1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (c) Intel Corporation. All rights reserved. 3 * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk/stdinc.h" 8 9 #include "spdk/config.h" 10 #include "spdk/thread.h" 11 #include "spdk/likely.h" 12 #include "spdk/nvmf_transport.h" 13 #include "spdk/string.h" 14 #include "spdk/trace.h" 15 #include "spdk/tree.h" 16 #include "spdk/util.h" 17 18 #include "spdk_internal/assert.h" 19 #include "spdk/log.h" 20 #include "spdk_internal/rdma.h" 21 22 #include "nvmf_internal.h" 23 #include "transport.h" 24 25 #include "spdk_internal/trace_defs.h" 26 27 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {}; 28 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma; 29 30 /* 31 RDMA Connection Resource Defaults 32 */ 33 #define NVMF_DEFAULT_TX_SGE SPDK_NVMF_MAX_SGL_ENTRIES 34 #define NVMF_DEFAULT_RSP_SGE 1 35 #define NVMF_DEFAULT_RX_SGE 2 36 37 /* The RDMA completion queue size */ 38 #define DEFAULT_NVMF_RDMA_CQ_SIZE 4096 39 #define MAX_WR_PER_QP(queue_depth) (queue_depth * 3 + 2) 40 41 static int g_spdk_nvmf_ibv_query_mask = 42 IBV_QP_STATE | 43 IBV_QP_PKEY_INDEX | 44 IBV_QP_PORT | 45 IBV_QP_ACCESS_FLAGS | 46 IBV_QP_AV | 47 IBV_QP_PATH_MTU | 48 IBV_QP_DEST_QPN | 49 IBV_QP_RQ_PSN | 50 IBV_QP_MAX_DEST_RD_ATOMIC | 51 IBV_QP_MIN_RNR_TIMER | 52 IBV_QP_SQ_PSN | 53 IBV_QP_TIMEOUT | 54 IBV_QP_RETRY_CNT | 55 IBV_QP_RNR_RETRY | 56 IBV_QP_MAX_QP_RD_ATOMIC; 57 58 enum spdk_nvmf_rdma_request_state { 59 /* The request is not currently in use */ 60 RDMA_REQUEST_STATE_FREE = 0, 61 62 /* Initial state when request first received */ 63 RDMA_REQUEST_STATE_NEW, 64 65 /* The request is queued until a data buffer is available. */ 66 RDMA_REQUEST_STATE_NEED_BUFFER, 67 68 /* The request is waiting on RDMA queue depth availability 69 * to transfer data from the host to the controller. 70 */ 71 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 72 73 /* The request is currently transferring data from the host to the controller. */ 74 RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 75 76 /* The request is ready to execute at the block device */ 77 RDMA_REQUEST_STATE_READY_TO_EXECUTE, 78 79 /* The request is currently executing at the block device */ 80 RDMA_REQUEST_STATE_EXECUTING, 81 82 /* The request finished executing at the block device */ 83 RDMA_REQUEST_STATE_EXECUTED, 84 85 /* The request is waiting on RDMA queue depth availability 86 * to transfer data from the controller to the host. 87 */ 88 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 89 90 /* The request is ready to send a completion */ 91 RDMA_REQUEST_STATE_READY_TO_COMPLETE, 92 93 /* The request is currently transferring data from the controller to the host. */ 94 RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 95 96 /* The request currently has an outstanding completion without an 97 * associated data transfer. 98 */ 99 RDMA_REQUEST_STATE_COMPLETING, 100 101 /* The request completed and can be marked free. */ 102 RDMA_REQUEST_STATE_COMPLETED, 103 104 /* Terminator */ 105 RDMA_REQUEST_NUM_STATES, 106 }; 107 108 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA) 109 { 110 spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r'); 111 spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW, 112 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 113 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 114 spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 115 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 116 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 117 spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H", 118 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 119 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 120 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 121 spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C", 122 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 123 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 124 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 125 spdk_trace_register_description("RDMA_REQ_TX_H2C", 126 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 127 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 128 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 129 spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE", 130 TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 131 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 132 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 133 spdk_trace_register_description("RDMA_REQ_EXECUTING", 134 TRACE_RDMA_REQUEST_STATE_EXECUTING, 135 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 136 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 137 spdk_trace_register_description("RDMA_REQ_EXECUTED", 138 TRACE_RDMA_REQUEST_STATE_EXECUTED, 139 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 140 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 141 spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL", 142 TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 143 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 144 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 145 spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H", 146 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 147 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 148 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 149 spdk_trace_register_description("RDMA_REQ_COMPLETING", 150 TRACE_RDMA_REQUEST_STATE_COMPLETING, 151 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 152 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 153 spdk_trace_register_description("RDMA_REQ_COMPLETED", 154 TRACE_RDMA_REQUEST_STATE_COMPLETED, 155 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 156 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 157 158 spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE, 159 OWNER_NONE, OBJECT_NONE, 0, 160 SPDK_TRACE_ARG_TYPE_INT, ""); 161 spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT, 162 OWNER_NONE, OBJECT_NONE, 0, 163 SPDK_TRACE_ARG_TYPE_INT, "type"); 164 spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT, 165 OWNER_NONE, OBJECT_NONE, 0, 166 SPDK_TRACE_ARG_TYPE_INT, "type"); 167 spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE, 168 OWNER_NONE, OBJECT_NONE, 0, 169 SPDK_TRACE_ARG_TYPE_PTR, "state"); 170 spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT, 171 OWNER_NONE, OBJECT_NONE, 0, 172 SPDK_TRACE_ARG_TYPE_INT, ""); 173 spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY, 174 OWNER_NONE, OBJECT_NONE, 0, 175 SPDK_TRACE_ARG_TYPE_INT, ""); 176 } 177 178 enum spdk_nvmf_rdma_wr_type { 179 RDMA_WR_TYPE_RECV, 180 RDMA_WR_TYPE_SEND, 181 RDMA_WR_TYPE_DATA, 182 }; 183 184 struct spdk_nvmf_rdma_wr { 185 enum spdk_nvmf_rdma_wr_type type; 186 }; 187 188 /* This structure holds commands as they are received off the wire. 189 * It must be dynamically paired with a full request object 190 * (spdk_nvmf_rdma_request) to service a request. It is separate 191 * from the request because RDMA does not appear to order 192 * completions, so occasionally we'll get a new incoming 193 * command when there aren't any free request objects. 194 */ 195 struct spdk_nvmf_rdma_recv { 196 struct ibv_recv_wr wr; 197 struct ibv_sge sgl[NVMF_DEFAULT_RX_SGE]; 198 199 struct spdk_nvmf_rdma_qpair *qpair; 200 201 /* In-capsule data buffer */ 202 uint8_t *buf; 203 204 struct spdk_nvmf_rdma_wr rdma_wr; 205 uint64_t receive_tsc; 206 207 STAILQ_ENTRY(spdk_nvmf_rdma_recv) link; 208 }; 209 210 struct spdk_nvmf_rdma_request_data { 211 struct spdk_nvmf_rdma_wr rdma_wr; 212 struct ibv_send_wr wr; 213 struct ibv_sge sgl[SPDK_NVMF_MAX_SGL_ENTRIES]; 214 }; 215 216 struct spdk_nvmf_rdma_request { 217 struct spdk_nvmf_request req; 218 219 enum spdk_nvmf_rdma_request_state state; 220 221 /* Data offset in req.iov */ 222 uint32_t offset; 223 224 struct spdk_nvmf_rdma_recv *recv; 225 226 struct { 227 struct spdk_nvmf_rdma_wr rdma_wr; 228 struct ibv_send_wr wr; 229 struct ibv_sge sgl[NVMF_DEFAULT_RSP_SGE]; 230 } rsp; 231 232 struct spdk_nvmf_rdma_request_data data; 233 234 uint32_t iovpos; 235 236 uint32_t num_outstanding_data_wr; 237 uint64_t receive_tsc; 238 239 bool fused_failed; 240 struct spdk_nvmf_rdma_request *fused_pair; 241 242 STAILQ_ENTRY(spdk_nvmf_rdma_request) state_link; 243 }; 244 245 struct spdk_nvmf_rdma_resource_opts { 246 struct spdk_nvmf_rdma_qpair *qpair; 247 /* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */ 248 void *qp; 249 struct ibv_pd *pd; 250 uint32_t max_queue_depth; 251 uint32_t in_capsule_data_size; 252 bool shared; 253 }; 254 255 struct spdk_nvmf_rdma_resources { 256 /* Array of size "max_queue_depth" containing RDMA requests. */ 257 struct spdk_nvmf_rdma_request *reqs; 258 259 /* Array of size "max_queue_depth" containing RDMA recvs. */ 260 struct spdk_nvmf_rdma_recv *recvs; 261 262 /* Array of size "max_queue_depth" containing 64 byte capsules 263 * used for receive. 264 */ 265 union nvmf_h2c_msg *cmds; 266 struct ibv_mr *cmds_mr; 267 268 /* Array of size "max_queue_depth" containing 16 byte completions 269 * to be sent back to the user. 270 */ 271 union nvmf_c2h_msg *cpls; 272 struct ibv_mr *cpls_mr; 273 274 /* Array of size "max_queue_depth * InCapsuleDataSize" containing 275 * buffers to be used for in capsule data. 276 */ 277 void *bufs; 278 struct ibv_mr *bufs_mr; 279 280 /* Receives that are waiting for a request object */ 281 STAILQ_HEAD(, spdk_nvmf_rdma_recv) incoming_queue; 282 283 /* Queue to track free requests */ 284 STAILQ_HEAD(, spdk_nvmf_rdma_request) free_queue; 285 }; 286 287 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair); 288 289 struct spdk_nvmf_rdma_ibv_event_ctx { 290 struct spdk_nvmf_rdma_qpair *rqpair; 291 spdk_nvmf_rdma_qpair_ibv_event cb_fn; 292 /* Link to other ibv events associated with this qpair */ 293 STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx) link; 294 }; 295 296 struct spdk_nvmf_rdma_qpair { 297 struct spdk_nvmf_qpair qpair; 298 299 struct spdk_nvmf_rdma_device *device; 300 struct spdk_nvmf_rdma_poller *poller; 301 302 struct spdk_rdma_qp *rdma_qp; 303 struct rdma_cm_id *cm_id; 304 struct spdk_rdma_srq *srq; 305 struct rdma_cm_id *listen_id; 306 307 /* Cache the QP number to improve QP search by RB tree. */ 308 uint32_t qp_num; 309 310 /* The maximum number of I/O outstanding on this connection at one time */ 311 uint16_t max_queue_depth; 312 313 /* The maximum number of active RDMA READ and ATOMIC operations at one time */ 314 uint16_t max_read_depth; 315 316 /* The maximum number of RDMA SEND operations at one time */ 317 uint32_t max_send_depth; 318 319 /* The current number of outstanding WRs from this qpair's 320 * recv queue. Should not exceed device->attr.max_queue_depth. 321 */ 322 uint16_t current_recv_depth; 323 324 /* The current number of active RDMA READ operations */ 325 uint16_t current_read_depth; 326 327 /* The current number of posted WRs from this qpair's 328 * send queue. Should not exceed max_send_depth. 329 */ 330 uint32_t current_send_depth; 331 332 /* The maximum number of SGEs per WR on the send queue */ 333 uint32_t max_send_sge; 334 335 /* The maximum number of SGEs per WR on the recv queue */ 336 uint32_t max_recv_sge; 337 338 struct spdk_nvmf_rdma_resources *resources; 339 340 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_read_queue; 341 342 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_write_queue; 343 344 /* Number of requests not in the free state */ 345 uint32_t qd; 346 347 RB_ENTRY(spdk_nvmf_rdma_qpair) node; 348 349 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) recv_link; 350 351 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) send_link; 352 353 /* IBV queue pair attributes: they are used to manage 354 * qp state and recover from errors. 355 */ 356 enum ibv_qp_state ibv_state; 357 358 /* Points to the a request that has fuse bits set to 359 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting 360 * for the request that has SPDK_NVME_CMD_FUSE_SECOND. 361 */ 362 struct spdk_nvmf_rdma_request *fused_first; 363 364 /* 365 * io_channel which is used to destroy qpair when it is removed from poll group 366 */ 367 struct spdk_io_channel *destruct_channel; 368 369 /* List of ibv async events */ 370 STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx) ibv_events; 371 372 /* Lets us know that we have received the last_wqe event. */ 373 bool last_wqe_reached; 374 375 /* Indicate that nvmf_rdma_close_qpair is called */ 376 bool to_close; 377 }; 378 379 struct spdk_nvmf_rdma_poller_stat { 380 uint64_t completions; 381 uint64_t polls; 382 uint64_t idle_polls; 383 uint64_t requests; 384 uint64_t request_latency; 385 uint64_t pending_free_request; 386 uint64_t pending_rdma_read; 387 uint64_t pending_rdma_write; 388 struct spdk_rdma_qp_stats qp_stats; 389 }; 390 391 struct spdk_nvmf_rdma_poller { 392 struct spdk_nvmf_rdma_device *device; 393 struct spdk_nvmf_rdma_poll_group *group; 394 395 int num_cqe; 396 int required_num_wr; 397 struct ibv_cq *cq; 398 399 /* The maximum number of I/O outstanding on the shared receive queue at one time */ 400 uint16_t max_srq_depth; 401 402 /* Shared receive queue */ 403 struct spdk_rdma_srq *srq; 404 405 struct spdk_nvmf_rdma_resources *resources; 406 struct spdk_nvmf_rdma_poller_stat stat; 407 408 RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs; 409 410 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_recv; 411 412 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_send; 413 414 TAILQ_ENTRY(spdk_nvmf_rdma_poller) link; 415 }; 416 417 struct spdk_nvmf_rdma_poll_group_stat { 418 uint64_t pending_data_buffer; 419 }; 420 421 struct spdk_nvmf_rdma_poll_group { 422 struct spdk_nvmf_transport_poll_group group; 423 struct spdk_nvmf_rdma_poll_group_stat stat; 424 TAILQ_HEAD(, spdk_nvmf_rdma_poller) pollers; 425 TAILQ_ENTRY(spdk_nvmf_rdma_poll_group) link; 426 }; 427 428 struct spdk_nvmf_rdma_conn_sched { 429 struct spdk_nvmf_rdma_poll_group *next_admin_pg; 430 struct spdk_nvmf_rdma_poll_group *next_io_pg; 431 }; 432 433 /* Assuming rdma_cm uses just one protection domain per ibv_context. */ 434 struct spdk_nvmf_rdma_device { 435 struct ibv_device_attr attr; 436 struct ibv_context *context; 437 438 struct spdk_rdma_mem_map *map; 439 struct ibv_pd *pd; 440 441 int num_srq; 442 443 TAILQ_ENTRY(spdk_nvmf_rdma_device) link; 444 }; 445 446 struct spdk_nvmf_rdma_port { 447 const struct spdk_nvme_transport_id *trid; 448 struct rdma_cm_id *id; 449 struct spdk_nvmf_rdma_device *device; 450 TAILQ_ENTRY(spdk_nvmf_rdma_port) link; 451 }; 452 453 struct rdma_transport_opts { 454 int num_cqe; 455 uint32_t max_srq_depth; 456 bool no_srq; 457 bool no_wr_batching; 458 int acceptor_backlog; 459 }; 460 461 struct spdk_nvmf_rdma_transport { 462 struct spdk_nvmf_transport transport; 463 struct rdma_transport_opts rdma_opts; 464 465 struct spdk_nvmf_rdma_conn_sched conn_sched; 466 467 struct rdma_event_channel *event_channel; 468 469 struct spdk_mempool *data_wr_pool; 470 471 struct spdk_poller *accept_poller; 472 pthread_mutex_t lock; 473 474 /* fields used to poll RDMA/IB events */ 475 nfds_t npoll_fds; 476 struct pollfd *poll_fds; 477 478 TAILQ_HEAD(, spdk_nvmf_rdma_device) devices; 479 TAILQ_HEAD(, spdk_nvmf_rdma_port) ports; 480 TAILQ_HEAD(, spdk_nvmf_rdma_poll_group) poll_groups; 481 }; 482 483 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = { 484 { 485 "num_cqe", offsetof(struct rdma_transport_opts, num_cqe), 486 spdk_json_decode_int32, true 487 }, 488 { 489 "max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth), 490 spdk_json_decode_uint32, true 491 }, 492 { 493 "no_srq", offsetof(struct rdma_transport_opts, no_srq), 494 spdk_json_decode_bool, true 495 }, 496 { 497 "no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching), 498 spdk_json_decode_bool, true 499 }, 500 { 501 "acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog), 502 spdk_json_decode_int32, true 503 }, 504 }; 505 506 static int 507 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2) 508 { 509 return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num; 510 } 511 512 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare); 513 514 static bool 515 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 516 struct spdk_nvmf_rdma_request *rdma_req); 517 518 static void 519 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 520 struct spdk_nvmf_rdma_poller *rpoller); 521 522 static void 523 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 524 struct spdk_nvmf_rdma_poller *rpoller); 525 526 static inline int 527 nvmf_rdma_check_ibv_state(enum ibv_qp_state state) 528 { 529 switch (state) { 530 case IBV_QPS_RESET: 531 case IBV_QPS_INIT: 532 case IBV_QPS_RTR: 533 case IBV_QPS_RTS: 534 case IBV_QPS_SQD: 535 case IBV_QPS_SQE: 536 case IBV_QPS_ERR: 537 return 0; 538 default: 539 return -1; 540 } 541 } 542 543 static inline enum spdk_nvme_media_error_status_code 544 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) { 545 enum spdk_nvme_media_error_status_code result; 546 switch (err_type) 547 { 548 case SPDK_DIF_REFTAG_ERROR: 549 result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR; 550 break; 551 case SPDK_DIF_APPTAG_ERROR: 552 result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR; 553 break; 554 case SPDK_DIF_GUARD_ERROR: 555 result = SPDK_NVME_SC_GUARD_CHECK_ERROR; 556 break; 557 default: 558 SPDK_UNREACHABLE(); 559 } 560 561 return result; 562 } 563 564 static enum ibv_qp_state 565 nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) { 566 enum ibv_qp_state old_state, new_state; 567 struct ibv_qp_attr qp_attr; 568 struct ibv_qp_init_attr init_attr; 569 int rc; 570 571 old_state = rqpair->ibv_state; 572 rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr, 573 g_spdk_nvmf_ibv_query_mask, &init_attr); 574 575 if (rc) 576 { 577 SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n"); 578 return IBV_QPS_ERR + 1; 579 } 580 581 new_state = qp_attr.qp_state; 582 rqpair->ibv_state = new_state; 583 qp_attr.ah_attr.port_num = qp_attr.port_num; 584 585 rc = nvmf_rdma_check_ibv_state(new_state); 586 if (rc) 587 { 588 SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state); 589 /* 590 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8 591 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR 592 */ 593 return IBV_QPS_ERR + 1; 594 } 595 596 if (old_state != new_state) 597 { 598 spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, (uintptr_t)rqpair, new_state); 599 } 600 return new_state; 601 } 602 603 static void 604 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req, 605 struct spdk_nvmf_rdma_transport *rtransport) 606 { 607 struct spdk_nvmf_rdma_request_data *data_wr; 608 struct ibv_send_wr *next_send_wr; 609 uint64_t req_wrid; 610 611 rdma_req->num_outstanding_data_wr = 0; 612 data_wr = &rdma_req->data; 613 req_wrid = data_wr->wr.wr_id; 614 while (data_wr && data_wr->wr.wr_id == req_wrid) { 615 memset(data_wr->sgl, 0, sizeof(data_wr->wr.sg_list[0]) * data_wr->wr.num_sge); 616 data_wr->wr.num_sge = 0; 617 next_send_wr = data_wr->wr.next; 618 if (data_wr != &rdma_req->data) { 619 spdk_mempool_put(rtransport->data_wr_pool, data_wr); 620 } 621 data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : 622 SPDK_CONTAINEROF(next_send_wr, struct spdk_nvmf_rdma_request_data, wr); 623 } 624 } 625 626 static void 627 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req) 628 { 629 SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool); 630 if (req->req.cmd) { 631 SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode); 632 } 633 if (req->recv) { 634 SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id); 635 } 636 } 637 638 static void 639 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair) 640 { 641 int i; 642 643 SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid); 644 for (i = 0; i < rqpair->max_queue_depth; i++) { 645 if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) { 646 nvmf_rdma_dump_request(&rqpair->resources->reqs[i]); 647 } 648 } 649 } 650 651 static void 652 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources) 653 { 654 if (resources->cmds_mr) { 655 ibv_dereg_mr(resources->cmds_mr); 656 } 657 658 if (resources->cpls_mr) { 659 ibv_dereg_mr(resources->cpls_mr); 660 } 661 662 if (resources->bufs_mr) { 663 ibv_dereg_mr(resources->bufs_mr); 664 } 665 666 spdk_free(resources->cmds); 667 spdk_free(resources->cpls); 668 spdk_free(resources->bufs); 669 spdk_free(resources->reqs); 670 spdk_free(resources->recvs); 671 free(resources); 672 } 673 674 675 static struct spdk_nvmf_rdma_resources * 676 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts) 677 { 678 struct spdk_nvmf_rdma_resources *resources; 679 struct spdk_nvmf_rdma_request *rdma_req; 680 struct spdk_nvmf_rdma_recv *rdma_recv; 681 struct spdk_rdma_qp *qp = NULL; 682 struct spdk_rdma_srq *srq = NULL; 683 struct ibv_recv_wr *bad_wr = NULL; 684 uint32_t i; 685 int rc = 0; 686 687 resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources)); 688 if (!resources) { 689 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 690 return NULL; 691 } 692 693 resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs), 694 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 695 resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs), 696 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 697 resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds), 698 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 699 resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls), 700 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 701 702 if (opts->in_capsule_data_size > 0) { 703 resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size, 704 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, 705 SPDK_MALLOC_DMA); 706 } 707 708 if (!resources->reqs || !resources->recvs || !resources->cmds || 709 !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) { 710 SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n"); 711 goto cleanup; 712 } 713 714 resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds, 715 opts->max_queue_depth * sizeof(*resources->cmds), 716 IBV_ACCESS_LOCAL_WRITE); 717 resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls, 718 opts->max_queue_depth * sizeof(*resources->cpls), 719 0); 720 721 if (opts->in_capsule_data_size) { 722 resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs, 723 opts->max_queue_depth * 724 opts->in_capsule_data_size, 725 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); 726 } 727 728 if (!resources->cmds_mr || !resources->cpls_mr || 729 (opts->in_capsule_data_size && 730 !resources->bufs_mr)) { 731 goto cleanup; 732 } 733 SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx LKey: %x\n", 734 resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds), 735 resources->cmds_mr->lkey); 736 SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx LKey: %x\n", 737 resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls), 738 resources->cpls_mr->lkey); 739 if (resources->bufs && resources->bufs_mr) { 740 SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x LKey: %x\n", 741 resources->bufs, opts->max_queue_depth * 742 opts->in_capsule_data_size, resources->bufs_mr->lkey); 743 } 744 745 /* Initialize queues */ 746 STAILQ_INIT(&resources->incoming_queue); 747 STAILQ_INIT(&resources->free_queue); 748 749 if (opts->shared) { 750 srq = (struct spdk_rdma_srq *)opts->qp; 751 } else { 752 qp = (struct spdk_rdma_qp *)opts->qp; 753 } 754 755 for (i = 0; i < opts->max_queue_depth; i++) { 756 rdma_recv = &resources->recvs[i]; 757 rdma_recv->qpair = opts->qpair; 758 759 /* Set up memory to receive commands */ 760 if (resources->bufs) { 761 rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i * 762 opts->in_capsule_data_size)); 763 } 764 765 rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV; 766 767 rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i]; 768 rdma_recv->sgl[0].length = sizeof(resources->cmds[i]); 769 rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey; 770 rdma_recv->wr.num_sge = 1; 771 772 if (rdma_recv->buf && resources->bufs_mr) { 773 rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf; 774 rdma_recv->sgl[1].length = opts->in_capsule_data_size; 775 rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey; 776 rdma_recv->wr.num_sge++; 777 } 778 779 rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr; 780 rdma_recv->wr.sg_list = rdma_recv->sgl; 781 if (srq) { 782 spdk_rdma_srq_queue_recv_wrs(srq, &rdma_recv->wr); 783 } else { 784 spdk_rdma_qp_queue_recv_wrs(qp, &rdma_recv->wr); 785 } 786 } 787 788 for (i = 0; i < opts->max_queue_depth; i++) { 789 rdma_req = &resources->reqs[i]; 790 791 if (opts->qpair != NULL) { 792 rdma_req->req.qpair = &opts->qpair->qpair; 793 } else { 794 rdma_req->req.qpair = NULL; 795 } 796 rdma_req->req.cmd = NULL; 797 rdma_req->req.iovcnt = 0; 798 rdma_req->req.stripped_data = NULL; 799 800 /* Set up memory to send responses */ 801 rdma_req->req.rsp = &resources->cpls[i]; 802 803 rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i]; 804 rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]); 805 rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey; 806 807 rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND; 808 rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr; 809 rdma_req->rsp.wr.next = NULL; 810 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 811 rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED; 812 rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl; 813 rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl); 814 815 /* Set up memory for data buffers */ 816 rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA; 817 rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr; 818 rdma_req->data.wr.next = NULL; 819 rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED; 820 rdma_req->data.wr.sg_list = rdma_req->data.sgl; 821 rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl); 822 823 /* Initialize request state to FREE */ 824 rdma_req->state = RDMA_REQUEST_STATE_FREE; 825 STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link); 826 } 827 828 if (srq) { 829 rc = spdk_rdma_srq_flush_recv_wrs(srq, &bad_wr); 830 } else { 831 rc = spdk_rdma_qp_flush_recv_wrs(qp, &bad_wr); 832 } 833 834 if (rc) { 835 goto cleanup; 836 } 837 838 return resources; 839 840 cleanup: 841 nvmf_rdma_resources_destroy(resources); 842 return NULL; 843 } 844 845 static void 846 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair) 847 { 848 struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx; 849 STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) { 850 ctx->rqpair = NULL; 851 /* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */ 852 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 853 } 854 } 855 856 static void 857 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair) 858 { 859 struct spdk_nvmf_rdma_recv *rdma_recv, *recv_tmp; 860 struct ibv_recv_wr *bad_recv_wr = NULL; 861 int rc; 862 863 spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair); 864 865 if (rqpair->qd != 0) { 866 struct spdk_nvmf_qpair *qpair = &rqpair->qpair; 867 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(qpair->transport, 868 struct spdk_nvmf_rdma_transport, transport); 869 struct spdk_nvmf_rdma_request *req; 870 uint32_t i, max_req_count = 0; 871 872 SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd); 873 874 if (rqpair->srq == NULL) { 875 nvmf_rdma_dump_qpair_contents(rqpair); 876 max_req_count = rqpair->max_queue_depth; 877 } else if (rqpair->poller && rqpair->resources) { 878 max_req_count = rqpair->poller->max_srq_depth; 879 } 880 881 SPDK_DEBUGLOG(rdma, "Release incomplete requests\n"); 882 for (i = 0; i < max_req_count; i++) { 883 req = &rqpair->resources->reqs[i]; 884 if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) { 885 /* nvmf_rdma_request_process checks qpair ibv and internal state 886 * and completes a request */ 887 nvmf_rdma_request_process(rtransport, req); 888 } 889 } 890 assert(rqpair->qd == 0); 891 } 892 893 if (rqpair->poller) { 894 RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair); 895 896 if (rqpair->srq != NULL && rqpair->resources != NULL) { 897 /* Drop all received but unprocessed commands for this queue and return them to SRQ */ 898 STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) { 899 if (rqpair == rdma_recv->qpair) { 900 STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link); 901 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr); 902 rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr); 903 if (rc) { 904 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 905 } 906 } 907 } 908 } 909 } 910 911 if (rqpair->cm_id) { 912 if (rqpair->rdma_qp != NULL) { 913 spdk_rdma_qp_destroy(rqpair->rdma_qp); 914 rqpair->rdma_qp = NULL; 915 } 916 rdma_destroy_id(rqpair->cm_id); 917 918 if (rqpair->poller != NULL && rqpair->srq == NULL) { 919 rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth); 920 } 921 } 922 923 if (rqpair->srq == NULL && rqpair->resources != NULL) { 924 nvmf_rdma_resources_destroy(rqpair->resources); 925 } 926 927 nvmf_rdma_qpair_clean_ibv_events(rqpair); 928 929 if (rqpair->destruct_channel) { 930 spdk_put_io_channel(rqpair->destruct_channel); 931 rqpair->destruct_channel = NULL; 932 } 933 934 free(rqpair); 935 } 936 937 static int 938 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device) 939 { 940 struct spdk_nvmf_rdma_poller *rpoller; 941 int rc, num_cqe, required_num_wr; 942 943 /* Enlarge CQ size dynamically */ 944 rpoller = rqpair->poller; 945 required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth); 946 num_cqe = rpoller->num_cqe; 947 if (num_cqe < required_num_wr) { 948 num_cqe = spdk_max(num_cqe * 2, required_num_wr); 949 num_cqe = spdk_min(num_cqe, device->attr.max_cqe); 950 } 951 952 if (rpoller->num_cqe != num_cqe) { 953 if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) { 954 SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n" 955 "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe); 956 return -1; 957 } 958 if (required_num_wr > device->attr.max_cqe) { 959 SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n", 960 required_num_wr, device->attr.max_cqe); 961 return -1; 962 } 963 964 SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe); 965 rc = ibv_resize_cq(rpoller->cq, num_cqe); 966 if (rc) { 967 SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); 968 return -1; 969 } 970 971 rpoller->num_cqe = num_cqe; 972 } 973 974 rpoller->required_num_wr = required_num_wr; 975 return 0; 976 } 977 978 static int 979 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair) 980 { 981 struct spdk_nvmf_rdma_qpair *rqpair; 982 struct spdk_nvmf_rdma_transport *rtransport; 983 struct spdk_nvmf_transport *transport; 984 struct spdk_nvmf_rdma_resource_opts opts; 985 struct spdk_nvmf_rdma_device *device; 986 struct spdk_rdma_qp_init_attr qp_init_attr = {}; 987 988 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 989 device = rqpair->device; 990 991 qp_init_attr.qp_context = rqpair; 992 qp_init_attr.pd = device->pd; 993 qp_init_attr.send_cq = rqpair->poller->cq; 994 qp_init_attr.recv_cq = rqpair->poller->cq; 995 996 if (rqpair->srq) { 997 qp_init_attr.srq = rqpair->srq->srq; 998 } else { 999 qp_init_attr.cap.max_recv_wr = rqpair->max_queue_depth; 1000 } 1001 1002 /* SEND, READ, and WRITE operations */ 1003 qp_init_attr.cap.max_send_wr = (uint32_t)rqpair->max_queue_depth * 2; 1004 qp_init_attr.cap.max_send_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE); 1005 qp_init_attr.cap.max_recv_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 1006 qp_init_attr.stats = &rqpair->poller->stat.qp_stats; 1007 1008 if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) { 1009 SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n"); 1010 goto error; 1011 } 1012 1013 rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr); 1014 if (!rqpair->rdma_qp) { 1015 goto error; 1016 } 1017 1018 rqpair->qp_num = rqpair->rdma_qp->qp->qp_num; 1019 1020 rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2), 1021 qp_init_attr.cap.max_send_wr); 1022 rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge); 1023 rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge); 1024 spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair); 1025 SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair); 1026 1027 if (rqpair->poller->srq == NULL) { 1028 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 1029 transport = &rtransport->transport; 1030 1031 opts.qp = rqpair->rdma_qp; 1032 opts.pd = rqpair->cm_id->pd; 1033 opts.qpair = rqpair; 1034 opts.shared = false; 1035 opts.max_queue_depth = rqpair->max_queue_depth; 1036 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 1037 1038 rqpair->resources = nvmf_rdma_resources_create(&opts); 1039 1040 if (!rqpair->resources) { 1041 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 1042 rdma_destroy_qp(rqpair->cm_id); 1043 goto error; 1044 } 1045 } else { 1046 rqpair->resources = rqpair->poller->resources; 1047 } 1048 1049 rqpair->current_recv_depth = 0; 1050 STAILQ_INIT(&rqpair->pending_rdma_read_queue); 1051 STAILQ_INIT(&rqpair->pending_rdma_write_queue); 1052 1053 return 0; 1054 1055 error: 1056 rdma_destroy_id(rqpair->cm_id); 1057 rqpair->cm_id = NULL; 1058 return -1; 1059 } 1060 1061 /* Append the given recv wr structure to the resource structs outstanding recvs list. */ 1062 /* This function accepts either a single wr or the first wr in a linked list. */ 1063 static void 1064 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first) 1065 { 1066 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1067 struct spdk_nvmf_rdma_transport, transport); 1068 1069 if (rqpair->srq != NULL) { 1070 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, first); 1071 } else { 1072 if (spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, first)) { 1073 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link); 1074 } 1075 } 1076 1077 if (rtransport->rdma_opts.no_wr_batching) { 1078 _poller_submit_recvs(rtransport, rqpair->poller); 1079 } 1080 } 1081 1082 static int 1083 request_transfer_in(struct spdk_nvmf_request *req) 1084 { 1085 struct spdk_nvmf_rdma_request *rdma_req; 1086 struct spdk_nvmf_qpair *qpair; 1087 struct spdk_nvmf_rdma_qpair *rqpair; 1088 struct spdk_nvmf_rdma_transport *rtransport; 1089 1090 qpair = req->qpair; 1091 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1092 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1093 rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1094 struct spdk_nvmf_rdma_transport, transport); 1095 1096 assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); 1097 assert(rdma_req != NULL); 1098 1099 if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, &rdma_req->data.wr)) { 1100 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1101 } 1102 if (rtransport->rdma_opts.no_wr_batching) { 1103 _poller_submit_sends(rtransport, rqpair->poller); 1104 } 1105 1106 rqpair->current_read_depth += rdma_req->num_outstanding_data_wr; 1107 rqpair->current_send_depth += rdma_req->num_outstanding_data_wr; 1108 return 0; 1109 } 1110 1111 static int 1112 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted) 1113 { 1114 int num_outstanding_data_wr = 0; 1115 struct spdk_nvmf_rdma_request *rdma_req; 1116 struct spdk_nvmf_qpair *qpair; 1117 struct spdk_nvmf_rdma_qpair *rqpair; 1118 struct spdk_nvme_cpl *rsp; 1119 struct ibv_send_wr *first = NULL; 1120 struct spdk_nvmf_rdma_transport *rtransport; 1121 1122 *data_posted = 0; 1123 qpair = req->qpair; 1124 rsp = &req->rsp->nvme_cpl; 1125 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1126 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1127 rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1128 struct spdk_nvmf_rdma_transport, transport); 1129 1130 /* Advance our sq_head pointer */ 1131 if (qpair->sq_head == qpair->sq_head_max) { 1132 qpair->sq_head = 0; 1133 } else { 1134 qpair->sq_head++; 1135 } 1136 rsp->sqhd = qpair->sq_head; 1137 1138 /* queue the capsule for the recv buffer */ 1139 assert(rdma_req->recv != NULL); 1140 1141 nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr); 1142 1143 rdma_req->recv = NULL; 1144 assert(rqpair->current_recv_depth > 0); 1145 rqpair->current_recv_depth--; 1146 1147 /* Build the response which consists of optional 1148 * RDMA WRITEs to transfer data, plus an RDMA SEND 1149 * containing the response. 1150 */ 1151 first = &rdma_req->rsp.wr; 1152 1153 if (rsp->status.sc != SPDK_NVME_SC_SUCCESS) { 1154 /* On failure, data was not read from the controller. So clear the 1155 * number of outstanding data WRs to zero. 1156 */ 1157 rdma_req->num_outstanding_data_wr = 0; 1158 } else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1159 first = &rdma_req->data.wr; 1160 *data_posted = 1; 1161 num_outstanding_data_wr = rdma_req->num_outstanding_data_wr; 1162 } 1163 if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) { 1164 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1165 } 1166 if (rtransport->rdma_opts.no_wr_batching) { 1167 _poller_submit_sends(rtransport, rqpair->poller); 1168 } 1169 1170 /* +1 for the rsp wr */ 1171 rqpair->current_send_depth += num_outstanding_data_wr + 1; 1172 1173 return 0; 1174 } 1175 1176 static int 1177 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair) 1178 { 1179 struct spdk_nvmf_rdma_accept_private_data accept_data; 1180 struct rdma_conn_param ctrlr_event_data = {}; 1181 int rc; 1182 1183 accept_data.recfmt = 0; 1184 accept_data.crqsize = rqpair->max_queue_depth; 1185 1186 ctrlr_event_data.private_data = &accept_data; 1187 ctrlr_event_data.private_data_len = sizeof(accept_data); 1188 if (id->ps == RDMA_PS_TCP) { 1189 ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */ 1190 ctrlr_event_data.initiator_depth = rqpair->max_read_depth; 1191 } 1192 1193 /* Configure infinite retries for the initiator side qpair. 1194 * We need to pass this value to the initiator to prevent the 1195 * initiator side NIC from completing SEND requests back to the 1196 * initiator with status rnr_retry_count_exceeded. */ 1197 ctrlr_event_data.rnr_retry_count = 0x7; 1198 1199 /* When qpair is created without use of rdma cm API, an additional 1200 * information must be provided to initiator in the connection response: 1201 * whether qpair is using SRQ and its qp_num 1202 * Fields below are ignored by rdma cm if qpair has been 1203 * created using rdma cm API. */ 1204 ctrlr_event_data.srq = rqpair->srq ? 1 : 0; 1205 ctrlr_event_data.qp_num = rqpair->qp_num; 1206 1207 rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data); 1208 if (rc) { 1209 SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno); 1210 } else { 1211 SPDK_DEBUGLOG(rdma, "Sent back the accept\n"); 1212 } 1213 1214 return rc; 1215 } 1216 1217 static void 1218 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error) 1219 { 1220 struct spdk_nvmf_rdma_reject_private_data rej_data; 1221 1222 rej_data.recfmt = 0; 1223 rej_data.sts = error; 1224 1225 rdma_reject(id, &rej_data, sizeof(rej_data)); 1226 } 1227 1228 static int 1229 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event) 1230 { 1231 struct spdk_nvmf_rdma_transport *rtransport; 1232 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 1233 struct spdk_nvmf_rdma_port *port; 1234 struct rdma_conn_param *rdma_param = NULL; 1235 const struct spdk_nvmf_rdma_request_private_data *private_data = NULL; 1236 uint16_t max_queue_depth; 1237 uint16_t max_read_depth; 1238 1239 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 1240 1241 assert(event->id != NULL); /* Impossible. Can't even reject the connection. */ 1242 assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */ 1243 1244 rdma_param = &event->param.conn; 1245 if (rdma_param->private_data == NULL || 1246 rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1247 SPDK_ERRLOG("connect request: no private data provided\n"); 1248 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH); 1249 return -1; 1250 } 1251 1252 private_data = rdma_param->private_data; 1253 if (private_data->recfmt != 0) { 1254 SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n"); 1255 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT); 1256 return -1; 1257 } 1258 1259 SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n", 1260 event->id->verbs->device->name, event->id->verbs->device->dev_name); 1261 1262 port = event->listen_id->context; 1263 SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n", 1264 event->listen_id, event->listen_id->verbs, port); 1265 1266 /* Figure out the supported queue depth. This is a multi-step process 1267 * that takes into account hardware maximums, host provided values, 1268 * and our target's internal memory limits */ 1269 1270 SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n"); 1271 1272 /* Start with the maximum queue depth allowed by the target */ 1273 max_queue_depth = rtransport->transport.opts.max_queue_depth; 1274 max_read_depth = rtransport->transport.opts.max_queue_depth; 1275 SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n", 1276 rtransport->transport.opts.max_queue_depth); 1277 1278 /* Next check the local NIC's hardware limitations */ 1279 SPDK_DEBUGLOG(rdma, 1280 "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n", 1281 port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom); 1282 max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr); 1283 max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom); 1284 1285 /* Next check the remote NIC's hardware limitations */ 1286 SPDK_DEBUGLOG(rdma, 1287 "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n", 1288 rdma_param->initiator_depth, rdma_param->responder_resources); 1289 if (rdma_param->initiator_depth > 0) { 1290 max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth); 1291 } 1292 1293 /* Finally check for the host software requested values, which are 1294 * optional. */ 1295 if (rdma_param->private_data != NULL && 1296 rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1297 SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize); 1298 SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize); 1299 max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize); 1300 max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1); 1301 } 1302 1303 SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n", 1304 max_queue_depth, max_read_depth); 1305 1306 rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair)); 1307 if (rqpair == NULL) { 1308 SPDK_ERRLOG("Could not allocate new connection.\n"); 1309 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 1310 return -1; 1311 } 1312 1313 rqpair->device = port->device; 1314 rqpair->max_queue_depth = max_queue_depth; 1315 rqpair->max_read_depth = max_read_depth; 1316 rqpair->cm_id = event->id; 1317 rqpair->listen_id = event->listen_id; 1318 rqpair->qpair.transport = transport; 1319 STAILQ_INIT(&rqpair->ibv_events); 1320 /* use qid from the private data to determine the qpair type 1321 qid will be set to the appropriate value when the controller is created */ 1322 rqpair->qpair.qid = private_data->qid; 1323 1324 event->id->context = &rqpair->qpair; 1325 1326 spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair); 1327 1328 return 0; 1329 } 1330 1331 static inline void 1332 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next, 1333 enum spdk_nvme_data_transfer xfer) 1334 { 1335 if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1336 wr->opcode = IBV_WR_RDMA_WRITE; 1337 wr->send_flags = 0; 1338 wr->next = next; 1339 } else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 1340 wr->opcode = IBV_WR_RDMA_READ; 1341 wr->send_flags = IBV_SEND_SIGNALED; 1342 wr->next = NULL; 1343 } else { 1344 assert(0); 1345 } 1346 } 1347 1348 static int 1349 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport, 1350 struct spdk_nvmf_rdma_request *rdma_req, 1351 uint32_t num_sgl_descriptors) 1352 { 1353 struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES]; 1354 struct spdk_nvmf_rdma_request_data *current_data_wr; 1355 uint32_t i; 1356 1357 if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) { 1358 SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n", 1359 num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES); 1360 return -EINVAL; 1361 } 1362 1363 if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) { 1364 return -ENOMEM; 1365 } 1366 1367 current_data_wr = &rdma_req->data; 1368 1369 for (i = 0; i < num_sgl_descriptors; i++) { 1370 nvmf_rdma_setup_wr(¤t_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer); 1371 current_data_wr->wr.next = &work_requests[i]->wr; 1372 current_data_wr = work_requests[i]; 1373 current_data_wr->wr.sg_list = current_data_wr->sgl; 1374 current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id; 1375 } 1376 1377 nvmf_rdma_setup_wr(¤t_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1378 1379 return 0; 1380 } 1381 1382 static inline void 1383 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req) 1384 { 1385 struct ibv_send_wr *wr = &rdma_req->data.wr; 1386 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1387 1388 wr->wr.rdma.rkey = sgl->keyed.key; 1389 wr->wr.rdma.remote_addr = sgl->address; 1390 nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1391 } 1392 1393 static inline void 1394 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs) 1395 { 1396 struct ibv_send_wr *wr = &rdma_req->data.wr; 1397 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1398 uint32_t i; 1399 int j; 1400 uint64_t remote_addr_offset = 0; 1401 1402 for (i = 0; i < num_wrs; ++i) { 1403 wr->wr.rdma.rkey = sgl->keyed.key; 1404 wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset; 1405 for (j = 0; j < wr->num_sge; ++j) { 1406 remote_addr_offset += wr->sg_list[j].length; 1407 } 1408 wr = wr->next; 1409 } 1410 } 1411 1412 static int 1413 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup, 1414 struct spdk_nvmf_rdma_device *device, 1415 struct spdk_nvmf_rdma_request *rdma_req, 1416 struct ibv_send_wr *wr, 1417 uint32_t total_length) 1418 { 1419 struct spdk_rdma_memory_translation mem_translation; 1420 struct ibv_sge *sg_ele; 1421 struct iovec *iov; 1422 uint32_t lkey, remaining; 1423 int rc; 1424 1425 wr->num_sge = 0; 1426 1427 while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) { 1428 iov = &rdma_req->req.iov[rdma_req->iovpos]; 1429 rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation); 1430 if (spdk_unlikely(rc)) { 1431 return rc; 1432 } 1433 1434 lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation); 1435 sg_ele = &wr->sg_list[wr->num_sge]; 1436 remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length); 1437 1438 sg_ele->lkey = lkey; 1439 sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset; 1440 sg_ele->length = remaining; 1441 SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr, 1442 sg_ele->length); 1443 rdma_req->offset += sg_ele->length; 1444 total_length -= sg_ele->length; 1445 wr->num_sge++; 1446 1447 if (rdma_req->offset == iov->iov_len) { 1448 rdma_req->offset = 0; 1449 rdma_req->iovpos++; 1450 } 1451 } 1452 1453 if (total_length) { 1454 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1455 return -EINVAL; 1456 } 1457 1458 return 0; 1459 } 1460 1461 static int 1462 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_poll_group *rgroup, 1463 struct spdk_nvmf_rdma_device *device, 1464 struct spdk_nvmf_rdma_request *rdma_req, 1465 struct ibv_send_wr *wr, 1466 uint32_t total_length, 1467 uint32_t num_extra_wrs) 1468 { 1469 struct spdk_rdma_memory_translation mem_translation; 1470 struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx; 1471 struct ibv_sge *sg_ele; 1472 struct iovec *iov; 1473 struct iovec *rdma_iov; 1474 uint32_t lkey, remaining; 1475 uint32_t remaining_data_block, data_block_size, md_size; 1476 uint32_t sge_len; 1477 int rc; 1478 1479 data_block_size = dif_ctx->block_size - dif_ctx->md_size; 1480 1481 if (spdk_likely(!rdma_req->req.stripped_data)) { 1482 rdma_iov = rdma_req->req.iov; 1483 remaining_data_block = data_block_size; 1484 md_size = dif_ctx->md_size; 1485 } else { 1486 rdma_iov = rdma_req->req.stripped_data->iov; 1487 total_length = total_length / dif_ctx->block_size * data_block_size; 1488 remaining_data_block = total_length; 1489 md_size = 0; 1490 } 1491 1492 wr->num_sge = 0; 1493 1494 while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) { 1495 iov = rdma_iov + rdma_req->iovpos; 1496 rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation); 1497 if (spdk_unlikely(rc)) { 1498 return rc; 1499 } 1500 1501 lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation); 1502 sg_ele = &wr->sg_list[wr->num_sge]; 1503 remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length); 1504 1505 while (remaining) { 1506 if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) { 1507 if (num_extra_wrs > 0 && wr->next) { 1508 wr = wr->next; 1509 wr->num_sge = 0; 1510 sg_ele = &wr->sg_list[wr->num_sge]; 1511 num_extra_wrs--; 1512 } else { 1513 break; 1514 } 1515 } 1516 sg_ele->lkey = lkey; 1517 sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset); 1518 sge_len = spdk_min(remaining, remaining_data_block); 1519 sg_ele->length = sge_len; 1520 SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, 1521 sg_ele->addr, sg_ele->length); 1522 remaining -= sge_len; 1523 remaining_data_block -= sge_len; 1524 rdma_req->offset += sge_len; 1525 total_length -= sge_len; 1526 1527 sg_ele++; 1528 wr->num_sge++; 1529 1530 if (remaining_data_block == 0) { 1531 /* skip metadata */ 1532 rdma_req->offset += md_size; 1533 total_length -= md_size; 1534 /* Metadata that do not fit this IO buffer will be included in the next IO buffer */ 1535 remaining -= spdk_min(remaining, md_size); 1536 remaining_data_block = data_block_size; 1537 } 1538 1539 if (remaining == 0) { 1540 /* By subtracting the size of the last IOV from the offset, we ensure that we skip 1541 the remaining metadata bits at the beginning of the next buffer */ 1542 rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset); 1543 rdma_req->iovpos++; 1544 } 1545 } 1546 } 1547 1548 if (total_length) { 1549 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1550 return -EINVAL; 1551 } 1552 1553 return 0; 1554 } 1555 1556 static inline uint32_t 1557 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size) 1558 { 1559 /* estimate the number of SG entries and WRs needed to process the request */ 1560 uint32_t num_sge = 0; 1561 uint32_t i; 1562 uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size); 1563 1564 for (i = 0; i < num_buffers && length > 0; i++) { 1565 uint32_t buffer_len = spdk_min(length, io_unit_size); 1566 uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size); 1567 1568 if (num_sge_in_block * block_size > buffer_len) { 1569 ++num_sge_in_block; 1570 } 1571 num_sge += num_sge_in_block; 1572 length -= buffer_len; 1573 } 1574 return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES); 1575 } 1576 1577 static int 1578 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport, 1579 struct spdk_nvmf_rdma_device *device, 1580 struct spdk_nvmf_rdma_request *rdma_req) 1581 { 1582 struct spdk_nvmf_rdma_qpair *rqpair; 1583 struct spdk_nvmf_rdma_poll_group *rgroup; 1584 struct spdk_nvmf_request *req = &rdma_req->req; 1585 struct ibv_send_wr *wr = &rdma_req->data.wr; 1586 int rc; 1587 uint32_t num_wrs = 1; 1588 uint32_t length; 1589 1590 rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair); 1591 rgroup = rqpair->poller->group; 1592 1593 /* rdma wr specifics */ 1594 nvmf_rdma_setup_request(rdma_req); 1595 1596 length = req->length; 1597 if (spdk_unlikely(req->dif_enabled)) { 1598 req->dif.orig_length = length; 1599 length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx); 1600 req->dif.elba_length = length; 1601 } 1602 1603 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, 1604 length); 1605 if (rc != 0) { 1606 return rc; 1607 } 1608 1609 assert(req->iovcnt <= rqpair->max_send_sge); 1610 1611 /* When dif_insert_or_strip is true and the I/O data length is greater than one block, 1612 * the stripped_buffers are got for DIF stripping. */ 1613 if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) 1614 && (req->dif.elba_length > req->dif.dif_ctx.block_size))) { 1615 rc = nvmf_request_get_stripped_buffers(req, &rgroup->group, 1616 &rtransport->transport, req->dif.orig_length); 1617 if (rc != 0) { 1618 SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc); 1619 } 1620 } 1621 1622 rdma_req->iovpos = 0; 1623 1624 if (spdk_unlikely(req->dif_enabled)) { 1625 num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size, 1626 req->dif.dif_ctx.block_size); 1627 if (num_wrs > 1) { 1628 rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1); 1629 if (rc != 0) { 1630 goto err_exit; 1631 } 1632 } 1633 1634 rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, wr, length, num_wrs - 1); 1635 if (spdk_unlikely(rc != 0)) { 1636 goto err_exit; 1637 } 1638 1639 if (num_wrs > 1) { 1640 nvmf_rdma_update_remote_addr(rdma_req, num_wrs); 1641 } 1642 } else { 1643 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length); 1644 if (spdk_unlikely(rc != 0)) { 1645 goto err_exit; 1646 } 1647 } 1648 1649 /* set the number of outstanding data WRs for this request. */ 1650 rdma_req->num_outstanding_data_wr = num_wrs; 1651 1652 return rc; 1653 1654 err_exit: 1655 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1656 nvmf_rdma_request_free_data(rdma_req, rtransport); 1657 req->iovcnt = 0; 1658 return rc; 1659 } 1660 1661 static int 1662 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1663 struct spdk_nvmf_rdma_device *device, 1664 struct spdk_nvmf_rdma_request *rdma_req) 1665 { 1666 struct spdk_nvmf_rdma_qpair *rqpair; 1667 struct spdk_nvmf_rdma_poll_group *rgroup; 1668 struct ibv_send_wr *current_wr; 1669 struct spdk_nvmf_request *req = &rdma_req->req; 1670 struct spdk_nvme_sgl_descriptor *inline_segment, *desc; 1671 uint32_t num_sgl_descriptors; 1672 uint32_t lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0; 1673 uint32_t i; 1674 int rc; 1675 1676 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1677 rgroup = rqpair->poller->group; 1678 1679 inline_segment = &req->cmd->nvme_cmd.dptr.sgl1; 1680 assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT); 1681 assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET); 1682 1683 num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor); 1684 assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES); 1685 1686 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1687 for (i = 0; i < num_sgl_descriptors; i++) { 1688 if (spdk_likely(!req->dif_enabled)) { 1689 lengths[i] = desc->keyed.length; 1690 } else { 1691 req->dif.orig_length += desc->keyed.length; 1692 lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx); 1693 req->dif.elba_length += lengths[i]; 1694 } 1695 total_length += lengths[i]; 1696 desc++; 1697 } 1698 1699 if (total_length > rtransport->transport.opts.max_io_size) { 1700 SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n", 1701 total_length, rtransport->transport.opts.max_io_size); 1702 req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1703 return -EINVAL; 1704 } 1705 1706 if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) { 1707 return -ENOMEM; 1708 } 1709 1710 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length); 1711 if (rc != 0) { 1712 nvmf_rdma_request_free_data(rdma_req, rtransport); 1713 return rc; 1714 } 1715 1716 /* When dif_insert_or_strip is true and the I/O data length is greater than one block, 1717 * the stripped_buffers are got for DIF stripping. */ 1718 if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) 1719 && (req->dif.elba_length > req->dif.dif_ctx.block_size))) { 1720 rc = nvmf_request_get_stripped_buffers(req, &rgroup->group, 1721 &rtransport->transport, req->dif.orig_length); 1722 if (rc != 0) { 1723 SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc); 1724 } 1725 } 1726 1727 /* The first WR must always be the embedded data WR. This is how we unwind them later. */ 1728 current_wr = &rdma_req->data.wr; 1729 assert(current_wr != NULL); 1730 1731 req->length = 0; 1732 rdma_req->iovpos = 0; 1733 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1734 for (i = 0; i < num_sgl_descriptors; i++) { 1735 /* The descriptors must be keyed data block descriptors with an address, not an offset. */ 1736 if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK || 1737 desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) { 1738 rc = -EINVAL; 1739 goto err_exit; 1740 } 1741 1742 if (spdk_likely(!req->dif_enabled)) { 1743 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i]); 1744 } else { 1745 rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, current_wr, 1746 lengths[i], 0); 1747 } 1748 if (rc != 0) { 1749 rc = -ENOMEM; 1750 goto err_exit; 1751 } 1752 1753 req->length += desc->keyed.length; 1754 current_wr->wr.rdma.rkey = desc->keyed.key; 1755 current_wr->wr.rdma.remote_addr = desc->address; 1756 current_wr = current_wr->next; 1757 desc++; 1758 } 1759 1760 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1761 /* Go back to the last descriptor in the list. */ 1762 desc--; 1763 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1764 if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1765 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1766 rdma_req->rsp.wr.imm_data = desc->keyed.key; 1767 } 1768 } 1769 #endif 1770 1771 rdma_req->num_outstanding_data_wr = num_sgl_descriptors; 1772 1773 return 0; 1774 1775 err_exit: 1776 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1777 nvmf_rdma_request_free_data(rdma_req, rtransport); 1778 return rc; 1779 } 1780 1781 static int 1782 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1783 struct spdk_nvmf_rdma_device *device, 1784 struct spdk_nvmf_rdma_request *rdma_req) 1785 { 1786 struct spdk_nvmf_request *req = &rdma_req->req; 1787 struct spdk_nvme_cpl *rsp; 1788 struct spdk_nvme_sgl_descriptor *sgl; 1789 int rc; 1790 uint32_t length; 1791 1792 rsp = &req->rsp->nvme_cpl; 1793 sgl = &req->cmd->nvme_cmd.dptr.sgl1; 1794 1795 if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK && 1796 (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS || 1797 sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) { 1798 1799 length = sgl->keyed.length; 1800 if (length > rtransport->transport.opts.max_io_size) { 1801 SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n", 1802 length, rtransport->transport.opts.max_io_size); 1803 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1804 return -1; 1805 } 1806 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1807 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1808 if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1809 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1810 rdma_req->rsp.wr.imm_data = sgl->keyed.key; 1811 } 1812 } 1813 #endif 1814 1815 /* fill request length and populate iovs */ 1816 req->length = length; 1817 1818 rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req); 1819 if (spdk_unlikely(rc < 0)) { 1820 if (rc == -EINVAL) { 1821 SPDK_ERRLOG("SGL length exceeds the max I/O size\n"); 1822 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1823 return -1; 1824 } 1825 /* No available buffers. Queue this request up. */ 1826 SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req); 1827 return 0; 1828 } 1829 1830 /* backward compatible */ 1831 req->data = req->iov[0].iov_base; 1832 1833 SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req, 1834 req->iovcnt); 1835 1836 return 0; 1837 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK && 1838 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1839 uint64_t offset = sgl->address; 1840 uint32_t max_len = rtransport->transport.opts.in_capsule_data_size; 1841 1842 SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n", 1843 offset, sgl->unkeyed.length); 1844 1845 if (offset > max_len) { 1846 SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n", 1847 offset, max_len); 1848 rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET; 1849 return -1; 1850 } 1851 max_len -= (uint32_t)offset; 1852 1853 if (sgl->unkeyed.length > max_len) { 1854 SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n", 1855 sgl->unkeyed.length, max_len); 1856 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1857 return -1; 1858 } 1859 1860 rdma_req->num_outstanding_data_wr = 0; 1861 req->data = rdma_req->recv->buf + offset; 1862 req->data_from_pool = false; 1863 req->length = sgl->unkeyed.length; 1864 1865 req->iov[0].iov_base = req->data; 1866 req->iov[0].iov_len = req->length; 1867 req->iovcnt = 1; 1868 1869 return 0; 1870 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT && 1871 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1872 1873 rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req); 1874 if (rc == -ENOMEM) { 1875 SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req); 1876 return 0; 1877 } else if (rc == -EINVAL) { 1878 SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n"); 1879 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1880 return -1; 1881 } 1882 1883 /* backward compatible */ 1884 req->data = req->iov[0].iov_base; 1885 1886 SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req, 1887 req->iovcnt); 1888 1889 return 0; 1890 } 1891 1892 SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n", 1893 sgl->generic.type, sgl->generic.subtype); 1894 rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID; 1895 return -1; 1896 } 1897 1898 static void 1899 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req, 1900 struct spdk_nvmf_rdma_transport *rtransport) 1901 { 1902 struct spdk_nvmf_rdma_qpair *rqpair; 1903 struct spdk_nvmf_rdma_poll_group *rgroup; 1904 1905 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1906 if (rdma_req->req.data_from_pool) { 1907 rgroup = rqpair->poller->group; 1908 1909 spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport); 1910 } 1911 if (rdma_req->req.stripped_data) { 1912 nvmf_request_free_stripped_buffers(&rdma_req->req, 1913 &rqpair->poller->group->group, 1914 &rtransport->transport); 1915 } 1916 nvmf_rdma_request_free_data(rdma_req, rtransport); 1917 rdma_req->req.length = 0; 1918 rdma_req->req.iovcnt = 0; 1919 rdma_req->req.data = NULL; 1920 rdma_req->rsp.wr.next = NULL; 1921 rdma_req->data.wr.next = NULL; 1922 rdma_req->offset = 0; 1923 rdma_req->req.dif_enabled = false; 1924 rdma_req->fused_failed = false; 1925 if (rdma_req->fused_pair) { 1926 /* This req was part of a valid fused pair, but failed before it got to 1927 * READ_TO_EXECUTE state. This means we need to fail the other request 1928 * in the pair, because it is no longer part of a valid pair. If the pair 1929 * already reached READY_TO_EXECUTE state, we need to kick it. 1930 */ 1931 rdma_req->fused_pair->fused_failed = true; 1932 if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 1933 nvmf_rdma_request_process(rtransport, rdma_req->fused_pair); 1934 } 1935 rdma_req->fused_pair = NULL; 1936 } 1937 memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif)); 1938 rqpair->qd--; 1939 1940 STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link); 1941 rdma_req->state = RDMA_REQUEST_STATE_FREE; 1942 } 1943 1944 static void 1945 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport, 1946 struct spdk_nvmf_rdma_qpair *rqpair, 1947 struct spdk_nvmf_rdma_request *rdma_req) 1948 { 1949 enum spdk_nvme_cmd_fuse last, next; 1950 1951 last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE; 1952 next = rdma_req->req.cmd->nvme_cmd.fuse; 1953 1954 assert(last != SPDK_NVME_CMD_FUSE_SECOND); 1955 1956 if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) { 1957 return; 1958 } 1959 1960 if (last == SPDK_NVME_CMD_FUSE_FIRST) { 1961 if (next == SPDK_NVME_CMD_FUSE_SECOND) { 1962 /* This is a valid pair of fused commands. Point them at each other 1963 * so they can be submitted consecutively once ready to be executed. 1964 */ 1965 rqpair->fused_first->fused_pair = rdma_req; 1966 rdma_req->fused_pair = rqpair->fused_first; 1967 rqpair->fused_first = NULL; 1968 return; 1969 } else { 1970 /* Mark the last req as failed since it wasn't followed by a SECOND. */ 1971 rqpair->fused_first->fused_failed = true; 1972 1973 /* If the last req is in READY_TO_EXECUTE state, then call 1974 * nvmf_rdma_request_process(), otherwise nothing else will kick it. 1975 */ 1976 if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 1977 nvmf_rdma_request_process(rtransport, rqpair->fused_first); 1978 } 1979 1980 rqpair->fused_first = NULL; 1981 } 1982 } 1983 1984 if (next == SPDK_NVME_CMD_FUSE_FIRST) { 1985 /* Set rqpair->fused_first here so that we know to check that the next request 1986 * is a SECOND (and to fail this one if it isn't). 1987 */ 1988 rqpair->fused_first = rdma_req; 1989 } else if (next == SPDK_NVME_CMD_FUSE_SECOND) { 1990 /* Mark this req failed since it ia SECOND and the last one was not a FIRST. */ 1991 rdma_req->fused_failed = true; 1992 } 1993 } 1994 1995 bool 1996 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 1997 struct spdk_nvmf_rdma_request *rdma_req) 1998 { 1999 struct spdk_nvmf_rdma_qpair *rqpair; 2000 struct spdk_nvmf_rdma_device *device; 2001 struct spdk_nvmf_rdma_poll_group *rgroup; 2002 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2003 int rc; 2004 struct spdk_nvmf_rdma_recv *rdma_recv; 2005 enum spdk_nvmf_rdma_request_state prev_state; 2006 bool progress = false; 2007 int data_posted; 2008 uint32_t num_blocks; 2009 2010 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 2011 device = rqpair->device; 2012 rgroup = rqpair->poller->group; 2013 2014 assert(rdma_req->state != RDMA_REQUEST_STATE_FREE); 2015 2016 /* If the queue pair is in an error state, force the request to the completed state 2017 * to release resources. */ 2018 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 2019 if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) { 2020 STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link); 2021 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) { 2022 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2023 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) { 2024 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2025 } 2026 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2027 } 2028 2029 /* The loop here is to allow for several back-to-back state changes. */ 2030 do { 2031 prev_state = rdma_req->state; 2032 2033 SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state); 2034 2035 switch (rdma_req->state) { 2036 case RDMA_REQUEST_STATE_FREE: 2037 /* Some external code must kick a request into RDMA_REQUEST_STATE_NEW 2038 * to escape this state. */ 2039 break; 2040 case RDMA_REQUEST_STATE_NEW: 2041 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0, 2042 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2043 rdma_recv = rdma_req->recv; 2044 2045 /* The first element of the SGL is the NVMe command */ 2046 rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr; 2047 memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp)); 2048 2049 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 2050 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2051 break; 2052 } 2053 2054 if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) { 2055 rdma_req->req.dif_enabled = true; 2056 } 2057 2058 nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req); 2059 2060 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2061 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 2062 rdma_req->rsp.wr.imm_data = 0; 2063 #endif 2064 2065 /* The next state transition depends on the data transfer needs of this request. */ 2066 rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req); 2067 2068 if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) { 2069 rsp->status.sct = SPDK_NVME_SCT_GENERIC; 2070 rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE; 2071 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2072 SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req); 2073 break; 2074 } 2075 2076 /* If no data to transfer, ready to execute. */ 2077 if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) { 2078 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2079 break; 2080 } 2081 2082 rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER; 2083 STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link); 2084 break; 2085 case RDMA_REQUEST_STATE_NEED_BUFFER: 2086 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0, 2087 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2088 2089 assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE); 2090 2091 if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) { 2092 /* This request needs to wait in line to obtain a buffer */ 2093 break; 2094 } 2095 2096 /* Try to get a data buffer */ 2097 rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req); 2098 if (rc < 0) { 2099 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2100 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2101 break; 2102 } 2103 2104 if (!rdma_req->req.data) { 2105 /* No buffers available. */ 2106 rgroup->stat.pending_data_buffer++; 2107 break; 2108 } 2109 2110 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2111 2112 /* If data is transferring from host to controller and the data didn't 2113 * arrive using in capsule data, we need to do a transfer from the host. 2114 */ 2115 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && 2116 rdma_req->req.data_from_pool) { 2117 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link); 2118 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING; 2119 break; 2120 } 2121 2122 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2123 break; 2124 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 2125 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0, 2126 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2127 2128 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) { 2129 /* This request needs to wait in line to perform RDMA */ 2130 break; 2131 } 2132 if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth 2133 || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) { 2134 /* We can only have so many WRs outstanding. we have to wait until some finish. */ 2135 rqpair->poller->stat.pending_rdma_read++; 2136 break; 2137 } 2138 2139 /* We have already verified that this request is the head of the queue. */ 2140 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link); 2141 2142 rc = request_transfer_in(&rdma_req->req); 2143 if (!rc) { 2144 rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER; 2145 } else { 2146 rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 2147 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2148 } 2149 break; 2150 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 2151 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0, 2152 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2153 /* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE 2154 * to escape this state. */ 2155 break; 2156 case RDMA_REQUEST_STATE_READY_TO_EXECUTE: 2157 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0, 2158 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2159 2160 if (spdk_unlikely(rdma_req->req.dif_enabled)) { 2161 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 2162 /* generate DIF for write operation */ 2163 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2164 assert(num_blocks > 0); 2165 2166 rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt, 2167 num_blocks, &rdma_req->req.dif.dif_ctx); 2168 if (rc != 0) { 2169 SPDK_ERRLOG("DIF generation failed\n"); 2170 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2171 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 2172 break; 2173 } 2174 } 2175 2176 assert(rdma_req->req.dif.elba_length >= rdma_req->req.length); 2177 /* set extended length before IO operation */ 2178 rdma_req->req.length = rdma_req->req.dif.elba_length; 2179 } 2180 2181 if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) { 2182 if (rdma_req->fused_failed) { 2183 /* This request failed FUSED semantics. Fail it immediately, without 2184 * even sending it to the target layer. 2185 */ 2186 rsp->status.sct = SPDK_NVME_SCT_GENERIC; 2187 rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED; 2188 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2189 break; 2190 } 2191 2192 if (rdma_req->fused_pair == NULL || 2193 rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 2194 /* This request is ready to execute, but either we don't know yet if it's 2195 * valid - i.e. this is a FIRST but we haven't received the next 2196 * request yet or the other request of this fused pair isn't ready to 2197 * execute. So break here and this request will get processed later either 2198 * when the other request is ready or we find that this request isn't valid. 2199 */ 2200 break; 2201 } 2202 } 2203 2204 /* If we get to this point, and this request is a fused command, we know that 2205 * it is part of valid sequence (FIRST followed by a SECOND) and that both 2206 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this 2207 * request, and the other request of the fused pair, in the correct order. 2208 * Also clear the ->fused_pair pointers on both requests, since after this point 2209 * we no longer need to maintain the relationship between these two requests. 2210 */ 2211 if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) { 2212 assert(rdma_req->fused_pair != NULL); 2213 assert(rdma_req->fused_pair->fused_pair != NULL); 2214 rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING; 2215 spdk_nvmf_request_exec(&rdma_req->fused_pair->req); 2216 rdma_req->fused_pair->fused_pair = NULL; 2217 rdma_req->fused_pair = NULL; 2218 } 2219 rdma_req->state = RDMA_REQUEST_STATE_EXECUTING; 2220 spdk_nvmf_request_exec(&rdma_req->req); 2221 if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) { 2222 assert(rdma_req->fused_pair != NULL); 2223 assert(rdma_req->fused_pair->fused_pair != NULL); 2224 rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING; 2225 spdk_nvmf_request_exec(&rdma_req->fused_pair->req); 2226 rdma_req->fused_pair->fused_pair = NULL; 2227 rdma_req->fused_pair = NULL; 2228 } 2229 break; 2230 case RDMA_REQUEST_STATE_EXECUTING: 2231 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0, 2232 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2233 /* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED 2234 * to escape this state. */ 2235 break; 2236 case RDMA_REQUEST_STATE_EXECUTED: 2237 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0, 2238 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2239 if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && 2240 rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2241 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link); 2242 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING; 2243 } else { 2244 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2245 } 2246 if (spdk_unlikely(rdma_req->req.dif_enabled)) { 2247 /* restore the original length */ 2248 rdma_req->req.length = rdma_req->req.dif.orig_length; 2249 2250 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2251 struct spdk_dif_error error_blk; 2252 2253 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2254 if (!rdma_req->req.stripped_data) { 2255 rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2256 &rdma_req->req.dif.dif_ctx, &error_blk); 2257 } else { 2258 rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov, 2259 rdma_req->req.stripped_data->iovcnt, 2260 rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2261 &rdma_req->req.dif.dif_ctx, &error_blk); 2262 } 2263 if (rc) { 2264 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2265 2266 SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type, 2267 error_blk.err_offset); 2268 rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR; 2269 rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type); 2270 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2271 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2272 } 2273 } 2274 } 2275 break; 2276 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 2277 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0, 2278 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2279 2280 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) { 2281 /* This request needs to wait in line to perform RDMA */ 2282 break; 2283 } 2284 if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) > 2285 rqpair->max_send_depth) { 2286 /* We can only have so many WRs outstanding. we have to wait until some finish. 2287 * +1 since each request has an additional wr in the resp. */ 2288 rqpair->poller->stat.pending_rdma_write++; 2289 break; 2290 } 2291 2292 /* We have already verified that this request is the head of the queue. */ 2293 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link); 2294 2295 /* The data transfer will be kicked off from 2296 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state. 2297 */ 2298 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2299 break; 2300 case RDMA_REQUEST_STATE_READY_TO_COMPLETE: 2301 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0, 2302 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2303 rc = request_transfer_out(&rdma_req->req, &data_posted); 2304 assert(rc == 0); /* No good way to handle this currently */ 2305 if (rc) { 2306 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2307 } else { 2308 rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST : 2309 RDMA_REQUEST_STATE_COMPLETING; 2310 } 2311 break; 2312 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 2313 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0, 2314 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2315 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2316 * to escape this state. */ 2317 break; 2318 case RDMA_REQUEST_STATE_COMPLETING: 2319 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0, 2320 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2321 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2322 * to escape this state. */ 2323 break; 2324 case RDMA_REQUEST_STATE_COMPLETED: 2325 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0, 2326 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2327 2328 rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc; 2329 _nvmf_rdma_request_free(rdma_req, rtransport); 2330 break; 2331 case RDMA_REQUEST_NUM_STATES: 2332 default: 2333 assert(0); 2334 break; 2335 } 2336 2337 if (rdma_req->state != prev_state) { 2338 progress = true; 2339 } 2340 } while (rdma_req->state != prev_state); 2341 2342 return progress; 2343 } 2344 2345 /* Public API callbacks begin here */ 2346 2347 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128 2348 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128 2349 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096 2350 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128 2351 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096 2352 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072 2353 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES) 2354 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095 2355 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32 2356 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false 2357 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false 2358 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100 2359 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1 2360 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false 2361 2362 static void 2363 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts) 2364 { 2365 opts->max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH; 2366 opts->max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR; 2367 opts->in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE; 2368 opts->max_io_size = SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE; 2369 opts->io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE; 2370 opts->max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH; 2371 opts->num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS; 2372 opts->buf_cache_size = SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE; 2373 opts->dif_insert_or_strip = SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP; 2374 opts->abort_timeout_sec = SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC; 2375 opts->transport_specific = NULL; 2376 } 2377 2378 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport, 2379 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg); 2380 2381 static inline bool 2382 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device) 2383 { 2384 return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD || 2385 device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW; 2386 } 2387 2388 static int 2389 nvmf_rdma_accept(void *ctx); 2390 2391 static struct spdk_nvmf_transport * 2392 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts) 2393 { 2394 int rc; 2395 struct spdk_nvmf_rdma_transport *rtransport; 2396 struct spdk_nvmf_rdma_device *device, *tmp; 2397 struct ibv_context **contexts; 2398 uint32_t i; 2399 int flag; 2400 uint32_t sge_count; 2401 uint32_t min_shared_buffers; 2402 uint32_t min_in_capsule_data_size; 2403 int max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES; 2404 pthread_mutexattr_t attr; 2405 2406 rtransport = calloc(1, sizeof(*rtransport)); 2407 if (!rtransport) { 2408 return NULL; 2409 } 2410 2411 if (pthread_mutexattr_init(&attr)) { 2412 SPDK_ERRLOG("pthread_mutexattr_init() failed\n"); 2413 free(rtransport); 2414 return NULL; 2415 } 2416 2417 if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) { 2418 SPDK_ERRLOG("pthread_mutexattr_settype() failed\n"); 2419 pthread_mutexattr_destroy(&attr); 2420 free(rtransport); 2421 return NULL; 2422 } 2423 2424 if (pthread_mutex_init(&rtransport->lock, &attr)) { 2425 SPDK_ERRLOG("pthread_mutex_init() failed\n"); 2426 pthread_mutexattr_destroy(&attr); 2427 free(rtransport); 2428 return NULL; 2429 } 2430 2431 pthread_mutexattr_destroy(&attr); 2432 2433 TAILQ_INIT(&rtransport->devices); 2434 TAILQ_INIT(&rtransport->ports); 2435 TAILQ_INIT(&rtransport->poll_groups); 2436 2437 rtransport->transport.ops = &spdk_nvmf_transport_rdma; 2438 rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE; 2439 rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH; 2440 rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ; 2441 rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG; 2442 rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING; 2443 if (opts->transport_specific != NULL && 2444 spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder, 2445 SPDK_COUNTOF(rdma_transport_opts_decoder), 2446 &rtransport->rdma_opts)) { 2447 SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n"); 2448 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2449 return NULL; 2450 } 2451 2452 SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n" 2453 " Transport opts: max_ioq_depth=%d, max_io_size=%d,\n" 2454 " max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n" 2455 " in_capsule_data_size=%d, max_aq_depth=%d,\n" 2456 " num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d," 2457 " acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n", 2458 opts->max_queue_depth, 2459 opts->max_io_size, 2460 opts->max_qpairs_per_ctrlr - 1, 2461 opts->io_unit_size, 2462 opts->in_capsule_data_size, 2463 opts->max_aq_depth, 2464 opts->num_shared_buffers, 2465 rtransport->rdma_opts.num_cqe, 2466 rtransport->rdma_opts.max_srq_depth, 2467 rtransport->rdma_opts.no_srq, 2468 rtransport->rdma_opts.acceptor_backlog, 2469 rtransport->rdma_opts.no_wr_batching, 2470 opts->abort_timeout_sec); 2471 2472 /* I/O unit size cannot be larger than max I/O size */ 2473 if (opts->io_unit_size > opts->max_io_size) { 2474 opts->io_unit_size = opts->max_io_size; 2475 } 2476 2477 if (rtransport->rdma_opts.acceptor_backlog <= 0) { 2478 SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n", 2479 SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG); 2480 rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG; 2481 } 2482 2483 if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) { 2484 SPDK_ERRLOG("The number of shared data buffers (%d) is less than" 2485 "the minimum number required to guarantee that forward progress can be made (%d)\n", 2486 opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2)); 2487 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2488 return NULL; 2489 } 2490 2491 min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size; 2492 if (min_shared_buffers > opts->num_shared_buffers) { 2493 SPDK_ERRLOG("There are not enough buffers to satisfy" 2494 "per-poll group caches for each thread. (%" PRIu32 ")" 2495 "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers); 2496 SPDK_ERRLOG("Please specify a larger number of shared buffers\n"); 2497 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2498 return NULL; 2499 } 2500 2501 sge_count = opts->max_io_size / opts->io_unit_size; 2502 if (sge_count > NVMF_DEFAULT_TX_SGE) { 2503 SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size); 2504 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2505 return NULL; 2506 } 2507 2508 min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES; 2509 if (opts->in_capsule_data_size < min_in_capsule_data_size) { 2510 SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n", 2511 min_in_capsule_data_size); 2512 opts->in_capsule_data_size = min_in_capsule_data_size; 2513 } 2514 2515 rtransport->event_channel = rdma_create_event_channel(); 2516 if (rtransport->event_channel == NULL) { 2517 SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno)); 2518 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2519 return NULL; 2520 } 2521 2522 flag = fcntl(rtransport->event_channel->fd, F_GETFL); 2523 if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { 2524 SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n", 2525 rtransport->event_channel->fd, spdk_strerror(errno)); 2526 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2527 return NULL; 2528 } 2529 2530 rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data", 2531 opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES, 2532 sizeof(struct spdk_nvmf_rdma_request_data), 2533 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 2534 SPDK_ENV_SOCKET_ID_ANY); 2535 if (!rtransport->data_wr_pool) { 2536 SPDK_ERRLOG("Unable to allocate work request pool for poll group\n"); 2537 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2538 return NULL; 2539 } 2540 2541 contexts = rdma_get_devices(NULL); 2542 if (contexts == NULL) { 2543 SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); 2544 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2545 return NULL; 2546 } 2547 2548 i = 0; 2549 rc = 0; 2550 while (contexts[i] != NULL) { 2551 device = calloc(1, sizeof(*device)); 2552 if (!device) { 2553 SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n"); 2554 rc = -ENOMEM; 2555 break; 2556 } 2557 device->context = contexts[i]; 2558 rc = ibv_query_device(device->context, &device->attr); 2559 if (rc < 0) { 2560 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 2561 free(device); 2562 break; 2563 2564 } 2565 2566 max_device_sge = spdk_min(max_device_sge, device->attr.max_sge); 2567 2568 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2569 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) { 2570 SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,"); 2571 SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id); 2572 } 2573 2574 /** 2575 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE. 2576 * The Soft-RoCE RXE driver does not currently support send with invalidate, 2577 * but incorrectly reports that it does. There are changes making their way 2578 * through the kernel now that will enable this feature. When they are merged, 2579 * we can conditionally enable this feature. 2580 * 2581 * TODO: enable this for versions of the kernel rxe driver that support it. 2582 */ 2583 if (nvmf_rdma_is_rxe_device(device)) { 2584 device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS); 2585 } 2586 #endif 2587 2588 /* set up device context async ev fd as NON_BLOCKING */ 2589 flag = fcntl(device->context->async_fd, F_GETFL); 2590 rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK); 2591 if (rc < 0) { 2592 SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n"); 2593 free(device); 2594 break; 2595 } 2596 2597 TAILQ_INSERT_TAIL(&rtransport->devices, device, link); 2598 i++; 2599 2600 if (g_nvmf_hooks.get_ibv_pd) { 2601 device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context); 2602 } else { 2603 device->pd = ibv_alloc_pd(device->context); 2604 } 2605 2606 if (!device->pd) { 2607 SPDK_ERRLOG("Unable to allocate protection domain.\n"); 2608 rc = -ENOMEM; 2609 break; 2610 } 2611 2612 assert(device->map == NULL); 2613 2614 device->map = spdk_rdma_create_mem_map(device->pd, &g_nvmf_hooks, SPDK_RDMA_MEMORY_MAP_ROLE_TARGET); 2615 if (!device->map) { 2616 SPDK_ERRLOG("Unable to allocate memory map for listen address\n"); 2617 rc = -ENOMEM; 2618 break; 2619 } 2620 2621 assert(device->map != NULL); 2622 assert(device->pd != NULL); 2623 } 2624 rdma_free_devices(contexts); 2625 2626 if (opts->io_unit_size * max_device_sge < opts->max_io_size) { 2627 /* divide and round up. */ 2628 opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge; 2629 2630 /* round up to the nearest 4k. */ 2631 opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK; 2632 2633 opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE); 2634 SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n", 2635 opts->io_unit_size); 2636 } 2637 2638 if (rc < 0) { 2639 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2640 return NULL; 2641 } 2642 2643 /* Set up poll descriptor array to monitor events from RDMA and IB 2644 * in a single poll syscall 2645 */ 2646 rtransport->npoll_fds = i + 1; 2647 i = 0; 2648 rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd)); 2649 if (rtransport->poll_fds == NULL) { 2650 SPDK_ERRLOG("poll_fds allocation failed\n"); 2651 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2652 return NULL; 2653 } 2654 2655 rtransport->poll_fds[i].fd = rtransport->event_channel->fd; 2656 rtransport->poll_fds[i++].events = POLLIN; 2657 2658 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 2659 rtransport->poll_fds[i].fd = device->context->async_fd; 2660 rtransport->poll_fds[i++].events = POLLIN; 2661 } 2662 2663 rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport, 2664 opts->acceptor_poll_rate); 2665 if (!rtransport->accept_poller) { 2666 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2667 return NULL; 2668 } 2669 2670 return &rtransport->transport; 2671 } 2672 2673 static void 2674 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w) 2675 { 2676 struct spdk_nvmf_rdma_transport *rtransport; 2677 assert(w != NULL); 2678 2679 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2680 spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth); 2681 spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq); 2682 if (rtransport->rdma_opts.no_srq == true) { 2683 spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe); 2684 } 2685 spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog); 2686 spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching); 2687 } 2688 2689 static int 2690 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport, 2691 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg) 2692 { 2693 struct spdk_nvmf_rdma_transport *rtransport; 2694 struct spdk_nvmf_rdma_port *port, *port_tmp; 2695 struct spdk_nvmf_rdma_device *device, *device_tmp; 2696 2697 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2698 2699 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) { 2700 TAILQ_REMOVE(&rtransport->ports, port, link); 2701 rdma_destroy_id(port->id); 2702 free(port); 2703 } 2704 2705 if (rtransport->poll_fds != NULL) { 2706 free(rtransport->poll_fds); 2707 } 2708 2709 if (rtransport->event_channel != NULL) { 2710 rdma_destroy_event_channel(rtransport->event_channel); 2711 } 2712 2713 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) { 2714 TAILQ_REMOVE(&rtransport->devices, device, link); 2715 spdk_rdma_free_mem_map(&device->map); 2716 if (device->pd) { 2717 if (!g_nvmf_hooks.get_ibv_pd) { 2718 ibv_dealloc_pd(device->pd); 2719 } 2720 } 2721 free(device); 2722 } 2723 2724 if (rtransport->data_wr_pool != NULL) { 2725 if (spdk_mempool_count(rtransport->data_wr_pool) != 2726 (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) { 2727 SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n", 2728 spdk_mempool_count(rtransport->data_wr_pool), 2729 transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES); 2730 } 2731 } 2732 2733 spdk_mempool_free(rtransport->data_wr_pool); 2734 2735 spdk_poller_unregister(&rtransport->accept_poller); 2736 pthread_mutex_destroy(&rtransport->lock); 2737 free(rtransport); 2738 2739 if (cb_fn) { 2740 cb_fn(cb_arg); 2741 } 2742 return 0; 2743 } 2744 2745 static int 2746 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 2747 struct spdk_nvme_transport_id *trid, 2748 bool peer); 2749 2750 static int 2751 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid, 2752 struct spdk_nvmf_listen_opts *listen_opts) 2753 { 2754 struct spdk_nvmf_rdma_transport *rtransport; 2755 struct spdk_nvmf_rdma_device *device; 2756 struct spdk_nvmf_rdma_port *port; 2757 struct addrinfo *res; 2758 struct addrinfo hints; 2759 int family; 2760 int rc; 2761 2762 if (!strlen(trid->trsvcid)) { 2763 SPDK_ERRLOG("Service id is required\n"); 2764 return -EINVAL; 2765 } 2766 2767 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2768 assert(rtransport->event_channel != NULL); 2769 2770 pthread_mutex_lock(&rtransport->lock); 2771 port = calloc(1, sizeof(*port)); 2772 if (!port) { 2773 SPDK_ERRLOG("Port allocation failed\n"); 2774 pthread_mutex_unlock(&rtransport->lock); 2775 return -ENOMEM; 2776 } 2777 2778 port->trid = trid; 2779 2780 switch (trid->adrfam) { 2781 case SPDK_NVMF_ADRFAM_IPV4: 2782 family = AF_INET; 2783 break; 2784 case SPDK_NVMF_ADRFAM_IPV6: 2785 family = AF_INET6; 2786 break; 2787 default: 2788 SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam); 2789 free(port); 2790 pthread_mutex_unlock(&rtransport->lock); 2791 return -EINVAL; 2792 } 2793 2794 memset(&hints, 0, sizeof(hints)); 2795 hints.ai_family = family; 2796 hints.ai_flags = AI_NUMERICSERV; 2797 hints.ai_socktype = SOCK_STREAM; 2798 hints.ai_protocol = 0; 2799 2800 rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res); 2801 if (rc) { 2802 SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc); 2803 free(port); 2804 pthread_mutex_unlock(&rtransport->lock); 2805 return -EINVAL; 2806 } 2807 2808 rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP); 2809 if (rc < 0) { 2810 SPDK_ERRLOG("rdma_create_id() failed\n"); 2811 freeaddrinfo(res); 2812 free(port); 2813 pthread_mutex_unlock(&rtransport->lock); 2814 return rc; 2815 } 2816 2817 rc = rdma_bind_addr(port->id, res->ai_addr); 2818 freeaddrinfo(res); 2819 2820 if (rc < 0) { 2821 SPDK_ERRLOG("rdma_bind_addr() failed\n"); 2822 rdma_destroy_id(port->id); 2823 free(port); 2824 pthread_mutex_unlock(&rtransport->lock); 2825 return rc; 2826 } 2827 2828 if (!port->id->verbs) { 2829 SPDK_ERRLOG("ibv_context is null\n"); 2830 rdma_destroy_id(port->id); 2831 free(port); 2832 pthread_mutex_unlock(&rtransport->lock); 2833 return -1; 2834 } 2835 2836 rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog); 2837 if (rc < 0) { 2838 SPDK_ERRLOG("rdma_listen() failed\n"); 2839 rdma_destroy_id(port->id); 2840 free(port); 2841 pthread_mutex_unlock(&rtransport->lock); 2842 return rc; 2843 } 2844 2845 TAILQ_FOREACH(device, &rtransport->devices, link) { 2846 if (device->context == port->id->verbs) { 2847 port->device = device; 2848 break; 2849 } 2850 } 2851 if (!port->device) { 2852 SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n", 2853 port->id->verbs); 2854 rdma_destroy_id(port->id); 2855 free(port); 2856 pthread_mutex_unlock(&rtransport->lock); 2857 return -EINVAL; 2858 } 2859 2860 SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n", 2861 trid->traddr, trid->trsvcid); 2862 2863 TAILQ_INSERT_TAIL(&rtransport->ports, port, link); 2864 pthread_mutex_unlock(&rtransport->lock); 2865 return 0; 2866 } 2867 2868 static void 2869 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport, 2870 const struct spdk_nvme_transport_id *trid) 2871 { 2872 struct spdk_nvmf_rdma_transport *rtransport; 2873 struct spdk_nvmf_rdma_port *port, *tmp; 2874 2875 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2876 2877 pthread_mutex_lock(&rtransport->lock); 2878 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) { 2879 if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) { 2880 TAILQ_REMOVE(&rtransport->ports, port, link); 2881 rdma_destroy_id(port->id); 2882 free(port); 2883 break; 2884 } 2885 } 2886 2887 pthread_mutex_unlock(&rtransport->lock); 2888 } 2889 2890 static void 2891 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport, 2892 struct spdk_nvmf_rdma_qpair *rqpair, bool drain) 2893 { 2894 struct spdk_nvmf_request *req, *tmp; 2895 struct spdk_nvmf_rdma_request *rdma_req, *req_tmp; 2896 struct spdk_nvmf_rdma_resources *resources; 2897 2898 /* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */ 2899 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) { 2900 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2901 break; 2902 } 2903 } 2904 2905 /* Then RDMA writes since reads have stronger restrictions than writes */ 2906 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) { 2907 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2908 break; 2909 } 2910 } 2911 2912 /* Then we handle request waiting on memory buffers. */ 2913 STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) { 2914 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 2915 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2916 break; 2917 } 2918 } 2919 2920 resources = rqpair->resources; 2921 while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) { 2922 rdma_req = STAILQ_FIRST(&resources->free_queue); 2923 STAILQ_REMOVE_HEAD(&resources->free_queue, state_link); 2924 rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue); 2925 STAILQ_REMOVE_HEAD(&resources->incoming_queue, link); 2926 2927 if (rqpair->srq != NULL) { 2928 rdma_req->req.qpair = &rdma_req->recv->qpair->qpair; 2929 rdma_req->recv->qpair->qd++; 2930 } else { 2931 rqpair->qd++; 2932 } 2933 2934 rdma_req->receive_tsc = rdma_req->recv->receive_tsc; 2935 rdma_req->state = RDMA_REQUEST_STATE_NEW; 2936 if (nvmf_rdma_request_process(rtransport, rdma_req) == false) { 2937 break; 2938 } 2939 } 2940 if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) { 2941 rqpair->poller->stat.pending_free_request++; 2942 } 2943 } 2944 2945 static inline bool 2946 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device) 2947 { 2948 /* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */ 2949 return nvmf_rdma_is_rxe_device(device) || 2950 device->context->device->transport_type == IBV_TRANSPORT_IWARP; 2951 } 2952 2953 static void 2954 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair) 2955 { 2956 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 2957 struct spdk_nvmf_rdma_transport, transport); 2958 2959 nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); 2960 2961 /* nvmr_rdma_close_qpair is not called */ 2962 if (!rqpair->to_close) { 2963 return; 2964 } 2965 2966 /* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */ 2967 if (rqpair->current_send_depth != 0) { 2968 return; 2969 } 2970 2971 if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) { 2972 return; 2973 } 2974 2975 if (rqpair->srq != NULL && rqpair->last_wqe_reached == false && 2976 !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) { 2977 return; 2978 } 2979 2980 assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR); 2981 2982 nvmf_rdma_qpair_destroy(rqpair); 2983 } 2984 2985 static int 2986 nvmf_rdma_disconnect(struct rdma_cm_event *evt) 2987 { 2988 struct spdk_nvmf_qpair *qpair; 2989 struct spdk_nvmf_rdma_qpair *rqpair; 2990 2991 if (evt->id == NULL) { 2992 SPDK_ERRLOG("disconnect request: missing cm_id\n"); 2993 return -1; 2994 } 2995 2996 qpair = evt->id->context; 2997 if (qpair == NULL) { 2998 SPDK_ERRLOG("disconnect request: no active connection\n"); 2999 return -1; 3000 } 3001 3002 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3003 3004 spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair); 3005 3006 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3007 3008 return 0; 3009 } 3010 3011 #ifdef DEBUG 3012 static const char *CM_EVENT_STR[] = { 3013 "RDMA_CM_EVENT_ADDR_RESOLVED", 3014 "RDMA_CM_EVENT_ADDR_ERROR", 3015 "RDMA_CM_EVENT_ROUTE_RESOLVED", 3016 "RDMA_CM_EVENT_ROUTE_ERROR", 3017 "RDMA_CM_EVENT_CONNECT_REQUEST", 3018 "RDMA_CM_EVENT_CONNECT_RESPONSE", 3019 "RDMA_CM_EVENT_CONNECT_ERROR", 3020 "RDMA_CM_EVENT_UNREACHABLE", 3021 "RDMA_CM_EVENT_REJECTED", 3022 "RDMA_CM_EVENT_ESTABLISHED", 3023 "RDMA_CM_EVENT_DISCONNECTED", 3024 "RDMA_CM_EVENT_DEVICE_REMOVAL", 3025 "RDMA_CM_EVENT_MULTICAST_JOIN", 3026 "RDMA_CM_EVENT_MULTICAST_ERROR", 3027 "RDMA_CM_EVENT_ADDR_CHANGE", 3028 "RDMA_CM_EVENT_TIMEWAIT_EXIT" 3029 }; 3030 #endif /* DEBUG */ 3031 3032 static void 3033 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport, 3034 struct spdk_nvmf_rdma_port *port) 3035 { 3036 struct spdk_nvmf_rdma_poll_group *rgroup; 3037 struct spdk_nvmf_rdma_poller *rpoller; 3038 struct spdk_nvmf_rdma_qpair *rqpair; 3039 3040 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 3041 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 3042 RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) { 3043 if (rqpair->listen_id == port->id) { 3044 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3045 } 3046 } 3047 } 3048 } 3049 } 3050 3051 static bool 3052 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport, 3053 struct rdma_cm_event *event) 3054 { 3055 const struct spdk_nvme_transport_id *trid; 3056 struct spdk_nvmf_rdma_port *port; 3057 struct spdk_nvmf_rdma_transport *rtransport; 3058 bool event_acked = false; 3059 3060 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3061 TAILQ_FOREACH(port, &rtransport->ports, link) { 3062 if (port->id == event->id) { 3063 SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid); 3064 rdma_ack_cm_event(event); 3065 event_acked = true; 3066 trid = port->trid; 3067 break; 3068 } 3069 } 3070 3071 if (event_acked) { 3072 nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); 3073 3074 nvmf_rdma_stop_listen(transport, trid); 3075 nvmf_rdma_listen(transport, trid, NULL); 3076 } 3077 3078 return event_acked; 3079 } 3080 3081 static void 3082 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport, 3083 struct rdma_cm_event *event) 3084 { 3085 struct spdk_nvmf_rdma_port *port; 3086 struct spdk_nvmf_rdma_transport *rtransport; 3087 3088 port = event->id->context; 3089 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3090 3091 SPDK_NOTICELOG("Port %s:%s is being removed\n", port->trid->traddr, port->trid->trsvcid); 3092 3093 nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); 3094 3095 rdma_ack_cm_event(event); 3096 3097 while (spdk_nvmf_transport_stop_listen(transport, port->trid) == 0) { 3098 ; 3099 } 3100 } 3101 3102 static void 3103 nvmf_process_cm_event(struct spdk_nvmf_transport *transport) 3104 { 3105 struct spdk_nvmf_rdma_transport *rtransport; 3106 struct rdma_cm_event *event; 3107 int rc; 3108 bool event_acked; 3109 3110 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3111 3112 if (rtransport->event_channel == NULL) { 3113 return; 3114 } 3115 3116 while (1) { 3117 event_acked = false; 3118 rc = rdma_get_cm_event(rtransport->event_channel, &event); 3119 if (rc) { 3120 if (errno != EAGAIN && errno != EWOULDBLOCK) { 3121 SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno)); 3122 } 3123 break; 3124 } 3125 3126 SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]); 3127 3128 spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event); 3129 3130 switch (event->event) { 3131 case RDMA_CM_EVENT_ADDR_RESOLVED: 3132 case RDMA_CM_EVENT_ADDR_ERROR: 3133 case RDMA_CM_EVENT_ROUTE_RESOLVED: 3134 case RDMA_CM_EVENT_ROUTE_ERROR: 3135 /* No action required. The target never attempts to resolve routes. */ 3136 break; 3137 case RDMA_CM_EVENT_CONNECT_REQUEST: 3138 rc = nvmf_rdma_connect(transport, event); 3139 if (rc < 0) { 3140 SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc); 3141 break; 3142 } 3143 break; 3144 case RDMA_CM_EVENT_CONNECT_RESPONSE: 3145 /* The target never initiates a new connection. So this will not occur. */ 3146 break; 3147 case RDMA_CM_EVENT_CONNECT_ERROR: 3148 /* Can this happen? The docs say it can, but not sure what causes it. */ 3149 break; 3150 case RDMA_CM_EVENT_UNREACHABLE: 3151 case RDMA_CM_EVENT_REJECTED: 3152 /* These only occur on the client side. */ 3153 break; 3154 case RDMA_CM_EVENT_ESTABLISHED: 3155 /* TODO: Should we be waiting for this event anywhere? */ 3156 break; 3157 case RDMA_CM_EVENT_DISCONNECTED: 3158 rc = nvmf_rdma_disconnect(event); 3159 if (rc < 0) { 3160 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3161 break; 3162 } 3163 break; 3164 case RDMA_CM_EVENT_DEVICE_REMOVAL: 3165 /* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL 3166 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s. 3167 * Once these events are sent to SPDK, we should release all IB resources and 3168 * don't make attempts to call any ibv_query/modify/create functions. We can only call 3169 * ibv_destroy* functions to release user space memory allocated by IB. All kernel 3170 * resources are already cleaned. */ 3171 if (event->id->qp) { 3172 /* If rdma_cm event has a valid `qp` pointer then the event refers to the 3173 * corresponding qpair. Otherwise the event refers to a listening device */ 3174 rc = nvmf_rdma_disconnect(event); 3175 if (rc < 0) { 3176 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3177 break; 3178 } 3179 } else { 3180 nvmf_rdma_handle_cm_event_port_removal(transport, event); 3181 event_acked = true; 3182 } 3183 break; 3184 case RDMA_CM_EVENT_MULTICAST_JOIN: 3185 case RDMA_CM_EVENT_MULTICAST_ERROR: 3186 /* Multicast is not used */ 3187 break; 3188 case RDMA_CM_EVENT_ADDR_CHANGE: 3189 event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event); 3190 break; 3191 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 3192 /* For now, do nothing. The target never re-uses queue pairs. */ 3193 break; 3194 default: 3195 SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); 3196 break; 3197 } 3198 if (!event_acked) { 3199 rdma_ack_cm_event(event); 3200 } 3201 } 3202 } 3203 3204 static void 3205 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair) 3206 { 3207 rqpair->last_wqe_reached = true; 3208 nvmf_rdma_destroy_drained_qpair(rqpair); 3209 } 3210 3211 static void 3212 nvmf_rdma_qpair_process_ibv_event(void *ctx) 3213 { 3214 struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx; 3215 3216 if (event_ctx->rqpair) { 3217 STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3218 if (event_ctx->cb_fn) { 3219 event_ctx->cb_fn(event_ctx->rqpair); 3220 } 3221 } 3222 free(event_ctx); 3223 } 3224 3225 static int 3226 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair, 3227 spdk_nvmf_rdma_qpair_ibv_event fn) 3228 { 3229 struct spdk_nvmf_rdma_ibv_event_ctx *ctx; 3230 struct spdk_thread *thr = NULL; 3231 int rc; 3232 3233 if (rqpair->qpair.group) { 3234 thr = rqpair->qpair.group->thread; 3235 } else if (rqpair->destruct_channel) { 3236 thr = spdk_io_channel_get_thread(rqpair->destruct_channel); 3237 } 3238 3239 if (!thr) { 3240 SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair); 3241 return -EINVAL; 3242 } 3243 3244 ctx = calloc(1, sizeof(*ctx)); 3245 if (!ctx) { 3246 return -ENOMEM; 3247 } 3248 3249 ctx->rqpair = rqpair; 3250 ctx->cb_fn = fn; 3251 STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link); 3252 3253 rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx); 3254 if (rc) { 3255 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3256 free(ctx); 3257 } 3258 3259 return rc; 3260 } 3261 3262 static int 3263 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device) 3264 { 3265 int rc; 3266 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 3267 struct ibv_async_event event; 3268 3269 rc = ibv_get_async_event(device->context, &event); 3270 3271 if (rc) { 3272 /* In non-blocking mode -1 means there are no events available */ 3273 return rc; 3274 } 3275 3276 switch (event.event_type) { 3277 case IBV_EVENT_QP_FATAL: 3278 rqpair = event.element.qp->qp_context; 3279 SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair); 3280 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3281 (uintptr_t)rqpair, event.event_type); 3282 nvmf_rdma_update_ibv_state(rqpair); 3283 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3284 break; 3285 case IBV_EVENT_QP_LAST_WQE_REACHED: 3286 /* This event only occurs for shared receive queues. */ 3287 rqpair = event.element.qp->qp_context; 3288 SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair); 3289 rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached); 3290 if (rc) { 3291 SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc); 3292 rqpair->last_wqe_reached = true; 3293 } 3294 break; 3295 case IBV_EVENT_SQ_DRAINED: 3296 /* This event occurs frequently in both error and non-error states. 3297 * Check if the qpair is in an error state before sending a message. */ 3298 rqpair = event.element.qp->qp_context; 3299 SPDK_DEBUGLOG(rdma, "Last sq drained event received for rqpair %p\n", rqpair); 3300 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3301 (uintptr_t)rqpair, event.event_type); 3302 if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) { 3303 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3304 } 3305 break; 3306 case IBV_EVENT_QP_REQ_ERR: 3307 case IBV_EVENT_QP_ACCESS_ERR: 3308 case IBV_EVENT_COMM_EST: 3309 case IBV_EVENT_PATH_MIG: 3310 case IBV_EVENT_PATH_MIG_ERR: 3311 SPDK_NOTICELOG("Async event: %s\n", 3312 ibv_event_type_str(event.event_type)); 3313 rqpair = event.element.qp->qp_context; 3314 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3315 (uintptr_t)rqpair, event.event_type); 3316 nvmf_rdma_update_ibv_state(rqpair); 3317 break; 3318 case IBV_EVENT_CQ_ERR: 3319 case IBV_EVENT_DEVICE_FATAL: 3320 case IBV_EVENT_PORT_ACTIVE: 3321 case IBV_EVENT_PORT_ERR: 3322 case IBV_EVENT_LID_CHANGE: 3323 case IBV_EVENT_PKEY_CHANGE: 3324 case IBV_EVENT_SM_CHANGE: 3325 case IBV_EVENT_SRQ_ERR: 3326 case IBV_EVENT_SRQ_LIMIT_REACHED: 3327 case IBV_EVENT_CLIENT_REREGISTER: 3328 case IBV_EVENT_GID_CHANGE: 3329 default: 3330 SPDK_NOTICELOG("Async event: %s\n", 3331 ibv_event_type_str(event.event_type)); 3332 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type); 3333 break; 3334 } 3335 ibv_ack_async_event(&event); 3336 3337 return 0; 3338 } 3339 3340 static void 3341 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events) 3342 { 3343 int rc = 0; 3344 uint32_t i = 0; 3345 3346 for (i = 0; i < max_events; i++) { 3347 rc = nvmf_process_ib_event(device); 3348 if (rc) { 3349 break; 3350 } 3351 } 3352 3353 SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i); 3354 } 3355 3356 static int 3357 nvmf_rdma_accept(void *ctx) 3358 { 3359 int nfds, i = 0; 3360 struct spdk_nvmf_transport *transport = ctx; 3361 struct spdk_nvmf_rdma_transport *rtransport; 3362 struct spdk_nvmf_rdma_device *device, *tmp; 3363 uint32_t count; 3364 3365 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3366 count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0); 3367 3368 if (nfds <= 0) { 3369 return SPDK_POLLER_IDLE; 3370 } 3371 3372 /* The first poll descriptor is RDMA CM event */ 3373 if (rtransport->poll_fds[i++].revents & POLLIN) { 3374 nvmf_process_cm_event(transport); 3375 nfds--; 3376 } 3377 3378 if (nfds == 0) { 3379 return SPDK_POLLER_BUSY; 3380 } 3381 3382 /* Second and subsequent poll descriptors are IB async events */ 3383 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 3384 if (rtransport->poll_fds[i++].revents & POLLIN) { 3385 nvmf_process_ib_events(device, 32); 3386 nfds--; 3387 } 3388 } 3389 /* check all flagged fd's have been served */ 3390 assert(nfds == 0); 3391 3392 return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE; 3393 } 3394 3395 static void 3396 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem, 3397 struct spdk_nvmf_ctrlr_data *cdata) 3398 { 3399 cdata->nvmf_specific.msdbd = SPDK_NVMF_MAX_SGL_ENTRIES; 3400 3401 /* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled 3402 since in-capsule data only works with NVME drives that support SGL memory layout */ 3403 if (transport->opts.dif_insert_or_strip) { 3404 cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16; 3405 } 3406 3407 if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) { 3408 SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule" 3409 " data is greater than 4KiB.\n"); 3410 SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux " 3411 "kernel between versions 5.4 and 5.12 data corruption may occur for " 3412 "writes that are not a multiple of 4KiB in size.\n"); 3413 } 3414 } 3415 3416 static void 3417 nvmf_rdma_discover(struct spdk_nvmf_transport *transport, 3418 struct spdk_nvme_transport_id *trid, 3419 struct spdk_nvmf_discovery_log_page_entry *entry) 3420 { 3421 entry->trtype = SPDK_NVMF_TRTYPE_RDMA; 3422 entry->adrfam = trid->adrfam; 3423 entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED; 3424 3425 spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' '); 3426 spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' '); 3427 3428 entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED; 3429 entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE; 3430 entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM; 3431 } 3432 3433 static void 3434 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group); 3435 3436 static struct spdk_nvmf_transport_poll_group * 3437 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport, 3438 struct spdk_nvmf_poll_group *group) 3439 { 3440 struct spdk_nvmf_rdma_transport *rtransport; 3441 struct spdk_nvmf_rdma_poll_group *rgroup; 3442 struct spdk_nvmf_rdma_poller *poller; 3443 struct spdk_nvmf_rdma_device *device; 3444 struct spdk_rdma_srq_init_attr srq_init_attr; 3445 struct spdk_nvmf_rdma_resource_opts opts; 3446 int num_cqe; 3447 3448 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3449 3450 rgroup = calloc(1, sizeof(*rgroup)); 3451 if (!rgroup) { 3452 return NULL; 3453 } 3454 3455 TAILQ_INIT(&rgroup->pollers); 3456 3457 pthread_mutex_lock(&rtransport->lock); 3458 TAILQ_FOREACH(device, &rtransport->devices, link) { 3459 poller = calloc(1, sizeof(*poller)); 3460 if (!poller) { 3461 SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n"); 3462 nvmf_rdma_poll_group_destroy(&rgroup->group); 3463 pthread_mutex_unlock(&rtransport->lock); 3464 return NULL; 3465 } 3466 3467 poller->device = device; 3468 poller->group = rgroup; 3469 3470 RB_INIT(&poller->qpairs); 3471 STAILQ_INIT(&poller->qpairs_pending_send); 3472 STAILQ_INIT(&poller->qpairs_pending_recv); 3473 3474 TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link); 3475 if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) { 3476 if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) { 3477 SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n", 3478 rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr); 3479 } 3480 poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr); 3481 3482 device->num_srq++; 3483 memset(&srq_init_attr, 0, sizeof(srq_init_attr)); 3484 srq_init_attr.pd = device->pd; 3485 srq_init_attr.stats = &poller->stat.qp_stats.recv; 3486 srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth; 3487 srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 3488 poller->srq = spdk_rdma_srq_create(&srq_init_attr); 3489 if (!poller->srq) { 3490 SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno); 3491 nvmf_rdma_poll_group_destroy(&rgroup->group); 3492 pthread_mutex_unlock(&rtransport->lock); 3493 return NULL; 3494 } 3495 3496 opts.qp = poller->srq; 3497 opts.pd = device->pd; 3498 opts.qpair = NULL; 3499 opts.shared = true; 3500 opts.max_queue_depth = poller->max_srq_depth; 3501 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 3502 3503 poller->resources = nvmf_rdma_resources_create(&opts); 3504 if (!poller->resources) { 3505 SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n"); 3506 nvmf_rdma_poll_group_destroy(&rgroup->group); 3507 pthread_mutex_unlock(&rtransport->lock); 3508 return NULL; 3509 } 3510 } 3511 3512 /* 3513 * When using an srq, we can limit the completion queue at startup. 3514 * The following formula represents the calculation: 3515 * num_cqe = num_recv + num_data_wr + num_send_wr. 3516 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth 3517 */ 3518 if (poller->srq) { 3519 num_cqe = poller->max_srq_depth * 3; 3520 } else { 3521 num_cqe = rtransport->rdma_opts.num_cqe; 3522 } 3523 3524 poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0); 3525 if (!poller->cq) { 3526 SPDK_ERRLOG("Unable to create completion queue\n"); 3527 nvmf_rdma_poll_group_destroy(&rgroup->group); 3528 pthread_mutex_unlock(&rtransport->lock); 3529 return NULL; 3530 } 3531 poller->num_cqe = num_cqe; 3532 } 3533 3534 TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link); 3535 if (rtransport->conn_sched.next_admin_pg == NULL) { 3536 rtransport->conn_sched.next_admin_pg = rgroup; 3537 rtransport->conn_sched.next_io_pg = rgroup; 3538 } 3539 3540 pthread_mutex_unlock(&rtransport->lock); 3541 return &rgroup->group; 3542 } 3543 3544 static struct spdk_nvmf_transport_poll_group * 3545 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair) 3546 { 3547 struct spdk_nvmf_rdma_transport *rtransport; 3548 struct spdk_nvmf_rdma_poll_group **pg; 3549 struct spdk_nvmf_transport_poll_group *result; 3550 3551 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 3552 3553 pthread_mutex_lock(&rtransport->lock); 3554 3555 if (TAILQ_EMPTY(&rtransport->poll_groups)) { 3556 pthread_mutex_unlock(&rtransport->lock); 3557 return NULL; 3558 } 3559 3560 if (qpair->qid == 0) { 3561 pg = &rtransport->conn_sched.next_admin_pg; 3562 } else { 3563 pg = &rtransport->conn_sched.next_io_pg; 3564 } 3565 3566 assert(*pg != NULL); 3567 3568 result = &(*pg)->group; 3569 3570 *pg = TAILQ_NEXT(*pg, link); 3571 if (*pg == NULL) { 3572 *pg = TAILQ_FIRST(&rtransport->poll_groups); 3573 } 3574 3575 pthread_mutex_unlock(&rtransport->lock); 3576 3577 return result; 3578 } 3579 3580 static void 3581 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group) 3582 { 3583 struct spdk_nvmf_rdma_poll_group *rgroup, *next_rgroup; 3584 struct spdk_nvmf_rdma_poller *poller, *tmp; 3585 struct spdk_nvmf_rdma_qpair *qpair, *tmp_qpair; 3586 struct spdk_nvmf_rdma_transport *rtransport; 3587 3588 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3589 if (!rgroup) { 3590 return; 3591 } 3592 3593 TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) { 3594 TAILQ_REMOVE(&rgroup->pollers, poller, link); 3595 3596 RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) { 3597 nvmf_rdma_qpair_destroy(qpair); 3598 } 3599 3600 if (poller->srq) { 3601 if (poller->resources) { 3602 nvmf_rdma_resources_destroy(poller->resources); 3603 } 3604 spdk_rdma_srq_destroy(poller->srq); 3605 SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq); 3606 } 3607 3608 if (poller->cq) { 3609 ibv_destroy_cq(poller->cq); 3610 } 3611 3612 free(poller); 3613 } 3614 3615 if (rgroup->group.transport == NULL) { 3616 /* Transport can be NULL when nvmf_rdma_poll_group_create() 3617 * calls this function directly in a failure path. */ 3618 free(rgroup); 3619 return; 3620 } 3621 3622 rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport); 3623 3624 pthread_mutex_lock(&rtransport->lock); 3625 next_rgroup = TAILQ_NEXT(rgroup, link); 3626 TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link); 3627 if (next_rgroup == NULL) { 3628 next_rgroup = TAILQ_FIRST(&rtransport->poll_groups); 3629 } 3630 if (rtransport->conn_sched.next_admin_pg == rgroup) { 3631 rtransport->conn_sched.next_admin_pg = next_rgroup; 3632 } 3633 if (rtransport->conn_sched.next_io_pg == rgroup) { 3634 rtransport->conn_sched.next_io_pg = next_rgroup; 3635 } 3636 pthread_mutex_unlock(&rtransport->lock); 3637 3638 free(rgroup); 3639 } 3640 3641 static void 3642 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair) 3643 { 3644 if (rqpair->cm_id != NULL) { 3645 nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 3646 } 3647 } 3648 3649 static int 3650 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group, 3651 struct spdk_nvmf_qpair *qpair) 3652 { 3653 struct spdk_nvmf_rdma_poll_group *rgroup; 3654 struct spdk_nvmf_rdma_qpair *rqpair; 3655 struct spdk_nvmf_rdma_device *device; 3656 struct spdk_nvmf_rdma_poller *poller; 3657 int rc; 3658 3659 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3660 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3661 3662 device = rqpair->device; 3663 3664 TAILQ_FOREACH(poller, &rgroup->pollers, link) { 3665 if (poller->device == device) { 3666 break; 3667 } 3668 } 3669 3670 if (!poller) { 3671 SPDK_ERRLOG("No poller found for device.\n"); 3672 return -1; 3673 } 3674 3675 rqpair->poller = poller; 3676 rqpair->srq = rqpair->poller->srq; 3677 3678 rc = nvmf_rdma_qpair_initialize(qpair); 3679 if (rc < 0) { 3680 SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair); 3681 rqpair->poller = NULL; 3682 rqpair->srq = NULL; 3683 return -1; 3684 } 3685 3686 RB_INSERT(qpairs_tree, &poller->qpairs, rqpair); 3687 3688 rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair); 3689 if (rc) { 3690 /* Try to reject, but we probably can't */ 3691 nvmf_rdma_qpair_reject_connection(rqpair); 3692 return -1; 3693 } 3694 3695 nvmf_rdma_update_ibv_state(rqpair); 3696 3697 return 0; 3698 } 3699 3700 static int 3701 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group, 3702 struct spdk_nvmf_qpair *qpair) 3703 { 3704 struct spdk_nvmf_rdma_qpair *rqpair; 3705 3706 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3707 assert(group->transport->tgt != NULL); 3708 3709 rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt); 3710 3711 if (!rqpair->destruct_channel) { 3712 SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair); 3713 return 0; 3714 } 3715 3716 /* Sanity check that we get io_channel on the correct thread */ 3717 if (qpair->group) { 3718 assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel)); 3719 } 3720 3721 return 0; 3722 } 3723 3724 static int 3725 nvmf_rdma_request_free(struct spdk_nvmf_request *req) 3726 { 3727 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 3728 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 3729 struct spdk_nvmf_rdma_transport, transport); 3730 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 3731 struct spdk_nvmf_rdma_qpair, qpair); 3732 3733 /* 3734 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request 3735 * needs to be returned to the shared receive queue or the poll group will eventually be 3736 * starved of RECV structures. 3737 */ 3738 if (rqpair->srq && rdma_req->recv) { 3739 int rc; 3740 struct ibv_recv_wr *bad_recv_wr; 3741 3742 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr); 3743 rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr); 3744 if (rc) { 3745 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 3746 } 3747 } 3748 3749 _nvmf_rdma_request_free(rdma_req, rtransport); 3750 return 0; 3751 } 3752 3753 static int 3754 nvmf_rdma_request_complete(struct spdk_nvmf_request *req) 3755 { 3756 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 3757 struct spdk_nvmf_rdma_transport, transport); 3758 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, 3759 struct spdk_nvmf_rdma_request, req); 3760 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 3761 struct spdk_nvmf_rdma_qpair, qpair); 3762 3763 if (rqpair->ibv_state != IBV_QPS_ERR) { 3764 /* The connection is alive, so process the request as normal */ 3765 rdma_req->state = RDMA_REQUEST_STATE_EXECUTED; 3766 } else { 3767 /* The connection is dead. Move the request directly to the completed state. */ 3768 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3769 } 3770 3771 nvmf_rdma_request_process(rtransport, rdma_req); 3772 3773 return 0; 3774 } 3775 3776 static void 3777 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair, 3778 spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg) 3779 { 3780 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3781 3782 rqpair->to_close = true; 3783 3784 /* This happens only when the qpair is disconnected before 3785 * it is added to the poll group. Since there is no poll group, 3786 * the RDMA qp has not been initialized yet and the RDMA CM 3787 * event has not yet been acknowledged, so we need to reject it. 3788 */ 3789 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) { 3790 nvmf_rdma_qpair_reject_connection(rqpair); 3791 nvmf_rdma_qpair_destroy(rqpair); 3792 return; 3793 } 3794 3795 if (rqpair->rdma_qp) { 3796 spdk_rdma_qp_disconnect(rqpair->rdma_qp); 3797 } 3798 3799 nvmf_rdma_destroy_drained_qpair(rqpair); 3800 3801 if (cb_fn) { 3802 cb_fn(cb_arg); 3803 } 3804 } 3805 3806 static struct spdk_nvmf_rdma_qpair * 3807 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc) 3808 { 3809 struct spdk_nvmf_rdma_qpair find; 3810 3811 find.qp_num = wc->qp_num; 3812 3813 return RB_FIND(qpairs_tree, &rpoller->qpairs, &find); 3814 } 3815 3816 #ifdef DEBUG 3817 static int 3818 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req) 3819 { 3820 return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST || 3821 rdma_req->state == RDMA_REQUEST_STATE_COMPLETING; 3822 } 3823 #endif 3824 3825 static void 3826 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr, 3827 int rc) 3828 { 3829 struct spdk_nvmf_rdma_recv *rdma_recv; 3830 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 3831 3832 SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc); 3833 while (bad_recv_wr != NULL) { 3834 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id; 3835 rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 3836 3837 rdma_recv->qpair->current_recv_depth++; 3838 bad_recv_wr = bad_recv_wr->next; 3839 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc); 3840 spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair, NULL, NULL); 3841 } 3842 } 3843 3844 static void 3845 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc) 3846 { 3847 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc); 3848 while (bad_recv_wr != NULL) { 3849 bad_recv_wr = bad_recv_wr->next; 3850 rqpair->current_recv_depth++; 3851 } 3852 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3853 } 3854 3855 static void 3856 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 3857 struct spdk_nvmf_rdma_poller *rpoller) 3858 { 3859 struct spdk_nvmf_rdma_qpair *rqpair; 3860 struct ibv_recv_wr *bad_recv_wr; 3861 int rc; 3862 3863 if (rpoller->srq) { 3864 rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr); 3865 if (rc) { 3866 _poller_reset_failed_recvs(rpoller, bad_recv_wr, rc); 3867 } 3868 } else { 3869 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) { 3870 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv); 3871 rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr); 3872 if (rc) { 3873 _qp_reset_failed_recvs(rqpair, bad_recv_wr, rc); 3874 } 3875 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link); 3876 } 3877 } 3878 } 3879 3880 static void 3881 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport, 3882 struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc) 3883 { 3884 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 3885 struct spdk_nvmf_rdma_request *prev_rdma_req = NULL, *cur_rdma_req = NULL; 3886 3887 SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc); 3888 for (; bad_wr != NULL; bad_wr = bad_wr->next) { 3889 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id; 3890 assert(rqpair->current_send_depth > 0); 3891 rqpair->current_send_depth--; 3892 switch (bad_rdma_wr->type) { 3893 case RDMA_WR_TYPE_DATA: 3894 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr); 3895 if (bad_wr->opcode == IBV_WR_RDMA_READ) { 3896 assert(rqpair->current_read_depth > 0); 3897 rqpair->current_read_depth--; 3898 } 3899 break; 3900 case RDMA_WR_TYPE_SEND: 3901 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr); 3902 break; 3903 default: 3904 SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair); 3905 prev_rdma_req = cur_rdma_req; 3906 continue; 3907 } 3908 3909 if (prev_rdma_req == cur_rdma_req) { 3910 /* this request was handled by an earlier wr. i.e. we were performing an nvme read. */ 3911 /* We only have to check against prev_wr since each requests wrs are contiguous in this list. */ 3912 continue; 3913 } 3914 3915 switch (cur_rdma_req->state) { 3916 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 3917 cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 3918 cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 3919 break; 3920 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 3921 case RDMA_REQUEST_STATE_COMPLETING: 3922 cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3923 break; 3924 default: 3925 SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n", 3926 cur_rdma_req->state, rqpair); 3927 continue; 3928 } 3929 3930 nvmf_rdma_request_process(rtransport, cur_rdma_req); 3931 prev_rdma_req = cur_rdma_req; 3932 } 3933 3934 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 3935 /* Disconnect the connection. */ 3936 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3937 } 3938 3939 } 3940 3941 static void 3942 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 3943 struct spdk_nvmf_rdma_poller *rpoller) 3944 { 3945 struct spdk_nvmf_rdma_qpair *rqpair; 3946 struct ibv_send_wr *bad_wr = NULL; 3947 int rc; 3948 3949 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) { 3950 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send); 3951 rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr); 3952 3953 /* bad wr always points to the first wr that failed. */ 3954 if (rc) { 3955 _qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc); 3956 } 3957 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link); 3958 } 3959 } 3960 3961 static const char * 3962 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type) 3963 { 3964 switch (wr_type) { 3965 case RDMA_WR_TYPE_RECV: 3966 return "RECV"; 3967 case RDMA_WR_TYPE_SEND: 3968 return "SEND"; 3969 case RDMA_WR_TYPE_DATA: 3970 return "DATA"; 3971 default: 3972 SPDK_ERRLOG("Unknown WR type %d\n", wr_type); 3973 SPDK_UNREACHABLE(); 3974 } 3975 } 3976 3977 static inline void 3978 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc) 3979 { 3980 enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type; 3981 3982 if (wc->status == IBV_WC_WR_FLUSH_ERR) { 3983 /* If qpair is in ERR state, we will receive completions for all posted and not completed 3984 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */ 3985 SPDK_DEBUGLOG(rdma, 3986 "Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n", 3987 rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id, 3988 nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status)); 3989 } else { 3990 SPDK_ERRLOG("Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n", 3991 rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id, 3992 nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status)); 3993 } 3994 } 3995 3996 static int 3997 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport, 3998 struct spdk_nvmf_rdma_poller *rpoller) 3999 { 4000 struct ibv_wc wc[32]; 4001 struct spdk_nvmf_rdma_wr *rdma_wr; 4002 struct spdk_nvmf_rdma_request *rdma_req; 4003 struct spdk_nvmf_rdma_recv *rdma_recv; 4004 struct spdk_nvmf_rdma_qpair *rqpair; 4005 int reaped, i; 4006 int count = 0; 4007 bool error = false; 4008 uint64_t poll_tsc = spdk_get_ticks(); 4009 4010 /* Poll for completing operations. */ 4011 reaped = ibv_poll_cq(rpoller->cq, 32, wc); 4012 if (reaped < 0) { 4013 SPDK_ERRLOG("Error polling CQ! (%d): %s\n", 4014 errno, spdk_strerror(errno)); 4015 return -1; 4016 } else if (reaped == 0) { 4017 rpoller->stat.idle_polls++; 4018 } 4019 4020 rpoller->stat.polls++; 4021 rpoller->stat.completions += reaped; 4022 4023 for (i = 0; i < reaped; i++) { 4024 4025 rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id; 4026 4027 switch (rdma_wr->type) { 4028 case RDMA_WR_TYPE_SEND: 4029 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr); 4030 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 4031 4032 if (!wc[i].status) { 4033 count++; 4034 assert(wc[i].opcode == IBV_WC_SEND); 4035 assert(nvmf_rdma_req_is_completing(rdma_req)); 4036 } 4037 4038 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4039 /* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */ 4040 rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1; 4041 rdma_req->num_outstanding_data_wr = 0; 4042 4043 nvmf_rdma_request_process(rtransport, rdma_req); 4044 break; 4045 case RDMA_WR_TYPE_RECV: 4046 /* rdma_recv->qpair will be invalid if using an SRQ. In that case we have to get the qpair from the wc. */ 4047 rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 4048 if (rpoller->srq != NULL) { 4049 rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]); 4050 /* It is possible that there are still some completions for destroyed QP 4051 * associated with SRQ. We just ignore these late completions and re-post 4052 * receive WRs back to SRQ. 4053 */ 4054 if (spdk_unlikely(NULL == rdma_recv->qpair)) { 4055 struct ibv_recv_wr *bad_wr; 4056 int rc; 4057 4058 rdma_recv->wr.next = NULL; 4059 spdk_rdma_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr); 4060 rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_wr); 4061 if (rc) { 4062 SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc); 4063 } 4064 continue; 4065 } 4066 } 4067 rqpair = rdma_recv->qpair; 4068 4069 assert(rqpair != NULL); 4070 if (!wc[i].status) { 4071 assert(wc[i].opcode == IBV_WC_RECV); 4072 if (rqpair->current_recv_depth >= rqpair->max_queue_depth) { 4073 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4074 break; 4075 } 4076 } 4077 4078 rdma_recv->wr.next = NULL; 4079 rqpair->current_recv_depth++; 4080 rdma_recv->receive_tsc = poll_tsc; 4081 rpoller->stat.requests++; 4082 STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link); 4083 break; 4084 case RDMA_WR_TYPE_DATA: 4085 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr); 4086 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 4087 4088 assert(rdma_req->num_outstanding_data_wr > 0); 4089 4090 rqpair->current_send_depth--; 4091 rdma_req->num_outstanding_data_wr--; 4092 if (!wc[i].status) { 4093 assert(wc[i].opcode == IBV_WC_RDMA_READ); 4094 rqpair->current_read_depth--; 4095 /* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */ 4096 if (rdma_req->num_outstanding_data_wr == 0) { 4097 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 4098 nvmf_rdma_request_process(rtransport, rdma_req); 4099 } 4100 } else { 4101 /* If the data transfer fails still force the queue into the error state, 4102 * if we were performing an RDMA_READ, we need to force the request into a 4103 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE 4104 * case, we should wait for the SEND to complete. */ 4105 if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) { 4106 rqpair->current_read_depth--; 4107 if (rdma_req->num_outstanding_data_wr == 0) { 4108 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4109 } 4110 } 4111 } 4112 break; 4113 default: 4114 SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode); 4115 continue; 4116 } 4117 4118 /* Handle error conditions */ 4119 if (wc[i].status) { 4120 nvmf_rdma_update_ibv_state(rqpair); 4121 nvmf_rdma_log_wc_status(rqpair, &wc[i]); 4122 4123 error = true; 4124 4125 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 4126 /* Disconnect the connection. */ 4127 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4128 } else { 4129 nvmf_rdma_destroy_drained_qpair(rqpair); 4130 } 4131 continue; 4132 } 4133 4134 nvmf_rdma_qpair_process_pending(rtransport, rqpair, false); 4135 4136 if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 4137 nvmf_rdma_destroy_drained_qpair(rqpair); 4138 } 4139 } 4140 4141 if (error == true) { 4142 return -1; 4143 } 4144 4145 /* submit outstanding work requests. */ 4146 _poller_submit_recvs(rtransport, rpoller); 4147 _poller_submit_sends(rtransport, rpoller); 4148 4149 return count; 4150 } 4151 4152 static int 4153 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group) 4154 { 4155 struct spdk_nvmf_rdma_transport *rtransport; 4156 struct spdk_nvmf_rdma_poll_group *rgroup; 4157 struct spdk_nvmf_rdma_poller *rpoller; 4158 int count, rc; 4159 4160 rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport); 4161 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4162 4163 count = 0; 4164 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 4165 rc = nvmf_rdma_poller_poll(rtransport, rpoller); 4166 if (rc < 0) { 4167 return rc; 4168 } 4169 count += rc; 4170 } 4171 4172 return count; 4173 } 4174 4175 static int 4176 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 4177 struct spdk_nvme_transport_id *trid, 4178 bool peer) 4179 { 4180 struct sockaddr *saddr; 4181 uint16_t port; 4182 4183 spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA); 4184 4185 if (peer) { 4186 saddr = rdma_get_peer_addr(id); 4187 } else { 4188 saddr = rdma_get_local_addr(id); 4189 } 4190 switch (saddr->sa_family) { 4191 case AF_INET: { 4192 struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr; 4193 4194 trid->adrfam = SPDK_NVMF_ADRFAM_IPV4; 4195 inet_ntop(AF_INET, &saddr_in->sin_addr, 4196 trid->traddr, sizeof(trid->traddr)); 4197 if (peer) { 4198 port = ntohs(rdma_get_dst_port(id)); 4199 } else { 4200 port = ntohs(rdma_get_src_port(id)); 4201 } 4202 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 4203 break; 4204 } 4205 case AF_INET6: { 4206 struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr; 4207 trid->adrfam = SPDK_NVMF_ADRFAM_IPV6; 4208 inet_ntop(AF_INET6, &saddr_in->sin6_addr, 4209 trid->traddr, sizeof(trid->traddr)); 4210 if (peer) { 4211 port = ntohs(rdma_get_dst_port(id)); 4212 } else { 4213 port = ntohs(rdma_get_src_port(id)); 4214 } 4215 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 4216 break; 4217 } 4218 default: 4219 return -1; 4220 4221 } 4222 4223 return 0; 4224 } 4225 4226 static int 4227 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair, 4228 struct spdk_nvme_transport_id *trid) 4229 { 4230 struct spdk_nvmf_rdma_qpair *rqpair; 4231 4232 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4233 4234 return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true); 4235 } 4236 4237 static int 4238 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair, 4239 struct spdk_nvme_transport_id *trid) 4240 { 4241 struct spdk_nvmf_rdma_qpair *rqpair; 4242 4243 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4244 4245 return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false); 4246 } 4247 4248 static int 4249 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair, 4250 struct spdk_nvme_transport_id *trid) 4251 { 4252 struct spdk_nvmf_rdma_qpair *rqpair; 4253 4254 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4255 4256 return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false); 4257 } 4258 4259 void 4260 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) 4261 { 4262 g_nvmf_hooks = *hooks; 4263 } 4264 4265 static void 4266 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req, 4267 struct spdk_nvmf_rdma_request *rdma_req_to_abort) 4268 { 4269 rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC; 4270 rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; 4271 4272 rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 4273 4274 req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */ 4275 } 4276 4277 static int 4278 _nvmf_rdma_qpair_abort_request(void *ctx) 4279 { 4280 struct spdk_nvmf_request *req = ctx; 4281 struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF( 4282 req->req_to_abort, struct spdk_nvmf_rdma_request, req); 4283 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair, 4284 struct spdk_nvmf_rdma_qpair, qpair); 4285 int rc; 4286 4287 spdk_poller_unregister(&req->poller); 4288 4289 switch (rdma_req_to_abort->state) { 4290 case RDMA_REQUEST_STATE_EXECUTING: 4291 rc = nvmf_ctrlr_abort_request(req); 4292 if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) { 4293 return SPDK_POLLER_BUSY; 4294 } 4295 break; 4296 4297 case RDMA_REQUEST_STATE_NEED_BUFFER: 4298 STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue, 4299 &rdma_req_to_abort->req, spdk_nvmf_request, buf_link); 4300 4301 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); 4302 break; 4303 4304 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 4305 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort, 4306 spdk_nvmf_rdma_request, state_link); 4307 4308 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); 4309 break; 4310 4311 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 4312 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort, 4313 spdk_nvmf_rdma_request, state_link); 4314 4315 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); 4316 break; 4317 4318 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 4319 if (spdk_get_ticks() < req->timeout_tsc) { 4320 req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0); 4321 return SPDK_POLLER_BUSY; 4322 } 4323 break; 4324 4325 default: 4326 break; 4327 } 4328 4329 spdk_nvmf_request_complete(req); 4330 return SPDK_POLLER_BUSY; 4331 } 4332 4333 static void 4334 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair, 4335 struct spdk_nvmf_request *req) 4336 { 4337 struct spdk_nvmf_rdma_qpair *rqpair; 4338 struct spdk_nvmf_rdma_transport *rtransport; 4339 struct spdk_nvmf_transport *transport; 4340 uint16_t cid; 4341 uint32_t i, max_req_count; 4342 struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req; 4343 4344 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4345 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 4346 transport = &rtransport->transport; 4347 4348 cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid; 4349 max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth; 4350 4351 for (i = 0; i < max_req_count; i++) { 4352 rdma_req = &rqpair->resources->reqs[i]; 4353 /* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair 4354 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to 4355 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */ 4356 if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid && 4357 rdma_req->req.qpair == qpair) { 4358 rdma_req_to_abort = rdma_req; 4359 break; 4360 } 4361 } 4362 4363 if (rdma_req_to_abort == NULL) { 4364 spdk_nvmf_request_complete(req); 4365 return; 4366 } 4367 4368 req->req_to_abort = &rdma_req_to_abort->req; 4369 req->timeout_tsc = spdk_get_ticks() + 4370 transport->opts.abort_timeout_sec * spdk_get_ticks_hz(); 4371 req->poller = NULL; 4372 4373 _nvmf_rdma_qpair_abort_request(req); 4374 } 4375 4376 static void 4377 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group, 4378 struct spdk_json_write_ctx *w) 4379 { 4380 struct spdk_nvmf_rdma_poll_group *rgroup; 4381 struct spdk_nvmf_rdma_poller *rpoller; 4382 4383 assert(w != NULL); 4384 4385 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4386 4387 spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer); 4388 4389 spdk_json_write_named_array_begin(w, "devices"); 4390 4391 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 4392 spdk_json_write_object_begin(w); 4393 spdk_json_write_named_string(w, "name", 4394 ibv_get_device_name(rpoller->device->context->device)); 4395 spdk_json_write_named_uint64(w, "polls", 4396 rpoller->stat.polls); 4397 spdk_json_write_named_uint64(w, "idle_polls", 4398 rpoller->stat.idle_polls); 4399 spdk_json_write_named_uint64(w, "completions", 4400 rpoller->stat.completions); 4401 spdk_json_write_named_uint64(w, "requests", 4402 rpoller->stat.requests); 4403 spdk_json_write_named_uint64(w, "request_latency", 4404 rpoller->stat.request_latency); 4405 spdk_json_write_named_uint64(w, "pending_free_request", 4406 rpoller->stat.pending_free_request); 4407 spdk_json_write_named_uint64(w, "pending_rdma_read", 4408 rpoller->stat.pending_rdma_read); 4409 spdk_json_write_named_uint64(w, "pending_rdma_write", 4410 rpoller->stat.pending_rdma_write); 4411 spdk_json_write_named_uint64(w, "total_send_wrs", 4412 rpoller->stat.qp_stats.send.num_submitted_wrs); 4413 spdk_json_write_named_uint64(w, "send_doorbell_updates", 4414 rpoller->stat.qp_stats.send.doorbell_updates); 4415 spdk_json_write_named_uint64(w, "total_recv_wrs", 4416 rpoller->stat.qp_stats.recv.num_submitted_wrs); 4417 spdk_json_write_named_uint64(w, "recv_doorbell_updates", 4418 rpoller->stat.qp_stats.recv.doorbell_updates); 4419 spdk_json_write_object_end(w); 4420 } 4421 4422 spdk_json_write_array_end(w); 4423 } 4424 4425 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = { 4426 .name = "RDMA", 4427 .type = SPDK_NVME_TRANSPORT_RDMA, 4428 .opts_init = nvmf_rdma_opts_init, 4429 .create = nvmf_rdma_create, 4430 .dump_opts = nvmf_rdma_dump_opts, 4431 .destroy = nvmf_rdma_destroy, 4432 4433 .listen = nvmf_rdma_listen, 4434 .stop_listen = nvmf_rdma_stop_listen, 4435 .cdata_init = nvmf_rdma_cdata_init, 4436 4437 .listener_discover = nvmf_rdma_discover, 4438 4439 .poll_group_create = nvmf_rdma_poll_group_create, 4440 .get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group, 4441 .poll_group_destroy = nvmf_rdma_poll_group_destroy, 4442 .poll_group_add = nvmf_rdma_poll_group_add, 4443 .poll_group_remove = nvmf_rdma_poll_group_remove, 4444 .poll_group_poll = nvmf_rdma_poll_group_poll, 4445 4446 .req_free = nvmf_rdma_request_free, 4447 .req_complete = nvmf_rdma_request_complete, 4448 4449 .qpair_fini = nvmf_rdma_close_qpair, 4450 .qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid, 4451 .qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid, 4452 .qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid, 4453 .qpair_abort_request = nvmf_rdma_qpair_abort_request, 4454 4455 .poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat, 4456 }; 4457 4458 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma); 4459 SPDK_LOG_REGISTER_COMPONENT(rdma) 4460