xref: /spdk/lib/nvmf/rdma.c (revision 510f4c134a21b45ff3a5add9ebc6c6cf7e49aeab)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "spdk/config.h"
10 #include "spdk/thread.h"
11 #include "spdk/likely.h"
12 #include "spdk/nvmf_transport.h"
13 #include "spdk/string.h"
14 #include "spdk/trace.h"
15 #include "spdk/tree.h"
16 #include "spdk/util.h"
17 
18 #include "spdk_internal/assert.h"
19 #include "spdk/log.h"
20 #include "spdk_internal/rdma.h"
21 
22 #include "nvmf_internal.h"
23 #include "transport.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
28 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma;
29 
30 /*
31  RDMA Connection Resource Defaults
32  */
33 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
34 #define NVMF_DEFAULT_RSP_SGE		1
35 #define NVMF_DEFAULT_RX_SGE		2
36 
37 /* The RDMA completion queue size */
38 #define DEFAULT_NVMF_RDMA_CQ_SIZE	4096
39 #define MAX_WR_PER_QP(queue_depth)	(queue_depth * 3 + 2)
40 
41 static int g_spdk_nvmf_ibv_query_mask =
42 	IBV_QP_STATE |
43 	IBV_QP_PKEY_INDEX |
44 	IBV_QP_PORT |
45 	IBV_QP_ACCESS_FLAGS |
46 	IBV_QP_AV |
47 	IBV_QP_PATH_MTU |
48 	IBV_QP_DEST_QPN |
49 	IBV_QP_RQ_PSN |
50 	IBV_QP_MAX_DEST_RD_ATOMIC |
51 	IBV_QP_MIN_RNR_TIMER |
52 	IBV_QP_SQ_PSN |
53 	IBV_QP_TIMEOUT |
54 	IBV_QP_RETRY_CNT |
55 	IBV_QP_RNR_RETRY |
56 	IBV_QP_MAX_QP_RD_ATOMIC;
57 
58 enum spdk_nvmf_rdma_request_state {
59 	/* The request is not currently in use */
60 	RDMA_REQUEST_STATE_FREE = 0,
61 
62 	/* Initial state when request first received */
63 	RDMA_REQUEST_STATE_NEW,
64 
65 	/* The request is queued until a data buffer is available. */
66 	RDMA_REQUEST_STATE_NEED_BUFFER,
67 
68 	/* The request is waiting on RDMA queue depth availability
69 	 * to transfer data from the host to the controller.
70 	 */
71 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
72 
73 	/* The request is currently transferring data from the host to the controller. */
74 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
75 
76 	/* The request is ready to execute at the block device */
77 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
78 
79 	/* The request is currently executing at the block device */
80 	RDMA_REQUEST_STATE_EXECUTING,
81 
82 	/* The request finished executing at the block device */
83 	RDMA_REQUEST_STATE_EXECUTED,
84 
85 	/* The request is waiting on RDMA queue depth availability
86 	 * to transfer data from the controller to the host.
87 	 */
88 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
89 
90 	/* The request is ready to send a completion */
91 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
92 
93 	/* The request is currently transferring data from the controller to the host. */
94 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
95 
96 	/* The request currently has an outstanding completion without an
97 	 * associated data transfer.
98 	 */
99 	RDMA_REQUEST_STATE_COMPLETING,
100 
101 	/* The request completed and can be marked free. */
102 	RDMA_REQUEST_STATE_COMPLETED,
103 
104 	/* Terminator */
105 	RDMA_REQUEST_NUM_STATES,
106 };
107 
108 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
109 {
110 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
111 	spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW,
112 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1,
113 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
114 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
115 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
116 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
117 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H",
118 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
119 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
120 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
121 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C",
122 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
123 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
124 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
125 	spdk_trace_register_description("RDMA_REQ_TX_H2C",
126 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
127 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
128 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
129 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE",
130 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
131 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
132 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
133 	spdk_trace_register_description("RDMA_REQ_EXECUTING",
134 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
135 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
136 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
137 	spdk_trace_register_description("RDMA_REQ_EXECUTED",
138 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
139 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
140 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
141 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL",
142 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
143 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
144 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
145 	spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H",
146 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
147 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
148 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
149 	spdk_trace_register_description("RDMA_REQ_COMPLETING",
150 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
151 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
152 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
153 	spdk_trace_register_description("RDMA_REQ_COMPLETED",
154 					TRACE_RDMA_REQUEST_STATE_COMPLETED,
155 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
156 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
157 
158 	spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE,
159 					OWNER_NONE, OBJECT_NONE, 0,
160 					SPDK_TRACE_ARG_TYPE_INT, "");
161 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT,
162 					OWNER_NONE, OBJECT_NONE, 0,
163 					SPDK_TRACE_ARG_TYPE_INT, "type");
164 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT,
165 					OWNER_NONE, OBJECT_NONE, 0,
166 					SPDK_TRACE_ARG_TYPE_INT, "type");
167 	spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE,
168 					OWNER_NONE, OBJECT_NONE, 0,
169 					SPDK_TRACE_ARG_TYPE_PTR, "state");
170 	spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT,
171 					OWNER_NONE, OBJECT_NONE, 0,
172 					SPDK_TRACE_ARG_TYPE_INT, "");
173 	spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY,
174 					OWNER_NONE, OBJECT_NONE, 0,
175 					SPDK_TRACE_ARG_TYPE_INT, "");
176 }
177 
178 enum spdk_nvmf_rdma_wr_type {
179 	RDMA_WR_TYPE_RECV,
180 	RDMA_WR_TYPE_SEND,
181 	RDMA_WR_TYPE_DATA,
182 };
183 
184 struct spdk_nvmf_rdma_wr {
185 	enum spdk_nvmf_rdma_wr_type	type;
186 };
187 
188 /* This structure holds commands as they are received off the wire.
189  * It must be dynamically paired with a full request object
190  * (spdk_nvmf_rdma_request) to service a request. It is separate
191  * from the request because RDMA does not appear to order
192  * completions, so occasionally we'll get a new incoming
193  * command when there aren't any free request objects.
194  */
195 struct spdk_nvmf_rdma_recv {
196 	struct ibv_recv_wr			wr;
197 	struct ibv_sge				sgl[NVMF_DEFAULT_RX_SGE];
198 
199 	struct spdk_nvmf_rdma_qpair		*qpair;
200 
201 	/* In-capsule data buffer */
202 	uint8_t					*buf;
203 
204 	struct spdk_nvmf_rdma_wr		rdma_wr;
205 	uint64_t				receive_tsc;
206 
207 	STAILQ_ENTRY(spdk_nvmf_rdma_recv)	link;
208 };
209 
210 struct spdk_nvmf_rdma_request_data {
211 	struct spdk_nvmf_rdma_wr	rdma_wr;
212 	struct ibv_send_wr		wr;
213 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
214 };
215 
216 struct spdk_nvmf_rdma_request {
217 	struct spdk_nvmf_request		req;
218 
219 	enum spdk_nvmf_rdma_request_state	state;
220 
221 	/* Data offset in req.iov */
222 	uint32_t				offset;
223 
224 	struct spdk_nvmf_rdma_recv		*recv;
225 
226 	struct {
227 		struct spdk_nvmf_rdma_wr	rdma_wr;
228 		struct	ibv_send_wr		wr;
229 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
230 	} rsp;
231 
232 	struct spdk_nvmf_rdma_request_data	data;
233 
234 	uint32_t				iovpos;
235 
236 	uint32_t				num_outstanding_data_wr;
237 	uint64_t				receive_tsc;
238 
239 	bool					fused_failed;
240 	struct spdk_nvmf_rdma_request		*fused_pair;
241 
242 	STAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
243 };
244 
245 struct spdk_nvmf_rdma_resource_opts {
246 	struct spdk_nvmf_rdma_qpair	*qpair;
247 	/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
248 	void				*qp;
249 	struct ibv_pd			*pd;
250 	uint32_t			max_queue_depth;
251 	uint32_t			in_capsule_data_size;
252 	bool				shared;
253 };
254 
255 struct spdk_nvmf_rdma_resources {
256 	/* Array of size "max_queue_depth" containing RDMA requests. */
257 	struct spdk_nvmf_rdma_request		*reqs;
258 
259 	/* Array of size "max_queue_depth" containing RDMA recvs. */
260 	struct spdk_nvmf_rdma_recv		*recvs;
261 
262 	/* Array of size "max_queue_depth" containing 64 byte capsules
263 	 * used for receive.
264 	 */
265 	union nvmf_h2c_msg			*cmds;
266 	struct ibv_mr				*cmds_mr;
267 
268 	/* Array of size "max_queue_depth" containing 16 byte completions
269 	 * to be sent back to the user.
270 	 */
271 	union nvmf_c2h_msg			*cpls;
272 	struct ibv_mr				*cpls_mr;
273 
274 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
275 	 * buffers to be used for in capsule data.
276 	 */
277 	void					*bufs;
278 	struct ibv_mr				*bufs_mr;
279 
280 	/* Receives that are waiting for a request object */
281 	STAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
282 
283 	/* Queue to track free requests */
284 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	free_queue;
285 };
286 
287 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair);
288 
289 struct spdk_nvmf_rdma_ibv_event_ctx {
290 	struct spdk_nvmf_rdma_qpair			*rqpair;
291 	spdk_nvmf_rdma_qpair_ibv_event			cb_fn;
292 	/* Link to other ibv events associated with this qpair */
293 	STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx)	link;
294 };
295 
296 struct spdk_nvmf_rdma_qpair {
297 	struct spdk_nvmf_qpair			qpair;
298 
299 	struct spdk_nvmf_rdma_device		*device;
300 	struct spdk_nvmf_rdma_poller		*poller;
301 
302 	struct spdk_rdma_qp			*rdma_qp;
303 	struct rdma_cm_id			*cm_id;
304 	struct spdk_rdma_srq			*srq;
305 	struct rdma_cm_id			*listen_id;
306 
307 	/* Cache the QP number to improve QP search by RB tree. */
308 	uint32_t				qp_num;
309 
310 	/* The maximum number of I/O outstanding on this connection at one time */
311 	uint16_t				max_queue_depth;
312 
313 	/* The maximum number of active RDMA READ and ATOMIC operations at one time */
314 	uint16_t				max_read_depth;
315 
316 	/* The maximum number of RDMA SEND operations at one time */
317 	uint32_t				max_send_depth;
318 
319 	/* The current number of outstanding WRs from this qpair's
320 	 * recv queue. Should not exceed device->attr.max_queue_depth.
321 	 */
322 	uint16_t				current_recv_depth;
323 
324 	/* The current number of active RDMA READ operations */
325 	uint16_t				current_read_depth;
326 
327 	/* The current number of posted WRs from this qpair's
328 	 * send queue. Should not exceed max_send_depth.
329 	 */
330 	uint32_t				current_send_depth;
331 
332 	/* The maximum number of SGEs per WR on the send queue */
333 	uint32_t				max_send_sge;
334 
335 	/* The maximum number of SGEs per WR on the recv queue */
336 	uint32_t				max_recv_sge;
337 
338 	struct spdk_nvmf_rdma_resources		*resources;
339 
340 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_read_queue;
341 
342 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_write_queue;
343 
344 	/* Number of requests not in the free state */
345 	uint32_t				qd;
346 
347 	RB_ENTRY(spdk_nvmf_rdma_qpair)		node;
348 
349 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	recv_link;
350 
351 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	send_link;
352 
353 	/* IBV queue pair attributes: they are used to manage
354 	 * qp state and recover from errors.
355 	 */
356 	enum ibv_qp_state			ibv_state;
357 
358 	/* Points to the a request that has fuse bits set to
359 	 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting
360 	 * for the request that has SPDK_NVME_CMD_FUSE_SECOND.
361 	 */
362 	struct spdk_nvmf_rdma_request		*fused_first;
363 
364 	/*
365 	 * io_channel which is used to destroy qpair when it is removed from poll group
366 	 */
367 	struct spdk_io_channel		*destruct_channel;
368 
369 	/* List of ibv async events */
370 	STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx)	ibv_events;
371 
372 	/* Lets us know that we have received the last_wqe event. */
373 	bool					last_wqe_reached;
374 
375 	/* Indicate that nvmf_rdma_close_qpair is called */
376 	bool					to_close;
377 };
378 
379 struct spdk_nvmf_rdma_poller_stat {
380 	uint64_t				completions;
381 	uint64_t				polls;
382 	uint64_t				idle_polls;
383 	uint64_t				requests;
384 	uint64_t				request_latency;
385 	uint64_t				pending_free_request;
386 	uint64_t				pending_rdma_read;
387 	uint64_t				pending_rdma_write;
388 	struct spdk_rdma_qp_stats		qp_stats;
389 };
390 
391 struct spdk_nvmf_rdma_poller {
392 	struct spdk_nvmf_rdma_device		*device;
393 	struct spdk_nvmf_rdma_poll_group	*group;
394 
395 	int					num_cqe;
396 	int					required_num_wr;
397 	struct ibv_cq				*cq;
398 
399 	/* The maximum number of I/O outstanding on the shared receive queue at one time */
400 	uint16_t				max_srq_depth;
401 
402 	/* Shared receive queue */
403 	struct spdk_rdma_srq			*srq;
404 
405 	struct spdk_nvmf_rdma_resources		*resources;
406 	struct spdk_nvmf_rdma_poller_stat	stat;
407 
408 	RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs;
409 
410 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_recv;
411 
412 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_send;
413 
414 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
415 };
416 
417 struct spdk_nvmf_rdma_poll_group_stat {
418 	uint64_t				pending_data_buffer;
419 };
420 
421 struct spdk_nvmf_rdma_poll_group {
422 	struct spdk_nvmf_transport_poll_group		group;
423 	struct spdk_nvmf_rdma_poll_group_stat		stat;
424 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)		pollers;
425 	TAILQ_ENTRY(spdk_nvmf_rdma_poll_group)		link;
426 };
427 
428 struct spdk_nvmf_rdma_conn_sched {
429 	struct spdk_nvmf_rdma_poll_group *next_admin_pg;
430 	struct spdk_nvmf_rdma_poll_group *next_io_pg;
431 };
432 
433 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
434 struct spdk_nvmf_rdma_device {
435 	struct ibv_device_attr			attr;
436 	struct ibv_context			*context;
437 
438 	struct spdk_rdma_mem_map		*map;
439 	struct ibv_pd				*pd;
440 
441 	int					num_srq;
442 
443 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
444 };
445 
446 struct spdk_nvmf_rdma_port {
447 	const struct spdk_nvme_transport_id	*trid;
448 	struct rdma_cm_id			*id;
449 	struct spdk_nvmf_rdma_device		*device;
450 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
451 };
452 
453 struct rdma_transport_opts {
454 	int		num_cqe;
455 	uint32_t	max_srq_depth;
456 	bool		no_srq;
457 	bool		no_wr_batching;
458 	int		acceptor_backlog;
459 };
460 
461 struct spdk_nvmf_rdma_transport {
462 	struct spdk_nvmf_transport	transport;
463 	struct rdma_transport_opts	rdma_opts;
464 
465 	struct spdk_nvmf_rdma_conn_sched conn_sched;
466 
467 	struct rdma_event_channel	*event_channel;
468 
469 	struct spdk_mempool		*data_wr_pool;
470 
471 	struct spdk_poller		*accept_poller;
472 
473 	/* fields used to poll RDMA/IB events */
474 	nfds_t			npoll_fds;
475 	struct pollfd		*poll_fds;
476 
477 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
478 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
479 	TAILQ_HEAD(, spdk_nvmf_rdma_poll_group)	poll_groups;
480 };
481 
482 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = {
483 	{
484 		"num_cqe", offsetof(struct rdma_transport_opts, num_cqe),
485 		spdk_json_decode_int32, true
486 	},
487 	{
488 		"max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth),
489 		spdk_json_decode_uint32, true
490 	},
491 	{
492 		"no_srq", offsetof(struct rdma_transport_opts, no_srq),
493 		spdk_json_decode_bool, true
494 	},
495 	{
496 		"no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching),
497 		spdk_json_decode_bool, true
498 	},
499 	{
500 		"acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog),
501 		spdk_json_decode_int32, true
502 	},
503 };
504 
505 static int
506 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2)
507 {
508 	return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num;
509 }
510 
511 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare);
512 
513 static bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
514 				      struct spdk_nvmf_rdma_request *rdma_req);
515 
516 static void _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
517 				 struct spdk_nvmf_rdma_poller *rpoller);
518 
519 static void _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
520 				 struct spdk_nvmf_rdma_poller *rpoller);
521 
522 static inline int
523 nvmf_rdma_check_ibv_state(enum ibv_qp_state state)
524 {
525 	switch (state) {
526 	case IBV_QPS_RESET:
527 	case IBV_QPS_INIT:
528 	case IBV_QPS_RTR:
529 	case IBV_QPS_RTS:
530 	case IBV_QPS_SQD:
531 	case IBV_QPS_SQE:
532 	case IBV_QPS_ERR:
533 		return 0;
534 	default:
535 		return -1;
536 	}
537 }
538 
539 static inline enum spdk_nvme_media_error_status_code
540 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) {
541 	enum spdk_nvme_media_error_status_code result;
542 	switch (err_type)
543 	{
544 	case SPDK_DIF_REFTAG_ERROR:
545 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
546 		break;
547 	case SPDK_DIF_APPTAG_ERROR:
548 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
549 		break;
550 	case SPDK_DIF_GUARD_ERROR:
551 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
552 		break;
553 	default:
554 		SPDK_UNREACHABLE();
555 	}
556 
557 	return result;
558 }
559 
560 static enum ibv_qp_state
561 nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) {
562 	enum ibv_qp_state old_state, new_state;
563 	struct ibv_qp_attr qp_attr;
564 	struct ibv_qp_init_attr init_attr;
565 	int rc;
566 
567 	old_state = rqpair->ibv_state;
568 	rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr,
569 			  g_spdk_nvmf_ibv_query_mask, &init_attr);
570 
571 	if (rc)
572 	{
573 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
574 		return IBV_QPS_ERR + 1;
575 	}
576 
577 	new_state = qp_attr.qp_state;
578 	rqpair->ibv_state = new_state;
579 	qp_attr.ah_attr.port_num = qp_attr.port_num;
580 
581 	rc = nvmf_rdma_check_ibv_state(new_state);
582 	if (rc)
583 	{
584 		SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state);
585 		/*
586 		 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8
587 		 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR
588 		 */
589 		return IBV_QPS_ERR + 1;
590 	}
591 
592 	if (old_state != new_state)
593 	{
594 		spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, (uintptr_t)rqpair, new_state);
595 	}
596 	return new_state;
597 }
598 
599 static void
600 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
601 			    struct spdk_nvmf_rdma_transport *rtransport)
602 {
603 	struct spdk_nvmf_rdma_request_data	*data_wr;
604 	struct ibv_send_wr			*next_send_wr;
605 	uint64_t				req_wrid;
606 
607 	rdma_req->num_outstanding_data_wr = 0;
608 	data_wr = &rdma_req->data;
609 	req_wrid = data_wr->wr.wr_id;
610 	while (data_wr && data_wr->wr.wr_id == req_wrid) {
611 		memset(data_wr->sgl, 0, sizeof(data_wr->wr.sg_list[0]) * data_wr->wr.num_sge);
612 		data_wr->wr.num_sge = 0;
613 		next_send_wr = data_wr->wr.next;
614 		if (data_wr != &rdma_req->data) {
615 			data_wr->wr.next = NULL;
616 			spdk_mempool_put(rtransport->data_wr_pool, data_wr);
617 		}
618 		data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL :
619 			  SPDK_CONTAINEROF(next_send_wr, struct spdk_nvmf_rdma_request_data, wr);
620 	}
621 	rdma_req->data.wr.next = NULL;
622 	rdma_req->rsp.wr.next = NULL;
623 }
624 
625 static void
626 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
627 {
628 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool);
629 	if (req->req.cmd) {
630 		SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
631 	}
632 	if (req->recv) {
633 		SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
634 	}
635 }
636 
637 static void
638 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
639 {
640 	int i;
641 
642 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
643 	for (i = 0; i < rqpair->max_queue_depth; i++) {
644 		if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
645 			nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
646 		}
647 	}
648 }
649 
650 static void
651 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
652 {
653 	if (resources->cmds_mr) {
654 		ibv_dereg_mr(resources->cmds_mr);
655 	}
656 
657 	if (resources->cpls_mr) {
658 		ibv_dereg_mr(resources->cpls_mr);
659 	}
660 
661 	if (resources->bufs_mr) {
662 		ibv_dereg_mr(resources->bufs_mr);
663 	}
664 
665 	spdk_free(resources->cmds);
666 	spdk_free(resources->cpls);
667 	spdk_free(resources->bufs);
668 	spdk_free(resources->reqs);
669 	spdk_free(resources->recvs);
670 	free(resources);
671 }
672 
673 
674 static struct spdk_nvmf_rdma_resources *
675 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
676 {
677 	struct spdk_nvmf_rdma_resources	*resources;
678 	struct spdk_nvmf_rdma_request	*rdma_req;
679 	struct spdk_nvmf_rdma_recv	*rdma_recv;
680 	struct spdk_rdma_qp		*qp = NULL;
681 	struct spdk_rdma_srq		*srq = NULL;
682 	struct ibv_recv_wr		*bad_wr = NULL;
683 	uint32_t			i;
684 	int				rc = 0;
685 
686 	resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
687 	if (!resources) {
688 		SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
689 		return NULL;
690 	}
691 
692 	resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs),
693 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
694 	resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs),
695 					0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
696 	resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
697 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
698 	resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
699 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
700 
701 	if (opts->in_capsule_data_size > 0) {
702 		resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size,
703 					       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY,
704 					       SPDK_MALLOC_DMA);
705 	}
706 
707 	if (!resources->reqs || !resources->recvs || !resources->cmds ||
708 	    !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
709 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
710 		goto cleanup;
711 	}
712 
713 	resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds,
714 					opts->max_queue_depth * sizeof(*resources->cmds),
715 					IBV_ACCESS_LOCAL_WRITE);
716 	resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls,
717 					opts->max_queue_depth * sizeof(*resources->cpls),
718 					0);
719 
720 	if (opts->in_capsule_data_size) {
721 		resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs,
722 						opts->max_queue_depth *
723 						opts->in_capsule_data_size,
724 						IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
725 	}
726 
727 	if (!resources->cmds_mr || !resources->cpls_mr ||
728 	    (opts->in_capsule_data_size &&
729 	     !resources->bufs_mr)) {
730 		goto cleanup;
731 	}
732 	SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx LKey: %x\n",
733 		      resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds),
734 		      resources->cmds_mr->lkey);
735 	SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx LKey: %x\n",
736 		      resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls),
737 		      resources->cpls_mr->lkey);
738 	if (resources->bufs && resources->bufs_mr) {
739 		SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x LKey: %x\n",
740 			      resources->bufs, opts->max_queue_depth *
741 			      opts->in_capsule_data_size, resources->bufs_mr->lkey);
742 	}
743 
744 	/* Initialize queues */
745 	STAILQ_INIT(&resources->incoming_queue);
746 	STAILQ_INIT(&resources->free_queue);
747 
748 	if (opts->shared) {
749 		srq = (struct spdk_rdma_srq *)opts->qp;
750 	} else {
751 		qp = (struct spdk_rdma_qp *)opts->qp;
752 	}
753 
754 	for (i = 0; i < opts->max_queue_depth; i++) {
755 		rdma_recv = &resources->recvs[i];
756 		rdma_recv->qpair = opts->qpair;
757 
758 		/* Set up memory to receive commands */
759 		if (resources->bufs) {
760 			rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
761 						  opts->in_capsule_data_size));
762 		}
763 
764 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
765 
766 		rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
767 		rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
768 		rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey;
769 		rdma_recv->wr.num_sge = 1;
770 
771 		if (rdma_recv->buf && resources->bufs_mr) {
772 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
773 			rdma_recv->sgl[1].length = opts->in_capsule_data_size;
774 			rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey;
775 			rdma_recv->wr.num_sge++;
776 		}
777 
778 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
779 		rdma_recv->wr.sg_list = rdma_recv->sgl;
780 		if (srq) {
781 			spdk_rdma_srq_queue_recv_wrs(srq, &rdma_recv->wr);
782 		} else {
783 			spdk_rdma_qp_queue_recv_wrs(qp, &rdma_recv->wr);
784 		}
785 	}
786 
787 	for (i = 0; i < opts->max_queue_depth; i++) {
788 		rdma_req = &resources->reqs[i];
789 
790 		if (opts->qpair != NULL) {
791 			rdma_req->req.qpair = &opts->qpair->qpair;
792 		} else {
793 			rdma_req->req.qpair = NULL;
794 		}
795 		rdma_req->req.cmd = NULL;
796 		rdma_req->req.iovcnt = 0;
797 		rdma_req->req.stripped_data = NULL;
798 
799 		/* Set up memory to send responses */
800 		rdma_req->req.rsp = &resources->cpls[i];
801 
802 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
803 		rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
804 		rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey;
805 
806 		rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND;
807 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr;
808 		rdma_req->rsp.wr.next = NULL;
809 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
810 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
811 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
812 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
813 
814 		/* Set up memory for data buffers */
815 		rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA;
816 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
817 		rdma_req->data.wr.next = NULL;
818 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
819 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
820 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
821 
822 		/* Initialize request state to FREE */
823 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
824 		STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
825 	}
826 
827 	if (srq) {
828 		rc = spdk_rdma_srq_flush_recv_wrs(srq, &bad_wr);
829 	} else {
830 		rc = spdk_rdma_qp_flush_recv_wrs(qp, &bad_wr);
831 	}
832 
833 	if (rc) {
834 		goto cleanup;
835 	}
836 
837 	return resources;
838 
839 cleanup:
840 	nvmf_rdma_resources_destroy(resources);
841 	return NULL;
842 }
843 
844 static void
845 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair)
846 {
847 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx;
848 	STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) {
849 		ctx->rqpair = NULL;
850 		/* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */
851 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
852 	}
853 }
854 
855 static void
856 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
857 {
858 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
859 	struct ibv_recv_wr		*bad_recv_wr = NULL;
860 	int				rc;
861 
862 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair);
863 
864 	if (rqpair->qd != 0) {
865 		struct spdk_nvmf_qpair *qpair = &rqpair->qpair;
866 		struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(qpair->transport,
867 				struct spdk_nvmf_rdma_transport, transport);
868 		struct spdk_nvmf_rdma_request *req;
869 		uint32_t i, max_req_count = 0;
870 
871 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
872 
873 		if (rqpair->srq == NULL) {
874 			nvmf_rdma_dump_qpair_contents(rqpair);
875 			max_req_count = rqpair->max_queue_depth;
876 		} else if (rqpair->poller && rqpair->resources) {
877 			max_req_count = rqpair->poller->max_srq_depth;
878 		}
879 
880 		SPDK_DEBUGLOG(rdma, "Release incomplete requests\n");
881 		for (i = 0; i < max_req_count; i++) {
882 			req = &rqpair->resources->reqs[i];
883 			if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) {
884 				/* nvmf_rdma_request_process checks qpair ibv and internal state
885 				 * and completes a request */
886 				nvmf_rdma_request_process(rtransport, req);
887 			}
888 		}
889 		assert(rqpair->qd == 0);
890 	}
891 
892 	if (rqpair->poller) {
893 		RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair);
894 
895 		if (rqpair->srq != NULL && rqpair->resources != NULL) {
896 			/* Drop all received but unprocessed commands for this queue and return them to SRQ */
897 			STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
898 				if (rqpair == rdma_recv->qpair) {
899 					STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link);
900 					spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr);
901 					rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
902 					if (rc) {
903 						SPDK_ERRLOG("Unable to re-post rx descriptor\n");
904 					}
905 				}
906 			}
907 		}
908 	}
909 
910 	if (rqpair->cm_id) {
911 		if (rqpair->rdma_qp != NULL) {
912 			spdk_rdma_qp_destroy(rqpair->rdma_qp);
913 			rqpair->rdma_qp = NULL;
914 		}
915 		rdma_destroy_id(rqpair->cm_id);
916 
917 		if (rqpair->poller != NULL && rqpair->srq == NULL) {
918 			rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
919 		}
920 	}
921 
922 	if (rqpair->srq == NULL && rqpair->resources != NULL) {
923 		nvmf_rdma_resources_destroy(rqpair->resources);
924 	}
925 
926 	nvmf_rdma_qpair_clean_ibv_events(rqpair);
927 
928 	if (rqpair->destruct_channel) {
929 		spdk_put_io_channel(rqpair->destruct_channel);
930 		rqpair->destruct_channel = NULL;
931 	}
932 
933 	free(rqpair);
934 }
935 
936 static int
937 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
938 {
939 	struct spdk_nvmf_rdma_poller	*rpoller;
940 	int				rc, num_cqe, required_num_wr;
941 
942 	/* Enlarge CQ size dynamically */
943 	rpoller = rqpair->poller;
944 	required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
945 	num_cqe = rpoller->num_cqe;
946 	if (num_cqe < required_num_wr) {
947 		num_cqe = spdk_max(num_cqe * 2, required_num_wr);
948 		num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
949 	}
950 
951 	if (rpoller->num_cqe != num_cqe) {
952 		if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) {
953 			SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n"
954 				    "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe);
955 			return -1;
956 		}
957 		if (required_num_wr > device->attr.max_cqe) {
958 			SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
959 				    required_num_wr, device->attr.max_cqe);
960 			return -1;
961 		}
962 
963 		SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
964 		rc = ibv_resize_cq(rpoller->cq, num_cqe);
965 		if (rc) {
966 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
967 			return -1;
968 		}
969 
970 		rpoller->num_cqe = num_cqe;
971 	}
972 
973 	rpoller->required_num_wr = required_num_wr;
974 	return 0;
975 }
976 
977 static int
978 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
979 {
980 	struct spdk_nvmf_rdma_qpair		*rqpair;
981 	struct spdk_nvmf_rdma_transport		*rtransport;
982 	struct spdk_nvmf_transport		*transport;
983 	struct spdk_nvmf_rdma_resource_opts	opts;
984 	struct spdk_nvmf_rdma_device		*device;
985 	struct spdk_rdma_qp_init_attr		qp_init_attr = {};
986 
987 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
988 	device = rqpair->device;
989 
990 	qp_init_attr.qp_context	= rqpair;
991 	qp_init_attr.pd		= device->pd;
992 	qp_init_attr.send_cq	= rqpair->poller->cq;
993 	qp_init_attr.recv_cq	= rqpair->poller->cq;
994 
995 	if (rqpair->srq) {
996 		qp_init_attr.srq		= rqpair->srq->srq;
997 	} else {
998 		qp_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth;
999 	}
1000 
1001 	/* SEND, READ, and WRITE operations */
1002 	qp_init_attr.cap.max_send_wr	= (uint32_t)rqpair->max_queue_depth * 2;
1003 	qp_init_attr.cap.max_send_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
1004 	qp_init_attr.cap.max_recv_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
1005 	qp_init_attr.stats		= &rqpair->poller->stat.qp_stats;
1006 
1007 	if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
1008 		SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
1009 		goto error;
1010 	}
1011 
1012 	rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr);
1013 	if (!rqpair->rdma_qp) {
1014 		goto error;
1015 	}
1016 
1017 	rqpair->qp_num = rqpair->rdma_qp->qp->qp_num;
1018 
1019 	rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2),
1020 					  qp_init_attr.cap.max_send_wr);
1021 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge);
1022 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge);
1023 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair);
1024 	SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair);
1025 
1026 	if (rqpair->poller->srq == NULL) {
1027 		rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
1028 		transport = &rtransport->transport;
1029 
1030 		opts.qp = rqpair->rdma_qp;
1031 		opts.pd = rqpair->cm_id->pd;
1032 		opts.qpair = rqpair;
1033 		opts.shared = false;
1034 		opts.max_queue_depth = rqpair->max_queue_depth;
1035 		opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
1036 
1037 		rqpair->resources = nvmf_rdma_resources_create(&opts);
1038 
1039 		if (!rqpair->resources) {
1040 			SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
1041 			rdma_destroy_qp(rqpair->cm_id);
1042 			goto error;
1043 		}
1044 	} else {
1045 		rqpair->resources = rqpair->poller->resources;
1046 	}
1047 
1048 	rqpair->current_recv_depth = 0;
1049 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1050 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1051 
1052 	return 0;
1053 
1054 error:
1055 	rdma_destroy_id(rqpair->cm_id);
1056 	rqpair->cm_id = NULL;
1057 	return -1;
1058 }
1059 
1060 /* Append the given recv wr structure to the resource structs outstanding recvs list. */
1061 /* This function accepts either a single wr or the first wr in a linked list. */
1062 static void
1063 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first)
1064 {
1065 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1066 			struct spdk_nvmf_rdma_transport, transport);
1067 
1068 	if (rqpair->srq != NULL) {
1069 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, first);
1070 	} else {
1071 		if (spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, first)) {
1072 			STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link);
1073 		}
1074 	}
1075 
1076 	if (rtransport->rdma_opts.no_wr_batching) {
1077 		_poller_submit_recvs(rtransport, rqpair->poller);
1078 	}
1079 }
1080 
1081 static int
1082 request_transfer_in(struct spdk_nvmf_request *req)
1083 {
1084 	struct spdk_nvmf_rdma_request	*rdma_req;
1085 	struct spdk_nvmf_qpair		*qpair;
1086 	struct spdk_nvmf_rdma_qpair	*rqpair;
1087 	struct spdk_nvmf_rdma_transport *rtransport;
1088 
1089 	qpair = req->qpair;
1090 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1091 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1092 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1093 				      struct spdk_nvmf_rdma_transport, transport);
1094 
1095 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1096 	assert(rdma_req != NULL);
1097 
1098 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, &rdma_req->data.wr)) {
1099 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1100 	}
1101 	if (rtransport->rdma_opts.no_wr_batching) {
1102 		_poller_submit_sends(rtransport, rqpair->poller);
1103 	}
1104 
1105 	rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1106 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1107 	return 0;
1108 }
1109 
1110 static int
1111 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1112 {
1113 	int				num_outstanding_data_wr = 0;
1114 	struct spdk_nvmf_rdma_request	*rdma_req;
1115 	struct spdk_nvmf_qpair		*qpair;
1116 	struct spdk_nvmf_rdma_qpair	*rqpair;
1117 	struct spdk_nvme_cpl		*rsp;
1118 	struct ibv_send_wr		*first = NULL;
1119 	struct spdk_nvmf_rdma_transport *rtransport;
1120 
1121 	*data_posted = 0;
1122 	qpair = req->qpair;
1123 	rsp = &req->rsp->nvme_cpl;
1124 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1125 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1126 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1127 				      struct spdk_nvmf_rdma_transport, transport);
1128 
1129 	/* Advance our sq_head pointer */
1130 	if (qpair->sq_head == qpair->sq_head_max) {
1131 		qpair->sq_head = 0;
1132 	} else {
1133 		qpair->sq_head++;
1134 	}
1135 	rsp->sqhd = qpair->sq_head;
1136 
1137 	/* queue the capsule for the recv buffer */
1138 	assert(rdma_req->recv != NULL);
1139 
1140 	nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr);
1141 
1142 	rdma_req->recv = NULL;
1143 	assert(rqpair->current_recv_depth > 0);
1144 	rqpair->current_recv_depth--;
1145 
1146 	/* Build the response which consists of optional
1147 	 * RDMA WRITEs to transfer data, plus an RDMA SEND
1148 	 * containing the response.
1149 	 */
1150 	first = &rdma_req->rsp.wr;
1151 
1152 	if (rsp->status.sc != SPDK_NVME_SC_SUCCESS) {
1153 		/* On failure, data was not read from the controller. So clear the
1154 		 * number of outstanding data WRs to zero.
1155 		 */
1156 		rdma_req->num_outstanding_data_wr = 0;
1157 	} else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1158 		first = &rdma_req->data.wr;
1159 		*data_posted = 1;
1160 		num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
1161 	}
1162 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) {
1163 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1164 	}
1165 	if (rtransport->rdma_opts.no_wr_batching) {
1166 		_poller_submit_sends(rtransport, rqpair->poller);
1167 	}
1168 
1169 	/* +1 for the rsp wr */
1170 	rqpair->current_send_depth += num_outstanding_data_wr + 1;
1171 
1172 	return 0;
1173 }
1174 
1175 static int
1176 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1177 {
1178 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
1179 	struct rdma_conn_param				ctrlr_event_data = {};
1180 	int						rc;
1181 
1182 	accept_data.recfmt = 0;
1183 	accept_data.crqsize = rqpair->max_queue_depth;
1184 
1185 	ctrlr_event_data.private_data = &accept_data;
1186 	ctrlr_event_data.private_data_len = sizeof(accept_data);
1187 	if (id->ps == RDMA_PS_TCP) {
1188 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1189 		ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1190 	}
1191 
1192 	/* Configure infinite retries for the initiator side qpair.
1193 	 * We need to pass this value to the initiator to prevent the
1194 	 * initiator side NIC from completing SEND requests back to the
1195 	 * initiator with status rnr_retry_count_exceeded. */
1196 	ctrlr_event_data.rnr_retry_count = 0x7;
1197 
1198 	/* When qpair is created without use of rdma cm API, an additional
1199 	 * information must be provided to initiator in the connection response:
1200 	 * whether qpair is using SRQ and its qp_num
1201 	 * Fields below are ignored by rdma cm if qpair has been
1202 	 * created using rdma cm API. */
1203 	ctrlr_event_data.srq = rqpair->srq ? 1 : 0;
1204 	ctrlr_event_data.qp_num = rqpair->qp_num;
1205 
1206 	rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data);
1207 	if (rc) {
1208 		SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno);
1209 	} else {
1210 		SPDK_DEBUGLOG(rdma, "Sent back the accept\n");
1211 	}
1212 
1213 	return rc;
1214 }
1215 
1216 static void
1217 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1218 {
1219 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
1220 
1221 	rej_data.recfmt = 0;
1222 	rej_data.sts = error;
1223 
1224 	rdma_reject(id, &rej_data, sizeof(rej_data));
1225 }
1226 
1227 static int
1228 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event)
1229 {
1230 	struct spdk_nvmf_rdma_transport *rtransport;
1231 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
1232 	struct spdk_nvmf_rdma_port	*port;
1233 	struct rdma_conn_param		*rdma_param = NULL;
1234 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1235 	uint16_t			max_queue_depth;
1236 	uint16_t			max_read_depth;
1237 
1238 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1239 
1240 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1241 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1242 
1243 	rdma_param = &event->param.conn;
1244 	if (rdma_param->private_data == NULL ||
1245 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1246 		SPDK_ERRLOG("connect request: no private data provided\n");
1247 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1248 		return -1;
1249 	}
1250 
1251 	private_data = rdma_param->private_data;
1252 	if (private_data->recfmt != 0) {
1253 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1254 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1255 		return -1;
1256 	}
1257 
1258 	SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n",
1259 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1260 
1261 	port = event->listen_id->context;
1262 	SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1263 		      event->listen_id, event->listen_id->verbs, port);
1264 
1265 	/* Figure out the supported queue depth. This is a multi-step process
1266 	 * that takes into account hardware maximums, host provided values,
1267 	 * and our target's internal memory limits */
1268 
1269 	SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n");
1270 
1271 	/* Start with the maximum queue depth allowed by the target */
1272 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1273 	max_read_depth = rtransport->transport.opts.max_queue_depth;
1274 	SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n",
1275 		      rtransport->transport.opts.max_queue_depth);
1276 
1277 	/* Next check the local NIC's hardware limitations */
1278 	SPDK_DEBUGLOG(rdma,
1279 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1280 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1281 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1282 	max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1283 
1284 	/* Next check the remote NIC's hardware limitations */
1285 	SPDK_DEBUGLOG(rdma,
1286 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1287 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1288 	if (rdma_param->initiator_depth > 0) {
1289 		max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1290 	}
1291 
1292 	/* Finally check for the host software requested values, which are
1293 	 * optional. */
1294 	if (rdma_param->private_data != NULL &&
1295 	    rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1296 		SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1297 		SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize);
1298 		max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1299 		max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1300 	}
1301 
1302 	SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1303 		      max_queue_depth, max_read_depth);
1304 
1305 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1306 	if (rqpair == NULL) {
1307 		SPDK_ERRLOG("Could not allocate new connection.\n");
1308 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1309 		return -1;
1310 	}
1311 
1312 	rqpair->device = port->device;
1313 	rqpair->max_queue_depth = max_queue_depth;
1314 	rqpair->max_read_depth = max_read_depth;
1315 	rqpair->cm_id = event->id;
1316 	rqpair->listen_id = event->listen_id;
1317 	rqpair->qpair.transport = transport;
1318 	STAILQ_INIT(&rqpair->ibv_events);
1319 	/* use qid from the private data to determine the qpair type
1320 	   qid will be set to the appropriate value when the controller is created */
1321 	rqpair->qpair.qid = private_data->qid;
1322 
1323 	event->id->context = &rqpair->qpair;
1324 
1325 	spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair);
1326 
1327 	return 0;
1328 }
1329 
1330 static inline void
1331 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next,
1332 		   enum spdk_nvme_data_transfer xfer)
1333 {
1334 	if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1335 		wr->opcode = IBV_WR_RDMA_WRITE;
1336 		wr->send_flags = 0;
1337 		wr->next = next;
1338 	} else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1339 		wr->opcode = IBV_WR_RDMA_READ;
1340 		wr->send_flags = IBV_SEND_SIGNALED;
1341 		wr->next = NULL;
1342 	} else {
1343 		assert(0);
1344 	}
1345 }
1346 
1347 static int
1348 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1349 		       struct spdk_nvmf_rdma_request *rdma_req,
1350 		       uint32_t num_sgl_descriptors)
1351 {
1352 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1353 	struct spdk_nvmf_rdma_request_data	*current_data_wr;
1354 	uint32_t				i;
1355 
1356 	if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) {
1357 		SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n",
1358 			    num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES);
1359 		return -EINVAL;
1360 	}
1361 
1362 	if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) {
1363 		return -ENOMEM;
1364 	}
1365 
1366 	current_data_wr = &rdma_req->data;
1367 
1368 	for (i = 0; i < num_sgl_descriptors; i++) {
1369 		nvmf_rdma_setup_wr(&current_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer);
1370 		current_data_wr->wr.next = &work_requests[i]->wr;
1371 		current_data_wr = work_requests[i];
1372 		current_data_wr->wr.sg_list = current_data_wr->sgl;
1373 		current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id;
1374 	}
1375 
1376 	nvmf_rdma_setup_wr(&current_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1377 
1378 	return 0;
1379 }
1380 
1381 static inline void
1382 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req)
1383 {
1384 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1385 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1386 
1387 	wr->wr.rdma.rkey = sgl->keyed.key;
1388 	wr->wr.rdma.remote_addr = sgl->address;
1389 	nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1390 }
1391 
1392 static inline void
1393 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs)
1394 {
1395 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1396 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1397 	uint32_t			i;
1398 	int				j;
1399 	uint64_t			remote_addr_offset = 0;
1400 
1401 	for (i = 0; i < num_wrs; ++i) {
1402 		wr->wr.rdma.rkey = sgl->keyed.key;
1403 		wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset;
1404 		for (j = 0; j < wr->num_sge; ++j) {
1405 			remote_addr_offset += wr->sg_list[j].length;
1406 		}
1407 		wr = wr->next;
1408 	}
1409 }
1410 
1411 static int
1412 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup,
1413 		      struct spdk_nvmf_rdma_device *device,
1414 		      struct spdk_nvmf_rdma_request *rdma_req,
1415 		      struct ibv_send_wr *wr,
1416 		      uint32_t total_length)
1417 {
1418 	struct spdk_rdma_memory_translation mem_translation;
1419 	struct ibv_sge	*sg_ele;
1420 	struct iovec *iov;
1421 	uint32_t lkey, remaining;
1422 	int rc;
1423 
1424 	wr->num_sge = 0;
1425 
1426 	while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) {
1427 		iov = &rdma_req->req.iov[rdma_req->iovpos];
1428 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1429 		if (spdk_unlikely(rc)) {
1430 			return rc;
1431 		}
1432 
1433 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1434 		sg_ele = &wr->sg_list[wr->num_sge];
1435 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1436 
1437 		sg_ele->lkey = lkey;
1438 		sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset;
1439 		sg_ele->length = remaining;
1440 		SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr,
1441 			      sg_ele->length);
1442 		rdma_req->offset += sg_ele->length;
1443 		total_length -= sg_ele->length;
1444 		wr->num_sge++;
1445 
1446 		if (rdma_req->offset == iov->iov_len) {
1447 			rdma_req->offset = 0;
1448 			rdma_req->iovpos++;
1449 		}
1450 	}
1451 
1452 	if (total_length) {
1453 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1454 		return -EINVAL;
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 static int
1461 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_poll_group *rgroup,
1462 			       struct spdk_nvmf_rdma_device *device,
1463 			       struct spdk_nvmf_rdma_request *rdma_req,
1464 			       struct ibv_send_wr *wr,
1465 			       uint32_t total_length,
1466 			       uint32_t num_extra_wrs)
1467 {
1468 	struct spdk_rdma_memory_translation mem_translation;
1469 	struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx;
1470 	struct ibv_sge *sg_ele;
1471 	struct iovec *iov;
1472 	struct iovec *rdma_iov;
1473 	uint32_t lkey, remaining;
1474 	uint32_t remaining_data_block, data_block_size, md_size;
1475 	uint32_t sge_len;
1476 	int rc;
1477 
1478 	data_block_size = dif_ctx->block_size - dif_ctx->md_size;
1479 
1480 	if (spdk_likely(!rdma_req->req.stripped_data)) {
1481 		rdma_iov = rdma_req->req.iov;
1482 		remaining_data_block = data_block_size;
1483 		md_size = dif_ctx->md_size;
1484 	} else {
1485 		rdma_iov = rdma_req->req.stripped_data->iov;
1486 		total_length = total_length / dif_ctx->block_size * data_block_size;
1487 		remaining_data_block = total_length;
1488 		md_size = 0;
1489 	}
1490 
1491 	wr->num_sge = 0;
1492 
1493 	while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) {
1494 		iov = rdma_iov + rdma_req->iovpos;
1495 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1496 		if (spdk_unlikely(rc)) {
1497 			return rc;
1498 		}
1499 
1500 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1501 		sg_ele = &wr->sg_list[wr->num_sge];
1502 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1503 
1504 		while (remaining) {
1505 			if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) {
1506 				if (num_extra_wrs > 0 && wr->next) {
1507 					wr = wr->next;
1508 					wr->num_sge = 0;
1509 					sg_ele = &wr->sg_list[wr->num_sge];
1510 					num_extra_wrs--;
1511 				} else {
1512 					break;
1513 				}
1514 			}
1515 			sg_ele->lkey = lkey;
1516 			sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset);
1517 			sge_len = spdk_min(remaining, remaining_data_block);
1518 			sg_ele->length = sge_len;
1519 			SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele,
1520 				      sg_ele->addr, sg_ele->length);
1521 			remaining -= sge_len;
1522 			remaining_data_block -= sge_len;
1523 			rdma_req->offset += sge_len;
1524 			total_length -= sge_len;
1525 
1526 			sg_ele++;
1527 			wr->num_sge++;
1528 
1529 			if (remaining_data_block == 0) {
1530 				/* skip metadata */
1531 				rdma_req->offset += md_size;
1532 				total_length -= md_size;
1533 				/* Metadata that do not fit this IO buffer will be included in the next IO buffer */
1534 				remaining -= spdk_min(remaining, md_size);
1535 				remaining_data_block = data_block_size;
1536 			}
1537 
1538 			if (remaining == 0) {
1539 				/* By subtracting the size of the last IOV from the offset, we ensure that we skip
1540 				   the remaining metadata bits at the beginning of the next buffer */
1541 				rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset);
1542 				rdma_req->iovpos++;
1543 			}
1544 		}
1545 	}
1546 
1547 	if (total_length) {
1548 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1549 		return -EINVAL;
1550 	}
1551 
1552 	return 0;
1553 }
1554 
1555 static inline uint32_t
1556 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size)
1557 {
1558 	/* estimate the number of SG entries and WRs needed to process the request */
1559 	uint32_t num_sge = 0;
1560 	uint32_t i;
1561 	uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size);
1562 
1563 	for (i = 0; i < num_buffers && length > 0; i++) {
1564 		uint32_t buffer_len = spdk_min(length, io_unit_size);
1565 		uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size);
1566 
1567 		if (num_sge_in_block * block_size > buffer_len) {
1568 			++num_sge_in_block;
1569 		}
1570 		num_sge += num_sge_in_block;
1571 		length -= buffer_len;
1572 	}
1573 	return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES);
1574 }
1575 
1576 static int
1577 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1578 			    struct spdk_nvmf_rdma_device *device,
1579 			    struct spdk_nvmf_rdma_request *rdma_req)
1580 {
1581 	struct spdk_nvmf_rdma_qpair		*rqpair;
1582 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1583 	struct spdk_nvmf_request		*req = &rdma_req->req;
1584 	struct ibv_send_wr			*wr = &rdma_req->data.wr;
1585 	int					rc;
1586 	uint32_t				num_wrs = 1;
1587 	uint32_t				length;
1588 
1589 	rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair);
1590 	rgroup = rqpair->poller->group;
1591 
1592 	/* rdma wr specifics */
1593 	nvmf_rdma_setup_request(rdma_req);
1594 
1595 	length = req->length;
1596 	if (spdk_unlikely(req->dif_enabled)) {
1597 		req->dif.orig_length = length;
1598 		length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
1599 		req->dif.elba_length = length;
1600 	}
1601 
1602 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
1603 					   length);
1604 	if (rc != 0) {
1605 		return rc;
1606 	}
1607 
1608 	assert(req->iovcnt <= rqpair->max_send_sge);
1609 
1610 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1611 	 * the stripped_buffers are got for DIF stripping. */
1612 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1613 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1614 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1615 						       &rtransport->transport, req->dif.orig_length);
1616 		if (rc != 0) {
1617 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1618 		}
1619 	}
1620 
1621 	rdma_req->iovpos = 0;
1622 
1623 	if (spdk_unlikely(req->dif_enabled)) {
1624 		num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size,
1625 						 req->dif.dif_ctx.block_size);
1626 		if (num_wrs > 1) {
1627 			rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1);
1628 			if (rc != 0) {
1629 				goto err_exit;
1630 			}
1631 		}
1632 
1633 		rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, wr, length, num_wrs - 1);
1634 		if (spdk_unlikely(rc != 0)) {
1635 			goto err_exit;
1636 		}
1637 
1638 		if (num_wrs > 1) {
1639 			nvmf_rdma_update_remote_addr(rdma_req, num_wrs);
1640 		}
1641 	} else {
1642 		rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length);
1643 		if (spdk_unlikely(rc != 0)) {
1644 			goto err_exit;
1645 		}
1646 	}
1647 
1648 	/* set the number of outstanding data WRs for this request. */
1649 	rdma_req->num_outstanding_data_wr = num_wrs;
1650 
1651 	return rc;
1652 
1653 err_exit:
1654 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1655 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1656 	req->iovcnt = 0;
1657 	return rc;
1658 }
1659 
1660 static int
1661 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1662 				      struct spdk_nvmf_rdma_device *device,
1663 				      struct spdk_nvmf_rdma_request *rdma_req)
1664 {
1665 	struct spdk_nvmf_rdma_qpair		*rqpair;
1666 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1667 	struct ibv_send_wr			*current_wr;
1668 	struct spdk_nvmf_request		*req = &rdma_req->req;
1669 	struct spdk_nvme_sgl_descriptor		*inline_segment, *desc;
1670 	uint32_t				num_sgl_descriptors;
1671 	uint32_t				lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0;
1672 	uint32_t				i;
1673 	int					rc;
1674 
1675 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1676 	rgroup = rqpair->poller->group;
1677 
1678 	inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1679 	assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1680 	assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1681 
1682 	num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1683 	assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1684 
1685 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1686 	for (i = 0; i < num_sgl_descriptors; i++) {
1687 		if (spdk_likely(!req->dif_enabled)) {
1688 			lengths[i] = desc->keyed.length;
1689 		} else {
1690 			req->dif.orig_length += desc->keyed.length;
1691 			lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx);
1692 			req->dif.elba_length += lengths[i];
1693 		}
1694 		total_length += lengths[i];
1695 		desc++;
1696 	}
1697 
1698 	if (total_length > rtransport->transport.opts.max_io_size) {
1699 		SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n",
1700 			    total_length, rtransport->transport.opts.max_io_size);
1701 		req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1702 		return -EINVAL;
1703 	}
1704 
1705 	if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) {
1706 		return -ENOMEM;
1707 	}
1708 
1709 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length);
1710 	if (rc != 0) {
1711 		nvmf_rdma_request_free_data(rdma_req, rtransport);
1712 		return rc;
1713 	}
1714 
1715 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1716 	 * the stripped_buffers are got for DIF stripping. */
1717 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1718 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1719 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1720 						       &rtransport->transport, req->dif.orig_length);
1721 		if (rc != 0) {
1722 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1723 		}
1724 	}
1725 
1726 	/* The first WR must always be the embedded data WR. This is how we unwind them later. */
1727 	current_wr = &rdma_req->data.wr;
1728 	assert(current_wr != NULL);
1729 
1730 	req->length = 0;
1731 	rdma_req->iovpos = 0;
1732 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1733 	for (i = 0; i < num_sgl_descriptors; i++) {
1734 		/* The descriptors must be keyed data block descriptors with an address, not an offset. */
1735 		if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1736 				  desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1737 			rc = -EINVAL;
1738 			goto err_exit;
1739 		}
1740 
1741 		if (spdk_likely(!req->dif_enabled)) {
1742 			rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i]);
1743 		} else {
1744 			rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, current_wr,
1745 							    lengths[i], 0);
1746 		}
1747 		if (rc != 0) {
1748 			rc = -ENOMEM;
1749 			goto err_exit;
1750 		}
1751 
1752 		req->length += desc->keyed.length;
1753 		current_wr->wr.rdma.rkey = desc->keyed.key;
1754 		current_wr->wr.rdma.remote_addr = desc->address;
1755 		current_wr = current_wr->next;
1756 		desc++;
1757 	}
1758 
1759 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1760 	/* Go back to the last descriptor in the list. */
1761 	desc--;
1762 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1763 		if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1764 			rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1765 			rdma_req->rsp.wr.imm_data = desc->keyed.key;
1766 		}
1767 	}
1768 #endif
1769 
1770 	rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1771 
1772 	return 0;
1773 
1774 err_exit:
1775 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1776 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1777 	return rc;
1778 }
1779 
1780 static int
1781 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1782 			    struct spdk_nvmf_rdma_device *device,
1783 			    struct spdk_nvmf_rdma_request *rdma_req)
1784 {
1785 	struct spdk_nvmf_request		*req = &rdma_req->req;
1786 	struct spdk_nvme_cpl			*rsp;
1787 	struct spdk_nvme_sgl_descriptor		*sgl;
1788 	int					rc;
1789 	uint32_t				length;
1790 
1791 	rsp = &req->rsp->nvme_cpl;
1792 	sgl = &req->cmd->nvme_cmd.dptr.sgl1;
1793 
1794 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1795 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1796 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1797 
1798 		length = sgl->keyed.length;
1799 		if (length > rtransport->transport.opts.max_io_size) {
1800 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1801 				    length, rtransport->transport.opts.max_io_size);
1802 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1803 			return -1;
1804 		}
1805 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1806 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1807 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1808 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1809 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1810 			}
1811 		}
1812 #endif
1813 
1814 		/* fill request length and populate iovs */
1815 		req->length = length;
1816 
1817 		rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req);
1818 		if (spdk_unlikely(rc < 0)) {
1819 			if (rc == -EINVAL) {
1820 				SPDK_ERRLOG("SGL length exceeds the max I/O size\n");
1821 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1822 				return -1;
1823 			}
1824 			/* No available buffers. Queue this request up. */
1825 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1826 			return 0;
1827 		}
1828 
1829 		/* backward compatible */
1830 		req->data = req->iov[0].iov_base;
1831 
1832 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1833 			      req->iovcnt);
1834 
1835 		return 0;
1836 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1837 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1838 		uint64_t offset = sgl->address;
1839 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1840 
1841 		SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1842 			      offset, sgl->unkeyed.length);
1843 
1844 		if (offset > max_len) {
1845 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1846 				    offset, max_len);
1847 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1848 			return -1;
1849 		}
1850 		max_len -= (uint32_t)offset;
1851 
1852 		if (sgl->unkeyed.length > max_len) {
1853 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1854 				    sgl->unkeyed.length, max_len);
1855 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1856 			return -1;
1857 		}
1858 
1859 		rdma_req->num_outstanding_data_wr = 0;
1860 		req->data = rdma_req->recv->buf + offset;
1861 		req->data_from_pool = false;
1862 		req->length = sgl->unkeyed.length;
1863 
1864 		req->iov[0].iov_base = req->data;
1865 		req->iov[0].iov_len = req->length;
1866 		req->iovcnt = 1;
1867 
1868 		return 0;
1869 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1870 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1871 
1872 		rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1873 		if (rc == -ENOMEM) {
1874 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1875 			return 0;
1876 		} else if (rc == -EINVAL) {
1877 			SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1878 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1879 			return -1;
1880 		}
1881 
1882 		/* backward compatible */
1883 		req->data = req->iov[0].iov_base;
1884 
1885 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1886 			      req->iovcnt);
1887 
1888 		return 0;
1889 	}
1890 
1891 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
1892 		    sgl->generic.type, sgl->generic.subtype);
1893 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1894 	return -1;
1895 }
1896 
1897 static void
1898 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1899 			struct spdk_nvmf_rdma_transport	*rtransport)
1900 {
1901 	struct spdk_nvmf_rdma_qpair		*rqpair;
1902 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1903 
1904 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1905 	if (rdma_req->req.data_from_pool) {
1906 		rgroup = rqpair->poller->group;
1907 
1908 		spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport);
1909 	}
1910 	if (rdma_req->req.stripped_data) {
1911 		nvmf_request_free_stripped_buffers(&rdma_req->req,
1912 						   &rqpair->poller->group->group,
1913 						   &rtransport->transport);
1914 	}
1915 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1916 	rdma_req->req.length = 0;
1917 	rdma_req->req.iovcnt = 0;
1918 	rdma_req->req.data = NULL;
1919 	rdma_req->offset = 0;
1920 	rdma_req->req.dif_enabled = false;
1921 	rdma_req->fused_failed = false;
1922 	if (rdma_req->fused_pair) {
1923 		/* This req was part of a valid fused pair, but failed before it got to
1924 		 * READ_TO_EXECUTE state.  This means we need to fail the other request
1925 		 * in the pair, because it is no longer part of a valid pair.  If the pair
1926 		 * already reached READY_TO_EXECUTE state, we need to kick it.
1927 		 */
1928 		rdma_req->fused_pair->fused_failed = true;
1929 		if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
1930 			nvmf_rdma_request_process(rtransport, rdma_req->fused_pair);
1931 		}
1932 		rdma_req->fused_pair = NULL;
1933 	}
1934 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
1935 	rqpair->qd--;
1936 
1937 	STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
1938 	rdma_req->state = RDMA_REQUEST_STATE_FREE;
1939 }
1940 
1941 static void
1942 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport,
1943 			       struct spdk_nvmf_rdma_qpair *rqpair,
1944 			       struct spdk_nvmf_rdma_request *rdma_req)
1945 {
1946 	enum spdk_nvme_cmd_fuse last, next;
1947 
1948 	last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
1949 	next = rdma_req->req.cmd->nvme_cmd.fuse;
1950 
1951 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
1952 
1953 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
1954 		return;
1955 	}
1956 
1957 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
1958 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
1959 			/* This is a valid pair of fused commands.  Point them at each other
1960 			 * so they can be submitted consecutively once ready to be executed.
1961 			 */
1962 			rqpair->fused_first->fused_pair = rdma_req;
1963 			rdma_req->fused_pair = rqpair->fused_first;
1964 			rqpair->fused_first = NULL;
1965 			return;
1966 		} else {
1967 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
1968 			rqpair->fused_first->fused_failed = true;
1969 
1970 			/* If the last req is in READY_TO_EXECUTE state, then call
1971 			 * nvmf_rdma_request_process(), otherwise nothing else will kick it.
1972 			 */
1973 			if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
1974 				nvmf_rdma_request_process(rtransport, rqpair->fused_first);
1975 			}
1976 
1977 			rqpair->fused_first = NULL;
1978 		}
1979 	}
1980 
1981 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
1982 		/* Set rqpair->fused_first here so that we know to check that the next request
1983 		 * is a SECOND (and to fail this one if it isn't).
1984 		 */
1985 		rqpair->fused_first = rdma_req;
1986 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
1987 		/* Mark this req failed since it ia SECOND and the last one was not a FIRST. */
1988 		rdma_req->fused_failed = true;
1989 	}
1990 }
1991 
1992 bool
1993 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
1994 			  struct spdk_nvmf_rdma_request *rdma_req)
1995 {
1996 	struct spdk_nvmf_rdma_qpair	*rqpair;
1997 	struct spdk_nvmf_rdma_device	*device;
1998 	struct spdk_nvmf_rdma_poll_group *rgroup;
1999 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
2000 	int				rc;
2001 	struct spdk_nvmf_rdma_recv	*rdma_recv;
2002 	enum spdk_nvmf_rdma_request_state prev_state;
2003 	bool				progress = false;
2004 	int				data_posted;
2005 	uint32_t			num_blocks;
2006 
2007 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2008 	device = rqpair->device;
2009 	rgroup = rqpair->poller->group;
2010 
2011 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
2012 
2013 	/* If the queue pair is in an error state, force the request to the completed state
2014 	 * to release resources. */
2015 	if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2016 		if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) {
2017 			STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link);
2018 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) {
2019 			STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2020 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) {
2021 			STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2022 		}
2023 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2024 	}
2025 
2026 	/* The loop here is to allow for several back-to-back state changes. */
2027 	do {
2028 		prev_state = rdma_req->state;
2029 
2030 		SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state);
2031 
2032 		switch (rdma_req->state) {
2033 		case RDMA_REQUEST_STATE_FREE:
2034 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
2035 			 * to escape this state. */
2036 			break;
2037 		case RDMA_REQUEST_STATE_NEW:
2038 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
2039 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2040 			rdma_recv = rdma_req->recv;
2041 
2042 			/* The first element of the SGL is the NVMe command */
2043 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
2044 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
2045 
2046 			if (rqpair->ibv_state == IBV_QPS_ERR  || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2047 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2048 				break;
2049 			}
2050 
2051 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) {
2052 				rdma_req->req.dif_enabled = true;
2053 			}
2054 
2055 			nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req);
2056 
2057 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2058 			rdma_req->rsp.wr.opcode = IBV_WR_SEND;
2059 			rdma_req->rsp.wr.imm_data = 0;
2060 #endif
2061 
2062 			/* The next state transition depends on the data transfer needs of this request. */
2063 			rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req);
2064 
2065 			if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2066 				rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2067 				rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE;
2068 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2069 				SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req);
2070 				break;
2071 			}
2072 
2073 			/* If no data to transfer, ready to execute. */
2074 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
2075 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2076 				break;
2077 			}
2078 
2079 			rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
2080 			STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link);
2081 			break;
2082 		case RDMA_REQUEST_STATE_NEED_BUFFER:
2083 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
2084 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2085 
2086 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
2087 
2088 			if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) {
2089 				/* This request needs to wait in line to obtain a buffer */
2090 				break;
2091 			}
2092 
2093 			/* Try to get a data buffer */
2094 			rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
2095 			if (rc < 0) {
2096 				STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2097 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2098 				break;
2099 			}
2100 
2101 			if (!rdma_req->req.data) {
2102 				/* No buffers available. */
2103 				rgroup->stat.pending_data_buffer++;
2104 				break;
2105 			}
2106 
2107 			STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2108 
2109 			/* If data is transferring from host to controller and the data didn't
2110 			 * arrive using in capsule data, we need to do a transfer from the host.
2111 			 */
2112 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER &&
2113 			    rdma_req->req.data_from_pool) {
2114 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
2115 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
2116 				break;
2117 			}
2118 
2119 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2120 			break;
2121 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2122 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
2123 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2124 
2125 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
2126 				/* This request needs to wait in line to perform RDMA */
2127 				break;
2128 			}
2129 			if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth
2130 			    || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) {
2131 				/* We can only have so many WRs outstanding. we have to wait until some finish. */
2132 				rqpair->poller->stat.pending_rdma_read++;
2133 				break;
2134 			}
2135 
2136 			/* We have already verified that this request is the head of the queue. */
2137 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
2138 
2139 			rc = request_transfer_in(&rdma_req->req);
2140 			if (!rc) {
2141 				rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
2142 			} else {
2143 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2144 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2145 			}
2146 			break;
2147 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2148 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
2149 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2150 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
2151 			 * to escape this state. */
2152 			break;
2153 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
2154 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
2155 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2156 
2157 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2158 				if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2159 					/* generate DIF for write operation */
2160 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2161 					assert(num_blocks > 0);
2162 
2163 					rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt,
2164 							       num_blocks, &rdma_req->req.dif.dif_ctx);
2165 					if (rc != 0) {
2166 						SPDK_ERRLOG("DIF generation failed\n");
2167 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2168 						spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
2169 						break;
2170 					}
2171 				}
2172 
2173 				assert(rdma_req->req.dif.elba_length >= rdma_req->req.length);
2174 				/* set extended length before IO operation */
2175 				rdma_req->req.length = rdma_req->req.dif.elba_length;
2176 			}
2177 
2178 			if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2179 				if (rdma_req->fused_failed) {
2180 					/* This request failed FUSED semantics.  Fail it immediately, without
2181 					 * even sending it to the target layer.
2182 					 */
2183 					rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2184 					rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2185 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2186 					break;
2187 				}
2188 
2189 				if (rdma_req->fused_pair == NULL ||
2190 				    rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2191 					/* This request is ready to execute, but either we don't know yet if it's
2192 					 * valid - i.e. this is a FIRST but we haven't received the next
2193 					 * request yet or the other request of this fused pair isn't ready to
2194 					 * execute.  So break here and this request will get processed later either
2195 					 * when the other request is ready or we find that this request isn't valid.
2196 					 */
2197 					break;
2198 				}
2199 			}
2200 
2201 			/* If we get to this point, and this request is a fused command, we know that
2202 			 * it is part of valid sequence (FIRST followed by a SECOND) and that both
2203 			 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this
2204 			 * request, and the other request of the fused pair, in the correct order.
2205 			 * Also clear the ->fused_pair pointers on both requests, since after this point
2206 			 * we no longer need to maintain the relationship between these two requests.
2207 			 */
2208 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2209 				assert(rdma_req->fused_pair != NULL);
2210 				assert(rdma_req->fused_pair->fused_pair != NULL);
2211 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2212 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2213 				rdma_req->fused_pair->fused_pair = NULL;
2214 				rdma_req->fused_pair = NULL;
2215 			}
2216 			rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
2217 			spdk_nvmf_request_exec(&rdma_req->req);
2218 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2219 				assert(rdma_req->fused_pair != NULL);
2220 				assert(rdma_req->fused_pair->fused_pair != NULL);
2221 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2222 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2223 				rdma_req->fused_pair->fused_pair = NULL;
2224 				rdma_req->fused_pair = NULL;
2225 			}
2226 			break;
2227 		case RDMA_REQUEST_STATE_EXECUTING:
2228 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
2229 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2230 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
2231 			 * to escape this state. */
2232 			break;
2233 		case RDMA_REQUEST_STATE_EXECUTED:
2234 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
2235 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2236 			if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
2237 			    rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2238 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
2239 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
2240 			} else {
2241 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2242 			}
2243 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2244 				/* restore the original length */
2245 				rdma_req->req.length = rdma_req->req.dif.orig_length;
2246 
2247 				if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2248 					struct spdk_dif_error error_blk;
2249 
2250 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2251 					if (!rdma_req->req.stripped_data) {
2252 						rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2253 								     &rdma_req->req.dif.dif_ctx, &error_blk);
2254 					} else {
2255 						rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov,
2256 									  rdma_req->req.stripped_data->iovcnt,
2257 									  rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2258 									  &rdma_req->req.dif.dif_ctx, &error_blk);
2259 					}
2260 					if (rc) {
2261 						struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
2262 
2263 						SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type,
2264 							    error_blk.err_offset);
2265 						rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2266 						rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type);
2267 						rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2268 						STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2269 					}
2270 				}
2271 			}
2272 			break;
2273 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2274 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
2275 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2276 
2277 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
2278 				/* This request needs to wait in line to perform RDMA */
2279 				break;
2280 			}
2281 			if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
2282 			    rqpair->max_send_depth) {
2283 				/* We can only have so many WRs outstanding. we have to wait until some finish.
2284 				 * +1 since each request has an additional wr in the resp. */
2285 				rqpair->poller->stat.pending_rdma_write++;
2286 				break;
2287 			}
2288 
2289 			/* We have already verified that this request is the head of the queue. */
2290 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
2291 
2292 			/* The data transfer will be kicked off from
2293 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2294 			 */
2295 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2296 			break;
2297 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
2298 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
2299 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2300 			rc = request_transfer_out(&rdma_req->req, &data_posted);
2301 			assert(rc == 0); /* No good way to handle this currently */
2302 			if (rc) {
2303 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2304 			} else {
2305 				rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
2306 						  RDMA_REQUEST_STATE_COMPLETING;
2307 			}
2308 			break;
2309 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2310 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
2311 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2312 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2313 			 * to escape this state. */
2314 			break;
2315 		case RDMA_REQUEST_STATE_COMPLETING:
2316 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
2317 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2318 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2319 			 * to escape this state. */
2320 			break;
2321 		case RDMA_REQUEST_STATE_COMPLETED:
2322 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2323 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2324 
2325 			rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc;
2326 			_nvmf_rdma_request_free(rdma_req, rtransport);
2327 			break;
2328 		case RDMA_REQUEST_NUM_STATES:
2329 		default:
2330 			assert(0);
2331 			break;
2332 		}
2333 
2334 		if (rdma_req->state != prev_state) {
2335 			progress = true;
2336 		}
2337 	} while (rdma_req->state != prev_state);
2338 
2339 	return progress;
2340 }
2341 
2342 /* Public API callbacks begin here */
2343 
2344 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2345 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2346 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2347 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
2348 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2349 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2350 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2351 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095
2352 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32
2353 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false
2354 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false
2355 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100
2356 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1
2357 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false
2358 
2359 static void
2360 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2361 {
2362 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2363 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2364 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2365 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2366 	opts->io_unit_size =		SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2367 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2368 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2369 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2370 	opts->dif_insert_or_strip =	SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP;
2371 	opts->abort_timeout_sec =	SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC;
2372 	opts->transport_specific =      NULL;
2373 }
2374 
2375 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2376 			     spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg);
2377 
2378 static inline bool
2379 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device)
2380 {
2381 	return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD ||
2382 	       device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW;
2383 }
2384 
2385 static int nvmf_rdma_accept(void *ctx);
2386 
2387 static struct spdk_nvmf_transport *
2388 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2389 {
2390 	int rc;
2391 	struct spdk_nvmf_rdma_transport *rtransport;
2392 	struct spdk_nvmf_rdma_device	*device, *tmp;
2393 	struct ibv_context		**contexts;
2394 	uint32_t			i;
2395 	int				flag;
2396 	uint32_t			sge_count;
2397 	uint32_t			min_shared_buffers;
2398 	uint32_t			min_in_capsule_data_size;
2399 	int				max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2400 
2401 	rtransport = calloc(1, sizeof(*rtransport));
2402 	if (!rtransport) {
2403 		return NULL;
2404 	}
2405 
2406 	TAILQ_INIT(&rtransport->devices);
2407 	TAILQ_INIT(&rtransport->ports);
2408 	TAILQ_INIT(&rtransport->poll_groups);
2409 
2410 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2411 	rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
2412 	rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2413 	rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ;
2414 	rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2415 	rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING;
2416 	if (opts->transport_specific != NULL &&
2417 	    spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder,
2418 					    SPDK_COUNTOF(rdma_transport_opts_decoder),
2419 					    &rtransport->rdma_opts)) {
2420 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
2421 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2422 		return NULL;
2423 	}
2424 
2425 	SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n"
2426 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
2427 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2428 		     "  in_capsule_data_size=%d, max_aq_depth=%d,\n"
2429 		     "  num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d,"
2430 		     "  acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n",
2431 		     opts->max_queue_depth,
2432 		     opts->max_io_size,
2433 		     opts->max_qpairs_per_ctrlr - 1,
2434 		     opts->io_unit_size,
2435 		     opts->in_capsule_data_size,
2436 		     opts->max_aq_depth,
2437 		     opts->num_shared_buffers,
2438 		     rtransport->rdma_opts.num_cqe,
2439 		     rtransport->rdma_opts.max_srq_depth,
2440 		     rtransport->rdma_opts.no_srq,
2441 		     rtransport->rdma_opts.acceptor_backlog,
2442 		     rtransport->rdma_opts.no_wr_batching,
2443 		     opts->abort_timeout_sec);
2444 
2445 	/* I/O unit size cannot be larger than max I/O size */
2446 	if (opts->io_unit_size > opts->max_io_size) {
2447 		opts->io_unit_size = opts->max_io_size;
2448 	}
2449 
2450 	if (rtransport->rdma_opts.acceptor_backlog <= 0) {
2451 		SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n",
2452 			    SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG);
2453 		rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2454 	}
2455 
2456 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2457 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2458 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
2459 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2460 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2461 		return NULL;
2462 	}
2463 
2464 	min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
2465 	if (min_shared_buffers > opts->num_shared_buffers) {
2466 		SPDK_ERRLOG("There are not enough buffers to satisfy"
2467 			    "per-poll group caches for each thread. (%" PRIu32 ")"
2468 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2469 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2470 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2471 		return NULL;
2472 	}
2473 
2474 	sge_count = opts->max_io_size / opts->io_unit_size;
2475 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
2476 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2477 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2478 		return NULL;
2479 	}
2480 
2481 	min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES;
2482 	if (opts->in_capsule_data_size < min_in_capsule_data_size) {
2483 		SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n",
2484 			     min_in_capsule_data_size);
2485 		opts->in_capsule_data_size = min_in_capsule_data_size;
2486 	}
2487 
2488 	rtransport->event_channel = rdma_create_event_channel();
2489 	if (rtransport->event_channel == NULL) {
2490 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2491 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2492 		return NULL;
2493 	}
2494 
2495 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2496 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2497 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2498 			    rtransport->event_channel->fd, spdk_strerror(errno));
2499 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2500 		return NULL;
2501 	}
2502 
2503 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
2504 				   opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES,
2505 				   sizeof(struct spdk_nvmf_rdma_request_data),
2506 				   SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2507 				   SPDK_ENV_SOCKET_ID_ANY);
2508 	if (!rtransport->data_wr_pool) {
2509 		if (spdk_mempool_lookup("spdk_nvmf_rdma_wr_data") != NULL) {
2510 			SPDK_ERRLOG("Unable to allocate work request pool for poll group: already exists\n");
2511 			SPDK_ERRLOG("Probably running in multiprocess environment, which is "
2512 				    "unsupported by the nvmf library\n");
2513 		} else {
2514 			SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2515 		}
2516 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2517 		return NULL;
2518 	}
2519 
2520 	contexts = rdma_get_devices(NULL);
2521 	if (contexts == NULL) {
2522 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2523 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2524 		return NULL;
2525 	}
2526 
2527 	i = 0;
2528 	rc = 0;
2529 	while (contexts[i] != NULL) {
2530 		device = calloc(1, sizeof(*device));
2531 		if (!device) {
2532 			SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2533 			rc = -ENOMEM;
2534 			break;
2535 		}
2536 		device->context = contexts[i];
2537 		rc = ibv_query_device(device->context, &device->attr);
2538 		if (rc < 0) {
2539 			SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2540 			free(device);
2541 			break;
2542 
2543 		}
2544 
2545 		max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2546 
2547 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2548 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2549 			SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2550 			SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2551 		}
2552 
2553 		/**
2554 		 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2555 		 * The Soft-RoCE RXE driver does not currently support send with invalidate,
2556 		 * but incorrectly reports that it does. There are changes making their way
2557 		 * through the kernel now that will enable this feature. When they are merged,
2558 		 * we can conditionally enable this feature.
2559 		 *
2560 		 * TODO: enable this for versions of the kernel rxe driver that support it.
2561 		 */
2562 		if (nvmf_rdma_is_rxe_device(device)) {
2563 			device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2564 		}
2565 #endif
2566 
2567 		/* set up device context async ev fd as NON_BLOCKING */
2568 		flag = fcntl(device->context->async_fd, F_GETFL);
2569 		rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2570 		if (rc < 0) {
2571 			SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2572 			free(device);
2573 			break;
2574 		}
2575 
2576 		TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2577 		i++;
2578 
2579 		if (g_nvmf_hooks.get_ibv_pd) {
2580 			device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2581 		} else {
2582 			device->pd = ibv_alloc_pd(device->context);
2583 		}
2584 
2585 		if (!device->pd) {
2586 			SPDK_ERRLOG("Unable to allocate protection domain.\n");
2587 			rc = -ENOMEM;
2588 			break;
2589 		}
2590 
2591 		assert(device->map == NULL);
2592 
2593 		device->map = spdk_rdma_create_mem_map(device->pd, &g_nvmf_hooks, SPDK_RDMA_MEMORY_MAP_ROLE_TARGET);
2594 		if (!device->map) {
2595 			SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2596 			rc = -ENOMEM;
2597 			break;
2598 		}
2599 
2600 		assert(device->map != NULL);
2601 		assert(device->pd != NULL);
2602 	}
2603 	rdma_free_devices(contexts);
2604 
2605 	if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2606 		/* divide and round up. */
2607 		opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2608 
2609 		/* round up to the nearest 4k. */
2610 		opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2611 
2612 		opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2613 		SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2614 			       opts->io_unit_size);
2615 	}
2616 
2617 	if (rc < 0) {
2618 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2619 		return NULL;
2620 	}
2621 
2622 	/* Set up poll descriptor array to monitor events from RDMA and IB
2623 	 * in a single poll syscall
2624 	 */
2625 	rtransport->npoll_fds = i + 1;
2626 	i = 0;
2627 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2628 	if (rtransport->poll_fds == NULL) {
2629 		SPDK_ERRLOG("poll_fds allocation failed\n");
2630 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2631 		return NULL;
2632 	}
2633 
2634 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2635 	rtransport->poll_fds[i++].events = POLLIN;
2636 
2637 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2638 		rtransport->poll_fds[i].fd = device->context->async_fd;
2639 		rtransport->poll_fds[i++].events = POLLIN;
2640 	}
2641 
2642 	rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport,
2643 				    opts->acceptor_poll_rate);
2644 	if (!rtransport->accept_poller) {
2645 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2646 		return NULL;
2647 	}
2648 
2649 	return &rtransport->transport;
2650 }
2651 
2652 static void
2653 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
2654 {
2655 	struct spdk_nvmf_rdma_transport	*rtransport;
2656 	assert(w != NULL);
2657 
2658 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2659 	spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth);
2660 	spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq);
2661 	if (rtransport->rdma_opts.no_srq == true) {
2662 		spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe);
2663 	}
2664 	spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog);
2665 	spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching);
2666 }
2667 
2668 static int
2669 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2670 		  spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
2671 {
2672 	struct spdk_nvmf_rdma_transport	*rtransport;
2673 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
2674 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
2675 
2676 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2677 
2678 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2679 		TAILQ_REMOVE(&rtransport->ports, port, link);
2680 		rdma_destroy_id(port->id);
2681 		free(port);
2682 	}
2683 
2684 	if (rtransport->poll_fds != NULL) {
2685 		free(rtransport->poll_fds);
2686 	}
2687 
2688 	if (rtransport->event_channel != NULL) {
2689 		rdma_destroy_event_channel(rtransport->event_channel);
2690 	}
2691 
2692 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2693 		TAILQ_REMOVE(&rtransport->devices, device, link);
2694 		spdk_rdma_free_mem_map(&device->map);
2695 		if (device->pd) {
2696 			if (!g_nvmf_hooks.get_ibv_pd) {
2697 				ibv_dealloc_pd(device->pd);
2698 			}
2699 		}
2700 		free(device);
2701 	}
2702 
2703 	if (rtransport->data_wr_pool != NULL) {
2704 		if (spdk_mempool_count(rtransport->data_wr_pool) !=
2705 		    (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) {
2706 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2707 				    spdk_mempool_count(rtransport->data_wr_pool),
2708 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2709 		}
2710 	}
2711 
2712 	spdk_mempool_free(rtransport->data_wr_pool);
2713 
2714 	spdk_poller_unregister(&rtransport->accept_poller);
2715 	free(rtransport);
2716 
2717 	if (cb_fn) {
2718 		cb_fn(cb_arg);
2719 	}
2720 	return 0;
2721 }
2722 
2723 static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2724 				     struct spdk_nvme_transport_id *trid,
2725 				     bool peer);
2726 
2727 static int
2728 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
2729 		 struct spdk_nvmf_listen_opts *listen_opts)
2730 {
2731 	struct spdk_nvmf_rdma_transport	*rtransport;
2732 	struct spdk_nvmf_rdma_device	*device;
2733 	struct spdk_nvmf_rdma_port	*port;
2734 	struct addrinfo			*res;
2735 	struct addrinfo			hints;
2736 	int				family;
2737 	int				rc;
2738 
2739 	if (!strlen(trid->trsvcid)) {
2740 		SPDK_ERRLOG("Service id is required\n");
2741 		return -EINVAL;
2742 	}
2743 
2744 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2745 	assert(rtransport->event_channel != NULL);
2746 
2747 	port = calloc(1, sizeof(*port));
2748 	if (!port) {
2749 		SPDK_ERRLOG("Port allocation failed\n");
2750 		return -ENOMEM;
2751 	}
2752 
2753 	port->trid = trid;
2754 
2755 	switch (trid->adrfam) {
2756 	case SPDK_NVMF_ADRFAM_IPV4:
2757 		family = AF_INET;
2758 		break;
2759 	case SPDK_NVMF_ADRFAM_IPV6:
2760 		family = AF_INET6;
2761 		break;
2762 	default:
2763 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam);
2764 		free(port);
2765 		return -EINVAL;
2766 	}
2767 
2768 	memset(&hints, 0, sizeof(hints));
2769 	hints.ai_family = family;
2770 	hints.ai_flags = AI_NUMERICSERV;
2771 	hints.ai_socktype = SOCK_STREAM;
2772 	hints.ai_protocol = 0;
2773 
2774 	rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res);
2775 	if (rc) {
2776 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
2777 		free(port);
2778 		return -EINVAL;
2779 	}
2780 
2781 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
2782 	if (rc < 0) {
2783 		SPDK_ERRLOG("rdma_create_id() failed\n");
2784 		freeaddrinfo(res);
2785 		free(port);
2786 		return rc;
2787 	}
2788 
2789 	rc = rdma_bind_addr(port->id, res->ai_addr);
2790 	freeaddrinfo(res);
2791 
2792 	if (rc < 0) {
2793 		SPDK_ERRLOG("rdma_bind_addr() failed\n");
2794 		rdma_destroy_id(port->id);
2795 		free(port);
2796 		return rc;
2797 	}
2798 
2799 	if (!port->id->verbs) {
2800 		SPDK_ERRLOG("ibv_context is null\n");
2801 		rdma_destroy_id(port->id);
2802 		free(port);
2803 		return -1;
2804 	}
2805 
2806 	rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog);
2807 	if (rc < 0) {
2808 		SPDK_ERRLOG("rdma_listen() failed\n");
2809 		rdma_destroy_id(port->id);
2810 		free(port);
2811 		return rc;
2812 	}
2813 
2814 	TAILQ_FOREACH(device, &rtransport->devices, link) {
2815 		if (device->context == port->id->verbs) {
2816 			port->device = device;
2817 			break;
2818 		}
2819 	}
2820 	if (!port->device) {
2821 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
2822 			    port->id->verbs);
2823 		rdma_destroy_id(port->id);
2824 		free(port);
2825 		return -EINVAL;
2826 	}
2827 
2828 	SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n",
2829 		       trid->traddr, trid->trsvcid);
2830 
2831 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
2832 	return 0;
2833 }
2834 
2835 static void
2836 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
2837 		      const struct spdk_nvme_transport_id *trid)
2838 {
2839 	struct spdk_nvmf_rdma_transport *rtransport;
2840 	struct spdk_nvmf_rdma_port *port, *tmp;
2841 
2842 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2843 
2844 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
2845 		if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
2846 			TAILQ_REMOVE(&rtransport->ports, port, link);
2847 			rdma_destroy_id(port->id);
2848 			free(port);
2849 			break;
2850 		}
2851 	}
2852 }
2853 
2854 static void
2855 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
2856 				struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
2857 {
2858 	struct spdk_nvmf_request *req, *tmp;
2859 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
2860 	struct spdk_nvmf_rdma_resources *resources;
2861 
2862 	/* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */
2863 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
2864 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2865 			break;
2866 		}
2867 	}
2868 
2869 	/* Then RDMA writes since reads have stronger restrictions than writes */
2870 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
2871 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2872 			break;
2873 		}
2874 	}
2875 
2876 	/* Then we handle request waiting on memory buffers. */
2877 	STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) {
2878 		rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
2879 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2880 			break;
2881 		}
2882 	}
2883 
2884 	resources = rqpair->resources;
2885 	while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
2886 		rdma_req = STAILQ_FIRST(&resources->free_queue);
2887 		STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
2888 		rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
2889 		STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
2890 
2891 		if (rqpair->srq != NULL) {
2892 			rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
2893 			rdma_req->recv->qpair->qd++;
2894 		} else {
2895 			rqpair->qd++;
2896 		}
2897 
2898 		rdma_req->receive_tsc = rdma_req->recv->receive_tsc;
2899 		rdma_req->state = RDMA_REQUEST_STATE_NEW;
2900 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
2901 			break;
2902 		}
2903 	}
2904 	if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) {
2905 		rqpair->poller->stat.pending_free_request++;
2906 	}
2907 }
2908 
2909 static inline bool
2910 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device)
2911 {
2912 	/* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */
2913 	return nvmf_rdma_is_rxe_device(device) ||
2914 	       device->context->device->transport_type == IBV_TRANSPORT_IWARP;
2915 }
2916 
2917 static void
2918 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair)
2919 {
2920 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
2921 			struct spdk_nvmf_rdma_transport, transport);
2922 
2923 	nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
2924 
2925 	/* nvmr_rdma_close_qpair is not called */
2926 	if (!rqpair->to_close) {
2927 		return;
2928 	}
2929 
2930 	/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
2931 	if (rqpair->current_send_depth != 0) {
2932 		return;
2933 	}
2934 
2935 	if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
2936 		return;
2937 	}
2938 
2939 	if (rqpair->srq != NULL && rqpair->last_wqe_reached == false &&
2940 	    !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) {
2941 		return;
2942 	}
2943 
2944 	assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR);
2945 
2946 	nvmf_rdma_qpair_destroy(rqpair);
2947 }
2948 
2949 static int
2950 nvmf_rdma_disconnect(struct rdma_cm_event *evt)
2951 {
2952 	struct spdk_nvmf_qpair		*qpair;
2953 	struct spdk_nvmf_rdma_qpair	*rqpair;
2954 
2955 	if (evt->id == NULL) {
2956 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
2957 		return -1;
2958 	}
2959 
2960 	qpair = evt->id->context;
2961 	if (qpair == NULL) {
2962 		SPDK_ERRLOG("disconnect request: no active connection\n");
2963 		return -1;
2964 	}
2965 
2966 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
2967 
2968 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair);
2969 
2970 	spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
2971 
2972 	return 0;
2973 }
2974 
2975 #ifdef DEBUG
2976 static const char *CM_EVENT_STR[] = {
2977 	"RDMA_CM_EVENT_ADDR_RESOLVED",
2978 	"RDMA_CM_EVENT_ADDR_ERROR",
2979 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
2980 	"RDMA_CM_EVENT_ROUTE_ERROR",
2981 	"RDMA_CM_EVENT_CONNECT_REQUEST",
2982 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
2983 	"RDMA_CM_EVENT_CONNECT_ERROR",
2984 	"RDMA_CM_EVENT_UNREACHABLE",
2985 	"RDMA_CM_EVENT_REJECTED",
2986 	"RDMA_CM_EVENT_ESTABLISHED",
2987 	"RDMA_CM_EVENT_DISCONNECTED",
2988 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
2989 	"RDMA_CM_EVENT_MULTICAST_JOIN",
2990 	"RDMA_CM_EVENT_MULTICAST_ERROR",
2991 	"RDMA_CM_EVENT_ADDR_CHANGE",
2992 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
2993 };
2994 #endif /* DEBUG */
2995 
2996 static void
2997 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport,
2998 				    struct spdk_nvmf_rdma_port *port)
2999 {
3000 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3001 	struct spdk_nvmf_rdma_poller		*rpoller;
3002 	struct spdk_nvmf_rdma_qpair		*rqpair;
3003 
3004 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3005 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3006 			RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) {
3007 				if (rqpair->listen_id == port->id) {
3008 					spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3009 				}
3010 			}
3011 		}
3012 	}
3013 }
3014 
3015 static bool
3016 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport,
3017 				      struct rdma_cm_event *event)
3018 {
3019 	const struct spdk_nvme_transport_id	*trid;
3020 	struct spdk_nvmf_rdma_port		*port;
3021 	struct spdk_nvmf_rdma_transport		*rtransport;
3022 	bool					event_acked = false;
3023 
3024 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3025 	TAILQ_FOREACH(port, &rtransport->ports, link) {
3026 		if (port->id == event->id) {
3027 			SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid);
3028 			rdma_ack_cm_event(event);
3029 			event_acked = true;
3030 			trid = port->trid;
3031 			break;
3032 		}
3033 	}
3034 
3035 	if (event_acked) {
3036 		nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
3037 
3038 		nvmf_rdma_stop_listen(transport, trid);
3039 		nvmf_rdma_listen(transport, trid, NULL);
3040 	}
3041 
3042 	return event_acked;
3043 }
3044 
3045 static void
3046 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport,
3047 				       struct rdma_cm_event *event)
3048 {
3049 	struct spdk_nvmf_rdma_port		*port;
3050 	struct spdk_nvmf_rdma_transport		*rtransport;
3051 
3052 	port = event->id->context;
3053 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3054 
3055 	SPDK_NOTICELOG("Port %s:%s is being removed\n", port->trid->traddr, port->trid->trsvcid);
3056 
3057 	nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
3058 
3059 	rdma_ack_cm_event(event);
3060 
3061 	while (spdk_nvmf_transport_stop_listen(transport, port->trid) == 0) {
3062 		;
3063 	}
3064 }
3065 
3066 static void
3067 nvmf_process_cm_event(struct spdk_nvmf_transport *transport)
3068 {
3069 	struct spdk_nvmf_rdma_transport *rtransport;
3070 	struct rdma_cm_event		*event;
3071 	int				rc;
3072 	bool				event_acked;
3073 
3074 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3075 
3076 	if (rtransport->event_channel == NULL) {
3077 		return;
3078 	}
3079 
3080 	while (1) {
3081 		event_acked = false;
3082 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
3083 		if (rc) {
3084 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
3085 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
3086 			}
3087 			break;
3088 		}
3089 
3090 		SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
3091 
3092 		spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
3093 
3094 		switch (event->event) {
3095 		case RDMA_CM_EVENT_ADDR_RESOLVED:
3096 		case RDMA_CM_EVENT_ADDR_ERROR:
3097 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
3098 		case RDMA_CM_EVENT_ROUTE_ERROR:
3099 			/* No action required. The target never attempts to resolve routes. */
3100 			break;
3101 		case RDMA_CM_EVENT_CONNECT_REQUEST:
3102 			rc = nvmf_rdma_connect(transport, event);
3103 			if (rc < 0) {
3104 				SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
3105 				break;
3106 			}
3107 			break;
3108 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
3109 			/* The target never initiates a new connection. So this will not occur. */
3110 			break;
3111 		case RDMA_CM_EVENT_CONNECT_ERROR:
3112 			/* Can this happen? The docs say it can, but not sure what causes it. */
3113 			break;
3114 		case RDMA_CM_EVENT_UNREACHABLE:
3115 		case RDMA_CM_EVENT_REJECTED:
3116 			/* These only occur on the client side. */
3117 			break;
3118 		case RDMA_CM_EVENT_ESTABLISHED:
3119 			/* TODO: Should we be waiting for this event anywhere? */
3120 			break;
3121 		case RDMA_CM_EVENT_DISCONNECTED:
3122 			rc = nvmf_rdma_disconnect(event);
3123 			if (rc < 0) {
3124 				SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3125 				break;
3126 			}
3127 			break;
3128 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
3129 			/* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL
3130 			 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s.
3131 			 * Once these events are sent to SPDK, we should release all IB resources and
3132 			 * don't make attempts to call any ibv_query/modify/create functions. We can only call
3133 			 * ibv_destroy* functions to release user space memory allocated by IB. All kernel
3134 			 * resources are already cleaned. */
3135 			if (event->id->qp) {
3136 				/* If rdma_cm event has a valid `qp` pointer then the event refers to the
3137 				 * corresponding qpair. Otherwise the event refers to a listening device */
3138 				rc = nvmf_rdma_disconnect(event);
3139 				if (rc < 0) {
3140 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3141 					break;
3142 				}
3143 			} else {
3144 				nvmf_rdma_handle_cm_event_port_removal(transport, event);
3145 				event_acked = true;
3146 			}
3147 			break;
3148 		case RDMA_CM_EVENT_MULTICAST_JOIN:
3149 		case RDMA_CM_EVENT_MULTICAST_ERROR:
3150 			/* Multicast is not used */
3151 			break;
3152 		case RDMA_CM_EVENT_ADDR_CHANGE:
3153 			event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event);
3154 			break;
3155 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
3156 			/* For now, do nothing. The target never re-uses queue pairs. */
3157 			break;
3158 		default:
3159 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
3160 			break;
3161 		}
3162 		if (!event_acked) {
3163 			rdma_ack_cm_event(event);
3164 		}
3165 	}
3166 }
3167 
3168 static void
3169 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair)
3170 {
3171 	rqpair->last_wqe_reached = true;
3172 	nvmf_rdma_destroy_drained_qpair(rqpair);
3173 }
3174 
3175 static void
3176 nvmf_rdma_qpair_process_ibv_event(void *ctx)
3177 {
3178 	struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx;
3179 
3180 	if (event_ctx->rqpair) {
3181 		STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3182 		if (event_ctx->cb_fn) {
3183 			event_ctx->cb_fn(event_ctx->rqpair);
3184 		}
3185 	}
3186 	free(event_ctx);
3187 }
3188 
3189 static int
3190 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair,
3191 				 spdk_nvmf_rdma_qpair_ibv_event fn)
3192 {
3193 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx;
3194 	struct spdk_thread *thr = NULL;
3195 	int rc;
3196 
3197 	if (rqpair->qpair.group) {
3198 		thr = rqpair->qpair.group->thread;
3199 	} else if (rqpair->destruct_channel) {
3200 		thr = spdk_io_channel_get_thread(rqpair->destruct_channel);
3201 	}
3202 
3203 	if (!thr) {
3204 		SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair);
3205 		return -EINVAL;
3206 	}
3207 
3208 	ctx = calloc(1, sizeof(*ctx));
3209 	if (!ctx) {
3210 		return -ENOMEM;
3211 	}
3212 
3213 	ctx->rqpair = rqpair;
3214 	ctx->cb_fn = fn;
3215 	STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link);
3216 
3217 	rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx);
3218 	if (rc) {
3219 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3220 		free(ctx);
3221 	}
3222 
3223 	return rc;
3224 }
3225 
3226 static int
3227 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
3228 {
3229 	int				rc;
3230 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
3231 	struct ibv_async_event		event;
3232 
3233 	rc = ibv_get_async_event(device->context, &event);
3234 
3235 	if (rc) {
3236 		/* In non-blocking mode -1 means there are no events available */
3237 		return rc;
3238 	}
3239 
3240 	switch (event.event_type) {
3241 	case IBV_EVENT_QP_FATAL:
3242 		rqpair = event.element.qp->qp_context;
3243 		SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
3244 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3245 				  (uintptr_t)rqpair, event.event_type);
3246 		nvmf_rdma_update_ibv_state(rqpair);
3247 		spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3248 		break;
3249 	case IBV_EVENT_QP_LAST_WQE_REACHED:
3250 		/* This event only occurs for shared receive queues. */
3251 		rqpair = event.element.qp->qp_context;
3252 		SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair);
3253 		rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached);
3254 		if (rc) {
3255 			SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc);
3256 			rqpair->last_wqe_reached = true;
3257 		}
3258 		break;
3259 	case IBV_EVENT_SQ_DRAINED:
3260 		/* This event occurs frequently in both error and non-error states.
3261 		 * Check if the qpair is in an error state before sending a message. */
3262 		rqpair = event.element.qp->qp_context;
3263 		SPDK_DEBUGLOG(rdma, "Last sq drained event received for rqpair %p\n", rqpair);
3264 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3265 				  (uintptr_t)rqpair, event.event_type);
3266 		if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) {
3267 			spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3268 		}
3269 		break;
3270 	case IBV_EVENT_QP_REQ_ERR:
3271 	case IBV_EVENT_QP_ACCESS_ERR:
3272 	case IBV_EVENT_COMM_EST:
3273 	case IBV_EVENT_PATH_MIG:
3274 	case IBV_EVENT_PATH_MIG_ERR:
3275 		SPDK_NOTICELOG("Async event: %s\n",
3276 			       ibv_event_type_str(event.event_type));
3277 		rqpair = event.element.qp->qp_context;
3278 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3279 				  (uintptr_t)rqpair, event.event_type);
3280 		nvmf_rdma_update_ibv_state(rqpair);
3281 		break;
3282 	case IBV_EVENT_CQ_ERR:
3283 	case IBV_EVENT_DEVICE_FATAL:
3284 	case IBV_EVENT_PORT_ACTIVE:
3285 	case IBV_EVENT_PORT_ERR:
3286 	case IBV_EVENT_LID_CHANGE:
3287 	case IBV_EVENT_PKEY_CHANGE:
3288 	case IBV_EVENT_SM_CHANGE:
3289 	case IBV_EVENT_SRQ_ERR:
3290 	case IBV_EVENT_SRQ_LIMIT_REACHED:
3291 	case IBV_EVENT_CLIENT_REREGISTER:
3292 	case IBV_EVENT_GID_CHANGE:
3293 	default:
3294 		SPDK_NOTICELOG("Async event: %s\n",
3295 			       ibv_event_type_str(event.event_type));
3296 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
3297 		break;
3298 	}
3299 	ibv_ack_async_event(&event);
3300 
3301 	return 0;
3302 }
3303 
3304 static void
3305 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events)
3306 {
3307 	int rc = 0;
3308 	uint32_t i = 0;
3309 
3310 	for (i = 0; i < max_events; i++) {
3311 		rc = nvmf_process_ib_event(device);
3312 		if (rc) {
3313 			break;
3314 		}
3315 	}
3316 
3317 	SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i);
3318 }
3319 
3320 static int
3321 nvmf_rdma_accept(void *ctx)
3322 {
3323 	int	nfds, i = 0;
3324 	struct spdk_nvmf_transport *transport = ctx;
3325 	struct spdk_nvmf_rdma_transport *rtransport;
3326 	struct spdk_nvmf_rdma_device *device, *tmp;
3327 	uint32_t count;
3328 
3329 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3330 	count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
3331 
3332 	if (nfds <= 0) {
3333 		return SPDK_POLLER_IDLE;
3334 	}
3335 
3336 	/* The first poll descriptor is RDMA CM event */
3337 	if (rtransport->poll_fds[i++].revents & POLLIN) {
3338 		nvmf_process_cm_event(transport);
3339 		nfds--;
3340 	}
3341 
3342 	if (nfds == 0) {
3343 		return SPDK_POLLER_BUSY;
3344 	}
3345 
3346 	/* Second and subsequent poll descriptors are IB async events */
3347 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
3348 		if (rtransport->poll_fds[i++].revents & POLLIN) {
3349 			nvmf_process_ib_events(device, 32);
3350 			nfds--;
3351 		}
3352 	}
3353 	/* check all flagged fd's have been served */
3354 	assert(nfds == 0);
3355 
3356 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3357 }
3358 
3359 static void
3360 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem,
3361 		     struct spdk_nvmf_ctrlr_data *cdata)
3362 {
3363 	cdata->nvmf_specific.msdbd = SPDK_NVMF_MAX_SGL_ENTRIES;
3364 
3365 	/* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled
3366 	since in-capsule data only works with NVME drives that support SGL memory layout */
3367 	if (transport->opts.dif_insert_or_strip) {
3368 		cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16;
3369 	}
3370 
3371 	if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) {
3372 		SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule"
3373 			     " data is greater than 4KiB.\n");
3374 		SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux "
3375 			     "kernel between versions 5.4 and 5.12 data corruption may occur for "
3376 			     "writes that are not a multiple of 4KiB in size.\n");
3377 	}
3378 }
3379 
3380 static void
3381 nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
3382 		   struct spdk_nvme_transport_id *trid,
3383 		   struct spdk_nvmf_discovery_log_page_entry *entry)
3384 {
3385 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
3386 	entry->adrfam = trid->adrfam;
3387 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
3388 
3389 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
3390 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
3391 
3392 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
3393 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
3394 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
3395 }
3396 
3397 static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
3398 
3399 static struct spdk_nvmf_transport_poll_group *
3400 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport,
3401 			    struct spdk_nvmf_poll_group *group)
3402 {
3403 	struct spdk_nvmf_rdma_transport		*rtransport;
3404 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3405 	struct spdk_nvmf_rdma_poller		*poller;
3406 	struct spdk_nvmf_rdma_device		*device;
3407 	struct spdk_rdma_srq_init_attr		srq_init_attr;
3408 	struct spdk_nvmf_rdma_resource_opts	opts;
3409 	int					num_cqe;
3410 
3411 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3412 
3413 	rgroup = calloc(1, sizeof(*rgroup));
3414 	if (!rgroup) {
3415 		return NULL;
3416 	}
3417 
3418 	TAILQ_INIT(&rgroup->pollers);
3419 
3420 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3421 		poller = calloc(1, sizeof(*poller));
3422 		if (!poller) {
3423 			SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
3424 			nvmf_rdma_poll_group_destroy(&rgroup->group);
3425 			return NULL;
3426 		}
3427 
3428 		poller->device = device;
3429 		poller->group = rgroup;
3430 
3431 		RB_INIT(&poller->qpairs);
3432 		STAILQ_INIT(&poller->qpairs_pending_send);
3433 		STAILQ_INIT(&poller->qpairs_pending_recv);
3434 
3435 		TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
3436 		if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) {
3437 			if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) {
3438 				SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n",
3439 					     rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr);
3440 			}
3441 			poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr);
3442 
3443 			device->num_srq++;
3444 			memset(&srq_init_attr, 0, sizeof(srq_init_attr));
3445 			srq_init_attr.pd = device->pd;
3446 			srq_init_attr.stats = &poller->stat.qp_stats.recv;
3447 			srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth;
3448 			srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
3449 			poller->srq = spdk_rdma_srq_create(&srq_init_attr);
3450 			if (!poller->srq) {
3451 				SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
3452 				nvmf_rdma_poll_group_destroy(&rgroup->group);
3453 				return NULL;
3454 			}
3455 
3456 			opts.qp = poller->srq;
3457 			opts.pd = device->pd;
3458 			opts.qpair = NULL;
3459 			opts.shared = true;
3460 			opts.max_queue_depth = poller->max_srq_depth;
3461 			opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
3462 
3463 			poller->resources = nvmf_rdma_resources_create(&opts);
3464 			if (!poller->resources) {
3465 				SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
3466 				nvmf_rdma_poll_group_destroy(&rgroup->group);
3467 				return NULL;
3468 			}
3469 		}
3470 
3471 		/*
3472 		 * When using an srq, we can limit the completion queue at startup.
3473 		 * The following formula represents the calculation:
3474 		 * num_cqe = num_recv + num_data_wr + num_send_wr.
3475 		 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
3476 		 */
3477 		if (poller->srq) {
3478 			num_cqe = poller->max_srq_depth * 3;
3479 		} else {
3480 			num_cqe = rtransport->rdma_opts.num_cqe;
3481 		}
3482 
3483 		poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
3484 		if (!poller->cq) {
3485 			SPDK_ERRLOG("Unable to create completion queue\n");
3486 			nvmf_rdma_poll_group_destroy(&rgroup->group);
3487 			return NULL;
3488 		}
3489 		poller->num_cqe = num_cqe;
3490 	}
3491 
3492 	TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link);
3493 	if (rtransport->conn_sched.next_admin_pg == NULL) {
3494 		rtransport->conn_sched.next_admin_pg = rgroup;
3495 		rtransport->conn_sched.next_io_pg = rgroup;
3496 	}
3497 
3498 	return &rgroup->group;
3499 }
3500 
3501 static struct spdk_nvmf_transport_poll_group *
3502 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
3503 {
3504 	struct spdk_nvmf_rdma_transport *rtransport;
3505 	struct spdk_nvmf_rdma_poll_group **pg;
3506 	struct spdk_nvmf_transport_poll_group *result;
3507 
3508 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
3509 
3510 	if (TAILQ_EMPTY(&rtransport->poll_groups)) {
3511 		return NULL;
3512 	}
3513 
3514 	if (qpair->qid == 0) {
3515 		pg = &rtransport->conn_sched.next_admin_pg;
3516 	} else {
3517 		struct spdk_nvmf_rdma_poll_group *pg_min, *pg_start, *pg_current;
3518 		uint32_t min_value;
3519 
3520 		pg = &rtransport->conn_sched.next_io_pg;
3521 		pg_min = *pg;
3522 		pg_start = *pg;
3523 		pg_current = *pg;
3524 		min_value = (*pg)->group.group->stat.current_io_qpairs;
3525 
3526 		while (pg_current->group.group->stat.current_io_qpairs) {
3527 			pg_current = TAILQ_NEXT(pg_current, link);
3528 			if (pg_current == NULL) {
3529 				pg_current = TAILQ_FIRST(&rtransport->poll_groups);
3530 			}
3531 
3532 			if (pg_current->group.group->stat.current_io_qpairs < min_value) {
3533 				min_value = pg_current->group.group->stat.current_io_qpairs;
3534 				pg_min = pg_current;
3535 			}
3536 
3537 			if (pg_current == pg_start) {
3538 				break;
3539 			}
3540 		}
3541 		*pg = pg_min;
3542 	}
3543 
3544 	assert(*pg != NULL);
3545 
3546 	result = &(*pg)->group;
3547 
3548 	*pg = TAILQ_NEXT(*pg, link);
3549 	if (*pg == NULL) {
3550 		*pg = TAILQ_FIRST(&rtransport->poll_groups);
3551 	}
3552 
3553 	return result;
3554 }
3555 
3556 static void
3557 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
3558 {
3559 	struct spdk_nvmf_rdma_poll_group	*rgroup, *next_rgroup;
3560 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
3561 	struct spdk_nvmf_rdma_qpair		*qpair, *tmp_qpair;
3562 	struct spdk_nvmf_rdma_transport		*rtransport;
3563 
3564 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3565 	if (!rgroup) {
3566 		return;
3567 	}
3568 
3569 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
3570 		TAILQ_REMOVE(&rgroup->pollers, poller, link);
3571 
3572 		RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) {
3573 			nvmf_rdma_qpair_destroy(qpair);
3574 		}
3575 
3576 		if (poller->srq) {
3577 			if (poller->resources) {
3578 				nvmf_rdma_resources_destroy(poller->resources);
3579 			}
3580 			spdk_rdma_srq_destroy(poller->srq);
3581 			SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq);
3582 		}
3583 
3584 		if (poller->cq) {
3585 			ibv_destroy_cq(poller->cq);
3586 		}
3587 
3588 		free(poller);
3589 	}
3590 
3591 	if (rgroup->group.transport == NULL) {
3592 		/* Transport can be NULL when nvmf_rdma_poll_group_create()
3593 		 * calls this function directly in a failure path. */
3594 		free(rgroup);
3595 		return;
3596 	}
3597 
3598 	rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport);
3599 
3600 	next_rgroup = TAILQ_NEXT(rgroup, link);
3601 	TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link);
3602 	if (next_rgroup == NULL) {
3603 		next_rgroup = TAILQ_FIRST(&rtransport->poll_groups);
3604 	}
3605 	if (rtransport->conn_sched.next_admin_pg == rgroup) {
3606 		rtransport->conn_sched.next_admin_pg = next_rgroup;
3607 	}
3608 	if (rtransport->conn_sched.next_io_pg == rgroup) {
3609 		rtransport->conn_sched.next_io_pg = next_rgroup;
3610 	}
3611 
3612 	free(rgroup);
3613 }
3614 
3615 static void
3616 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
3617 {
3618 	if (rqpair->cm_id != NULL) {
3619 		nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
3620 	}
3621 }
3622 
3623 static int
3624 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3625 			 struct spdk_nvmf_qpair *qpair)
3626 {
3627 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3628 	struct spdk_nvmf_rdma_qpair		*rqpair;
3629 	struct spdk_nvmf_rdma_device		*device;
3630 	struct spdk_nvmf_rdma_poller		*poller;
3631 	int					rc;
3632 
3633 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3634 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3635 
3636 	device = rqpair->device;
3637 
3638 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
3639 		if (poller->device == device) {
3640 			break;
3641 		}
3642 	}
3643 
3644 	if (!poller) {
3645 		SPDK_ERRLOG("No poller found for device.\n");
3646 		return -1;
3647 	}
3648 
3649 	rqpair->poller = poller;
3650 	rqpair->srq = rqpair->poller->srq;
3651 
3652 	rc = nvmf_rdma_qpair_initialize(qpair);
3653 	if (rc < 0) {
3654 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
3655 		rqpair->poller = NULL;
3656 		rqpair->srq = NULL;
3657 		return -1;
3658 	}
3659 
3660 	RB_INSERT(qpairs_tree, &poller->qpairs, rqpair);
3661 
3662 	rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
3663 	if (rc) {
3664 		/* Try to reject, but we probably can't */
3665 		nvmf_rdma_qpair_reject_connection(rqpair);
3666 		return -1;
3667 	}
3668 
3669 	nvmf_rdma_update_ibv_state(rqpair);
3670 
3671 	return 0;
3672 }
3673 
3674 static int
3675 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3676 			    struct spdk_nvmf_qpair *qpair)
3677 {
3678 	struct spdk_nvmf_rdma_qpair		*rqpair;
3679 
3680 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3681 	assert(group->transport->tgt != NULL);
3682 
3683 	rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt);
3684 
3685 	if (!rqpair->destruct_channel) {
3686 		SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair);
3687 		return 0;
3688 	}
3689 
3690 	/* Sanity check that we get io_channel on the correct thread */
3691 	if (qpair->group) {
3692 		assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel));
3693 	}
3694 
3695 	return 0;
3696 }
3697 
3698 static int
3699 nvmf_rdma_request_free(struct spdk_nvmf_request *req)
3700 {
3701 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3702 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3703 			struct spdk_nvmf_rdma_transport, transport);
3704 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
3705 					      struct spdk_nvmf_rdma_qpair, qpair);
3706 
3707 	/*
3708 	 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request
3709 	 * needs to be returned to the shared receive queue or the poll group will eventually be
3710 	 * starved of RECV structures.
3711 	 */
3712 	if (rqpair->srq && rdma_req->recv) {
3713 		int rc;
3714 		struct ibv_recv_wr *bad_recv_wr;
3715 
3716 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr);
3717 		rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
3718 		if (rc) {
3719 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
3720 		}
3721 	}
3722 
3723 	_nvmf_rdma_request_free(rdma_req, rtransport);
3724 	return 0;
3725 }
3726 
3727 static int
3728 nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
3729 {
3730 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3731 			struct spdk_nvmf_rdma_transport, transport);
3732 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
3733 			struct spdk_nvmf_rdma_request, req);
3734 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
3735 			struct spdk_nvmf_rdma_qpair, qpair);
3736 
3737 	if (rqpair->ibv_state != IBV_QPS_ERR) {
3738 		/* The connection is alive, so process the request as normal */
3739 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
3740 	} else {
3741 		/* The connection is dead. Move the request directly to the completed state. */
3742 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3743 	}
3744 
3745 	nvmf_rdma_request_process(rtransport, rdma_req);
3746 
3747 	return 0;
3748 }
3749 
3750 static void
3751 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair,
3752 		      spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3753 {
3754 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3755 
3756 	rqpair->to_close = true;
3757 
3758 	/* This happens only when the qpair is disconnected before
3759 	 * it is added to the poll group. Since there is no poll group,
3760 	 * the RDMA qp has not been initialized yet and the RDMA CM
3761 	 * event has not yet been acknowledged, so we need to reject it.
3762 	 */
3763 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
3764 		nvmf_rdma_qpair_reject_connection(rqpair);
3765 		nvmf_rdma_qpair_destroy(rqpair);
3766 		return;
3767 	}
3768 
3769 	if (rqpair->rdma_qp) {
3770 		spdk_rdma_qp_disconnect(rqpair->rdma_qp);
3771 	}
3772 
3773 	nvmf_rdma_destroy_drained_qpair(rqpair);
3774 
3775 	if (cb_fn) {
3776 		cb_fn(cb_arg);
3777 	}
3778 }
3779 
3780 static struct spdk_nvmf_rdma_qpair *
3781 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
3782 {
3783 	struct spdk_nvmf_rdma_qpair find;
3784 
3785 	find.qp_num = wc->qp_num;
3786 
3787 	return RB_FIND(qpairs_tree, &rpoller->qpairs, &find);
3788 }
3789 
3790 #ifdef DEBUG
3791 static int
3792 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
3793 {
3794 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
3795 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
3796 }
3797 #endif
3798 
3799 static void
3800 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr,
3801 			   int rc)
3802 {
3803 	struct spdk_nvmf_rdma_recv	*rdma_recv;
3804 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
3805 
3806 	SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc);
3807 	while (bad_recv_wr != NULL) {
3808 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id;
3809 		rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
3810 
3811 		rdma_recv->qpair->current_recv_depth++;
3812 		bad_recv_wr = bad_recv_wr->next;
3813 		SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc);
3814 		spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair, NULL, NULL);
3815 	}
3816 }
3817 
3818 static void
3819 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc)
3820 {
3821 	SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc);
3822 	while (bad_recv_wr != NULL) {
3823 		bad_recv_wr = bad_recv_wr->next;
3824 		rqpair->current_recv_depth++;
3825 	}
3826 	spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3827 }
3828 
3829 static void
3830 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
3831 		     struct spdk_nvmf_rdma_poller *rpoller)
3832 {
3833 	struct spdk_nvmf_rdma_qpair	*rqpair;
3834 	struct ibv_recv_wr		*bad_recv_wr;
3835 	int				rc;
3836 
3837 	if (rpoller->srq) {
3838 		rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr);
3839 		if (rc) {
3840 			_poller_reset_failed_recvs(rpoller, bad_recv_wr, rc);
3841 		}
3842 	} else {
3843 		while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) {
3844 			rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv);
3845 			rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
3846 			if (rc) {
3847 				_qp_reset_failed_recvs(rqpair, bad_recv_wr, rc);
3848 			}
3849 			STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link);
3850 		}
3851 	}
3852 }
3853 
3854 static void
3855 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport,
3856 		       struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc)
3857 {
3858 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
3859 	struct spdk_nvmf_rdma_request	*prev_rdma_req = NULL, *cur_rdma_req = NULL;
3860 
3861 	SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc);
3862 	for (; bad_wr != NULL; bad_wr = bad_wr->next) {
3863 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id;
3864 		assert(rqpair->current_send_depth > 0);
3865 		rqpair->current_send_depth--;
3866 		switch (bad_rdma_wr->type) {
3867 		case RDMA_WR_TYPE_DATA:
3868 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
3869 			if (bad_wr->opcode == IBV_WR_RDMA_READ) {
3870 				assert(rqpair->current_read_depth > 0);
3871 				rqpair->current_read_depth--;
3872 			}
3873 			break;
3874 		case RDMA_WR_TYPE_SEND:
3875 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
3876 			break;
3877 		default:
3878 			SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair);
3879 			prev_rdma_req = cur_rdma_req;
3880 			continue;
3881 		}
3882 
3883 		if (prev_rdma_req == cur_rdma_req) {
3884 			/* this request was handled by an earlier wr. i.e. we were performing an nvme read. */
3885 			/* We only have to check against prev_wr since each requests wrs are contiguous in this list. */
3886 			continue;
3887 		}
3888 
3889 		switch (cur_rdma_req->state) {
3890 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3891 			cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
3892 			cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
3893 			break;
3894 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3895 		case RDMA_REQUEST_STATE_COMPLETING:
3896 			cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3897 			break;
3898 		default:
3899 			SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n",
3900 				    cur_rdma_req->state, rqpair);
3901 			continue;
3902 		}
3903 
3904 		nvmf_rdma_request_process(rtransport, cur_rdma_req);
3905 		prev_rdma_req = cur_rdma_req;
3906 	}
3907 
3908 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
3909 		/* Disconnect the connection. */
3910 		spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3911 	}
3912 
3913 }
3914 
3915 static void
3916 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
3917 		     struct spdk_nvmf_rdma_poller *rpoller)
3918 {
3919 	struct spdk_nvmf_rdma_qpair	*rqpair;
3920 	struct ibv_send_wr		*bad_wr = NULL;
3921 	int				rc;
3922 
3923 	while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) {
3924 		rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send);
3925 		rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr);
3926 
3927 		/* bad wr always points to the first wr that failed. */
3928 		if (rc) {
3929 			_qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc);
3930 		}
3931 		STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link);
3932 	}
3933 }
3934 
3935 static const char *
3936 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type)
3937 {
3938 	switch (wr_type) {
3939 	case RDMA_WR_TYPE_RECV:
3940 		return "RECV";
3941 	case RDMA_WR_TYPE_SEND:
3942 		return "SEND";
3943 	case RDMA_WR_TYPE_DATA:
3944 		return "DATA";
3945 	default:
3946 		SPDK_ERRLOG("Unknown WR type %d\n", wr_type);
3947 		SPDK_UNREACHABLE();
3948 	}
3949 }
3950 
3951 static inline void
3952 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc)
3953 {
3954 	enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type;
3955 
3956 	if (wc->status == IBV_WC_WR_FLUSH_ERR) {
3957 		/* If qpair is in ERR state, we will receive completions for all posted and not completed
3958 		 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
3959 		SPDK_DEBUGLOG(rdma,
3960 			      "Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n",
3961 			      rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id,
3962 			      nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
3963 	} else {
3964 		SPDK_ERRLOG("Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n",
3965 			    rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id,
3966 			    nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
3967 	}
3968 }
3969 
3970 static int
3971 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
3972 		      struct spdk_nvmf_rdma_poller *rpoller)
3973 {
3974 	struct ibv_wc wc[32];
3975 	struct spdk_nvmf_rdma_wr	*rdma_wr;
3976 	struct spdk_nvmf_rdma_request	*rdma_req;
3977 	struct spdk_nvmf_rdma_recv	*rdma_recv;
3978 	struct spdk_nvmf_rdma_qpair	*rqpair;
3979 	int reaped, i;
3980 	int count = 0;
3981 	bool error = false;
3982 	uint64_t poll_tsc = spdk_get_ticks();
3983 
3984 	/* Poll for completing operations. */
3985 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
3986 	if (reaped < 0) {
3987 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
3988 			    errno, spdk_strerror(errno));
3989 		return -1;
3990 	} else if (reaped == 0) {
3991 		rpoller->stat.idle_polls++;
3992 	}
3993 
3994 	rpoller->stat.polls++;
3995 	rpoller->stat.completions += reaped;
3996 
3997 	for (i = 0; i < reaped; i++) {
3998 
3999 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
4000 
4001 		switch (rdma_wr->type) {
4002 		case RDMA_WR_TYPE_SEND:
4003 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
4004 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4005 
4006 			if (!wc[i].status) {
4007 				count++;
4008 				assert(wc[i].opcode == IBV_WC_SEND);
4009 				assert(nvmf_rdma_req_is_completing(rdma_req));
4010 			}
4011 
4012 			rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4013 			/* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */
4014 			rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1;
4015 			rdma_req->num_outstanding_data_wr = 0;
4016 
4017 			nvmf_rdma_request_process(rtransport, rdma_req);
4018 			break;
4019 		case RDMA_WR_TYPE_RECV:
4020 			/* rdma_recv->qpair will be invalid if using an SRQ.  In that case we have to get the qpair from the wc. */
4021 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4022 			if (rpoller->srq != NULL) {
4023 				rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
4024 				/* It is possible that there are still some completions for destroyed QP
4025 				 * associated with SRQ. We just ignore these late completions and re-post
4026 				 * receive WRs back to SRQ.
4027 				 */
4028 				if (spdk_unlikely(NULL == rdma_recv->qpair)) {
4029 					struct ibv_recv_wr *bad_wr;
4030 					int rc;
4031 
4032 					rdma_recv->wr.next = NULL;
4033 					spdk_rdma_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr);
4034 					rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_wr);
4035 					if (rc) {
4036 						SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc);
4037 					}
4038 					continue;
4039 				}
4040 			}
4041 			rqpair = rdma_recv->qpair;
4042 
4043 			assert(rqpair != NULL);
4044 			if (!wc[i].status) {
4045 				assert(wc[i].opcode == IBV_WC_RECV);
4046 				if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
4047 					spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4048 					break;
4049 				}
4050 			}
4051 
4052 			rdma_recv->wr.next = NULL;
4053 			rqpair->current_recv_depth++;
4054 			rdma_recv->receive_tsc = poll_tsc;
4055 			rpoller->stat.requests++;
4056 			STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link);
4057 			break;
4058 		case RDMA_WR_TYPE_DATA:
4059 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
4060 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4061 
4062 			assert(rdma_req->num_outstanding_data_wr > 0);
4063 
4064 			rqpair->current_send_depth--;
4065 			rdma_req->num_outstanding_data_wr--;
4066 			if (!wc[i].status) {
4067 				assert(wc[i].opcode == IBV_WC_RDMA_READ);
4068 				rqpair->current_read_depth--;
4069 				/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
4070 				if (rdma_req->num_outstanding_data_wr == 0) {
4071 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
4072 					nvmf_rdma_request_process(rtransport, rdma_req);
4073 				}
4074 			} else {
4075 				/* If the data transfer fails still force the queue into the error state,
4076 				 * if we were performing an RDMA_READ, we need to force the request into a
4077 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
4078 				 * case, we should wait for the SEND to complete. */
4079 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
4080 					rqpair->current_read_depth--;
4081 					if (rdma_req->num_outstanding_data_wr == 0) {
4082 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4083 					}
4084 				}
4085 			}
4086 			break;
4087 		default:
4088 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
4089 			continue;
4090 		}
4091 
4092 		/* Handle error conditions */
4093 		if (wc[i].status) {
4094 			nvmf_rdma_update_ibv_state(rqpair);
4095 			nvmf_rdma_log_wc_status(rqpair, &wc[i]);
4096 
4097 			error = true;
4098 
4099 			if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
4100 				/* Disconnect the connection. */
4101 				spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4102 			} else {
4103 				nvmf_rdma_destroy_drained_qpair(rqpair);
4104 			}
4105 			continue;
4106 		}
4107 
4108 		nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
4109 
4110 		if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
4111 			nvmf_rdma_destroy_drained_qpair(rqpair);
4112 		}
4113 	}
4114 
4115 	if (error == true) {
4116 		return -1;
4117 	}
4118 
4119 	/* submit outstanding work requests. */
4120 	_poller_submit_recvs(rtransport, rpoller);
4121 	_poller_submit_sends(rtransport, rpoller);
4122 
4123 	return count;
4124 }
4125 
4126 static int
4127 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
4128 {
4129 	struct spdk_nvmf_rdma_transport *rtransport;
4130 	struct spdk_nvmf_rdma_poll_group *rgroup;
4131 	struct spdk_nvmf_rdma_poller	*rpoller;
4132 	int				count, rc;
4133 
4134 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
4135 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4136 
4137 	count = 0;
4138 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
4139 		rc = nvmf_rdma_poller_poll(rtransport, rpoller);
4140 		if (rc < 0) {
4141 			return rc;
4142 		}
4143 		count += rc;
4144 	}
4145 
4146 	return count;
4147 }
4148 
4149 static int
4150 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
4151 			  struct spdk_nvme_transport_id *trid,
4152 			  bool peer)
4153 {
4154 	struct sockaddr *saddr;
4155 	uint16_t port;
4156 
4157 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA);
4158 
4159 	if (peer) {
4160 		saddr = rdma_get_peer_addr(id);
4161 	} else {
4162 		saddr = rdma_get_local_addr(id);
4163 	}
4164 	switch (saddr->sa_family) {
4165 	case AF_INET: {
4166 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
4167 
4168 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
4169 		inet_ntop(AF_INET, &saddr_in->sin_addr,
4170 			  trid->traddr, sizeof(trid->traddr));
4171 		if (peer) {
4172 			port = ntohs(rdma_get_dst_port(id));
4173 		} else {
4174 			port = ntohs(rdma_get_src_port(id));
4175 		}
4176 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4177 		break;
4178 	}
4179 	case AF_INET6: {
4180 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
4181 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
4182 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
4183 			  trid->traddr, sizeof(trid->traddr));
4184 		if (peer) {
4185 			port = ntohs(rdma_get_dst_port(id));
4186 		} else {
4187 			port = ntohs(rdma_get_src_port(id));
4188 		}
4189 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4190 		break;
4191 	}
4192 	default:
4193 		return -1;
4194 
4195 	}
4196 
4197 	return 0;
4198 }
4199 
4200 static int
4201 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
4202 			      struct spdk_nvme_transport_id *trid)
4203 {
4204 	struct spdk_nvmf_rdma_qpair	*rqpair;
4205 
4206 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4207 
4208 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
4209 }
4210 
4211 static int
4212 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
4213 			       struct spdk_nvme_transport_id *trid)
4214 {
4215 	struct spdk_nvmf_rdma_qpair	*rqpair;
4216 
4217 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4218 
4219 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
4220 }
4221 
4222 static int
4223 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
4224 				struct spdk_nvme_transport_id *trid)
4225 {
4226 	struct spdk_nvmf_rdma_qpair	*rqpair;
4227 
4228 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4229 
4230 	return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
4231 }
4232 
4233 void
4234 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
4235 {
4236 	g_nvmf_hooks = *hooks;
4237 }
4238 
4239 static void
4240 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req,
4241 				   struct spdk_nvmf_rdma_request *rdma_req_to_abort)
4242 {
4243 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
4244 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
4245 
4246 	rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
4247 
4248 	req->rsp->nvme_cpl.cdw0 &= ~1U;	/* Command was successfully aborted. */
4249 }
4250 
4251 static int
4252 _nvmf_rdma_qpair_abort_request(void *ctx)
4253 {
4254 	struct spdk_nvmf_request *req = ctx;
4255 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF(
4256 				req->req_to_abort, struct spdk_nvmf_rdma_request, req);
4257 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
4258 					      struct spdk_nvmf_rdma_qpair, qpair);
4259 	int rc;
4260 
4261 	spdk_poller_unregister(&req->poller);
4262 
4263 	switch (rdma_req_to_abort->state) {
4264 	case RDMA_REQUEST_STATE_EXECUTING:
4265 		rc = nvmf_ctrlr_abort_request(req);
4266 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
4267 			return SPDK_POLLER_BUSY;
4268 		}
4269 		break;
4270 
4271 	case RDMA_REQUEST_STATE_NEED_BUFFER:
4272 		STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue,
4273 			      &rdma_req_to_abort->req, spdk_nvmf_request, buf_link);
4274 
4275 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4276 		break;
4277 
4278 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
4279 		STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort,
4280 			      spdk_nvmf_rdma_request, state_link);
4281 
4282 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4283 		break;
4284 
4285 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
4286 		STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort,
4287 			      spdk_nvmf_rdma_request, state_link);
4288 
4289 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4290 		break;
4291 
4292 	case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
4293 		if (spdk_get_ticks() < req->timeout_tsc) {
4294 			req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0);
4295 			return SPDK_POLLER_BUSY;
4296 		}
4297 		break;
4298 
4299 	default:
4300 		break;
4301 	}
4302 
4303 	spdk_nvmf_request_complete(req);
4304 	return SPDK_POLLER_BUSY;
4305 }
4306 
4307 static void
4308 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
4309 			      struct spdk_nvmf_request *req)
4310 {
4311 	struct spdk_nvmf_rdma_qpair *rqpair;
4312 	struct spdk_nvmf_rdma_transport *rtransport;
4313 	struct spdk_nvmf_transport *transport;
4314 	uint16_t cid;
4315 	uint32_t i, max_req_count;
4316 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req;
4317 
4318 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4319 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
4320 	transport = &rtransport->transport;
4321 
4322 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
4323 	max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth;
4324 
4325 	for (i = 0; i < max_req_count; i++) {
4326 		rdma_req = &rqpair->resources->reqs[i];
4327 		/* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair
4328 		 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to
4329 		 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */
4330 		if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid &&
4331 		    rdma_req->req.qpair == qpair) {
4332 			rdma_req_to_abort = rdma_req;
4333 			break;
4334 		}
4335 	}
4336 
4337 	if (rdma_req_to_abort == NULL) {
4338 		spdk_nvmf_request_complete(req);
4339 		return;
4340 	}
4341 
4342 	req->req_to_abort = &rdma_req_to_abort->req;
4343 	req->timeout_tsc = spdk_get_ticks() +
4344 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
4345 	req->poller = NULL;
4346 
4347 	_nvmf_rdma_qpair_abort_request(req);
4348 }
4349 
4350 static void
4351 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group,
4352 			       struct spdk_json_write_ctx *w)
4353 {
4354 	struct spdk_nvmf_rdma_poll_group *rgroup;
4355 	struct spdk_nvmf_rdma_poller *rpoller;
4356 
4357 	assert(w != NULL);
4358 
4359 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4360 
4361 	spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer);
4362 
4363 	spdk_json_write_named_array_begin(w, "devices");
4364 
4365 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
4366 		spdk_json_write_object_begin(w);
4367 		spdk_json_write_named_string(w, "name",
4368 					     ibv_get_device_name(rpoller->device->context->device));
4369 		spdk_json_write_named_uint64(w, "polls",
4370 					     rpoller->stat.polls);
4371 		spdk_json_write_named_uint64(w, "idle_polls",
4372 					     rpoller->stat.idle_polls);
4373 		spdk_json_write_named_uint64(w, "completions",
4374 					     rpoller->stat.completions);
4375 		spdk_json_write_named_uint64(w, "requests",
4376 					     rpoller->stat.requests);
4377 		spdk_json_write_named_uint64(w, "request_latency",
4378 					     rpoller->stat.request_latency);
4379 		spdk_json_write_named_uint64(w, "pending_free_request",
4380 					     rpoller->stat.pending_free_request);
4381 		spdk_json_write_named_uint64(w, "pending_rdma_read",
4382 					     rpoller->stat.pending_rdma_read);
4383 		spdk_json_write_named_uint64(w, "pending_rdma_write",
4384 					     rpoller->stat.pending_rdma_write);
4385 		spdk_json_write_named_uint64(w, "total_send_wrs",
4386 					     rpoller->stat.qp_stats.send.num_submitted_wrs);
4387 		spdk_json_write_named_uint64(w, "send_doorbell_updates",
4388 					     rpoller->stat.qp_stats.send.doorbell_updates);
4389 		spdk_json_write_named_uint64(w, "total_recv_wrs",
4390 					     rpoller->stat.qp_stats.recv.num_submitted_wrs);
4391 		spdk_json_write_named_uint64(w, "recv_doorbell_updates",
4392 					     rpoller->stat.qp_stats.recv.doorbell_updates);
4393 		spdk_json_write_object_end(w);
4394 	}
4395 
4396 	spdk_json_write_array_end(w);
4397 }
4398 
4399 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
4400 	.name = "RDMA",
4401 	.type = SPDK_NVME_TRANSPORT_RDMA,
4402 	.opts_init = nvmf_rdma_opts_init,
4403 	.create = nvmf_rdma_create,
4404 	.dump_opts = nvmf_rdma_dump_opts,
4405 	.destroy = nvmf_rdma_destroy,
4406 
4407 	.listen = nvmf_rdma_listen,
4408 	.stop_listen = nvmf_rdma_stop_listen,
4409 	.cdata_init = nvmf_rdma_cdata_init,
4410 
4411 	.listener_discover = nvmf_rdma_discover,
4412 
4413 	.poll_group_create = nvmf_rdma_poll_group_create,
4414 	.get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group,
4415 	.poll_group_destroy = nvmf_rdma_poll_group_destroy,
4416 	.poll_group_add = nvmf_rdma_poll_group_add,
4417 	.poll_group_remove = nvmf_rdma_poll_group_remove,
4418 	.poll_group_poll = nvmf_rdma_poll_group_poll,
4419 
4420 	.req_free = nvmf_rdma_request_free,
4421 	.req_complete = nvmf_rdma_request_complete,
4422 
4423 	.qpair_fini = nvmf_rdma_close_qpair,
4424 	.qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid,
4425 	.qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid,
4426 	.qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid,
4427 	.qpair_abort_request = nvmf_rdma_qpair_abort_request,
4428 
4429 	.poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat,
4430 };
4431 
4432 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma);
4433 SPDK_LOG_REGISTER_COMPONENT(rdma)
4434