1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (c) Intel Corporation. All rights reserved. 3 * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk/stdinc.h" 8 9 #include "spdk/config.h" 10 #include "spdk/thread.h" 11 #include "spdk/likely.h" 12 #include "spdk/nvmf_transport.h" 13 #include "spdk/string.h" 14 #include "spdk/trace.h" 15 #include "spdk/tree.h" 16 #include "spdk/util.h" 17 18 #include "spdk_internal/assert.h" 19 #include "spdk/log.h" 20 #include "spdk_internal/rdma.h" 21 22 #include "nvmf_internal.h" 23 #include "transport.h" 24 25 #include "spdk_internal/trace_defs.h" 26 27 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {}; 28 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma; 29 30 /* 31 RDMA Connection Resource Defaults 32 */ 33 #define NVMF_DEFAULT_TX_SGE SPDK_NVMF_MAX_SGL_ENTRIES 34 #define NVMF_DEFAULT_RSP_SGE 1 35 #define NVMF_DEFAULT_RX_SGE 2 36 37 /* The RDMA completion queue size */ 38 #define DEFAULT_NVMF_RDMA_CQ_SIZE 4096 39 #define MAX_WR_PER_QP(queue_depth) (queue_depth * 3 + 2) 40 41 static int g_spdk_nvmf_ibv_query_mask = 42 IBV_QP_STATE | 43 IBV_QP_PKEY_INDEX | 44 IBV_QP_PORT | 45 IBV_QP_ACCESS_FLAGS | 46 IBV_QP_AV | 47 IBV_QP_PATH_MTU | 48 IBV_QP_DEST_QPN | 49 IBV_QP_RQ_PSN | 50 IBV_QP_MAX_DEST_RD_ATOMIC | 51 IBV_QP_MIN_RNR_TIMER | 52 IBV_QP_SQ_PSN | 53 IBV_QP_TIMEOUT | 54 IBV_QP_RETRY_CNT | 55 IBV_QP_RNR_RETRY | 56 IBV_QP_MAX_QP_RD_ATOMIC; 57 58 enum spdk_nvmf_rdma_request_state { 59 /* The request is not currently in use */ 60 RDMA_REQUEST_STATE_FREE = 0, 61 62 /* Initial state when request first received */ 63 RDMA_REQUEST_STATE_NEW, 64 65 /* The request is queued until a data buffer is available. */ 66 RDMA_REQUEST_STATE_NEED_BUFFER, 67 68 /* The request is waiting on RDMA queue depth availability 69 * to transfer data from the host to the controller. 70 */ 71 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 72 73 /* The request is currently transferring data from the host to the controller. */ 74 RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 75 76 /* The request is ready to execute at the block device */ 77 RDMA_REQUEST_STATE_READY_TO_EXECUTE, 78 79 /* The request is currently executing at the block device */ 80 RDMA_REQUEST_STATE_EXECUTING, 81 82 /* The request finished executing at the block device */ 83 RDMA_REQUEST_STATE_EXECUTED, 84 85 /* The request is waiting on RDMA queue depth availability 86 * to transfer data from the controller to the host. 87 */ 88 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 89 90 /* The request is ready to send a completion */ 91 RDMA_REQUEST_STATE_READY_TO_COMPLETE, 92 93 /* The request is currently transferring data from the controller to the host. */ 94 RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 95 96 /* The request currently has an outstanding completion without an 97 * associated data transfer. 98 */ 99 RDMA_REQUEST_STATE_COMPLETING, 100 101 /* The request completed and can be marked free. */ 102 RDMA_REQUEST_STATE_COMPLETED, 103 104 /* Terminator */ 105 RDMA_REQUEST_NUM_STATES, 106 }; 107 108 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA) 109 { 110 spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r'); 111 spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW, 112 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 113 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 114 spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 115 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 116 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 117 spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H", 118 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 119 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 120 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 121 spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C", 122 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 123 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 124 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 125 spdk_trace_register_description("RDMA_REQ_TX_H2C", 126 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 127 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 128 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 129 spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE", 130 TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 131 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 132 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 133 spdk_trace_register_description("RDMA_REQ_EXECUTING", 134 TRACE_RDMA_REQUEST_STATE_EXECUTING, 135 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 136 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 137 spdk_trace_register_description("RDMA_REQ_EXECUTED", 138 TRACE_RDMA_REQUEST_STATE_EXECUTED, 139 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 140 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 141 spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL", 142 TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 143 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 144 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 145 spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H", 146 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 147 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 148 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 149 spdk_trace_register_description("RDMA_REQ_COMPLETING", 150 TRACE_RDMA_REQUEST_STATE_COMPLETING, 151 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 152 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 153 spdk_trace_register_description("RDMA_REQ_COMPLETED", 154 TRACE_RDMA_REQUEST_STATE_COMPLETED, 155 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 156 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 157 158 spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE, 159 OWNER_NONE, OBJECT_NONE, 0, 160 SPDK_TRACE_ARG_TYPE_INT, ""); 161 spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT, 162 OWNER_NONE, OBJECT_NONE, 0, 163 SPDK_TRACE_ARG_TYPE_INT, "type"); 164 spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT, 165 OWNER_NONE, OBJECT_NONE, 0, 166 SPDK_TRACE_ARG_TYPE_INT, "type"); 167 spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE, 168 OWNER_NONE, OBJECT_NONE, 0, 169 SPDK_TRACE_ARG_TYPE_PTR, "state"); 170 spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT, 171 OWNER_NONE, OBJECT_NONE, 0, 172 SPDK_TRACE_ARG_TYPE_INT, ""); 173 spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY, 174 OWNER_NONE, OBJECT_NONE, 0, 175 SPDK_TRACE_ARG_TYPE_INT, ""); 176 } 177 178 enum spdk_nvmf_rdma_wr_type { 179 RDMA_WR_TYPE_RECV, 180 RDMA_WR_TYPE_SEND, 181 RDMA_WR_TYPE_DATA, 182 }; 183 184 struct spdk_nvmf_rdma_wr { 185 enum spdk_nvmf_rdma_wr_type type; 186 }; 187 188 /* This structure holds commands as they are received off the wire. 189 * It must be dynamically paired with a full request object 190 * (spdk_nvmf_rdma_request) to service a request. It is separate 191 * from the request because RDMA does not appear to order 192 * completions, so occasionally we'll get a new incoming 193 * command when there aren't any free request objects. 194 */ 195 struct spdk_nvmf_rdma_recv { 196 struct ibv_recv_wr wr; 197 struct ibv_sge sgl[NVMF_DEFAULT_RX_SGE]; 198 199 struct spdk_nvmf_rdma_qpair *qpair; 200 201 /* In-capsule data buffer */ 202 uint8_t *buf; 203 204 struct spdk_nvmf_rdma_wr rdma_wr; 205 uint64_t receive_tsc; 206 207 STAILQ_ENTRY(spdk_nvmf_rdma_recv) link; 208 }; 209 210 struct spdk_nvmf_rdma_request_data { 211 struct spdk_nvmf_rdma_wr rdma_wr; 212 struct ibv_send_wr wr; 213 struct ibv_sge sgl[SPDK_NVMF_MAX_SGL_ENTRIES]; 214 }; 215 216 struct spdk_nvmf_rdma_request { 217 struct spdk_nvmf_request req; 218 219 enum spdk_nvmf_rdma_request_state state; 220 221 /* Data offset in req.iov */ 222 uint32_t offset; 223 224 struct spdk_nvmf_rdma_recv *recv; 225 226 struct { 227 struct spdk_nvmf_rdma_wr rdma_wr; 228 struct ibv_send_wr wr; 229 struct ibv_sge sgl[NVMF_DEFAULT_RSP_SGE]; 230 } rsp; 231 232 struct spdk_nvmf_rdma_request_data data; 233 234 uint32_t iovpos; 235 236 uint32_t num_outstanding_data_wr; 237 uint64_t receive_tsc; 238 239 bool fused_failed; 240 struct spdk_nvmf_rdma_request *fused_pair; 241 242 STAILQ_ENTRY(spdk_nvmf_rdma_request) state_link; 243 }; 244 245 struct spdk_nvmf_rdma_resource_opts { 246 struct spdk_nvmf_rdma_qpair *qpair; 247 /* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */ 248 void *qp; 249 struct ibv_pd *pd; 250 uint32_t max_queue_depth; 251 uint32_t in_capsule_data_size; 252 bool shared; 253 }; 254 255 struct spdk_nvmf_rdma_resources { 256 /* Array of size "max_queue_depth" containing RDMA requests. */ 257 struct spdk_nvmf_rdma_request *reqs; 258 259 /* Array of size "max_queue_depth" containing RDMA recvs. */ 260 struct spdk_nvmf_rdma_recv *recvs; 261 262 /* Array of size "max_queue_depth" containing 64 byte capsules 263 * used for receive. 264 */ 265 union nvmf_h2c_msg *cmds; 266 struct ibv_mr *cmds_mr; 267 268 /* Array of size "max_queue_depth" containing 16 byte completions 269 * to be sent back to the user. 270 */ 271 union nvmf_c2h_msg *cpls; 272 struct ibv_mr *cpls_mr; 273 274 /* Array of size "max_queue_depth * InCapsuleDataSize" containing 275 * buffers to be used for in capsule data. 276 */ 277 void *bufs; 278 struct ibv_mr *bufs_mr; 279 280 /* Receives that are waiting for a request object */ 281 STAILQ_HEAD(, spdk_nvmf_rdma_recv) incoming_queue; 282 283 /* Queue to track free requests */ 284 STAILQ_HEAD(, spdk_nvmf_rdma_request) free_queue; 285 }; 286 287 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair); 288 289 struct spdk_nvmf_rdma_ibv_event_ctx { 290 struct spdk_nvmf_rdma_qpair *rqpair; 291 spdk_nvmf_rdma_qpair_ibv_event cb_fn; 292 /* Link to other ibv events associated with this qpair */ 293 STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx) link; 294 }; 295 296 struct spdk_nvmf_rdma_qpair { 297 struct spdk_nvmf_qpair qpair; 298 299 struct spdk_nvmf_rdma_device *device; 300 struct spdk_nvmf_rdma_poller *poller; 301 302 struct spdk_rdma_qp *rdma_qp; 303 struct rdma_cm_id *cm_id; 304 struct spdk_rdma_srq *srq; 305 struct rdma_cm_id *listen_id; 306 307 /* Cache the QP number to improve QP search by RB tree. */ 308 uint32_t qp_num; 309 310 /* The maximum number of I/O outstanding on this connection at one time */ 311 uint16_t max_queue_depth; 312 313 /* The maximum number of active RDMA READ and ATOMIC operations at one time */ 314 uint16_t max_read_depth; 315 316 /* The maximum number of RDMA SEND operations at one time */ 317 uint32_t max_send_depth; 318 319 /* The current number of outstanding WRs from this qpair's 320 * recv queue. Should not exceed device->attr.max_queue_depth. 321 */ 322 uint16_t current_recv_depth; 323 324 /* The current number of active RDMA READ operations */ 325 uint16_t current_read_depth; 326 327 /* The current number of posted WRs from this qpair's 328 * send queue. Should not exceed max_send_depth. 329 */ 330 uint32_t current_send_depth; 331 332 /* The maximum number of SGEs per WR on the send queue */ 333 uint32_t max_send_sge; 334 335 /* The maximum number of SGEs per WR on the recv queue */ 336 uint32_t max_recv_sge; 337 338 struct spdk_nvmf_rdma_resources *resources; 339 340 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_read_queue; 341 342 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_write_queue; 343 344 /* Number of requests not in the free state */ 345 uint32_t qd; 346 347 RB_ENTRY(spdk_nvmf_rdma_qpair) node; 348 349 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) recv_link; 350 351 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) send_link; 352 353 /* IBV queue pair attributes: they are used to manage 354 * qp state and recover from errors. 355 */ 356 enum ibv_qp_state ibv_state; 357 358 /* Points to the a request that has fuse bits set to 359 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting 360 * for the request that has SPDK_NVME_CMD_FUSE_SECOND. 361 */ 362 struct spdk_nvmf_rdma_request *fused_first; 363 364 /* 365 * io_channel which is used to destroy qpair when it is removed from poll group 366 */ 367 struct spdk_io_channel *destruct_channel; 368 369 /* List of ibv async events */ 370 STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx) ibv_events; 371 372 /* Lets us know that we have received the last_wqe event. */ 373 bool last_wqe_reached; 374 375 /* Indicate that nvmf_rdma_close_qpair is called */ 376 bool to_close; 377 }; 378 379 struct spdk_nvmf_rdma_poller_stat { 380 uint64_t completions; 381 uint64_t polls; 382 uint64_t idle_polls; 383 uint64_t requests; 384 uint64_t request_latency; 385 uint64_t pending_free_request; 386 uint64_t pending_rdma_read; 387 uint64_t pending_rdma_write; 388 struct spdk_rdma_qp_stats qp_stats; 389 }; 390 391 struct spdk_nvmf_rdma_poller { 392 struct spdk_nvmf_rdma_device *device; 393 struct spdk_nvmf_rdma_poll_group *group; 394 395 int num_cqe; 396 int required_num_wr; 397 struct ibv_cq *cq; 398 399 /* The maximum number of I/O outstanding on the shared receive queue at one time */ 400 uint16_t max_srq_depth; 401 402 /* Shared receive queue */ 403 struct spdk_rdma_srq *srq; 404 405 struct spdk_nvmf_rdma_resources *resources; 406 struct spdk_nvmf_rdma_poller_stat stat; 407 408 RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs; 409 410 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_recv; 411 412 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_send; 413 414 TAILQ_ENTRY(spdk_nvmf_rdma_poller) link; 415 }; 416 417 struct spdk_nvmf_rdma_poll_group_stat { 418 uint64_t pending_data_buffer; 419 }; 420 421 struct spdk_nvmf_rdma_poll_group { 422 struct spdk_nvmf_transport_poll_group group; 423 struct spdk_nvmf_rdma_poll_group_stat stat; 424 TAILQ_HEAD(, spdk_nvmf_rdma_poller) pollers; 425 TAILQ_ENTRY(spdk_nvmf_rdma_poll_group) link; 426 }; 427 428 struct spdk_nvmf_rdma_conn_sched { 429 struct spdk_nvmf_rdma_poll_group *next_admin_pg; 430 struct spdk_nvmf_rdma_poll_group *next_io_pg; 431 }; 432 433 /* Assuming rdma_cm uses just one protection domain per ibv_context. */ 434 struct spdk_nvmf_rdma_device { 435 struct ibv_device_attr attr; 436 struct ibv_context *context; 437 438 struct spdk_rdma_mem_map *map; 439 struct ibv_pd *pd; 440 441 int num_srq; 442 443 TAILQ_ENTRY(spdk_nvmf_rdma_device) link; 444 }; 445 446 struct spdk_nvmf_rdma_port { 447 const struct spdk_nvme_transport_id *trid; 448 struct rdma_cm_id *id; 449 struct spdk_nvmf_rdma_device *device; 450 TAILQ_ENTRY(spdk_nvmf_rdma_port) link; 451 }; 452 453 struct rdma_transport_opts { 454 int num_cqe; 455 uint32_t max_srq_depth; 456 bool no_srq; 457 bool no_wr_batching; 458 int acceptor_backlog; 459 }; 460 461 struct spdk_nvmf_rdma_transport { 462 struct spdk_nvmf_transport transport; 463 struct rdma_transport_opts rdma_opts; 464 465 struct spdk_nvmf_rdma_conn_sched conn_sched; 466 467 struct rdma_event_channel *event_channel; 468 469 struct spdk_mempool *data_wr_pool; 470 471 struct spdk_poller *accept_poller; 472 pthread_mutex_t lock; 473 474 /* fields used to poll RDMA/IB events */ 475 nfds_t npoll_fds; 476 struct pollfd *poll_fds; 477 478 TAILQ_HEAD(, spdk_nvmf_rdma_device) devices; 479 TAILQ_HEAD(, spdk_nvmf_rdma_port) ports; 480 TAILQ_HEAD(, spdk_nvmf_rdma_poll_group) poll_groups; 481 }; 482 483 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = { 484 { 485 "num_cqe", offsetof(struct rdma_transport_opts, num_cqe), 486 spdk_json_decode_int32, true 487 }, 488 { 489 "max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth), 490 spdk_json_decode_uint32, true 491 }, 492 { 493 "no_srq", offsetof(struct rdma_transport_opts, no_srq), 494 spdk_json_decode_bool, true 495 }, 496 { 497 "no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching), 498 spdk_json_decode_bool, true 499 }, 500 { 501 "acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog), 502 spdk_json_decode_int32, true 503 }, 504 }; 505 506 static int 507 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2) 508 { 509 return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num; 510 } 511 512 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare); 513 514 static bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 515 struct spdk_nvmf_rdma_request *rdma_req); 516 517 static void _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 518 struct spdk_nvmf_rdma_poller *rpoller); 519 520 static void _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 521 struct spdk_nvmf_rdma_poller *rpoller); 522 523 static inline int 524 nvmf_rdma_check_ibv_state(enum ibv_qp_state state) 525 { 526 switch (state) { 527 case IBV_QPS_RESET: 528 case IBV_QPS_INIT: 529 case IBV_QPS_RTR: 530 case IBV_QPS_RTS: 531 case IBV_QPS_SQD: 532 case IBV_QPS_SQE: 533 case IBV_QPS_ERR: 534 return 0; 535 default: 536 return -1; 537 } 538 } 539 540 static inline enum spdk_nvme_media_error_status_code 541 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) { 542 enum spdk_nvme_media_error_status_code result; 543 switch (err_type) 544 { 545 case SPDK_DIF_REFTAG_ERROR: 546 result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR; 547 break; 548 case SPDK_DIF_APPTAG_ERROR: 549 result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR; 550 break; 551 case SPDK_DIF_GUARD_ERROR: 552 result = SPDK_NVME_SC_GUARD_CHECK_ERROR; 553 break; 554 default: 555 SPDK_UNREACHABLE(); 556 } 557 558 return result; 559 } 560 561 static enum ibv_qp_state 562 nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) { 563 enum ibv_qp_state old_state, new_state; 564 struct ibv_qp_attr qp_attr; 565 struct ibv_qp_init_attr init_attr; 566 int rc; 567 568 old_state = rqpair->ibv_state; 569 rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr, 570 g_spdk_nvmf_ibv_query_mask, &init_attr); 571 572 if (rc) 573 { 574 SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n"); 575 return IBV_QPS_ERR + 1; 576 } 577 578 new_state = qp_attr.qp_state; 579 rqpair->ibv_state = new_state; 580 qp_attr.ah_attr.port_num = qp_attr.port_num; 581 582 rc = nvmf_rdma_check_ibv_state(new_state); 583 if (rc) 584 { 585 SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state); 586 /* 587 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8 588 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR 589 */ 590 return IBV_QPS_ERR + 1; 591 } 592 593 if (old_state != new_state) 594 { 595 spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, (uintptr_t)rqpair, new_state); 596 } 597 return new_state; 598 } 599 600 static void 601 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req, 602 struct spdk_nvmf_rdma_transport *rtransport) 603 { 604 struct spdk_nvmf_rdma_request_data *data_wr; 605 struct ibv_send_wr *next_send_wr; 606 uint64_t req_wrid; 607 608 rdma_req->num_outstanding_data_wr = 0; 609 data_wr = &rdma_req->data; 610 req_wrid = data_wr->wr.wr_id; 611 while (data_wr && data_wr->wr.wr_id == req_wrid) { 612 memset(data_wr->sgl, 0, sizeof(data_wr->wr.sg_list[0]) * data_wr->wr.num_sge); 613 data_wr->wr.num_sge = 0; 614 next_send_wr = data_wr->wr.next; 615 if (data_wr != &rdma_req->data) { 616 spdk_mempool_put(rtransport->data_wr_pool, data_wr); 617 } 618 data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : 619 SPDK_CONTAINEROF(next_send_wr, struct spdk_nvmf_rdma_request_data, wr); 620 } 621 } 622 623 static void 624 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req) 625 { 626 SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool); 627 if (req->req.cmd) { 628 SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode); 629 } 630 if (req->recv) { 631 SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id); 632 } 633 } 634 635 static void 636 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair) 637 { 638 int i; 639 640 SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid); 641 for (i = 0; i < rqpair->max_queue_depth; i++) { 642 if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) { 643 nvmf_rdma_dump_request(&rqpair->resources->reqs[i]); 644 } 645 } 646 } 647 648 static void 649 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources) 650 { 651 if (resources->cmds_mr) { 652 ibv_dereg_mr(resources->cmds_mr); 653 } 654 655 if (resources->cpls_mr) { 656 ibv_dereg_mr(resources->cpls_mr); 657 } 658 659 if (resources->bufs_mr) { 660 ibv_dereg_mr(resources->bufs_mr); 661 } 662 663 spdk_free(resources->cmds); 664 spdk_free(resources->cpls); 665 spdk_free(resources->bufs); 666 spdk_free(resources->reqs); 667 spdk_free(resources->recvs); 668 free(resources); 669 } 670 671 672 static struct spdk_nvmf_rdma_resources * 673 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts) 674 { 675 struct spdk_nvmf_rdma_resources *resources; 676 struct spdk_nvmf_rdma_request *rdma_req; 677 struct spdk_nvmf_rdma_recv *rdma_recv; 678 struct spdk_rdma_qp *qp = NULL; 679 struct spdk_rdma_srq *srq = NULL; 680 struct ibv_recv_wr *bad_wr = NULL; 681 uint32_t i; 682 int rc = 0; 683 684 resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources)); 685 if (!resources) { 686 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 687 return NULL; 688 } 689 690 resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs), 691 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 692 resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs), 693 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 694 resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds), 695 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 696 resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls), 697 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 698 699 if (opts->in_capsule_data_size > 0) { 700 resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size, 701 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, 702 SPDK_MALLOC_DMA); 703 } 704 705 if (!resources->reqs || !resources->recvs || !resources->cmds || 706 !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) { 707 SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n"); 708 goto cleanup; 709 } 710 711 resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds, 712 opts->max_queue_depth * sizeof(*resources->cmds), 713 IBV_ACCESS_LOCAL_WRITE); 714 resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls, 715 opts->max_queue_depth * sizeof(*resources->cpls), 716 0); 717 718 if (opts->in_capsule_data_size) { 719 resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs, 720 opts->max_queue_depth * 721 opts->in_capsule_data_size, 722 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); 723 } 724 725 if (!resources->cmds_mr || !resources->cpls_mr || 726 (opts->in_capsule_data_size && 727 !resources->bufs_mr)) { 728 goto cleanup; 729 } 730 SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx LKey: %x\n", 731 resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds), 732 resources->cmds_mr->lkey); 733 SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx LKey: %x\n", 734 resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls), 735 resources->cpls_mr->lkey); 736 if (resources->bufs && resources->bufs_mr) { 737 SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x LKey: %x\n", 738 resources->bufs, opts->max_queue_depth * 739 opts->in_capsule_data_size, resources->bufs_mr->lkey); 740 } 741 742 /* Initialize queues */ 743 STAILQ_INIT(&resources->incoming_queue); 744 STAILQ_INIT(&resources->free_queue); 745 746 if (opts->shared) { 747 srq = (struct spdk_rdma_srq *)opts->qp; 748 } else { 749 qp = (struct spdk_rdma_qp *)opts->qp; 750 } 751 752 for (i = 0; i < opts->max_queue_depth; i++) { 753 rdma_recv = &resources->recvs[i]; 754 rdma_recv->qpair = opts->qpair; 755 756 /* Set up memory to receive commands */ 757 if (resources->bufs) { 758 rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i * 759 opts->in_capsule_data_size)); 760 } 761 762 rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV; 763 764 rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i]; 765 rdma_recv->sgl[0].length = sizeof(resources->cmds[i]); 766 rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey; 767 rdma_recv->wr.num_sge = 1; 768 769 if (rdma_recv->buf && resources->bufs_mr) { 770 rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf; 771 rdma_recv->sgl[1].length = opts->in_capsule_data_size; 772 rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey; 773 rdma_recv->wr.num_sge++; 774 } 775 776 rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr; 777 rdma_recv->wr.sg_list = rdma_recv->sgl; 778 if (srq) { 779 spdk_rdma_srq_queue_recv_wrs(srq, &rdma_recv->wr); 780 } else { 781 spdk_rdma_qp_queue_recv_wrs(qp, &rdma_recv->wr); 782 } 783 } 784 785 for (i = 0; i < opts->max_queue_depth; i++) { 786 rdma_req = &resources->reqs[i]; 787 788 if (opts->qpair != NULL) { 789 rdma_req->req.qpair = &opts->qpair->qpair; 790 } else { 791 rdma_req->req.qpair = NULL; 792 } 793 rdma_req->req.cmd = NULL; 794 rdma_req->req.iovcnt = 0; 795 rdma_req->req.stripped_data = NULL; 796 797 /* Set up memory to send responses */ 798 rdma_req->req.rsp = &resources->cpls[i]; 799 800 rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i]; 801 rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]); 802 rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey; 803 804 rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND; 805 rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr; 806 rdma_req->rsp.wr.next = NULL; 807 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 808 rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED; 809 rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl; 810 rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl); 811 812 /* Set up memory for data buffers */ 813 rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA; 814 rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr; 815 rdma_req->data.wr.next = NULL; 816 rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED; 817 rdma_req->data.wr.sg_list = rdma_req->data.sgl; 818 rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl); 819 820 /* Initialize request state to FREE */ 821 rdma_req->state = RDMA_REQUEST_STATE_FREE; 822 STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link); 823 } 824 825 if (srq) { 826 rc = spdk_rdma_srq_flush_recv_wrs(srq, &bad_wr); 827 } else { 828 rc = spdk_rdma_qp_flush_recv_wrs(qp, &bad_wr); 829 } 830 831 if (rc) { 832 goto cleanup; 833 } 834 835 return resources; 836 837 cleanup: 838 nvmf_rdma_resources_destroy(resources); 839 return NULL; 840 } 841 842 static void 843 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair) 844 { 845 struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx; 846 STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) { 847 ctx->rqpair = NULL; 848 /* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */ 849 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 850 } 851 } 852 853 static void 854 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair) 855 { 856 struct spdk_nvmf_rdma_recv *rdma_recv, *recv_tmp; 857 struct ibv_recv_wr *bad_recv_wr = NULL; 858 int rc; 859 860 spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair); 861 862 if (rqpair->qd != 0) { 863 struct spdk_nvmf_qpair *qpair = &rqpair->qpair; 864 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(qpair->transport, 865 struct spdk_nvmf_rdma_transport, transport); 866 struct spdk_nvmf_rdma_request *req; 867 uint32_t i, max_req_count = 0; 868 869 SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd); 870 871 if (rqpair->srq == NULL) { 872 nvmf_rdma_dump_qpair_contents(rqpair); 873 max_req_count = rqpair->max_queue_depth; 874 } else if (rqpair->poller && rqpair->resources) { 875 max_req_count = rqpair->poller->max_srq_depth; 876 } 877 878 SPDK_DEBUGLOG(rdma, "Release incomplete requests\n"); 879 for (i = 0; i < max_req_count; i++) { 880 req = &rqpair->resources->reqs[i]; 881 if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) { 882 /* nvmf_rdma_request_process checks qpair ibv and internal state 883 * and completes a request */ 884 nvmf_rdma_request_process(rtransport, req); 885 } 886 } 887 assert(rqpair->qd == 0); 888 } 889 890 if (rqpair->poller) { 891 RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair); 892 893 if (rqpair->srq != NULL && rqpair->resources != NULL) { 894 /* Drop all received but unprocessed commands for this queue and return them to SRQ */ 895 STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) { 896 if (rqpair == rdma_recv->qpair) { 897 STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link); 898 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr); 899 rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr); 900 if (rc) { 901 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 902 } 903 } 904 } 905 } 906 } 907 908 if (rqpair->cm_id) { 909 if (rqpair->rdma_qp != NULL) { 910 spdk_rdma_qp_destroy(rqpair->rdma_qp); 911 rqpair->rdma_qp = NULL; 912 } 913 rdma_destroy_id(rqpair->cm_id); 914 915 if (rqpair->poller != NULL && rqpair->srq == NULL) { 916 rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth); 917 } 918 } 919 920 if (rqpair->srq == NULL && rqpair->resources != NULL) { 921 nvmf_rdma_resources_destroy(rqpair->resources); 922 } 923 924 nvmf_rdma_qpair_clean_ibv_events(rqpair); 925 926 if (rqpair->destruct_channel) { 927 spdk_put_io_channel(rqpair->destruct_channel); 928 rqpair->destruct_channel = NULL; 929 } 930 931 free(rqpair); 932 } 933 934 static int 935 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device) 936 { 937 struct spdk_nvmf_rdma_poller *rpoller; 938 int rc, num_cqe, required_num_wr; 939 940 /* Enlarge CQ size dynamically */ 941 rpoller = rqpair->poller; 942 required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth); 943 num_cqe = rpoller->num_cqe; 944 if (num_cqe < required_num_wr) { 945 num_cqe = spdk_max(num_cqe * 2, required_num_wr); 946 num_cqe = spdk_min(num_cqe, device->attr.max_cqe); 947 } 948 949 if (rpoller->num_cqe != num_cqe) { 950 if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) { 951 SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n" 952 "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe); 953 return -1; 954 } 955 if (required_num_wr > device->attr.max_cqe) { 956 SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n", 957 required_num_wr, device->attr.max_cqe); 958 return -1; 959 } 960 961 SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe); 962 rc = ibv_resize_cq(rpoller->cq, num_cqe); 963 if (rc) { 964 SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); 965 return -1; 966 } 967 968 rpoller->num_cqe = num_cqe; 969 } 970 971 rpoller->required_num_wr = required_num_wr; 972 return 0; 973 } 974 975 static int 976 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair) 977 { 978 struct spdk_nvmf_rdma_qpair *rqpair; 979 struct spdk_nvmf_rdma_transport *rtransport; 980 struct spdk_nvmf_transport *transport; 981 struct spdk_nvmf_rdma_resource_opts opts; 982 struct spdk_nvmf_rdma_device *device; 983 struct spdk_rdma_qp_init_attr qp_init_attr = {}; 984 985 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 986 device = rqpair->device; 987 988 qp_init_attr.qp_context = rqpair; 989 qp_init_attr.pd = device->pd; 990 qp_init_attr.send_cq = rqpair->poller->cq; 991 qp_init_attr.recv_cq = rqpair->poller->cq; 992 993 if (rqpair->srq) { 994 qp_init_attr.srq = rqpair->srq->srq; 995 } else { 996 qp_init_attr.cap.max_recv_wr = rqpair->max_queue_depth; 997 } 998 999 /* SEND, READ, and WRITE operations */ 1000 qp_init_attr.cap.max_send_wr = (uint32_t)rqpair->max_queue_depth * 2; 1001 qp_init_attr.cap.max_send_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE); 1002 qp_init_attr.cap.max_recv_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 1003 qp_init_attr.stats = &rqpair->poller->stat.qp_stats; 1004 1005 if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) { 1006 SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n"); 1007 goto error; 1008 } 1009 1010 rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr); 1011 if (!rqpair->rdma_qp) { 1012 goto error; 1013 } 1014 1015 rqpair->qp_num = rqpair->rdma_qp->qp->qp_num; 1016 1017 rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2), 1018 qp_init_attr.cap.max_send_wr); 1019 rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge); 1020 rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge); 1021 spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair); 1022 SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair); 1023 1024 if (rqpair->poller->srq == NULL) { 1025 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 1026 transport = &rtransport->transport; 1027 1028 opts.qp = rqpair->rdma_qp; 1029 opts.pd = rqpair->cm_id->pd; 1030 opts.qpair = rqpair; 1031 opts.shared = false; 1032 opts.max_queue_depth = rqpair->max_queue_depth; 1033 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 1034 1035 rqpair->resources = nvmf_rdma_resources_create(&opts); 1036 1037 if (!rqpair->resources) { 1038 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 1039 rdma_destroy_qp(rqpair->cm_id); 1040 goto error; 1041 } 1042 } else { 1043 rqpair->resources = rqpair->poller->resources; 1044 } 1045 1046 rqpair->current_recv_depth = 0; 1047 STAILQ_INIT(&rqpair->pending_rdma_read_queue); 1048 STAILQ_INIT(&rqpair->pending_rdma_write_queue); 1049 1050 return 0; 1051 1052 error: 1053 rdma_destroy_id(rqpair->cm_id); 1054 rqpair->cm_id = NULL; 1055 return -1; 1056 } 1057 1058 /* Append the given recv wr structure to the resource structs outstanding recvs list. */ 1059 /* This function accepts either a single wr or the first wr in a linked list. */ 1060 static void 1061 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first) 1062 { 1063 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1064 struct spdk_nvmf_rdma_transport, transport); 1065 1066 if (rqpair->srq != NULL) { 1067 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, first); 1068 } else { 1069 if (spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, first)) { 1070 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link); 1071 } 1072 } 1073 1074 if (rtransport->rdma_opts.no_wr_batching) { 1075 _poller_submit_recvs(rtransport, rqpair->poller); 1076 } 1077 } 1078 1079 static int 1080 request_transfer_in(struct spdk_nvmf_request *req) 1081 { 1082 struct spdk_nvmf_rdma_request *rdma_req; 1083 struct spdk_nvmf_qpair *qpair; 1084 struct spdk_nvmf_rdma_qpair *rqpair; 1085 struct spdk_nvmf_rdma_transport *rtransport; 1086 1087 qpair = req->qpair; 1088 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1089 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1090 rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1091 struct spdk_nvmf_rdma_transport, transport); 1092 1093 assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); 1094 assert(rdma_req != NULL); 1095 1096 if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, &rdma_req->data.wr)) { 1097 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1098 } 1099 if (rtransport->rdma_opts.no_wr_batching) { 1100 _poller_submit_sends(rtransport, rqpair->poller); 1101 } 1102 1103 rqpair->current_read_depth += rdma_req->num_outstanding_data_wr; 1104 rqpair->current_send_depth += rdma_req->num_outstanding_data_wr; 1105 return 0; 1106 } 1107 1108 static int 1109 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted) 1110 { 1111 int num_outstanding_data_wr = 0; 1112 struct spdk_nvmf_rdma_request *rdma_req; 1113 struct spdk_nvmf_qpair *qpair; 1114 struct spdk_nvmf_rdma_qpair *rqpair; 1115 struct spdk_nvme_cpl *rsp; 1116 struct ibv_send_wr *first = NULL; 1117 struct spdk_nvmf_rdma_transport *rtransport; 1118 1119 *data_posted = 0; 1120 qpair = req->qpair; 1121 rsp = &req->rsp->nvme_cpl; 1122 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1123 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1124 rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1125 struct spdk_nvmf_rdma_transport, transport); 1126 1127 /* Advance our sq_head pointer */ 1128 if (qpair->sq_head == qpair->sq_head_max) { 1129 qpair->sq_head = 0; 1130 } else { 1131 qpair->sq_head++; 1132 } 1133 rsp->sqhd = qpair->sq_head; 1134 1135 /* queue the capsule for the recv buffer */ 1136 assert(rdma_req->recv != NULL); 1137 1138 nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr); 1139 1140 rdma_req->recv = NULL; 1141 assert(rqpair->current_recv_depth > 0); 1142 rqpair->current_recv_depth--; 1143 1144 /* Build the response which consists of optional 1145 * RDMA WRITEs to transfer data, plus an RDMA SEND 1146 * containing the response. 1147 */ 1148 first = &rdma_req->rsp.wr; 1149 1150 if (rsp->status.sc != SPDK_NVME_SC_SUCCESS) { 1151 /* On failure, data was not read from the controller. So clear the 1152 * number of outstanding data WRs to zero. 1153 */ 1154 rdma_req->num_outstanding_data_wr = 0; 1155 } else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1156 first = &rdma_req->data.wr; 1157 *data_posted = 1; 1158 num_outstanding_data_wr = rdma_req->num_outstanding_data_wr; 1159 } 1160 if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) { 1161 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1162 } 1163 if (rtransport->rdma_opts.no_wr_batching) { 1164 _poller_submit_sends(rtransport, rqpair->poller); 1165 } 1166 1167 /* +1 for the rsp wr */ 1168 rqpair->current_send_depth += num_outstanding_data_wr + 1; 1169 1170 return 0; 1171 } 1172 1173 static int 1174 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair) 1175 { 1176 struct spdk_nvmf_rdma_accept_private_data accept_data; 1177 struct rdma_conn_param ctrlr_event_data = {}; 1178 int rc; 1179 1180 accept_data.recfmt = 0; 1181 accept_data.crqsize = rqpair->max_queue_depth; 1182 1183 ctrlr_event_data.private_data = &accept_data; 1184 ctrlr_event_data.private_data_len = sizeof(accept_data); 1185 if (id->ps == RDMA_PS_TCP) { 1186 ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */ 1187 ctrlr_event_data.initiator_depth = rqpair->max_read_depth; 1188 } 1189 1190 /* Configure infinite retries for the initiator side qpair. 1191 * We need to pass this value to the initiator to prevent the 1192 * initiator side NIC from completing SEND requests back to the 1193 * initiator with status rnr_retry_count_exceeded. */ 1194 ctrlr_event_data.rnr_retry_count = 0x7; 1195 1196 /* When qpair is created without use of rdma cm API, an additional 1197 * information must be provided to initiator in the connection response: 1198 * whether qpair is using SRQ and its qp_num 1199 * Fields below are ignored by rdma cm if qpair has been 1200 * created using rdma cm API. */ 1201 ctrlr_event_data.srq = rqpair->srq ? 1 : 0; 1202 ctrlr_event_data.qp_num = rqpair->qp_num; 1203 1204 rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data); 1205 if (rc) { 1206 SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno); 1207 } else { 1208 SPDK_DEBUGLOG(rdma, "Sent back the accept\n"); 1209 } 1210 1211 return rc; 1212 } 1213 1214 static void 1215 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error) 1216 { 1217 struct spdk_nvmf_rdma_reject_private_data rej_data; 1218 1219 rej_data.recfmt = 0; 1220 rej_data.sts = error; 1221 1222 rdma_reject(id, &rej_data, sizeof(rej_data)); 1223 } 1224 1225 static int 1226 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event) 1227 { 1228 struct spdk_nvmf_rdma_transport *rtransport; 1229 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 1230 struct spdk_nvmf_rdma_port *port; 1231 struct rdma_conn_param *rdma_param = NULL; 1232 const struct spdk_nvmf_rdma_request_private_data *private_data = NULL; 1233 uint16_t max_queue_depth; 1234 uint16_t max_read_depth; 1235 1236 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 1237 1238 assert(event->id != NULL); /* Impossible. Can't even reject the connection. */ 1239 assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */ 1240 1241 rdma_param = &event->param.conn; 1242 if (rdma_param->private_data == NULL || 1243 rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1244 SPDK_ERRLOG("connect request: no private data provided\n"); 1245 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH); 1246 return -1; 1247 } 1248 1249 private_data = rdma_param->private_data; 1250 if (private_data->recfmt != 0) { 1251 SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n"); 1252 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT); 1253 return -1; 1254 } 1255 1256 SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n", 1257 event->id->verbs->device->name, event->id->verbs->device->dev_name); 1258 1259 port = event->listen_id->context; 1260 SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n", 1261 event->listen_id, event->listen_id->verbs, port); 1262 1263 /* Figure out the supported queue depth. This is a multi-step process 1264 * that takes into account hardware maximums, host provided values, 1265 * and our target's internal memory limits */ 1266 1267 SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n"); 1268 1269 /* Start with the maximum queue depth allowed by the target */ 1270 max_queue_depth = rtransport->transport.opts.max_queue_depth; 1271 max_read_depth = rtransport->transport.opts.max_queue_depth; 1272 SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n", 1273 rtransport->transport.opts.max_queue_depth); 1274 1275 /* Next check the local NIC's hardware limitations */ 1276 SPDK_DEBUGLOG(rdma, 1277 "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n", 1278 port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom); 1279 max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr); 1280 max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom); 1281 1282 /* Next check the remote NIC's hardware limitations */ 1283 SPDK_DEBUGLOG(rdma, 1284 "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n", 1285 rdma_param->initiator_depth, rdma_param->responder_resources); 1286 if (rdma_param->initiator_depth > 0) { 1287 max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth); 1288 } 1289 1290 /* Finally check for the host software requested values, which are 1291 * optional. */ 1292 if (rdma_param->private_data != NULL && 1293 rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1294 SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize); 1295 SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize); 1296 max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize); 1297 max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1); 1298 } 1299 1300 SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n", 1301 max_queue_depth, max_read_depth); 1302 1303 rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair)); 1304 if (rqpair == NULL) { 1305 SPDK_ERRLOG("Could not allocate new connection.\n"); 1306 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 1307 return -1; 1308 } 1309 1310 rqpair->device = port->device; 1311 rqpair->max_queue_depth = max_queue_depth; 1312 rqpair->max_read_depth = max_read_depth; 1313 rqpair->cm_id = event->id; 1314 rqpair->listen_id = event->listen_id; 1315 rqpair->qpair.transport = transport; 1316 STAILQ_INIT(&rqpair->ibv_events); 1317 /* use qid from the private data to determine the qpair type 1318 qid will be set to the appropriate value when the controller is created */ 1319 rqpair->qpair.qid = private_data->qid; 1320 1321 event->id->context = &rqpair->qpair; 1322 1323 spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair); 1324 1325 return 0; 1326 } 1327 1328 static inline void 1329 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next, 1330 enum spdk_nvme_data_transfer xfer) 1331 { 1332 if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1333 wr->opcode = IBV_WR_RDMA_WRITE; 1334 wr->send_flags = 0; 1335 wr->next = next; 1336 } else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 1337 wr->opcode = IBV_WR_RDMA_READ; 1338 wr->send_flags = IBV_SEND_SIGNALED; 1339 wr->next = NULL; 1340 } else { 1341 assert(0); 1342 } 1343 } 1344 1345 static int 1346 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport, 1347 struct spdk_nvmf_rdma_request *rdma_req, 1348 uint32_t num_sgl_descriptors) 1349 { 1350 struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES]; 1351 struct spdk_nvmf_rdma_request_data *current_data_wr; 1352 uint32_t i; 1353 1354 if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) { 1355 SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n", 1356 num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES); 1357 return -EINVAL; 1358 } 1359 1360 if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) { 1361 return -ENOMEM; 1362 } 1363 1364 current_data_wr = &rdma_req->data; 1365 1366 for (i = 0; i < num_sgl_descriptors; i++) { 1367 nvmf_rdma_setup_wr(¤t_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer); 1368 current_data_wr->wr.next = &work_requests[i]->wr; 1369 current_data_wr = work_requests[i]; 1370 current_data_wr->wr.sg_list = current_data_wr->sgl; 1371 current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id; 1372 } 1373 1374 nvmf_rdma_setup_wr(¤t_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1375 1376 return 0; 1377 } 1378 1379 static inline void 1380 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req) 1381 { 1382 struct ibv_send_wr *wr = &rdma_req->data.wr; 1383 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1384 1385 wr->wr.rdma.rkey = sgl->keyed.key; 1386 wr->wr.rdma.remote_addr = sgl->address; 1387 nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1388 } 1389 1390 static inline void 1391 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs) 1392 { 1393 struct ibv_send_wr *wr = &rdma_req->data.wr; 1394 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1395 uint32_t i; 1396 int j; 1397 uint64_t remote_addr_offset = 0; 1398 1399 for (i = 0; i < num_wrs; ++i) { 1400 wr->wr.rdma.rkey = sgl->keyed.key; 1401 wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset; 1402 for (j = 0; j < wr->num_sge; ++j) { 1403 remote_addr_offset += wr->sg_list[j].length; 1404 } 1405 wr = wr->next; 1406 } 1407 } 1408 1409 static int 1410 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup, 1411 struct spdk_nvmf_rdma_device *device, 1412 struct spdk_nvmf_rdma_request *rdma_req, 1413 struct ibv_send_wr *wr, 1414 uint32_t total_length) 1415 { 1416 struct spdk_rdma_memory_translation mem_translation; 1417 struct ibv_sge *sg_ele; 1418 struct iovec *iov; 1419 uint32_t lkey, remaining; 1420 int rc; 1421 1422 wr->num_sge = 0; 1423 1424 while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) { 1425 iov = &rdma_req->req.iov[rdma_req->iovpos]; 1426 rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation); 1427 if (spdk_unlikely(rc)) { 1428 return rc; 1429 } 1430 1431 lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation); 1432 sg_ele = &wr->sg_list[wr->num_sge]; 1433 remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length); 1434 1435 sg_ele->lkey = lkey; 1436 sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset; 1437 sg_ele->length = remaining; 1438 SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr, 1439 sg_ele->length); 1440 rdma_req->offset += sg_ele->length; 1441 total_length -= sg_ele->length; 1442 wr->num_sge++; 1443 1444 if (rdma_req->offset == iov->iov_len) { 1445 rdma_req->offset = 0; 1446 rdma_req->iovpos++; 1447 } 1448 } 1449 1450 if (total_length) { 1451 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1452 return -EINVAL; 1453 } 1454 1455 return 0; 1456 } 1457 1458 static int 1459 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_poll_group *rgroup, 1460 struct spdk_nvmf_rdma_device *device, 1461 struct spdk_nvmf_rdma_request *rdma_req, 1462 struct ibv_send_wr *wr, 1463 uint32_t total_length, 1464 uint32_t num_extra_wrs) 1465 { 1466 struct spdk_rdma_memory_translation mem_translation; 1467 struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx; 1468 struct ibv_sge *sg_ele; 1469 struct iovec *iov; 1470 struct iovec *rdma_iov; 1471 uint32_t lkey, remaining; 1472 uint32_t remaining_data_block, data_block_size, md_size; 1473 uint32_t sge_len; 1474 int rc; 1475 1476 data_block_size = dif_ctx->block_size - dif_ctx->md_size; 1477 1478 if (spdk_likely(!rdma_req->req.stripped_data)) { 1479 rdma_iov = rdma_req->req.iov; 1480 remaining_data_block = data_block_size; 1481 md_size = dif_ctx->md_size; 1482 } else { 1483 rdma_iov = rdma_req->req.stripped_data->iov; 1484 total_length = total_length / dif_ctx->block_size * data_block_size; 1485 remaining_data_block = total_length; 1486 md_size = 0; 1487 } 1488 1489 wr->num_sge = 0; 1490 1491 while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) { 1492 iov = rdma_iov + rdma_req->iovpos; 1493 rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation); 1494 if (spdk_unlikely(rc)) { 1495 return rc; 1496 } 1497 1498 lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation); 1499 sg_ele = &wr->sg_list[wr->num_sge]; 1500 remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length); 1501 1502 while (remaining) { 1503 if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) { 1504 if (num_extra_wrs > 0 && wr->next) { 1505 wr = wr->next; 1506 wr->num_sge = 0; 1507 sg_ele = &wr->sg_list[wr->num_sge]; 1508 num_extra_wrs--; 1509 } else { 1510 break; 1511 } 1512 } 1513 sg_ele->lkey = lkey; 1514 sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset); 1515 sge_len = spdk_min(remaining, remaining_data_block); 1516 sg_ele->length = sge_len; 1517 SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, 1518 sg_ele->addr, sg_ele->length); 1519 remaining -= sge_len; 1520 remaining_data_block -= sge_len; 1521 rdma_req->offset += sge_len; 1522 total_length -= sge_len; 1523 1524 sg_ele++; 1525 wr->num_sge++; 1526 1527 if (remaining_data_block == 0) { 1528 /* skip metadata */ 1529 rdma_req->offset += md_size; 1530 total_length -= md_size; 1531 /* Metadata that do not fit this IO buffer will be included in the next IO buffer */ 1532 remaining -= spdk_min(remaining, md_size); 1533 remaining_data_block = data_block_size; 1534 } 1535 1536 if (remaining == 0) { 1537 /* By subtracting the size of the last IOV from the offset, we ensure that we skip 1538 the remaining metadata bits at the beginning of the next buffer */ 1539 rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset); 1540 rdma_req->iovpos++; 1541 } 1542 } 1543 } 1544 1545 if (total_length) { 1546 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1547 return -EINVAL; 1548 } 1549 1550 return 0; 1551 } 1552 1553 static inline uint32_t 1554 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size) 1555 { 1556 /* estimate the number of SG entries and WRs needed to process the request */ 1557 uint32_t num_sge = 0; 1558 uint32_t i; 1559 uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size); 1560 1561 for (i = 0; i < num_buffers && length > 0; i++) { 1562 uint32_t buffer_len = spdk_min(length, io_unit_size); 1563 uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size); 1564 1565 if (num_sge_in_block * block_size > buffer_len) { 1566 ++num_sge_in_block; 1567 } 1568 num_sge += num_sge_in_block; 1569 length -= buffer_len; 1570 } 1571 return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES); 1572 } 1573 1574 static int 1575 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport, 1576 struct spdk_nvmf_rdma_device *device, 1577 struct spdk_nvmf_rdma_request *rdma_req) 1578 { 1579 struct spdk_nvmf_rdma_qpair *rqpair; 1580 struct spdk_nvmf_rdma_poll_group *rgroup; 1581 struct spdk_nvmf_request *req = &rdma_req->req; 1582 struct ibv_send_wr *wr = &rdma_req->data.wr; 1583 int rc; 1584 uint32_t num_wrs = 1; 1585 uint32_t length; 1586 1587 rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair); 1588 rgroup = rqpair->poller->group; 1589 1590 /* rdma wr specifics */ 1591 nvmf_rdma_setup_request(rdma_req); 1592 1593 length = req->length; 1594 if (spdk_unlikely(req->dif_enabled)) { 1595 req->dif.orig_length = length; 1596 length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx); 1597 req->dif.elba_length = length; 1598 } 1599 1600 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, 1601 length); 1602 if (rc != 0) { 1603 return rc; 1604 } 1605 1606 assert(req->iovcnt <= rqpair->max_send_sge); 1607 1608 /* When dif_insert_or_strip is true and the I/O data length is greater than one block, 1609 * the stripped_buffers are got for DIF stripping. */ 1610 if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) 1611 && (req->dif.elba_length > req->dif.dif_ctx.block_size))) { 1612 rc = nvmf_request_get_stripped_buffers(req, &rgroup->group, 1613 &rtransport->transport, req->dif.orig_length); 1614 if (rc != 0) { 1615 SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc); 1616 } 1617 } 1618 1619 rdma_req->iovpos = 0; 1620 1621 if (spdk_unlikely(req->dif_enabled)) { 1622 num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size, 1623 req->dif.dif_ctx.block_size); 1624 if (num_wrs > 1) { 1625 rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1); 1626 if (rc != 0) { 1627 goto err_exit; 1628 } 1629 } 1630 1631 rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, wr, length, num_wrs - 1); 1632 if (spdk_unlikely(rc != 0)) { 1633 goto err_exit; 1634 } 1635 1636 if (num_wrs > 1) { 1637 nvmf_rdma_update_remote_addr(rdma_req, num_wrs); 1638 } 1639 } else { 1640 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length); 1641 if (spdk_unlikely(rc != 0)) { 1642 goto err_exit; 1643 } 1644 } 1645 1646 /* set the number of outstanding data WRs for this request. */ 1647 rdma_req->num_outstanding_data_wr = num_wrs; 1648 1649 return rc; 1650 1651 err_exit: 1652 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1653 nvmf_rdma_request_free_data(rdma_req, rtransport); 1654 req->iovcnt = 0; 1655 return rc; 1656 } 1657 1658 static int 1659 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1660 struct spdk_nvmf_rdma_device *device, 1661 struct spdk_nvmf_rdma_request *rdma_req) 1662 { 1663 struct spdk_nvmf_rdma_qpair *rqpair; 1664 struct spdk_nvmf_rdma_poll_group *rgroup; 1665 struct ibv_send_wr *current_wr; 1666 struct spdk_nvmf_request *req = &rdma_req->req; 1667 struct spdk_nvme_sgl_descriptor *inline_segment, *desc; 1668 uint32_t num_sgl_descriptors; 1669 uint32_t lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0; 1670 uint32_t i; 1671 int rc; 1672 1673 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1674 rgroup = rqpair->poller->group; 1675 1676 inline_segment = &req->cmd->nvme_cmd.dptr.sgl1; 1677 assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT); 1678 assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET); 1679 1680 num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor); 1681 assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES); 1682 1683 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1684 for (i = 0; i < num_sgl_descriptors; i++) { 1685 if (spdk_likely(!req->dif_enabled)) { 1686 lengths[i] = desc->keyed.length; 1687 } else { 1688 req->dif.orig_length += desc->keyed.length; 1689 lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx); 1690 req->dif.elba_length += lengths[i]; 1691 } 1692 total_length += lengths[i]; 1693 desc++; 1694 } 1695 1696 if (total_length > rtransport->transport.opts.max_io_size) { 1697 SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n", 1698 total_length, rtransport->transport.opts.max_io_size); 1699 req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1700 return -EINVAL; 1701 } 1702 1703 if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) { 1704 return -ENOMEM; 1705 } 1706 1707 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length); 1708 if (rc != 0) { 1709 nvmf_rdma_request_free_data(rdma_req, rtransport); 1710 return rc; 1711 } 1712 1713 /* When dif_insert_or_strip is true and the I/O data length is greater than one block, 1714 * the stripped_buffers are got for DIF stripping. */ 1715 if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) 1716 && (req->dif.elba_length > req->dif.dif_ctx.block_size))) { 1717 rc = nvmf_request_get_stripped_buffers(req, &rgroup->group, 1718 &rtransport->transport, req->dif.orig_length); 1719 if (rc != 0) { 1720 SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc); 1721 } 1722 } 1723 1724 /* The first WR must always be the embedded data WR. This is how we unwind them later. */ 1725 current_wr = &rdma_req->data.wr; 1726 assert(current_wr != NULL); 1727 1728 req->length = 0; 1729 rdma_req->iovpos = 0; 1730 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1731 for (i = 0; i < num_sgl_descriptors; i++) { 1732 /* The descriptors must be keyed data block descriptors with an address, not an offset. */ 1733 if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK || 1734 desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) { 1735 rc = -EINVAL; 1736 goto err_exit; 1737 } 1738 1739 if (spdk_likely(!req->dif_enabled)) { 1740 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i]); 1741 } else { 1742 rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, current_wr, 1743 lengths[i], 0); 1744 } 1745 if (rc != 0) { 1746 rc = -ENOMEM; 1747 goto err_exit; 1748 } 1749 1750 req->length += desc->keyed.length; 1751 current_wr->wr.rdma.rkey = desc->keyed.key; 1752 current_wr->wr.rdma.remote_addr = desc->address; 1753 current_wr = current_wr->next; 1754 desc++; 1755 } 1756 1757 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1758 /* Go back to the last descriptor in the list. */ 1759 desc--; 1760 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1761 if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1762 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1763 rdma_req->rsp.wr.imm_data = desc->keyed.key; 1764 } 1765 } 1766 #endif 1767 1768 rdma_req->num_outstanding_data_wr = num_sgl_descriptors; 1769 1770 return 0; 1771 1772 err_exit: 1773 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1774 nvmf_rdma_request_free_data(rdma_req, rtransport); 1775 return rc; 1776 } 1777 1778 static int 1779 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1780 struct spdk_nvmf_rdma_device *device, 1781 struct spdk_nvmf_rdma_request *rdma_req) 1782 { 1783 struct spdk_nvmf_request *req = &rdma_req->req; 1784 struct spdk_nvme_cpl *rsp; 1785 struct spdk_nvme_sgl_descriptor *sgl; 1786 int rc; 1787 uint32_t length; 1788 1789 rsp = &req->rsp->nvme_cpl; 1790 sgl = &req->cmd->nvme_cmd.dptr.sgl1; 1791 1792 if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK && 1793 (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS || 1794 sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) { 1795 1796 length = sgl->keyed.length; 1797 if (length > rtransport->transport.opts.max_io_size) { 1798 SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n", 1799 length, rtransport->transport.opts.max_io_size); 1800 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1801 return -1; 1802 } 1803 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1804 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1805 if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1806 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1807 rdma_req->rsp.wr.imm_data = sgl->keyed.key; 1808 } 1809 } 1810 #endif 1811 1812 /* fill request length and populate iovs */ 1813 req->length = length; 1814 1815 rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req); 1816 if (spdk_unlikely(rc < 0)) { 1817 if (rc == -EINVAL) { 1818 SPDK_ERRLOG("SGL length exceeds the max I/O size\n"); 1819 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1820 return -1; 1821 } 1822 /* No available buffers. Queue this request up. */ 1823 SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req); 1824 return 0; 1825 } 1826 1827 /* backward compatible */ 1828 req->data = req->iov[0].iov_base; 1829 1830 SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req, 1831 req->iovcnt); 1832 1833 return 0; 1834 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK && 1835 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1836 uint64_t offset = sgl->address; 1837 uint32_t max_len = rtransport->transport.opts.in_capsule_data_size; 1838 1839 SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n", 1840 offset, sgl->unkeyed.length); 1841 1842 if (offset > max_len) { 1843 SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n", 1844 offset, max_len); 1845 rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET; 1846 return -1; 1847 } 1848 max_len -= (uint32_t)offset; 1849 1850 if (sgl->unkeyed.length > max_len) { 1851 SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n", 1852 sgl->unkeyed.length, max_len); 1853 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1854 return -1; 1855 } 1856 1857 rdma_req->num_outstanding_data_wr = 0; 1858 req->data = rdma_req->recv->buf + offset; 1859 req->data_from_pool = false; 1860 req->length = sgl->unkeyed.length; 1861 1862 req->iov[0].iov_base = req->data; 1863 req->iov[0].iov_len = req->length; 1864 req->iovcnt = 1; 1865 1866 return 0; 1867 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT && 1868 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1869 1870 rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req); 1871 if (rc == -ENOMEM) { 1872 SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req); 1873 return 0; 1874 } else if (rc == -EINVAL) { 1875 SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n"); 1876 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1877 return -1; 1878 } 1879 1880 /* backward compatible */ 1881 req->data = req->iov[0].iov_base; 1882 1883 SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req, 1884 req->iovcnt); 1885 1886 return 0; 1887 } 1888 1889 SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n", 1890 sgl->generic.type, sgl->generic.subtype); 1891 rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID; 1892 return -1; 1893 } 1894 1895 static void 1896 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req, 1897 struct spdk_nvmf_rdma_transport *rtransport) 1898 { 1899 struct spdk_nvmf_rdma_qpair *rqpair; 1900 struct spdk_nvmf_rdma_poll_group *rgroup; 1901 1902 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1903 if (rdma_req->req.data_from_pool) { 1904 rgroup = rqpair->poller->group; 1905 1906 spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport); 1907 } 1908 if (rdma_req->req.stripped_data) { 1909 nvmf_request_free_stripped_buffers(&rdma_req->req, 1910 &rqpair->poller->group->group, 1911 &rtransport->transport); 1912 } 1913 nvmf_rdma_request_free_data(rdma_req, rtransport); 1914 rdma_req->req.length = 0; 1915 rdma_req->req.iovcnt = 0; 1916 rdma_req->req.data = NULL; 1917 rdma_req->rsp.wr.next = NULL; 1918 rdma_req->data.wr.next = NULL; 1919 rdma_req->offset = 0; 1920 rdma_req->req.dif_enabled = false; 1921 rdma_req->fused_failed = false; 1922 if (rdma_req->fused_pair) { 1923 /* This req was part of a valid fused pair, but failed before it got to 1924 * READ_TO_EXECUTE state. This means we need to fail the other request 1925 * in the pair, because it is no longer part of a valid pair. If the pair 1926 * already reached READY_TO_EXECUTE state, we need to kick it. 1927 */ 1928 rdma_req->fused_pair->fused_failed = true; 1929 if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 1930 nvmf_rdma_request_process(rtransport, rdma_req->fused_pair); 1931 } 1932 rdma_req->fused_pair = NULL; 1933 } 1934 memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif)); 1935 rqpair->qd--; 1936 1937 STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link); 1938 rdma_req->state = RDMA_REQUEST_STATE_FREE; 1939 } 1940 1941 static void 1942 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport, 1943 struct spdk_nvmf_rdma_qpair *rqpair, 1944 struct spdk_nvmf_rdma_request *rdma_req) 1945 { 1946 enum spdk_nvme_cmd_fuse last, next; 1947 1948 last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE; 1949 next = rdma_req->req.cmd->nvme_cmd.fuse; 1950 1951 assert(last != SPDK_NVME_CMD_FUSE_SECOND); 1952 1953 if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) { 1954 return; 1955 } 1956 1957 if (last == SPDK_NVME_CMD_FUSE_FIRST) { 1958 if (next == SPDK_NVME_CMD_FUSE_SECOND) { 1959 /* This is a valid pair of fused commands. Point them at each other 1960 * so they can be submitted consecutively once ready to be executed. 1961 */ 1962 rqpair->fused_first->fused_pair = rdma_req; 1963 rdma_req->fused_pair = rqpair->fused_first; 1964 rqpair->fused_first = NULL; 1965 return; 1966 } else { 1967 /* Mark the last req as failed since it wasn't followed by a SECOND. */ 1968 rqpair->fused_first->fused_failed = true; 1969 1970 /* If the last req is in READY_TO_EXECUTE state, then call 1971 * nvmf_rdma_request_process(), otherwise nothing else will kick it. 1972 */ 1973 if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 1974 nvmf_rdma_request_process(rtransport, rqpair->fused_first); 1975 } 1976 1977 rqpair->fused_first = NULL; 1978 } 1979 } 1980 1981 if (next == SPDK_NVME_CMD_FUSE_FIRST) { 1982 /* Set rqpair->fused_first here so that we know to check that the next request 1983 * is a SECOND (and to fail this one if it isn't). 1984 */ 1985 rqpair->fused_first = rdma_req; 1986 } else if (next == SPDK_NVME_CMD_FUSE_SECOND) { 1987 /* Mark this req failed since it ia SECOND and the last one was not a FIRST. */ 1988 rdma_req->fused_failed = true; 1989 } 1990 } 1991 1992 bool 1993 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 1994 struct spdk_nvmf_rdma_request *rdma_req) 1995 { 1996 struct spdk_nvmf_rdma_qpair *rqpair; 1997 struct spdk_nvmf_rdma_device *device; 1998 struct spdk_nvmf_rdma_poll_group *rgroup; 1999 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2000 int rc; 2001 struct spdk_nvmf_rdma_recv *rdma_recv; 2002 enum spdk_nvmf_rdma_request_state prev_state; 2003 bool progress = false; 2004 int data_posted; 2005 uint32_t num_blocks; 2006 2007 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 2008 device = rqpair->device; 2009 rgroup = rqpair->poller->group; 2010 2011 assert(rdma_req->state != RDMA_REQUEST_STATE_FREE); 2012 2013 /* If the queue pair is in an error state, force the request to the completed state 2014 * to release resources. */ 2015 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 2016 if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) { 2017 STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link); 2018 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) { 2019 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2020 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) { 2021 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2022 } 2023 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2024 } 2025 2026 /* The loop here is to allow for several back-to-back state changes. */ 2027 do { 2028 prev_state = rdma_req->state; 2029 2030 SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state); 2031 2032 switch (rdma_req->state) { 2033 case RDMA_REQUEST_STATE_FREE: 2034 /* Some external code must kick a request into RDMA_REQUEST_STATE_NEW 2035 * to escape this state. */ 2036 break; 2037 case RDMA_REQUEST_STATE_NEW: 2038 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0, 2039 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2040 rdma_recv = rdma_req->recv; 2041 2042 /* The first element of the SGL is the NVMe command */ 2043 rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr; 2044 memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp)); 2045 2046 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 2047 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2048 break; 2049 } 2050 2051 if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) { 2052 rdma_req->req.dif_enabled = true; 2053 } 2054 2055 nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req); 2056 2057 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2058 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 2059 rdma_req->rsp.wr.imm_data = 0; 2060 #endif 2061 2062 /* The next state transition depends on the data transfer needs of this request. */ 2063 rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req); 2064 2065 if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) { 2066 rsp->status.sct = SPDK_NVME_SCT_GENERIC; 2067 rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE; 2068 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2069 SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req); 2070 break; 2071 } 2072 2073 /* If no data to transfer, ready to execute. */ 2074 if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) { 2075 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2076 break; 2077 } 2078 2079 rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER; 2080 STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link); 2081 break; 2082 case RDMA_REQUEST_STATE_NEED_BUFFER: 2083 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0, 2084 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2085 2086 assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE); 2087 2088 if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) { 2089 /* This request needs to wait in line to obtain a buffer */ 2090 break; 2091 } 2092 2093 /* Try to get a data buffer */ 2094 rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req); 2095 if (rc < 0) { 2096 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2097 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2098 break; 2099 } 2100 2101 if (!rdma_req->req.data) { 2102 /* No buffers available. */ 2103 rgroup->stat.pending_data_buffer++; 2104 break; 2105 } 2106 2107 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2108 2109 /* If data is transferring from host to controller and the data didn't 2110 * arrive using in capsule data, we need to do a transfer from the host. 2111 */ 2112 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && 2113 rdma_req->req.data_from_pool) { 2114 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link); 2115 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING; 2116 break; 2117 } 2118 2119 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2120 break; 2121 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 2122 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0, 2123 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2124 2125 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) { 2126 /* This request needs to wait in line to perform RDMA */ 2127 break; 2128 } 2129 if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth 2130 || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) { 2131 /* We can only have so many WRs outstanding. we have to wait until some finish. */ 2132 rqpair->poller->stat.pending_rdma_read++; 2133 break; 2134 } 2135 2136 /* We have already verified that this request is the head of the queue. */ 2137 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link); 2138 2139 rc = request_transfer_in(&rdma_req->req); 2140 if (!rc) { 2141 rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER; 2142 } else { 2143 rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 2144 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2145 } 2146 break; 2147 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 2148 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0, 2149 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2150 /* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE 2151 * to escape this state. */ 2152 break; 2153 case RDMA_REQUEST_STATE_READY_TO_EXECUTE: 2154 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0, 2155 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2156 2157 if (spdk_unlikely(rdma_req->req.dif_enabled)) { 2158 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 2159 /* generate DIF for write operation */ 2160 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2161 assert(num_blocks > 0); 2162 2163 rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt, 2164 num_blocks, &rdma_req->req.dif.dif_ctx); 2165 if (rc != 0) { 2166 SPDK_ERRLOG("DIF generation failed\n"); 2167 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2168 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 2169 break; 2170 } 2171 } 2172 2173 assert(rdma_req->req.dif.elba_length >= rdma_req->req.length); 2174 /* set extended length before IO operation */ 2175 rdma_req->req.length = rdma_req->req.dif.elba_length; 2176 } 2177 2178 if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) { 2179 if (rdma_req->fused_failed) { 2180 /* This request failed FUSED semantics. Fail it immediately, without 2181 * even sending it to the target layer. 2182 */ 2183 rsp->status.sct = SPDK_NVME_SCT_GENERIC; 2184 rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED; 2185 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2186 break; 2187 } 2188 2189 if (rdma_req->fused_pair == NULL || 2190 rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 2191 /* This request is ready to execute, but either we don't know yet if it's 2192 * valid - i.e. this is a FIRST but we haven't received the next 2193 * request yet or the other request of this fused pair isn't ready to 2194 * execute. So break here and this request will get processed later either 2195 * when the other request is ready or we find that this request isn't valid. 2196 */ 2197 break; 2198 } 2199 } 2200 2201 /* If we get to this point, and this request is a fused command, we know that 2202 * it is part of valid sequence (FIRST followed by a SECOND) and that both 2203 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this 2204 * request, and the other request of the fused pair, in the correct order. 2205 * Also clear the ->fused_pair pointers on both requests, since after this point 2206 * we no longer need to maintain the relationship between these two requests. 2207 */ 2208 if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) { 2209 assert(rdma_req->fused_pair != NULL); 2210 assert(rdma_req->fused_pair->fused_pair != NULL); 2211 rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING; 2212 spdk_nvmf_request_exec(&rdma_req->fused_pair->req); 2213 rdma_req->fused_pair->fused_pair = NULL; 2214 rdma_req->fused_pair = NULL; 2215 } 2216 rdma_req->state = RDMA_REQUEST_STATE_EXECUTING; 2217 spdk_nvmf_request_exec(&rdma_req->req); 2218 if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) { 2219 assert(rdma_req->fused_pair != NULL); 2220 assert(rdma_req->fused_pair->fused_pair != NULL); 2221 rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING; 2222 spdk_nvmf_request_exec(&rdma_req->fused_pair->req); 2223 rdma_req->fused_pair->fused_pair = NULL; 2224 rdma_req->fused_pair = NULL; 2225 } 2226 break; 2227 case RDMA_REQUEST_STATE_EXECUTING: 2228 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0, 2229 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2230 /* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED 2231 * to escape this state. */ 2232 break; 2233 case RDMA_REQUEST_STATE_EXECUTED: 2234 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0, 2235 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2236 if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && 2237 rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2238 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link); 2239 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING; 2240 } else { 2241 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2242 } 2243 if (spdk_unlikely(rdma_req->req.dif_enabled)) { 2244 /* restore the original length */ 2245 rdma_req->req.length = rdma_req->req.dif.orig_length; 2246 2247 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2248 struct spdk_dif_error error_blk; 2249 2250 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2251 if (!rdma_req->req.stripped_data) { 2252 rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2253 &rdma_req->req.dif.dif_ctx, &error_blk); 2254 } else { 2255 rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov, 2256 rdma_req->req.stripped_data->iovcnt, 2257 rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2258 &rdma_req->req.dif.dif_ctx, &error_blk); 2259 } 2260 if (rc) { 2261 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2262 2263 SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type, 2264 error_blk.err_offset); 2265 rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR; 2266 rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type); 2267 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2268 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2269 } 2270 } 2271 } 2272 break; 2273 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 2274 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0, 2275 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2276 2277 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) { 2278 /* This request needs to wait in line to perform RDMA */ 2279 break; 2280 } 2281 if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) > 2282 rqpair->max_send_depth) { 2283 /* We can only have so many WRs outstanding. we have to wait until some finish. 2284 * +1 since each request has an additional wr in the resp. */ 2285 rqpair->poller->stat.pending_rdma_write++; 2286 break; 2287 } 2288 2289 /* We have already verified that this request is the head of the queue. */ 2290 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link); 2291 2292 /* The data transfer will be kicked off from 2293 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state. 2294 */ 2295 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2296 break; 2297 case RDMA_REQUEST_STATE_READY_TO_COMPLETE: 2298 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0, 2299 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2300 rc = request_transfer_out(&rdma_req->req, &data_posted); 2301 assert(rc == 0); /* No good way to handle this currently */ 2302 if (rc) { 2303 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2304 } else { 2305 rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST : 2306 RDMA_REQUEST_STATE_COMPLETING; 2307 } 2308 break; 2309 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 2310 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0, 2311 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2312 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2313 * to escape this state. */ 2314 break; 2315 case RDMA_REQUEST_STATE_COMPLETING: 2316 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0, 2317 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2318 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2319 * to escape this state. */ 2320 break; 2321 case RDMA_REQUEST_STATE_COMPLETED: 2322 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0, 2323 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2324 2325 rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc; 2326 _nvmf_rdma_request_free(rdma_req, rtransport); 2327 break; 2328 case RDMA_REQUEST_NUM_STATES: 2329 default: 2330 assert(0); 2331 break; 2332 } 2333 2334 if (rdma_req->state != prev_state) { 2335 progress = true; 2336 } 2337 } while (rdma_req->state != prev_state); 2338 2339 return progress; 2340 } 2341 2342 /* Public API callbacks begin here */ 2343 2344 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128 2345 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128 2346 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096 2347 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128 2348 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096 2349 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072 2350 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES) 2351 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095 2352 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32 2353 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false 2354 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false 2355 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100 2356 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1 2357 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false 2358 2359 static void 2360 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts) 2361 { 2362 opts->max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH; 2363 opts->max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR; 2364 opts->in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE; 2365 opts->max_io_size = SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE; 2366 opts->io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE; 2367 opts->max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH; 2368 opts->num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS; 2369 opts->buf_cache_size = SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE; 2370 opts->dif_insert_or_strip = SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP; 2371 opts->abort_timeout_sec = SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC; 2372 opts->transport_specific = NULL; 2373 } 2374 2375 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport, 2376 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg); 2377 2378 static inline bool 2379 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device) 2380 { 2381 return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD || 2382 device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW; 2383 } 2384 2385 static int nvmf_rdma_accept(void *ctx); 2386 2387 static struct spdk_nvmf_transport * 2388 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts) 2389 { 2390 int rc; 2391 struct spdk_nvmf_rdma_transport *rtransport; 2392 struct spdk_nvmf_rdma_device *device, *tmp; 2393 struct ibv_context **contexts; 2394 uint32_t i; 2395 int flag; 2396 uint32_t sge_count; 2397 uint32_t min_shared_buffers; 2398 uint32_t min_in_capsule_data_size; 2399 int max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES; 2400 pthread_mutexattr_t attr; 2401 2402 rtransport = calloc(1, sizeof(*rtransport)); 2403 if (!rtransport) { 2404 return NULL; 2405 } 2406 2407 if (pthread_mutexattr_init(&attr)) { 2408 SPDK_ERRLOG("pthread_mutexattr_init() failed\n"); 2409 free(rtransport); 2410 return NULL; 2411 } 2412 2413 if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) { 2414 SPDK_ERRLOG("pthread_mutexattr_settype() failed\n"); 2415 pthread_mutexattr_destroy(&attr); 2416 free(rtransport); 2417 return NULL; 2418 } 2419 2420 if (pthread_mutex_init(&rtransport->lock, &attr)) { 2421 SPDK_ERRLOG("pthread_mutex_init() failed\n"); 2422 pthread_mutexattr_destroy(&attr); 2423 free(rtransport); 2424 return NULL; 2425 } 2426 2427 pthread_mutexattr_destroy(&attr); 2428 2429 TAILQ_INIT(&rtransport->devices); 2430 TAILQ_INIT(&rtransport->ports); 2431 TAILQ_INIT(&rtransport->poll_groups); 2432 2433 rtransport->transport.ops = &spdk_nvmf_transport_rdma; 2434 rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE; 2435 rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH; 2436 rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ; 2437 rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG; 2438 rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING; 2439 if (opts->transport_specific != NULL && 2440 spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder, 2441 SPDK_COUNTOF(rdma_transport_opts_decoder), 2442 &rtransport->rdma_opts)) { 2443 SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n"); 2444 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2445 return NULL; 2446 } 2447 2448 SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n" 2449 " Transport opts: max_ioq_depth=%d, max_io_size=%d,\n" 2450 " max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n" 2451 " in_capsule_data_size=%d, max_aq_depth=%d,\n" 2452 " num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d," 2453 " acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n", 2454 opts->max_queue_depth, 2455 opts->max_io_size, 2456 opts->max_qpairs_per_ctrlr - 1, 2457 opts->io_unit_size, 2458 opts->in_capsule_data_size, 2459 opts->max_aq_depth, 2460 opts->num_shared_buffers, 2461 rtransport->rdma_opts.num_cqe, 2462 rtransport->rdma_opts.max_srq_depth, 2463 rtransport->rdma_opts.no_srq, 2464 rtransport->rdma_opts.acceptor_backlog, 2465 rtransport->rdma_opts.no_wr_batching, 2466 opts->abort_timeout_sec); 2467 2468 /* I/O unit size cannot be larger than max I/O size */ 2469 if (opts->io_unit_size > opts->max_io_size) { 2470 opts->io_unit_size = opts->max_io_size; 2471 } 2472 2473 if (rtransport->rdma_opts.acceptor_backlog <= 0) { 2474 SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n", 2475 SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG); 2476 rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG; 2477 } 2478 2479 if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) { 2480 SPDK_ERRLOG("The number of shared data buffers (%d) is less than" 2481 "the minimum number required to guarantee that forward progress can be made (%d)\n", 2482 opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2)); 2483 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2484 return NULL; 2485 } 2486 2487 min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size; 2488 if (min_shared_buffers > opts->num_shared_buffers) { 2489 SPDK_ERRLOG("There are not enough buffers to satisfy" 2490 "per-poll group caches for each thread. (%" PRIu32 ")" 2491 "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers); 2492 SPDK_ERRLOG("Please specify a larger number of shared buffers\n"); 2493 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2494 return NULL; 2495 } 2496 2497 sge_count = opts->max_io_size / opts->io_unit_size; 2498 if (sge_count > NVMF_DEFAULT_TX_SGE) { 2499 SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size); 2500 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2501 return NULL; 2502 } 2503 2504 min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES; 2505 if (opts->in_capsule_data_size < min_in_capsule_data_size) { 2506 SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n", 2507 min_in_capsule_data_size); 2508 opts->in_capsule_data_size = min_in_capsule_data_size; 2509 } 2510 2511 rtransport->event_channel = rdma_create_event_channel(); 2512 if (rtransport->event_channel == NULL) { 2513 SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno)); 2514 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2515 return NULL; 2516 } 2517 2518 flag = fcntl(rtransport->event_channel->fd, F_GETFL); 2519 if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { 2520 SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n", 2521 rtransport->event_channel->fd, spdk_strerror(errno)); 2522 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2523 return NULL; 2524 } 2525 2526 rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data", 2527 opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES, 2528 sizeof(struct spdk_nvmf_rdma_request_data), 2529 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 2530 SPDK_ENV_SOCKET_ID_ANY); 2531 if (!rtransport->data_wr_pool) { 2532 SPDK_ERRLOG("Unable to allocate work request pool for poll group\n"); 2533 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2534 return NULL; 2535 } 2536 2537 contexts = rdma_get_devices(NULL); 2538 if (contexts == NULL) { 2539 SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); 2540 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2541 return NULL; 2542 } 2543 2544 i = 0; 2545 rc = 0; 2546 while (contexts[i] != NULL) { 2547 device = calloc(1, sizeof(*device)); 2548 if (!device) { 2549 SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n"); 2550 rc = -ENOMEM; 2551 break; 2552 } 2553 device->context = contexts[i]; 2554 rc = ibv_query_device(device->context, &device->attr); 2555 if (rc < 0) { 2556 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 2557 free(device); 2558 break; 2559 2560 } 2561 2562 max_device_sge = spdk_min(max_device_sge, device->attr.max_sge); 2563 2564 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2565 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) { 2566 SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,"); 2567 SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id); 2568 } 2569 2570 /** 2571 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE. 2572 * The Soft-RoCE RXE driver does not currently support send with invalidate, 2573 * but incorrectly reports that it does. There are changes making their way 2574 * through the kernel now that will enable this feature. When they are merged, 2575 * we can conditionally enable this feature. 2576 * 2577 * TODO: enable this for versions of the kernel rxe driver that support it. 2578 */ 2579 if (nvmf_rdma_is_rxe_device(device)) { 2580 device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS); 2581 } 2582 #endif 2583 2584 /* set up device context async ev fd as NON_BLOCKING */ 2585 flag = fcntl(device->context->async_fd, F_GETFL); 2586 rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK); 2587 if (rc < 0) { 2588 SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n"); 2589 free(device); 2590 break; 2591 } 2592 2593 TAILQ_INSERT_TAIL(&rtransport->devices, device, link); 2594 i++; 2595 2596 if (g_nvmf_hooks.get_ibv_pd) { 2597 device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context); 2598 } else { 2599 device->pd = ibv_alloc_pd(device->context); 2600 } 2601 2602 if (!device->pd) { 2603 SPDK_ERRLOG("Unable to allocate protection domain.\n"); 2604 rc = -ENOMEM; 2605 break; 2606 } 2607 2608 assert(device->map == NULL); 2609 2610 device->map = spdk_rdma_create_mem_map(device->pd, &g_nvmf_hooks, SPDK_RDMA_MEMORY_MAP_ROLE_TARGET); 2611 if (!device->map) { 2612 SPDK_ERRLOG("Unable to allocate memory map for listen address\n"); 2613 rc = -ENOMEM; 2614 break; 2615 } 2616 2617 assert(device->map != NULL); 2618 assert(device->pd != NULL); 2619 } 2620 rdma_free_devices(contexts); 2621 2622 if (opts->io_unit_size * max_device_sge < opts->max_io_size) { 2623 /* divide and round up. */ 2624 opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge; 2625 2626 /* round up to the nearest 4k. */ 2627 opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK; 2628 2629 opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE); 2630 SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n", 2631 opts->io_unit_size); 2632 } 2633 2634 if (rc < 0) { 2635 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2636 return NULL; 2637 } 2638 2639 /* Set up poll descriptor array to monitor events from RDMA and IB 2640 * in a single poll syscall 2641 */ 2642 rtransport->npoll_fds = i + 1; 2643 i = 0; 2644 rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd)); 2645 if (rtransport->poll_fds == NULL) { 2646 SPDK_ERRLOG("poll_fds allocation failed\n"); 2647 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2648 return NULL; 2649 } 2650 2651 rtransport->poll_fds[i].fd = rtransport->event_channel->fd; 2652 rtransport->poll_fds[i++].events = POLLIN; 2653 2654 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 2655 rtransport->poll_fds[i].fd = device->context->async_fd; 2656 rtransport->poll_fds[i++].events = POLLIN; 2657 } 2658 2659 rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport, 2660 opts->acceptor_poll_rate); 2661 if (!rtransport->accept_poller) { 2662 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2663 return NULL; 2664 } 2665 2666 return &rtransport->transport; 2667 } 2668 2669 static void 2670 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w) 2671 { 2672 struct spdk_nvmf_rdma_transport *rtransport; 2673 assert(w != NULL); 2674 2675 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2676 spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth); 2677 spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq); 2678 if (rtransport->rdma_opts.no_srq == true) { 2679 spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe); 2680 } 2681 spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog); 2682 spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching); 2683 } 2684 2685 static int 2686 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport, 2687 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg) 2688 { 2689 struct spdk_nvmf_rdma_transport *rtransport; 2690 struct spdk_nvmf_rdma_port *port, *port_tmp; 2691 struct spdk_nvmf_rdma_device *device, *device_tmp; 2692 2693 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2694 2695 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) { 2696 TAILQ_REMOVE(&rtransport->ports, port, link); 2697 rdma_destroy_id(port->id); 2698 free(port); 2699 } 2700 2701 if (rtransport->poll_fds != NULL) { 2702 free(rtransport->poll_fds); 2703 } 2704 2705 if (rtransport->event_channel != NULL) { 2706 rdma_destroy_event_channel(rtransport->event_channel); 2707 } 2708 2709 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) { 2710 TAILQ_REMOVE(&rtransport->devices, device, link); 2711 spdk_rdma_free_mem_map(&device->map); 2712 if (device->pd) { 2713 if (!g_nvmf_hooks.get_ibv_pd) { 2714 ibv_dealloc_pd(device->pd); 2715 } 2716 } 2717 free(device); 2718 } 2719 2720 if (rtransport->data_wr_pool != NULL) { 2721 if (spdk_mempool_count(rtransport->data_wr_pool) != 2722 (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) { 2723 SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n", 2724 spdk_mempool_count(rtransport->data_wr_pool), 2725 transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES); 2726 } 2727 } 2728 2729 spdk_mempool_free(rtransport->data_wr_pool); 2730 2731 spdk_poller_unregister(&rtransport->accept_poller); 2732 pthread_mutex_destroy(&rtransport->lock); 2733 free(rtransport); 2734 2735 if (cb_fn) { 2736 cb_fn(cb_arg); 2737 } 2738 return 0; 2739 } 2740 2741 static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 2742 struct spdk_nvme_transport_id *trid, 2743 bool peer); 2744 2745 static int 2746 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid, 2747 struct spdk_nvmf_listen_opts *listen_opts) 2748 { 2749 struct spdk_nvmf_rdma_transport *rtransport; 2750 struct spdk_nvmf_rdma_device *device; 2751 struct spdk_nvmf_rdma_port *port; 2752 struct addrinfo *res; 2753 struct addrinfo hints; 2754 int family; 2755 int rc; 2756 2757 if (!strlen(trid->trsvcid)) { 2758 SPDK_ERRLOG("Service id is required\n"); 2759 return -EINVAL; 2760 } 2761 2762 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2763 assert(rtransport->event_channel != NULL); 2764 2765 pthread_mutex_lock(&rtransport->lock); 2766 port = calloc(1, sizeof(*port)); 2767 if (!port) { 2768 SPDK_ERRLOG("Port allocation failed\n"); 2769 pthread_mutex_unlock(&rtransport->lock); 2770 return -ENOMEM; 2771 } 2772 2773 port->trid = trid; 2774 2775 switch (trid->adrfam) { 2776 case SPDK_NVMF_ADRFAM_IPV4: 2777 family = AF_INET; 2778 break; 2779 case SPDK_NVMF_ADRFAM_IPV6: 2780 family = AF_INET6; 2781 break; 2782 default: 2783 SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam); 2784 free(port); 2785 pthread_mutex_unlock(&rtransport->lock); 2786 return -EINVAL; 2787 } 2788 2789 memset(&hints, 0, sizeof(hints)); 2790 hints.ai_family = family; 2791 hints.ai_flags = AI_NUMERICSERV; 2792 hints.ai_socktype = SOCK_STREAM; 2793 hints.ai_protocol = 0; 2794 2795 rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res); 2796 if (rc) { 2797 SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc); 2798 free(port); 2799 pthread_mutex_unlock(&rtransport->lock); 2800 return -EINVAL; 2801 } 2802 2803 rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP); 2804 if (rc < 0) { 2805 SPDK_ERRLOG("rdma_create_id() failed\n"); 2806 freeaddrinfo(res); 2807 free(port); 2808 pthread_mutex_unlock(&rtransport->lock); 2809 return rc; 2810 } 2811 2812 rc = rdma_bind_addr(port->id, res->ai_addr); 2813 freeaddrinfo(res); 2814 2815 if (rc < 0) { 2816 SPDK_ERRLOG("rdma_bind_addr() failed\n"); 2817 rdma_destroy_id(port->id); 2818 free(port); 2819 pthread_mutex_unlock(&rtransport->lock); 2820 return rc; 2821 } 2822 2823 if (!port->id->verbs) { 2824 SPDK_ERRLOG("ibv_context is null\n"); 2825 rdma_destroy_id(port->id); 2826 free(port); 2827 pthread_mutex_unlock(&rtransport->lock); 2828 return -1; 2829 } 2830 2831 rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog); 2832 if (rc < 0) { 2833 SPDK_ERRLOG("rdma_listen() failed\n"); 2834 rdma_destroy_id(port->id); 2835 free(port); 2836 pthread_mutex_unlock(&rtransport->lock); 2837 return rc; 2838 } 2839 2840 TAILQ_FOREACH(device, &rtransport->devices, link) { 2841 if (device->context == port->id->verbs) { 2842 port->device = device; 2843 break; 2844 } 2845 } 2846 if (!port->device) { 2847 SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n", 2848 port->id->verbs); 2849 rdma_destroy_id(port->id); 2850 free(port); 2851 pthread_mutex_unlock(&rtransport->lock); 2852 return -EINVAL; 2853 } 2854 2855 SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n", 2856 trid->traddr, trid->trsvcid); 2857 2858 TAILQ_INSERT_TAIL(&rtransport->ports, port, link); 2859 pthread_mutex_unlock(&rtransport->lock); 2860 return 0; 2861 } 2862 2863 static void 2864 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport, 2865 const struct spdk_nvme_transport_id *trid) 2866 { 2867 struct spdk_nvmf_rdma_transport *rtransport; 2868 struct spdk_nvmf_rdma_port *port, *tmp; 2869 2870 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2871 2872 pthread_mutex_lock(&rtransport->lock); 2873 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) { 2874 if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) { 2875 TAILQ_REMOVE(&rtransport->ports, port, link); 2876 rdma_destroy_id(port->id); 2877 free(port); 2878 break; 2879 } 2880 } 2881 2882 pthread_mutex_unlock(&rtransport->lock); 2883 } 2884 2885 static void 2886 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport, 2887 struct spdk_nvmf_rdma_qpair *rqpair, bool drain) 2888 { 2889 struct spdk_nvmf_request *req, *tmp; 2890 struct spdk_nvmf_rdma_request *rdma_req, *req_tmp; 2891 struct spdk_nvmf_rdma_resources *resources; 2892 2893 /* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */ 2894 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) { 2895 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2896 break; 2897 } 2898 } 2899 2900 /* Then RDMA writes since reads have stronger restrictions than writes */ 2901 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) { 2902 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2903 break; 2904 } 2905 } 2906 2907 /* Then we handle request waiting on memory buffers. */ 2908 STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) { 2909 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 2910 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2911 break; 2912 } 2913 } 2914 2915 resources = rqpair->resources; 2916 while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) { 2917 rdma_req = STAILQ_FIRST(&resources->free_queue); 2918 STAILQ_REMOVE_HEAD(&resources->free_queue, state_link); 2919 rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue); 2920 STAILQ_REMOVE_HEAD(&resources->incoming_queue, link); 2921 2922 if (rqpair->srq != NULL) { 2923 rdma_req->req.qpair = &rdma_req->recv->qpair->qpair; 2924 rdma_req->recv->qpair->qd++; 2925 } else { 2926 rqpair->qd++; 2927 } 2928 2929 rdma_req->receive_tsc = rdma_req->recv->receive_tsc; 2930 rdma_req->state = RDMA_REQUEST_STATE_NEW; 2931 if (nvmf_rdma_request_process(rtransport, rdma_req) == false) { 2932 break; 2933 } 2934 } 2935 if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) { 2936 rqpair->poller->stat.pending_free_request++; 2937 } 2938 } 2939 2940 static inline bool 2941 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device) 2942 { 2943 /* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */ 2944 return nvmf_rdma_is_rxe_device(device) || 2945 device->context->device->transport_type == IBV_TRANSPORT_IWARP; 2946 } 2947 2948 static void 2949 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair) 2950 { 2951 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 2952 struct spdk_nvmf_rdma_transport, transport); 2953 2954 nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); 2955 2956 /* nvmr_rdma_close_qpair is not called */ 2957 if (!rqpair->to_close) { 2958 return; 2959 } 2960 2961 /* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */ 2962 if (rqpair->current_send_depth != 0) { 2963 return; 2964 } 2965 2966 if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) { 2967 return; 2968 } 2969 2970 if (rqpair->srq != NULL && rqpair->last_wqe_reached == false && 2971 !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) { 2972 return; 2973 } 2974 2975 assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR); 2976 2977 nvmf_rdma_qpair_destroy(rqpair); 2978 } 2979 2980 static int 2981 nvmf_rdma_disconnect(struct rdma_cm_event *evt) 2982 { 2983 struct spdk_nvmf_qpair *qpair; 2984 struct spdk_nvmf_rdma_qpair *rqpair; 2985 2986 if (evt->id == NULL) { 2987 SPDK_ERRLOG("disconnect request: missing cm_id\n"); 2988 return -1; 2989 } 2990 2991 qpair = evt->id->context; 2992 if (qpair == NULL) { 2993 SPDK_ERRLOG("disconnect request: no active connection\n"); 2994 return -1; 2995 } 2996 2997 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 2998 2999 spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair); 3000 3001 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3002 3003 return 0; 3004 } 3005 3006 #ifdef DEBUG 3007 static const char *CM_EVENT_STR[] = { 3008 "RDMA_CM_EVENT_ADDR_RESOLVED", 3009 "RDMA_CM_EVENT_ADDR_ERROR", 3010 "RDMA_CM_EVENT_ROUTE_RESOLVED", 3011 "RDMA_CM_EVENT_ROUTE_ERROR", 3012 "RDMA_CM_EVENT_CONNECT_REQUEST", 3013 "RDMA_CM_EVENT_CONNECT_RESPONSE", 3014 "RDMA_CM_EVENT_CONNECT_ERROR", 3015 "RDMA_CM_EVENT_UNREACHABLE", 3016 "RDMA_CM_EVENT_REJECTED", 3017 "RDMA_CM_EVENT_ESTABLISHED", 3018 "RDMA_CM_EVENT_DISCONNECTED", 3019 "RDMA_CM_EVENT_DEVICE_REMOVAL", 3020 "RDMA_CM_EVENT_MULTICAST_JOIN", 3021 "RDMA_CM_EVENT_MULTICAST_ERROR", 3022 "RDMA_CM_EVENT_ADDR_CHANGE", 3023 "RDMA_CM_EVENT_TIMEWAIT_EXIT" 3024 }; 3025 #endif /* DEBUG */ 3026 3027 static void 3028 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport, 3029 struct spdk_nvmf_rdma_port *port) 3030 { 3031 struct spdk_nvmf_rdma_poll_group *rgroup; 3032 struct spdk_nvmf_rdma_poller *rpoller; 3033 struct spdk_nvmf_rdma_qpair *rqpair; 3034 3035 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 3036 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 3037 RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) { 3038 if (rqpair->listen_id == port->id) { 3039 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3040 } 3041 } 3042 } 3043 } 3044 } 3045 3046 static bool 3047 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport, 3048 struct rdma_cm_event *event) 3049 { 3050 const struct spdk_nvme_transport_id *trid; 3051 struct spdk_nvmf_rdma_port *port; 3052 struct spdk_nvmf_rdma_transport *rtransport; 3053 bool event_acked = false; 3054 3055 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3056 TAILQ_FOREACH(port, &rtransport->ports, link) { 3057 if (port->id == event->id) { 3058 SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid); 3059 rdma_ack_cm_event(event); 3060 event_acked = true; 3061 trid = port->trid; 3062 break; 3063 } 3064 } 3065 3066 if (event_acked) { 3067 nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); 3068 3069 nvmf_rdma_stop_listen(transport, trid); 3070 nvmf_rdma_listen(transport, trid, NULL); 3071 } 3072 3073 return event_acked; 3074 } 3075 3076 static void 3077 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport, 3078 struct rdma_cm_event *event) 3079 { 3080 struct spdk_nvmf_rdma_port *port; 3081 struct spdk_nvmf_rdma_transport *rtransport; 3082 3083 port = event->id->context; 3084 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3085 3086 SPDK_NOTICELOG("Port %s:%s is being removed\n", port->trid->traddr, port->trid->trsvcid); 3087 3088 nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); 3089 3090 rdma_ack_cm_event(event); 3091 3092 while (spdk_nvmf_transport_stop_listen(transport, port->trid) == 0) { 3093 ; 3094 } 3095 } 3096 3097 static void 3098 nvmf_process_cm_event(struct spdk_nvmf_transport *transport) 3099 { 3100 struct spdk_nvmf_rdma_transport *rtransport; 3101 struct rdma_cm_event *event; 3102 int rc; 3103 bool event_acked; 3104 3105 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3106 3107 if (rtransport->event_channel == NULL) { 3108 return; 3109 } 3110 3111 while (1) { 3112 event_acked = false; 3113 rc = rdma_get_cm_event(rtransport->event_channel, &event); 3114 if (rc) { 3115 if (errno != EAGAIN && errno != EWOULDBLOCK) { 3116 SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno)); 3117 } 3118 break; 3119 } 3120 3121 SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]); 3122 3123 spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event); 3124 3125 switch (event->event) { 3126 case RDMA_CM_EVENT_ADDR_RESOLVED: 3127 case RDMA_CM_EVENT_ADDR_ERROR: 3128 case RDMA_CM_EVENT_ROUTE_RESOLVED: 3129 case RDMA_CM_EVENT_ROUTE_ERROR: 3130 /* No action required. The target never attempts to resolve routes. */ 3131 break; 3132 case RDMA_CM_EVENT_CONNECT_REQUEST: 3133 rc = nvmf_rdma_connect(transport, event); 3134 if (rc < 0) { 3135 SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc); 3136 break; 3137 } 3138 break; 3139 case RDMA_CM_EVENT_CONNECT_RESPONSE: 3140 /* The target never initiates a new connection. So this will not occur. */ 3141 break; 3142 case RDMA_CM_EVENT_CONNECT_ERROR: 3143 /* Can this happen? The docs say it can, but not sure what causes it. */ 3144 break; 3145 case RDMA_CM_EVENT_UNREACHABLE: 3146 case RDMA_CM_EVENT_REJECTED: 3147 /* These only occur on the client side. */ 3148 break; 3149 case RDMA_CM_EVENT_ESTABLISHED: 3150 /* TODO: Should we be waiting for this event anywhere? */ 3151 break; 3152 case RDMA_CM_EVENT_DISCONNECTED: 3153 rc = nvmf_rdma_disconnect(event); 3154 if (rc < 0) { 3155 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3156 break; 3157 } 3158 break; 3159 case RDMA_CM_EVENT_DEVICE_REMOVAL: 3160 /* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL 3161 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s. 3162 * Once these events are sent to SPDK, we should release all IB resources and 3163 * don't make attempts to call any ibv_query/modify/create functions. We can only call 3164 * ibv_destroy* functions to release user space memory allocated by IB. All kernel 3165 * resources are already cleaned. */ 3166 if (event->id->qp) { 3167 /* If rdma_cm event has a valid `qp` pointer then the event refers to the 3168 * corresponding qpair. Otherwise the event refers to a listening device */ 3169 rc = nvmf_rdma_disconnect(event); 3170 if (rc < 0) { 3171 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3172 break; 3173 } 3174 } else { 3175 nvmf_rdma_handle_cm_event_port_removal(transport, event); 3176 event_acked = true; 3177 } 3178 break; 3179 case RDMA_CM_EVENT_MULTICAST_JOIN: 3180 case RDMA_CM_EVENT_MULTICAST_ERROR: 3181 /* Multicast is not used */ 3182 break; 3183 case RDMA_CM_EVENT_ADDR_CHANGE: 3184 event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event); 3185 break; 3186 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 3187 /* For now, do nothing. The target never re-uses queue pairs. */ 3188 break; 3189 default: 3190 SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); 3191 break; 3192 } 3193 if (!event_acked) { 3194 rdma_ack_cm_event(event); 3195 } 3196 } 3197 } 3198 3199 static void 3200 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair) 3201 { 3202 rqpair->last_wqe_reached = true; 3203 nvmf_rdma_destroy_drained_qpair(rqpair); 3204 } 3205 3206 static void 3207 nvmf_rdma_qpair_process_ibv_event(void *ctx) 3208 { 3209 struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx; 3210 3211 if (event_ctx->rqpair) { 3212 STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3213 if (event_ctx->cb_fn) { 3214 event_ctx->cb_fn(event_ctx->rqpair); 3215 } 3216 } 3217 free(event_ctx); 3218 } 3219 3220 static int 3221 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair, 3222 spdk_nvmf_rdma_qpair_ibv_event fn) 3223 { 3224 struct spdk_nvmf_rdma_ibv_event_ctx *ctx; 3225 struct spdk_thread *thr = NULL; 3226 int rc; 3227 3228 if (rqpair->qpair.group) { 3229 thr = rqpair->qpair.group->thread; 3230 } else if (rqpair->destruct_channel) { 3231 thr = spdk_io_channel_get_thread(rqpair->destruct_channel); 3232 } 3233 3234 if (!thr) { 3235 SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair); 3236 return -EINVAL; 3237 } 3238 3239 ctx = calloc(1, sizeof(*ctx)); 3240 if (!ctx) { 3241 return -ENOMEM; 3242 } 3243 3244 ctx->rqpair = rqpair; 3245 ctx->cb_fn = fn; 3246 STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link); 3247 3248 rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx); 3249 if (rc) { 3250 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3251 free(ctx); 3252 } 3253 3254 return rc; 3255 } 3256 3257 static int 3258 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device) 3259 { 3260 int rc; 3261 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 3262 struct ibv_async_event event; 3263 3264 rc = ibv_get_async_event(device->context, &event); 3265 3266 if (rc) { 3267 /* In non-blocking mode -1 means there are no events available */ 3268 return rc; 3269 } 3270 3271 switch (event.event_type) { 3272 case IBV_EVENT_QP_FATAL: 3273 rqpair = event.element.qp->qp_context; 3274 SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair); 3275 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3276 (uintptr_t)rqpair, event.event_type); 3277 nvmf_rdma_update_ibv_state(rqpair); 3278 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3279 break; 3280 case IBV_EVENT_QP_LAST_WQE_REACHED: 3281 /* This event only occurs for shared receive queues. */ 3282 rqpair = event.element.qp->qp_context; 3283 SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair); 3284 rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached); 3285 if (rc) { 3286 SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc); 3287 rqpair->last_wqe_reached = true; 3288 } 3289 break; 3290 case IBV_EVENT_SQ_DRAINED: 3291 /* This event occurs frequently in both error and non-error states. 3292 * Check if the qpair is in an error state before sending a message. */ 3293 rqpair = event.element.qp->qp_context; 3294 SPDK_DEBUGLOG(rdma, "Last sq drained event received for rqpair %p\n", rqpair); 3295 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3296 (uintptr_t)rqpair, event.event_type); 3297 if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) { 3298 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3299 } 3300 break; 3301 case IBV_EVENT_QP_REQ_ERR: 3302 case IBV_EVENT_QP_ACCESS_ERR: 3303 case IBV_EVENT_COMM_EST: 3304 case IBV_EVENT_PATH_MIG: 3305 case IBV_EVENT_PATH_MIG_ERR: 3306 SPDK_NOTICELOG("Async event: %s\n", 3307 ibv_event_type_str(event.event_type)); 3308 rqpair = event.element.qp->qp_context; 3309 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3310 (uintptr_t)rqpair, event.event_type); 3311 nvmf_rdma_update_ibv_state(rqpair); 3312 break; 3313 case IBV_EVENT_CQ_ERR: 3314 case IBV_EVENT_DEVICE_FATAL: 3315 case IBV_EVENT_PORT_ACTIVE: 3316 case IBV_EVENT_PORT_ERR: 3317 case IBV_EVENT_LID_CHANGE: 3318 case IBV_EVENT_PKEY_CHANGE: 3319 case IBV_EVENT_SM_CHANGE: 3320 case IBV_EVENT_SRQ_ERR: 3321 case IBV_EVENT_SRQ_LIMIT_REACHED: 3322 case IBV_EVENT_CLIENT_REREGISTER: 3323 case IBV_EVENT_GID_CHANGE: 3324 default: 3325 SPDK_NOTICELOG("Async event: %s\n", 3326 ibv_event_type_str(event.event_type)); 3327 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type); 3328 break; 3329 } 3330 ibv_ack_async_event(&event); 3331 3332 return 0; 3333 } 3334 3335 static void 3336 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events) 3337 { 3338 int rc = 0; 3339 uint32_t i = 0; 3340 3341 for (i = 0; i < max_events; i++) { 3342 rc = nvmf_process_ib_event(device); 3343 if (rc) { 3344 break; 3345 } 3346 } 3347 3348 SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i); 3349 } 3350 3351 static int 3352 nvmf_rdma_accept(void *ctx) 3353 { 3354 int nfds, i = 0; 3355 struct spdk_nvmf_transport *transport = ctx; 3356 struct spdk_nvmf_rdma_transport *rtransport; 3357 struct spdk_nvmf_rdma_device *device, *tmp; 3358 uint32_t count; 3359 3360 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3361 count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0); 3362 3363 if (nfds <= 0) { 3364 return SPDK_POLLER_IDLE; 3365 } 3366 3367 /* The first poll descriptor is RDMA CM event */ 3368 if (rtransport->poll_fds[i++].revents & POLLIN) { 3369 nvmf_process_cm_event(transport); 3370 nfds--; 3371 } 3372 3373 if (nfds == 0) { 3374 return SPDK_POLLER_BUSY; 3375 } 3376 3377 /* Second and subsequent poll descriptors are IB async events */ 3378 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 3379 if (rtransport->poll_fds[i++].revents & POLLIN) { 3380 nvmf_process_ib_events(device, 32); 3381 nfds--; 3382 } 3383 } 3384 /* check all flagged fd's have been served */ 3385 assert(nfds == 0); 3386 3387 return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE; 3388 } 3389 3390 static void 3391 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem, 3392 struct spdk_nvmf_ctrlr_data *cdata) 3393 { 3394 cdata->nvmf_specific.msdbd = SPDK_NVMF_MAX_SGL_ENTRIES; 3395 3396 /* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled 3397 since in-capsule data only works with NVME drives that support SGL memory layout */ 3398 if (transport->opts.dif_insert_or_strip) { 3399 cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16; 3400 } 3401 3402 if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) { 3403 SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule" 3404 " data is greater than 4KiB.\n"); 3405 SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux " 3406 "kernel between versions 5.4 and 5.12 data corruption may occur for " 3407 "writes that are not a multiple of 4KiB in size.\n"); 3408 } 3409 } 3410 3411 static void 3412 nvmf_rdma_discover(struct spdk_nvmf_transport *transport, 3413 struct spdk_nvme_transport_id *trid, 3414 struct spdk_nvmf_discovery_log_page_entry *entry) 3415 { 3416 entry->trtype = SPDK_NVMF_TRTYPE_RDMA; 3417 entry->adrfam = trid->adrfam; 3418 entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED; 3419 3420 spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' '); 3421 spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' '); 3422 3423 entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED; 3424 entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE; 3425 entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM; 3426 } 3427 3428 static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group); 3429 3430 static struct spdk_nvmf_transport_poll_group * 3431 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport, 3432 struct spdk_nvmf_poll_group *group) 3433 { 3434 struct spdk_nvmf_rdma_transport *rtransport; 3435 struct spdk_nvmf_rdma_poll_group *rgroup; 3436 struct spdk_nvmf_rdma_poller *poller; 3437 struct spdk_nvmf_rdma_device *device; 3438 struct spdk_rdma_srq_init_attr srq_init_attr; 3439 struct spdk_nvmf_rdma_resource_opts opts; 3440 int num_cqe; 3441 3442 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3443 3444 rgroup = calloc(1, sizeof(*rgroup)); 3445 if (!rgroup) { 3446 return NULL; 3447 } 3448 3449 TAILQ_INIT(&rgroup->pollers); 3450 3451 pthread_mutex_lock(&rtransport->lock); 3452 TAILQ_FOREACH(device, &rtransport->devices, link) { 3453 poller = calloc(1, sizeof(*poller)); 3454 if (!poller) { 3455 SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n"); 3456 nvmf_rdma_poll_group_destroy(&rgroup->group); 3457 pthread_mutex_unlock(&rtransport->lock); 3458 return NULL; 3459 } 3460 3461 poller->device = device; 3462 poller->group = rgroup; 3463 3464 RB_INIT(&poller->qpairs); 3465 STAILQ_INIT(&poller->qpairs_pending_send); 3466 STAILQ_INIT(&poller->qpairs_pending_recv); 3467 3468 TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link); 3469 if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) { 3470 if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) { 3471 SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n", 3472 rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr); 3473 } 3474 poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr); 3475 3476 device->num_srq++; 3477 memset(&srq_init_attr, 0, sizeof(srq_init_attr)); 3478 srq_init_attr.pd = device->pd; 3479 srq_init_attr.stats = &poller->stat.qp_stats.recv; 3480 srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth; 3481 srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 3482 poller->srq = spdk_rdma_srq_create(&srq_init_attr); 3483 if (!poller->srq) { 3484 SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno); 3485 nvmf_rdma_poll_group_destroy(&rgroup->group); 3486 pthread_mutex_unlock(&rtransport->lock); 3487 return NULL; 3488 } 3489 3490 opts.qp = poller->srq; 3491 opts.pd = device->pd; 3492 opts.qpair = NULL; 3493 opts.shared = true; 3494 opts.max_queue_depth = poller->max_srq_depth; 3495 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 3496 3497 poller->resources = nvmf_rdma_resources_create(&opts); 3498 if (!poller->resources) { 3499 SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n"); 3500 nvmf_rdma_poll_group_destroy(&rgroup->group); 3501 pthread_mutex_unlock(&rtransport->lock); 3502 return NULL; 3503 } 3504 } 3505 3506 /* 3507 * When using an srq, we can limit the completion queue at startup. 3508 * The following formula represents the calculation: 3509 * num_cqe = num_recv + num_data_wr + num_send_wr. 3510 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth 3511 */ 3512 if (poller->srq) { 3513 num_cqe = poller->max_srq_depth * 3; 3514 } else { 3515 num_cqe = rtransport->rdma_opts.num_cqe; 3516 } 3517 3518 poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0); 3519 if (!poller->cq) { 3520 SPDK_ERRLOG("Unable to create completion queue\n"); 3521 nvmf_rdma_poll_group_destroy(&rgroup->group); 3522 pthread_mutex_unlock(&rtransport->lock); 3523 return NULL; 3524 } 3525 poller->num_cqe = num_cqe; 3526 } 3527 3528 TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link); 3529 if (rtransport->conn_sched.next_admin_pg == NULL) { 3530 rtransport->conn_sched.next_admin_pg = rgroup; 3531 rtransport->conn_sched.next_io_pg = rgroup; 3532 } 3533 3534 pthread_mutex_unlock(&rtransport->lock); 3535 return &rgroup->group; 3536 } 3537 3538 static struct spdk_nvmf_transport_poll_group * 3539 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair) 3540 { 3541 struct spdk_nvmf_rdma_transport *rtransport; 3542 struct spdk_nvmf_rdma_poll_group **pg; 3543 struct spdk_nvmf_transport_poll_group *result; 3544 3545 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 3546 3547 pthread_mutex_lock(&rtransport->lock); 3548 3549 if (TAILQ_EMPTY(&rtransport->poll_groups)) { 3550 pthread_mutex_unlock(&rtransport->lock); 3551 return NULL; 3552 } 3553 3554 if (qpair->qid == 0) { 3555 pg = &rtransport->conn_sched.next_admin_pg; 3556 } else { 3557 pg = &rtransport->conn_sched.next_io_pg; 3558 } 3559 3560 assert(*pg != NULL); 3561 3562 result = &(*pg)->group; 3563 3564 *pg = TAILQ_NEXT(*pg, link); 3565 if (*pg == NULL) { 3566 *pg = TAILQ_FIRST(&rtransport->poll_groups); 3567 } 3568 3569 pthread_mutex_unlock(&rtransport->lock); 3570 3571 return result; 3572 } 3573 3574 static void 3575 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group) 3576 { 3577 struct spdk_nvmf_rdma_poll_group *rgroup, *next_rgroup; 3578 struct spdk_nvmf_rdma_poller *poller, *tmp; 3579 struct spdk_nvmf_rdma_qpair *qpair, *tmp_qpair; 3580 struct spdk_nvmf_rdma_transport *rtransport; 3581 3582 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3583 if (!rgroup) { 3584 return; 3585 } 3586 3587 TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) { 3588 TAILQ_REMOVE(&rgroup->pollers, poller, link); 3589 3590 RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) { 3591 nvmf_rdma_qpair_destroy(qpair); 3592 } 3593 3594 if (poller->srq) { 3595 if (poller->resources) { 3596 nvmf_rdma_resources_destroy(poller->resources); 3597 } 3598 spdk_rdma_srq_destroy(poller->srq); 3599 SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq); 3600 } 3601 3602 if (poller->cq) { 3603 ibv_destroy_cq(poller->cq); 3604 } 3605 3606 free(poller); 3607 } 3608 3609 if (rgroup->group.transport == NULL) { 3610 /* Transport can be NULL when nvmf_rdma_poll_group_create() 3611 * calls this function directly in a failure path. */ 3612 free(rgroup); 3613 return; 3614 } 3615 3616 rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport); 3617 3618 pthread_mutex_lock(&rtransport->lock); 3619 next_rgroup = TAILQ_NEXT(rgroup, link); 3620 TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link); 3621 if (next_rgroup == NULL) { 3622 next_rgroup = TAILQ_FIRST(&rtransport->poll_groups); 3623 } 3624 if (rtransport->conn_sched.next_admin_pg == rgroup) { 3625 rtransport->conn_sched.next_admin_pg = next_rgroup; 3626 } 3627 if (rtransport->conn_sched.next_io_pg == rgroup) { 3628 rtransport->conn_sched.next_io_pg = next_rgroup; 3629 } 3630 pthread_mutex_unlock(&rtransport->lock); 3631 3632 free(rgroup); 3633 } 3634 3635 static void 3636 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair) 3637 { 3638 if (rqpair->cm_id != NULL) { 3639 nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 3640 } 3641 } 3642 3643 static int 3644 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group, 3645 struct spdk_nvmf_qpair *qpair) 3646 { 3647 struct spdk_nvmf_rdma_poll_group *rgroup; 3648 struct spdk_nvmf_rdma_qpair *rqpair; 3649 struct spdk_nvmf_rdma_device *device; 3650 struct spdk_nvmf_rdma_poller *poller; 3651 int rc; 3652 3653 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3654 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3655 3656 device = rqpair->device; 3657 3658 TAILQ_FOREACH(poller, &rgroup->pollers, link) { 3659 if (poller->device == device) { 3660 break; 3661 } 3662 } 3663 3664 if (!poller) { 3665 SPDK_ERRLOG("No poller found for device.\n"); 3666 return -1; 3667 } 3668 3669 rqpair->poller = poller; 3670 rqpair->srq = rqpair->poller->srq; 3671 3672 rc = nvmf_rdma_qpair_initialize(qpair); 3673 if (rc < 0) { 3674 SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair); 3675 rqpair->poller = NULL; 3676 rqpair->srq = NULL; 3677 return -1; 3678 } 3679 3680 RB_INSERT(qpairs_tree, &poller->qpairs, rqpair); 3681 3682 rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair); 3683 if (rc) { 3684 /* Try to reject, but we probably can't */ 3685 nvmf_rdma_qpair_reject_connection(rqpair); 3686 return -1; 3687 } 3688 3689 nvmf_rdma_update_ibv_state(rqpair); 3690 3691 return 0; 3692 } 3693 3694 static int 3695 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group, 3696 struct spdk_nvmf_qpair *qpair) 3697 { 3698 struct spdk_nvmf_rdma_qpair *rqpair; 3699 3700 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3701 assert(group->transport->tgt != NULL); 3702 3703 rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt); 3704 3705 if (!rqpair->destruct_channel) { 3706 SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair); 3707 return 0; 3708 } 3709 3710 /* Sanity check that we get io_channel on the correct thread */ 3711 if (qpair->group) { 3712 assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel)); 3713 } 3714 3715 return 0; 3716 } 3717 3718 static int 3719 nvmf_rdma_request_free(struct spdk_nvmf_request *req) 3720 { 3721 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 3722 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 3723 struct spdk_nvmf_rdma_transport, transport); 3724 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 3725 struct spdk_nvmf_rdma_qpair, qpair); 3726 3727 /* 3728 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request 3729 * needs to be returned to the shared receive queue or the poll group will eventually be 3730 * starved of RECV structures. 3731 */ 3732 if (rqpair->srq && rdma_req->recv) { 3733 int rc; 3734 struct ibv_recv_wr *bad_recv_wr; 3735 3736 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr); 3737 rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr); 3738 if (rc) { 3739 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 3740 } 3741 } 3742 3743 _nvmf_rdma_request_free(rdma_req, rtransport); 3744 return 0; 3745 } 3746 3747 static int 3748 nvmf_rdma_request_complete(struct spdk_nvmf_request *req) 3749 { 3750 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 3751 struct spdk_nvmf_rdma_transport, transport); 3752 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, 3753 struct spdk_nvmf_rdma_request, req); 3754 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 3755 struct spdk_nvmf_rdma_qpair, qpair); 3756 3757 if (rqpair->ibv_state != IBV_QPS_ERR) { 3758 /* The connection is alive, so process the request as normal */ 3759 rdma_req->state = RDMA_REQUEST_STATE_EXECUTED; 3760 } else { 3761 /* The connection is dead. Move the request directly to the completed state. */ 3762 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3763 } 3764 3765 nvmf_rdma_request_process(rtransport, rdma_req); 3766 3767 return 0; 3768 } 3769 3770 static void 3771 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair, 3772 spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg) 3773 { 3774 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3775 3776 rqpair->to_close = true; 3777 3778 /* This happens only when the qpair is disconnected before 3779 * it is added to the poll group. Since there is no poll group, 3780 * the RDMA qp has not been initialized yet and the RDMA CM 3781 * event has not yet been acknowledged, so we need to reject it. 3782 */ 3783 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) { 3784 nvmf_rdma_qpair_reject_connection(rqpair); 3785 nvmf_rdma_qpair_destroy(rqpair); 3786 return; 3787 } 3788 3789 if (rqpair->rdma_qp) { 3790 spdk_rdma_qp_disconnect(rqpair->rdma_qp); 3791 } 3792 3793 nvmf_rdma_destroy_drained_qpair(rqpair); 3794 3795 if (cb_fn) { 3796 cb_fn(cb_arg); 3797 } 3798 } 3799 3800 static struct spdk_nvmf_rdma_qpair * 3801 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc) 3802 { 3803 struct spdk_nvmf_rdma_qpair find; 3804 3805 find.qp_num = wc->qp_num; 3806 3807 return RB_FIND(qpairs_tree, &rpoller->qpairs, &find); 3808 } 3809 3810 #ifdef DEBUG 3811 static int 3812 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req) 3813 { 3814 return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST || 3815 rdma_req->state == RDMA_REQUEST_STATE_COMPLETING; 3816 } 3817 #endif 3818 3819 static void 3820 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr, 3821 int rc) 3822 { 3823 struct spdk_nvmf_rdma_recv *rdma_recv; 3824 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 3825 3826 SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc); 3827 while (bad_recv_wr != NULL) { 3828 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id; 3829 rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 3830 3831 rdma_recv->qpair->current_recv_depth++; 3832 bad_recv_wr = bad_recv_wr->next; 3833 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc); 3834 spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair, NULL, NULL); 3835 } 3836 } 3837 3838 static void 3839 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc) 3840 { 3841 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc); 3842 while (bad_recv_wr != NULL) { 3843 bad_recv_wr = bad_recv_wr->next; 3844 rqpair->current_recv_depth++; 3845 } 3846 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3847 } 3848 3849 static void 3850 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 3851 struct spdk_nvmf_rdma_poller *rpoller) 3852 { 3853 struct spdk_nvmf_rdma_qpair *rqpair; 3854 struct ibv_recv_wr *bad_recv_wr; 3855 int rc; 3856 3857 if (rpoller->srq) { 3858 rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr); 3859 if (rc) { 3860 _poller_reset_failed_recvs(rpoller, bad_recv_wr, rc); 3861 } 3862 } else { 3863 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) { 3864 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv); 3865 rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr); 3866 if (rc) { 3867 _qp_reset_failed_recvs(rqpair, bad_recv_wr, rc); 3868 } 3869 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link); 3870 } 3871 } 3872 } 3873 3874 static void 3875 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport, 3876 struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc) 3877 { 3878 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 3879 struct spdk_nvmf_rdma_request *prev_rdma_req = NULL, *cur_rdma_req = NULL; 3880 3881 SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc); 3882 for (; bad_wr != NULL; bad_wr = bad_wr->next) { 3883 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id; 3884 assert(rqpair->current_send_depth > 0); 3885 rqpair->current_send_depth--; 3886 switch (bad_rdma_wr->type) { 3887 case RDMA_WR_TYPE_DATA: 3888 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr); 3889 if (bad_wr->opcode == IBV_WR_RDMA_READ) { 3890 assert(rqpair->current_read_depth > 0); 3891 rqpair->current_read_depth--; 3892 } 3893 break; 3894 case RDMA_WR_TYPE_SEND: 3895 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr); 3896 break; 3897 default: 3898 SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair); 3899 prev_rdma_req = cur_rdma_req; 3900 continue; 3901 } 3902 3903 if (prev_rdma_req == cur_rdma_req) { 3904 /* this request was handled by an earlier wr. i.e. we were performing an nvme read. */ 3905 /* We only have to check against prev_wr since each requests wrs are contiguous in this list. */ 3906 continue; 3907 } 3908 3909 switch (cur_rdma_req->state) { 3910 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 3911 cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 3912 cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 3913 break; 3914 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 3915 case RDMA_REQUEST_STATE_COMPLETING: 3916 cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3917 break; 3918 default: 3919 SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n", 3920 cur_rdma_req->state, rqpair); 3921 continue; 3922 } 3923 3924 nvmf_rdma_request_process(rtransport, cur_rdma_req); 3925 prev_rdma_req = cur_rdma_req; 3926 } 3927 3928 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 3929 /* Disconnect the connection. */ 3930 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3931 } 3932 3933 } 3934 3935 static void 3936 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 3937 struct spdk_nvmf_rdma_poller *rpoller) 3938 { 3939 struct spdk_nvmf_rdma_qpair *rqpair; 3940 struct ibv_send_wr *bad_wr = NULL; 3941 int rc; 3942 3943 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) { 3944 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send); 3945 rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr); 3946 3947 /* bad wr always points to the first wr that failed. */ 3948 if (rc) { 3949 _qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc); 3950 } 3951 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link); 3952 } 3953 } 3954 3955 static const char * 3956 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type) 3957 { 3958 switch (wr_type) { 3959 case RDMA_WR_TYPE_RECV: 3960 return "RECV"; 3961 case RDMA_WR_TYPE_SEND: 3962 return "SEND"; 3963 case RDMA_WR_TYPE_DATA: 3964 return "DATA"; 3965 default: 3966 SPDK_ERRLOG("Unknown WR type %d\n", wr_type); 3967 SPDK_UNREACHABLE(); 3968 } 3969 } 3970 3971 static inline void 3972 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc) 3973 { 3974 enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type; 3975 3976 if (wc->status == IBV_WC_WR_FLUSH_ERR) { 3977 /* If qpair is in ERR state, we will receive completions for all posted and not completed 3978 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */ 3979 SPDK_DEBUGLOG(rdma, 3980 "Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n", 3981 rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id, 3982 nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status)); 3983 } else { 3984 SPDK_ERRLOG("Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n", 3985 rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id, 3986 nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status)); 3987 } 3988 } 3989 3990 static int 3991 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport, 3992 struct spdk_nvmf_rdma_poller *rpoller) 3993 { 3994 struct ibv_wc wc[32]; 3995 struct spdk_nvmf_rdma_wr *rdma_wr; 3996 struct spdk_nvmf_rdma_request *rdma_req; 3997 struct spdk_nvmf_rdma_recv *rdma_recv; 3998 struct spdk_nvmf_rdma_qpair *rqpair; 3999 int reaped, i; 4000 int count = 0; 4001 bool error = false; 4002 uint64_t poll_tsc = spdk_get_ticks(); 4003 4004 /* Poll for completing operations. */ 4005 reaped = ibv_poll_cq(rpoller->cq, 32, wc); 4006 if (reaped < 0) { 4007 SPDK_ERRLOG("Error polling CQ! (%d): %s\n", 4008 errno, spdk_strerror(errno)); 4009 return -1; 4010 } else if (reaped == 0) { 4011 rpoller->stat.idle_polls++; 4012 } 4013 4014 rpoller->stat.polls++; 4015 rpoller->stat.completions += reaped; 4016 4017 for (i = 0; i < reaped; i++) { 4018 4019 rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id; 4020 4021 switch (rdma_wr->type) { 4022 case RDMA_WR_TYPE_SEND: 4023 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr); 4024 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 4025 4026 if (!wc[i].status) { 4027 count++; 4028 assert(wc[i].opcode == IBV_WC_SEND); 4029 assert(nvmf_rdma_req_is_completing(rdma_req)); 4030 } 4031 4032 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4033 /* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */ 4034 rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1; 4035 rdma_req->num_outstanding_data_wr = 0; 4036 4037 nvmf_rdma_request_process(rtransport, rdma_req); 4038 break; 4039 case RDMA_WR_TYPE_RECV: 4040 /* rdma_recv->qpair will be invalid if using an SRQ. In that case we have to get the qpair from the wc. */ 4041 rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 4042 if (rpoller->srq != NULL) { 4043 rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]); 4044 /* It is possible that there are still some completions for destroyed QP 4045 * associated with SRQ. We just ignore these late completions and re-post 4046 * receive WRs back to SRQ. 4047 */ 4048 if (spdk_unlikely(NULL == rdma_recv->qpair)) { 4049 struct ibv_recv_wr *bad_wr; 4050 int rc; 4051 4052 rdma_recv->wr.next = NULL; 4053 spdk_rdma_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr); 4054 rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_wr); 4055 if (rc) { 4056 SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc); 4057 } 4058 continue; 4059 } 4060 } 4061 rqpair = rdma_recv->qpair; 4062 4063 assert(rqpair != NULL); 4064 if (!wc[i].status) { 4065 assert(wc[i].opcode == IBV_WC_RECV); 4066 if (rqpair->current_recv_depth >= rqpair->max_queue_depth) { 4067 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4068 break; 4069 } 4070 } 4071 4072 rdma_recv->wr.next = NULL; 4073 rqpair->current_recv_depth++; 4074 rdma_recv->receive_tsc = poll_tsc; 4075 rpoller->stat.requests++; 4076 STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link); 4077 break; 4078 case RDMA_WR_TYPE_DATA: 4079 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr); 4080 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 4081 4082 assert(rdma_req->num_outstanding_data_wr > 0); 4083 4084 rqpair->current_send_depth--; 4085 rdma_req->num_outstanding_data_wr--; 4086 if (!wc[i].status) { 4087 assert(wc[i].opcode == IBV_WC_RDMA_READ); 4088 rqpair->current_read_depth--; 4089 /* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */ 4090 if (rdma_req->num_outstanding_data_wr == 0) { 4091 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 4092 nvmf_rdma_request_process(rtransport, rdma_req); 4093 } 4094 } else { 4095 /* If the data transfer fails still force the queue into the error state, 4096 * if we were performing an RDMA_READ, we need to force the request into a 4097 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE 4098 * case, we should wait for the SEND to complete. */ 4099 if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) { 4100 rqpair->current_read_depth--; 4101 if (rdma_req->num_outstanding_data_wr == 0) { 4102 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4103 } 4104 } 4105 } 4106 break; 4107 default: 4108 SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode); 4109 continue; 4110 } 4111 4112 /* Handle error conditions */ 4113 if (wc[i].status) { 4114 nvmf_rdma_update_ibv_state(rqpair); 4115 nvmf_rdma_log_wc_status(rqpair, &wc[i]); 4116 4117 error = true; 4118 4119 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 4120 /* Disconnect the connection. */ 4121 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4122 } else { 4123 nvmf_rdma_destroy_drained_qpair(rqpair); 4124 } 4125 continue; 4126 } 4127 4128 nvmf_rdma_qpair_process_pending(rtransport, rqpair, false); 4129 4130 if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 4131 nvmf_rdma_destroy_drained_qpair(rqpair); 4132 } 4133 } 4134 4135 if (error == true) { 4136 return -1; 4137 } 4138 4139 /* submit outstanding work requests. */ 4140 _poller_submit_recvs(rtransport, rpoller); 4141 _poller_submit_sends(rtransport, rpoller); 4142 4143 return count; 4144 } 4145 4146 static int 4147 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group) 4148 { 4149 struct spdk_nvmf_rdma_transport *rtransport; 4150 struct spdk_nvmf_rdma_poll_group *rgroup; 4151 struct spdk_nvmf_rdma_poller *rpoller; 4152 int count, rc; 4153 4154 rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport); 4155 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4156 4157 count = 0; 4158 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 4159 rc = nvmf_rdma_poller_poll(rtransport, rpoller); 4160 if (rc < 0) { 4161 return rc; 4162 } 4163 count += rc; 4164 } 4165 4166 return count; 4167 } 4168 4169 static int 4170 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 4171 struct spdk_nvme_transport_id *trid, 4172 bool peer) 4173 { 4174 struct sockaddr *saddr; 4175 uint16_t port; 4176 4177 spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA); 4178 4179 if (peer) { 4180 saddr = rdma_get_peer_addr(id); 4181 } else { 4182 saddr = rdma_get_local_addr(id); 4183 } 4184 switch (saddr->sa_family) { 4185 case AF_INET: { 4186 struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr; 4187 4188 trid->adrfam = SPDK_NVMF_ADRFAM_IPV4; 4189 inet_ntop(AF_INET, &saddr_in->sin_addr, 4190 trid->traddr, sizeof(trid->traddr)); 4191 if (peer) { 4192 port = ntohs(rdma_get_dst_port(id)); 4193 } else { 4194 port = ntohs(rdma_get_src_port(id)); 4195 } 4196 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 4197 break; 4198 } 4199 case AF_INET6: { 4200 struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr; 4201 trid->adrfam = SPDK_NVMF_ADRFAM_IPV6; 4202 inet_ntop(AF_INET6, &saddr_in->sin6_addr, 4203 trid->traddr, sizeof(trid->traddr)); 4204 if (peer) { 4205 port = ntohs(rdma_get_dst_port(id)); 4206 } else { 4207 port = ntohs(rdma_get_src_port(id)); 4208 } 4209 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 4210 break; 4211 } 4212 default: 4213 return -1; 4214 4215 } 4216 4217 return 0; 4218 } 4219 4220 static int 4221 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair, 4222 struct spdk_nvme_transport_id *trid) 4223 { 4224 struct spdk_nvmf_rdma_qpair *rqpair; 4225 4226 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4227 4228 return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true); 4229 } 4230 4231 static int 4232 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair, 4233 struct spdk_nvme_transport_id *trid) 4234 { 4235 struct spdk_nvmf_rdma_qpair *rqpair; 4236 4237 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4238 4239 return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false); 4240 } 4241 4242 static int 4243 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair, 4244 struct spdk_nvme_transport_id *trid) 4245 { 4246 struct spdk_nvmf_rdma_qpair *rqpair; 4247 4248 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4249 4250 return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false); 4251 } 4252 4253 void 4254 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) 4255 { 4256 g_nvmf_hooks = *hooks; 4257 } 4258 4259 static void 4260 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req, 4261 struct spdk_nvmf_rdma_request *rdma_req_to_abort) 4262 { 4263 rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC; 4264 rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; 4265 4266 rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 4267 4268 req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */ 4269 } 4270 4271 static int 4272 _nvmf_rdma_qpair_abort_request(void *ctx) 4273 { 4274 struct spdk_nvmf_request *req = ctx; 4275 struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF( 4276 req->req_to_abort, struct spdk_nvmf_rdma_request, req); 4277 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair, 4278 struct spdk_nvmf_rdma_qpair, qpair); 4279 int rc; 4280 4281 spdk_poller_unregister(&req->poller); 4282 4283 switch (rdma_req_to_abort->state) { 4284 case RDMA_REQUEST_STATE_EXECUTING: 4285 rc = nvmf_ctrlr_abort_request(req); 4286 if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) { 4287 return SPDK_POLLER_BUSY; 4288 } 4289 break; 4290 4291 case RDMA_REQUEST_STATE_NEED_BUFFER: 4292 STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue, 4293 &rdma_req_to_abort->req, spdk_nvmf_request, buf_link); 4294 4295 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); 4296 break; 4297 4298 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 4299 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort, 4300 spdk_nvmf_rdma_request, state_link); 4301 4302 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); 4303 break; 4304 4305 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 4306 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort, 4307 spdk_nvmf_rdma_request, state_link); 4308 4309 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); 4310 break; 4311 4312 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 4313 if (spdk_get_ticks() < req->timeout_tsc) { 4314 req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0); 4315 return SPDK_POLLER_BUSY; 4316 } 4317 break; 4318 4319 default: 4320 break; 4321 } 4322 4323 spdk_nvmf_request_complete(req); 4324 return SPDK_POLLER_BUSY; 4325 } 4326 4327 static void 4328 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair, 4329 struct spdk_nvmf_request *req) 4330 { 4331 struct spdk_nvmf_rdma_qpair *rqpair; 4332 struct spdk_nvmf_rdma_transport *rtransport; 4333 struct spdk_nvmf_transport *transport; 4334 uint16_t cid; 4335 uint32_t i, max_req_count; 4336 struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req; 4337 4338 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4339 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 4340 transport = &rtransport->transport; 4341 4342 cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid; 4343 max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth; 4344 4345 for (i = 0; i < max_req_count; i++) { 4346 rdma_req = &rqpair->resources->reqs[i]; 4347 /* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair 4348 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to 4349 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */ 4350 if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid && 4351 rdma_req->req.qpair == qpair) { 4352 rdma_req_to_abort = rdma_req; 4353 break; 4354 } 4355 } 4356 4357 if (rdma_req_to_abort == NULL) { 4358 spdk_nvmf_request_complete(req); 4359 return; 4360 } 4361 4362 req->req_to_abort = &rdma_req_to_abort->req; 4363 req->timeout_tsc = spdk_get_ticks() + 4364 transport->opts.abort_timeout_sec * spdk_get_ticks_hz(); 4365 req->poller = NULL; 4366 4367 _nvmf_rdma_qpair_abort_request(req); 4368 } 4369 4370 static void 4371 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group, 4372 struct spdk_json_write_ctx *w) 4373 { 4374 struct spdk_nvmf_rdma_poll_group *rgroup; 4375 struct spdk_nvmf_rdma_poller *rpoller; 4376 4377 assert(w != NULL); 4378 4379 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4380 4381 spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer); 4382 4383 spdk_json_write_named_array_begin(w, "devices"); 4384 4385 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 4386 spdk_json_write_object_begin(w); 4387 spdk_json_write_named_string(w, "name", 4388 ibv_get_device_name(rpoller->device->context->device)); 4389 spdk_json_write_named_uint64(w, "polls", 4390 rpoller->stat.polls); 4391 spdk_json_write_named_uint64(w, "idle_polls", 4392 rpoller->stat.idle_polls); 4393 spdk_json_write_named_uint64(w, "completions", 4394 rpoller->stat.completions); 4395 spdk_json_write_named_uint64(w, "requests", 4396 rpoller->stat.requests); 4397 spdk_json_write_named_uint64(w, "request_latency", 4398 rpoller->stat.request_latency); 4399 spdk_json_write_named_uint64(w, "pending_free_request", 4400 rpoller->stat.pending_free_request); 4401 spdk_json_write_named_uint64(w, "pending_rdma_read", 4402 rpoller->stat.pending_rdma_read); 4403 spdk_json_write_named_uint64(w, "pending_rdma_write", 4404 rpoller->stat.pending_rdma_write); 4405 spdk_json_write_named_uint64(w, "total_send_wrs", 4406 rpoller->stat.qp_stats.send.num_submitted_wrs); 4407 spdk_json_write_named_uint64(w, "send_doorbell_updates", 4408 rpoller->stat.qp_stats.send.doorbell_updates); 4409 spdk_json_write_named_uint64(w, "total_recv_wrs", 4410 rpoller->stat.qp_stats.recv.num_submitted_wrs); 4411 spdk_json_write_named_uint64(w, "recv_doorbell_updates", 4412 rpoller->stat.qp_stats.recv.doorbell_updates); 4413 spdk_json_write_object_end(w); 4414 } 4415 4416 spdk_json_write_array_end(w); 4417 } 4418 4419 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = { 4420 .name = "RDMA", 4421 .type = SPDK_NVME_TRANSPORT_RDMA, 4422 .opts_init = nvmf_rdma_opts_init, 4423 .create = nvmf_rdma_create, 4424 .dump_opts = nvmf_rdma_dump_opts, 4425 .destroy = nvmf_rdma_destroy, 4426 4427 .listen = nvmf_rdma_listen, 4428 .stop_listen = nvmf_rdma_stop_listen, 4429 .cdata_init = nvmf_rdma_cdata_init, 4430 4431 .listener_discover = nvmf_rdma_discover, 4432 4433 .poll_group_create = nvmf_rdma_poll_group_create, 4434 .get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group, 4435 .poll_group_destroy = nvmf_rdma_poll_group_destroy, 4436 .poll_group_add = nvmf_rdma_poll_group_add, 4437 .poll_group_remove = nvmf_rdma_poll_group_remove, 4438 .poll_group_poll = nvmf_rdma_poll_group_poll, 4439 4440 .req_free = nvmf_rdma_request_free, 4441 .req_complete = nvmf_rdma_request_complete, 4442 4443 .qpair_fini = nvmf_rdma_close_qpair, 4444 .qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid, 4445 .qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid, 4446 .qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid, 4447 .qpair_abort_request = nvmf_rdma_qpair_abort_request, 4448 4449 .poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat, 4450 }; 4451 4452 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma); 4453 SPDK_LOG_REGISTER_COMPONENT(rdma) 4454