1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2016 Intel Corporation. All rights reserved. 3 * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk/stdinc.h" 8 9 #include "spdk/config.h" 10 #include "spdk/thread.h" 11 #include "spdk/likely.h" 12 #include "spdk/nvmf_transport.h" 13 #include "spdk/string.h" 14 #include "spdk/trace.h" 15 #include "spdk/tree.h" 16 #include "spdk/util.h" 17 18 #include "spdk_internal/assert.h" 19 #include "spdk/log.h" 20 #include "spdk_internal/rdma.h" 21 22 #include "nvmf_internal.h" 23 #include "transport.h" 24 25 #include "spdk_internal/trace_defs.h" 26 27 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {}; 28 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma; 29 30 /* 31 RDMA Connection Resource Defaults 32 */ 33 #define NVMF_DEFAULT_TX_SGE SPDK_NVMF_MAX_SGL_ENTRIES 34 #define NVMF_DEFAULT_RSP_SGE 1 35 #define NVMF_DEFAULT_RX_SGE 2 36 37 /* The RDMA completion queue size */ 38 #define DEFAULT_NVMF_RDMA_CQ_SIZE 4096 39 #define MAX_WR_PER_QP(queue_depth) (queue_depth * 3 + 2) 40 41 static int g_spdk_nvmf_ibv_query_mask = 42 IBV_QP_STATE | 43 IBV_QP_PKEY_INDEX | 44 IBV_QP_PORT | 45 IBV_QP_ACCESS_FLAGS | 46 IBV_QP_AV | 47 IBV_QP_PATH_MTU | 48 IBV_QP_DEST_QPN | 49 IBV_QP_RQ_PSN | 50 IBV_QP_MAX_DEST_RD_ATOMIC | 51 IBV_QP_MIN_RNR_TIMER | 52 IBV_QP_SQ_PSN | 53 IBV_QP_TIMEOUT | 54 IBV_QP_RETRY_CNT | 55 IBV_QP_RNR_RETRY | 56 IBV_QP_MAX_QP_RD_ATOMIC; 57 58 enum spdk_nvmf_rdma_request_state { 59 /* The request is not currently in use */ 60 RDMA_REQUEST_STATE_FREE = 0, 61 62 /* Initial state when request first received */ 63 RDMA_REQUEST_STATE_NEW, 64 65 /* The request is queued until a data buffer is available. */ 66 RDMA_REQUEST_STATE_NEED_BUFFER, 67 68 /* The request is waiting on RDMA queue depth availability 69 * to transfer data from the host to the controller. 70 */ 71 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 72 73 /* The request is currently transferring data from the host to the controller. */ 74 RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 75 76 /* The request is ready to execute at the block device */ 77 RDMA_REQUEST_STATE_READY_TO_EXECUTE, 78 79 /* The request is currently executing at the block device */ 80 RDMA_REQUEST_STATE_EXECUTING, 81 82 /* The request finished executing at the block device */ 83 RDMA_REQUEST_STATE_EXECUTED, 84 85 /* The request is waiting on RDMA queue depth availability 86 * to transfer data from the controller to the host. 87 */ 88 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 89 90 /* The request is ready to send a completion */ 91 RDMA_REQUEST_STATE_READY_TO_COMPLETE, 92 93 /* The request is currently transferring data from the controller to the host. */ 94 RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 95 96 /* The request currently has an outstanding completion without an 97 * associated data transfer. 98 */ 99 RDMA_REQUEST_STATE_COMPLETING, 100 101 /* The request completed and can be marked free. */ 102 RDMA_REQUEST_STATE_COMPLETED, 103 104 /* Terminator */ 105 RDMA_REQUEST_NUM_STATES, 106 }; 107 108 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA) 109 { 110 spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r'); 111 spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW, 112 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 113 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 114 spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 115 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 116 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 117 spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H", 118 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 119 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 120 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 121 spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C", 122 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 123 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 124 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 125 spdk_trace_register_description("RDMA_REQ_TX_H2C", 126 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 127 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 128 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 129 spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE", 130 TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 131 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 132 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 133 spdk_trace_register_description("RDMA_REQ_EXECUTING", 134 TRACE_RDMA_REQUEST_STATE_EXECUTING, 135 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 136 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 137 spdk_trace_register_description("RDMA_REQ_EXECUTED", 138 TRACE_RDMA_REQUEST_STATE_EXECUTED, 139 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 140 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 141 spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL", 142 TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 143 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 144 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 145 spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H", 146 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 147 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 148 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 149 spdk_trace_register_description("RDMA_REQ_COMPLETING", 150 TRACE_RDMA_REQUEST_STATE_COMPLETING, 151 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 152 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 153 spdk_trace_register_description("RDMA_REQ_COMPLETED", 154 TRACE_RDMA_REQUEST_STATE_COMPLETED, 155 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 156 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 157 158 spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE, 159 OWNER_NONE, OBJECT_NONE, 0, 160 SPDK_TRACE_ARG_TYPE_INT, ""); 161 spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT, 162 OWNER_NONE, OBJECT_NONE, 0, 163 SPDK_TRACE_ARG_TYPE_INT, "type"); 164 spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT, 165 OWNER_NONE, OBJECT_NONE, 0, 166 SPDK_TRACE_ARG_TYPE_INT, "type"); 167 spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE, 168 OWNER_NONE, OBJECT_NONE, 0, 169 SPDK_TRACE_ARG_TYPE_PTR, "state"); 170 spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT, 171 OWNER_NONE, OBJECT_NONE, 0, 172 SPDK_TRACE_ARG_TYPE_INT, ""); 173 spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY, 174 OWNER_NONE, OBJECT_NONE, 0, 175 SPDK_TRACE_ARG_TYPE_INT, ""); 176 } 177 178 enum spdk_nvmf_rdma_wr_type { 179 RDMA_WR_TYPE_RECV, 180 RDMA_WR_TYPE_SEND, 181 RDMA_WR_TYPE_DATA, 182 }; 183 184 struct spdk_nvmf_rdma_wr { 185 enum spdk_nvmf_rdma_wr_type type; 186 }; 187 188 /* This structure holds commands as they are received off the wire. 189 * It must be dynamically paired with a full request object 190 * (spdk_nvmf_rdma_request) to service a request. It is separate 191 * from the request because RDMA does not appear to order 192 * completions, so occasionally we'll get a new incoming 193 * command when there aren't any free request objects. 194 */ 195 struct spdk_nvmf_rdma_recv { 196 struct ibv_recv_wr wr; 197 struct ibv_sge sgl[NVMF_DEFAULT_RX_SGE]; 198 199 struct spdk_nvmf_rdma_qpair *qpair; 200 201 /* In-capsule data buffer */ 202 uint8_t *buf; 203 204 struct spdk_nvmf_rdma_wr rdma_wr; 205 uint64_t receive_tsc; 206 207 STAILQ_ENTRY(spdk_nvmf_rdma_recv) link; 208 }; 209 210 struct spdk_nvmf_rdma_request_data { 211 struct spdk_nvmf_rdma_wr rdma_wr; 212 struct ibv_send_wr wr; 213 struct ibv_sge sgl[SPDK_NVMF_MAX_SGL_ENTRIES]; 214 }; 215 216 struct spdk_nvmf_rdma_request { 217 struct spdk_nvmf_request req; 218 219 enum spdk_nvmf_rdma_request_state state; 220 221 /* Data offset in req.iov */ 222 uint32_t offset; 223 224 struct spdk_nvmf_rdma_recv *recv; 225 226 struct { 227 struct spdk_nvmf_rdma_wr rdma_wr; 228 struct ibv_send_wr wr; 229 struct ibv_sge sgl[NVMF_DEFAULT_RSP_SGE]; 230 } rsp; 231 232 struct spdk_nvmf_rdma_request_data data; 233 234 uint32_t iovpos; 235 236 uint32_t num_outstanding_data_wr; 237 uint64_t receive_tsc; 238 239 bool fused_failed; 240 struct spdk_nvmf_rdma_request *fused_pair; 241 242 STAILQ_ENTRY(spdk_nvmf_rdma_request) state_link; 243 }; 244 245 struct spdk_nvmf_rdma_resource_opts { 246 struct spdk_nvmf_rdma_qpair *qpair; 247 /* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */ 248 void *qp; 249 struct spdk_rdma_mem_map *map; 250 uint32_t max_queue_depth; 251 uint32_t in_capsule_data_size; 252 bool shared; 253 }; 254 255 struct spdk_nvmf_rdma_resources { 256 /* Array of size "max_queue_depth" containing RDMA requests. */ 257 struct spdk_nvmf_rdma_request *reqs; 258 259 /* Array of size "max_queue_depth" containing RDMA recvs. */ 260 struct spdk_nvmf_rdma_recv *recvs; 261 262 /* Array of size "max_queue_depth" containing 64 byte capsules 263 * used for receive. 264 */ 265 union nvmf_h2c_msg *cmds; 266 267 /* Array of size "max_queue_depth" containing 16 byte completions 268 * to be sent back to the user. 269 */ 270 union nvmf_c2h_msg *cpls; 271 272 /* Array of size "max_queue_depth * InCapsuleDataSize" containing 273 * buffers to be used for in capsule data. 274 */ 275 void *bufs; 276 277 /* Receives that are waiting for a request object */ 278 STAILQ_HEAD(, spdk_nvmf_rdma_recv) incoming_queue; 279 280 /* Queue to track free requests */ 281 STAILQ_HEAD(, spdk_nvmf_rdma_request) free_queue; 282 }; 283 284 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair); 285 286 struct spdk_nvmf_rdma_ibv_event_ctx { 287 struct spdk_nvmf_rdma_qpair *rqpair; 288 spdk_nvmf_rdma_qpair_ibv_event cb_fn; 289 /* Link to other ibv events associated with this qpair */ 290 STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx) link; 291 }; 292 293 struct spdk_nvmf_rdma_qpair { 294 struct spdk_nvmf_qpair qpair; 295 296 struct spdk_nvmf_rdma_device *device; 297 struct spdk_nvmf_rdma_poller *poller; 298 299 struct spdk_rdma_qp *rdma_qp; 300 struct rdma_cm_id *cm_id; 301 struct spdk_rdma_srq *srq; 302 struct rdma_cm_id *listen_id; 303 304 /* Cache the QP number to improve QP search by RB tree. */ 305 uint32_t qp_num; 306 307 /* The maximum number of I/O outstanding on this connection at one time */ 308 uint16_t max_queue_depth; 309 310 /* The maximum number of active RDMA READ and ATOMIC operations at one time */ 311 uint16_t max_read_depth; 312 313 /* The maximum number of RDMA SEND operations at one time */ 314 uint32_t max_send_depth; 315 316 /* The current number of outstanding WRs from this qpair's 317 * recv queue. Should not exceed device->attr.max_queue_depth. 318 */ 319 uint16_t current_recv_depth; 320 321 /* The current number of active RDMA READ operations */ 322 uint16_t current_read_depth; 323 324 /* The current number of posted WRs from this qpair's 325 * send queue. Should not exceed max_send_depth. 326 */ 327 uint32_t current_send_depth; 328 329 /* The maximum number of SGEs per WR on the send queue */ 330 uint32_t max_send_sge; 331 332 /* The maximum number of SGEs per WR on the recv queue */ 333 uint32_t max_recv_sge; 334 335 struct spdk_nvmf_rdma_resources *resources; 336 337 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_read_queue; 338 339 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_write_queue; 340 341 /* Number of requests not in the free state */ 342 uint32_t qd; 343 344 RB_ENTRY(spdk_nvmf_rdma_qpair) node; 345 346 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) recv_link; 347 348 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) send_link; 349 350 /* IBV queue pair attributes: they are used to manage 351 * qp state and recover from errors. 352 */ 353 enum ibv_qp_state ibv_state; 354 355 /* Points to the a request that has fuse bits set to 356 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting 357 * for the request that has SPDK_NVME_CMD_FUSE_SECOND. 358 */ 359 struct spdk_nvmf_rdma_request *fused_first; 360 361 /* 362 * io_channel which is used to destroy qpair when it is removed from poll group 363 */ 364 struct spdk_io_channel *destruct_channel; 365 366 /* List of ibv async events */ 367 STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx) ibv_events; 368 369 /* Lets us know that we have received the last_wqe event. */ 370 bool last_wqe_reached; 371 372 /* Indicate that nvmf_rdma_close_qpair is called */ 373 bool to_close; 374 }; 375 376 struct spdk_nvmf_rdma_poller_stat { 377 uint64_t completions; 378 uint64_t polls; 379 uint64_t idle_polls; 380 uint64_t requests; 381 uint64_t request_latency; 382 uint64_t pending_free_request; 383 uint64_t pending_rdma_read; 384 uint64_t pending_rdma_write; 385 struct spdk_rdma_qp_stats qp_stats; 386 }; 387 388 struct spdk_nvmf_rdma_poller { 389 struct spdk_nvmf_rdma_device *device; 390 struct spdk_nvmf_rdma_poll_group *group; 391 392 int num_cqe; 393 int required_num_wr; 394 struct ibv_cq *cq; 395 396 /* The maximum number of I/O outstanding on the shared receive queue at one time */ 397 uint16_t max_srq_depth; 398 399 /* Shared receive queue */ 400 struct spdk_rdma_srq *srq; 401 402 struct spdk_nvmf_rdma_resources *resources; 403 struct spdk_nvmf_rdma_poller_stat stat; 404 405 RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs; 406 407 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_recv; 408 409 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_send; 410 411 TAILQ_ENTRY(spdk_nvmf_rdma_poller) link; 412 }; 413 414 struct spdk_nvmf_rdma_poll_group_stat { 415 uint64_t pending_data_buffer; 416 }; 417 418 struct spdk_nvmf_rdma_poll_group { 419 struct spdk_nvmf_transport_poll_group group; 420 struct spdk_nvmf_rdma_poll_group_stat stat; 421 TAILQ_HEAD(, spdk_nvmf_rdma_poller) pollers; 422 TAILQ_ENTRY(spdk_nvmf_rdma_poll_group) link; 423 }; 424 425 struct spdk_nvmf_rdma_conn_sched { 426 struct spdk_nvmf_rdma_poll_group *next_admin_pg; 427 struct spdk_nvmf_rdma_poll_group *next_io_pg; 428 }; 429 430 /* Assuming rdma_cm uses just one protection domain per ibv_context. */ 431 struct spdk_nvmf_rdma_device { 432 struct ibv_device_attr attr; 433 struct ibv_context *context; 434 435 struct spdk_rdma_mem_map *map; 436 struct ibv_pd *pd; 437 438 int num_srq; 439 440 TAILQ_ENTRY(spdk_nvmf_rdma_device) link; 441 }; 442 443 struct spdk_nvmf_rdma_port { 444 const struct spdk_nvme_transport_id *trid; 445 struct rdma_cm_id *id; 446 struct spdk_nvmf_rdma_device *device; 447 TAILQ_ENTRY(spdk_nvmf_rdma_port) link; 448 }; 449 450 struct rdma_transport_opts { 451 int num_cqe; 452 uint32_t max_srq_depth; 453 bool no_srq; 454 bool no_wr_batching; 455 int acceptor_backlog; 456 }; 457 458 struct spdk_nvmf_rdma_transport { 459 struct spdk_nvmf_transport transport; 460 struct rdma_transport_opts rdma_opts; 461 462 struct spdk_nvmf_rdma_conn_sched conn_sched; 463 464 struct rdma_event_channel *event_channel; 465 466 struct spdk_mempool *data_wr_pool; 467 468 struct spdk_poller *accept_poller; 469 470 /* fields used to poll RDMA/IB events */ 471 nfds_t npoll_fds; 472 struct pollfd *poll_fds; 473 474 TAILQ_HEAD(, spdk_nvmf_rdma_device) devices; 475 TAILQ_HEAD(, spdk_nvmf_rdma_port) ports; 476 TAILQ_HEAD(, spdk_nvmf_rdma_poll_group) poll_groups; 477 }; 478 479 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = { 480 { 481 "num_cqe", offsetof(struct rdma_transport_opts, num_cqe), 482 spdk_json_decode_int32, true 483 }, 484 { 485 "max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth), 486 spdk_json_decode_uint32, true 487 }, 488 { 489 "no_srq", offsetof(struct rdma_transport_opts, no_srq), 490 spdk_json_decode_bool, true 491 }, 492 { 493 "no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching), 494 spdk_json_decode_bool, true 495 }, 496 { 497 "acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog), 498 spdk_json_decode_int32, true 499 }, 500 }; 501 502 static int 503 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2) 504 { 505 return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num; 506 } 507 508 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare); 509 510 static bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 511 struct spdk_nvmf_rdma_request *rdma_req); 512 513 static void _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 514 struct spdk_nvmf_rdma_poller *rpoller); 515 516 static void _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 517 struct spdk_nvmf_rdma_poller *rpoller); 518 519 static inline int 520 nvmf_rdma_check_ibv_state(enum ibv_qp_state state) 521 { 522 switch (state) { 523 case IBV_QPS_RESET: 524 case IBV_QPS_INIT: 525 case IBV_QPS_RTR: 526 case IBV_QPS_RTS: 527 case IBV_QPS_SQD: 528 case IBV_QPS_SQE: 529 case IBV_QPS_ERR: 530 return 0; 531 default: 532 return -1; 533 } 534 } 535 536 static inline enum spdk_nvme_media_error_status_code 537 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) { 538 enum spdk_nvme_media_error_status_code result; 539 switch (err_type) 540 { 541 case SPDK_DIF_REFTAG_ERROR: 542 result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR; 543 break; 544 case SPDK_DIF_APPTAG_ERROR: 545 result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR; 546 break; 547 case SPDK_DIF_GUARD_ERROR: 548 result = SPDK_NVME_SC_GUARD_CHECK_ERROR; 549 break; 550 default: 551 SPDK_UNREACHABLE(); 552 } 553 554 return result; 555 } 556 557 static enum ibv_qp_state 558 nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) { 559 enum ibv_qp_state old_state, new_state; 560 struct ibv_qp_attr qp_attr; 561 struct ibv_qp_init_attr init_attr; 562 int rc; 563 564 old_state = rqpair->ibv_state; 565 rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr, 566 g_spdk_nvmf_ibv_query_mask, &init_attr); 567 568 if (rc) 569 { 570 SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n"); 571 return IBV_QPS_ERR + 1; 572 } 573 574 new_state = qp_attr.qp_state; 575 rqpair->ibv_state = new_state; 576 qp_attr.ah_attr.port_num = qp_attr.port_num; 577 578 rc = nvmf_rdma_check_ibv_state(new_state); 579 if (rc) 580 { 581 SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state); 582 /* 583 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8 584 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR 585 */ 586 return IBV_QPS_ERR + 1; 587 } 588 589 if (old_state != new_state) 590 { 591 spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, (uintptr_t)rqpair, new_state); 592 } 593 return new_state; 594 } 595 596 static void 597 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req, 598 struct spdk_nvmf_rdma_transport *rtransport) 599 { 600 struct spdk_nvmf_rdma_request_data *data_wr; 601 struct ibv_send_wr *next_send_wr; 602 uint64_t req_wrid; 603 604 rdma_req->num_outstanding_data_wr = 0; 605 data_wr = &rdma_req->data; 606 req_wrid = data_wr->wr.wr_id; 607 while (data_wr && data_wr->wr.wr_id == req_wrid) { 608 memset(data_wr->sgl, 0, sizeof(data_wr->wr.sg_list[0]) * data_wr->wr.num_sge); 609 data_wr->wr.num_sge = 0; 610 next_send_wr = data_wr->wr.next; 611 if (data_wr != &rdma_req->data) { 612 data_wr->wr.next = NULL; 613 spdk_mempool_put(rtransport->data_wr_pool, data_wr); 614 } 615 data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : 616 SPDK_CONTAINEROF(next_send_wr, struct spdk_nvmf_rdma_request_data, wr); 617 } 618 rdma_req->data.wr.next = NULL; 619 rdma_req->rsp.wr.next = NULL; 620 } 621 622 static void 623 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req) 624 { 625 SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool); 626 if (req->req.cmd) { 627 SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode); 628 } 629 if (req->recv) { 630 SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id); 631 } 632 } 633 634 static void 635 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair) 636 { 637 int i; 638 639 SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid); 640 for (i = 0; i < rqpair->max_queue_depth; i++) { 641 if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) { 642 nvmf_rdma_dump_request(&rqpair->resources->reqs[i]); 643 } 644 } 645 } 646 647 static void 648 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources) 649 { 650 spdk_free(resources->cmds); 651 spdk_free(resources->cpls); 652 spdk_free(resources->bufs); 653 spdk_free(resources->reqs); 654 spdk_free(resources->recvs); 655 free(resources); 656 } 657 658 659 static struct spdk_nvmf_rdma_resources * 660 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts) 661 { 662 struct spdk_nvmf_rdma_resources *resources; 663 struct spdk_nvmf_rdma_request *rdma_req; 664 struct spdk_nvmf_rdma_recv *rdma_recv; 665 struct spdk_rdma_qp *qp = NULL; 666 struct spdk_rdma_srq *srq = NULL; 667 struct ibv_recv_wr *bad_wr = NULL; 668 struct spdk_rdma_memory_translation translation; 669 uint32_t i; 670 int rc = 0; 671 672 resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources)); 673 if (!resources) { 674 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 675 return NULL; 676 } 677 678 resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs), 679 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 680 resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs), 681 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 682 resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds), 683 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 684 resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls), 685 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 686 687 if (opts->in_capsule_data_size > 0) { 688 resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size, 689 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, 690 SPDK_MALLOC_DMA); 691 } 692 693 if (!resources->reqs || !resources->recvs || !resources->cmds || 694 !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) { 695 SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n"); 696 goto cleanup; 697 } 698 699 SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx\n", 700 resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds)); 701 SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx\n", 702 resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls)); 703 if (resources->bufs) { 704 SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x\n", 705 resources->bufs, opts->max_queue_depth * 706 opts->in_capsule_data_size); 707 } 708 709 /* Initialize queues */ 710 STAILQ_INIT(&resources->incoming_queue); 711 STAILQ_INIT(&resources->free_queue); 712 713 if (opts->shared) { 714 srq = (struct spdk_rdma_srq *)opts->qp; 715 } else { 716 qp = (struct spdk_rdma_qp *)opts->qp; 717 } 718 719 for (i = 0; i < opts->max_queue_depth; i++) { 720 rdma_recv = &resources->recvs[i]; 721 rdma_recv->qpair = opts->qpair; 722 723 /* Set up memory to receive commands */ 724 if (resources->bufs) { 725 rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i * 726 opts->in_capsule_data_size)); 727 } 728 729 rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV; 730 731 rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i]; 732 rdma_recv->sgl[0].length = sizeof(resources->cmds[i]); 733 rc = spdk_rdma_get_translation(opts->map, &resources->cmds[i], sizeof(resources->cmds[i]), 734 &translation); 735 if (rc) { 736 goto cleanup; 737 } 738 rdma_recv->sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation); 739 rdma_recv->wr.num_sge = 1; 740 741 if (rdma_recv->buf) { 742 rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf; 743 rdma_recv->sgl[1].length = opts->in_capsule_data_size; 744 rc = spdk_rdma_get_translation(opts->map, rdma_recv->buf, opts->in_capsule_data_size, &translation); 745 if (rc) { 746 goto cleanup; 747 } 748 rdma_recv->sgl[1].lkey = spdk_rdma_memory_translation_get_lkey(&translation); 749 rdma_recv->wr.num_sge++; 750 } 751 752 rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr; 753 rdma_recv->wr.sg_list = rdma_recv->sgl; 754 if (srq) { 755 spdk_rdma_srq_queue_recv_wrs(srq, &rdma_recv->wr); 756 } else { 757 spdk_rdma_qp_queue_recv_wrs(qp, &rdma_recv->wr); 758 } 759 } 760 761 for (i = 0; i < opts->max_queue_depth; i++) { 762 rdma_req = &resources->reqs[i]; 763 764 if (opts->qpair != NULL) { 765 rdma_req->req.qpair = &opts->qpair->qpair; 766 } else { 767 rdma_req->req.qpair = NULL; 768 } 769 rdma_req->req.cmd = NULL; 770 rdma_req->req.iovcnt = 0; 771 rdma_req->req.stripped_data = NULL; 772 773 /* Set up memory to send responses */ 774 rdma_req->req.rsp = &resources->cpls[i]; 775 776 rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i]; 777 rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]); 778 rc = spdk_rdma_get_translation(opts->map, &resources->cpls[i], sizeof(resources->cpls[i]), 779 &translation); 780 if (rc) { 781 goto cleanup; 782 } 783 rdma_req->rsp.sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation); 784 785 rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND; 786 rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr; 787 rdma_req->rsp.wr.next = NULL; 788 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 789 rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED; 790 rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl; 791 rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl); 792 793 /* Set up memory for data buffers */ 794 rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA; 795 rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr; 796 rdma_req->data.wr.next = NULL; 797 rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED; 798 rdma_req->data.wr.sg_list = rdma_req->data.sgl; 799 rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl); 800 801 /* Initialize request state to FREE */ 802 rdma_req->state = RDMA_REQUEST_STATE_FREE; 803 STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link); 804 } 805 806 if (srq) { 807 rc = spdk_rdma_srq_flush_recv_wrs(srq, &bad_wr); 808 } else { 809 rc = spdk_rdma_qp_flush_recv_wrs(qp, &bad_wr); 810 } 811 812 if (rc) { 813 goto cleanup; 814 } 815 816 return resources; 817 818 cleanup: 819 nvmf_rdma_resources_destroy(resources); 820 return NULL; 821 } 822 823 static void 824 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair) 825 { 826 struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx; 827 STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) { 828 ctx->rqpair = NULL; 829 /* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */ 830 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 831 } 832 } 833 834 static void 835 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair) 836 { 837 struct spdk_nvmf_rdma_recv *rdma_recv, *recv_tmp; 838 struct ibv_recv_wr *bad_recv_wr = NULL; 839 int rc; 840 841 spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair); 842 843 if (rqpair->qd != 0) { 844 struct spdk_nvmf_qpair *qpair = &rqpair->qpair; 845 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(qpair->transport, 846 struct spdk_nvmf_rdma_transport, transport); 847 struct spdk_nvmf_rdma_request *req; 848 uint32_t i, max_req_count = 0; 849 850 SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd); 851 852 if (rqpair->srq == NULL) { 853 nvmf_rdma_dump_qpair_contents(rqpair); 854 max_req_count = rqpair->max_queue_depth; 855 } else if (rqpair->poller && rqpair->resources) { 856 max_req_count = rqpair->poller->max_srq_depth; 857 } 858 859 SPDK_DEBUGLOG(rdma, "Release incomplete requests\n"); 860 for (i = 0; i < max_req_count; i++) { 861 req = &rqpair->resources->reqs[i]; 862 if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) { 863 /* nvmf_rdma_request_process checks qpair ibv and internal state 864 * and completes a request */ 865 nvmf_rdma_request_process(rtransport, req); 866 } 867 } 868 assert(rqpair->qd == 0); 869 } 870 871 if (rqpair->poller) { 872 RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair); 873 874 if (rqpair->srq != NULL && rqpair->resources != NULL) { 875 /* Drop all received but unprocessed commands for this queue and return them to SRQ */ 876 STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) { 877 if (rqpair == rdma_recv->qpair) { 878 STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link); 879 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr); 880 rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr); 881 if (rc) { 882 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 883 } 884 } 885 } 886 } 887 } 888 889 if (rqpair->cm_id) { 890 if (rqpair->rdma_qp != NULL) { 891 spdk_rdma_qp_destroy(rqpair->rdma_qp); 892 rqpair->rdma_qp = NULL; 893 } 894 rdma_destroy_id(rqpair->cm_id); 895 896 if (rqpair->poller != NULL && rqpair->srq == NULL) { 897 rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth); 898 } 899 } 900 901 if (rqpair->srq == NULL && rqpair->resources != NULL) { 902 nvmf_rdma_resources_destroy(rqpair->resources); 903 } 904 905 nvmf_rdma_qpair_clean_ibv_events(rqpair); 906 907 if (rqpair->destruct_channel) { 908 spdk_put_io_channel(rqpair->destruct_channel); 909 rqpair->destruct_channel = NULL; 910 } 911 912 free(rqpair); 913 } 914 915 static int 916 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device) 917 { 918 struct spdk_nvmf_rdma_poller *rpoller; 919 int rc, num_cqe, required_num_wr; 920 921 /* Enlarge CQ size dynamically */ 922 rpoller = rqpair->poller; 923 required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth); 924 num_cqe = rpoller->num_cqe; 925 if (num_cqe < required_num_wr) { 926 num_cqe = spdk_max(num_cqe * 2, required_num_wr); 927 num_cqe = spdk_min(num_cqe, device->attr.max_cqe); 928 } 929 930 if (rpoller->num_cqe != num_cqe) { 931 if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) { 932 SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n" 933 "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe); 934 return -1; 935 } 936 if (required_num_wr > device->attr.max_cqe) { 937 SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n", 938 required_num_wr, device->attr.max_cqe); 939 return -1; 940 } 941 942 SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe); 943 rc = ibv_resize_cq(rpoller->cq, num_cqe); 944 if (rc) { 945 SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); 946 return -1; 947 } 948 949 rpoller->num_cqe = num_cqe; 950 } 951 952 rpoller->required_num_wr = required_num_wr; 953 return 0; 954 } 955 956 static int 957 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair) 958 { 959 struct spdk_nvmf_rdma_qpair *rqpair; 960 struct spdk_nvmf_rdma_transport *rtransport; 961 struct spdk_nvmf_transport *transport; 962 struct spdk_nvmf_rdma_resource_opts opts; 963 struct spdk_nvmf_rdma_device *device; 964 struct spdk_rdma_qp_init_attr qp_init_attr = {}; 965 966 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 967 device = rqpair->device; 968 969 qp_init_attr.qp_context = rqpair; 970 qp_init_attr.pd = device->pd; 971 qp_init_attr.send_cq = rqpair->poller->cq; 972 qp_init_attr.recv_cq = rqpair->poller->cq; 973 974 if (rqpair->srq) { 975 qp_init_attr.srq = rqpair->srq->srq; 976 } else { 977 qp_init_attr.cap.max_recv_wr = rqpair->max_queue_depth; 978 } 979 980 /* SEND, READ, and WRITE operations */ 981 qp_init_attr.cap.max_send_wr = (uint32_t)rqpair->max_queue_depth * 2; 982 qp_init_attr.cap.max_send_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE); 983 qp_init_attr.cap.max_recv_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 984 qp_init_attr.stats = &rqpair->poller->stat.qp_stats; 985 986 if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) { 987 SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n"); 988 goto error; 989 } 990 991 rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr); 992 if (!rqpair->rdma_qp) { 993 goto error; 994 } 995 996 rqpair->qp_num = rqpair->rdma_qp->qp->qp_num; 997 998 rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2), 999 qp_init_attr.cap.max_send_wr); 1000 rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge); 1001 rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge); 1002 spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair); 1003 SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair); 1004 1005 if (rqpair->poller->srq == NULL) { 1006 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 1007 transport = &rtransport->transport; 1008 1009 opts.qp = rqpair->rdma_qp; 1010 opts.map = device->map; 1011 opts.qpair = rqpair; 1012 opts.shared = false; 1013 opts.max_queue_depth = rqpair->max_queue_depth; 1014 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 1015 1016 rqpair->resources = nvmf_rdma_resources_create(&opts); 1017 1018 if (!rqpair->resources) { 1019 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 1020 rdma_destroy_qp(rqpair->cm_id); 1021 goto error; 1022 } 1023 } else { 1024 rqpair->resources = rqpair->poller->resources; 1025 } 1026 1027 rqpair->current_recv_depth = 0; 1028 STAILQ_INIT(&rqpair->pending_rdma_read_queue); 1029 STAILQ_INIT(&rqpair->pending_rdma_write_queue); 1030 1031 return 0; 1032 1033 error: 1034 rdma_destroy_id(rqpair->cm_id); 1035 rqpair->cm_id = NULL; 1036 return -1; 1037 } 1038 1039 /* Append the given recv wr structure to the resource structs outstanding recvs list. */ 1040 /* This function accepts either a single wr or the first wr in a linked list. */ 1041 static void 1042 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first) 1043 { 1044 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1045 struct spdk_nvmf_rdma_transport, transport); 1046 1047 if (rqpair->srq != NULL) { 1048 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, first); 1049 } else { 1050 if (spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, first)) { 1051 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link); 1052 } 1053 } 1054 1055 if (rtransport->rdma_opts.no_wr_batching) { 1056 _poller_submit_recvs(rtransport, rqpair->poller); 1057 } 1058 } 1059 1060 static int 1061 request_transfer_in(struct spdk_nvmf_request *req) 1062 { 1063 struct spdk_nvmf_rdma_request *rdma_req; 1064 struct spdk_nvmf_qpair *qpair; 1065 struct spdk_nvmf_rdma_qpair *rqpair; 1066 struct spdk_nvmf_rdma_transport *rtransport; 1067 1068 qpair = req->qpair; 1069 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1070 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1071 rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1072 struct spdk_nvmf_rdma_transport, transport); 1073 1074 assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); 1075 assert(rdma_req != NULL); 1076 1077 if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, &rdma_req->data.wr)) { 1078 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1079 } 1080 if (rtransport->rdma_opts.no_wr_batching) { 1081 _poller_submit_sends(rtransport, rqpair->poller); 1082 } 1083 1084 rqpair->current_read_depth += rdma_req->num_outstanding_data_wr; 1085 rqpair->current_send_depth += rdma_req->num_outstanding_data_wr; 1086 return 0; 1087 } 1088 1089 static int 1090 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted) 1091 { 1092 int num_outstanding_data_wr = 0; 1093 struct spdk_nvmf_rdma_request *rdma_req; 1094 struct spdk_nvmf_qpair *qpair; 1095 struct spdk_nvmf_rdma_qpair *rqpair; 1096 struct spdk_nvme_cpl *rsp; 1097 struct ibv_send_wr *first = NULL; 1098 struct spdk_nvmf_rdma_transport *rtransport; 1099 1100 *data_posted = 0; 1101 qpair = req->qpair; 1102 rsp = &req->rsp->nvme_cpl; 1103 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1104 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1105 rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1106 struct spdk_nvmf_rdma_transport, transport); 1107 1108 /* Advance our sq_head pointer */ 1109 if (qpair->sq_head == qpair->sq_head_max) { 1110 qpair->sq_head = 0; 1111 } else { 1112 qpair->sq_head++; 1113 } 1114 rsp->sqhd = qpair->sq_head; 1115 1116 /* queue the capsule for the recv buffer */ 1117 assert(rdma_req->recv != NULL); 1118 1119 nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr); 1120 1121 rdma_req->recv = NULL; 1122 assert(rqpair->current_recv_depth > 0); 1123 rqpair->current_recv_depth--; 1124 1125 /* Build the response which consists of optional 1126 * RDMA WRITEs to transfer data, plus an RDMA SEND 1127 * containing the response. 1128 */ 1129 first = &rdma_req->rsp.wr; 1130 1131 if (rsp->status.sc != SPDK_NVME_SC_SUCCESS) { 1132 /* On failure, data was not read from the controller. So clear the 1133 * number of outstanding data WRs to zero. 1134 */ 1135 rdma_req->num_outstanding_data_wr = 0; 1136 } else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1137 first = &rdma_req->data.wr; 1138 *data_posted = 1; 1139 num_outstanding_data_wr = rdma_req->num_outstanding_data_wr; 1140 } 1141 if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) { 1142 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1143 } 1144 if (rtransport->rdma_opts.no_wr_batching) { 1145 _poller_submit_sends(rtransport, rqpair->poller); 1146 } 1147 1148 /* +1 for the rsp wr */ 1149 rqpair->current_send_depth += num_outstanding_data_wr + 1; 1150 1151 return 0; 1152 } 1153 1154 static int 1155 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair) 1156 { 1157 struct spdk_nvmf_rdma_accept_private_data accept_data; 1158 struct rdma_conn_param ctrlr_event_data = {}; 1159 int rc; 1160 1161 accept_data.recfmt = 0; 1162 accept_data.crqsize = rqpair->max_queue_depth; 1163 1164 ctrlr_event_data.private_data = &accept_data; 1165 ctrlr_event_data.private_data_len = sizeof(accept_data); 1166 if (id->ps == RDMA_PS_TCP) { 1167 ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */ 1168 ctrlr_event_data.initiator_depth = rqpair->max_read_depth; 1169 } 1170 1171 /* Configure infinite retries for the initiator side qpair. 1172 * We need to pass this value to the initiator to prevent the 1173 * initiator side NIC from completing SEND requests back to the 1174 * initiator with status rnr_retry_count_exceeded. */ 1175 ctrlr_event_data.rnr_retry_count = 0x7; 1176 1177 /* When qpair is created without use of rdma cm API, an additional 1178 * information must be provided to initiator in the connection response: 1179 * whether qpair is using SRQ and its qp_num 1180 * Fields below are ignored by rdma cm if qpair has been 1181 * created using rdma cm API. */ 1182 ctrlr_event_data.srq = rqpair->srq ? 1 : 0; 1183 ctrlr_event_data.qp_num = rqpair->qp_num; 1184 1185 rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data); 1186 if (rc) { 1187 SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno); 1188 } else { 1189 SPDK_DEBUGLOG(rdma, "Sent back the accept\n"); 1190 } 1191 1192 return rc; 1193 } 1194 1195 static void 1196 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error) 1197 { 1198 struct spdk_nvmf_rdma_reject_private_data rej_data; 1199 1200 rej_data.recfmt = 0; 1201 rej_data.sts = error; 1202 1203 rdma_reject(id, &rej_data, sizeof(rej_data)); 1204 } 1205 1206 static int 1207 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event) 1208 { 1209 struct spdk_nvmf_rdma_transport *rtransport; 1210 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 1211 struct spdk_nvmf_rdma_port *port; 1212 struct rdma_conn_param *rdma_param = NULL; 1213 const struct spdk_nvmf_rdma_request_private_data *private_data = NULL; 1214 uint16_t max_queue_depth; 1215 uint16_t max_read_depth; 1216 1217 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 1218 1219 assert(event->id != NULL); /* Impossible. Can't even reject the connection. */ 1220 assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */ 1221 1222 rdma_param = &event->param.conn; 1223 if (rdma_param->private_data == NULL || 1224 rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1225 SPDK_ERRLOG("connect request: no private data provided\n"); 1226 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH); 1227 return -1; 1228 } 1229 1230 private_data = rdma_param->private_data; 1231 if (private_data->recfmt != 0) { 1232 SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n"); 1233 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT); 1234 return -1; 1235 } 1236 1237 SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n", 1238 event->id->verbs->device->name, event->id->verbs->device->dev_name); 1239 1240 port = event->listen_id->context; 1241 SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n", 1242 event->listen_id, event->listen_id->verbs, port); 1243 1244 /* Figure out the supported queue depth. This is a multi-step process 1245 * that takes into account hardware maximums, host provided values, 1246 * and our target's internal memory limits */ 1247 1248 SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n"); 1249 1250 /* Start with the maximum queue depth allowed by the target */ 1251 max_queue_depth = rtransport->transport.opts.max_queue_depth; 1252 max_read_depth = rtransport->transport.opts.max_queue_depth; 1253 SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n", 1254 rtransport->transport.opts.max_queue_depth); 1255 1256 /* Next check the local NIC's hardware limitations */ 1257 SPDK_DEBUGLOG(rdma, 1258 "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n", 1259 port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom); 1260 max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr); 1261 max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom); 1262 1263 /* Next check the remote NIC's hardware limitations */ 1264 SPDK_DEBUGLOG(rdma, 1265 "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n", 1266 rdma_param->initiator_depth, rdma_param->responder_resources); 1267 if (rdma_param->initiator_depth > 0) { 1268 max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth); 1269 } 1270 1271 /* Finally check for the host software requested values, which are 1272 * optional. */ 1273 if (rdma_param->private_data != NULL && 1274 rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1275 SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize); 1276 SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize); 1277 max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize); 1278 max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1); 1279 } 1280 1281 SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n", 1282 max_queue_depth, max_read_depth); 1283 1284 rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair)); 1285 if (rqpair == NULL) { 1286 SPDK_ERRLOG("Could not allocate new connection.\n"); 1287 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 1288 return -1; 1289 } 1290 1291 rqpair->device = port->device; 1292 rqpair->max_queue_depth = max_queue_depth; 1293 rqpair->max_read_depth = max_read_depth; 1294 rqpair->cm_id = event->id; 1295 rqpair->listen_id = event->listen_id; 1296 rqpair->qpair.transport = transport; 1297 STAILQ_INIT(&rqpair->ibv_events); 1298 /* use qid from the private data to determine the qpair type 1299 qid will be set to the appropriate value when the controller is created */ 1300 rqpair->qpair.qid = private_data->qid; 1301 1302 event->id->context = &rqpair->qpair; 1303 1304 spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair); 1305 1306 return 0; 1307 } 1308 1309 static inline void 1310 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next, 1311 enum spdk_nvme_data_transfer xfer) 1312 { 1313 if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1314 wr->opcode = IBV_WR_RDMA_WRITE; 1315 wr->send_flags = 0; 1316 wr->next = next; 1317 } else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 1318 wr->opcode = IBV_WR_RDMA_READ; 1319 wr->send_flags = IBV_SEND_SIGNALED; 1320 wr->next = NULL; 1321 } else { 1322 assert(0); 1323 } 1324 } 1325 1326 static int 1327 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport, 1328 struct spdk_nvmf_rdma_request *rdma_req, 1329 uint32_t num_sgl_descriptors) 1330 { 1331 struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES]; 1332 struct spdk_nvmf_rdma_request_data *current_data_wr; 1333 uint32_t i; 1334 1335 if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) { 1336 SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n", 1337 num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES); 1338 return -EINVAL; 1339 } 1340 1341 if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) { 1342 return -ENOMEM; 1343 } 1344 1345 current_data_wr = &rdma_req->data; 1346 1347 for (i = 0; i < num_sgl_descriptors; i++) { 1348 nvmf_rdma_setup_wr(¤t_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer); 1349 current_data_wr->wr.next = &work_requests[i]->wr; 1350 current_data_wr = work_requests[i]; 1351 current_data_wr->wr.sg_list = current_data_wr->sgl; 1352 current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id; 1353 } 1354 1355 nvmf_rdma_setup_wr(¤t_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1356 1357 return 0; 1358 } 1359 1360 static inline void 1361 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req) 1362 { 1363 struct ibv_send_wr *wr = &rdma_req->data.wr; 1364 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1365 1366 wr->wr.rdma.rkey = sgl->keyed.key; 1367 wr->wr.rdma.remote_addr = sgl->address; 1368 nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1369 } 1370 1371 static inline void 1372 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs) 1373 { 1374 struct ibv_send_wr *wr = &rdma_req->data.wr; 1375 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1376 uint32_t i; 1377 int j; 1378 uint64_t remote_addr_offset = 0; 1379 1380 for (i = 0; i < num_wrs; ++i) { 1381 wr->wr.rdma.rkey = sgl->keyed.key; 1382 wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset; 1383 for (j = 0; j < wr->num_sge; ++j) { 1384 remote_addr_offset += wr->sg_list[j].length; 1385 } 1386 wr = wr->next; 1387 } 1388 } 1389 1390 static int 1391 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup, 1392 struct spdk_nvmf_rdma_device *device, 1393 struct spdk_nvmf_rdma_request *rdma_req, 1394 struct ibv_send_wr *wr, 1395 uint32_t total_length) 1396 { 1397 struct spdk_rdma_memory_translation mem_translation; 1398 struct ibv_sge *sg_ele; 1399 struct iovec *iov; 1400 uint32_t lkey, remaining; 1401 int rc; 1402 1403 wr->num_sge = 0; 1404 1405 while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) { 1406 iov = &rdma_req->req.iov[rdma_req->iovpos]; 1407 rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation); 1408 if (spdk_unlikely(rc)) { 1409 return rc; 1410 } 1411 1412 lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation); 1413 sg_ele = &wr->sg_list[wr->num_sge]; 1414 remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length); 1415 1416 sg_ele->lkey = lkey; 1417 sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset; 1418 sg_ele->length = remaining; 1419 SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr, 1420 sg_ele->length); 1421 rdma_req->offset += sg_ele->length; 1422 total_length -= sg_ele->length; 1423 wr->num_sge++; 1424 1425 if (rdma_req->offset == iov->iov_len) { 1426 rdma_req->offset = 0; 1427 rdma_req->iovpos++; 1428 } 1429 } 1430 1431 if (total_length) { 1432 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1433 return -EINVAL; 1434 } 1435 1436 return 0; 1437 } 1438 1439 static int 1440 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_poll_group *rgroup, 1441 struct spdk_nvmf_rdma_device *device, 1442 struct spdk_nvmf_rdma_request *rdma_req, 1443 struct ibv_send_wr *wr, 1444 uint32_t total_length, 1445 uint32_t num_extra_wrs) 1446 { 1447 struct spdk_rdma_memory_translation mem_translation; 1448 struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx; 1449 struct ibv_sge *sg_ele; 1450 struct iovec *iov; 1451 struct iovec *rdma_iov; 1452 uint32_t lkey, remaining; 1453 uint32_t remaining_data_block, data_block_size, md_size; 1454 uint32_t sge_len; 1455 int rc; 1456 1457 data_block_size = dif_ctx->block_size - dif_ctx->md_size; 1458 1459 if (spdk_likely(!rdma_req->req.stripped_data)) { 1460 rdma_iov = rdma_req->req.iov; 1461 remaining_data_block = data_block_size; 1462 md_size = dif_ctx->md_size; 1463 } else { 1464 rdma_iov = rdma_req->req.stripped_data->iov; 1465 total_length = total_length / dif_ctx->block_size * data_block_size; 1466 remaining_data_block = total_length; 1467 md_size = 0; 1468 } 1469 1470 wr->num_sge = 0; 1471 1472 while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) { 1473 iov = rdma_iov + rdma_req->iovpos; 1474 rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation); 1475 if (spdk_unlikely(rc)) { 1476 return rc; 1477 } 1478 1479 lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation); 1480 sg_ele = &wr->sg_list[wr->num_sge]; 1481 remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length); 1482 1483 while (remaining) { 1484 if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) { 1485 if (num_extra_wrs > 0 && wr->next) { 1486 wr = wr->next; 1487 wr->num_sge = 0; 1488 sg_ele = &wr->sg_list[wr->num_sge]; 1489 num_extra_wrs--; 1490 } else { 1491 break; 1492 } 1493 } 1494 sg_ele->lkey = lkey; 1495 sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset); 1496 sge_len = spdk_min(remaining, remaining_data_block); 1497 sg_ele->length = sge_len; 1498 SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, 1499 sg_ele->addr, sg_ele->length); 1500 remaining -= sge_len; 1501 remaining_data_block -= sge_len; 1502 rdma_req->offset += sge_len; 1503 total_length -= sge_len; 1504 1505 sg_ele++; 1506 wr->num_sge++; 1507 1508 if (remaining_data_block == 0) { 1509 /* skip metadata */ 1510 rdma_req->offset += md_size; 1511 total_length -= md_size; 1512 /* Metadata that do not fit this IO buffer will be included in the next IO buffer */ 1513 remaining -= spdk_min(remaining, md_size); 1514 remaining_data_block = data_block_size; 1515 } 1516 1517 if (remaining == 0) { 1518 /* By subtracting the size of the last IOV from the offset, we ensure that we skip 1519 the remaining metadata bits at the beginning of the next buffer */ 1520 rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset); 1521 rdma_req->iovpos++; 1522 } 1523 } 1524 } 1525 1526 if (total_length) { 1527 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1528 return -EINVAL; 1529 } 1530 1531 return 0; 1532 } 1533 1534 static inline uint32_t 1535 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size) 1536 { 1537 /* estimate the number of SG entries and WRs needed to process the request */ 1538 uint32_t num_sge = 0; 1539 uint32_t i; 1540 uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size); 1541 1542 for (i = 0; i < num_buffers && length > 0; i++) { 1543 uint32_t buffer_len = spdk_min(length, io_unit_size); 1544 uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size); 1545 1546 if (num_sge_in_block * block_size > buffer_len) { 1547 ++num_sge_in_block; 1548 } 1549 num_sge += num_sge_in_block; 1550 length -= buffer_len; 1551 } 1552 return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES); 1553 } 1554 1555 static int 1556 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport, 1557 struct spdk_nvmf_rdma_device *device, 1558 struct spdk_nvmf_rdma_request *rdma_req) 1559 { 1560 struct spdk_nvmf_rdma_qpair *rqpair; 1561 struct spdk_nvmf_rdma_poll_group *rgroup; 1562 struct spdk_nvmf_request *req = &rdma_req->req; 1563 struct ibv_send_wr *wr = &rdma_req->data.wr; 1564 int rc; 1565 uint32_t num_wrs = 1; 1566 uint32_t length; 1567 1568 rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair); 1569 rgroup = rqpair->poller->group; 1570 1571 /* rdma wr specifics */ 1572 nvmf_rdma_setup_request(rdma_req); 1573 1574 length = req->length; 1575 if (spdk_unlikely(req->dif_enabled)) { 1576 req->dif.orig_length = length; 1577 length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx); 1578 req->dif.elba_length = length; 1579 } 1580 1581 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, 1582 length); 1583 if (rc != 0) { 1584 return rc; 1585 } 1586 1587 assert(req->iovcnt <= rqpair->max_send_sge); 1588 1589 /* When dif_insert_or_strip is true and the I/O data length is greater than one block, 1590 * the stripped_buffers are got for DIF stripping. */ 1591 if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) 1592 && (req->dif.elba_length > req->dif.dif_ctx.block_size))) { 1593 rc = nvmf_request_get_stripped_buffers(req, &rgroup->group, 1594 &rtransport->transport, req->dif.orig_length); 1595 if (rc != 0) { 1596 SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc); 1597 } 1598 } 1599 1600 rdma_req->iovpos = 0; 1601 1602 if (spdk_unlikely(req->dif_enabled)) { 1603 num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size, 1604 req->dif.dif_ctx.block_size); 1605 if (num_wrs > 1) { 1606 rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1); 1607 if (rc != 0) { 1608 goto err_exit; 1609 } 1610 } 1611 1612 rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, wr, length, num_wrs - 1); 1613 if (spdk_unlikely(rc != 0)) { 1614 goto err_exit; 1615 } 1616 1617 if (num_wrs > 1) { 1618 nvmf_rdma_update_remote_addr(rdma_req, num_wrs); 1619 } 1620 } else { 1621 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length); 1622 if (spdk_unlikely(rc != 0)) { 1623 goto err_exit; 1624 } 1625 } 1626 1627 /* set the number of outstanding data WRs for this request. */ 1628 rdma_req->num_outstanding_data_wr = num_wrs; 1629 1630 return rc; 1631 1632 err_exit: 1633 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1634 nvmf_rdma_request_free_data(rdma_req, rtransport); 1635 req->iovcnt = 0; 1636 return rc; 1637 } 1638 1639 static int 1640 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1641 struct spdk_nvmf_rdma_device *device, 1642 struct spdk_nvmf_rdma_request *rdma_req) 1643 { 1644 struct spdk_nvmf_rdma_qpair *rqpair; 1645 struct spdk_nvmf_rdma_poll_group *rgroup; 1646 struct ibv_send_wr *current_wr; 1647 struct spdk_nvmf_request *req = &rdma_req->req; 1648 struct spdk_nvme_sgl_descriptor *inline_segment, *desc; 1649 uint32_t num_sgl_descriptors; 1650 uint32_t lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0; 1651 uint32_t i; 1652 int rc; 1653 1654 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1655 rgroup = rqpair->poller->group; 1656 1657 inline_segment = &req->cmd->nvme_cmd.dptr.sgl1; 1658 assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT); 1659 assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET); 1660 1661 num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor); 1662 assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES); 1663 1664 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1665 for (i = 0; i < num_sgl_descriptors; i++) { 1666 if (spdk_likely(!req->dif_enabled)) { 1667 lengths[i] = desc->keyed.length; 1668 } else { 1669 req->dif.orig_length += desc->keyed.length; 1670 lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx); 1671 req->dif.elba_length += lengths[i]; 1672 } 1673 total_length += lengths[i]; 1674 desc++; 1675 } 1676 1677 if (total_length > rtransport->transport.opts.max_io_size) { 1678 SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n", 1679 total_length, rtransport->transport.opts.max_io_size); 1680 req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1681 return -EINVAL; 1682 } 1683 1684 if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) { 1685 return -ENOMEM; 1686 } 1687 1688 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length); 1689 if (rc != 0) { 1690 nvmf_rdma_request_free_data(rdma_req, rtransport); 1691 return rc; 1692 } 1693 1694 /* When dif_insert_or_strip is true and the I/O data length is greater than one block, 1695 * the stripped_buffers are got for DIF stripping. */ 1696 if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) 1697 && (req->dif.elba_length > req->dif.dif_ctx.block_size))) { 1698 rc = nvmf_request_get_stripped_buffers(req, &rgroup->group, 1699 &rtransport->transport, req->dif.orig_length); 1700 if (rc != 0) { 1701 SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc); 1702 } 1703 } 1704 1705 /* The first WR must always be the embedded data WR. This is how we unwind them later. */ 1706 current_wr = &rdma_req->data.wr; 1707 assert(current_wr != NULL); 1708 1709 req->length = 0; 1710 rdma_req->iovpos = 0; 1711 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1712 for (i = 0; i < num_sgl_descriptors; i++) { 1713 /* The descriptors must be keyed data block descriptors with an address, not an offset. */ 1714 if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK || 1715 desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) { 1716 rc = -EINVAL; 1717 goto err_exit; 1718 } 1719 1720 if (spdk_likely(!req->dif_enabled)) { 1721 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i]); 1722 } else { 1723 rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, current_wr, 1724 lengths[i], 0); 1725 } 1726 if (rc != 0) { 1727 rc = -ENOMEM; 1728 goto err_exit; 1729 } 1730 1731 req->length += desc->keyed.length; 1732 current_wr->wr.rdma.rkey = desc->keyed.key; 1733 current_wr->wr.rdma.remote_addr = desc->address; 1734 current_wr = current_wr->next; 1735 desc++; 1736 } 1737 1738 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1739 /* Go back to the last descriptor in the list. */ 1740 desc--; 1741 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1742 if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1743 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1744 rdma_req->rsp.wr.imm_data = desc->keyed.key; 1745 } 1746 } 1747 #endif 1748 1749 rdma_req->num_outstanding_data_wr = num_sgl_descriptors; 1750 1751 return 0; 1752 1753 err_exit: 1754 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1755 nvmf_rdma_request_free_data(rdma_req, rtransport); 1756 return rc; 1757 } 1758 1759 static int 1760 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1761 struct spdk_nvmf_rdma_device *device, 1762 struct spdk_nvmf_rdma_request *rdma_req) 1763 { 1764 struct spdk_nvmf_request *req = &rdma_req->req; 1765 struct spdk_nvme_cpl *rsp; 1766 struct spdk_nvme_sgl_descriptor *sgl; 1767 int rc; 1768 uint32_t length; 1769 1770 rsp = &req->rsp->nvme_cpl; 1771 sgl = &req->cmd->nvme_cmd.dptr.sgl1; 1772 1773 if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK && 1774 (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS || 1775 sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) { 1776 1777 length = sgl->keyed.length; 1778 if (length > rtransport->transport.opts.max_io_size) { 1779 SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n", 1780 length, rtransport->transport.opts.max_io_size); 1781 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1782 return -1; 1783 } 1784 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1785 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1786 if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1787 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1788 rdma_req->rsp.wr.imm_data = sgl->keyed.key; 1789 } 1790 } 1791 #endif 1792 1793 /* fill request length and populate iovs */ 1794 req->length = length; 1795 1796 rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req); 1797 if (spdk_unlikely(rc < 0)) { 1798 if (rc == -EINVAL) { 1799 SPDK_ERRLOG("SGL length exceeds the max I/O size\n"); 1800 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1801 return -1; 1802 } 1803 /* No available buffers. Queue this request up. */ 1804 SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req); 1805 return 0; 1806 } 1807 1808 /* backward compatible */ 1809 req->data = req->iov[0].iov_base; 1810 1811 SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req, 1812 req->iovcnt); 1813 1814 return 0; 1815 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK && 1816 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1817 uint64_t offset = sgl->address; 1818 uint32_t max_len = rtransport->transport.opts.in_capsule_data_size; 1819 1820 SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n", 1821 offset, sgl->unkeyed.length); 1822 1823 if (offset > max_len) { 1824 SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n", 1825 offset, max_len); 1826 rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET; 1827 return -1; 1828 } 1829 max_len -= (uint32_t)offset; 1830 1831 if (sgl->unkeyed.length > max_len) { 1832 SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n", 1833 sgl->unkeyed.length, max_len); 1834 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1835 return -1; 1836 } 1837 1838 rdma_req->num_outstanding_data_wr = 0; 1839 req->data = rdma_req->recv->buf + offset; 1840 req->data_from_pool = false; 1841 req->length = sgl->unkeyed.length; 1842 1843 req->iov[0].iov_base = req->data; 1844 req->iov[0].iov_len = req->length; 1845 req->iovcnt = 1; 1846 1847 return 0; 1848 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT && 1849 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1850 1851 rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req); 1852 if (rc == -ENOMEM) { 1853 SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req); 1854 return 0; 1855 } else if (rc == -EINVAL) { 1856 SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n"); 1857 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1858 return -1; 1859 } 1860 1861 /* backward compatible */ 1862 req->data = req->iov[0].iov_base; 1863 1864 SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req, 1865 req->iovcnt); 1866 1867 return 0; 1868 } 1869 1870 SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n", 1871 sgl->generic.type, sgl->generic.subtype); 1872 rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID; 1873 return -1; 1874 } 1875 1876 static void 1877 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req, 1878 struct spdk_nvmf_rdma_transport *rtransport) 1879 { 1880 struct spdk_nvmf_rdma_qpair *rqpair; 1881 struct spdk_nvmf_rdma_poll_group *rgroup; 1882 1883 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1884 if (rdma_req->req.data_from_pool) { 1885 rgroup = rqpair->poller->group; 1886 1887 spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport); 1888 } 1889 if (rdma_req->req.stripped_data) { 1890 nvmf_request_free_stripped_buffers(&rdma_req->req, 1891 &rqpair->poller->group->group, 1892 &rtransport->transport); 1893 } 1894 nvmf_rdma_request_free_data(rdma_req, rtransport); 1895 rdma_req->req.length = 0; 1896 rdma_req->req.iovcnt = 0; 1897 rdma_req->req.data = NULL; 1898 rdma_req->offset = 0; 1899 rdma_req->req.dif_enabled = false; 1900 rdma_req->fused_failed = false; 1901 if (rdma_req->fused_pair) { 1902 /* This req was part of a valid fused pair, but failed before it got to 1903 * READ_TO_EXECUTE state. This means we need to fail the other request 1904 * in the pair, because it is no longer part of a valid pair. If the pair 1905 * already reached READY_TO_EXECUTE state, we need to kick it. 1906 */ 1907 rdma_req->fused_pair->fused_failed = true; 1908 if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 1909 nvmf_rdma_request_process(rtransport, rdma_req->fused_pair); 1910 } 1911 rdma_req->fused_pair = NULL; 1912 } 1913 memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif)); 1914 rqpair->qd--; 1915 1916 STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link); 1917 rdma_req->state = RDMA_REQUEST_STATE_FREE; 1918 } 1919 1920 static void 1921 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport, 1922 struct spdk_nvmf_rdma_qpair *rqpair, 1923 struct spdk_nvmf_rdma_request *rdma_req) 1924 { 1925 enum spdk_nvme_cmd_fuse last, next; 1926 1927 last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE; 1928 next = rdma_req->req.cmd->nvme_cmd.fuse; 1929 1930 assert(last != SPDK_NVME_CMD_FUSE_SECOND); 1931 1932 if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) { 1933 return; 1934 } 1935 1936 if (last == SPDK_NVME_CMD_FUSE_FIRST) { 1937 if (next == SPDK_NVME_CMD_FUSE_SECOND) { 1938 /* This is a valid pair of fused commands. Point them at each other 1939 * so they can be submitted consecutively once ready to be executed. 1940 */ 1941 rqpair->fused_first->fused_pair = rdma_req; 1942 rdma_req->fused_pair = rqpair->fused_first; 1943 rqpair->fused_first = NULL; 1944 return; 1945 } else { 1946 /* Mark the last req as failed since it wasn't followed by a SECOND. */ 1947 rqpair->fused_first->fused_failed = true; 1948 1949 /* If the last req is in READY_TO_EXECUTE state, then call 1950 * nvmf_rdma_request_process(), otherwise nothing else will kick it. 1951 */ 1952 if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 1953 nvmf_rdma_request_process(rtransport, rqpair->fused_first); 1954 } 1955 1956 rqpair->fused_first = NULL; 1957 } 1958 } 1959 1960 if (next == SPDK_NVME_CMD_FUSE_FIRST) { 1961 /* Set rqpair->fused_first here so that we know to check that the next request 1962 * is a SECOND (and to fail this one if it isn't). 1963 */ 1964 rqpair->fused_first = rdma_req; 1965 } else if (next == SPDK_NVME_CMD_FUSE_SECOND) { 1966 /* Mark this req failed since it ia SECOND and the last one was not a FIRST. */ 1967 rdma_req->fused_failed = true; 1968 } 1969 } 1970 1971 bool 1972 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 1973 struct spdk_nvmf_rdma_request *rdma_req) 1974 { 1975 struct spdk_nvmf_rdma_qpair *rqpair; 1976 struct spdk_nvmf_rdma_device *device; 1977 struct spdk_nvmf_rdma_poll_group *rgroup; 1978 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 1979 int rc; 1980 struct spdk_nvmf_rdma_recv *rdma_recv; 1981 enum spdk_nvmf_rdma_request_state prev_state; 1982 bool progress = false; 1983 int data_posted; 1984 uint32_t num_blocks; 1985 1986 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1987 device = rqpair->device; 1988 rgroup = rqpair->poller->group; 1989 1990 assert(rdma_req->state != RDMA_REQUEST_STATE_FREE); 1991 1992 /* If the queue pair is in an error state, force the request to the completed state 1993 * to release resources. */ 1994 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 1995 if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) { 1996 STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link); 1997 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) { 1998 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 1999 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) { 2000 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2001 } 2002 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2003 } 2004 2005 /* The loop here is to allow for several back-to-back state changes. */ 2006 do { 2007 prev_state = rdma_req->state; 2008 2009 SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state); 2010 2011 switch (rdma_req->state) { 2012 case RDMA_REQUEST_STATE_FREE: 2013 /* Some external code must kick a request into RDMA_REQUEST_STATE_NEW 2014 * to escape this state. */ 2015 break; 2016 case RDMA_REQUEST_STATE_NEW: 2017 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0, 2018 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2019 rdma_recv = rdma_req->recv; 2020 2021 /* The first element of the SGL is the NVMe command */ 2022 rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr; 2023 memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp)); 2024 2025 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 2026 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2027 break; 2028 } 2029 2030 if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) { 2031 rdma_req->req.dif_enabled = true; 2032 } 2033 2034 nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req); 2035 2036 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2037 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 2038 rdma_req->rsp.wr.imm_data = 0; 2039 #endif 2040 2041 /* The next state transition depends on the data transfer needs of this request. */ 2042 rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req); 2043 2044 if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) { 2045 rsp->status.sct = SPDK_NVME_SCT_GENERIC; 2046 rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE; 2047 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2048 SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req); 2049 break; 2050 } 2051 2052 /* If no data to transfer, ready to execute. */ 2053 if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) { 2054 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2055 break; 2056 } 2057 2058 rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER; 2059 STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link); 2060 break; 2061 case RDMA_REQUEST_STATE_NEED_BUFFER: 2062 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0, 2063 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2064 2065 assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE); 2066 2067 if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) { 2068 /* This request needs to wait in line to obtain a buffer */ 2069 break; 2070 } 2071 2072 /* Try to get a data buffer */ 2073 rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req); 2074 if (rc < 0) { 2075 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2076 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2077 break; 2078 } 2079 2080 if (!rdma_req->req.data) { 2081 /* No buffers available. */ 2082 rgroup->stat.pending_data_buffer++; 2083 break; 2084 } 2085 2086 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2087 2088 /* If data is transferring from host to controller and the data didn't 2089 * arrive using in capsule data, we need to do a transfer from the host. 2090 */ 2091 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && 2092 rdma_req->req.data_from_pool) { 2093 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link); 2094 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING; 2095 break; 2096 } 2097 2098 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2099 break; 2100 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 2101 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0, 2102 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2103 2104 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) { 2105 /* This request needs to wait in line to perform RDMA */ 2106 break; 2107 } 2108 if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth 2109 || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) { 2110 /* We can only have so many WRs outstanding. we have to wait until some finish. */ 2111 rqpair->poller->stat.pending_rdma_read++; 2112 break; 2113 } 2114 2115 /* We have already verified that this request is the head of the queue. */ 2116 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link); 2117 2118 rc = request_transfer_in(&rdma_req->req); 2119 if (!rc) { 2120 rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER; 2121 } else { 2122 rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 2123 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2124 } 2125 break; 2126 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 2127 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0, 2128 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2129 /* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE 2130 * to escape this state. */ 2131 break; 2132 case RDMA_REQUEST_STATE_READY_TO_EXECUTE: 2133 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0, 2134 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2135 2136 if (spdk_unlikely(rdma_req->req.dif_enabled)) { 2137 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 2138 /* generate DIF for write operation */ 2139 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2140 assert(num_blocks > 0); 2141 2142 rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt, 2143 num_blocks, &rdma_req->req.dif.dif_ctx); 2144 if (rc != 0) { 2145 SPDK_ERRLOG("DIF generation failed\n"); 2146 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2147 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 2148 break; 2149 } 2150 } 2151 2152 assert(rdma_req->req.dif.elba_length >= rdma_req->req.length); 2153 /* set extended length before IO operation */ 2154 rdma_req->req.length = rdma_req->req.dif.elba_length; 2155 } 2156 2157 if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) { 2158 if (rdma_req->fused_failed) { 2159 /* This request failed FUSED semantics. Fail it immediately, without 2160 * even sending it to the target layer. 2161 */ 2162 rsp->status.sct = SPDK_NVME_SCT_GENERIC; 2163 rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED; 2164 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2165 break; 2166 } 2167 2168 if (rdma_req->fused_pair == NULL || 2169 rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 2170 /* This request is ready to execute, but either we don't know yet if it's 2171 * valid - i.e. this is a FIRST but we haven't received the next 2172 * request yet or the other request of this fused pair isn't ready to 2173 * execute. So break here and this request will get processed later either 2174 * when the other request is ready or we find that this request isn't valid. 2175 */ 2176 break; 2177 } 2178 } 2179 2180 /* If we get to this point, and this request is a fused command, we know that 2181 * it is part of valid sequence (FIRST followed by a SECOND) and that both 2182 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this 2183 * request, and the other request of the fused pair, in the correct order. 2184 * Also clear the ->fused_pair pointers on both requests, since after this point 2185 * we no longer need to maintain the relationship between these two requests. 2186 */ 2187 if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) { 2188 assert(rdma_req->fused_pair != NULL); 2189 assert(rdma_req->fused_pair->fused_pair != NULL); 2190 rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING; 2191 spdk_nvmf_request_exec(&rdma_req->fused_pair->req); 2192 rdma_req->fused_pair->fused_pair = NULL; 2193 rdma_req->fused_pair = NULL; 2194 } 2195 rdma_req->state = RDMA_REQUEST_STATE_EXECUTING; 2196 spdk_nvmf_request_exec(&rdma_req->req); 2197 if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) { 2198 assert(rdma_req->fused_pair != NULL); 2199 assert(rdma_req->fused_pair->fused_pair != NULL); 2200 rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING; 2201 spdk_nvmf_request_exec(&rdma_req->fused_pair->req); 2202 rdma_req->fused_pair->fused_pair = NULL; 2203 rdma_req->fused_pair = NULL; 2204 } 2205 break; 2206 case RDMA_REQUEST_STATE_EXECUTING: 2207 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0, 2208 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2209 /* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED 2210 * to escape this state. */ 2211 break; 2212 case RDMA_REQUEST_STATE_EXECUTED: 2213 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0, 2214 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2215 if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && 2216 rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2217 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link); 2218 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING; 2219 } else { 2220 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2221 } 2222 if (spdk_unlikely(rdma_req->req.dif_enabled)) { 2223 /* restore the original length */ 2224 rdma_req->req.length = rdma_req->req.dif.orig_length; 2225 2226 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2227 struct spdk_dif_error error_blk; 2228 2229 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2230 if (!rdma_req->req.stripped_data) { 2231 rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2232 &rdma_req->req.dif.dif_ctx, &error_blk); 2233 } else { 2234 rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov, 2235 rdma_req->req.stripped_data->iovcnt, 2236 rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2237 &rdma_req->req.dif.dif_ctx, &error_blk); 2238 } 2239 if (rc) { 2240 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2241 2242 SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type, 2243 error_blk.err_offset); 2244 rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR; 2245 rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type); 2246 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2247 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2248 } 2249 } 2250 } 2251 break; 2252 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 2253 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0, 2254 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2255 2256 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) { 2257 /* This request needs to wait in line to perform RDMA */ 2258 break; 2259 } 2260 if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) > 2261 rqpair->max_send_depth) { 2262 /* We can only have so many WRs outstanding. we have to wait until some finish. 2263 * +1 since each request has an additional wr in the resp. */ 2264 rqpair->poller->stat.pending_rdma_write++; 2265 break; 2266 } 2267 2268 /* We have already verified that this request is the head of the queue. */ 2269 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link); 2270 2271 /* The data transfer will be kicked off from 2272 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state. 2273 */ 2274 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2275 break; 2276 case RDMA_REQUEST_STATE_READY_TO_COMPLETE: 2277 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0, 2278 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2279 rc = request_transfer_out(&rdma_req->req, &data_posted); 2280 assert(rc == 0); /* No good way to handle this currently */ 2281 if (rc) { 2282 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2283 } else { 2284 rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST : 2285 RDMA_REQUEST_STATE_COMPLETING; 2286 } 2287 break; 2288 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 2289 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0, 2290 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2291 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2292 * to escape this state. */ 2293 break; 2294 case RDMA_REQUEST_STATE_COMPLETING: 2295 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0, 2296 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2297 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2298 * to escape this state. */ 2299 break; 2300 case RDMA_REQUEST_STATE_COMPLETED: 2301 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0, 2302 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2303 2304 rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc; 2305 _nvmf_rdma_request_free(rdma_req, rtransport); 2306 break; 2307 case RDMA_REQUEST_NUM_STATES: 2308 default: 2309 assert(0); 2310 break; 2311 } 2312 2313 if (rdma_req->state != prev_state) { 2314 progress = true; 2315 } 2316 } while (rdma_req->state != prev_state); 2317 2318 return progress; 2319 } 2320 2321 /* Public API callbacks begin here */ 2322 2323 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128 2324 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128 2325 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096 2326 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128 2327 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096 2328 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072 2329 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES) 2330 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095 2331 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32 2332 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false 2333 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false 2334 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100 2335 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1 2336 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false 2337 2338 static void 2339 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts) 2340 { 2341 opts->max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH; 2342 opts->max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR; 2343 opts->in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE; 2344 opts->max_io_size = SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE; 2345 opts->io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE; 2346 opts->max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH; 2347 opts->num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS; 2348 opts->buf_cache_size = SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE; 2349 opts->dif_insert_or_strip = SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP; 2350 opts->abort_timeout_sec = SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC; 2351 opts->transport_specific = NULL; 2352 } 2353 2354 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport, 2355 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg); 2356 2357 static inline bool 2358 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device) 2359 { 2360 return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD || 2361 device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW; 2362 } 2363 2364 static int nvmf_rdma_accept(void *ctx); 2365 2366 static struct spdk_nvmf_transport * 2367 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts) 2368 { 2369 int rc; 2370 struct spdk_nvmf_rdma_transport *rtransport; 2371 struct spdk_nvmf_rdma_device *device, *tmp; 2372 struct ibv_context **contexts; 2373 uint32_t i; 2374 int flag; 2375 uint32_t sge_count; 2376 uint32_t min_shared_buffers; 2377 uint32_t min_in_capsule_data_size; 2378 int max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES; 2379 2380 rtransport = calloc(1, sizeof(*rtransport)); 2381 if (!rtransport) { 2382 return NULL; 2383 } 2384 2385 TAILQ_INIT(&rtransport->devices); 2386 TAILQ_INIT(&rtransport->ports); 2387 TAILQ_INIT(&rtransport->poll_groups); 2388 2389 rtransport->transport.ops = &spdk_nvmf_transport_rdma; 2390 rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE; 2391 rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH; 2392 rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ; 2393 rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG; 2394 rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING; 2395 if (opts->transport_specific != NULL && 2396 spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder, 2397 SPDK_COUNTOF(rdma_transport_opts_decoder), 2398 &rtransport->rdma_opts)) { 2399 SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n"); 2400 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2401 return NULL; 2402 } 2403 2404 SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n" 2405 " Transport opts: max_ioq_depth=%d, max_io_size=%d,\n" 2406 " max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n" 2407 " in_capsule_data_size=%d, max_aq_depth=%d,\n" 2408 " num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d," 2409 " acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n", 2410 opts->max_queue_depth, 2411 opts->max_io_size, 2412 opts->max_qpairs_per_ctrlr - 1, 2413 opts->io_unit_size, 2414 opts->in_capsule_data_size, 2415 opts->max_aq_depth, 2416 opts->num_shared_buffers, 2417 rtransport->rdma_opts.num_cqe, 2418 rtransport->rdma_opts.max_srq_depth, 2419 rtransport->rdma_opts.no_srq, 2420 rtransport->rdma_opts.acceptor_backlog, 2421 rtransport->rdma_opts.no_wr_batching, 2422 opts->abort_timeout_sec); 2423 2424 /* I/O unit size cannot be larger than max I/O size */ 2425 if (opts->io_unit_size > opts->max_io_size) { 2426 opts->io_unit_size = opts->max_io_size; 2427 } 2428 2429 if (rtransport->rdma_opts.acceptor_backlog <= 0) { 2430 SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n", 2431 SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG); 2432 rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG; 2433 } 2434 2435 if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) { 2436 SPDK_ERRLOG("The number of shared data buffers (%d) is less than" 2437 "the minimum number required to guarantee that forward progress can be made (%d)\n", 2438 opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2)); 2439 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2440 return NULL; 2441 } 2442 2443 min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size; 2444 if (min_shared_buffers > opts->num_shared_buffers) { 2445 SPDK_ERRLOG("There are not enough buffers to satisfy" 2446 "per-poll group caches for each thread. (%" PRIu32 ")" 2447 "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers); 2448 SPDK_ERRLOG("Please specify a larger number of shared buffers\n"); 2449 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2450 return NULL; 2451 } 2452 2453 sge_count = opts->max_io_size / opts->io_unit_size; 2454 if (sge_count > NVMF_DEFAULT_TX_SGE) { 2455 SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size); 2456 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2457 return NULL; 2458 } 2459 2460 min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES; 2461 if (opts->in_capsule_data_size < min_in_capsule_data_size) { 2462 SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n", 2463 min_in_capsule_data_size); 2464 opts->in_capsule_data_size = min_in_capsule_data_size; 2465 } 2466 2467 rtransport->event_channel = rdma_create_event_channel(); 2468 if (rtransport->event_channel == NULL) { 2469 SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno)); 2470 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2471 return NULL; 2472 } 2473 2474 flag = fcntl(rtransport->event_channel->fd, F_GETFL); 2475 if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { 2476 SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n", 2477 rtransport->event_channel->fd, spdk_strerror(errno)); 2478 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2479 return NULL; 2480 } 2481 2482 rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data", 2483 opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES, 2484 sizeof(struct spdk_nvmf_rdma_request_data), 2485 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 2486 SPDK_ENV_SOCKET_ID_ANY); 2487 if (!rtransport->data_wr_pool) { 2488 if (spdk_mempool_lookup("spdk_nvmf_rdma_wr_data") != NULL) { 2489 SPDK_ERRLOG("Unable to allocate work request pool for poll group: already exists\n"); 2490 SPDK_ERRLOG("Probably running in multiprocess environment, which is " 2491 "unsupported by the nvmf library\n"); 2492 } else { 2493 SPDK_ERRLOG("Unable to allocate work request pool for poll group\n"); 2494 } 2495 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2496 return NULL; 2497 } 2498 2499 contexts = rdma_get_devices(NULL); 2500 if (contexts == NULL) { 2501 SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); 2502 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2503 return NULL; 2504 } 2505 2506 i = 0; 2507 rc = 0; 2508 while (contexts[i] != NULL) { 2509 device = calloc(1, sizeof(*device)); 2510 if (!device) { 2511 SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n"); 2512 rc = -ENOMEM; 2513 break; 2514 } 2515 device->context = contexts[i]; 2516 rc = ibv_query_device(device->context, &device->attr); 2517 if (rc < 0) { 2518 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 2519 free(device); 2520 break; 2521 2522 } 2523 2524 max_device_sge = spdk_min(max_device_sge, device->attr.max_sge); 2525 2526 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2527 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) { 2528 SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,"); 2529 SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id); 2530 } 2531 2532 /** 2533 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE. 2534 * The Soft-RoCE RXE driver does not currently support send with invalidate, 2535 * but incorrectly reports that it does. There are changes making their way 2536 * through the kernel now that will enable this feature. When they are merged, 2537 * we can conditionally enable this feature. 2538 * 2539 * TODO: enable this for versions of the kernel rxe driver that support it. 2540 */ 2541 if (nvmf_rdma_is_rxe_device(device)) { 2542 device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS); 2543 } 2544 #endif 2545 2546 /* set up device context async ev fd as NON_BLOCKING */ 2547 flag = fcntl(device->context->async_fd, F_GETFL); 2548 rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK); 2549 if (rc < 0) { 2550 SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n"); 2551 free(device); 2552 break; 2553 } 2554 2555 TAILQ_INSERT_TAIL(&rtransport->devices, device, link); 2556 i++; 2557 2558 if (g_nvmf_hooks.get_ibv_pd) { 2559 device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context); 2560 } else { 2561 device->pd = ibv_alloc_pd(device->context); 2562 } 2563 2564 if (!device->pd) { 2565 SPDK_ERRLOG("Unable to allocate protection domain.\n"); 2566 rc = -ENOMEM; 2567 break; 2568 } 2569 2570 assert(device->map == NULL); 2571 2572 device->map = spdk_rdma_create_mem_map(device->pd, &g_nvmf_hooks, SPDK_RDMA_MEMORY_MAP_ROLE_TARGET); 2573 if (!device->map) { 2574 SPDK_ERRLOG("Unable to allocate memory map for listen address\n"); 2575 rc = -ENOMEM; 2576 break; 2577 } 2578 2579 assert(device->map != NULL); 2580 assert(device->pd != NULL); 2581 } 2582 rdma_free_devices(contexts); 2583 2584 if (opts->io_unit_size * max_device_sge < opts->max_io_size) { 2585 /* divide and round up. */ 2586 opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge; 2587 2588 /* round up to the nearest 4k. */ 2589 opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK; 2590 2591 opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE); 2592 SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n", 2593 opts->io_unit_size); 2594 } 2595 2596 if (rc < 0) { 2597 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2598 return NULL; 2599 } 2600 2601 /* Set up poll descriptor array to monitor events from RDMA and IB 2602 * in a single poll syscall 2603 */ 2604 rtransport->npoll_fds = i + 1; 2605 i = 0; 2606 rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd)); 2607 if (rtransport->poll_fds == NULL) { 2608 SPDK_ERRLOG("poll_fds allocation failed\n"); 2609 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2610 return NULL; 2611 } 2612 2613 rtransport->poll_fds[i].fd = rtransport->event_channel->fd; 2614 rtransport->poll_fds[i++].events = POLLIN; 2615 2616 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 2617 rtransport->poll_fds[i].fd = device->context->async_fd; 2618 rtransport->poll_fds[i++].events = POLLIN; 2619 } 2620 2621 rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport, 2622 opts->acceptor_poll_rate); 2623 if (!rtransport->accept_poller) { 2624 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2625 return NULL; 2626 } 2627 2628 return &rtransport->transport; 2629 } 2630 2631 static void 2632 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w) 2633 { 2634 struct spdk_nvmf_rdma_transport *rtransport; 2635 assert(w != NULL); 2636 2637 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2638 spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth); 2639 spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq); 2640 if (rtransport->rdma_opts.no_srq == true) { 2641 spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe); 2642 } 2643 spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog); 2644 spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching); 2645 } 2646 2647 static int 2648 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport, 2649 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg) 2650 { 2651 struct spdk_nvmf_rdma_transport *rtransport; 2652 struct spdk_nvmf_rdma_port *port, *port_tmp; 2653 struct spdk_nvmf_rdma_device *device, *device_tmp; 2654 2655 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2656 2657 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) { 2658 TAILQ_REMOVE(&rtransport->ports, port, link); 2659 rdma_destroy_id(port->id); 2660 free(port); 2661 } 2662 2663 if (rtransport->poll_fds != NULL) { 2664 free(rtransport->poll_fds); 2665 } 2666 2667 if (rtransport->event_channel != NULL) { 2668 rdma_destroy_event_channel(rtransport->event_channel); 2669 } 2670 2671 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) { 2672 TAILQ_REMOVE(&rtransport->devices, device, link); 2673 spdk_rdma_free_mem_map(&device->map); 2674 if (device->pd) { 2675 if (!g_nvmf_hooks.get_ibv_pd) { 2676 ibv_dealloc_pd(device->pd); 2677 } 2678 } 2679 free(device); 2680 } 2681 2682 if (rtransport->data_wr_pool != NULL) { 2683 if (spdk_mempool_count(rtransport->data_wr_pool) != 2684 (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) { 2685 SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n", 2686 spdk_mempool_count(rtransport->data_wr_pool), 2687 transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES); 2688 } 2689 } 2690 2691 spdk_mempool_free(rtransport->data_wr_pool); 2692 2693 spdk_poller_unregister(&rtransport->accept_poller); 2694 free(rtransport); 2695 2696 if (cb_fn) { 2697 cb_fn(cb_arg); 2698 } 2699 return 0; 2700 } 2701 2702 static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 2703 struct spdk_nvme_transport_id *trid, 2704 bool peer); 2705 2706 static int 2707 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid, 2708 struct spdk_nvmf_listen_opts *listen_opts) 2709 { 2710 struct spdk_nvmf_rdma_transport *rtransport; 2711 struct spdk_nvmf_rdma_device *device; 2712 struct spdk_nvmf_rdma_port *port; 2713 struct addrinfo *res; 2714 struct addrinfo hints; 2715 int family; 2716 int rc; 2717 2718 if (!strlen(trid->trsvcid)) { 2719 SPDK_ERRLOG("Service id is required\n"); 2720 return -EINVAL; 2721 } 2722 2723 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2724 assert(rtransport->event_channel != NULL); 2725 2726 port = calloc(1, sizeof(*port)); 2727 if (!port) { 2728 SPDK_ERRLOG("Port allocation failed\n"); 2729 return -ENOMEM; 2730 } 2731 2732 port->trid = trid; 2733 2734 switch (trid->adrfam) { 2735 case SPDK_NVMF_ADRFAM_IPV4: 2736 family = AF_INET; 2737 break; 2738 case SPDK_NVMF_ADRFAM_IPV6: 2739 family = AF_INET6; 2740 break; 2741 default: 2742 SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam); 2743 free(port); 2744 return -EINVAL; 2745 } 2746 2747 memset(&hints, 0, sizeof(hints)); 2748 hints.ai_family = family; 2749 hints.ai_flags = AI_NUMERICSERV; 2750 hints.ai_socktype = SOCK_STREAM; 2751 hints.ai_protocol = 0; 2752 2753 rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res); 2754 if (rc) { 2755 SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc); 2756 free(port); 2757 return -EINVAL; 2758 } 2759 2760 rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP); 2761 if (rc < 0) { 2762 SPDK_ERRLOG("rdma_create_id() failed\n"); 2763 freeaddrinfo(res); 2764 free(port); 2765 return rc; 2766 } 2767 2768 rc = rdma_bind_addr(port->id, res->ai_addr); 2769 freeaddrinfo(res); 2770 2771 if (rc < 0) { 2772 SPDK_ERRLOG("rdma_bind_addr() failed\n"); 2773 rdma_destroy_id(port->id); 2774 free(port); 2775 return rc; 2776 } 2777 2778 if (!port->id->verbs) { 2779 SPDK_ERRLOG("ibv_context is null\n"); 2780 rdma_destroy_id(port->id); 2781 free(port); 2782 return -1; 2783 } 2784 2785 rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog); 2786 if (rc < 0) { 2787 SPDK_ERRLOG("rdma_listen() failed\n"); 2788 rdma_destroy_id(port->id); 2789 free(port); 2790 return rc; 2791 } 2792 2793 TAILQ_FOREACH(device, &rtransport->devices, link) { 2794 if (device->context == port->id->verbs) { 2795 port->device = device; 2796 break; 2797 } 2798 } 2799 if (!port->device) { 2800 SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n", 2801 port->id->verbs); 2802 rdma_destroy_id(port->id); 2803 free(port); 2804 return -EINVAL; 2805 } 2806 2807 SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n", 2808 trid->traddr, trid->trsvcid); 2809 2810 TAILQ_INSERT_TAIL(&rtransport->ports, port, link); 2811 return 0; 2812 } 2813 2814 static void 2815 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport, 2816 const struct spdk_nvme_transport_id *trid) 2817 { 2818 struct spdk_nvmf_rdma_transport *rtransport; 2819 struct spdk_nvmf_rdma_port *port, *tmp; 2820 2821 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2822 2823 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) { 2824 if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) { 2825 TAILQ_REMOVE(&rtransport->ports, port, link); 2826 rdma_destroy_id(port->id); 2827 free(port); 2828 break; 2829 } 2830 } 2831 } 2832 2833 static void 2834 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport, 2835 struct spdk_nvmf_rdma_qpair *rqpair, bool drain) 2836 { 2837 struct spdk_nvmf_request *req, *tmp; 2838 struct spdk_nvmf_rdma_request *rdma_req, *req_tmp; 2839 struct spdk_nvmf_rdma_resources *resources; 2840 2841 /* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */ 2842 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) { 2843 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2844 break; 2845 } 2846 } 2847 2848 /* Then RDMA writes since reads have stronger restrictions than writes */ 2849 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) { 2850 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2851 break; 2852 } 2853 } 2854 2855 /* Then we handle request waiting on memory buffers. */ 2856 STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) { 2857 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 2858 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2859 break; 2860 } 2861 } 2862 2863 resources = rqpair->resources; 2864 while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) { 2865 rdma_req = STAILQ_FIRST(&resources->free_queue); 2866 STAILQ_REMOVE_HEAD(&resources->free_queue, state_link); 2867 rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue); 2868 STAILQ_REMOVE_HEAD(&resources->incoming_queue, link); 2869 2870 if (rqpair->srq != NULL) { 2871 rdma_req->req.qpair = &rdma_req->recv->qpair->qpair; 2872 rdma_req->recv->qpair->qd++; 2873 } else { 2874 rqpair->qd++; 2875 } 2876 2877 rdma_req->receive_tsc = rdma_req->recv->receive_tsc; 2878 rdma_req->state = RDMA_REQUEST_STATE_NEW; 2879 if (nvmf_rdma_request_process(rtransport, rdma_req) == false) { 2880 break; 2881 } 2882 } 2883 if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) { 2884 rqpair->poller->stat.pending_free_request++; 2885 } 2886 } 2887 2888 static inline bool 2889 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device) 2890 { 2891 /* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */ 2892 return nvmf_rdma_is_rxe_device(device) || 2893 device->context->device->transport_type == IBV_TRANSPORT_IWARP; 2894 } 2895 2896 static void 2897 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair) 2898 { 2899 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 2900 struct spdk_nvmf_rdma_transport, transport); 2901 2902 nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); 2903 2904 /* nvmf_rdma_close_qpair is not called */ 2905 if (!rqpair->to_close) { 2906 return; 2907 } 2908 2909 /* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */ 2910 if (rqpair->current_send_depth != 0) { 2911 return; 2912 } 2913 2914 if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) { 2915 return; 2916 } 2917 2918 if (rqpair->srq != NULL && rqpair->last_wqe_reached == false && 2919 !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) { 2920 return; 2921 } 2922 2923 assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR); 2924 2925 nvmf_rdma_qpair_destroy(rqpair); 2926 } 2927 2928 static int 2929 nvmf_rdma_disconnect(struct rdma_cm_event *evt) 2930 { 2931 struct spdk_nvmf_qpair *qpair; 2932 struct spdk_nvmf_rdma_qpair *rqpair; 2933 2934 if (evt->id == NULL) { 2935 SPDK_ERRLOG("disconnect request: missing cm_id\n"); 2936 return -1; 2937 } 2938 2939 qpair = evt->id->context; 2940 if (qpair == NULL) { 2941 SPDK_ERRLOG("disconnect request: no active connection\n"); 2942 return -1; 2943 } 2944 2945 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 2946 2947 spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair); 2948 2949 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 2950 2951 return 0; 2952 } 2953 2954 #ifdef DEBUG 2955 static const char *CM_EVENT_STR[] = { 2956 "RDMA_CM_EVENT_ADDR_RESOLVED", 2957 "RDMA_CM_EVENT_ADDR_ERROR", 2958 "RDMA_CM_EVENT_ROUTE_RESOLVED", 2959 "RDMA_CM_EVENT_ROUTE_ERROR", 2960 "RDMA_CM_EVENT_CONNECT_REQUEST", 2961 "RDMA_CM_EVENT_CONNECT_RESPONSE", 2962 "RDMA_CM_EVENT_CONNECT_ERROR", 2963 "RDMA_CM_EVENT_UNREACHABLE", 2964 "RDMA_CM_EVENT_REJECTED", 2965 "RDMA_CM_EVENT_ESTABLISHED", 2966 "RDMA_CM_EVENT_DISCONNECTED", 2967 "RDMA_CM_EVENT_DEVICE_REMOVAL", 2968 "RDMA_CM_EVENT_MULTICAST_JOIN", 2969 "RDMA_CM_EVENT_MULTICAST_ERROR", 2970 "RDMA_CM_EVENT_ADDR_CHANGE", 2971 "RDMA_CM_EVENT_TIMEWAIT_EXIT" 2972 }; 2973 #endif /* DEBUG */ 2974 2975 static void 2976 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport, 2977 struct spdk_nvmf_rdma_port *port) 2978 { 2979 struct spdk_nvmf_rdma_poll_group *rgroup; 2980 struct spdk_nvmf_rdma_poller *rpoller; 2981 struct spdk_nvmf_rdma_qpair *rqpair; 2982 2983 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 2984 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 2985 RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) { 2986 if (rqpair->listen_id == port->id) { 2987 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 2988 } 2989 } 2990 } 2991 } 2992 } 2993 2994 static bool 2995 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport, 2996 struct rdma_cm_event *event) 2997 { 2998 const struct spdk_nvme_transport_id *trid; 2999 struct spdk_nvmf_rdma_port *port; 3000 struct spdk_nvmf_rdma_transport *rtransport; 3001 bool event_acked = false; 3002 3003 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3004 TAILQ_FOREACH(port, &rtransport->ports, link) { 3005 if (port->id == event->id) { 3006 SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid); 3007 rdma_ack_cm_event(event); 3008 event_acked = true; 3009 trid = port->trid; 3010 break; 3011 } 3012 } 3013 3014 if (event_acked) { 3015 nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); 3016 3017 nvmf_rdma_stop_listen(transport, trid); 3018 nvmf_rdma_listen(transport, trid, NULL); 3019 } 3020 3021 return event_acked; 3022 } 3023 3024 static void 3025 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport, 3026 struct rdma_cm_event *event) 3027 { 3028 struct spdk_nvmf_rdma_port *port; 3029 struct spdk_nvmf_rdma_transport *rtransport; 3030 3031 port = event->id->context; 3032 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3033 3034 SPDK_NOTICELOG("Port %s:%s is being removed\n", port->trid->traddr, port->trid->trsvcid); 3035 3036 nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); 3037 3038 rdma_ack_cm_event(event); 3039 3040 while (spdk_nvmf_transport_stop_listen(transport, port->trid) == 0) { 3041 ; 3042 } 3043 } 3044 3045 static void 3046 nvmf_process_cm_event(struct spdk_nvmf_transport *transport) 3047 { 3048 struct spdk_nvmf_rdma_transport *rtransport; 3049 struct rdma_cm_event *event; 3050 int rc; 3051 bool event_acked; 3052 3053 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3054 3055 if (rtransport->event_channel == NULL) { 3056 return; 3057 } 3058 3059 while (1) { 3060 event_acked = false; 3061 rc = rdma_get_cm_event(rtransport->event_channel, &event); 3062 if (rc) { 3063 if (errno != EAGAIN && errno != EWOULDBLOCK) { 3064 SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno)); 3065 } 3066 break; 3067 } 3068 3069 SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]); 3070 3071 spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event); 3072 3073 switch (event->event) { 3074 case RDMA_CM_EVENT_ADDR_RESOLVED: 3075 case RDMA_CM_EVENT_ADDR_ERROR: 3076 case RDMA_CM_EVENT_ROUTE_RESOLVED: 3077 case RDMA_CM_EVENT_ROUTE_ERROR: 3078 /* No action required. The target never attempts to resolve routes. */ 3079 break; 3080 case RDMA_CM_EVENT_CONNECT_REQUEST: 3081 rc = nvmf_rdma_connect(transport, event); 3082 if (rc < 0) { 3083 SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc); 3084 break; 3085 } 3086 break; 3087 case RDMA_CM_EVENT_CONNECT_RESPONSE: 3088 /* The target never initiates a new connection. So this will not occur. */ 3089 break; 3090 case RDMA_CM_EVENT_CONNECT_ERROR: 3091 /* Can this happen? The docs say it can, but not sure what causes it. */ 3092 break; 3093 case RDMA_CM_EVENT_UNREACHABLE: 3094 case RDMA_CM_EVENT_REJECTED: 3095 /* These only occur on the client side. */ 3096 break; 3097 case RDMA_CM_EVENT_ESTABLISHED: 3098 /* TODO: Should we be waiting for this event anywhere? */ 3099 break; 3100 case RDMA_CM_EVENT_DISCONNECTED: 3101 rc = nvmf_rdma_disconnect(event); 3102 if (rc < 0) { 3103 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3104 break; 3105 } 3106 break; 3107 case RDMA_CM_EVENT_DEVICE_REMOVAL: 3108 /* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL 3109 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s. 3110 * Once these events are sent to SPDK, we should release all IB resources and 3111 * don't make attempts to call any ibv_query/modify/create functions. We can only call 3112 * ibv_destroy* functions to release user space memory allocated by IB. All kernel 3113 * resources are already cleaned. */ 3114 if (event->id->qp) { 3115 /* If rdma_cm event has a valid `qp` pointer then the event refers to the 3116 * corresponding qpair. Otherwise the event refers to a listening device */ 3117 rc = nvmf_rdma_disconnect(event); 3118 if (rc < 0) { 3119 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3120 break; 3121 } 3122 } else { 3123 nvmf_rdma_handle_cm_event_port_removal(transport, event); 3124 event_acked = true; 3125 } 3126 break; 3127 case RDMA_CM_EVENT_MULTICAST_JOIN: 3128 case RDMA_CM_EVENT_MULTICAST_ERROR: 3129 /* Multicast is not used */ 3130 break; 3131 case RDMA_CM_EVENT_ADDR_CHANGE: 3132 event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event); 3133 break; 3134 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 3135 /* For now, do nothing. The target never re-uses queue pairs. */ 3136 break; 3137 default: 3138 SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); 3139 break; 3140 } 3141 if (!event_acked) { 3142 rdma_ack_cm_event(event); 3143 } 3144 } 3145 } 3146 3147 static void 3148 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair) 3149 { 3150 rqpair->last_wqe_reached = true; 3151 nvmf_rdma_destroy_drained_qpair(rqpair); 3152 } 3153 3154 static void 3155 nvmf_rdma_qpair_process_ibv_event(void *ctx) 3156 { 3157 struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx; 3158 3159 if (event_ctx->rqpair) { 3160 STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3161 if (event_ctx->cb_fn) { 3162 event_ctx->cb_fn(event_ctx->rqpair); 3163 } 3164 } 3165 free(event_ctx); 3166 } 3167 3168 static int 3169 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair, 3170 spdk_nvmf_rdma_qpair_ibv_event fn) 3171 { 3172 struct spdk_nvmf_rdma_ibv_event_ctx *ctx; 3173 struct spdk_thread *thr = NULL; 3174 int rc; 3175 3176 if (rqpair->qpair.group) { 3177 thr = rqpair->qpair.group->thread; 3178 } else if (rqpair->destruct_channel) { 3179 thr = spdk_io_channel_get_thread(rqpair->destruct_channel); 3180 } 3181 3182 if (!thr) { 3183 SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair); 3184 return -EINVAL; 3185 } 3186 3187 ctx = calloc(1, sizeof(*ctx)); 3188 if (!ctx) { 3189 return -ENOMEM; 3190 } 3191 3192 ctx->rqpair = rqpair; 3193 ctx->cb_fn = fn; 3194 STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link); 3195 3196 rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx); 3197 if (rc) { 3198 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3199 free(ctx); 3200 } 3201 3202 return rc; 3203 } 3204 3205 static int 3206 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device) 3207 { 3208 int rc; 3209 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 3210 struct ibv_async_event event; 3211 3212 rc = ibv_get_async_event(device->context, &event); 3213 3214 if (rc) { 3215 /* In non-blocking mode -1 means there are no events available */ 3216 return rc; 3217 } 3218 3219 switch (event.event_type) { 3220 case IBV_EVENT_QP_FATAL: 3221 case IBV_EVENT_QP_LAST_WQE_REACHED: 3222 case IBV_EVENT_SQ_DRAINED: 3223 case IBV_EVENT_QP_REQ_ERR: 3224 case IBV_EVENT_QP_ACCESS_ERR: 3225 case IBV_EVENT_COMM_EST: 3226 case IBV_EVENT_PATH_MIG: 3227 case IBV_EVENT_PATH_MIG_ERR: 3228 rqpair = event.element.qp->qp_context; 3229 if (!rqpair) { 3230 /* Any QP event for NVMe-RDMA initiator may be returned. */ 3231 SPDK_NOTICELOG("Async QP event for unknown QP: %s\n", 3232 ibv_event_type_str(event.event_type)); 3233 break; 3234 } 3235 3236 switch (event.event_type) { 3237 case IBV_EVENT_QP_FATAL: 3238 SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair); 3239 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3240 (uintptr_t)rqpair, event.event_type); 3241 nvmf_rdma_update_ibv_state(rqpair); 3242 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3243 break; 3244 case IBV_EVENT_QP_LAST_WQE_REACHED: 3245 /* This event only occurs for shared receive queues. */ 3246 SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair); 3247 rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached); 3248 if (rc) { 3249 SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc); 3250 rqpair->last_wqe_reached = true; 3251 } 3252 break; 3253 case IBV_EVENT_SQ_DRAINED: 3254 /* This event occurs frequently in both error and non-error states. 3255 * Check if the qpair is in an error state before sending a message. */ 3256 SPDK_DEBUGLOG(rdma, "Last sq drained event received for rqpair %p\n", rqpair); 3257 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3258 (uintptr_t)rqpair, event.event_type); 3259 if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) { 3260 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3261 } 3262 break; 3263 case IBV_EVENT_QP_REQ_ERR: 3264 case IBV_EVENT_QP_ACCESS_ERR: 3265 case IBV_EVENT_COMM_EST: 3266 case IBV_EVENT_PATH_MIG: 3267 case IBV_EVENT_PATH_MIG_ERR: 3268 SPDK_NOTICELOG("Async QP event: %s\n", 3269 ibv_event_type_str(event.event_type)); 3270 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3271 (uintptr_t)rqpair, event.event_type); 3272 nvmf_rdma_update_ibv_state(rqpair); 3273 break; 3274 default: 3275 break; 3276 } 3277 break; 3278 case IBV_EVENT_CQ_ERR: 3279 case IBV_EVENT_DEVICE_FATAL: 3280 case IBV_EVENT_PORT_ACTIVE: 3281 case IBV_EVENT_PORT_ERR: 3282 case IBV_EVENT_LID_CHANGE: 3283 case IBV_EVENT_PKEY_CHANGE: 3284 case IBV_EVENT_SM_CHANGE: 3285 case IBV_EVENT_SRQ_ERR: 3286 case IBV_EVENT_SRQ_LIMIT_REACHED: 3287 case IBV_EVENT_CLIENT_REREGISTER: 3288 case IBV_EVENT_GID_CHANGE: 3289 default: 3290 SPDK_NOTICELOG("Async event: %s\n", 3291 ibv_event_type_str(event.event_type)); 3292 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type); 3293 break; 3294 } 3295 ibv_ack_async_event(&event); 3296 3297 return 0; 3298 } 3299 3300 static void 3301 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events) 3302 { 3303 int rc = 0; 3304 uint32_t i = 0; 3305 3306 for (i = 0; i < max_events; i++) { 3307 rc = nvmf_process_ib_event(device); 3308 if (rc) { 3309 break; 3310 } 3311 } 3312 3313 SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i); 3314 } 3315 3316 static int 3317 nvmf_rdma_accept(void *ctx) 3318 { 3319 int nfds, i = 0; 3320 struct spdk_nvmf_transport *transport = ctx; 3321 struct spdk_nvmf_rdma_transport *rtransport; 3322 struct spdk_nvmf_rdma_device *device, *tmp; 3323 uint32_t count; 3324 3325 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3326 count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0); 3327 3328 if (nfds <= 0) { 3329 return SPDK_POLLER_IDLE; 3330 } 3331 3332 /* The first poll descriptor is RDMA CM event */ 3333 if (rtransport->poll_fds[i++].revents & POLLIN) { 3334 nvmf_process_cm_event(transport); 3335 nfds--; 3336 } 3337 3338 if (nfds == 0) { 3339 return SPDK_POLLER_BUSY; 3340 } 3341 3342 /* Second and subsequent poll descriptors are IB async events */ 3343 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 3344 if (rtransport->poll_fds[i++].revents & POLLIN) { 3345 nvmf_process_ib_events(device, 32); 3346 nfds--; 3347 } 3348 } 3349 /* check all flagged fd's have been served */ 3350 assert(nfds == 0); 3351 3352 return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE; 3353 } 3354 3355 static void 3356 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem, 3357 struct spdk_nvmf_ctrlr_data *cdata) 3358 { 3359 cdata->nvmf_specific.msdbd = SPDK_NVMF_MAX_SGL_ENTRIES; 3360 3361 /* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled 3362 since in-capsule data only works with NVME drives that support SGL memory layout */ 3363 if (transport->opts.dif_insert_or_strip) { 3364 cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16; 3365 } 3366 3367 if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) { 3368 SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule" 3369 " data is greater than 4KiB.\n"); 3370 SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux " 3371 "kernel between versions 5.4 and 5.12 data corruption may occur for " 3372 "writes that are not a multiple of 4KiB in size.\n"); 3373 } 3374 } 3375 3376 static void 3377 nvmf_rdma_discover(struct spdk_nvmf_transport *transport, 3378 struct spdk_nvme_transport_id *trid, 3379 struct spdk_nvmf_discovery_log_page_entry *entry) 3380 { 3381 entry->trtype = SPDK_NVMF_TRTYPE_RDMA; 3382 entry->adrfam = trid->adrfam; 3383 entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED; 3384 3385 spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' '); 3386 spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' '); 3387 3388 entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED; 3389 entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE; 3390 entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM; 3391 } 3392 3393 static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group); 3394 3395 static struct spdk_nvmf_transport_poll_group * 3396 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport, 3397 struct spdk_nvmf_poll_group *group) 3398 { 3399 struct spdk_nvmf_rdma_transport *rtransport; 3400 struct spdk_nvmf_rdma_poll_group *rgroup; 3401 struct spdk_nvmf_rdma_poller *poller; 3402 struct spdk_nvmf_rdma_device *device; 3403 struct spdk_rdma_srq_init_attr srq_init_attr; 3404 struct spdk_nvmf_rdma_resource_opts opts; 3405 int num_cqe; 3406 3407 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3408 3409 rgroup = calloc(1, sizeof(*rgroup)); 3410 if (!rgroup) { 3411 return NULL; 3412 } 3413 3414 TAILQ_INIT(&rgroup->pollers); 3415 3416 TAILQ_FOREACH(device, &rtransport->devices, link) { 3417 poller = calloc(1, sizeof(*poller)); 3418 if (!poller) { 3419 SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n"); 3420 nvmf_rdma_poll_group_destroy(&rgroup->group); 3421 return NULL; 3422 } 3423 3424 poller->device = device; 3425 poller->group = rgroup; 3426 3427 RB_INIT(&poller->qpairs); 3428 STAILQ_INIT(&poller->qpairs_pending_send); 3429 STAILQ_INIT(&poller->qpairs_pending_recv); 3430 3431 TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link); 3432 if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) { 3433 if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) { 3434 SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n", 3435 rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr); 3436 } 3437 poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr); 3438 3439 device->num_srq++; 3440 memset(&srq_init_attr, 0, sizeof(srq_init_attr)); 3441 srq_init_attr.pd = device->pd; 3442 srq_init_attr.stats = &poller->stat.qp_stats.recv; 3443 srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth; 3444 srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 3445 poller->srq = spdk_rdma_srq_create(&srq_init_attr); 3446 if (!poller->srq) { 3447 SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno); 3448 nvmf_rdma_poll_group_destroy(&rgroup->group); 3449 return NULL; 3450 } 3451 3452 opts.qp = poller->srq; 3453 opts.map = device->map; 3454 opts.qpair = NULL; 3455 opts.shared = true; 3456 opts.max_queue_depth = poller->max_srq_depth; 3457 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 3458 3459 poller->resources = nvmf_rdma_resources_create(&opts); 3460 if (!poller->resources) { 3461 SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n"); 3462 nvmf_rdma_poll_group_destroy(&rgroup->group); 3463 return NULL; 3464 } 3465 } 3466 3467 /* 3468 * When using an srq, we can limit the completion queue at startup. 3469 * The following formula represents the calculation: 3470 * num_cqe = num_recv + num_data_wr + num_send_wr. 3471 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth 3472 */ 3473 if (poller->srq) { 3474 num_cqe = poller->max_srq_depth * 3; 3475 } else { 3476 num_cqe = rtransport->rdma_opts.num_cqe; 3477 } 3478 3479 poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0); 3480 if (!poller->cq) { 3481 SPDK_ERRLOG("Unable to create completion queue\n"); 3482 nvmf_rdma_poll_group_destroy(&rgroup->group); 3483 return NULL; 3484 } 3485 poller->num_cqe = num_cqe; 3486 } 3487 3488 TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link); 3489 if (rtransport->conn_sched.next_admin_pg == NULL) { 3490 rtransport->conn_sched.next_admin_pg = rgroup; 3491 rtransport->conn_sched.next_io_pg = rgroup; 3492 } 3493 3494 return &rgroup->group; 3495 } 3496 3497 static struct spdk_nvmf_transport_poll_group * 3498 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair) 3499 { 3500 struct spdk_nvmf_rdma_transport *rtransport; 3501 struct spdk_nvmf_rdma_poll_group **pg; 3502 struct spdk_nvmf_transport_poll_group *result; 3503 3504 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 3505 3506 if (TAILQ_EMPTY(&rtransport->poll_groups)) { 3507 return NULL; 3508 } 3509 3510 if (qpair->qid == 0) { 3511 pg = &rtransport->conn_sched.next_admin_pg; 3512 } else { 3513 struct spdk_nvmf_rdma_poll_group *pg_min, *pg_start, *pg_current; 3514 uint32_t min_value; 3515 3516 pg = &rtransport->conn_sched.next_io_pg; 3517 pg_min = *pg; 3518 pg_start = *pg; 3519 pg_current = *pg; 3520 min_value = (*pg)->group.group->stat.current_io_qpairs; 3521 3522 while (pg_current->group.group->stat.current_io_qpairs) { 3523 pg_current = TAILQ_NEXT(pg_current, link); 3524 if (pg_current == NULL) { 3525 pg_current = TAILQ_FIRST(&rtransport->poll_groups); 3526 } 3527 3528 if (pg_current->group.group->stat.current_io_qpairs < min_value) { 3529 min_value = pg_current->group.group->stat.current_io_qpairs; 3530 pg_min = pg_current; 3531 } 3532 3533 if (pg_current == pg_start) { 3534 break; 3535 } 3536 } 3537 *pg = pg_min; 3538 } 3539 3540 assert(*pg != NULL); 3541 3542 result = &(*pg)->group; 3543 3544 *pg = TAILQ_NEXT(*pg, link); 3545 if (*pg == NULL) { 3546 *pg = TAILQ_FIRST(&rtransport->poll_groups); 3547 } 3548 3549 return result; 3550 } 3551 3552 static void 3553 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group) 3554 { 3555 struct spdk_nvmf_rdma_poll_group *rgroup, *next_rgroup; 3556 struct spdk_nvmf_rdma_poller *poller, *tmp; 3557 struct spdk_nvmf_rdma_qpair *qpair, *tmp_qpair; 3558 struct spdk_nvmf_rdma_transport *rtransport; 3559 3560 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3561 if (!rgroup) { 3562 return; 3563 } 3564 3565 TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) { 3566 TAILQ_REMOVE(&rgroup->pollers, poller, link); 3567 3568 RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) { 3569 nvmf_rdma_qpair_destroy(qpair); 3570 } 3571 3572 if (poller->srq) { 3573 if (poller->resources) { 3574 nvmf_rdma_resources_destroy(poller->resources); 3575 } 3576 spdk_rdma_srq_destroy(poller->srq); 3577 SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq); 3578 } 3579 3580 if (poller->cq) { 3581 ibv_destroy_cq(poller->cq); 3582 } 3583 3584 free(poller); 3585 } 3586 3587 if (rgroup->group.transport == NULL) { 3588 /* Transport can be NULL when nvmf_rdma_poll_group_create() 3589 * calls this function directly in a failure path. */ 3590 free(rgroup); 3591 return; 3592 } 3593 3594 rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport); 3595 3596 next_rgroup = TAILQ_NEXT(rgroup, link); 3597 TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link); 3598 if (next_rgroup == NULL) { 3599 next_rgroup = TAILQ_FIRST(&rtransport->poll_groups); 3600 } 3601 if (rtransport->conn_sched.next_admin_pg == rgroup) { 3602 rtransport->conn_sched.next_admin_pg = next_rgroup; 3603 } 3604 if (rtransport->conn_sched.next_io_pg == rgroup) { 3605 rtransport->conn_sched.next_io_pg = next_rgroup; 3606 } 3607 3608 free(rgroup); 3609 } 3610 3611 static void 3612 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair) 3613 { 3614 if (rqpair->cm_id != NULL) { 3615 nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 3616 } 3617 } 3618 3619 static int 3620 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group, 3621 struct spdk_nvmf_qpair *qpair) 3622 { 3623 struct spdk_nvmf_rdma_poll_group *rgroup; 3624 struct spdk_nvmf_rdma_qpair *rqpair; 3625 struct spdk_nvmf_rdma_device *device; 3626 struct spdk_nvmf_rdma_poller *poller; 3627 int rc; 3628 3629 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3630 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3631 3632 device = rqpair->device; 3633 3634 TAILQ_FOREACH(poller, &rgroup->pollers, link) { 3635 if (poller->device == device) { 3636 break; 3637 } 3638 } 3639 3640 if (!poller) { 3641 SPDK_ERRLOG("No poller found for device.\n"); 3642 return -1; 3643 } 3644 3645 rqpair->poller = poller; 3646 rqpair->srq = rqpair->poller->srq; 3647 3648 rc = nvmf_rdma_qpair_initialize(qpair); 3649 if (rc < 0) { 3650 SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair); 3651 rqpair->poller = NULL; 3652 rqpair->srq = NULL; 3653 return -1; 3654 } 3655 3656 RB_INSERT(qpairs_tree, &poller->qpairs, rqpair); 3657 3658 rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair); 3659 if (rc) { 3660 /* Try to reject, but we probably can't */ 3661 nvmf_rdma_qpair_reject_connection(rqpair); 3662 return -1; 3663 } 3664 3665 nvmf_rdma_update_ibv_state(rqpair); 3666 3667 return 0; 3668 } 3669 3670 static int 3671 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group, 3672 struct spdk_nvmf_qpair *qpair) 3673 { 3674 struct spdk_nvmf_rdma_qpair *rqpair; 3675 3676 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3677 assert(group->transport->tgt != NULL); 3678 3679 rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt); 3680 3681 if (!rqpair->destruct_channel) { 3682 SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair); 3683 return 0; 3684 } 3685 3686 /* Sanity check that we get io_channel on the correct thread */ 3687 if (qpair->group) { 3688 assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel)); 3689 } 3690 3691 return 0; 3692 } 3693 3694 static int 3695 nvmf_rdma_request_free(struct spdk_nvmf_request *req) 3696 { 3697 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 3698 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 3699 struct spdk_nvmf_rdma_transport, transport); 3700 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 3701 struct spdk_nvmf_rdma_qpair, qpair); 3702 3703 /* 3704 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request 3705 * needs to be returned to the shared receive queue or the poll group will eventually be 3706 * starved of RECV structures. 3707 */ 3708 if (rqpair->srq && rdma_req->recv) { 3709 int rc; 3710 struct ibv_recv_wr *bad_recv_wr; 3711 3712 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr); 3713 rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr); 3714 if (rc) { 3715 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 3716 } 3717 } 3718 3719 _nvmf_rdma_request_free(rdma_req, rtransport); 3720 return 0; 3721 } 3722 3723 static int 3724 nvmf_rdma_request_complete(struct spdk_nvmf_request *req) 3725 { 3726 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 3727 struct spdk_nvmf_rdma_transport, transport); 3728 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, 3729 struct spdk_nvmf_rdma_request, req); 3730 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 3731 struct spdk_nvmf_rdma_qpair, qpair); 3732 3733 if (rqpair->ibv_state != IBV_QPS_ERR) { 3734 /* The connection is alive, so process the request as normal */ 3735 rdma_req->state = RDMA_REQUEST_STATE_EXECUTED; 3736 } else { 3737 /* The connection is dead. Move the request directly to the completed state. */ 3738 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3739 } 3740 3741 nvmf_rdma_request_process(rtransport, rdma_req); 3742 3743 return 0; 3744 } 3745 3746 static void 3747 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair, 3748 spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg) 3749 { 3750 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3751 3752 rqpair->to_close = true; 3753 3754 /* This happens only when the qpair is disconnected before 3755 * it is added to the poll group. Since there is no poll group, 3756 * the RDMA qp has not been initialized yet and the RDMA CM 3757 * event has not yet been acknowledged, so we need to reject it. 3758 */ 3759 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) { 3760 nvmf_rdma_qpair_reject_connection(rqpair); 3761 nvmf_rdma_qpair_destroy(rqpair); 3762 return; 3763 } 3764 3765 if (rqpair->rdma_qp) { 3766 spdk_rdma_qp_disconnect(rqpair->rdma_qp); 3767 } 3768 3769 nvmf_rdma_destroy_drained_qpair(rqpair); 3770 3771 if (cb_fn) { 3772 cb_fn(cb_arg); 3773 } 3774 } 3775 3776 static struct spdk_nvmf_rdma_qpair * 3777 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc) 3778 { 3779 struct spdk_nvmf_rdma_qpair find; 3780 3781 find.qp_num = wc->qp_num; 3782 3783 return RB_FIND(qpairs_tree, &rpoller->qpairs, &find); 3784 } 3785 3786 #ifdef DEBUG 3787 static int 3788 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req) 3789 { 3790 return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST || 3791 rdma_req->state == RDMA_REQUEST_STATE_COMPLETING; 3792 } 3793 #endif 3794 3795 static void 3796 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr, 3797 int rc) 3798 { 3799 struct spdk_nvmf_rdma_recv *rdma_recv; 3800 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 3801 3802 SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc); 3803 while (bad_recv_wr != NULL) { 3804 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id; 3805 rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 3806 3807 rdma_recv->qpair->current_recv_depth++; 3808 bad_recv_wr = bad_recv_wr->next; 3809 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc); 3810 spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair, NULL, NULL); 3811 } 3812 } 3813 3814 static void 3815 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc) 3816 { 3817 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc); 3818 while (bad_recv_wr != NULL) { 3819 bad_recv_wr = bad_recv_wr->next; 3820 rqpair->current_recv_depth++; 3821 } 3822 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3823 } 3824 3825 static void 3826 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 3827 struct spdk_nvmf_rdma_poller *rpoller) 3828 { 3829 struct spdk_nvmf_rdma_qpair *rqpair; 3830 struct ibv_recv_wr *bad_recv_wr; 3831 int rc; 3832 3833 if (rpoller->srq) { 3834 rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr); 3835 if (rc) { 3836 _poller_reset_failed_recvs(rpoller, bad_recv_wr, rc); 3837 } 3838 } else { 3839 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) { 3840 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv); 3841 rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr); 3842 if (rc) { 3843 _qp_reset_failed_recvs(rqpair, bad_recv_wr, rc); 3844 } 3845 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link); 3846 } 3847 } 3848 } 3849 3850 static void 3851 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport, 3852 struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc) 3853 { 3854 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 3855 struct spdk_nvmf_rdma_request *prev_rdma_req = NULL, *cur_rdma_req = NULL; 3856 3857 SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc); 3858 for (; bad_wr != NULL; bad_wr = bad_wr->next) { 3859 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id; 3860 assert(rqpair->current_send_depth > 0); 3861 rqpair->current_send_depth--; 3862 switch (bad_rdma_wr->type) { 3863 case RDMA_WR_TYPE_DATA: 3864 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr); 3865 if (bad_wr->opcode == IBV_WR_RDMA_READ) { 3866 assert(rqpair->current_read_depth > 0); 3867 rqpair->current_read_depth--; 3868 } 3869 break; 3870 case RDMA_WR_TYPE_SEND: 3871 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr); 3872 break; 3873 default: 3874 SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair); 3875 prev_rdma_req = cur_rdma_req; 3876 continue; 3877 } 3878 3879 if (prev_rdma_req == cur_rdma_req) { 3880 /* this request was handled by an earlier wr. i.e. we were performing an nvme read. */ 3881 /* We only have to check against prev_wr since each requests wrs are contiguous in this list. */ 3882 continue; 3883 } 3884 3885 switch (cur_rdma_req->state) { 3886 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 3887 cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 3888 cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 3889 break; 3890 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 3891 case RDMA_REQUEST_STATE_COMPLETING: 3892 cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3893 break; 3894 default: 3895 SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n", 3896 cur_rdma_req->state, rqpair); 3897 continue; 3898 } 3899 3900 nvmf_rdma_request_process(rtransport, cur_rdma_req); 3901 prev_rdma_req = cur_rdma_req; 3902 } 3903 3904 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 3905 /* Disconnect the connection. */ 3906 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3907 } 3908 3909 } 3910 3911 static void 3912 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 3913 struct spdk_nvmf_rdma_poller *rpoller) 3914 { 3915 struct spdk_nvmf_rdma_qpair *rqpair; 3916 struct ibv_send_wr *bad_wr = NULL; 3917 int rc; 3918 3919 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) { 3920 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send); 3921 rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr); 3922 3923 /* bad wr always points to the first wr that failed. */ 3924 if (rc) { 3925 _qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc); 3926 } 3927 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link); 3928 } 3929 } 3930 3931 static const char * 3932 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type) 3933 { 3934 switch (wr_type) { 3935 case RDMA_WR_TYPE_RECV: 3936 return "RECV"; 3937 case RDMA_WR_TYPE_SEND: 3938 return "SEND"; 3939 case RDMA_WR_TYPE_DATA: 3940 return "DATA"; 3941 default: 3942 SPDK_ERRLOG("Unknown WR type %d\n", wr_type); 3943 SPDK_UNREACHABLE(); 3944 } 3945 } 3946 3947 static inline void 3948 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc) 3949 { 3950 enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type; 3951 3952 if (wc->status == IBV_WC_WR_FLUSH_ERR) { 3953 /* If qpair is in ERR state, we will receive completions for all posted and not completed 3954 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */ 3955 SPDK_DEBUGLOG(rdma, 3956 "Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n", 3957 rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id, 3958 nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status)); 3959 } else { 3960 SPDK_ERRLOG("Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n", 3961 rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id, 3962 nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status)); 3963 } 3964 } 3965 3966 static int 3967 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport, 3968 struct spdk_nvmf_rdma_poller *rpoller) 3969 { 3970 struct ibv_wc wc[32]; 3971 struct spdk_nvmf_rdma_wr *rdma_wr; 3972 struct spdk_nvmf_rdma_request *rdma_req; 3973 struct spdk_nvmf_rdma_recv *rdma_recv; 3974 struct spdk_nvmf_rdma_qpair *rqpair; 3975 int reaped, i; 3976 int count = 0; 3977 bool error = false; 3978 uint64_t poll_tsc = spdk_get_ticks(); 3979 3980 /* Poll for completing operations. */ 3981 reaped = ibv_poll_cq(rpoller->cq, 32, wc); 3982 if (reaped < 0) { 3983 SPDK_ERRLOG("Error polling CQ! (%d): %s\n", 3984 errno, spdk_strerror(errno)); 3985 return -1; 3986 } else if (reaped == 0) { 3987 rpoller->stat.idle_polls++; 3988 } 3989 3990 rpoller->stat.polls++; 3991 rpoller->stat.completions += reaped; 3992 3993 for (i = 0; i < reaped; i++) { 3994 3995 rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id; 3996 3997 switch (rdma_wr->type) { 3998 case RDMA_WR_TYPE_SEND: 3999 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr); 4000 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 4001 4002 if (!wc[i].status) { 4003 count++; 4004 assert(wc[i].opcode == IBV_WC_SEND); 4005 assert(nvmf_rdma_req_is_completing(rdma_req)); 4006 } 4007 4008 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4009 /* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */ 4010 rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1; 4011 rdma_req->num_outstanding_data_wr = 0; 4012 4013 nvmf_rdma_request_process(rtransport, rdma_req); 4014 break; 4015 case RDMA_WR_TYPE_RECV: 4016 /* rdma_recv->qpair will be invalid if using an SRQ. In that case we have to get the qpair from the wc. */ 4017 rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 4018 if (rpoller->srq != NULL) { 4019 rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]); 4020 /* It is possible that there are still some completions for destroyed QP 4021 * associated with SRQ. We just ignore these late completions and re-post 4022 * receive WRs back to SRQ. 4023 */ 4024 if (spdk_unlikely(NULL == rdma_recv->qpair)) { 4025 struct ibv_recv_wr *bad_wr; 4026 int rc; 4027 4028 rdma_recv->wr.next = NULL; 4029 spdk_rdma_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr); 4030 rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_wr); 4031 if (rc) { 4032 SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc); 4033 } 4034 continue; 4035 } 4036 } 4037 rqpair = rdma_recv->qpair; 4038 4039 assert(rqpair != NULL); 4040 if (!wc[i].status) { 4041 assert(wc[i].opcode == IBV_WC_RECV); 4042 if (rqpair->current_recv_depth >= rqpair->max_queue_depth) { 4043 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4044 break; 4045 } 4046 } 4047 4048 rdma_recv->wr.next = NULL; 4049 rqpair->current_recv_depth++; 4050 rdma_recv->receive_tsc = poll_tsc; 4051 rpoller->stat.requests++; 4052 STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link); 4053 break; 4054 case RDMA_WR_TYPE_DATA: 4055 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr); 4056 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 4057 4058 assert(rdma_req->num_outstanding_data_wr > 0); 4059 4060 rqpair->current_send_depth--; 4061 rdma_req->num_outstanding_data_wr--; 4062 if (!wc[i].status) { 4063 assert(wc[i].opcode == IBV_WC_RDMA_READ); 4064 rqpair->current_read_depth--; 4065 /* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */ 4066 if (rdma_req->num_outstanding_data_wr == 0) { 4067 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 4068 nvmf_rdma_request_process(rtransport, rdma_req); 4069 } 4070 } else { 4071 /* If the data transfer fails still force the queue into the error state, 4072 * if we were performing an RDMA_READ, we need to force the request into a 4073 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE 4074 * case, we should wait for the SEND to complete. */ 4075 if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) { 4076 rqpair->current_read_depth--; 4077 if (rdma_req->num_outstanding_data_wr == 0) { 4078 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4079 } 4080 } 4081 } 4082 break; 4083 default: 4084 SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode); 4085 continue; 4086 } 4087 4088 /* Handle error conditions */ 4089 if (wc[i].status) { 4090 nvmf_rdma_update_ibv_state(rqpair); 4091 nvmf_rdma_log_wc_status(rqpair, &wc[i]); 4092 4093 error = true; 4094 4095 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 4096 /* Disconnect the connection. */ 4097 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4098 } else { 4099 nvmf_rdma_destroy_drained_qpair(rqpair); 4100 } 4101 continue; 4102 } 4103 4104 nvmf_rdma_qpair_process_pending(rtransport, rqpair, false); 4105 4106 if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 4107 nvmf_rdma_destroy_drained_qpair(rqpair); 4108 } 4109 } 4110 4111 if (error == true) { 4112 return -1; 4113 } 4114 4115 /* submit outstanding work requests. */ 4116 _poller_submit_recvs(rtransport, rpoller); 4117 _poller_submit_sends(rtransport, rpoller); 4118 4119 return count; 4120 } 4121 4122 static int 4123 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group) 4124 { 4125 struct spdk_nvmf_rdma_transport *rtransport; 4126 struct spdk_nvmf_rdma_poll_group *rgroup; 4127 struct spdk_nvmf_rdma_poller *rpoller; 4128 int count, rc; 4129 4130 rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport); 4131 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4132 4133 count = 0; 4134 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 4135 rc = nvmf_rdma_poller_poll(rtransport, rpoller); 4136 if (rc < 0) { 4137 return rc; 4138 } 4139 count += rc; 4140 } 4141 4142 return count; 4143 } 4144 4145 static int 4146 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 4147 struct spdk_nvme_transport_id *trid, 4148 bool peer) 4149 { 4150 struct sockaddr *saddr; 4151 uint16_t port; 4152 4153 spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA); 4154 4155 if (peer) { 4156 saddr = rdma_get_peer_addr(id); 4157 } else { 4158 saddr = rdma_get_local_addr(id); 4159 } 4160 switch (saddr->sa_family) { 4161 case AF_INET: { 4162 struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr; 4163 4164 trid->adrfam = SPDK_NVMF_ADRFAM_IPV4; 4165 inet_ntop(AF_INET, &saddr_in->sin_addr, 4166 trid->traddr, sizeof(trid->traddr)); 4167 if (peer) { 4168 port = ntohs(rdma_get_dst_port(id)); 4169 } else { 4170 port = ntohs(rdma_get_src_port(id)); 4171 } 4172 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 4173 break; 4174 } 4175 case AF_INET6: { 4176 struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr; 4177 trid->adrfam = SPDK_NVMF_ADRFAM_IPV6; 4178 inet_ntop(AF_INET6, &saddr_in->sin6_addr, 4179 trid->traddr, sizeof(trid->traddr)); 4180 if (peer) { 4181 port = ntohs(rdma_get_dst_port(id)); 4182 } else { 4183 port = ntohs(rdma_get_src_port(id)); 4184 } 4185 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 4186 break; 4187 } 4188 default: 4189 return -1; 4190 4191 } 4192 4193 return 0; 4194 } 4195 4196 static int 4197 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair, 4198 struct spdk_nvme_transport_id *trid) 4199 { 4200 struct spdk_nvmf_rdma_qpair *rqpair; 4201 4202 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4203 4204 return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true); 4205 } 4206 4207 static int 4208 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair, 4209 struct spdk_nvme_transport_id *trid) 4210 { 4211 struct spdk_nvmf_rdma_qpair *rqpair; 4212 4213 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4214 4215 return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false); 4216 } 4217 4218 static int 4219 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair, 4220 struct spdk_nvme_transport_id *trid) 4221 { 4222 struct spdk_nvmf_rdma_qpair *rqpair; 4223 4224 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4225 4226 return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false); 4227 } 4228 4229 void 4230 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) 4231 { 4232 g_nvmf_hooks = *hooks; 4233 } 4234 4235 static void 4236 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req, 4237 struct spdk_nvmf_rdma_request *rdma_req_to_abort) 4238 { 4239 rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC; 4240 rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; 4241 4242 rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 4243 4244 req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */ 4245 } 4246 4247 static int 4248 _nvmf_rdma_qpair_abort_request(void *ctx) 4249 { 4250 struct spdk_nvmf_request *req = ctx; 4251 struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF( 4252 req->req_to_abort, struct spdk_nvmf_rdma_request, req); 4253 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair, 4254 struct spdk_nvmf_rdma_qpair, qpair); 4255 int rc; 4256 4257 spdk_poller_unregister(&req->poller); 4258 4259 switch (rdma_req_to_abort->state) { 4260 case RDMA_REQUEST_STATE_EXECUTING: 4261 rc = nvmf_ctrlr_abort_request(req); 4262 if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) { 4263 return SPDK_POLLER_BUSY; 4264 } 4265 break; 4266 4267 case RDMA_REQUEST_STATE_NEED_BUFFER: 4268 STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue, 4269 &rdma_req_to_abort->req, spdk_nvmf_request, buf_link); 4270 4271 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); 4272 break; 4273 4274 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 4275 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort, 4276 spdk_nvmf_rdma_request, state_link); 4277 4278 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); 4279 break; 4280 4281 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 4282 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort, 4283 spdk_nvmf_rdma_request, state_link); 4284 4285 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); 4286 break; 4287 4288 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 4289 if (spdk_get_ticks() < req->timeout_tsc) { 4290 req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0); 4291 return SPDK_POLLER_BUSY; 4292 } 4293 break; 4294 4295 default: 4296 break; 4297 } 4298 4299 spdk_nvmf_request_complete(req); 4300 return SPDK_POLLER_BUSY; 4301 } 4302 4303 static void 4304 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair, 4305 struct spdk_nvmf_request *req) 4306 { 4307 struct spdk_nvmf_rdma_qpair *rqpair; 4308 struct spdk_nvmf_rdma_transport *rtransport; 4309 struct spdk_nvmf_transport *transport; 4310 uint16_t cid; 4311 uint32_t i, max_req_count; 4312 struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req; 4313 4314 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4315 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 4316 transport = &rtransport->transport; 4317 4318 cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid; 4319 max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth; 4320 4321 for (i = 0; i < max_req_count; i++) { 4322 rdma_req = &rqpair->resources->reqs[i]; 4323 /* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair 4324 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to 4325 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */ 4326 if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid && 4327 rdma_req->req.qpair == qpair) { 4328 rdma_req_to_abort = rdma_req; 4329 break; 4330 } 4331 } 4332 4333 if (rdma_req_to_abort == NULL) { 4334 spdk_nvmf_request_complete(req); 4335 return; 4336 } 4337 4338 req->req_to_abort = &rdma_req_to_abort->req; 4339 req->timeout_tsc = spdk_get_ticks() + 4340 transport->opts.abort_timeout_sec * spdk_get_ticks_hz(); 4341 req->poller = NULL; 4342 4343 _nvmf_rdma_qpair_abort_request(req); 4344 } 4345 4346 static void 4347 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group, 4348 struct spdk_json_write_ctx *w) 4349 { 4350 struct spdk_nvmf_rdma_poll_group *rgroup; 4351 struct spdk_nvmf_rdma_poller *rpoller; 4352 4353 assert(w != NULL); 4354 4355 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4356 4357 spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer); 4358 4359 spdk_json_write_named_array_begin(w, "devices"); 4360 4361 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 4362 spdk_json_write_object_begin(w); 4363 spdk_json_write_named_string(w, "name", 4364 ibv_get_device_name(rpoller->device->context->device)); 4365 spdk_json_write_named_uint64(w, "polls", 4366 rpoller->stat.polls); 4367 spdk_json_write_named_uint64(w, "idle_polls", 4368 rpoller->stat.idle_polls); 4369 spdk_json_write_named_uint64(w, "completions", 4370 rpoller->stat.completions); 4371 spdk_json_write_named_uint64(w, "requests", 4372 rpoller->stat.requests); 4373 spdk_json_write_named_uint64(w, "request_latency", 4374 rpoller->stat.request_latency); 4375 spdk_json_write_named_uint64(w, "pending_free_request", 4376 rpoller->stat.pending_free_request); 4377 spdk_json_write_named_uint64(w, "pending_rdma_read", 4378 rpoller->stat.pending_rdma_read); 4379 spdk_json_write_named_uint64(w, "pending_rdma_write", 4380 rpoller->stat.pending_rdma_write); 4381 spdk_json_write_named_uint64(w, "total_send_wrs", 4382 rpoller->stat.qp_stats.send.num_submitted_wrs); 4383 spdk_json_write_named_uint64(w, "send_doorbell_updates", 4384 rpoller->stat.qp_stats.send.doorbell_updates); 4385 spdk_json_write_named_uint64(w, "total_recv_wrs", 4386 rpoller->stat.qp_stats.recv.num_submitted_wrs); 4387 spdk_json_write_named_uint64(w, "recv_doorbell_updates", 4388 rpoller->stat.qp_stats.recv.doorbell_updates); 4389 spdk_json_write_object_end(w); 4390 } 4391 4392 spdk_json_write_array_end(w); 4393 } 4394 4395 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = { 4396 .name = "RDMA", 4397 .type = SPDK_NVME_TRANSPORT_RDMA, 4398 .opts_init = nvmf_rdma_opts_init, 4399 .create = nvmf_rdma_create, 4400 .dump_opts = nvmf_rdma_dump_opts, 4401 .destroy = nvmf_rdma_destroy, 4402 4403 .listen = nvmf_rdma_listen, 4404 .stop_listen = nvmf_rdma_stop_listen, 4405 .cdata_init = nvmf_rdma_cdata_init, 4406 4407 .listener_discover = nvmf_rdma_discover, 4408 4409 .poll_group_create = nvmf_rdma_poll_group_create, 4410 .get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group, 4411 .poll_group_destroy = nvmf_rdma_poll_group_destroy, 4412 .poll_group_add = nvmf_rdma_poll_group_add, 4413 .poll_group_remove = nvmf_rdma_poll_group_remove, 4414 .poll_group_poll = nvmf_rdma_poll_group_poll, 4415 4416 .req_free = nvmf_rdma_request_free, 4417 .req_complete = nvmf_rdma_request_complete, 4418 4419 .qpair_fini = nvmf_rdma_close_qpair, 4420 .qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid, 4421 .qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid, 4422 .qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid, 4423 .qpair_abort_request = nvmf_rdma_qpair_abort_request, 4424 4425 .poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat, 4426 }; 4427 4428 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma); 4429 SPDK_LOG_REGISTER_COMPONENT(rdma) 4430