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group,
4372 			       struct spdk_json_write_ctx *w)
4373 {
4374 	struct spdk_nvmf_rdma_poll_group *rgroup;
4375 	struct spdk_nvmf_rdma_poller *rpoller;
4376 
4377 	assert(w != NULL);
4378 
4379 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4380 
4381 	spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer);
4382 
4383 	spdk_json_write_named_array_begin(w, "devices");
4384 
4385 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
4386 		spdk_json_write_object_begin(w);
4387 		spdk_json_write_named_string(w, "name",
4388 					     ibv_get_device_name(rpoller->device->context->device));
4389 		spdk_json_write_named_uint64(w, "polls",
4390 					     rpoller->stat.polls);
4391 		spdk_json_write_named_uint64(w, "idle_polls",
4392 					     rpoller->stat.idle_polls);
4393 		spdk_json_write_named_uint64(w, "completions",
4394 					     rpoller->stat.completions);
4395 		spdk_json_write_named_uint64(w, "requests",
4396 					     rpoller->stat.requests);
4397 		spdk_json_write_named_uint64(w, "request_latency",
4398 					     rpoller->stat.request_latency);
4399 		spdk_json_write_named_uint64(w, "pending_free_request",
4400 					     rpoller->stat.pending_free_request);
4401 		spdk_json_write_named_uint64(w, "pending_rdma_read",
4402 					     rpoller->stat.pending_rdma_read);
4403 		spdk_json_write_named_uint64(w, "pending_rdma_write",
4404 					     rpoller->stat.pending_rdma_write);
4405 		spdk_json_write_named_uint64(w, "total_send_wrs",
4406 					     rpoller->stat.qp_stats.send.num_submitted_wrs);
4407 		spdk_json_write_named_uint64(w, "send_doorbell_updates",
4408 					     rpoller->stat.qp_stats.send.doorbell_updates);
4409 		spdk_json_write_named_uint64(w, "total_recv_wrs",
4410 					     rpoller->stat.qp_stats.recv.num_submitted_wrs);
4411 		spdk_json_write_named_uint64(w, "recv_doorbell_updates",
4412 					     rpoller->stat.qp_stats.recv.doorbell_updates);
4413 		spdk_json_write_object_end(w);
4414 	}
4415 
4416 	spdk_json_write_array_end(w);
4417 }
4418 
4419 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
4420 	.name = "RDMA",
4421 	.type = SPDK_NVME_TRANSPORT_RDMA,
4422 	.opts_init = nvmf_rdma_opts_init,
4423 	.create = nvmf_rdma_create,
4424 	.dump_opts = nvmf_rdma_dump_opts,
4425 	.destroy = nvmf_rdma_destroy,
4426 
4427 	.listen = nvmf_rdma_listen,
4428 	.stop_listen = nvmf_rdma_stop_listen,
4429 	.cdata_init = nvmf_rdma_cdata_init,
4430 
4431 	.listener_discover = nvmf_rdma_discover,
4432 
4433 	.poll_group_create = nvmf_rdma_poll_group_create,
4434 	.get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group,
4435 	.poll_group_destroy = nvmf_rdma_poll_group_destroy,
4436 	.poll_group_add = nvmf_rdma_poll_group_add,
4437 	.poll_group_remove = nvmf_rdma_poll_group_remove,
4438 	.poll_group_poll = nvmf_rdma_poll_group_poll,
4439 
4440 	.req_free = nvmf_rdma_request_free,
4441 	.req_complete = nvmf_rdma_request_complete,
4442 
4443 	.qpair_fini = nvmf_rdma_close_qpair,
4444 	.qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid,
4445 	.qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid,
4446 	.qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid,
4447 	.qpair_abort_request = nvmf_rdma_qpair_abort_request,
4448 
4449 	.poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat,
4450 };
4451 
4452 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma);
4453 SPDK_LOG_REGISTER_COMPONENT(rdma)
4454