1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. All rights reserved. 5 * Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk/stdinc.h" 35 36 #include <infiniband/verbs.h> 37 #include <rdma/rdma_cma.h> 38 #include <rdma/rdma_verbs.h> 39 40 #include "spdk/config.h" 41 #include "spdk/thread.h" 42 #include "spdk/likely.h" 43 #include "spdk/nvmf_transport.h" 44 #include "spdk/string.h" 45 #include "spdk/trace.h" 46 #include "spdk/util.h" 47 48 #include "spdk_internal/assert.h" 49 #include "spdk_internal/log.h" 50 51 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {}; 52 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma; 53 54 /* 55 RDMA Connection Resource Defaults 56 */ 57 #define NVMF_DEFAULT_TX_SGE SPDK_NVMF_MAX_SGL_ENTRIES 58 #define NVMF_DEFAULT_RSP_SGE 1 59 #define NVMF_DEFAULT_RX_SGE 2 60 61 /* The RDMA completion queue size */ 62 #define DEFAULT_NVMF_RDMA_CQ_SIZE 4096 63 #define MAX_WR_PER_QP(queue_depth) (queue_depth * 3 + 2) 64 65 /* Timeout for destroying defunct rqpairs */ 66 #define NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US 4000000 67 68 static int g_spdk_nvmf_ibv_query_mask = 69 IBV_QP_STATE | 70 IBV_QP_PKEY_INDEX | 71 IBV_QP_PORT | 72 IBV_QP_ACCESS_FLAGS | 73 IBV_QP_AV | 74 IBV_QP_PATH_MTU | 75 IBV_QP_DEST_QPN | 76 IBV_QP_RQ_PSN | 77 IBV_QP_MAX_DEST_RD_ATOMIC | 78 IBV_QP_MIN_RNR_TIMER | 79 IBV_QP_SQ_PSN | 80 IBV_QP_TIMEOUT | 81 IBV_QP_RETRY_CNT | 82 IBV_QP_RNR_RETRY | 83 IBV_QP_MAX_QP_RD_ATOMIC; 84 85 enum spdk_nvmf_rdma_request_state { 86 /* The request is not currently in use */ 87 RDMA_REQUEST_STATE_FREE = 0, 88 89 /* Initial state when request first received */ 90 RDMA_REQUEST_STATE_NEW, 91 92 /* The request is queued until a data buffer is available. */ 93 RDMA_REQUEST_STATE_NEED_BUFFER, 94 95 /* The request is waiting on RDMA queue depth availability 96 * to transfer data from the host to the controller. 97 */ 98 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 99 100 /* The request is currently transferring data from the host to the controller. */ 101 RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 102 103 /* The request is ready to execute at the block device */ 104 RDMA_REQUEST_STATE_READY_TO_EXECUTE, 105 106 /* The request is currently executing at the block device */ 107 RDMA_REQUEST_STATE_EXECUTING, 108 109 /* The request finished executing at the block device */ 110 RDMA_REQUEST_STATE_EXECUTED, 111 112 /* The request is waiting on RDMA queue depth availability 113 * to transfer data from the controller to the host. 114 */ 115 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 116 117 /* The request is ready to send a completion */ 118 RDMA_REQUEST_STATE_READY_TO_COMPLETE, 119 120 /* The request is currently transferring data from the controller to the host. */ 121 RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 122 123 /* The request currently has an outstanding completion without an 124 * associated data transfer. 125 */ 126 RDMA_REQUEST_STATE_COMPLETING, 127 128 /* The request completed and can be marked free. */ 129 RDMA_REQUEST_STATE_COMPLETED, 130 131 /* Terminator */ 132 RDMA_REQUEST_NUM_STATES, 133 }; 134 135 #define OBJECT_NVMF_RDMA_IO 0x40 136 137 #define TRACE_GROUP_NVMF_RDMA 0x4 138 #define TRACE_RDMA_REQUEST_STATE_NEW SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x0) 139 #define TRACE_RDMA_REQUEST_STATE_NEED_BUFFER SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x1) 140 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x2) 141 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x3) 142 #define TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x4) 143 #define TRACE_RDMA_REQUEST_STATE_EXECUTING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x5) 144 #define TRACE_RDMA_REQUEST_STATE_EXECUTED SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x6) 145 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x7) 146 #define TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x8) 147 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x9) 148 #define TRACE_RDMA_REQUEST_STATE_COMPLETING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xA) 149 #define TRACE_RDMA_REQUEST_STATE_COMPLETED SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xB) 150 #define TRACE_RDMA_QP_CREATE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xC) 151 #define TRACE_RDMA_IBV_ASYNC_EVENT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xD) 152 #define TRACE_RDMA_CM_ASYNC_EVENT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xE) 153 #define TRACE_RDMA_QP_STATE_CHANGE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xF) 154 #define TRACE_RDMA_QP_DISCONNECT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x10) 155 #define TRACE_RDMA_QP_DESTROY SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x11) 156 157 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA) 158 { 159 spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r'); 160 spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW, 161 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 1, "cmid: "); 162 spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 163 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 164 spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H", 165 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 166 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 167 spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C", 168 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 169 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 170 spdk_trace_register_description("RDMA_REQ_TX_H2C", 171 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 172 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 173 spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE", 174 TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 175 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 176 spdk_trace_register_description("RDMA_REQ_EXECUTING", 177 TRACE_RDMA_REQUEST_STATE_EXECUTING, 178 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 179 spdk_trace_register_description("RDMA_REQ_EXECUTED", 180 TRACE_RDMA_REQUEST_STATE_EXECUTED, 181 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 182 spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL", 183 TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 184 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 185 spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H", 186 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 187 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 188 spdk_trace_register_description("RDMA_REQ_COMPLETING", 189 TRACE_RDMA_REQUEST_STATE_COMPLETING, 190 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 191 spdk_trace_register_description("RDMA_REQ_COMPLETED", 192 TRACE_RDMA_REQUEST_STATE_COMPLETED, 193 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 194 195 spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE, 196 OWNER_NONE, OBJECT_NONE, 0, 0, ""); 197 spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT, 198 OWNER_NONE, OBJECT_NONE, 0, 0, "type: "); 199 spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT, 200 OWNER_NONE, OBJECT_NONE, 0, 0, "type: "); 201 spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE, 202 OWNER_NONE, OBJECT_NONE, 0, 1, "state: "); 203 spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT, 204 OWNER_NONE, OBJECT_NONE, 0, 0, ""); 205 spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY, 206 OWNER_NONE, OBJECT_NONE, 0, 0, ""); 207 } 208 209 enum spdk_nvmf_rdma_wr_type { 210 RDMA_WR_TYPE_RECV, 211 RDMA_WR_TYPE_SEND, 212 RDMA_WR_TYPE_DATA, 213 }; 214 215 struct spdk_nvmf_rdma_wr { 216 enum spdk_nvmf_rdma_wr_type type; 217 }; 218 219 /* This structure holds commands as they are received off the wire. 220 * It must be dynamically paired with a full request object 221 * (spdk_nvmf_rdma_request) to service a request. It is separate 222 * from the request because RDMA does not appear to order 223 * completions, so occasionally we'll get a new incoming 224 * command when there aren't any free request objects. 225 */ 226 struct spdk_nvmf_rdma_recv { 227 struct ibv_recv_wr wr; 228 struct ibv_sge sgl[NVMF_DEFAULT_RX_SGE]; 229 230 struct spdk_nvmf_rdma_qpair *qpair; 231 232 /* In-capsule data buffer */ 233 uint8_t *buf; 234 235 struct spdk_nvmf_rdma_wr rdma_wr; 236 uint64_t receive_tsc; 237 238 STAILQ_ENTRY(spdk_nvmf_rdma_recv) link; 239 }; 240 241 struct spdk_nvmf_rdma_request_data { 242 struct spdk_nvmf_rdma_wr rdma_wr; 243 struct ibv_send_wr wr; 244 struct ibv_sge sgl[SPDK_NVMF_MAX_SGL_ENTRIES]; 245 }; 246 247 struct spdk_nvmf_rdma_request { 248 struct spdk_nvmf_request req; 249 250 enum spdk_nvmf_rdma_request_state state; 251 252 struct spdk_nvmf_rdma_recv *recv; 253 254 struct { 255 struct spdk_nvmf_rdma_wr rdma_wr; 256 struct ibv_send_wr wr; 257 struct ibv_sge sgl[NVMF_DEFAULT_RSP_SGE]; 258 } rsp; 259 260 struct spdk_nvmf_rdma_request_data data; 261 262 uint32_t iovpos; 263 264 uint32_t num_outstanding_data_wr; 265 uint64_t receive_tsc; 266 267 STAILQ_ENTRY(spdk_nvmf_rdma_request) state_link; 268 }; 269 270 enum spdk_nvmf_rdma_qpair_disconnect_flags { 271 RDMA_QP_DISCONNECTING = 1, 272 RDMA_QP_RECV_DRAINED = 1 << 1, 273 RDMA_QP_SEND_DRAINED = 1 << 2 274 }; 275 276 struct spdk_nvmf_rdma_resource_opts { 277 struct spdk_nvmf_rdma_qpair *qpair; 278 /* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */ 279 void *qp; 280 struct ibv_pd *pd; 281 uint32_t max_queue_depth; 282 uint32_t in_capsule_data_size; 283 bool shared; 284 }; 285 286 struct spdk_nvmf_send_wr_list { 287 struct ibv_send_wr *first; 288 struct ibv_send_wr *last; 289 }; 290 291 struct spdk_nvmf_recv_wr_list { 292 struct ibv_recv_wr *first; 293 struct ibv_recv_wr *last; 294 }; 295 296 struct spdk_nvmf_rdma_resources { 297 /* Array of size "max_queue_depth" containing RDMA requests. */ 298 struct spdk_nvmf_rdma_request *reqs; 299 300 /* Array of size "max_queue_depth" containing RDMA recvs. */ 301 struct spdk_nvmf_rdma_recv *recvs; 302 303 /* Array of size "max_queue_depth" containing 64 byte capsules 304 * used for receive. 305 */ 306 union nvmf_h2c_msg *cmds; 307 struct ibv_mr *cmds_mr; 308 309 /* Array of size "max_queue_depth" containing 16 byte completions 310 * to be sent back to the user. 311 */ 312 union nvmf_c2h_msg *cpls; 313 struct ibv_mr *cpls_mr; 314 315 /* Array of size "max_queue_depth * InCapsuleDataSize" containing 316 * buffers to be used for in capsule data. 317 */ 318 void *bufs; 319 struct ibv_mr *bufs_mr; 320 321 /* The list of pending recvs to transfer */ 322 struct spdk_nvmf_recv_wr_list recvs_to_post; 323 324 /* Receives that are waiting for a request object */ 325 STAILQ_HEAD(, spdk_nvmf_rdma_recv) incoming_queue; 326 327 /* Queue to track free requests */ 328 STAILQ_HEAD(, spdk_nvmf_rdma_request) free_queue; 329 }; 330 331 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair); 332 333 struct spdk_nvmf_rdma_ibv_event_ctx { 334 struct spdk_nvmf_rdma_qpair *rqpair; 335 spdk_nvmf_rdma_qpair_ibv_event cb_fn; 336 /* Link to other ibv events associated with this qpair */ 337 STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx) link; 338 }; 339 340 struct spdk_nvmf_rdma_qpair { 341 struct spdk_nvmf_qpair qpair; 342 343 struct spdk_nvmf_rdma_device *device; 344 struct spdk_nvmf_rdma_poller *poller; 345 346 struct rdma_cm_id *cm_id; 347 struct ibv_srq *srq; 348 struct rdma_cm_id *listen_id; 349 350 /* The maximum number of I/O outstanding on this connection at one time */ 351 uint16_t max_queue_depth; 352 353 /* The maximum number of active RDMA READ and ATOMIC operations at one time */ 354 uint16_t max_read_depth; 355 356 /* The maximum number of RDMA SEND operations at one time */ 357 uint32_t max_send_depth; 358 359 /* The current number of outstanding WRs from this qpair's 360 * recv queue. Should not exceed device->attr.max_queue_depth. 361 */ 362 uint16_t current_recv_depth; 363 364 /* The current number of active RDMA READ operations */ 365 uint16_t current_read_depth; 366 367 /* The current number of posted WRs from this qpair's 368 * send queue. Should not exceed max_send_depth. 369 */ 370 uint32_t current_send_depth; 371 372 /* The maximum number of SGEs per WR on the send queue */ 373 uint32_t max_send_sge; 374 375 /* The maximum number of SGEs per WR on the recv queue */ 376 uint32_t max_recv_sge; 377 378 /* The list of pending send requests for a transfer */ 379 struct spdk_nvmf_send_wr_list sends_to_post; 380 381 struct spdk_nvmf_rdma_resources *resources; 382 383 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_read_queue; 384 385 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_write_queue; 386 387 /* Number of requests not in the free state */ 388 uint32_t qd; 389 390 TAILQ_ENTRY(spdk_nvmf_rdma_qpair) link; 391 392 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) recv_link; 393 394 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) send_link; 395 396 /* IBV queue pair attributes: they are used to manage 397 * qp state and recover from errors. 398 */ 399 enum ibv_qp_state ibv_state; 400 401 uint32_t disconnect_flags; 402 403 /* Poller registered in case the qpair doesn't properly 404 * complete the qpair destruct process and becomes defunct. 405 */ 406 407 struct spdk_poller *destruct_poller; 408 409 /* List of ibv async events */ 410 STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx) ibv_events; 411 412 /* There are several ways a disconnect can start on a qpair 413 * and they are not all mutually exclusive. It is important 414 * that we only initialize one of these paths. 415 */ 416 bool disconnect_started; 417 /* Lets us know that we have received the last_wqe event. */ 418 bool last_wqe_reached; 419 }; 420 421 struct spdk_nvmf_rdma_poller_stat { 422 uint64_t completions; 423 uint64_t polls; 424 uint64_t requests; 425 uint64_t request_latency; 426 uint64_t pending_free_request; 427 uint64_t pending_rdma_read; 428 uint64_t pending_rdma_write; 429 }; 430 431 struct spdk_nvmf_rdma_poller { 432 struct spdk_nvmf_rdma_device *device; 433 struct spdk_nvmf_rdma_poll_group *group; 434 435 int num_cqe; 436 int required_num_wr; 437 struct ibv_cq *cq; 438 439 /* The maximum number of I/O outstanding on the shared receive queue at one time */ 440 uint16_t max_srq_depth; 441 442 /* Shared receive queue */ 443 struct ibv_srq *srq; 444 445 struct spdk_nvmf_rdma_resources *resources; 446 struct spdk_nvmf_rdma_poller_stat stat; 447 448 TAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs; 449 450 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_recv; 451 452 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_send; 453 454 TAILQ_ENTRY(spdk_nvmf_rdma_poller) link; 455 }; 456 457 struct spdk_nvmf_rdma_poll_group_stat { 458 uint64_t pending_data_buffer; 459 }; 460 461 struct spdk_nvmf_rdma_poll_group { 462 struct spdk_nvmf_transport_poll_group group; 463 struct spdk_nvmf_rdma_poll_group_stat stat; 464 TAILQ_HEAD(, spdk_nvmf_rdma_poller) pollers; 465 TAILQ_ENTRY(spdk_nvmf_rdma_poll_group) link; 466 /* 467 * buffers which are split across multiple RDMA 468 * memory regions cannot be used by this transport. 469 */ 470 STAILQ_HEAD(, spdk_nvmf_transport_pg_cache_buf) retired_bufs; 471 }; 472 473 struct spdk_nvmf_rdma_conn_sched { 474 struct spdk_nvmf_rdma_poll_group *next_admin_pg; 475 struct spdk_nvmf_rdma_poll_group *next_io_pg; 476 }; 477 478 /* Assuming rdma_cm uses just one protection domain per ibv_context. */ 479 struct spdk_nvmf_rdma_device { 480 struct ibv_device_attr attr; 481 struct ibv_context *context; 482 483 struct spdk_mem_map *map; 484 struct ibv_pd *pd; 485 486 int num_srq; 487 488 TAILQ_ENTRY(spdk_nvmf_rdma_device) link; 489 }; 490 491 struct spdk_nvmf_rdma_port { 492 const struct spdk_nvme_transport_id *trid; 493 struct rdma_cm_id *id; 494 struct spdk_nvmf_rdma_device *device; 495 TAILQ_ENTRY(spdk_nvmf_rdma_port) link; 496 }; 497 498 struct spdk_nvmf_rdma_transport { 499 struct spdk_nvmf_transport transport; 500 501 struct spdk_nvmf_rdma_conn_sched conn_sched; 502 503 struct rdma_event_channel *event_channel; 504 505 struct spdk_mempool *data_wr_pool; 506 507 pthread_mutex_t lock; 508 509 /* fields used to poll RDMA/IB events */ 510 nfds_t npoll_fds; 511 struct pollfd *poll_fds; 512 513 TAILQ_HEAD(, spdk_nvmf_rdma_device) devices; 514 TAILQ_HEAD(, spdk_nvmf_rdma_port) ports; 515 TAILQ_HEAD(, spdk_nvmf_rdma_poll_group) poll_groups; 516 }; 517 518 static inline void 519 spdk_nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair); 520 521 static bool 522 spdk_nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 523 struct spdk_nvmf_rdma_request *rdma_req); 524 525 static inline int 526 spdk_nvmf_rdma_check_ibv_state(enum ibv_qp_state state) 527 { 528 switch (state) { 529 case IBV_QPS_RESET: 530 case IBV_QPS_INIT: 531 case IBV_QPS_RTR: 532 case IBV_QPS_RTS: 533 case IBV_QPS_SQD: 534 case IBV_QPS_SQE: 535 case IBV_QPS_ERR: 536 return 0; 537 default: 538 return -1; 539 } 540 } 541 542 static inline enum spdk_nvme_media_error_status_code 543 spdk_nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) { 544 enum spdk_nvme_media_error_status_code result; 545 switch (err_type) 546 { 547 case SPDK_DIF_REFTAG_ERROR: 548 result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR; 549 break; 550 case SPDK_DIF_APPTAG_ERROR: 551 result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR; 552 break; 553 case SPDK_DIF_GUARD_ERROR: 554 result = SPDK_NVME_SC_GUARD_CHECK_ERROR; 555 break; 556 default: 557 SPDK_UNREACHABLE(); 558 } 559 560 return result; 561 } 562 563 static enum ibv_qp_state 564 spdk_nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) { 565 enum ibv_qp_state old_state, new_state; 566 struct ibv_qp_attr qp_attr; 567 struct ibv_qp_init_attr init_attr; 568 int rc; 569 570 old_state = rqpair->ibv_state; 571 rc = ibv_query_qp(rqpair->cm_id->qp, &qp_attr, 572 g_spdk_nvmf_ibv_query_mask, &init_attr); 573 574 if (rc) 575 { 576 SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n"); 577 return IBV_QPS_ERR + 1; 578 } 579 580 new_state = qp_attr.qp_state; 581 rqpair->ibv_state = new_state; 582 qp_attr.ah_attr.port_num = qp_attr.port_num; 583 584 rc = spdk_nvmf_rdma_check_ibv_state(new_state); 585 if (rc) 586 { 587 SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state); 588 /* 589 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8 590 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR 591 */ 592 return IBV_QPS_ERR + 1; 593 } 594 595 if (old_state != new_state) 596 { 597 spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, 598 (uintptr_t)rqpair->cm_id, new_state); 599 } 600 return new_state; 601 } 602 603 static void 604 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req, 605 struct spdk_nvmf_rdma_transport *rtransport) 606 { 607 struct spdk_nvmf_rdma_request_data *data_wr; 608 struct ibv_send_wr *next_send_wr; 609 uint64_t req_wrid; 610 611 rdma_req->num_outstanding_data_wr = 0; 612 data_wr = &rdma_req->data; 613 req_wrid = data_wr->wr.wr_id; 614 while (data_wr && data_wr->wr.wr_id == req_wrid) { 615 memset(data_wr->sgl, 0, sizeof(data_wr->wr.sg_list[0]) * data_wr->wr.num_sge); 616 data_wr->wr.num_sge = 0; 617 next_send_wr = data_wr->wr.next; 618 if (data_wr != &rdma_req->data) { 619 spdk_mempool_put(rtransport->data_wr_pool, data_wr); 620 } 621 data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : 622 SPDK_CONTAINEROF(next_send_wr, struct spdk_nvmf_rdma_request_data, wr); 623 } 624 } 625 626 static void 627 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req) 628 { 629 SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool); 630 if (req->req.cmd) { 631 SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode); 632 } 633 if (req->recv) { 634 SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id); 635 } 636 } 637 638 static void 639 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair) 640 { 641 int i; 642 643 SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid); 644 for (i = 0; i < rqpair->max_queue_depth; i++) { 645 if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) { 646 nvmf_rdma_dump_request(&rqpair->resources->reqs[i]); 647 } 648 } 649 } 650 651 static void 652 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources) 653 { 654 if (resources->cmds_mr) { 655 ibv_dereg_mr(resources->cmds_mr); 656 } 657 658 if (resources->cpls_mr) { 659 ibv_dereg_mr(resources->cpls_mr); 660 } 661 662 if (resources->bufs_mr) { 663 ibv_dereg_mr(resources->bufs_mr); 664 } 665 666 spdk_free(resources->cmds); 667 spdk_free(resources->cpls); 668 spdk_free(resources->bufs); 669 free(resources->reqs); 670 free(resources->recvs); 671 free(resources); 672 } 673 674 675 static struct spdk_nvmf_rdma_resources * 676 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts) 677 { 678 struct spdk_nvmf_rdma_resources *resources; 679 struct spdk_nvmf_rdma_request *rdma_req; 680 struct spdk_nvmf_rdma_recv *rdma_recv; 681 struct ibv_qp *qp; 682 struct ibv_srq *srq; 683 uint32_t i; 684 int rc; 685 686 resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources)); 687 if (!resources) { 688 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 689 return NULL; 690 } 691 692 resources->reqs = calloc(opts->max_queue_depth, sizeof(*resources->reqs)); 693 resources->recvs = calloc(opts->max_queue_depth, sizeof(*resources->recvs)); 694 resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds), 695 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 696 resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls), 697 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 698 699 if (opts->in_capsule_data_size > 0) { 700 resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size, 701 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, 702 SPDK_MALLOC_DMA); 703 } 704 705 if (!resources->reqs || !resources->recvs || !resources->cmds || 706 !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) { 707 SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n"); 708 goto cleanup; 709 } 710 711 resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds, 712 opts->max_queue_depth * sizeof(*resources->cmds), 713 IBV_ACCESS_LOCAL_WRITE); 714 resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls, 715 opts->max_queue_depth * sizeof(*resources->cpls), 716 0); 717 718 if (opts->in_capsule_data_size) { 719 resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs, 720 opts->max_queue_depth * 721 opts->in_capsule_data_size, 722 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); 723 } 724 725 if (!resources->cmds_mr || !resources->cpls_mr || 726 (opts->in_capsule_data_size && 727 !resources->bufs_mr)) { 728 goto cleanup; 729 } 730 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Command Array: %p Length: %lx LKey: %x\n", 731 resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds), 732 resources->cmds_mr->lkey); 733 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Completion Array: %p Length: %lx LKey: %x\n", 734 resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls), 735 resources->cpls_mr->lkey); 736 if (resources->bufs && resources->bufs_mr) { 737 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "In Capsule Data Array: %p Length: %x LKey: %x\n", 738 resources->bufs, opts->max_queue_depth * 739 opts->in_capsule_data_size, resources->bufs_mr->lkey); 740 } 741 742 /* Initialize queues */ 743 STAILQ_INIT(&resources->incoming_queue); 744 STAILQ_INIT(&resources->free_queue); 745 746 for (i = 0; i < opts->max_queue_depth; i++) { 747 struct ibv_recv_wr *bad_wr = NULL; 748 749 rdma_recv = &resources->recvs[i]; 750 rdma_recv->qpair = opts->qpair; 751 752 /* Set up memory to receive commands */ 753 if (resources->bufs) { 754 rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i * 755 opts->in_capsule_data_size)); 756 } 757 758 rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV; 759 760 rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i]; 761 rdma_recv->sgl[0].length = sizeof(resources->cmds[i]); 762 rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey; 763 rdma_recv->wr.num_sge = 1; 764 765 if (rdma_recv->buf && resources->bufs_mr) { 766 rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf; 767 rdma_recv->sgl[1].length = opts->in_capsule_data_size; 768 rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey; 769 rdma_recv->wr.num_sge++; 770 } 771 772 rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr; 773 rdma_recv->wr.sg_list = rdma_recv->sgl; 774 if (opts->shared) { 775 srq = (struct ibv_srq *)opts->qp; 776 rc = ibv_post_srq_recv(srq, &rdma_recv->wr, &bad_wr); 777 } else { 778 qp = (struct ibv_qp *)opts->qp; 779 rc = ibv_post_recv(qp, &rdma_recv->wr, &bad_wr); 780 } 781 if (rc) { 782 goto cleanup; 783 } 784 } 785 786 for (i = 0; i < opts->max_queue_depth; i++) { 787 rdma_req = &resources->reqs[i]; 788 789 if (opts->qpair != NULL) { 790 rdma_req->req.qpair = &opts->qpair->qpair; 791 } else { 792 rdma_req->req.qpair = NULL; 793 } 794 rdma_req->req.cmd = NULL; 795 796 /* Set up memory to send responses */ 797 rdma_req->req.rsp = &resources->cpls[i]; 798 799 rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i]; 800 rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]); 801 rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey; 802 803 rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND; 804 rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr; 805 rdma_req->rsp.wr.next = NULL; 806 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 807 rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED; 808 rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl; 809 rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl); 810 811 /* Set up memory for data buffers */ 812 rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA; 813 rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr; 814 rdma_req->data.wr.next = NULL; 815 rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED; 816 rdma_req->data.wr.sg_list = rdma_req->data.sgl; 817 rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl); 818 819 /* Initialize request state to FREE */ 820 rdma_req->state = RDMA_REQUEST_STATE_FREE; 821 STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link); 822 } 823 824 return resources; 825 826 cleanup: 827 nvmf_rdma_resources_destroy(resources); 828 return NULL; 829 } 830 831 static void 832 spdk_nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair) 833 { 834 struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx; 835 STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) { 836 ctx->rqpair = NULL; 837 /* Memory allocated for ctx is freed in spdk_nvmf_rdma_qpair_process_ibv_event */ 838 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 839 } 840 } 841 842 static void 843 spdk_nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair) 844 { 845 struct spdk_nvmf_rdma_recv *rdma_recv, *recv_tmp; 846 struct ibv_recv_wr *bad_recv_wr = NULL; 847 int rc; 848 849 spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair->cm_id, 0); 850 851 spdk_poller_unregister(&rqpair->destruct_poller); 852 853 if (rqpair->qd != 0) { 854 struct spdk_nvmf_qpair *qpair = &rqpair->qpair; 855 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(qpair->transport, 856 struct spdk_nvmf_rdma_transport, transport); 857 struct spdk_nvmf_rdma_request *req; 858 uint32_t i, max_req_count = 0; 859 860 SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd); 861 862 if (rqpair->srq == NULL) { 863 nvmf_rdma_dump_qpair_contents(rqpair); 864 max_req_count = rqpair->max_queue_depth; 865 } else if (rqpair->poller && rqpair->resources) { 866 max_req_count = rqpair->poller->max_srq_depth; 867 } 868 869 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Release incomplete requests\n"); 870 for (i = 0; i < max_req_count; i++) { 871 req = &rqpair->resources->reqs[i]; 872 if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) { 873 /* spdk_nvmf_rdma_request_process checks qpair ibv and internal state 874 * and completes a request */ 875 spdk_nvmf_rdma_request_process(rtransport, req); 876 } 877 } 878 assert(rqpair->qd == 0); 879 } 880 881 if (rqpair->poller) { 882 TAILQ_REMOVE(&rqpair->poller->qpairs, rqpair, link); 883 884 if (rqpair->srq != NULL && rqpair->resources != NULL) { 885 /* Drop all received but unprocessed commands for this queue and return them to SRQ */ 886 STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) { 887 if (rqpair == rdma_recv->qpair) { 888 STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link); 889 rc = ibv_post_srq_recv(rqpair->srq, &rdma_recv->wr, &bad_recv_wr); 890 if (rc) { 891 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 892 } 893 } 894 } 895 } 896 } 897 898 if (rqpair->cm_id) { 899 if (rqpair->cm_id->qp != NULL) { 900 rdma_destroy_qp(rqpair->cm_id); 901 } 902 rdma_destroy_id(rqpair->cm_id); 903 904 if (rqpair->poller != NULL && rqpair->srq == NULL) { 905 rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth); 906 } 907 } 908 909 if (rqpair->srq == NULL && rqpair->resources != NULL) { 910 nvmf_rdma_resources_destroy(rqpair->resources); 911 } 912 913 spdk_nvmf_rdma_qpair_clean_ibv_events(rqpair); 914 915 free(rqpair); 916 } 917 918 static int 919 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device) 920 { 921 struct spdk_nvmf_rdma_poller *rpoller; 922 int rc, num_cqe, required_num_wr; 923 924 /* Enlarge CQ size dynamically */ 925 rpoller = rqpair->poller; 926 required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth); 927 num_cqe = rpoller->num_cqe; 928 if (num_cqe < required_num_wr) { 929 num_cqe = spdk_max(num_cqe * 2, required_num_wr); 930 num_cqe = spdk_min(num_cqe, device->attr.max_cqe); 931 } 932 933 if (rpoller->num_cqe != num_cqe) { 934 if (required_num_wr > device->attr.max_cqe) { 935 SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n", 936 required_num_wr, device->attr.max_cqe); 937 return -1; 938 } 939 940 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe); 941 rc = ibv_resize_cq(rpoller->cq, num_cqe); 942 if (rc) { 943 SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); 944 return -1; 945 } 946 947 rpoller->num_cqe = num_cqe; 948 } 949 950 rpoller->required_num_wr = required_num_wr; 951 return 0; 952 } 953 954 static int 955 spdk_nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair) 956 { 957 struct spdk_nvmf_rdma_qpair *rqpair; 958 int rc; 959 struct spdk_nvmf_rdma_transport *rtransport; 960 struct spdk_nvmf_transport *transport; 961 struct spdk_nvmf_rdma_resource_opts opts; 962 struct spdk_nvmf_rdma_device *device; 963 struct ibv_qp_init_attr ibv_init_attr; 964 965 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 966 device = rqpair->device; 967 968 memset(&ibv_init_attr, 0, sizeof(struct ibv_qp_init_attr)); 969 ibv_init_attr.qp_context = rqpair; 970 ibv_init_attr.qp_type = IBV_QPT_RC; 971 ibv_init_attr.send_cq = rqpair->poller->cq; 972 ibv_init_attr.recv_cq = rqpair->poller->cq; 973 974 if (rqpair->srq) { 975 ibv_init_attr.srq = rqpair->srq; 976 } else { 977 ibv_init_attr.cap.max_recv_wr = rqpair->max_queue_depth; 978 } 979 980 ibv_init_attr.cap.max_send_wr = (uint32_t)rqpair->max_queue_depth * 981 2; /* SEND, READ or WRITE operations */ 982 ibv_init_attr.cap.max_send_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE); 983 ibv_init_attr.cap.max_recv_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 984 985 if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) { 986 SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n"); 987 goto error; 988 } 989 990 rc = rdma_create_qp(rqpair->cm_id, device->pd, &ibv_init_attr); 991 if (rc) { 992 SPDK_ERRLOG("rdma_create_qp failed: errno %d: %s\n", errno, spdk_strerror(errno)); 993 goto error; 994 } 995 996 rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2), 997 ibv_init_attr.cap.max_send_wr); 998 rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, ibv_init_attr.cap.max_send_sge); 999 rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, ibv_init_attr.cap.max_recv_sge); 1000 spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair->cm_id, 0); 1001 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "New RDMA Connection: %p\n", qpair); 1002 1003 rqpair->sends_to_post.first = NULL; 1004 rqpair->sends_to_post.last = NULL; 1005 1006 if (rqpair->poller->srq == NULL) { 1007 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 1008 transport = &rtransport->transport; 1009 1010 opts.qp = rqpair->cm_id->qp; 1011 opts.pd = rqpair->cm_id->pd; 1012 opts.qpair = rqpair; 1013 opts.shared = false; 1014 opts.max_queue_depth = rqpair->max_queue_depth; 1015 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 1016 1017 rqpair->resources = nvmf_rdma_resources_create(&opts); 1018 1019 if (!rqpair->resources) { 1020 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 1021 rdma_destroy_qp(rqpair->cm_id); 1022 goto error; 1023 } 1024 } else { 1025 rqpair->resources = rqpair->poller->resources; 1026 } 1027 1028 rqpair->current_recv_depth = 0; 1029 STAILQ_INIT(&rqpair->pending_rdma_read_queue); 1030 STAILQ_INIT(&rqpair->pending_rdma_write_queue); 1031 1032 return 0; 1033 1034 error: 1035 rdma_destroy_id(rqpair->cm_id); 1036 rqpair->cm_id = NULL; 1037 return -1; 1038 } 1039 1040 /* Append the given recv wr structure to the resource structs outstanding recvs list. */ 1041 /* This function accepts either a single wr or the first wr in a linked list. */ 1042 static void 1043 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first) 1044 { 1045 struct ibv_recv_wr *last; 1046 1047 last = first; 1048 while (last->next != NULL) { 1049 last = last->next; 1050 } 1051 1052 if (rqpair->resources->recvs_to_post.first == NULL) { 1053 rqpair->resources->recvs_to_post.first = first; 1054 rqpair->resources->recvs_to_post.last = last; 1055 if (rqpair->srq == NULL) { 1056 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link); 1057 } 1058 } else { 1059 rqpair->resources->recvs_to_post.last->next = first; 1060 rqpair->resources->recvs_to_post.last = last; 1061 } 1062 } 1063 1064 /* Append the given send wr structure to the qpair's outstanding sends list. */ 1065 /* This function accepts either a single wr or the first wr in a linked list. */ 1066 static void 1067 nvmf_rdma_qpair_queue_send_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *first) 1068 { 1069 struct ibv_send_wr *last; 1070 1071 last = first; 1072 while (last->next != NULL) { 1073 last = last->next; 1074 } 1075 1076 if (rqpair->sends_to_post.first == NULL) { 1077 rqpair->sends_to_post.first = first; 1078 rqpair->sends_to_post.last = last; 1079 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1080 } else { 1081 rqpair->sends_to_post.last->next = first; 1082 rqpair->sends_to_post.last = last; 1083 } 1084 } 1085 1086 static int 1087 request_transfer_in(struct spdk_nvmf_request *req) 1088 { 1089 struct spdk_nvmf_rdma_request *rdma_req; 1090 struct spdk_nvmf_qpair *qpair; 1091 struct spdk_nvmf_rdma_qpair *rqpair; 1092 1093 qpair = req->qpair; 1094 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1095 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1096 1097 assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); 1098 assert(rdma_req != NULL); 1099 1100 nvmf_rdma_qpair_queue_send_wrs(rqpair, &rdma_req->data.wr); 1101 rqpair->current_read_depth += rdma_req->num_outstanding_data_wr; 1102 rqpair->current_send_depth += rdma_req->num_outstanding_data_wr; 1103 return 0; 1104 } 1105 1106 static int 1107 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted) 1108 { 1109 int num_outstanding_data_wr = 0; 1110 struct spdk_nvmf_rdma_request *rdma_req; 1111 struct spdk_nvmf_qpair *qpair; 1112 struct spdk_nvmf_rdma_qpair *rqpair; 1113 struct spdk_nvme_cpl *rsp; 1114 struct ibv_send_wr *first = NULL; 1115 1116 *data_posted = 0; 1117 qpair = req->qpair; 1118 rsp = &req->rsp->nvme_cpl; 1119 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1120 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1121 1122 /* Advance our sq_head pointer */ 1123 if (qpair->sq_head == qpair->sq_head_max) { 1124 qpair->sq_head = 0; 1125 } else { 1126 qpair->sq_head++; 1127 } 1128 rsp->sqhd = qpair->sq_head; 1129 1130 /* queue the capsule for the recv buffer */ 1131 assert(rdma_req->recv != NULL); 1132 1133 nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr); 1134 1135 rdma_req->recv = NULL; 1136 assert(rqpair->current_recv_depth > 0); 1137 rqpair->current_recv_depth--; 1138 1139 /* Build the response which consists of optional 1140 * RDMA WRITEs to transfer data, plus an RDMA SEND 1141 * containing the response. 1142 */ 1143 first = &rdma_req->rsp.wr; 1144 1145 if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && 1146 req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1147 first = &rdma_req->data.wr; 1148 *data_posted = 1; 1149 num_outstanding_data_wr = rdma_req->num_outstanding_data_wr; 1150 } 1151 nvmf_rdma_qpair_queue_send_wrs(rqpair, first); 1152 /* +1 for the rsp wr */ 1153 rqpair->current_send_depth += num_outstanding_data_wr + 1; 1154 1155 return 0; 1156 } 1157 1158 static int 1159 spdk_nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair) 1160 { 1161 struct spdk_nvmf_rdma_accept_private_data accept_data; 1162 struct rdma_conn_param ctrlr_event_data = {}; 1163 int rc; 1164 1165 accept_data.recfmt = 0; 1166 accept_data.crqsize = rqpair->max_queue_depth; 1167 1168 ctrlr_event_data.private_data = &accept_data; 1169 ctrlr_event_data.private_data_len = sizeof(accept_data); 1170 if (id->ps == RDMA_PS_TCP) { 1171 ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */ 1172 ctrlr_event_data.initiator_depth = rqpair->max_read_depth; 1173 } 1174 1175 /* Configure infinite retries for the initiator side qpair. 1176 * When using a shared receive queue on the target side, 1177 * we need to pass this value to the initiator to prevent the 1178 * initiator side NIC from completing SEND requests back to the 1179 * initiator with status rnr_retry_count_exceeded. */ 1180 if (rqpair->srq != NULL) { 1181 ctrlr_event_data.rnr_retry_count = 0x7; 1182 } 1183 1184 rc = rdma_accept(id, &ctrlr_event_data); 1185 if (rc) { 1186 SPDK_ERRLOG("Error %d on rdma_accept\n", errno); 1187 } else { 1188 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Sent back the accept\n"); 1189 } 1190 1191 return rc; 1192 } 1193 1194 static void 1195 spdk_nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error) 1196 { 1197 struct spdk_nvmf_rdma_reject_private_data rej_data; 1198 1199 rej_data.recfmt = 0; 1200 rej_data.sts = error; 1201 1202 rdma_reject(id, &rej_data, sizeof(rej_data)); 1203 } 1204 1205 static int 1206 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event, 1207 new_qpair_fn cb_fn, void *cb_arg) 1208 { 1209 struct spdk_nvmf_rdma_transport *rtransport; 1210 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 1211 struct spdk_nvmf_rdma_port *port; 1212 struct rdma_conn_param *rdma_param = NULL; 1213 const struct spdk_nvmf_rdma_request_private_data *private_data = NULL; 1214 uint16_t max_queue_depth; 1215 uint16_t max_read_depth; 1216 1217 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 1218 1219 assert(event->id != NULL); /* Impossible. Can't even reject the connection. */ 1220 assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */ 1221 1222 rdma_param = &event->param.conn; 1223 if (rdma_param->private_data == NULL || 1224 rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1225 SPDK_ERRLOG("connect request: no private data provided\n"); 1226 spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH); 1227 return -1; 1228 } 1229 1230 private_data = rdma_param->private_data; 1231 if (private_data->recfmt != 0) { 1232 SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n"); 1233 spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT); 1234 return -1; 1235 } 1236 1237 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Connect Recv on fabric intf name %s, dev_name %s\n", 1238 event->id->verbs->device->name, event->id->verbs->device->dev_name); 1239 1240 port = event->listen_id->context; 1241 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Listen Id was %p with verbs %p. ListenAddr: %p\n", 1242 event->listen_id, event->listen_id->verbs, port); 1243 1244 /* Figure out the supported queue depth. This is a multi-step process 1245 * that takes into account hardware maximums, host provided values, 1246 * and our target's internal memory limits */ 1247 1248 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Calculating Queue Depth\n"); 1249 1250 /* Start with the maximum queue depth allowed by the target */ 1251 max_queue_depth = rtransport->transport.opts.max_queue_depth; 1252 max_read_depth = rtransport->transport.opts.max_queue_depth; 1253 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Target Max Queue Depth: %d\n", 1254 rtransport->transport.opts.max_queue_depth); 1255 1256 /* Next check the local NIC's hardware limitations */ 1257 SPDK_DEBUGLOG(SPDK_LOG_RDMA, 1258 "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n", 1259 port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom); 1260 max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr); 1261 max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom); 1262 1263 /* Next check the remote NIC's hardware limitations */ 1264 SPDK_DEBUGLOG(SPDK_LOG_RDMA, 1265 "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n", 1266 rdma_param->initiator_depth, rdma_param->responder_resources); 1267 if (rdma_param->initiator_depth > 0) { 1268 max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth); 1269 } 1270 1271 /* Finally check for the host software requested values, which are 1272 * optional. */ 1273 if (rdma_param->private_data != NULL && 1274 rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1275 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Receive Queue Size: %d\n", private_data->hrqsize); 1276 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Send Queue Size: %d\n", private_data->hsqsize); 1277 max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize); 1278 max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1); 1279 } 1280 1281 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Final Negotiated Queue Depth: %d R/W Depth: %d\n", 1282 max_queue_depth, max_read_depth); 1283 1284 rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair)); 1285 if (rqpair == NULL) { 1286 SPDK_ERRLOG("Could not allocate new connection.\n"); 1287 spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 1288 return -1; 1289 } 1290 1291 rqpair->device = port->device; 1292 rqpair->max_queue_depth = max_queue_depth; 1293 rqpair->max_read_depth = max_read_depth; 1294 rqpair->cm_id = event->id; 1295 rqpair->listen_id = event->listen_id; 1296 rqpair->qpair.transport = transport; 1297 STAILQ_INIT(&rqpair->ibv_events); 1298 /* use qid from the private data to determine the qpair type 1299 qid will be set to the appropriate value when the controller is created */ 1300 rqpair->qpair.qid = private_data->qid; 1301 1302 event->id->context = &rqpair->qpair; 1303 1304 cb_fn(&rqpair->qpair, cb_arg); 1305 1306 return 0; 1307 } 1308 1309 static int 1310 spdk_nvmf_rdma_mem_notify(void *cb_ctx, struct spdk_mem_map *map, 1311 enum spdk_mem_map_notify_action action, 1312 void *vaddr, size_t size) 1313 { 1314 struct ibv_pd *pd = cb_ctx; 1315 struct ibv_mr *mr; 1316 int rc; 1317 1318 switch (action) { 1319 case SPDK_MEM_MAP_NOTIFY_REGISTER: 1320 if (!g_nvmf_hooks.get_rkey) { 1321 mr = ibv_reg_mr(pd, vaddr, size, 1322 IBV_ACCESS_LOCAL_WRITE | 1323 IBV_ACCESS_REMOTE_READ | 1324 IBV_ACCESS_REMOTE_WRITE); 1325 if (mr == NULL) { 1326 SPDK_ERRLOG("ibv_reg_mr() failed\n"); 1327 return -1; 1328 } else { 1329 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr); 1330 } 1331 } else { 1332 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, 1333 g_nvmf_hooks.get_rkey(pd, vaddr, size)); 1334 } 1335 break; 1336 case SPDK_MEM_MAP_NOTIFY_UNREGISTER: 1337 if (!g_nvmf_hooks.get_rkey) { 1338 mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL); 1339 if (mr) { 1340 ibv_dereg_mr(mr); 1341 } 1342 } 1343 rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size); 1344 break; 1345 default: 1346 SPDK_UNREACHABLE(); 1347 } 1348 1349 return rc; 1350 } 1351 1352 static int 1353 spdk_nvmf_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2) 1354 { 1355 /* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */ 1356 return addr_1 == addr_2; 1357 } 1358 1359 static inline void 1360 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next, 1361 enum spdk_nvme_data_transfer xfer) 1362 { 1363 if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1364 wr->opcode = IBV_WR_RDMA_WRITE; 1365 wr->send_flags = 0; 1366 wr->next = next; 1367 } else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 1368 wr->opcode = IBV_WR_RDMA_READ; 1369 wr->send_flags = IBV_SEND_SIGNALED; 1370 wr->next = NULL; 1371 } else { 1372 assert(0); 1373 } 1374 } 1375 1376 static int 1377 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport, 1378 struct spdk_nvmf_rdma_request *rdma_req, 1379 uint32_t num_sgl_descriptors) 1380 { 1381 struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES]; 1382 struct spdk_nvmf_rdma_request_data *current_data_wr; 1383 uint32_t i; 1384 1385 if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) { 1386 SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n", 1387 num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES); 1388 return -EINVAL; 1389 } 1390 1391 if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) { 1392 return -ENOMEM; 1393 } 1394 1395 current_data_wr = &rdma_req->data; 1396 1397 for (i = 0; i < num_sgl_descriptors; i++) { 1398 nvmf_rdma_setup_wr(¤t_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer); 1399 current_data_wr->wr.next = &work_requests[i]->wr; 1400 current_data_wr = work_requests[i]; 1401 current_data_wr->wr.sg_list = current_data_wr->sgl; 1402 current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id; 1403 } 1404 1405 nvmf_rdma_setup_wr(¤t_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1406 1407 return 0; 1408 } 1409 1410 static inline void 1411 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req) 1412 { 1413 struct ibv_send_wr *wr = &rdma_req->data.wr; 1414 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1415 1416 wr->wr.rdma.rkey = sgl->keyed.key; 1417 wr->wr.rdma.remote_addr = sgl->address; 1418 nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1419 } 1420 1421 static inline void 1422 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs) 1423 { 1424 struct ibv_send_wr *wr = &rdma_req->data.wr; 1425 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1426 uint32_t i; 1427 int j; 1428 uint64_t remote_addr_offset = 0; 1429 1430 for (i = 0; i < num_wrs; ++i) { 1431 wr->wr.rdma.rkey = sgl->keyed.key; 1432 wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset; 1433 for (j = 0; j < wr->num_sge; ++j) { 1434 remote_addr_offset += wr->sg_list[j].length; 1435 } 1436 wr = wr->next; 1437 } 1438 } 1439 1440 /* This function is used in the rare case that we have a buffer split over multiple memory regions. */ 1441 static int 1442 nvmf_rdma_replace_buffer(struct spdk_nvmf_rdma_poll_group *rgroup, void **buf) 1443 { 1444 struct spdk_nvmf_transport_poll_group *group = &rgroup->group; 1445 struct spdk_nvmf_transport *transport = group->transport; 1446 struct spdk_nvmf_transport_pg_cache_buf *old_buf; 1447 void *new_buf; 1448 1449 if (!(STAILQ_EMPTY(&group->buf_cache))) { 1450 group->buf_cache_count--; 1451 new_buf = STAILQ_FIRST(&group->buf_cache); 1452 STAILQ_REMOVE_HEAD(&group->buf_cache, link); 1453 assert(*buf != NULL); 1454 } else { 1455 new_buf = spdk_mempool_get(transport->data_buf_pool); 1456 } 1457 1458 if (*buf == NULL) { 1459 return -ENOMEM; 1460 } 1461 1462 old_buf = *buf; 1463 STAILQ_INSERT_HEAD(&rgroup->retired_bufs, old_buf, link); 1464 *buf = new_buf; 1465 return 0; 1466 } 1467 1468 static bool 1469 nvmf_rdma_get_lkey(struct spdk_nvmf_rdma_device *device, struct iovec *iov, 1470 uint32_t *_lkey) 1471 { 1472 uint64_t translation_len; 1473 uint32_t lkey; 1474 1475 translation_len = iov->iov_len; 1476 1477 if (!g_nvmf_hooks.get_rkey) { 1478 lkey = ((struct ibv_mr *)spdk_mem_map_translate(device->map, 1479 (uint64_t)iov->iov_base, &translation_len))->lkey; 1480 } else { 1481 lkey = spdk_mem_map_translate(device->map, 1482 (uint64_t)iov->iov_base, &translation_len); 1483 } 1484 1485 if (spdk_unlikely(translation_len < iov->iov_len)) { 1486 return false; 1487 } 1488 1489 *_lkey = lkey; 1490 return true; 1491 } 1492 1493 static bool 1494 nvmf_rdma_fill_wr_sge(struct spdk_nvmf_rdma_device *device, 1495 struct iovec *iov, struct ibv_send_wr **_wr, 1496 uint32_t *_remaining_data_block, uint32_t *_offset, 1497 uint32_t *_num_extra_wrs, 1498 const struct spdk_dif_ctx *dif_ctx) 1499 { 1500 struct ibv_send_wr *wr = *_wr; 1501 struct ibv_sge *sg_ele = &wr->sg_list[wr->num_sge]; 1502 uint32_t lkey = 0; 1503 uint32_t remaining, data_block_size, md_size, sge_len; 1504 1505 if (spdk_unlikely(!nvmf_rdma_get_lkey(device, iov, &lkey))) { 1506 /* This is a very rare case that can occur when using DPDK version < 19.05 */ 1507 SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions. Removing it from circulation.\n"); 1508 return false; 1509 } 1510 1511 if (spdk_likely(!dif_ctx)) { 1512 sg_ele->lkey = lkey; 1513 sg_ele->addr = (uintptr_t)(iov->iov_base); 1514 sg_ele->length = iov->iov_len; 1515 wr->num_sge++; 1516 } else { 1517 remaining = iov->iov_len - *_offset; 1518 data_block_size = dif_ctx->block_size - dif_ctx->md_size; 1519 md_size = dif_ctx->md_size; 1520 1521 while (remaining) { 1522 if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) { 1523 if (*_num_extra_wrs > 0 && wr->next) { 1524 *_wr = wr->next; 1525 wr = *_wr; 1526 wr->num_sge = 0; 1527 sg_ele = &wr->sg_list[wr->num_sge]; 1528 (*_num_extra_wrs)--; 1529 } else { 1530 break; 1531 } 1532 } 1533 sg_ele->lkey = lkey; 1534 sg_ele->addr = (uintptr_t)((char *)iov->iov_base + *_offset); 1535 sge_len = spdk_min(remaining, *_remaining_data_block); 1536 sg_ele->length = sge_len; 1537 remaining -= sge_len; 1538 *_remaining_data_block -= sge_len; 1539 *_offset += sge_len; 1540 1541 sg_ele++; 1542 wr->num_sge++; 1543 1544 if (*_remaining_data_block == 0) { 1545 /* skip metadata */ 1546 *_offset += md_size; 1547 /* Metadata that do not fit this IO buffer will be included in the next IO buffer */ 1548 remaining -= spdk_min(remaining, md_size); 1549 *_remaining_data_block = data_block_size; 1550 } 1551 1552 if (remaining == 0) { 1553 /* By subtracting the size of the last IOV from the offset, we ensure that we skip 1554 the remaining metadata bits at the beginning of the next buffer */ 1555 *_offset -= iov->iov_len; 1556 } 1557 } 1558 } 1559 1560 return true; 1561 } 1562 1563 static int 1564 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup, 1565 struct spdk_nvmf_rdma_device *device, 1566 struct spdk_nvmf_rdma_request *rdma_req, 1567 struct ibv_send_wr *wr, 1568 uint32_t length, 1569 uint32_t num_extra_wrs) 1570 { 1571 struct spdk_nvmf_request *req = &rdma_req->req; 1572 struct spdk_dif_ctx *dif_ctx = NULL; 1573 uint32_t remaining_data_block = 0; 1574 uint32_t offset = 0; 1575 1576 if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) { 1577 dif_ctx = &rdma_req->req.dif.dif_ctx; 1578 remaining_data_block = dif_ctx->block_size - dif_ctx->md_size; 1579 } 1580 1581 wr->num_sge = 0; 1582 1583 while (length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) { 1584 while (spdk_unlikely(!nvmf_rdma_fill_wr_sge(device, &req->iov[rdma_req->iovpos], &wr, 1585 &remaining_data_block, &offset, &num_extra_wrs, dif_ctx))) { 1586 if (nvmf_rdma_replace_buffer(rgroup, &req->buffers[rdma_req->iovpos]) == -ENOMEM) { 1587 return -ENOMEM; 1588 } 1589 req->iov[rdma_req->iovpos].iov_base = (void *)((uintptr_t)(req->buffers[rdma_req->iovpos] + 1590 NVMF_DATA_BUFFER_MASK) & 1591 ~NVMF_DATA_BUFFER_MASK); 1592 } 1593 1594 length -= req->iov[rdma_req->iovpos].iov_len; 1595 rdma_req->iovpos++; 1596 } 1597 1598 if (length) { 1599 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1600 return -EINVAL; 1601 } 1602 1603 return 0; 1604 } 1605 1606 static inline uint32_t 1607 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size) 1608 { 1609 /* estimate the number of SG entries and WRs needed to process the request */ 1610 uint32_t num_sge = 0; 1611 uint32_t i; 1612 uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size); 1613 1614 for (i = 0; i < num_buffers && length > 0; i++) { 1615 uint32_t buffer_len = spdk_min(length, io_unit_size); 1616 uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size); 1617 1618 if (num_sge_in_block * block_size > buffer_len) { 1619 ++num_sge_in_block; 1620 } 1621 num_sge += num_sge_in_block; 1622 length -= buffer_len; 1623 } 1624 return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES); 1625 } 1626 1627 static int 1628 spdk_nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport, 1629 struct spdk_nvmf_rdma_device *device, 1630 struct spdk_nvmf_rdma_request *rdma_req, 1631 uint32_t length) 1632 { 1633 struct spdk_nvmf_rdma_qpair *rqpair; 1634 struct spdk_nvmf_rdma_poll_group *rgroup; 1635 struct spdk_nvmf_request *req = &rdma_req->req; 1636 struct ibv_send_wr *wr = &rdma_req->data.wr; 1637 int rc; 1638 uint32_t num_wrs = 1; 1639 1640 rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair); 1641 rgroup = rqpair->poller->group; 1642 1643 /* rdma wr specifics */ 1644 nvmf_rdma_setup_request(rdma_req); 1645 1646 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, 1647 length); 1648 if (rc != 0) { 1649 return rc; 1650 } 1651 1652 assert(req->iovcnt <= rqpair->max_send_sge); 1653 1654 rdma_req->iovpos = 0; 1655 1656 if (spdk_unlikely(req->dif.dif_insert_or_strip)) { 1657 num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size, 1658 req->dif.dif_ctx.block_size); 1659 if (num_wrs > 1) { 1660 rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1); 1661 if (rc != 0) { 1662 goto err_exit; 1663 } 1664 } 1665 } 1666 1667 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length, num_wrs - 1); 1668 if (spdk_unlikely(rc != 0)) { 1669 goto err_exit; 1670 } 1671 1672 if (spdk_unlikely(num_wrs > 1)) { 1673 nvmf_rdma_update_remote_addr(rdma_req, num_wrs); 1674 } 1675 1676 /* set the number of outstanding data WRs for this request. */ 1677 rdma_req->num_outstanding_data_wr = num_wrs; 1678 1679 return rc; 1680 1681 err_exit: 1682 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1683 nvmf_rdma_request_free_data(rdma_req, rtransport); 1684 req->iovcnt = 0; 1685 return rc; 1686 } 1687 1688 static int 1689 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1690 struct spdk_nvmf_rdma_device *device, 1691 struct spdk_nvmf_rdma_request *rdma_req) 1692 { 1693 struct spdk_nvmf_rdma_qpair *rqpair; 1694 struct spdk_nvmf_rdma_poll_group *rgroup; 1695 struct ibv_send_wr *current_wr; 1696 struct spdk_nvmf_request *req = &rdma_req->req; 1697 struct spdk_nvme_sgl_descriptor *inline_segment, *desc; 1698 uint32_t num_sgl_descriptors; 1699 uint32_t lengths[SPDK_NVMF_MAX_SGL_ENTRIES]; 1700 uint32_t i; 1701 int rc; 1702 1703 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1704 rgroup = rqpair->poller->group; 1705 1706 inline_segment = &req->cmd->nvme_cmd.dptr.sgl1; 1707 assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT); 1708 assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET); 1709 1710 num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor); 1711 assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES); 1712 1713 if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) { 1714 return -ENOMEM; 1715 } 1716 1717 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1718 for (i = 0; i < num_sgl_descriptors; i++) { 1719 if (spdk_likely(!req->dif.dif_insert_or_strip)) { 1720 lengths[i] = desc->keyed.length; 1721 } else { 1722 req->dif.orig_length += desc->keyed.length; 1723 lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx); 1724 req->dif.elba_length += lengths[i]; 1725 } 1726 desc++; 1727 } 1728 1729 rc = spdk_nvmf_request_get_buffers_multi(req, &rgroup->group, &rtransport->transport, 1730 lengths, num_sgl_descriptors); 1731 if (rc != 0) { 1732 nvmf_rdma_request_free_data(rdma_req, rtransport); 1733 return rc; 1734 } 1735 1736 /* The first WR must always be the embedded data WR. This is how we unwind them later. */ 1737 current_wr = &rdma_req->data.wr; 1738 assert(current_wr != NULL); 1739 1740 req->length = 0; 1741 rdma_req->iovpos = 0; 1742 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1743 for (i = 0; i < num_sgl_descriptors; i++) { 1744 /* The descriptors must be keyed data block descriptors with an address, not an offset. */ 1745 if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK || 1746 desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) { 1747 rc = -EINVAL; 1748 goto err_exit; 1749 } 1750 1751 current_wr->num_sge = 0; 1752 1753 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i], 0); 1754 if (rc != 0) { 1755 rc = -ENOMEM; 1756 goto err_exit; 1757 } 1758 1759 req->length += desc->keyed.length; 1760 current_wr->wr.rdma.rkey = desc->keyed.key; 1761 current_wr->wr.rdma.remote_addr = desc->address; 1762 current_wr = current_wr->next; 1763 desc++; 1764 } 1765 1766 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1767 /* Go back to the last descriptor in the list. */ 1768 desc--; 1769 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1770 if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1771 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1772 rdma_req->rsp.wr.imm_data = desc->keyed.key; 1773 } 1774 } 1775 #endif 1776 1777 rdma_req->num_outstanding_data_wr = num_sgl_descriptors; 1778 1779 return 0; 1780 1781 err_exit: 1782 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1783 nvmf_rdma_request_free_data(rdma_req, rtransport); 1784 return rc; 1785 } 1786 1787 static int 1788 spdk_nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1789 struct spdk_nvmf_rdma_device *device, 1790 struct spdk_nvmf_rdma_request *rdma_req) 1791 { 1792 struct spdk_nvmf_request *req = &rdma_req->req; 1793 struct spdk_nvme_cpl *rsp; 1794 struct spdk_nvme_sgl_descriptor *sgl; 1795 int rc; 1796 uint32_t length; 1797 1798 rsp = &req->rsp->nvme_cpl; 1799 sgl = &req->cmd->nvme_cmd.dptr.sgl1; 1800 1801 if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK && 1802 (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS || 1803 sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) { 1804 1805 length = sgl->keyed.length; 1806 if (length > rtransport->transport.opts.max_io_size) { 1807 SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n", 1808 length, rtransport->transport.opts.max_io_size); 1809 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1810 return -1; 1811 } 1812 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1813 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1814 if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1815 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1816 rdma_req->rsp.wr.imm_data = sgl->keyed.key; 1817 } 1818 } 1819 #endif 1820 1821 /* fill request length and populate iovs */ 1822 req->length = length; 1823 1824 if (spdk_unlikely(req->dif.dif_insert_or_strip)) { 1825 req->dif.orig_length = length; 1826 length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx); 1827 req->dif.elba_length = length; 1828 } 1829 1830 rc = spdk_nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req, length); 1831 if (spdk_unlikely(rc < 0)) { 1832 if (rc == -EINVAL) { 1833 SPDK_ERRLOG("SGL length exceeds the max I/O size\n"); 1834 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1835 return -1; 1836 } 1837 /* No available buffers. Queue this request up. */ 1838 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req); 1839 return 0; 1840 } 1841 1842 /* backward compatible */ 1843 req->data = req->iov[0].iov_base; 1844 1845 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req, 1846 req->iovcnt); 1847 1848 return 0; 1849 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK && 1850 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1851 uint64_t offset = sgl->address; 1852 uint32_t max_len = rtransport->transport.opts.in_capsule_data_size; 1853 1854 SPDK_DEBUGLOG(SPDK_LOG_NVMF, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n", 1855 offset, sgl->unkeyed.length); 1856 1857 if (offset > max_len) { 1858 SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n", 1859 offset, max_len); 1860 rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET; 1861 return -1; 1862 } 1863 max_len -= (uint32_t)offset; 1864 1865 if (sgl->unkeyed.length > max_len) { 1866 SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n", 1867 sgl->unkeyed.length, max_len); 1868 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1869 return -1; 1870 } 1871 1872 rdma_req->num_outstanding_data_wr = 0; 1873 req->data = rdma_req->recv->buf + offset; 1874 req->data_from_pool = false; 1875 req->length = sgl->unkeyed.length; 1876 1877 req->iov[0].iov_base = req->data; 1878 req->iov[0].iov_len = req->length; 1879 req->iovcnt = 1; 1880 1881 return 0; 1882 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT && 1883 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1884 1885 rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req); 1886 if (rc == -ENOMEM) { 1887 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req); 1888 return 0; 1889 } else if (rc == -EINVAL) { 1890 SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n"); 1891 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1892 return -1; 1893 } 1894 1895 /* backward compatible */ 1896 req->data = req->iov[0].iov_base; 1897 1898 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req, 1899 req->iovcnt); 1900 1901 return 0; 1902 } 1903 1904 SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n", 1905 sgl->generic.type, sgl->generic.subtype); 1906 rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID; 1907 return -1; 1908 } 1909 1910 static void 1911 nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req, 1912 struct spdk_nvmf_rdma_transport *rtransport) 1913 { 1914 struct spdk_nvmf_rdma_qpair *rqpair; 1915 struct spdk_nvmf_rdma_poll_group *rgroup; 1916 1917 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1918 if (rdma_req->req.data_from_pool) { 1919 rgroup = rqpair->poller->group; 1920 1921 spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport); 1922 } 1923 nvmf_rdma_request_free_data(rdma_req, rtransport); 1924 rdma_req->req.length = 0; 1925 rdma_req->req.iovcnt = 0; 1926 rdma_req->req.data = NULL; 1927 rdma_req->rsp.wr.next = NULL; 1928 rdma_req->data.wr.next = NULL; 1929 memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif)); 1930 rqpair->qd--; 1931 1932 STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link); 1933 rdma_req->state = RDMA_REQUEST_STATE_FREE; 1934 } 1935 1936 bool 1937 spdk_nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 1938 struct spdk_nvmf_rdma_request *rdma_req) 1939 { 1940 struct spdk_nvmf_rdma_qpair *rqpair; 1941 struct spdk_nvmf_rdma_device *device; 1942 struct spdk_nvmf_rdma_poll_group *rgroup; 1943 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 1944 int rc; 1945 struct spdk_nvmf_rdma_recv *rdma_recv; 1946 enum spdk_nvmf_rdma_request_state prev_state; 1947 bool progress = false; 1948 int data_posted; 1949 uint32_t num_blocks; 1950 1951 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1952 device = rqpair->device; 1953 rgroup = rqpair->poller->group; 1954 1955 assert(rdma_req->state != RDMA_REQUEST_STATE_FREE); 1956 1957 /* If the queue pair is in an error state, force the request to the completed state 1958 * to release resources. */ 1959 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 1960 if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) { 1961 STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link); 1962 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) { 1963 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 1964 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) { 1965 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 1966 } 1967 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 1968 } 1969 1970 /* The loop here is to allow for several back-to-back state changes. */ 1971 do { 1972 prev_state = rdma_req->state; 1973 1974 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p entering state %d\n", rdma_req, prev_state); 1975 1976 switch (rdma_req->state) { 1977 case RDMA_REQUEST_STATE_FREE: 1978 /* Some external code must kick a request into RDMA_REQUEST_STATE_NEW 1979 * to escape this state. */ 1980 break; 1981 case RDMA_REQUEST_STATE_NEW: 1982 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0, 1983 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 1984 rdma_recv = rdma_req->recv; 1985 1986 /* The first element of the SGL is the NVMe command */ 1987 rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr; 1988 memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp)); 1989 1990 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 1991 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 1992 break; 1993 } 1994 1995 if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) { 1996 rdma_req->req.dif.dif_insert_or_strip = true; 1997 } 1998 1999 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2000 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 2001 rdma_req->rsp.wr.imm_data = 0; 2002 #endif 2003 2004 /* The next state transition depends on the data transfer needs of this request. */ 2005 rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req); 2006 2007 /* If no data to transfer, ready to execute. */ 2008 if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) { 2009 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2010 break; 2011 } 2012 2013 rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER; 2014 STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link); 2015 break; 2016 case RDMA_REQUEST_STATE_NEED_BUFFER: 2017 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0, 2018 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2019 2020 assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE); 2021 2022 if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) { 2023 /* This request needs to wait in line to obtain a buffer */ 2024 break; 2025 } 2026 2027 /* Try to get a data buffer */ 2028 rc = spdk_nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req); 2029 if (rc < 0) { 2030 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2031 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2032 break; 2033 } 2034 2035 if (!rdma_req->req.data) { 2036 /* No buffers available. */ 2037 rgroup->stat.pending_data_buffer++; 2038 break; 2039 } 2040 2041 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2042 2043 /* If data is transferring from host to controller and the data didn't 2044 * arrive using in capsule data, we need to do a transfer from the host. 2045 */ 2046 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && 2047 rdma_req->req.data_from_pool) { 2048 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link); 2049 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING; 2050 break; 2051 } 2052 2053 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2054 break; 2055 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 2056 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0, 2057 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2058 2059 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) { 2060 /* This request needs to wait in line to perform RDMA */ 2061 break; 2062 } 2063 if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth 2064 || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) { 2065 /* We can only have so many WRs outstanding. we have to wait until some finish. */ 2066 rqpair->poller->stat.pending_rdma_read++; 2067 break; 2068 } 2069 2070 /* We have already verified that this request is the head of the queue. */ 2071 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link); 2072 2073 rc = request_transfer_in(&rdma_req->req); 2074 if (!rc) { 2075 rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER; 2076 } else { 2077 rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 2078 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2079 } 2080 break; 2081 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 2082 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0, 2083 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2084 /* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE 2085 * to escape this state. */ 2086 break; 2087 case RDMA_REQUEST_STATE_READY_TO_EXECUTE: 2088 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0, 2089 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2090 2091 if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) { 2092 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 2093 /* generate DIF for write operation */ 2094 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2095 assert(num_blocks > 0); 2096 2097 rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt, 2098 num_blocks, &rdma_req->req.dif.dif_ctx); 2099 if (rc != 0) { 2100 SPDK_ERRLOG("DIF generation failed\n"); 2101 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2102 spdk_nvmf_rdma_start_disconnect(rqpair); 2103 break; 2104 } 2105 } 2106 2107 assert(rdma_req->req.dif.elba_length >= rdma_req->req.length); 2108 /* set extended length before IO operation */ 2109 rdma_req->req.length = rdma_req->req.dif.elba_length; 2110 } 2111 2112 rdma_req->state = RDMA_REQUEST_STATE_EXECUTING; 2113 spdk_nvmf_request_exec(&rdma_req->req); 2114 break; 2115 case RDMA_REQUEST_STATE_EXECUTING: 2116 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0, 2117 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2118 /* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED 2119 * to escape this state. */ 2120 break; 2121 case RDMA_REQUEST_STATE_EXECUTED: 2122 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0, 2123 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2124 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2125 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link); 2126 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING; 2127 } else { 2128 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2129 } 2130 if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) { 2131 /* restore the original length */ 2132 rdma_req->req.length = rdma_req->req.dif.orig_length; 2133 2134 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2135 struct spdk_dif_error error_blk; 2136 2137 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2138 2139 rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2140 &rdma_req->req.dif.dif_ctx, &error_blk); 2141 if (rc) { 2142 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2143 2144 SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type, 2145 error_blk.err_offset); 2146 rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR; 2147 rsp->status.sc = spdk_nvmf_rdma_dif_error_to_compl_status(error_blk.err_type); 2148 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2149 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2150 } 2151 } 2152 } 2153 break; 2154 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 2155 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0, 2156 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2157 2158 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) { 2159 /* This request needs to wait in line to perform RDMA */ 2160 break; 2161 } 2162 if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) > 2163 rqpair->max_send_depth) { 2164 /* We can only have so many WRs outstanding. we have to wait until some finish. 2165 * +1 since each request has an additional wr in the resp. */ 2166 rqpair->poller->stat.pending_rdma_write++; 2167 break; 2168 } 2169 2170 /* We have already verified that this request is the head of the queue. */ 2171 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link); 2172 2173 /* The data transfer will be kicked off from 2174 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state. 2175 */ 2176 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2177 break; 2178 case RDMA_REQUEST_STATE_READY_TO_COMPLETE: 2179 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0, 2180 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2181 rc = request_transfer_out(&rdma_req->req, &data_posted); 2182 assert(rc == 0); /* No good way to handle this currently */ 2183 if (rc) { 2184 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2185 } else { 2186 rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST : 2187 RDMA_REQUEST_STATE_COMPLETING; 2188 } 2189 break; 2190 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 2191 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0, 2192 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2193 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2194 * to escape this state. */ 2195 break; 2196 case RDMA_REQUEST_STATE_COMPLETING: 2197 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0, 2198 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2199 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2200 * to escape this state. */ 2201 break; 2202 case RDMA_REQUEST_STATE_COMPLETED: 2203 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0, 2204 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2205 2206 rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc; 2207 nvmf_rdma_request_free(rdma_req, rtransport); 2208 break; 2209 case RDMA_REQUEST_NUM_STATES: 2210 default: 2211 assert(0); 2212 break; 2213 } 2214 2215 if (rdma_req->state != prev_state) { 2216 progress = true; 2217 } 2218 } while (rdma_req->state != prev_state); 2219 2220 return progress; 2221 } 2222 2223 /* Public API callbacks begin here */ 2224 2225 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128 2226 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128 2227 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096 2228 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128 2229 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096 2230 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072 2231 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES) 2232 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095 2233 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32 2234 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false 2235 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false 2236 2237 static void 2238 spdk_nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts) 2239 { 2240 opts->max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH; 2241 opts->max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR; 2242 opts->in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE; 2243 opts->max_io_size = SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE; 2244 opts->io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE; 2245 opts->max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH; 2246 opts->num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS; 2247 opts->buf_cache_size = SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE; 2248 opts->max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH; 2249 opts->no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ; 2250 opts->dif_insert_or_strip = SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP; 2251 } 2252 2253 const struct spdk_mem_map_ops g_nvmf_rdma_map_ops = { 2254 .notify_cb = spdk_nvmf_rdma_mem_notify, 2255 .are_contiguous = spdk_nvmf_rdma_check_contiguous_entries 2256 }; 2257 2258 static int spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport); 2259 2260 static struct spdk_nvmf_transport * 2261 spdk_nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts) 2262 { 2263 int rc; 2264 struct spdk_nvmf_rdma_transport *rtransport; 2265 struct spdk_nvmf_rdma_device *device, *tmp; 2266 struct ibv_context **contexts; 2267 uint32_t i; 2268 int flag; 2269 uint32_t sge_count; 2270 uint32_t min_shared_buffers; 2271 int max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES; 2272 pthread_mutexattr_t attr; 2273 2274 rtransport = calloc(1, sizeof(*rtransport)); 2275 if (!rtransport) { 2276 return NULL; 2277 } 2278 2279 if (pthread_mutexattr_init(&attr)) { 2280 SPDK_ERRLOG("pthread_mutexattr_init() failed\n"); 2281 free(rtransport); 2282 return NULL; 2283 } 2284 2285 if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) { 2286 SPDK_ERRLOG("pthread_mutexattr_settype() failed\n"); 2287 pthread_mutexattr_destroy(&attr); 2288 free(rtransport); 2289 return NULL; 2290 } 2291 2292 if (pthread_mutex_init(&rtransport->lock, &attr)) { 2293 SPDK_ERRLOG("pthread_mutex_init() failed\n"); 2294 pthread_mutexattr_destroy(&attr); 2295 free(rtransport); 2296 return NULL; 2297 } 2298 2299 pthread_mutexattr_destroy(&attr); 2300 2301 TAILQ_INIT(&rtransport->devices); 2302 TAILQ_INIT(&rtransport->ports); 2303 TAILQ_INIT(&rtransport->poll_groups); 2304 2305 rtransport->transport.ops = &spdk_nvmf_transport_rdma; 2306 2307 SPDK_INFOLOG(SPDK_LOG_RDMA, "*** RDMA Transport Init ***\n" 2308 " Transport opts: max_ioq_depth=%d, max_io_size=%d,\n" 2309 " max_qpairs_per_ctrlr=%d, io_unit_size=%d,\n" 2310 " in_capsule_data_size=%d, max_aq_depth=%d,\n" 2311 " num_shared_buffers=%d, max_srq_depth=%d, no_srq=%d\n", 2312 opts->max_queue_depth, 2313 opts->max_io_size, 2314 opts->max_qpairs_per_ctrlr, 2315 opts->io_unit_size, 2316 opts->in_capsule_data_size, 2317 opts->max_aq_depth, 2318 opts->num_shared_buffers, 2319 opts->max_srq_depth, 2320 opts->no_srq); 2321 2322 /* I/O unit size cannot be larger than max I/O size */ 2323 if (opts->io_unit_size > opts->max_io_size) { 2324 opts->io_unit_size = opts->max_io_size; 2325 } 2326 2327 if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) { 2328 SPDK_ERRLOG("The number of shared data buffers (%d) is less than" 2329 "the minimum number required to guarantee that forward progress can be made (%d)\n", 2330 opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2)); 2331 spdk_nvmf_rdma_destroy(&rtransport->transport); 2332 return NULL; 2333 } 2334 2335 min_shared_buffers = spdk_thread_get_count() * opts->buf_cache_size; 2336 if (min_shared_buffers > opts->num_shared_buffers) { 2337 SPDK_ERRLOG("There are not enough buffers to satisfy" 2338 "per-poll group caches for each thread. (%" PRIu32 ")" 2339 "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers); 2340 SPDK_ERRLOG("Please specify a larger number of shared buffers\n"); 2341 spdk_nvmf_rdma_destroy(&rtransport->transport); 2342 return NULL; 2343 } 2344 2345 sge_count = opts->max_io_size / opts->io_unit_size; 2346 if (sge_count > NVMF_DEFAULT_TX_SGE) { 2347 SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size); 2348 spdk_nvmf_rdma_destroy(&rtransport->transport); 2349 return NULL; 2350 } 2351 2352 rtransport->event_channel = rdma_create_event_channel(); 2353 if (rtransport->event_channel == NULL) { 2354 SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno)); 2355 spdk_nvmf_rdma_destroy(&rtransport->transport); 2356 return NULL; 2357 } 2358 2359 flag = fcntl(rtransport->event_channel->fd, F_GETFL); 2360 if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { 2361 SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n", 2362 rtransport->event_channel->fd, spdk_strerror(errno)); 2363 spdk_nvmf_rdma_destroy(&rtransport->transport); 2364 return NULL; 2365 } 2366 2367 rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data", 2368 opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES, 2369 sizeof(struct spdk_nvmf_rdma_request_data), 2370 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 2371 SPDK_ENV_SOCKET_ID_ANY); 2372 if (!rtransport->data_wr_pool) { 2373 SPDK_ERRLOG("Unable to allocate work request pool for poll group\n"); 2374 spdk_nvmf_rdma_destroy(&rtransport->transport); 2375 return NULL; 2376 } 2377 2378 contexts = rdma_get_devices(NULL); 2379 if (contexts == NULL) { 2380 SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); 2381 spdk_nvmf_rdma_destroy(&rtransport->transport); 2382 return NULL; 2383 } 2384 2385 i = 0; 2386 rc = 0; 2387 while (contexts[i] != NULL) { 2388 device = calloc(1, sizeof(*device)); 2389 if (!device) { 2390 SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n"); 2391 rc = -ENOMEM; 2392 break; 2393 } 2394 device->context = contexts[i]; 2395 rc = ibv_query_device(device->context, &device->attr); 2396 if (rc < 0) { 2397 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 2398 free(device); 2399 break; 2400 2401 } 2402 2403 max_device_sge = spdk_min(max_device_sge, device->attr.max_sge); 2404 2405 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2406 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) { 2407 SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,"); 2408 SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id); 2409 } 2410 2411 /** 2412 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE. 2413 * The Soft-RoCE RXE driver does not currently support send with invalidate, 2414 * but incorrectly reports that it does. There are changes making their way 2415 * through the kernel now that will enable this feature. When they are merged, 2416 * we can conditionally enable this feature. 2417 * 2418 * TODO: enable this for versions of the kernel rxe driver that support it. 2419 */ 2420 if (device->attr.vendor_id == 0) { 2421 device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS); 2422 } 2423 #endif 2424 2425 /* set up device context async ev fd as NON_BLOCKING */ 2426 flag = fcntl(device->context->async_fd, F_GETFL); 2427 rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK); 2428 if (rc < 0) { 2429 SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n"); 2430 free(device); 2431 break; 2432 } 2433 2434 TAILQ_INSERT_TAIL(&rtransport->devices, device, link); 2435 i++; 2436 2437 if (g_nvmf_hooks.get_ibv_pd) { 2438 device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context); 2439 } else { 2440 device->pd = ibv_alloc_pd(device->context); 2441 } 2442 2443 if (!device->pd) { 2444 SPDK_ERRLOG("Unable to allocate protection domain.\n"); 2445 rc = -ENOMEM; 2446 break; 2447 } 2448 2449 assert(device->map == NULL); 2450 2451 device->map = spdk_mem_map_alloc(0, &g_nvmf_rdma_map_ops, device->pd); 2452 if (!device->map) { 2453 SPDK_ERRLOG("Unable to allocate memory map for listen address\n"); 2454 rc = -ENOMEM; 2455 break; 2456 } 2457 2458 assert(device->map != NULL); 2459 assert(device->pd != NULL); 2460 } 2461 rdma_free_devices(contexts); 2462 2463 if (opts->io_unit_size * max_device_sge < opts->max_io_size) { 2464 /* divide and round up. */ 2465 opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge; 2466 2467 /* round up to the nearest 4k. */ 2468 opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK; 2469 2470 opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE); 2471 SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n", 2472 opts->io_unit_size); 2473 } 2474 2475 if (rc < 0) { 2476 spdk_nvmf_rdma_destroy(&rtransport->transport); 2477 return NULL; 2478 } 2479 2480 /* Set up poll descriptor array to monitor events from RDMA and IB 2481 * in a single poll syscall 2482 */ 2483 rtransport->npoll_fds = i + 1; 2484 i = 0; 2485 rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd)); 2486 if (rtransport->poll_fds == NULL) { 2487 SPDK_ERRLOG("poll_fds allocation failed\n"); 2488 spdk_nvmf_rdma_destroy(&rtransport->transport); 2489 return NULL; 2490 } 2491 2492 rtransport->poll_fds[i].fd = rtransport->event_channel->fd; 2493 rtransport->poll_fds[i++].events = POLLIN; 2494 2495 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 2496 rtransport->poll_fds[i].fd = device->context->async_fd; 2497 rtransport->poll_fds[i++].events = POLLIN; 2498 } 2499 2500 spdk_nvmf_ctrlr_data_init(opts, &rtransport->transport.cdata); 2501 2502 rtransport->transport.cdata.nvmf_specific.msdbd = SPDK_NVMF_MAX_SGL_ENTRIES; 2503 2504 /* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled 2505 since in-capsule data only works with NVME drives that support SGL memory layout */ 2506 if (opts->dif_insert_or_strip) { 2507 rtransport->transport.cdata.nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16; 2508 } 2509 2510 return &rtransport->transport; 2511 } 2512 2513 static int 2514 spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport) 2515 { 2516 struct spdk_nvmf_rdma_transport *rtransport; 2517 struct spdk_nvmf_rdma_port *port, *port_tmp; 2518 struct spdk_nvmf_rdma_device *device, *device_tmp; 2519 2520 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2521 2522 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) { 2523 TAILQ_REMOVE(&rtransport->ports, port, link); 2524 rdma_destroy_id(port->id); 2525 free(port); 2526 } 2527 2528 if (rtransport->poll_fds != NULL) { 2529 free(rtransport->poll_fds); 2530 } 2531 2532 if (rtransport->event_channel != NULL) { 2533 rdma_destroy_event_channel(rtransport->event_channel); 2534 } 2535 2536 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) { 2537 TAILQ_REMOVE(&rtransport->devices, device, link); 2538 if (device->map) { 2539 spdk_mem_map_free(&device->map); 2540 } 2541 if (device->pd) { 2542 if (!g_nvmf_hooks.get_ibv_pd) { 2543 ibv_dealloc_pd(device->pd); 2544 } 2545 } 2546 free(device); 2547 } 2548 2549 if (rtransport->data_wr_pool != NULL) { 2550 if (spdk_mempool_count(rtransport->data_wr_pool) != 2551 (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) { 2552 SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n", 2553 spdk_mempool_count(rtransport->data_wr_pool), 2554 transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES); 2555 } 2556 } 2557 2558 spdk_mempool_free(rtransport->data_wr_pool); 2559 2560 pthread_mutex_destroy(&rtransport->lock); 2561 free(rtransport); 2562 2563 return 0; 2564 } 2565 2566 static int 2567 spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 2568 struct spdk_nvme_transport_id *trid, 2569 bool peer); 2570 2571 static int 2572 spdk_nvmf_rdma_listen(struct spdk_nvmf_transport *transport, 2573 const struct spdk_nvme_transport_id *trid) 2574 { 2575 struct spdk_nvmf_rdma_transport *rtransport; 2576 struct spdk_nvmf_rdma_device *device; 2577 struct spdk_nvmf_rdma_port *port; 2578 struct addrinfo *res; 2579 struct addrinfo hints; 2580 int family; 2581 int rc; 2582 2583 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2584 assert(rtransport->event_channel != NULL); 2585 2586 pthread_mutex_lock(&rtransport->lock); 2587 port = calloc(1, sizeof(*port)); 2588 if (!port) { 2589 SPDK_ERRLOG("Port allocation failed\n"); 2590 pthread_mutex_unlock(&rtransport->lock); 2591 return -ENOMEM; 2592 } 2593 2594 port->trid = trid; 2595 2596 switch (trid->adrfam) { 2597 case SPDK_NVMF_ADRFAM_IPV4: 2598 family = AF_INET; 2599 break; 2600 case SPDK_NVMF_ADRFAM_IPV6: 2601 family = AF_INET6; 2602 break; 2603 default: 2604 SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam); 2605 free(port); 2606 pthread_mutex_unlock(&rtransport->lock); 2607 return -EINVAL; 2608 } 2609 2610 memset(&hints, 0, sizeof(hints)); 2611 hints.ai_family = family; 2612 hints.ai_flags = AI_NUMERICSERV; 2613 hints.ai_socktype = SOCK_STREAM; 2614 hints.ai_protocol = 0; 2615 2616 rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res); 2617 if (rc) { 2618 SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc); 2619 free(port); 2620 pthread_mutex_unlock(&rtransport->lock); 2621 return -EINVAL; 2622 } 2623 2624 rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP); 2625 if (rc < 0) { 2626 SPDK_ERRLOG("rdma_create_id() failed\n"); 2627 freeaddrinfo(res); 2628 free(port); 2629 pthread_mutex_unlock(&rtransport->lock); 2630 return rc; 2631 } 2632 2633 rc = rdma_bind_addr(port->id, res->ai_addr); 2634 freeaddrinfo(res); 2635 2636 if (rc < 0) { 2637 SPDK_ERRLOG("rdma_bind_addr() failed\n"); 2638 rdma_destroy_id(port->id); 2639 free(port); 2640 pthread_mutex_unlock(&rtransport->lock); 2641 return rc; 2642 } 2643 2644 if (!port->id->verbs) { 2645 SPDK_ERRLOG("ibv_context is null\n"); 2646 rdma_destroy_id(port->id); 2647 free(port); 2648 pthread_mutex_unlock(&rtransport->lock); 2649 return -1; 2650 } 2651 2652 rc = rdma_listen(port->id, 10); /* 10 = backlog */ 2653 if (rc < 0) { 2654 SPDK_ERRLOG("rdma_listen() failed\n"); 2655 rdma_destroy_id(port->id); 2656 free(port); 2657 pthread_mutex_unlock(&rtransport->lock); 2658 return rc; 2659 } 2660 2661 TAILQ_FOREACH(device, &rtransport->devices, link) { 2662 if (device->context == port->id->verbs) { 2663 port->device = device; 2664 break; 2665 } 2666 } 2667 if (!port->device) { 2668 SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n", 2669 port->id->verbs); 2670 rdma_destroy_id(port->id); 2671 free(port); 2672 pthread_mutex_unlock(&rtransport->lock); 2673 return -EINVAL; 2674 } 2675 2676 SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n", 2677 trid->traddr, trid->trsvcid); 2678 2679 TAILQ_INSERT_TAIL(&rtransport->ports, port, link); 2680 pthread_mutex_unlock(&rtransport->lock); 2681 return 0; 2682 } 2683 2684 static void 2685 spdk_nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport, 2686 const struct spdk_nvme_transport_id *trid) 2687 { 2688 struct spdk_nvmf_rdma_transport *rtransport; 2689 struct spdk_nvmf_rdma_port *port, *tmp; 2690 2691 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2692 2693 pthread_mutex_lock(&rtransport->lock); 2694 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) { 2695 if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) { 2696 TAILQ_REMOVE(&rtransport->ports, port, link); 2697 rdma_destroy_id(port->id); 2698 free(port); 2699 break; 2700 } 2701 } 2702 2703 pthread_mutex_unlock(&rtransport->lock); 2704 } 2705 2706 static void 2707 spdk_nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport, 2708 struct spdk_nvmf_rdma_qpair *rqpair, bool drain) 2709 { 2710 struct spdk_nvmf_request *req, *tmp; 2711 struct spdk_nvmf_rdma_request *rdma_req, *req_tmp; 2712 struct spdk_nvmf_rdma_resources *resources; 2713 2714 /* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */ 2715 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) { 2716 if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2717 break; 2718 } 2719 } 2720 2721 /* Then RDMA writes since reads have stronger restrictions than writes */ 2722 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) { 2723 if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2724 break; 2725 } 2726 } 2727 2728 /* The second highest priority is I/O waiting on memory buffers. */ 2729 STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) { 2730 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 2731 if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2732 break; 2733 } 2734 } 2735 2736 resources = rqpair->resources; 2737 while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) { 2738 rdma_req = STAILQ_FIRST(&resources->free_queue); 2739 STAILQ_REMOVE_HEAD(&resources->free_queue, state_link); 2740 rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue); 2741 STAILQ_REMOVE_HEAD(&resources->incoming_queue, link); 2742 2743 if (rqpair->srq != NULL) { 2744 rdma_req->req.qpair = &rdma_req->recv->qpair->qpair; 2745 rdma_req->recv->qpair->qd++; 2746 } else { 2747 rqpair->qd++; 2748 } 2749 2750 rdma_req->receive_tsc = rdma_req->recv->receive_tsc; 2751 rdma_req->state = RDMA_REQUEST_STATE_NEW; 2752 if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false) { 2753 break; 2754 } 2755 } 2756 if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) { 2757 rqpair->poller->stat.pending_free_request++; 2758 } 2759 } 2760 2761 static void 2762 _nvmf_rdma_qpair_disconnect(void *ctx) 2763 { 2764 struct spdk_nvmf_qpair *qpair = ctx; 2765 2766 spdk_nvmf_qpair_disconnect(qpair, NULL, NULL); 2767 } 2768 2769 static void 2770 _nvmf_rdma_try_disconnect(void *ctx) 2771 { 2772 struct spdk_nvmf_qpair *qpair = ctx; 2773 struct spdk_nvmf_poll_group *group; 2774 2775 /* Read the group out of the qpair. This is normally set and accessed only from 2776 * the thread that created the group. Here, we're not on that thread necessarily. 2777 * The data member qpair->group begins it's life as NULL and then is assigned to 2778 * a pointer and never changes. So fortunately reading this and checking for 2779 * non-NULL is thread safe in the x86_64 memory model. */ 2780 group = qpair->group; 2781 2782 if (group == NULL) { 2783 /* The qpair hasn't been assigned to a group yet, so we can't 2784 * process a disconnect. Send a message to ourself and try again. */ 2785 spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_try_disconnect, qpair); 2786 return; 2787 } 2788 2789 spdk_thread_send_msg(group->thread, _nvmf_rdma_qpair_disconnect, qpair); 2790 } 2791 2792 static inline void 2793 spdk_nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair) 2794 { 2795 if (!__atomic_test_and_set(&rqpair->disconnect_started, __ATOMIC_RELAXED)) { 2796 _nvmf_rdma_try_disconnect(&rqpair->qpair); 2797 } 2798 } 2799 2800 static void nvmf_rdma_destroy_drained_qpair(void *ctx) 2801 { 2802 struct spdk_nvmf_rdma_qpair *rqpair = ctx; 2803 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 2804 struct spdk_nvmf_rdma_transport, transport); 2805 2806 /* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */ 2807 if (rqpair->current_send_depth != 0) { 2808 return; 2809 } 2810 2811 if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) { 2812 return; 2813 } 2814 2815 if (rqpair->srq != NULL && rqpair->last_wqe_reached == false) { 2816 return; 2817 } 2818 2819 spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); 2820 2821 /* Qpair will be destroyed after nvmf layer closes this qpair */ 2822 if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ERROR) { 2823 return; 2824 } 2825 2826 spdk_nvmf_rdma_qpair_destroy(rqpair); 2827 } 2828 2829 2830 static int 2831 nvmf_rdma_disconnect(struct rdma_cm_event *evt) 2832 { 2833 struct spdk_nvmf_qpair *qpair; 2834 struct spdk_nvmf_rdma_qpair *rqpair; 2835 2836 if (evt->id == NULL) { 2837 SPDK_ERRLOG("disconnect request: missing cm_id\n"); 2838 return -1; 2839 } 2840 2841 qpair = evt->id->context; 2842 if (qpair == NULL) { 2843 SPDK_ERRLOG("disconnect request: no active connection\n"); 2844 return -1; 2845 } 2846 2847 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 2848 2849 spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair->cm_id, 0); 2850 2851 spdk_nvmf_rdma_start_disconnect(rqpair); 2852 2853 return 0; 2854 } 2855 2856 #ifdef DEBUG 2857 static const char *CM_EVENT_STR[] = { 2858 "RDMA_CM_EVENT_ADDR_RESOLVED", 2859 "RDMA_CM_EVENT_ADDR_ERROR", 2860 "RDMA_CM_EVENT_ROUTE_RESOLVED", 2861 "RDMA_CM_EVENT_ROUTE_ERROR", 2862 "RDMA_CM_EVENT_CONNECT_REQUEST", 2863 "RDMA_CM_EVENT_CONNECT_RESPONSE", 2864 "RDMA_CM_EVENT_CONNECT_ERROR", 2865 "RDMA_CM_EVENT_UNREACHABLE", 2866 "RDMA_CM_EVENT_REJECTED", 2867 "RDMA_CM_EVENT_ESTABLISHED", 2868 "RDMA_CM_EVENT_DISCONNECTED", 2869 "RDMA_CM_EVENT_DEVICE_REMOVAL", 2870 "RDMA_CM_EVENT_MULTICAST_JOIN", 2871 "RDMA_CM_EVENT_MULTICAST_ERROR", 2872 "RDMA_CM_EVENT_ADDR_CHANGE", 2873 "RDMA_CM_EVENT_TIMEWAIT_EXIT" 2874 }; 2875 #endif /* DEBUG */ 2876 2877 static void 2878 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport, 2879 struct spdk_nvmf_rdma_port *port) 2880 { 2881 struct spdk_nvmf_rdma_poll_group *rgroup; 2882 struct spdk_nvmf_rdma_poller *rpoller; 2883 struct spdk_nvmf_rdma_qpair *rqpair; 2884 2885 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 2886 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 2887 TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) { 2888 if (rqpair->listen_id == port->id) { 2889 spdk_nvmf_rdma_start_disconnect(rqpair); 2890 } 2891 } 2892 } 2893 } 2894 } 2895 2896 static bool 2897 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport, 2898 struct rdma_cm_event *event) 2899 { 2900 const struct spdk_nvme_transport_id *trid; 2901 struct spdk_nvmf_rdma_port *port; 2902 struct spdk_nvmf_rdma_transport *rtransport; 2903 bool event_acked = false; 2904 2905 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2906 TAILQ_FOREACH(port, &rtransport->ports, link) { 2907 if (port->id == event->id) { 2908 SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid); 2909 rdma_ack_cm_event(event); 2910 event_acked = true; 2911 trid = port->trid; 2912 break; 2913 } 2914 } 2915 2916 if (event_acked) { 2917 nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); 2918 2919 spdk_nvmf_rdma_stop_listen(transport, trid); 2920 spdk_nvmf_rdma_listen(transport, trid); 2921 } 2922 2923 return event_acked; 2924 } 2925 2926 static void 2927 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport, 2928 struct rdma_cm_event *event) 2929 { 2930 struct spdk_nvmf_rdma_port *port; 2931 struct spdk_nvmf_rdma_transport *rtransport; 2932 2933 port = event->id->context; 2934 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2935 2936 SPDK_NOTICELOG("Port %s:%s is being removed\n", port->trid->traddr, port->trid->trsvcid); 2937 2938 nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); 2939 2940 rdma_ack_cm_event(event); 2941 2942 while (spdk_nvmf_transport_stop_listen(transport, port->trid) == 0) { 2943 ; 2944 } 2945 } 2946 2947 static void 2948 spdk_nvmf_process_cm_event(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn, void *cb_arg) 2949 { 2950 struct spdk_nvmf_rdma_transport *rtransport; 2951 struct rdma_cm_event *event; 2952 int rc; 2953 bool event_acked; 2954 2955 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2956 2957 if (rtransport->event_channel == NULL) { 2958 return; 2959 } 2960 2961 while (1) { 2962 event_acked = false; 2963 rc = rdma_get_cm_event(rtransport->event_channel, &event); 2964 if (rc) { 2965 if (errno != EAGAIN && errno != EWOULDBLOCK) { 2966 SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno)); 2967 } 2968 break; 2969 } 2970 2971 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]); 2972 2973 spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event); 2974 2975 switch (event->event) { 2976 case RDMA_CM_EVENT_ADDR_RESOLVED: 2977 case RDMA_CM_EVENT_ADDR_ERROR: 2978 case RDMA_CM_EVENT_ROUTE_RESOLVED: 2979 case RDMA_CM_EVENT_ROUTE_ERROR: 2980 /* No action required. The target never attempts to resolve routes. */ 2981 break; 2982 case RDMA_CM_EVENT_CONNECT_REQUEST: 2983 rc = nvmf_rdma_connect(transport, event, cb_fn, cb_arg); 2984 if (rc < 0) { 2985 SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc); 2986 break; 2987 } 2988 break; 2989 case RDMA_CM_EVENT_CONNECT_RESPONSE: 2990 /* The target never initiates a new connection. So this will not occur. */ 2991 break; 2992 case RDMA_CM_EVENT_CONNECT_ERROR: 2993 /* Can this happen? The docs say it can, but not sure what causes it. */ 2994 break; 2995 case RDMA_CM_EVENT_UNREACHABLE: 2996 case RDMA_CM_EVENT_REJECTED: 2997 /* These only occur on the client side. */ 2998 break; 2999 case RDMA_CM_EVENT_ESTABLISHED: 3000 /* TODO: Should we be waiting for this event anywhere? */ 3001 break; 3002 case RDMA_CM_EVENT_DISCONNECTED: 3003 rc = nvmf_rdma_disconnect(event); 3004 if (rc < 0) { 3005 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3006 break; 3007 } 3008 break; 3009 case RDMA_CM_EVENT_DEVICE_REMOVAL: 3010 /* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL 3011 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s. 3012 * Once these events are sent to SPDK, we should release all IB resources and 3013 * don't make attempts to call any ibv_query/modify/create functions. We can only call 3014 * ibv_destory* functions to release user space memory allocated by IB. All kernel 3015 * resources are already cleaned. */ 3016 if (event->id->qp) { 3017 /* If rdma_cm event has a valid `qp` pointer then the event refers to the 3018 * corresponding qpair. Otherwise the event refers to a listening device */ 3019 rc = nvmf_rdma_disconnect(event); 3020 if (rc < 0) { 3021 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3022 break; 3023 } 3024 } else { 3025 nvmf_rdma_handle_cm_event_port_removal(transport, event); 3026 event_acked = true; 3027 } 3028 break; 3029 case RDMA_CM_EVENT_MULTICAST_JOIN: 3030 case RDMA_CM_EVENT_MULTICAST_ERROR: 3031 /* Multicast is not used */ 3032 break; 3033 case RDMA_CM_EVENT_ADDR_CHANGE: 3034 event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event); 3035 break; 3036 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 3037 /* For now, do nothing. The target never re-uses queue pairs. */ 3038 break; 3039 default: 3040 SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); 3041 break; 3042 } 3043 if (!event_acked) { 3044 rdma_ack_cm_event(event); 3045 } 3046 } 3047 } 3048 3049 static void 3050 nvmf_rdma_handle_qp_fatal(struct spdk_nvmf_rdma_qpair *rqpair) 3051 { 3052 spdk_nvmf_rdma_update_ibv_state(rqpair); 3053 spdk_nvmf_rdma_start_disconnect(rqpair); 3054 } 3055 3056 static void 3057 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair) 3058 { 3059 rqpair->last_wqe_reached = true; 3060 nvmf_rdma_destroy_drained_qpair(rqpair); 3061 } 3062 3063 static void 3064 nvmf_rdma_handle_sq_drained(struct spdk_nvmf_rdma_qpair *rqpair) 3065 { 3066 spdk_nvmf_rdma_start_disconnect(rqpair); 3067 } 3068 3069 static void 3070 spdk_nvmf_rdma_qpair_process_ibv_event(void *ctx) 3071 { 3072 struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx; 3073 3074 if (event_ctx->rqpair) { 3075 STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3076 if (event_ctx->cb_fn) { 3077 event_ctx->cb_fn(event_ctx->rqpair); 3078 } 3079 } 3080 free(event_ctx); 3081 } 3082 3083 static int 3084 spdk_nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair, 3085 spdk_nvmf_rdma_qpair_ibv_event fn) 3086 { 3087 struct spdk_nvmf_rdma_ibv_event_ctx *ctx; 3088 3089 if (!rqpair->qpair.group) { 3090 return EINVAL; 3091 } 3092 3093 ctx = calloc(1, sizeof(*ctx)); 3094 if (!ctx) { 3095 return ENOMEM; 3096 } 3097 3098 ctx->rqpair = rqpair; 3099 ctx->cb_fn = fn; 3100 STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link); 3101 3102 return spdk_thread_send_msg(rqpair->qpair.group->thread, spdk_nvmf_rdma_qpair_process_ibv_event, 3103 ctx); 3104 } 3105 3106 static void 3107 spdk_nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device) 3108 { 3109 int rc; 3110 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 3111 struct ibv_async_event event; 3112 3113 rc = ibv_get_async_event(device->context, &event); 3114 3115 if (rc) { 3116 SPDK_ERRLOG("Failed to get async_event (%d): %s\n", 3117 errno, spdk_strerror(errno)); 3118 return; 3119 } 3120 3121 switch (event.event_type) { 3122 case IBV_EVENT_QP_FATAL: 3123 rqpair = event.element.qp->qp_context; 3124 SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair); 3125 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3126 (uintptr_t)rqpair->cm_id, event.event_type); 3127 if (spdk_nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_qp_fatal)) { 3128 SPDK_ERRLOG("Failed to send QP_FATAL event for rqpair %p\n", rqpair); 3129 nvmf_rdma_handle_qp_fatal(rqpair); 3130 } 3131 break; 3132 case IBV_EVENT_QP_LAST_WQE_REACHED: 3133 /* This event only occurs for shared receive queues. */ 3134 rqpair = event.element.qp->qp_context; 3135 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last WQE reached event received for rqpair %p\n", rqpair); 3136 if (spdk_nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached)) { 3137 SPDK_ERRLOG("Failed to send LAST_WQE_REACHED event for rqpair %p\n", rqpair); 3138 rqpair->last_wqe_reached = true; 3139 } 3140 break; 3141 case IBV_EVENT_SQ_DRAINED: 3142 /* This event occurs frequently in both error and non-error states. 3143 * Check if the qpair is in an error state before sending a message. */ 3144 rqpair = event.element.qp->qp_context; 3145 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last sq drained event received for rqpair %p\n", rqpair); 3146 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3147 (uintptr_t)rqpair->cm_id, event.event_type); 3148 if (spdk_nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) { 3149 if (spdk_nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_sq_drained)) { 3150 SPDK_ERRLOG("Failed to send SQ_DRAINED event for rqpair %p\n", rqpair); 3151 nvmf_rdma_handle_sq_drained(rqpair); 3152 } 3153 } 3154 break; 3155 case IBV_EVENT_QP_REQ_ERR: 3156 case IBV_EVENT_QP_ACCESS_ERR: 3157 case IBV_EVENT_COMM_EST: 3158 case IBV_EVENT_PATH_MIG: 3159 case IBV_EVENT_PATH_MIG_ERR: 3160 SPDK_NOTICELOG("Async event: %s\n", 3161 ibv_event_type_str(event.event_type)); 3162 rqpair = event.element.qp->qp_context; 3163 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3164 (uintptr_t)rqpair->cm_id, event.event_type); 3165 spdk_nvmf_rdma_update_ibv_state(rqpair); 3166 break; 3167 case IBV_EVENT_CQ_ERR: 3168 case IBV_EVENT_DEVICE_FATAL: 3169 case IBV_EVENT_PORT_ACTIVE: 3170 case IBV_EVENT_PORT_ERR: 3171 case IBV_EVENT_LID_CHANGE: 3172 case IBV_EVENT_PKEY_CHANGE: 3173 case IBV_EVENT_SM_CHANGE: 3174 case IBV_EVENT_SRQ_ERR: 3175 case IBV_EVENT_SRQ_LIMIT_REACHED: 3176 case IBV_EVENT_CLIENT_REREGISTER: 3177 case IBV_EVENT_GID_CHANGE: 3178 default: 3179 SPDK_NOTICELOG("Async event: %s\n", 3180 ibv_event_type_str(event.event_type)); 3181 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type); 3182 break; 3183 } 3184 ibv_ack_async_event(&event); 3185 } 3186 3187 static void 3188 spdk_nvmf_rdma_accept(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn, void *cb_arg) 3189 { 3190 int nfds, i = 0; 3191 struct spdk_nvmf_rdma_transport *rtransport; 3192 struct spdk_nvmf_rdma_device *device, *tmp; 3193 3194 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3195 nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0); 3196 3197 if (nfds <= 0) { 3198 return; 3199 } 3200 3201 /* The first poll descriptor is RDMA CM event */ 3202 if (rtransport->poll_fds[i++].revents & POLLIN) { 3203 spdk_nvmf_process_cm_event(transport, cb_fn, cb_arg); 3204 nfds--; 3205 } 3206 3207 if (nfds == 0) { 3208 return; 3209 } 3210 3211 /* Second and subsequent poll descriptors are IB async events */ 3212 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 3213 if (rtransport->poll_fds[i++].revents & POLLIN) { 3214 spdk_nvmf_process_ib_event(device); 3215 nfds--; 3216 } 3217 } 3218 /* check all flagged fd's have been served */ 3219 assert(nfds == 0); 3220 } 3221 3222 static void 3223 spdk_nvmf_rdma_discover(struct spdk_nvmf_transport *transport, 3224 struct spdk_nvme_transport_id *trid, 3225 struct spdk_nvmf_discovery_log_page_entry *entry) 3226 { 3227 entry->trtype = SPDK_NVMF_TRTYPE_RDMA; 3228 entry->adrfam = trid->adrfam; 3229 entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED; 3230 3231 spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' '); 3232 spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' '); 3233 3234 entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED; 3235 entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE; 3236 entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM; 3237 } 3238 3239 static void 3240 spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group); 3241 3242 static struct spdk_nvmf_transport_poll_group * 3243 spdk_nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport) 3244 { 3245 struct spdk_nvmf_rdma_transport *rtransport; 3246 struct spdk_nvmf_rdma_poll_group *rgroup; 3247 struct spdk_nvmf_rdma_poller *poller; 3248 struct spdk_nvmf_rdma_device *device; 3249 struct ibv_srq_init_attr srq_init_attr; 3250 struct spdk_nvmf_rdma_resource_opts opts; 3251 int num_cqe; 3252 3253 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3254 3255 rgroup = calloc(1, sizeof(*rgroup)); 3256 if (!rgroup) { 3257 return NULL; 3258 } 3259 3260 TAILQ_INIT(&rgroup->pollers); 3261 STAILQ_INIT(&rgroup->retired_bufs); 3262 3263 pthread_mutex_lock(&rtransport->lock); 3264 TAILQ_FOREACH(device, &rtransport->devices, link) { 3265 poller = calloc(1, sizeof(*poller)); 3266 if (!poller) { 3267 SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n"); 3268 spdk_nvmf_rdma_poll_group_destroy(&rgroup->group); 3269 pthread_mutex_unlock(&rtransport->lock); 3270 return NULL; 3271 } 3272 3273 poller->device = device; 3274 poller->group = rgroup; 3275 3276 TAILQ_INIT(&poller->qpairs); 3277 STAILQ_INIT(&poller->qpairs_pending_send); 3278 STAILQ_INIT(&poller->qpairs_pending_recv); 3279 3280 TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link); 3281 if (transport->opts.no_srq == false && device->num_srq < device->attr.max_srq) { 3282 poller->max_srq_depth = transport->opts.max_srq_depth; 3283 3284 device->num_srq++; 3285 memset(&srq_init_attr, 0, sizeof(struct ibv_srq_init_attr)); 3286 srq_init_attr.attr.max_wr = poller->max_srq_depth; 3287 srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 3288 poller->srq = ibv_create_srq(device->pd, &srq_init_attr); 3289 if (!poller->srq) { 3290 SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno); 3291 spdk_nvmf_rdma_poll_group_destroy(&rgroup->group); 3292 pthread_mutex_unlock(&rtransport->lock); 3293 return NULL; 3294 } 3295 3296 opts.qp = poller->srq; 3297 opts.pd = device->pd; 3298 opts.qpair = NULL; 3299 opts.shared = true; 3300 opts.max_queue_depth = poller->max_srq_depth; 3301 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 3302 3303 poller->resources = nvmf_rdma_resources_create(&opts); 3304 if (!poller->resources) { 3305 SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n"); 3306 spdk_nvmf_rdma_poll_group_destroy(&rgroup->group); 3307 pthread_mutex_unlock(&rtransport->lock); 3308 return NULL; 3309 } 3310 } 3311 3312 /* 3313 * When using an srq, we can limit the completion queue at startup. 3314 * The following formula represents the calculation: 3315 * num_cqe = num_recv + num_data_wr + num_send_wr. 3316 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth 3317 */ 3318 if (poller->srq) { 3319 num_cqe = poller->max_srq_depth * 3; 3320 } else { 3321 num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE; 3322 } 3323 3324 poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0); 3325 if (!poller->cq) { 3326 SPDK_ERRLOG("Unable to create completion queue\n"); 3327 spdk_nvmf_rdma_poll_group_destroy(&rgroup->group); 3328 pthread_mutex_unlock(&rtransport->lock); 3329 return NULL; 3330 } 3331 poller->num_cqe = num_cqe; 3332 } 3333 3334 TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link); 3335 if (rtransport->conn_sched.next_admin_pg == NULL) { 3336 rtransport->conn_sched.next_admin_pg = rgroup; 3337 rtransport->conn_sched.next_io_pg = rgroup; 3338 } 3339 3340 pthread_mutex_unlock(&rtransport->lock); 3341 return &rgroup->group; 3342 } 3343 3344 static struct spdk_nvmf_transport_poll_group * 3345 spdk_nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair) 3346 { 3347 struct spdk_nvmf_rdma_transport *rtransport; 3348 struct spdk_nvmf_rdma_poll_group **pg; 3349 struct spdk_nvmf_transport_poll_group *result; 3350 3351 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 3352 3353 pthread_mutex_lock(&rtransport->lock); 3354 3355 if (TAILQ_EMPTY(&rtransport->poll_groups)) { 3356 pthread_mutex_unlock(&rtransport->lock); 3357 return NULL; 3358 } 3359 3360 if (qpair->qid == 0) { 3361 pg = &rtransport->conn_sched.next_admin_pg; 3362 } else { 3363 pg = &rtransport->conn_sched.next_io_pg; 3364 } 3365 3366 assert(*pg != NULL); 3367 3368 result = &(*pg)->group; 3369 3370 *pg = TAILQ_NEXT(*pg, link); 3371 if (*pg == NULL) { 3372 *pg = TAILQ_FIRST(&rtransport->poll_groups); 3373 } 3374 3375 pthread_mutex_unlock(&rtransport->lock); 3376 3377 return result; 3378 } 3379 3380 static void 3381 spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group) 3382 { 3383 struct spdk_nvmf_rdma_poll_group *rgroup, *next_rgroup; 3384 struct spdk_nvmf_rdma_poller *poller, *tmp; 3385 struct spdk_nvmf_rdma_qpair *qpair, *tmp_qpair; 3386 struct spdk_nvmf_transport_pg_cache_buf *buf, *tmp_buf; 3387 struct spdk_nvmf_rdma_transport *rtransport; 3388 3389 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3390 if (!rgroup) { 3391 return; 3392 } 3393 3394 /* free all retired buffers back to the transport so we don't short the mempool. */ 3395 STAILQ_FOREACH_SAFE(buf, &rgroup->retired_bufs, link, tmp_buf) { 3396 STAILQ_REMOVE(&rgroup->retired_bufs, buf, spdk_nvmf_transport_pg_cache_buf, link); 3397 assert(group->transport != NULL); 3398 spdk_mempool_put(group->transport->data_buf_pool, buf); 3399 } 3400 3401 TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) { 3402 TAILQ_REMOVE(&rgroup->pollers, poller, link); 3403 3404 TAILQ_FOREACH_SAFE(qpair, &poller->qpairs, link, tmp_qpair) { 3405 spdk_nvmf_rdma_qpair_destroy(qpair); 3406 } 3407 3408 if (poller->srq) { 3409 if (poller->resources) { 3410 nvmf_rdma_resources_destroy(poller->resources); 3411 } 3412 ibv_destroy_srq(poller->srq); 3413 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Destroyed RDMA shared queue %p\n", poller->srq); 3414 } 3415 3416 if (poller->cq) { 3417 ibv_destroy_cq(poller->cq); 3418 } 3419 3420 free(poller); 3421 } 3422 3423 if (rgroup->group.transport == NULL) { 3424 /* Transport can be NULL when spdk_nvmf_rdma_poll_group_create() 3425 * calls this function directly in a failure path. */ 3426 free(rgroup); 3427 return; 3428 } 3429 3430 rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport); 3431 3432 pthread_mutex_lock(&rtransport->lock); 3433 next_rgroup = TAILQ_NEXT(rgroup, link); 3434 TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link); 3435 if (next_rgroup == NULL) { 3436 next_rgroup = TAILQ_FIRST(&rtransport->poll_groups); 3437 } 3438 if (rtransport->conn_sched.next_admin_pg == rgroup) { 3439 rtransport->conn_sched.next_admin_pg = next_rgroup; 3440 } 3441 if (rtransport->conn_sched.next_io_pg == rgroup) { 3442 rtransport->conn_sched.next_io_pg = next_rgroup; 3443 } 3444 pthread_mutex_unlock(&rtransport->lock); 3445 3446 free(rgroup); 3447 } 3448 3449 static void 3450 spdk_nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair) 3451 { 3452 if (rqpair->cm_id != NULL) { 3453 spdk_nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 3454 } 3455 spdk_nvmf_rdma_qpair_destroy(rqpair); 3456 } 3457 3458 static int 3459 spdk_nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group, 3460 struct spdk_nvmf_qpair *qpair) 3461 { 3462 struct spdk_nvmf_rdma_poll_group *rgroup; 3463 struct spdk_nvmf_rdma_qpair *rqpair; 3464 struct spdk_nvmf_rdma_device *device; 3465 struct spdk_nvmf_rdma_poller *poller; 3466 int rc; 3467 3468 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3469 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3470 3471 device = rqpair->device; 3472 3473 TAILQ_FOREACH(poller, &rgroup->pollers, link) { 3474 if (poller->device == device) { 3475 break; 3476 } 3477 } 3478 3479 if (!poller) { 3480 SPDK_ERRLOG("No poller found for device.\n"); 3481 return -1; 3482 } 3483 3484 TAILQ_INSERT_TAIL(&poller->qpairs, rqpair, link); 3485 rqpair->poller = poller; 3486 rqpair->srq = rqpair->poller->srq; 3487 3488 rc = spdk_nvmf_rdma_qpair_initialize(qpair); 3489 if (rc < 0) { 3490 SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair); 3491 return -1; 3492 } 3493 3494 rc = spdk_nvmf_rdma_event_accept(rqpair->cm_id, rqpair); 3495 if (rc) { 3496 /* Try to reject, but we probably can't */ 3497 spdk_nvmf_rdma_qpair_reject_connection(rqpair); 3498 return -1; 3499 } 3500 3501 spdk_nvmf_rdma_update_ibv_state(rqpair); 3502 3503 return 0; 3504 } 3505 3506 static int 3507 spdk_nvmf_rdma_request_free(struct spdk_nvmf_request *req) 3508 { 3509 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 3510 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 3511 struct spdk_nvmf_rdma_transport, transport); 3512 3513 nvmf_rdma_request_free(rdma_req, rtransport); 3514 return 0; 3515 } 3516 3517 static int 3518 spdk_nvmf_rdma_request_complete(struct spdk_nvmf_request *req) 3519 { 3520 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 3521 struct spdk_nvmf_rdma_transport, transport); 3522 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, 3523 struct spdk_nvmf_rdma_request, req); 3524 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 3525 struct spdk_nvmf_rdma_qpair, qpair); 3526 3527 if (rqpair->ibv_state != IBV_QPS_ERR) { 3528 /* The connection is alive, so process the request as normal */ 3529 rdma_req->state = RDMA_REQUEST_STATE_EXECUTED; 3530 } else { 3531 /* The connection is dead. Move the request directly to the completed state. */ 3532 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3533 } 3534 3535 spdk_nvmf_rdma_request_process(rtransport, rdma_req); 3536 3537 return 0; 3538 } 3539 3540 static int 3541 spdk_nvmf_rdma_destroy_defunct_qpair(void *ctx) 3542 { 3543 struct spdk_nvmf_rdma_qpair *rqpair = ctx; 3544 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 3545 struct spdk_nvmf_rdma_transport, transport); 3546 3547 SPDK_INFOLOG(SPDK_LOG_RDMA, "QP#%d hasn't been drained as expected, manually destroy it\n", 3548 rqpair->qpair.qid); 3549 3550 spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); 3551 spdk_nvmf_rdma_qpair_destroy(rqpair); 3552 3553 return 0; 3554 } 3555 3556 static void 3557 spdk_nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair) 3558 { 3559 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3560 3561 if (rqpair->disconnect_flags & RDMA_QP_DISCONNECTING) { 3562 return; 3563 } 3564 3565 rqpair->disconnect_flags |= RDMA_QP_DISCONNECTING; 3566 3567 /* This happens only when the qpair is disconnected before 3568 * it is added to the poll group. Since there is no poll group, 3569 * the RDMA qp has not been initialized yet and the RDMA CM 3570 * event has not yet been acknowledged, so we need to reject it. 3571 */ 3572 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) { 3573 spdk_nvmf_rdma_qpair_reject_connection(rqpair); 3574 return; 3575 } 3576 3577 if (rqpair->cm_id) { 3578 rdma_disconnect(rqpair->cm_id); 3579 } 3580 3581 rqpair->destruct_poller = SPDK_POLLER_REGISTER(spdk_nvmf_rdma_destroy_defunct_qpair, (void *)rqpair, 3582 NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US); 3583 } 3584 3585 static struct spdk_nvmf_rdma_qpair * 3586 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc) 3587 { 3588 struct spdk_nvmf_rdma_qpair *rqpair; 3589 /* @todo: improve QP search */ 3590 TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) { 3591 if (wc->qp_num == rqpair->cm_id->qp->qp_num) { 3592 return rqpair; 3593 } 3594 } 3595 SPDK_ERRLOG("Didn't find QP with qp_num %u\n", wc->qp_num); 3596 return NULL; 3597 } 3598 3599 #ifdef DEBUG 3600 static int 3601 spdk_nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req) 3602 { 3603 return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST || 3604 rdma_req->state == RDMA_REQUEST_STATE_COMPLETING; 3605 } 3606 #endif 3607 3608 static void 3609 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr, 3610 int rc) 3611 { 3612 struct spdk_nvmf_rdma_recv *rdma_recv; 3613 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 3614 3615 SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc); 3616 while (bad_recv_wr != NULL) { 3617 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id; 3618 rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 3619 3620 rdma_recv->qpair->current_recv_depth++; 3621 bad_recv_wr = bad_recv_wr->next; 3622 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc); 3623 spdk_nvmf_rdma_start_disconnect(rdma_recv->qpair); 3624 } 3625 } 3626 3627 static void 3628 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc) 3629 { 3630 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc); 3631 while (bad_recv_wr != NULL) { 3632 bad_recv_wr = bad_recv_wr->next; 3633 rqpair->current_recv_depth++; 3634 } 3635 spdk_nvmf_rdma_start_disconnect(rqpair); 3636 } 3637 3638 static void 3639 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 3640 struct spdk_nvmf_rdma_poller *rpoller) 3641 { 3642 struct spdk_nvmf_rdma_qpair *rqpair; 3643 struct ibv_recv_wr *bad_recv_wr; 3644 int rc; 3645 3646 if (rpoller->srq) { 3647 if (rpoller->resources->recvs_to_post.first != NULL) { 3648 rc = ibv_post_srq_recv(rpoller->srq, rpoller->resources->recvs_to_post.first, &bad_recv_wr); 3649 if (rc) { 3650 _poller_reset_failed_recvs(rpoller, bad_recv_wr, rc); 3651 } 3652 rpoller->resources->recvs_to_post.first = NULL; 3653 rpoller->resources->recvs_to_post.last = NULL; 3654 } 3655 } else { 3656 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) { 3657 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv); 3658 assert(rqpair->resources->recvs_to_post.first != NULL); 3659 rc = ibv_post_recv(rqpair->cm_id->qp, rqpair->resources->recvs_to_post.first, &bad_recv_wr); 3660 if (rc) { 3661 _qp_reset_failed_recvs(rqpair, bad_recv_wr, rc); 3662 } 3663 rqpair->resources->recvs_to_post.first = NULL; 3664 rqpair->resources->recvs_to_post.last = NULL; 3665 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link); 3666 } 3667 } 3668 } 3669 3670 static void 3671 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport, 3672 struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc) 3673 { 3674 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 3675 struct spdk_nvmf_rdma_request *prev_rdma_req = NULL, *cur_rdma_req = NULL; 3676 3677 SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc); 3678 for (; bad_wr != NULL; bad_wr = bad_wr->next) { 3679 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id; 3680 assert(rqpair->current_send_depth > 0); 3681 rqpair->current_send_depth--; 3682 switch (bad_rdma_wr->type) { 3683 case RDMA_WR_TYPE_DATA: 3684 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr); 3685 if (bad_wr->opcode == IBV_WR_RDMA_READ) { 3686 assert(rqpair->current_read_depth > 0); 3687 rqpair->current_read_depth--; 3688 } 3689 break; 3690 case RDMA_WR_TYPE_SEND: 3691 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr); 3692 break; 3693 default: 3694 SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair); 3695 prev_rdma_req = cur_rdma_req; 3696 continue; 3697 } 3698 3699 if (prev_rdma_req == cur_rdma_req) { 3700 /* this request was handled by an earlier wr. i.e. we were performing an nvme read. */ 3701 /* We only have to check against prev_wr since each requests wrs are contiguous in this list. */ 3702 continue; 3703 } 3704 3705 switch (cur_rdma_req->state) { 3706 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 3707 cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 3708 cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 3709 break; 3710 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 3711 case RDMA_REQUEST_STATE_COMPLETING: 3712 cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3713 break; 3714 default: 3715 SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n", 3716 cur_rdma_req->state, rqpair); 3717 continue; 3718 } 3719 3720 spdk_nvmf_rdma_request_process(rtransport, cur_rdma_req); 3721 prev_rdma_req = cur_rdma_req; 3722 } 3723 3724 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 3725 /* Disconnect the connection. */ 3726 spdk_nvmf_rdma_start_disconnect(rqpair); 3727 } 3728 3729 } 3730 3731 static void 3732 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 3733 struct spdk_nvmf_rdma_poller *rpoller) 3734 { 3735 struct spdk_nvmf_rdma_qpair *rqpair; 3736 struct ibv_send_wr *bad_wr = NULL; 3737 int rc; 3738 3739 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) { 3740 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send); 3741 assert(rqpair->sends_to_post.first != NULL); 3742 rc = ibv_post_send(rqpair->cm_id->qp, rqpair->sends_to_post.first, &bad_wr); 3743 3744 /* bad wr always points to the first wr that failed. */ 3745 if (rc) { 3746 _qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc); 3747 } 3748 rqpair->sends_to_post.first = NULL; 3749 rqpair->sends_to_post.last = NULL; 3750 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link); 3751 } 3752 } 3753 3754 static int 3755 spdk_nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport, 3756 struct spdk_nvmf_rdma_poller *rpoller) 3757 { 3758 struct ibv_wc wc[32]; 3759 struct spdk_nvmf_rdma_wr *rdma_wr; 3760 struct spdk_nvmf_rdma_request *rdma_req; 3761 struct spdk_nvmf_rdma_recv *rdma_recv; 3762 struct spdk_nvmf_rdma_qpair *rqpair; 3763 int reaped, i; 3764 int count = 0; 3765 bool error = false; 3766 uint64_t poll_tsc = spdk_get_ticks(); 3767 3768 /* Poll for completing operations. */ 3769 reaped = ibv_poll_cq(rpoller->cq, 32, wc); 3770 if (reaped < 0) { 3771 SPDK_ERRLOG("Error polling CQ! (%d): %s\n", 3772 errno, spdk_strerror(errno)); 3773 return -1; 3774 } 3775 3776 rpoller->stat.polls++; 3777 rpoller->stat.completions += reaped; 3778 3779 for (i = 0; i < reaped; i++) { 3780 3781 rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id; 3782 3783 switch (rdma_wr->type) { 3784 case RDMA_WR_TYPE_SEND: 3785 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr); 3786 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 3787 3788 if (!wc[i].status) { 3789 count++; 3790 assert(wc[i].opcode == IBV_WC_SEND); 3791 assert(spdk_nvmf_rdma_req_is_completing(rdma_req)); 3792 } 3793 3794 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3795 /* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */ 3796 rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1; 3797 rdma_req->num_outstanding_data_wr = 0; 3798 3799 spdk_nvmf_rdma_request_process(rtransport, rdma_req); 3800 break; 3801 case RDMA_WR_TYPE_RECV: 3802 /* rdma_recv->qpair will be invalid if using an SRQ. In that case we have to get the qpair from the wc. */ 3803 rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 3804 if (rpoller->srq != NULL) { 3805 rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]); 3806 /* It is possible that there are still some completions for destroyed QP 3807 * associated with SRQ. We just ignore these late completions and re-post 3808 * receive WRs back to SRQ. 3809 */ 3810 if (spdk_unlikely(NULL == rdma_recv->qpair)) { 3811 struct ibv_recv_wr *bad_wr; 3812 int rc; 3813 3814 rdma_recv->wr.next = NULL; 3815 rc = ibv_post_srq_recv(rpoller->srq, 3816 &rdma_recv->wr, 3817 &bad_wr); 3818 if (rc) { 3819 SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc); 3820 } 3821 continue; 3822 } 3823 } 3824 rqpair = rdma_recv->qpair; 3825 3826 assert(rqpair != NULL); 3827 if (!wc[i].status) { 3828 assert(wc[i].opcode == IBV_WC_RECV); 3829 if (rqpair->current_recv_depth >= rqpair->max_queue_depth) { 3830 spdk_nvmf_rdma_start_disconnect(rqpair); 3831 break; 3832 } 3833 } 3834 3835 rdma_recv->wr.next = NULL; 3836 rqpair->current_recv_depth++; 3837 rdma_recv->receive_tsc = poll_tsc; 3838 rpoller->stat.requests++; 3839 STAILQ_INSERT_TAIL(&rqpair->resources->incoming_queue, rdma_recv, link); 3840 break; 3841 case RDMA_WR_TYPE_DATA: 3842 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr); 3843 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 3844 3845 assert(rdma_req->num_outstanding_data_wr > 0); 3846 3847 rqpair->current_send_depth--; 3848 rdma_req->num_outstanding_data_wr--; 3849 if (!wc[i].status) { 3850 assert(wc[i].opcode == IBV_WC_RDMA_READ); 3851 rqpair->current_read_depth--; 3852 /* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */ 3853 if (rdma_req->num_outstanding_data_wr == 0) { 3854 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 3855 spdk_nvmf_rdma_request_process(rtransport, rdma_req); 3856 } 3857 } else { 3858 /* If the data transfer fails still force the queue into the error state, 3859 * if we were performing an RDMA_READ, we need to force the request into a 3860 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE 3861 * case, we should wait for the SEND to complete. */ 3862 if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) { 3863 rqpair->current_read_depth--; 3864 if (rdma_req->num_outstanding_data_wr == 0) { 3865 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3866 } 3867 } 3868 } 3869 break; 3870 default: 3871 SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode); 3872 continue; 3873 } 3874 3875 /* Handle error conditions */ 3876 if (wc[i].status) { 3877 SPDK_ERRLOG("Error on CQ %p, request 0x%lu, type %d, status: (%d): %s\n", 3878 rpoller->cq, wc[i].wr_id, rdma_wr->type, wc[i].status, ibv_wc_status_str(wc[i].status)); 3879 3880 error = true; 3881 3882 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 3883 /* Disconnect the connection. */ 3884 spdk_nvmf_rdma_start_disconnect(rqpair); 3885 } else { 3886 nvmf_rdma_destroy_drained_qpair(rqpair); 3887 } 3888 continue; 3889 } 3890 3891 spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, false); 3892 3893 if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 3894 nvmf_rdma_destroy_drained_qpair(rqpair); 3895 } 3896 } 3897 3898 if (error == true) { 3899 return -1; 3900 } 3901 3902 /* submit outstanding work requests. */ 3903 _poller_submit_recvs(rtransport, rpoller); 3904 _poller_submit_sends(rtransport, rpoller); 3905 3906 return count; 3907 } 3908 3909 static int 3910 spdk_nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group) 3911 { 3912 struct spdk_nvmf_rdma_transport *rtransport; 3913 struct spdk_nvmf_rdma_poll_group *rgroup; 3914 struct spdk_nvmf_rdma_poller *rpoller; 3915 int count, rc; 3916 3917 rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport); 3918 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3919 3920 count = 0; 3921 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 3922 rc = spdk_nvmf_rdma_poller_poll(rtransport, rpoller); 3923 if (rc < 0) { 3924 return rc; 3925 } 3926 count += rc; 3927 } 3928 3929 return count; 3930 } 3931 3932 static int 3933 spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 3934 struct spdk_nvme_transport_id *trid, 3935 bool peer) 3936 { 3937 struct sockaddr *saddr; 3938 uint16_t port; 3939 3940 spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA); 3941 3942 if (peer) { 3943 saddr = rdma_get_peer_addr(id); 3944 } else { 3945 saddr = rdma_get_local_addr(id); 3946 } 3947 switch (saddr->sa_family) { 3948 case AF_INET: { 3949 struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr; 3950 3951 trid->adrfam = SPDK_NVMF_ADRFAM_IPV4; 3952 inet_ntop(AF_INET, &saddr_in->sin_addr, 3953 trid->traddr, sizeof(trid->traddr)); 3954 if (peer) { 3955 port = ntohs(rdma_get_dst_port(id)); 3956 } else { 3957 port = ntohs(rdma_get_src_port(id)); 3958 } 3959 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 3960 break; 3961 } 3962 case AF_INET6: { 3963 struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr; 3964 trid->adrfam = SPDK_NVMF_ADRFAM_IPV6; 3965 inet_ntop(AF_INET6, &saddr_in->sin6_addr, 3966 trid->traddr, sizeof(trid->traddr)); 3967 if (peer) { 3968 port = ntohs(rdma_get_dst_port(id)); 3969 } else { 3970 port = ntohs(rdma_get_src_port(id)); 3971 } 3972 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 3973 break; 3974 } 3975 default: 3976 return -1; 3977 3978 } 3979 3980 return 0; 3981 } 3982 3983 static int 3984 spdk_nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair, 3985 struct spdk_nvme_transport_id *trid) 3986 { 3987 struct spdk_nvmf_rdma_qpair *rqpair; 3988 3989 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3990 3991 return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true); 3992 } 3993 3994 static int 3995 spdk_nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair, 3996 struct spdk_nvme_transport_id *trid) 3997 { 3998 struct spdk_nvmf_rdma_qpair *rqpair; 3999 4000 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4001 4002 return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false); 4003 } 4004 4005 static int 4006 spdk_nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair, 4007 struct spdk_nvme_transport_id *trid) 4008 { 4009 struct spdk_nvmf_rdma_qpair *rqpair; 4010 4011 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4012 4013 return spdk_nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false); 4014 } 4015 4016 void 4017 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) 4018 { 4019 g_nvmf_hooks = *hooks; 4020 } 4021 4022 static int 4023 spdk_nvmf_rdma_poll_group_get_stat(struct spdk_nvmf_tgt *tgt, 4024 struct spdk_nvmf_transport_poll_group_stat **stat) 4025 { 4026 struct spdk_io_channel *ch; 4027 struct spdk_nvmf_poll_group *group; 4028 struct spdk_nvmf_transport_poll_group *tgroup; 4029 struct spdk_nvmf_rdma_poll_group *rgroup; 4030 struct spdk_nvmf_rdma_poller *rpoller; 4031 struct spdk_nvmf_rdma_device_stat *device_stat; 4032 uint64_t num_devices = 0; 4033 4034 if (tgt == NULL || stat == NULL) { 4035 return -EINVAL; 4036 } 4037 4038 ch = spdk_get_io_channel(tgt); 4039 group = spdk_io_channel_get_ctx(ch);; 4040 spdk_put_io_channel(ch); 4041 TAILQ_FOREACH(tgroup, &group->tgroups, link) { 4042 if (SPDK_NVME_TRANSPORT_RDMA == tgroup->transport->ops->type) { 4043 *stat = calloc(1, sizeof(struct spdk_nvmf_transport_poll_group_stat)); 4044 if (!*stat) { 4045 SPDK_ERRLOG("Failed to allocate memory for NVMf RDMA statistics\n"); 4046 return -ENOMEM; 4047 } 4048 (*stat)->trtype = SPDK_NVME_TRANSPORT_RDMA; 4049 4050 rgroup = SPDK_CONTAINEROF(tgroup, struct spdk_nvmf_rdma_poll_group, group); 4051 /* Count devices to allocate enough memory */ 4052 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 4053 ++num_devices; 4054 } 4055 (*stat)->rdma.devices = calloc(num_devices, sizeof(struct spdk_nvmf_rdma_device_stat)); 4056 if (!(*stat)->rdma.devices) { 4057 SPDK_ERRLOG("Failed to allocate NVMf RDMA devices statistics\n"); 4058 free(*stat); 4059 return -ENOMEM; 4060 } 4061 4062 (*stat)->rdma.pending_data_buffer = rgroup->stat.pending_data_buffer; 4063 (*stat)->rdma.num_devices = num_devices; 4064 num_devices = 0; 4065 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 4066 device_stat = &(*stat)->rdma.devices[num_devices++]; 4067 device_stat->name = ibv_get_device_name(rpoller->device->context->device); 4068 device_stat->polls = rpoller->stat.polls; 4069 device_stat->completions = rpoller->stat.completions; 4070 device_stat->requests = rpoller->stat.requests; 4071 device_stat->request_latency = rpoller->stat.request_latency; 4072 device_stat->pending_free_request = rpoller->stat.pending_free_request; 4073 device_stat->pending_rdma_read = rpoller->stat.pending_rdma_read; 4074 device_stat->pending_rdma_write = rpoller->stat.pending_rdma_write; 4075 } 4076 return 0; 4077 } 4078 } 4079 return -ENOENT; 4080 } 4081 4082 static void 4083 spdk_nvmf_rdma_poll_group_free_stat(struct spdk_nvmf_transport_poll_group_stat *stat) 4084 { 4085 if (stat) { 4086 free(stat->rdma.devices); 4087 } 4088 free(stat); 4089 } 4090 4091 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = { 4092 .name = "RDMA", 4093 .type = SPDK_NVME_TRANSPORT_RDMA, 4094 .opts_init = spdk_nvmf_rdma_opts_init, 4095 .create = spdk_nvmf_rdma_create, 4096 .destroy = spdk_nvmf_rdma_destroy, 4097 4098 .listen = spdk_nvmf_rdma_listen, 4099 .stop_listen = spdk_nvmf_rdma_stop_listen, 4100 .accept = spdk_nvmf_rdma_accept, 4101 4102 .listener_discover = spdk_nvmf_rdma_discover, 4103 4104 .poll_group_create = spdk_nvmf_rdma_poll_group_create, 4105 .get_optimal_poll_group = spdk_nvmf_rdma_get_optimal_poll_group, 4106 .poll_group_destroy = spdk_nvmf_rdma_poll_group_destroy, 4107 .poll_group_add = spdk_nvmf_rdma_poll_group_add, 4108 .poll_group_poll = spdk_nvmf_rdma_poll_group_poll, 4109 4110 .req_free = spdk_nvmf_rdma_request_free, 4111 .req_complete = spdk_nvmf_rdma_request_complete, 4112 4113 .qpair_fini = spdk_nvmf_rdma_close_qpair, 4114 .qpair_get_peer_trid = spdk_nvmf_rdma_qpair_get_peer_trid, 4115 .qpair_get_local_trid = spdk_nvmf_rdma_qpair_get_local_trid, 4116 .qpair_get_listen_trid = spdk_nvmf_rdma_qpair_get_listen_trid, 4117 4118 .poll_group_get_stat = spdk_nvmf_rdma_poll_group_get_stat, 4119 .poll_group_free_stat = spdk_nvmf_rdma_poll_group_free_stat, 4120 }; 4121 4122 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma); 4123 SPDK_LOG_REGISTER_COMPONENT("rdma", SPDK_LOG_RDMA) 4124