xref: /spdk/lib/nvmf/rdma.c (revision 488570ebd418ba07c9e69e65106dcc964f3bb41b)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "spdk/config.h"
10 #include "spdk/thread.h"
11 #include "spdk/likely.h"
12 #include "spdk/nvmf_transport.h"
13 #include "spdk/string.h"
14 #include "spdk/trace.h"
15 #include "spdk/tree.h"
16 #include "spdk/util.h"
17 
18 #include "spdk_internal/assert.h"
19 #include "spdk/log.h"
20 #include "spdk_internal/rdma.h"
21 
22 #include "nvmf_internal.h"
23 #include "transport.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
28 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma;
29 
30 /*
31  RDMA Connection Resource Defaults
32  */
33 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
34 #define NVMF_DEFAULT_RSP_SGE		1
35 #define NVMF_DEFAULT_RX_SGE		2
36 
37 /* The RDMA completion queue size */
38 #define DEFAULT_NVMF_RDMA_CQ_SIZE	4096
39 #define MAX_WR_PER_QP(queue_depth)	(queue_depth * 3 + 2)
40 
41 static int g_spdk_nvmf_ibv_query_mask =
42 	IBV_QP_STATE |
43 	IBV_QP_PKEY_INDEX |
44 	IBV_QP_PORT |
45 	IBV_QP_ACCESS_FLAGS |
46 	IBV_QP_AV |
47 	IBV_QP_PATH_MTU |
48 	IBV_QP_DEST_QPN |
49 	IBV_QP_RQ_PSN |
50 	IBV_QP_MAX_DEST_RD_ATOMIC |
51 	IBV_QP_MIN_RNR_TIMER |
52 	IBV_QP_SQ_PSN |
53 	IBV_QP_TIMEOUT |
54 	IBV_QP_RETRY_CNT |
55 	IBV_QP_RNR_RETRY |
56 	IBV_QP_MAX_QP_RD_ATOMIC;
57 
58 enum spdk_nvmf_rdma_request_state {
59 	/* The request is not currently in use */
60 	RDMA_REQUEST_STATE_FREE = 0,
61 
62 	/* Initial state when request first received */
63 	RDMA_REQUEST_STATE_NEW,
64 
65 	/* The request is queued until a data buffer is available. */
66 	RDMA_REQUEST_STATE_NEED_BUFFER,
67 
68 	/* The request is waiting on RDMA queue depth availability
69 	 * to transfer data from the host to the controller.
70 	 */
71 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
72 
73 	/* The request is currently transferring data from the host to the controller. */
74 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
75 
76 	/* The request is ready to execute at the block device */
77 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
78 
79 	/* The request is currently executing at the block device */
80 	RDMA_REQUEST_STATE_EXECUTING,
81 
82 	/* The request finished executing at the block device */
83 	RDMA_REQUEST_STATE_EXECUTED,
84 
85 	/* The request is waiting on RDMA queue depth availability
86 	 * to transfer data from the controller to the host.
87 	 */
88 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
89 
90 	/* The request is ready to send a completion */
91 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
92 
93 	/* The request is currently transferring data from the controller to the host. */
94 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
95 
96 	/* The request currently has an outstanding completion without an
97 	 * associated data transfer.
98 	 */
99 	RDMA_REQUEST_STATE_COMPLETING,
100 
101 	/* The request completed and can be marked free. */
102 	RDMA_REQUEST_STATE_COMPLETED,
103 
104 	/* Terminator */
105 	RDMA_REQUEST_NUM_STATES,
106 };
107 
108 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
109 {
110 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
111 	spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW,
112 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1,
113 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
114 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
115 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
116 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
117 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H",
118 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
119 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
120 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
121 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C",
122 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
123 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
124 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
125 	spdk_trace_register_description("RDMA_REQ_TX_H2C",
126 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
127 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
128 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
129 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE",
130 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
131 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
132 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
133 	spdk_trace_register_description("RDMA_REQ_EXECUTING",
134 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
135 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
136 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
137 	spdk_trace_register_description("RDMA_REQ_EXECUTED",
138 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
139 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
140 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
141 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL",
142 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
143 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
144 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
145 	spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H",
146 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
147 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
148 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
149 	spdk_trace_register_description("RDMA_REQ_COMPLETING",
150 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
151 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
152 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
153 	spdk_trace_register_description("RDMA_REQ_COMPLETED",
154 					TRACE_RDMA_REQUEST_STATE_COMPLETED,
155 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
156 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
157 
158 	spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE,
159 					OWNER_NONE, OBJECT_NONE, 0,
160 					SPDK_TRACE_ARG_TYPE_INT, "");
161 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT,
162 					OWNER_NONE, OBJECT_NONE, 0,
163 					SPDK_TRACE_ARG_TYPE_INT, "type");
164 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT,
165 					OWNER_NONE, OBJECT_NONE, 0,
166 					SPDK_TRACE_ARG_TYPE_INT, "type");
167 	spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE,
168 					OWNER_NONE, OBJECT_NONE, 0,
169 					SPDK_TRACE_ARG_TYPE_PTR, "state");
170 	spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT,
171 					OWNER_NONE, OBJECT_NONE, 0,
172 					SPDK_TRACE_ARG_TYPE_INT, "");
173 	spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY,
174 					OWNER_NONE, OBJECT_NONE, 0,
175 					SPDK_TRACE_ARG_TYPE_INT, "");
176 }
177 
178 enum spdk_nvmf_rdma_wr_type {
179 	RDMA_WR_TYPE_RECV,
180 	RDMA_WR_TYPE_SEND,
181 	RDMA_WR_TYPE_DATA,
182 };
183 
184 struct spdk_nvmf_rdma_wr {
185 	enum spdk_nvmf_rdma_wr_type	type;
186 };
187 
188 /* This structure holds commands as they are received off the wire.
189  * It must be dynamically paired with a full request object
190  * (spdk_nvmf_rdma_request) to service a request. It is separate
191  * from the request because RDMA does not appear to order
192  * completions, so occasionally we'll get a new incoming
193  * command when there aren't any free request objects.
194  */
195 struct spdk_nvmf_rdma_recv {
196 	struct ibv_recv_wr			wr;
197 	struct ibv_sge				sgl[NVMF_DEFAULT_RX_SGE];
198 
199 	struct spdk_nvmf_rdma_qpair		*qpair;
200 
201 	/* In-capsule data buffer */
202 	uint8_t					*buf;
203 
204 	struct spdk_nvmf_rdma_wr		rdma_wr;
205 	uint64_t				receive_tsc;
206 
207 	STAILQ_ENTRY(spdk_nvmf_rdma_recv)	link;
208 };
209 
210 struct spdk_nvmf_rdma_request_data {
211 	struct spdk_nvmf_rdma_wr	rdma_wr;
212 	struct ibv_send_wr		wr;
213 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
214 };
215 
216 struct spdk_nvmf_rdma_request {
217 	struct spdk_nvmf_request		req;
218 
219 	enum spdk_nvmf_rdma_request_state	state;
220 
221 	/* Data offset in req.iov */
222 	uint32_t				offset;
223 
224 	struct spdk_nvmf_rdma_recv		*recv;
225 
226 	struct {
227 		struct spdk_nvmf_rdma_wr	rdma_wr;
228 		struct	ibv_send_wr		wr;
229 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
230 	} rsp;
231 
232 	struct spdk_nvmf_rdma_request_data	data;
233 
234 	uint32_t				iovpos;
235 
236 	uint32_t				num_outstanding_data_wr;
237 	uint64_t				receive_tsc;
238 
239 	bool					fused_failed;
240 	struct spdk_nvmf_rdma_request		*fused_pair;
241 
242 	STAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
243 };
244 
245 struct spdk_nvmf_rdma_resource_opts {
246 	struct spdk_nvmf_rdma_qpair	*qpair;
247 	/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
248 	void				*qp;
249 	struct ibv_pd			*pd;
250 	uint32_t			max_queue_depth;
251 	uint32_t			in_capsule_data_size;
252 	bool				shared;
253 };
254 
255 struct spdk_nvmf_rdma_resources {
256 	/* Array of size "max_queue_depth" containing RDMA requests. */
257 	struct spdk_nvmf_rdma_request		*reqs;
258 
259 	/* Array of size "max_queue_depth" containing RDMA recvs. */
260 	struct spdk_nvmf_rdma_recv		*recvs;
261 
262 	/* Array of size "max_queue_depth" containing 64 byte capsules
263 	 * used for receive.
264 	 */
265 	union nvmf_h2c_msg			*cmds;
266 	struct ibv_mr				*cmds_mr;
267 
268 	/* Array of size "max_queue_depth" containing 16 byte completions
269 	 * to be sent back to the user.
270 	 */
271 	union nvmf_c2h_msg			*cpls;
272 	struct ibv_mr				*cpls_mr;
273 
274 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
275 	 * buffers to be used for in capsule data.
276 	 */
277 	void					*bufs;
278 	struct ibv_mr				*bufs_mr;
279 
280 	/* Receives that are waiting for a request object */
281 	STAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
282 
283 	/* Queue to track free requests */
284 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	free_queue;
285 };
286 
287 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair);
288 
289 struct spdk_nvmf_rdma_ibv_event_ctx {
290 	struct spdk_nvmf_rdma_qpair			*rqpair;
291 	spdk_nvmf_rdma_qpair_ibv_event			cb_fn;
292 	/* Link to other ibv events associated with this qpair */
293 	STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx)	link;
294 };
295 
296 struct spdk_nvmf_rdma_qpair {
297 	struct spdk_nvmf_qpair			qpair;
298 
299 	struct spdk_nvmf_rdma_device		*device;
300 	struct spdk_nvmf_rdma_poller		*poller;
301 
302 	struct spdk_rdma_qp			*rdma_qp;
303 	struct rdma_cm_id			*cm_id;
304 	struct spdk_rdma_srq			*srq;
305 	struct rdma_cm_id			*listen_id;
306 
307 	/* Cache the QP number to improve QP search by RB tree. */
308 	uint32_t				qp_num;
309 
310 	/* The maximum number of I/O outstanding on this connection at one time */
311 	uint16_t				max_queue_depth;
312 
313 	/* The maximum number of active RDMA READ and ATOMIC operations at one time */
314 	uint16_t				max_read_depth;
315 
316 	/* The maximum number of RDMA SEND operations at one time */
317 	uint32_t				max_send_depth;
318 
319 	/* The current number of outstanding WRs from this qpair's
320 	 * recv queue. Should not exceed device->attr.max_queue_depth.
321 	 */
322 	uint16_t				current_recv_depth;
323 
324 	/* The current number of active RDMA READ operations */
325 	uint16_t				current_read_depth;
326 
327 	/* The current number of posted WRs from this qpair's
328 	 * send queue. Should not exceed max_send_depth.
329 	 */
330 	uint32_t				current_send_depth;
331 
332 	/* The maximum number of SGEs per WR on the send queue */
333 	uint32_t				max_send_sge;
334 
335 	/* The maximum number of SGEs per WR on the recv queue */
336 	uint32_t				max_recv_sge;
337 
338 	struct spdk_nvmf_rdma_resources		*resources;
339 
340 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_read_queue;
341 
342 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_write_queue;
343 
344 	/* Number of requests not in the free state */
345 	uint32_t				qd;
346 
347 	RB_ENTRY(spdk_nvmf_rdma_qpair)		node;
348 
349 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	recv_link;
350 
351 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	send_link;
352 
353 	/* IBV queue pair attributes: they are used to manage
354 	 * qp state and recover from errors.
355 	 */
356 	enum ibv_qp_state			ibv_state;
357 
358 	/* Points to the a request that has fuse bits set to
359 	 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting
360 	 * for the request that has SPDK_NVME_CMD_FUSE_SECOND.
361 	 */
362 	struct spdk_nvmf_rdma_request		*fused_first;
363 
364 	/*
365 	 * io_channel which is used to destroy qpair when it is removed from poll group
366 	 */
367 	struct spdk_io_channel		*destruct_channel;
368 
369 	/* List of ibv async events */
370 	STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx)	ibv_events;
371 
372 	/* Lets us know that we have received the last_wqe event. */
373 	bool					last_wqe_reached;
374 
375 	/* Indicate that nvmf_rdma_close_qpair is called */
376 	bool					to_close;
377 };
378 
379 struct spdk_nvmf_rdma_poller_stat {
380 	uint64_t				completions;
381 	uint64_t				polls;
382 	uint64_t				idle_polls;
383 	uint64_t				requests;
384 	uint64_t				request_latency;
385 	uint64_t				pending_free_request;
386 	uint64_t				pending_rdma_read;
387 	uint64_t				pending_rdma_write;
388 	struct spdk_rdma_qp_stats		qp_stats;
389 };
390 
391 struct spdk_nvmf_rdma_poller {
392 	struct spdk_nvmf_rdma_device		*device;
393 	struct spdk_nvmf_rdma_poll_group	*group;
394 
395 	int					num_cqe;
396 	int					required_num_wr;
397 	struct ibv_cq				*cq;
398 
399 	/* The maximum number of I/O outstanding on the shared receive queue at one time */
400 	uint16_t				max_srq_depth;
401 
402 	/* Shared receive queue */
403 	struct spdk_rdma_srq			*srq;
404 
405 	struct spdk_nvmf_rdma_resources		*resources;
406 	struct spdk_nvmf_rdma_poller_stat	stat;
407 
408 	RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs;
409 
410 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_recv;
411 
412 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_send;
413 
414 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
415 };
416 
417 struct spdk_nvmf_rdma_poll_group_stat {
418 	uint64_t				pending_data_buffer;
419 };
420 
421 struct spdk_nvmf_rdma_poll_group {
422 	struct spdk_nvmf_transport_poll_group		group;
423 	struct spdk_nvmf_rdma_poll_group_stat		stat;
424 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)		pollers;
425 	TAILQ_ENTRY(spdk_nvmf_rdma_poll_group)		link;
426 };
427 
428 struct spdk_nvmf_rdma_conn_sched {
429 	struct spdk_nvmf_rdma_poll_group *next_admin_pg;
430 	struct spdk_nvmf_rdma_poll_group *next_io_pg;
431 };
432 
433 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
434 struct spdk_nvmf_rdma_device {
435 	struct ibv_device_attr			attr;
436 	struct ibv_context			*context;
437 
438 	struct spdk_rdma_mem_map		*map;
439 	struct ibv_pd				*pd;
440 
441 	int					num_srq;
442 
443 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
444 };
445 
446 struct spdk_nvmf_rdma_port {
447 	const struct spdk_nvme_transport_id	*trid;
448 	struct rdma_cm_id			*id;
449 	struct spdk_nvmf_rdma_device		*device;
450 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
451 };
452 
453 struct rdma_transport_opts {
454 	int		num_cqe;
455 	uint32_t	max_srq_depth;
456 	bool		no_srq;
457 	bool		no_wr_batching;
458 	int		acceptor_backlog;
459 };
460 
461 struct spdk_nvmf_rdma_transport {
462 	struct spdk_nvmf_transport	transport;
463 	struct rdma_transport_opts	rdma_opts;
464 
465 	struct spdk_nvmf_rdma_conn_sched conn_sched;
466 
467 	struct rdma_event_channel	*event_channel;
468 
469 	struct spdk_mempool		*data_wr_pool;
470 
471 	struct spdk_poller		*accept_poller;
472 	pthread_mutex_t			lock;
473 
474 	/* fields used to poll RDMA/IB events */
475 	nfds_t			npoll_fds;
476 	struct pollfd		*poll_fds;
477 
478 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
479 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
480 	TAILQ_HEAD(, spdk_nvmf_rdma_poll_group)	poll_groups;
481 };
482 
483 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = {
484 	{
485 		"num_cqe", offsetof(struct rdma_transport_opts, num_cqe),
486 		spdk_json_decode_int32, true
487 	},
488 	{
489 		"max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth),
490 		spdk_json_decode_uint32, true
491 	},
492 	{
493 		"no_srq", offsetof(struct rdma_transport_opts, no_srq),
494 		spdk_json_decode_bool, true
495 	},
496 	{
497 		"no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching),
498 		spdk_json_decode_bool, true
499 	},
500 	{
501 		"acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog),
502 		spdk_json_decode_int32, true
503 	},
504 };
505 
506 static int
507 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2)
508 {
509 	return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num;
510 }
511 
512 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare);
513 
514 static bool
515 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
516 			  struct spdk_nvmf_rdma_request *rdma_req);
517 
518 static void
519 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
520 		     struct spdk_nvmf_rdma_poller *rpoller);
521 
522 static void
523 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
524 		     struct spdk_nvmf_rdma_poller *rpoller);
525 
526 static inline int
527 nvmf_rdma_check_ibv_state(enum ibv_qp_state state)
528 {
529 	switch (state) {
530 	case IBV_QPS_RESET:
531 	case IBV_QPS_INIT:
532 	case IBV_QPS_RTR:
533 	case IBV_QPS_RTS:
534 	case IBV_QPS_SQD:
535 	case IBV_QPS_SQE:
536 	case IBV_QPS_ERR:
537 		return 0;
538 	default:
539 		return -1;
540 	}
541 }
542 
543 static inline enum spdk_nvme_media_error_status_code
544 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) {
545 	enum spdk_nvme_media_error_status_code result;
546 	switch (err_type)
547 	{
548 	case SPDK_DIF_REFTAG_ERROR:
549 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
550 		break;
551 	case SPDK_DIF_APPTAG_ERROR:
552 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
553 		break;
554 	case SPDK_DIF_GUARD_ERROR:
555 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
556 		break;
557 	default:
558 		SPDK_UNREACHABLE();
559 	}
560 
561 	return result;
562 }
563 
564 static enum ibv_qp_state
565 nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) {
566 	enum ibv_qp_state old_state, new_state;
567 	struct ibv_qp_attr qp_attr;
568 	struct ibv_qp_init_attr init_attr;
569 	int rc;
570 
571 	old_state = rqpair->ibv_state;
572 	rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr,
573 			  g_spdk_nvmf_ibv_query_mask, &init_attr);
574 
575 	if (rc)
576 	{
577 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
578 		return IBV_QPS_ERR + 1;
579 	}
580 
581 	new_state = qp_attr.qp_state;
582 	rqpair->ibv_state = new_state;
583 	qp_attr.ah_attr.port_num = qp_attr.port_num;
584 
585 	rc = nvmf_rdma_check_ibv_state(new_state);
586 	if (rc)
587 	{
588 		SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state);
589 		/*
590 		 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8
591 		 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR
592 		 */
593 		return IBV_QPS_ERR + 1;
594 	}
595 
596 	if (old_state != new_state)
597 	{
598 		spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, (uintptr_t)rqpair, new_state);
599 	}
600 	return new_state;
601 }
602 
603 static void
604 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
605 			    struct spdk_nvmf_rdma_transport *rtransport)
606 {
607 	struct spdk_nvmf_rdma_request_data	*data_wr;
608 	struct ibv_send_wr			*next_send_wr;
609 	uint64_t				req_wrid;
610 
611 	rdma_req->num_outstanding_data_wr = 0;
612 	data_wr = &rdma_req->data;
613 	req_wrid = data_wr->wr.wr_id;
614 	while (data_wr && data_wr->wr.wr_id == req_wrid) {
615 		memset(data_wr->sgl, 0, sizeof(data_wr->wr.sg_list[0]) * data_wr->wr.num_sge);
616 		data_wr->wr.num_sge = 0;
617 		next_send_wr = data_wr->wr.next;
618 		if (data_wr != &rdma_req->data) {
619 			spdk_mempool_put(rtransport->data_wr_pool, data_wr);
620 		}
621 		data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL :
622 			  SPDK_CONTAINEROF(next_send_wr, struct spdk_nvmf_rdma_request_data, wr);
623 	}
624 }
625 
626 static void
627 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
628 {
629 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool);
630 	if (req->req.cmd) {
631 		SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
632 	}
633 	if (req->recv) {
634 		SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
635 	}
636 }
637 
638 static void
639 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
640 {
641 	int i;
642 
643 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
644 	for (i = 0; i < rqpair->max_queue_depth; i++) {
645 		if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
646 			nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
647 		}
648 	}
649 }
650 
651 static void
652 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
653 {
654 	if (resources->cmds_mr) {
655 		ibv_dereg_mr(resources->cmds_mr);
656 	}
657 
658 	if (resources->cpls_mr) {
659 		ibv_dereg_mr(resources->cpls_mr);
660 	}
661 
662 	if (resources->bufs_mr) {
663 		ibv_dereg_mr(resources->bufs_mr);
664 	}
665 
666 	spdk_free(resources->cmds);
667 	spdk_free(resources->cpls);
668 	spdk_free(resources->bufs);
669 	spdk_free(resources->reqs);
670 	spdk_free(resources->recvs);
671 	free(resources);
672 }
673 
674 
675 static struct spdk_nvmf_rdma_resources *
676 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
677 {
678 	struct spdk_nvmf_rdma_resources	*resources;
679 	struct spdk_nvmf_rdma_request	*rdma_req;
680 	struct spdk_nvmf_rdma_recv	*rdma_recv;
681 	struct spdk_rdma_qp		*qp = NULL;
682 	struct spdk_rdma_srq		*srq = NULL;
683 	struct ibv_recv_wr		*bad_wr = NULL;
684 	uint32_t			i;
685 	int				rc = 0;
686 
687 	resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
688 	if (!resources) {
689 		SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
690 		return NULL;
691 	}
692 
693 	resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs),
694 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
695 	resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs),
696 					0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
697 	resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
698 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
699 	resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
700 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
701 
702 	if (opts->in_capsule_data_size > 0) {
703 		resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size,
704 					       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY,
705 					       SPDK_MALLOC_DMA);
706 	}
707 
708 	if (!resources->reqs || !resources->recvs || !resources->cmds ||
709 	    !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
710 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
711 		goto cleanup;
712 	}
713 
714 	resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds,
715 					opts->max_queue_depth * sizeof(*resources->cmds),
716 					IBV_ACCESS_LOCAL_WRITE);
717 	resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls,
718 					opts->max_queue_depth * sizeof(*resources->cpls),
719 					0);
720 
721 	if (opts->in_capsule_data_size) {
722 		resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs,
723 						opts->max_queue_depth *
724 						opts->in_capsule_data_size,
725 						IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
726 	}
727 
728 	if (!resources->cmds_mr || !resources->cpls_mr ||
729 	    (opts->in_capsule_data_size &&
730 	     !resources->bufs_mr)) {
731 		goto cleanup;
732 	}
733 	SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx LKey: %x\n",
734 		      resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds),
735 		      resources->cmds_mr->lkey);
736 	SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx LKey: %x\n",
737 		      resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls),
738 		      resources->cpls_mr->lkey);
739 	if (resources->bufs && resources->bufs_mr) {
740 		SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x LKey: %x\n",
741 			      resources->bufs, opts->max_queue_depth *
742 			      opts->in_capsule_data_size, resources->bufs_mr->lkey);
743 	}
744 
745 	/* Initialize queues */
746 	STAILQ_INIT(&resources->incoming_queue);
747 	STAILQ_INIT(&resources->free_queue);
748 
749 	if (opts->shared) {
750 		srq = (struct spdk_rdma_srq *)opts->qp;
751 	} else {
752 		qp = (struct spdk_rdma_qp *)opts->qp;
753 	}
754 
755 	for (i = 0; i < opts->max_queue_depth; i++) {
756 		rdma_recv = &resources->recvs[i];
757 		rdma_recv->qpair = opts->qpair;
758 
759 		/* Set up memory to receive commands */
760 		if (resources->bufs) {
761 			rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
762 						  opts->in_capsule_data_size));
763 		}
764 
765 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
766 
767 		rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
768 		rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
769 		rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey;
770 		rdma_recv->wr.num_sge = 1;
771 
772 		if (rdma_recv->buf && resources->bufs_mr) {
773 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
774 			rdma_recv->sgl[1].length = opts->in_capsule_data_size;
775 			rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey;
776 			rdma_recv->wr.num_sge++;
777 		}
778 
779 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
780 		rdma_recv->wr.sg_list = rdma_recv->sgl;
781 		if (srq) {
782 			spdk_rdma_srq_queue_recv_wrs(srq, &rdma_recv->wr);
783 		} else {
784 			spdk_rdma_qp_queue_recv_wrs(qp, &rdma_recv->wr);
785 		}
786 	}
787 
788 	for (i = 0; i < opts->max_queue_depth; i++) {
789 		rdma_req = &resources->reqs[i];
790 
791 		if (opts->qpair != NULL) {
792 			rdma_req->req.qpair = &opts->qpair->qpair;
793 		} else {
794 			rdma_req->req.qpair = NULL;
795 		}
796 		rdma_req->req.cmd = NULL;
797 		rdma_req->req.iovcnt = 0;
798 		rdma_req->req.stripped_data = NULL;
799 
800 		/* Set up memory to send responses */
801 		rdma_req->req.rsp = &resources->cpls[i];
802 
803 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
804 		rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
805 		rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey;
806 
807 		rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND;
808 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr;
809 		rdma_req->rsp.wr.next = NULL;
810 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
811 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
812 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
813 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
814 
815 		/* Set up memory for data buffers */
816 		rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA;
817 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
818 		rdma_req->data.wr.next = NULL;
819 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
820 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
821 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
822 
823 		/* Initialize request state to FREE */
824 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
825 		STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
826 	}
827 
828 	if (srq) {
829 		rc = spdk_rdma_srq_flush_recv_wrs(srq, &bad_wr);
830 	} else {
831 		rc = spdk_rdma_qp_flush_recv_wrs(qp, &bad_wr);
832 	}
833 
834 	if (rc) {
835 		goto cleanup;
836 	}
837 
838 	return resources;
839 
840 cleanup:
841 	nvmf_rdma_resources_destroy(resources);
842 	return NULL;
843 }
844 
845 static void
846 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair)
847 {
848 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx;
849 	STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) {
850 		ctx->rqpair = NULL;
851 		/* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */
852 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
853 	}
854 }
855 
856 static void
857 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
858 {
859 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
860 	struct ibv_recv_wr		*bad_recv_wr = NULL;
861 	int				rc;
862 
863 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair);
864 
865 	if (rqpair->qd != 0) {
866 		struct spdk_nvmf_qpair *qpair = &rqpair->qpair;
867 		struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(qpair->transport,
868 				struct spdk_nvmf_rdma_transport, transport);
869 		struct spdk_nvmf_rdma_request *req;
870 		uint32_t i, max_req_count = 0;
871 
872 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
873 
874 		if (rqpair->srq == NULL) {
875 			nvmf_rdma_dump_qpair_contents(rqpair);
876 			max_req_count = rqpair->max_queue_depth;
877 		} else if (rqpair->poller && rqpair->resources) {
878 			max_req_count = rqpair->poller->max_srq_depth;
879 		}
880 
881 		SPDK_DEBUGLOG(rdma, "Release incomplete requests\n");
882 		for (i = 0; i < max_req_count; i++) {
883 			req = &rqpair->resources->reqs[i];
884 			if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) {
885 				/* nvmf_rdma_request_process checks qpair ibv and internal state
886 				 * and completes a request */
887 				nvmf_rdma_request_process(rtransport, req);
888 			}
889 		}
890 		assert(rqpair->qd == 0);
891 	}
892 
893 	if (rqpair->poller) {
894 		RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair);
895 
896 		if (rqpair->srq != NULL && rqpair->resources != NULL) {
897 			/* Drop all received but unprocessed commands for this queue and return them to SRQ */
898 			STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
899 				if (rqpair == rdma_recv->qpair) {
900 					STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link);
901 					spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr);
902 					rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
903 					if (rc) {
904 						SPDK_ERRLOG("Unable to re-post rx descriptor\n");
905 					}
906 				}
907 			}
908 		}
909 	}
910 
911 	if (rqpair->cm_id) {
912 		if (rqpair->rdma_qp != NULL) {
913 			spdk_rdma_qp_destroy(rqpair->rdma_qp);
914 			rqpair->rdma_qp = NULL;
915 		}
916 		rdma_destroy_id(rqpair->cm_id);
917 
918 		if (rqpair->poller != NULL && rqpair->srq == NULL) {
919 			rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
920 		}
921 	}
922 
923 	if (rqpair->srq == NULL && rqpair->resources != NULL) {
924 		nvmf_rdma_resources_destroy(rqpair->resources);
925 	}
926 
927 	nvmf_rdma_qpair_clean_ibv_events(rqpair);
928 
929 	if (rqpair->destruct_channel) {
930 		spdk_put_io_channel(rqpair->destruct_channel);
931 		rqpair->destruct_channel = NULL;
932 	}
933 
934 	free(rqpair);
935 }
936 
937 static int
938 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
939 {
940 	struct spdk_nvmf_rdma_poller	*rpoller;
941 	int				rc, num_cqe, required_num_wr;
942 
943 	/* Enlarge CQ size dynamically */
944 	rpoller = rqpair->poller;
945 	required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
946 	num_cqe = rpoller->num_cqe;
947 	if (num_cqe < required_num_wr) {
948 		num_cqe = spdk_max(num_cqe * 2, required_num_wr);
949 		num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
950 	}
951 
952 	if (rpoller->num_cqe != num_cqe) {
953 		if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) {
954 			SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n"
955 				    "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe);
956 			return -1;
957 		}
958 		if (required_num_wr > device->attr.max_cqe) {
959 			SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
960 				    required_num_wr, device->attr.max_cqe);
961 			return -1;
962 		}
963 
964 		SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
965 		rc = ibv_resize_cq(rpoller->cq, num_cqe);
966 		if (rc) {
967 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
968 			return -1;
969 		}
970 
971 		rpoller->num_cqe = num_cqe;
972 	}
973 
974 	rpoller->required_num_wr = required_num_wr;
975 	return 0;
976 }
977 
978 static int
979 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
980 {
981 	struct spdk_nvmf_rdma_qpair		*rqpair;
982 	struct spdk_nvmf_rdma_transport		*rtransport;
983 	struct spdk_nvmf_transport		*transport;
984 	struct spdk_nvmf_rdma_resource_opts	opts;
985 	struct spdk_nvmf_rdma_device		*device;
986 	struct spdk_rdma_qp_init_attr		qp_init_attr = {};
987 
988 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
989 	device = rqpair->device;
990 
991 	qp_init_attr.qp_context	= rqpair;
992 	qp_init_attr.pd		= device->pd;
993 	qp_init_attr.send_cq	= rqpair->poller->cq;
994 	qp_init_attr.recv_cq	= rqpair->poller->cq;
995 
996 	if (rqpair->srq) {
997 		qp_init_attr.srq		= rqpair->srq->srq;
998 	} else {
999 		qp_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth;
1000 	}
1001 
1002 	/* SEND, READ, and WRITE operations */
1003 	qp_init_attr.cap.max_send_wr	= (uint32_t)rqpair->max_queue_depth * 2;
1004 	qp_init_attr.cap.max_send_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
1005 	qp_init_attr.cap.max_recv_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
1006 	qp_init_attr.stats		= &rqpair->poller->stat.qp_stats;
1007 
1008 	if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
1009 		SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
1010 		goto error;
1011 	}
1012 
1013 	rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr);
1014 	if (!rqpair->rdma_qp) {
1015 		goto error;
1016 	}
1017 
1018 	rqpair->qp_num = rqpair->rdma_qp->qp->qp_num;
1019 
1020 	rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2),
1021 					  qp_init_attr.cap.max_send_wr);
1022 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge);
1023 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge);
1024 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair);
1025 	SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair);
1026 
1027 	if (rqpair->poller->srq == NULL) {
1028 		rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
1029 		transport = &rtransport->transport;
1030 
1031 		opts.qp = rqpair->rdma_qp;
1032 		opts.pd = rqpair->cm_id->pd;
1033 		opts.qpair = rqpair;
1034 		opts.shared = false;
1035 		opts.max_queue_depth = rqpair->max_queue_depth;
1036 		opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
1037 
1038 		rqpair->resources = nvmf_rdma_resources_create(&opts);
1039 
1040 		if (!rqpair->resources) {
1041 			SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
1042 			rdma_destroy_qp(rqpair->cm_id);
1043 			goto error;
1044 		}
1045 	} else {
1046 		rqpair->resources = rqpair->poller->resources;
1047 	}
1048 
1049 	rqpair->current_recv_depth = 0;
1050 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1051 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1052 
1053 	return 0;
1054 
1055 error:
1056 	rdma_destroy_id(rqpair->cm_id);
1057 	rqpair->cm_id = NULL;
1058 	return -1;
1059 }
1060 
1061 /* Append the given recv wr structure to the resource structs outstanding recvs list. */
1062 /* This function accepts either a single wr or the first wr in a linked list. */
1063 static void
1064 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first)
1065 {
1066 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1067 			struct spdk_nvmf_rdma_transport, transport);
1068 
1069 	if (rqpair->srq != NULL) {
1070 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, first);
1071 	} else {
1072 		if (spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, first)) {
1073 			STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link);
1074 		}
1075 	}
1076 
1077 	if (rtransport->rdma_opts.no_wr_batching) {
1078 		_poller_submit_recvs(rtransport, rqpair->poller);
1079 	}
1080 }
1081 
1082 static int
1083 request_transfer_in(struct spdk_nvmf_request *req)
1084 {
1085 	struct spdk_nvmf_rdma_request	*rdma_req;
1086 	struct spdk_nvmf_qpair		*qpair;
1087 	struct spdk_nvmf_rdma_qpair	*rqpair;
1088 	struct spdk_nvmf_rdma_transport *rtransport;
1089 
1090 	qpair = req->qpair;
1091 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1092 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1093 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1094 				      struct spdk_nvmf_rdma_transport, transport);
1095 
1096 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1097 	assert(rdma_req != NULL);
1098 
1099 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, &rdma_req->data.wr)) {
1100 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1101 	}
1102 	if (rtransport->rdma_opts.no_wr_batching) {
1103 		_poller_submit_sends(rtransport, rqpair->poller);
1104 	}
1105 
1106 	rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1107 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1108 	return 0;
1109 }
1110 
1111 static int
1112 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1113 {
1114 	int				num_outstanding_data_wr = 0;
1115 	struct spdk_nvmf_rdma_request	*rdma_req;
1116 	struct spdk_nvmf_qpair		*qpair;
1117 	struct spdk_nvmf_rdma_qpair	*rqpair;
1118 	struct spdk_nvme_cpl		*rsp;
1119 	struct ibv_send_wr		*first = NULL;
1120 	struct spdk_nvmf_rdma_transport *rtransport;
1121 
1122 	*data_posted = 0;
1123 	qpair = req->qpair;
1124 	rsp = &req->rsp->nvme_cpl;
1125 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1126 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1127 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1128 				      struct spdk_nvmf_rdma_transport, transport);
1129 
1130 	/* Advance our sq_head pointer */
1131 	if (qpair->sq_head == qpair->sq_head_max) {
1132 		qpair->sq_head = 0;
1133 	} else {
1134 		qpair->sq_head++;
1135 	}
1136 	rsp->sqhd = qpair->sq_head;
1137 
1138 	/* queue the capsule for the recv buffer */
1139 	assert(rdma_req->recv != NULL);
1140 
1141 	nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr);
1142 
1143 	rdma_req->recv = NULL;
1144 	assert(rqpair->current_recv_depth > 0);
1145 	rqpair->current_recv_depth--;
1146 
1147 	/* Build the response which consists of optional
1148 	 * RDMA WRITEs to transfer data, plus an RDMA SEND
1149 	 * containing the response.
1150 	 */
1151 	first = &rdma_req->rsp.wr;
1152 
1153 	if (rsp->status.sc != SPDK_NVME_SC_SUCCESS) {
1154 		/* On failure, data was not read from the controller. So clear the
1155 		 * number of outstanding data WRs to zero.
1156 		 */
1157 		rdma_req->num_outstanding_data_wr = 0;
1158 	} else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1159 		first = &rdma_req->data.wr;
1160 		*data_posted = 1;
1161 		num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
1162 	}
1163 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) {
1164 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1165 	}
1166 	if (rtransport->rdma_opts.no_wr_batching) {
1167 		_poller_submit_sends(rtransport, rqpair->poller);
1168 	}
1169 
1170 	/* +1 for the rsp wr */
1171 	rqpair->current_send_depth += num_outstanding_data_wr + 1;
1172 
1173 	return 0;
1174 }
1175 
1176 static int
1177 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1178 {
1179 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
1180 	struct rdma_conn_param				ctrlr_event_data = {};
1181 	int						rc;
1182 
1183 	accept_data.recfmt = 0;
1184 	accept_data.crqsize = rqpair->max_queue_depth;
1185 
1186 	ctrlr_event_data.private_data = &accept_data;
1187 	ctrlr_event_data.private_data_len = sizeof(accept_data);
1188 	if (id->ps == RDMA_PS_TCP) {
1189 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1190 		ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1191 	}
1192 
1193 	/* Configure infinite retries for the initiator side qpair.
1194 	 * We need to pass this value to the initiator to prevent the
1195 	 * initiator side NIC from completing SEND requests back to the
1196 	 * initiator with status rnr_retry_count_exceeded. */
1197 	ctrlr_event_data.rnr_retry_count = 0x7;
1198 
1199 	/* When qpair is created without use of rdma cm API, an additional
1200 	 * information must be provided to initiator in the connection response:
1201 	 * whether qpair is using SRQ and its qp_num
1202 	 * Fields below are ignored by rdma cm if qpair has been
1203 	 * created using rdma cm API. */
1204 	ctrlr_event_data.srq = rqpair->srq ? 1 : 0;
1205 	ctrlr_event_data.qp_num = rqpair->qp_num;
1206 
1207 	rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data);
1208 	if (rc) {
1209 		SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno);
1210 	} else {
1211 		SPDK_DEBUGLOG(rdma, "Sent back the accept\n");
1212 	}
1213 
1214 	return rc;
1215 }
1216 
1217 static void
1218 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1219 {
1220 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
1221 
1222 	rej_data.recfmt = 0;
1223 	rej_data.sts = error;
1224 
1225 	rdma_reject(id, &rej_data, sizeof(rej_data));
1226 }
1227 
1228 static int
1229 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event)
1230 {
1231 	struct spdk_nvmf_rdma_transport *rtransport;
1232 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
1233 	struct spdk_nvmf_rdma_port	*port;
1234 	struct rdma_conn_param		*rdma_param = NULL;
1235 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1236 	uint16_t			max_queue_depth;
1237 	uint16_t			max_read_depth;
1238 
1239 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1240 
1241 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1242 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1243 
1244 	rdma_param = &event->param.conn;
1245 	if (rdma_param->private_data == NULL ||
1246 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1247 		SPDK_ERRLOG("connect request: no private data provided\n");
1248 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1249 		return -1;
1250 	}
1251 
1252 	private_data = rdma_param->private_data;
1253 	if (private_data->recfmt != 0) {
1254 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1255 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1256 		return -1;
1257 	}
1258 
1259 	SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n",
1260 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1261 
1262 	port = event->listen_id->context;
1263 	SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1264 		      event->listen_id, event->listen_id->verbs, port);
1265 
1266 	/* Figure out the supported queue depth. This is a multi-step process
1267 	 * that takes into account hardware maximums, host provided values,
1268 	 * and our target's internal memory limits */
1269 
1270 	SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n");
1271 
1272 	/* Start with the maximum queue depth allowed by the target */
1273 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1274 	max_read_depth = rtransport->transport.opts.max_queue_depth;
1275 	SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n",
1276 		      rtransport->transport.opts.max_queue_depth);
1277 
1278 	/* Next check the local NIC's hardware limitations */
1279 	SPDK_DEBUGLOG(rdma,
1280 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1281 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1282 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1283 	max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1284 
1285 	/* Next check the remote NIC's hardware limitations */
1286 	SPDK_DEBUGLOG(rdma,
1287 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1288 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1289 	if (rdma_param->initiator_depth > 0) {
1290 		max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1291 	}
1292 
1293 	/* Finally check for the host software requested values, which are
1294 	 * optional. */
1295 	if (rdma_param->private_data != NULL &&
1296 	    rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1297 		SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1298 		SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize);
1299 		max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1300 		max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1301 	}
1302 
1303 	SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1304 		      max_queue_depth, max_read_depth);
1305 
1306 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1307 	if (rqpair == NULL) {
1308 		SPDK_ERRLOG("Could not allocate new connection.\n");
1309 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1310 		return -1;
1311 	}
1312 
1313 	rqpair->device = port->device;
1314 	rqpair->max_queue_depth = max_queue_depth;
1315 	rqpair->max_read_depth = max_read_depth;
1316 	rqpair->cm_id = event->id;
1317 	rqpair->listen_id = event->listen_id;
1318 	rqpair->qpair.transport = transport;
1319 	STAILQ_INIT(&rqpair->ibv_events);
1320 	/* use qid from the private data to determine the qpair type
1321 	   qid will be set to the appropriate value when the controller is created */
1322 	rqpair->qpair.qid = private_data->qid;
1323 
1324 	event->id->context = &rqpair->qpair;
1325 
1326 	spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair);
1327 
1328 	return 0;
1329 }
1330 
1331 static inline void
1332 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next,
1333 		   enum spdk_nvme_data_transfer xfer)
1334 {
1335 	if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1336 		wr->opcode = IBV_WR_RDMA_WRITE;
1337 		wr->send_flags = 0;
1338 		wr->next = next;
1339 	} else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1340 		wr->opcode = IBV_WR_RDMA_READ;
1341 		wr->send_flags = IBV_SEND_SIGNALED;
1342 		wr->next = NULL;
1343 	} else {
1344 		assert(0);
1345 	}
1346 }
1347 
1348 static int
1349 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1350 		       struct spdk_nvmf_rdma_request *rdma_req,
1351 		       uint32_t num_sgl_descriptors)
1352 {
1353 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1354 	struct spdk_nvmf_rdma_request_data	*current_data_wr;
1355 	uint32_t				i;
1356 
1357 	if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) {
1358 		SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n",
1359 			    num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES);
1360 		return -EINVAL;
1361 	}
1362 
1363 	if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) {
1364 		return -ENOMEM;
1365 	}
1366 
1367 	current_data_wr = &rdma_req->data;
1368 
1369 	for (i = 0; i < num_sgl_descriptors; i++) {
1370 		nvmf_rdma_setup_wr(&current_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer);
1371 		current_data_wr->wr.next = &work_requests[i]->wr;
1372 		current_data_wr = work_requests[i];
1373 		current_data_wr->wr.sg_list = current_data_wr->sgl;
1374 		current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id;
1375 	}
1376 
1377 	nvmf_rdma_setup_wr(&current_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1378 
1379 	return 0;
1380 }
1381 
1382 static inline void
1383 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req)
1384 {
1385 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1386 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1387 
1388 	wr->wr.rdma.rkey = sgl->keyed.key;
1389 	wr->wr.rdma.remote_addr = sgl->address;
1390 	nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1391 }
1392 
1393 static inline void
1394 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs)
1395 {
1396 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1397 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1398 	uint32_t			i;
1399 	int				j;
1400 	uint64_t			remote_addr_offset = 0;
1401 
1402 	for (i = 0; i < num_wrs; ++i) {
1403 		wr->wr.rdma.rkey = sgl->keyed.key;
1404 		wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset;
1405 		for (j = 0; j < wr->num_sge; ++j) {
1406 			remote_addr_offset += wr->sg_list[j].length;
1407 		}
1408 		wr = wr->next;
1409 	}
1410 }
1411 
1412 static int
1413 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup,
1414 		      struct spdk_nvmf_rdma_device *device,
1415 		      struct spdk_nvmf_rdma_request *rdma_req,
1416 		      struct ibv_send_wr *wr,
1417 		      uint32_t total_length)
1418 {
1419 	struct spdk_rdma_memory_translation mem_translation;
1420 	struct ibv_sge	*sg_ele;
1421 	struct iovec *iov;
1422 	uint32_t lkey, remaining;
1423 	int rc;
1424 
1425 	wr->num_sge = 0;
1426 
1427 	while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) {
1428 		iov = &rdma_req->req.iov[rdma_req->iovpos];
1429 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1430 		if (spdk_unlikely(rc)) {
1431 			return rc;
1432 		}
1433 
1434 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1435 		sg_ele = &wr->sg_list[wr->num_sge];
1436 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1437 
1438 		sg_ele->lkey = lkey;
1439 		sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset;
1440 		sg_ele->length = remaining;
1441 		SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr,
1442 			      sg_ele->length);
1443 		rdma_req->offset += sg_ele->length;
1444 		total_length -= sg_ele->length;
1445 		wr->num_sge++;
1446 
1447 		if (rdma_req->offset == iov->iov_len) {
1448 			rdma_req->offset = 0;
1449 			rdma_req->iovpos++;
1450 		}
1451 	}
1452 
1453 	if (total_length) {
1454 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1455 		return -EINVAL;
1456 	}
1457 
1458 	return 0;
1459 }
1460 
1461 static int
1462 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_poll_group *rgroup,
1463 			       struct spdk_nvmf_rdma_device *device,
1464 			       struct spdk_nvmf_rdma_request *rdma_req,
1465 			       struct ibv_send_wr *wr,
1466 			       uint32_t total_length,
1467 			       uint32_t num_extra_wrs)
1468 {
1469 	struct spdk_rdma_memory_translation mem_translation;
1470 	struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx;
1471 	struct ibv_sge *sg_ele;
1472 	struct iovec *iov;
1473 	struct iovec *rdma_iov;
1474 	uint32_t lkey, remaining;
1475 	uint32_t remaining_data_block, data_block_size, md_size;
1476 	uint32_t sge_len;
1477 	int rc;
1478 
1479 	data_block_size = dif_ctx->block_size - dif_ctx->md_size;
1480 
1481 	if (spdk_likely(!rdma_req->req.stripped_data)) {
1482 		rdma_iov = rdma_req->req.iov;
1483 		remaining_data_block = data_block_size;
1484 		md_size = dif_ctx->md_size;
1485 	} else {
1486 		rdma_iov = rdma_req->req.stripped_data->iov;
1487 		total_length = total_length / dif_ctx->block_size * data_block_size;
1488 		remaining_data_block = total_length;
1489 		md_size = 0;
1490 	}
1491 
1492 	wr->num_sge = 0;
1493 
1494 	while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) {
1495 		iov = rdma_iov + rdma_req->iovpos;
1496 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1497 		if (spdk_unlikely(rc)) {
1498 			return rc;
1499 		}
1500 
1501 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1502 		sg_ele = &wr->sg_list[wr->num_sge];
1503 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1504 
1505 		while (remaining) {
1506 			if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) {
1507 				if (num_extra_wrs > 0 && wr->next) {
1508 					wr = wr->next;
1509 					wr->num_sge = 0;
1510 					sg_ele = &wr->sg_list[wr->num_sge];
1511 					num_extra_wrs--;
1512 				} else {
1513 					break;
1514 				}
1515 			}
1516 			sg_ele->lkey = lkey;
1517 			sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset);
1518 			sge_len = spdk_min(remaining, remaining_data_block);
1519 			sg_ele->length = sge_len;
1520 			SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele,
1521 				      sg_ele->addr, sg_ele->length);
1522 			remaining -= sge_len;
1523 			remaining_data_block -= sge_len;
1524 			rdma_req->offset += sge_len;
1525 			total_length -= sge_len;
1526 
1527 			sg_ele++;
1528 			wr->num_sge++;
1529 
1530 			if (remaining_data_block == 0) {
1531 				/* skip metadata */
1532 				rdma_req->offset += md_size;
1533 				total_length -= md_size;
1534 				/* Metadata that do not fit this IO buffer will be included in the next IO buffer */
1535 				remaining -= spdk_min(remaining, md_size);
1536 				remaining_data_block = data_block_size;
1537 			}
1538 
1539 			if (remaining == 0) {
1540 				/* By subtracting the size of the last IOV from the offset, we ensure that we skip
1541 				   the remaining metadata bits at the beginning of the next buffer */
1542 				rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset);
1543 				rdma_req->iovpos++;
1544 			}
1545 		}
1546 	}
1547 
1548 	if (total_length) {
1549 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1550 		return -EINVAL;
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 static inline uint32_t
1557 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size)
1558 {
1559 	/* estimate the number of SG entries and WRs needed to process the request */
1560 	uint32_t num_sge = 0;
1561 	uint32_t i;
1562 	uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size);
1563 
1564 	for (i = 0; i < num_buffers && length > 0; i++) {
1565 		uint32_t buffer_len = spdk_min(length, io_unit_size);
1566 		uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size);
1567 
1568 		if (num_sge_in_block * block_size > buffer_len) {
1569 			++num_sge_in_block;
1570 		}
1571 		num_sge += num_sge_in_block;
1572 		length -= buffer_len;
1573 	}
1574 	return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES);
1575 }
1576 
1577 static int
1578 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1579 			    struct spdk_nvmf_rdma_device *device,
1580 			    struct spdk_nvmf_rdma_request *rdma_req)
1581 {
1582 	struct spdk_nvmf_rdma_qpair		*rqpair;
1583 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1584 	struct spdk_nvmf_request		*req = &rdma_req->req;
1585 	struct ibv_send_wr			*wr = &rdma_req->data.wr;
1586 	int					rc;
1587 	uint32_t				num_wrs = 1;
1588 	uint32_t				length;
1589 
1590 	rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair);
1591 	rgroup = rqpair->poller->group;
1592 
1593 	/* rdma wr specifics */
1594 	nvmf_rdma_setup_request(rdma_req);
1595 
1596 	length = req->length;
1597 	if (spdk_unlikely(req->dif_enabled)) {
1598 		req->dif.orig_length = length;
1599 		length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
1600 		req->dif.elba_length = length;
1601 	}
1602 
1603 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
1604 					   length);
1605 	if (rc != 0) {
1606 		return rc;
1607 	}
1608 
1609 	assert(req->iovcnt <= rqpair->max_send_sge);
1610 
1611 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1612 	 * the stripped_buffers are got for DIF stripping. */
1613 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1614 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1615 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1616 						       &rtransport->transport, req->dif.orig_length);
1617 		if (rc != 0) {
1618 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1619 		}
1620 	}
1621 
1622 	rdma_req->iovpos = 0;
1623 
1624 	if (spdk_unlikely(req->dif_enabled)) {
1625 		num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size,
1626 						 req->dif.dif_ctx.block_size);
1627 		if (num_wrs > 1) {
1628 			rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1);
1629 			if (rc != 0) {
1630 				goto err_exit;
1631 			}
1632 		}
1633 
1634 		rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, wr, length, num_wrs - 1);
1635 		if (spdk_unlikely(rc != 0)) {
1636 			goto err_exit;
1637 		}
1638 
1639 		if (num_wrs > 1) {
1640 			nvmf_rdma_update_remote_addr(rdma_req, num_wrs);
1641 		}
1642 	} else {
1643 		rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length);
1644 		if (spdk_unlikely(rc != 0)) {
1645 			goto err_exit;
1646 		}
1647 	}
1648 
1649 	/* set the number of outstanding data WRs for this request. */
1650 	rdma_req->num_outstanding_data_wr = num_wrs;
1651 
1652 	return rc;
1653 
1654 err_exit:
1655 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1656 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1657 	req->iovcnt = 0;
1658 	return rc;
1659 }
1660 
1661 static int
1662 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1663 				      struct spdk_nvmf_rdma_device *device,
1664 				      struct spdk_nvmf_rdma_request *rdma_req)
1665 {
1666 	struct spdk_nvmf_rdma_qpair		*rqpair;
1667 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1668 	struct ibv_send_wr			*current_wr;
1669 	struct spdk_nvmf_request		*req = &rdma_req->req;
1670 	struct spdk_nvme_sgl_descriptor		*inline_segment, *desc;
1671 	uint32_t				num_sgl_descriptors;
1672 	uint32_t				lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0;
1673 	uint32_t				i;
1674 	int					rc;
1675 
1676 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1677 	rgroup = rqpair->poller->group;
1678 
1679 	inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1680 	assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1681 	assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1682 
1683 	num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1684 	assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1685 
1686 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1687 	for (i = 0; i < num_sgl_descriptors; i++) {
1688 		if (spdk_likely(!req->dif_enabled)) {
1689 			lengths[i] = desc->keyed.length;
1690 		} else {
1691 			req->dif.orig_length += desc->keyed.length;
1692 			lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx);
1693 			req->dif.elba_length += lengths[i];
1694 		}
1695 		total_length += lengths[i];
1696 		desc++;
1697 	}
1698 
1699 	if (total_length > rtransport->transport.opts.max_io_size) {
1700 		SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n",
1701 			    total_length, rtransport->transport.opts.max_io_size);
1702 		req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1703 		return -EINVAL;
1704 	}
1705 
1706 	if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) {
1707 		return -ENOMEM;
1708 	}
1709 
1710 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length);
1711 	if (rc != 0) {
1712 		nvmf_rdma_request_free_data(rdma_req, rtransport);
1713 		return rc;
1714 	}
1715 
1716 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1717 	 * the stripped_buffers are got for DIF stripping. */
1718 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1719 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1720 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1721 						       &rtransport->transport, req->dif.orig_length);
1722 		if (rc != 0) {
1723 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1724 		}
1725 	}
1726 
1727 	/* The first WR must always be the embedded data WR. This is how we unwind them later. */
1728 	current_wr = &rdma_req->data.wr;
1729 	assert(current_wr != NULL);
1730 
1731 	req->length = 0;
1732 	rdma_req->iovpos = 0;
1733 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1734 	for (i = 0; i < num_sgl_descriptors; i++) {
1735 		/* The descriptors must be keyed data block descriptors with an address, not an offset. */
1736 		if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1737 				  desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1738 			rc = -EINVAL;
1739 			goto err_exit;
1740 		}
1741 
1742 		if (spdk_likely(!req->dif_enabled)) {
1743 			rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i]);
1744 		} else {
1745 			rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, current_wr,
1746 							    lengths[i], 0);
1747 		}
1748 		if (rc != 0) {
1749 			rc = -ENOMEM;
1750 			goto err_exit;
1751 		}
1752 
1753 		req->length += desc->keyed.length;
1754 		current_wr->wr.rdma.rkey = desc->keyed.key;
1755 		current_wr->wr.rdma.remote_addr = desc->address;
1756 		current_wr = current_wr->next;
1757 		desc++;
1758 	}
1759 
1760 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1761 	/* Go back to the last descriptor in the list. */
1762 	desc--;
1763 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1764 		if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1765 			rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1766 			rdma_req->rsp.wr.imm_data = desc->keyed.key;
1767 		}
1768 	}
1769 #endif
1770 
1771 	rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1772 
1773 	return 0;
1774 
1775 err_exit:
1776 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1777 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1778 	return rc;
1779 }
1780 
1781 static int
1782 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1783 			    struct spdk_nvmf_rdma_device *device,
1784 			    struct spdk_nvmf_rdma_request *rdma_req)
1785 {
1786 	struct spdk_nvmf_request		*req = &rdma_req->req;
1787 	struct spdk_nvme_cpl			*rsp;
1788 	struct spdk_nvme_sgl_descriptor		*sgl;
1789 	int					rc;
1790 	uint32_t				length;
1791 
1792 	rsp = &req->rsp->nvme_cpl;
1793 	sgl = &req->cmd->nvme_cmd.dptr.sgl1;
1794 
1795 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1796 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1797 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1798 
1799 		length = sgl->keyed.length;
1800 		if (length > rtransport->transport.opts.max_io_size) {
1801 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1802 				    length, rtransport->transport.opts.max_io_size);
1803 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1804 			return -1;
1805 		}
1806 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1807 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1808 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1809 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1810 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1811 			}
1812 		}
1813 #endif
1814 
1815 		/* fill request length and populate iovs */
1816 		req->length = length;
1817 
1818 		rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req);
1819 		if (spdk_unlikely(rc < 0)) {
1820 			if (rc == -EINVAL) {
1821 				SPDK_ERRLOG("SGL length exceeds the max I/O size\n");
1822 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1823 				return -1;
1824 			}
1825 			/* No available buffers. Queue this request up. */
1826 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1827 			return 0;
1828 		}
1829 
1830 		/* backward compatible */
1831 		req->data = req->iov[0].iov_base;
1832 
1833 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1834 			      req->iovcnt);
1835 
1836 		return 0;
1837 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1838 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1839 		uint64_t offset = sgl->address;
1840 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1841 
1842 		SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1843 			      offset, sgl->unkeyed.length);
1844 
1845 		if (offset > max_len) {
1846 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1847 				    offset, max_len);
1848 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1849 			return -1;
1850 		}
1851 		max_len -= (uint32_t)offset;
1852 
1853 		if (sgl->unkeyed.length > max_len) {
1854 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1855 				    sgl->unkeyed.length, max_len);
1856 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1857 			return -1;
1858 		}
1859 
1860 		rdma_req->num_outstanding_data_wr = 0;
1861 		req->data = rdma_req->recv->buf + offset;
1862 		req->data_from_pool = false;
1863 		req->length = sgl->unkeyed.length;
1864 
1865 		req->iov[0].iov_base = req->data;
1866 		req->iov[0].iov_len = req->length;
1867 		req->iovcnt = 1;
1868 
1869 		return 0;
1870 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1871 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1872 
1873 		rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1874 		if (rc == -ENOMEM) {
1875 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1876 			return 0;
1877 		} else if (rc == -EINVAL) {
1878 			SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1879 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1880 			return -1;
1881 		}
1882 
1883 		/* backward compatible */
1884 		req->data = req->iov[0].iov_base;
1885 
1886 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1887 			      req->iovcnt);
1888 
1889 		return 0;
1890 	}
1891 
1892 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
1893 		    sgl->generic.type, sgl->generic.subtype);
1894 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1895 	return -1;
1896 }
1897 
1898 static void
1899 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1900 			struct spdk_nvmf_rdma_transport	*rtransport)
1901 {
1902 	struct spdk_nvmf_rdma_qpair		*rqpair;
1903 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1904 
1905 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1906 	if (rdma_req->req.data_from_pool) {
1907 		rgroup = rqpair->poller->group;
1908 
1909 		spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport);
1910 	}
1911 	if (rdma_req->req.stripped_data) {
1912 		nvmf_request_free_stripped_buffers(&rdma_req->req,
1913 						   &rqpair->poller->group->group,
1914 						   &rtransport->transport);
1915 	}
1916 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1917 	rdma_req->req.length = 0;
1918 	rdma_req->req.iovcnt = 0;
1919 	rdma_req->req.data = NULL;
1920 	rdma_req->rsp.wr.next = NULL;
1921 	rdma_req->data.wr.next = NULL;
1922 	rdma_req->offset = 0;
1923 	rdma_req->req.dif_enabled = false;
1924 	rdma_req->fused_failed = false;
1925 	if (rdma_req->fused_pair) {
1926 		/* This req was part of a valid fused pair, but failed before it got to
1927 		 * READ_TO_EXECUTE state.  This means we need to fail the other request
1928 		 * in the pair, because it is no longer part of a valid pair.  If the pair
1929 		 * already reached READY_TO_EXECUTE state, we need to kick it.
1930 		 */
1931 		rdma_req->fused_pair->fused_failed = true;
1932 		if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
1933 			nvmf_rdma_request_process(rtransport, rdma_req->fused_pair);
1934 		}
1935 		rdma_req->fused_pair = NULL;
1936 	}
1937 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
1938 	rqpair->qd--;
1939 
1940 	STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
1941 	rdma_req->state = RDMA_REQUEST_STATE_FREE;
1942 }
1943 
1944 static void
1945 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport,
1946 			       struct spdk_nvmf_rdma_qpair *rqpair,
1947 			       struct spdk_nvmf_rdma_request *rdma_req)
1948 {
1949 	enum spdk_nvme_cmd_fuse last, next;
1950 
1951 	last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
1952 	next = rdma_req->req.cmd->nvme_cmd.fuse;
1953 
1954 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
1955 
1956 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
1957 		return;
1958 	}
1959 
1960 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
1961 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
1962 			/* This is a valid pair of fused commands.  Point them at each other
1963 			 * so they can be submitted consecutively once ready to be executed.
1964 			 */
1965 			rqpair->fused_first->fused_pair = rdma_req;
1966 			rdma_req->fused_pair = rqpair->fused_first;
1967 			rqpair->fused_first = NULL;
1968 			return;
1969 		} else {
1970 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
1971 			rqpair->fused_first->fused_failed = true;
1972 
1973 			/* If the last req is in READY_TO_EXECUTE state, then call
1974 			 * nvmf_rdma_request_process(), otherwise nothing else will kick it.
1975 			 */
1976 			if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
1977 				nvmf_rdma_request_process(rtransport, rqpair->fused_first);
1978 			}
1979 
1980 			rqpair->fused_first = NULL;
1981 		}
1982 	}
1983 
1984 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
1985 		/* Set rqpair->fused_first here so that we know to check that the next request
1986 		 * is a SECOND (and to fail this one if it isn't).
1987 		 */
1988 		rqpair->fused_first = rdma_req;
1989 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
1990 		/* Mark this req failed since it ia SECOND and the last one was not a FIRST. */
1991 		rdma_req->fused_failed = true;
1992 	}
1993 }
1994 
1995 bool
1996 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
1997 			  struct spdk_nvmf_rdma_request *rdma_req)
1998 {
1999 	struct spdk_nvmf_rdma_qpair	*rqpair;
2000 	struct spdk_nvmf_rdma_device	*device;
2001 	struct spdk_nvmf_rdma_poll_group *rgroup;
2002 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
2003 	int				rc;
2004 	struct spdk_nvmf_rdma_recv	*rdma_recv;
2005 	enum spdk_nvmf_rdma_request_state prev_state;
2006 	bool				progress = false;
2007 	int				data_posted;
2008 	uint32_t			num_blocks;
2009 
2010 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2011 	device = rqpair->device;
2012 	rgroup = rqpair->poller->group;
2013 
2014 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
2015 
2016 	/* If the queue pair is in an error state, force the request to the completed state
2017 	 * to release resources. */
2018 	if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2019 		if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) {
2020 			STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link);
2021 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) {
2022 			STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2023 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) {
2024 			STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2025 		}
2026 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2027 	}
2028 
2029 	/* The loop here is to allow for several back-to-back state changes. */
2030 	do {
2031 		prev_state = rdma_req->state;
2032 
2033 		SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state);
2034 
2035 		switch (rdma_req->state) {
2036 		case RDMA_REQUEST_STATE_FREE:
2037 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
2038 			 * to escape this state. */
2039 			break;
2040 		case RDMA_REQUEST_STATE_NEW:
2041 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
2042 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2043 			rdma_recv = rdma_req->recv;
2044 
2045 			/* The first element of the SGL is the NVMe command */
2046 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
2047 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
2048 
2049 			if (rqpair->ibv_state == IBV_QPS_ERR  || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2050 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2051 				break;
2052 			}
2053 
2054 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) {
2055 				rdma_req->req.dif_enabled = true;
2056 			}
2057 
2058 			nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req);
2059 
2060 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2061 			rdma_req->rsp.wr.opcode = IBV_WR_SEND;
2062 			rdma_req->rsp.wr.imm_data = 0;
2063 #endif
2064 
2065 			/* The next state transition depends on the data transfer needs of this request. */
2066 			rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req);
2067 
2068 			if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2069 				rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2070 				rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE;
2071 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2072 				SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req);
2073 				break;
2074 			}
2075 
2076 			/* If no data to transfer, ready to execute. */
2077 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
2078 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2079 				break;
2080 			}
2081 
2082 			rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
2083 			STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link);
2084 			break;
2085 		case RDMA_REQUEST_STATE_NEED_BUFFER:
2086 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
2087 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2088 
2089 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
2090 
2091 			if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) {
2092 				/* This request needs to wait in line to obtain a buffer */
2093 				break;
2094 			}
2095 
2096 			/* Try to get a data buffer */
2097 			rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
2098 			if (rc < 0) {
2099 				STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2100 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2101 				break;
2102 			}
2103 
2104 			if (!rdma_req->req.data) {
2105 				/* No buffers available. */
2106 				rgroup->stat.pending_data_buffer++;
2107 				break;
2108 			}
2109 
2110 			STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2111 
2112 			/* If data is transferring from host to controller and the data didn't
2113 			 * arrive using in capsule data, we need to do a transfer from the host.
2114 			 */
2115 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER &&
2116 			    rdma_req->req.data_from_pool) {
2117 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
2118 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
2119 				break;
2120 			}
2121 
2122 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2123 			break;
2124 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2125 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
2126 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2127 
2128 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
2129 				/* This request needs to wait in line to perform RDMA */
2130 				break;
2131 			}
2132 			if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth
2133 			    || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) {
2134 				/* We can only have so many WRs outstanding. we have to wait until some finish. */
2135 				rqpair->poller->stat.pending_rdma_read++;
2136 				break;
2137 			}
2138 
2139 			/* We have already verified that this request is the head of the queue. */
2140 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
2141 
2142 			rc = request_transfer_in(&rdma_req->req);
2143 			if (!rc) {
2144 				rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
2145 			} else {
2146 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2147 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2148 			}
2149 			break;
2150 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2151 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
2152 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2153 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
2154 			 * to escape this state. */
2155 			break;
2156 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
2157 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
2158 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2159 
2160 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2161 				if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2162 					/* generate DIF for write operation */
2163 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2164 					assert(num_blocks > 0);
2165 
2166 					rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt,
2167 							       num_blocks, &rdma_req->req.dif.dif_ctx);
2168 					if (rc != 0) {
2169 						SPDK_ERRLOG("DIF generation failed\n");
2170 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2171 						spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
2172 						break;
2173 					}
2174 				}
2175 
2176 				assert(rdma_req->req.dif.elba_length >= rdma_req->req.length);
2177 				/* set extended length before IO operation */
2178 				rdma_req->req.length = rdma_req->req.dif.elba_length;
2179 			}
2180 
2181 			if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2182 				if (rdma_req->fused_failed) {
2183 					/* This request failed FUSED semantics.  Fail it immediately, without
2184 					 * even sending it to the target layer.
2185 					 */
2186 					rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2187 					rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2188 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2189 					break;
2190 				}
2191 
2192 				if (rdma_req->fused_pair == NULL ||
2193 				    rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2194 					/* This request is ready to execute, but either we don't know yet if it's
2195 					 * valid - i.e. this is a FIRST but we haven't received the next
2196 					 * request yet or the other request of this fused pair isn't ready to
2197 					 * execute.  So break here and this request will get processed later either
2198 					 * when the other request is ready or we find that this request isn't valid.
2199 					 */
2200 					break;
2201 				}
2202 			}
2203 
2204 			/* If we get to this point, and this request is a fused command, we know that
2205 			 * it is part of valid sequence (FIRST followed by a SECOND) and that both
2206 			 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this
2207 			 * request, and the other request of the fused pair, in the correct order.
2208 			 * Also clear the ->fused_pair pointers on both requests, since after this point
2209 			 * we no longer need to maintain the relationship between these two requests.
2210 			 */
2211 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2212 				assert(rdma_req->fused_pair != NULL);
2213 				assert(rdma_req->fused_pair->fused_pair != NULL);
2214 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2215 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2216 				rdma_req->fused_pair->fused_pair = NULL;
2217 				rdma_req->fused_pair = NULL;
2218 			}
2219 			rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
2220 			spdk_nvmf_request_exec(&rdma_req->req);
2221 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2222 				assert(rdma_req->fused_pair != NULL);
2223 				assert(rdma_req->fused_pair->fused_pair != NULL);
2224 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2225 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2226 				rdma_req->fused_pair->fused_pair = NULL;
2227 				rdma_req->fused_pair = NULL;
2228 			}
2229 			break;
2230 		case RDMA_REQUEST_STATE_EXECUTING:
2231 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
2232 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2233 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
2234 			 * to escape this state. */
2235 			break;
2236 		case RDMA_REQUEST_STATE_EXECUTED:
2237 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
2238 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2239 			if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
2240 			    rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2241 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
2242 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
2243 			} else {
2244 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2245 			}
2246 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2247 				/* restore the original length */
2248 				rdma_req->req.length = rdma_req->req.dif.orig_length;
2249 
2250 				if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2251 					struct spdk_dif_error error_blk;
2252 
2253 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2254 					if (!rdma_req->req.stripped_data) {
2255 						rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2256 								     &rdma_req->req.dif.dif_ctx, &error_blk);
2257 					} else {
2258 						rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov,
2259 									  rdma_req->req.stripped_data->iovcnt,
2260 									  rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2261 									  &rdma_req->req.dif.dif_ctx, &error_blk);
2262 					}
2263 					if (rc) {
2264 						struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
2265 
2266 						SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type,
2267 							    error_blk.err_offset);
2268 						rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2269 						rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type);
2270 						rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2271 						STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2272 					}
2273 				}
2274 			}
2275 			break;
2276 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2277 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
2278 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2279 
2280 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
2281 				/* This request needs to wait in line to perform RDMA */
2282 				break;
2283 			}
2284 			if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
2285 			    rqpair->max_send_depth) {
2286 				/* We can only have so many WRs outstanding. we have to wait until some finish.
2287 				 * +1 since each request has an additional wr in the resp. */
2288 				rqpair->poller->stat.pending_rdma_write++;
2289 				break;
2290 			}
2291 
2292 			/* We have already verified that this request is the head of the queue. */
2293 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
2294 
2295 			/* The data transfer will be kicked off from
2296 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2297 			 */
2298 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2299 			break;
2300 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
2301 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
2302 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2303 			rc = request_transfer_out(&rdma_req->req, &data_posted);
2304 			assert(rc == 0); /* No good way to handle this currently */
2305 			if (rc) {
2306 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2307 			} else {
2308 				rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
2309 						  RDMA_REQUEST_STATE_COMPLETING;
2310 			}
2311 			break;
2312 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2313 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
2314 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2315 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2316 			 * to escape this state. */
2317 			break;
2318 		case RDMA_REQUEST_STATE_COMPLETING:
2319 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
2320 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2321 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2322 			 * to escape this state. */
2323 			break;
2324 		case RDMA_REQUEST_STATE_COMPLETED:
2325 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2326 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2327 
2328 			rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc;
2329 			_nvmf_rdma_request_free(rdma_req, rtransport);
2330 			break;
2331 		case RDMA_REQUEST_NUM_STATES:
2332 		default:
2333 			assert(0);
2334 			break;
2335 		}
2336 
2337 		if (rdma_req->state != prev_state) {
2338 			progress = true;
2339 		}
2340 	} while (rdma_req->state != prev_state);
2341 
2342 	return progress;
2343 }
2344 
2345 /* Public API callbacks begin here */
2346 
2347 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2348 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2349 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2350 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
2351 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2352 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2353 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2354 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095
2355 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32
2356 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false
2357 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false
2358 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100
2359 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1
2360 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false
2361 
2362 static void
2363 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2364 {
2365 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2366 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2367 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2368 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2369 	opts->io_unit_size =		SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2370 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2371 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2372 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2373 	opts->dif_insert_or_strip =	SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP;
2374 	opts->abort_timeout_sec =	SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC;
2375 	opts->transport_specific =      NULL;
2376 }
2377 
2378 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2379 			     spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg);
2380 
2381 static inline bool
2382 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device)
2383 {
2384 	return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD ||
2385 	       device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW;
2386 }
2387 
2388 static int
2389 nvmf_rdma_accept(void *ctx);
2390 
2391 static struct spdk_nvmf_transport *
2392 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2393 {
2394 	int rc;
2395 	struct spdk_nvmf_rdma_transport *rtransport;
2396 	struct spdk_nvmf_rdma_device	*device, *tmp;
2397 	struct ibv_context		**contexts;
2398 	uint32_t			i;
2399 	int				flag;
2400 	uint32_t			sge_count;
2401 	uint32_t			min_shared_buffers;
2402 	uint32_t			min_in_capsule_data_size;
2403 	int				max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2404 	pthread_mutexattr_t		attr;
2405 
2406 	rtransport = calloc(1, sizeof(*rtransport));
2407 	if (!rtransport) {
2408 		return NULL;
2409 	}
2410 
2411 	if (pthread_mutexattr_init(&attr)) {
2412 		SPDK_ERRLOG("pthread_mutexattr_init() failed\n");
2413 		free(rtransport);
2414 		return NULL;
2415 	}
2416 
2417 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) {
2418 		SPDK_ERRLOG("pthread_mutexattr_settype() failed\n");
2419 		pthread_mutexattr_destroy(&attr);
2420 		free(rtransport);
2421 		return NULL;
2422 	}
2423 
2424 	if (pthread_mutex_init(&rtransport->lock, &attr)) {
2425 		SPDK_ERRLOG("pthread_mutex_init() failed\n");
2426 		pthread_mutexattr_destroy(&attr);
2427 		free(rtransport);
2428 		return NULL;
2429 	}
2430 
2431 	pthread_mutexattr_destroy(&attr);
2432 
2433 	TAILQ_INIT(&rtransport->devices);
2434 	TAILQ_INIT(&rtransport->ports);
2435 	TAILQ_INIT(&rtransport->poll_groups);
2436 
2437 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2438 	rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
2439 	rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2440 	rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ;
2441 	rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2442 	rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING;
2443 	if (opts->transport_specific != NULL &&
2444 	    spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder,
2445 					    SPDK_COUNTOF(rdma_transport_opts_decoder),
2446 					    &rtransport->rdma_opts)) {
2447 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
2448 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2449 		return NULL;
2450 	}
2451 
2452 	SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n"
2453 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
2454 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2455 		     "  in_capsule_data_size=%d, max_aq_depth=%d,\n"
2456 		     "  num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d,"
2457 		     "  acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n",
2458 		     opts->max_queue_depth,
2459 		     opts->max_io_size,
2460 		     opts->max_qpairs_per_ctrlr - 1,
2461 		     opts->io_unit_size,
2462 		     opts->in_capsule_data_size,
2463 		     opts->max_aq_depth,
2464 		     opts->num_shared_buffers,
2465 		     rtransport->rdma_opts.num_cqe,
2466 		     rtransport->rdma_opts.max_srq_depth,
2467 		     rtransport->rdma_opts.no_srq,
2468 		     rtransport->rdma_opts.acceptor_backlog,
2469 		     rtransport->rdma_opts.no_wr_batching,
2470 		     opts->abort_timeout_sec);
2471 
2472 	/* I/O unit size cannot be larger than max I/O size */
2473 	if (opts->io_unit_size > opts->max_io_size) {
2474 		opts->io_unit_size = opts->max_io_size;
2475 	}
2476 
2477 	if (rtransport->rdma_opts.acceptor_backlog <= 0) {
2478 		SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n",
2479 			    SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG);
2480 		rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2481 	}
2482 
2483 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2484 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2485 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
2486 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2487 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2488 		return NULL;
2489 	}
2490 
2491 	min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
2492 	if (min_shared_buffers > opts->num_shared_buffers) {
2493 		SPDK_ERRLOG("There are not enough buffers to satisfy"
2494 			    "per-poll group caches for each thread. (%" PRIu32 ")"
2495 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2496 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2497 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2498 		return NULL;
2499 	}
2500 
2501 	sge_count = opts->max_io_size / opts->io_unit_size;
2502 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
2503 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2504 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2505 		return NULL;
2506 	}
2507 
2508 	min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES;
2509 	if (opts->in_capsule_data_size < min_in_capsule_data_size) {
2510 		SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n",
2511 			     min_in_capsule_data_size);
2512 		opts->in_capsule_data_size = min_in_capsule_data_size;
2513 	}
2514 
2515 	rtransport->event_channel = rdma_create_event_channel();
2516 	if (rtransport->event_channel == NULL) {
2517 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2518 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2519 		return NULL;
2520 	}
2521 
2522 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2523 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2524 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2525 			    rtransport->event_channel->fd, spdk_strerror(errno));
2526 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2527 		return NULL;
2528 	}
2529 
2530 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
2531 				   opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES,
2532 				   sizeof(struct spdk_nvmf_rdma_request_data),
2533 				   SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2534 				   SPDK_ENV_SOCKET_ID_ANY);
2535 	if (!rtransport->data_wr_pool) {
2536 		SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2537 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2538 		return NULL;
2539 	}
2540 
2541 	contexts = rdma_get_devices(NULL);
2542 	if (contexts == NULL) {
2543 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2544 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2545 		return NULL;
2546 	}
2547 
2548 	i = 0;
2549 	rc = 0;
2550 	while (contexts[i] != NULL) {
2551 		device = calloc(1, sizeof(*device));
2552 		if (!device) {
2553 			SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2554 			rc = -ENOMEM;
2555 			break;
2556 		}
2557 		device->context = contexts[i];
2558 		rc = ibv_query_device(device->context, &device->attr);
2559 		if (rc < 0) {
2560 			SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2561 			free(device);
2562 			break;
2563 
2564 		}
2565 
2566 		max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2567 
2568 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2569 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2570 			SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2571 			SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2572 		}
2573 
2574 		/**
2575 		 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2576 		 * The Soft-RoCE RXE driver does not currently support send with invalidate,
2577 		 * but incorrectly reports that it does. There are changes making their way
2578 		 * through the kernel now that will enable this feature. When they are merged,
2579 		 * we can conditionally enable this feature.
2580 		 *
2581 		 * TODO: enable this for versions of the kernel rxe driver that support it.
2582 		 */
2583 		if (nvmf_rdma_is_rxe_device(device)) {
2584 			device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2585 		}
2586 #endif
2587 
2588 		/* set up device context async ev fd as NON_BLOCKING */
2589 		flag = fcntl(device->context->async_fd, F_GETFL);
2590 		rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2591 		if (rc < 0) {
2592 			SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2593 			free(device);
2594 			break;
2595 		}
2596 
2597 		TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2598 		i++;
2599 
2600 		if (g_nvmf_hooks.get_ibv_pd) {
2601 			device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2602 		} else {
2603 			device->pd = ibv_alloc_pd(device->context);
2604 		}
2605 
2606 		if (!device->pd) {
2607 			SPDK_ERRLOG("Unable to allocate protection domain.\n");
2608 			rc = -ENOMEM;
2609 			break;
2610 		}
2611 
2612 		assert(device->map == NULL);
2613 
2614 		device->map = spdk_rdma_create_mem_map(device->pd, &g_nvmf_hooks, SPDK_RDMA_MEMORY_MAP_ROLE_TARGET);
2615 		if (!device->map) {
2616 			SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2617 			rc = -ENOMEM;
2618 			break;
2619 		}
2620 
2621 		assert(device->map != NULL);
2622 		assert(device->pd != NULL);
2623 	}
2624 	rdma_free_devices(contexts);
2625 
2626 	if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2627 		/* divide and round up. */
2628 		opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2629 
2630 		/* round up to the nearest 4k. */
2631 		opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2632 
2633 		opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2634 		SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2635 			       opts->io_unit_size);
2636 	}
2637 
2638 	if (rc < 0) {
2639 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2640 		return NULL;
2641 	}
2642 
2643 	/* Set up poll descriptor array to monitor events from RDMA and IB
2644 	 * in a single poll syscall
2645 	 */
2646 	rtransport->npoll_fds = i + 1;
2647 	i = 0;
2648 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2649 	if (rtransport->poll_fds == NULL) {
2650 		SPDK_ERRLOG("poll_fds allocation failed\n");
2651 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2652 		return NULL;
2653 	}
2654 
2655 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2656 	rtransport->poll_fds[i++].events = POLLIN;
2657 
2658 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2659 		rtransport->poll_fds[i].fd = device->context->async_fd;
2660 		rtransport->poll_fds[i++].events = POLLIN;
2661 	}
2662 
2663 	rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport,
2664 				    opts->acceptor_poll_rate);
2665 	if (!rtransport->accept_poller) {
2666 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2667 		return NULL;
2668 	}
2669 
2670 	return &rtransport->transport;
2671 }
2672 
2673 static void
2674 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
2675 {
2676 	struct spdk_nvmf_rdma_transport	*rtransport;
2677 	assert(w != NULL);
2678 
2679 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2680 	spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth);
2681 	spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq);
2682 	if (rtransport->rdma_opts.no_srq == true) {
2683 		spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe);
2684 	}
2685 	spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog);
2686 	spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching);
2687 }
2688 
2689 static int
2690 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2691 		  spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
2692 {
2693 	struct spdk_nvmf_rdma_transport	*rtransport;
2694 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
2695 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
2696 
2697 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2698 
2699 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2700 		TAILQ_REMOVE(&rtransport->ports, port, link);
2701 		rdma_destroy_id(port->id);
2702 		free(port);
2703 	}
2704 
2705 	if (rtransport->poll_fds != NULL) {
2706 		free(rtransport->poll_fds);
2707 	}
2708 
2709 	if (rtransport->event_channel != NULL) {
2710 		rdma_destroy_event_channel(rtransport->event_channel);
2711 	}
2712 
2713 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2714 		TAILQ_REMOVE(&rtransport->devices, device, link);
2715 		spdk_rdma_free_mem_map(&device->map);
2716 		if (device->pd) {
2717 			if (!g_nvmf_hooks.get_ibv_pd) {
2718 				ibv_dealloc_pd(device->pd);
2719 			}
2720 		}
2721 		free(device);
2722 	}
2723 
2724 	if (rtransport->data_wr_pool != NULL) {
2725 		if (spdk_mempool_count(rtransport->data_wr_pool) !=
2726 		    (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) {
2727 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2728 				    spdk_mempool_count(rtransport->data_wr_pool),
2729 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2730 		}
2731 	}
2732 
2733 	spdk_mempool_free(rtransport->data_wr_pool);
2734 
2735 	spdk_poller_unregister(&rtransport->accept_poller);
2736 	pthread_mutex_destroy(&rtransport->lock);
2737 	free(rtransport);
2738 
2739 	if (cb_fn) {
2740 		cb_fn(cb_arg);
2741 	}
2742 	return 0;
2743 }
2744 
2745 static int
2746 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2747 			  struct spdk_nvme_transport_id *trid,
2748 			  bool peer);
2749 
2750 static int
2751 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
2752 		 struct spdk_nvmf_listen_opts *listen_opts)
2753 {
2754 	struct spdk_nvmf_rdma_transport	*rtransport;
2755 	struct spdk_nvmf_rdma_device	*device;
2756 	struct spdk_nvmf_rdma_port	*port;
2757 	struct addrinfo			*res;
2758 	struct addrinfo			hints;
2759 	int				family;
2760 	int				rc;
2761 
2762 	if (!strlen(trid->trsvcid)) {
2763 		SPDK_ERRLOG("Service id is required\n");
2764 		return -EINVAL;
2765 	}
2766 
2767 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2768 	assert(rtransport->event_channel != NULL);
2769 
2770 	pthread_mutex_lock(&rtransport->lock);
2771 	port = calloc(1, sizeof(*port));
2772 	if (!port) {
2773 		SPDK_ERRLOG("Port allocation failed\n");
2774 		pthread_mutex_unlock(&rtransport->lock);
2775 		return -ENOMEM;
2776 	}
2777 
2778 	port->trid = trid;
2779 
2780 	switch (trid->adrfam) {
2781 	case SPDK_NVMF_ADRFAM_IPV4:
2782 		family = AF_INET;
2783 		break;
2784 	case SPDK_NVMF_ADRFAM_IPV6:
2785 		family = AF_INET6;
2786 		break;
2787 	default:
2788 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam);
2789 		free(port);
2790 		pthread_mutex_unlock(&rtransport->lock);
2791 		return -EINVAL;
2792 	}
2793 
2794 	memset(&hints, 0, sizeof(hints));
2795 	hints.ai_family = family;
2796 	hints.ai_flags = AI_NUMERICSERV;
2797 	hints.ai_socktype = SOCK_STREAM;
2798 	hints.ai_protocol = 0;
2799 
2800 	rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res);
2801 	if (rc) {
2802 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
2803 		free(port);
2804 		pthread_mutex_unlock(&rtransport->lock);
2805 		return -EINVAL;
2806 	}
2807 
2808 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
2809 	if (rc < 0) {
2810 		SPDK_ERRLOG("rdma_create_id() failed\n");
2811 		freeaddrinfo(res);
2812 		free(port);
2813 		pthread_mutex_unlock(&rtransport->lock);
2814 		return rc;
2815 	}
2816 
2817 	rc = rdma_bind_addr(port->id, res->ai_addr);
2818 	freeaddrinfo(res);
2819 
2820 	if (rc < 0) {
2821 		SPDK_ERRLOG("rdma_bind_addr() failed\n");
2822 		rdma_destroy_id(port->id);
2823 		free(port);
2824 		pthread_mutex_unlock(&rtransport->lock);
2825 		return rc;
2826 	}
2827 
2828 	if (!port->id->verbs) {
2829 		SPDK_ERRLOG("ibv_context is null\n");
2830 		rdma_destroy_id(port->id);
2831 		free(port);
2832 		pthread_mutex_unlock(&rtransport->lock);
2833 		return -1;
2834 	}
2835 
2836 	rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog);
2837 	if (rc < 0) {
2838 		SPDK_ERRLOG("rdma_listen() failed\n");
2839 		rdma_destroy_id(port->id);
2840 		free(port);
2841 		pthread_mutex_unlock(&rtransport->lock);
2842 		return rc;
2843 	}
2844 
2845 	TAILQ_FOREACH(device, &rtransport->devices, link) {
2846 		if (device->context == port->id->verbs) {
2847 			port->device = device;
2848 			break;
2849 		}
2850 	}
2851 	if (!port->device) {
2852 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
2853 			    port->id->verbs);
2854 		rdma_destroy_id(port->id);
2855 		free(port);
2856 		pthread_mutex_unlock(&rtransport->lock);
2857 		return -EINVAL;
2858 	}
2859 
2860 	SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n",
2861 		       trid->traddr, trid->trsvcid);
2862 
2863 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
2864 	pthread_mutex_unlock(&rtransport->lock);
2865 	return 0;
2866 }
2867 
2868 static void
2869 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
2870 		      const struct spdk_nvme_transport_id *trid)
2871 {
2872 	struct spdk_nvmf_rdma_transport *rtransport;
2873 	struct spdk_nvmf_rdma_port *port, *tmp;
2874 
2875 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2876 
2877 	pthread_mutex_lock(&rtransport->lock);
2878 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
2879 		if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
2880 			TAILQ_REMOVE(&rtransport->ports, port, link);
2881 			rdma_destroy_id(port->id);
2882 			free(port);
2883 			break;
2884 		}
2885 	}
2886 
2887 	pthread_mutex_unlock(&rtransport->lock);
2888 }
2889 
2890 static void
2891 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
2892 				struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
2893 {
2894 	struct spdk_nvmf_request *req, *tmp;
2895 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
2896 	struct spdk_nvmf_rdma_resources *resources;
2897 
2898 	/* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */
2899 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
2900 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2901 			break;
2902 		}
2903 	}
2904 
2905 	/* Then RDMA writes since reads have stronger restrictions than writes */
2906 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
2907 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2908 			break;
2909 		}
2910 	}
2911 
2912 	/* Then we handle request waiting on memory buffers. */
2913 	STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) {
2914 		rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
2915 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2916 			break;
2917 		}
2918 	}
2919 
2920 	resources = rqpair->resources;
2921 	while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
2922 		rdma_req = STAILQ_FIRST(&resources->free_queue);
2923 		STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
2924 		rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
2925 		STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
2926 
2927 		if (rqpair->srq != NULL) {
2928 			rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
2929 			rdma_req->recv->qpair->qd++;
2930 		} else {
2931 			rqpair->qd++;
2932 		}
2933 
2934 		rdma_req->receive_tsc = rdma_req->recv->receive_tsc;
2935 		rdma_req->state = RDMA_REQUEST_STATE_NEW;
2936 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
2937 			break;
2938 		}
2939 	}
2940 	if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) {
2941 		rqpair->poller->stat.pending_free_request++;
2942 	}
2943 }
2944 
2945 static inline bool
2946 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device)
2947 {
2948 	/* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */
2949 	return nvmf_rdma_is_rxe_device(device) ||
2950 	       device->context->device->transport_type == IBV_TRANSPORT_IWARP;
2951 }
2952 
2953 static void
2954 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair)
2955 {
2956 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
2957 			struct spdk_nvmf_rdma_transport, transport);
2958 
2959 	nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
2960 
2961 	/* nvmr_rdma_close_qpair is not called */
2962 	if (!rqpair->to_close) {
2963 		return;
2964 	}
2965 
2966 	/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
2967 	if (rqpair->current_send_depth != 0) {
2968 		return;
2969 	}
2970 
2971 	if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
2972 		return;
2973 	}
2974 
2975 	if (rqpair->srq != NULL && rqpair->last_wqe_reached == false &&
2976 	    !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) {
2977 		return;
2978 	}
2979 
2980 	assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR);
2981 
2982 	nvmf_rdma_qpair_destroy(rqpair);
2983 }
2984 
2985 static int
2986 nvmf_rdma_disconnect(struct rdma_cm_event *evt)
2987 {
2988 	struct spdk_nvmf_qpair		*qpair;
2989 	struct spdk_nvmf_rdma_qpair	*rqpair;
2990 
2991 	if (evt->id == NULL) {
2992 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
2993 		return -1;
2994 	}
2995 
2996 	qpair = evt->id->context;
2997 	if (qpair == NULL) {
2998 		SPDK_ERRLOG("disconnect request: no active connection\n");
2999 		return -1;
3000 	}
3001 
3002 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3003 
3004 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair);
3005 
3006 	spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3007 
3008 	return 0;
3009 }
3010 
3011 #ifdef DEBUG
3012 static const char *CM_EVENT_STR[] = {
3013 	"RDMA_CM_EVENT_ADDR_RESOLVED",
3014 	"RDMA_CM_EVENT_ADDR_ERROR",
3015 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
3016 	"RDMA_CM_EVENT_ROUTE_ERROR",
3017 	"RDMA_CM_EVENT_CONNECT_REQUEST",
3018 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
3019 	"RDMA_CM_EVENT_CONNECT_ERROR",
3020 	"RDMA_CM_EVENT_UNREACHABLE",
3021 	"RDMA_CM_EVENT_REJECTED",
3022 	"RDMA_CM_EVENT_ESTABLISHED",
3023 	"RDMA_CM_EVENT_DISCONNECTED",
3024 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
3025 	"RDMA_CM_EVENT_MULTICAST_JOIN",
3026 	"RDMA_CM_EVENT_MULTICAST_ERROR",
3027 	"RDMA_CM_EVENT_ADDR_CHANGE",
3028 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
3029 };
3030 #endif /* DEBUG */
3031 
3032 static void
3033 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport,
3034 				    struct spdk_nvmf_rdma_port *port)
3035 {
3036 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3037 	struct spdk_nvmf_rdma_poller		*rpoller;
3038 	struct spdk_nvmf_rdma_qpair		*rqpair;
3039 
3040 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3041 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3042 			RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) {
3043 				if (rqpair->listen_id == port->id) {
3044 					spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3045 				}
3046 			}
3047 		}
3048 	}
3049 }
3050 
3051 static bool
3052 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport,
3053 				      struct rdma_cm_event *event)
3054 {
3055 	const struct spdk_nvme_transport_id	*trid;
3056 	struct spdk_nvmf_rdma_port		*port;
3057 	struct spdk_nvmf_rdma_transport		*rtransport;
3058 	bool					event_acked = false;
3059 
3060 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3061 	TAILQ_FOREACH(port, &rtransport->ports, link) {
3062 		if (port->id == event->id) {
3063 			SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid);
3064 			rdma_ack_cm_event(event);
3065 			event_acked = true;
3066 			trid = port->trid;
3067 			break;
3068 		}
3069 	}
3070 
3071 	if (event_acked) {
3072 		nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
3073 
3074 		nvmf_rdma_stop_listen(transport, trid);
3075 		nvmf_rdma_listen(transport, trid, NULL);
3076 	}
3077 
3078 	return event_acked;
3079 }
3080 
3081 static void
3082 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport,
3083 				       struct rdma_cm_event *event)
3084 {
3085 	struct spdk_nvmf_rdma_port		*port;
3086 	struct spdk_nvmf_rdma_transport		*rtransport;
3087 
3088 	port = event->id->context;
3089 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3090 
3091 	SPDK_NOTICELOG("Port %s:%s is being removed\n", port->trid->traddr, port->trid->trsvcid);
3092 
3093 	nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
3094 
3095 	rdma_ack_cm_event(event);
3096 
3097 	while (spdk_nvmf_transport_stop_listen(transport, port->trid) == 0) {
3098 		;
3099 	}
3100 }
3101 
3102 static void
3103 nvmf_process_cm_event(struct spdk_nvmf_transport *transport)
3104 {
3105 	struct spdk_nvmf_rdma_transport *rtransport;
3106 	struct rdma_cm_event		*event;
3107 	int				rc;
3108 	bool				event_acked;
3109 
3110 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3111 
3112 	if (rtransport->event_channel == NULL) {
3113 		return;
3114 	}
3115 
3116 	while (1) {
3117 		event_acked = false;
3118 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
3119 		if (rc) {
3120 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
3121 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
3122 			}
3123 			break;
3124 		}
3125 
3126 		SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
3127 
3128 		spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
3129 
3130 		switch (event->event) {
3131 		case RDMA_CM_EVENT_ADDR_RESOLVED:
3132 		case RDMA_CM_EVENT_ADDR_ERROR:
3133 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
3134 		case RDMA_CM_EVENT_ROUTE_ERROR:
3135 			/* No action required. The target never attempts to resolve routes. */
3136 			break;
3137 		case RDMA_CM_EVENT_CONNECT_REQUEST:
3138 			rc = nvmf_rdma_connect(transport, event);
3139 			if (rc < 0) {
3140 				SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
3141 				break;
3142 			}
3143 			break;
3144 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
3145 			/* The target never initiates a new connection. So this will not occur. */
3146 			break;
3147 		case RDMA_CM_EVENT_CONNECT_ERROR:
3148 			/* Can this happen? The docs say it can, but not sure what causes it. */
3149 			break;
3150 		case RDMA_CM_EVENT_UNREACHABLE:
3151 		case RDMA_CM_EVENT_REJECTED:
3152 			/* These only occur on the client side. */
3153 			break;
3154 		case RDMA_CM_EVENT_ESTABLISHED:
3155 			/* TODO: Should we be waiting for this event anywhere? */
3156 			break;
3157 		case RDMA_CM_EVENT_DISCONNECTED:
3158 			rc = nvmf_rdma_disconnect(event);
3159 			if (rc < 0) {
3160 				SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3161 				break;
3162 			}
3163 			break;
3164 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
3165 			/* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL
3166 			 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s.
3167 			 * Once these events are sent to SPDK, we should release all IB resources and
3168 			 * don't make attempts to call any ibv_query/modify/create functions. We can only call
3169 			 * ibv_destroy* functions to release user space memory allocated by IB. All kernel
3170 			 * resources are already cleaned. */
3171 			if (event->id->qp) {
3172 				/* If rdma_cm event has a valid `qp` pointer then the event refers to the
3173 				 * corresponding qpair. Otherwise the event refers to a listening device */
3174 				rc = nvmf_rdma_disconnect(event);
3175 				if (rc < 0) {
3176 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3177 					break;
3178 				}
3179 			} else {
3180 				nvmf_rdma_handle_cm_event_port_removal(transport, event);
3181 				event_acked = true;
3182 			}
3183 			break;
3184 		case RDMA_CM_EVENT_MULTICAST_JOIN:
3185 		case RDMA_CM_EVENT_MULTICAST_ERROR:
3186 			/* Multicast is not used */
3187 			break;
3188 		case RDMA_CM_EVENT_ADDR_CHANGE:
3189 			event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event);
3190 			break;
3191 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
3192 			/* For now, do nothing. The target never re-uses queue pairs. */
3193 			break;
3194 		default:
3195 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
3196 			break;
3197 		}
3198 		if (!event_acked) {
3199 			rdma_ack_cm_event(event);
3200 		}
3201 	}
3202 }
3203 
3204 static void
3205 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair)
3206 {
3207 	rqpair->last_wqe_reached = true;
3208 	nvmf_rdma_destroy_drained_qpair(rqpair);
3209 }
3210 
3211 static void
3212 nvmf_rdma_qpair_process_ibv_event(void *ctx)
3213 {
3214 	struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx;
3215 
3216 	if (event_ctx->rqpair) {
3217 		STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3218 		if (event_ctx->cb_fn) {
3219 			event_ctx->cb_fn(event_ctx->rqpair);
3220 		}
3221 	}
3222 	free(event_ctx);
3223 }
3224 
3225 static int
3226 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair,
3227 				 spdk_nvmf_rdma_qpair_ibv_event fn)
3228 {
3229 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx;
3230 	struct spdk_thread *thr = NULL;
3231 	int rc;
3232 
3233 	if (rqpair->qpair.group) {
3234 		thr = rqpair->qpair.group->thread;
3235 	} else if (rqpair->destruct_channel) {
3236 		thr = spdk_io_channel_get_thread(rqpair->destruct_channel);
3237 	}
3238 
3239 	if (!thr) {
3240 		SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair);
3241 		return -EINVAL;
3242 	}
3243 
3244 	ctx = calloc(1, sizeof(*ctx));
3245 	if (!ctx) {
3246 		return -ENOMEM;
3247 	}
3248 
3249 	ctx->rqpair = rqpair;
3250 	ctx->cb_fn = fn;
3251 	STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link);
3252 
3253 	rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx);
3254 	if (rc) {
3255 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3256 		free(ctx);
3257 	}
3258 
3259 	return rc;
3260 }
3261 
3262 static int
3263 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
3264 {
3265 	int				rc;
3266 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
3267 	struct ibv_async_event		event;
3268 
3269 	rc = ibv_get_async_event(device->context, &event);
3270 
3271 	if (rc) {
3272 		/* In non-blocking mode -1 means there are no events available */
3273 		return rc;
3274 	}
3275 
3276 	switch (event.event_type) {
3277 	case IBV_EVENT_QP_FATAL:
3278 		rqpair = event.element.qp->qp_context;
3279 		SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
3280 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3281 				  (uintptr_t)rqpair, event.event_type);
3282 		nvmf_rdma_update_ibv_state(rqpair);
3283 		spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3284 		break;
3285 	case IBV_EVENT_QP_LAST_WQE_REACHED:
3286 		/* This event only occurs for shared receive queues. */
3287 		rqpair = event.element.qp->qp_context;
3288 		SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair);
3289 		rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached);
3290 		if (rc) {
3291 			SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc);
3292 			rqpair->last_wqe_reached = true;
3293 		}
3294 		break;
3295 	case IBV_EVENT_SQ_DRAINED:
3296 		/* This event occurs frequently in both error and non-error states.
3297 		 * Check if the qpair is in an error state before sending a message. */
3298 		rqpair = event.element.qp->qp_context;
3299 		SPDK_DEBUGLOG(rdma, "Last sq drained event received for rqpair %p\n", rqpair);
3300 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3301 				  (uintptr_t)rqpair, event.event_type);
3302 		if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) {
3303 			spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3304 		}
3305 		break;
3306 	case IBV_EVENT_QP_REQ_ERR:
3307 	case IBV_EVENT_QP_ACCESS_ERR:
3308 	case IBV_EVENT_COMM_EST:
3309 	case IBV_EVENT_PATH_MIG:
3310 	case IBV_EVENT_PATH_MIG_ERR:
3311 		SPDK_NOTICELOG("Async event: %s\n",
3312 			       ibv_event_type_str(event.event_type));
3313 		rqpair = event.element.qp->qp_context;
3314 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3315 				  (uintptr_t)rqpair, event.event_type);
3316 		nvmf_rdma_update_ibv_state(rqpair);
3317 		break;
3318 	case IBV_EVENT_CQ_ERR:
3319 	case IBV_EVENT_DEVICE_FATAL:
3320 	case IBV_EVENT_PORT_ACTIVE:
3321 	case IBV_EVENT_PORT_ERR:
3322 	case IBV_EVENT_LID_CHANGE:
3323 	case IBV_EVENT_PKEY_CHANGE:
3324 	case IBV_EVENT_SM_CHANGE:
3325 	case IBV_EVENT_SRQ_ERR:
3326 	case IBV_EVENT_SRQ_LIMIT_REACHED:
3327 	case IBV_EVENT_CLIENT_REREGISTER:
3328 	case IBV_EVENT_GID_CHANGE:
3329 	default:
3330 		SPDK_NOTICELOG("Async event: %s\n",
3331 			       ibv_event_type_str(event.event_type));
3332 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
3333 		break;
3334 	}
3335 	ibv_ack_async_event(&event);
3336 
3337 	return 0;
3338 }
3339 
3340 static void
3341 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events)
3342 {
3343 	int rc = 0;
3344 	uint32_t i = 0;
3345 
3346 	for (i = 0; i < max_events; i++) {
3347 		rc = nvmf_process_ib_event(device);
3348 		if (rc) {
3349 			break;
3350 		}
3351 	}
3352 
3353 	SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i);
3354 }
3355 
3356 static int
3357 nvmf_rdma_accept(void *ctx)
3358 {
3359 	int	nfds, i = 0;
3360 	struct spdk_nvmf_transport *transport = ctx;
3361 	struct spdk_nvmf_rdma_transport *rtransport;
3362 	struct spdk_nvmf_rdma_device *device, *tmp;
3363 	uint32_t count;
3364 
3365 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3366 	count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
3367 
3368 	if (nfds <= 0) {
3369 		return SPDK_POLLER_IDLE;
3370 	}
3371 
3372 	/* The first poll descriptor is RDMA CM event */
3373 	if (rtransport->poll_fds[i++].revents & POLLIN) {
3374 		nvmf_process_cm_event(transport);
3375 		nfds--;
3376 	}
3377 
3378 	if (nfds == 0) {
3379 		return SPDK_POLLER_BUSY;
3380 	}
3381 
3382 	/* Second and subsequent poll descriptors are IB async events */
3383 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
3384 		if (rtransport->poll_fds[i++].revents & POLLIN) {
3385 			nvmf_process_ib_events(device, 32);
3386 			nfds--;
3387 		}
3388 	}
3389 	/* check all flagged fd's have been served */
3390 	assert(nfds == 0);
3391 
3392 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3393 }
3394 
3395 static void
3396 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem,
3397 		     struct spdk_nvmf_ctrlr_data *cdata)
3398 {
3399 	cdata->nvmf_specific.msdbd = SPDK_NVMF_MAX_SGL_ENTRIES;
3400 
3401 	/* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled
3402 	since in-capsule data only works with NVME drives that support SGL memory layout */
3403 	if (transport->opts.dif_insert_or_strip) {
3404 		cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16;
3405 	}
3406 
3407 	if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) {
3408 		SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule"
3409 			     " data is greater than 4KiB.\n");
3410 		SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux "
3411 			     "kernel between versions 5.4 and 5.12 data corruption may occur for "
3412 			     "writes that are not a multiple of 4KiB in size.\n");
3413 	}
3414 }
3415 
3416 static void
3417 nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
3418 		   struct spdk_nvme_transport_id *trid,
3419 		   struct spdk_nvmf_discovery_log_page_entry *entry)
3420 {
3421 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
3422 	entry->adrfam = trid->adrfam;
3423 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
3424 
3425 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
3426 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
3427 
3428 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
3429 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
3430 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
3431 }
3432 
3433 static void
3434 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
3435 
3436 static struct spdk_nvmf_transport_poll_group *
3437 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport,
3438 			    struct spdk_nvmf_poll_group *group)
3439 {
3440 	struct spdk_nvmf_rdma_transport		*rtransport;
3441 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3442 	struct spdk_nvmf_rdma_poller		*poller;
3443 	struct spdk_nvmf_rdma_device		*device;
3444 	struct spdk_rdma_srq_init_attr		srq_init_attr;
3445 	struct spdk_nvmf_rdma_resource_opts	opts;
3446 	int					num_cqe;
3447 
3448 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3449 
3450 	rgroup = calloc(1, sizeof(*rgroup));
3451 	if (!rgroup) {
3452 		return NULL;
3453 	}
3454 
3455 	TAILQ_INIT(&rgroup->pollers);
3456 
3457 	pthread_mutex_lock(&rtransport->lock);
3458 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3459 		poller = calloc(1, sizeof(*poller));
3460 		if (!poller) {
3461 			SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
3462 			nvmf_rdma_poll_group_destroy(&rgroup->group);
3463 			pthread_mutex_unlock(&rtransport->lock);
3464 			return NULL;
3465 		}
3466 
3467 		poller->device = device;
3468 		poller->group = rgroup;
3469 
3470 		RB_INIT(&poller->qpairs);
3471 		STAILQ_INIT(&poller->qpairs_pending_send);
3472 		STAILQ_INIT(&poller->qpairs_pending_recv);
3473 
3474 		TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
3475 		if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) {
3476 			if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) {
3477 				SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n",
3478 					     rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr);
3479 			}
3480 			poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr);
3481 
3482 			device->num_srq++;
3483 			memset(&srq_init_attr, 0, sizeof(srq_init_attr));
3484 			srq_init_attr.pd = device->pd;
3485 			srq_init_attr.stats = &poller->stat.qp_stats.recv;
3486 			srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth;
3487 			srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
3488 			poller->srq = spdk_rdma_srq_create(&srq_init_attr);
3489 			if (!poller->srq) {
3490 				SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
3491 				nvmf_rdma_poll_group_destroy(&rgroup->group);
3492 				pthread_mutex_unlock(&rtransport->lock);
3493 				return NULL;
3494 			}
3495 
3496 			opts.qp = poller->srq;
3497 			opts.pd = device->pd;
3498 			opts.qpair = NULL;
3499 			opts.shared = true;
3500 			opts.max_queue_depth = poller->max_srq_depth;
3501 			opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
3502 
3503 			poller->resources = nvmf_rdma_resources_create(&opts);
3504 			if (!poller->resources) {
3505 				SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
3506 				nvmf_rdma_poll_group_destroy(&rgroup->group);
3507 				pthread_mutex_unlock(&rtransport->lock);
3508 				return NULL;
3509 			}
3510 		}
3511 
3512 		/*
3513 		 * When using an srq, we can limit the completion queue at startup.
3514 		 * The following formula represents the calculation:
3515 		 * num_cqe = num_recv + num_data_wr + num_send_wr.
3516 		 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
3517 		 */
3518 		if (poller->srq) {
3519 			num_cqe = poller->max_srq_depth * 3;
3520 		} else {
3521 			num_cqe = rtransport->rdma_opts.num_cqe;
3522 		}
3523 
3524 		poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
3525 		if (!poller->cq) {
3526 			SPDK_ERRLOG("Unable to create completion queue\n");
3527 			nvmf_rdma_poll_group_destroy(&rgroup->group);
3528 			pthread_mutex_unlock(&rtransport->lock);
3529 			return NULL;
3530 		}
3531 		poller->num_cqe = num_cqe;
3532 	}
3533 
3534 	TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link);
3535 	if (rtransport->conn_sched.next_admin_pg == NULL) {
3536 		rtransport->conn_sched.next_admin_pg = rgroup;
3537 		rtransport->conn_sched.next_io_pg = rgroup;
3538 	}
3539 
3540 	pthread_mutex_unlock(&rtransport->lock);
3541 	return &rgroup->group;
3542 }
3543 
3544 static struct spdk_nvmf_transport_poll_group *
3545 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
3546 {
3547 	struct spdk_nvmf_rdma_transport *rtransport;
3548 	struct spdk_nvmf_rdma_poll_group **pg;
3549 	struct spdk_nvmf_transport_poll_group *result;
3550 
3551 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
3552 
3553 	pthread_mutex_lock(&rtransport->lock);
3554 
3555 	if (TAILQ_EMPTY(&rtransport->poll_groups)) {
3556 		pthread_mutex_unlock(&rtransport->lock);
3557 		return NULL;
3558 	}
3559 
3560 	if (qpair->qid == 0) {
3561 		pg = &rtransport->conn_sched.next_admin_pg;
3562 	} else {
3563 		pg = &rtransport->conn_sched.next_io_pg;
3564 	}
3565 
3566 	assert(*pg != NULL);
3567 
3568 	result = &(*pg)->group;
3569 
3570 	*pg = TAILQ_NEXT(*pg, link);
3571 	if (*pg == NULL) {
3572 		*pg = TAILQ_FIRST(&rtransport->poll_groups);
3573 	}
3574 
3575 	pthread_mutex_unlock(&rtransport->lock);
3576 
3577 	return result;
3578 }
3579 
3580 static void
3581 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
3582 {
3583 	struct spdk_nvmf_rdma_poll_group	*rgroup, *next_rgroup;
3584 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
3585 	struct spdk_nvmf_rdma_qpair		*qpair, *tmp_qpair;
3586 	struct spdk_nvmf_rdma_transport		*rtransport;
3587 
3588 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3589 	if (!rgroup) {
3590 		return;
3591 	}
3592 
3593 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
3594 		TAILQ_REMOVE(&rgroup->pollers, poller, link);
3595 
3596 		RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) {
3597 			nvmf_rdma_qpair_destroy(qpair);
3598 		}
3599 
3600 		if (poller->srq) {
3601 			if (poller->resources) {
3602 				nvmf_rdma_resources_destroy(poller->resources);
3603 			}
3604 			spdk_rdma_srq_destroy(poller->srq);
3605 			SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq);
3606 		}
3607 
3608 		if (poller->cq) {
3609 			ibv_destroy_cq(poller->cq);
3610 		}
3611 
3612 		free(poller);
3613 	}
3614 
3615 	if (rgroup->group.transport == NULL) {
3616 		/* Transport can be NULL when nvmf_rdma_poll_group_create()
3617 		 * calls this function directly in a failure path. */
3618 		free(rgroup);
3619 		return;
3620 	}
3621 
3622 	rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport);
3623 
3624 	pthread_mutex_lock(&rtransport->lock);
3625 	next_rgroup = TAILQ_NEXT(rgroup, link);
3626 	TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link);
3627 	if (next_rgroup == NULL) {
3628 		next_rgroup = TAILQ_FIRST(&rtransport->poll_groups);
3629 	}
3630 	if (rtransport->conn_sched.next_admin_pg == rgroup) {
3631 		rtransport->conn_sched.next_admin_pg = next_rgroup;
3632 	}
3633 	if (rtransport->conn_sched.next_io_pg == rgroup) {
3634 		rtransport->conn_sched.next_io_pg = next_rgroup;
3635 	}
3636 	pthread_mutex_unlock(&rtransport->lock);
3637 
3638 	free(rgroup);
3639 }
3640 
3641 static void
3642 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
3643 {
3644 	if (rqpair->cm_id != NULL) {
3645 		nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
3646 	}
3647 }
3648 
3649 static int
3650 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3651 			 struct spdk_nvmf_qpair *qpair)
3652 {
3653 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3654 	struct spdk_nvmf_rdma_qpair		*rqpair;
3655 	struct spdk_nvmf_rdma_device		*device;
3656 	struct spdk_nvmf_rdma_poller		*poller;
3657 	int					rc;
3658 
3659 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3660 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3661 
3662 	device = rqpair->device;
3663 
3664 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
3665 		if (poller->device == device) {
3666 			break;
3667 		}
3668 	}
3669 
3670 	if (!poller) {
3671 		SPDK_ERRLOG("No poller found for device.\n");
3672 		return -1;
3673 	}
3674 
3675 	rqpair->poller = poller;
3676 	rqpair->srq = rqpair->poller->srq;
3677 
3678 	rc = nvmf_rdma_qpair_initialize(qpair);
3679 	if (rc < 0) {
3680 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
3681 		rqpair->poller = NULL;
3682 		rqpair->srq = NULL;
3683 		return -1;
3684 	}
3685 
3686 	RB_INSERT(qpairs_tree, &poller->qpairs, rqpair);
3687 
3688 	rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
3689 	if (rc) {
3690 		/* Try to reject, but we probably can't */
3691 		nvmf_rdma_qpair_reject_connection(rqpair);
3692 		return -1;
3693 	}
3694 
3695 	nvmf_rdma_update_ibv_state(rqpair);
3696 
3697 	return 0;
3698 }
3699 
3700 static int
3701 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3702 			    struct spdk_nvmf_qpair *qpair)
3703 {
3704 	struct spdk_nvmf_rdma_qpair		*rqpair;
3705 
3706 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3707 	assert(group->transport->tgt != NULL);
3708 
3709 	rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt);
3710 
3711 	if (!rqpair->destruct_channel) {
3712 		SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair);
3713 		return 0;
3714 	}
3715 
3716 	/* Sanity check that we get io_channel on the correct thread */
3717 	if (qpair->group) {
3718 		assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel));
3719 	}
3720 
3721 	return 0;
3722 }
3723 
3724 static int
3725 nvmf_rdma_request_free(struct spdk_nvmf_request *req)
3726 {
3727 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3728 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3729 			struct spdk_nvmf_rdma_transport, transport);
3730 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
3731 					      struct spdk_nvmf_rdma_qpair, qpair);
3732 
3733 	/*
3734 	 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request
3735 	 * needs to be returned to the shared receive queue or the poll group will eventually be
3736 	 * starved of RECV structures.
3737 	 */
3738 	if (rqpair->srq && rdma_req->recv) {
3739 		int rc;
3740 		struct ibv_recv_wr *bad_recv_wr;
3741 
3742 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr);
3743 		rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
3744 		if (rc) {
3745 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
3746 		}
3747 	}
3748 
3749 	_nvmf_rdma_request_free(rdma_req, rtransport);
3750 	return 0;
3751 }
3752 
3753 static int
3754 nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
3755 {
3756 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3757 			struct spdk_nvmf_rdma_transport, transport);
3758 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
3759 			struct spdk_nvmf_rdma_request, req);
3760 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
3761 			struct spdk_nvmf_rdma_qpair, qpair);
3762 
3763 	if (rqpair->ibv_state != IBV_QPS_ERR) {
3764 		/* The connection is alive, so process the request as normal */
3765 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
3766 	} else {
3767 		/* The connection is dead. Move the request directly to the completed state. */
3768 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3769 	}
3770 
3771 	nvmf_rdma_request_process(rtransport, rdma_req);
3772 
3773 	return 0;
3774 }
3775 
3776 static void
3777 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair,
3778 		      spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3779 {
3780 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3781 
3782 	rqpair->to_close = true;
3783 
3784 	/* This happens only when the qpair is disconnected before
3785 	 * it is added to the poll group. Since there is no poll group,
3786 	 * the RDMA qp has not been initialized yet and the RDMA CM
3787 	 * event has not yet been acknowledged, so we need to reject it.
3788 	 */
3789 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
3790 		nvmf_rdma_qpair_reject_connection(rqpair);
3791 		nvmf_rdma_qpair_destroy(rqpair);
3792 		return;
3793 	}
3794 
3795 	if (rqpair->rdma_qp) {
3796 		spdk_rdma_qp_disconnect(rqpair->rdma_qp);
3797 	}
3798 
3799 	nvmf_rdma_destroy_drained_qpair(rqpair);
3800 
3801 	if (cb_fn) {
3802 		cb_fn(cb_arg);
3803 	}
3804 }
3805 
3806 static struct spdk_nvmf_rdma_qpair *
3807 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
3808 {
3809 	struct spdk_nvmf_rdma_qpair find;
3810 
3811 	find.qp_num = wc->qp_num;
3812 
3813 	return RB_FIND(qpairs_tree, &rpoller->qpairs, &find);
3814 }
3815 
3816 #ifdef DEBUG
3817 static int
3818 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
3819 {
3820 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
3821 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
3822 }
3823 #endif
3824 
3825 static void
3826 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr,
3827 			   int rc)
3828 {
3829 	struct spdk_nvmf_rdma_recv	*rdma_recv;
3830 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
3831 
3832 	SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc);
3833 	while (bad_recv_wr != NULL) {
3834 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id;
3835 		rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
3836 
3837 		rdma_recv->qpair->current_recv_depth++;
3838 		bad_recv_wr = bad_recv_wr->next;
3839 		SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc);
3840 		spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair, NULL, NULL);
3841 	}
3842 }
3843 
3844 static void
3845 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc)
3846 {
3847 	SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc);
3848 	while (bad_recv_wr != NULL) {
3849 		bad_recv_wr = bad_recv_wr->next;
3850 		rqpair->current_recv_depth++;
3851 	}
3852 	spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3853 }
3854 
3855 static void
3856 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
3857 		     struct spdk_nvmf_rdma_poller *rpoller)
3858 {
3859 	struct spdk_nvmf_rdma_qpair	*rqpair;
3860 	struct ibv_recv_wr		*bad_recv_wr;
3861 	int				rc;
3862 
3863 	if (rpoller->srq) {
3864 		rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr);
3865 		if (rc) {
3866 			_poller_reset_failed_recvs(rpoller, bad_recv_wr, rc);
3867 		}
3868 	} else {
3869 		while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) {
3870 			rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv);
3871 			rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
3872 			if (rc) {
3873 				_qp_reset_failed_recvs(rqpair, bad_recv_wr, rc);
3874 			}
3875 			STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link);
3876 		}
3877 	}
3878 }
3879 
3880 static void
3881 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport,
3882 		       struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc)
3883 {
3884 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
3885 	struct spdk_nvmf_rdma_request	*prev_rdma_req = NULL, *cur_rdma_req = NULL;
3886 
3887 	SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc);
3888 	for (; bad_wr != NULL; bad_wr = bad_wr->next) {
3889 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id;
3890 		assert(rqpair->current_send_depth > 0);
3891 		rqpair->current_send_depth--;
3892 		switch (bad_rdma_wr->type) {
3893 		case RDMA_WR_TYPE_DATA:
3894 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
3895 			if (bad_wr->opcode == IBV_WR_RDMA_READ) {
3896 				assert(rqpair->current_read_depth > 0);
3897 				rqpair->current_read_depth--;
3898 			}
3899 			break;
3900 		case RDMA_WR_TYPE_SEND:
3901 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
3902 			break;
3903 		default:
3904 			SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair);
3905 			prev_rdma_req = cur_rdma_req;
3906 			continue;
3907 		}
3908 
3909 		if (prev_rdma_req == cur_rdma_req) {
3910 			/* this request was handled by an earlier wr. i.e. we were performing an nvme read. */
3911 			/* We only have to check against prev_wr since each requests wrs are contiguous in this list. */
3912 			continue;
3913 		}
3914 
3915 		switch (cur_rdma_req->state) {
3916 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3917 			cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
3918 			cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
3919 			break;
3920 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3921 		case RDMA_REQUEST_STATE_COMPLETING:
3922 			cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3923 			break;
3924 		default:
3925 			SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n",
3926 				    cur_rdma_req->state, rqpair);
3927 			continue;
3928 		}
3929 
3930 		nvmf_rdma_request_process(rtransport, cur_rdma_req);
3931 		prev_rdma_req = cur_rdma_req;
3932 	}
3933 
3934 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
3935 		/* Disconnect the connection. */
3936 		spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3937 	}
3938 
3939 }
3940 
3941 static void
3942 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
3943 		     struct spdk_nvmf_rdma_poller *rpoller)
3944 {
3945 	struct spdk_nvmf_rdma_qpair	*rqpair;
3946 	struct ibv_send_wr		*bad_wr = NULL;
3947 	int				rc;
3948 
3949 	while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) {
3950 		rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send);
3951 		rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr);
3952 
3953 		/* bad wr always points to the first wr that failed. */
3954 		if (rc) {
3955 			_qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc);
3956 		}
3957 		STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link);
3958 	}
3959 }
3960 
3961 static const char *
3962 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type)
3963 {
3964 	switch (wr_type) {
3965 	case RDMA_WR_TYPE_RECV:
3966 		return "RECV";
3967 	case RDMA_WR_TYPE_SEND:
3968 		return "SEND";
3969 	case RDMA_WR_TYPE_DATA:
3970 		return "DATA";
3971 	default:
3972 		SPDK_ERRLOG("Unknown WR type %d\n", wr_type);
3973 		SPDK_UNREACHABLE();
3974 	}
3975 }
3976 
3977 static inline void
3978 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc)
3979 {
3980 	enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type;
3981 
3982 	if (wc->status == IBV_WC_WR_FLUSH_ERR) {
3983 		/* If qpair is in ERR state, we will receive completions for all posted and not completed
3984 		 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
3985 		SPDK_DEBUGLOG(rdma,
3986 			      "Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n",
3987 			      rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id,
3988 			      nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
3989 	} else {
3990 		SPDK_ERRLOG("Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n",
3991 			    rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id,
3992 			    nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
3993 	}
3994 }
3995 
3996 static int
3997 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
3998 		      struct spdk_nvmf_rdma_poller *rpoller)
3999 {
4000 	struct ibv_wc wc[32];
4001 	struct spdk_nvmf_rdma_wr	*rdma_wr;
4002 	struct spdk_nvmf_rdma_request	*rdma_req;
4003 	struct spdk_nvmf_rdma_recv	*rdma_recv;
4004 	struct spdk_nvmf_rdma_qpair	*rqpair;
4005 	int reaped, i;
4006 	int count = 0;
4007 	bool error = false;
4008 	uint64_t poll_tsc = spdk_get_ticks();
4009 
4010 	/* Poll for completing operations. */
4011 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
4012 	if (reaped < 0) {
4013 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
4014 			    errno, spdk_strerror(errno));
4015 		return -1;
4016 	} else if (reaped == 0) {
4017 		rpoller->stat.idle_polls++;
4018 	}
4019 
4020 	rpoller->stat.polls++;
4021 	rpoller->stat.completions += reaped;
4022 
4023 	for (i = 0; i < reaped; i++) {
4024 
4025 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
4026 
4027 		switch (rdma_wr->type) {
4028 		case RDMA_WR_TYPE_SEND:
4029 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
4030 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4031 
4032 			if (!wc[i].status) {
4033 				count++;
4034 				assert(wc[i].opcode == IBV_WC_SEND);
4035 				assert(nvmf_rdma_req_is_completing(rdma_req));
4036 			}
4037 
4038 			rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4039 			/* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */
4040 			rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1;
4041 			rdma_req->num_outstanding_data_wr = 0;
4042 
4043 			nvmf_rdma_request_process(rtransport, rdma_req);
4044 			break;
4045 		case RDMA_WR_TYPE_RECV:
4046 			/* rdma_recv->qpair will be invalid if using an SRQ.  In that case we have to get the qpair from the wc. */
4047 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4048 			if (rpoller->srq != NULL) {
4049 				rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
4050 				/* It is possible that there are still some completions for destroyed QP
4051 				 * associated with SRQ. We just ignore these late completions and re-post
4052 				 * receive WRs back to SRQ.
4053 				 */
4054 				if (spdk_unlikely(NULL == rdma_recv->qpair)) {
4055 					struct ibv_recv_wr *bad_wr;
4056 					int rc;
4057 
4058 					rdma_recv->wr.next = NULL;
4059 					spdk_rdma_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr);
4060 					rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_wr);
4061 					if (rc) {
4062 						SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc);
4063 					}
4064 					continue;
4065 				}
4066 			}
4067 			rqpair = rdma_recv->qpair;
4068 
4069 			assert(rqpair != NULL);
4070 			if (!wc[i].status) {
4071 				assert(wc[i].opcode == IBV_WC_RECV);
4072 				if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
4073 					spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4074 					break;
4075 				}
4076 			}
4077 
4078 			rdma_recv->wr.next = NULL;
4079 			rqpair->current_recv_depth++;
4080 			rdma_recv->receive_tsc = poll_tsc;
4081 			rpoller->stat.requests++;
4082 			STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link);
4083 			break;
4084 		case RDMA_WR_TYPE_DATA:
4085 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
4086 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4087 
4088 			assert(rdma_req->num_outstanding_data_wr > 0);
4089 
4090 			rqpair->current_send_depth--;
4091 			rdma_req->num_outstanding_data_wr--;
4092 			if (!wc[i].status) {
4093 				assert(wc[i].opcode == IBV_WC_RDMA_READ);
4094 				rqpair->current_read_depth--;
4095 				/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
4096 				if (rdma_req->num_outstanding_data_wr == 0) {
4097 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
4098 					nvmf_rdma_request_process(rtransport, rdma_req);
4099 				}
4100 			} else {
4101 				/* If the data transfer fails still force the queue into the error state,
4102 				 * if we were performing an RDMA_READ, we need to force the request into a
4103 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
4104 				 * case, we should wait for the SEND to complete. */
4105 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
4106 					rqpair->current_read_depth--;
4107 					if (rdma_req->num_outstanding_data_wr == 0) {
4108 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4109 					}
4110 				}
4111 			}
4112 			break;
4113 		default:
4114 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
4115 			continue;
4116 		}
4117 
4118 		/* Handle error conditions */
4119 		if (wc[i].status) {
4120 			nvmf_rdma_update_ibv_state(rqpair);
4121 			nvmf_rdma_log_wc_status(rqpair, &wc[i]);
4122 
4123 			error = true;
4124 
4125 			if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
4126 				/* Disconnect the connection. */
4127 				spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4128 			} else {
4129 				nvmf_rdma_destroy_drained_qpair(rqpair);
4130 			}
4131 			continue;
4132 		}
4133 
4134 		nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
4135 
4136 		if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
4137 			nvmf_rdma_destroy_drained_qpair(rqpair);
4138 		}
4139 	}
4140 
4141 	if (error == true) {
4142 		return -1;
4143 	}
4144 
4145 	/* submit outstanding work requests. */
4146 	_poller_submit_recvs(rtransport, rpoller);
4147 	_poller_submit_sends(rtransport, rpoller);
4148 
4149 	return count;
4150 }
4151 
4152 static int
4153 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
4154 {
4155 	struct spdk_nvmf_rdma_transport *rtransport;
4156 	struct spdk_nvmf_rdma_poll_group *rgroup;
4157 	struct spdk_nvmf_rdma_poller	*rpoller;
4158 	int				count, rc;
4159 
4160 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
4161 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4162 
4163 	count = 0;
4164 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
4165 		rc = nvmf_rdma_poller_poll(rtransport, rpoller);
4166 		if (rc < 0) {
4167 			return rc;
4168 		}
4169 		count += rc;
4170 	}
4171 
4172 	return count;
4173 }
4174 
4175 static int
4176 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
4177 			  struct spdk_nvme_transport_id *trid,
4178 			  bool peer)
4179 {
4180 	struct sockaddr *saddr;
4181 	uint16_t port;
4182 
4183 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA);
4184 
4185 	if (peer) {
4186 		saddr = rdma_get_peer_addr(id);
4187 	} else {
4188 		saddr = rdma_get_local_addr(id);
4189 	}
4190 	switch (saddr->sa_family) {
4191 	case AF_INET: {
4192 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
4193 
4194 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
4195 		inet_ntop(AF_INET, &saddr_in->sin_addr,
4196 			  trid->traddr, sizeof(trid->traddr));
4197 		if (peer) {
4198 			port = ntohs(rdma_get_dst_port(id));
4199 		} else {
4200 			port = ntohs(rdma_get_src_port(id));
4201 		}
4202 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4203 		break;
4204 	}
4205 	case AF_INET6: {
4206 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
4207 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
4208 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
4209 			  trid->traddr, sizeof(trid->traddr));
4210 		if (peer) {
4211 			port = ntohs(rdma_get_dst_port(id));
4212 		} else {
4213 			port = ntohs(rdma_get_src_port(id));
4214 		}
4215 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4216 		break;
4217 	}
4218 	default:
4219 		return -1;
4220 
4221 	}
4222 
4223 	return 0;
4224 }
4225 
4226 static int
4227 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
4228 			      struct spdk_nvme_transport_id *trid)
4229 {
4230 	struct spdk_nvmf_rdma_qpair	*rqpair;
4231 
4232 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4233 
4234 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
4235 }
4236 
4237 static int
4238 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
4239 			       struct spdk_nvme_transport_id *trid)
4240 {
4241 	struct spdk_nvmf_rdma_qpair	*rqpair;
4242 
4243 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4244 
4245 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
4246 }
4247 
4248 static int
4249 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
4250 				struct spdk_nvme_transport_id *trid)
4251 {
4252 	struct spdk_nvmf_rdma_qpair	*rqpair;
4253 
4254 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4255 
4256 	return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
4257 }
4258 
4259 void
4260 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
4261 {
4262 	g_nvmf_hooks = *hooks;
4263 }
4264 
4265 static void
4266 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req,
4267 				   struct spdk_nvmf_rdma_request *rdma_req_to_abort)
4268 {
4269 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
4270 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
4271 
4272 	rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
4273 
4274 	req->rsp->nvme_cpl.cdw0 &= ~1U;	/* Command was successfully aborted. */
4275 }
4276 
4277 static int
4278 _nvmf_rdma_qpair_abort_request(void *ctx)
4279 {
4280 	struct spdk_nvmf_request *req = ctx;
4281 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF(
4282 				req->req_to_abort, struct spdk_nvmf_rdma_request, req);
4283 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
4284 					      struct spdk_nvmf_rdma_qpair, qpair);
4285 	int rc;
4286 
4287 	spdk_poller_unregister(&req->poller);
4288 
4289 	switch (rdma_req_to_abort->state) {
4290 	case RDMA_REQUEST_STATE_EXECUTING:
4291 		rc = nvmf_ctrlr_abort_request(req);
4292 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
4293 			return SPDK_POLLER_BUSY;
4294 		}
4295 		break;
4296 
4297 	case RDMA_REQUEST_STATE_NEED_BUFFER:
4298 		STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue,
4299 			      &rdma_req_to_abort->req, spdk_nvmf_request, buf_link);
4300 
4301 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4302 		break;
4303 
4304 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
4305 		STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort,
4306 			      spdk_nvmf_rdma_request, state_link);
4307 
4308 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4309 		break;
4310 
4311 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
4312 		STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort,
4313 			      spdk_nvmf_rdma_request, state_link);
4314 
4315 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4316 		break;
4317 
4318 	case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
4319 		if (spdk_get_ticks() < req->timeout_tsc) {
4320 			req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0);
4321 			return SPDK_POLLER_BUSY;
4322 		}
4323 		break;
4324 
4325 	default:
4326 		break;
4327 	}
4328 
4329 	spdk_nvmf_request_complete(req);
4330 	return SPDK_POLLER_BUSY;
4331 }
4332 
4333 static void
4334 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
4335 			      struct spdk_nvmf_request *req)
4336 {
4337 	struct spdk_nvmf_rdma_qpair *rqpair;
4338 	struct spdk_nvmf_rdma_transport *rtransport;
4339 	struct spdk_nvmf_transport *transport;
4340 	uint16_t cid;
4341 	uint32_t i, max_req_count;
4342 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req;
4343 
4344 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4345 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
4346 	transport = &rtransport->transport;
4347 
4348 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
4349 	max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth;
4350 
4351 	for (i = 0; i < max_req_count; i++) {
4352 		rdma_req = &rqpair->resources->reqs[i];
4353 		/* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair
4354 		 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to
4355 		 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */
4356 		if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid &&
4357 		    rdma_req->req.qpair == qpair) {
4358 			rdma_req_to_abort = rdma_req;
4359 			break;
4360 		}
4361 	}
4362 
4363 	if (rdma_req_to_abort == NULL) {
4364 		spdk_nvmf_request_complete(req);
4365 		return;
4366 	}
4367 
4368 	req->req_to_abort = &rdma_req_to_abort->req;
4369 	req->timeout_tsc = spdk_get_ticks() +
4370 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
4371 	req->poller = NULL;
4372 
4373 	_nvmf_rdma_qpair_abort_request(req);
4374 }
4375 
4376 static void
4377 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group,
4378 			       struct spdk_json_write_ctx *w)
4379 {
4380 	struct spdk_nvmf_rdma_poll_group *rgroup;
4381 	struct spdk_nvmf_rdma_poller *rpoller;
4382 
4383 	assert(w != NULL);
4384 
4385 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4386 
4387 	spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer);
4388 
4389 	spdk_json_write_named_array_begin(w, "devices");
4390 
4391 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
4392 		spdk_json_write_object_begin(w);
4393 		spdk_json_write_named_string(w, "name",
4394 					     ibv_get_device_name(rpoller->device->context->device));
4395 		spdk_json_write_named_uint64(w, "polls",
4396 					     rpoller->stat.polls);
4397 		spdk_json_write_named_uint64(w, "idle_polls",
4398 					     rpoller->stat.idle_polls);
4399 		spdk_json_write_named_uint64(w, "completions",
4400 					     rpoller->stat.completions);
4401 		spdk_json_write_named_uint64(w, "requests",
4402 					     rpoller->stat.requests);
4403 		spdk_json_write_named_uint64(w, "request_latency",
4404 					     rpoller->stat.request_latency);
4405 		spdk_json_write_named_uint64(w, "pending_free_request",
4406 					     rpoller->stat.pending_free_request);
4407 		spdk_json_write_named_uint64(w, "pending_rdma_read",
4408 					     rpoller->stat.pending_rdma_read);
4409 		spdk_json_write_named_uint64(w, "pending_rdma_write",
4410 					     rpoller->stat.pending_rdma_write);
4411 		spdk_json_write_named_uint64(w, "total_send_wrs",
4412 					     rpoller->stat.qp_stats.send.num_submitted_wrs);
4413 		spdk_json_write_named_uint64(w, "send_doorbell_updates",
4414 					     rpoller->stat.qp_stats.send.doorbell_updates);
4415 		spdk_json_write_named_uint64(w, "total_recv_wrs",
4416 					     rpoller->stat.qp_stats.recv.num_submitted_wrs);
4417 		spdk_json_write_named_uint64(w, "recv_doorbell_updates",
4418 					     rpoller->stat.qp_stats.recv.doorbell_updates);
4419 		spdk_json_write_object_end(w);
4420 	}
4421 
4422 	spdk_json_write_array_end(w);
4423 }
4424 
4425 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
4426 	.name = "RDMA",
4427 	.type = SPDK_NVME_TRANSPORT_RDMA,
4428 	.opts_init = nvmf_rdma_opts_init,
4429 	.create = nvmf_rdma_create,
4430 	.dump_opts = nvmf_rdma_dump_opts,
4431 	.destroy = nvmf_rdma_destroy,
4432 
4433 	.listen = nvmf_rdma_listen,
4434 	.stop_listen = nvmf_rdma_stop_listen,
4435 	.cdata_init = nvmf_rdma_cdata_init,
4436 
4437 	.listener_discover = nvmf_rdma_discover,
4438 
4439 	.poll_group_create = nvmf_rdma_poll_group_create,
4440 	.get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group,
4441 	.poll_group_destroy = nvmf_rdma_poll_group_destroy,
4442 	.poll_group_add = nvmf_rdma_poll_group_add,
4443 	.poll_group_remove = nvmf_rdma_poll_group_remove,
4444 	.poll_group_poll = nvmf_rdma_poll_group_poll,
4445 
4446 	.req_free = nvmf_rdma_request_free,
4447 	.req_complete = nvmf_rdma_request_complete,
4448 
4449 	.qpair_fini = nvmf_rdma_close_qpair,
4450 	.qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid,
4451 	.qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid,
4452 	.qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid,
4453 	.qpair_abort_request = nvmf_rdma_qpair_abort_request,
4454 
4455 	.poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat,
4456 };
4457 
4458 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma);
4459 SPDK_LOG_REGISTER_COMPONENT(rdma)
4460