xref: /spdk/lib/nvmf/rdma.c (revision 3f4d7f965e99abddc70c6bbe4d18de58d18b2da1)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "spdk/config.h"
10 #include "spdk/thread.h"
11 #include "spdk/likely.h"
12 #include "spdk/nvmf_transport.h"
13 #include "spdk/string.h"
14 #include "spdk/trace.h"
15 #include "spdk/tree.h"
16 #include "spdk/util.h"
17 
18 #include "spdk_internal/assert.h"
19 #include "spdk/log.h"
20 #include "spdk_internal/rdma.h"
21 
22 #include "nvmf_internal.h"
23 #include "transport.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
28 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma;
29 
30 /*
31  RDMA Connection Resource Defaults
32  */
33 #define NVMF_DEFAULT_MSDBD		16
34 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
35 #define NVMF_DEFAULT_RSP_SGE		1
36 #define NVMF_DEFAULT_RX_SGE		2
37 
38 SPDK_STATIC_ASSERT(NVMF_DEFAULT_MSDBD <= SPDK_NVMF_MAX_SGL_ENTRIES,
39 		   "MSDBD must not exceed SPDK_NVMF_MAX_SGL_ENTRIES");
40 
41 /* The RDMA completion queue size */
42 #define DEFAULT_NVMF_RDMA_CQ_SIZE	4096
43 #define MAX_WR_PER_QP(queue_depth)	(queue_depth * 3 + 2)
44 
45 static int g_spdk_nvmf_ibv_query_mask =
46 	IBV_QP_STATE |
47 	IBV_QP_PKEY_INDEX |
48 	IBV_QP_PORT |
49 	IBV_QP_ACCESS_FLAGS |
50 	IBV_QP_AV |
51 	IBV_QP_PATH_MTU |
52 	IBV_QP_DEST_QPN |
53 	IBV_QP_RQ_PSN |
54 	IBV_QP_MAX_DEST_RD_ATOMIC |
55 	IBV_QP_MIN_RNR_TIMER |
56 	IBV_QP_SQ_PSN |
57 	IBV_QP_TIMEOUT |
58 	IBV_QP_RETRY_CNT |
59 	IBV_QP_RNR_RETRY |
60 	IBV_QP_MAX_QP_RD_ATOMIC;
61 
62 enum spdk_nvmf_rdma_request_state {
63 	/* The request is not currently in use */
64 	RDMA_REQUEST_STATE_FREE = 0,
65 
66 	/* Initial state when request first received */
67 	RDMA_REQUEST_STATE_NEW,
68 
69 	/* The request is queued until a data buffer is available. */
70 	RDMA_REQUEST_STATE_NEED_BUFFER,
71 
72 	/* The request is waiting on RDMA queue depth availability
73 	 * to transfer data from the host to the controller.
74 	 */
75 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
76 
77 	/* The request is currently transferring data from the host to the controller. */
78 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
79 
80 	/* The request is ready to execute at the block device */
81 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
82 
83 	/* The request is currently executing at the block device */
84 	RDMA_REQUEST_STATE_EXECUTING,
85 
86 	/* The request finished executing at the block device */
87 	RDMA_REQUEST_STATE_EXECUTED,
88 
89 	/* The request is waiting on RDMA queue depth availability
90 	 * to transfer data from the controller to the host.
91 	 */
92 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
93 
94 	/* The request is ready to send a completion */
95 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
96 
97 	/* The request is currently transferring data from the controller to the host. */
98 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
99 
100 	/* The request currently has an outstanding completion without an
101 	 * associated data transfer.
102 	 */
103 	RDMA_REQUEST_STATE_COMPLETING,
104 
105 	/* The request completed and can be marked free. */
106 	RDMA_REQUEST_STATE_COMPLETED,
107 
108 	/* Terminator */
109 	RDMA_REQUEST_NUM_STATES,
110 };
111 
112 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
113 {
114 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
115 	spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW,
116 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1,
117 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
118 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
119 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
120 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
121 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H",
122 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
123 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
124 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
125 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C",
126 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
127 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
128 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
129 	spdk_trace_register_description("RDMA_REQ_TX_H2C",
130 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
131 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
132 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
133 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE",
134 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
135 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
136 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
137 	spdk_trace_register_description("RDMA_REQ_EXECUTING",
138 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
139 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
140 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
141 	spdk_trace_register_description("RDMA_REQ_EXECUTED",
142 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
143 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
144 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
145 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL",
146 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
147 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
148 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
149 	spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H",
150 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
151 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
152 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
153 	spdk_trace_register_description("RDMA_REQ_COMPLETING",
154 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
155 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
156 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
157 	spdk_trace_register_description("RDMA_REQ_COMPLETED",
158 					TRACE_RDMA_REQUEST_STATE_COMPLETED,
159 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
160 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
161 
162 	spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE,
163 					OWNER_NONE, OBJECT_NONE, 0,
164 					SPDK_TRACE_ARG_TYPE_INT, "");
165 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT,
166 					OWNER_NONE, OBJECT_NONE, 0,
167 					SPDK_TRACE_ARG_TYPE_INT, "type");
168 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT,
169 					OWNER_NONE, OBJECT_NONE, 0,
170 					SPDK_TRACE_ARG_TYPE_INT, "type");
171 	spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE,
172 					OWNER_NONE, OBJECT_NONE, 0,
173 					SPDK_TRACE_ARG_TYPE_PTR, "state");
174 	spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT,
175 					OWNER_NONE, OBJECT_NONE, 0,
176 					SPDK_TRACE_ARG_TYPE_INT, "");
177 	spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY,
178 					OWNER_NONE, OBJECT_NONE, 0,
179 					SPDK_TRACE_ARG_TYPE_INT, "");
180 }
181 
182 enum spdk_nvmf_rdma_wr_type {
183 	RDMA_WR_TYPE_RECV,
184 	RDMA_WR_TYPE_SEND,
185 	RDMA_WR_TYPE_DATA,
186 };
187 
188 struct spdk_nvmf_rdma_wr {
189 	/* Uses enum spdk_nvmf_rdma_wr_type */
190 	uint8_t type;
191 };
192 
193 /* This structure holds commands as they are received off the wire.
194  * It must be dynamically paired with a full request object
195  * (spdk_nvmf_rdma_request) to service a request. It is separate
196  * from the request because RDMA does not appear to order
197  * completions, so occasionally we'll get a new incoming
198  * command when there aren't any free request objects.
199  */
200 struct spdk_nvmf_rdma_recv {
201 	struct ibv_recv_wr			wr;
202 	struct ibv_sge				sgl[NVMF_DEFAULT_RX_SGE];
203 
204 	struct spdk_nvmf_rdma_qpair		*qpair;
205 
206 	/* In-capsule data buffer */
207 	uint8_t					*buf;
208 
209 	struct spdk_nvmf_rdma_wr		rdma_wr;
210 	uint64_t				receive_tsc;
211 
212 	STAILQ_ENTRY(spdk_nvmf_rdma_recv)	link;
213 };
214 
215 struct spdk_nvmf_rdma_request_data {
216 	struct ibv_send_wr		wr;
217 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
218 };
219 
220 struct spdk_nvmf_rdma_request {
221 	struct spdk_nvmf_request		req;
222 
223 	bool					fused_failed;
224 
225 	struct spdk_nvmf_rdma_wr		data_wr;
226 	struct spdk_nvmf_rdma_wr		rsp_wr;
227 
228 	/* Uses enum spdk_nvmf_rdma_request_state */
229 	uint8_t					state;
230 
231 	/* Data offset in req.iov */
232 	uint32_t				offset;
233 
234 	struct spdk_nvmf_rdma_recv		*recv;
235 
236 	struct {
237 		struct	ibv_send_wr		wr;
238 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
239 	} rsp;
240 
241 	uint32_t				iovpos;
242 
243 	uint32_t				num_outstanding_data_wr;
244 	uint64_t				receive_tsc;
245 	struct spdk_nvmf_rdma_request		*fused_pair;
246 	STAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
247 	struct ibv_send_wr			*transfer_wr;
248 	struct spdk_nvmf_rdma_request_data	data;
249 };
250 
251 struct spdk_nvmf_rdma_resource_opts {
252 	struct spdk_nvmf_rdma_qpair	*qpair;
253 	/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
254 	void				*qp;
255 	struct spdk_rdma_mem_map	*map;
256 	uint32_t			max_queue_depth;
257 	uint32_t			in_capsule_data_size;
258 	bool				shared;
259 };
260 
261 struct spdk_nvmf_rdma_resources {
262 	/* Array of size "max_queue_depth" containing RDMA requests. */
263 	struct spdk_nvmf_rdma_request		*reqs;
264 
265 	/* Array of size "max_queue_depth" containing RDMA recvs. */
266 	struct spdk_nvmf_rdma_recv		*recvs;
267 
268 	/* Array of size "max_queue_depth" containing 64 byte capsules
269 	 * used for receive.
270 	 */
271 	union nvmf_h2c_msg			*cmds;
272 
273 	/* Array of size "max_queue_depth" containing 16 byte completions
274 	 * to be sent back to the user.
275 	 */
276 	union nvmf_c2h_msg			*cpls;
277 
278 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
279 	 * buffers to be used for in capsule data.
280 	 */
281 	void					*bufs;
282 
283 	/* Receives that are waiting for a request object */
284 	STAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
285 
286 	/* Queue to track free requests */
287 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	free_queue;
288 };
289 
290 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair);
291 
292 typedef void (*spdk_poller_destroy_cb)(void *ctx);
293 
294 struct spdk_nvmf_rdma_ibv_event_ctx {
295 	struct spdk_nvmf_rdma_qpair			*rqpair;
296 	spdk_nvmf_rdma_qpair_ibv_event			cb_fn;
297 	/* Link to other ibv events associated with this qpair */
298 	STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx)	link;
299 };
300 
301 struct spdk_nvmf_rdma_qpair {
302 	struct spdk_nvmf_qpair			qpair;
303 
304 	struct spdk_nvmf_rdma_device		*device;
305 	struct spdk_nvmf_rdma_poller		*poller;
306 
307 	struct spdk_rdma_qp			*rdma_qp;
308 	struct rdma_cm_id			*cm_id;
309 	struct spdk_rdma_srq			*srq;
310 	struct rdma_cm_id			*listen_id;
311 
312 	/* Cache the QP number to improve QP search by RB tree. */
313 	uint32_t				qp_num;
314 
315 	/* The maximum number of I/O outstanding on this connection at one time */
316 	uint16_t				max_queue_depth;
317 
318 	/* The maximum number of active RDMA READ and ATOMIC operations at one time */
319 	uint16_t				max_read_depth;
320 
321 	/* The maximum number of RDMA SEND operations at one time */
322 	uint32_t				max_send_depth;
323 
324 	/* The current number of outstanding WRs from this qpair's
325 	 * recv queue. Should not exceed device->attr.max_queue_depth.
326 	 */
327 	uint16_t				current_recv_depth;
328 
329 	/* The current number of active RDMA READ operations */
330 	uint16_t				current_read_depth;
331 
332 	/* The current number of posted WRs from this qpair's
333 	 * send queue. Should not exceed max_send_depth.
334 	 */
335 	uint32_t				current_send_depth;
336 
337 	/* The maximum number of SGEs per WR on the send queue */
338 	uint32_t				max_send_sge;
339 
340 	/* The maximum number of SGEs per WR on the recv queue */
341 	uint32_t				max_recv_sge;
342 
343 	struct spdk_nvmf_rdma_resources		*resources;
344 
345 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_read_queue;
346 
347 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_write_queue;
348 
349 	/* Number of requests not in the free state */
350 	uint32_t				qd;
351 
352 	RB_ENTRY(spdk_nvmf_rdma_qpair)		node;
353 
354 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	recv_link;
355 
356 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	send_link;
357 
358 	/* IBV queue pair attributes: they are used to manage
359 	 * qp state and recover from errors.
360 	 */
361 	enum ibv_qp_state			ibv_state;
362 
363 	/* Points to the a request that has fuse bits set to
364 	 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting
365 	 * for the request that has SPDK_NVME_CMD_FUSE_SECOND.
366 	 */
367 	struct spdk_nvmf_rdma_request		*fused_first;
368 
369 	/*
370 	 * io_channel which is used to destroy qpair when it is removed from poll group
371 	 */
372 	struct spdk_io_channel		*destruct_channel;
373 
374 	/* List of ibv async events */
375 	STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx)	ibv_events;
376 
377 	/* Lets us know that we have received the last_wqe event. */
378 	bool					last_wqe_reached;
379 
380 	/* Indicate that nvmf_rdma_close_qpair is called */
381 	bool					to_close;
382 };
383 
384 struct spdk_nvmf_rdma_poller_stat {
385 	uint64_t				completions;
386 	uint64_t				polls;
387 	uint64_t				idle_polls;
388 	uint64_t				requests;
389 	uint64_t				request_latency;
390 	uint64_t				pending_free_request;
391 	uint64_t				pending_rdma_read;
392 	uint64_t				pending_rdma_write;
393 	struct spdk_rdma_qp_stats		qp_stats;
394 };
395 
396 struct spdk_nvmf_rdma_poller {
397 	struct spdk_nvmf_rdma_device		*device;
398 	struct spdk_nvmf_rdma_poll_group	*group;
399 
400 	int					num_cqe;
401 	int					required_num_wr;
402 	struct ibv_cq				*cq;
403 
404 	/* The maximum number of I/O outstanding on the shared receive queue at one time */
405 	uint16_t				max_srq_depth;
406 	bool					need_destroy;
407 
408 	/* Shared receive queue */
409 	struct spdk_rdma_srq			*srq;
410 
411 	struct spdk_nvmf_rdma_resources		*resources;
412 	struct spdk_nvmf_rdma_poller_stat	stat;
413 
414 	spdk_poller_destroy_cb			destroy_cb;
415 	void					*destroy_cb_ctx;
416 
417 	RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs;
418 
419 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_recv;
420 
421 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_send;
422 
423 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
424 };
425 
426 struct spdk_nvmf_rdma_poll_group_stat {
427 	uint64_t				pending_data_buffer;
428 };
429 
430 struct spdk_nvmf_rdma_poll_group {
431 	struct spdk_nvmf_transport_poll_group		group;
432 	struct spdk_nvmf_rdma_poll_group_stat		stat;
433 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)		pollers;
434 	TAILQ_ENTRY(spdk_nvmf_rdma_poll_group)		link;
435 };
436 
437 struct spdk_nvmf_rdma_conn_sched {
438 	struct spdk_nvmf_rdma_poll_group *next_admin_pg;
439 	struct spdk_nvmf_rdma_poll_group *next_io_pg;
440 };
441 
442 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
443 struct spdk_nvmf_rdma_device {
444 	struct ibv_device_attr			attr;
445 	struct ibv_context			*context;
446 
447 	struct spdk_rdma_mem_map		*map;
448 	struct ibv_pd				*pd;
449 
450 	int					num_srq;
451 	bool					need_destroy;
452 	bool					ready_to_destroy;
453 	bool					is_ready;
454 
455 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
456 };
457 
458 struct spdk_nvmf_rdma_port {
459 	const struct spdk_nvme_transport_id	*trid;
460 	struct rdma_cm_id			*id;
461 	struct spdk_nvmf_rdma_device		*device;
462 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
463 };
464 
465 struct rdma_transport_opts {
466 	int		num_cqe;
467 	uint32_t	max_srq_depth;
468 	bool		no_srq;
469 	bool		no_wr_batching;
470 	int		acceptor_backlog;
471 };
472 
473 struct spdk_nvmf_rdma_transport {
474 	struct spdk_nvmf_transport	transport;
475 	struct rdma_transport_opts	rdma_opts;
476 
477 	struct spdk_nvmf_rdma_conn_sched conn_sched;
478 
479 	struct rdma_event_channel	*event_channel;
480 
481 	struct spdk_mempool		*data_wr_pool;
482 
483 	struct spdk_poller		*accept_poller;
484 
485 	/* fields used to poll RDMA/IB events */
486 	nfds_t			npoll_fds;
487 	struct pollfd		*poll_fds;
488 
489 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
490 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
491 	TAILQ_HEAD(, spdk_nvmf_rdma_poll_group)	poll_groups;
492 
493 	/* ports that are removed unexpectedly and need retry listen */
494 	TAILQ_HEAD(, spdk_nvmf_rdma_port)		retry_ports;
495 };
496 
497 struct poller_manage_ctx {
498 	struct spdk_nvmf_rdma_transport		*rtransport;
499 	struct spdk_nvmf_rdma_poll_group	*rgroup;
500 	struct spdk_nvmf_rdma_poller		*rpoller;
501 	struct spdk_nvmf_rdma_device		*device;
502 
503 	struct spdk_thread			*thread;
504 	volatile int				*inflight_op_counter;
505 };
506 
507 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = {
508 	{
509 		"num_cqe", offsetof(struct rdma_transport_opts, num_cqe),
510 		spdk_json_decode_int32, true
511 	},
512 	{
513 		"max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth),
514 		spdk_json_decode_uint32, true
515 	},
516 	{
517 		"no_srq", offsetof(struct rdma_transport_opts, no_srq),
518 		spdk_json_decode_bool, true
519 	},
520 	{
521 		"no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching),
522 		spdk_json_decode_bool, true
523 	},
524 	{
525 		"acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog),
526 		spdk_json_decode_int32, true
527 	},
528 };
529 
530 static int
531 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2)
532 {
533 	return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num;
534 }
535 
536 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare);
537 
538 static bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
539 				      struct spdk_nvmf_rdma_request *rdma_req);
540 
541 static void _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
542 				 struct spdk_nvmf_rdma_poller *rpoller);
543 
544 static void _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
545 				 struct spdk_nvmf_rdma_poller *rpoller);
546 
547 static void _nvmf_rdma_remove_destroyed_device(void *c);
548 
549 static inline int
550 nvmf_rdma_check_ibv_state(enum ibv_qp_state state)
551 {
552 	switch (state) {
553 	case IBV_QPS_RESET:
554 	case IBV_QPS_INIT:
555 	case IBV_QPS_RTR:
556 	case IBV_QPS_RTS:
557 	case IBV_QPS_SQD:
558 	case IBV_QPS_SQE:
559 	case IBV_QPS_ERR:
560 		return 0;
561 	default:
562 		return -1;
563 	}
564 }
565 
566 static inline enum spdk_nvme_media_error_status_code
567 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) {
568 	enum spdk_nvme_media_error_status_code result;
569 	switch (err_type)
570 	{
571 	case SPDK_DIF_REFTAG_ERROR:
572 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
573 		break;
574 	case SPDK_DIF_APPTAG_ERROR:
575 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
576 		break;
577 	case SPDK_DIF_GUARD_ERROR:
578 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
579 		break;
580 	default:
581 		SPDK_UNREACHABLE();
582 	}
583 
584 	return result;
585 }
586 
587 static enum ibv_qp_state
588 nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) {
589 	enum ibv_qp_state old_state, new_state;
590 	struct ibv_qp_attr qp_attr;
591 	struct ibv_qp_init_attr init_attr;
592 	int rc;
593 
594 	old_state = rqpair->ibv_state;
595 	rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr,
596 			  g_spdk_nvmf_ibv_query_mask, &init_attr);
597 
598 	if (rc)
599 	{
600 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
601 		return IBV_QPS_ERR + 1;
602 	}
603 
604 	new_state = qp_attr.qp_state;
605 	rqpair->ibv_state = new_state;
606 	qp_attr.ah_attr.port_num = qp_attr.port_num;
607 
608 	rc = nvmf_rdma_check_ibv_state(new_state);
609 	if (rc)
610 	{
611 		SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state);
612 		/*
613 		 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8
614 		 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR
615 		 */
616 		return IBV_QPS_ERR + 1;
617 	}
618 
619 	if (old_state != new_state)
620 	{
621 		spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, (uintptr_t)rqpair, new_state);
622 	}
623 	return new_state;
624 }
625 
626 /*
627  * Return data_wrs to pool starting from \b data_wr
628  * Request's own response and data WR are excluded
629  */
630 static void
631 _nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
632 			     struct ibv_send_wr *data_wr,
633 			     struct spdk_mempool *pool)
634 {
635 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
636 	struct spdk_nvmf_rdma_request_data	*nvmf_data;
637 	struct ibv_send_wr			*next_send_wr;
638 	uint64_t				req_wrid = data_wr->wr_id;
639 	uint32_t				num_wrs = 0;
640 
641 	while (data_wr && data_wr->wr_id == req_wrid) {
642 		nvmf_data = SPDK_CONTAINEROF(data_wr, struct spdk_nvmf_rdma_request_data, wr);
643 		memset(nvmf_data->sgl, 0, sizeof(data_wr->sg_list[0]) * data_wr->num_sge);
644 		data_wr->num_sge = 0;
645 		next_send_wr = data_wr->next;
646 		if (data_wr != &rdma_req->data.wr) {
647 			data_wr->next = NULL;
648 			assert(num_wrs < SPDK_NVMF_MAX_SGL_ENTRIES);
649 			work_requests[num_wrs] = nvmf_data;
650 			num_wrs++;
651 		}
652 		data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : next_send_wr;
653 	}
654 
655 	if (num_wrs) {
656 		spdk_mempool_put_bulk(pool, (void **) work_requests, num_wrs);
657 	}
658 }
659 
660 static void
661 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
662 			    struct spdk_nvmf_rdma_transport *rtransport)
663 {
664 	rdma_req->num_outstanding_data_wr = 0;
665 
666 	_nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool);
667 
668 	rdma_req->data.wr.next = NULL;
669 	rdma_req->rsp.wr.next = NULL;
670 }
671 
672 static void
673 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
674 {
675 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool);
676 	if (req->req.cmd) {
677 		SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
678 	}
679 	if (req->recv) {
680 		SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
681 	}
682 }
683 
684 static void
685 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
686 {
687 	int i;
688 
689 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
690 	for (i = 0; i < rqpair->max_queue_depth; i++) {
691 		if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
692 			nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
693 		}
694 	}
695 }
696 
697 static void
698 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
699 {
700 	spdk_free(resources->cmds);
701 	spdk_free(resources->cpls);
702 	spdk_free(resources->bufs);
703 	spdk_free(resources->reqs);
704 	spdk_free(resources->recvs);
705 	free(resources);
706 }
707 
708 
709 static struct spdk_nvmf_rdma_resources *
710 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
711 {
712 	struct spdk_nvmf_rdma_resources		*resources;
713 	struct spdk_nvmf_rdma_request		*rdma_req;
714 	struct spdk_nvmf_rdma_recv		*rdma_recv;
715 	struct spdk_rdma_qp			*qp = NULL;
716 	struct spdk_rdma_srq			*srq = NULL;
717 	struct ibv_recv_wr			*bad_wr = NULL;
718 	struct spdk_rdma_memory_translation	translation;
719 	uint32_t				i;
720 	int					rc = 0;
721 
722 	resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
723 	if (!resources) {
724 		SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
725 		return NULL;
726 	}
727 
728 	resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs),
729 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
730 	resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs),
731 					0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
732 	resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
733 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
734 	resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
735 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
736 
737 	if (opts->in_capsule_data_size > 0) {
738 		resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size,
739 					       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY,
740 					       SPDK_MALLOC_DMA);
741 	}
742 
743 	if (!resources->reqs || !resources->recvs || !resources->cmds ||
744 	    !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
745 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
746 		goto cleanup;
747 	}
748 
749 	SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx\n",
750 		      resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds));
751 	SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx\n",
752 		      resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls));
753 	if (resources->bufs) {
754 		SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x\n",
755 			      resources->bufs, opts->max_queue_depth *
756 			      opts->in_capsule_data_size);
757 	}
758 
759 	/* Initialize queues */
760 	STAILQ_INIT(&resources->incoming_queue);
761 	STAILQ_INIT(&resources->free_queue);
762 
763 	if (opts->shared) {
764 		srq = (struct spdk_rdma_srq *)opts->qp;
765 	} else {
766 		qp = (struct spdk_rdma_qp *)opts->qp;
767 	}
768 
769 	for (i = 0; i < opts->max_queue_depth; i++) {
770 		rdma_recv = &resources->recvs[i];
771 		rdma_recv->qpair = opts->qpair;
772 
773 		/* Set up memory to receive commands */
774 		if (resources->bufs) {
775 			rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
776 						  opts->in_capsule_data_size));
777 		}
778 
779 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
780 
781 		rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
782 		rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
783 		rc = spdk_rdma_get_translation(opts->map, &resources->cmds[i], sizeof(resources->cmds[i]),
784 					       &translation);
785 		if (rc) {
786 			goto cleanup;
787 		}
788 		rdma_recv->sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
789 		rdma_recv->wr.num_sge = 1;
790 
791 		if (rdma_recv->buf) {
792 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
793 			rdma_recv->sgl[1].length = opts->in_capsule_data_size;
794 			rc = spdk_rdma_get_translation(opts->map, rdma_recv->buf, opts->in_capsule_data_size, &translation);
795 			if (rc) {
796 				goto cleanup;
797 			}
798 			rdma_recv->sgl[1].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
799 			rdma_recv->wr.num_sge++;
800 		}
801 
802 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
803 		rdma_recv->wr.sg_list = rdma_recv->sgl;
804 		if (srq) {
805 			spdk_rdma_srq_queue_recv_wrs(srq, &rdma_recv->wr);
806 		} else {
807 			spdk_rdma_qp_queue_recv_wrs(qp, &rdma_recv->wr);
808 		}
809 	}
810 
811 	for (i = 0; i < opts->max_queue_depth; i++) {
812 		rdma_req = &resources->reqs[i];
813 
814 		if (opts->qpair != NULL) {
815 			rdma_req->req.qpair = &opts->qpair->qpair;
816 		} else {
817 			rdma_req->req.qpair = NULL;
818 		}
819 		rdma_req->req.cmd = NULL;
820 		rdma_req->req.iovcnt = 0;
821 		rdma_req->req.stripped_data = NULL;
822 
823 		/* Set up memory to send responses */
824 		rdma_req->req.rsp = &resources->cpls[i];
825 
826 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
827 		rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
828 		rc = spdk_rdma_get_translation(opts->map, &resources->cpls[i], sizeof(resources->cpls[i]),
829 					       &translation);
830 		if (rc) {
831 			goto cleanup;
832 		}
833 		rdma_req->rsp.sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
834 
835 		rdma_req->rsp_wr.type = RDMA_WR_TYPE_SEND;
836 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp_wr;
837 		rdma_req->rsp.wr.next = NULL;
838 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
839 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
840 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
841 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
842 
843 		/* Set up memory for data buffers */
844 		rdma_req->data_wr.type = RDMA_WR_TYPE_DATA;
845 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data_wr;
846 		rdma_req->data.wr.next = NULL;
847 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
848 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
849 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
850 
851 		/* Initialize request state to FREE */
852 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
853 		STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
854 	}
855 
856 	if (srq) {
857 		rc = spdk_rdma_srq_flush_recv_wrs(srq, &bad_wr);
858 	} else {
859 		rc = spdk_rdma_qp_flush_recv_wrs(qp, &bad_wr);
860 	}
861 
862 	if (rc) {
863 		goto cleanup;
864 	}
865 
866 	return resources;
867 
868 cleanup:
869 	nvmf_rdma_resources_destroy(resources);
870 	return NULL;
871 }
872 
873 static void
874 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair)
875 {
876 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx;
877 	STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) {
878 		ctx->rqpair = NULL;
879 		/* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */
880 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
881 	}
882 }
883 
884 static void nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller);
885 
886 static void
887 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
888 {
889 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
890 	struct ibv_recv_wr		*bad_recv_wr = NULL;
891 	int				rc;
892 
893 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair);
894 
895 	if (rqpair->qd != 0) {
896 		struct spdk_nvmf_qpair *qpair = &rqpair->qpair;
897 		struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(qpair->transport,
898 				struct spdk_nvmf_rdma_transport, transport);
899 		struct spdk_nvmf_rdma_request *req;
900 		uint32_t i, max_req_count = 0;
901 
902 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
903 
904 		if (rqpair->srq == NULL) {
905 			nvmf_rdma_dump_qpair_contents(rqpair);
906 			max_req_count = rqpair->max_queue_depth;
907 		} else if (rqpair->poller && rqpair->resources) {
908 			max_req_count = rqpair->poller->max_srq_depth;
909 		}
910 
911 		SPDK_DEBUGLOG(rdma, "Release incomplete requests\n");
912 		for (i = 0; i < max_req_count; i++) {
913 			req = &rqpair->resources->reqs[i];
914 			if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) {
915 				/* nvmf_rdma_request_process checks qpair ibv and internal state
916 				 * and completes a request */
917 				nvmf_rdma_request_process(rtransport, req);
918 			}
919 		}
920 		assert(rqpair->qd == 0);
921 	}
922 
923 	if (rqpair->poller) {
924 		RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair);
925 
926 		if (rqpair->srq != NULL && rqpair->resources != NULL) {
927 			/* Drop all received but unprocessed commands for this queue and return them to SRQ */
928 			STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
929 				if (rqpair == rdma_recv->qpair) {
930 					STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link);
931 					spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr);
932 					rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
933 					if (rc) {
934 						SPDK_ERRLOG("Unable to re-post rx descriptor\n");
935 					}
936 				}
937 			}
938 		}
939 	}
940 
941 	if (rqpair->cm_id) {
942 		if (rqpair->rdma_qp != NULL) {
943 			spdk_rdma_qp_destroy(rqpair->rdma_qp);
944 			rqpair->rdma_qp = NULL;
945 		}
946 
947 		if (rqpair->poller != NULL && rqpair->srq == NULL) {
948 			rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
949 		}
950 	}
951 
952 	if (rqpair->srq == NULL && rqpair->resources != NULL) {
953 		nvmf_rdma_resources_destroy(rqpair->resources);
954 	}
955 
956 	nvmf_rdma_qpair_clean_ibv_events(rqpair);
957 
958 	if (rqpair->destruct_channel) {
959 		spdk_put_io_channel(rqpair->destruct_channel);
960 		rqpair->destruct_channel = NULL;
961 	}
962 
963 	if (rqpair->poller && rqpair->poller->need_destroy && RB_EMPTY(&rqpair->poller->qpairs)) {
964 		nvmf_rdma_poller_destroy(rqpair->poller);
965 	}
966 
967 	/* destroy cm_id last so cma device will not be freed before we destroy the cq. */
968 	if (rqpair->cm_id) {
969 		rdma_destroy_id(rqpair->cm_id);
970 	}
971 
972 	free(rqpair);
973 }
974 
975 static int
976 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
977 {
978 	struct spdk_nvmf_rdma_poller	*rpoller;
979 	int				rc, num_cqe, required_num_wr;
980 
981 	/* Enlarge CQ size dynamically */
982 	rpoller = rqpair->poller;
983 	required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
984 	num_cqe = rpoller->num_cqe;
985 	if (num_cqe < required_num_wr) {
986 		num_cqe = spdk_max(num_cqe * 2, required_num_wr);
987 		num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
988 	}
989 
990 	if (rpoller->num_cqe != num_cqe) {
991 		if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) {
992 			SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n"
993 				    "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe);
994 			return -1;
995 		}
996 		if (required_num_wr > device->attr.max_cqe) {
997 			SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
998 				    required_num_wr, device->attr.max_cqe);
999 			return -1;
1000 		}
1001 
1002 		SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
1003 		rc = ibv_resize_cq(rpoller->cq, num_cqe);
1004 		if (rc) {
1005 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
1006 			return -1;
1007 		}
1008 
1009 		rpoller->num_cqe = num_cqe;
1010 	}
1011 
1012 	rpoller->required_num_wr = required_num_wr;
1013 	return 0;
1014 }
1015 
1016 static int
1017 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
1018 {
1019 	struct spdk_nvmf_rdma_qpair		*rqpair;
1020 	struct spdk_nvmf_rdma_transport		*rtransport;
1021 	struct spdk_nvmf_transport		*transport;
1022 	struct spdk_nvmf_rdma_resource_opts	opts;
1023 	struct spdk_nvmf_rdma_device		*device;
1024 	struct spdk_rdma_qp_init_attr		qp_init_attr = {};
1025 
1026 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1027 	device = rqpair->device;
1028 
1029 	qp_init_attr.qp_context	= rqpair;
1030 	qp_init_attr.pd		= device->pd;
1031 	qp_init_attr.send_cq	= rqpair->poller->cq;
1032 	qp_init_attr.recv_cq	= rqpair->poller->cq;
1033 
1034 	if (rqpair->srq) {
1035 		qp_init_attr.srq		= rqpair->srq->srq;
1036 	} else {
1037 		qp_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth;
1038 	}
1039 
1040 	/* SEND, READ, and WRITE operations */
1041 	qp_init_attr.cap.max_send_wr	= (uint32_t)rqpair->max_queue_depth * 2;
1042 	qp_init_attr.cap.max_send_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
1043 	qp_init_attr.cap.max_recv_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
1044 	qp_init_attr.stats		= &rqpair->poller->stat.qp_stats;
1045 
1046 	if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
1047 		SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
1048 		goto error;
1049 	}
1050 
1051 	rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr);
1052 	if (!rqpair->rdma_qp) {
1053 		goto error;
1054 	}
1055 
1056 	rqpair->qp_num = rqpair->rdma_qp->qp->qp_num;
1057 
1058 	rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2),
1059 					  qp_init_attr.cap.max_send_wr);
1060 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge);
1061 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge);
1062 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair);
1063 	SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair);
1064 
1065 	if (rqpair->poller->srq == NULL) {
1066 		rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
1067 		transport = &rtransport->transport;
1068 
1069 		opts.qp = rqpair->rdma_qp;
1070 		opts.map = device->map;
1071 		opts.qpair = rqpair;
1072 		opts.shared = false;
1073 		opts.max_queue_depth = rqpair->max_queue_depth;
1074 		opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
1075 
1076 		rqpair->resources = nvmf_rdma_resources_create(&opts);
1077 
1078 		if (!rqpair->resources) {
1079 			SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
1080 			rdma_destroy_qp(rqpair->cm_id);
1081 			goto error;
1082 		}
1083 	} else {
1084 		rqpair->resources = rqpair->poller->resources;
1085 	}
1086 
1087 	rqpair->current_recv_depth = 0;
1088 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1089 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1090 
1091 	return 0;
1092 
1093 error:
1094 	rdma_destroy_id(rqpair->cm_id);
1095 	rqpair->cm_id = NULL;
1096 	return -1;
1097 }
1098 
1099 /* Append the given recv wr structure to the resource structs outstanding recvs list. */
1100 /* This function accepts either a single wr or the first wr in a linked list. */
1101 static void
1102 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first)
1103 {
1104 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1105 			struct spdk_nvmf_rdma_transport, transport);
1106 
1107 	if (rqpair->srq != NULL) {
1108 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, first);
1109 	} else {
1110 		if (spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, first)) {
1111 			STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link);
1112 		}
1113 	}
1114 
1115 	if (rtransport->rdma_opts.no_wr_batching) {
1116 		_poller_submit_recvs(rtransport, rqpair->poller);
1117 	}
1118 }
1119 
1120 static int
1121 request_transfer_in(struct spdk_nvmf_request *req)
1122 {
1123 	struct spdk_nvmf_rdma_request	*rdma_req;
1124 	struct spdk_nvmf_qpair		*qpair;
1125 	struct spdk_nvmf_rdma_qpair	*rqpair;
1126 	struct spdk_nvmf_rdma_transport *rtransport;
1127 
1128 	qpair = req->qpair;
1129 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1130 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1131 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1132 				      struct spdk_nvmf_rdma_transport, transport);
1133 
1134 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1135 	assert(rdma_req != NULL);
1136 
1137 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, rdma_req->transfer_wr)) {
1138 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1139 	}
1140 	if (rtransport->rdma_opts.no_wr_batching) {
1141 		_poller_submit_sends(rtransport, rqpair->poller);
1142 	}
1143 
1144 	rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1145 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1146 	return 0;
1147 }
1148 
1149 static int
1150 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1151 {
1152 	int				num_outstanding_data_wr = 0;
1153 	struct spdk_nvmf_rdma_request	*rdma_req;
1154 	struct spdk_nvmf_qpair		*qpair;
1155 	struct spdk_nvmf_rdma_qpair	*rqpair;
1156 	struct spdk_nvme_cpl		*rsp;
1157 	struct ibv_send_wr		*first = NULL;
1158 	struct spdk_nvmf_rdma_transport *rtransport;
1159 
1160 	*data_posted = 0;
1161 	qpair = req->qpair;
1162 	rsp = &req->rsp->nvme_cpl;
1163 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1164 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1165 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1166 				      struct spdk_nvmf_rdma_transport, transport);
1167 
1168 	/* Advance our sq_head pointer */
1169 	if (qpair->sq_head == qpair->sq_head_max) {
1170 		qpair->sq_head = 0;
1171 	} else {
1172 		qpair->sq_head++;
1173 	}
1174 	rsp->sqhd = qpair->sq_head;
1175 
1176 	/* queue the capsule for the recv buffer */
1177 	assert(rdma_req->recv != NULL);
1178 
1179 	nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr);
1180 
1181 	rdma_req->recv = NULL;
1182 	assert(rqpair->current_recv_depth > 0);
1183 	rqpair->current_recv_depth--;
1184 
1185 	/* Build the response which consists of optional
1186 	 * RDMA WRITEs to transfer data, plus an RDMA SEND
1187 	 * containing the response.
1188 	 */
1189 	first = &rdma_req->rsp.wr;
1190 
1191 	if (rsp->status.sc != SPDK_NVME_SC_SUCCESS) {
1192 		/* On failure, data was not read from the controller. So clear the
1193 		 * number of outstanding data WRs to zero.
1194 		 */
1195 		rdma_req->num_outstanding_data_wr = 0;
1196 	} else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1197 		first = rdma_req->transfer_wr;
1198 		*data_posted = 1;
1199 		num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
1200 	}
1201 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) {
1202 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1203 	}
1204 	if (rtransport->rdma_opts.no_wr_batching) {
1205 		_poller_submit_sends(rtransport, rqpair->poller);
1206 	}
1207 
1208 	/* +1 for the rsp wr */
1209 	rqpair->current_send_depth += num_outstanding_data_wr + 1;
1210 
1211 	return 0;
1212 }
1213 
1214 static int
1215 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1216 {
1217 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
1218 	struct rdma_conn_param				ctrlr_event_data = {};
1219 	int						rc;
1220 
1221 	accept_data.recfmt = 0;
1222 	accept_data.crqsize = rqpair->max_queue_depth;
1223 
1224 	ctrlr_event_data.private_data = &accept_data;
1225 	ctrlr_event_data.private_data_len = sizeof(accept_data);
1226 	if (id->ps == RDMA_PS_TCP) {
1227 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1228 		ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1229 	}
1230 
1231 	/* Configure infinite retries for the initiator side qpair.
1232 	 * We need to pass this value to the initiator to prevent the
1233 	 * initiator side NIC from completing SEND requests back to the
1234 	 * initiator with status rnr_retry_count_exceeded. */
1235 	ctrlr_event_data.rnr_retry_count = 0x7;
1236 
1237 	/* When qpair is created without use of rdma cm API, an additional
1238 	 * information must be provided to initiator in the connection response:
1239 	 * whether qpair is using SRQ and its qp_num
1240 	 * Fields below are ignored by rdma cm if qpair has been
1241 	 * created using rdma cm API. */
1242 	ctrlr_event_data.srq = rqpair->srq ? 1 : 0;
1243 	ctrlr_event_data.qp_num = rqpair->qp_num;
1244 
1245 	rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data);
1246 	if (rc) {
1247 		SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno);
1248 	} else {
1249 		SPDK_DEBUGLOG(rdma, "Sent back the accept\n");
1250 	}
1251 
1252 	return rc;
1253 }
1254 
1255 static void
1256 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1257 {
1258 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
1259 
1260 	rej_data.recfmt = 0;
1261 	rej_data.sts = error;
1262 
1263 	rdma_reject(id, &rej_data, sizeof(rej_data));
1264 }
1265 
1266 static int
1267 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event)
1268 {
1269 	struct spdk_nvmf_rdma_transport *rtransport;
1270 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
1271 	struct spdk_nvmf_rdma_port	*port;
1272 	struct rdma_conn_param		*rdma_param = NULL;
1273 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1274 	uint16_t			max_queue_depth;
1275 	uint16_t			max_read_depth;
1276 
1277 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1278 
1279 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1280 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1281 
1282 	rdma_param = &event->param.conn;
1283 	if (rdma_param->private_data == NULL ||
1284 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1285 		SPDK_ERRLOG("connect request: no private data provided\n");
1286 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1287 		return -1;
1288 	}
1289 
1290 	private_data = rdma_param->private_data;
1291 	if (private_data->recfmt != 0) {
1292 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1293 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1294 		return -1;
1295 	}
1296 
1297 	SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n",
1298 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1299 
1300 	port = event->listen_id->context;
1301 	SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1302 		      event->listen_id, event->listen_id->verbs, port);
1303 
1304 	/* Figure out the supported queue depth. This is a multi-step process
1305 	 * that takes into account hardware maximums, host provided values,
1306 	 * and our target's internal memory limits */
1307 
1308 	SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n");
1309 
1310 	/* Start with the maximum queue depth allowed by the target */
1311 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1312 	max_read_depth = rtransport->transport.opts.max_queue_depth;
1313 	SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n",
1314 		      rtransport->transport.opts.max_queue_depth);
1315 
1316 	/* Next check the local NIC's hardware limitations */
1317 	SPDK_DEBUGLOG(rdma,
1318 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1319 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1320 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1321 	max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1322 
1323 	/* Next check the remote NIC's hardware limitations */
1324 	SPDK_DEBUGLOG(rdma,
1325 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1326 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1327 	/* from man3 rdma_get_cm_event
1328 	 * responder_resources - Specifies the number of responder resources that is requested by the recipient.
1329 	 * The responder_resources field must match the initiator depth specified by the remote node when running
1330 	 * the rdma_connect and rdma_accept functions. */
1331 	if (rdma_param->responder_resources != 0) {
1332 		SPDK_ERRLOG("Host (Initiator) is not allowed to use RDMA operations (responder_resources %u)\n",
1333 			    rdma_param->responder_resources);
1334 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_ORD);
1335 		return -1;
1336 	}
1337 	/* from man3 rdma_get_cm_event
1338 	 * initiator_depth - Specifies the maximum number of outstanding RDMA read operations that the recipient holds.
1339 	 * The initiator_depth field must match the responder resources specified by the remote node when running
1340 	 * the rdma_connect and rdma_accept functions. */
1341 	if (rdma_param->initiator_depth == 0) {
1342 		SPDK_ERRLOG("Host (Initiator) doesn't support RDMA_READ or atomic operations\n");
1343 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_IRD);
1344 		return -1;
1345 	}
1346 	max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1347 
1348 	SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1349 	SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize);
1350 	max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1351 	max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1352 
1353 	SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1354 		      max_queue_depth, max_read_depth);
1355 
1356 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1357 	if (rqpair == NULL) {
1358 		SPDK_ERRLOG("Could not allocate new connection.\n");
1359 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1360 		return -1;
1361 	}
1362 
1363 	rqpair->device = port->device;
1364 	rqpair->max_queue_depth = max_queue_depth;
1365 	rqpair->max_read_depth = max_read_depth;
1366 	rqpair->cm_id = event->id;
1367 	rqpair->listen_id = event->listen_id;
1368 	rqpair->qpair.transport = transport;
1369 	STAILQ_INIT(&rqpair->ibv_events);
1370 	/* use qid from the private data to determine the qpair type
1371 	   qid will be set to the appropriate value when the controller is created */
1372 	rqpair->qpair.qid = private_data->qid;
1373 
1374 	event->id->context = &rqpair->qpair;
1375 
1376 	spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair);
1377 
1378 	return 0;
1379 }
1380 
1381 static inline void
1382 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next,
1383 		   enum spdk_nvme_data_transfer xfer)
1384 {
1385 	if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1386 		wr->opcode = IBV_WR_RDMA_WRITE;
1387 		wr->send_flags = 0;
1388 		wr->next = next;
1389 	} else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1390 		wr->opcode = IBV_WR_RDMA_READ;
1391 		wr->send_flags = IBV_SEND_SIGNALED;
1392 		wr->next = NULL;
1393 	} else {
1394 		assert(0);
1395 	}
1396 }
1397 
1398 static int
1399 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1400 		       struct spdk_nvmf_rdma_request *rdma_req,
1401 		       uint32_t num_sgl_descriptors)
1402 {
1403 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1404 	struct spdk_nvmf_rdma_request_data	*current_data_wr;
1405 	uint32_t				i;
1406 
1407 	if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) {
1408 		SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n",
1409 			    num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES);
1410 		return -EINVAL;
1411 	}
1412 
1413 	if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) {
1414 		return -ENOMEM;
1415 	}
1416 
1417 	current_data_wr = &rdma_req->data;
1418 
1419 	for (i = 0; i < num_sgl_descriptors; i++) {
1420 		nvmf_rdma_setup_wr(&current_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer);
1421 		current_data_wr->wr.next = &work_requests[i]->wr;
1422 		current_data_wr = work_requests[i];
1423 		current_data_wr->wr.sg_list = current_data_wr->sgl;
1424 		current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id;
1425 	}
1426 
1427 	nvmf_rdma_setup_wr(&current_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1428 
1429 	return 0;
1430 }
1431 
1432 static inline void
1433 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req)
1434 {
1435 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1436 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1437 
1438 	wr->wr.rdma.rkey = sgl->keyed.key;
1439 	wr->wr.rdma.remote_addr = sgl->address;
1440 	nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1441 }
1442 
1443 static inline void
1444 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs)
1445 {
1446 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1447 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1448 	uint32_t			i;
1449 	int				j;
1450 	uint64_t			remote_addr_offset = 0;
1451 
1452 	for (i = 0; i < num_wrs; ++i) {
1453 		wr->wr.rdma.rkey = sgl->keyed.key;
1454 		wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset;
1455 		for (j = 0; j < wr->num_sge; ++j) {
1456 			remote_addr_offset += wr->sg_list[j].length;
1457 		}
1458 		wr = wr->next;
1459 	}
1460 }
1461 
1462 static int
1463 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup,
1464 		      struct spdk_nvmf_rdma_device *device,
1465 		      struct spdk_nvmf_rdma_request *rdma_req,
1466 		      struct ibv_send_wr *wr,
1467 		      uint32_t total_length)
1468 {
1469 	struct spdk_rdma_memory_translation mem_translation;
1470 	struct ibv_sge	*sg_ele;
1471 	struct iovec *iov;
1472 	uint32_t lkey, remaining;
1473 	int rc;
1474 
1475 	wr->num_sge = 0;
1476 
1477 	while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) {
1478 		iov = &rdma_req->req.iov[rdma_req->iovpos];
1479 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1480 		if (spdk_unlikely(rc)) {
1481 			return rc;
1482 		}
1483 
1484 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1485 		sg_ele = &wr->sg_list[wr->num_sge];
1486 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1487 
1488 		sg_ele->lkey = lkey;
1489 		sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset;
1490 		sg_ele->length = remaining;
1491 		SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr,
1492 			      sg_ele->length);
1493 		rdma_req->offset += sg_ele->length;
1494 		total_length -= sg_ele->length;
1495 		wr->num_sge++;
1496 
1497 		if (rdma_req->offset == iov->iov_len) {
1498 			rdma_req->offset = 0;
1499 			rdma_req->iovpos++;
1500 		}
1501 	}
1502 
1503 	if (total_length) {
1504 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1505 		return -EINVAL;
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 static int
1512 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_poll_group *rgroup,
1513 			       struct spdk_nvmf_rdma_device *device,
1514 			       struct spdk_nvmf_rdma_request *rdma_req,
1515 			       struct ibv_send_wr *wr,
1516 			       uint32_t total_length,
1517 			       uint32_t num_extra_wrs)
1518 {
1519 	struct spdk_rdma_memory_translation mem_translation;
1520 	struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx;
1521 	struct ibv_sge *sg_ele;
1522 	struct iovec *iov;
1523 	struct iovec *rdma_iov;
1524 	uint32_t lkey, remaining;
1525 	uint32_t remaining_data_block, data_block_size, md_size;
1526 	uint32_t sge_len;
1527 	int rc;
1528 
1529 	data_block_size = dif_ctx->block_size - dif_ctx->md_size;
1530 
1531 	if (spdk_likely(!rdma_req->req.stripped_data)) {
1532 		rdma_iov = rdma_req->req.iov;
1533 		remaining_data_block = data_block_size;
1534 		md_size = dif_ctx->md_size;
1535 	} else {
1536 		rdma_iov = rdma_req->req.stripped_data->iov;
1537 		total_length = total_length / dif_ctx->block_size * data_block_size;
1538 		remaining_data_block = total_length;
1539 		md_size = 0;
1540 	}
1541 
1542 	wr->num_sge = 0;
1543 
1544 	while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) {
1545 		iov = rdma_iov + rdma_req->iovpos;
1546 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1547 		if (spdk_unlikely(rc)) {
1548 			return rc;
1549 		}
1550 
1551 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1552 		sg_ele = &wr->sg_list[wr->num_sge];
1553 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1554 
1555 		while (remaining) {
1556 			if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) {
1557 				if (num_extra_wrs > 0 && wr->next) {
1558 					wr = wr->next;
1559 					wr->num_sge = 0;
1560 					sg_ele = &wr->sg_list[wr->num_sge];
1561 					num_extra_wrs--;
1562 				} else {
1563 					break;
1564 				}
1565 			}
1566 			sg_ele->lkey = lkey;
1567 			sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset);
1568 			sge_len = spdk_min(remaining, remaining_data_block);
1569 			sg_ele->length = sge_len;
1570 			SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele,
1571 				      sg_ele->addr, sg_ele->length);
1572 			remaining -= sge_len;
1573 			remaining_data_block -= sge_len;
1574 			rdma_req->offset += sge_len;
1575 			total_length -= sge_len;
1576 
1577 			sg_ele++;
1578 			wr->num_sge++;
1579 
1580 			if (remaining_data_block == 0) {
1581 				/* skip metadata */
1582 				rdma_req->offset += md_size;
1583 				total_length -= md_size;
1584 				/* Metadata that do not fit this IO buffer will be included in the next IO buffer */
1585 				remaining -= spdk_min(remaining, md_size);
1586 				remaining_data_block = data_block_size;
1587 			}
1588 
1589 			if (remaining == 0) {
1590 				/* By subtracting the size of the last IOV from the offset, we ensure that we skip
1591 				   the remaining metadata bits at the beginning of the next buffer */
1592 				rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset);
1593 				rdma_req->iovpos++;
1594 			}
1595 		}
1596 	}
1597 
1598 	if (total_length) {
1599 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1600 		return -EINVAL;
1601 	}
1602 
1603 	return 0;
1604 }
1605 
1606 static inline uint32_t
1607 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size)
1608 {
1609 	/* estimate the number of SG entries and WRs needed to process the request */
1610 	uint32_t num_sge = 0;
1611 	uint32_t i;
1612 	uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size);
1613 
1614 	for (i = 0; i < num_buffers && length > 0; i++) {
1615 		uint32_t buffer_len = spdk_min(length, io_unit_size);
1616 		uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size);
1617 
1618 		if (num_sge_in_block * block_size > buffer_len) {
1619 			++num_sge_in_block;
1620 		}
1621 		num_sge += num_sge_in_block;
1622 		length -= buffer_len;
1623 	}
1624 	return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES);
1625 }
1626 
1627 static int
1628 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1629 			    struct spdk_nvmf_rdma_device *device,
1630 			    struct spdk_nvmf_rdma_request *rdma_req)
1631 {
1632 	struct spdk_nvmf_rdma_qpair		*rqpair;
1633 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1634 	struct spdk_nvmf_request		*req = &rdma_req->req;
1635 	struct ibv_send_wr			*wr = &rdma_req->data.wr;
1636 	int					rc;
1637 	uint32_t				num_wrs = 1;
1638 	uint32_t				length;
1639 
1640 	rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair);
1641 	rgroup = rqpair->poller->group;
1642 
1643 	/* rdma wr specifics */
1644 	nvmf_rdma_setup_request(rdma_req);
1645 
1646 	length = req->length;
1647 	if (spdk_unlikely(req->dif_enabled)) {
1648 		req->dif.orig_length = length;
1649 		length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
1650 		req->dif.elba_length = length;
1651 	}
1652 
1653 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
1654 					   length);
1655 	if (rc != 0) {
1656 		return rc;
1657 	}
1658 
1659 	assert(req->iovcnt <= rqpair->max_send_sge);
1660 
1661 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1662 	 * the stripped_buffers are got for DIF stripping. */
1663 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1664 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1665 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1666 						       &rtransport->transport, req->dif.orig_length);
1667 		if (rc != 0) {
1668 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1669 		}
1670 	}
1671 
1672 	rdma_req->iovpos = 0;
1673 
1674 	if (spdk_unlikely(req->dif_enabled)) {
1675 		num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size,
1676 						 req->dif.dif_ctx.block_size);
1677 		if (num_wrs > 1) {
1678 			rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1);
1679 			if (rc != 0) {
1680 				goto err_exit;
1681 			}
1682 		}
1683 
1684 		rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, wr, length, num_wrs - 1);
1685 		if (spdk_unlikely(rc != 0)) {
1686 			goto err_exit;
1687 		}
1688 
1689 		if (num_wrs > 1) {
1690 			nvmf_rdma_update_remote_addr(rdma_req, num_wrs);
1691 		}
1692 	} else {
1693 		rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length);
1694 		if (spdk_unlikely(rc != 0)) {
1695 			goto err_exit;
1696 		}
1697 	}
1698 
1699 	/* set the number of outstanding data WRs for this request. */
1700 	rdma_req->num_outstanding_data_wr = num_wrs;
1701 
1702 	return rc;
1703 
1704 err_exit:
1705 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1706 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1707 	req->iovcnt = 0;
1708 	return rc;
1709 }
1710 
1711 static int
1712 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1713 				      struct spdk_nvmf_rdma_device *device,
1714 				      struct spdk_nvmf_rdma_request *rdma_req)
1715 {
1716 	struct spdk_nvmf_rdma_qpair		*rqpair;
1717 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1718 	struct ibv_send_wr			*current_wr;
1719 	struct spdk_nvmf_request		*req = &rdma_req->req;
1720 	struct spdk_nvme_sgl_descriptor		*inline_segment, *desc;
1721 	uint32_t				num_sgl_descriptors;
1722 	uint32_t				lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0;
1723 	uint32_t				i;
1724 	int					rc;
1725 
1726 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1727 	rgroup = rqpair->poller->group;
1728 
1729 	inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1730 	assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1731 	assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1732 
1733 	num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1734 	assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1735 
1736 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1737 	for (i = 0; i < num_sgl_descriptors; i++) {
1738 		if (spdk_likely(!req->dif_enabled)) {
1739 			lengths[i] = desc->keyed.length;
1740 		} else {
1741 			req->dif.orig_length += desc->keyed.length;
1742 			lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx);
1743 			req->dif.elba_length += lengths[i];
1744 		}
1745 		total_length += lengths[i];
1746 		desc++;
1747 	}
1748 
1749 	if (total_length > rtransport->transport.opts.max_io_size) {
1750 		SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n",
1751 			    total_length, rtransport->transport.opts.max_io_size);
1752 		req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1753 		return -EINVAL;
1754 	}
1755 
1756 	if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) {
1757 		return -ENOMEM;
1758 	}
1759 
1760 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length);
1761 	if (rc != 0) {
1762 		nvmf_rdma_request_free_data(rdma_req, rtransport);
1763 		return rc;
1764 	}
1765 
1766 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1767 	 * the stripped_buffers are got for DIF stripping. */
1768 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1769 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1770 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1771 						       &rtransport->transport, req->dif.orig_length);
1772 		if (rc != 0) {
1773 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1774 		}
1775 	}
1776 
1777 	/* The first WR must always be the embedded data WR. This is how we unwind them later. */
1778 	current_wr = &rdma_req->data.wr;
1779 	assert(current_wr != NULL);
1780 
1781 	req->length = 0;
1782 	rdma_req->iovpos = 0;
1783 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1784 	for (i = 0; i < num_sgl_descriptors; i++) {
1785 		/* The descriptors must be keyed data block descriptors with an address, not an offset. */
1786 		if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1787 				  desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1788 			rc = -EINVAL;
1789 			goto err_exit;
1790 		}
1791 
1792 		if (spdk_likely(!req->dif_enabled)) {
1793 			rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i]);
1794 		} else {
1795 			rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, current_wr,
1796 							    lengths[i], 0);
1797 		}
1798 		if (rc != 0) {
1799 			rc = -ENOMEM;
1800 			goto err_exit;
1801 		}
1802 
1803 		req->length += desc->keyed.length;
1804 		current_wr->wr.rdma.rkey = desc->keyed.key;
1805 		current_wr->wr.rdma.remote_addr = desc->address;
1806 		current_wr = current_wr->next;
1807 		desc++;
1808 	}
1809 
1810 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1811 	/* Go back to the last descriptor in the list. */
1812 	desc--;
1813 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1814 		if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1815 			rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1816 			rdma_req->rsp.wr.imm_data = desc->keyed.key;
1817 		}
1818 	}
1819 #endif
1820 
1821 	rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1822 
1823 	return 0;
1824 
1825 err_exit:
1826 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1827 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1828 	return rc;
1829 }
1830 
1831 static int
1832 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1833 			    struct spdk_nvmf_rdma_device *device,
1834 			    struct spdk_nvmf_rdma_request *rdma_req)
1835 {
1836 	struct spdk_nvmf_request		*req = &rdma_req->req;
1837 	struct spdk_nvme_cpl			*rsp;
1838 	struct spdk_nvme_sgl_descriptor		*sgl;
1839 	int					rc;
1840 	uint32_t				length;
1841 
1842 	rsp = &req->rsp->nvme_cpl;
1843 	sgl = &req->cmd->nvme_cmd.dptr.sgl1;
1844 
1845 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1846 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1847 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1848 
1849 		length = sgl->keyed.length;
1850 		if (length > rtransport->transport.opts.max_io_size) {
1851 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1852 				    length, rtransport->transport.opts.max_io_size);
1853 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1854 			return -1;
1855 		}
1856 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1857 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1858 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1859 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1860 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1861 			}
1862 		}
1863 #endif
1864 
1865 		/* fill request length and populate iovs */
1866 		req->length = length;
1867 
1868 		rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req);
1869 		if (spdk_unlikely(rc < 0)) {
1870 			if (rc == -EINVAL) {
1871 				SPDK_ERRLOG("SGL length exceeds the max I/O size\n");
1872 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1873 				return -1;
1874 			}
1875 			/* No available buffers. Queue this request up. */
1876 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1877 			return 0;
1878 		}
1879 
1880 		/* backward compatible */
1881 		req->data = req->iov[0].iov_base;
1882 
1883 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1884 			      req->iovcnt);
1885 
1886 		return 0;
1887 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1888 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1889 		uint64_t offset = sgl->address;
1890 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1891 
1892 		SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1893 			      offset, sgl->unkeyed.length);
1894 
1895 		if (offset > max_len) {
1896 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1897 				    offset, max_len);
1898 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1899 			return -1;
1900 		}
1901 		max_len -= (uint32_t)offset;
1902 
1903 		if (sgl->unkeyed.length > max_len) {
1904 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1905 				    sgl->unkeyed.length, max_len);
1906 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1907 			return -1;
1908 		}
1909 
1910 		rdma_req->num_outstanding_data_wr = 0;
1911 		req->data_from_pool = false;
1912 		req->length = sgl->unkeyed.length;
1913 
1914 		req->iov[0].iov_base = rdma_req->recv->buf + offset;
1915 		req->iov[0].iov_len = req->length;
1916 		req->iovcnt = 1;
1917 		req->data = req->iov[0].iov_base;
1918 
1919 		return 0;
1920 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1921 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1922 
1923 		rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1924 		if (rc == -ENOMEM) {
1925 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1926 			return 0;
1927 		} else if (rc == -EINVAL) {
1928 			SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1929 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1930 			return -1;
1931 		}
1932 
1933 		/* backward compatible */
1934 		req->data = req->iov[0].iov_base;
1935 
1936 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1937 			      req->iovcnt);
1938 
1939 		return 0;
1940 	}
1941 
1942 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
1943 		    sgl->generic.type, sgl->generic.subtype);
1944 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1945 	return -1;
1946 }
1947 
1948 static void
1949 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1950 			struct spdk_nvmf_rdma_transport	*rtransport)
1951 {
1952 	struct spdk_nvmf_rdma_qpair		*rqpair;
1953 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1954 
1955 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1956 	if (rdma_req->req.data_from_pool) {
1957 		rgroup = rqpair->poller->group;
1958 
1959 		spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport);
1960 	}
1961 	if (rdma_req->req.stripped_data) {
1962 		nvmf_request_free_stripped_buffers(&rdma_req->req,
1963 						   &rqpair->poller->group->group,
1964 						   &rtransport->transport);
1965 	}
1966 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1967 	rdma_req->req.length = 0;
1968 	rdma_req->req.iovcnt = 0;
1969 	rdma_req->req.data = NULL;
1970 	rdma_req->offset = 0;
1971 	rdma_req->req.dif_enabled = false;
1972 	rdma_req->fused_failed = false;
1973 	if (rdma_req->fused_pair) {
1974 		/* This req was part of a valid fused pair, but failed before it got to
1975 		 * READ_TO_EXECUTE state.  This means we need to fail the other request
1976 		 * in the pair, because it is no longer part of a valid pair.  If the pair
1977 		 * already reached READY_TO_EXECUTE state, we need to kick it.
1978 		 */
1979 		rdma_req->fused_pair->fused_failed = true;
1980 		if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
1981 			nvmf_rdma_request_process(rtransport, rdma_req->fused_pair);
1982 		}
1983 		rdma_req->fused_pair = NULL;
1984 	}
1985 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
1986 	rqpair->qd--;
1987 
1988 	STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
1989 	rdma_req->state = RDMA_REQUEST_STATE_FREE;
1990 }
1991 
1992 static void
1993 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport,
1994 			       struct spdk_nvmf_rdma_qpair *rqpair,
1995 			       struct spdk_nvmf_rdma_request *rdma_req)
1996 {
1997 	enum spdk_nvme_cmd_fuse last, next;
1998 
1999 	last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2000 	next = rdma_req->req.cmd->nvme_cmd.fuse;
2001 
2002 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2003 
2004 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2005 		return;
2006 	}
2007 
2008 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2009 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2010 			/* This is a valid pair of fused commands.  Point them at each other
2011 			 * so they can be submitted consecutively once ready to be executed.
2012 			 */
2013 			rqpair->fused_first->fused_pair = rdma_req;
2014 			rdma_req->fused_pair = rqpair->fused_first;
2015 			rqpair->fused_first = NULL;
2016 			return;
2017 		} else {
2018 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2019 			rqpair->fused_first->fused_failed = true;
2020 
2021 			/* If the last req is in READY_TO_EXECUTE state, then call
2022 			 * nvmf_rdma_request_process(), otherwise nothing else will kick it.
2023 			 */
2024 			if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2025 				nvmf_rdma_request_process(rtransport, rqpair->fused_first);
2026 			}
2027 
2028 			rqpair->fused_first = NULL;
2029 		}
2030 	}
2031 
2032 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2033 		/* Set rqpair->fused_first here so that we know to check that the next request
2034 		 * is a SECOND (and to fail this one if it isn't).
2035 		 */
2036 		rqpair->fused_first = rdma_req;
2037 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2038 		/* Mark this req failed since it ia SECOND and the last one was not a FIRST. */
2039 		rdma_req->fused_failed = true;
2040 	}
2041 }
2042 
2043 bool
2044 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
2045 			  struct spdk_nvmf_rdma_request *rdma_req)
2046 {
2047 	struct spdk_nvmf_rdma_qpair	*rqpair;
2048 	struct spdk_nvmf_rdma_device	*device;
2049 	struct spdk_nvmf_rdma_poll_group *rgroup;
2050 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
2051 	int				rc;
2052 	struct spdk_nvmf_rdma_recv	*rdma_recv;
2053 	enum spdk_nvmf_rdma_request_state prev_state;
2054 	bool				progress = false;
2055 	int				data_posted;
2056 	uint32_t			num_blocks;
2057 
2058 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2059 	device = rqpair->device;
2060 	rgroup = rqpair->poller->group;
2061 
2062 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
2063 
2064 	/* If the queue pair is in an error state, force the request to the completed state
2065 	 * to release resources. */
2066 	if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2067 		if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) {
2068 			STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link);
2069 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) {
2070 			STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2071 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) {
2072 			STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2073 		}
2074 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2075 	}
2076 
2077 	/* The loop here is to allow for several back-to-back state changes. */
2078 	do {
2079 		prev_state = rdma_req->state;
2080 
2081 		SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state);
2082 
2083 		switch (rdma_req->state) {
2084 		case RDMA_REQUEST_STATE_FREE:
2085 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
2086 			 * to escape this state. */
2087 			break;
2088 		case RDMA_REQUEST_STATE_NEW:
2089 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
2090 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2091 			rdma_recv = rdma_req->recv;
2092 
2093 			/* The first element of the SGL is the NVMe command */
2094 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
2095 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
2096 			rdma_req->transfer_wr = &rdma_req->data.wr;
2097 
2098 			if (rqpair->ibv_state == IBV_QPS_ERR  || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2099 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2100 				break;
2101 			}
2102 
2103 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) {
2104 				rdma_req->req.dif_enabled = true;
2105 			}
2106 
2107 			nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req);
2108 
2109 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2110 			rdma_req->rsp.wr.opcode = IBV_WR_SEND;
2111 			rdma_req->rsp.wr.imm_data = 0;
2112 #endif
2113 
2114 			/* The next state transition depends on the data transfer needs of this request. */
2115 			rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req);
2116 
2117 			if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2118 				rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2119 				rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE;
2120 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2121 				SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req);
2122 				break;
2123 			}
2124 
2125 			/* If no data to transfer, ready to execute. */
2126 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
2127 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2128 				break;
2129 			}
2130 
2131 			rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
2132 			STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link);
2133 			break;
2134 		case RDMA_REQUEST_STATE_NEED_BUFFER:
2135 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
2136 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2137 
2138 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
2139 
2140 			if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) {
2141 				/* This request needs to wait in line to obtain a buffer */
2142 				break;
2143 			}
2144 
2145 			/* Try to get a data buffer */
2146 			rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
2147 			if (rc < 0) {
2148 				STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2149 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2150 				break;
2151 			}
2152 
2153 			if (rdma_req->req.iovcnt == 0) {
2154 				/* No buffers available. */
2155 				rgroup->stat.pending_data_buffer++;
2156 				break;
2157 			}
2158 
2159 			STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2160 
2161 			/* If data is transferring from host to controller and the data didn't
2162 			 * arrive using in capsule data, we need to do a transfer from the host.
2163 			 */
2164 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER &&
2165 			    rdma_req->req.data_from_pool) {
2166 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
2167 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
2168 				break;
2169 			}
2170 
2171 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2172 			break;
2173 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2174 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
2175 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2176 
2177 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
2178 				/* This request needs to wait in line to perform RDMA */
2179 				break;
2180 			}
2181 			if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth
2182 			    || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) {
2183 				/* We can only have so many WRs outstanding. we have to wait until some finish. */
2184 				rqpair->poller->stat.pending_rdma_read++;
2185 				break;
2186 			}
2187 
2188 			/* We have already verified that this request is the head of the queue. */
2189 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
2190 
2191 			rc = request_transfer_in(&rdma_req->req);
2192 			if (!rc) {
2193 				rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
2194 			} else {
2195 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2196 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2197 			}
2198 			break;
2199 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2200 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
2201 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2202 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
2203 			 * to escape this state. */
2204 			break;
2205 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
2206 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
2207 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2208 
2209 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2210 				if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2211 					/* generate DIF for write operation */
2212 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2213 					assert(num_blocks > 0);
2214 
2215 					rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt,
2216 							       num_blocks, &rdma_req->req.dif.dif_ctx);
2217 					if (rc != 0) {
2218 						SPDK_ERRLOG("DIF generation failed\n");
2219 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2220 						spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
2221 						break;
2222 					}
2223 				}
2224 
2225 				assert(rdma_req->req.dif.elba_length >= rdma_req->req.length);
2226 				/* set extended length before IO operation */
2227 				rdma_req->req.length = rdma_req->req.dif.elba_length;
2228 			}
2229 
2230 			if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2231 				if (rdma_req->fused_failed) {
2232 					/* This request failed FUSED semantics.  Fail it immediately, without
2233 					 * even sending it to the target layer.
2234 					 */
2235 					rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2236 					rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2237 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2238 					break;
2239 				}
2240 
2241 				if (rdma_req->fused_pair == NULL ||
2242 				    rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2243 					/* This request is ready to execute, but either we don't know yet if it's
2244 					 * valid - i.e. this is a FIRST but we haven't received the next
2245 					 * request yet or the other request of this fused pair isn't ready to
2246 					 * execute.  So break here and this request will get processed later either
2247 					 * when the other request is ready or we find that this request isn't valid.
2248 					 */
2249 					break;
2250 				}
2251 			}
2252 
2253 			/* If we get to this point, and this request is a fused command, we know that
2254 			 * it is part of valid sequence (FIRST followed by a SECOND) and that both
2255 			 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this
2256 			 * request, and the other request of the fused pair, in the correct order.
2257 			 * Also clear the ->fused_pair pointers on both requests, since after this point
2258 			 * we no longer need to maintain the relationship between these two requests.
2259 			 */
2260 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2261 				assert(rdma_req->fused_pair != NULL);
2262 				assert(rdma_req->fused_pair->fused_pair != NULL);
2263 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2264 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2265 				rdma_req->fused_pair->fused_pair = NULL;
2266 				rdma_req->fused_pair = NULL;
2267 			}
2268 			rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
2269 			spdk_nvmf_request_exec(&rdma_req->req);
2270 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2271 				assert(rdma_req->fused_pair != NULL);
2272 				assert(rdma_req->fused_pair->fused_pair != NULL);
2273 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2274 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2275 				rdma_req->fused_pair->fused_pair = NULL;
2276 				rdma_req->fused_pair = NULL;
2277 			}
2278 			break;
2279 		case RDMA_REQUEST_STATE_EXECUTING:
2280 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
2281 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2282 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
2283 			 * to escape this state. */
2284 			break;
2285 		case RDMA_REQUEST_STATE_EXECUTED:
2286 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
2287 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2288 			if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
2289 			    rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2290 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
2291 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
2292 			} else {
2293 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2294 			}
2295 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2296 				/* restore the original length */
2297 				rdma_req->req.length = rdma_req->req.dif.orig_length;
2298 
2299 				if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2300 					struct spdk_dif_error error_blk;
2301 
2302 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2303 					if (!rdma_req->req.stripped_data) {
2304 						rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2305 								     &rdma_req->req.dif.dif_ctx, &error_blk);
2306 					} else {
2307 						rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov,
2308 									  rdma_req->req.stripped_data->iovcnt,
2309 									  rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2310 									  &rdma_req->req.dif.dif_ctx, &error_blk);
2311 					}
2312 					if (rc) {
2313 						struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
2314 
2315 						SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type,
2316 							    error_blk.err_offset);
2317 						rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2318 						rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type);
2319 						rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2320 						STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2321 					}
2322 				}
2323 			}
2324 			break;
2325 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2326 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
2327 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2328 
2329 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
2330 				/* This request needs to wait in line to perform RDMA */
2331 				break;
2332 			}
2333 			if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
2334 			    rqpair->max_send_depth) {
2335 				/* We can only have so many WRs outstanding. we have to wait until some finish.
2336 				 * +1 since each request has an additional wr in the resp. */
2337 				rqpair->poller->stat.pending_rdma_write++;
2338 				break;
2339 			}
2340 
2341 			/* We have already verified that this request is the head of the queue. */
2342 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
2343 
2344 			/* The data transfer will be kicked off from
2345 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2346 			 */
2347 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2348 			break;
2349 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
2350 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
2351 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2352 			rc = request_transfer_out(&rdma_req->req, &data_posted);
2353 			assert(rc == 0); /* No good way to handle this currently */
2354 			if (rc) {
2355 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2356 			} else {
2357 				rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
2358 						  RDMA_REQUEST_STATE_COMPLETING;
2359 			}
2360 			break;
2361 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2362 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
2363 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2364 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2365 			 * to escape this state. */
2366 			break;
2367 		case RDMA_REQUEST_STATE_COMPLETING:
2368 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
2369 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2370 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2371 			 * to escape this state. */
2372 			break;
2373 		case RDMA_REQUEST_STATE_COMPLETED:
2374 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2375 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2376 
2377 			rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc;
2378 			_nvmf_rdma_request_free(rdma_req, rtransport);
2379 			break;
2380 		case RDMA_REQUEST_NUM_STATES:
2381 		default:
2382 			assert(0);
2383 			break;
2384 		}
2385 
2386 		if (rdma_req->state != prev_state) {
2387 			progress = true;
2388 		}
2389 	} while (rdma_req->state != prev_state);
2390 
2391 	return progress;
2392 }
2393 
2394 /* Public API callbacks begin here */
2395 
2396 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2397 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2398 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2399 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
2400 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2401 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2402 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2403 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095
2404 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
2405 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false
2406 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false
2407 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100
2408 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1
2409 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false
2410 
2411 static void
2412 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2413 {
2414 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2415 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2416 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2417 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2418 	opts->io_unit_size =		SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2419 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2420 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2421 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2422 	opts->dif_insert_or_strip =	SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP;
2423 	opts->abort_timeout_sec =	SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC;
2424 	opts->transport_specific =      NULL;
2425 }
2426 
2427 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2428 			     spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg);
2429 
2430 static inline bool
2431 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device)
2432 {
2433 	return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD ||
2434 	       device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW;
2435 }
2436 
2437 static int nvmf_rdma_accept(void *ctx);
2438 static bool nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport);
2439 static void destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
2440 			      struct spdk_nvmf_rdma_device *device);
2441 
2442 static int
2443 create_ib_device(struct spdk_nvmf_rdma_transport *rtransport, struct ibv_context *context,
2444 		 struct spdk_nvmf_rdma_device **new_device)
2445 {
2446 	struct spdk_nvmf_rdma_device	*device;
2447 	int				flag = 0;
2448 	int				rc = 0;
2449 
2450 	device = calloc(1, sizeof(*device));
2451 	if (!device) {
2452 		SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2453 		return -ENOMEM;
2454 	}
2455 	device->context = context;
2456 	rc = ibv_query_device(device->context, &device->attr);
2457 	if (rc < 0) {
2458 		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2459 		free(device);
2460 		return rc;
2461 	}
2462 
2463 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2464 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2465 		SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2466 		SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2467 	}
2468 
2469 	/**
2470 	 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2471 	 * The Soft-RoCE RXE driver does not currently support send with invalidate,
2472 	 * but incorrectly reports that it does. There are changes making their way
2473 	 * through the kernel now that will enable this feature. When they are merged,
2474 	 * we can conditionally enable this feature.
2475 	 *
2476 	 * TODO: enable this for versions of the kernel rxe driver that support it.
2477 	 */
2478 	if (nvmf_rdma_is_rxe_device(device)) {
2479 		device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2480 	}
2481 #endif
2482 
2483 	/* set up device context async ev fd as NON_BLOCKING */
2484 	flag = fcntl(device->context->async_fd, F_GETFL);
2485 	rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2486 	if (rc < 0) {
2487 		SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2488 		free(device);
2489 		return rc;
2490 	}
2491 
2492 	TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2493 	SPDK_DEBUGLOG(rdma, "New device %p is added to RDMA trasport\n", device);
2494 
2495 	if (g_nvmf_hooks.get_ibv_pd) {
2496 		device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2497 	} else {
2498 		device->pd = ibv_alloc_pd(device->context);
2499 	}
2500 
2501 	if (!device->pd) {
2502 		SPDK_ERRLOG("Unable to allocate protection domain.\n");
2503 		destroy_ib_device(rtransport, device);
2504 		return -ENOMEM;
2505 	}
2506 
2507 	assert(device->map == NULL);
2508 
2509 	device->map = spdk_rdma_create_mem_map(device->pd, &g_nvmf_hooks, SPDK_RDMA_MEMORY_MAP_ROLE_TARGET);
2510 	if (!device->map) {
2511 		SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2512 		destroy_ib_device(rtransport, device);
2513 		return -ENOMEM;
2514 	}
2515 
2516 	assert(device->map != NULL);
2517 	assert(device->pd != NULL);
2518 
2519 	if (new_device) {
2520 		*new_device = device;
2521 	}
2522 	SPDK_NOTICELOG("Create IB device %s(%p/%p) succeed.\n", ibv_get_device_name(context->device),
2523 		       device, context);
2524 
2525 	return 0;
2526 }
2527 
2528 static void
2529 free_poll_fds(struct spdk_nvmf_rdma_transport *rtransport)
2530 {
2531 	if (rtransport->poll_fds) {
2532 		free(rtransport->poll_fds);
2533 		rtransport->poll_fds = NULL;
2534 	}
2535 	rtransport->npoll_fds = 0;
2536 }
2537 
2538 static int
2539 generate_poll_fds(struct spdk_nvmf_rdma_transport *rtransport)
2540 {
2541 	/* Set up poll descriptor array to monitor events from RDMA and IB
2542 	 * in a single poll syscall
2543 	 */
2544 	int device_count = 0;
2545 	int i = 0;
2546 	struct spdk_nvmf_rdma_device *device, *tmp;
2547 
2548 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2549 		device_count++;
2550 	}
2551 
2552 	rtransport->npoll_fds = device_count + 1;
2553 
2554 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2555 	if (rtransport->poll_fds == NULL) {
2556 		SPDK_ERRLOG("poll_fds allocation failed\n");
2557 		return -ENOMEM;
2558 	}
2559 
2560 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2561 	rtransport->poll_fds[i++].events = POLLIN;
2562 
2563 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2564 		rtransport->poll_fds[i].fd = device->context->async_fd;
2565 		rtransport->poll_fds[i++].events = POLLIN;
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 static struct spdk_nvmf_transport *
2572 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2573 {
2574 	int rc;
2575 	struct spdk_nvmf_rdma_transport *rtransport;
2576 	struct spdk_nvmf_rdma_device	*device;
2577 	struct ibv_context		**contexts;
2578 	uint32_t			i;
2579 	int				flag;
2580 	uint32_t			sge_count;
2581 	uint32_t			min_shared_buffers;
2582 	uint32_t			min_in_capsule_data_size;
2583 	int				max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2584 
2585 	rtransport = calloc(1, sizeof(*rtransport));
2586 	if (!rtransport) {
2587 		return NULL;
2588 	}
2589 
2590 	TAILQ_INIT(&rtransport->devices);
2591 	TAILQ_INIT(&rtransport->ports);
2592 	TAILQ_INIT(&rtransport->poll_groups);
2593 	TAILQ_INIT(&rtransport->retry_ports);
2594 
2595 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2596 	rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
2597 	rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2598 	rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ;
2599 	rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2600 	rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING;
2601 	if (opts->transport_specific != NULL &&
2602 	    spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder,
2603 					    SPDK_COUNTOF(rdma_transport_opts_decoder),
2604 					    &rtransport->rdma_opts)) {
2605 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
2606 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2607 		return NULL;
2608 	}
2609 
2610 	SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n"
2611 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
2612 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2613 		     "  in_capsule_data_size=%d, max_aq_depth=%d,\n"
2614 		     "  num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d,"
2615 		     "  acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n",
2616 		     opts->max_queue_depth,
2617 		     opts->max_io_size,
2618 		     opts->max_qpairs_per_ctrlr - 1,
2619 		     opts->io_unit_size,
2620 		     opts->in_capsule_data_size,
2621 		     opts->max_aq_depth,
2622 		     opts->num_shared_buffers,
2623 		     rtransport->rdma_opts.num_cqe,
2624 		     rtransport->rdma_opts.max_srq_depth,
2625 		     rtransport->rdma_opts.no_srq,
2626 		     rtransport->rdma_opts.acceptor_backlog,
2627 		     rtransport->rdma_opts.no_wr_batching,
2628 		     opts->abort_timeout_sec);
2629 
2630 	/* I/O unit size cannot be larger than max I/O size */
2631 	if (opts->io_unit_size > opts->max_io_size) {
2632 		opts->io_unit_size = opts->max_io_size;
2633 	}
2634 
2635 	if (rtransport->rdma_opts.acceptor_backlog <= 0) {
2636 		SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n",
2637 			    SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG);
2638 		rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2639 	}
2640 
2641 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2642 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2643 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
2644 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2645 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2646 		return NULL;
2647 	}
2648 
2649 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
2650 	if (opts->buf_cache_size < UINT32_MAX) {
2651 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
2652 		if (min_shared_buffers > opts->num_shared_buffers) {
2653 			SPDK_ERRLOG("There are not enough buffers to satisfy"
2654 				    "per-poll group caches for each thread. (%" PRIu32 ")"
2655 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2656 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2657 			nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2658 			return NULL;
2659 		}
2660 	}
2661 
2662 	sge_count = opts->max_io_size / opts->io_unit_size;
2663 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
2664 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2665 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2666 		return NULL;
2667 	}
2668 
2669 	min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES;
2670 	if (opts->in_capsule_data_size < min_in_capsule_data_size) {
2671 		SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n",
2672 			     min_in_capsule_data_size);
2673 		opts->in_capsule_data_size = min_in_capsule_data_size;
2674 	}
2675 
2676 	rtransport->event_channel = rdma_create_event_channel();
2677 	if (rtransport->event_channel == NULL) {
2678 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2679 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2680 		return NULL;
2681 	}
2682 
2683 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2684 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2685 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2686 			    rtransport->event_channel->fd, spdk_strerror(errno));
2687 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2688 		return NULL;
2689 	}
2690 
2691 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
2692 				   opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES,
2693 				   sizeof(struct spdk_nvmf_rdma_request_data),
2694 				   SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2695 				   SPDK_ENV_SOCKET_ID_ANY);
2696 	if (!rtransport->data_wr_pool) {
2697 		if (spdk_mempool_lookup("spdk_nvmf_rdma_wr_data") != NULL) {
2698 			SPDK_ERRLOG("Unable to allocate work request pool for poll group: already exists\n");
2699 			SPDK_ERRLOG("Probably running in multiprocess environment, which is "
2700 				    "unsupported by the nvmf library\n");
2701 		} else {
2702 			SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2703 		}
2704 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2705 		return NULL;
2706 	}
2707 
2708 	contexts = rdma_get_devices(NULL);
2709 	if (contexts == NULL) {
2710 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2711 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2712 		return NULL;
2713 	}
2714 
2715 	i = 0;
2716 	rc = 0;
2717 	while (contexts[i] != NULL) {
2718 		rc = create_ib_device(rtransport, contexts[i], &device);
2719 		if (rc < 0) {
2720 			break;
2721 		}
2722 		i++;
2723 		max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2724 		device->is_ready = true;
2725 	}
2726 	rdma_free_devices(contexts);
2727 
2728 	if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2729 		/* divide and round up. */
2730 		opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2731 
2732 		/* round up to the nearest 4k. */
2733 		opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2734 
2735 		opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2736 		SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2737 			       opts->io_unit_size);
2738 	}
2739 
2740 	if (rc < 0) {
2741 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2742 		return NULL;
2743 	}
2744 
2745 	rc = generate_poll_fds(rtransport);
2746 	if (rc < 0) {
2747 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2748 		return NULL;
2749 	}
2750 
2751 	rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport,
2752 				    opts->acceptor_poll_rate);
2753 	if (!rtransport->accept_poller) {
2754 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2755 		return NULL;
2756 	}
2757 
2758 	return &rtransport->transport;
2759 }
2760 
2761 static void
2762 destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
2763 		  struct spdk_nvmf_rdma_device *device)
2764 {
2765 	TAILQ_REMOVE(&rtransport->devices, device, link);
2766 	spdk_rdma_free_mem_map(&device->map);
2767 	if (device->pd) {
2768 		if (!g_nvmf_hooks.get_ibv_pd) {
2769 			ibv_dealloc_pd(device->pd);
2770 		}
2771 	}
2772 	SPDK_DEBUGLOG(rdma, "IB device [%p] is destroyed.\n", device);
2773 	free(device);
2774 }
2775 
2776 static void
2777 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
2778 {
2779 	struct spdk_nvmf_rdma_transport	*rtransport;
2780 	assert(w != NULL);
2781 
2782 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2783 	spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth);
2784 	spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq);
2785 	if (rtransport->rdma_opts.no_srq == true) {
2786 		spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe);
2787 	}
2788 	spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog);
2789 	spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching);
2790 }
2791 
2792 static int
2793 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2794 		  spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
2795 {
2796 	struct spdk_nvmf_rdma_transport	*rtransport;
2797 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
2798 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
2799 
2800 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2801 
2802 	TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, port_tmp) {
2803 		TAILQ_REMOVE(&rtransport->retry_ports, port, link);
2804 		free(port);
2805 	}
2806 
2807 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2808 		TAILQ_REMOVE(&rtransport->ports, port, link);
2809 		rdma_destroy_id(port->id);
2810 		free(port);
2811 	}
2812 
2813 	free_poll_fds(rtransport);
2814 
2815 	if (rtransport->event_channel != NULL) {
2816 		rdma_destroy_event_channel(rtransport->event_channel);
2817 	}
2818 
2819 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2820 		destroy_ib_device(rtransport, device);
2821 	}
2822 
2823 	if (rtransport->data_wr_pool != NULL) {
2824 		if (spdk_mempool_count(rtransport->data_wr_pool) !=
2825 		    (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) {
2826 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2827 				    spdk_mempool_count(rtransport->data_wr_pool),
2828 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2829 		}
2830 	}
2831 
2832 	spdk_mempool_free(rtransport->data_wr_pool);
2833 
2834 	spdk_poller_unregister(&rtransport->accept_poller);
2835 	free(rtransport);
2836 
2837 	if (cb_fn) {
2838 		cb_fn(cb_arg);
2839 	}
2840 	return 0;
2841 }
2842 
2843 static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2844 				     struct spdk_nvme_transport_id *trid,
2845 				     bool peer);
2846 
2847 static bool nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport);
2848 
2849 static int
2850 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
2851 		 struct spdk_nvmf_listen_opts *listen_opts)
2852 {
2853 	struct spdk_nvmf_rdma_transport	*rtransport;
2854 	struct spdk_nvmf_rdma_device	*device;
2855 	struct spdk_nvmf_rdma_port	*port, *tmp_port;
2856 	struct addrinfo			*res;
2857 	struct addrinfo			hints;
2858 	int				family;
2859 	int				rc;
2860 	bool				is_retry = false;
2861 
2862 	if (!strlen(trid->trsvcid)) {
2863 		SPDK_ERRLOG("Service id is required\n");
2864 		return -EINVAL;
2865 	}
2866 
2867 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2868 	assert(rtransport->event_channel != NULL);
2869 
2870 	port = calloc(1, sizeof(*port));
2871 	if (!port) {
2872 		SPDK_ERRLOG("Port allocation failed\n");
2873 		return -ENOMEM;
2874 	}
2875 
2876 	port->trid = trid;
2877 
2878 	switch (trid->adrfam) {
2879 	case SPDK_NVMF_ADRFAM_IPV4:
2880 		family = AF_INET;
2881 		break;
2882 	case SPDK_NVMF_ADRFAM_IPV6:
2883 		family = AF_INET6;
2884 		break;
2885 	default:
2886 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam);
2887 		free(port);
2888 		return -EINVAL;
2889 	}
2890 
2891 	memset(&hints, 0, sizeof(hints));
2892 	hints.ai_family = family;
2893 	hints.ai_flags = AI_NUMERICSERV;
2894 	hints.ai_socktype = SOCK_STREAM;
2895 	hints.ai_protocol = 0;
2896 
2897 	rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res);
2898 	if (rc) {
2899 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
2900 		free(port);
2901 		return -(abs(rc));
2902 	}
2903 
2904 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
2905 	if (rc < 0) {
2906 		SPDK_ERRLOG("rdma_create_id() failed\n");
2907 		freeaddrinfo(res);
2908 		free(port);
2909 		return rc;
2910 	}
2911 
2912 	rc = rdma_bind_addr(port->id, res->ai_addr);
2913 	freeaddrinfo(res);
2914 
2915 	if (rc < 0) {
2916 		TAILQ_FOREACH(tmp_port, &rtransport->retry_ports, link) {
2917 			if (spdk_nvme_transport_id_compare(tmp_port->trid, trid) == 0) {
2918 				is_retry = true;
2919 				break;
2920 			}
2921 		}
2922 		if (!is_retry) {
2923 			SPDK_ERRLOG("rdma_bind_addr() failed\n");
2924 		}
2925 		rdma_destroy_id(port->id);
2926 		free(port);
2927 		return rc;
2928 	}
2929 
2930 	if (!port->id->verbs) {
2931 		SPDK_ERRLOG("ibv_context is null\n");
2932 		rdma_destroy_id(port->id);
2933 		free(port);
2934 		return -1;
2935 	}
2936 
2937 	rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog);
2938 	if (rc < 0) {
2939 		SPDK_ERRLOG("rdma_listen() failed\n");
2940 		rdma_destroy_id(port->id);
2941 		free(port);
2942 		return rc;
2943 	}
2944 
2945 	TAILQ_FOREACH(device, &rtransport->devices, link) {
2946 		if (device->context == port->id->verbs && device->is_ready) {
2947 			port->device = device;
2948 			break;
2949 		}
2950 	}
2951 	if (!port->device) {
2952 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
2953 			    port->id->verbs);
2954 		rdma_destroy_id(port->id);
2955 		free(port);
2956 		return -EINVAL;
2957 	}
2958 
2959 	SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n",
2960 		       trid->traddr, trid->trsvcid);
2961 
2962 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
2963 	return 0;
2964 }
2965 
2966 static void
2967 nvmf_rdma_stop_listen_ex(struct spdk_nvmf_transport *transport,
2968 			 const struct spdk_nvme_transport_id *trid, bool need_retry)
2969 {
2970 	struct spdk_nvmf_rdma_transport	*rtransport;
2971 	struct spdk_nvmf_rdma_port	*port, *tmp;
2972 
2973 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2974 
2975 	if (!need_retry) {
2976 		TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp) {
2977 			if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
2978 				TAILQ_REMOVE(&rtransport->retry_ports, port, link);
2979 				free(port);
2980 			}
2981 		}
2982 	}
2983 
2984 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
2985 		if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
2986 			SPDK_DEBUGLOG(rdma, "Port %s:%s removed. need retry: %d\n",
2987 				      port->trid->traddr, port->trid->trsvcid, need_retry);
2988 			TAILQ_REMOVE(&rtransport->ports, port, link);
2989 			rdma_destroy_id(port->id);
2990 			port->id = NULL;
2991 			port->device = NULL;
2992 			if (need_retry) {
2993 				TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link);
2994 			} else {
2995 				free(port);
2996 			}
2997 			break;
2998 		}
2999 	}
3000 }
3001 
3002 static void
3003 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
3004 		      const struct spdk_nvme_transport_id *trid)
3005 {
3006 	nvmf_rdma_stop_listen_ex(transport, trid, false);
3007 }
3008 
3009 static void _nvmf_rdma_register_poller_in_group(void *c);
3010 static void _nvmf_rdma_remove_poller_in_group(void *c);
3011 
3012 static bool
3013 nvmf_rdma_all_pollers_management_done(void *c)
3014 {
3015 	struct poller_manage_ctx	*ctx = c;
3016 	int				counter;
3017 
3018 	counter = __atomic_sub_fetch(ctx->inflight_op_counter, 1, __ATOMIC_SEQ_CST);
3019 	SPDK_DEBUGLOG(rdma, "nvmf_rdma_all_pollers_management_done called. counter: %d, poller: %p\n",
3020 		      counter, ctx->rpoller);
3021 
3022 	if (counter == 0) {
3023 		free((void *)ctx->inflight_op_counter);
3024 	}
3025 	free(ctx);
3026 
3027 	return counter == 0;
3028 }
3029 
3030 static int
3031 nvmf_rdma_manage_poller(struct spdk_nvmf_rdma_transport *rtransport,
3032 			struct spdk_nvmf_rdma_device *device, bool *has_inflight, bool is_add)
3033 {
3034 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3035 	struct spdk_nvmf_rdma_poller		*rpoller;
3036 	struct spdk_nvmf_poll_group		*poll_group;
3037 	struct poller_manage_ctx		*ctx;
3038 	bool					found;
3039 	int					*inflight_counter;
3040 	spdk_msg_fn				do_fn;
3041 
3042 	*has_inflight = false;
3043 	do_fn = is_add ? _nvmf_rdma_register_poller_in_group : _nvmf_rdma_remove_poller_in_group;
3044 	inflight_counter = calloc(1, sizeof(int));
3045 	if (!inflight_counter) {
3046 		SPDK_ERRLOG("Failed to allocate inflight counter when removing pollers\n");
3047 		return -ENOMEM;
3048 	}
3049 
3050 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3051 		(*inflight_counter)++;
3052 	}
3053 
3054 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3055 		found = false;
3056 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3057 			if (rpoller->device == device) {
3058 				found = true;
3059 				break;
3060 			}
3061 		}
3062 		if (found == is_add) {
3063 			__atomic_fetch_sub(inflight_counter, 1, __ATOMIC_SEQ_CST);
3064 			continue;
3065 		}
3066 
3067 		ctx = calloc(1, sizeof(struct poller_manage_ctx));
3068 		if (!ctx) {
3069 			SPDK_ERRLOG("Failed to allocate poller_manage_ctx when removing pollers\n");
3070 			if (!*has_inflight) {
3071 				free(inflight_counter);
3072 			}
3073 			return -ENOMEM;
3074 		}
3075 
3076 		ctx->rtransport = rtransport;
3077 		ctx->rgroup = rgroup;
3078 		ctx->rpoller = rpoller;
3079 		ctx->device = device;
3080 		ctx->thread = spdk_get_thread();
3081 		ctx->inflight_op_counter = inflight_counter;
3082 		*has_inflight = true;
3083 
3084 		poll_group = rgroup->group.group;
3085 		if (poll_group->thread != spdk_get_thread()) {
3086 			spdk_thread_send_msg(poll_group->thread, do_fn, ctx);
3087 		} else {
3088 			do_fn(ctx);
3089 		}
3090 	}
3091 
3092 	if (!*has_inflight) {
3093 		free(inflight_counter);
3094 	}
3095 
3096 	return 0;
3097 }
3098 
3099 static void nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport,
3100 		struct spdk_nvmf_rdma_device *device);
3101 
3102 static struct spdk_nvmf_rdma_device *
3103 nvmf_rdma_find_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
3104 			 struct ibv_context *context)
3105 {
3106 	struct spdk_nvmf_rdma_device	*device, *tmp_device;
3107 
3108 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp_device) {
3109 		if (device->need_destroy) {
3110 			continue;
3111 		}
3112 
3113 		if (strcmp(device->context->device->dev_name, context->device->dev_name) == 0) {
3114 			return device;
3115 		}
3116 	}
3117 
3118 	return NULL;
3119 }
3120 
3121 static bool
3122 nvmf_rdma_check_devices_context(struct spdk_nvmf_rdma_transport *rtransport,
3123 				struct ibv_context *context)
3124 {
3125 	struct spdk_nvmf_rdma_device	*old_device, *new_device;
3126 	int				rc = 0;
3127 	bool				has_inflight;
3128 
3129 	old_device = nvmf_rdma_find_ib_device(rtransport, context);
3130 
3131 	if (old_device) {
3132 		if (old_device->context != context && !old_device->need_destroy && old_device->is_ready) {
3133 			/* context may not have time to be cleaned when rescan. exactly one context
3134 			 * is valid for a device so this context must be invalid and just remove it. */
3135 			SPDK_WARNLOG("Device %p has a invalid context %p\n", old_device, old_device->context);
3136 			old_device->need_destroy = true;
3137 			nvmf_rdma_handle_device_removal(rtransport, old_device);
3138 		}
3139 		return false;
3140 	}
3141 
3142 	rc = create_ib_device(rtransport, context, &new_device);
3143 	/* TODO: update transport opts. */
3144 	if (rc < 0) {
3145 		SPDK_ERRLOG("Failed to create ib device for context: %s(%p)\n",
3146 			    ibv_get_device_name(context->device), context);
3147 		return false;
3148 	}
3149 
3150 	rc = nvmf_rdma_manage_poller(rtransport, new_device, &has_inflight, true);
3151 	if (rc < 0) {
3152 		SPDK_ERRLOG("Failed to add poller for device context: %s(%p)\n",
3153 			    ibv_get_device_name(context->device), context);
3154 		return false;
3155 	}
3156 
3157 	if (has_inflight) {
3158 		new_device->is_ready = true;
3159 	}
3160 
3161 	return true;
3162 }
3163 
3164 static bool
3165 nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport)
3166 {
3167 	struct spdk_nvmf_rdma_device	*device;
3168 	struct ibv_device		**ibv_device_list = NULL;
3169 	struct ibv_context		**contexts = NULL;
3170 	int				i = 0;
3171 	int				num_dev = 0;
3172 	bool				new_create = false, has_new_device = false;
3173 	struct ibv_context		*tmp_verbs = NULL;
3174 
3175 	/* do not rescan when any device is destroying, or context may be freed when
3176 	 * regenerating the poll fds.
3177 	 */
3178 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3179 		if (device->need_destroy) {
3180 			return false;
3181 		}
3182 	}
3183 
3184 	ibv_device_list = ibv_get_device_list(&num_dev);
3185 
3186 	/* There is a bug in librdmacm. If verbs init failed in rdma_get_devices, it'll be
3187 	 * marked as dead verbs and never be init again. So we need to make sure the
3188 	 * verbs is available before we call rdma_get_devices. */
3189 	if (num_dev >= 0) {
3190 		for (i = 0; i < num_dev; i++) {
3191 			tmp_verbs = ibv_open_device(ibv_device_list[i]);
3192 			if (!tmp_verbs) {
3193 				SPDK_WARNLOG("Failed to init ibv device %p, err %d. Skip rescan.\n", ibv_device_list[i], errno);
3194 				break;
3195 			}
3196 			if (nvmf_rdma_find_ib_device(rtransport, tmp_verbs) == NULL) {
3197 				SPDK_DEBUGLOG(rdma, "Find new verbs init ibv device %p(%s).\n", ibv_device_list[i],
3198 					      tmp_verbs->device->dev_name);
3199 				has_new_device = true;
3200 			}
3201 			ibv_close_device(tmp_verbs);
3202 		}
3203 		ibv_free_device_list(ibv_device_list);
3204 		if (!tmp_verbs || !has_new_device) {
3205 			return false;
3206 		}
3207 	}
3208 
3209 	contexts = rdma_get_devices(NULL);
3210 
3211 	for (i = 0; contexts && contexts[i] != NULL; i++) {
3212 		new_create |= nvmf_rdma_check_devices_context(rtransport, contexts[i]);
3213 	}
3214 
3215 	if (new_create) {
3216 		free_poll_fds(rtransport);
3217 		generate_poll_fds(rtransport);
3218 	}
3219 
3220 	if (contexts) {
3221 		rdma_free_devices(contexts);
3222 	}
3223 
3224 	return new_create;
3225 }
3226 
3227 static bool
3228 nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport)
3229 {
3230 	struct spdk_nvmf_rdma_port	*port, *tmp_port;
3231 	int				rc = 0;
3232 	bool				new_create = false;
3233 
3234 	if (TAILQ_EMPTY(&rtransport->retry_ports)) {
3235 		return false;
3236 	}
3237 
3238 	new_create = nvmf_rdma_rescan_devices(rtransport);
3239 
3240 	TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp_port) {
3241 		rc = nvmf_rdma_listen(&rtransport->transport, port->trid, NULL);
3242 
3243 		TAILQ_REMOVE(&rtransport->retry_ports, port, link);
3244 		if (rc) {
3245 			if (new_create) {
3246 				SPDK_ERRLOG("Found new IB device but port %s:%s is still failed(%d) to listen.\n",
3247 					    port->trid->traddr, port->trid->trsvcid, rc);
3248 			}
3249 			TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link);
3250 			break;
3251 		} else {
3252 			SPDK_NOTICELOG("Port %s:%s come back\n", port->trid->traddr, port->trid->trsvcid);
3253 			free(port);
3254 		}
3255 	}
3256 
3257 	return true;
3258 }
3259 
3260 static void
3261 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
3262 				struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
3263 {
3264 	struct spdk_nvmf_request *req, *tmp;
3265 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
3266 	struct spdk_nvmf_rdma_resources *resources;
3267 
3268 	/* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */
3269 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
3270 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3271 			break;
3272 		}
3273 	}
3274 
3275 	/* Then RDMA writes since reads have stronger restrictions than writes */
3276 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
3277 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3278 			break;
3279 		}
3280 	}
3281 
3282 	/* Then we handle request waiting on memory buffers. */
3283 	STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) {
3284 		rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3285 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3286 			break;
3287 		}
3288 	}
3289 
3290 	resources = rqpair->resources;
3291 	while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
3292 		rdma_req = STAILQ_FIRST(&resources->free_queue);
3293 		STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
3294 		rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
3295 		STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
3296 
3297 		if (rqpair->srq != NULL) {
3298 			rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
3299 			rdma_req->recv->qpair->qd++;
3300 		} else {
3301 			rqpair->qd++;
3302 		}
3303 
3304 		rdma_req->receive_tsc = rdma_req->recv->receive_tsc;
3305 		rdma_req->state = RDMA_REQUEST_STATE_NEW;
3306 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
3307 			break;
3308 		}
3309 	}
3310 	if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) {
3311 		rqpair->poller->stat.pending_free_request++;
3312 	}
3313 }
3314 
3315 static inline bool
3316 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device)
3317 {
3318 	/* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */
3319 	return nvmf_rdma_is_rxe_device(device) ||
3320 	       device->context->device->transport_type == IBV_TRANSPORT_IWARP;
3321 }
3322 
3323 static void
3324 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair)
3325 {
3326 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
3327 			struct spdk_nvmf_rdma_transport, transport);
3328 
3329 	nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
3330 
3331 	/* nvmf_rdma_close_qpair is not called */
3332 	if (!rqpair->to_close) {
3333 		return;
3334 	}
3335 
3336 	/* device is already destroyed and we should force destroy this qpair. */
3337 	if (rqpair->poller && rqpair->poller->need_destroy) {
3338 		nvmf_rdma_qpair_destroy(rqpair);
3339 		return;
3340 	}
3341 
3342 	/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
3343 	if (rqpair->current_send_depth != 0) {
3344 		return;
3345 	}
3346 
3347 	if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
3348 		return;
3349 	}
3350 
3351 	if (rqpair->srq != NULL && rqpair->last_wqe_reached == false &&
3352 	    !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) {
3353 		return;
3354 	}
3355 
3356 	assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR);
3357 
3358 	nvmf_rdma_qpair_destroy(rqpair);
3359 }
3360 
3361 static int
3362 nvmf_rdma_disconnect(struct rdma_cm_event *evt)
3363 {
3364 	struct spdk_nvmf_qpair		*qpair;
3365 	struct spdk_nvmf_rdma_qpair	*rqpair;
3366 
3367 	if (evt->id == NULL) {
3368 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
3369 		return -1;
3370 	}
3371 
3372 	qpair = evt->id->context;
3373 	if (qpair == NULL) {
3374 		SPDK_ERRLOG("disconnect request: no active connection\n");
3375 		return -1;
3376 	}
3377 
3378 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3379 
3380 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair);
3381 
3382 	spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3383 
3384 	return 0;
3385 }
3386 
3387 #ifdef DEBUG
3388 static const char *CM_EVENT_STR[] = {
3389 	"RDMA_CM_EVENT_ADDR_RESOLVED",
3390 	"RDMA_CM_EVENT_ADDR_ERROR",
3391 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
3392 	"RDMA_CM_EVENT_ROUTE_ERROR",
3393 	"RDMA_CM_EVENT_CONNECT_REQUEST",
3394 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
3395 	"RDMA_CM_EVENT_CONNECT_ERROR",
3396 	"RDMA_CM_EVENT_UNREACHABLE",
3397 	"RDMA_CM_EVENT_REJECTED",
3398 	"RDMA_CM_EVENT_ESTABLISHED",
3399 	"RDMA_CM_EVENT_DISCONNECTED",
3400 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
3401 	"RDMA_CM_EVENT_MULTICAST_JOIN",
3402 	"RDMA_CM_EVENT_MULTICAST_ERROR",
3403 	"RDMA_CM_EVENT_ADDR_CHANGE",
3404 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
3405 };
3406 #endif /* DEBUG */
3407 
3408 static void
3409 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport,
3410 				    struct spdk_nvmf_rdma_port *port)
3411 {
3412 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3413 	struct spdk_nvmf_rdma_poller		*rpoller;
3414 	struct spdk_nvmf_rdma_qpair		*rqpair;
3415 
3416 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3417 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3418 			RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) {
3419 				if (rqpair->listen_id == port->id) {
3420 					spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3421 				}
3422 			}
3423 		}
3424 	}
3425 }
3426 
3427 static bool
3428 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport,
3429 				      struct rdma_cm_event *event)
3430 {
3431 	const struct spdk_nvme_transport_id	*trid;
3432 	struct spdk_nvmf_rdma_port		*port;
3433 	struct spdk_nvmf_rdma_transport		*rtransport;
3434 	bool					event_acked = false;
3435 
3436 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3437 	TAILQ_FOREACH(port, &rtransport->ports, link) {
3438 		if (port->id == event->id) {
3439 			SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid);
3440 			rdma_ack_cm_event(event);
3441 			event_acked = true;
3442 			trid = port->trid;
3443 			break;
3444 		}
3445 	}
3446 
3447 	if (event_acked) {
3448 		nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
3449 
3450 		nvmf_rdma_stop_listen(transport, trid);
3451 		nvmf_rdma_listen(transport, trid, NULL);
3452 	}
3453 
3454 	return event_acked;
3455 }
3456 
3457 static void
3458 nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport,
3459 				struct spdk_nvmf_rdma_device *device)
3460 {
3461 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
3462 	int				rc;
3463 	bool				has_inflight;
3464 
3465 	rc = nvmf_rdma_manage_poller(rtransport, device, &has_inflight, false);
3466 	if (rc) {
3467 		SPDK_ERRLOG("Failed to handle device removal, rc %d\n", rc);
3468 		return;
3469 	}
3470 
3471 	if (!has_inflight) {
3472 		/* no pollers, destroy the device */
3473 		device->ready_to_destroy = true;
3474 		spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_remove_destroyed_device, rtransport);
3475 	}
3476 
3477 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
3478 		if (port->device == device) {
3479 			SPDK_NOTICELOG("Port %s:%s on device %s is being removed.\n",
3480 				       port->trid->traddr,
3481 				       port->trid->trsvcid,
3482 				       ibv_get_device_name(port->device->context->device));
3483 
3484 			/* keep NVMF listener and only destroy structures of the
3485 			 * RDMA transport. when the device comes back we can retry listening
3486 			 * and the application's workflow will not be interrupted.
3487 			 */
3488 			nvmf_rdma_stop_listen_ex(&rtransport->transport, port->trid, true);
3489 		}
3490 	}
3491 }
3492 
3493 static void
3494 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport,
3495 				       struct rdma_cm_event *event)
3496 {
3497 	struct spdk_nvmf_rdma_port		*port, *tmp_port;
3498 	struct spdk_nvmf_rdma_transport		*rtransport;
3499 
3500 	port = event->id->context;
3501 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3502 
3503 	rdma_ack_cm_event(event);
3504 
3505 	/* if device removal happens during ctrl qpair disconnecting, it's possible that we receive
3506 	 * an DEVICE_REMOVAL event on qpair but the id->qp is just NULL. So we should make sure that
3507 	 * we are handling a port event here.
3508 	 */
3509 	TAILQ_FOREACH(tmp_port, &rtransport->ports, link) {
3510 		if (port == tmp_port && port->device && !port->device->need_destroy) {
3511 			port->device->need_destroy = true;
3512 			nvmf_rdma_handle_device_removal(rtransport, port->device);
3513 		}
3514 	}
3515 }
3516 
3517 static void
3518 nvmf_process_cm_event(struct spdk_nvmf_transport *transport)
3519 {
3520 	struct spdk_nvmf_rdma_transport *rtransport;
3521 	struct rdma_cm_event		*event;
3522 	int				rc;
3523 	bool				event_acked;
3524 
3525 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3526 
3527 	if (rtransport->event_channel == NULL) {
3528 		return;
3529 	}
3530 
3531 	while (1) {
3532 		event_acked = false;
3533 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
3534 		if (rc) {
3535 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
3536 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
3537 			}
3538 			break;
3539 		}
3540 
3541 		SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
3542 
3543 		spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
3544 
3545 		switch (event->event) {
3546 		case RDMA_CM_EVENT_ADDR_RESOLVED:
3547 		case RDMA_CM_EVENT_ADDR_ERROR:
3548 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
3549 		case RDMA_CM_EVENT_ROUTE_ERROR:
3550 			/* No action required. The target never attempts to resolve routes. */
3551 			break;
3552 		case RDMA_CM_EVENT_CONNECT_REQUEST:
3553 			rc = nvmf_rdma_connect(transport, event);
3554 			if (rc < 0) {
3555 				SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
3556 				break;
3557 			}
3558 			break;
3559 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
3560 			/* The target never initiates a new connection. So this will not occur. */
3561 			break;
3562 		case RDMA_CM_EVENT_CONNECT_ERROR:
3563 			/* Can this happen? The docs say it can, but not sure what causes it. */
3564 			break;
3565 		case RDMA_CM_EVENT_UNREACHABLE:
3566 		case RDMA_CM_EVENT_REJECTED:
3567 			/* These only occur on the client side. */
3568 			break;
3569 		case RDMA_CM_EVENT_ESTABLISHED:
3570 			/* TODO: Should we be waiting for this event anywhere? */
3571 			break;
3572 		case RDMA_CM_EVENT_DISCONNECTED:
3573 			rc = nvmf_rdma_disconnect(event);
3574 			if (rc < 0) {
3575 				SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3576 				break;
3577 			}
3578 			break;
3579 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
3580 			/* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL
3581 			 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s.
3582 			 * Once these events are sent to SPDK, we should release all IB resources and
3583 			 * don't make attempts to call any ibv_query/modify/create functions. We can only call
3584 			 * ibv_destroy* functions to release user space memory allocated by IB. All kernel
3585 			 * resources are already cleaned. */
3586 			if (event->id->qp) {
3587 				/* If rdma_cm event has a valid `qp` pointer then the event refers to the
3588 				 * corresponding qpair. Otherwise the event refers to a listening device. */
3589 				rc = nvmf_rdma_disconnect(event);
3590 				if (rc < 0) {
3591 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3592 					break;
3593 				}
3594 			} else {
3595 				nvmf_rdma_handle_cm_event_port_removal(transport, event);
3596 				event_acked = true;
3597 			}
3598 			break;
3599 		case RDMA_CM_EVENT_MULTICAST_JOIN:
3600 		case RDMA_CM_EVENT_MULTICAST_ERROR:
3601 			/* Multicast is not used */
3602 			break;
3603 		case RDMA_CM_EVENT_ADDR_CHANGE:
3604 			event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event);
3605 			break;
3606 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
3607 			/* For now, do nothing. The target never re-uses queue pairs. */
3608 			break;
3609 		default:
3610 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
3611 			break;
3612 		}
3613 		if (!event_acked) {
3614 			rdma_ack_cm_event(event);
3615 		}
3616 	}
3617 }
3618 
3619 static void
3620 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair)
3621 {
3622 	rqpair->last_wqe_reached = true;
3623 	nvmf_rdma_destroy_drained_qpair(rqpair);
3624 }
3625 
3626 static void
3627 nvmf_rdma_qpair_process_ibv_event(void *ctx)
3628 {
3629 	struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx;
3630 
3631 	if (event_ctx->rqpair) {
3632 		STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3633 		if (event_ctx->cb_fn) {
3634 			event_ctx->cb_fn(event_ctx->rqpair);
3635 		}
3636 	}
3637 	free(event_ctx);
3638 }
3639 
3640 static int
3641 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair,
3642 				 spdk_nvmf_rdma_qpair_ibv_event fn)
3643 {
3644 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx;
3645 	struct spdk_thread *thr = NULL;
3646 	int rc;
3647 
3648 	if (rqpair->qpair.group) {
3649 		thr = rqpair->qpair.group->thread;
3650 	} else if (rqpair->destruct_channel) {
3651 		thr = spdk_io_channel_get_thread(rqpair->destruct_channel);
3652 	}
3653 
3654 	if (!thr) {
3655 		SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair);
3656 		return -EINVAL;
3657 	}
3658 
3659 	ctx = calloc(1, sizeof(*ctx));
3660 	if (!ctx) {
3661 		return -ENOMEM;
3662 	}
3663 
3664 	ctx->rqpair = rqpair;
3665 	ctx->cb_fn = fn;
3666 	STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link);
3667 
3668 	rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx);
3669 	if (rc) {
3670 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3671 		free(ctx);
3672 	}
3673 
3674 	return rc;
3675 }
3676 
3677 static int
3678 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
3679 {
3680 	int				rc;
3681 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
3682 	struct ibv_async_event		event;
3683 
3684 	rc = ibv_get_async_event(device->context, &event);
3685 
3686 	if (rc) {
3687 		/* In non-blocking mode -1 means there are no events available */
3688 		return rc;
3689 	}
3690 
3691 	switch (event.event_type) {
3692 	case IBV_EVENT_QP_FATAL:
3693 	case IBV_EVENT_QP_LAST_WQE_REACHED:
3694 	case IBV_EVENT_SQ_DRAINED:
3695 	case IBV_EVENT_QP_REQ_ERR:
3696 	case IBV_EVENT_QP_ACCESS_ERR:
3697 	case IBV_EVENT_COMM_EST:
3698 	case IBV_EVENT_PATH_MIG:
3699 	case IBV_EVENT_PATH_MIG_ERR:
3700 		rqpair = event.element.qp->qp_context;
3701 		if (!rqpair) {
3702 			/* Any QP event for NVMe-RDMA initiator may be returned. */
3703 			SPDK_NOTICELOG("Async QP event for unknown QP: %s\n",
3704 				       ibv_event_type_str(event.event_type));
3705 			break;
3706 		}
3707 
3708 		switch (event.event_type) {
3709 		case IBV_EVENT_QP_FATAL:
3710 			SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
3711 			spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3712 					  (uintptr_t)rqpair, event.event_type);
3713 			nvmf_rdma_update_ibv_state(rqpair);
3714 			spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3715 			break;
3716 		case IBV_EVENT_QP_LAST_WQE_REACHED:
3717 			/* This event only occurs for shared receive queues. */
3718 			SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair);
3719 			rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached);
3720 			if (rc) {
3721 				SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc);
3722 				rqpair->last_wqe_reached = true;
3723 			}
3724 			break;
3725 		case IBV_EVENT_SQ_DRAINED:
3726 			/* This event occurs frequently in both error and non-error states.
3727 			 * Check if the qpair is in an error state before sending a message. */
3728 			SPDK_DEBUGLOG(rdma, "Last sq drained event received for rqpair %p\n", rqpair);
3729 			spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3730 					  (uintptr_t)rqpair, event.event_type);
3731 			if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) {
3732 				spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3733 			}
3734 			break;
3735 		case IBV_EVENT_QP_REQ_ERR:
3736 		case IBV_EVENT_QP_ACCESS_ERR:
3737 		case IBV_EVENT_COMM_EST:
3738 		case IBV_EVENT_PATH_MIG:
3739 		case IBV_EVENT_PATH_MIG_ERR:
3740 			SPDK_NOTICELOG("Async QP event: %s\n",
3741 				       ibv_event_type_str(event.event_type));
3742 			spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3743 					  (uintptr_t)rqpair, event.event_type);
3744 			nvmf_rdma_update_ibv_state(rqpair);
3745 			break;
3746 		default:
3747 			break;
3748 		}
3749 		break;
3750 	case IBV_EVENT_DEVICE_FATAL:
3751 		SPDK_ERRLOG("Device Fatal event[%s] received on %s. device: %p\n",
3752 			    ibv_event_type_str(event.event_type), ibv_get_device_name(device->context->device), device);
3753 		device->need_destroy = true;
3754 		break;
3755 	case IBV_EVENT_CQ_ERR:
3756 	case IBV_EVENT_PORT_ACTIVE:
3757 	case IBV_EVENT_PORT_ERR:
3758 	case IBV_EVENT_LID_CHANGE:
3759 	case IBV_EVENT_PKEY_CHANGE:
3760 	case IBV_EVENT_SM_CHANGE:
3761 	case IBV_EVENT_SRQ_ERR:
3762 	case IBV_EVENT_SRQ_LIMIT_REACHED:
3763 	case IBV_EVENT_CLIENT_REREGISTER:
3764 	case IBV_EVENT_GID_CHANGE:
3765 	default:
3766 		SPDK_NOTICELOG("Async event: %s\n",
3767 			       ibv_event_type_str(event.event_type));
3768 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
3769 		break;
3770 	}
3771 	ibv_ack_async_event(&event);
3772 
3773 	return 0;
3774 }
3775 
3776 static void
3777 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events)
3778 {
3779 	int rc = 0;
3780 	uint32_t i = 0;
3781 
3782 	for (i = 0; i < max_events; i++) {
3783 		rc = nvmf_process_ib_event(device);
3784 		if (rc) {
3785 			break;
3786 		}
3787 	}
3788 
3789 	SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i);
3790 }
3791 
3792 static int
3793 nvmf_rdma_accept(void *ctx)
3794 {
3795 	int	nfds, i = 0;
3796 	struct spdk_nvmf_transport *transport = ctx;
3797 	struct spdk_nvmf_rdma_transport *rtransport;
3798 	struct spdk_nvmf_rdma_device *device, *tmp;
3799 	uint32_t count;
3800 	short revents;
3801 	bool do_retry;
3802 
3803 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3804 	do_retry = nvmf_rdma_retry_listen_port(rtransport);
3805 
3806 	count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
3807 
3808 	if (nfds <= 0) {
3809 		return do_retry ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3810 	}
3811 
3812 	/* The first poll descriptor is RDMA CM event */
3813 	if (rtransport->poll_fds[i++].revents & POLLIN) {
3814 		nvmf_process_cm_event(transport);
3815 		nfds--;
3816 	}
3817 
3818 	if (nfds == 0) {
3819 		return SPDK_POLLER_BUSY;
3820 	}
3821 
3822 	/* Second and subsequent poll descriptors are IB async events */
3823 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
3824 		revents = rtransport->poll_fds[i++].revents;
3825 		if (revents & POLLIN) {
3826 			if (spdk_likely(!device->need_destroy)) {
3827 				nvmf_process_ib_events(device, 32);
3828 				if (spdk_unlikely(device->need_destroy)) {
3829 					nvmf_rdma_handle_device_removal(rtransport, device);
3830 				}
3831 			}
3832 			nfds--;
3833 		} else if (revents & POLLNVAL || revents & POLLHUP) {
3834 			SPDK_ERRLOG("Receive unknown revent %x on device %p\n", (int)revents, device);
3835 			nfds--;
3836 		}
3837 	}
3838 	/* check all flagged fd's have been served */
3839 	assert(nfds == 0);
3840 
3841 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3842 }
3843 
3844 static void
3845 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem,
3846 		     struct spdk_nvmf_ctrlr_data *cdata)
3847 {
3848 	cdata->nvmf_specific.msdbd = NVMF_DEFAULT_MSDBD;
3849 
3850 	/* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled
3851 	since in-capsule data only works with NVME drives that support SGL memory layout */
3852 	if (transport->opts.dif_insert_or_strip) {
3853 		cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16;
3854 	}
3855 
3856 	if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) {
3857 		SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule"
3858 			     " data is greater than 4KiB.\n");
3859 		SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux "
3860 			     "kernel between versions 5.4 and 5.12 data corruption may occur for "
3861 			     "writes that are not a multiple of 4KiB in size.\n");
3862 	}
3863 }
3864 
3865 static void
3866 nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
3867 		   struct spdk_nvme_transport_id *trid,
3868 		   struct spdk_nvmf_discovery_log_page_entry *entry)
3869 {
3870 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
3871 	entry->adrfam = trid->adrfam;
3872 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
3873 
3874 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
3875 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
3876 
3877 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
3878 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
3879 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
3880 }
3881 
3882 static int
3883 nvmf_rdma_poller_create(struct spdk_nvmf_rdma_transport *rtransport,
3884 			struct spdk_nvmf_rdma_poll_group *rgroup, struct spdk_nvmf_rdma_device *device,
3885 			struct spdk_nvmf_rdma_poller **out_poller)
3886 {
3887 	struct spdk_nvmf_rdma_poller		*poller;
3888 	struct spdk_rdma_srq_init_attr		srq_init_attr;
3889 	struct spdk_nvmf_rdma_resource_opts	opts;
3890 	int					num_cqe;
3891 
3892 	poller = calloc(1, sizeof(*poller));
3893 	if (!poller) {
3894 		SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
3895 		return -1;
3896 	}
3897 
3898 	poller->device = device;
3899 	poller->group = rgroup;
3900 	*out_poller = poller;
3901 
3902 	RB_INIT(&poller->qpairs);
3903 	STAILQ_INIT(&poller->qpairs_pending_send);
3904 	STAILQ_INIT(&poller->qpairs_pending_recv);
3905 
3906 	TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
3907 	SPDK_DEBUGLOG(rdma, "Create poller %p on device %p in poll group %p.\n", poller, device, rgroup);
3908 	if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) {
3909 		if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) {
3910 			SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n",
3911 				     rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr);
3912 		}
3913 		poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr);
3914 
3915 		device->num_srq++;
3916 		memset(&srq_init_attr, 0, sizeof(srq_init_attr));
3917 		srq_init_attr.pd = device->pd;
3918 		srq_init_attr.stats = &poller->stat.qp_stats.recv;
3919 		srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth;
3920 		srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
3921 		poller->srq = spdk_rdma_srq_create(&srq_init_attr);
3922 		if (!poller->srq) {
3923 			SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
3924 			return -1;
3925 		}
3926 
3927 		opts.qp = poller->srq;
3928 		opts.map = device->map;
3929 		opts.qpair = NULL;
3930 		opts.shared = true;
3931 		opts.max_queue_depth = poller->max_srq_depth;
3932 		opts.in_capsule_data_size = rtransport->transport.opts.in_capsule_data_size;
3933 
3934 		poller->resources = nvmf_rdma_resources_create(&opts);
3935 		if (!poller->resources) {
3936 			SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
3937 			return -1;
3938 		}
3939 	}
3940 
3941 	/*
3942 	 * When using an srq, we can limit the completion queue at startup.
3943 	 * The following formula represents the calculation:
3944 	 * num_cqe = num_recv + num_data_wr + num_send_wr.
3945 	 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
3946 	 */
3947 	if (poller->srq) {
3948 		num_cqe = poller->max_srq_depth * 3;
3949 	} else {
3950 		num_cqe = rtransport->rdma_opts.num_cqe;
3951 	}
3952 
3953 	poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
3954 	if (!poller->cq) {
3955 		SPDK_ERRLOG("Unable to create completion queue\n");
3956 		return -1;
3957 	}
3958 	poller->num_cqe = num_cqe;
3959 	return 0;
3960 }
3961 
3962 static void
3963 _nvmf_rdma_register_poller_in_group(void *c)
3964 {
3965 	struct spdk_nvmf_rdma_poller	*poller;
3966 	struct poller_manage_ctx	*ctx = c;
3967 	struct spdk_nvmf_rdma_device	*device;
3968 	int				rc;
3969 
3970 	rc = nvmf_rdma_poller_create(ctx->rtransport, ctx->rgroup, ctx->device, &poller);
3971 	if (rc < 0 && poller) {
3972 		nvmf_rdma_poller_destroy(poller);
3973 	}
3974 
3975 	device = ctx->device;
3976 	if (nvmf_rdma_all_pollers_management_done(ctx)) {
3977 		device->is_ready = true;
3978 	}
3979 }
3980 
3981 static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
3982 
3983 static struct spdk_nvmf_transport_poll_group *
3984 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport,
3985 			    struct spdk_nvmf_poll_group *group)
3986 {
3987 	struct spdk_nvmf_rdma_transport		*rtransport;
3988 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3989 	struct spdk_nvmf_rdma_poller		*poller;
3990 	struct spdk_nvmf_rdma_device		*device;
3991 	int					rc;
3992 
3993 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3994 
3995 	rgroup = calloc(1, sizeof(*rgroup));
3996 	if (!rgroup) {
3997 		return NULL;
3998 	}
3999 
4000 	TAILQ_INIT(&rgroup->pollers);
4001 
4002 	TAILQ_FOREACH(device, &rtransport->devices, link) {
4003 		rc = nvmf_rdma_poller_create(rtransport, rgroup, device, &poller);
4004 		if (rc < 0) {
4005 			nvmf_rdma_poll_group_destroy(&rgroup->group);
4006 			return NULL;
4007 		}
4008 	}
4009 
4010 	TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link);
4011 	if (rtransport->conn_sched.next_admin_pg == NULL) {
4012 		rtransport->conn_sched.next_admin_pg = rgroup;
4013 		rtransport->conn_sched.next_io_pg = rgroup;
4014 	}
4015 
4016 	return &rgroup->group;
4017 }
4018 
4019 static uint32_t
4020 nvmf_poll_group_get_io_qpair_count(struct spdk_nvmf_poll_group *pg)
4021 {
4022 	uint32_t count;
4023 
4024 	/* Just assume that unassociated qpairs will eventually be io
4025 	 * qpairs.  This is close enough for the use cases for this
4026 	 * function.
4027 	 */
4028 	pthread_mutex_lock(&pg->mutex);
4029 	count = pg->stat.current_io_qpairs + pg->current_unassociated_qpairs;
4030 	pthread_mutex_unlock(&pg->mutex);
4031 
4032 	return count;
4033 }
4034 
4035 static struct spdk_nvmf_transport_poll_group *
4036 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
4037 {
4038 	struct spdk_nvmf_rdma_transport *rtransport;
4039 	struct spdk_nvmf_rdma_poll_group **pg;
4040 	struct spdk_nvmf_transport_poll_group *result;
4041 	uint32_t count;
4042 
4043 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
4044 
4045 	if (TAILQ_EMPTY(&rtransport->poll_groups)) {
4046 		return NULL;
4047 	}
4048 
4049 	if (qpair->qid == 0) {
4050 		pg = &rtransport->conn_sched.next_admin_pg;
4051 	} else {
4052 		struct spdk_nvmf_rdma_poll_group *pg_min, *pg_start, *pg_current;
4053 		uint32_t min_value;
4054 
4055 		pg = &rtransport->conn_sched.next_io_pg;
4056 		pg_min = *pg;
4057 		pg_start = *pg;
4058 		pg_current = *pg;
4059 		min_value = nvmf_poll_group_get_io_qpair_count(pg_current->group.group);
4060 
4061 		while ((count = nvmf_poll_group_get_io_qpair_count(pg_current->group.group)) > 0) {
4062 			pg_current = TAILQ_NEXT(pg_current, link);
4063 			if (pg_current == NULL) {
4064 				pg_current = TAILQ_FIRST(&rtransport->poll_groups);
4065 			}
4066 
4067 			if (count < min_value) {
4068 				min_value = count;
4069 				pg_min = pg_current;
4070 			}
4071 
4072 			if (pg_current == pg_start) {
4073 				break;
4074 			}
4075 		}
4076 		*pg = pg_min;
4077 	}
4078 
4079 	assert(*pg != NULL);
4080 
4081 	result = &(*pg)->group;
4082 
4083 	*pg = TAILQ_NEXT(*pg, link);
4084 	if (*pg == NULL) {
4085 		*pg = TAILQ_FIRST(&rtransport->poll_groups);
4086 	}
4087 
4088 	return result;
4089 }
4090 
4091 static void
4092 nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller)
4093 {
4094 	struct spdk_nvmf_rdma_qpair	*qpair, *tmp_qpair;
4095 	int				rc;
4096 
4097 	TAILQ_REMOVE(&poller->group->pollers, poller, link);
4098 	RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) {
4099 		nvmf_rdma_qpair_destroy(qpair);
4100 	}
4101 
4102 	if (poller->srq) {
4103 		if (poller->resources) {
4104 			nvmf_rdma_resources_destroy(poller->resources);
4105 		}
4106 		spdk_rdma_srq_destroy(poller->srq);
4107 		SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq);
4108 	}
4109 
4110 	if (poller->cq) {
4111 		rc = ibv_destroy_cq(poller->cq);
4112 		if (rc != 0) {
4113 			SPDK_ERRLOG("Destroy cq return %d, error: %s\n", rc, strerror(errno));
4114 		}
4115 	}
4116 
4117 	if (poller->destroy_cb) {
4118 		poller->destroy_cb(poller->destroy_cb_ctx);
4119 		poller->destroy_cb = NULL;
4120 	}
4121 
4122 	free(poller);
4123 }
4124 
4125 static void
4126 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
4127 {
4128 	struct spdk_nvmf_rdma_poll_group	*rgroup, *next_rgroup;
4129 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
4130 	struct spdk_nvmf_rdma_transport		*rtransport;
4131 
4132 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4133 	if (!rgroup) {
4134 		return;
4135 	}
4136 
4137 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
4138 		nvmf_rdma_poller_destroy(poller);
4139 	}
4140 
4141 	if (rgroup->group.transport == NULL) {
4142 		/* Transport can be NULL when nvmf_rdma_poll_group_create()
4143 		 * calls this function directly in a failure path. */
4144 		free(rgroup);
4145 		return;
4146 	}
4147 
4148 	rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport);
4149 
4150 	next_rgroup = TAILQ_NEXT(rgroup, link);
4151 	TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link);
4152 	if (next_rgroup == NULL) {
4153 		next_rgroup = TAILQ_FIRST(&rtransport->poll_groups);
4154 	}
4155 	if (rtransport->conn_sched.next_admin_pg == rgroup) {
4156 		rtransport->conn_sched.next_admin_pg = next_rgroup;
4157 	}
4158 	if (rtransport->conn_sched.next_io_pg == rgroup) {
4159 		rtransport->conn_sched.next_io_pg = next_rgroup;
4160 	}
4161 
4162 	free(rgroup);
4163 }
4164 
4165 static void
4166 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
4167 {
4168 	if (rqpair->cm_id != NULL) {
4169 		nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
4170 	}
4171 }
4172 
4173 static int
4174 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
4175 			 struct spdk_nvmf_qpair *qpair)
4176 {
4177 	struct spdk_nvmf_rdma_poll_group	*rgroup;
4178 	struct spdk_nvmf_rdma_qpair		*rqpair;
4179 	struct spdk_nvmf_rdma_device		*device;
4180 	struct spdk_nvmf_rdma_poller		*poller;
4181 	int					rc;
4182 
4183 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4184 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4185 
4186 	device = rqpair->device;
4187 
4188 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
4189 		if (poller->device == device) {
4190 			break;
4191 		}
4192 	}
4193 
4194 	if (!poller) {
4195 		SPDK_ERRLOG("No poller found for device.\n");
4196 		return -1;
4197 	}
4198 
4199 	if (poller->need_destroy) {
4200 		SPDK_ERRLOG("Poller is destroying.\n");
4201 		return -1;
4202 	}
4203 
4204 	rqpair->poller = poller;
4205 	rqpair->srq = rqpair->poller->srq;
4206 
4207 	rc = nvmf_rdma_qpair_initialize(qpair);
4208 	if (rc < 0) {
4209 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
4210 		rqpair->poller = NULL;
4211 		rqpair->srq = NULL;
4212 		return -1;
4213 	}
4214 
4215 	RB_INSERT(qpairs_tree, &poller->qpairs, rqpair);
4216 
4217 	rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
4218 	if (rc) {
4219 		/* Try to reject, but we probably can't */
4220 		nvmf_rdma_qpair_reject_connection(rqpair);
4221 		return -1;
4222 	}
4223 
4224 	nvmf_rdma_update_ibv_state(rqpair);
4225 
4226 	return 0;
4227 }
4228 
4229 static int
4230 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
4231 			    struct spdk_nvmf_qpair *qpair)
4232 {
4233 	struct spdk_nvmf_rdma_qpair		*rqpair;
4234 
4235 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4236 	assert(group->transport->tgt != NULL);
4237 
4238 	rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt);
4239 
4240 	if (!rqpair->destruct_channel) {
4241 		SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair);
4242 		return 0;
4243 	}
4244 
4245 	/* Sanity check that we get io_channel on the correct thread */
4246 	if (qpair->group) {
4247 		assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel));
4248 	}
4249 
4250 	return 0;
4251 }
4252 
4253 static int
4254 nvmf_rdma_request_free(struct spdk_nvmf_request *req)
4255 {
4256 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
4257 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
4258 			struct spdk_nvmf_rdma_transport, transport);
4259 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
4260 					      struct spdk_nvmf_rdma_qpair, qpair);
4261 
4262 	/*
4263 	 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request
4264 	 * needs to be returned to the shared receive queue or the poll group will eventually be
4265 	 * starved of RECV structures.
4266 	 */
4267 	if (rqpair->srq && rdma_req->recv) {
4268 		int rc;
4269 		struct ibv_recv_wr *bad_recv_wr;
4270 
4271 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr);
4272 		rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
4273 		if (rc) {
4274 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
4275 		}
4276 	}
4277 
4278 	_nvmf_rdma_request_free(rdma_req, rtransport);
4279 	return 0;
4280 }
4281 
4282 static int
4283 nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
4284 {
4285 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
4286 			struct spdk_nvmf_rdma_transport, transport);
4287 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
4288 			struct spdk_nvmf_rdma_request, req);
4289 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
4290 			struct spdk_nvmf_rdma_qpair, qpair);
4291 
4292 	if (rqpair->ibv_state != IBV_QPS_ERR) {
4293 		/* The connection is alive, so process the request as normal */
4294 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
4295 	} else {
4296 		/* The connection is dead. Move the request directly to the completed state. */
4297 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4298 	}
4299 
4300 	nvmf_rdma_request_process(rtransport, rdma_req);
4301 
4302 	return 0;
4303 }
4304 
4305 static void
4306 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair,
4307 		      spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
4308 {
4309 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4310 
4311 	rqpair->to_close = true;
4312 
4313 	/* This happens only when the qpair is disconnected before
4314 	 * it is added to the poll group. Since there is no poll group,
4315 	 * the RDMA qp has not been initialized yet and the RDMA CM
4316 	 * event has not yet been acknowledged, so we need to reject it.
4317 	 */
4318 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
4319 		nvmf_rdma_qpair_reject_connection(rqpair);
4320 		nvmf_rdma_qpair_destroy(rqpair);
4321 		return;
4322 	}
4323 
4324 	if (rqpair->rdma_qp) {
4325 		spdk_rdma_qp_disconnect(rqpair->rdma_qp);
4326 	}
4327 
4328 	nvmf_rdma_destroy_drained_qpair(rqpair);
4329 
4330 	if (cb_fn) {
4331 		cb_fn(cb_arg);
4332 	}
4333 }
4334 
4335 static struct spdk_nvmf_rdma_qpair *
4336 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
4337 {
4338 	struct spdk_nvmf_rdma_qpair find;
4339 
4340 	find.qp_num = wc->qp_num;
4341 
4342 	return RB_FIND(qpairs_tree, &rpoller->qpairs, &find);
4343 }
4344 
4345 #ifdef DEBUG
4346 static int
4347 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
4348 {
4349 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
4350 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
4351 }
4352 #endif
4353 
4354 static void
4355 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr,
4356 			   int rc)
4357 {
4358 	struct spdk_nvmf_rdma_recv	*rdma_recv;
4359 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
4360 
4361 	SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc);
4362 	while (bad_recv_wr != NULL) {
4363 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id;
4364 		rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4365 
4366 		rdma_recv->qpair->current_recv_depth++;
4367 		bad_recv_wr = bad_recv_wr->next;
4368 		SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc);
4369 		spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair, NULL, NULL);
4370 	}
4371 }
4372 
4373 static void
4374 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc)
4375 {
4376 	SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc);
4377 	while (bad_recv_wr != NULL) {
4378 		bad_recv_wr = bad_recv_wr->next;
4379 		rqpair->current_recv_depth++;
4380 	}
4381 	spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4382 }
4383 
4384 static void
4385 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
4386 		     struct spdk_nvmf_rdma_poller *rpoller)
4387 {
4388 	struct spdk_nvmf_rdma_qpair	*rqpair;
4389 	struct ibv_recv_wr		*bad_recv_wr;
4390 	int				rc;
4391 
4392 	if (rpoller->srq) {
4393 		rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr);
4394 		if (rc) {
4395 			_poller_reset_failed_recvs(rpoller, bad_recv_wr, rc);
4396 		}
4397 	} else {
4398 		while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) {
4399 			rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv);
4400 			rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
4401 			if (rc) {
4402 				_qp_reset_failed_recvs(rqpair, bad_recv_wr, rc);
4403 			}
4404 			STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link);
4405 		}
4406 	}
4407 }
4408 
4409 static void
4410 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport,
4411 		       struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc)
4412 {
4413 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
4414 	struct spdk_nvmf_rdma_request	*prev_rdma_req = NULL, *cur_rdma_req = NULL;
4415 
4416 	SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc);
4417 	for (; bad_wr != NULL; bad_wr = bad_wr->next) {
4418 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id;
4419 		assert(rqpair->current_send_depth > 0);
4420 		rqpair->current_send_depth--;
4421 		switch (bad_rdma_wr->type) {
4422 		case RDMA_WR_TYPE_DATA:
4423 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data_wr);
4424 			if (bad_wr->opcode == IBV_WR_RDMA_READ) {
4425 				assert(rqpair->current_read_depth > 0);
4426 				rqpair->current_read_depth--;
4427 			}
4428 			break;
4429 		case RDMA_WR_TYPE_SEND:
4430 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr);
4431 			break;
4432 		default:
4433 			SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair);
4434 			prev_rdma_req = cur_rdma_req;
4435 			continue;
4436 		}
4437 
4438 		if (prev_rdma_req == cur_rdma_req) {
4439 			/* this request was handled by an earlier wr. i.e. we were performing an nvme read. */
4440 			/* We only have to check against prev_wr since each requests wrs are contiguous in this list. */
4441 			continue;
4442 		}
4443 
4444 		switch (cur_rdma_req->state) {
4445 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
4446 			cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
4447 			cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
4448 			break;
4449 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
4450 		case RDMA_REQUEST_STATE_COMPLETING:
4451 			cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4452 			break;
4453 		default:
4454 			SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n",
4455 				    cur_rdma_req->state, rqpair);
4456 			continue;
4457 		}
4458 
4459 		nvmf_rdma_request_process(rtransport, cur_rdma_req);
4460 		prev_rdma_req = cur_rdma_req;
4461 	}
4462 
4463 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
4464 		/* Disconnect the connection. */
4465 		spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4466 	}
4467 
4468 }
4469 
4470 static void
4471 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
4472 		     struct spdk_nvmf_rdma_poller *rpoller)
4473 {
4474 	struct spdk_nvmf_rdma_qpair	*rqpair;
4475 	struct ibv_send_wr		*bad_wr = NULL;
4476 	int				rc;
4477 
4478 	while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) {
4479 		rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send);
4480 		rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr);
4481 
4482 		/* bad wr always points to the first wr that failed. */
4483 		if (rc) {
4484 			_qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc);
4485 		}
4486 		STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link);
4487 	}
4488 }
4489 
4490 static const char *
4491 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type)
4492 {
4493 	switch (wr_type) {
4494 	case RDMA_WR_TYPE_RECV:
4495 		return "RECV";
4496 	case RDMA_WR_TYPE_SEND:
4497 		return "SEND";
4498 	case RDMA_WR_TYPE_DATA:
4499 		return "DATA";
4500 	default:
4501 		SPDK_ERRLOG("Unknown WR type %d\n", wr_type);
4502 		SPDK_UNREACHABLE();
4503 	}
4504 }
4505 
4506 static inline void
4507 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc)
4508 {
4509 	enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type;
4510 
4511 	if (wc->status == IBV_WC_WR_FLUSH_ERR) {
4512 		/* If qpair is in ERR state, we will receive completions for all posted and not completed
4513 		 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
4514 		SPDK_DEBUGLOG(rdma,
4515 			      "Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n",
4516 			      rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id,
4517 			      nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
4518 	} else {
4519 		SPDK_ERRLOG("Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n",
4520 			    rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id,
4521 			    nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
4522 	}
4523 }
4524 
4525 static int
4526 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
4527 		      struct spdk_nvmf_rdma_poller *rpoller)
4528 {
4529 	struct ibv_wc wc[32];
4530 	struct spdk_nvmf_rdma_wr	*rdma_wr;
4531 	struct spdk_nvmf_rdma_request	*rdma_req;
4532 	struct spdk_nvmf_rdma_recv	*rdma_recv;
4533 	struct spdk_nvmf_rdma_qpair	*rqpair, *tmp_rqpair;
4534 	int reaped, i;
4535 	int count = 0;
4536 	bool error = false;
4537 	uint64_t poll_tsc = spdk_get_ticks();
4538 
4539 	if (spdk_unlikely(rpoller->need_destroy)) {
4540 		/* If qpair is closed before poller destroy, nvmf_rdma_destroy_drained_qpair may not
4541 		 * be called because we cannot poll anything from cq. So we call that here to force
4542 		 * destroy the qpair after to_close turning true.
4543 		 */
4544 		RB_FOREACH_SAFE(rqpair, qpairs_tree, &rpoller->qpairs, tmp_rqpair) {
4545 			nvmf_rdma_destroy_drained_qpair(rqpair);
4546 		}
4547 		return 0;
4548 	}
4549 
4550 	/* Poll for completing operations. */
4551 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
4552 	if (reaped < 0) {
4553 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
4554 			    errno, spdk_strerror(errno));
4555 		return -1;
4556 	} else if (reaped == 0) {
4557 		rpoller->stat.idle_polls++;
4558 	}
4559 
4560 	rpoller->stat.polls++;
4561 	rpoller->stat.completions += reaped;
4562 
4563 	for (i = 0; i < reaped; i++) {
4564 
4565 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
4566 
4567 		switch (rdma_wr->type) {
4568 		case RDMA_WR_TYPE_SEND:
4569 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr);
4570 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4571 
4572 			if (!wc[i].status) {
4573 				count++;
4574 				assert(wc[i].opcode == IBV_WC_SEND);
4575 				assert(nvmf_rdma_req_is_completing(rdma_req));
4576 			}
4577 
4578 			rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4579 			/* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */
4580 			rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1;
4581 			rdma_req->num_outstanding_data_wr = 0;
4582 
4583 			nvmf_rdma_request_process(rtransport, rdma_req);
4584 			break;
4585 		case RDMA_WR_TYPE_RECV:
4586 			/* rdma_recv->qpair will be invalid if using an SRQ.  In that case we have to get the qpair from the wc. */
4587 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4588 			if (rpoller->srq != NULL) {
4589 				rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
4590 				/* It is possible that there are still some completions for destroyed QP
4591 				 * associated with SRQ. We just ignore these late completions and re-post
4592 				 * receive WRs back to SRQ.
4593 				 */
4594 				if (spdk_unlikely(NULL == rdma_recv->qpair)) {
4595 					struct ibv_recv_wr *bad_wr;
4596 					int rc;
4597 
4598 					rdma_recv->wr.next = NULL;
4599 					spdk_rdma_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr);
4600 					rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_wr);
4601 					if (rc) {
4602 						SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc);
4603 					}
4604 					continue;
4605 				}
4606 			}
4607 			rqpair = rdma_recv->qpair;
4608 
4609 			assert(rqpair != NULL);
4610 			if (!wc[i].status) {
4611 				assert(wc[i].opcode == IBV_WC_RECV);
4612 				if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
4613 					spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4614 					break;
4615 				}
4616 			}
4617 
4618 			rdma_recv->wr.next = NULL;
4619 			rqpair->current_recv_depth++;
4620 			rdma_recv->receive_tsc = poll_tsc;
4621 			rpoller->stat.requests++;
4622 			STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link);
4623 			break;
4624 		case RDMA_WR_TYPE_DATA:
4625 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data_wr);
4626 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4627 
4628 			assert(rdma_req->num_outstanding_data_wr > 0);
4629 
4630 			rqpair->current_send_depth--;
4631 			rdma_req->num_outstanding_data_wr--;
4632 			if (!wc[i].status) {
4633 				assert(wc[i].opcode == IBV_WC_RDMA_READ);
4634 				rqpair->current_read_depth--;
4635 				/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
4636 				if (rdma_req->num_outstanding_data_wr == 0) {
4637 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
4638 					nvmf_rdma_request_process(rtransport, rdma_req);
4639 				}
4640 			} else {
4641 				/* If the data transfer fails still force the queue into the error state,
4642 				 * if we were performing an RDMA_READ, we need to force the request into a
4643 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
4644 				 * case, we should wait for the SEND to complete. */
4645 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
4646 					rqpair->current_read_depth--;
4647 					if (rdma_req->num_outstanding_data_wr == 0) {
4648 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4649 					}
4650 				}
4651 			}
4652 			break;
4653 		default:
4654 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
4655 			continue;
4656 		}
4657 
4658 		/* Handle error conditions */
4659 		if (wc[i].status) {
4660 			nvmf_rdma_update_ibv_state(rqpair);
4661 			nvmf_rdma_log_wc_status(rqpair, &wc[i]);
4662 
4663 			error = true;
4664 
4665 			if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
4666 				/* Disconnect the connection. */
4667 				spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4668 			} else {
4669 				nvmf_rdma_destroy_drained_qpair(rqpair);
4670 			}
4671 			continue;
4672 		}
4673 
4674 		nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
4675 
4676 		if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
4677 			nvmf_rdma_destroy_drained_qpair(rqpair);
4678 		}
4679 	}
4680 
4681 	if (error == true) {
4682 		return -1;
4683 	}
4684 
4685 	/* submit outstanding work requests. */
4686 	_poller_submit_recvs(rtransport, rpoller);
4687 	_poller_submit_sends(rtransport, rpoller);
4688 
4689 	return count;
4690 }
4691 
4692 static void
4693 _nvmf_rdma_remove_destroyed_device(void *c)
4694 {
4695 	struct spdk_nvmf_rdma_transport	*rtransport = c;
4696 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
4697 	int				rc;
4698 
4699 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
4700 		if (device->ready_to_destroy) {
4701 			destroy_ib_device(rtransport, device);
4702 		}
4703 	}
4704 
4705 	free_poll_fds(rtransport);
4706 	rc = generate_poll_fds(rtransport);
4707 	/* cannot handle fd allocation error here */
4708 	if (rc != 0) {
4709 		SPDK_ERRLOG("Failed to generate poll fds after remove ib device.\n");
4710 	}
4711 }
4712 
4713 static void
4714 _nvmf_rdma_remove_poller_in_group_cb(void *c)
4715 {
4716 	struct poller_manage_ctx	*ctx = c;
4717 	struct spdk_nvmf_rdma_transport	*rtransport = ctx->rtransport;
4718 	struct spdk_nvmf_rdma_device	*device = ctx->device;
4719 	struct spdk_thread		*thread = ctx->thread;
4720 
4721 	if (nvmf_rdma_all_pollers_management_done(c)) {
4722 		/* destroy device when last poller is destroyed */
4723 		device->ready_to_destroy = true;
4724 		spdk_thread_send_msg(thread, _nvmf_rdma_remove_destroyed_device, rtransport);
4725 	}
4726 }
4727 
4728 static void
4729 _nvmf_rdma_remove_poller_in_group(void *c)
4730 {
4731 	struct poller_manage_ctx		*ctx = c;
4732 
4733 	ctx->rpoller->need_destroy = true;
4734 	ctx->rpoller->destroy_cb_ctx = ctx;
4735 	ctx->rpoller->destroy_cb = _nvmf_rdma_remove_poller_in_group_cb;
4736 
4737 	/* qp will be disconnected after receiving a RDMA_CM_EVENT_DEVICE_REMOVAL event. */
4738 	if (RB_EMPTY(&ctx->rpoller->qpairs)) {
4739 		nvmf_rdma_poller_destroy(ctx->rpoller);
4740 	}
4741 }
4742 
4743 static int
4744 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
4745 {
4746 	struct spdk_nvmf_rdma_transport *rtransport;
4747 	struct spdk_nvmf_rdma_poll_group *rgroup;
4748 	struct spdk_nvmf_rdma_poller	*rpoller, *tmp;
4749 	int				count, rc;
4750 
4751 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
4752 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4753 
4754 	count = 0;
4755 	TAILQ_FOREACH_SAFE(rpoller, &rgroup->pollers, link, tmp) {
4756 		rc = nvmf_rdma_poller_poll(rtransport, rpoller);
4757 		if (rc < 0) {
4758 			return rc;
4759 		}
4760 		count += rc;
4761 	}
4762 
4763 	return count;
4764 }
4765 
4766 static int
4767 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
4768 			  struct spdk_nvme_transport_id *trid,
4769 			  bool peer)
4770 {
4771 	struct sockaddr *saddr;
4772 	uint16_t port;
4773 
4774 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA);
4775 
4776 	if (peer) {
4777 		saddr = rdma_get_peer_addr(id);
4778 	} else {
4779 		saddr = rdma_get_local_addr(id);
4780 	}
4781 	switch (saddr->sa_family) {
4782 	case AF_INET: {
4783 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
4784 
4785 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
4786 		inet_ntop(AF_INET, &saddr_in->sin_addr,
4787 			  trid->traddr, sizeof(trid->traddr));
4788 		if (peer) {
4789 			port = ntohs(rdma_get_dst_port(id));
4790 		} else {
4791 			port = ntohs(rdma_get_src_port(id));
4792 		}
4793 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4794 		break;
4795 	}
4796 	case AF_INET6: {
4797 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
4798 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
4799 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
4800 			  trid->traddr, sizeof(trid->traddr));
4801 		if (peer) {
4802 			port = ntohs(rdma_get_dst_port(id));
4803 		} else {
4804 			port = ntohs(rdma_get_src_port(id));
4805 		}
4806 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4807 		break;
4808 	}
4809 	default:
4810 		return -1;
4811 
4812 	}
4813 
4814 	return 0;
4815 }
4816 
4817 static int
4818 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
4819 			      struct spdk_nvme_transport_id *trid)
4820 {
4821 	struct spdk_nvmf_rdma_qpair	*rqpair;
4822 
4823 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4824 
4825 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
4826 }
4827 
4828 static int
4829 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
4830 			       struct spdk_nvme_transport_id *trid)
4831 {
4832 	struct spdk_nvmf_rdma_qpair	*rqpair;
4833 
4834 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4835 
4836 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
4837 }
4838 
4839 static int
4840 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
4841 				struct spdk_nvme_transport_id *trid)
4842 {
4843 	struct spdk_nvmf_rdma_qpair	*rqpair;
4844 
4845 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4846 
4847 	return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
4848 }
4849 
4850 void
4851 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
4852 {
4853 	g_nvmf_hooks = *hooks;
4854 }
4855 
4856 static void
4857 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req,
4858 				   struct spdk_nvmf_rdma_request *rdma_req_to_abort)
4859 {
4860 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
4861 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
4862 
4863 	rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
4864 
4865 	req->rsp->nvme_cpl.cdw0 &= ~1U;	/* Command was successfully aborted. */
4866 }
4867 
4868 static int
4869 _nvmf_rdma_qpair_abort_request(void *ctx)
4870 {
4871 	struct spdk_nvmf_request *req = ctx;
4872 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF(
4873 				req->req_to_abort, struct spdk_nvmf_rdma_request, req);
4874 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
4875 					      struct spdk_nvmf_rdma_qpair, qpair);
4876 	int rc;
4877 
4878 	spdk_poller_unregister(&req->poller);
4879 
4880 	switch (rdma_req_to_abort->state) {
4881 	case RDMA_REQUEST_STATE_EXECUTING:
4882 		rc = nvmf_ctrlr_abort_request(req);
4883 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
4884 			return SPDK_POLLER_BUSY;
4885 		}
4886 		break;
4887 
4888 	case RDMA_REQUEST_STATE_NEED_BUFFER:
4889 		STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue,
4890 			      &rdma_req_to_abort->req, spdk_nvmf_request, buf_link);
4891 
4892 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4893 		break;
4894 
4895 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
4896 		STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort,
4897 			      spdk_nvmf_rdma_request, state_link);
4898 
4899 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4900 		break;
4901 
4902 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
4903 		STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort,
4904 			      spdk_nvmf_rdma_request, state_link);
4905 
4906 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4907 		break;
4908 
4909 	case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
4910 		if (spdk_get_ticks() < req->timeout_tsc) {
4911 			req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0);
4912 			return SPDK_POLLER_BUSY;
4913 		}
4914 		break;
4915 
4916 	default:
4917 		break;
4918 	}
4919 
4920 	spdk_nvmf_request_complete(req);
4921 	return SPDK_POLLER_BUSY;
4922 }
4923 
4924 static void
4925 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
4926 			      struct spdk_nvmf_request *req)
4927 {
4928 	struct spdk_nvmf_rdma_qpair *rqpair;
4929 	struct spdk_nvmf_rdma_transport *rtransport;
4930 	struct spdk_nvmf_transport *transport;
4931 	uint16_t cid;
4932 	uint32_t i, max_req_count;
4933 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req;
4934 
4935 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4936 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
4937 	transport = &rtransport->transport;
4938 
4939 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
4940 	max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth;
4941 
4942 	for (i = 0; i < max_req_count; i++) {
4943 		rdma_req = &rqpair->resources->reqs[i];
4944 		/* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair
4945 		 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to
4946 		 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */
4947 		if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid &&
4948 		    rdma_req->req.qpair == qpair) {
4949 			rdma_req_to_abort = rdma_req;
4950 			break;
4951 		}
4952 	}
4953 
4954 	if (rdma_req_to_abort == NULL) {
4955 		spdk_nvmf_request_complete(req);
4956 		return;
4957 	}
4958 
4959 	req->req_to_abort = &rdma_req_to_abort->req;
4960 	req->timeout_tsc = spdk_get_ticks() +
4961 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
4962 	req->poller = NULL;
4963 
4964 	_nvmf_rdma_qpair_abort_request(req);
4965 }
4966 
4967 static void
4968 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group,
4969 			       struct spdk_json_write_ctx *w)
4970 {
4971 	struct spdk_nvmf_rdma_poll_group *rgroup;
4972 	struct spdk_nvmf_rdma_poller *rpoller;
4973 
4974 	assert(w != NULL);
4975 
4976 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4977 
4978 	spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer);
4979 
4980 	spdk_json_write_named_array_begin(w, "devices");
4981 
4982 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
4983 		spdk_json_write_object_begin(w);
4984 		spdk_json_write_named_string(w, "name",
4985 					     ibv_get_device_name(rpoller->device->context->device));
4986 		spdk_json_write_named_uint64(w, "polls",
4987 					     rpoller->stat.polls);
4988 		spdk_json_write_named_uint64(w, "idle_polls",
4989 					     rpoller->stat.idle_polls);
4990 		spdk_json_write_named_uint64(w, "completions",
4991 					     rpoller->stat.completions);
4992 		spdk_json_write_named_uint64(w, "requests",
4993 					     rpoller->stat.requests);
4994 		spdk_json_write_named_uint64(w, "request_latency",
4995 					     rpoller->stat.request_latency);
4996 		spdk_json_write_named_uint64(w, "pending_free_request",
4997 					     rpoller->stat.pending_free_request);
4998 		spdk_json_write_named_uint64(w, "pending_rdma_read",
4999 					     rpoller->stat.pending_rdma_read);
5000 		spdk_json_write_named_uint64(w, "pending_rdma_write",
5001 					     rpoller->stat.pending_rdma_write);
5002 		spdk_json_write_named_uint64(w, "total_send_wrs",
5003 					     rpoller->stat.qp_stats.send.num_submitted_wrs);
5004 		spdk_json_write_named_uint64(w, "send_doorbell_updates",
5005 					     rpoller->stat.qp_stats.send.doorbell_updates);
5006 		spdk_json_write_named_uint64(w, "total_recv_wrs",
5007 					     rpoller->stat.qp_stats.recv.num_submitted_wrs);
5008 		spdk_json_write_named_uint64(w, "recv_doorbell_updates",
5009 					     rpoller->stat.qp_stats.recv.doorbell_updates);
5010 		spdk_json_write_object_end(w);
5011 	}
5012 
5013 	spdk_json_write_array_end(w);
5014 }
5015 
5016 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
5017 	.name = "RDMA",
5018 	.type = SPDK_NVME_TRANSPORT_RDMA,
5019 	.opts_init = nvmf_rdma_opts_init,
5020 	.create = nvmf_rdma_create,
5021 	.dump_opts = nvmf_rdma_dump_opts,
5022 	.destroy = nvmf_rdma_destroy,
5023 
5024 	.listen = nvmf_rdma_listen,
5025 	.stop_listen = nvmf_rdma_stop_listen,
5026 	.cdata_init = nvmf_rdma_cdata_init,
5027 
5028 	.listener_discover = nvmf_rdma_discover,
5029 
5030 	.poll_group_create = nvmf_rdma_poll_group_create,
5031 	.get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group,
5032 	.poll_group_destroy = nvmf_rdma_poll_group_destroy,
5033 	.poll_group_add = nvmf_rdma_poll_group_add,
5034 	.poll_group_remove = nvmf_rdma_poll_group_remove,
5035 	.poll_group_poll = nvmf_rdma_poll_group_poll,
5036 
5037 	.req_free = nvmf_rdma_request_free,
5038 	.req_complete = nvmf_rdma_request_complete,
5039 
5040 	.qpair_fini = nvmf_rdma_close_qpair,
5041 	.qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid,
5042 	.qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid,
5043 	.qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid,
5044 	.qpair_abort_request = nvmf_rdma_qpair_abort_request,
5045 
5046 	.poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat,
5047 };
5048 
5049 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma);
5050 SPDK_LOG_REGISTER_COMPONENT(rdma)
5051