xref: /spdk/lib/nvmf/rdma.c (revision 4e527910925f8d001001e96f1719d015a7a51a94)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk/stdinc.h"
35 
36 #include "spdk/config.h"
37 #include "spdk/thread.h"
38 #include "spdk/likely.h"
39 #include "spdk/nvmf_transport.h"
40 #include "spdk/string.h"
41 #include "spdk/trace.h"
42 #include "spdk/util.h"
43 
44 #include "spdk_internal/assert.h"
45 #include "spdk/log.h"
46 #include "spdk_internal/rdma.h"
47 
48 #include "nvmf_internal.h"
49 
50 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
51 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma;
52 
53 /*
54  RDMA Connection Resource Defaults
55  */
56 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
57 #define NVMF_DEFAULT_RSP_SGE		1
58 #define NVMF_DEFAULT_RX_SGE		2
59 
60 /* The RDMA completion queue size */
61 #define DEFAULT_NVMF_RDMA_CQ_SIZE	4096
62 #define MAX_WR_PER_QP(queue_depth)	(queue_depth * 3 + 2)
63 
64 /* rxe driver vendor_id has been changed from 0 to 0XFFFFFF in 0184afd15a141d7ce24c32c0d86a1e3ba6bc0eb3 */
65 #define NVMF_RXE_VENDOR_ID_OLD 0
66 #define NVMF_RXE_VENDOR_ID_NEW 0XFFFFFF
67 
68 static int g_spdk_nvmf_ibv_query_mask =
69 	IBV_QP_STATE |
70 	IBV_QP_PKEY_INDEX |
71 	IBV_QP_PORT |
72 	IBV_QP_ACCESS_FLAGS |
73 	IBV_QP_AV |
74 	IBV_QP_PATH_MTU |
75 	IBV_QP_DEST_QPN |
76 	IBV_QP_RQ_PSN |
77 	IBV_QP_MAX_DEST_RD_ATOMIC |
78 	IBV_QP_MIN_RNR_TIMER |
79 	IBV_QP_SQ_PSN |
80 	IBV_QP_TIMEOUT |
81 	IBV_QP_RETRY_CNT |
82 	IBV_QP_RNR_RETRY |
83 	IBV_QP_MAX_QP_RD_ATOMIC;
84 
85 enum spdk_nvmf_rdma_request_state {
86 	/* The request is not currently in use */
87 	RDMA_REQUEST_STATE_FREE = 0,
88 
89 	/* Initial state when request first received */
90 	RDMA_REQUEST_STATE_NEW,
91 
92 	/* The request is queued until a data buffer is available. */
93 	RDMA_REQUEST_STATE_NEED_BUFFER,
94 
95 	/* The request is waiting on RDMA queue depth availability
96 	 * to transfer data from the host to the controller.
97 	 */
98 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
99 
100 	/* The request is currently transferring data from the host to the controller. */
101 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
102 
103 	/* The request is ready to execute at the block device */
104 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
105 
106 	/* The request is currently executing at the block device */
107 	RDMA_REQUEST_STATE_EXECUTING,
108 
109 	/* The request finished executing at the block device */
110 	RDMA_REQUEST_STATE_EXECUTED,
111 
112 	/* The request is waiting on RDMA queue depth availability
113 	 * to transfer data from the controller to the host.
114 	 */
115 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
116 
117 	/* The request is ready to send a completion */
118 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
119 
120 	/* The request is currently transferring data from the controller to the host. */
121 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
122 
123 	/* The request currently has an outstanding completion without an
124 	 * associated data transfer.
125 	 */
126 	RDMA_REQUEST_STATE_COMPLETING,
127 
128 	/* The request completed and can be marked free. */
129 	RDMA_REQUEST_STATE_COMPLETED,
130 
131 	/* Terminator */
132 	RDMA_REQUEST_NUM_STATES,
133 };
134 
135 #define OBJECT_NVMF_RDMA_IO				0x40
136 
137 #define TRACE_GROUP_NVMF_RDMA				0x4
138 #define TRACE_RDMA_REQUEST_STATE_NEW					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x0)
139 #define TRACE_RDMA_REQUEST_STATE_NEED_BUFFER				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x1)
140 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x2)
141 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x3)
142 #define TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE			SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x4)
143 #define TRACE_RDMA_REQUEST_STATE_EXECUTING				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x5)
144 #define TRACE_RDMA_REQUEST_STATE_EXECUTED				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x6)
145 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING		SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x7)
146 #define TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE			SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x8)
147 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x9)
148 #define TRACE_RDMA_REQUEST_STATE_COMPLETING				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xA)
149 #define TRACE_RDMA_REQUEST_STATE_COMPLETED				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xB)
150 #define TRACE_RDMA_QP_CREATE						SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xC)
151 #define TRACE_RDMA_IBV_ASYNC_EVENT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xD)
152 #define TRACE_RDMA_CM_ASYNC_EVENT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xE)
153 #define TRACE_RDMA_QP_STATE_CHANGE					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xF)
154 #define TRACE_RDMA_QP_DISCONNECT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x10)
155 #define TRACE_RDMA_QP_DESTROY						SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x11)
156 
157 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
158 {
159 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
160 	spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW,
161 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1,
162 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
163 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
164 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
165 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
166 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H",
167 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
168 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
169 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
170 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C",
171 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
172 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
173 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
174 	spdk_trace_register_description("RDMA_REQ_TX_H2C",
175 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
176 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
177 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
178 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE",
179 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
180 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
181 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
182 	spdk_trace_register_description("RDMA_REQ_EXECUTING",
183 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
184 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
185 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
186 	spdk_trace_register_description("RDMA_REQ_EXECUTED",
187 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
188 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
189 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
190 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL",
191 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
192 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
193 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
194 	spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H",
195 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
196 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
197 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
198 	spdk_trace_register_description("RDMA_REQ_COMPLETING",
199 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
200 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
201 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
202 	spdk_trace_register_description("RDMA_REQ_COMPLETED",
203 					TRACE_RDMA_REQUEST_STATE_COMPLETED,
204 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
205 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
206 
207 	spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE,
208 					OWNER_NONE, OBJECT_NONE, 0,
209 					SPDK_TRACE_ARG_TYPE_INT, "");
210 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT,
211 					OWNER_NONE, OBJECT_NONE, 0,
212 					SPDK_TRACE_ARG_TYPE_INT, "type");
213 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT,
214 					OWNER_NONE, OBJECT_NONE, 0,
215 					SPDK_TRACE_ARG_TYPE_INT, "type");
216 	spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE,
217 					OWNER_NONE, OBJECT_NONE, 0,
218 					SPDK_TRACE_ARG_TYPE_PTR, "state");
219 	spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT,
220 					OWNER_NONE, OBJECT_NONE, 0,
221 					SPDK_TRACE_ARG_TYPE_INT, "");
222 	spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY,
223 					OWNER_NONE, OBJECT_NONE, 0,
224 					SPDK_TRACE_ARG_TYPE_INT, "");
225 }
226 
227 enum spdk_nvmf_rdma_wr_type {
228 	RDMA_WR_TYPE_RECV,
229 	RDMA_WR_TYPE_SEND,
230 	RDMA_WR_TYPE_DATA,
231 };
232 
233 struct spdk_nvmf_rdma_wr {
234 	enum spdk_nvmf_rdma_wr_type	type;
235 };
236 
237 /* This structure holds commands as they are received off the wire.
238  * It must be dynamically paired with a full request object
239  * (spdk_nvmf_rdma_request) to service a request. It is separate
240  * from the request because RDMA does not appear to order
241  * completions, so occasionally we'll get a new incoming
242  * command when there aren't any free request objects.
243  */
244 struct spdk_nvmf_rdma_recv {
245 	struct ibv_recv_wr			wr;
246 	struct ibv_sge				sgl[NVMF_DEFAULT_RX_SGE];
247 
248 	struct spdk_nvmf_rdma_qpair		*qpair;
249 
250 	/* In-capsule data buffer */
251 	uint8_t					*buf;
252 
253 	struct spdk_nvmf_rdma_wr		rdma_wr;
254 	uint64_t				receive_tsc;
255 
256 	STAILQ_ENTRY(spdk_nvmf_rdma_recv)	link;
257 };
258 
259 struct spdk_nvmf_rdma_request_data {
260 	struct spdk_nvmf_rdma_wr	rdma_wr;
261 	struct ibv_send_wr		wr;
262 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
263 };
264 
265 struct spdk_nvmf_rdma_request {
266 	struct spdk_nvmf_request		req;
267 
268 	enum spdk_nvmf_rdma_request_state	state;
269 
270 	/* Data offset in req.iov */
271 	uint32_t				offset;
272 
273 	struct spdk_nvmf_rdma_recv		*recv;
274 
275 	struct {
276 		struct spdk_nvmf_rdma_wr	rdma_wr;
277 		struct	ibv_send_wr		wr;
278 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
279 	} rsp;
280 
281 	struct spdk_nvmf_rdma_request_data	data;
282 
283 	uint32_t				iovpos;
284 
285 	uint32_t				num_outstanding_data_wr;
286 	uint64_t				receive_tsc;
287 
288 	STAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
289 };
290 
291 struct spdk_nvmf_rdma_resource_opts {
292 	struct spdk_nvmf_rdma_qpair	*qpair;
293 	/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
294 	void				*qp;
295 	struct ibv_pd			*pd;
296 	uint32_t			max_queue_depth;
297 	uint32_t			in_capsule_data_size;
298 	bool				shared;
299 };
300 
301 struct spdk_nvmf_rdma_resources {
302 	/* Array of size "max_queue_depth" containing RDMA requests. */
303 	struct spdk_nvmf_rdma_request		*reqs;
304 
305 	/* Array of size "max_queue_depth" containing RDMA recvs. */
306 	struct spdk_nvmf_rdma_recv		*recvs;
307 
308 	/* Array of size "max_queue_depth" containing 64 byte capsules
309 	 * used for receive.
310 	 */
311 	union nvmf_h2c_msg			*cmds;
312 	struct ibv_mr				*cmds_mr;
313 
314 	/* Array of size "max_queue_depth" containing 16 byte completions
315 	 * to be sent back to the user.
316 	 */
317 	union nvmf_c2h_msg			*cpls;
318 	struct ibv_mr				*cpls_mr;
319 
320 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
321 	 * buffers to be used for in capsule data.
322 	 */
323 	void					*bufs;
324 	struct ibv_mr				*bufs_mr;
325 
326 	/* Receives that are waiting for a request object */
327 	STAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
328 
329 	/* Queue to track free requests */
330 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	free_queue;
331 };
332 
333 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair);
334 
335 struct spdk_nvmf_rdma_ibv_event_ctx {
336 	struct spdk_nvmf_rdma_qpair			*rqpair;
337 	spdk_nvmf_rdma_qpair_ibv_event			cb_fn;
338 	/* Link to other ibv events associated with this qpair */
339 	STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx)	link;
340 };
341 
342 struct spdk_nvmf_rdma_qpair {
343 	struct spdk_nvmf_qpair			qpair;
344 
345 	struct spdk_nvmf_rdma_device		*device;
346 	struct spdk_nvmf_rdma_poller		*poller;
347 
348 	struct spdk_rdma_qp			*rdma_qp;
349 	struct rdma_cm_id			*cm_id;
350 	struct spdk_rdma_srq			*srq;
351 	struct rdma_cm_id			*listen_id;
352 
353 	/* The maximum number of I/O outstanding on this connection at one time */
354 	uint16_t				max_queue_depth;
355 
356 	/* The maximum number of active RDMA READ and ATOMIC operations at one time */
357 	uint16_t				max_read_depth;
358 
359 	/* The maximum number of RDMA SEND operations at one time */
360 	uint32_t				max_send_depth;
361 
362 	/* The current number of outstanding WRs from this qpair's
363 	 * recv queue. Should not exceed device->attr.max_queue_depth.
364 	 */
365 	uint16_t				current_recv_depth;
366 
367 	/* The current number of active RDMA READ operations */
368 	uint16_t				current_read_depth;
369 
370 	/* The current number of posted WRs from this qpair's
371 	 * send queue. Should not exceed max_send_depth.
372 	 */
373 	uint32_t				current_send_depth;
374 
375 	/* The maximum number of SGEs per WR on the send queue */
376 	uint32_t				max_send_sge;
377 
378 	/* The maximum number of SGEs per WR on the recv queue */
379 	uint32_t				max_recv_sge;
380 
381 	struct spdk_nvmf_rdma_resources		*resources;
382 
383 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_read_queue;
384 
385 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_write_queue;
386 
387 	/* Number of requests not in the free state */
388 	uint32_t				qd;
389 
390 	TAILQ_ENTRY(spdk_nvmf_rdma_qpair)	link;
391 
392 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	recv_link;
393 
394 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	send_link;
395 
396 	/* IBV queue pair attributes: they are used to manage
397 	 * qp state and recover from errors.
398 	 */
399 	enum ibv_qp_state			ibv_state;
400 
401 	/*
402 	 * io_channel which is used to destroy qpair when it is removed from poll group
403 	 */
404 	struct spdk_io_channel		*destruct_channel;
405 
406 	/* List of ibv async events */
407 	STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx)	ibv_events;
408 
409 	/* Lets us know that we have received the last_wqe event. */
410 	bool					last_wqe_reached;
411 
412 	/* Indicate that nvmf_rdma_close_qpair is called */
413 	bool					to_close;
414 };
415 
416 struct spdk_nvmf_rdma_poller_stat {
417 	uint64_t				completions;
418 	uint64_t				polls;
419 	uint64_t				idle_polls;
420 	uint64_t				requests;
421 	uint64_t				request_latency;
422 	uint64_t				pending_free_request;
423 	uint64_t				pending_rdma_read;
424 	uint64_t				pending_rdma_write;
425 	struct spdk_rdma_qp_stats		qp_stats;
426 };
427 
428 struct spdk_nvmf_rdma_poller {
429 	struct spdk_nvmf_rdma_device		*device;
430 	struct spdk_nvmf_rdma_poll_group	*group;
431 
432 	int					num_cqe;
433 	int					required_num_wr;
434 	struct ibv_cq				*cq;
435 
436 	/* The maximum number of I/O outstanding on the shared receive queue at one time */
437 	uint16_t				max_srq_depth;
438 
439 	/* Shared receive queue */
440 	struct spdk_rdma_srq			*srq;
441 
442 	struct spdk_nvmf_rdma_resources		*resources;
443 	struct spdk_nvmf_rdma_poller_stat	stat;
444 
445 	TAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs;
446 
447 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_recv;
448 
449 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_send;
450 
451 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
452 };
453 
454 struct spdk_nvmf_rdma_poll_group_stat {
455 	uint64_t				pending_data_buffer;
456 };
457 
458 struct spdk_nvmf_rdma_poll_group {
459 	struct spdk_nvmf_transport_poll_group		group;
460 	struct spdk_nvmf_rdma_poll_group_stat		stat;
461 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)		pollers;
462 	TAILQ_ENTRY(spdk_nvmf_rdma_poll_group)		link;
463 };
464 
465 struct spdk_nvmf_rdma_conn_sched {
466 	struct spdk_nvmf_rdma_poll_group *next_admin_pg;
467 	struct spdk_nvmf_rdma_poll_group *next_io_pg;
468 };
469 
470 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
471 struct spdk_nvmf_rdma_device {
472 	struct ibv_device_attr			attr;
473 	struct ibv_context			*context;
474 
475 	struct spdk_rdma_mem_map		*map;
476 	struct ibv_pd				*pd;
477 
478 	int					num_srq;
479 
480 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
481 };
482 
483 struct spdk_nvmf_rdma_port {
484 	const struct spdk_nvme_transport_id	*trid;
485 	struct rdma_cm_id			*id;
486 	struct spdk_nvmf_rdma_device		*device;
487 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
488 };
489 
490 struct rdma_transport_opts {
491 	int		num_cqe;
492 	uint32_t	max_srq_depth;
493 	bool		no_srq;
494 	bool		no_wr_batching;
495 	int		acceptor_backlog;
496 };
497 
498 struct spdk_nvmf_rdma_transport {
499 	struct spdk_nvmf_transport	transport;
500 	struct rdma_transport_opts	rdma_opts;
501 
502 	struct spdk_nvmf_rdma_conn_sched conn_sched;
503 
504 	struct rdma_event_channel	*event_channel;
505 
506 	struct spdk_mempool		*data_wr_pool;
507 
508 	pthread_mutex_t			lock;
509 
510 	/* fields used to poll RDMA/IB events */
511 	nfds_t			npoll_fds;
512 	struct pollfd		*poll_fds;
513 
514 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
515 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
516 	TAILQ_HEAD(, spdk_nvmf_rdma_poll_group)	poll_groups;
517 };
518 
519 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = {
520 	{
521 		"num_cqe", offsetof(struct rdma_transport_opts, num_cqe),
522 		spdk_json_decode_int32, true
523 	},
524 	{
525 		"max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth),
526 		spdk_json_decode_uint32, true
527 	},
528 	{
529 		"no_srq", offsetof(struct rdma_transport_opts, no_srq),
530 		spdk_json_decode_bool, true
531 	},
532 	{
533 		"no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching),
534 		spdk_json_decode_bool, true
535 	},
536 	{
537 		"acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog),
538 		spdk_json_decode_int32, true
539 	},
540 };
541 
542 static bool
543 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
544 			  struct spdk_nvmf_rdma_request *rdma_req);
545 
546 static void
547 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
548 		     struct spdk_nvmf_rdma_poller *rpoller);
549 
550 static void
551 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
552 		     struct spdk_nvmf_rdma_poller *rpoller);
553 
554 static inline int
555 nvmf_rdma_check_ibv_state(enum ibv_qp_state state)
556 {
557 	switch (state) {
558 	case IBV_QPS_RESET:
559 	case IBV_QPS_INIT:
560 	case IBV_QPS_RTR:
561 	case IBV_QPS_RTS:
562 	case IBV_QPS_SQD:
563 	case IBV_QPS_SQE:
564 	case IBV_QPS_ERR:
565 		return 0;
566 	default:
567 		return -1;
568 	}
569 }
570 
571 static inline enum spdk_nvme_media_error_status_code
572 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) {
573 	enum spdk_nvme_media_error_status_code result;
574 	switch (err_type)
575 	{
576 	case SPDK_DIF_REFTAG_ERROR:
577 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
578 		break;
579 	case SPDK_DIF_APPTAG_ERROR:
580 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
581 		break;
582 	case SPDK_DIF_GUARD_ERROR:
583 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
584 		break;
585 	default:
586 		SPDK_UNREACHABLE();
587 	}
588 
589 	return result;
590 }
591 
592 static enum ibv_qp_state
593 nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) {
594 	enum ibv_qp_state old_state, new_state;
595 	struct ibv_qp_attr qp_attr;
596 	struct ibv_qp_init_attr init_attr;
597 	int rc;
598 
599 	old_state = rqpair->ibv_state;
600 	rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr,
601 			  g_spdk_nvmf_ibv_query_mask, &init_attr);
602 
603 	if (rc)
604 	{
605 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
606 		return IBV_QPS_ERR + 1;
607 	}
608 
609 	new_state = qp_attr.qp_state;
610 	rqpair->ibv_state = new_state;
611 	qp_attr.ah_attr.port_num = qp_attr.port_num;
612 
613 	rc = nvmf_rdma_check_ibv_state(new_state);
614 	if (rc)
615 	{
616 		SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state);
617 		/*
618 		 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8
619 		 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR
620 		 */
621 		return IBV_QPS_ERR + 1;
622 	}
623 
624 	if (old_state != new_state)
625 	{
626 		spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, (uintptr_t)rqpair, new_state);
627 	}
628 	return new_state;
629 }
630 
631 static void
632 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
633 			    struct spdk_nvmf_rdma_transport *rtransport)
634 {
635 	struct spdk_nvmf_rdma_request_data	*data_wr;
636 	struct ibv_send_wr			*next_send_wr;
637 	uint64_t				req_wrid;
638 
639 	rdma_req->num_outstanding_data_wr = 0;
640 	data_wr = &rdma_req->data;
641 	req_wrid = data_wr->wr.wr_id;
642 	while (data_wr && data_wr->wr.wr_id == req_wrid) {
643 		memset(data_wr->sgl, 0, sizeof(data_wr->wr.sg_list[0]) * data_wr->wr.num_sge);
644 		data_wr->wr.num_sge = 0;
645 		next_send_wr = data_wr->wr.next;
646 		if (data_wr != &rdma_req->data) {
647 			spdk_mempool_put(rtransport->data_wr_pool, data_wr);
648 		}
649 		data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL :
650 			  SPDK_CONTAINEROF(next_send_wr, struct spdk_nvmf_rdma_request_data, wr);
651 	}
652 }
653 
654 static void
655 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
656 {
657 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool);
658 	if (req->req.cmd) {
659 		SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
660 	}
661 	if (req->recv) {
662 		SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
663 	}
664 }
665 
666 static void
667 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
668 {
669 	int i;
670 
671 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
672 	for (i = 0; i < rqpair->max_queue_depth; i++) {
673 		if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
674 			nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
675 		}
676 	}
677 }
678 
679 static void
680 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
681 {
682 	if (resources->cmds_mr) {
683 		ibv_dereg_mr(resources->cmds_mr);
684 	}
685 
686 	if (resources->cpls_mr) {
687 		ibv_dereg_mr(resources->cpls_mr);
688 	}
689 
690 	if (resources->bufs_mr) {
691 		ibv_dereg_mr(resources->bufs_mr);
692 	}
693 
694 	spdk_free(resources->cmds);
695 	spdk_free(resources->cpls);
696 	spdk_free(resources->bufs);
697 	free(resources->reqs);
698 	free(resources->recvs);
699 	free(resources);
700 }
701 
702 
703 static struct spdk_nvmf_rdma_resources *
704 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
705 {
706 	struct spdk_nvmf_rdma_resources	*resources;
707 	struct spdk_nvmf_rdma_request	*rdma_req;
708 	struct spdk_nvmf_rdma_recv	*rdma_recv;
709 	struct spdk_rdma_qp		*qp = NULL;
710 	struct spdk_rdma_srq		*srq = NULL;
711 	struct ibv_recv_wr		*bad_wr = NULL;
712 	uint32_t			i;
713 	int				rc = 0;
714 
715 	resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
716 	if (!resources) {
717 		SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
718 		return NULL;
719 	}
720 
721 	resources->reqs = calloc(opts->max_queue_depth, sizeof(*resources->reqs));
722 	resources->recvs = calloc(opts->max_queue_depth, sizeof(*resources->recvs));
723 	resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
724 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
725 	resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
726 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
727 
728 	if (opts->in_capsule_data_size > 0) {
729 		resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size,
730 					       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY,
731 					       SPDK_MALLOC_DMA);
732 	}
733 
734 	if (!resources->reqs || !resources->recvs || !resources->cmds ||
735 	    !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
736 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
737 		goto cleanup;
738 	}
739 
740 	resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds,
741 					opts->max_queue_depth * sizeof(*resources->cmds),
742 					IBV_ACCESS_LOCAL_WRITE);
743 	resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls,
744 					opts->max_queue_depth * sizeof(*resources->cpls),
745 					0);
746 
747 	if (opts->in_capsule_data_size) {
748 		resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs,
749 						opts->max_queue_depth *
750 						opts->in_capsule_data_size,
751 						IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
752 	}
753 
754 	if (!resources->cmds_mr || !resources->cpls_mr ||
755 	    (opts->in_capsule_data_size &&
756 	     !resources->bufs_mr)) {
757 		goto cleanup;
758 	}
759 	SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx LKey: %x\n",
760 		      resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds),
761 		      resources->cmds_mr->lkey);
762 	SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx LKey: %x\n",
763 		      resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls),
764 		      resources->cpls_mr->lkey);
765 	if (resources->bufs && resources->bufs_mr) {
766 		SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x LKey: %x\n",
767 			      resources->bufs, opts->max_queue_depth *
768 			      opts->in_capsule_data_size, resources->bufs_mr->lkey);
769 	}
770 
771 	/* Initialize queues */
772 	STAILQ_INIT(&resources->incoming_queue);
773 	STAILQ_INIT(&resources->free_queue);
774 
775 	if (opts->shared) {
776 		srq = (struct spdk_rdma_srq *)opts->qp;
777 	} else {
778 		qp = (struct spdk_rdma_qp *)opts->qp;
779 	}
780 
781 	for (i = 0; i < opts->max_queue_depth; i++) {
782 		rdma_recv = &resources->recvs[i];
783 		rdma_recv->qpair = opts->qpair;
784 
785 		/* Set up memory to receive commands */
786 		if (resources->bufs) {
787 			rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
788 						  opts->in_capsule_data_size));
789 		}
790 
791 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
792 
793 		rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
794 		rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
795 		rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey;
796 		rdma_recv->wr.num_sge = 1;
797 
798 		if (rdma_recv->buf && resources->bufs_mr) {
799 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
800 			rdma_recv->sgl[1].length = opts->in_capsule_data_size;
801 			rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey;
802 			rdma_recv->wr.num_sge++;
803 		}
804 
805 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
806 		rdma_recv->wr.sg_list = rdma_recv->sgl;
807 		if (srq) {
808 			spdk_rdma_srq_queue_recv_wrs(srq, &rdma_recv->wr);
809 		} else {
810 			spdk_rdma_qp_queue_recv_wrs(qp, &rdma_recv->wr);
811 		}
812 	}
813 
814 	for (i = 0; i < opts->max_queue_depth; i++) {
815 		rdma_req = &resources->reqs[i];
816 
817 		if (opts->qpair != NULL) {
818 			rdma_req->req.qpair = &opts->qpair->qpair;
819 		} else {
820 			rdma_req->req.qpair = NULL;
821 		}
822 		rdma_req->req.cmd = NULL;
823 
824 		/* Set up memory to send responses */
825 		rdma_req->req.rsp = &resources->cpls[i];
826 
827 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
828 		rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
829 		rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey;
830 
831 		rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND;
832 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr;
833 		rdma_req->rsp.wr.next = NULL;
834 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
835 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
836 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
837 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
838 
839 		/* Set up memory for data buffers */
840 		rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA;
841 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
842 		rdma_req->data.wr.next = NULL;
843 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
844 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
845 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
846 
847 		/* Initialize request state to FREE */
848 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
849 		STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
850 	}
851 
852 	if (srq) {
853 		rc = spdk_rdma_srq_flush_recv_wrs(srq, &bad_wr);
854 	} else {
855 		rc = spdk_rdma_qp_flush_recv_wrs(qp, &bad_wr);
856 	}
857 
858 	if (rc) {
859 		goto cleanup;
860 	}
861 
862 	return resources;
863 
864 cleanup:
865 	nvmf_rdma_resources_destroy(resources);
866 	return NULL;
867 }
868 
869 static void
870 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair)
871 {
872 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx;
873 	STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) {
874 		ctx->rqpair = NULL;
875 		/* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */
876 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
877 	}
878 }
879 
880 static void
881 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
882 {
883 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
884 	struct ibv_recv_wr		*bad_recv_wr = NULL;
885 	int				rc;
886 
887 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair);
888 
889 	if (rqpair->qd != 0) {
890 		struct spdk_nvmf_qpair *qpair = &rqpair->qpair;
891 		struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(qpair->transport,
892 				struct spdk_nvmf_rdma_transport, transport);
893 		struct spdk_nvmf_rdma_request *req;
894 		uint32_t i, max_req_count = 0;
895 
896 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
897 
898 		if (rqpair->srq == NULL) {
899 			nvmf_rdma_dump_qpair_contents(rqpair);
900 			max_req_count = rqpair->max_queue_depth;
901 		} else if (rqpair->poller && rqpair->resources) {
902 			max_req_count = rqpair->poller->max_srq_depth;
903 		}
904 
905 		SPDK_DEBUGLOG(rdma, "Release incomplete requests\n");
906 		for (i = 0; i < max_req_count; i++) {
907 			req = &rqpair->resources->reqs[i];
908 			if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) {
909 				/* nvmf_rdma_request_process checks qpair ibv and internal state
910 				 * and completes a request */
911 				nvmf_rdma_request_process(rtransport, req);
912 			}
913 		}
914 		assert(rqpair->qd == 0);
915 	}
916 
917 	if (rqpair->poller) {
918 		TAILQ_REMOVE(&rqpair->poller->qpairs, rqpair, link);
919 
920 		if (rqpair->srq != NULL && rqpair->resources != NULL) {
921 			/* Drop all received but unprocessed commands for this queue and return them to SRQ */
922 			STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
923 				if (rqpair == rdma_recv->qpair) {
924 					STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link);
925 					spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr);
926 					rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
927 					if (rc) {
928 						SPDK_ERRLOG("Unable to re-post rx descriptor\n");
929 					}
930 				}
931 			}
932 		}
933 	}
934 
935 	if (rqpair->cm_id) {
936 		if (rqpair->rdma_qp != NULL) {
937 			spdk_rdma_qp_destroy(rqpair->rdma_qp);
938 			rqpair->rdma_qp = NULL;
939 		}
940 		rdma_destroy_id(rqpair->cm_id);
941 
942 		if (rqpair->poller != NULL && rqpair->srq == NULL) {
943 			rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
944 		}
945 	}
946 
947 	if (rqpair->srq == NULL && rqpair->resources != NULL) {
948 		nvmf_rdma_resources_destroy(rqpair->resources);
949 	}
950 
951 	nvmf_rdma_qpair_clean_ibv_events(rqpair);
952 
953 	if (rqpair->destruct_channel) {
954 		spdk_put_io_channel(rqpair->destruct_channel);
955 		rqpair->destruct_channel = NULL;
956 	}
957 
958 	free(rqpair);
959 }
960 
961 static int
962 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
963 {
964 	struct spdk_nvmf_rdma_poller	*rpoller;
965 	int				rc, num_cqe, required_num_wr;
966 
967 	/* Enlarge CQ size dynamically */
968 	rpoller = rqpair->poller;
969 	required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
970 	num_cqe = rpoller->num_cqe;
971 	if (num_cqe < required_num_wr) {
972 		num_cqe = spdk_max(num_cqe * 2, required_num_wr);
973 		num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
974 	}
975 
976 	if (rpoller->num_cqe != num_cqe) {
977 		if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) {
978 			SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n"
979 				    "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe);
980 			return -1;
981 		}
982 		if (required_num_wr > device->attr.max_cqe) {
983 			SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
984 				    required_num_wr, device->attr.max_cqe);
985 			return -1;
986 		}
987 
988 		SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
989 		rc = ibv_resize_cq(rpoller->cq, num_cqe);
990 		if (rc) {
991 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
992 			return -1;
993 		}
994 
995 		rpoller->num_cqe = num_cqe;
996 	}
997 
998 	rpoller->required_num_wr = required_num_wr;
999 	return 0;
1000 }
1001 
1002 static int
1003 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
1004 {
1005 	struct spdk_nvmf_rdma_qpair		*rqpair;
1006 	struct spdk_nvmf_rdma_transport		*rtransport;
1007 	struct spdk_nvmf_transport		*transport;
1008 	struct spdk_nvmf_rdma_resource_opts	opts;
1009 	struct spdk_nvmf_rdma_device		*device;
1010 	struct spdk_rdma_qp_init_attr		qp_init_attr = {};
1011 
1012 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1013 	device = rqpair->device;
1014 
1015 	qp_init_attr.qp_context	= rqpair;
1016 	qp_init_attr.pd		= device->pd;
1017 	qp_init_attr.send_cq	= rqpair->poller->cq;
1018 	qp_init_attr.recv_cq	= rqpair->poller->cq;
1019 
1020 	if (rqpair->srq) {
1021 		qp_init_attr.srq		= rqpair->srq->srq;
1022 	} else {
1023 		qp_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth;
1024 	}
1025 
1026 	/* SEND, READ, and WRITE operations */
1027 	qp_init_attr.cap.max_send_wr	= (uint32_t)rqpair->max_queue_depth * 2;
1028 	qp_init_attr.cap.max_send_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
1029 	qp_init_attr.cap.max_recv_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
1030 	qp_init_attr.stats		= &rqpair->poller->stat.qp_stats;
1031 
1032 	if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
1033 		SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
1034 		goto error;
1035 	}
1036 
1037 	rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr);
1038 	if (!rqpair->rdma_qp) {
1039 		goto error;
1040 	}
1041 
1042 	rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2),
1043 					  qp_init_attr.cap.max_send_wr);
1044 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge);
1045 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge);
1046 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair);
1047 	SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair);
1048 
1049 	if (rqpair->poller->srq == NULL) {
1050 		rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
1051 		transport = &rtransport->transport;
1052 
1053 		opts.qp = rqpair->rdma_qp;
1054 		opts.pd = rqpair->cm_id->pd;
1055 		opts.qpair = rqpair;
1056 		opts.shared = false;
1057 		opts.max_queue_depth = rqpair->max_queue_depth;
1058 		opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
1059 
1060 		rqpair->resources = nvmf_rdma_resources_create(&opts);
1061 
1062 		if (!rqpair->resources) {
1063 			SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
1064 			rdma_destroy_qp(rqpair->cm_id);
1065 			goto error;
1066 		}
1067 	} else {
1068 		rqpair->resources = rqpair->poller->resources;
1069 	}
1070 
1071 	rqpair->current_recv_depth = 0;
1072 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1073 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1074 
1075 	return 0;
1076 
1077 error:
1078 	rdma_destroy_id(rqpair->cm_id);
1079 	rqpair->cm_id = NULL;
1080 	return -1;
1081 }
1082 
1083 /* Append the given recv wr structure to the resource structs outstanding recvs list. */
1084 /* This function accepts either a single wr or the first wr in a linked list. */
1085 static void
1086 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first)
1087 {
1088 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1089 			struct spdk_nvmf_rdma_transport, transport);
1090 
1091 	if (rqpair->srq != NULL) {
1092 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, first);
1093 	} else {
1094 		if (spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, first)) {
1095 			STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link);
1096 		}
1097 	}
1098 
1099 	if (rtransport->rdma_opts.no_wr_batching) {
1100 		_poller_submit_recvs(rtransport, rqpair->poller);
1101 	}
1102 }
1103 
1104 static int
1105 request_transfer_in(struct spdk_nvmf_request *req)
1106 {
1107 	struct spdk_nvmf_rdma_request	*rdma_req;
1108 	struct spdk_nvmf_qpair		*qpair;
1109 	struct spdk_nvmf_rdma_qpair	*rqpair;
1110 	struct spdk_nvmf_rdma_transport *rtransport;
1111 
1112 	qpair = req->qpair;
1113 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1114 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1115 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1116 				      struct spdk_nvmf_rdma_transport, transport);
1117 
1118 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1119 	assert(rdma_req != NULL);
1120 
1121 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, &rdma_req->data.wr)) {
1122 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1123 	}
1124 	if (rtransport->rdma_opts.no_wr_batching) {
1125 		_poller_submit_sends(rtransport, rqpair->poller);
1126 	}
1127 
1128 	rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1129 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1130 	return 0;
1131 }
1132 
1133 static int
1134 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1135 {
1136 	int				num_outstanding_data_wr = 0;
1137 	struct spdk_nvmf_rdma_request	*rdma_req;
1138 	struct spdk_nvmf_qpair		*qpair;
1139 	struct spdk_nvmf_rdma_qpair	*rqpair;
1140 	struct spdk_nvme_cpl		*rsp;
1141 	struct ibv_send_wr		*first = NULL;
1142 	struct spdk_nvmf_rdma_transport *rtransport;
1143 
1144 	*data_posted = 0;
1145 	qpair = req->qpair;
1146 	rsp = &req->rsp->nvme_cpl;
1147 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1148 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1149 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1150 				      struct spdk_nvmf_rdma_transport, transport);
1151 
1152 	/* Advance our sq_head pointer */
1153 	if (qpair->sq_head == qpair->sq_head_max) {
1154 		qpair->sq_head = 0;
1155 	} else {
1156 		qpair->sq_head++;
1157 	}
1158 	rsp->sqhd = qpair->sq_head;
1159 
1160 	/* queue the capsule for the recv buffer */
1161 	assert(rdma_req->recv != NULL);
1162 
1163 	nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr);
1164 
1165 	rdma_req->recv = NULL;
1166 	assert(rqpair->current_recv_depth > 0);
1167 	rqpair->current_recv_depth--;
1168 
1169 	/* Build the response which consists of optional
1170 	 * RDMA WRITEs to transfer data, plus an RDMA SEND
1171 	 * containing the response.
1172 	 */
1173 	first = &rdma_req->rsp.wr;
1174 
1175 	if (rsp->status.sc != SPDK_NVME_SC_SUCCESS) {
1176 		/* On failure, data was not read from the controller. So clear the
1177 		 * number of outstanding data WRs to zero.
1178 		 */
1179 		rdma_req->num_outstanding_data_wr = 0;
1180 	} else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1181 		first = &rdma_req->data.wr;
1182 		*data_posted = 1;
1183 		num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
1184 	}
1185 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) {
1186 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1187 	}
1188 	if (rtransport->rdma_opts.no_wr_batching) {
1189 		_poller_submit_sends(rtransport, rqpair->poller);
1190 	}
1191 
1192 	/* +1 for the rsp wr */
1193 	rqpair->current_send_depth += num_outstanding_data_wr + 1;
1194 
1195 	return 0;
1196 }
1197 
1198 static int
1199 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1200 {
1201 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
1202 	struct rdma_conn_param				ctrlr_event_data = {};
1203 	int						rc;
1204 
1205 	accept_data.recfmt = 0;
1206 	accept_data.crqsize = rqpair->max_queue_depth;
1207 
1208 	ctrlr_event_data.private_data = &accept_data;
1209 	ctrlr_event_data.private_data_len = sizeof(accept_data);
1210 	if (id->ps == RDMA_PS_TCP) {
1211 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1212 		ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1213 	}
1214 
1215 	/* Configure infinite retries for the initiator side qpair.
1216 	 * When using a shared receive queue on the target side,
1217 	 * we need to pass this value to the initiator to prevent the
1218 	 * initiator side NIC from completing SEND requests back to the
1219 	 * initiator with status rnr_retry_count_exceeded. */
1220 	if (rqpair->srq != NULL) {
1221 		ctrlr_event_data.rnr_retry_count = 0x7;
1222 	}
1223 
1224 	/* When qpair is created without use of rdma cm API, an additional
1225 	 * information must be provided to initiator in the connection response:
1226 	 * whether qpair is using SRQ and its qp_num
1227 	 * Fields below are ignored by rdma cm if qpair has been
1228 	 * created using rdma cm API. */
1229 	ctrlr_event_data.srq = rqpair->srq ? 1 : 0;
1230 	ctrlr_event_data.qp_num = rqpair->rdma_qp->qp->qp_num;
1231 
1232 	rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data);
1233 	if (rc) {
1234 		SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno);
1235 	} else {
1236 		SPDK_DEBUGLOG(rdma, "Sent back the accept\n");
1237 	}
1238 
1239 	return rc;
1240 }
1241 
1242 static void
1243 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1244 {
1245 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
1246 
1247 	rej_data.recfmt = 0;
1248 	rej_data.sts = error;
1249 
1250 	rdma_reject(id, &rej_data, sizeof(rej_data));
1251 }
1252 
1253 static int
1254 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event)
1255 {
1256 	struct spdk_nvmf_rdma_transport *rtransport;
1257 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
1258 	struct spdk_nvmf_rdma_port	*port;
1259 	struct rdma_conn_param		*rdma_param = NULL;
1260 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1261 	uint16_t			max_queue_depth;
1262 	uint16_t			max_read_depth;
1263 
1264 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1265 
1266 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1267 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1268 
1269 	rdma_param = &event->param.conn;
1270 	if (rdma_param->private_data == NULL ||
1271 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1272 		SPDK_ERRLOG("connect request: no private data provided\n");
1273 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1274 		return -1;
1275 	}
1276 
1277 	private_data = rdma_param->private_data;
1278 	if (private_data->recfmt != 0) {
1279 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1280 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1281 		return -1;
1282 	}
1283 
1284 	SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n",
1285 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1286 
1287 	port = event->listen_id->context;
1288 	SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1289 		      event->listen_id, event->listen_id->verbs, port);
1290 
1291 	/* Figure out the supported queue depth. This is a multi-step process
1292 	 * that takes into account hardware maximums, host provided values,
1293 	 * and our target's internal memory limits */
1294 
1295 	SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n");
1296 
1297 	/* Start with the maximum queue depth allowed by the target */
1298 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1299 	max_read_depth = rtransport->transport.opts.max_queue_depth;
1300 	SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n",
1301 		      rtransport->transport.opts.max_queue_depth);
1302 
1303 	/* Next check the local NIC's hardware limitations */
1304 	SPDK_DEBUGLOG(rdma,
1305 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1306 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1307 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1308 	max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1309 
1310 	/* Next check the remote NIC's hardware limitations */
1311 	SPDK_DEBUGLOG(rdma,
1312 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1313 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1314 	if (rdma_param->initiator_depth > 0) {
1315 		max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1316 	}
1317 
1318 	/* Finally check for the host software requested values, which are
1319 	 * optional. */
1320 	if (rdma_param->private_data != NULL &&
1321 	    rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1322 		SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1323 		SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize);
1324 		max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1325 		max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1326 	}
1327 
1328 	SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1329 		      max_queue_depth, max_read_depth);
1330 
1331 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1332 	if (rqpair == NULL) {
1333 		SPDK_ERRLOG("Could not allocate new connection.\n");
1334 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1335 		return -1;
1336 	}
1337 
1338 	rqpair->device = port->device;
1339 	rqpair->max_queue_depth = max_queue_depth;
1340 	rqpair->max_read_depth = max_read_depth;
1341 	rqpair->cm_id = event->id;
1342 	rqpair->listen_id = event->listen_id;
1343 	rqpair->qpair.transport = transport;
1344 	STAILQ_INIT(&rqpair->ibv_events);
1345 	/* use qid from the private data to determine the qpair type
1346 	   qid will be set to the appropriate value when the controller is created */
1347 	rqpair->qpair.qid = private_data->qid;
1348 
1349 	event->id->context = &rqpair->qpair;
1350 
1351 	spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair);
1352 
1353 	return 0;
1354 }
1355 
1356 static inline void
1357 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next,
1358 		   enum spdk_nvme_data_transfer xfer)
1359 {
1360 	if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1361 		wr->opcode = IBV_WR_RDMA_WRITE;
1362 		wr->send_flags = 0;
1363 		wr->next = next;
1364 	} else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1365 		wr->opcode = IBV_WR_RDMA_READ;
1366 		wr->send_flags = IBV_SEND_SIGNALED;
1367 		wr->next = NULL;
1368 	} else {
1369 		assert(0);
1370 	}
1371 }
1372 
1373 static int
1374 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1375 		       struct spdk_nvmf_rdma_request *rdma_req,
1376 		       uint32_t num_sgl_descriptors)
1377 {
1378 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1379 	struct spdk_nvmf_rdma_request_data	*current_data_wr;
1380 	uint32_t				i;
1381 
1382 	if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) {
1383 		SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n",
1384 			    num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES);
1385 		return -EINVAL;
1386 	}
1387 
1388 	if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) {
1389 		return -ENOMEM;
1390 	}
1391 
1392 	current_data_wr = &rdma_req->data;
1393 
1394 	for (i = 0; i < num_sgl_descriptors; i++) {
1395 		nvmf_rdma_setup_wr(&current_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer);
1396 		current_data_wr->wr.next = &work_requests[i]->wr;
1397 		current_data_wr = work_requests[i];
1398 		current_data_wr->wr.sg_list = current_data_wr->sgl;
1399 		current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id;
1400 	}
1401 
1402 	nvmf_rdma_setup_wr(&current_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1403 
1404 	return 0;
1405 }
1406 
1407 static inline void
1408 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req)
1409 {
1410 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1411 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1412 
1413 	wr->wr.rdma.rkey = sgl->keyed.key;
1414 	wr->wr.rdma.remote_addr = sgl->address;
1415 	nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1416 }
1417 
1418 static inline void
1419 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs)
1420 {
1421 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1422 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1423 	uint32_t			i;
1424 	int				j;
1425 	uint64_t			remote_addr_offset = 0;
1426 
1427 	for (i = 0; i < num_wrs; ++i) {
1428 		wr->wr.rdma.rkey = sgl->keyed.key;
1429 		wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset;
1430 		for (j = 0; j < wr->num_sge; ++j) {
1431 			remote_addr_offset += wr->sg_list[j].length;
1432 		}
1433 		wr = wr->next;
1434 	}
1435 }
1436 
1437 static int
1438 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup,
1439 		      struct spdk_nvmf_rdma_device *device,
1440 		      struct spdk_nvmf_rdma_request *rdma_req,
1441 		      struct ibv_send_wr *wr,
1442 		      uint32_t total_length,
1443 		      uint32_t num_extra_wrs)
1444 {
1445 	struct spdk_rdma_memory_translation mem_translation;
1446 	struct spdk_dif_ctx *dif_ctx = NULL;
1447 	struct ibv_sge	*sg_ele;
1448 	struct iovec *iov;
1449 	uint32_t remaining_data_block = 0;
1450 	uint32_t lkey, remaining;
1451 	int rc;
1452 
1453 	if (spdk_unlikely(rdma_req->req.dif_enabled)) {
1454 		dif_ctx = &rdma_req->req.dif.dif_ctx;
1455 		remaining_data_block = dif_ctx->block_size - dif_ctx->md_size;
1456 	}
1457 
1458 	wr->num_sge = 0;
1459 
1460 	while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) {
1461 		iov = &rdma_req->req.iov[rdma_req->iovpos];
1462 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1463 		if (spdk_unlikely(rc)) {
1464 			return false;
1465 		}
1466 
1467 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1468 		sg_ele = &wr->sg_list[wr->num_sge];
1469 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1470 
1471 		if (spdk_likely(!dif_ctx)) {
1472 			sg_ele->lkey = lkey;
1473 			sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset;
1474 			sg_ele->length = remaining;
1475 			SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr,
1476 				      sg_ele->length);
1477 			rdma_req->offset += sg_ele->length;
1478 			total_length -= sg_ele->length;
1479 			wr->num_sge++;
1480 
1481 			if (rdma_req->offset == iov->iov_len) {
1482 				rdma_req->offset = 0;
1483 				rdma_req->iovpos++;
1484 			}
1485 		} else {
1486 			uint32_t data_block_size = dif_ctx->block_size - dif_ctx->md_size;
1487 			uint32_t md_size = dif_ctx->md_size;
1488 			uint32_t sge_len;
1489 
1490 			while (remaining) {
1491 				if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) {
1492 					if (num_extra_wrs > 0 && wr->next) {
1493 						wr = wr->next;
1494 						wr->num_sge = 0;
1495 						sg_ele = &wr->sg_list[wr->num_sge];
1496 						num_extra_wrs--;
1497 					} else {
1498 						break;
1499 					}
1500 				}
1501 				sg_ele->lkey = lkey;
1502 				sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset);
1503 				sge_len = spdk_min(remaining, remaining_data_block);
1504 				sg_ele->length = sge_len;
1505 				SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr,
1506 					      sg_ele->length);
1507 				remaining -= sge_len;
1508 				remaining_data_block -= sge_len;
1509 				rdma_req->offset += sge_len;
1510 				total_length -= sge_len;
1511 
1512 				sg_ele++;
1513 				wr->num_sge++;
1514 
1515 				if (remaining_data_block == 0) {
1516 					/* skip metadata */
1517 					rdma_req->offset += md_size;
1518 					total_length -= md_size;
1519 					/* Metadata that do not fit this IO buffer will be included in the next IO buffer */
1520 					remaining -= spdk_min(remaining, md_size);
1521 					remaining_data_block = data_block_size;
1522 				}
1523 
1524 				if (remaining == 0) {
1525 					/* By subtracting the size of the last IOV from the offset, we ensure that we skip
1526 					   the remaining metadata bits at the beginning of the next buffer */
1527 					rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset);
1528 					rdma_req->iovpos++;
1529 				}
1530 			}
1531 		}
1532 	}
1533 
1534 	if (total_length) {
1535 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1536 		return -EINVAL;
1537 	}
1538 
1539 	return 0;
1540 }
1541 
1542 static inline uint32_t
1543 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size)
1544 {
1545 	/* estimate the number of SG entries and WRs needed to process the request */
1546 	uint32_t num_sge = 0;
1547 	uint32_t i;
1548 	uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size);
1549 
1550 	for (i = 0; i < num_buffers && length > 0; i++) {
1551 		uint32_t buffer_len = spdk_min(length, io_unit_size);
1552 		uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size);
1553 
1554 		if (num_sge_in_block * block_size > buffer_len) {
1555 			++num_sge_in_block;
1556 		}
1557 		num_sge += num_sge_in_block;
1558 		length -= buffer_len;
1559 	}
1560 	return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES);
1561 }
1562 
1563 static int
1564 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1565 			    struct spdk_nvmf_rdma_device *device,
1566 			    struct spdk_nvmf_rdma_request *rdma_req,
1567 			    uint32_t length)
1568 {
1569 	struct spdk_nvmf_rdma_qpair		*rqpair;
1570 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1571 	struct spdk_nvmf_request		*req = &rdma_req->req;
1572 	struct ibv_send_wr			*wr = &rdma_req->data.wr;
1573 	int					rc;
1574 	uint32_t				num_wrs = 1;
1575 
1576 	rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair);
1577 	rgroup = rqpair->poller->group;
1578 
1579 	/* rdma wr specifics */
1580 	nvmf_rdma_setup_request(rdma_req);
1581 
1582 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
1583 					   length);
1584 	if (rc != 0) {
1585 		return rc;
1586 	}
1587 
1588 	assert(req->iovcnt <= rqpair->max_send_sge);
1589 
1590 	rdma_req->iovpos = 0;
1591 
1592 	if (spdk_unlikely(req->dif_enabled)) {
1593 		num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size,
1594 						 req->dif.dif_ctx.block_size);
1595 		if (num_wrs > 1) {
1596 			rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1);
1597 			if (rc != 0) {
1598 				goto err_exit;
1599 			}
1600 		}
1601 	}
1602 
1603 	rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length, num_wrs - 1);
1604 	if (spdk_unlikely(rc != 0)) {
1605 		goto err_exit;
1606 	}
1607 
1608 	if (spdk_unlikely(num_wrs > 1)) {
1609 		nvmf_rdma_update_remote_addr(rdma_req, num_wrs);
1610 	}
1611 
1612 	/* set the number of outstanding data WRs for this request. */
1613 	rdma_req->num_outstanding_data_wr = num_wrs;
1614 
1615 	return rc;
1616 
1617 err_exit:
1618 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1619 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1620 	req->iovcnt = 0;
1621 	return rc;
1622 }
1623 
1624 static int
1625 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1626 				      struct spdk_nvmf_rdma_device *device,
1627 				      struct spdk_nvmf_rdma_request *rdma_req)
1628 {
1629 	struct spdk_nvmf_rdma_qpair		*rqpair;
1630 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1631 	struct ibv_send_wr			*current_wr;
1632 	struct spdk_nvmf_request		*req = &rdma_req->req;
1633 	struct spdk_nvme_sgl_descriptor		*inline_segment, *desc;
1634 	uint32_t				num_sgl_descriptors;
1635 	uint32_t				lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0;
1636 	uint32_t				i;
1637 	int					rc;
1638 
1639 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1640 	rgroup = rqpair->poller->group;
1641 
1642 	inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1643 	assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1644 	assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1645 
1646 	num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1647 	assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1648 
1649 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1650 	for (i = 0; i < num_sgl_descriptors; i++) {
1651 		if (spdk_likely(!req->dif_enabled)) {
1652 			lengths[i] = desc->keyed.length;
1653 		} else {
1654 			req->dif.orig_length += desc->keyed.length;
1655 			lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx);
1656 			req->dif.elba_length += lengths[i];
1657 		}
1658 		total_length += lengths[i];
1659 		desc++;
1660 	}
1661 
1662 	if (total_length > rtransport->transport.opts.max_io_size) {
1663 		SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n",
1664 			    total_length, rtransport->transport.opts.max_io_size);
1665 		req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1666 		return -EINVAL;
1667 	}
1668 
1669 	if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) {
1670 		return -ENOMEM;
1671 	}
1672 
1673 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length);
1674 	if (rc != 0) {
1675 		nvmf_rdma_request_free_data(rdma_req, rtransport);
1676 		return rc;
1677 	}
1678 
1679 	/* The first WR must always be the embedded data WR. This is how we unwind them later. */
1680 	current_wr = &rdma_req->data.wr;
1681 	assert(current_wr != NULL);
1682 
1683 	req->length = 0;
1684 	rdma_req->iovpos = 0;
1685 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1686 	for (i = 0; i < num_sgl_descriptors; i++) {
1687 		/* The descriptors must be keyed data block descriptors with an address, not an offset. */
1688 		if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1689 				  desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1690 			rc = -EINVAL;
1691 			goto err_exit;
1692 		}
1693 
1694 		rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i], 0);
1695 		if (rc != 0) {
1696 			rc = -ENOMEM;
1697 			goto err_exit;
1698 		}
1699 
1700 		req->length += desc->keyed.length;
1701 		current_wr->wr.rdma.rkey = desc->keyed.key;
1702 		current_wr->wr.rdma.remote_addr = desc->address;
1703 		current_wr = current_wr->next;
1704 		desc++;
1705 	}
1706 
1707 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1708 	/* Go back to the last descriptor in the list. */
1709 	desc--;
1710 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1711 		if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1712 			rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1713 			rdma_req->rsp.wr.imm_data = desc->keyed.key;
1714 		}
1715 	}
1716 #endif
1717 
1718 	rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1719 
1720 	return 0;
1721 
1722 err_exit:
1723 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1724 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1725 	return rc;
1726 }
1727 
1728 static int
1729 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1730 			    struct spdk_nvmf_rdma_device *device,
1731 			    struct spdk_nvmf_rdma_request *rdma_req)
1732 {
1733 	struct spdk_nvmf_request		*req = &rdma_req->req;
1734 	struct spdk_nvme_cpl			*rsp;
1735 	struct spdk_nvme_sgl_descriptor		*sgl;
1736 	int					rc;
1737 	uint32_t				length;
1738 
1739 	rsp = &req->rsp->nvme_cpl;
1740 	sgl = &req->cmd->nvme_cmd.dptr.sgl1;
1741 
1742 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1743 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1744 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1745 
1746 		length = sgl->keyed.length;
1747 		if (length > rtransport->transport.opts.max_io_size) {
1748 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1749 				    length, rtransport->transport.opts.max_io_size);
1750 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1751 			return -1;
1752 		}
1753 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1754 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1755 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1756 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1757 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1758 			}
1759 		}
1760 #endif
1761 
1762 		/* fill request length and populate iovs */
1763 		req->length = length;
1764 
1765 		if (spdk_unlikely(req->dif_enabled)) {
1766 			req->dif.orig_length = length;
1767 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
1768 			req->dif.elba_length = length;
1769 		}
1770 
1771 		rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req, length);
1772 		if (spdk_unlikely(rc < 0)) {
1773 			if (rc == -EINVAL) {
1774 				SPDK_ERRLOG("SGL length exceeds the max I/O size\n");
1775 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1776 				return -1;
1777 			}
1778 			/* No available buffers. Queue this request up. */
1779 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1780 			return 0;
1781 		}
1782 
1783 		/* backward compatible */
1784 		req->data = req->iov[0].iov_base;
1785 
1786 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1787 			      req->iovcnt);
1788 
1789 		return 0;
1790 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1791 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1792 		uint64_t offset = sgl->address;
1793 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1794 
1795 		SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1796 			      offset, sgl->unkeyed.length);
1797 
1798 		if (offset > max_len) {
1799 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1800 				    offset, max_len);
1801 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1802 			return -1;
1803 		}
1804 		max_len -= (uint32_t)offset;
1805 
1806 		if (sgl->unkeyed.length > max_len) {
1807 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1808 				    sgl->unkeyed.length, max_len);
1809 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1810 			return -1;
1811 		}
1812 
1813 		rdma_req->num_outstanding_data_wr = 0;
1814 		req->data = rdma_req->recv->buf + offset;
1815 		req->data_from_pool = false;
1816 		req->length = sgl->unkeyed.length;
1817 
1818 		req->iov[0].iov_base = req->data;
1819 		req->iov[0].iov_len = req->length;
1820 		req->iovcnt = 1;
1821 
1822 		return 0;
1823 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1824 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1825 
1826 		rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1827 		if (rc == -ENOMEM) {
1828 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1829 			return 0;
1830 		} else if (rc == -EINVAL) {
1831 			SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1832 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1833 			return -1;
1834 		}
1835 
1836 		/* backward compatible */
1837 		req->data = req->iov[0].iov_base;
1838 
1839 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1840 			      req->iovcnt);
1841 
1842 		return 0;
1843 	}
1844 
1845 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
1846 		    sgl->generic.type, sgl->generic.subtype);
1847 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1848 	return -1;
1849 }
1850 
1851 static void
1852 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1853 			struct spdk_nvmf_rdma_transport	*rtransport)
1854 {
1855 	struct spdk_nvmf_rdma_qpair		*rqpair;
1856 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1857 
1858 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1859 	if (rdma_req->req.data_from_pool) {
1860 		rgroup = rqpair->poller->group;
1861 
1862 		spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport);
1863 	}
1864 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1865 	rdma_req->req.length = 0;
1866 	rdma_req->req.iovcnt = 0;
1867 	rdma_req->req.data = NULL;
1868 	rdma_req->rsp.wr.next = NULL;
1869 	rdma_req->data.wr.next = NULL;
1870 	rdma_req->offset = 0;
1871 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
1872 	rqpair->qd--;
1873 
1874 	STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
1875 	rdma_req->state = RDMA_REQUEST_STATE_FREE;
1876 }
1877 
1878 bool
1879 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
1880 			  struct spdk_nvmf_rdma_request *rdma_req)
1881 {
1882 	struct spdk_nvmf_rdma_qpair	*rqpair;
1883 	struct spdk_nvmf_rdma_device	*device;
1884 	struct spdk_nvmf_rdma_poll_group *rgroup;
1885 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
1886 	int				rc;
1887 	struct spdk_nvmf_rdma_recv	*rdma_recv;
1888 	enum spdk_nvmf_rdma_request_state prev_state;
1889 	bool				progress = false;
1890 	int				data_posted;
1891 	uint32_t			num_blocks;
1892 
1893 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1894 	device = rqpair->device;
1895 	rgroup = rqpair->poller->group;
1896 
1897 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
1898 
1899 	/* If the queue pair is in an error state, force the request to the completed state
1900 	 * to release resources. */
1901 	if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
1902 		if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) {
1903 			STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link);
1904 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) {
1905 			STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
1906 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) {
1907 			STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
1908 		}
1909 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
1910 	}
1911 
1912 	/* The loop here is to allow for several back-to-back state changes. */
1913 	do {
1914 		prev_state = rdma_req->state;
1915 
1916 		SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state);
1917 
1918 		switch (rdma_req->state) {
1919 		case RDMA_REQUEST_STATE_FREE:
1920 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
1921 			 * to escape this state. */
1922 			break;
1923 		case RDMA_REQUEST_STATE_NEW:
1924 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
1925 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
1926 			rdma_recv = rdma_req->recv;
1927 
1928 			/* The first element of the SGL is the NVMe command */
1929 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
1930 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
1931 
1932 			if (rqpair->ibv_state == IBV_QPS_ERR  || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
1933 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
1934 				break;
1935 			}
1936 
1937 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) {
1938 				rdma_req->req.dif_enabled = true;
1939 			}
1940 
1941 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1942 			rdma_req->rsp.wr.opcode = IBV_WR_SEND;
1943 			rdma_req->rsp.wr.imm_data = 0;
1944 #endif
1945 
1946 			/* The next state transition depends on the data transfer needs of this request. */
1947 			rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req);
1948 
1949 			if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
1950 				rsp->status.sct = SPDK_NVME_SCT_GENERIC;
1951 				rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE;
1952 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
1953 				SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req);
1954 				break;
1955 			}
1956 
1957 			/* If no data to transfer, ready to execute. */
1958 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
1959 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
1960 				break;
1961 			}
1962 
1963 			rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
1964 			STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link);
1965 			break;
1966 		case RDMA_REQUEST_STATE_NEED_BUFFER:
1967 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
1968 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
1969 
1970 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
1971 
1972 			if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) {
1973 				/* This request needs to wait in line to obtain a buffer */
1974 				break;
1975 			}
1976 
1977 			/* Try to get a data buffer */
1978 			rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
1979 			if (rc < 0) {
1980 				STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
1981 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
1982 				break;
1983 			}
1984 
1985 			if (!rdma_req->req.data) {
1986 				/* No buffers available. */
1987 				rgroup->stat.pending_data_buffer++;
1988 				break;
1989 			}
1990 
1991 			STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
1992 
1993 			/* If data is transferring from host to controller and the data didn't
1994 			 * arrive using in capsule data, we need to do a transfer from the host.
1995 			 */
1996 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER &&
1997 			    rdma_req->req.data_from_pool) {
1998 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
1999 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
2000 				break;
2001 			}
2002 
2003 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2004 			break;
2005 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2006 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
2007 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2008 
2009 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
2010 				/* This request needs to wait in line to perform RDMA */
2011 				break;
2012 			}
2013 			if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth
2014 			    || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) {
2015 				/* We can only have so many WRs outstanding. we have to wait until some finish. */
2016 				rqpair->poller->stat.pending_rdma_read++;
2017 				break;
2018 			}
2019 
2020 			/* We have already verified that this request is the head of the queue. */
2021 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
2022 
2023 			rc = request_transfer_in(&rdma_req->req);
2024 			if (!rc) {
2025 				rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
2026 			} else {
2027 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2028 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2029 			}
2030 			break;
2031 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2032 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
2033 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2034 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
2035 			 * to escape this state. */
2036 			break;
2037 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
2038 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
2039 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2040 
2041 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2042 				if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2043 					/* generate DIF for write operation */
2044 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2045 					assert(num_blocks > 0);
2046 
2047 					rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt,
2048 							       num_blocks, &rdma_req->req.dif.dif_ctx);
2049 					if (rc != 0) {
2050 						SPDK_ERRLOG("DIF generation failed\n");
2051 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2052 						spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
2053 						break;
2054 					}
2055 				}
2056 
2057 				assert(rdma_req->req.dif.elba_length >= rdma_req->req.length);
2058 				/* set extended length before IO operation */
2059 				rdma_req->req.length = rdma_req->req.dif.elba_length;
2060 			}
2061 
2062 			rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
2063 			spdk_nvmf_request_exec(&rdma_req->req);
2064 			break;
2065 		case RDMA_REQUEST_STATE_EXECUTING:
2066 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
2067 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2068 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
2069 			 * to escape this state. */
2070 			break;
2071 		case RDMA_REQUEST_STATE_EXECUTED:
2072 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
2073 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2074 			if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
2075 			    rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2076 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
2077 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
2078 			} else {
2079 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2080 			}
2081 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2082 				/* restore the original length */
2083 				rdma_req->req.length = rdma_req->req.dif.orig_length;
2084 
2085 				if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2086 					struct spdk_dif_error error_blk;
2087 
2088 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2089 
2090 					rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2091 							     &rdma_req->req.dif.dif_ctx, &error_blk);
2092 					if (rc) {
2093 						struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
2094 
2095 						SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type,
2096 							    error_blk.err_offset);
2097 						rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2098 						rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type);
2099 						rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2100 						STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2101 					}
2102 				}
2103 			}
2104 			break;
2105 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2106 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
2107 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2108 
2109 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
2110 				/* This request needs to wait in line to perform RDMA */
2111 				break;
2112 			}
2113 			if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
2114 			    rqpair->max_send_depth) {
2115 				/* We can only have so many WRs outstanding. we have to wait until some finish.
2116 				 * +1 since each request has an additional wr in the resp. */
2117 				rqpair->poller->stat.pending_rdma_write++;
2118 				break;
2119 			}
2120 
2121 			/* We have already verified that this request is the head of the queue. */
2122 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
2123 
2124 			/* The data transfer will be kicked off from
2125 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2126 			 */
2127 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2128 			break;
2129 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
2130 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
2131 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2132 			rc = request_transfer_out(&rdma_req->req, &data_posted);
2133 			assert(rc == 0); /* No good way to handle this currently */
2134 			if (rc) {
2135 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2136 			} else {
2137 				rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
2138 						  RDMA_REQUEST_STATE_COMPLETING;
2139 			}
2140 			break;
2141 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2142 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
2143 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2144 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2145 			 * to escape this state. */
2146 			break;
2147 		case RDMA_REQUEST_STATE_COMPLETING:
2148 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
2149 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2150 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2151 			 * to escape this state. */
2152 			break;
2153 		case RDMA_REQUEST_STATE_COMPLETED:
2154 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2155 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2156 
2157 			rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc;
2158 			_nvmf_rdma_request_free(rdma_req, rtransport);
2159 			break;
2160 		case RDMA_REQUEST_NUM_STATES:
2161 		default:
2162 			assert(0);
2163 			break;
2164 		}
2165 
2166 		if (rdma_req->state != prev_state) {
2167 			progress = true;
2168 		}
2169 	} while (rdma_req->state != prev_state);
2170 
2171 	return progress;
2172 }
2173 
2174 /* Public API callbacks begin here */
2175 
2176 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2177 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2178 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2179 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
2180 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2181 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2182 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2183 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095
2184 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32
2185 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false
2186 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false
2187 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100
2188 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1
2189 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false
2190 
2191 static void
2192 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2193 {
2194 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2195 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2196 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2197 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2198 	opts->io_unit_size =		SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2199 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2200 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2201 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2202 	opts->dif_insert_or_strip =	SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP;
2203 	opts->abort_timeout_sec =	SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC;
2204 	opts->transport_specific =      NULL;
2205 }
2206 
2207 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2208 			     spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg);
2209 
2210 static inline bool
2211 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device)
2212 {
2213 	return device->attr.vendor_id == NVMF_RXE_VENDOR_ID_OLD ||
2214 	       device->attr.vendor_id == NVMF_RXE_VENDOR_ID_NEW;
2215 }
2216 
2217 static struct spdk_nvmf_transport *
2218 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2219 {
2220 	int rc;
2221 	struct spdk_nvmf_rdma_transport *rtransport;
2222 	struct spdk_nvmf_rdma_device	*device, *tmp;
2223 	struct ibv_context		**contexts;
2224 	uint32_t			i;
2225 	int				flag;
2226 	uint32_t			sge_count;
2227 	uint32_t			min_shared_buffers;
2228 	int				max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2229 	pthread_mutexattr_t		attr;
2230 
2231 	rtransport = calloc(1, sizeof(*rtransport));
2232 	if (!rtransport) {
2233 		return NULL;
2234 	}
2235 
2236 	if (pthread_mutexattr_init(&attr)) {
2237 		SPDK_ERRLOG("pthread_mutexattr_init() failed\n");
2238 		free(rtransport);
2239 		return NULL;
2240 	}
2241 
2242 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) {
2243 		SPDK_ERRLOG("pthread_mutexattr_settype() failed\n");
2244 		pthread_mutexattr_destroy(&attr);
2245 		free(rtransport);
2246 		return NULL;
2247 	}
2248 
2249 	if (pthread_mutex_init(&rtransport->lock, &attr)) {
2250 		SPDK_ERRLOG("pthread_mutex_init() failed\n");
2251 		pthread_mutexattr_destroy(&attr);
2252 		free(rtransport);
2253 		return NULL;
2254 	}
2255 
2256 	pthread_mutexattr_destroy(&attr);
2257 
2258 	TAILQ_INIT(&rtransport->devices);
2259 	TAILQ_INIT(&rtransport->ports);
2260 	TAILQ_INIT(&rtransport->poll_groups);
2261 
2262 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2263 	rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
2264 	rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2265 	rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ;
2266 	rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2267 	rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING;
2268 	if (opts->transport_specific != NULL &&
2269 	    spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder,
2270 					    SPDK_COUNTOF(rdma_transport_opts_decoder),
2271 					    &rtransport->rdma_opts)) {
2272 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
2273 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2274 		return NULL;
2275 	}
2276 
2277 	SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n"
2278 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
2279 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2280 		     "  in_capsule_data_size=%d, max_aq_depth=%d,\n"
2281 		     "  num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d,"
2282 		     "  acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n",
2283 		     opts->max_queue_depth,
2284 		     opts->max_io_size,
2285 		     opts->max_qpairs_per_ctrlr - 1,
2286 		     opts->io_unit_size,
2287 		     opts->in_capsule_data_size,
2288 		     opts->max_aq_depth,
2289 		     opts->num_shared_buffers,
2290 		     rtransport->rdma_opts.num_cqe,
2291 		     rtransport->rdma_opts.max_srq_depth,
2292 		     rtransport->rdma_opts.no_srq,
2293 		     rtransport->rdma_opts.acceptor_backlog,
2294 		     rtransport->rdma_opts.no_wr_batching,
2295 		     opts->abort_timeout_sec);
2296 
2297 	/* I/O unit size cannot be larger than max I/O size */
2298 	if (opts->io_unit_size > opts->max_io_size) {
2299 		opts->io_unit_size = opts->max_io_size;
2300 	}
2301 
2302 	if (rtransport->rdma_opts.acceptor_backlog <= 0) {
2303 		SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n",
2304 			    SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG);
2305 		rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2306 	}
2307 
2308 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2309 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2310 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
2311 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2312 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2313 		return NULL;
2314 	}
2315 
2316 	min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
2317 	if (min_shared_buffers > opts->num_shared_buffers) {
2318 		SPDK_ERRLOG("There are not enough buffers to satisfy"
2319 			    "per-poll group caches for each thread. (%" PRIu32 ")"
2320 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2321 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2322 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2323 		return NULL;
2324 	}
2325 
2326 	sge_count = opts->max_io_size / opts->io_unit_size;
2327 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
2328 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2329 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2330 		return NULL;
2331 	}
2332 
2333 	rtransport->event_channel = rdma_create_event_channel();
2334 	if (rtransport->event_channel == NULL) {
2335 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2336 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2337 		return NULL;
2338 	}
2339 
2340 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2341 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2342 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2343 			    rtransport->event_channel->fd, spdk_strerror(errno));
2344 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2345 		return NULL;
2346 	}
2347 
2348 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
2349 				   opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES,
2350 				   sizeof(struct spdk_nvmf_rdma_request_data),
2351 				   SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2352 				   SPDK_ENV_SOCKET_ID_ANY);
2353 	if (!rtransport->data_wr_pool) {
2354 		SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2355 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2356 		return NULL;
2357 	}
2358 
2359 	contexts = rdma_get_devices(NULL);
2360 	if (contexts == NULL) {
2361 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2362 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2363 		return NULL;
2364 	}
2365 
2366 	i = 0;
2367 	rc = 0;
2368 	while (contexts[i] != NULL) {
2369 		device = calloc(1, sizeof(*device));
2370 		if (!device) {
2371 			SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2372 			rc = -ENOMEM;
2373 			break;
2374 		}
2375 		device->context = contexts[i];
2376 		rc = ibv_query_device(device->context, &device->attr);
2377 		if (rc < 0) {
2378 			SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2379 			free(device);
2380 			break;
2381 
2382 		}
2383 
2384 		max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2385 
2386 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2387 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2388 			SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2389 			SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2390 		}
2391 
2392 		/**
2393 		 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2394 		 * The Soft-RoCE RXE driver does not currently support send with invalidate,
2395 		 * but incorrectly reports that it does. There are changes making their way
2396 		 * through the kernel now that will enable this feature. When they are merged,
2397 		 * we can conditionally enable this feature.
2398 		 *
2399 		 * TODO: enable this for versions of the kernel rxe driver that support it.
2400 		 */
2401 		if (nvmf_rdma_is_rxe_device(device)) {
2402 			device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2403 		}
2404 #endif
2405 
2406 		/* set up device context async ev fd as NON_BLOCKING */
2407 		flag = fcntl(device->context->async_fd, F_GETFL);
2408 		rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2409 		if (rc < 0) {
2410 			SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2411 			free(device);
2412 			break;
2413 		}
2414 
2415 		TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2416 		i++;
2417 
2418 		if (g_nvmf_hooks.get_ibv_pd) {
2419 			device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2420 		} else {
2421 			device->pd = ibv_alloc_pd(device->context);
2422 		}
2423 
2424 		if (!device->pd) {
2425 			SPDK_ERRLOG("Unable to allocate protection domain.\n");
2426 			rc = -ENOMEM;
2427 			break;
2428 		}
2429 
2430 		assert(device->map == NULL);
2431 
2432 		device->map = spdk_rdma_create_mem_map(device->pd, &g_nvmf_hooks);
2433 		if (!device->map) {
2434 			SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2435 			rc = -ENOMEM;
2436 			break;
2437 		}
2438 
2439 		assert(device->map != NULL);
2440 		assert(device->pd != NULL);
2441 	}
2442 	rdma_free_devices(contexts);
2443 
2444 	if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2445 		/* divide and round up. */
2446 		opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2447 
2448 		/* round up to the nearest 4k. */
2449 		opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2450 
2451 		opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2452 		SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2453 			       opts->io_unit_size);
2454 	}
2455 
2456 	if (rc < 0) {
2457 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2458 		return NULL;
2459 	}
2460 
2461 	/* Set up poll descriptor array to monitor events from RDMA and IB
2462 	 * in a single poll syscall
2463 	 */
2464 	rtransport->npoll_fds = i + 1;
2465 	i = 0;
2466 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2467 	if (rtransport->poll_fds == NULL) {
2468 		SPDK_ERRLOG("poll_fds allocation failed\n");
2469 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2470 		return NULL;
2471 	}
2472 
2473 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2474 	rtransport->poll_fds[i++].events = POLLIN;
2475 
2476 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2477 		rtransport->poll_fds[i].fd = device->context->async_fd;
2478 		rtransport->poll_fds[i++].events = POLLIN;
2479 	}
2480 
2481 	return &rtransport->transport;
2482 }
2483 
2484 static void
2485 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
2486 {
2487 	struct spdk_nvmf_rdma_transport	*rtransport;
2488 	assert(w != NULL);
2489 
2490 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2491 	spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth);
2492 	spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq);
2493 	if (rtransport->rdma_opts.no_srq == true) {
2494 		spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe);
2495 	}
2496 	spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog);
2497 	spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching);
2498 }
2499 
2500 static int
2501 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2502 		  spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
2503 {
2504 	struct spdk_nvmf_rdma_transport	*rtransport;
2505 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
2506 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
2507 
2508 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2509 
2510 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2511 		TAILQ_REMOVE(&rtransport->ports, port, link);
2512 		rdma_destroy_id(port->id);
2513 		free(port);
2514 	}
2515 
2516 	if (rtransport->poll_fds != NULL) {
2517 		free(rtransport->poll_fds);
2518 	}
2519 
2520 	if (rtransport->event_channel != NULL) {
2521 		rdma_destroy_event_channel(rtransport->event_channel);
2522 	}
2523 
2524 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2525 		TAILQ_REMOVE(&rtransport->devices, device, link);
2526 		spdk_rdma_free_mem_map(&device->map);
2527 		if (device->pd) {
2528 			if (!g_nvmf_hooks.get_ibv_pd) {
2529 				ibv_dealloc_pd(device->pd);
2530 			}
2531 		}
2532 		free(device);
2533 	}
2534 
2535 	if (rtransport->data_wr_pool != NULL) {
2536 		if (spdk_mempool_count(rtransport->data_wr_pool) !=
2537 		    (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) {
2538 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2539 				    spdk_mempool_count(rtransport->data_wr_pool),
2540 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2541 		}
2542 	}
2543 
2544 	spdk_mempool_free(rtransport->data_wr_pool);
2545 
2546 	pthread_mutex_destroy(&rtransport->lock);
2547 	free(rtransport);
2548 
2549 	if (cb_fn) {
2550 		cb_fn(cb_arg);
2551 	}
2552 	return 0;
2553 }
2554 
2555 static int
2556 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2557 			  struct spdk_nvme_transport_id *trid,
2558 			  bool peer);
2559 
2560 static int
2561 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
2562 		 struct spdk_nvmf_listen_opts *listen_opts)
2563 {
2564 	struct spdk_nvmf_rdma_transport	*rtransport;
2565 	struct spdk_nvmf_rdma_device	*device;
2566 	struct spdk_nvmf_rdma_port	*port;
2567 	struct addrinfo			*res;
2568 	struct addrinfo			hints;
2569 	int				family;
2570 	int				rc;
2571 
2572 	if (!strlen(trid->trsvcid)) {
2573 		SPDK_ERRLOG("Service id is required\n");
2574 		return -EINVAL;
2575 	}
2576 
2577 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2578 	assert(rtransport->event_channel != NULL);
2579 
2580 	pthread_mutex_lock(&rtransport->lock);
2581 	port = calloc(1, sizeof(*port));
2582 	if (!port) {
2583 		SPDK_ERRLOG("Port allocation failed\n");
2584 		pthread_mutex_unlock(&rtransport->lock);
2585 		return -ENOMEM;
2586 	}
2587 
2588 	port->trid = trid;
2589 
2590 	switch (trid->adrfam) {
2591 	case SPDK_NVMF_ADRFAM_IPV4:
2592 		family = AF_INET;
2593 		break;
2594 	case SPDK_NVMF_ADRFAM_IPV6:
2595 		family = AF_INET6;
2596 		break;
2597 	default:
2598 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam);
2599 		free(port);
2600 		pthread_mutex_unlock(&rtransport->lock);
2601 		return -EINVAL;
2602 	}
2603 
2604 	memset(&hints, 0, sizeof(hints));
2605 	hints.ai_family = family;
2606 	hints.ai_flags = AI_NUMERICSERV;
2607 	hints.ai_socktype = SOCK_STREAM;
2608 	hints.ai_protocol = 0;
2609 
2610 	rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res);
2611 	if (rc) {
2612 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
2613 		free(port);
2614 		pthread_mutex_unlock(&rtransport->lock);
2615 		return -EINVAL;
2616 	}
2617 
2618 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
2619 	if (rc < 0) {
2620 		SPDK_ERRLOG("rdma_create_id() failed\n");
2621 		freeaddrinfo(res);
2622 		free(port);
2623 		pthread_mutex_unlock(&rtransport->lock);
2624 		return rc;
2625 	}
2626 
2627 	rc = rdma_bind_addr(port->id, res->ai_addr);
2628 	freeaddrinfo(res);
2629 
2630 	if (rc < 0) {
2631 		SPDK_ERRLOG("rdma_bind_addr() failed\n");
2632 		rdma_destroy_id(port->id);
2633 		free(port);
2634 		pthread_mutex_unlock(&rtransport->lock);
2635 		return rc;
2636 	}
2637 
2638 	if (!port->id->verbs) {
2639 		SPDK_ERRLOG("ibv_context is null\n");
2640 		rdma_destroy_id(port->id);
2641 		free(port);
2642 		pthread_mutex_unlock(&rtransport->lock);
2643 		return -1;
2644 	}
2645 
2646 	rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog);
2647 	if (rc < 0) {
2648 		SPDK_ERRLOG("rdma_listen() failed\n");
2649 		rdma_destroy_id(port->id);
2650 		free(port);
2651 		pthread_mutex_unlock(&rtransport->lock);
2652 		return rc;
2653 	}
2654 
2655 	TAILQ_FOREACH(device, &rtransport->devices, link) {
2656 		if (device->context == port->id->verbs) {
2657 			port->device = device;
2658 			break;
2659 		}
2660 	}
2661 	if (!port->device) {
2662 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
2663 			    port->id->verbs);
2664 		rdma_destroy_id(port->id);
2665 		free(port);
2666 		pthread_mutex_unlock(&rtransport->lock);
2667 		return -EINVAL;
2668 	}
2669 
2670 	SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n",
2671 		       trid->traddr, trid->trsvcid);
2672 
2673 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
2674 	pthread_mutex_unlock(&rtransport->lock);
2675 	return 0;
2676 }
2677 
2678 static void
2679 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
2680 		      const struct spdk_nvme_transport_id *trid)
2681 {
2682 	struct spdk_nvmf_rdma_transport *rtransport;
2683 	struct spdk_nvmf_rdma_port *port, *tmp;
2684 
2685 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2686 
2687 	pthread_mutex_lock(&rtransport->lock);
2688 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
2689 		if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
2690 			TAILQ_REMOVE(&rtransport->ports, port, link);
2691 			rdma_destroy_id(port->id);
2692 			free(port);
2693 			break;
2694 		}
2695 	}
2696 
2697 	pthread_mutex_unlock(&rtransport->lock);
2698 }
2699 
2700 static void
2701 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
2702 				struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
2703 {
2704 	struct spdk_nvmf_request *req, *tmp;
2705 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
2706 	struct spdk_nvmf_rdma_resources *resources;
2707 
2708 	/* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */
2709 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
2710 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2711 			break;
2712 		}
2713 	}
2714 
2715 	/* Then RDMA writes since reads have stronger restrictions than writes */
2716 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
2717 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2718 			break;
2719 		}
2720 	}
2721 
2722 	/* Then we handle request waiting on memory buffers. */
2723 	STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) {
2724 		rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
2725 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2726 			break;
2727 		}
2728 	}
2729 
2730 	resources = rqpair->resources;
2731 	while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
2732 		rdma_req = STAILQ_FIRST(&resources->free_queue);
2733 		STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
2734 		rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
2735 		STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
2736 
2737 		if (rqpair->srq != NULL) {
2738 			rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
2739 			rdma_req->recv->qpair->qd++;
2740 		} else {
2741 			rqpair->qd++;
2742 		}
2743 
2744 		rdma_req->receive_tsc = rdma_req->recv->receive_tsc;
2745 		rdma_req->state = RDMA_REQUEST_STATE_NEW;
2746 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
2747 			break;
2748 		}
2749 	}
2750 	if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) {
2751 		rqpair->poller->stat.pending_free_request++;
2752 	}
2753 }
2754 
2755 static inline bool
2756 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device)
2757 {
2758 	/* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */
2759 	return nvmf_rdma_is_rxe_device(device) ||
2760 	       device->context->device->transport_type == IBV_TRANSPORT_IWARP;
2761 }
2762 
2763 static void
2764 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair)
2765 {
2766 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
2767 			struct spdk_nvmf_rdma_transport, transport);
2768 
2769 	nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
2770 
2771 	/* nvmr_rdma_close_qpair is not called */
2772 	if (!rqpair->to_close) {
2773 		return;
2774 	}
2775 
2776 	/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
2777 	if (rqpair->current_send_depth != 0) {
2778 		return;
2779 	}
2780 
2781 	if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
2782 		return;
2783 	}
2784 
2785 	if (rqpair->srq != NULL && rqpair->last_wqe_reached == false &&
2786 	    !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) {
2787 		return;
2788 	}
2789 
2790 	assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR);
2791 
2792 	nvmf_rdma_qpair_destroy(rqpair);
2793 }
2794 
2795 static int
2796 nvmf_rdma_disconnect(struct rdma_cm_event *evt)
2797 {
2798 	struct spdk_nvmf_qpair		*qpair;
2799 	struct spdk_nvmf_rdma_qpair	*rqpair;
2800 
2801 	if (evt->id == NULL) {
2802 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
2803 		return -1;
2804 	}
2805 
2806 	qpair = evt->id->context;
2807 	if (qpair == NULL) {
2808 		SPDK_ERRLOG("disconnect request: no active connection\n");
2809 		return -1;
2810 	}
2811 
2812 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
2813 
2814 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair);
2815 
2816 	spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
2817 
2818 	return 0;
2819 }
2820 
2821 #ifdef DEBUG
2822 static const char *CM_EVENT_STR[] = {
2823 	"RDMA_CM_EVENT_ADDR_RESOLVED",
2824 	"RDMA_CM_EVENT_ADDR_ERROR",
2825 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
2826 	"RDMA_CM_EVENT_ROUTE_ERROR",
2827 	"RDMA_CM_EVENT_CONNECT_REQUEST",
2828 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
2829 	"RDMA_CM_EVENT_CONNECT_ERROR",
2830 	"RDMA_CM_EVENT_UNREACHABLE",
2831 	"RDMA_CM_EVENT_REJECTED",
2832 	"RDMA_CM_EVENT_ESTABLISHED",
2833 	"RDMA_CM_EVENT_DISCONNECTED",
2834 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
2835 	"RDMA_CM_EVENT_MULTICAST_JOIN",
2836 	"RDMA_CM_EVENT_MULTICAST_ERROR",
2837 	"RDMA_CM_EVENT_ADDR_CHANGE",
2838 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
2839 };
2840 #endif /* DEBUG */
2841 
2842 static void
2843 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport,
2844 				    struct spdk_nvmf_rdma_port *port)
2845 {
2846 	struct spdk_nvmf_rdma_poll_group	*rgroup;
2847 	struct spdk_nvmf_rdma_poller		*rpoller;
2848 	struct spdk_nvmf_rdma_qpair		*rqpair;
2849 
2850 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
2851 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
2852 			TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) {
2853 				if (rqpair->listen_id == port->id) {
2854 					spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
2855 				}
2856 			}
2857 		}
2858 	}
2859 }
2860 
2861 static bool
2862 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport,
2863 				      struct rdma_cm_event *event)
2864 {
2865 	const struct spdk_nvme_transport_id	*trid;
2866 	struct spdk_nvmf_rdma_port		*port;
2867 	struct spdk_nvmf_rdma_transport		*rtransport;
2868 	bool					event_acked = false;
2869 
2870 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2871 	TAILQ_FOREACH(port, &rtransport->ports, link) {
2872 		if (port->id == event->id) {
2873 			SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid);
2874 			rdma_ack_cm_event(event);
2875 			event_acked = true;
2876 			trid = port->trid;
2877 			break;
2878 		}
2879 	}
2880 
2881 	if (event_acked) {
2882 		nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
2883 
2884 		nvmf_rdma_stop_listen(transport, trid);
2885 		nvmf_rdma_listen(transport, trid, NULL);
2886 	}
2887 
2888 	return event_acked;
2889 }
2890 
2891 static void
2892 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport,
2893 				       struct rdma_cm_event *event)
2894 {
2895 	struct spdk_nvmf_rdma_port		*port;
2896 	struct spdk_nvmf_rdma_transport		*rtransport;
2897 
2898 	port = event->id->context;
2899 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2900 
2901 	SPDK_NOTICELOG("Port %s:%s is being removed\n", port->trid->traddr, port->trid->trsvcid);
2902 
2903 	nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
2904 
2905 	rdma_ack_cm_event(event);
2906 
2907 	while (spdk_nvmf_transport_stop_listen(transport, port->trid) == 0) {
2908 		;
2909 	}
2910 }
2911 
2912 static void
2913 nvmf_process_cm_event(struct spdk_nvmf_transport *transport)
2914 {
2915 	struct spdk_nvmf_rdma_transport *rtransport;
2916 	struct rdma_cm_event		*event;
2917 	int				rc;
2918 	bool				event_acked;
2919 
2920 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2921 
2922 	if (rtransport->event_channel == NULL) {
2923 		return;
2924 	}
2925 
2926 	while (1) {
2927 		event_acked = false;
2928 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
2929 		if (rc) {
2930 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
2931 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
2932 			}
2933 			break;
2934 		}
2935 
2936 		SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
2937 
2938 		spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
2939 
2940 		switch (event->event) {
2941 		case RDMA_CM_EVENT_ADDR_RESOLVED:
2942 		case RDMA_CM_EVENT_ADDR_ERROR:
2943 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
2944 		case RDMA_CM_EVENT_ROUTE_ERROR:
2945 			/* No action required. The target never attempts to resolve routes. */
2946 			break;
2947 		case RDMA_CM_EVENT_CONNECT_REQUEST:
2948 			rc = nvmf_rdma_connect(transport, event);
2949 			if (rc < 0) {
2950 				SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
2951 				break;
2952 			}
2953 			break;
2954 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
2955 			/* The target never initiates a new connection. So this will not occur. */
2956 			break;
2957 		case RDMA_CM_EVENT_CONNECT_ERROR:
2958 			/* Can this happen? The docs say it can, but not sure what causes it. */
2959 			break;
2960 		case RDMA_CM_EVENT_UNREACHABLE:
2961 		case RDMA_CM_EVENT_REJECTED:
2962 			/* These only occur on the client side. */
2963 			break;
2964 		case RDMA_CM_EVENT_ESTABLISHED:
2965 			/* TODO: Should we be waiting for this event anywhere? */
2966 			break;
2967 		case RDMA_CM_EVENT_DISCONNECTED:
2968 			rc = nvmf_rdma_disconnect(event);
2969 			if (rc < 0) {
2970 				SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
2971 				break;
2972 			}
2973 			break;
2974 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
2975 			/* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL
2976 			 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s.
2977 			 * Once these events are sent to SPDK, we should release all IB resources and
2978 			 * don't make attempts to call any ibv_query/modify/create functions. We can only call
2979 			 * ibv_destory* functions to release user space memory allocated by IB. All kernel
2980 			 * resources are already cleaned. */
2981 			if (event->id->qp) {
2982 				/* If rdma_cm event has a valid `qp` pointer then the event refers to the
2983 				 * corresponding qpair. Otherwise the event refers to a listening device */
2984 				rc = nvmf_rdma_disconnect(event);
2985 				if (rc < 0) {
2986 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
2987 					break;
2988 				}
2989 			} else {
2990 				nvmf_rdma_handle_cm_event_port_removal(transport, event);
2991 				event_acked = true;
2992 			}
2993 			break;
2994 		case RDMA_CM_EVENT_MULTICAST_JOIN:
2995 		case RDMA_CM_EVENT_MULTICAST_ERROR:
2996 			/* Multicast is not used */
2997 			break;
2998 		case RDMA_CM_EVENT_ADDR_CHANGE:
2999 			event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event);
3000 			break;
3001 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
3002 			/* For now, do nothing. The target never re-uses queue pairs. */
3003 			break;
3004 		default:
3005 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
3006 			break;
3007 		}
3008 		if (!event_acked) {
3009 			rdma_ack_cm_event(event);
3010 		}
3011 	}
3012 }
3013 
3014 static void
3015 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair)
3016 {
3017 	rqpair->last_wqe_reached = true;
3018 	nvmf_rdma_destroy_drained_qpair(rqpair);
3019 }
3020 
3021 static void
3022 nvmf_rdma_qpair_process_ibv_event(void *ctx)
3023 {
3024 	struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx;
3025 
3026 	if (event_ctx->rqpair) {
3027 		STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3028 		if (event_ctx->cb_fn) {
3029 			event_ctx->cb_fn(event_ctx->rqpair);
3030 		}
3031 	}
3032 	free(event_ctx);
3033 }
3034 
3035 static int
3036 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair,
3037 				 spdk_nvmf_rdma_qpair_ibv_event fn)
3038 {
3039 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx;
3040 	struct spdk_thread *thr = NULL;
3041 	int rc;
3042 
3043 	if (rqpair->qpair.group) {
3044 		thr = rqpair->qpair.group->thread;
3045 	} else if (rqpair->destruct_channel) {
3046 		thr = spdk_io_channel_get_thread(rqpair->destruct_channel);
3047 	}
3048 
3049 	if (!thr) {
3050 		SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair);
3051 		return -EINVAL;
3052 	}
3053 
3054 	ctx = calloc(1, sizeof(*ctx));
3055 	if (!ctx) {
3056 		return -ENOMEM;
3057 	}
3058 
3059 	ctx->rqpair = rqpair;
3060 	ctx->cb_fn = fn;
3061 	STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link);
3062 
3063 	rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx);
3064 	if (rc) {
3065 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3066 		free(ctx);
3067 	}
3068 
3069 	return rc;
3070 }
3071 
3072 static int
3073 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
3074 {
3075 	int				rc;
3076 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
3077 	struct ibv_async_event		event;
3078 
3079 	rc = ibv_get_async_event(device->context, &event);
3080 
3081 	if (rc) {
3082 		/* In non-blocking mode -1 means there are no events available */
3083 		return rc;
3084 	}
3085 
3086 	switch (event.event_type) {
3087 	case IBV_EVENT_QP_FATAL:
3088 		rqpair = event.element.qp->qp_context;
3089 		SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
3090 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3091 				  (uintptr_t)rqpair, event.event_type);
3092 		nvmf_rdma_update_ibv_state(rqpair);
3093 		spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3094 		break;
3095 	case IBV_EVENT_QP_LAST_WQE_REACHED:
3096 		/* This event only occurs for shared receive queues. */
3097 		rqpair = event.element.qp->qp_context;
3098 		SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair);
3099 		rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached);
3100 		if (rc) {
3101 			SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc);
3102 			rqpair->last_wqe_reached = true;
3103 		}
3104 		break;
3105 	case IBV_EVENT_SQ_DRAINED:
3106 		/* This event occurs frequently in both error and non-error states.
3107 		 * Check if the qpair is in an error state before sending a message. */
3108 		rqpair = event.element.qp->qp_context;
3109 		SPDK_DEBUGLOG(rdma, "Last sq drained event received for rqpair %p\n", rqpair);
3110 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3111 				  (uintptr_t)rqpair, event.event_type);
3112 		if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) {
3113 			spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3114 		}
3115 		break;
3116 	case IBV_EVENT_QP_REQ_ERR:
3117 	case IBV_EVENT_QP_ACCESS_ERR:
3118 	case IBV_EVENT_COMM_EST:
3119 	case IBV_EVENT_PATH_MIG:
3120 	case IBV_EVENT_PATH_MIG_ERR:
3121 		SPDK_NOTICELOG("Async event: %s\n",
3122 			       ibv_event_type_str(event.event_type));
3123 		rqpair = event.element.qp->qp_context;
3124 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3125 				  (uintptr_t)rqpair, event.event_type);
3126 		nvmf_rdma_update_ibv_state(rqpair);
3127 		break;
3128 	case IBV_EVENT_CQ_ERR:
3129 	case IBV_EVENT_DEVICE_FATAL:
3130 	case IBV_EVENT_PORT_ACTIVE:
3131 	case IBV_EVENT_PORT_ERR:
3132 	case IBV_EVENT_LID_CHANGE:
3133 	case IBV_EVENT_PKEY_CHANGE:
3134 	case IBV_EVENT_SM_CHANGE:
3135 	case IBV_EVENT_SRQ_ERR:
3136 	case IBV_EVENT_SRQ_LIMIT_REACHED:
3137 	case IBV_EVENT_CLIENT_REREGISTER:
3138 	case IBV_EVENT_GID_CHANGE:
3139 	default:
3140 		SPDK_NOTICELOG("Async event: %s\n",
3141 			       ibv_event_type_str(event.event_type));
3142 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
3143 		break;
3144 	}
3145 	ibv_ack_async_event(&event);
3146 
3147 	return 0;
3148 }
3149 
3150 static void
3151 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events)
3152 {
3153 	int rc = 0;
3154 	uint32_t i = 0;
3155 
3156 	for (i = 0; i < max_events; i++) {
3157 		rc = nvmf_process_ib_event(device);
3158 		if (rc) {
3159 			break;
3160 		}
3161 	}
3162 
3163 	SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i);
3164 }
3165 
3166 static uint32_t
3167 nvmf_rdma_accept(struct spdk_nvmf_transport *transport)
3168 {
3169 	int	nfds, i = 0;
3170 	struct spdk_nvmf_rdma_transport *rtransport;
3171 	struct spdk_nvmf_rdma_device *device, *tmp;
3172 	uint32_t count;
3173 
3174 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3175 	count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
3176 
3177 	if (nfds <= 0) {
3178 		return 0;
3179 	}
3180 
3181 	/* The first poll descriptor is RDMA CM event */
3182 	if (rtransport->poll_fds[i++].revents & POLLIN) {
3183 		nvmf_process_cm_event(transport);
3184 		nfds--;
3185 	}
3186 
3187 	if (nfds == 0) {
3188 		return count;
3189 	}
3190 
3191 	/* Second and subsequent poll descriptors are IB async events */
3192 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
3193 		if (rtransport->poll_fds[i++].revents & POLLIN) {
3194 			nvmf_process_ib_events(device, 32);
3195 			nfds--;
3196 		}
3197 	}
3198 	/* check all flagged fd's have been served */
3199 	assert(nfds == 0);
3200 
3201 	return count;
3202 }
3203 
3204 static void
3205 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem,
3206 		     struct spdk_nvmf_ctrlr_data *cdata)
3207 {
3208 	cdata->nvmf_specific.msdbd = SPDK_NVMF_MAX_SGL_ENTRIES;
3209 
3210 	/* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled
3211 	since in-capsule data only works with NVME drives that support SGL memory layout */
3212 	if (transport->opts.dif_insert_or_strip) {
3213 		cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16;
3214 	}
3215 
3216 	if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) {
3217 		SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule"
3218 			     " data is greater than 4KiB.\n");
3219 		SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux "
3220 			     "kernel between versions 5.4 and 5.12 data corruption may occur for "
3221 			     "writes that are not a multiple of 4KiB in size.\n");
3222 	}
3223 }
3224 
3225 static void
3226 nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
3227 		   struct spdk_nvme_transport_id *trid,
3228 		   struct spdk_nvmf_discovery_log_page_entry *entry)
3229 {
3230 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
3231 	entry->adrfam = trid->adrfam;
3232 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
3233 
3234 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
3235 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
3236 
3237 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
3238 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
3239 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
3240 }
3241 
3242 static void
3243 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
3244 
3245 static struct spdk_nvmf_transport_poll_group *
3246 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport)
3247 {
3248 	struct spdk_nvmf_rdma_transport		*rtransport;
3249 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3250 	struct spdk_nvmf_rdma_poller		*poller;
3251 	struct spdk_nvmf_rdma_device		*device;
3252 	struct spdk_rdma_srq_init_attr		srq_init_attr;
3253 	struct spdk_nvmf_rdma_resource_opts	opts;
3254 	int					num_cqe;
3255 
3256 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3257 
3258 	rgroup = calloc(1, sizeof(*rgroup));
3259 	if (!rgroup) {
3260 		return NULL;
3261 	}
3262 
3263 	TAILQ_INIT(&rgroup->pollers);
3264 
3265 	pthread_mutex_lock(&rtransport->lock);
3266 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3267 		poller = calloc(1, sizeof(*poller));
3268 		if (!poller) {
3269 			SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
3270 			nvmf_rdma_poll_group_destroy(&rgroup->group);
3271 			pthread_mutex_unlock(&rtransport->lock);
3272 			return NULL;
3273 		}
3274 
3275 		poller->device = device;
3276 		poller->group = rgroup;
3277 
3278 		TAILQ_INIT(&poller->qpairs);
3279 		STAILQ_INIT(&poller->qpairs_pending_send);
3280 		STAILQ_INIT(&poller->qpairs_pending_recv);
3281 
3282 		TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
3283 		if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) {
3284 			poller->max_srq_depth = rtransport->rdma_opts.max_srq_depth;
3285 
3286 			device->num_srq++;
3287 			memset(&srq_init_attr, 0, sizeof(srq_init_attr));
3288 			srq_init_attr.pd = device->pd;
3289 			srq_init_attr.stats = &poller->stat.qp_stats.recv;
3290 			srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth;
3291 			srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
3292 			poller->srq = spdk_rdma_srq_create(&srq_init_attr);
3293 			if (!poller->srq) {
3294 				SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
3295 				nvmf_rdma_poll_group_destroy(&rgroup->group);
3296 				pthread_mutex_unlock(&rtransport->lock);
3297 				return NULL;
3298 			}
3299 
3300 			opts.qp = poller->srq;
3301 			opts.pd = device->pd;
3302 			opts.qpair = NULL;
3303 			opts.shared = true;
3304 			opts.max_queue_depth = poller->max_srq_depth;
3305 			opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
3306 
3307 			poller->resources = nvmf_rdma_resources_create(&opts);
3308 			if (!poller->resources) {
3309 				SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
3310 				nvmf_rdma_poll_group_destroy(&rgroup->group);
3311 				pthread_mutex_unlock(&rtransport->lock);
3312 				return NULL;
3313 			}
3314 		}
3315 
3316 		/*
3317 		 * When using an srq, we can limit the completion queue at startup.
3318 		 * The following formula represents the calculation:
3319 		 * num_cqe = num_recv + num_data_wr + num_send_wr.
3320 		 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
3321 		 */
3322 		if (poller->srq) {
3323 			num_cqe = poller->max_srq_depth * 3;
3324 		} else {
3325 			num_cqe = rtransport->rdma_opts.num_cqe;
3326 		}
3327 
3328 		poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
3329 		if (!poller->cq) {
3330 			SPDK_ERRLOG("Unable to create completion queue\n");
3331 			nvmf_rdma_poll_group_destroy(&rgroup->group);
3332 			pthread_mutex_unlock(&rtransport->lock);
3333 			return NULL;
3334 		}
3335 		poller->num_cqe = num_cqe;
3336 	}
3337 
3338 	TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link);
3339 	if (rtransport->conn_sched.next_admin_pg == NULL) {
3340 		rtransport->conn_sched.next_admin_pg = rgroup;
3341 		rtransport->conn_sched.next_io_pg = rgroup;
3342 	}
3343 
3344 	pthread_mutex_unlock(&rtransport->lock);
3345 	return &rgroup->group;
3346 }
3347 
3348 static struct spdk_nvmf_transport_poll_group *
3349 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
3350 {
3351 	struct spdk_nvmf_rdma_transport *rtransport;
3352 	struct spdk_nvmf_rdma_poll_group **pg;
3353 	struct spdk_nvmf_transport_poll_group *result;
3354 
3355 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
3356 
3357 	pthread_mutex_lock(&rtransport->lock);
3358 
3359 	if (TAILQ_EMPTY(&rtransport->poll_groups)) {
3360 		pthread_mutex_unlock(&rtransport->lock);
3361 		return NULL;
3362 	}
3363 
3364 	if (qpair->qid == 0) {
3365 		pg = &rtransport->conn_sched.next_admin_pg;
3366 	} else {
3367 		pg = &rtransport->conn_sched.next_io_pg;
3368 	}
3369 
3370 	assert(*pg != NULL);
3371 
3372 	result = &(*pg)->group;
3373 
3374 	*pg = TAILQ_NEXT(*pg, link);
3375 	if (*pg == NULL) {
3376 		*pg = TAILQ_FIRST(&rtransport->poll_groups);
3377 	}
3378 
3379 	pthread_mutex_unlock(&rtransport->lock);
3380 
3381 	return result;
3382 }
3383 
3384 static void
3385 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
3386 {
3387 	struct spdk_nvmf_rdma_poll_group	*rgroup, *next_rgroup;
3388 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
3389 	struct spdk_nvmf_rdma_qpair		*qpair, *tmp_qpair;
3390 	struct spdk_nvmf_rdma_transport		*rtransport;
3391 
3392 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3393 	if (!rgroup) {
3394 		return;
3395 	}
3396 
3397 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
3398 		TAILQ_REMOVE(&rgroup->pollers, poller, link);
3399 
3400 		TAILQ_FOREACH_SAFE(qpair, &poller->qpairs, link, tmp_qpair) {
3401 			nvmf_rdma_qpair_destroy(qpair);
3402 		}
3403 
3404 		if (poller->srq) {
3405 			if (poller->resources) {
3406 				nvmf_rdma_resources_destroy(poller->resources);
3407 			}
3408 			spdk_rdma_srq_destroy(poller->srq);
3409 			SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq);
3410 		}
3411 
3412 		if (poller->cq) {
3413 			ibv_destroy_cq(poller->cq);
3414 		}
3415 
3416 		free(poller);
3417 	}
3418 
3419 	if (rgroup->group.transport == NULL) {
3420 		/* Transport can be NULL when nvmf_rdma_poll_group_create()
3421 		 * calls this function directly in a failure path. */
3422 		free(rgroup);
3423 		return;
3424 	}
3425 
3426 	rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport);
3427 
3428 	pthread_mutex_lock(&rtransport->lock);
3429 	next_rgroup = TAILQ_NEXT(rgroup, link);
3430 	TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link);
3431 	if (next_rgroup == NULL) {
3432 		next_rgroup = TAILQ_FIRST(&rtransport->poll_groups);
3433 	}
3434 	if (rtransport->conn_sched.next_admin_pg == rgroup) {
3435 		rtransport->conn_sched.next_admin_pg = next_rgroup;
3436 	}
3437 	if (rtransport->conn_sched.next_io_pg == rgroup) {
3438 		rtransport->conn_sched.next_io_pg = next_rgroup;
3439 	}
3440 	pthread_mutex_unlock(&rtransport->lock);
3441 
3442 	free(rgroup);
3443 }
3444 
3445 static void
3446 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
3447 {
3448 	if (rqpair->cm_id != NULL) {
3449 		nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
3450 	}
3451 }
3452 
3453 static int
3454 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3455 			 struct spdk_nvmf_qpair *qpair)
3456 {
3457 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3458 	struct spdk_nvmf_rdma_qpair		*rqpair;
3459 	struct spdk_nvmf_rdma_device		*device;
3460 	struct spdk_nvmf_rdma_poller		*poller;
3461 	int					rc;
3462 
3463 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3464 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3465 
3466 	device = rqpair->device;
3467 
3468 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
3469 		if (poller->device == device) {
3470 			break;
3471 		}
3472 	}
3473 
3474 	if (!poller) {
3475 		SPDK_ERRLOG("No poller found for device.\n");
3476 		return -1;
3477 	}
3478 
3479 	TAILQ_INSERT_TAIL(&poller->qpairs, rqpair, link);
3480 	rqpair->poller = poller;
3481 	rqpair->srq = rqpair->poller->srq;
3482 
3483 	rc = nvmf_rdma_qpair_initialize(qpair);
3484 	if (rc < 0) {
3485 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
3486 		return -1;
3487 	}
3488 
3489 	rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
3490 	if (rc) {
3491 		/* Try to reject, but we probably can't */
3492 		nvmf_rdma_qpair_reject_connection(rqpair);
3493 		return -1;
3494 	}
3495 
3496 	nvmf_rdma_update_ibv_state(rqpair);
3497 
3498 	return 0;
3499 }
3500 
3501 static int
3502 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3503 			    struct spdk_nvmf_qpair *qpair)
3504 {
3505 	struct spdk_nvmf_rdma_qpair		*rqpair;
3506 
3507 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3508 	assert(group->transport->tgt != NULL);
3509 
3510 	rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt);
3511 
3512 	if (!rqpair->destruct_channel) {
3513 		SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair);
3514 		return 0;
3515 	}
3516 
3517 	/* Sanity check that we get io_channel on the correct thread */
3518 	if (qpair->group) {
3519 		assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel));
3520 	}
3521 
3522 	return 0;
3523 }
3524 
3525 static int
3526 nvmf_rdma_request_free(struct spdk_nvmf_request *req)
3527 {
3528 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3529 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3530 			struct spdk_nvmf_rdma_transport, transport);
3531 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
3532 					      struct spdk_nvmf_rdma_qpair, qpair);
3533 
3534 	/*
3535 	 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request
3536 	 * needs to be returned to the shared receive queue or the poll group will eventually be
3537 	 * starved of RECV structures.
3538 	 */
3539 	if (rqpair->srq && rdma_req->recv) {
3540 		int rc;
3541 		struct ibv_recv_wr *bad_recv_wr;
3542 
3543 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr);
3544 		rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
3545 		if (rc) {
3546 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
3547 		}
3548 	}
3549 
3550 	_nvmf_rdma_request_free(rdma_req, rtransport);
3551 	return 0;
3552 }
3553 
3554 static int
3555 nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
3556 {
3557 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3558 			struct spdk_nvmf_rdma_transport, transport);
3559 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
3560 			struct spdk_nvmf_rdma_request, req);
3561 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
3562 			struct spdk_nvmf_rdma_qpair, qpair);
3563 
3564 	if (rqpair->ibv_state != IBV_QPS_ERR) {
3565 		/* The connection is alive, so process the request as normal */
3566 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
3567 	} else {
3568 		/* The connection is dead. Move the request directly to the completed state. */
3569 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3570 	}
3571 
3572 	nvmf_rdma_request_process(rtransport, rdma_req);
3573 
3574 	return 0;
3575 }
3576 
3577 static void
3578 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair,
3579 		      spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3580 {
3581 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3582 
3583 	rqpair->to_close = true;
3584 
3585 	/* This happens only when the qpair is disconnected before
3586 	 * it is added to the poll group. Since there is no poll group,
3587 	 * the RDMA qp has not been initialized yet and the RDMA CM
3588 	 * event has not yet been acknowledged, so we need to reject it.
3589 	 */
3590 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
3591 		nvmf_rdma_qpair_reject_connection(rqpair);
3592 		nvmf_rdma_qpair_destroy(rqpair);
3593 		return;
3594 	}
3595 
3596 	if (rqpair->rdma_qp) {
3597 		spdk_rdma_qp_disconnect(rqpair->rdma_qp);
3598 	}
3599 
3600 	nvmf_rdma_destroy_drained_qpair(rqpair);
3601 
3602 	if (cb_fn) {
3603 		cb_fn(cb_arg);
3604 	}
3605 }
3606 
3607 static struct spdk_nvmf_rdma_qpair *
3608 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
3609 {
3610 	struct spdk_nvmf_rdma_qpair *rqpair;
3611 	/* @todo: improve QP search */
3612 	TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) {
3613 		if (wc->qp_num == rqpair->rdma_qp->qp->qp_num) {
3614 			return rqpair;
3615 		}
3616 	}
3617 	SPDK_ERRLOG("Didn't find QP with qp_num %u\n", wc->qp_num);
3618 	return NULL;
3619 }
3620 
3621 #ifdef DEBUG
3622 static int
3623 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
3624 {
3625 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
3626 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
3627 }
3628 #endif
3629 
3630 static void
3631 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr,
3632 			   int rc)
3633 {
3634 	struct spdk_nvmf_rdma_recv	*rdma_recv;
3635 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
3636 
3637 	SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc);
3638 	while (bad_recv_wr != NULL) {
3639 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id;
3640 		rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
3641 
3642 		rdma_recv->qpair->current_recv_depth++;
3643 		bad_recv_wr = bad_recv_wr->next;
3644 		SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc);
3645 		spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair, NULL, NULL);
3646 	}
3647 }
3648 
3649 static void
3650 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc)
3651 {
3652 	SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc);
3653 	while (bad_recv_wr != NULL) {
3654 		bad_recv_wr = bad_recv_wr->next;
3655 		rqpair->current_recv_depth++;
3656 	}
3657 	spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3658 }
3659 
3660 static void
3661 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
3662 		     struct spdk_nvmf_rdma_poller *rpoller)
3663 {
3664 	struct spdk_nvmf_rdma_qpair	*rqpair;
3665 	struct ibv_recv_wr		*bad_recv_wr;
3666 	int				rc;
3667 
3668 	if (rpoller->srq) {
3669 		rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr);
3670 		if (rc) {
3671 			_poller_reset_failed_recvs(rpoller, bad_recv_wr, rc);
3672 		}
3673 	} else {
3674 		while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) {
3675 			rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv);
3676 			rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
3677 			if (rc) {
3678 				_qp_reset_failed_recvs(rqpair, bad_recv_wr, rc);
3679 			}
3680 			STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link);
3681 		}
3682 	}
3683 }
3684 
3685 static void
3686 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport,
3687 		       struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc)
3688 {
3689 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
3690 	struct spdk_nvmf_rdma_request	*prev_rdma_req = NULL, *cur_rdma_req = NULL;
3691 
3692 	SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc);
3693 	for (; bad_wr != NULL; bad_wr = bad_wr->next) {
3694 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id;
3695 		assert(rqpair->current_send_depth > 0);
3696 		rqpair->current_send_depth--;
3697 		switch (bad_rdma_wr->type) {
3698 		case RDMA_WR_TYPE_DATA:
3699 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
3700 			if (bad_wr->opcode == IBV_WR_RDMA_READ) {
3701 				assert(rqpair->current_read_depth > 0);
3702 				rqpair->current_read_depth--;
3703 			}
3704 			break;
3705 		case RDMA_WR_TYPE_SEND:
3706 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
3707 			break;
3708 		default:
3709 			SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair);
3710 			prev_rdma_req = cur_rdma_req;
3711 			continue;
3712 		}
3713 
3714 		if (prev_rdma_req == cur_rdma_req) {
3715 			/* this request was handled by an earlier wr. i.e. we were performing an nvme read. */
3716 			/* We only have to check against prev_wr since each requests wrs are contiguous in this list. */
3717 			continue;
3718 		}
3719 
3720 		switch (cur_rdma_req->state) {
3721 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3722 			cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
3723 			cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
3724 			break;
3725 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3726 		case RDMA_REQUEST_STATE_COMPLETING:
3727 			cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3728 			break;
3729 		default:
3730 			SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n",
3731 				    cur_rdma_req->state, rqpair);
3732 			continue;
3733 		}
3734 
3735 		nvmf_rdma_request_process(rtransport, cur_rdma_req);
3736 		prev_rdma_req = cur_rdma_req;
3737 	}
3738 
3739 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
3740 		/* Disconnect the connection. */
3741 		spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3742 	}
3743 
3744 }
3745 
3746 static void
3747 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
3748 		     struct spdk_nvmf_rdma_poller *rpoller)
3749 {
3750 	struct spdk_nvmf_rdma_qpair	*rqpair;
3751 	struct ibv_send_wr		*bad_wr = NULL;
3752 	int				rc;
3753 
3754 	while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) {
3755 		rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send);
3756 		rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr);
3757 
3758 		/* bad wr always points to the first wr that failed. */
3759 		if (rc) {
3760 			_qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc);
3761 		}
3762 		STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link);
3763 	}
3764 }
3765 
3766 static const char *
3767 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type)
3768 {
3769 	switch (wr_type) {
3770 	case RDMA_WR_TYPE_RECV:
3771 		return "RECV";
3772 	case RDMA_WR_TYPE_SEND:
3773 		return "SEND";
3774 	case RDMA_WR_TYPE_DATA:
3775 		return "DATA";
3776 	default:
3777 		SPDK_ERRLOG("Unknown WR type %d\n", wr_type);
3778 		SPDK_UNREACHABLE();
3779 	}
3780 }
3781 
3782 static inline void
3783 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc)
3784 {
3785 	enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type;
3786 
3787 	if (wc->status == IBV_WC_WR_FLUSH_ERR) {
3788 		/* If qpair is in ERR state, we will receive completions for all posted and not completed
3789 		 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
3790 		SPDK_DEBUGLOG(rdma,
3791 			      "Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n",
3792 			      rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id,
3793 			      nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
3794 	} else {
3795 		SPDK_ERRLOG("Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n",
3796 			    rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id,
3797 			    nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
3798 	}
3799 }
3800 
3801 static int
3802 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
3803 		      struct spdk_nvmf_rdma_poller *rpoller)
3804 {
3805 	struct ibv_wc wc[32];
3806 	struct spdk_nvmf_rdma_wr	*rdma_wr;
3807 	struct spdk_nvmf_rdma_request	*rdma_req;
3808 	struct spdk_nvmf_rdma_recv	*rdma_recv;
3809 	struct spdk_nvmf_rdma_qpair	*rqpair;
3810 	int reaped, i;
3811 	int count = 0;
3812 	bool error = false;
3813 	uint64_t poll_tsc = spdk_get_ticks();
3814 
3815 	/* Poll for completing operations. */
3816 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
3817 	if (reaped < 0) {
3818 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
3819 			    errno, spdk_strerror(errno));
3820 		return -1;
3821 	} else if (reaped == 0) {
3822 		rpoller->stat.idle_polls++;
3823 	}
3824 
3825 	rpoller->stat.polls++;
3826 	rpoller->stat.completions += reaped;
3827 
3828 	for (i = 0; i < reaped; i++) {
3829 
3830 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
3831 
3832 		switch (rdma_wr->type) {
3833 		case RDMA_WR_TYPE_SEND:
3834 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
3835 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
3836 
3837 			if (!wc[i].status) {
3838 				count++;
3839 				assert(wc[i].opcode == IBV_WC_SEND);
3840 				assert(nvmf_rdma_req_is_completing(rdma_req));
3841 			}
3842 
3843 			rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3844 			/* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */
3845 			rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1;
3846 			rdma_req->num_outstanding_data_wr = 0;
3847 
3848 			nvmf_rdma_request_process(rtransport, rdma_req);
3849 			break;
3850 		case RDMA_WR_TYPE_RECV:
3851 			/* rdma_recv->qpair will be invalid if using an SRQ.  In that case we have to get the qpair from the wc. */
3852 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
3853 			if (rpoller->srq != NULL) {
3854 				rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
3855 				/* It is possible that there are still some completions for destroyed QP
3856 				 * associated with SRQ. We just ignore these late completions and re-post
3857 				 * receive WRs back to SRQ.
3858 				 */
3859 				if (spdk_unlikely(NULL == rdma_recv->qpair)) {
3860 					struct ibv_recv_wr *bad_wr;
3861 					int rc;
3862 
3863 					rdma_recv->wr.next = NULL;
3864 					spdk_rdma_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr);
3865 					rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_wr);
3866 					if (rc) {
3867 						SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc);
3868 					}
3869 					continue;
3870 				}
3871 			}
3872 			rqpair = rdma_recv->qpair;
3873 
3874 			assert(rqpair != NULL);
3875 			if (!wc[i].status) {
3876 				assert(wc[i].opcode == IBV_WC_RECV);
3877 				if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
3878 					spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3879 					break;
3880 				}
3881 			}
3882 
3883 			rdma_recv->wr.next = NULL;
3884 			rqpair->current_recv_depth++;
3885 			rdma_recv->receive_tsc = poll_tsc;
3886 			rpoller->stat.requests++;
3887 			STAILQ_INSERT_TAIL(&rqpair->resources->incoming_queue, rdma_recv, link);
3888 			break;
3889 		case RDMA_WR_TYPE_DATA:
3890 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
3891 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
3892 
3893 			assert(rdma_req->num_outstanding_data_wr > 0);
3894 
3895 			rqpair->current_send_depth--;
3896 			rdma_req->num_outstanding_data_wr--;
3897 			if (!wc[i].status) {
3898 				assert(wc[i].opcode == IBV_WC_RDMA_READ);
3899 				rqpair->current_read_depth--;
3900 				/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
3901 				if (rdma_req->num_outstanding_data_wr == 0) {
3902 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
3903 					nvmf_rdma_request_process(rtransport, rdma_req);
3904 				}
3905 			} else {
3906 				/* If the data transfer fails still force the queue into the error state,
3907 				 * if we were performing an RDMA_READ, we need to force the request into a
3908 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
3909 				 * case, we should wait for the SEND to complete. */
3910 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
3911 					rqpair->current_read_depth--;
3912 					if (rdma_req->num_outstanding_data_wr == 0) {
3913 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3914 					}
3915 				}
3916 			}
3917 			break;
3918 		default:
3919 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
3920 			continue;
3921 		}
3922 
3923 		/* Handle error conditions */
3924 		if (wc[i].status) {
3925 			nvmf_rdma_update_ibv_state(rqpair);
3926 			nvmf_rdma_log_wc_status(rqpair, &wc[i]);
3927 
3928 			error = true;
3929 
3930 			if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
3931 				/* Disconnect the connection. */
3932 				spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3933 			} else {
3934 				nvmf_rdma_destroy_drained_qpair(rqpair);
3935 			}
3936 			continue;
3937 		}
3938 
3939 		nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
3940 
3941 		if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
3942 			nvmf_rdma_destroy_drained_qpair(rqpair);
3943 		}
3944 	}
3945 
3946 	if (error == true) {
3947 		return -1;
3948 	}
3949 
3950 	/* submit outstanding work requests. */
3951 	_poller_submit_recvs(rtransport, rpoller);
3952 	_poller_submit_sends(rtransport, rpoller);
3953 
3954 	return count;
3955 }
3956 
3957 static int
3958 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3959 {
3960 	struct spdk_nvmf_rdma_transport *rtransport;
3961 	struct spdk_nvmf_rdma_poll_group *rgroup;
3962 	struct spdk_nvmf_rdma_poller	*rpoller;
3963 	int				count, rc;
3964 
3965 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
3966 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3967 
3968 	count = 0;
3969 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3970 		rc = nvmf_rdma_poller_poll(rtransport, rpoller);
3971 		if (rc < 0) {
3972 			return rc;
3973 		}
3974 		count += rc;
3975 	}
3976 
3977 	return count;
3978 }
3979 
3980 static int
3981 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
3982 			  struct spdk_nvme_transport_id *trid,
3983 			  bool peer)
3984 {
3985 	struct sockaddr *saddr;
3986 	uint16_t port;
3987 
3988 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA);
3989 
3990 	if (peer) {
3991 		saddr = rdma_get_peer_addr(id);
3992 	} else {
3993 		saddr = rdma_get_local_addr(id);
3994 	}
3995 	switch (saddr->sa_family) {
3996 	case AF_INET: {
3997 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
3998 
3999 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
4000 		inet_ntop(AF_INET, &saddr_in->sin_addr,
4001 			  trid->traddr, sizeof(trid->traddr));
4002 		if (peer) {
4003 			port = ntohs(rdma_get_dst_port(id));
4004 		} else {
4005 			port = ntohs(rdma_get_src_port(id));
4006 		}
4007 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4008 		break;
4009 	}
4010 	case AF_INET6: {
4011 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
4012 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
4013 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
4014 			  trid->traddr, sizeof(trid->traddr));
4015 		if (peer) {
4016 			port = ntohs(rdma_get_dst_port(id));
4017 		} else {
4018 			port = ntohs(rdma_get_src_port(id));
4019 		}
4020 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4021 		break;
4022 	}
4023 	default:
4024 		return -1;
4025 
4026 	}
4027 
4028 	return 0;
4029 }
4030 
4031 static int
4032 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
4033 			      struct spdk_nvme_transport_id *trid)
4034 {
4035 	struct spdk_nvmf_rdma_qpair	*rqpair;
4036 
4037 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4038 
4039 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
4040 }
4041 
4042 static int
4043 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
4044 			       struct spdk_nvme_transport_id *trid)
4045 {
4046 	struct spdk_nvmf_rdma_qpair	*rqpair;
4047 
4048 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4049 
4050 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
4051 }
4052 
4053 static int
4054 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
4055 				struct spdk_nvme_transport_id *trid)
4056 {
4057 	struct spdk_nvmf_rdma_qpair	*rqpair;
4058 
4059 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4060 
4061 	return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
4062 }
4063 
4064 void
4065 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
4066 {
4067 	g_nvmf_hooks = *hooks;
4068 }
4069 
4070 static void
4071 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req,
4072 				   struct spdk_nvmf_rdma_request *rdma_req_to_abort)
4073 {
4074 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
4075 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
4076 
4077 	rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
4078 
4079 	req->rsp->nvme_cpl.cdw0 &= ~1U;	/* Command was successfully aborted. */
4080 }
4081 
4082 static int
4083 _nvmf_rdma_qpair_abort_request(void *ctx)
4084 {
4085 	struct spdk_nvmf_request *req = ctx;
4086 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF(
4087 				req->req_to_abort, struct spdk_nvmf_rdma_request, req);
4088 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
4089 					      struct spdk_nvmf_rdma_qpair, qpair);
4090 	int rc;
4091 
4092 	spdk_poller_unregister(&req->poller);
4093 
4094 	switch (rdma_req_to_abort->state) {
4095 	case RDMA_REQUEST_STATE_EXECUTING:
4096 		rc = nvmf_ctrlr_abort_request(req);
4097 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
4098 			return SPDK_POLLER_BUSY;
4099 		}
4100 		break;
4101 
4102 	case RDMA_REQUEST_STATE_NEED_BUFFER:
4103 		STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue,
4104 			      &rdma_req_to_abort->req, spdk_nvmf_request, buf_link);
4105 
4106 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4107 		break;
4108 
4109 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
4110 		STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort,
4111 			      spdk_nvmf_rdma_request, state_link);
4112 
4113 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4114 		break;
4115 
4116 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
4117 		STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort,
4118 			      spdk_nvmf_rdma_request, state_link);
4119 
4120 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4121 		break;
4122 
4123 	case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
4124 		if (spdk_get_ticks() < req->timeout_tsc) {
4125 			req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0);
4126 			return SPDK_POLLER_BUSY;
4127 		}
4128 		break;
4129 
4130 	default:
4131 		break;
4132 	}
4133 
4134 	spdk_nvmf_request_complete(req);
4135 	return SPDK_POLLER_BUSY;
4136 }
4137 
4138 static void
4139 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
4140 			      struct spdk_nvmf_request *req)
4141 {
4142 	struct spdk_nvmf_rdma_qpair *rqpair;
4143 	struct spdk_nvmf_rdma_transport *rtransport;
4144 	struct spdk_nvmf_transport *transport;
4145 	uint16_t cid;
4146 	uint32_t i, max_req_count;
4147 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req;
4148 
4149 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4150 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
4151 	transport = &rtransport->transport;
4152 
4153 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
4154 	max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth;
4155 
4156 	for (i = 0; i < max_req_count; i++) {
4157 		rdma_req = &rqpair->resources->reqs[i];
4158 		/* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair
4159 		 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to
4160 		 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */
4161 		if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid &&
4162 		    rdma_req->req.qpair == qpair) {
4163 			rdma_req_to_abort = rdma_req;
4164 			break;
4165 		}
4166 	}
4167 
4168 	if (rdma_req_to_abort == NULL) {
4169 		spdk_nvmf_request_complete(req);
4170 		return;
4171 	}
4172 
4173 	req->req_to_abort = &rdma_req_to_abort->req;
4174 	req->timeout_tsc = spdk_get_ticks() +
4175 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
4176 	req->poller = NULL;
4177 
4178 	_nvmf_rdma_qpair_abort_request(req);
4179 }
4180 
4181 static void
4182 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group,
4183 			       struct spdk_json_write_ctx *w)
4184 {
4185 	struct spdk_nvmf_rdma_poll_group *rgroup;
4186 	struct spdk_nvmf_rdma_poller *rpoller;
4187 
4188 	assert(w != NULL);
4189 
4190 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4191 
4192 	spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer);
4193 
4194 	spdk_json_write_named_array_begin(w, "devices");
4195 
4196 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
4197 		spdk_json_write_object_begin(w);
4198 		spdk_json_write_named_string(w, "name",
4199 					     ibv_get_device_name(rpoller->device->context->device));
4200 		spdk_json_write_named_uint64(w, "polls",
4201 					     rpoller->stat.polls);
4202 		spdk_json_write_named_uint64(w, "idle_polls",
4203 					     rpoller->stat.idle_polls);
4204 		spdk_json_write_named_uint64(w, "completions",
4205 					     rpoller->stat.completions);
4206 		spdk_json_write_named_uint64(w, "requests",
4207 					     rpoller->stat.requests);
4208 		spdk_json_write_named_uint64(w, "request_latency",
4209 					     rpoller->stat.request_latency);
4210 		spdk_json_write_named_uint64(w, "pending_free_request",
4211 					     rpoller->stat.pending_free_request);
4212 		spdk_json_write_named_uint64(w, "pending_rdma_read",
4213 					     rpoller->stat.pending_rdma_read);
4214 		spdk_json_write_named_uint64(w, "pending_rdma_write",
4215 					     rpoller->stat.pending_rdma_write);
4216 		spdk_json_write_named_uint64(w, "total_send_wrs",
4217 					     rpoller->stat.qp_stats.send.num_submitted_wrs);
4218 		spdk_json_write_named_uint64(w, "send_doorbell_updates",
4219 					     rpoller->stat.qp_stats.send.doorbell_updates);
4220 		spdk_json_write_named_uint64(w, "total_recv_wrs",
4221 					     rpoller->stat.qp_stats.recv.num_submitted_wrs);
4222 		spdk_json_write_named_uint64(w, "recv_doorbell_updates",
4223 					     rpoller->stat.qp_stats.recv.doorbell_updates);
4224 		spdk_json_write_object_end(w);
4225 	}
4226 
4227 	spdk_json_write_array_end(w);
4228 }
4229 
4230 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
4231 	.name = "RDMA",
4232 	.type = SPDK_NVME_TRANSPORT_RDMA,
4233 	.opts_init = nvmf_rdma_opts_init,
4234 	.create = nvmf_rdma_create,
4235 	.dump_opts = nvmf_rdma_dump_opts,
4236 	.destroy = nvmf_rdma_destroy,
4237 
4238 	.listen = nvmf_rdma_listen,
4239 	.stop_listen = nvmf_rdma_stop_listen,
4240 	.accept = nvmf_rdma_accept,
4241 	.cdata_init = nvmf_rdma_cdata_init,
4242 
4243 	.listener_discover = nvmf_rdma_discover,
4244 
4245 	.poll_group_create = nvmf_rdma_poll_group_create,
4246 	.get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group,
4247 	.poll_group_destroy = nvmf_rdma_poll_group_destroy,
4248 	.poll_group_add = nvmf_rdma_poll_group_add,
4249 	.poll_group_remove = nvmf_rdma_poll_group_remove,
4250 	.poll_group_poll = nvmf_rdma_poll_group_poll,
4251 
4252 	.req_free = nvmf_rdma_request_free,
4253 	.req_complete = nvmf_rdma_request_complete,
4254 
4255 	.qpair_fini = nvmf_rdma_close_qpair,
4256 	.qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid,
4257 	.qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid,
4258 	.qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid,
4259 	.qpair_abort_request = nvmf_rdma_qpair_abort_request,
4260 
4261 	.poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat,
4262 };
4263 
4264 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma);
4265 SPDK_LOG_REGISTER_COMPONENT(rdma)
4266