1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. All rights reserved. 5 * Copyright (c) 2018 Mellanox Technologies LTD. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk/stdinc.h" 35 36 #include <infiniband/verbs.h> 37 #include <rdma/rdma_cma.h> 38 #include <rdma/rdma_verbs.h> 39 40 #include "nvmf_internal.h" 41 #include "transport.h" 42 43 #include "spdk/config.h" 44 #include "spdk/assert.h" 45 #include "spdk/thread.h" 46 #include "spdk/nvmf.h" 47 #include "spdk/nvmf_spec.h" 48 #include "spdk/string.h" 49 #include "spdk/trace.h" 50 #include "spdk/util.h" 51 52 #include "spdk_internal/log.h" 53 54 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {}; 55 56 /* 57 RDMA Connection Resource Defaults 58 */ 59 #define NVMF_DEFAULT_TX_SGE SPDK_NVMF_MAX_SGL_ENTRIES 60 #define NVMF_DEFAULT_RSP_SGE 1 61 #define NVMF_DEFAULT_RX_SGE 2 62 63 /* The RDMA completion queue size */ 64 #define DEFAULT_NVMF_RDMA_CQ_SIZE 4096 65 #define MAX_WR_PER_QP(queue_depth) (queue_depth * 3 + 2) 66 67 /* Timeout for destroying defunct rqpairs */ 68 #define NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US 4000000 69 70 /* The maximum number of buffers per request */ 71 #define NVMF_REQ_MAX_BUFFERS (SPDK_NVMF_MAX_SGL_ENTRIES * 2) 72 73 static int g_spdk_nvmf_ibv_query_mask = 74 IBV_QP_STATE | 75 IBV_QP_PKEY_INDEX | 76 IBV_QP_PORT | 77 IBV_QP_ACCESS_FLAGS | 78 IBV_QP_AV | 79 IBV_QP_PATH_MTU | 80 IBV_QP_DEST_QPN | 81 IBV_QP_RQ_PSN | 82 IBV_QP_MAX_DEST_RD_ATOMIC | 83 IBV_QP_MIN_RNR_TIMER | 84 IBV_QP_SQ_PSN | 85 IBV_QP_TIMEOUT | 86 IBV_QP_RETRY_CNT | 87 IBV_QP_RNR_RETRY | 88 IBV_QP_MAX_QP_RD_ATOMIC; 89 90 enum spdk_nvmf_rdma_request_state { 91 /* The request is not currently in use */ 92 RDMA_REQUEST_STATE_FREE = 0, 93 94 /* Initial state when request first received */ 95 RDMA_REQUEST_STATE_NEW, 96 97 /* The request is queued until a data buffer is available. */ 98 RDMA_REQUEST_STATE_NEED_BUFFER, 99 100 /* The request is waiting on RDMA queue depth availability 101 * to transfer data from the host to the controller. 102 */ 103 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 104 105 /* The request is currently transferring data from the host to the controller. */ 106 RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 107 108 /* The request is ready to execute at the block device */ 109 RDMA_REQUEST_STATE_READY_TO_EXECUTE, 110 111 /* The request is currently executing at the block device */ 112 RDMA_REQUEST_STATE_EXECUTING, 113 114 /* The request finished executing at the block device */ 115 RDMA_REQUEST_STATE_EXECUTED, 116 117 /* The request is waiting on RDMA queue depth availability 118 * to transfer data from the controller to the host. 119 */ 120 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 121 122 /* The request is ready to send a completion */ 123 RDMA_REQUEST_STATE_READY_TO_COMPLETE, 124 125 /* The request is currently transferring data from the controller to the host. */ 126 RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 127 128 /* The request currently has an outstanding completion without an 129 * associated data transfer. 130 */ 131 RDMA_REQUEST_STATE_COMPLETING, 132 133 /* The request completed and can be marked free. */ 134 RDMA_REQUEST_STATE_COMPLETED, 135 136 /* Terminator */ 137 RDMA_REQUEST_NUM_STATES, 138 }; 139 140 #define OBJECT_NVMF_RDMA_IO 0x40 141 142 #define TRACE_GROUP_NVMF_RDMA 0x4 143 #define TRACE_RDMA_REQUEST_STATE_NEW SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x0) 144 #define TRACE_RDMA_REQUEST_STATE_NEED_BUFFER SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x1) 145 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x2) 146 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x3) 147 #define TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x4) 148 #define TRACE_RDMA_REQUEST_STATE_EXECUTING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x5) 149 #define TRACE_RDMA_REQUEST_STATE_EXECUTED SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x6) 150 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x7) 151 #define TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x8) 152 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x9) 153 #define TRACE_RDMA_REQUEST_STATE_COMPLETING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xA) 154 #define TRACE_RDMA_REQUEST_STATE_COMPLETED SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xB) 155 #define TRACE_RDMA_QP_CREATE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xC) 156 #define TRACE_RDMA_IBV_ASYNC_EVENT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xD) 157 #define TRACE_RDMA_CM_ASYNC_EVENT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xE) 158 #define TRACE_RDMA_QP_STATE_CHANGE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xF) 159 #define TRACE_RDMA_QP_DISCONNECT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x10) 160 #define TRACE_RDMA_QP_DESTROY SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x11) 161 162 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA) 163 { 164 spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r'); 165 spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW, 166 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 1, "cmid: "); 167 spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 168 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 169 spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H", 170 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 171 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 172 spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C", 173 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 174 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 175 spdk_trace_register_description("RDMA_REQ_TX_H2C", 176 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 177 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 178 spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE", 179 TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 180 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 181 spdk_trace_register_description("RDMA_REQ_EXECUTING", 182 TRACE_RDMA_REQUEST_STATE_EXECUTING, 183 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 184 spdk_trace_register_description("RDMA_REQ_EXECUTED", 185 TRACE_RDMA_REQUEST_STATE_EXECUTED, 186 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 187 spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL", 188 TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 189 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 190 spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H", 191 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 192 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 193 spdk_trace_register_description("RDMA_REQ_COMPLETING", 194 TRACE_RDMA_REQUEST_STATE_COMPLETING, 195 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 196 spdk_trace_register_description("RDMA_REQ_COMPLETED", 197 TRACE_RDMA_REQUEST_STATE_COMPLETED, 198 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 199 200 spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE, 201 OWNER_NONE, OBJECT_NONE, 0, 0, ""); 202 spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT, 203 OWNER_NONE, OBJECT_NONE, 0, 0, "type: "); 204 spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT, 205 OWNER_NONE, OBJECT_NONE, 0, 0, "type: "); 206 spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE, 207 OWNER_NONE, OBJECT_NONE, 0, 1, "state: "); 208 spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT, 209 OWNER_NONE, OBJECT_NONE, 0, 0, ""); 210 spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY, 211 OWNER_NONE, OBJECT_NONE, 0, 0, ""); 212 } 213 214 enum spdk_nvmf_rdma_wr_type { 215 RDMA_WR_TYPE_RECV, 216 RDMA_WR_TYPE_SEND, 217 RDMA_WR_TYPE_DATA, 218 }; 219 220 struct spdk_nvmf_rdma_wr { 221 enum spdk_nvmf_rdma_wr_type type; 222 }; 223 224 /* This structure holds commands as they are received off the wire. 225 * It must be dynamically paired with a full request object 226 * (spdk_nvmf_rdma_request) to service a request. It is separate 227 * from the request because RDMA does not appear to order 228 * completions, so occasionally we'll get a new incoming 229 * command when there aren't any free request objects. 230 */ 231 struct spdk_nvmf_rdma_recv { 232 struct ibv_recv_wr wr; 233 struct ibv_sge sgl[NVMF_DEFAULT_RX_SGE]; 234 235 struct spdk_nvmf_rdma_qpair *qpair; 236 237 /* In-capsule data buffer */ 238 uint8_t *buf; 239 240 struct spdk_nvmf_rdma_wr rdma_wr; 241 242 STAILQ_ENTRY(spdk_nvmf_rdma_recv) link; 243 }; 244 245 struct spdk_nvmf_rdma_request_data { 246 struct spdk_nvmf_rdma_wr rdma_wr; 247 struct ibv_send_wr wr; 248 struct ibv_sge sgl[SPDK_NVMF_MAX_SGL_ENTRIES]; 249 }; 250 251 struct spdk_nvmf_rdma_request { 252 struct spdk_nvmf_request req; 253 bool data_from_pool; 254 255 enum spdk_nvmf_rdma_request_state state; 256 257 struct spdk_nvmf_rdma_recv *recv; 258 259 struct { 260 struct spdk_nvmf_rdma_wr rdma_wr; 261 struct ibv_send_wr wr; 262 struct ibv_sge sgl[NVMF_DEFAULT_RSP_SGE]; 263 } rsp; 264 265 struct spdk_nvmf_rdma_request_data data; 266 void *buffers[NVMF_REQ_MAX_BUFFERS]; 267 268 uint32_t num_outstanding_data_wr; 269 270 STAILQ_ENTRY(spdk_nvmf_rdma_request) state_link; 271 }; 272 273 enum spdk_nvmf_rdma_qpair_disconnect_flags { 274 RDMA_QP_DISCONNECTING = 1, 275 RDMA_QP_RECV_DRAINED = 1 << 1, 276 RDMA_QP_SEND_DRAINED = 1 << 2 277 }; 278 279 struct spdk_nvmf_rdma_resource_opts { 280 struct spdk_nvmf_rdma_qpair *qpair; 281 /* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */ 282 void *qp; 283 struct ibv_pd *pd; 284 uint32_t max_queue_depth; 285 uint32_t in_capsule_data_size; 286 bool shared; 287 }; 288 289 struct spdk_nvmf_send_wr_list { 290 struct ibv_send_wr *first; 291 struct ibv_send_wr *last; 292 }; 293 294 struct spdk_nvmf_recv_wr_list { 295 struct ibv_recv_wr *first; 296 struct ibv_recv_wr *last; 297 }; 298 299 struct spdk_nvmf_rdma_resources { 300 /* Array of size "max_queue_depth" containing RDMA requests. */ 301 struct spdk_nvmf_rdma_request *reqs; 302 303 /* Array of size "max_queue_depth" containing RDMA recvs. */ 304 struct spdk_nvmf_rdma_recv *recvs; 305 306 /* Array of size "max_queue_depth" containing 64 byte capsules 307 * used for receive. 308 */ 309 union nvmf_h2c_msg *cmds; 310 struct ibv_mr *cmds_mr; 311 312 /* Array of size "max_queue_depth" containing 16 byte completions 313 * to be sent back to the user. 314 */ 315 union nvmf_c2h_msg *cpls; 316 struct ibv_mr *cpls_mr; 317 318 /* Array of size "max_queue_depth * InCapsuleDataSize" containing 319 * buffers to be used for in capsule data. 320 */ 321 void *bufs; 322 struct ibv_mr *bufs_mr; 323 324 /* The list of pending recvs to transfer */ 325 struct spdk_nvmf_recv_wr_list recvs_to_post; 326 327 /* Receives that are waiting for a request object */ 328 STAILQ_HEAD(, spdk_nvmf_rdma_recv) incoming_queue; 329 330 /* Queue to track free requests */ 331 STAILQ_HEAD(, spdk_nvmf_rdma_request) free_queue; 332 }; 333 334 struct spdk_nvmf_rdma_qpair { 335 struct spdk_nvmf_qpair qpair; 336 337 struct spdk_nvmf_rdma_port *port; 338 struct spdk_nvmf_rdma_poller *poller; 339 340 struct rdma_cm_id *cm_id; 341 struct ibv_srq *srq; 342 struct rdma_cm_id *listen_id; 343 344 /* The maximum number of I/O outstanding on this connection at one time */ 345 uint16_t max_queue_depth; 346 347 /* The maximum number of active RDMA READ and ATOMIC operations at one time */ 348 uint16_t max_read_depth; 349 350 /* The maximum number of RDMA SEND operations at one time */ 351 uint32_t max_send_depth; 352 353 /* The current number of outstanding WRs from this qpair's 354 * recv queue. Should not exceed device->attr.max_queue_depth. 355 */ 356 uint16_t current_recv_depth; 357 358 /* The current number of active RDMA READ operations */ 359 uint16_t current_read_depth; 360 361 /* The current number of posted WRs from this qpair's 362 * send queue. Should not exceed max_send_depth. 363 */ 364 uint32_t current_send_depth; 365 366 /* The maximum number of SGEs per WR on the send queue */ 367 uint32_t max_send_sge; 368 369 /* The maximum number of SGEs per WR on the recv queue */ 370 uint32_t max_recv_sge; 371 372 /* The list of pending send requests for a transfer */ 373 struct spdk_nvmf_send_wr_list sends_to_post; 374 375 struct spdk_nvmf_rdma_resources *resources; 376 377 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_read_queue; 378 379 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_write_queue; 380 381 /* Number of requests not in the free state */ 382 uint32_t qd; 383 384 TAILQ_ENTRY(spdk_nvmf_rdma_qpair) link; 385 386 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) recv_link; 387 388 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) send_link; 389 390 /* IBV queue pair attributes: they are used to manage 391 * qp state and recover from errors. 392 */ 393 enum ibv_qp_state ibv_state; 394 395 uint32_t disconnect_flags; 396 397 /* Poller registered in case the qpair doesn't properly 398 * complete the qpair destruct process and becomes defunct. 399 */ 400 401 struct spdk_poller *destruct_poller; 402 403 /* There are several ways a disconnect can start on a qpair 404 * and they are not all mutually exclusive. It is important 405 * that we only initialize one of these paths. 406 */ 407 bool disconnect_started; 408 /* Lets us know that we have received the last_wqe event. */ 409 bool last_wqe_reached; 410 }; 411 412 struct spdk_nvmf_rdma_poller { 413 struct spdk_nvmf_rdma_device *device; 414 struct spdk_nvmf_rdma_poll_group *group; 415 416 int num_cqe; 417 int required_num_wr; 418 struct ibv_cq *cq; 419 420 /* The maximum number of I/O outstanding on the shared receive queue at one time */ 421 uint16_t max_srq_depth; 422 423 /* Shared receive queue */ 424 struct ibv_srq *srq; 425 426 struct spdk_nvmf_rdma_resources *resources; 427 428 TAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs; 429 430 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_recv; 431 432 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_send; 433 434 TAILQ_ENTRY(spdk_nvmf_rdma_poller) link; 435 }; 436 437 struct spdk_nvmf_rdma_poll_group { 438 struct spdk_nvmf_transport_poll_group group; 439 440 /* Requests that are waiting to obtain a data buffer */ 441 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_data_buf_queue; 442 443 TAILQ_HEAD(, spdk_nvmf_rdma_poller) pollers; 444 }; 445 446 /* Assuming rdma_cm uses just one protection domain per ibv_context. */ 447 struct spdk_nvmf_rdma_device { 448 struct ibv_device_attr attr; 449 struct ibv_context *context; 450 451 struct spdk_mem_map *map; 452 struct ibv_pd *pd; 453 454 int num_srq; 455 456 TAILQ_ENTRY(spdk_nvmf_rdma_device) link; 457 }; 458 459 struct spdk_nvmf_rdma_port { 460 struct spdk_nvme_transport_id trid; 461 struct rdma_cm_id *id; 462 struct spdk_nvmf_rdma_device *device; 463 uint32_t ref; 464 TAILQ_ENTRY(spdk_nvmf_rdma_port) link; 465 }; 466 467 struct spdk_nvmf_rdma_transport { 468 struct spdk_nvmf_transport transport; 469 470 struct rdma_event_channel *event_channel; 471 472 struct spdk_mempool *data_wr_pool; 473 474 pthread_mutex_t lock; 475 476 /* fields used to poll RDMA/IB events */ 477 nfds_t npoll_fds; 478 struct pollfd *poll_fds; 479 480 TAILQ_HEAD(, spdk_nvmf_rdma_device) devices; 481 TAILQ_HEAD(, spdk_nvmf_rdma_port) ports; 482 }; 483 484 static inline int 485 spdk_nvmf_rdma_check_ibv_state(enum ibv_qp_state state) 486 { 487 switch (state) { 488 case IBV_QPS_RESET: 489 case IBV_QPS_INIT: 490 case IBV_QPS_RTR: 491 case IBV_QPS_RTS: 492 case IBV_QPS_SQD: 493 case IBV_QPS_SQE: 494 case IBV_QPS_ERR: 495 return 0; 496 default: 497 return -1; 498 } 499 } 500 501 static enum ibv_qp_state 502 spdk_nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) { 503 enum ibv_qp_state old_state, new_state; 504 struct ibv_qp_attr qp_attr; 505 struct ibv_qp_init_attr init_attr; 506 int rc; 507 508 old_state = rqpair->ibv_state; 509 rc = ibv_query_qp(rqpair->cm_id->qp, &qp_attr, 510 g_spdk_nvmf_ibv_query_mask, &init_attr); 511 512 if (rc) 513 { 514 SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n"); 515 return IBV_QPS_ERR + 1; 516 } 517 518 new_state = qp_attr.qp_state; 519 rqpair->ibv_state = new_state; 520 qp_attr.ah_attr.port_num = qp_attr.port_num; 521 522 rc = spdk_nvmf_rdma_check_ibv_state(new_state); 523 if (rc) 524 { 525 SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state); 526 /* 527 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8 528 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR 529 */ 530 return IBV_QPS_ERR + 1; 531 } 532 533 if (old_state != new_state) 534 { 535 spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, 536 (uintptr_t)rqpair->cm_id, new_state); 537 } 538 return new_state; 539 } 540 541 static const char *str_ibv_qp_state[] = { 542 "IBV_QPS_RESET", 543 "IBV_QPS_INIT", 544 "IBV_QPS_RTR", 545 "IBV_QPS_RTS", 546 "IBV_QPS_SQD", 547 "IBV_QPS_SQE", 548 "IBV_QPS_ERR", 549 "IBV_QPS_UNKNOWN" 550 }; 551 552 static int 553 spdk_nvmf_rdma_set_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair, 554 enum ibv_qp_state new_state) 555 { 556 struct ibv_qp_attr qp_attr; 557 struct ibv_qp_init_attr init_attr; 558 int rc; 559 enum ibv_qp_state state; 560 static int attr_mask_rc[] = { 561 [IBV_QPS_RESET] = IBV_QP_STATE, 562 [IBV_QPS_INIT] = (IBV_QP_STATE | 563 IBV_QP_PKEY_INDEX | 564 IBV_QP_PORT | 565 IBV_QP_ACCESS_FLAGS), 566 [IBV_QPS_RTR] = (IBV_QP_STATE | 567 IBV_QP_AV | 568 IBV_QP_PATH_MTU | 569 IBV_QP_DEST_QPN | 570 IBV_QP_RQ_PSN | 571 IBV_QP_MAX_DEST_RD_ATOMIC | 572 IBV_QP_MIN_RNR_TIMER), 573 [IBV_QPS_RTS] = (IBV_QP_STATE | 574 IBV_QP_SQ_PSN | 575 IBV_QP_TIMEOUT | 576 IBV_QP_RETRY_CNT | 577 IBV_QP_RNR_RETRY | 578 IBV_QP_MAX_QP_RD_ATOMIC), 579 [IBV_QPS_SQD] = IBV_QP_STATE, 580 [IBV_QPS_SQE] = IBV_QP_STATE, 581 [IBV_QPS_ERR] = IBV_QP_STATE, 582 }; 583 584 rc = spdk_nvmf_rdma_check_ibv_state(new_state); 585 if (rc) { 586 SPDK_ERRLOG("QP#%d: bad state requested: %u\n", 587 rqpair->qpair.qid, new_state); 588 return rc; 589 } 590 591 rc = ibv_query_qp(rqpair->cm_id->qp, &qp_attr, 592 g_spdk_nvmf_ibv_query_mask, &init_attr); 593 594 if (rc) { 595 SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n"); 596 assert(false); 597 } 598 599 qp_attr.cur_qp_state = rqpair->ibv_state; 600 qp_attr.qp_state = new_state; 601 602 rc = ibv_modify_qp(rqpair->cm_id->qp, &qp_attr, 603 attr_mask_rc[new_state]); 604 605 if (rc) { 606 SPDK_ERRLOG("QP#%d: failed to set state to: %s, %d (%s)\n", 607 rqpair->qpair.qid, str_ibv_qp_state[new_state], errno, strerror(errno)); 608 return rc; 609 } 610 611 state = spdk_nvmf_rdma_update_ibv_state(rqpair); 612 613 if (state != new_state) { 614 SPDK_ERRLOG("QP#%d: expected state: %s, actual state: %s\n", 615 rqpair->qpair.qid, str_ibv_qp_state[new_state], 616 str_ibv_qp_state[state]); 617 return -1; 618 } 619 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "IBV QP#%u changed to: %s\n", rqpair->qpair.qid, 620 str_ibv_qp_state[state]); 621 return 0; 622 } 623 624 static void 625 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req, 626 struct spdk_nvmf_rdma_transport *rtransport) 627 { 628 struct spdk_nvmf_rdma_request_data *current_data_wr = NULL, *next_data_wr = NULL; 629 struct ibv_send_wr *send_wr; 630 int i; 631 632 rdma_req->num_outstanding_data_wr = 0; 633 current_data_wr = &rdma_req->data; 634 for (i = 0; i < current_data_wr->wr.num_sge; i++) { 635 current_data_wr->wr.sg_list[i].addr = 0; 636 current_data_wr->wr.sg_list[i].length = 0; 637 current_data_wr->wr.sg_list[i].lkey = 0; 638 } 639 current_data_wr->wr.num_sge = 0; 640 641 send_wr = current_data_wr->wr.next; 642 if (send_wr != NULL && send_wr != &rdma_req->rsp.wr) { 643 next_data_wr = SPDK_CONTAINEROF(send_wr, struct spdk_nvmf_rdma_request_data, wr); 644 } 645 while (next_data_wr) { 646 current_data_wr = next_data_wr; 647 send_wr = current_data_wr->wr.next; 648 if (send_wr != NULL && send_wr != &rdma_req->rsp.wr && 649 send_wr->wr_id == current_data_wr->wr.wr_id) { 650 next_data_wr = SPDK_CONTAINEROF(send_wr, struct spdk_nvmf_rdma_request_data, wr); 651 } else { 652 next_data_wr = NULL; 653 } 654 655 for (i = 0; i < current_data_wr->wr.num_sge; i++) { 656 current_data_wr->wr.sg_list[i].addr = 0; 657 current_data_wr->wr.sg_list[i].length = 0; 658 current_data_wr->wr.sg_list[i].lkey = 0; 659 } 660 current_data_wr->wr.num_sge = 0; 661 spdk_mempool_put(rtransport->data_wr_pool, current_data_wr); 662 } 663 } 664 665 static void 666 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req) 667 { 668 SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->data_from_pool); 669 if (req->req.cmd) { 670 SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode); 671 } 672 if (req->recv) { 673 SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id); 674 } 675 } 676 677 static void 678 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair) 679 { 680 int i; 681 682 SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid); 683 for (i = 0; i < rqpair->max_queue_depth; i++) { 684 if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) { 685 nvmf_rdma_dump_request(&rqpair->resources->reqs[i]); 686 } 687 } 688 } 689 690 static void 691 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources) 692 { 693 if (resources->cmds_mr) { 694 ibv_dereg_mr(resources->cmds_mr); 695 } 696 697 if (resources->cpls_mr) { 698 ibv_dereg_mr(resources->cpls_mr); 699 } 700 701 if (resources->bufs_mr) { 702 ibv_dereg_mr(resources->bufs_mr); 703 } 704 705 spdk_dma_free(resources->cmds); 706 spdk_dma_free(resources->cpls); 707 spdk_dma_free(resources->bufs); 708 free(resources->reqs); 709 free(resources->recvs); 710 free(resources); 711 } 712 713 714 static struct spdk_nvmf_rdma_resources * 715 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts) 716 { 717 struct spdk_nvmf_rdma_resources *resources; 718 struct spdk_nvmf_rdma_request *rdma_req; 719 struct spdk_nvmf_rdma_recv *rdma_recv; 720 struct ibv_qp *qp; 721 struct ibv_srq *srq; 722 uint32_t i; 723 int rc; 724 725 resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources)); 726 if (!resources) { 727 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 728 return NULL; 729 } 730 731 resources->reqs = calloc(opts->max_queue_depth, sizeof(*resources->reqs)); 732 resources->recvs = calloc(opts->max_queue_depth, sizeof(*resources->recvs)); 733 resources->cmds = spdk_dma_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds), 734 0x1000, NULL); 735 resources->cpls = spdk_dma_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls), 736 0x1000, NULL); 737 738 if (opts->in_capsule_data_size > 0) { 739 resources->bufs = spdk_dma_zmalloc(opts->max_queue_depth * 740 opts->in_capsule_data_size, 741 0x1000, NULL); 742 } 743 744 if (!resources->reqs || !resources->recvs || !resources->cmds || 745 !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) { 746 SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n"); 747 goto cleanup; 748 } 749 750 resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds, 751 opts->max_queue_depth * sizeof(*resources->cmds), 752 IBV_ACCESS_LOCAL_WRITE); 753 resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls, 754 opts->max_queue_depth * sizeof(*resources->cpls), 755 0); 756 757 if (opts->in_capsule_data_size) { 758 resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs, 759 opts->max_queue_depth * 760 opts->in_capsule_data_size, 761 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); 762 } 763 764 if (!resources->cmds_mr || !resources->cpls_mr || 765 (opts->in_capsule_data_size && 766 !resources->bufs_mr)) { 767 goto cleanup; 768 } 769 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Command Array: %p Length: %lx LKey: %x\n", 770 resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds), 771 resources->cmds_mr->lkey); 772 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Completion Array: %p Length: %lx LKey: %x\n", 773 resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls), 774 resources->cpls_mr->lkey); 775 if (resources->bufs && resources->bufs_mr) { 776 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "In Capsule Data Array: %p Length: %x LKey: %x\n", 777 resources->bufs, opts->max_queue_depth * 778 opts->in_capsule_data_size, resources->bufs_mr->lkey); 779 } 780 781 /* Initialize queues */ 782 STAILQ_INIT(&resources->incoming_queue); 783 STAILQ_INIT(&resources->free_queue); 784 785 for (i = 0; i < opts->max_queue_depth; i++) { 786 struct ibv_recv_wr *bad_wr = NULL; 787 788 rdma_recv = &resources->recvs[i]; 789 rdma_recv->qpair = opts->qpair; 790 791 /* Set up memory to receive commands */ 792 if (resources->bufs) { 793 rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i * 794 opts->in_capsule_data_size)); 795 } 796 797 rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV; 798 799 rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i]; 800 rdma_recv->sgl[0].length = sizeof(resources->cmds[i]); 801 rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey; 802 rdma_recv->wr.num_sge = 1; 803 804 if (rdma_recv->buf && resources->bufs_mr) { 805 rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf; 806 rdma_recv->sgl[1].length = opts->in_capsule_data_size; 807 rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey; 808 rdma_recv->wr.num_sge++; 809 } 810 811 rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr; 812 rdma_recv->wr.sg_list = rdma_recv->sgl; 813 if (opts->shared) { 814 srq = (struct ibv_srq *)opts->qp; 815 rc = ibv_post_srq_recv(srq, &rdma_recv->wr, &bad_wr); 816 } else { 817 qp = (struct ibv_qp *)opts->qp; 818 rc = ibv_post_recv(qp, &rdma_recv->wr, &bad_wr); 819 } 820 if (rc) { 821 goto cleanup; 822 } 823 } 824 825 for (i = 0; i < opts->max_queue_depth; i++) { 826 rdma_req = &resources->reqs[i]; 827 828 if (opts->qpair != NULL) { 829 rdma_req->req.qpair = &opts->qpair->qpair; 830 } else { 831 rdma_req->req.qpair = NULL; 832 } 833 rdma_req->req.cmd = NULL; 834 835 /* Set up memory to send responses */ 836 rdma_req->req.rsp = &resources->cpls[i]; 837 838 rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i]; 839 rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]); 840 rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey; 841 842 rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND; 843 rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr; 844 rdma_req->rsp.wr.next = NULL; 845 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 846 rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED; 847 rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl; 848 rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl); 849 850 /* Set up memory for data buffers */ 851 rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA; 852 rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr; 853 rdma_req->data.wr.next = NULL; 854 rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED; 855 rdma_req->data.wr.sg_list = rdma_req->data.sgl; 856 rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl); 857 858 /* Initialize request state to FREE */ 859 rdma_req->state = RDMA_REQUEST_STATE_FREE; 860 STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link); 861 } 862 863 return resources; 864 865 cleanup: 866 nvmf_rdma_resources_destroy(resources); 867 return NULL; 868 } 869 870 static void 871 spdk_nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair) 872 { 873 struct spdk_nvmf_rdma_recv *rdma_recv, *recv_tmp; 874 struct ibv_recv_wr *bad_recv_wr = NULL; 875 int rc; 876 877 spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair->cm_id, 0); 878 879 spdk_poller_unregister(&rqpair->destruct_poller); 880 881 if (rqpair->qd != 0) { 882 if (rqpair->srq == NULL) { 883 nvmf_rdma_dump_qpair_contents(rqpair); 884 } 885 SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd); 886 } 887 888 if (rqpair->poller) { 889 TAILQ_REMOVE(&rqpair->poller->qpairs, rqpair, link); 890 891 if (rqpair->srq != NULL && rqpair->resources != NULL) { 892 /* Drop all received but unprocessed commands for this queue and return them to SRQ */ 893 STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) { 894 if (rqpair == rdma_recv->qpair) { 895 STAILQ_REMOVE_HEAD(&rqpair->resources->incoming_queue, link); 896 rc = ibv_post_srq_recv(rqpair->srq, &rdma_recv->wr, &bad_recv_wr); 897 if (rc) { 898 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 899 } 900 } 901 } 902 } 903 } 904 905 if (rqpair->cm_id) { 906 if (rqpair->cm_id->qp != NULL) { 907 rdma_destroy_qp(rqpair->cm_id); 908 } 909 rdma_destroy_id(rqpair->cm_id); 910 911 if (rqpair->poller != NULL && rqpair->srq == NULL) { 912 rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth); 913 } 914 } 915 916 if (rqpair->srq == NULL && rqpair->resources != NULL) { 917 nvmf_rdma_resources_destroy(rqpair->resources); 918 } 919 920 free(rqpair); 921 } 922 923 static int 924 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device) 925 { 926 struct spdk_nvmf_rdma_poller *rpoller; 927 int rc, num_cqe, required_num_wr; 928 929 /* Enlarge CQ size dynamically */ 930 rpoller = rqpair->poller; 931 required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth); 932 num_cqe = rpoller->num_cqe; 933 if (num_cqe < required_num_wr) { 934 num_cqe = spdk_max(num_cqe * 2, required_num_wr); 935 num_cqe = spdk_min(num_cqe, device->attr.max_cqe); 936 } 937 938 if (rpoller->num_cqe != num_cqe) { 939 if (required_num_wr > device->attr.max_cqe) { 940 SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n", 941 required_num_wr, device->attr.max_cqe); 942 return -1; 943 } 944 945 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe); 946 rc = ibv_resize_cq(rpoller->cq, num_cqe); 947 if (rc) { 948 SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); 949 return -1; 950 } 951 952 rpoller->num_cqe = num_cqe; 953 } 954 955 rpoller->required_num_wr = required_num_wr; 956 return 0; 957 } 958 959 static int 960 spdk_nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair) 961 { 962 struct spdk_nvmf_rdma_qpair *rqpair; 963 int rc; 964 struct spdk_nvmf_rdma_transport *rtransport; 965 struct spdk_nvmf_transport *transport; 966 struct spdk_nvmf_rdma_resource_opts opts; 967 struct spdk_nvmf_rdma_device *device; 968 struct ibv_qp_init_attr ibv_init_attr; 969 970 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 971 device = rqpair->port->device; 972 973 memset(&ibv_init_attr, 0, sizeof(struct ibv_qp_init_attr)); 974 ibv_init_attr.qp_context = rqpair; 975 ibv_init_attr.qp_type = IBV_QPT_RC; 976 ibv_init_attr.send_cq = rqpair->poller->cq; 977 ibv_init_attr.recv_cq = rqpair->poller->cq; 978 979 if (rqpair->srq) { 980 ibv_init_attr.srq = rqpair->srq; 981 } else { 982 ibv_init_attr.cap.max_recv_wr = rqpair->max_queue_depth + 983 1; /* RECV operations + dummy drain WR */ 984 } 985 986 ibv_init_attr.cap.max_send_wr = rqpair->max_queue_depth * 987 2 + 1; /* SEND, READ, and WRITE operations + dummy drain WR */ 988 ibv_init_attr.cap.max_send_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_TX_SGE); 989 ibv_init_attr.cap.max_recv_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 990 991 if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) { 992 SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n"); 993 goto error; 994 } 995 996 rc = rdma_create_qp(rqpair->cm_id, rqpair->port->device->pd, &ibv_init_attr); 997 if (rc) { 998 SPDK_ERRLOG("rdma_create_qp failed: errno %d: %s\n", errno, spdk_strerror(errno)); 999 goto error; 1000 } 1001 1002 rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2 + 1), 1003 ibv_init_attr.cap.max_send_wr); 1004 rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, ibv_init_attr.cap.max_send_sge); 1005 rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, ibv_init_attr.cap.max_recv_sge); 1006 spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair->cm_id, 0); 1007 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "New RDMA Connection: %p\n", qpair); 1008 1009 rqpair->sends_to_post.first = NULL; 1010 rqpair->sends_to_post.last = NULL; 1011 1012 if (rqpair->poller->srq == NULL) { 1013 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 1014 transport = &rtransport->transport; 1015 1016 opts.qp = rqpair->cm_id->qp; 1017 opts.pd = rqpair->cm_id->pd; 1018 opts.qpair = rqpair; 1019 opts.shared = false; 1020 opts.max_queue_depth = rqpair->max_queue_depth; 1021 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 1022 1023 rqpair->resources = nvmf_rdma_resources_create(&opts); 1024 1025 if (!rqpair->resources) { 1026 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 1027 goto error; 1028 } 1029 } else { 1030 rqpair->resources = rqpair->poller->resources; 1031 } 1032 1033 rqpair->current_recv_depth = 0; 1034 STAILQ_INIT(&rqpair->pending_rdma_read_queue); 1035 STAILQ_INIT(&rqpair->pending_rdma_write_queue); 1036 1037 return 0; 1038 1039 error: 1040 rdma_destroy_id(rqpair->cm_id); 1041 rqpair->cm_id = NULL; 1042 spdk_nvmf_rdma_qpair_destroy(rqpair); 1043 return -1; 1044 } 1045 1046 /* Append the given recv wr structure to the resource structs outstanding recvs list. */ 1047 /* This function accepts either a single wr or the first wr in a linked list. */ 1048 static void 1049 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first) 1050 { 1051 struct ibv_recv_wr *last; 1052 1053 last = first; 1054 while (last->next != NULL) { 1055 last = last->next; 1056 } 1057 1058 if (rqpair->resources->recvs_to_post.first == NULL) { 1059 rqpair->resources->recvs_to_post.first = first; 1060 rqpair->resources->recvs_to_post.last = last; 1061 if (rqpair->srq == NULL) { 1062 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link); 1063 } 1064 } else { 1065 rqpair->resources->recvs_to_post.last->next = first; 1066 rqpair->resources->recvs_to_post.last = last; 1067 } 1068 } 1069 1070 /* Append the given send wr structure to the qpair's outstanding sends list. */ 1071 /* This function accepts either a single wr or the first wr in a linked list. */ 1072 static void 1073 nvmf_rdma_qpair_queue_send_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *first) 1074 { 1075 struct ibv_send_wr *last; 1076 1077 last = first; 1078 while (last->next != NULL) { 1079 last = last->next; 1080 } 1081 1082 if (rqpair->sends_to_post.first == NULL) { 1083 rqpair->sends_to_post.first = first; 1084 rqpair->sends_to_post.last = last; 1085 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1086 } else { 1087 rqpair->sends_to_post.last->next = first; 1088 rqpair->sends_to_post.last = last; 1089 } 1090 } 1091 1092 static int 1093 request_transfer_in(struct spdk_nvmf_request *req) 1094 { 1095 struct spdk_nvmf_rdma_request *rdma_req; 1096 struct spdk_nvmf_qpair *qpair; 1097 struct spdk_nvmf_rdma_qpair *rqpair; 1098 1099 qpair = req->qpair; 1100 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1101 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1102 1103 assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); 1104 assert(rdma_req != NULL); 1105 1106 nvmf_rdma_qpair_queue_send_wrs(rqpair, &rdma_req->data.wr); 1107 rqpair->current_read_depth += rdma_req->num_outstanding_data_wr; 1108 rqpair->current_send_depth += rdma_req->num_outstanding_data_wr; 1109 return 0; 1110 } 1111 1112 static int 1113 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted) 1114 { 1115 int num_outstanding_data_wr = 0; 1116 struct spdk_nvmf_rdma_request *rdma_req; 1117 struct spdk_nvmf_qpair *qpair; 1118 struct spdk_nvmf_rdma_qpair *rqpair; 1119 struct spdk_nvme_cpl *rsp; 1120 struct ibv_send_wr *first = NULL; 1121 1122 *data_posted = 0; 1123 qpair = req->qpair; 1124 rsp = &req->rsp->nvme_cpl; 1125 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1126 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1127 1128 /* Advance our sq_head pointer */ 1129 if (qpair->sq_head == qpair->sq_head_max) { 1130 qpair->sq_head = 0; 1131 } else { 1132 qpair->sq_head++; 1133 } 1134 rsp->sqhd = qpair->sq_head; 1135 1136 /* queue the capsule for the recv buffer */ 1137 assert(rdma_req->recv != NULL); 1138 1139 nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr); 1140 1141 rdma_req->recv = NULL; 1142 assert(rqpair->current_recv_depth > 0); 1143 rqpair->current_recv_depth--; 1144 1145 /* Build the response which consists of optional 1146 * RDMA WRITEs to transfer data, plus an RDMA SEND 1147 * containing the response. 1148 */ 1149 first = &rdma_req->rsp.wr; 1150 1151 if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && 1152 req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1153 first = &rdma_req->data.wr; 1154 *data_posted = 1; 1155 num_outstanding_data_wr = rdma_req->num_outstanding_data_wr; 1156 } 1157 nvmf_rdma_qpair_queue_send_wrs(rqpair, first); 1158 /* +1 for the rsp wr */ 1159 rqpair->current_send_depth += num_outstanding_data_wr + 1; 1160 1161 return 0; 1162 } 1163 1164 static int 1165 spdk_nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair) 1166 { 1167 struct spdk_nvmf_rdma_accept_private_data accept_data; 1168 struct rdma_conn_param ctrlr_event_data = {}; 1169 int rc; 1170 1171 accept_data.recfmt = 0; 1172 accept_data.crqsize = rqpair->max_queue_depth; 1173 1174 ctrlr_event_data.private_data = &accept_data; 1175 ctrlr_event_data.private_data_len = sizeof(accept_data); 1176 if (id->ps == RDMA_PS_TCP) { 1177 ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */ 1178 ctrlr_event_data.initiator_depth = rqpair->max_read_depth; 1179 } 1180 1181 /* Configure infinite retries for the initiator side qpair. 1182 * When using a shared receive queue on the target side, 1183 * we need to pass this value to the initiator to prevent the 1184 * initiator side NIC from completing SEND requests back to the 1185 * initiator with status rnr_retry_count_exceeded. */ 1186 if (rqpair->srq != NULL) { 1187 ctrlr_event_data.rnr_retry_count = 0x7; 1188 } 1189 1190 rc = rdma_accept(id, &ctrlr_event_data); 1191 if (rc) { 1192 SPDK_ERRLOG("Error %d on rdma_accept\n", errno); 1193 } else { 1194 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Sent back the accept\n"); 1195 } 1196 1197 return rc; 1198 } 1199 1200 static void 1201 spdk_nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error) 1202 { 1203 struct spdk_nvmf_rdma_reject_private_data rej_data; 1204 1205 rej_data.recfmt = 0; 1206 rej_data.sts = error; 1207 1208 rdma_reject(id, &rej_data, sizeof(rej_data)); 1209 } 1210 1211 static int 1212 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event, 1213 new_qpair_fn cb_fn) 1214 { 1215 struct spdk_nvmf_rdma_transport *rtransport; 1216 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 1217 struct spdk_nvmf_rdma_port *port; 1218 struct rdma_conn_param *rdma_param = NULL; 1219 const struct spdk_nvmf_rdma_request_private_data *private_data = NULL; 1220 uint16_t max_queue_depth; 1221 uint16_t max_read_depth; 1222 1223 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 1224 1225 assert(event->id != NULL); /* Impossible. Can't even reject the connection. */ 1226 assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */ 1227 1228 rdma_param = &event->param.conn; 1229 if (rdma_param->private_data == NULL || 1230 rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1231 SPDK_ERRLOG("connect request: no private data provided\n"); 1232 spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH); 1233 return -1; 1234 } 1235 1236 private_data = rdma_param->private_data; 1237 if (private_data->recfmt != 0) { 1238 SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n"); 1239 spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT); 1240 return -1; 1241 } 1242 1243 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Connect Recv on fabric intf name %s, dev_name %s\n", 1244 event->id->verbs->device->name, event->id->verbs->device->dev_name); 1245 1246 port = event->listen_id->context; 1247 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Listen Id was %p with verbs %p. ListenAddr: %p\n", 1248 event->listen_id, event->listen_id->verbs, port); 1249 1250 /* Figure out the supported queue depth. This is a multi-step process 1251 * that takes into account hardware maximums, host provided values, 1252 * and our target's internal memory limits */ 1253 1254 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Calculating Queue Depth\n"); 1255 1256 /* Start with the maximum queue depth allowed by the target */ 1257 max_queue_depth = rtransport->transport.opts.max_queue_depth; 1258 max_read_depth = rtransport->transport.opts.max_queue_depth; 1259 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Target Max Queue Depth: %d\n", 1260 rtransport->transport.opts.max_queue_depth); 1261 1262 /* Next check the local NIC's hardware limitations */ 1263 SPDK_DEBUGLOG(SPDK_LOG_RDMA, 1264 "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n", 1265 port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom); 1266 max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr); 1267 max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom); 1268 1269 /* Next check the remote NIC's hardware limitations */ 1270 SPDK_DEBUGLOG(SPDK_LOG_RDMA, 1271 "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n", 1272 rdma_param->initiator_depth, rdma_param->responder_resources); 1273 if (rdma_param->initiator_depth > 0) { 1274 max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth); 1275 } 1276 1277 /* Finally check for the host software requested values, which are 1278 * optional. */ 1279 if (rdma_param->private_data != NULL && 1280 rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1281 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Receive Queue Size: %d\n", private_data->hrqsize); 1282 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Send Queue Size: %d\n", private_data->hsqsize); 1283 max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize); 1284 max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1); 1285 } 1286 1287 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Final Negotiated Queue Depth: %d R/W Depth: %d\n", 1288 max_queue_depth, max_read_depth); 1289 1290 rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair)); 1291 if (rqpair == NULL) { 1292 SPDK_ERRLOG("Could not allocate new connection.\n"); 1293 spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 1294 return -1; 1295 } 1296 1297 rqpair->port = port; 1298 rqpair->max_queue_depth = max_queue_depth; 1299 rqpair->max_read_depth = max_read_depth; 1300 rqpair->cm_id = event->id; 1301 rqpair->listen_id = event->listen_id; 1302 rqpair->qpair.transport = transport; 1303 1304 event->id->context = &rqpair->qpair; 1305 1306 cb_fn(&rqpair->qpair); 1307 1308 return 0; 1309 } 1310 1311 static int 1312 spdk_nvmf_rdma_mem_notify(void *cb_ctx, struct spdk_mem_map *map, 1313 enum spdk_mem_map_notify_action action, 1314 void *vaddr, size_t size) 1315 { 1316 struct ibv_pd *pd = cb_ctx; 1317 struct ibv_mr *mr; 1318 1319 switch (action) { 1320 case SPDK_MEM_MAP_NOTIFY_REGISTER: 1321 if (!g_nvmf_hooks.get_rkey) { 1322 mr = ibv_reg_mr(pd, vaddr, size, 1323 IBV_ACCESS_LOCAL_WRITE | 1324 IBV_ACCESS_REMOTE_READ | 1325 IBV_ACCESS_REMOTE_WRITE); 1326 if (mr == NULL) { 1327 SPDK_ERRLOG("ibv_reg_mr() failed\n"); 1328 return -1; 1329 } else { 1330 spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr); 1331 } 1332 } else { 1333 spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, 1334 g_nvmf_hooks.get_rkey(pd, vaddr, size)); 1335 } 1336 break; 1337 case SPDK_MEM_MAP_NOTIFY_UNREGISTER: 1338 if (!g_nvmf_hooks.get_rkey) { 1339 mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL); 1340 spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size); 1341 if (mr) { 1342 ibv_dereg_mr(mr); 1343 } 1344 } 1345 break; 1346 } 1347 1348 return 0; 1349 } 1350 1351 static int 1352 spdk_nvmf_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2) 1353 { 1354 /* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */ 1355 return addr_1 == addr_2; 1356 } 1357 1358 static void 1359 spdk_nvmf_rdma_request_free_buffers(struct spdk_nvmf_rdma_request *rdma_req, 1360 struct spdk_nvmf_transport_poll_group *group, struct spdk_nvmf_transport *transport, 1361 uint32_t num_buffers) 1362 { 1363 uint32_t i; 1364 1365 for (i = 0; i < num_buffers; i++) { 1366 if (group->buf_cache_count < group->buf_cache_size) { 1367 STAILQ_INSERT_HEAD(&group->buf_cache, 1368 (struct spdk_nvmf_transport_pg_cache_buf *)rdma_req->buffers[i], link); 1369 group->buf_cache_count++; 1370 } else { 1371 spdk_mempool_put(transport->data_buf_pool, rdma_req->buffers[i]); 1372 } 1373 rdma_req->req.iov[i].iov_base = NULL; 1374 rdma_req->buffers[i] = NULL; 1375 rdma_req->req.iov[i].iov_len = 0; 1376 1377 } 1378 rdma_req->data_from_pool = false; 1379 } 1380 1381 static int 1382 nvmf_rdma_request_get_buffers(struct spdk_nvmf_rdma_request *rdma_req, 1383 struct spdk_nvmf_transport_poll_group *group, struct spdk_nvmf_transport *transport, 1384 uint32_t num_buffers) 1385 { 1386 uint32_t i = 0; 1387 1388 while (i < num_buffers) { 1389 if (!(STAILQ_EMPTY(&group->buf_cache))) { 1390 group->buf_cache_count--; 1391 rdma_req->buffers[i] = STAILQ_FIRST(&group->buf_cache); 1392 STAILQ_REMOVE_HEAD(&group->buf_cache, link); 1393 assert(rdma_req->buffers[i] != NULL); 1394 i++; 1395 } else { 1396 if (spdk_mempool_get_bulk(transport->data_buf_pool, &rdma_req->buffers[i], num_buffers - i)) { 1397 goto err_exit; 1398 } 1399 i += num_buffers - i; 1400 } 1401 } 1402 1403 return 0; 1404 1405 err_exit: 1406 spdk_nvmf_rdma_request_free_buffers(rdma_req, group, transport, i); 1407 return -ENOMEM; 1408 } 1409 1410 typedef enum spdk_nvme_data_transfer spdk_nvme_data_transfer_t; 1411 1412 static spdk_nvme_data_transfer_t 1413 spdk_nvmf_rdma_request_get_xfer(struct spdk_nvmf_rdma_request *rdma_req) 1414 { 1415 enum spdk_nvme_data_transfer xfer; 1416 struct spdk_nvme_cmd *cmd = &rdma_req->req.cmd->nvme_cmd; 1417 struct spdk_nvme_sgl_descriptor *sgl = &cmd->dptr.sgl1; 1418 1419 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1420 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 1421 rdma_req->rsp.wr.imm_data = 0; 1422 #endif 1423 1424 /* Figure out data transfer direction */ 1425 if (cmd->opc == SPDK_NVME_OPC_FABRIC) { 1426 xfer = spdk_nvme_opc_get_data_transfer(rdma_req->req.cmd->nvmf_cmd.fctype); 1427 } else { 1428 xfer = spdk_nvme_opc_get_data_transfer(cmd->opc); 1429 1430 /* Some admin commands are special cases */ 1431 if ((rdma_req->req.qpair->qid == 0) && 1432 ((cmd->opc == SPDK_NVME_OPC_GET_FEATURES) || 1433 (cmd->opc == SPDK_NVME_OPC_SET_FEATURES))) { 1434 switch (cmd->cdw10 & 0xff) { 1435 case SPDK_NVME_FEAT_LBA_RANGE_TYPE: 1436 case SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION: 1437 case SPDK_NVME_FEAT_HOST_IDENTIFIER: 1438 break; 1439 default: 1440 xfer = SPDK_NVME_DATA_NONE; 1441 } 1442 } 1443 } 1444 1445 if (xfer == SPDK_NVME_DATA_NONE) { 1446 return xfer; 1447 } 1448 1449 /* Even for commands that may transfer data, they could have specified 0 length. 1450 * We want those to show up with xfer SPDK_NVME_DATA_NONE. 1451 */ 1452 switch (sgl->generic.type) { 1453 case SPDK_NVME_SGL_TYPE_DATA_BLOCK: 1454 case SPDK_NVME_SGL_TYPE_BIT_BUCKET: 1455 case SPDK_NVME_SGL_TYPE_SEGMENT: 1456 case SPDK_NVME_SGL_TYPE_LAST_SEGMENT: 1457 case SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK: 1458 if (sgl->unkeyed.length == 0) { 1459 xfer = SPDK_NVME_DATA_NONE; 1460 } 1461 break; 1462 case SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK: 1463 if (sgl->keyed.length == 0) { 1464 xfer = SPDK_NVME_DATA_NONE; 1465 } 1466 break; 1467 } 1468 1469 return xfer; 1470 } 1471 1472 static int 1473 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport, 1474 struct spdk_nvmf_rdma_request *rdma_req, 1475 uint32_t num_sgl_descriptors) 1476 { 1477 struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES]; 1478 struct spdk_nvmf_rdma_request_data *current_data_wr; 1479 uint32_t i; 1480 1481 if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) { 1482 return -ENOMEM; 1483 } 1484 1485 current_data_wr = &rdma_req->data; 1486 1487 for (i = 0; i < num_sgl_descriptors; i++) { 1488 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1489 current_data_wr->wr.opcode = IBV_WR_RDMA_WRITE; 1490 } else if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 1491 current_data_wr->wr.opcode = IBV_WR_RDMA_READ; 1492 } else { 1493 assert(false); 1494 } 1495 work_requests[i]->wr.send_flags = IBV_SEND_SIGNALED; 1496 work_requests[i]->wr.sg_list = work_requests[i]->sgl; 1497 work_requests[i]->wr.wr_id = rdma_req->data.wr.wr_id; 1498 current_data_wr->wr.next = &work_requests[i]->wr; 1499 current_data_wr = work_requests[i]; 1500 } 1501 1502 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1503 current_data_wr->wr.opcode = IBV_WR_RDMA_WRITE; 1504 current_data_wr->wr.next = &rdma_req->rsp.wr; 1505 } else if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 1506 current_data_wr->wr.opcode = IBV_WR_RDMA_READ; 1507 current_data_wr->wr.next = NULL; 1508 } 1509 return 0; 1510 } 1511 1512 static int 1513 nvmf_rdma_fill_buffers(struct spdk_nvmf_rdma_transport *rtransport, 1514 struct spdk_nvmf_rdma_poll_group *rgroup, 1515 struct spdk_nvmf_rdma_device *device, 1516 struct spdk_nvmf_rdma_request *rdma_req, 1517 struct ibv_send_wr *wr, 1518 uint32_t length) 1519 { 1520 uint64_t translation_len; 1521 uint32_t remaining_length = length; 1522 uint32_t iovcnt; 1523 uint32_t i = 0; 1524 1525 1526 while (remaining_length) { 1527 iovcnt = rdma_req->req.iovcnt; 1528 rdma_req->req.iov[iovcnt].iov_base = (void *)((uintptr_t)(rdma_req->buffers[iovcnt] + 1529 NVMF_DATA_BUFFER_MASK) & 1530 ~NVMF_DATA_BUFFER_MASK); 1531 rdma_req->req.iov[iovcnt].iov_len = spdk_min(remaining_length, 1532 rtransport->transport.opts.io_unit_size); 1533 rdma_req->req.iovcnt++; 1534 wr->sg_list[i].addr = (uintptr_t)(rdma_req->req.iov[iovcnt].iov_base); 1535 wr->sg_list[i].length = rdma_req->req.iov[iovcnt].iov_len; 1536 translation_len = rdma_req->req.iov[iovcnt].iov_len; 1537 1538 if (!g_nvmf_hooks.get_rkey) { 1539 wr->sg_list[i].lkey = ((struct ibv_mr *)spdk_mem_map_translate(device->map, 1540 (uint64_t)rdma_req->buffers[iovcnt], &translation_len))->lkey; 1541 } else { 1542 wr->sg_list[i].lkey = spdk_mem_map_translate(device->map, 1543 (uint64_t)rdma_req->buffers[iovcnt], &translation_len); 1544 } 1545 1546 remaining_length -= rdma_req->req.iov[iovcnt].iov_len; 1547 1548 if (translation_len < rdma_req->req.iov[iovcnt].iov_len) { 1549 SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions\n"); 1550 return -EINVAL; 1551 } 1552 i++; 1553 } 1554 wr->num_sge = i; 1555 1556 return 0; 1557 } 1558 1559 static int 1560 spdk_nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport, 1561 struct spdk_nvmf_rdma_device *device, 1562 struct spdk_nvmf_rdma_request *rdma_req) 1563 { 1564 struct spdk_nvmf_rdma_qpair *rqpair; 1565 struct spdk_nvmf_rdma_poll_group *rgroup; 1566 uint32_t num_buffers; 1567 uint32_t i = 0; 1568 int rc = 0; 1569 1570 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1571 rgroup = rqpair->poller->group; 1572 rdma_req->req.iovcnt = 0; 1573 1574 num_buffers = rdma_req->req.length / rtransport->transport.opts.io_unit_size; 1575 if (rdma_req->req.length % rtransport->transport.opts.io_unit_size) { 1576 num_buffers++; 1577 } 1578 1579 if (nvmf_rdma_request_get_buffers(rdma_req, &rgroup->group, &rtransport->transport, num_buffers)) { 1580 return -ENOMEM; 1581 } 1582 1583 rdma_req->req.iovcnt = 0; 1584 1585 rc = nvmf_rdma_fill_buffers(rtransport, rgroup, device, rdma_req, &rdma_req->data.wr, 1586 rdma_req->req.length); 1587 if (rc != 0) { 1588 goto err_exit; 1589 } 1590 1591 assert(rdma_req->req.iovcnt <= rqpair->max_send_sge); 1592 1593 rdma_req->data_from_pool = true; 1594 1595 return rc; 1596 1597 err_exit: 1598 spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport, num_buffers); 1599 while (i) { 1600 i--; 1601 rdma_req->data.wr.sg_list[i].addr = 0; 1602 rdma_req->data.wr.sg_list[i].length = 0; 1603 rdma_req->data.wr.sg_list[i].lkey = 0; 1604 } 1605 rdma_req->req.iovcnt = 0; 1606 return rc; 1607 } 1608 1609 static int 1610 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1611 struct spdk_nvmf_rdma_device *device, 1612 struct spdk_nvmf_rdma_request *rdma_req) 1613 { 1614 struct spdk_nvmf_rdma_qpair *rqpair; 1615 struct spdk_nvmf_rdma_poll_group *rgroup; 1616 struct ibv_send_wr *current_wr; 1617 struct spdk_nvmf_request *req = &rdma_req->req; 1618 struct spdk_nvme_sgl_descriptor *inline_segment, *desc; 1619 uint32_t num_sgl_descriptors; 1620 uint32_t num_buffers = 0; 1621 uint32_t i; 1622 int rc; 1623 1624 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1625 rgroup = rqpair->poller->group; 1626 1627 inline_segment = &req->cmd->nvme_cmd.dptr.sgl1; 1628 assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT); 1629 assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET); 1630 1631 num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor); 1632 assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES); 1633 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1634 1635 for (i = 0; i < num_sgl_descriptors; i++) { 1636 num_buffers += desc->keyed.length / rtransport->transport.opts.io_unit_size; 1637 if (desc->keyed.length % rtransport->transport.opts.io_unit_size) { 1638 num_buffers++; 1639 } 1640 desc++; 1641 } 1642 /* If the number of buffers is too large, then we know the I/O is larger than allowed. Fail it. */ 1643 if (num_buffers > NVMF_REQ_MAX_BUFFERS) { 1644 return -EINVAL; 1645 } 1646 if (nvmf_rdma_request_get_buffers(rdma_req, &rgroup->group, &rtransport->transport, 1647 num_buffers) != 0) { 1648 return -ENOMEM; 1649 } 1650 1651 if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) { 1652 spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport, num_buffers); 1653 return -ENOMEM; 1654 } 1655 1656 /* The first WR must always be the embedded data WR. This is how we unwind them later. */ 1657 current_wr = &rdma_req->data.wr; 1658 1659 req->iovcnt = 0; 1660 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1661 for (i = 0; i < num_sgl_descriptors; i++) { 1662 /* The descriptors must be keyed data block descriptors with an address, not an offset. */ 1663 if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK || 1664 desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) { 1665 rc = -EINVAL; 1666 goto err_exit; 1667 } 1668 1669 current_wr->num_sge = 0; 1670 req->length += desc->keyed.length; 1671 1672 rc = nvmf_rdma_fill_buffers(rtransport, rgroup, device, rdma_req, current_wr, 1673 desc->keyed.length); 1674 if (rc != 0) { 1675 rc = -ENOMEM; 1676 goto err_exit; 1677 } 1678 1679 current_wr->wr.rdma.rkey = desc->keyed.key; 1680 current_wr->wr.rdma.remote_addr = desc->address; 1681 current_wr = current_wr->next; 1682 desc++; 1683 } 1684 1685 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1686 /* Go back to the last descriptor in the list. */ 1687 desc--; 1688 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1689 if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1690 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1691 rdma_req->rsp.wr.imm_data = desc->keyed.key; 1692 } 1693 } 1694 #endif 1695 1696 rdma_req->num_outstanding_data_wr = num_sgl_descriptors; 1697 rdma_req->data_from_pool = true; 1698 1699 return 0; 1700 1701 err_exit: 1702 spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport, num_buffers); 1703 nvmf_rdma_request_free_data(rdma_req, rtransport); 1704 return rc; 1705 } 1706 1707 static int 1708 spdk_nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1709 struct spdk_nvmf_rdma_device *device, 1710 struct spdk_nvmf_rdma_request *rdma_req) 1711 { 1712 struct spdk_nvme_cmd *cmd; 1713 struct spdk_nvme_cpl *rsp; 1714 struct spdk_nvme_sgl_descriptor *sgl; 1715 int rc; 1716 1717 cmd = &rdma_req->req.cmd->nvme_cmd; 1718 rsp = &rdma_req->req.rsp->nvme_cpl; 1719 sgl = &cmd->dptr.sgl1; 1720 1721 if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK && 1722 (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS || 1723 sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) { 1724 if (sgl->keyed.length > rtransport->transport.opts.max_io_size) { 1725 SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n", 1726 sgl->keyed.length, rtransport->transport.opts.max_io_size); 1727 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1728 return -1; 1729 } 1730 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1731 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1732 if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1733 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1734 rdma_req->rsp.wr.imm_data = sgl->keyed.key; 1735 } 1736 } 1737 #endif 1738 1739 /* fill request length and populate iovs */ 1740 rdma_req->req.length = sgl->keyed.length; 1741 1742 if (spdk_nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req) < 0) { 1743 /* No available buffers. Queue this request up. */ 1744 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req); 1745 return 0; 1746 } 1747 1748 /* backward compatible */ 1749 rdma_req->req.data = rdma_req->req.iov[0].iov_base; 1750 1751 /* rdma wr specifics */ 1752 rdma_req->data.wr.num_sge = rdma_req->req.iovcnt; 1753 rdma_req->data.wr.wr.rdma.rkey = sgl->keyed.key; 1754 rdma_req->data.wr.wr.rdma.remote_addr = sgl->address; 1755 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1756 rdma_req->data.wr.opcode = IBV_WR_RDMA_WRITE; 1757 rdma_req->data.wr.next = &rdma_req->rsp.wr; 1758 } else if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 1759 rdma_req->data.wr.opcode = IBV_WR_RDMA_READ; 1760 rdma_req->data.wr.next = NULL; 1761 } 1762 1763 /* set the number of outstanding data WRs for this request. */ 1764 rdma_req->num_outstanding_data_wr = 1; 1765 1766 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req, 1767 rdma_req->req.iovcnt); 1768 1769 return 0; 1770 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK && 1771 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1772 uint64_t offset = sgl->address; 1773 uint32_t max_len = rtransport->transport.opts.in_capsule_data_size; 1774 1775 SPDK_DEBUGLOG(SPDK_LOG_NVMF, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n", 1776 offset, sgl->unkeyed.length); 1777 1778 if (offset > max_len) { 1779 SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n", 1780 offset, max_len); 1781 rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET; 1782 return -1; 1783 } 1784 max_len -= (uint32_t)offset; 1785 1786 if (sgl->unkeyed.length > max_len) { 1787 SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n", 1788 sgl->unkeyed.length, max_len); 1789 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1790 return -1; 1791 } 1792 1793 rdma_req->num_outstanding_data_wr = 0; 1794 rdma_req->req.data = rdma_req->recv->buf + offset; 1795 rdma_req->data_from_pool = false; 1796 rdma_req->req.length = sgl->unkeyed.length; 1797 1798 rdma_req->req.iov[0].iov_base = rdma_req->req.data; 1799 rdma_req->req.iov[0].iov_len = rdma_req->req.length; 1800 rdma_req->req.iovcnt = 1; 1801 1802 return 0; 1803 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT && 1804 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1805 1806 rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req); 1807 if (rc == -ENOMEM) { 1808 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req); 1809 return 0; 1810 } else if (rc == -EINVAL) { 1811 SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n"); 1812 return -1; 1813 } 1814 1815 /* backward compatible */ 1816 rdma_req->req.data = rdma_req->req.iov[0].iov_base; 1817 1818 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req, 1819 rdma_req->req.iovcnt); 1820 1821 return 0; 1822 } 1823 1824 SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n", 1825 sgl->generic.type, sgl->generic.subtype); 1826 rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID; 1827 return -1; 1828 } 1829 1830 static void 1831 nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req, 1832 struct spdk_nvmf_rdma_transport *rtransport) 1833 { 1834 struct spdk_nvmf_rdma_qpair *rqpair; 1835 struct spdk_nvmf_rdma_poll_group *rgroup; 1836 1837 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1838 if (rdma_req->data_from_pool) { 1839 rgroup = rqpair->poller->group; 1840 1841 spdk_nvmf_rdma_request_free_buffers(rdma_req, &rgroup->group, &rtransport->transport, 1842 rdma_req->req.iovcnt); 1843 } 1844 nvmf_rdma_request_free_data(rdma_req, rtransport); 1845 rdma_req->req.length = 0; 1846 rdma_req->req.iovcnt = 0; 1847 rdma_req->req.data = NULL; 1848 rdma_req->rsp.wr.next = NULL; 1849 rdma_req->data.wr.next = NULL; 1850 rqpair->qd--; 1851 1852 STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link); 1853 rdma_req->state = RDMA_REQUEST_STATE_FREE; 1854 } 1855 1856 static bool 1857 spdk_nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 1858 struct spdk_nvmf_rdma_request *rdma_req) 1859 { 1860 struct spdk_nvmf_rdma_qpair *rqpair; 1861 struct spdk_nvmf_rdma_device *device; 1862 struct spdk_nvmf_rdma_poll_group *rgroup; 1863 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 1864 int rc; 1865 struct spdk_nvmf_rdma_recv *rdma_recv; 1866 enum spdk_nvmf_rdma_request_state prev_state; 1867 bool progress = false; 1868 int data_posted; 1869 1870 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1871 device = rqpair->port->device; 1872 rgroup = rqpair->poller->group; 1873 1874 assert(rdma_req->state != RDMA_REQUEST_STATE_FREE); 1875 1876 /* If the queue pair is in an error state, force the request to the completed state 1877 * to release resources. */ 1878 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 1879 if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) { 1880 STAILQ_REMOVE(&rgroup->pending_data_buf_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 1881 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) { 1882 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 1883 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) { 1884 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 1885 } 1886 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 1887 } 1888 1889 /* The loop here is to allow for several back-to-back state changes. */ 1890 do { 1891 prev_state = rdma_req->state; 1892 1893 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p entering state %d\n", rdma_req, prev_state); 1894 1895 switch (rdma_req->state) { 1896 case RDMA_REQUEST_STATE_FREE: 1897 /* Some external code must kick a request into RDMA_REQUEST_STATE_NEW 1898 * to escape this state. */ 1899 break; 1900 case RDMA_REQUEST_STATE_NEW: 1901 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0, 1902 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 1903 rdma_recv = rdma_req->recv; 1904 1905 /* The first element of the SGL is the NVMe command */ 1906 rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr; 1907 memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp)); 1908 1909 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 1910 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 1911 break; 1912 } 1913 1914 /* The next state transition depends on the data transfer needs of this request. */ 1915 rdma_req->req.xfer = spdk_nvmf_rdma_request_get_xfer(rdma_req); 1916 1917 /* If no data to transfer, ready to execute. */ 1918 if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) { 1919 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 1920 break; 1921 } 1922 1923 rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER; 1924 STAILQ_INSERT_TAIL(&rgroup->pending_data_buf_queue, rdma_req, state_link); 1925 break; 1926 case RDMA_REQUEST_STATE_NEED_BUFFER: 1927 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0, 1928 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 1929 1930 assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE); 1931 1932 if (rdma_req != STAILQ_FIRST(&rgroup->pending_data_buf_queue)) { 1933 /* This request needs to wait in line to obtain a buffer */ 1934 break; 1935 } 1936 1937 /* Try to get a data buffer */ 1938 rc = spdk_nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req); 1939 if (rc < 0) { 1940 STAILQ_REMOVE_HEAD(&rgroup->pending_data_buf_queue, state_link); 1941 rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 1942 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 1943 break; 1944 } 1945 1946 if (!rdma_req->req.data) { 1947 /* No buffers available. */ 1948 break; 1949 } 1950 1951 STAILQ_REMOVE_HEAD(&rgroup->pending_data_buf_queue, state_link); 1952 1953 /* If data is transferring from host to controller and the data didn't 1954 * arrive using in capsule data, we need to do a transfer from the host. 1955 */ 1956 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && rdma_req->data_from_pool) { 1957 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link); 1958 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING; 1959 break; 1960 } 1961 1962 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 1963 break; 1964 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 1965 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0, 1966 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 1967 1968 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) { 1969 /* This request needs to wait in line to perform RDMA */ 1970 break; 1971 } 1972 if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth 1973 || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) { 1974 /* We can only have so many WRs outstanding. we have to wait until some finish. */ 1975 break; 1976 } 1977 1978 /* We have already verified that this request is the head of the queue. */ 1979 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link); 1980 1981 rc = request_transfer_in(&rdma_req->req); 1982 if (!rc) { 1983 rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER; 1984 } else { 1985 rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 1986 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 1987 } 1988 break; 1989 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 1990 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0, 1991 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 1992 /* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE 1993 * to escape this state. */ 1994 break; 1995 case RDMA_REQUEST_STATE_READY_TO_EXECUTE: 1996 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0, 1997 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 1998 rdma_req->state = RDMA_REQUEST_STATE_EXECUTING; 1999 spdk_nvmf_request_exec(&rdma_req->req); 2000 break; 2001 case RDMA_REQUEST_STATE_EXECUTING: 2002 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0, 2003 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2004 /* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED 2005 * to escape this state. */ 2006 break; 2007 case RDMA_REQUEST_STATE_EXECUTED: 2008 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0, 2009 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2010 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2011 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link); 2012 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING; 2013 } else { 2014 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2015 } 2016 break; 2017 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 2018 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0, 2019 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2020 2021 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) { 2022 /* This request needs to wait in line to perform RDMA */ 2023 break; 2024 } 2025 if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) > 2026 rqpair->max_send_depth) { 2027 /* We can only have so many WRs outstanding. we have to wait until some finish. 2028 * +1 since each request has an additional wr in the resp. */ 2029 break; 2030 } 2031 2032 /* We have already verified that this request is the head of the queue. */ 2033 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link); 2034 2035 /* The data transfer will be kicked off from 2036 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state. 2037 */ 2038 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2039 break; 2040 case RDMA_REQUEST_STATE_READY_TO_COMPLETE: 2041 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0, 2042 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2043 rc = request_transfer_out(&rdma_req->req, &data_posted); 2044 assert(rc == 0); /* No good way to handle this currently */ 2045 if (rc) { 2046 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2047 } else { 2048 rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST : 2049 RDMA_REQUEST_STATE_COMPLETING; 2050 } 2051 break; 2052 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 2053 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0, 2054 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2055 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2056 * to escape this state. */ 2057 break; 2058 case RDMA_REQUEST_STATE_COMPLETING: 2059 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0, 2060 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2061 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2062 * to escape this state. */ 2063 break; 2064 case RDMA_REQUEST_STATE_COMPLETED: 2065 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0, 2066 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2067 2068 nvmf_rdma_request_free(rdma_req, rtransport); 2069 break; 2070 case RDMA_REQUEST_NUM_STATES: 2071 default: 2072 assert(0); 2073 break; 2074 } 2075 2076 if (rdma_req->state != prev_state) { 2077 progress = true; 2078 } 2079 } while (rdma_req->state != prev_state); 2080 2081 return progress; 2082 } 2083 2084 /* Public API callbacks begin here */ 2085 2086 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128 2087 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128 2088 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096 2089 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128 2090 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096 2091 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072 2092 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES) 2093 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095 2094 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32 2095 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false; 2096 2097 static void 2098 spdk_nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts) 2099 { 2100 opts->max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH; 2101 opts->max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR; 2102 opts->in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE; 2103 opts->max_io_size = SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE; 2104 opts->io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE; 2105 opts->max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH; 2106 opts->num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS; 2107 opts->buf_cache_size = SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE; 2108 opts->max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH; 2109 opts->no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ 2110 } 2111 2112 const struct spdk_mem_map_ops g_nvmf_rdma_map_ops = { 2113 .notify_cb = spdk_nvmf_rdma_mem_notify, 2114 .are_contiguous = spdk_nvmf_rdma_check_contiguous_entries 2115 }; 2116 2117 static int spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport); 2118 2119 static struct spdk_nvmf_transport * 2120 spdk_nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts) 2121 { 2122 int rc; 2123 struct spdk_nvmf_rdma_transport *rtransport; 2124 struct spdk_nvmf_rdma_device *device, *tmp; 2125 struct ibv_pd *pd; 2126 struct ibv_context **contexts; 2127 uint32_t i; 2128 int flag; 2129 uint32_t sge_count; 2130 uint32_t min_shared_buffers; 2131 int max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES; 2132 2133 rtransport = calloc(1, sizeof(*rtransport)); 2134 if (!rtransport) { 2135 return NULL; 2136 } 2137 2138 if (pthread_mutex_init(&rtransport->lock, NULL)) { 2139 SPDK_ERRLOG("pthread_mutex_init() failed\n"); 2140 free(rtransport); 2141 return NULL; 2142 } 2143 2144 TAILQ_INIT(&rtransport->devices); 2145 TAILQ_INIT(&rtransport->ports); 2146 2147 rtransport->transport.ops = &spdk_nvmf_transport_rdma; 2148 2149 SPDK_INFOLOG(SPDK_LOG_RDMA, "*** RDMA Transport Init ***\n" 2150 " Transport opts: max_ioq_depth=%d, max_io_size=%d,\n" 2151 " max_qpairs_per_ctrlr=%d, io_unit_size=%d,\n" 2152 " in_capsule_data_size=%d, max_aq_depth=%d,\n" 2153 " num_shared_buffers=%d, max_srq_depth=%d, no_srq=%d\n", 2154 opts->max_queue_depth, 2155 opts->max_io_size, 2156 opts->max_qpairs_per_ctrlr, 2157 opts->io_unit_size, 2158 opts->in_capsule_data_size, 2159 opts->max_aq_depth, 2160 opts->num_shared_buffers, 2161 opts->max_srq_depth, 2162 opts->no_srq); 2163 2164 /* I/O unit size cannot be larger than max I/O size */ 2165 if (opts->io_unit_size > opts->max_io_size) { 2166 opts->io_unit_size = opts->max_io_size; 2167 } 2168 2169 if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) { 2170 SPDK_ERRLOG("The number of shared data buffers (%d) is less than" 2171 "the minimum number required to guarantee that forward progress can be made (%d)\n", 2172 opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2)); 2173 spdk_nvmf_rdma_destroy(&rtransport->transport); 2174 return NULL; 2175 } 2176 2177 min_shared_buffers = spdk_thread_get_count() * opts->buf_cache_size; 2178 if (min_shared_buffers > opts->num_shared_buffers) { 2179 SPDK_ERRLOG("There are not enough buffers to satisfy" 2180 "per-poll group caches for each thread. (%" PRIu32 ")" 2181 "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers); 2182 SPDK_ERRLOG("Please specify a larger number of shared buffers\n"); 2183 spdk_nvmf_rdma_destroy(&rtransport->transport); 2184 return NULL; 2185 } 2186 2187 sge_count = opts->max_io_size / opts->io_unit_size; 2188 if (sge_count > NVMF_DEFAULT_TX_SGE) { 2189 SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size); 2190 spdk_nvmf_rdma_destroy(&rtransport->transport); 2191 return NULL; 2192 } 2193 2194 rtransport->event_channel = rdma_create_event_channel(); 2195 if (rtransport->event_channel == NULL) { 2196 SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno)); 2197 spdk_nvmf_rdma_destroy(&rtransport->transport); 2198 return NULL; 2199 } 2200 2201 flag = fcntl(rtransport->event_channel->fd, F_GETFL); 2202 if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { 2203 SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n", 2204 rtransport->event_channel->fd, spdk_strerror(errno)); 2205 spdk_nvmf_rdma_destroy(&rtransport->transport); 2206 return NULL; 2207 } 2208 2209 rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data", 2210 opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES, 2211 sizeof(struct spdk_nvmf_rdma_request_data), 2212 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 2213 SPDK_ENV_SOCKET_ID_ANY); 2214 if (!rtransport->data_wr_pool) { 2215 SPDK_ERRLOG("Unable to allocate work request pool for poll group\n"); 2216 spdk_nvmf_rdma_destroy(&rtransport->transport); 2217 return NULL; 2218 } 2219 2220 contexts = rdma_get_devices(NULL); 2221 if (contexts == NULL) { 2222 SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); 2223 spdk_nvmf_rdma_destroy(&rtransport->transport); 2224 return NULL; 2225 } 2226 2227 i = 0; 2228 rc = 0; 2229 while (contexts[i] != NULL) { 2230 device = calloc(1, sizeof(*device)); 2231 if (!device) { 2232 SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n"); 2233 rc = -ENOMEM; 2234 break; 2235 } 2236 device->context = contexts[i]; 2237 rc = ibv_query_device(device->context, &device->attr); 2238 if (rc < 0) { 2239 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 2240 free(device); 2241 break; 2242 2243 } 2244 2245 max_device_sge = spdk_min(max_device_sge, device->attr.max_sge); 2246 2247 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2248 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) { 2249 SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,"); 2250 SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id); 2251 } 2252 2253 /** 2254 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE. 2255 * The Soft-RoCE RXE driver does not currently support send with invalidate, 2256 * but incorrectly reports that it does. There are changes making their way 2257 * through the kernel now that will enable this feature. When they are merged, 2258 * we can conditionally enable this feature. 2259 * 2260 * TODO: enable this for versions of the kernel rxe driver that support it. 2261 */ 2262 if (device->attr.vendor_id == 0) { 2263 device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS); 2264 } 2265 #endif 2266 2267 /* set up device context async ev fd as NON_BLOCKING */ 2268 flag = fcntl(device->context->async_fd, F_GETFL); 2269 rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK); 2270 if (rc < 0) { 2271 SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n"); 2272 free(device); 2273 break; 2274 } 2275 2276 TAILQ_INSERT_TAIL(&rtransport->devices, device, link); 2277 i++; 2278 2279 pd = NULL; 2280 if (g_nvmf_hooks.get_ibv_pd) { 2281 pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context); 2282 } 2283 2284 if (!g_nvmf_hooks.get_ibv_pd) { 2285 device->pd = ibv_alloc_pd(device->context); 2286 if (!device->pd) { 2287 SPDK_ERRLOG("Unable to allocate protection domain.\n"); 2288 spdk_nvmf_rdma_destroy(&rtransport->transport); 2289 return NULL; 2290 } 2291 } else { 2292 device->pd = pd; 2293 } 2294 2295 assert(device->map == NULL); 2296 2297 device->map = spdk_mem_map_alloc(0, &g_nvmf_rdma_map_ops, device->pd); 2298 if (!device->map) { 2299 SPDK_ERRLOG("Unable to allocate memory map for listen address\n"); 2300 spdk_nvmf_rdma_destroy(&rtransport->transport); 2301 return NULL; 2302 } 2303 2304 assert(device->map != NULL); 2305 assert(device->pd != NULL); 2306 } 2307 rdma_free_devices(contexts); 2308 2309 if (opts->io_unit_size * max_device_sge < opts->max_io_size) { 2310 /* divide and round up. */ 2311 opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge; 2312 2313 /* round up to the nearest 4k. */ 2314 opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK; 2315 2316 opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE); 2317 SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n", 2318 opts->io_unit_size); 2319 } 2320 2321 if (rc < 0) { 2322 spdk_nvmf_rdma_destroy(&rtransport->transport); 2323 return NULL; 2324 } 2325 2326 /* Set up poll descriptor array to monitor events from RDMA and IB 2327 * in a single poll syscall 2328 */ 2329 rtransport->npoll_fds = i + 1; 2330 i = 0; 2331 rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd)); 2332 if (rtransport->poll_fds == NULL) { 2333 SPDK_ERRLOG("poll_fds allocation failed\n"); 2334 spdk_nvmf_rdma_destroy(&rtransport->transport); 2335 return NULL; 2336 } 2337 2338 rtransport->poll_fds[i].fd = rtransport->event_channel->fd; 2339 rtransport->poll_fds[i++].events = POLLIN; 2340 2341 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 2342 rtransport->poll_fds[i].fd = device->context->async_fd; 2343 rtransport->poll_fds[i++].events = POLLIN; 2344 } 2345 2346 return &rtransport->transport; 2347 } 2348 2349 static int 2350 spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport) 2351 { 2352 struct spdk_nvmf_rdma_transport *rtransport; 2353 struct spdk_nvmf_rdma_port *port, *port_tmp; 2354 struct spdk_nvmf_rdma_device *device, *device_tmp; 2355 2356 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2357 2358 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) { 2359 TAILQ_REMOVE(&rtransport->ports, port, link); 2360 rdma_destroy_id(port->id); 2361 free(port); 2362 } 2363 2364 if (rtransport->poll_fds != NULL) { 2365 free(rtransport->poll_fds); 2366 } 2367 2368 if (rtransport->event_channel != NULL) { 2369 rdma_destroy_event_channel(rtransport->event_channel); 2370 } 2371 2372 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) { 2373 TAILQ_REMOVE(&rtransport->devices, device, link); 2374 if (device->map) { 2375 spdk_mem_map_free(&device->map); 2376 } 2377 if (device->pd) { 2378 if (!g_nvmf_hooks.get_ibv_pd) { 2379 ibv_dealloc_pd(device->pd); 2380 } 2381 } 2382 free(device); 2383 } 2384 2385 if (rtransport->data_wr_pool != NULL) { 2386 if (spdk_mempool_count(rtransport->data_wr_pool) != 2387 (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) { 2388 SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n", 2389 spdk_mempool_count(rtransport->data_wr_pool), 2390 transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES); 2391 } 2392 } 2393 2394 spdk_mempool_free(rtransport->data_wr_pool); 2395 pthread_mutex_destroy(&rtransport->lock); 2396 free(rtransport); 2397 2398 return 0; 2399 } 2400 2401 static int 2402 spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 2403 struct spdk_nvme_transport_id *trid, 2404 bool peer); 2405 2406 static int 2407 spdk_nvmf_rdma_listen(struct spdk_nvmf_transport *transport, 2408 const struct spdk_nvme_transport_id *trid) 2409 { 2410 struct spdk_nvmf_rdma_transport *rtransport; 2411 struct spdk_nvmf_rdma_device *device; 2412 struct spdk_nvmf_rdma_port *port_tmp, *port; 2413 struct addrinfo *res; 2414 struct addrinfo hints; 2415 int family; 2416 int rc; 2417 2418 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2419 2420 port = calloc(1, sizeof(*port)); 2421 if (!port) { 2422 return -ENOMEM; 2423 } 2424 2425 /* Selectively copy the trid. Things like NQN don't matter here - that 2426 * mapping is enforced elsewhere. 2427 */ 2428 port->trid.trtype = SPDK_NVME_TRANSPORT_RDMA; 2429 port->trid.adrfam = trid->adrfam; 2430 snprintf(port->trid.traddr, sizeof(port->trid.traddr), "%s", trid->traddr); 2431 snprintf(port->trid.trsvcid, sizeof(port->trid.trsvcid), "%s", trid->trsvcid); 2432 2433 pthread_mutex_lock(&rtransport->lock); 2434 assert(rtransport->event_channel != NULL); 2435 TAILQ_FOREACH(port_tmp, &rtransport->ports, link) { 2436 if (spdk_nvme_transport_id_compare(&port_tmp->trid, &port->trid) == 0) { 2437 port_tmp->ref++; 2438 free(port); 2439 /* Already listening at this address */ 2440 pthread_mutex_unlock(&rtransport->lock); 2441 return 0; 2442 } 2443 } 2444 2445 rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP); 2446 if (rc < 0) { 2447 SPDK_ERRLOG("rdma_create_id() failed\n"); 2448 free(port); 2449 pthread_mutex_unlock(&rtransport->lock); 2450 return rc; 2451 } 2452 2453 switch (port->trid.adrfam) { 2454 case SPDK_NVMF_ADRFAM_IPV4: 2455 family = AF_INET; 2456 break; 2457 case SPDK_NVMF_ADRFAM_IPV6: 2458 family = AF_INET6; 2459 break; 2460 default: 2461 SPDK_ERRLOG("Unhandled ADRFAM %d\n", port->trid.adrfam); 2462 free(port); 2463 pthread_mutex_unlock(&rtransport->lock); 2464 return -EINVAL; 2465 } 2466 2467 memset(&hints, 0, sizeof(hints)); 2468 hints.ai_family = family; 2469 hints.ai_flags = AI_NUMERICSERV; 2470 hints.ai_socktype = SOCK_STREAM; 2471 hints.ai_protocol = 0; 2472 2473 rc = getaddrinfo(port->trid.traddr, port->trid.trsvcid, &hints, &res); 2474 if (rc) { 2475 SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc); 2476 free(port); 2477 pthread_mutex_unlock(&rtransport->lock); 2478 return -EINVAL; 2479 } 2480 2481 rc = rdma_bind_addr(port->id, res->ai_addr); 2482 freeaddrinfo(res); 2483 2484 if (rc < 0) { 2485 SPDK_ERRLOG("rdma_bind_addr() failed\n"); 2486 rdma_destroy_id(port->id); 2487 free(port); 2488 pthread_mutex_unlock(&rtransport->lock); 2489 return rc; 2490 } 2491 2492 if (!port->id->verbs) { 2493 SPDK_ERRLOG("ibv_context is null\n"); 2494 rdma_destroy_id(port->id); 2495 free(port); 2496 pthread_mutex_unlock(&rtransport->lock); 2497 return -1; 2498 } 2499 2500 rc = rdma_listen(port->id, 10); /* 10 = backlog */ 2501 if (rc < 0) { 2502 SPDK_ERRLOG("rdma_listen() failed\n"); 2503 rdma_destroy_id(port->id); 2504 free(port); 2505 pthread_mutex_unlock(&rtransport->lock); 2506 return rc; 2507 } 2508 2509 TAILQ_FOREACH(device, &rtransport->devices, link) { 2510 if (device->context == port->id->verbs) { 2511 port->device = device; 2512 break; 2513 } 2514 } 2515 if (!port->device) { 2516 SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n", 2517 port->id->verbs); 2518 rdma_destroy_id(port->id); 2519 free(port); 2520 pthread_mutex_unlock(&rtransport->lock); 2521 return -EINVAL; 2522 } 2523 2524 SPDK_INFOLOG(SPDK_LOG_RDMA, "*** NVMf Target Listening on %s port %d ***\n", 2525 port->trid.traddr, ntohs(rdma_get_src_port(port->id))); 2526 2527 port->ref = 1; 2528 2529 TAILQ_INSERT_TAIL(&rtransport->ports, port, link); 2530 pthread_mutex_unlock(&rtransport->lock); 2531 2532 return 0; 2533 } 2534 2535 static int 2536 spdk_nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport, 2537 const struct spdk_nvme_transport_id *_trid) 2538 { 2539 struct spdk_nvmf_rdma_transport *rtransport; 2540 struct spdk_nvmf_rdma_port *port, *tmp; 2541 struct spdk_nvme_transport_id trid = {}; 2542 2543 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2544 2545 /* Selectively copy the trid. Things like NQN don't matter here - that 2546 * mapping is enforced elsewhere. 2547 */ 2548 trid.trtype = SPDK_NVME_TRANSPORT_RDMA; 2549 trid.adrfam = _trid->adrfam; 2550 snprintf(trid.traddr, sizeof(port->trid.traddr), "%s", _trid->traddr); 2551 snprintf(trid.trsvcid, sizeof(port->trid.trsvcid), "%s", _trid->trsvcid); 2552 2553 pthread_mutex_lock(&rtransport->lock); 2554 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) { 2555 if (spdk_nvme_transport_id_compare(&port->trid, &trid) == 0) { 2556 assert(port->ref > 0); 2557 port->ref--; 2558 if (port->ref == 0) { 2559 TAILQ_REMOVE(&rtransport->ports, port, link); 2560 rdma_destroy_id(port->id); 2561 free(port); 2562 } 2563 break; 2564 } 2565 } 2566 2567 pthread_mutex_unlock(&rtransport->lock); 2568 return 0; 2569 } 2570 2571 static void 2572 spdk_nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport, 2573 struct spdk_nvmf_rdma_qpair *rqpair, bool drain) 2574 { 2575 struct spdk_nvmf_rdma_request *rdma_req, *req_tmp; 2576 struct spdk_nvmf_rdma_resources *resources; 2577 2578 /* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */ 2579 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) { 2580 if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2581 break; 2582 } 2583 } 2584 2585 /* Then RDMA writes since reads have stronger restrictions than writes */ 2586 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) { 2587 if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2588 break; 2589 } 2590 } 2591 2592 /* The second highest priority is I/O waiting on memory buffers. */ 2593 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->poller->group->pending_data_buf_queue, state_link, 2594 req_tmp) { 2595 if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2596 break; 2597 } 2598 } 2599 2600 resources = rqpair->resources; 2601 while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) { 2602 rdma_req = STAILQ_FIRST(&resources->free_queue); 2603 STAILQ_REMOVE_HEAD(&resources->free_queue, state_link); 2604 rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue); 2605 STAILQ_REMOVE_HEAD(&resources->incoming_queue, link); 2606 2607 if (rqpair->srq != NULL) { 2608 rdma_req->req.qpair = &rdma_req->recv->qpair->qpair; 2609 rdma_req->recv->qpair->qd++; 2610 } else { 2611 rqpair->qd++; 2612 } 2613 2614 rdma_req->state = RDMA_REQUEST_STATE_NEW; 2615 if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false) { 2616 break; 2617 } 2618 } 2619 } 2620 2621 static void 2622 _nvmf_rdma_qpair_disconnect(void *ctx) 2623 { 2624 struct spdk_nvmf_qpair *qpair = ctx; 2625 2626 spdk_nvmf_qpair_disconnect(qpair, NULL, NULL); 2627 } 2628 2629 static void 2630 _nvmf_rdma_try_disconnect(void *ctx) 2631 { 2632 struct spdk_nvmf_qpair *qpair = ctx; 2633 struct spdk_nvmf_poll_group *group; 2634 2635 /* Read the group out of the qpair. This is normally set and accessed only from 2636 * the thread that created the group. Here, we're not on that thread necessarily. 2637 * The data member qpair->group begins it's life as NULL and then is assigned to 2638 * a pointer and never changes. So fortunately reading this and checking for 2639 * non-NULL is thread safe in the x86_64 memory model. */ 2640 group = qpair->group; 2641 2642 if (group == NULL) { 2643 /* The qpair hasn't been assigned to a group yet, so we can't 2644 * process a disconnect. Send a message to ourself and try again. */ 2645 spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_try_disconnect, qpair); 2646 return; 2647 } 2648 2649 spdk_thread_send_msg(group->thread, _nvmf_rdma_qpair_disconnect, qpair); 2650 } 2651 2652 static inline void 2653 spdk_nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair) 2654 { 2655 if (__sync_bool_compare_and_swap(&rqpair->disconnect_started, false, true)) { 2656 _nvmf_rdma_try_disconnect(&rqpair->qpair); 2657 } 2658 } 2659 2660 static void nvmf_rdma_destroy_drained_qpair(void *ctx) 2661 { 2662 struct spdk_nvmf_rdma_qpair *rqpair = ctx; 2663 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 2664 struct spdk_nvmf_rdma_transport, transport); 2665 2666 /* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */ 2667 if (rqpair->current_send_depth != 0) { 2668 return; 2669 } 2670 2671 if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) { 2672 return; 2673 } 2674 2675 if (rqpair->srq != NULL && rqpair->last_wqe_reached == false) { 2676 return; 2677 } 2678 2679 spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); 2680 spdk_nvmf_rdma_qpair_destroy(rqpair); 2681 } 2682 2683 2684 static int 2685 nvmf_rdma_disconnect(struct rdma_cm_event *evt) 2686 { 2687 struct spdk_nvmf_qpair *qpair; 2688 struct spdk_nvmf_rdma_qpair *rqpair; 2689 2690 if (evt->id == NULL) { 2691 SPDK_ERRLOG("disconnect request: missing cm_id\n"); 2692 return -1; 2693 } 2694 2695 qpair = evt->id->context; 2696 if (qpair == NULL) { 2697 SPDK_ERRLOG("disconnect request: no active connection\n"); 2698 return -1; 2699 } 2700 2701 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 2702 2703 spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair->cm_id, 0); 2704 2705 spdk_nvmf_rdma_update_ibv_state(rqpair); 2706 2707 spdk_nvmf_rdma_start_disconnect(rqpair); 2708 2709 return 0; 2710 } 2711 2712 #ifdef DEBUG 2713 static const char *CM_EVENT_STR[] = { 2714 "RDMA_CM_EVENT_ADDR_RESOLVED", 2715 "RDMA_CM_EVENT_ADDR_ERROR", 2716 "RDMA_CM_EVENT_ROUTE_RESOLVED", 2717 "RDMA_CM_EVENT_ROUTE_ERROR", 2718 "RDMA_CM_EVENT_CONNECT_REQUEST", 2719 "RDMA_CM_EVENT_CONNECT_RESPONSE", 2720 "RDMA_CM_EVENT_CONNECT_ERROR", 2721 "RDMA_CM_EVENT_UNREACHABLE", 2722 "RDMA_CM_EVENT_REJECTED", 2723 "RDMA_CM_EVENT_ESTABLISHED", 2724 "RDMA_CM_EVENT_DISCONNECTED", 2725 "RDMA_CM_EVENT_DEVICE_REMOVAL", 2726 "RDMA_CM_EVENT_MULTICAST_JOIN", 2727 "RDMA_CM_EVENT_MULTICAST_ERROR", 2728 "RDMA_CM_EVENT_ADDR_CHANGE", 2729 "RDMA_CM_EVENT_TIMEWAIT_EXIT" 2730 }; 2731 #endif /* DEBUG */ 2732 2733 static void 2734 spdk_nvmf_process_cm_event(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn) 2735 { 2736 struct spdk_nvmf_rdma_transport *rtransport; 2737 struct rdma_cm_event *event; 2738 int rc; 2739 2740 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2741 2742 if (rtransport->event_channel == NULL) { 2743 return; 2744 } 2745 2746 while (1) { 2747 rc = rdma_get_cm_event(rtransport->event_channel, &event); 2748 if (rc == 0) { 2749 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]); 2750 2751 spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event); 2752 2753 switch (event->event) { 2754 case RDMA_CM_EVENT_ADDR_RESOLVED: 2755 case RDMA_CM_EVENT_ADDR_ERROR: 2756 case RDMA_CM_EVENT_ROUTE_RESOLVED: 2757 case RDMA_CM_EVENT_ROUTE_ERROR: 2758 /* No action required. The target never attempts to resolve routes. */ 2759 break; 2760 case RDMA_CM_EVENT_CONNECT_REQUEST: 2761 rc = nvmf_rdma_connect(transport, event, cb_fn); 2762 if (rc < 0) { 2763 SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc); 2764 break; 2765 } 2766 break; 2767 case RDMA_CM_EVENT_CONNECT_RESPONSE: 2768 /* The target never initiates a new connection. So this will not occur. */ 2769 break; 2770 case RDMA_CM_EVENT_CONNECT_ERROR: 2771 /* Can this happen? The docs say it can, but not sure what causes it. */ 2772 break; 2773 case RDMA_CM_EVENT_UNREACHABLE: 2774 case RDMA_CM_EVENT_REJECTED: 2775 /* These only occur on the client side. */ 2776 break; 2777 case RDMA_CM_EVENT_ESTABLISHED: 2778 /* TODO: Should we be waiting for this event anywhere? */ 2779 break; 2780 case RDMA_CM_EVENT_DISCONNECTED: 2781 case RDMA_CM_EVENT_DEVICE_REMOVAL: 2782 rc = nvmf_rdma_disconnect(event); 2783 if (rc < 0) { 2784 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 2785 break; 2786 } 2787 break; 2788 case RDMA_CM_EVENT_MULTICAST_JOIN: 2789 case RDMA_CM_EVENT_MULTICAST_ERROR: 2790 /* Multicast is not used */ 2791 break; 2792 case RDMA_CM_EVENT_ADDR_CHANGE: 2793 /* Not utilizing this event */ 2794 break; 2795 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 2796 /* For now, do nothing. The target never re-uses queue pairs. */ 2797 break; 2798 default: 2799 SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); 2800 break; 2801 } 2802 2803 rdma_ack_cm_event(event); 2804 } else { 2805 if (errno != EAGAIN && errno != EWOULDBLOCK) { 2806 SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno)); 2807 } 2808 break; 2809 } 2810 } 2811 } 2812 2813 static void 2814 spdk_nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device) 2815 { 2816 int rc; 2817 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 2818 struct ibv_async_event event; 2819 enum ibv_qp_state state; 2820 2821 rc = ibv_get_async_event(device->context, &event); 2822 2823 if (rc) { 2824 SPDK_ERRLOG("Failed to get async_event (%d): %s\n", 2825 errno, spdk_strerror(errno)); 2826 return; 2827 } 2828 2829 switch (event.event_type) { 2830 case IBV_EVENT_QP_FATAL: 2831 rqpair = event.element.qp->qp_context; 2832 SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair); 2833 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 2834 (uintptr_t)rqpair->cm_id, event.event_type); 2835 spdk_nvmf_rdma_update_ibv_state(rqpair); 2836 spdk_nvmf_rdma_start_disconnect(rqpair); 2837 break; 2838 case IBV_EVENT_QP_LAST_WQE_REACHED: 2839 /* This event only occurs for shared receive queues. */ 2840 rqpair = event.element.qp->qp_context; 2841 rqpair->last_wqe_reached = true; 2842 2843 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last WQE reached event received for rqpair %p\n", rqpair); 2844 /* This must be handled on the polling thread if it exists. Otherwise the timeout will catch it. */ 2845 if (rqpair->qpair.group) { 2846 spdk_thread_send_msg(rqpair->qpair.group->thread, nvmf_rdma_destroy_drained_qpair, rqpair); 2847 } else { 2848 SPDK_ERRLOG("Unable to destroy the qpair %p since it does not have a poll group.\n", rqpair); 2849 } 2850 2851 break; 2852 case IBV_EVENT_SQ_DRAINED: 2853 /* This event occurs frequently in both error and non-error states. 2854 * Check if the qpair is in an error state before sending a message. 2855 * Note that we're not on the correct thread to access the qpair, but 2856 * the operations that the below calls make all happen to be thread 2857 * safe. */ 2858 rqpair = event.element.qp->qp_context; 2859 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last sq drained event received for rqpair %p\n", rqpair); 2860 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 2861 (uintptr_t)rqpair->cm_id, event.event_type); 2862 state = spdk_nvmf_rdma_update_ibv_state(rqpair); 2863 if (state == IBV_QPS_ERR) { 2864 spdk_nvmf_rdma_start_disconnect(rqpair); 2865 } 2866 break; 2867 case IBV_EVENT_QP_REQ_ERR: 2868 case IBV_EVENT_QP_ACCESS_ERR: 2869 case IBV_EVENT_COMM_EST: 2870 case IBV_EVENT_PATH_MIG: 2871 case IBV_EVENT_PATH_MIG_ERR: 2872 SPDK_NOTICELOG("Async event: %s\n", 2873 ibv_event_type_str(event.event_type)); 2874 rqpair = event.element.qp->qp_context; 2875 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 2876 (uintptr_t)rqpair->cm_id, event.event_type); 2877 spdk_nvmf_rdma_update_ibv_state(rqpair); 2878 break; 2879 case IBV_EVENT_CQ_ERR: 2880 case IBV_EVENT_DEVICE_FATAL: 2881 case IBV_EVENT_PORT_ACTIVE: 2882 case IBV_EVENT_PORT_ERR: 2883 case IBV_EVENT_LID_CHANGE: 2884 case IBV_EVENT_PKEY_CHANGE: 2885 case IBV_EVENT_SM_CHANGE: 2886 case IBV_EVENT_SRQ_ERR: 2887 case IBV_EVENT_SRQ_LIMIT_REACHED: 2888 case IBV_EVENT_CLIENT_REREGISTER: 2889 case IBV_EVENT_GID_CHANGE: 2890 default: 2891 SPDK_NOTICELOG("Async event: %s\n", 2892 ibv_event_type_str(event.event_type)); 2893 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type); 2894 break; 2895 } 2896 ibv_ack_async_event(&event); 2897 } 2898 2899 static void 2900 spdk_nvmf_rdma_accept(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn) 2901 { 2902 int nfds, i = 0; 2903 struct spdk_nvmf_rdma_transport *rtransport; 2904 struct spdk_nvmf_rdma_device *device, *tmp; 2905 2906 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2907 nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0); 2908 2909 if (nfds <= 0) { 2910 return; 2911 } 2912 2913 /* The first poll descriptor is RDMA CM event */ 2914 if (rtransport->poll_fds[i++].revents & POLLIN) { 2915 spdk_nvmf_process_cm_event(transport, cb_fn); 2916 nfds--; 2917 } 2918 2919 if (nfds == 0) { 2920 return; 2921 } 2922 2923 /* Second and subsequent poll descriptors are IB async events */ 2924 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 2925 if (rtransport->poll_fds[i++].revents & POLLIN) { 2926 spdk_nvmf_process_ib_event(device); 2927 nfds--; 2928 } 2929 } 2930 /* check all flagged fd's have been served */ 2931 assert(nfds == 0); 2932 } 2933 2934 static void 2935 spdk_nvmf_rdma_discover(struct spdk_nvmf_transport *transport, 2936 struct spdk_nvme_transport_id *trid, 2937 struct spdk_nvmf_discovery_log_page_entry *entry) 2938 { 2939 entry->trtype = SPDK_NVMF_TRTYPE_RDMA; 2940 entry->adrfam = trid->adrfam; 2941 entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_SPECIFIED; 2942 2943 spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' '); 2944 spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' '); 2945 2946 entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED; 2947 entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE; 2948 entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM; 2949 } 2950 2951 static void 2952 spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group); 2953 2954 static struct spdk_nvmf_transport_poll_group * 2955 spdk_nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport) 2956 { 2957 struct spdk_nvmf_rdma_transport *rtransport; 2958 struct spdk_nvmf_rdma_poll_group *rgroup; 2959 struct spdk_nvmf_rdma_poller *poller; 2960 struct spdk_nvmf_rdma_device *device; 2961 struct ibv_srq_init_attr srq_init_attr; 2962 struct spdk_nvmf_rdma_resource_opts opts; 2963 int num_cqe; 2964 2965 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2966 2967 rgroup = calloc(1, sizeof(*rgroup)); 2968 if (!rgroup) { 2969 return NULL; 2970 } 2971 2972 TAILQ_INIT(&rgroup->pollers); 2973 STAILQ_INIT(&rgroup->pending_data_buf_queue); 2974 2975 pthread_mutex_lock(&rtransport->lock); 2976 TAILQ_FOREACH(device, &rtransport->devices, link) { 2977 poller = calloc(1, sizeof(*poller)); 2978 if (!poller) { 2979 SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n"); 2980 spdk_nvmf_rdma_poll_group_destroy(&rgroup->group); 2981 pthread_mutex_unlock(&rtransport->lock); 2982 return NULL; 2983 } 2984 2985 poller->device = device; 2986 poller->group = rgroup; 2987 2988 TAILQ_INIT(&poller->qpairs); 2989 STAILQ_INIT(&poller->qpairs_pending_send); 2990 STAILQ_INIT(&poller->qpairs_pending_recv); 2991 2992 TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link); 2993 if (transport->opts.no_srq == false && device->num_srq < device->attr.max_srq) { 2994 poller->max_srq_depth = transport->opts.max_srq_depth; 2995 2996 device->num_srq++; 2997 memset(&srq_init_attr, 0, sizeof(struct ibv_srq_init_attr)); 2998 srq_init_attr.attr.max_wr = poller->max_srq_depth; 2999 srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 3000 poller->srq = ibv_create_srq(device->pd, &srq_init_attr); 3001 if (!poller->srq) { 3002 SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno); 3003 spdk_nvmf_rdma_poll_group_destroy(&rgroup->group); 3004 pthread_mutex_unlock(&rtransport->lock); 3005 return NULL; 3006 } 3007 3008 opts.qp = poller->srq; 3009 opts.pd = device->pd; 3010 opts.qpair = NULL; 3011 opts.shared = true; 3012 opts.max_queue_depth = poller->max_srq_depth; 3013 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 3014 3015 poller->resources = nvmf_rdma_resources_create(&opts); 3016 if (!poller->resources) { 3017 SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n"); 3018 spdk_nvmf_rdma_poll_group_destroy(&rgroup->group); 3019 pthread_mutex_unlock(&rtransport->lock); 3020 } 3021 } 3022 3023 /* 3024 * When using an srq, we can limit the completion queue at startup. 3025 * The following formula represents the calculation: 3026 * num_cqe = num_recv + num_data_wr + num_send_wr. 3027 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth 3028 */ 3029 if (poller->srq) { 3030 num_cqe = poller->max_srq_depth * 3; 3031 } else { 3032 num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE; 3033 } 3034 3035 poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0); 3036 if (!poller->cq) { 3037 SPDK_ERRLOG("Unable to create completion queue\n"); 3038 spdk_nvmf_rdma_poll_group_destroy(&rgroup->group); 3039 pthread_mutex_unlock(&rtransport->lock); 3040 return NULL; 3041 } 3042 poller->num_cqe = num_cqe; 3043 } 3044 3045 pthread_mutex_unlock(&rtransport->lock); 3046 return &rgroup->group; 3047 } 3048 3049 static void 3050 spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group) 3051 { 3052 struct spdk_nvmf_rdma_poll_group *rgroup; 3053 struct spdk_nvmf_rdma_poller *poller, *tmp; 3054 struct spdk_nvmf_rdma_qpair *qpair, *tmp_qpair; 3055 3056 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3057 3058 if (!rgroup) { 3059 return; 3060 } 3061 3062 TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) { 3063 TAILQ_REMOVE(&rgroup->pollers, poller, link); 3064 3065 TAILQ_FOREACH_SAFE(qpair, &poller->qpairs, link, tmp_qpair) { 3066 spdk_nvmf_rdma_qpair_destroy(qpair); 3067 } 3068 3069 if (poller->srq) { 3070 nvmf_rdma_resources_destroy(poller->resources); 3071 ibv_destroy_srq(poller->srq); 3072 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Destroyed RDMA shared queue %p\n", poller->srq); 3073 } 3074 3075 if (poller->cq) { 3076 ibv_destroy_cq(poller->cq); 3077 } 3078 3079 free(poller); 3080 } 3081 3082 if (!STAILQ_EMPTY(&rgroup->pending_data_buf_queue)) { 3083 SPDK_ERRLOG("Pending I/O list wasn't empty on poll group destruction\n"); 3084 } 3085 3086 free(rgroup); 3087 } 3088 3089 static void 3090 spdk_nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair) 3091 { 3092 if (rqpair->cm_id != NULL) { 3093 spdk_nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 3094 } 3095 spdk_nvmf_rdma_qpair_destroy(rqpair); 3096 } 3097 3098 static int 3099 spdk_nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group, 3100 struct spdk_nvmf_qpair *qpair) 3101 { 3102 struct spdk_nvmf_rdma_poll_group *rgroup; 3103 struct spdk_nvmf_rdma_qpair *rqpair; 3104 struct spdk_nvmf_rdma_device *device; 3105 struct spdk_nvmf_rdma_poller *poller; 3106 int rc; 3107 3108 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3109 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3110 3111 device = rqpair->port->device; 3112 3113 TAILQ_FOREACH(poller, &rgroup->pollers, link) { 3114 if (poller->device == device) { 3115 break; 3116 } 3117 } 3118 3119 if (!poller) { 3120 SPDK_ERRLOG("No poller found for device.\n"); 3121 return -1; 3122 } 3123 3124 TAILQ_INSERT_TAIL(&poller->qpairs, rqpair, link); 3125 rqpair->poller = poller; 3126 rqpair->srq = rqpair->poller->srq; 3127 3128 rc = spdk_nvmf_rdma_qpair_initialize(qpair); 3129 if (rc < 0) { 3130 SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair); 3131 return -1; 3132 } 3133 3134 rc = spdk_nvmf_rdma_event_accept(rqpair->cm_id, rqpair); 3135 if (rc) { 3136 /* Try to reject, but we probably can't */ 3137 spdk_nvmf_rdma_qpair_reject_connection(rqpair); 3138 return -1; 3139 } 3140 3141 spdk_nvmf_rdma_update_ibv_state(rqpair); 3142 3143 return 0; 3144 } 3145 3146 static int 3147 spdk_nvmf_rdma_request_free(struct spdk_nvmf_request *req) 3148 { 3149 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 3150 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 3151 struct spdk_nvmf_rdma_transport, transport); 3152 3153 nvmf_rdma_request_free(rdma_req, rtransport); 3154 return 0; 3155 } 3156 3157 static int 3158 spdk_nvmf_rdma_request_complete(struct spdk_nvmf_request *req) 3159 { 3160 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 3161 struct spdk_nvmf_rdma_transport, transport); 3162 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, 3163 struct spdk_nvmf_rdma_request, req); 3164 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 3165 struct spdk_nvmf_rdma_qpair, qpair); 3166 3167 if (rqpair->ibv_state != IBV_QPS_ERR) { 3168 /* The connection is alive, so process the request as normal */ 3169 rdma_req->state = RDMA_REQUEST_STATE_EXECUTED; 3170 } else { 3171 /* The connection is dead. Move the request directly to the completed state. */ 3172 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3173 } 3174 3175 spdk_nvmf_rdma_request_process(rtransport, rdma_req); 3176 3177 return 0; 3178 } 3179 3180 static int 3181 spdk_nvmf_rdma_destroy_defunct_qpair(void *ctx) 3182 { 3183 struct spdk_nvmf_rdma_qpair *rqpair = ctx; 3184 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 3185 struct spdk_nvmf_rdma_transport, transport); 3186 3187 spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); 3188 spdk_nvmf_rdma_qpair_destroy(rqpair); 3189 3190 return 0; 3191 } 3192 3193 static void 3194 spdk_nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair) 3195 { 3196 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3197 3198 if (rqpair->disconnect_flags & RDMA_QP_DISCONNECTING) { 3199 return; 3200 } 3201 3202 rqpair->disconnect_flags |= RDMA_QP_DISCONNECTING; 3203 3204 /* This happens only when the qpair is disconnected before 3205 * it is added to the poll group. Since there is no poll group, 3206 * the RDMA qp has not been initialized yet and the RDMA CM 3207 * event has not yet been acknowledged, so we need to reject it. 3208 */ 3209 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) { 3210 spdk_nvmf_rdma_qpair_reject_connection(rqpair); 3211 return; 3212 } 3213 3214 if (rqpair->ibv_state != IBV_QPS_ERR) { 3215 spdk_nvmf_rdma_set_ibv_state(rqpair, IBV_QPS_ERR); 3216 } 3217 3218 rqpair->destruct_poller = spdk_poller_register(spdk_nvmf_rdma_destroy_defunct_qpair, (void *)rqpair, 3219 NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US); 3220 } 3221 3222 static struct spdk_nvmf_rdma_qpair * 3223 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc) 3224 { 3225 struct spdk_nvmf_rdma_qpair *rqpair; 3226 /* @todo: improve QP search */ 3227 TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) { 3228 if (wc->qp_num == rqpair->cm_id->qp->qp_num) { 3229 return rqpair; 3230 } 3231 } 3232 SPDK_ERRLOG("Didn't find QP with qp_num %u\n", wc->qp_num); 3233 return NULL; 3234 } 3235 3236 #ifdef DEBUG 3237 static int 3238 spdk_nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req) 3239 { 3240 return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST || 3241 rdma_req->state == RDMA_REQUEST_STATE_COMPLETING; 3242 } 3243 #endif 3244 3245 static void 3246 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr, 3247 int rc) 3248 { 3249 struct spdk_nvmf_rdma_recv *rdma_recv; 3250 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 3251 3252 SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc); 3253 while (bad_recv_wr != NULL) { 3254 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id; 3255 rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 3256 3257 rdma_recv->qpair->current_recv_depth++; 3258 bad_recv_wr = bad_recv_wr->next; 3259 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc); 3260 spdk_nvmf_rdma_start_disconnect(rdma_recv->qpair); 3261 } 3262 } 3263 3264 static void 3265 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc) 3266 { 3267 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc); 3268 while (bad_recv_wr != NULL) { 3269 bad_recv_wr = bad_recv_wr->next; 3270 rqpair->current_recv_depth++; 3271 } 3272 spdk_nvmf_rdma_start_disconnect(rqpair); 3273 } 3274 3275 static void 3276 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 3277 struct spdk_nvmf_rdma_poller *rpoller) 3278 { 3279 struct spdk_nvmf_rdma_qpair *rqpair; 3280 struct ibv_recv_wr *bad_recv_wr; 3281 int rc; 3282 3283 if (rpoller->srq) { 3284 if (rpoller->resources->recvs_to_post.first != NULL) { 3285 rc = ibv_post_srq_recv(rpoller->srq, rpoller->resources->recvs_to_post.first, &bad_recv_wr); 3286 if (rc) { 3287 _poller_reset_failed_recvs(rpoller, bad_recv_wr, rc); 3288 } 3289 rpoller->resources->recvs_to_post.first = NULL; 3290 rpoller->resources->recvs_to_post.last = NULL; 3291 } 3292 } else { 3293 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) { 3294 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv); 3295 assert(rqpair->resources->recvs_to_post.first != NULL); 3296 rc = ibv_post_recv(rqpair->cm_id->qp, rqpair->resources->recvs_to_post.first, &bad_recv_wr); 3297 if (rc) { 3298 _qp_reset_failed_recvs(rqpair, bad_recv_wr, rc); 3299 } 3300 rqpair->resources->recvs_to_post.first = NULL; 3301 rqpair->resources->recvs_to_post.last = NULL; 3302 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link); 3303 } 3304 } 3305 } 3306 3307 static void 3308 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport, 3309 struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc) 3310 { 3311 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 3312 struct spdk_nvmf_rdma_request *prev_rdma_req = NULL, *cur_rdma_req = NULL; 3313 3314 SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc); 3315 for (; bad_wr != NULL; bad_wr = bad_wr->next) { 3316 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id; 3317 assert(rqpair->current_send_depth > 0); 3318 rqpair->current_send_depth--; 3319 switch (bad_rdma_wr->type) { 3320 case RDMA_WR_TYPE_DATA: 3321 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr); 3322 if (bad_wr->opcode == IBV_WR_RDMA_READ) { 3323 assert(rqpair->current_read_depth > 0); 3324 rqpair->current_read_depth--; 3325 } 3326 break; 3327 case RDMA_WR_TYPE_SEND: 3328 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr); 3329 break; 3330 default: 3331 SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair); 3332 prev_rdma_req = cur_rdma_req; 3333 continue; 3334 } 3335 3336 if (prev_rdma_req == cur_rdma_req) { 3337 /* this request was handled by an earlier wr. i.e. we were performing an nvme read. */ 3338 /* We only have to check against prev_wr since each requests wrs are contiguous in this list. */ 3339 continue; 3340 } 3341 3342 switch (cur_rdma_req->state) { 3343 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 3344 cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 3345 cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 3346 break; 3347 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 3348 case RDMA_REQUEST_STATE_COMPLETING: 3349 cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3350 break; 3351 default: 3352 SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n", 3353 cur_rdma_req->state, rqpair); 3354 continue; 3355 } 3356 3357 spdk_nvmf_rdma_request_process(rtransport, cur_rdma_req); 3358 prev_rdma_req = cur_rdma_req; 3359 } 3360 3361 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 3362 /* Disconnect the connection. */ 3363 spdk_nvmf_rdma_start_disconnect(rqpair); 3364 } 3365 3366 } 3367 3368 static void 3369 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 3370 struct spdk_nvmf_rdma_poller *rpoller) 3371 { 3372 struct spdk_nvmf_rdma_qpair *rqpair; 3373 struct ibv_send_wr *bad_wr = NULL; 3374 int rc; 3375 3376 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) { 3377 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send); 3378 assert(rqpair->sends_to_post.first != NULL); 3379 rc = ibv_post_send(rqpair->cm_id->qp, rqpair->sends_to_post.first, &bad_wr); 3380 3381 /* bad wr always points to the first wr that failed. */ 3382 if (rc) { 3383 _qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc); 3384 } 3385 rqpair->sends_to_post.first = NULL; 3386 rqpair->sends_to_post.last = NULL; 3387 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link); 3388 } 3389 } 3390 3391 static int 3392 spdk_nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport, 3393 struct spdk_nvmf_rdma_poller *rpoller) 3394 { 3395 struct ibv_wc wc[32]; 3396 struct spdk_nvmf_rdma_wr *rdma_wr; 3397 struct spdk_nvmf_rdma_request *rdma_req; 3398 struct spdk_nvmf_rdma_recv *rdma_recv; 3399 struct spdk_nvmf_rdma_qpair *rqpair; 3400 int reaped, i; 3401 int count = 0; 3402 bool error = false; 3403 3404 /* Poll for completing operations. */ 3405 reaped = ibv_poll_cq(rpoller->cq, 32, wc); 3406 if (reaped < 0) { 3407 SPDK_ERRLOG("Error polling CQ! (%d): %s\n", 3408 errno, spdk_strerror(errno)); 3409 return -1; 3410 } 3411 3412 for (i = 0; i < reaped; i++) { 3413 3414 rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id; 3415 3416 switch (rdma_wr->type) { 3417 case RDMA_WR_TYPE_SEND: 3418 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr); 3419 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 3420 3421 if (!wc[i].status) { 3422 count++; 3423 assert(wc[i].opcode == IBV_WC_SEND); 3424 assert(spdk_nvmf_rdma_req_is_completing(rdma_req)); 3425 } else { 3426 SPDK_ERRLOG("data=%p length=%u\n", rdma_req->req.data, rdma_req->req.length); 3427 } 3428 3429 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3430 rqpair->current_send_depth--; 3431 3432 spdk_nvmf_rdma_request_process(rtransport, rdma_req); 3433 assert(rdma_req->num_outstanding_data_wr == 0); 3434 break; 3435 case RDMA_WR_TYPE_RECV: 3436 /* rdma_recv->qpair will be invalid if using an SRQ. In that case we have to get the qpair from the wc. */ 3437 rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 3438 if (rpoller->srq != NULL) { 3439 rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]); 3440 } 3441 rqpair = rdma_recv->qpair; 3442 3443 assert(rqpair != NULL); 3444 if (!wc[i].status) { 3445 assert(wc[i].opcode == IBV_WC_RECV); 3446 if (rqpair->current_recv_depth >= rqpair->max_queue_depth) { 3447 spdk_nvmf_rdma_start_disconnect(rqpair); 3448 break; 3449 } 3450 } 3451 3452 rdma_recv->wr.next = NULL; 3453 rqpair->current_recv_depth++; 3454 STAILQ_INSERT_TAIL(&rqpair->resources->incoming_queue, rdma_recv, link); 3455 break; 3456 case RDMA_WR_TYPE_DATA: 3457 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr); 3458 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 3459 3460 assert(rdma_req->num_outstanding_data_wr > 0); 3461 3462 rqpair->current_send_depth--; 3463 rdma_req->num_outstanding_data_wr--; 3464 if (!wc[i].status) { 3465 if (wc[i].opcode == IBV_WC_RDMA_READ) { 3466 rqpair->current_read_depth--; 3467 /* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */ 3468 if (rdma_req->num_outstanding_data_wr == 0) { 3469 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 3470 spdk_nvmf_rdma_request_process(rtransport, rdma_req); 3471 } 3472 } else { 3473 assert(wc[i].opcode == IBV_WC_RDMA_WRITE); 3474 } 3475 } else { 3476 /* If the data transfer fails still force the queue into the error state, 3477 * if we were performing an RDMA_READ, we need to force the request into a 3478 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE 3479 * case, we should wait for the SEND to complete. */ 3480 SPDK_ERRLOG("data=%p length=%u\n", rdma_req->req.data, rdma_req->req.length); 3481 if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) { 3482 rqpair->current_read_depth--; 3483 if (rdma_req->num_outstanding_data_wr == 0) { 3484 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3485 } 3486 } 3487 } 3488 break; 3489 default: 3490 SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode); 3491 continue; 3492 } 3493 3494 /* Handle error conditions */ 3495 if (wc[i].status) { 3496 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "CQ error on CQ %p, Request 0x%lu (%d): %s\n", 3497 rpoller->cq, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status)); 3498 3499 error = true; 3500 3501 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 3502 /* Disconnect the connection. */ 3503 spdk_nvmf_rdma_start_disconnect(rqpair); 3504 } else { 3505 nvmf_rdma_destroy_drained_qpair(rqpair); 3506 } 3507 continue; 3508 } 3509 3510 spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, false); 3511 3512 if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 3513 nvmf_rdma_destroy_drained_qpair(rqpair); 3514 } 3515 } 3516 3517 if (error == true) { 3518 return -1; 3519 } 3520 3521 /* submit outstanding work requests. */ 3522 _poller_submit_recvs(rtransport, rpoller); 3523 _poller_submit_sends(rtransport, rpoller); 3524 3525 return count; 3526 } 3527 3528 static int 3529 spdk_nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group) 3530 { 3531 struct spdk_nvmf_rdma_transport *rtransport; 3532 struct spdk_nvmf_rdma_poll_group *rgroup; 3533 struct spdk_nvmf_rdma_poller *rpoller; 3534 int count, rc; 3535 3536 rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport); 3537 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3538 3539 count = 0; 3540 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 3541 rc = spdk_nvmf_rdma_poller_poll(rtransport, rpoller); 3542 if (rc < 0) { 3543 return rc; 3544 } 3545 count += rc; 3546 } 3547 3548 return count; 3549 } 3550 3551 static int 3552 spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 3553 struct spdk_nvme_transport_id *trid, 3554 bool peer) 3555 { 3556 struct sockaddr *saddr; 3557 uint16_t port; 3558 3559 trid->trtype = SPDK_NVME_TRANSPORT_RDMA; 3560 3561 if (peer) { 3562 saddr = rdma_get_peer_addr(id); 3563 } else { 3564 saddr = rdma_get_local_addr(id); 3565 } 3566 switch (saddr->sa_family) { 3567 case AF_INET: { 3568 struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr; 3569 3570 trid->adrfam = SPDK_NVMF_ADRFAM_IPV4; 3571 inet_ntop(AF_INET, &saddr_in->sin_addr, 3572 trid->traddr, sizeof(trid->traddr)); 3573 if (peer) { 3574 port = ntohs(rdma_get_dst_port(id)); 3575 } else { 3576 port = ntohs(rdma_get_src_port(id)); 3577 } 3578 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 3579 break; 3580 } 3581 case AF_INET6: { 3582 struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr; 3583 trid->adrfam = SPDK_NVMF_ADRFAM_IPV6; 3584 inet_ntop(AF_INET6, &saddr_in->sin6_addr, 3585 trid->traddr, sizeof(trid->traddr)); 3586 if (peer) { 3587 port = ntohs(rdma_get_dst_port(id)); 3588 } else { 3589 port = ntohs(rdma_get_src_port(id)); 3590 } 3591 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 3592 break; 3593 } 3594 default: 3595 return -1; 3596 3597 } 3598 3599 return 0; 3600 } 3601 3602 static int 3603 spdk_nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair, 3604 struct spdk_nvme_transport_id *trid) 3605 { 3606 struct spdk_nvmf_rdma_qpair *rqpair; 3607 3608 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3609 3610 return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true); 3611 } 3612 3613 static int 3614 spdk_nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair, 3615 struct spdk_nvme_transport_id *trid) 3616 { 3617 struct spdk_nvmf_rdma_qpair *rqpair; 3618 3619 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3620 3621 return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false); 3622 } 3623 3624 static int 3625 spdk_nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair, 3626 struct spdk_nvme_transport_id *trid) 3627 { 3628 struct spdk_nvmf_rdma_qpair *rqpair; 3629 3630 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3631 3632 return spdk_nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false); 3633 } 3634 3635 void 3636 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) 3637 { 3638 g_nvmf_hooks = *hooks; 3639 } 3640 3641 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = { 3642 .type = SPDK_NVME_TRANSPORT_RDMA, 3643 .opts_init = spdk_nvmf_rdma_opts_init, 3644 .create = spdk_nvmf_rdma_create, 3645 .destroy = spdk_nvmf_rdma_destroy, 3646 3647 .listen = spdk_nvmf_rdma_listen, 3648 .stop_listen = spdk_nvmf_rdma_stop_listen, 3649 .accept = spdk_nvmf_rdma_accept, 3650 3651 .listener_discover = spdk_nvmf_rdma_discover, 3652 3653 .poll_group_create = spdk_nvmf_rdma_poll_group_create, 3654 .poll_group_destroy = spdk_nvmf_rdma_poll_group_destroy, 3655 .poll_group_add = spdk_nvmf_rdma_poll_group_add, 3656 .poll_group_poll = spdk_nvmf_rdma_poll_group_poll, 3657 3658 .req_free = spdk_nvmf_rdma_request_free, 3659 .req_complete = spdk_nvmf_rdma_request_complete, 3660 3661 .qpair_fini = spdk_nvmf_rdma_close_qpair, 3662 .qpair_get_peer_trid = spdk_nvmf_rdma_qpair_get_peer_trid, 3663 .qpair_get_local_trid = spdk_nvmf_rdma_qpair_get_local_trid, 3664 .qpair_get_listen_trid = spdk_nvmf_rdma_qpair_get_listen_trid, 3665 3666 }; 3667 3668 SPDK_LOG_REGISTER_COMPONENT("rdma", SPDK_LOG_RDMA) 3669