1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2016 Intel Corporation. All rights reserved. 3 * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk/stdinc.h" 8 9 #include "spdk/config.h" 10 #include "spdk/thread.h" 11 #include "spdk/likely.h" 12 #include "spdk/nvmf_transport.h" 13 #include "spdk/string.h" 14 #include "spdk/trace.h" 15 #include "spdk/tree.h" 16 #include "spdk/util.h" 17 18 #include "spdk_internal/assert.h" 19 #include "spdk/log.h" 20 #include "spdk_internal/rdma.h" 21 22 #include "nvmf_internal.h" 23 #include "transport.h" 24 25 #include "spdk_internal/trace_defs.h" 26 27 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {}; 28 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma; 29 30 /* 31 RDMA Connection Resource Defaults 32 */ 33 #define NVMF_DEFAULT_MSDBD 16 34 #define NVMF_DEFAULT_TX_SGE SPDK_NVMF_MAX_SGL_ENTRIES 35 #define NVMF_DEFAULT_RSP_SGE 1 36 #define NVMF_DEFAULT_RX_SGE 2 37 38 SPDK_STATIC_ASSERT(NVMF_DEFAULT_MSDBD <= SPDK_NVMF_MAX_SGL_ENTRIES, 39 "MSDBD must not exceed SPDK_NVMF_MAX_SGL_ENTRIES"); 40 41 /* The RDMA completion queue size */ 42 #define DEFAULT_NVMF_RDMA_CQ_SIZE 4096 43 #define MAX_WR_PER_QP(queue_depth) (queue_depth * 3 + 2) 44 45 static int g_spdk_nvmf_ibv_query_mask = 46 IBV_QP_STATE | 47 IBV_QP_PKEY_INDEX | 48 IBV_QP_PORT | 49 IBV_QP_ACCESS_FLAGS | 50 IBV_QP_AV | 51 IBV_QP_PATH_MTU | 52 IBV_QP_DEST_QPN | 53 IBV_QP_RQ_PSN | 54 IBV_QP_MAX_DEST_RD_ATOMIC | 55 IBV_QP_MIN_RNR_TIMER | 56 IBV_QP_SQ_PSN | 57 IBV_QP_TIMEOUT | 58 IBV_QP_RETRY_CNT | 59 IBV_QP_RNR_RETRY | 60 IBV_QP_MAX_QP_RD_ATOMIC; 61 62 enum spdk_nvmf_rdma_request_state { 63 /* The request is not currently in use */ 64 RDMA_REQUEST_STATE_FREE = 0, 65 66 /* Initial state when request first received */ 67 RDMA_REQUEST_STATE_NEW, 68 69 /* The request is queued until a data buffer is available. */ 70 RDMA_REQUEST_STATE_NEED_BUFFER, 71 72 /* The request is waiting on RDMA queue depth availability 73 * to transfer data from the host to the controller. 74 */ 75 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 76 77 /* The request is currently transferring data from the host to the controller. */ 78 RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 79 80 /* The request is ready to execute at the block device */ 81 RDMA_REQUEST_STATE_READY_TO_EXECUTE, 82 83 /* The request is currently executing at the block device */ 84 RDMA_REQUEST_STATE_EXECUTING, 85 86 /* The request finished executing at the block device */ 87 RDMA_REQUEST_STATE_EXECUTED, 88 89 /* The request is waiting on RDMA queue depth availability 90 * to transfer data from the controller to the host. 91 */ 92 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 93 94 /* The request is ready to send a completion */ 95 RDMA_REQUEST_STATE_READY_TO_COMPLETE, 96 97 /* The request is currently transferring data from the controller to the host. */ 98 RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 99 100 /* The request currently has an outstanding completion without an 101 * associated data transfer. 102 */ 103 RDMA_REQUEST_STATE_COMPLETING, 104 105 /* The request completed and can be marked free. */ 106 RDMA_REQUEST_STATE_COMPLETED, 107 108 /* Terminator */ 109 RDMA_REQUEST_NUM_STATES, 110 }; 111 112 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA) 113 { 114 spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r'); 115 spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW, 116 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 117 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 118 spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 119 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 120 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 121 spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H", 122 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 123 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 124 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 125 spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C", 126 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 127 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 128 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 129 spdk_trace_register_description("RDMA_REQ_TX_H2C", 130 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 131 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 132 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 133 spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE", 134 TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 135 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 136 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 137 spdk_trace_register_description("RDMA_REQ_EXECUTING", 138 TRACE_RDMA_REQUEST_STATE_EXECUTING, 139 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 140 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 141 spdk_trace_register_description("RDMA_REQ_EXECUTED", 142 TRACE_RDMA_REQUEST_STATE_EXECUTED, 143 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 144 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 145 spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL", 146 TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 147 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 148 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 149 spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H", 150 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 151 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 152 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 153 spdk_trace_register_description("RDMA_REQ_COMPLETING", 154 TRACE_RDMA_REQUEST_STATE_COMPLETING, 155 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 156 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 157 spdk_trace_register_description("RDMA_REQ_COMPLETED", 158 TRACE_RDMA_REQUEST_STATE_COMPLETED, 159 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 160 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 161 162 spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE, 163 OWNER_NONE, OBJECT_NONE, 0, 164 SPDK_TRACE_ARG_TYPE_INT, ""); 165 spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT, 166 OWNER_NONE, OBJECT_NONE, 0, 167 SPDK_TRACE_ARG_TYPE_INT, "type"); 168 spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT, 169 OWNER_NONE, OBJECT_NONE, 0, 170 SPDK_TRACE_ARG_TYPE_INT, "type"); 171 spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE, 172 OWNER_NONE, OBJECT_NONE, 0, 173 SPDK_TRACE_ARG_TYPE_PTR, "state"); 174 spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT, 175 OWNER_NONE, OBJECT_NONE, 0, 176 SPDK_TRACE_ARG_TYPE_INT, ""); 177 spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY, 178 OWNER_NONE, OBJECT_NONE, 0, 179 SPDK_TRACE_ARG_TYPE_INT, ""); 180 } 181 182 enum spdk_nvmf_rdma_wr_type { 183 RDMA_WR_TYPE_RECV, 184 RDMA_WR_TYPE_SEND, 185 RDMA_WR_TYPE_DATA, 186 }; 187 188 struct spdk_nvmf_rdma_wr { 189 /* Uses enum spdk_nvmf_rdma_wr_type */ 190 uint8_t type; 191 }; 192 193 /* This structure holds commands as they are received off the wire. 194 * It must be dynamically paired with a full request object 195 * (spdk_nvmf_rdma_request) to service a request. It is separate 196 * from the request because RDMA does not appear to order 197 * completions, so occasionally we'll get a new incoming 198 * command when there aren't any free request objects. 199 */ 200 struct spdk_nvmf_rdma_recv { 201 struct ibv_recv_wr wr; 202 struct ibv_sge sgl[NVMF_DEFAULT_RX_SGE]; 203 204 struct spdk_nvmf_rdma_qpair *qpair; 205 206 /* In-capsule data buffer */ 207 uint8_t *buf; 208 209 struct spdk_nvmf_rdma_wr rdma_wr; 210 uint64_t receive_tsc; 211 212 STAILQ_ENTRY(spdk_nvmf_rdma_recv) link; 213 }; 214 215 struct spdk_nvmf_rdma_request_data { 216 struct ibv_send_wr wr; 217 struct ibv_sge sgl[SPDK_NVMF_MAX_SGL_ENTRIES]; 218 }; 219 220 struct spdk_nvmf_rdma_request { 221 struct spdk_nvmf_request req; 222 223 bool fused_failed; 224 225 struct spdk_nvmf_rdma_wr data_wr; 226 struct spdk_nvmf_rdma_wr rsp_wr; 227 228 /* Uses enum spdk_nvmf_rdma_request_state */ 229 uint8_t state; 230 231 /* Data offset in req.iov */ 232 uint32_t offset; 233 234 struct spdk_nvmf_rdma_recv *recv; 235 236 struct { 237 struct ibv_send_wr wr; 238 struct ibv_sge sgl[NVMF_DEFAULT_RSP_SGE]; 239 } rsp; 240 241 uint16_t iovpos; 242 uint16_t num_outstanding_data_wr; 243 /* Used to split Write IO with multi SGL payload */ 244 uint16_t num_remaining_data_wr; 245 uint64_t receive_tsc; 246 struct spdk_nvmf_rdma_request *fused_pair; 247 STAILQ_ENTRY(spdk_nvmf_rdma_request) state_link; 248 struct ibv_send_wr *remaining_tranfer_in_wrs; 249 struct ibv_send_wr *transfer_wr; 250 struct spdk_nvmf_rdma_request_data data; 251 }; 252 253 struct spdk_nvmf_rdma_resource_opts { 254 struct spdk_nvmf_rdma_qpair *qpair; 255 /* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */ 256 void *qp; 257 struct spdk_rdma_mem_map *map; 258 uint32_t max_queue_depth; 259 uint32_t in_capsule_data_size; 260 bool shared; 261 }; 262 263 struct spdk_nvmf_rdma_resources { 264 /* Array of size "max_queue_depth" containing RDMA requests. */ 265 struct spdk_nvmf_rdma_request *reqs; 266 267 /* Array of size "max_queue_depth" containing RDMA recvs. */ 268 struct spdk_nvmf_rdma_recv *recvs; 269 270 /* Array of size "max_queue_depth" containing 64 byte capsules 271 * used for receive. 272 */ 273 union nvmf_h2c_msg *cmds; 274 275 /* Array of size "max_queue_depth" containing 16 byte completions 276 * to be sent back to the user. 277 */ 278 union nvmf_c2h_msg *cpls; 279 280 /* Array of size "max_queue_depth * InCapsuleDataSize" containing 281 * buffers to be used for in capsule data. 282 */ 283 void *bufs; 284 285 /* Receives that are waiting for a request object */ 286 STAILQ_HEAD(, spdk_nvmf_rdma_recv) incoming_queue; 287 288 /* Queue to track free requests */ 289 STAILQ_HEAD(, spdk_nvmf_rdma_request) free_queue; 290 }; 291 292 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair); 293 294 typedef void (*spdk_poller_destroy_cb)(void *ctx); 295 296 struct spdk_nvmf_rdma_ibv_event_ctx { 297 struct spdk_nvmf_rdma_qpair *rqpair; 298 spdk_nvmf_rdma_qpair_ibv_event cb_fn; 299 /* Link to other ibv events associated with this qpair */ 300 STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx) link; 301 }; 302 303 struct spdk_nvmf_rdma_qpair { 304 struct spdk_nvmf_qpair qpair; 305 306 struct spdk_nvmf_rdma_device *device; 307 struct spdk_nvmf_rdma_poller *poller; 308 309 struct spdk_rdma_qp *rdma_qp; 310 struct rdma_cm_id *cm_id; 311 struct spdk_rdma_srq *srq; 312 struct rdma_cm_id *listen_id; 313 314 /* Cache the QP number to improve QP search by RB tree. */ 315 uint32_t qp_num; 316 317 /* The maximum number of I/O outstanding on this connection at one time */ 318 uint16_t max_queue_depth; 319 320 /* The maximum number of active RDMA READ and ATOMIC operations at one time */ 321 uint16_t max_read_depth; 322 323 /* The maximum number of RDMA SEND operations at one time */ 324 uint32_t max_send_depth; 325 326 /* The current number of outstanding WRs from this qpair's 327 * recv queue. Should not exceed device->attr.max_queue_depth. 328 */ 329 uint16_t current_recv_depth; 330 331 /* The current number of active RDMA READ operations */ 332 uint16_t current_read_depth; 333 334 /* The current number of posted WRs from this qpair's 335 * send queue. Should not exceed max_send_depth. 336 */ 337 uint32_t current_send_depth; 338 339 /* The maximum number of SGEs per WR on the send queue */ 340 uint32_t max_send_sge; 341 342 /* The maximum number of SGEs per WR on the recv queue */ 343 uint32_t max_recv_sge; 344 345 struct spdk_nvmf_rdma_resources *resources; 346 347 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_read_queue; 348 349 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_write_queue; 350 351 /* Number of requests not in the free state */ 352 uint32_t qd; 353 354 RB_ENTRY(spdk_nvmf_rdma_qpair) node; 355 356 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) recv_link; 357 358 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) send_link; 359 360 /* IBV queue pair attributes: they are used to manage 361 * qp state and recover from errors. 362 */ 363 enum ibv_qp_state ibv_state; 364 365 /* Points to the a request that has fuse bits set to 366 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting 367 * for the request that has SPDK_NVME_CMD_FUSE_SECOND. 368 */ 369 struct spdk_nvmf_rdma_request *fused_first; 370 371 /* 372 * io_channel which is used to destroy qpair when it is removed from poll group 373 */ 374 struct spdk_io_channel *destruct_channel; 375 376 /* List of ibv async events */ 377 STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx) ibv_events; 378 379 /* Lets us know that we have received the last_wqe event. */ 380 bool last_wqe_reached; 381 382 /* Indicate that nvmf_rdma_close_qpair is called */ 383 bool to_close; 384 }; 385 386 struct spdk_nvmf_rdma_poller_stat { 387 uint64_t completions; 388 uint64_t polls; 389 uint64_t idle_polls; 390 uint64_t requests; 391 uint64_t request_latency; 392 uint64_t pending_free_request; 393 uint64_t pending_rdma_read; 394 uint64_t pending_rdma_write; 395 struct spdk_rdma_qp_stats qp_stats; 396 }; 397 398 struct spdk_nvmf_rdma_poller { 399 struct spdk_nvmf_rdma_device *device; 400 struct spdk_nvmf_rdma_poll_group *group; 401 402 int num_cqe; 403 int required_num_wr; 404 struct ibv_cq *cq; 405 406 /* The maximum number of I/O outstanding on the shared receive queue at one time */ 407 uint16_t max_srq_depth; 408 bool need_destroy; 409 410 /* Shared receive queue */ 411 struct spdk_rdma_srq *srq; 412 413 struct spdk_nvmf_rdma_resources *resources; 414 struct spdk_nvmf_rdma_poller_stat stat; 415 416 spdk_poller_destroy_cb destroy_cb; 417 void *destroy_cb_ctx; 418 419 RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs; 420 421 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_recv; 422 423 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_send; 424 425 TAILQ_ENTRY(spdk_nvmf_rdma_poller) link; 426 }; 427 428 struct spdk_nvmf_rdma_poll_group_stat { 429 uint64_t pending_data_buffer; 430 }; 431 432 struct spdk_nvmf_rdma_poll_group { 433 struct spdk_nvmf_transport_poll_group group; 434 struct spdk_nvmf_rdma_poll_group_stat stat; 435 TAILQ_HEAD(, spdk_nvmf_rdma_poller) pollers; 436 TAILQ_ENTRY(spdk_nvmf_rdma_poll_group) link; 437 }; 438 439 struct spdk_nvmf_rdma_conn_sched { 440 struct spdk_nvmf_rdma_poll_group *next_admin_pg; 441 struct spdk_nvmf_rdma_poll_group *next_io_pg; 442 }; 443 444 /* Assuming rdma_cm uses just one protection domain per ibv_context. */ 445 struct spdk_nvmf_rdma_device { 446 struct ibv_device_attr attr; 447 struct ibv_context *context; 448 449 struct spdk_rdma_mem_map *map; 450 struct ibv_pd *pd; 451 452 int num_srq; 453 bool need_destroy; 454 bool ready_to_destroy; 455 bool is_ready; 456 457 TAILQ_ENTRY(spdk_nvmf_rdma_device) link; 458 }; 459 460 struct spdk_nvmf_rdma_port { 461 const struct spdk_nvme_transport_id *trid; 462 struct rdma_cm_id *id; 463 struct spdk_nvmf_rdma_device *device; 464 TAILQ_ENTRY(spdk_nvmf_rdma_port) link; 465 }; 466 467 struct rdma_transport_opts { 468 int num_cqe; 469 uint32_t max_srq_depth; 470 bool no_srq; 471 bool no_wr_batching; 472 int acceptor_backlog; 473 }; 474 475 struct spdk_nvmf_rdma_transport { 476 struct spdk_nvmf_transport transport; 477 struct rdma_transport_opts rdma_opts; 478 479 struct spdk_nvmf_rdma_conn_sched conn_sched; 480 481 struct rdma_event_channel *event_channel; 482 483 struct spdk_mempool *data_wr_pool; 484 485 struct spdk_poller *accept_poller; 486 487 /* fields used to poll RDMA/IB events */ 488 nfds_t npoll_fds; 489 struct pollfd *poll_fds; 490 491 TAILQ_HEAD(, spdk_nvmf_rdma_device) devices; 492 TAILQ_HEAD(, spdk_nvmf_rdma_port) ports; 493 TAILQ_HEAD(, spdk_nvmf_rdma_poll_group) poll_groups; 494 495 /* ports that are removed unexpectedly and need retry listen */ 496 TAILQ_HEAD(, spdk_nvmf_rdma_port) retry_ports; 497 }; 498 499 struct poller_manage_ctx { 500 struct spdk_nvmf_rdma_transport *rtransport; 501 struct spdk_nvmf_rdma_poll_group *rgroup; 502 struct spdk_nvmf_rdma_poller *rpoller; 503 struct spdk_nvmf_rdma_device *device; 504 505 struct spdk_thread *thread; 506 volatile int *inflight_op_counter; 507 }; 508 509 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = { 510 { 511 "num_cqe", offsetof(struct rdma_transport_opts, num_cqe), 512 spdk_json_decode_int32, true 513 }, 514 { 515 "max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth), 516 spdk_json_decode_uint32, true 517 }, 518 { 519 "no_srq", offsetof(struct rdma_transport_opts, no_srq), 520 spdk_json_decode_bool, true 521 }, 522 { 523 "no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching), 524 spdk_json_decode_bool, true 525 }, 526 { 527 "acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog), 528 spdk_json_decode_int32, true 529 }, 530 }; 531 532 static int 533 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2) 534 { 535 return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num; 536 } 537 538 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare); 539 540 static bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 541 struct spdk_nvmf_rdma_request *rdma_req); 542 543 static void _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 544 struct spdk_nvmf_rdma_poller *rpoller); 545 546 static void _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 547 struct spdk_nvmf_rdma_poller *rpoller); 548 549 static void _nvmf_rdma_remove_destroyed_device(void *c); 550 551 static inline int 552 nvmf_rdma_check_ibv_state(enum ibv_qp_state state) 553 { 554 switch (state) { 555 case IBV_QPS_RESET: 556 case IBV_QPS_INIT: 557 case IBV_QPS_RTR: 558 case IBV_QPS_RTS: 559 case IBV_QPS_SQD: 560 case IBV_QPS_SQE: 561 case IBV_QPS_ERR: 562 return 0; 563 default: 564 return -1; 565 } 566 } 567 568 static inline enum spdk_nvme_media_error_status_code 569 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) { 570 enum spdk_nvme_media_error_status_code result; 571 switch (err_type) 572 { 573 case SPDK_DIF_REFTAG_ERROR: 574 result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR; 575 break; 576 case SPDK_DIF_APPTAG_ERROR: 577 result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR; 578 break; 579 case SPDK_DIF_GUARD_ERROR: 580 result = SPDK_NVME_SC_GUARD_CHECK_ERROR; 581 break; 582 default: 583 SPDK_UNREACHABLE(); 584 } 585 586 return result; 587 } 588 589 static enum ibv_qp_state 590 nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) { 591 enum ibv_qp_state old_state, new_state; 592 struct ibv_qp_attr qp_attr; 593 struct ibv_qp_init_attr init_attr; 594 int rc; 595 596 old_state = rqpair->ibv_state; 597 rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr, 598 g_spdk_nvmf_ibv_query_mask, &init_attr); 599 600 if (rc) 601 { 602 SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n"); 603 return IBV_QPS_ERR + 1; 604 } 605 606 new_state = qp_attr.qp_state; 607 rqpair->ibv_state = new_state; 608 qp_attr.ah_attr.port_num = qp_attr.port_num; 609 610 rc = nvmf_rdma_check_ibv_state(new_state); 611 if (rc) 612 { 613 SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state); 614 /* 615 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8 616 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR 617 */ 618 return IBV_QPS_ERR + 1; 619 } 620 621 if (old_state != new_state) 622 { 623 spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, (uintptr_t)rqpair, new_state); 624 } 625 return new_state; 626 } 627 628 /* 629 * Return data_wrs to pool starting from \b data_wr 630 * Request's own response and data WR are excluded 631 */ 632 static void 633 _nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req, 634 struct ibv_send_wr *data_wr, 635 struct spdk_mempool *pool) 636 { 637 struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES]; 638 struct spdk_nvmf_rdma_request_data *nvmf_data; 639 struct ibv_send_wr *next_send_wr; 640 uint64_t req_wrid = (uint64_t)&rdma_req->data_wr; 641 uint32_t num_wrs = 0; 642 643 while (data_wr && data_wr->wr_id == req_wrid) { 644 nvmf_data = SPDK_CONTAINEROF(data_wr, struct spdk_nvmf_rdma_request_data, wr); 645 memset(nvmf_data->sgl, 0, sizeof(data_wr->sg_list[0]) * data_wr->num_sge); 646 data_wr->num_sge = 0; 647 next_send_wr = data_wr->next; 648 if (data_wr != &rdma_req->data.wr) { 649 data_wr->next = NULL; 650 assert(num_wrs < SPDK_NVMF_MAX_SGL_ENTRIES); 651 work_requests[num_wrs] = nvmf_data; 652 num_wrs++; 653 } 654 data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : next_send_wr; 655 } 656 657 if (num_wrs) { 658 spdk_mempool_put_bulk(pool, (void **) work_requests, num_wrs); 659 } 660 } 661 662 static void 663 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req, 664 struct spdk_nvmf_rdma_transport *rtransport) 665 { 666 rdma_req->num_outstanding_data_wr = 0; 667 668 _nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool); 669 670 rdma_req->data.wr.next = NULL; 671 rdma_req->rsp.wr.next = NULL; 672 } 673 674 static void 675 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req) 676 { 677 SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool); 678 if (req->req.cmd) { 679 SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode); 680 } 681 if (req->recv) { 682 SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id); 683 } 684 } 685 686 static void 687 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair) 688 { 689 int i; 690 691 SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid); 692 for (i = 0; i < rqpair->max_queue_depth; i++) { 693 if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) { 694 nvmf_rdma_dump_request(&rqpair->resources->reqs[i]); 695 } 696 } 697 } 698 699 static void 700 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources) 701 { 702 spdk_free(resources->cmds); 703 spdk_free(resources->cpls); 704 spdk_free(resources->bufs); 705 spdk_free(resources->reqs); 706 spdk_free(resources->recvs); 707 free(resources); 708 } 709 710 711 static struct spdk_nvmf_rdma_resources * 712 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts) 713 { 714 struct spdk_nvmf_rdma_resources *resources; 715 struct spdk_nvmf_rdma_request *rdma_req; 716 struct spdk_nvmf_rdma_recv *rdma_recv; 717 struct spdk_rdma_qp *qp = NULL; 718 struct spdk_rdma_srq *srq = NULL; 719 struct ibv_recv_wr *bad_wr = NULL; 720 struct spdk_rdma_memory_translation translation; 721 uint32_t i; 722 int rc = 0; 723 724 resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources)); 725 if (!resources) { 726 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 727 return NULL; 728 } 729 730 resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs), 731 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 732 resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs), 733 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 734 resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds), 735 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 736 resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls), 737 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 738 739 if (opts->in_capsule_data_size > 0) { 740 resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size, 741 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, 742 SPDK_MALLOC_DMA); 743 } 744 745 if (!resources->reqs || !resources->recvs || !resources->cmds || 746 !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) { 747 SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n"); 748 goto cleanup; 749 } 750 751 SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx\n", 752 resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds)); 753 SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx\n", 754 resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls)); 755 if (resources->bufs) { 756 SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x\n", 757 resources->bufs, opts->max_queue_depth * 758 opts->in_capsule_data_size); 759 } 760 761 /* Initialize queues */ 762 STAILQ_INIT(&resources->incoming_queue); 763 STAILQ_INIT(&resources->free_queue); 764 765 if (opts->shared) { 766 srq = (struct spdk_rdma_srq *)opts->qp; 767 } else { 768 qp = (struct spdk_rdma_qp *)opts->qp; 769 } 770 771 for (i = 0; i < opts->max_queue_depth; i++) { 772 rdma_recv = &resources->recvs[i]; 773 rdma_recv->qpair = opts->qpair; 774 775 /* Set up memory to receive commands */ 776 if (resources->bufs) { 777 rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i * 778 opts->in_capsule_data_size)); 779 } 780 781 rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV; 782 783 rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i]; 784 rdma_recv->sgl[0].length = sizeof(resources->cmds[i]); 785 rc = spdk_rdma_get_translation(opts->map, &resources->cmds[i], sizeof(resources->cmds[i]), 786 &translation); 787 if (rc) { 788 goto cleanup; 789 } 790 rdma_recv->sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation); 791 rdma_recv->wr.num_sge = 1; 792 793 if (rdma_recv->buf) { 794 rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf; 795 rdma_recv->sgl[1].length = opts->in_capsule_data_size; 796 rc = spdk_rdma_get_translation(opts->map, rdma_recv->buf, opts->in_capsule_data_size, &translation); 797 if (rc) { 798 goto cleanup; 799 } 800 rdma_recv->sgl[1].lkey = spdk_rdma_memory_translation_get_lkey(&translation); 801 rdma_recv->wr.num_sge++; 802 } 803 804 rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr; 805 rdma_recv->wr.sg_list = rdma_recv->sgl; 806 if (srq) { 807 spdk_rdma_srq_queue_recv_wrs(srq, &rdma_recv->wr); 808 } else { 809 spdk_rdma_qp_queue_recv_wrs(qp, &rdma_recv->wr); 810 } 811 } 812 813 for (i = 0; i < opts->max_queue_depth; i++) { 814 rdma_req = &resources->reqs[i]; 815 816 if (opts->qpair != NULL) { 817 rdma_req->req.qpair = &opts->qpair->qpair; 818 } else { 819 rdma_req->req.qpair = NULL; 820 } 821 rdma_req->req.cmd = NULL; 822 rdma_req->req.iovcnt = 0; 823 rdma_req->req.stripped_data = NULL; 824 825 /* Set up memory to send responses */ 826 rdma_req->req.rsp = &resources->cpls[i]; 827 828 rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i]; 829 rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]); 830 rc = spdk_rdma_get_translation(opts->map, &resources->cpls[i], sizeof(resources->cpls[i]), 831 &translation); 832 if (rc) { 833 goto cleanup; 834 } 835 rdma_req->rsp.sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation); 836 837 rdma_req->rsp_wr.type = RDMA_WR_TYPE_SEND; 838 rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp_wr; 839 rdma_req->rsp.wr.next = NULL; 840 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 841 rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED; 842 rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl; 843 rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl); 844 845 /* Set up memory for data buffers */ 846 rdma_req->data_wr.type = RDMA_WR_TYPE_DATA; 847 rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data_wr; 848 rdma_req->data.wr.next = NULL; 849 rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED; 850 rdma_req->data.wr.sg_list = rdma_req->data.sgl; 851 rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl); 852 853 /* Initialize request state to FREE */ 854 rdma_req->state = RDMA_REQUEST_STATE_FREE; 855 STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link); 856 } 857 858 if (srq) { 859 rc = spdk_rdma_srq_flush_recv_wrs(srq, &bad_wr); 860 } else { 861 rc = spdk_rdma_qp_flush_recv_wrs(qp, &bad_wr); 862 } 863 864 if (rc) { 865 goto cleanup; 866 } 867 868 return resources; 869 870 cleanup: 871 nvmf_rdma_resources_destroy(resources); 872 return NULL; 873 } 874 875 static void 876 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair) 877 { 878 struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx; 879 STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) { 880 ctx->rqpair = NULL; 881 /* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */ 882 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 883 } 884 } 885 886 static void nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller); 887 888 static void 889 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair) 890 { 891 struct spdk_nvmf_rdma_recv *rdma_recv, *recv_tmp; 892 struct ibv_recv_wr *bad_recv_wr = NULL; 893 int rc; 894 895 spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair); 896 897 if (rqpair->qd != 0) { 898 struct spdk_nvmf_qpair *qpair = &rqpair->qpair; 899 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(qpair->transport, 900 struct spdk_nvmf_rdma_transport, transport); 901 struct spdk_nvmf_rdma_request *req; 902 uint32_t i, max_req_count = 0; 903 904 SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd); 905 906 if (rqpair->srq == NULL) { 907 nvmf_rdma_dump_qpair_contents(rqpair); 908 max_req_count = rqpair->max_queue_depth; 909 } else if (rqpair->poller && rqpair->resources) { 910 max_req_count = rqpair->poller->max_srq_depth; 911 } 912 913 SPDK_DEBUGLOG(rdma, "Release incomplete requests\n"); 914 for (i = 0; i < max_req_count; i++) { 915 req = &rqpair->resources->reqs[i]; 916 if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) { 917 /* nvmf_rdma_request_process checks qpair ibv and internal state 918 * and completes a request */ 919 nvmf_rdma_request_process(rtransport, req); 920 } 921 } 922 assert(rqpair->qd == 0); 923 } 924 925 if (rqpair->poller) { 926 RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair); 927 928 if (rqpair->srq != NULL && rqpair->resources != NULL) { 929 /* Drop all received but unprocessed commands for this queue and return them to SRQ */ 930 STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) { 931 if (rqpair == rdma_recv->qpair) { 932 STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link); 933 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr); 934 rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr); 935 if (rc) { 936 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 937 } 938 } 939 } 940 } 941 } 942 943 if (rqpair->cm_id) { 944 if (rqpair->rdma_qp != NULL) { 945 spdk_rdma_qp_destroy(rqpair->rdma_qp); 946 rqpair->rdma_qp = NULL; 947 } 948 949 if (rqpair->poller != NULL && rqpair->srq == NULL) { 950 rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth); 951 } 952 } 953 954 if (rqpair->srq == NULL && rqpair->resources != NULL) { 955 nvmf_rdma_resources_destroy(rqpair->resources); 956 } 957 958 nvmf_rdma_qpair_clean_ibv_events(rqpair); 959 960 if (rqpair->destruct_channel) { 961 spdk_put_io_channel(rqpair->destruct_channel); 962 rqpair->destruct_channel = NULL; 963 } 964 965 if (rqpair->poller && rqpair->poller->need_destroy && RB_EMPTY(&rqpair->poller->qpairs)) { 966 nvmf_rdma_poller_destroy(rqpair->poller); 967 } 968 969 /* destroy cm_id last so cma device will not be freed before we destroy the cq. */ 970 if (rqpair->cm_id) { 971 rdma_destroy_id(rqpair->cm_id); 972 } 973 974 free(rqpair); 975 } 976 977 static int 978 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device) 979 { 980 struct spdk_nvmf_rdma_poller *rpoller; 981 int rc, num_cqe, required_num_wr; 982 983 /* Enlarge CQ size dynamically */ 984 rpoller = rqpair->poller; 985 required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth); 986 num_cqe = rpoller->num_cqe; 987 if (num_cqe < required_num_wr) { 988 num_cqe = spdk_max(num_cqe * 2, required_num_wr); 989 num_cqe = spdk_min(num_cqe, device->attr.max_cqe); 990 } 991 992 if (rpoller->num_cqe != num_cqe) { 993 if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) { 994 SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n" 995 "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe); 996 return -1; 997 } 998 if (required_num_wr > device->attr.max_cqe) { 999 SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n", 1000 required_num_wr, device->attr.max_cqe); 1001 return -1; 1002 } 1003 1004 SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe); 1005 rc = ibv_resize_cq(rpoller->cq, num_cqe); 1006 if (rc) { 1007 SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); 1008 return -1; 1009 } 1010 1011 rpoller->num_cqe = num_cqe; 1012 } 1013 1014 rpoller->required_num_wr = required_num_wr; 1015 return 0; 1016 } 1017 1018 static int 1019 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair) 1020 { 1021 struct spdk_nvmf_rdma_qpair *rqpair; 1022 struct spdk_nvmf_rdma_transport *rtransport; 1023 struct spdk_nvmf_transport *transport; 1024 struct spdk_nvmf_rdma_resource_opts opts; 1025 struct spdk_nvmf_rdma_device *device; 1026 struct spdk_rdma_qp_init_attr qp_init_attr = {}; 1027 1028 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1029 device = rqpair->device; 1030 1031 qp_init_attr.qp_context = rqpair; 1032 qp_init_attr.pd = device->pd; 1033 qp_init_attr.send_cq = rqpair->poller->cq; 1034 qp_init_attr.recv_cq = rqpair->poller->cq; 1035 1036 if (rqpair->srq) { 1037 qp_init_attr.srq = rqpair->srq->srq; 1038 } else { 1039 qp_init_attr.cap.max_recv_wr = rqpair->max_queue_depth; 1040 } 1041 1042 /* SEND, READ, and WRITE operations */ 1043 qp_init_attr.cap.max_send_wr = (uint32_t)rqpair->max_queue_depth * 2; 1044 qp_init_attr.cap.max_send_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE); 1045 qp_init_attr.cap.max_recv_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 1046 qp_init_attr.stats = &rqpair->poller->stat.qp_stats; 1047 1048 if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) { 1049 SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n"); 1050 goto error; 1051 } 1052 1053 rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr); 1054 if (!rqpair->rdma_qp) { 1055 goto error; 1056 } 1057 1058 rqpair->qp_num = rqpair->rdma_qp->qp->qp_num; 1059 1060 rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2), 1061 qp_init_attr.cap.max_send_wr); 1062 rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge); 1063 rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge); 1064 spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair); 1065 SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair); 1066 1067 if (rqpair->poller->srq == NULL) { 1068 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 1069 transport = &rtransport->transport; 1070 1071 opts.qp = rqpair->rdma_qp; 1072 opts.map = device->map; 1073 opts.qpair = rqpair; 1074 opts.shared = false; 1075 opts.max_queue_depth = rqpair->max_queue_depth; 1076 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 1077 1078 rqpair->resources = nvmf_rdma_resources_create(&opts); 1079 1080 if (!rqpair->resources) { 1081 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 1082 rdma_destroy_qp(rqpair->cm_id); 1083 goto error; 1084 } 1085 } else { 1086 rqpair->resources = rqpair->poller->resources; 1087 } 1088 1089 rqpair->current_recv_depth = 0; 1090 STAILQ_INIT(&rqpair->pending_rdma_read_queue); 1091 STAILQ_INIT(&rqpair->pending_rdma_write_queue); 1092 1093 return 0; 1094 1095 error: 1096 rdma_destroy_id(rqpair->cm_id); 1097 rqpair->cm_id = NULL; 1098 return -1; 1099 } 1100 1101 /* Append the given recv wr structure to the resource structs outstanding recvs list. */ 1102 /* This function accepts either a single wr or the first wr in a linked list. */ 1103 static void 1104 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first) 1105 { 1106 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1107 struct spdk_nvmf_rdma_transport, transport); 1108 1109 if (rqpair->srq != NULL) { 1110 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, first); 1111 } else { 1112 if (spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, first)) { 1113 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link); 1114 } 1115 } 1116 1117 if (rtransport->rdma_opts.no_wr_batching) { 1118 _poller_submit_recvs(rtransport, rqpair->poller); 1119 } 1120 } 1121 1122 static int 1123 request_transfer_in(struct spdk_nvmf_request *req) 1124 { 1125 struct spdk_nvmf_rdma_request *rdma_req; 1126 struct spdk_nvmf_qpair *qpair; 1127 struct spdk_nvmf_rdma_qpair *rqpair; 1128 struct spdk_nvmf_rdma_transport *rtransport; 1129 1130 qpair = req->qpair; 1131 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1132 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1133 rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1134 struct spdk_nvmf_rdma_transport, transport); 1135 1136 assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); 1137 assert(rdma_req != NULL); 1138 1139 if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, rdma_req->transfer_wr)) { 1140 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1141 } 1142 if (rtransport->rdma_opts.no_wr_batching) { 1143 _poller_submit_sends(rtransport, rqpair->poller); 1144 } 1145 1146 rqpair->current_read_depth += rdma_req->num_outstanding_data_wr; 1147 rqpair->current_send_depth += rdma_req->num_outstanding_data_wr; 1148 return 0; 1149 } 1150 1151 static inline int 1152 nvmf_rdma_request_reset_transfer_in(struct spdk_nvmf_rdma_request *rdma_req, 1153 struct spdk_nvmf_rdma_transport *rtransport) 1154 { 1155 /* Put completed WRs back to pool and move transfer_wr pointer */ 1156 _nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool); 1157 rdma_req->transfer_wr = rdma_req->remaining_tranfer_in_wrs; 1158 rdma_req->remaining_tranfer_in_wrs = NULL; 1159 rdma_req->num_outstanding_data_wr = rdma_req->num_remaining_data_wr; 1160 rdma_req->num_remaining_data_wr = 0; 1161 1162 return 0; 1163 } 1164 1165 static inline int 1166 request_prepare_transfer_in_part(struct spdk_nvmf_request *req, uint32_t num_reads_available) 1167 { 1168 struct spdk_nvmf_rdma_request *rdma_req; 1169 struct ibv_send_wr *wr; 1170 uint32_t i; 1171 1172 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1173 1174 assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); 1175 assert(rdma_req != NULL); 1176 assert(num_reads_available > 0); 1177 assert(rdma_req->num_outstanding_data_wr > num_reads_available); 1178 wr = rdma_req->transfer_wr; 1179 1180 for (i = 0; i < num_reads_available - 1; i++) { 1181 wr = wr->next; 1182 } 1183 1184 rdma_req->remaining_tranfer_in_wrs = wr->next; 1185 rdma_req->num_remaining_data_wr = rdma_req->num_outstanding_data_wr - num_reads_available; 1186 rdma_req->num_outstanding_data_wr = num_reads_available; 1187 /* Break chain of WRs to send only part. Once this portion completes, we continue sending RDMA_READs */ 1188 wr->next = NULL; 1189 1190 return 0; 1191 } 1192 1193 static int 1194 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted) 1195 { 1196 int num_outstanding_data_wr = 0; 1197 struct spdk_nvmf_rdma_request *rdma_req; 1198 struct spdk_nvmf_qpair *qpair; 1199 struct spdk_nvmf_rdma_qpair *rqpair; 1200 struct spdk_nvme_cpl *rsp; 1201 struct ibv_send_wr *first = NULL; 1202 struct spdk_nvmf_rdma_transport *rtransport; 1203 1204 *data_posted = 0; 1205 qpair = req->qpair; 1206 rsp = &req->rsp->nvme_cpl; 1207 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1208 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1209 rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1210 struct spdk_nvmf_rdma_transport, transport); 1211 1212 /* Advance our sq_head pointer */ 1213 if (qpair->sq_head == qpair->sq_head_max) { 1214 qpair->sq_head = 0; 1215 } else { 1216 qpair->sq_head++; 1217 } 1218 rsp->sqhd = qpair->sq_head; 1219 1220 /* queue the capsule for the recv buffer */ 1221 assert(rdma_req->recv != NULL); 1222 1223 nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr); 1224 1225 rdma_req->recv = NULL; 1226 assert(rqpair->current_recv_depth > 0); 1227 rqpair->current_recv_depth--; 1228 1229 /* Build the response which consists of optional 1230 * RDMA WRITEs to transfer data, plus an RDMA SEND 1231 * containing the response. 1232 */ 1233 first = &rdma_req->rsp.wr; 1234 1235 if (rsp->status.sc != SPDK_NVME_SC_SUCCESS) { 1236 /* On failure, data was not read from the controller. So clear the 1237 * number of outstanding data WRs to zero. 1238 */ 1239 rdma_req->num_outstanding_data_wr = 0; 1240 } else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1241 first = rdma_req->transfer_wr; 1242 *data_posted = 1; 1243 num_outstanding_data_wr = rdma_req->num_outstanding_data_wr; 1244 } 1245 if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) { 1246 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1247 } 1248 if (rtransport->rdma_opts.no_wr_batching) { 1249 _poller_submit_sends(rtransport, rqpair->poller); 1250 } 1251 1252 /* +1 for the rsp wr */ 1253 rqpair->current_send_depth += num_outstanding_data_wr + 1; 1254 1255 return 0; 1256 } 1257 1258 static int 1259 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair) 1260 { 1261 struct spdk_nvmf_rdma_accept_private_data accept_data; 1262 struct rdma_conn_param ctrlr_event_data = {}; 1263 int rc; 1264 1265 accept_data.recfmt = 0; 1266 accept_data.crqsize = rqpair->max_queue_depth; 1267 1268 ctrlr_event_data.private_data = &accept_data; 1269 ctrlr_event_data.private_data_len = sizeof(accept_data); 1270 if (id->ps == RDMA_PS_TCP) { 1271 ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */ 1272 ctrlr_event_data.initiator_depth = rqpair->max_read_depth; 1273 } 1274 1275 /* Configure infinite retries for the initiator side qpair. 1276 * We need to pass this value to the initiator to prevent the 1277 * initiator side NIC from completing SEND requests back to the 1278 * initiator with status rnr_retry_count_exceeded. */ 1279 ctrlr_event_data.rnr_retry_count = 0x7; 1280 1281 /* When qpair is created without use of rdma cm API, an additional 1282 * information must be provided to initiator in the connection response: 1283 * whether qpair is using SRQ and its qp_num 1284 * Fields below are ignored by rdma cm if qpair has been 1285 * created using rdma cm API. */ 1286 ctrlr_event_data.srq = rqpair->srq ? 1 : 0; 1287 ctrlr_event_data.qp_num = rqpair->qp_num; 1288 1289 rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data); 1290 if (rc) { 1291 SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno); 1292 } else { 1293 SPDK_DEBUGLOG(rdma, "Sent back the accept\n"); 1294 } 1295 1296 return rc; 1297 } 1298 1299 static void 1300 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error) 1301 { 1302 struct spdk_nvmf_rdma_reject_private_data rej_data; 1303 1304 rej_data.recfmt = 0; 1305 rej_data.sts = error; 1306 1307 rdma_reject(id, &rej_data, sizeof(rej_data)); 1308 } 1309 1310 static int 1311 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event) 1312 { 1313 struct spdk_nvmf_rdma_transport *rtransport; 1314 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 1315 struct spdk_nvmf_rdma_port *port; 1316 struct rdma_conn_param *rdma_param = NULL; 1317 const struct spdk_nvmf_rdma_request_private_data *private_data = NULL; 1318 uint16_t max_queue_depth; 1319 uint16_t max_read_depth; 1320 1321 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 1322 1323 assert(event->id != NULL); /* Impossible. Can't even reject the connection. */ 1324 assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */ 1325 1326 rdma_param = &event->param.conn; 1327 if (rdma_param->private_data == NULL || 1328 rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1329 SPDK_ERRLOG("connect request: no private data provided\n"); 1330 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH); 1331 return -1; 1332 } 1333 1334 private_data = rdma_param->private_data; 1335 if (private_data->recfmt != 0) { 1336 SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n"); 1337 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT); 1338 return -1; 1339 } 1340 1341 SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n", 1342 event->id->verbs->device->name, event->id->verbs->device->dev_name); 1343 1344 port = event->listen_id->context; 1345 SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n", 1346 event->listen_id, event->listen_id->verbs, port); 1347 1348 /* Figure out the supported queue depth. This is a multi-step process 1349 * that takes into account hardware maximums, host provided values, 1350 * and our target's internal memory limits */ 1351 1352 SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n"); 1353 1354 /* Start with the maximum queue depth allowed by the target */ 1355 max_queue_depth = rtransport->transport.opts.max_queue_depth; 1356 max_read_depth = rtransport->transport.opts.max_queue_depth; 1357 SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n", 1358 rtransport->transport.opts.max_queue_depth); 1359 1360 /* Next check the local NIC's hardware limitations */ 1361 SPDK_DEBUGLOG(rdma, 1362 "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n", 1363 port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom); 1364 max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr); 1365 max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom); 1366 1367 /* Next check the remote NIC's hardware limitations */ 1368 SPDK_DEBUGLOG(rdma, 1369 "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n", 1370 rdma_param->initiator_depth, rdma_param->responder_resources); 1371 /* from man3 rdma_get_cm_event 1372 * responder_resources - Specifies the number of responder resources that is requested by the recipient. 1373 * The responder_resources field must match the initiator depth specified by the remote node when running 1374 * the rdma_connect and rdma_accept functions. */ 1375 if (rdma_param->responder_resources != 0) { 1376 if (private_data->qid) { 1377 SPDK_DEBUGLOG(rdma, "Host (Initiator) is not allowed to use RDMA operations," 1378 " responder_resources must be 0 but set to %u\n", 1379 rdma_param->responder_resources); 1380 } else { 1381 SPDK_WARNLOG("Host (Initiator) is not allowed to use RDMA operations," 1382 " responder_resources must be 0 but set to %u\n", 1383 rdma_param->responder_resources); 1384 } 1385 } 1386 /* from man3 rdma_get_cm_event 1387 * initiator_depth - Specifies the maximum number of outstanding RDMA read operations that the recipient holds. 1388 * The initiator_depth field must match the responder resources specified by the remote node when running 1389 * the rdma_connect and rdma_accept functions. */ 1390 if (rdma_param->initiator_depth == 0) { 1391 SPDK_ERRLOG("Host (Initiator) doesn't support RDMA_READ or atomic operations\n"); 1392 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_IRD); 1393 return -1; 1394 } 1395 max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth); 1396 1397 SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize); 1398 SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize); 1399 max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize); 1400 max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1); 1401 1402 SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n", 1403 max_queue_depth, max_read_depth); 1404 1405 rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair)); 1406 if (rqpair == NULL) { 1407 SPDK_ERRLOG("Could not allocate new connection.\n"); 1408 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 1409 return -1; 1410 } 1411 1412 rqpair->device = port->device; 1413 rqpair->max_queue_depth = max_queue_depth; 1414 rqpair->max_read_depth = max_read_depth; 1415 rqpair->cm_id = event->id; 1416 rqpair->listen_id = event->listen_id; 1417 rqpair->qpair.transport = transport; 1418 STAILQ_INIT(&rqpair->ibv_events); 1419 /* use qid from the private data to determine the qpair type 1420 qid will be set to the appropriate value when the controller is created */ 1421 rqpair->qpair.qid = private_data->qid; 1422 1423 event->id->context = &rqpair->qpair; 1424 1425 spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair); 1426 1427 return 0; 1428 } 1429 1430 static inline void 1431 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next, 1432 enum spdk_nvme_data_transfer xfer) 1433 { 1434 if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1435 wr->opcode = IBV_WR_RDMA_WRITE; 1436 wr->send_flags = 0; 1437 wr->next = next; 1438 } else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 1439 wr->opcode = IBV_WR_RDMA_READ; 1440 wr->send_flags = IBV_SEND_SIGNALED; 1441 wr->next = NULL; 1442 } else { 1443 assert(0); 1444 } 1445 } 1446 1447 static int 1448 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport, 1449 struct spdk_nvmf_rdma_request *rdma_req, 1450 uint32_t num_sgl_descriptors) 1451 { 1452 struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES]; 1453 struct spdk_nvmf_rdma_request_data *current_data_wr; 1454 uint32_t i; 1455 1456 if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) { 1457 SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n", 1458 num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES); 1459 return -EINVAL; 1460 } 1461 1462 if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) { 1463 return -ENOMEM; 1464 } 1465 1466 current_data_wr = &rdma_req->data; 1467 1468 for (i = 0; i < num_sgl_descriptors; i++) { 1469 nvmf_rdma_setup_wr(¤t_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer); 1470 current_data_wr->wr.next = &work_requests[i]->wr; 1471 current_data_wr = work_requests[i]; 1472 current_data_wr->wr.sg_list = current_data_wr->sgl; 1473 current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id; 1474 } 1475 1476 nvmf_rdma_setup_wr(¤t_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1477 1478 return 0; 1479 } 1480 1481 static inline void 1482 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req) 1483 { 1484 struct ibv_send_wr *wr = &rdma_req->data.wr; 1485 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1486 1487 wr->wr.rdma.rkey = sgl->keyed.key; 1488 wr->wr.rdma.remote_addr = sgl->address; 1489 nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1490 } 1491 1492 static inline void 1493 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs) 1494 { 1495 struct ibv_send_wr *wr = &rdma_req->data.wr; 1496 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1497 uint32_t i; 1498 int j; 1499 uint64_t remote_addr_offset = 0; 1500 1501 for (i = 0; i < num_wrs; ++i) { 1502 wr->wr.rdma.rkey = sgl->keyed.key; 1503 wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset; 1504 for (j = 0; j < wr->num_sge; ++j) { 1505 remote_addr_offset += wr->sg_list[j].length; 1506 } 1507 wr = wr->next; 1508 } 1509 } 1510 1511 static int 1512 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup, 1513 struct spdk_nvmf_rdma_device *device, 1514 struct spdk_nvmf_rdma_request *rdma_req, 1515 struct ibv_send_wr *wr, 1516 uint32_t total_length) 1517 { 1518 struct spdk_rdma_memory_translation mem_translation; 1519 struct ibv_sge *sg_ele; 1520 struct iovec *iov; 1521 uint32_t lkey, remaining; 1522 int rc; 1523 1524 wr->num_sge = 0; 1525 1526 while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) { 1527 iov = &rdma_req->req.iov[rdma_req->iovpos]; 1528 rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation); 1529 if (spdk_unlikely(rc)) { 1530 return rc; 1531 } 1532 1533 lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation); 1534 sg_ele = &wr->sg_list[wr->num_sge]; 1535 remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length); 1536 1537 sg_ele->lkey = lkey; 1538 sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset; 1539 sg_ele->length = remaining; 1540 SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr, 1541 sg_ele->length); 1542 rdma_req->offset += sg_ele->length; 1543 total_length -= sg_ele->length; 1544 wr->num_sge++; 1545 1546 if (rdma_req->offset == iov->iov_len) { 1547 rdma_req->offset = 0; 1548 rdma_req->iovpos++; 1549 } 1550 } 1551 1552 if (total_length) { 1553 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1554 return -EINVAL; 1555 } 1556 1557 return 0; 1558 } 1559 1560 static int 1561 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_poll_group *rgroup, 1562 struct spdk_nvmf_rdma_device *device, 1563 struct spdk_nvmf_rdma_request *rdma_req, 1564 struct ibv_send_wr *wr, 1565 uint32_t total_length, 1566 uint32_t num_extra_wrs) 1567 { 1568 struct spdk_rdma_memory_translation mem_translation; 1569 struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx; 1570 struct ibv_sge *sg_ele; 1571 struct iovec *iov; 1572 struct iovec *rdma_iov; 1573 uint32_t lkey, remaining; 1574 uint32_t remaining_data_block, data_block_size, md_size; 1575 uint32_t sge_len; 1576 int rc; 1577 1578 data_block_size = dif_ctx->block_size - dif_ctx->md_size; 1579 1580 if (spdk_likely(!rdma_req->req.stripped_data)) { 1581 rdma_iov = rdma_req->req.iov; 1582 remaining_data_block = data_block_size; 1583 md_size = dif_ctx->md_size; 1584 } else { 1585 rdma_iov = rdma_req->req.stripped_data->iov; 1586 total_length = total_length / dif_ctx->block_size * data_block_size; 1587 remaining_data_block = total_length; 1588 md_size = 0; 1589 } 1590 1591 wr->num_sge = 0; 1592 1593 while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) { 1594 iov = rdma_iov + rdma_req->iovpos; 1595 rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation); 1596 if (spdk_unlikely(rc)) { 1597 return rc; 1598 } 1599 1600 lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation); 1601 sg_ele = &wr->sg_list[wr->num_sge]; 1602 remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length); 1603 1604 while (remaining) { 1605 if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) { 1606 if (num_extra_wrs > 0 && wr->next) { 1607 wr = wr->next; 1608 wr->num_sge = 0; 1609 sg_ele = &wr->sg_list[wr->num_sge]; 1610 num_extra_wrs--; 1611 } else { 1612 break; 1613 } 1614 } 1615 sg_ele->lkey = lkey; 1616 sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset); 1617 sge_len = spdk_min(remaining, remaining_data_block); 1618 sg_ele->length = sge_len; 1619 SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, 1620 sg_ele->addr, sg_ele->length); 1621 remaining -= sge_len; 1622 remaining_data_block -= sge_len; 1623 rdma_req->offset += sge_len; 1624 total_length -= sge_len; 1625 1626 sg_ele++; 1627 wr->num_sge++; 1628 1629 if (remaining_data_block == 0) { 1630 /* skip metadata */ 1631 rdma_req->offset += md_size; 1632 total_length -= md_size; 1633 /* Metadata that do not fit this IO buffer will be included in the next IO buffer */ 1634 remaining -= spdk_min(remaining, md_size); 1635 remaining_data_block = data_block_size; 1636 } 1637 1638 if (remaining == 0) { 1639 /* By subtracting the size of the last IOV from the offset, we ensure that we skip 1640 the remaining metadata bits at the beginning of the next buffer */ 1641 rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset); 1642 rdma_req->iovpos++; 1643 } 1644 } 1645 } 1646 1647 if (total_length) { 1648 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1649 return -EINVAL; 1650 } 1651 1652 return 0; 1653 } 1654 1655 static inline uint32_t 1656 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size) 1657 { 1658 /* estimate the number of SG entries and WRs needed to process the request */ 1659 uint32_t num_sge = 0; 1660 uint32_t i; 1661 uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size); 1662 1663 for (i = 0; i < num_buffers && length > 0; i++) { 1664 uint32_t buffer_len = spdk_min(length, io_unit_size); 1665 uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size); 1666 1667 if (num_sge_in_block * block_size > buffer_len) { 1668 ++num_sge_in_block; 1669 } 1670 num_sge += num_sge_in_block; 1671 length -= buffer_len; 1672 } 1673 return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES); 1674 } 1675 1676 static int 1677 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport, 1678 struct spdk_nvmf_rdma_device *device, 1679 struct spdk_nvmf_rdma_request *rdma_req) 1680 { 1681 struct spdk_nvmf_rdma_qpair *rqpair; 1682 struct spdk_nvmf_rdma_poll_group *rgroup; 1683 struct spdk_nvmf_request *req = &rdma_req->req; 1684 struct ibv_send_wr *wr = &rdma_req->data.wr; 1685 int rc; 1686 uint32_t num_wrs = 1; 1687 uint32_t length; 1688 1689 rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair); 1690 rgroup = rqpair->poller->group; 1691 1692 /* rdma wr specifics */ 1693 nvmf_rdma_setup_request(rdma_req); 1694 1695 length = req->length; 1696 if (spdk_unlikely(req->dif_enabled)) { 1697 req->dif.orig_length = length; 1698 length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx); 1699 req->dif.elba_length = length; 1700 } 1701 1702 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, 1703 length); 1704 if (rc != 0) { 1705 return rc; 1706 } 1707 1708 assert(req->iovcnt <= rqpair->max_send_sge); 1709 1710 /* When dif_insert_or_strip is true and the I/O data length is greater than one block, 1711 * the stripped_buffers are got for DIF stripping. */ 1712 if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) 1713 && (req->dif.elba_length > req->dif.dif_ctx.block_size))) { 1714 rc = nvmf_request_get_stripped_buffers(req, &rgroup->group, 1715 &rtransport->transport, req->dif.orig_length); 1716 if (rc != 0) { 1717 SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc); 1718 } 1719 } 1720 1721 rdma_req->iovpos = 0; 1722 1723 if (spdk_unlikely(req->dif_enabled)) { 1724 num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size, 1725 req->dif.dif_ctx.block_size); 1726 if (num_wrs > 1) { 1727 rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1); 1728 if (rc != 0) { 1729 goto err_exit; 1730 } 1731 } 1732 1733 rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, wr, length, num_wrs - 1); 1734 if (spdk_unlikely(rc != 0)) { 1735 goto err_exit; 1736 } 1737 1738 if (num_wrs > 1) { 1739 nvmf_rdma_update_remote_addr(rdma_req, num_wrs); 1740 } 1741 } else { 1742 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length); 1743 if (spdk_unlikely(rc != 0)) { 1744 goto err_exit; 1745 } 1746 } 1747 1748 /* set the number of outstanding data WRs for this request. */ 1749 rdma_req->num_outstanding_data_wr = num_wrs; 1750 1751 return rc; 1752 1753 err_exit: 1754 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1755 nvmf_rdma_request_free_data(rdma_req, rtransport); 1756 req->iovcnt = 0; 1757 return rc; 1758 } 1759 1760 static int 1761 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1762 struct spdk_nvmf_rdma_device *device, 1763 struct spdk_nvmf_rdma_request *rdma_req) 1764 { 1765 struct spdk_nvmf_rdma_qpair *rqpair; 1766 struct spdk_nvmf_rdma_poll_group *rgroup; 1767 struct ibv_send_wr *current_wr; 1768 struct spdk_nvmf_request *req = &rdma_req->req; 1769 struct spdk_nvme_sgl_descriptor *inline_segment, *desc; 1770 uint32_t num_sgl_descriptors; 1771 uint32_t lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0; 1772 uint32_t i; 1773 int rc; 1774 1775 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1776 rgroup = rqpair->poller->group; 1777 1778 inline_segment = &req->cmd->nvme_cmd.dptr.sgl1; 1779 assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT); 1780 assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET); 1781 1782 num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor); 1783 assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES); 1784 1785 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1786 for (i = 0; i < num_sgl_descriptors; i++) { 1787 if (spdk_likely(!req->dif_enabled)) { 1788 lengths[i] = desc->keyed.length; 1789 } else { 1790 req->dif.orig_length += desc->keyed.length; 1791 lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx); 1792 req->dif.elba_length += lengths[i]; 1793 } 1794 total_length += lengths[i]; 1795 desc++; 1796 } 1797 1798 if (total_length > rtransport->transport.opts.max_io_size) { 1799 SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n", 1800 total_length, rtransport->transport.opts.max_io_size); 1801 req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1802 return -EINVAL; 1803 } 1804 1805 if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) { 1806 return -ENOMEM; 1807 } 1808 1809 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length); 1810 if (rc != 0) { 1811 nvmf_rdma_request_free_data(rdma_req, rtransport); 1812 return rc; 1813 } 1814 1815 /* When dif_insert_or_strip is true and the I/O data length is greater than one block, 1816 * the stripped_buffers are got for DIF stripping. */ 1817 if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) 1818 && (req->dif.elba_length > req->dif.dif_ctx.block_size))) { 1819 rc = nvmf_request_get_stripped_buffers(req, &rgroup->group, 1820 &rtransport->transport, req->dif.orig_length); 1821 if (rc != 0) { 1822 SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc); 1823 } 1824 } 1825 1826 /* The first WR must always be the embedded data WR. This is how we unwind them later. */ 1827 current_wr = &rdma_req->data.wr; 1828 assert(current_wr != NULL); 1829 1830 req->length = 0; 1831 rdma_req->iovpos = 0; 1832 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1833 for (i = 0; i < num_sgl_descriptors; i++) { 1834 /* The descriptors must be keyed data block descriptors with an address, not an offset. */ 1835 if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK || 1836 desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) { 1837 rc = -EINVAL; 1838 goto err_exit; 1839 } 1840 1841 if (spdk_likely(!req->dif_enabled)) { 1842 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i]); 1843 } else { 1844 rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, current_wr, 1845 lengths[i], 0); 1846 } 1847 if (rc != 0) { 1848 rc = -ENOMEM; 1849 goto err_exit; 1850 } 1851 1852 req->length += desc->keyed.length; 1853 current_wr->wr.rdma.rkey = desc->keyed.key; 1854 current_wr->wr.rdma.remote_addr = desc->address; 1855 current_wr = current_wr->next; 1856 desc++; 1857 } 1858 1859 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1860 /* Go back to the last descriptor in the list. */ 1861 desc--; 1862 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1863 if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1864 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1865 rdma_req->rsp.wr.imm_data = desc->keyed.key; 1866 } 1867 } 1868 #endif 1869 1870 rdma_req->num_outstanding_data_wr = num_sgl_descriptors; 1871 1872 return 0; 1873 1874 err_exit: 1875 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1876 nvmf_rdma_request_free_data(rdma_req, rtransport); 1877 return rc; 1878 } 1879 1880 static int 1881 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1882 struct spdk_nvmf_rdma_device *device, 1883 struct spdk_nvmf_rdma_request *rdma_req) 1884 { 1885 struct spdk_nvmf_request *req = &rdma_req->req; 1886 struct spdk_nvme_cpl *rsp; 1887 struct spdk_nvme_sgl_descriptor *sgl; 1888 int rc; 1889 uint32_t length; 1890 1891 rsp = &req->rsp->nvme_cpl; 1892 sgl = &req->cmd->nvme_cmd.dptr.sgl1; 1893 1894 if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK && 1895 (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS || 1896 sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) { 1897 1898 length = sgl->keyed.length; 1899 if (length > rtransport->transport.opts.max_io_size) { 1900 SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n", 1901 length, rtransport->transport.opts.max_io_size); 1902 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1903 return -1; 1904 } 1905 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1906 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1907 if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1908 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1909 rdma_req->rsp.wr.imm_data = sgl->keyed.key; 1910 } 1911 } 1912 #endif 1913 1914 /* fill request length and populate iovs */ 1915 req->length = length; 1916 1917 rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req); 1918 if (spdk_unlikely(rc < 0)) { 1919 if (rc == -EINVAL) { 1920 SPDK_ERRLOG("SGL length exceeds the max I/O size\n"); 1921 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1922 return -1; 1923 } 1924 /* No available buffers. Queue this request up. */ 1925 SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req); 1926 return 0; 1927 } 1928 1929 SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req, 1930 req->iovcnt); 1931 1932 return 0; 1933 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK && 1934 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1935 uint64_t offset = sgl->address; 1936 uint32_t max_len = rtransport->transport.opts.in_capsule_data_size; 1937 1938 SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n", 1939 offset, sgl->unkeyed.length); 1940 1941 if (offset > max_len) { 1942 SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n", 1943 offset, max_len); 1944 rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET; 1945 return -1; 1946 } 1947 max_len -= (uint32_t)offset; 1948 1949 if (sgl->unkeyed.length > max_len) { 1950 SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n", 1951 sgl->unkeyed.length, max_len); 1952 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1953 return -1; 1954 } 1955 1956 rdma_req->num_outstanding_data_wr = 0; 1957 req->data_from_pool = false; 1958 req->length = sgl->unkeyed.length; 1959 1960 req->iov[0].iov_base = rdma_req->recv->buf + offset; 1961 req->iov[0].iov_len = req->length; 1962 req->iovcnt = 1; 1963 1964 return 0; 1965 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT && 1966 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1967 1968 rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req); 1969 if (rc == -ENOMEM) { 1970 SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req); 1971 return 0; 1972 } else if (rc == -EINVAL) { 1973 SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n"); 1974 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1975 return -1; 1976 } 1977 1978 SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req, 1979 req->iovcnt); 1980 1981 return 0; 1982 } 1983 1984 SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n", 1985 sgl->generic.type, sgl->generic.subtype); 1986 rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID; 1987 return -1; 1988 } 1989 1990 static void 1991 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req, 1992 struct spdk_nvmf_rdma_transport *rtransport) 1993 { 1994 struct spdk_nvmf_rdma_qpair *rqpair; 1995 struct spdk_nvmf_rdma_poll_group *rgroup; 1996 1997 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1998 if (rdma_req->req.data_from_pool) { 1999 rgroup = rqpair->poller->group; 2000 2001 spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport); 2002 } 2003 if (rdma_req->req.stripped_data) { 2004 nvmf_request_free_stripped_buffers(&rdma_req->req, 2005 &rqpair->poller->group->group, 2006 &rtransport->transport); 2007 } 2008 nvmf_rdma_request_free_data(rdma_req, rtransport); 2009 rdma_req->req.length = 0; 2010 rdma_req->req.iovcnt = 0; 2011 rdma_req->offset = 0; 2012 rdma_req->req.dif_enabled = false; 2013 rdma_req->fused_failed = false; 2014 rdma_req->transfer_wr = NULL; 2015 if (rdma_req->fused_pair) { 2016 /* This req was part of a valid fused pair, but failed before it got to 2017 * READ_TO_EXECUTE state. This means we need to fail the other request 2018 * in the pair, because it is no longer part of a valid pair. If the pair 2019 * already reached READY_TO_EXECUTE state, we need to kick it. 2020 */ 2021 rdma_req->fused_pair->fused_failed = true; 2022 if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 2023 nvmf_rdma_request_process(rtransport, rdma_req->fused_pair); 2024 } 2025 rdma_req->fused_pair = NULL; 2026 } 2027 memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif)); 2028 rqpair->qd--; 2029 2030 STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link); 2031 rdma_req->state = RDMA_REQUEST_STATE_FREE; 2032 } 2033 2034 static void 2035 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport, 2036 struct spdk_nvmf_rdma_qpair *rqpair, 2037 struct spdk_nvmf_rdma_request *rdma_req) 2038 { 2039 enum spdk_nvme_cmd_fuse last, next; 2040 2041 last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE; 2042 next = rdma_req->req.cmd->nvme_cmd.fuse; 2043 2044 assert(last != SPDK_NVME_CMD_FUSE_SECOND); 2045 2046 if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) { 2047 return; 2048 } 2049 2050 if (last == SPDK_NVME_CMD_FUSE_FIRST) { 2051 if (next == SPDK_NVME_CMD_FUSE_SECOND) { 2052 /* This is a valid pair of fused commands. Point them at each other 2053 * so they can be submitted consecutively once ready to be executed. 2054 */ 2055 rqpair->fused_first->fused_pair = rdma_req; 2056 rdma_req->fused_pair = rqpair->fused_first; 2057 rqpair->fused_first = NULL; 2058 return; 2059 } else { 2060 /* Mark the last req as failed since it wasn't followed by a SECOND. */ 2061 rqpair->fused_first->fused_failed = true; 2062 2063 /* If the last req is in READY_TO_EXECUTE state, then call 2064 * nvmf_rdma_request_process(), otherwise nothing else will kick it. 2065 */ 2066 if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 2067 nvmf_rdma_request_process(rtransport, rqpair->fused_first); 2068 } 2069 2070 rqpair->fused_first = NULL; 2071 } 2072 } 2073 2074 if (next == SPDK_NVME_CMD_FUSE_FIRST) { 2075 /* Set rqpair->fused_first here so that we know to check that the next request 2076 * is a SECOND (and to fail this one if it isn't). 2077 */ 2078 rqpair->fused_first = rdma_req; 2079 } else if (next == SPDK_NVME_CMD_FUSE_SECOND) { 2080 /* Mark this req failed since it ia SECOND and the last one was not a FIRST. */ 2081 rdma_req->fused_failed = true; 2082 } 2083 } 2084 2085 bool 2086 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 2087 struct spdk_nvmf_rdma_request *rdma_req) 2088 { 2089 struct spdk_nvmf_rdma_qpair *rqpair; 2090 struct spdk_nvmf_rdma_device *device; 2091 struct spdk_nvmf_rdma_poll_group *rgroup; 2092 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2093 int rc; 2094 struct spdk_nvmf_rdma_recv *rdma_recv; 2095 enum spdk_nvmf_rdma_request_state prev_state; 2096 bool progress = false; 2097 int data_posted; 2098 uint32_t num_blocks, num_rdma_reads_available, qdepth; 2099 2100 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 2101 device = rqpair->device; 2102 rgroup = rqpair->poller->group; 2103 2104 assert(rdma_req->state != RDMA_REQUEST_STATE_FREE); 2105 2106 /* If the queue pair is in an error state, force the request to the completed state 2107 * to release resources. */ 2108 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 2109 if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) { 2110 STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link); 2111 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) { 2112 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2113 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) { 2114 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2115 } 2116 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2117 } 2118 2119 /* The loop here is to allow for several back-to-back state changes. */ 2120 do { 2121 prev_state = rdma_req->state; 2122 2123 SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state); 2124 2125 switch (rdma_req->state) { 2126 case RDMA_REQUEST_STATE_FREE: 2127 /* Some external code must kick a request into RDMA_REQUEST_STATE_NEW 2128 * to escape this state. */ 2129 break; 2130 case RDMA_REQUEST_STATE_NEW: 2131 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0, 2132 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2133 rdma_recv = rdma_req->recv; 2134 2135 /* The first element of the SGL is the NVMe command */ 2136 rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr; 2137 memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp)); 2138 rdma_req->transfer_wr = &rdma_req->data.wr; 2139 2140 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 2141 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2142 break; 2143 } 2144 2145 if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) { 2146 rdma_req->req.dif_enabled = true; 2147 } 2148 2149 nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req); 2150 2151 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2152 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 2153 rdma_req->rsp.wr.imm_data = 0; 2154 #endif 2155 2156 /* The next state transition depends on the data transfer needs of this request. */ 2157 rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req); 2158 2159 if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) { 2160 rsp->status.sct = SPDK_NVME_SCT_GENERIC; 2161 rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE; 2162 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2163 SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req); 2164 break; 2165 } 2166 2167 /* If no data to transfer, ready to execute. */ 2168 if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) { 2169 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2170 break; 2171 } 2172 2173 rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER; 2174 STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link); 2175 break; 2176 case RDMA_REQUEST_STATE_NEED_BUFFER: 2177 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0, 2178 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2179 2180 assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE); 2181 2182 if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) { 2183 /* This request needs to wait in line to obtain a buffer */ 2184 break; 2185 } 2186 2187 /* Try to get a data buffer */ 2188 rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req); 2189 if (rc < 0) { 2190 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2191 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2192 break; 2193 } 2194 2195 if (rdma_req->req.iovcnt == 0) { 2196 /* No buffers available. */ 2197 rgroup->stat.pending_data_buffer++; 2198 break; 2199 } 2200 2201 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2202 2203 /* If data is transferring from host to controller and the data didn't 2204 * arrive using in capsule data, we need to do a transfer from the host. 2205 */ 2206 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && 2207 rdma_req->req.data_from_pool) { 2208 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link); 2209 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING; 2210 break; 2211 } 2212 2213 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2214 break; 2215 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 2216 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0, 2217 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2218 2219 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) { 2220 /* This request needs to wait in line to perform RDMA */ 2221 break; 2222 } 2223 qdepth = rqpair->max_send_depth - rqpair->current_send_depth; 2224 num_rdma_reads_available = rqpair->max_read_depth - rqpair->current_read_depth; 2225 if (rdma_req->num_outstanding_data_wr > qdepth || 2226 rdma_req->num_outstanding_data_wr > num_rdma_reads_available) { 2227 if (num_rdma_reads_available && qdepth) { 2228 /* Send as much as we can */ 2229 request_prepare_transfer_in_part(&rdma_req->req, spdk_min(num_rdma_reads_available, qdepth)); 2230 } else { 2231 /* We can only have so many WRs outstanding. we have to wait until some finish. */ 2232 rqpair->poller->stat.pending_rdma_read++; 2233 break; 2234 } 2235 } 2236 2237 /* We have already verified that this request is the head of the queue. */ 2238 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link); 2239 2240 rc = request_transfer_in(&rdma_req->req); 2241 if (!rc) { 2242 rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER; 2243 } else { 2244 rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 2245 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2246 } 2247 break; 2248 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 2249 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0, 2250 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2251 /* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE 2252 * to escape this state. */ 2253 break; 2254 case RDMA_REQUEST_STATE_READY_TO_EXECUTE: 2255 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0, 2256 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2257 2258 if (spdk_unlikely(rdma_req->req.dif_enabled)) { 2259 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 2260 /* generate DIF for write operation */ 2261 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2262 assert(num_blocks > 0); 2263 2264 rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt, 2265 num_blocks, &rdma_req->req.dif.dif_ctx); 2266 if (rc != 0) { 2267 SPDK_ERRLOG("DIF generation failed\n"); 2268 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2269 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 2270 break; 2271 } 2272 } 2273 2274 assert(rdma_req->req.dif.elba_length >= rdma_req->req.length); 2275 /* set extended length before IO operation */ 2276 rdma_req->req.length = rdma_req->req.dif.elba_length; 2277 } 2278 2279 if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) { 2280 if (rdma_req->fused_failed) { 2281 /* This request failed FUSED semantics. Fail it immediately, without 2282 * even sending it to the target layer. 2283 */ 2284 rsp->status.sct = SPDK_NVME_SCT_GENERIC; 2285 rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED; 2286 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2287 break; 2288 } 2289 2290 if (rdma_req->fused_pair == NULL || 2291 rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 2292 /* This request is ready to execute, but either we don't know yet if it's 2293 * valid - i.e. this is a FIRST but we haven't received the next 2294 * request yet or the other request of this fused pair isn't ready to 2295 * execute. So break here and this request will get processed later either 2296 * when the other request is ready or we find that this request isn't valid. 2297 */ 2298 break; 2299 } 2300 } 2301 2302 /* If we get to this point, and this request is a fused command, we know that 2303 * it is part of valid sequence (FIRST followed by a SECOND) and that both 2304 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this 2305 * request, and the other request of the fused pair, in the correct order. 2306 * Also clear the ->fused_pair pointers on both requests, since after this point 2307 * we no longer need to maintain the relationship between these two requests. 2308 */ 2309 if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) { 2310 assert(rdma_req->fused_pair != NULL); 2311 assert(rdma_req->fused_pair->fused_pair != NULL); 2312 rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING; 2313 spdk_nvmf_request_exec(&rdma_req->fused_pair->req); 2314 rdma_req->fused_pair->fused_pair = NULL; 2315 rdma_req->fused_pair = NULL; 2316 } 2317 rdma_req->state = RDMA_REQUEST_STATE_EXECUTING; 2318 spdk_nvmf_request_exec(&rdma_req->req); 2319 if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) { 2320 assert(rdma_req->fused_pair != NULL); 2321 assert(rdma_req->fused_pair->fused_pair != NULL); 2322 rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING; 2323 spdk_nvmf_request_exec(&rdma_req->fused_pair->req); 2324 rdma_req->fused_pair->fused_pair = NULL; 2325 rdma_req->fused_pair = NULL; 2326 } 2327 break; 2328 case RDMA_REQUEST_STATE_EXECUTING: 2329 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0, 2330 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2331 /* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED 2332 * to escape this state. */ 2333 break; 2334 case RDMA_REQUEST_STATE_EXECUTED: 2335 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0, 2336 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2337 if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && 2338 rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2339 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link); 2340 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING; 2341 } else { 2342 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2343 } 2344 if (spdk_unlikely(rdma_req->req.dif_enabled)) { 2345 /* restore the original length */ 2346 rdma_req->req.length = rdma_req->req.dif.orig_length; 2347 2348 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2349 struct spdk_dif_error error_blk; 2350 2351 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2352 if (!rdma_req->req.stripped_data) { 2353 rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2354 &rdma_req->req.dif.dif_ctx, &error_blk); 2355 } else { 2356 rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov, 2357 rdma_req->req.stripped_data->iovcnt, 2358 rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2359 &rdma_req->req.dif.dif_ctx, &error_blk); 2360 } 2361 if (rc) { 2362 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2363 2364 SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type, 2365 error_blk.err_offset); 2366 rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR; 2367 rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type); 2368 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2369 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2370 } 2371 } 2372 } 2373 break; 2374 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 2375 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0, 2376 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2377 2378 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) { 2379 /* This request needs to wait in line to perform RDMA */ 2380 break; 2381 } 2382 if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) > 2383 rqpair->max_send_depth) { 2384 /* We can only have so many WRs outstanding. we have to wait until some finish. 2385 * +1 since each request has an additional wr in the resp. */ 2386 rqpair->poller->stat.pending_rdma_write++; 2387 break; 2388 } 2389 2390 /* We have already verified that this request is the head of the queue. */ 2391 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link); 2392 2393 /* The data transfer will be kicked off from 2394 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state. 2395 */ 2396 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2397 break; 2398 case RDMA_REQUEST_STATE_READY_TO_COMPLETE: 2399 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0, 2400 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2401 rc = request_transfer_out(&rdma_req->req, &data_posted); 2402 assert(rc == 0); /* No good way to handle this currently */ 2403 if (rc) { 2404 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2405 } else { 2406 rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST : 2407 RDMA_REQUEST_STATE_COMPLETING; 2408 } 2409 break; 2410 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 2411 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0, 2412 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2413 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2414 * to escape this state. */ 2415 break; 2416 case RDMA_REQUEST_STATE_COMPLETING: 2417 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0, 2418 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2419 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2420 * to escape this state. */ 2421 break; 2422 case RDMA_REQUEST_STATE_COMPLETED: 2423 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0, 2424 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2425 2426 rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc; 2427 _nvmf_rdma_request_free(rdma_req, rtransport); 2428 break; 2429 case RDMA_REQUEST_NUM_STATES: 2430 default: 2431 assert(0); 2432 break; 2433 } 2434 2435 if (rdma_req->state != prev_state) { 2436 progress = true; 2437 } 2438 } while (rdma_req->state != prev_state); 2439 2440 return progress; 2441 } 2442 2443 /* Public API callbacks begin here */ 2444 2445 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128 2446 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128 2447 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096 2448 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128 2449 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096 2450 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072 2451 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES) 2452 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095 2453 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX 2454 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false 2455 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false 2456 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100 2457 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1 2458 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false 2459 2460 static void 2461 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts) 2462 { 2463 opts->max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH; 2464 opts->max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR; 2465 opts->in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE; 2466 opts->max_io_size = SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE; 2467 opts->io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE; 2468 opts->max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH; 2469 opts->num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS; 2470 opts->buf_cache_size = SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE; 2471 opts->dif_insert_or_strip = SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP; 2472 opts->abort_timeout_sec = SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC; 2473 opts->transport_specific = NULL; 2474 } 2475 2476 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport, 2477 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg); 2478 2479 static inline bool 2480 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device) 2481 { 2482 return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD || 2483 device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW; 2484 } 2485 2486 static int nvmf_rdma_accept(void *ctx); 2487 static bool nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport); 2488 static void destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport, 2489 struct spdk_nvmf_rdma_device *device); 2490 2491 static int 2492 create_ib_device(struct spdk_nvmf_rdma_transport *rtransport, struct ibv_context *context, 2493 struct spdk_nvmf_rdma_device **new_device) 2494 { 2495 struct spdk_nvmf_rdma_device *device; 2496 int flag = 0; 2497 int rc = 0; 2498 2499 device = calloc(1, sizeof(*device)); 2500 if (!device) { 2501 SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n"); 2502 return -ENOMEM; 2503 } 2504 device->context = context; 2505 rc = ibv_query_device(device->context, &device->attr); 2506 if (rc < 0) { 2507 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 2508 free(device); 2509 return rc; 2510 } 2511 2512 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2513 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) { 2514 SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,"); 2515 SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id); 2516 } 2517 2518 /** 2519 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE. 2520 * The Soft-RoCE RXE driver does not currently support send with invalidate, 2521 * but incorrectly reports that it does. There are changes making their way 2522 * through the kernel now that will enable this feature. When they are merged, 2523 * we can conditionally enable this feature. 2524 * 2525 * TODO: enable this for versions of the kernel rxe driver that support it. 2526 */ 2527 if (nvmf_rdma_is_rxe_device(device)) { 2528 device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS); 2529 } 2530 #endif 2531 2532 /* set up device context async ev fd as NON_BLOCKING */ 2533 flag = fcntl(device->context->async_fd, F_GETFL); 2534 rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK); 2535 if (rc < 0) { 2536 SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n"); 2537 free(device); 2538 return rc; 2539 } 2540 2541 TAILQ_INSERT_TAIL(&rtransport->devices, device, link); 2542 SPDK_DEBUGLOG(rdma, "New device %p is added to RDMA trasport\n", device); 2543 2544 if (g_nvmf_hooks.get_ibv_pd) { 2545 device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context); 2546 } else { 2547 device->pd = ibv_alloc_pd(device->context); 2548 } 2549 2550 if (!device->pd) { 2551 SPDK_ERRLOG("Unable to allocate protection domain.\n"); 2552 destroy_ib_device(rtransport, device); 2553 return -ENOMEM; 2554 } 2555 2556 assert(device->map == NULL); 2557 2558 device->map = spdk_rdma_create_mem_map(device->pd, &g_nvmf_hooks, SPDK_RDMA_MEMORY_MAP_ROLE_TARGET); 2559 if (!device->map) { 2560 SPDK_ERRLOG("Unable to allocate memory map for listen address\n"); 2561 destroy_ib_device(rtransport, device); 2562 return -ENOMEM; 2563 } 2564 2565 assert(device->map != NULL); 2566 assert(device->pd != NULL); 2567 2568 if (new_device) { 2569 *new_device = device; 2570 } 2571 SPDK_NOTICELOG("Create IB device %s(%p/%p) succeed.\n", ibv_get_device_name(context->device), 2572 device, context); 2573 2574 return 0; 2575 } 2576 2577 static void 2578 free_poll_fds(struct spdk_nvmf_rdma_transport *rtransport) 2579 { 2580 if (rtransport->poll_fds) { 2581 free(rtransport->poll_fds); 2582 rtransport->poll_fds = NULL; 2583 } 2584 rtransport->npoll_fds = 0; 2585 } 2586 2587 static int 2588 generate_poll_fds(struct spdk_nvmf_rdma_transport *rtransport) 2589 { 2590 /* Set up poll descriptor array to monitor events from RDMA and IB 2591 * in a single poll syscall 2592 */ 2593 int device_count = 0; 2594 int i = 0; 2595 struct spdk_nvmf_rdma_device *device, *tmp; 2596 2597 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 2598 device_count++; 2599 } 2600 2601 rtransport->npoll_fds = device_count + 1; 2602 2603 rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd)); 2604 if (rtransport->poll_fds == NULL) { 2605 SPDK_ERRLOG("poll_fds allocation failed\n"); 2606 return -ENOMEM; 2607 } 2608 2609 rtransport->poll_fds[i].fd = rtransport->event_channel->fd; 2610 rtransport->poll_fds[i++].events = POLLIN; 2611 2612 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 2613 rtransport->poll_fds[i].fd = device->context->async_fd; 2614 rtransport->poll_fds[i++].events = POLLIN; 2615 } 2616 2617 return 0; 2618 } 2619 2620 static struct spdk_nvmf_transport * 2621 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts) 2622 { 2623 int rc; 2624 struct spdk_nvmf_rdma_transport *rtransport; 2625 struct spdk_nvmf_rdma_device *device; 2626 struct ibv_context **contexts; 2627 uint32_t i; 2628 int flag; 2629 uint32_t sge_count; 2630 uint32_t min_shared_buffers; 2631 uint32_t min_in_capsule_data_size; 2632 int max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES; 2633 2634 rtransport = calloc(1, sizeof(*rtransport)); 2635 if (!rtransport) { 2636 return NULL; 2637 } 2638 2639 TAILQ_INIT(&rtransport->devices); 2640 TAILQ_INIT(&rtransport->ports); 2641 TAILQ_INIT(&rtransport->poll_groups); 2642 TAILQ_INIT(&rtransport->retry_ports); 2643 2644 rtransport->transport.ops = &spdk_nvmf_transport_rdma; 2645 rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE; 2646 rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH; 2647 rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ; 2648 rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG; 2649 rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING; 2650 if (opts->transport_specific != NULL && 2651 spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder, 2652 SPDK_COUNTOF(rdma_transport_opts_decoder), 2653 &rtransport->rdma_opts)) { 2654 SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n"); 2655 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2656 return NULL; 2657 } 2658 2659 SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n" 2660 " Transport opts: max_ioq_depth=%d, max_io_size=%d,\n" 2661 " max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n" 2662 " in_capsule_data_size=%d, max_aq_depth=%d,\n" 2663 " num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d," 2664 " acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n", 2665 opts->max_queue_depth, 2666 opts->max_io_size, 2667 opts->max_qpairs_per_ctrlr - 1, 2668 opts->io_unit_size, 2669 opts->in_capsule_data_size, 2670 opts->max_aq_depth, 2671 opts->num_shared_buffers, 2672 rtransport->rdma_opts.num_cqe, 2673 rtransport->rdma_opts.max_srq_depth, 2674 rtransport->rdma_opts.no_srq, 2675 rtransport->rdma_opts.acceptor_backlog, 2676 rtransport->rdma_opts.no_wr_batching, 2677 opts->abort_timeout_sec); 2678 2679 /* I/O unit size cannot be larger than max I/O size */ 2680 if (opts->io_unit_size > opts->max_io_size) { 2681 opts->io_unit_size = opts->max_io_size; 2682 } 2683 2684 if (rtransport->rdma_opts.acceptor_backlog <= 0) { 2685 SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n", 2686 SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG); 2687 rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG; 2688 } 2689 2690 if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) { 2691 SPDK_ERRLOG("The number of shared data buffers (%d) is less than" 2692 "the minimum number required to guarantee that forward progress can be made (%d)\n", 2693 opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2)); 2694 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2695 return NULL; 2696 } 2697 2698 /* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */ 2699 if (opts->buf_cache_size < UINT32_MAX) { 2700 min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size; 2701 if (min_shared_buffers > opts->num_shared_buffers) { 2702 SPDK_ERRLOG("There are not enough buffers to satisfy" 2703 "per-poll group caches for each thread. (%" PRIu32 ")" 2704 "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers); 2705 SPDK_ERRLOG("Please specify a larger number of shared buffers\n"); 2706 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2707 return NULL; 2708 } 2709 } 2710 2711 sge_count = opts->max_io_size / opts->io_unit_size; 2712 if (sge_count > NVMF_DEFAULT_TX_SGE) { 2713 SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size); 2714 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2715 return NULL; 2716 } 2717 2718 min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES; 2719 if (opts->in_capsule_data_size < min_in_capsule_data_size) { 2720 SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n", 2721 min_in_capsule_data_size); 2722 opts->in_capsule_data_size = min_in_capsule_data_size; 2723 } 2724 2725 rtransport->event_channel = rdma_create_event_channel(); 2726 if (rtransport->event_channel == NULL) { 2727 SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno)); 2728 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2729 return NULL; 2730 } 2731 2732 flag = fcntl(rtransport->event_channel->fd, F_GETFL); 2733 if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { 2734 SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n", 2735 rtransport->event_channel->fd, spdk_strerror(errno)); 2736 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2737 return NULL; 2738 } 2739 2740 rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data", 2741 opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES, 2742 sizeof(struct spdk_nvmf_rdma_request_data), 2743 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 2744 SPDK_ENV_SOCKET_ID_ANY); 2745 if (!rtransport->data_wr_pool) { 2746 if (spdk_mempool_lookup("spdk_nvmf_rdma_wr_data") != NULL) { 2747 SPDK_ERRLOG("Unable to allocate work request pool for poll group: already exists\n"); 2748 SPDK_ERRLOG("Probably running in multiprocess environment, which is " 2749 "unsupported by the nvmf library\n"); 2750 } else { 2751 SPDK_ERRLOG("Unable to allocate work request pool for poll group\n"); 2752 } 2753 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2754 return NULL; 2755 } 2756 2757 contexts = rdma_get_devices(NULL); 2758 if (contexts == NULL) { 2759 SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); 2760 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2761 return NULL; 2762 } 2763 2764 i = 0; 2765 rc = 0; 2766 while (contexts[i] != NULL) { 2767 rc = create_ib_device(rtransport, contexts[i], &device); 2768 if (rc < 0) { 2769 break; 2770 } 2771 i++; 2772 max_device_sge = spdk_min(max_device_sge, device->attr.max_sge); 2773 device->is_ready = true; 2774 } 2775 rdma_free_devices(contexts); 2776 2777 if (opts->io_unit_size * max_device_sge < opts->max_io_size) { 2778 /* divide and round up. */ 2779 opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge; 2780 2781 /* round up to the nearest 4k. */ 2782 opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK; 2783 2784 opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE); 2785 SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n", 2786 opts->io_unit_size); 2787 } 2788 2789 if (rc < 0) { 2790 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2791 return NULL; 2792 } 2793 2794 rc = generate_poll_fds(rtransport); 2795 if (rc < 0) { 2796 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2797 return NULL; 2798 } 2799 2800 rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport, 2801 opts->acceptor_poll_rate); 2802 if (!rtransport->accept_poller) { 2803 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2804 return NULL; 2805 } 2806 2807 return &rtransport->transport; 2808 } 2809 2810 static void 2811 destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport, 2812 struct spdk_nvmf_rdma_device *device) 2813 { 2814 TAILQ_REMOVE(&rtransport->devices, device, link); 2815 spdk_rdma_free_mem_map(&device->map); 2816 if (device->pd) { 2817 if (!g_nvmf_hooks.get_ibv_pd) { 2818 ibv_dealloc_pd(device->pd); 2819 } 2820 } 2821 SPDK_DEBUGLOG(rdma, "IB device [%p] is destroyed.\n", device); 2822 free(device); 2823 } 2824 2825 static void 2826 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w) 2827 { 2828 struct spdk_nvmf_rdma_transport *rtransport; 2829 assert(w != NULL); 2830 2831 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2832 spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth); 2833 spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq); 2834 if (rtransport->rdma_opts.no_srq == true) { 2835 spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe); 2836 } 2837 spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog); 2838 spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching); 2839 } 2840 2841 static int 2842 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport, 2843 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg) 2844 { 2845 struct spdk_nvmf_rdma_transport *rtransport; 2846 struct spdk_nvmf_rdma_port *port, *port_tmp; 2847 struct spdk_nvmf_rdma_device *device, *device_tmp; 2848 2849 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2850 2851 TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, port_tmp) { 2852 TAILQ_REMOVE(&rtransport->retry_ports, port, link); 2853 free(port); 2854 } 2855 2856 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) { 2857 TAILQ_REMOVE(&rtransport->ports, port, link); 2858 rdma_destroy_id(port->id); 2859 free(port); 2860 } 2861 2862 free_poll_fds(rtransport); 2863 2864 if (rtransport->event_channel != NULL) { 2865 rdma_destroy_event_channel(rtransport->event_channel); 2866 } 2867 2868 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) { 2869 destroy_ib_device(rtransport, device); 2870 } 2871 2872 if (rtransport->data_wr_pool != NULL) { 2873 if (spdk_mempool_count(rtransport->data_wr_pool) != 2874 (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) { 2875 SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n", 2876 spdk_mempool_count(rtransport->data_wr_pool), 2877 transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES); 2878 } 2879 } 2880 2881 spdk_mempool_free(rtransport->data_wr_pool); 2882 2883 spdk_poller_unregister(&rtransport->accept_poller); 2884 free(rtransport); 2885 2886 if (cb_fn) { 2887 cb_fn(cb_arg); 2888 } 2889 return 0; 2890 } 2891 2892 static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 2893 struct spdk_nvme_transport_id *trid, 2894 bool peer); 2895 2896 static bool nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport); 2897 2898 static int 2899 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid, 2900 struct spdk_nvmf_listen_opts *listen_opts) 2901 { 2902 struct spdk_nvmf_rdma_transport *rtransport; 2903 struct spdk_nvmf_rdma_device *device; 2904 struct spdk_nvmf_rdma_port *port, *tmp_port; 2905 struct addrinfo *res; 2906 struct addrinfo hints; 2907 int family; 2908 int rc; 2909 long int port_val; 2910 bool is_retry = false; 2911 2912 if (!strlen(trid->trsvcid)) { 2913 SPDK_ERRLOG("Service id is required\n"); 2914 return -EINVAL; 2915 } 2916 2917 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2918 assert(rtransport->event_channel != NULL); 2919 2920 port = calloc(1, sizeof(*port)); 2921 if (!port) { 2922 SPDK_ERRLOG("Port allocation failed\n"); 2923 return -ENOMEM; 2924 } 2925 2926 port->trid = trid; 2927 2928 switch (trid->adrfam) { 2929 case SPDK_NVMF_ADRFAM_IPV4: 2930 family = AF_INET; 2931 break; 2932 case SPDK_NVMF_ADRFAM_IPV6: 2933 family = AF_INET6; 2934 break; 2935 default: 2936 SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam); 2937 free(port); 2938 return -EINVAL; 2939 } 2940 2941 memset(&hints, 0, sizeof(hints)); 2942 hints.ai_family = family; 2943 hints.ai_flags = AI_NUMERICSERV; 2944 hints.ai_socktype = SOCK_STREAM; 2945 hints.ai_protocol = 0; 2946 2947 /* Range check the trsvcid. Fail in 3 cases: 2948 * < 0: means that spdk_strtol hit an error 2949 * 0: this results in ephemeral port which we don't want 2950 * > 65535: port too high 2951 */ 2952 port_val = spdk_strtol(trid->trsvcid, 10); 2953 if (port_val <= 0 || port_val > 65535) { 2954 SPDK_ERRLOG("invalid trsvcid %s\n", trid->trsvcid); 2955 free(port); 2956 return -EINVAL; 2957 } 2958 2959 rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res); 2960 if (rc) { 2961 SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc); 2962 free(port); 2963 return -(abs(rc)); 2964 } 2965 2966 rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP); 2967 if (rc < 0) { 2968 SPDK_ERRLOG("rdma_create_id() failed\n"); 2969 freeaddrinfo(res); 2970 free(port); 2971 return rc; 2972 } 2973 2974 rc = rdma_bind_addr(port->id, res->ai_addr); 2975 freeaddrinfo(res); 2976 2977 if (rc < 0) { 2978 TAILQ_FOREACH(tmp_port, &rtransport->retry_ports, link) { 2979 if (spdk_nvme_transport_id_compare(tmp_port->trid, trid) == 0) { 2980 is_retry = true; 2981 break; 2982 } 2983 } 2984 if (!is_retry) { 2985 SPDK_ERRLOG("rdma_bind_addr() failed\n"); 2986 } 2987 rdma_destroy_id(port->id); 2988 free(port); 2989 return rc; 2990 } 2991 2992 if (!port->id->verbs) { 2993 SPDK_ERRLOG("ibv_context is null\n"); 2994 rdma_destroy_id(port->id); 2995 free(port); 2996 return -1; 2997 } 2998 2999 rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog); 3000 if (rc < 0) { 3001 SPDK_ERRLOG("rdma_listen() failed\n"); 3002 rdma_destroy_id(port->id); 3003 free(port); 3004 return rc; 3005 } 3006 3007 TAILQ_FOREACH(device, &rtransport->devices, link) { 3008 if (device->context == port->id->verbs && device->is_ready) { 3009 port->device = device; 3010 break; 3011 } 3012 } 3013 if (!port->device) { 3014 SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n", 3015 port->id->verbs); 3016 rdma_destroy_id(port->id); 3017 free(port); 3018 nvmf_rdma_rescan_devices(rtransport); 3019 return -EINVAL; 3020 } 3021 3022 SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n", 3023 trid->traddr, trid->trsvcid); 3024 3025 TAILQ_INSERT_TAIL(&rtransport->ports, port, link); 3026 return 0; 3027 } 3028 3029 static void 3030 nvmf_rdma_stop_listen_ex(struct spdk_nvmf_transport *transport, 3031 const struct spdk_nvme_transport_id *trid, bool need_retry) 3032 { 3033 struct spdk_nvmf_rdma_transport *rtransport; 3034 struct spdk_nvmf_rdma_port *port, *tmp; 3035 3036 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3037 3038 if (!need_retry) { 3039 TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp) { 3040 if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) { 3041 TAILQ_REMOVE(&rtransport->retry_ports, port, link); 3042 free(port); 3043 } 3044 } 3045 } 3046 3047 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) { 3048 if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) { 3049 SPDK_DEBUGLOG(rdma, "Port %s:%s removed. need retry: %d\n", 3050 port->trid->traddr, port->trid->trsvcid, need_retry); 3051 TAILQ_REMOVE(&rtransport->ports, port, link); 3052 rdma_destroy_id(port->id); 3053 port->id = NULL; 3054 port->device = NULL; 3055 if (need_retry) { 3056 TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link); 3057 } else { 3058 free(port); 3059 } 3060 break; 3061 } 3062 } 3063 } 3064 3065 static void 3066 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport, 3067 const struct spdk_nvme_transport_id *trid) 3068 { 3069 nvmf_rdma_stop_listen_ex(transport, trid, false); 3070 } 3071 3072 static void _nvmf_rdma_register_poller_in_group(void *c); 3073 static void _nvmf_rdma_remove_poller_in_group(void *c); 3074 3075 static bool 3076 nvmf_rdma_all_pollers_management_done(void *c) 3077 { 3078 struct poller_manage_ctx *ctx = c; 3079 int counter; 3080 3081 counter = __atomic_sub_fetch(ctx->inflight_op_counter, 1, __ATOMIC_SEQ_CST); 3082 SPDK_DEBUGLOG(rdma, "nvmf_rdma_all_pollers_management_done called. counter: %d, poller: %p\n", 3083 counter, ctx->rpoller); 3084 3085 if (counter == 0) { 3086 free((void *)ctx->inflight_op_counter); 3087 } 3088 free(ctx); 3089 3090 return counter == 0; 3091 } 3092 3093 static int 3094 nvmf_rdma_manage_poller(struct spdk_nvmf_rdma_transport *rtransport, 3095 struct spdk_nvmf_rdma_device *device, bool *has_inflight, bool is_add) 3096 { 3097 struct spdk_nvmf_rdma_poll_group *rgroup; 3098 struct spdk_nvmf_rdma_poller *rpoller; 3099 struct spdk_nvmf_poll_group *poll_group; 3100 struct poller_manage_ctx *ctx; 3101 bool found; 3102 int *inflight_counter; 3103 spdk_msg_fn do_fn; 3104 3105 *has_inflight = false; 3106 do_fn = is_add ? _nvmf_rdma_register_poller_in_group : _nvmf_rdma_remove_poller_in_group; 3107 inflight_counter = calloc(1, sizeof(int)); 3108 if (!inflight_counter) { 3109 SPDK_ERRLOG("Failed to allocate inflight counter when removing pollers\n"); 3110 return -ENOMEM; 3111 } 3112 3113 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 3114 (*inflight_counter)++; 3115 } 3116 3117 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 3118 found = false; 3119 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 3120 if (rpoller->device == device) { 3121 found = true; 3122 break; 3123 } 3124 } 3125 if (found == is_add) { 3126 __atomic_fetch_sub(inflight_counter, 1, __ATOMIC_SEQ_CST); 3127 continue; 3128 } 3129 3130 ctx = calloc(1, sizeof(struct poller_manage_ctx)); 3131 if (!ctx) { 3132 SPDK_ERRLOG("Failed to allocate poller_manage_ctx when removing pollers\n"); 3133 if (!*has_inflight) { 3134 free(inflight_counter); 3135 } 3136 return -ENOMEM; 3137 } 3138 3139 ctx->rtransport = rtransport; 3140 ctx->rgroup = rgroup; 3141 ctx->rpoller = rpoller; 3142 ctx->device = device; 3143 ctx->thread = spdk_get_thread(); 3144 ctx->inflight_op_counter = inflight_counter; 3145 *has_inflight = true; 3146 3147 poll_group = rgroup->group.group; 3148 if (poll_group->thread != spdk_get_thread()) { 3149 spdk_thread_send_msg(poll_group->thread, do_fn, ctx); 3150 } else { 3151 do_fn(ctx); 3152 } 3153 } 3154 3155 if (!*has_inflight) { 3156 free(inflight_counter); 3157 } 3158 3159 return 0; 3160 } 3161 3162 static void nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport, 3163 struct spdk_nvmf_rdma_device *device); 3164 3165 static struct spdk_nvmf_rdma_device * 3166 nvmf_rdma_find_ib_device(struct spdk_nvmf_rdma_transport *rtransport, 3167 struct ibv_context *context) 3168 { 3169 struct spdk_nvmf_rdma_device *device, *tmp_device; 3170 3171 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp_device) { 3172 if (device->need_destroy) { 3173 continue; 3174 } 3175 3176 if (strcmp(device->context->device->dev_name, context->device->dev_name) == 0) { 3177 return device; 3178 } 3179 } 3180 3181 return NULL; 3182 } 3183 3184 static bool 3185 nvmf_rdma_check_devices_context(struct spdk_nvmf_rdma_transport *rtransport, 3186 struct ibv_context *context) 3187 { 3188 struct spdk_nvmf_rdma_device *old_device, *new_device; 3189 int rc = 0; 3190 bool has_inflight; 3191 3192 old_device = nvmf_rdma_find_ib_device(rtransport, context); 3193 3194 if (old_device) { 3195 if (old_device->context != context && !old_device->need_destroy && old_device->is_ready) { 3196 /* context may not have time to be cleaned when rescan. exactly one context 3197 * is valid for a device so this context must be invalid and just remove it. */ 3198 SPDK_WARNLOG("Device %p has a invalid context %p\n", old_device, old_device->context); 3199 old_device->need_destroy = true; 3200 nvmf_rdma_handle_device_removal(rtransport, old_device); 3201 } 3202 return false; 3203 } 3204 3205 rc = create_ib_device(rtransport, context, &new_device); 3206 /* TODO: update transport opts. */ 3207 if (rc < 0) { 3208 SPDK_ERRLOG("Failed to create ib device for context: %s(%p)\n", 3209 ibv_get_device_name(context->device), context); 3210 return false; 3211 } 3212 3213 rc = nvmf_rdma_manage_poller(rtransport, new_device, &has_inflight, true); 3214 if (rc < 0) { 3215 SPDK_ERRLOG("Failed to add poller for device context: %s(%p)\n", 3216 ibv_get_device_name(context->device), context); 3217 return false; 3218 } 3219 3220 if (has_inflight) { 3221 new_device->is_ready = true; 3222 } 3223 3224 return true; 3225 } 3226 3227 static bool 3228 nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport) 3229 { 3230 struct spdk_nvmf_rdma_device *device; 3231 struct ibv_device **ibv_device_list = NULL; 3232 struct ibv_context **contexts = NULL; 3233 int i = 0; 3234 int num_dev = 0; 3235 bool new_create = false, has_new_device = false; 3236 struct ibv_context *tmp_verbs = NULL; 3237 3238 /* do not rescan when any device is destroying, or context may be freed when 3239 * regenerating the poll fds. 3240 */ 3241 TAILQ_FOREACH(device, &rtransport->devices, link) { 3242 if (device->need_destroy) { 3243 return false; 3244 } 3245 } 3246 3247 ibv_device_list = ibv_get_device_list(&num_dev); 3248 3249 /* There is a bug in librdmacm. If verbs init failed in rdma_get_devices, it'll be 3250 * marked as dead verbs and never be init again. So we need to make sure the 3251 * verbs is available before we call rdma_get_devices. */ 3252 if (num_dev >= 0) { 3253 for (i = 0; i < num_dev; i++) { 3254 tmp_verbs = ibv_open_device(ibv_device_list[i]); 3255 if (!tmp_verbs) { 3256 SPDK_WARNLOG("Failed to init ibv device %p, err %d. Skip rescan.\n", ibv_device_list[i], errno); 3257 break; 3258 } 3259 if (nvmf_rdma_find_ib_device(rtransport, tmp_verbs) == NULL) { 3260 SPDK_DEBUGLOG(rdma, "Find new verbs init ibv device %p(%s).\n", ibv_device_list[i], 3261 tmp_verbs->device->dev_name); 3262 has_new_device = true; 3263 } 3264 ibv_close_device(tmp_verbs); 3265 } 3266 ibv_free_device_list(ibv_device_list); 3267 if (!tmp_verbs || !has_new_device) { 3268 return false; 3269 } 3270 } 3271 3272 contexts = rdma_get_devices(NULL); 3273 3274 for (i = 0; contexts && contexts[i] != NULL; i++) { 3275 new_create |= nvmf_rdma_check_devices_context(rtransport, contexts[i]); 3276 } 3277 3278 if (new_create) { 3279 free_poll_fds(rtransport); 3280 generate_poll_fds(rtransport); 3281 } 3282 3283 if (contexts) { 3284 rdma_free_devices(contexts); 3285 } 3286 3287 return new_create; 3288 } 3289 3290 static bool 3291 nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport) 3292 { 3293 struct spdk_nvmf_rdma_port *port, *tmp_port; 3294 int rc = 0; 3295 bool new_create = false; 3296 3297 if (TAILQ_EMPTY(&rtransport->retry_ports)) { 3298 return false; 3299 } 3300 3301 new_create = nvmf_rdma_rescan_devices(rtransport); 3302 3303 TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp_port) { 3304 rc = nvmf_rdma_listen(&rtransport->transport, port->trid, NULL); 3305 3306 TAILQ_REMOVE(&rtransport->retry_ports, port, link); 3307 if (rc) { 3308 if (new_create) { 3309 SPDK_ERRLOG("Found new IB device but port %s:%s is still failed(%d) to listen.\n", 3310 port->trid->traddr, port->trid->trsvcid, rc); 3311 } 3312 TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link); 3313 break; 3314 } else { 3315 SPDK_NOTICELOG("Port %s:%s come back\n", port->trid->traddr, port->trid->trsvcid); 3316 free(port); 3317 } 3318 } 3319 3320 return true; 3321 } 3322 3323 static void 3324 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport, 3325 struct spdk_nvmf_rdma_qpair *rqpair, bool drain) 3326 { 3327 struct spdk_nvmf_request *req, *tmp; 3328 struct spdk_nvmf_rdma_request *rdma_req, *req_tmp; 3329 struct spdk_nvmf_rdma_resources *resources; 3330 3331 /* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */ 3332 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) { 3333 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 3334 break; 3335 } 3336 } 3337 3338 /* Then RDMA writes since reads have stronger restrictions than writes */ 3339 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) { 3340 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 3341 break; 3342 } 3343 } 3344 3345 /* Then we handle request waiting on memory buffers. */ 3346 STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) { 3347 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 3348 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 3349 break; 3350 } 3351 } 3352 3353 resources = rqpair->resources; 3354 while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) { 3355 rdma_req = STAILQ_FIRST(&resources->free_queue); 3356 STAILQ_REMOVE_HEAD(&resources->free_queue, state_link); 3357 rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue); 3358 STAILQ_REMOVE_HEAD(&resources->incoming_queue, link); 3359 3360 if (rqpair->srq != NULL) { 3361 rdma_req->req.qpair = &rdma_req->recv->qpair->qpair; 3362 rdma_req->recv->qpair->qd++; 3363 } else { 3364 rqpair->qd++; 3365 } 3366 3367 rdma_req->receive_tsc = rdma_req->recv->receive_tsc; 3368 rdma_req->state = RDMA_REQUEST_STATE_NEW; 3369 if (nvmf_rdma_request_process(rtransport, rdma_req) == false) { 3370 break; 3371 } 3372 } 3373 if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) { 3374 rqpair->poller->stat.pending_free_request++; 3375 } 3376 } 3377 3378 static inline bool 3379 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device) 3380 { 3381 /* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */ 3382 return nvmf_rdma_is_rxe_device(device) || 3383 device->context->device->transport_type == IBV_TRANSPORT_IWARP; 3384 } 3385 3386 static void 3387 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair) 3388 { 3389 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 3390 struct spdk_nvmf_rdma_transport, transport); 3391 3392 nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); 3393 3394 /* nvmf_rdma_close_qpair is not called */ 3395 if (!rqpair->to_close) { 3396 return; 3397 } 3398 3399 /* device is already destroyed and we should force destroy this qpair. */ 3400 if (rqpair->poller && rqpair->poller->need_destroy) { 3401 nvmf_rdma_qpair_destroy(rqpair); 3402 return; 3403 } 3404 3405 /* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */ 3406 if (rqpair->current_send_depth != 0) { 3407 return; 3408 } 3409 3410 if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) { 3411 return; 3412 } 3413 3414 if (rqpair->srq != NULL && rqpair->last_wqe_reached == false && 3415 !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) { 3416 return; 3417 } 3418 3419 assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR); 3420 3421 nvmf_rdma_qpair_destroy(rqpair); 3422 } 3423 3424 static int 3425 nvmf_rdma_disconnect(struct rdma_cm_event *evt, bool *event_acked) 3426 { 3427 struct spdk_nvmf_qpair *qpair; 3428 struct spdk_nvmf_rdma_qpair *rqpair; 3429 3430 if (evt->id == NULL) { 3431 SPDK_ERRLOG("disconnect request: missing cm_id\n"); 3432 return -1; 3433 } 3434 3435 qpair = evt->id->context; 3436 if (qpair == NULL) { 3437 SPDK_ERRLOG("disconnect request: no active connection\n"); 3438 return -1; 3439 } 3440 3441 rdma_ack_cm_event(evt); 3442 *event_acked = true; 3443 3444 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3445 3446 spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair); 3447 3448 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3449 3450 return 0; 3451 } 3452 3453 #ifdef DEBUG 3454 static const char *CM_EVENT_STR[] = { 3455 "RDMA_CM_EVENT_ADDR_RESOLVED", 3456 "RDMA_CM_EVENT_ADDR_ERROR", 3457 "RDMA_CM_EVENT_ROUTE_RESOLVED", 3458 "RDMA_CM_EVENT_ROUTE_ERROR", 3459 "RDMA_CM_EVENT_CONNECT_REQUEST", 3460 "RDMA_CM_EVENT_CONNECT_RESPONSE", 3461 "RDMA_CM_EVENT_CONNECT_ERROR", 3462 "RDMA_CM_EVENT_UNREACHABLE", 3463 "RDMA_CM_EVENT_REJECTED", 3464 "RDMA_CM_EVENT_ESTABLISHED", 3465 "RDMA_CM_EVENT_DISCONNECTED", 3466 "RDMA_CM_EVENT_DEVICE_REMOVAL", 3467 "RDMA_CM_EVENT_MULTICAST_JOIN", 3468 "RDMA_CM_EVENT_MULTICAST_ERROR", 3469 "RDMA_CM_EVENT_ADDR_CHANGE", 3470 "RDMA_CM_EVENT_TIMEWAIT_EXIT" 3471 }; 3472 #endif /* DEBUG */ 3473 3474 static void 3475 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport, 3476 struct spdk_nvmf_rdma_port *port) 3477 { 3478 struct spdk_nvmf_rdma_poll_group *rgroup; 3479 struct spdk_nvmf_rdma_poller *rpoller; 3480 struct spdk_nvmf_rdma_qpair *rqpair; 3481 3482 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 3483 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 3484 RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) { 3485 if (rqpair->listen_id == port->id) { 3486 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3487 } 3488 } 3489 } 3490 } 3491 } 3492 3493 static bool 3494 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport, 3495 struct rdma_cm_event *event) 3496 { 3497 const struct spdk_nvme_transport_id *trid; 3498 struct spdk_nvmf_rdma_port *port; 3499 struct spdk_nvmf_rdma_transport *rtransport; 3500 bool event_acked = false; 3501 3502 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3503 TAILQ_FOREACH(port, &rtransport->ports, link) { 3504 if (port->id == event->id) { 3505 SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid); 3506 rdma_ack_cm_event(event); 3507 event_acked = true; 3508 trid = port->trid; 3509 break; 3510 } 3511 } 3512 3513 if (event_acked) { 3514 nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); 3515 3516 nvmf_rdma_stop_listen(transport, trid); 3517 nvmf_rdma_listen(transport, trid, NULL); 3518 } 3519 3520 return event_acked; 3521 } 3522 3523 static void 3524 nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport, 3525 struct spdk_nvmf_rdma_device *device) 3526 { 3527 struct spdk_nvmf_rdma_port *port, *port_tmp; 3528 int rc; 3529 bool has_inflight; 3530 3531 rc = nvmf_rdma_manage_poller(rtransport, device, &has_inflight, false); 3532 if (rc) { 3533 SPDK_ERRLOG("Failed to handle device removal, rc %d\n", rc); 3534 return; 3535 } 3536 3537 if (!has_inflight) { 3538 /* no pollers, destroy the device */ 3539 device->ready_to_destroy = true; 3540 spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_remove_destroyed_device, rtransport); 3541 } 3542 3543 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) { 3544 if (port->device == device) { 3545 SPDK_NOTICELOG("Port %s:%s on device %s is being removed.\n", 3546 port->trid->traddr, 3547 port->trid->trsvcid, 3548 ibv_get_device_name(port->device->context->device)); 3549 3550 /* keep NVMF listener and only destroy structures of the 3551 * RDMA transport. when the device comes back we can retry listening 3552 * and the application's workflow will not be interrupted. 3553 */ 3554 nvmf_rdma_stop_listen_ex(&rtransport->transport, port->trid, true); 3555 } 3556 } 3557 } 3558 3559 static void 3560 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport, 3561 struct rdma_cm_event *event) 3562 { 3563 struct spdk_nvmf_rdma_port *port, *tmp_port; 3564 struct spdk_nvmf_rdma_transport *rtransport; 3565 3566 port = event->id->context; 3567 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3568 3569 rdma_ack_cm_event(event); 3570 3571 /* if device removal happens during ctrl qpair disconnecting, it's possible that we receive 3572 * an DEVICE_REMOVAL event on qpair but the id->qp is just NULL. So we should make sure that 3573 * we are handling a port event here. 3574 */ 3575 TAILQ_FOREACH(tmp_port, &rtransport->ports, link) { 3576 if (port == tmp_port && port->device && !port->device->need_destroy) { 3577 port->device->need_destroy = true; 3578 nvmf_rdma_handle_device_removal(rtransport, port->device); 3579 } 3580 } 3581 } 3582 3583 static void 3584 nvmf_process_cm_event(struct spdk_nvmf_transport *transport) 3585 { 3586 struct spdk_nvmf_rdma_transport *rtransport; 3587 struct rdma_cm_event *event; 3588 int rc; 3589 bool event_acked; 3590 3591 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3592 3593 if (rtransport->event_channel == NULL) { 3594 return; 3595 } 3596 3597 while (1) { 3598 event_acked = false; 3599 rc = rdma_get_cm_event(rtransport->event_channel, &event); 3600 if (rc) { 3601 if (errno != EAGAIN && errno != EWOULDBLOCK) { 3602 SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno)); 3603 } 3604 break; 3605 } 3606 3607 SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]); 3608 3609 spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event); 3610 3611 switch (event->event) { 3612 case RDMA_CM_EVENT_ADDR_RESOLVED: 3613 case RDMA_CM_EVENT_ADDR_ERROR: 3614 case RDMA_CM_EVENT_ROUTE_RESOLVED: 3615 case RDMA_CM_EVENT_ROUTE_ERROR: 3616 /* No action required. The target never attempts to resolve routes. */ 3617 break; 3618 case RDMA_CM_EVENT_CONNECT_REQUEST: 3619 rc = nvmf_rdma_connect(transport, event); 3620 if (rc < 0) { 3621 SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc); 3622 break; 3623 } 3624 break; 3625 case RDMA_CM_EVENT_CONNECT_RESPONSE: 3626 /* The target never initiates a new connection. So this will not occur. */ 3627 break; 3628 case RDMA_CM_EVENT_CONNECT_ERROR: 3629 /* Can this happen? The docs say it can, but not sure what causes it. */ 3630 break; 3631 case RDMA_CM_EVENT_UNREACHABLE: 3632 case RDMA_CM_EVENT_REJECTED: 3633 /* These only occur on the client side. */ 3634 break; 3635 case RDMA_CM_EVENT_ESTABLISHED: 3636 /* TODO: Should we be waiting for this event anywhere? */ 3637 break; 3638 case RDMA_CM_EVENT_DISCONNECTED: 3639 rc = nvmf_rdma_disconnect(event, &event_acked); 3640 if (rc < 0) { 3641 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3642 break; 3643 } 3644 break; 3645 case RDMA_CM_EVENT_DEVICE_REMOVAL: 3646 /* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL 3647 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s. 3648 * Once these events are sent to SPDK, we should release all IB resources and 3649 * don't make attempts to call any ibv_query/modify/create functions. We can only call 3650 * ibv_destroy* functions to release user space memory allocated by IB. All kernel 3651 * resources are already cleaned. */ 3652 if (event->id->qp) { 3653 /* If rdma_cm event has a valid `qp` pointer then the event refers to the 3654 * corresponding qpair. Otherwise the event refers to a listening device. */ 3655 rc = nvmf_rdma_disconnect(event, &event_acked); 3656 if (rc < 0) { 3657 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3658 break; 3659 } 3660 } else { 3661 nvmf_rdma_handle_cm_event_port_removal(transport, event); 3662 event_acked = true; 3663 } 3664 break; 3665 case RDMA_CM_EVENT_MULTICAST_JOIN: 3666 case RDMA_CM_EVENT_MULTICAST_ERROR: 3667 /* Multicast is not used */ 3668 break; 3669 case RDMA_CM_EVENT_ADDR_CHANGE: 3670 event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event); 3671 break; 3672 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 3673 /* For now, do nothing. The target never re-uses queue pairs. */ 3674 break; 3675 default: 3676 SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); 3677 break; 3678 } 3679 if (!event_acked) { 3680 rdma_ack_cm_event(event); 3681 } 3682 } 3683 } 3684 3685 static void 3686 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair) 3687 { 3688 rqpair->last_wqe_reached = true; 3689 nvmf_rdma_destroy_drained_qpair(rqpair); 3690 } 3691 3692 static void 3693 nvmf_rdma_qpair_process_ibv_event(void *ctx) 3694 { 3695 struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx; 3696 3697 if (event_ctx->rqpair) { 3698 STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3699 if (event_ctx->cb_fn) { 3700 event_ctx->cb_fn(event_ctx->rqpair); 3701 } 3702 } 3703 free(event_ctx); 3704 } 3705 3706 static int 3707 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair, 3708 spdk_nvmf_rdma_qpair_ibv_event fn) 3709 { 3710 struct spdk_nvmf_rdma_ibv_event_ctx *ctx; 3711 struct spdk_thread *thr = NULL; 3712 int rc; 3713 3714 if (rqpair->qpair.group) { 3715 thr = rqpair->qpair.group->thread; 3716 } else if (rqpair->destruct_channel) { 3717 thr = spdk_io_channel_get_thread(rqpair->destruct_channel); 3718 } 3719 3720 if (!thr) { 3721 SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair); 3722 return -EINVAL; 3723 } 3724 3725 ctx = calloc(1, sizeof(*ctx)); 3726 if (!ctx) { 3727 return -ENOMEM; 3728 } 3729 3730 ctx->rqpair = rqpair; 3731 ctx->cb_fn = fn; 3732 STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link); 3733 3734 rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx); 3735 if (rc) { 3736 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3737 free(ctx); 3738 } 3739 3740 return rc; 3741 } 3742 3743 static int 3744 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device) 3745 { 3746 int rc; 3747 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 3748 struct ibv_async_event event; 3749 3750 rc = ibv_get_async_event(device->context, &event); 3751 3752 if (rc) { 3753 /* In non-blocking mode -1 means there are no events available */ 3754 return rc; 3755 } 3756 3757 switch (event.event_type) { 3758 case IBV_EVENT_QP_FATAL: 3759 case IBV_EVENT_QP_LAST_WQE_REACHED: 3760 case IBV_EVENT_SQ_DRAINED: 3761 case IBV_EVENT_QP_REQ_ERR: 3762 case IBV_EVENT_QP_ACCESS_ERR: 3763 case IBV_EVENT_COMM_EST: 3764 case IBV_EVENT_PATH_MIG: 3765 case IBV_EVENT_PATH_MIG_ERR: 3766 rqpair = event.element.qp->qp_context; 3767 if (!rqpair) { 3768 /* Any QP event for NVMe-RDMA initiator may be returned. */ 3769 SPDK_NOTICELOG("Async QP event for unknown QP: %s\n", 3770 ibv_event_type_str(event.event_type)); 3771 break; 3772 } 3773 3774 switch (event.event_type) { 3775 case IBV_EVENT_QP_FATAL: 3776 SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair); 3777 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3778 (uintptr_t)rqpair, event.event_type); 3779 nvmf_rdma_update_ibv_state(rqpair); 3780 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3781 break; 3782 case IBV_EVENT_QP_LAST_WQE_REACHED: 3783 /* This event only occurs for shared receive queues. */ 3784 SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair); 3785 rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached); 3786 if (rc) { 3787 SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc); 3788 rqpair->last_wqe_reached = true; 3789 } 3790 break; 3791 case IBV_EVENT_SQ_DRAINED: 3792 /* This event occurs frequently in both error and non-error states. 3793 * Check if the qpair is in an error state before sending a message. */ 3794 SPDK_DEBUGLOG(rdma, "Last sq drained event received for rqpair %p\n", rqpair); 3795 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3796 (uintptr_t)rqpair, event.event_type); 3797 if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) { 3798 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3799 } 3800 break; 3801 case IBV_EVENT_QP_REQ_ERR: 3802 case IBV_EVENT_QP_ACCESS_ERR: 3803 case IBV_EVENT_COMM_EST: 3804 case IBV_EVENT_PATH_MIG: 3805 case IBV_EVENT_PATH_MIG_ERR: 3806 SPDK_NOTICELOG("Async QP event: %s\n", 3807 ibv_event_type_str(event.event_type)); 3808 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3809 (uintptr_t)rqpair, event.event_type); 3810 nvmf_rdma_update_ibv_state(rqpair); 3811 break; 3812 default: 3813 break; 3814 } 3815 break; 3816 case IBV_EVENT_DEVICE_FATAL: 3817 SPDK_ERRLOG("Device Fatal event[%s] received on %s. device: %p\n", 3818 ibv_event_type_str(event.event_type), ibv_get_device_name(device->context->device), device); 3819 device->need_destroy = true; 3820 break; 3821 case IBV_EVENT_CQ_ERR: 3822 case IBV_EVENT_PORT_ACTIVE: 3823 case IBV_EVENT_PORT_ERR: 3824 case IBV_EVENT_LID_CHANGE: 3825 case IBV_EVENT_PKEY_CHANGE: 3826 case IBV_EVENT_SM_CHANGE: 3827 case IBV_EVENT_SRQ_ERR: 3828 case IBV_EVENT_SRQ_LIMIT_REACHED: 3829 case IBV_EVENT_CLIENT_REREGISTER: 3830 case IBV_EVENT_GID_CHANGE: 3831 default: 3832 SPDK_NOTICELOG("Async event: %s\n", 3833 ibv_event_type_str(event.event_type)); 3834 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type); 3835 break; 3836 } 3837 ibv_ack_async_event(&event); 3838 3839 return 0; 3840 } 3841 3842 static void 3843 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events) 3844 { 3845 int rc = 0; 3846 uint32_t i = 0; 3847 3848 for (i = 0; i < max_events; i++) { 3849 rc = nvmf_process_ib_event(device); 3850 if (rc) { 3851 break; 3852 } 3853 } 3854 3855 SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i); 3856 } 3857 3858 static int 3859 nvmf_rdma_accept(void *ctx) 3860 { 3861 int nfds, i = 0; 3862 struct spdk_nvmf_transport *transport = ctx; 3863 struct spdk_nvmf_rdma_transport *rtransport; 3864 struct spdk_nvmf_rdma_device *device, *tmp; 3865 uint32_t count; 3866 short revents; 3867 bool do_retry; 3868 3869 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3870 do_retry = nvmf_rdma_retry_listen_port(rtransport); 3871 3872 count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0); 3873 3874 if (nfds <= 0) { 3875 return do_retry ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE; 3876 } 3877 3878 /* The first poll descriptor is RDMA CM event */ 3879 if (rtransport->poll_fds[i++].revents & POLLIN) { 3880 nvmf_process_cm_event(transport); 3881 nfds--; 3882 } 3883 3884 if (nfds == 0) { 3885 return SPDK_POLLER_BUSY; 3886 } 3887 3888 /* Second and subsequent poll descriptors are IB async events */ 3889 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 3890 revents = rtransport->poll_fds[i++].revents; 3891 if (revents & POLLIN) { 3892 if (spdk_likely(!device->need_destroy)) { 3893 nvmf_process_ib_events(device, 32); 3894 if (spdk_unlikely(device->need_destroy)) { 3895 nvmf_rdma_handle_device_removal(rtransport, device); 3896 } 3897 } 3898 nfds--; 3899 } else if (revents & POLLNVAL || revents & POLLHUP) { 3900 SPDK_ERRLOG("Receive unknown revent %x on device %p\n", (int)revents, device); 3901 nfds--; 3902 } 3903 } 3904 /* check all flagged fd's have been served */ 3905 assert(nfds == 0); 3906 3907 return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE; 3908 } 3909 3910 static void 3911 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem, 3912 struct spdk_nvmf_ctrlr_data *cdata) 3913 { 3914 cdata->nvmf_specific.msdbd = NVMF_DEFAULT_MSDBD; 3915 3916 /* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled 3917 since in-capsule data only works with NVME drives that support SGL memory layout */ 3918 if (transport->opts.dif_insert_or_strip) { 3919 cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16; 3920 } 3921 3922 if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) { 3923 SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule" 3924 " data is greater than 4KiB.\n"); 3925 SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux " 3926 "kernel between versions 5.4 and 5.12 data corruption may occur for " 3927 "writes that are not a multiple of 4KiB in size.\n"); 3928 } 3929 } 3930 3931 static void 3932 nvmf_rdma_discover(struct spdk_nvmf_transport *transport, 3933 struct spdk_nvme_transport_id *trid, 3934 struct spdk_nvmf_discovery_log_page_entry *entry) 3935 { 3936 entry->trtype = SPDK_NVMF_TRTYPE_RDMA; 3937 entry->adrfam = trid->adrfam; 3938 entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED; 3939 3940 spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' '); 3941 spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' '); 3942 3943 entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED; 3944 entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE; 3945 entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM; 3946 } 3947 3948 static int 3949 nvmf_rdma_poller_create(struct spdk_nvmf_rdma_transport *rtransport, 3950 struct spdk_nvmf_rdma_poll_group *rgroup, struct spdk_nvmf_rdma_device *device, 3951 struct spdk_nvmf_rdma_poller **out_poller) 3952 { 3953 struct spdk_nvmf_rdma_poller *poller; 3954 struct spdk_rdma_srq_init_attr srq_init_attr; 3955 struct spdk_nvmf_rdma_resource_opts opts; 3956 int num_cqe; 3957 3958 poller = calloc(1, sizeof(*poller)); 3959 if (!poller) { 3960 SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n"); 3961 return -1; 3962 } 3963 3964 poller->device = device; 3965 poller->group = rgroup; 3966 *out_poller = poller; 3967 3968 RB_INIT(&poller->qpairs); 3969 STAILQ_INIT(&poller->qpairs_pending_send); 3970 STAILQ_INIT(&poller->qpairs_pending_recv); 3971 3972 TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link); 3973 SPDK_DEBUGLOG(rdma, "Create poller %p on device %p in poll group %p.\n", poller, device, rgroup); 3974 if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) { 3975 if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) { 3976 SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n", 3977 rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr); 3978 } 3979 poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr); 3980 3981 device->num_srq++; 3982 memset(&srq_init_attr, 0, sizeof(srq_init_attr)); 3983 srq_init_attr.pd = device->pd; 3984 srq_init_attr.stats = &poller->stat.qp_stats.recv; 3985 srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth; 3986 srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 3987 poller->srq = spdk_rdma_srq_create(&srq_init_attr); 3988 if (!poller->srq) { 3989 SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno); 3990 return -1; 3991 } 3992 3993 opts.qp = poller->srq; 3994 opts.map = device->map; 3995 opts.qpair = NULL; 3996 opts.shared = true; 3997 opts.max_queue_depth = poller->max_srq_depth; 3998 opts.in_capsule_data_size = rtransport->transport.opts.in_capsule_data_size; 3999 4000 poller->resources = nvmf_rdma_resources_create(&opts); 4001 if (!poller->resources) { 4002 SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n"); 4003 return -1; 4004 } 4005 } 4006 4007 /* 4008 * When using an srq, we can limit the completion queue at startup. 4009 * The following formula represents the calculation: 4010 * num_cqe = num_recv + num_data_wr + num_send_wr. 4011 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth 4012 */ 4013 if (poller->srq) { 4014 num_cqe = poller->max_srq_depth * 3; 4015 } else { 4016 num_cqe = rtransport->rdma_opts.num_cqe; 4017 } 4018 4019 poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0); 4020 if (!poller->cq) { 4021 SPDK_ERRLOG("Unable to create completion queue\n"); 4022 return -1; 4023 } 4024 poller->num_cqe = num_cqe; 4025 return 0; 4026 } 4027 4028 static void 4029 _nvmf_rdma_register_poller_in_group(void *c) 4030 { 4031 struct spdk_nvmf_rdma_poller *poller; 4032 struct poller_manage_ctx *ctx = c; 4033 struct spdk_nvmf_rdma_device *device; 4034 int rc; 4035 4036 rc = nvmf_rdma_poller_create(ctx->rtransport, ctx->rgroup, ctx->device, &poller); 4037 if (rc < 0 && poller) { 4038 nvmf_rdma_poller_destroy(poller); 4039 } 4040 4041 device = ctx->device; 4042 if (nvmf_rdma_all_pollers_management_done(ctx)) { 4043 device->is_ready = true; 4044 } 4045 } 4046 4047 static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group); 4048 4049 static struct spdk_nvmf_transport_poll_group * 4050 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport, 4051 struct spdk_nvmf_poll_group *group) 4052 { 4053 struct spdk_nvmf_rdma_transport *rtransport; 4054 struct spdk_nvmf_rdma_poll_group *rgroup; 4055 struct spdk_nvmf_rdma_poller *poller; 4056 struct spdk_nvmf_rdma_device *device; 4057 int rc; 4058 4059 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 4060 4061 rgroup = calloc(1, sizeof(*rgroup)); 4062 if (!rgroup) { 4063 return NULL; 4064 } 4065 4066 TAILQ_INIT(&rgroup->pollers); 4067 4068 TAILQ_FOREACH(device, &rtransport->devices, link) { 4069 rc = nvmf_rdma_poller_create(rtransport, rgroup, device, &poller); 4070 if (rc < 0) { 4071 nvmf_rdma_poll_group_destroy(&rgroup->group); 4072 return NULL; 4073 } 4074 } 4075 4076 TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link); 4077 if (rtransport->conn_sched.next_admin_pg == NULL) { 4078 rtransport->conn_sched.next_admin_pg = rgroup; 4079 rtransport->conn_sched.next_io_pg = rgroup; 4080 } 4081 4082 return &rgroup->group; 4083 } 4084 4085 static uint32_t 4086 nvmf_poll_group_get_io_qpair_count(struct spdk_nvmf_poll_group *pg) 4087 { 4088 uint32_t count; 4089 4090 /* Just assume that unassociated qpairs will eventually be io 4091 * qpairs. This is close enough for the use cases for this 4092 * function. 4093 */ 4094 pthread_mutex_lock(&pg->mutex); 4095 count = pg->stat.current_io_qpairs + pg->current_unassociated_qpairs; 4096 pthread_mutex_unlock(&pg->mutex); 4097 4098 return count; 4099 } 4100 4101 static struct spdk_nvmf_transport_poll_group * 4102 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair) 4103 { 4104 struct spdk_nvmf_rdma_transport *rtransport; 4105 struct spdk_nvmf_rdma_poll_group **pg; 4106 struct spdk_nvmf_transport_poll_group *result; 4107 uint32_t count; 4108 4109 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 4110 4111 if (TAILQ_EMPTY(&rtransport->poll_groups)) { 4112 return NULL; 4113 } 4114 4115 if (qpair->qid == 0) { 4116 pg = &rtransport->conn_sched.next_admin_pg; 4117 } else { 4118 struct spdk_nvmf_rdma_poll_group *pg_min, *pg_start, *pg_current; 4119 uint32_t min_value; 4120 4121 pg = &rtransport->conn_sched.next_io_pg; 4122 pg_min = *pg; 4123 pg_start = *pg; 4124 pg_current = *pg; 4125 min_value = nvmf_poll_group_get_io_qpair_count(pg_current->group.group); 4126 4127 while ((count = nvmf_poll_group_get_io_qpair_count(pg_current->group.group)) > 0) { 4128 if (count < min_value) { 4129 min_value = count; 4130 pg_min = pg_current; 4131 } 4132 4133 pg_current = TAILQ_NEXT(pg_current, link); 4134 if (pg_current == NULL) { 4135 pg_current = TAILQ_FIRST(&rtransport->poll_groups); 4136 } 4137 4138 if (pg_current == pg_start) { 4139 break; 4140 } 4141 } 4142 *pg = pg_min; 4143 } 4144 4145 assert(*pg != NULL); 4146 4147 result = &(*pg)->group; 4148 4149 *pg = TAILQ_NEXT(*pg, link); 4150 if (*pg == NULL) { 4151 *pg = TAILQ_FIRST(&rtransport->poll_groups); 4152 } 4153 4154 return result; 4155 } 4156 4157 static void 4158 nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller) 4159 { 4160 struct spdk_nvmf_rdma_qpair *qpair, *tmp_qpair; 4161 int rc; 4162 4163 TAILQ_REMOVE(&poller->group->pollers, poller, link); 4164 RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) { 4165 nvmf_rdma_qpair_destroy(qpair); 4166 } 4167 4168 if (poller->srq) { 4169 if (poller->resources) { 4170 nvmf_rdma_resources_destroy(poller->resources); 4171 } 4172 spdk_rdma_srq_destroy(poller->srq); 4173 SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq); 4174 } 4175 4176 if (poller->cq) { 4177 rc = ibv_destroy_cq(poller->cq); 4178 if (rc != 0) { 4179 SPDK_ERRLOG("Destroy cq return %d, error: %s\n", rc, strerror(errno)); 4180 } 4181 } 4182 4183 if (poller->destroy_cb) { 4184 poller->destroy_cb(poller->destroy_cb_ctx); 4185 poller->destroy_cb = NULL; 4186 } 4187 4188 free(poller); 4189 } 4190 4191 static void 4192 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group) 4193 { 4194 struct spdk_nvmf_rdma_poll_group *rgroup, *next_rgroup; 4195 struct spdk_nvmf_rdma_poller *poller, *tmp; 4196 struct spdk_nvmf_rdma_transport *rtransport; 4197 4198 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4199 if (!rgroup) { 4200 return; 4201 } 4202 4203 TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) { 4204 nvmf_rdma_poller_destroy(poller); 4205 } 4206 4207 if (rgroup->group.transport == NULL) { 4208 /* Transport can be NULL when nvmf_rdma_poll_group_create() 4209 * calls this function directly in a failure path. */ 4210 free(rgroup); 4211 return; 4212 } 4213 4214 rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport); 4215 4216 next_rgroup = TAILQ_NEXT(rgroup, link); 4217 TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link); 4218 if (next_rgroup == NULL) { 4219 next_rgroup = TAILQ_FIRST(&rtransport->poll_groups); 4220 } 4221 if (rtransport->conn_sched.next_admin_pg == rgroup) { 4222 rtransport->conn_sched.next_admin_pg = next_rgroup; 4223 } 4224 if (rtransport->conn_sched.next_io_pg == rgroup) { 4225 rtransport->conn_sched.next_io_pg = next_rgroup; 4226 } 4227 4228 free(rgroup); 4229 } 4230 4231 static void 4232 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair) 4233 { 4234 if (rqpair->cm_id != NULL) { 4235 nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 4236 } 4237 } 4238 4239 static int 4240 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group, 4241 struct spdk_nvmf_qpair *qpair) 4242 { 4243 struct spdk_nvmf_rdma_poll_group *rgroup; 4244 struct spdk_nvmf_rdma_qpair *rqpair; 4245 struct spdk_nvmf_rdma_device *device; 4246 struct spdk_nvmf_rdma_poller *poller; 4247 int rc; 4248 4249 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4250 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4251 4252 device = rqpair->device; 4253 4254 TAILQ_FOREACH(poller, &rgroup->pollers, link) { 4255 if (poller->device == device) { 4256 break; 4257 } 4258 } 4259 4260 if (!poller) { 4261 SPDK_ERRLOG("No poller found for device.\n"); 4262 return -1; 4263 } 4264 4265 if (poller->need_destroy) { 4266 SPDK_ERRLOG("Poller is destroying.\n"); 4267 return -1; 4268 } 4269 4270 rqpair->poller = poller; 4271 rqpair->srq = rqpair->poller->srq; 4272 4273 rc = nvmf_rdma_qpair_initialize(qpair); 4274 if (rc < 0) { 4275 SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair); 4276 rqpair->poller = NULL; 4277 rqpair->srq = NULL; 4278 return -1; 4279 } 4280 4281 RB_INSERT(qpairs_tree, &poller->qpairs, rqpair); 4282 4283 rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair); 4284 if (rc) { 4285 /* Try to reject, but we probably can't */ 4286 nvmf_rdma_qpair_reject_connection(rqpair); 4287 return -1; 4288 } 4289 4290 nvmf_rdma_update_ibv_state(rqpair); 4291 4292 return 0; 4293 } 4294 4295 static int 4296 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group, 4297 struct spdk_nvmf_qpair *qpair) 4298 { 4299 struct spdk_nvmf_rdma_qpair *rqpair; 4300 4301 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4302 assert(group->transport->tgt != NULL); 4303 4304 rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt); 4305 4306 if (!rqpair->destruct_channel) { 4307 SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair); 4308 return 0; 4309 } 4310 4311 /* Sanity check that we get io_channel on the correct thread */ 4312 if (qpair->group) { 4313 assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel)); 4314 } 4315 4316 return 0; 4317 } 4318 4319 static int 4320 nvmf_rdma_request_free(struct spdk_nvmf_request *req) 4321 { 4322 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 4323 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 4324 struct spdk_nvmf_rdma_transport, transport); 4325 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 4326 struct spdk_nvmf_rdma_qpair, qpair); 4327 4328 /* 4329 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request 4330 * needs to be returned to the shared receive queue or the poll group will eventually be 4331 * starved of RECV structures. 4332 */ 4333 if (rqpair->srq && rdma_req->recv) { 4334 int rc; 4335 struct ibv_recv_wr *bad_recv_wr; 4336 4337 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr); 4338 rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr); 4339 if (rc) { 4340 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 4341 } 4342 } 4343 4344 _nvmf_rdma_request_free(rdma_req, rtransport); 4345 return 0; 4346 } 4347 4348 static int 4349 nvmf_rdma_request_complete(struct spdk_nvmf_request *req) 4350 { 4351 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 4352 struct spdk_nvmf_rdma_transport, transport); 4353 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, 4354 struct spdk_nvmf_rdma_request, req); 4355 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 4356 struct spdk_nvmf_rdma_qpair, qpair); 4357 4358 if (rqpair->ibv_state != IBV_QPS_ERR) { 4359 /* The connection is alive, so process the request as normal */ 4360 rdma_req->state = RDMA_REQUEST_STATE_EXECUTED; 4361 } else { 4362 /* The connection is dead. Move the request directly to the completed state. */ 4363 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4364 } 4365 4366 nvmf_rdma_request_process(rtransport, rdma_req); 4367 4368 return 0; 4369 } 4370 4371 static void 4372 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair, 4373 spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg) 4374 { 4375 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4376 4377 rqpair->to_close = true; 4378 4379 /* This happens only when the qpair is disconnected before 4380 * it is added to the poll group. Since there is no poll group, 4381 * the RDMA qp has not been initialized yet and the RDMA CM 4382 * event has not yet been acknowledged, so we need to reject it. 4383 */ 4384 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) { 4385 nvmf_rdma_qpair_reject_connection(rqpair); 4386 nvmf_rdma_qpair_destroy(rqpair); 4387 return; 4388 } 4389 4390 if (rqpair->rdma_qp) { 4391 spdk_rdma_qp_disconnect(rqpair->rdma_qp); 4392 } 4393 4394 nvmf_rdma_destroy_drained_qpair(rqpair); 4395 4396 if (cb_fn) { 4397 cb_fn(cb_arg); 4398 } 4399 } 4400 4401 static struct spdk_nvmf_rdma_qpair * 4402 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc) 4403 { 4404 struct spdk_nvmf_rdma_qpair find; 4405 4406 find.qp_num = wc->qp_num; 4407 4408 return RB_FIND(qpairs_tree, &rpoller->qpairs, &find); 4409 } 4410 4411 #ifdef DEBUG 4412 static int 4413 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req) 4414 { 4415 return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST || 4416 rdma_req->state == RDMA_REQUEST_STATE_COMPLETING; 4417 } 4418 #endif 4419 4420 static void 4421 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr, 4422 int rc) 4423 { 4424 struct spdk_nvmf_rdma_recv *rdma_recv; 4425 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 4426 4427 SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc); 4428 while (bad_recv_wr != NULL) { 4429 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id; 4430 rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 4431 4432 rdma_recv->qpair->current_recv_depth++; 4433 bad_recv_wr = bad_recv_wr->next; 4434 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc); 4435 spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair, NULL, NULL); 4436 } 4437 } 4438 4439 static void 4440 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc) 4441 { 4442 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc); 4443 while (bad_recv_wr != NULL) { 4444 bad_recv_wr = bad_recv_wr->next; 4445 rqpair->current_recv_depth++; 4446 } 4447 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4448 } 4449 4450 static void 4451 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 4452 struct spdk_nvmf_rdma_poller *rpoller) 4453 { 4454 struct spdk_nvmf_rdma_qpair *rqpair; 4455 struct ibv_recv_wr *bad_recv_wr; 4456 int rc; 4457 4458 if (rpoller->srq) { 4459 rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr); 4460 if (rc) { 4461 _poller_reset_failed_recvs(rpoller, bad_recv_wr, rc); 4462 } 4463 } else { 4464 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) { 4465 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv); 4466 rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr); 4467 if (rc) { 4468 _qp_reset_failed_recvs(rqpair, bad_recv_wr, rc); 4469 } 4470 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link); 4471 } 4472 } 4473 } 4474 4475 static void 4476 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport, 4477 struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc) 4478 { 4479 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 4480 struct spdk_nvmf_rdma_request *prev_rdma_req = NULL, *cur_rdma_req = NULL; 4481 4482 SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc); 4483 for (; bad_wr != NULL; bad_wr = bad_wr->next) { 4484 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id; 4485 assert(rqpair->current_send_depth > 0); 4486 rqpair->current_send_depth--; 4487 switch (bad_rdma_wr->type) { 4488 case RDMA_WR_TYPE_DATA: 4489 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data_wr); 4490 if (bad_wr->opcode == IBV_WR_RDMA_READ) { 4491 assert(rqpair->current_read_depth > 0); 4492 rqpair->current_read_depth--; 4493 } 4494 break; 4495 case RDMA_WR_TYPE_SEND: 4496 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr); 4497 break; 4498 default: 4499 SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair); 4500 prev_rdma_req = cur_rdma_req; 4501 continue; 4502 } 4503 4504 if (prev_rdma_req == cur_rdma_req) { 4505 /* this request was handled by an earlier wr. i.e. we were performing an nvme read. */ 4506 /* We only have to check against prev_wr since each requests wrs are contiguous in this list. */ 4507 continue; 4508 } 4509 4510 switch (cur_rdma_req->state) { 4511 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 4512 cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 4513 cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 4514 break; 4515 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 4516 case RDMA_REQUEST_STATE_COMPLETING: 4517 cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4518 break; 4519 default: 4520 SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n", 4521 cur_rdma_req->state, rqpair); 4522 continue; 4523 } 4524 4525 nvmf_rdma_request_process(rtransport, cur_rdma_req); 4526 prev_rdma_req = cur_rdma_req; 4527 } 4528 4529 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 4530 /* Disconnect the connection. */ 4531 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4532 } 4533 4534 } 4535 4536 static void 4537 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 4538 struct spdk_nvmf_rdma_poller *rpoller) 4539 { 4540 struct spdk_nvmf_rdma_qpair *rqpair; 4541 struct ibv_send_wr *bad_wr = NULL; 4542 int rc; 4543 4544 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) { 4545 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send); 4546 rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr); 4547 4548 /* bad wr always points to the first wr that failed. */ 4549 if (rc) { 4550 _qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc); 4551 } 4552 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link); 4553 } 4554 } 4555 4556 static const char * 4557 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type) 4558 { 4559 switch (wr_type) { 4560 case RDMA_WR_TYPE_RECV: 4561 return "RECV"; 4562 case RDMA_WR_TYPE_SEND: 4563 return "SEND"; 4564 case RDMA_WR_TYPE_DATA: 4565 return "DATA"; 4566 default: 4567 SPDK_ERRLOG("Unknown WR type %d\n", wr_type); 4568 SPDK_UNREACHABLE(); 4569 } 4570 } 4571 4572 static inline void 4573 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc) 4574 { 4575 enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type; 4576 4577 if (wc->status == IBV_WC_WR_FLUSH_ERR) { 4578 /* If qpair is in ERR state, we will receive completions for all posted and not completed 4579 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */ 4580 SPDK_DEBUGLOG(rdma, 4581 "Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n", 4582 rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id, 4583 nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status)); 4584 } else { 4585 SPDK_ERRLOG("Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n", 4586 rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id, 4587 nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status)); 4588 } 4589 } 4590 4591 static int 4592 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport, 4593 struct spdk_nvmf_rdma_poller *rpoller) 4594 { 4595 struct ibv_wc wc[32]; 4596 struct spdk_nvmf_rdma_wr *rdma_wr; 4597 struct spdk_nvmf_rdma_request *rdma_req; 4598 struct spdk_nvmf_rdma_recv *rdma_recv; 4599 struct spdk_nvmf_rdma_qpair *rqpair, *tmp_rqpair; 4600 int reaped, i; 4601 int count = 0; 4602 int rc; 4603 bool error = false; 4604 uint64_t poll_tsc = spdk_get_ticks(); 4605 4606 if (spdk_unlikely(rpoller->need_destroy)) { 4607 /* If qpair is closed before poller destroy, nvmf_rdma_destroy_drained_qpair may not 4608 * be called because we cannot poll anything from cq. So we call that here to force 4609 * destroy the qpair after to_close turning true. 4610 */ 4611 RB_FOREACH_SAFE(rqpair, qpairs_tree, &rpoller->qpairs, tmp_rqpair) { 4612 nvmf_rdma_destroy_drained_qpair(rqpair); 4613 } 4614 return 0; 4615 } 4616 4617 /* Poll for completing operations. */ 4618 reaped = ibv_poll_cq(rpoller->cq, 32, wc); 4619 if (reaped < 0) { 4620 SPDK_ERRLOG("Error polling CQ! (%d): %s\n", 4621 errno, spdk_strerror(errno)); 4622 return -1; 4623 } else if (reaped == 0) { 4624 rpoller->stat.idle_polls++; 4625 } 4626 4627 rpoller->stat.polls++; 4628 rpoller->stat.completions += reaped; 4629 4630 for (i = 0; i < reaped; i++) { 4631 4632 rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id; 4633 4634 switch (rdma_wr->type) { 4635 case RDMA_WR_TYPE_SEND: 4636 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr); 4637 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 4638 4639 if (!wc[i].status) { 4640 count++; 4641 assert(wc[i].opcode == IBV_WC_SEND); 4642 assert(nvmf_rdma_req_is_completing(rdma_req)); 4643 } 4644 4645 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4646 /* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */ 4647 rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1; 4648 rdma_req->num_outstanding_data_wr = 0; 4649 4650 nvmf_rdma_request_process(rtransport, rdma_req); 4651 break; 4652 case RDMA_WR_TYPE_RECV: 4653 /* rdma_recv->qpair will be invalid if using an SRQ. In that case we have to get the qpair from the wc. */ 4654 rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 4655 if (rpoller->srq != NULL) { 4656 rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]); 4657 /* It is possible that there are still some completions for destroyed QP 4658 * associated with SRQ. We just ignore these late completions and re-post 4659 * receive WRs back to SRQ. 4660 */ 4661 if (spdk_unlikely(NULL == rdma_recv->qpair)) { 4662 struct ibv_recv_wr *bad_wr; 4663 4664 rdma_recv->wr.next = NULL; 4665 spdk_rdma_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr); 4666 rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_wr); 4667 if (rc) { 4668 SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc); 4669 } 4670 continue; 4671 } 4672 } 4673 rqpair = rdma_recv->qpair; 4674 4675 assert(rqpair != NULL); 4676 if (!wc[i].status) { 4677 assert(wc[i].opcode == IBV_WC_RECV); 4678 if (rqpair->current_recv_depth >= rqpair->max_queue_depth) { 4679 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4680 break; 4681 } 4682 } 4683 4684 rdma_recv->wr.next = NULL; 4685 rqpair->current_recv_depth++; 4686 rdma_recv->receive_tsc = poll_tsc; 4687 rpoller->stat.requests++; 4688 STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link); 4689 break; 4690 case RDMA_WR_TYPE_DATA: 4691 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data_wr); 4692 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 4693 4694 assert(rdma_req->num_outstanding_data_wr > 0); 4695 4696 rqpair->current_send_depth--; 4697 rdma_req->num_outstanding_data_wr--; 4698 if (!wc[i].status) { 4699 assert(wc[i].opcode == IBV_WC_RDMA_READ); 4700 rqpair->current_read_depth--; 4701 /* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */ 4702 if (rdma_req->num_outstanding_data_wr == 0) { 4703 if (spdk_unlikely(rdma_req->num_remaining_data_wr)) { 4704 /* Only part of RDMA_READ operations was submitted, process the rest */ 4705 rc = nvmf_rdma_request_reset_transfer_in(rdma_req, rtransport); 4706 if (spdk_likely(!rc)) { 4707 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link); 4708 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING; 4709 } else { 4710 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 4711 rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 4712 } 4713 nvmf_rdma_request_process(rtransport, rdma_req); 4714 break; 4715 } 4716 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 4717 nvmf_rdma_request_process(rtransport, rdma_req); 4718 } 4719 } else { 4720 /* If the data transfer fails still force the queue into the error state, 4721 * if we were performing an RDMA_READ, we need to force the request into a 4722 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE 4723 * case, we should wait for the SEND to complete. */ 4724 if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) { 4725 rqpair->current_read_depth--; 4726 if (rdma_req->num_outstanding_data_wr == 0) { 4727 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4728 } 4729 } 4730 } 4731 break; 4732 default: 4733 SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode); 4734 continue; 4735 } 4736 4737 /* Handle error conditions */ 4738 if (wc[i].status) { 4739 nvmf_rdma_update_ibv_state(rqpair); 4740 nvmf_rdma_log_wc_status(rqpair, &wc[i]); 4741 4742 error = true; 4743 4744 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 4745 /* Disconnect the connection. */ 4746 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4747 } else { 4748 nvmf_rdma_destroy_drained_qpair(rqpair); 4749 } 4750 continue; 4751 } 4752 4753 nvmf_rdma_qpair_process_pending(rtransport, rqpair, false); 4754 4755 if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 4756 nvmf_rdma_destroy_drained_qpair(rqpair); 4757 } 4758 } 4759 4760 if (error == true) { 4761 return -1; 4762 } 4763 4764 /* submit outstanding work requests. */ 4765 _poller_submit_recvs(rtransport, rpoller); 4766 _poller_submit_sends(rtransport, rpoller); 4767 4768 return count; 4769 } 4770 4771 static void 4772 _nvmf_rdma_remove_destroyed_device(void *c) 4773 { 4774 struct spdk_nvmf_rdma_transport *rtransport = c; 4775 struct spdk_nvmf_rdma_device *device, *device_tmp; 4776 int rc; 4777 4778 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) { 4779 if (device->ready_to_destroy) { 4780 destroy_ib_device(rtransport, device); 4781 } 4782 } 4783 4784 free_poll_fds(rtransport); 4785 rc = generate_poll_fds(rtransport); 4786 /* cannot handle fd allocation error here */ 4787 if (rc != 0) { 4788 SPDK_ERRLOG("Failed to generate poll fds after remove ib device.\n"); 4789 } 4790 } 4791 4792 static void 4793 _nvmf_rdma_remove_poller_in_group_cb(void *c) 4794 { 4795 struct poller_manage_ctx *ctx = c; 4796 struct spdk_nvmf_rdma_transport *rtransport = ctx->rtransport; 4797 struct spdk_nvmf_rdma_device *device = ctx->device; 4798 struct spdk_thread *thread = ctx->thread; 4799 4800 if (nvmf_rdma_all_pollers_management_done(c)) { 4801 /* destroy device when last poller is destroyed */ 4802 device->ready_to_destroy = true; 4803 spdk_thread_send_msg(thread, _nvmf_rdma_remove_destroyed_device, rtransport); 4804 } 4805 } 4806 4807 static void 4808 _nvmf_rdma_remove_poller_in_group(void *c) 4809 { 4810 struct poller_manage_ctx *ctx = c; 4811 4812 ctx->rpoller->need_destroy = true; 4813 ctx->rpoller->destroy_cb_ctx = ctx; 4814 ctx->rpoller->destroy_cb = _nvmf_rdma_remove_poller_in_group_cb; 4815 4816 /* qp will be disconnected after receiving a RDMA_CM_EVENT_DEVICE_REMOVAL event. */ 4817 if (RB_EMPTY(&ctx->rpoller->qpairs)) { 4818 nvmf_rdma_poller_destroy(ctx->rpoller); 4819 } 4820 } 4821 4822 static int 4823 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group) 4824 { 4825 struct spdk_nvmf_rdma_transport *rtransport; 4826 struct spdk_nvmf_rdma_poll_group *rgroup; 4827 struct spdk_nvmf_rdma_poller *rpoller, *tmp; 4828 int count, rc; 4829 4830 rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport); 4831 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4832 4833 count = 0; 4834 TAILQ_FOREACH_SAFE(rpoller, &rgroup->pollers, link, tmp) { 4835 rc = nvmf_rdma_poller_poll(rtransport, rpoller); 4836 if (rc < 0) { 4837 return rc; 4838 } 4839 count += rc; 4840 } 4841 4842 return count; 4843 } 4844 4845 static int 4846 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 4847 struct spdk_nvme_transport_id *trid, 4848 bool peer) 4849 { 4850 struct sockaddr *saddr; 4851 uint16_t port; 4852 4853 spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA); 4854 4855 if (peer) { 4856 saddr = rdma_get_peer_addr(id); 4857 } else { 4858 saddr = rdma_get_local_addr(id); 4859 } 4860 switch (saddr->sa_family) { 4861 case AF_INET: { 4862 struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr; 4863 4864 trid->adrfam = SPDK_NVMF_ADRFAM_IPV4; 4865 inet_ntop(AF_INET, &saddr_in->sin_addr, 4866 trid->traddr, sizeof(trid->traddr)); 4867 if (peer) { 4868 port = ntohs(rdma_get_dst_port(id)); 4869 } else { 4870 port = ntohs(rdma_get_src_port(id)); 4871 } 4872 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 4873 break; 4874 } 4875 case AF_INET6: { 4876 struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr; 4877 trid->adrfam = SPDK_NVMF_ADRFAM_IPV6; 4878 inet_ntop(AF_INET6, &saddr_in->sin6_addr, 4879 trid->traddr, sizeof(trid->traddr)); 4880 if (peer) { 4881 port = ntohs(rdma_get_dst_port(id)); 4882 } else { 4883 port = ntohs(rdma_get_src_port(id)); 4884 } 4885 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 4886 break; 4887 } 4888 default: 4889 return -1; 4890 4891 } 4892 4893 return 0; 4894 } 4895 4896 static int 4897 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair, 4898 struct spdk_nvme_transport_id *trid) 4899 { 4900 struct spdk_nvmf_rdma_qpair *rqpair; 4901 4902 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4903 4904 return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true); 4905 } 4906 4907 static int 4908 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair, 4909 struct spdk_nvme_transport_id *trid) 4910 { 4911 struct spdk_nvmf_rdma_qpair *rqpair; 4912 4913 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4914 4915 return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false); 4916 } 4917 4918 static int 4919 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair, 4920 struct spdk_nvme_transport_id *trid) 4921 { 4922 struct spdk_nvmf_rdma_qpair *rqpair; 4923 4924 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4925 4926 return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false); 4927 } 4928 4929 void 4930 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) 4931 { 4932 g_nvmf_hooks = *hooks; 4933 } 4934 4935 static void 4936 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req, 4937 struct spdk_nvmf_rdma_request *rdma_req_to_abort) 4938 { 4939 rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC; 4940 rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; 4941 4942 rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 4943 4944 req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */ 4945 } 4946 4947 static int 4948 _nvmf_rdma_qpair_abort_request(void *ctx) 4949 { 4950 struct spdk_nvmf_request *req = ctx; 4951 struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF( 4952 req->req_to_abort, struct spdk_nvmf_rdma_request, req); 4953 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair, 4954 struct spdk_nvmf_rdma_qpair, qpair); 4955 int rc; 4956 4957 spdk_poller_unregister(&req->poller); 4958 4959 switch (rdma_req_to_abort->state) { 4960 case RDMA_REQUEST_STATE_EXECUTING: 4961 rc = nvmf_ctrlr_abort_request(req); 4962 if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) { 4963 return SPDK_POLLER_BUSY; 4964 } 4965 break; 4966 4967 case RDMA_REQUEST_STATE_NEED_BUFFER: 4968 STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue, 4969 &rdma_req_to_abort->req, spdk_nvmf_request, buf_link); 4970 4971 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); 4972 break; 4973 4974 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 4975 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort, 4976 spdk_nvmf_rdma_request, state_link); 4977 4978 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); 4979 break; 4980 4981 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 4982 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort, 4983 spdk_nvmf_rdma_request, state_link); 4984 4985 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); 4986 break; 4987 4988 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 4989 if (spdk_get_ticks() < req->timeout_tsc) { 4990 req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0); 4991 return SPDK_POLLER_BUSY; 4992 } 4993 break; 4994 4995 default: 4996 break; 4997 } 4998 4999 spdk_nvmf_request_complete(req); 5000 return SPDK_POLLER_BUSY; 5001 } 5002 5003 static void 5004 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair, 5005 struct spdk_nvmf_request *req) 5006 { 5007 struct spdk_nvmf_rdma_qpair *rqpair; 5008 struct spdk_nvmf_rdma_transport *rtransport; 5009 struct spdk_nvmf_transport *transport; 5010 uint16_t cid; 5011 uint32_t i, max_req_count; 5012 struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req; 5013 5014 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 5015 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 5016 transport = &rtransport->transport; 5017 5018 cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid; 5019 max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth; 5020 5021 for (i = 0; i < max_req_count; i++) { 5022 rdma_req = &rqpair->resources->reqs[i]; 5023 /* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair 5024 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to 5025 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */ 5026 if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid && 5027 rdma_req->req.qpair == qpair) { 5028 rdma_req_to_abort = rdma_req; 5029 break; 5030 } 5031 } 5032 5033 if (rdma_req_to_abort == NULL) { 5034 spdk_nvmf_request_complete(req); 5035 return; 5036 } 5037 5038 req->req_to_abort = &rdma_req_to_abort->req; 5039 req->timeout_tsc = spdk_get_ticks() + 5040 transport->opts.abort_timeout_sec * spdk_get_ticks_hz(); 5041 req->poller = NULL; 5042 5043 _nvmf_rdma_qpair_abort_request(req); 5044 } 5045 5046 static void 5047 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group, 5048 struct spdk_json_write_ctx *w) 5049 { 5050 struct spdk_nvmf_rdma_poll_group *rgroup; 5051 struct spdk_nvmf_rdma_poller *rpoller; 5052 5053 assert(w != NULL); 5054 5055 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 5056 5057 spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer); 5058 5059 spdk_json_write_named_array_begin(w, "devices"); 5060 5061 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 5062 spdk_json_write_object_begin(w); 5063 spdk_json_write_named_string(w, "name", 5064 ibv_get_device_name(rpoller->device->context->device)); 5065 spdk_json_write_named_uint64(w, "polls", 5066 rpoller->stat.polls); 5067 spdk_json_write_named_uint64(w, "idle_polls", 5068 rpoller->stat.idle_polls); 5069 spdk_json_write_named_uint64(w, "completions", 5070 rpoller->stat.completions); 5071 spdk_json_write_named_uint64(w, "requests", 5072 rpoller->stat.requests); 5073 spdk_json_write_named_uint64(w, "request_latency", 5074 rpoller->stat.request_latency); 5075 spdk_json_write_named_uint64(w, "pending_free_request", 5076 rpoller->stat.pending_free_request); 5077 spdk_json_write_named_uint64(w, "pending_rdma_read", 5078 rpoller->stat.pending_rdma_read); 5079 spdk_json_write_named_uint64(w, "pending_rdma_write", 5080 rpoller->stat.pending_rdma_write); 5081 spdk_json_write_named_uint64(w, "total_send_wrs", 5082 rpoller->stat.qp_stats.send.num_submitted_wrs); 5083 spdk_json_write_named_uint64(w, "send_doorbell_updates", 5084 rpoller->stat.qp_stats.send.doorbell_updates); 5085 spdk_json_write_named_uint64(w, "total_recv_wrs", 5086 rpoller->stat.qp_stats.recv.num_submitted_wrs); 5087 spdk_json_write_named_uint64(w, "recv_doorbell_updates", 5088 rpoller->stat.qp_stats.recv.doorbell_updates); 5089 spdk_json_write_object_end(w); 5090 } 5091 5092 spdk_json_write_array_end(w); 5093 } 5094 5095 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = { 5096 .name = "RDMA", 5097 .type = SPDK_NVME_TRANSPORT_RDMA, 5098 .opts_init = nvmf_rdma_opts_init, 5099 .create = nvmf_rdma_create, 5100 .dump_opts = nvmf_rdma_dump_opts, 5101 .destroy = nvmf_rdma_destroy, 5102 5103 .listen = nvmf_rdma_listen, 5104 .stop_listen = nvmf_rdma_stop_listen, 5105 .cdata_init = nvmf_rdma_cdata_init, 5106 5107 .listener_discover = nvmf_rdma_discover, 5108 5109 .poll_group_create = nvmf_rdma_poll_group_create, 5110 .get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group, 5111 .poll_group_destroy = nvmf_rdma_poll_group_destroy, 5112 .poll_group_add = nvmf_rdma_poll_group_add, 5113 .poll_group_remove = nvmf_rdma_poll_group_remove, 5114 .poll_group_poll = nvmf_rdma_poll_group_poll, 5115 5116 .req_free = nvmf_rdma_request_free, 5117 .req_complete = nvmf_rdma_request_complete, 5118 5119 .qpair_fini = nvmf_rdma_close_qpair, 5120 .qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid, 5121 .qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid, 5122 .qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid, 5123 .qpair_abort_request = nvmf_rdma_qpair_abort_request, 5124 5125 .poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat, 5126 }; 5127 5128 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma); 5129 SPDK_LOG_REGISTER_COMPONENT(rdma) 5130