xref: /spdk/lib/nvmf/rdma.c (revision 33f97fa33ad89651d75bafb5fb87dc4cd28dde6a)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk/stdinc.h"
35 
36 #include <infiniband/verbs.h>
37 #include <rdma/rdma_cma.h>
38 #include <rdma/rdma_verbs.h>
39 
40 #include "spdk/config.h"
41 #include "spdk/thread.h"
42 #include "spdk/likely.h"
43 #include "spdk/nvmf_transport.h"
44 #include "spdk/string.h"
45 #include "spdk/trace.h"
46 #include "spdk/util.h"
47 
48 #include "spdk_internal/assert.h"
49 #include "spdk_internal/log.h"
50 
51 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
52 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma;
53 
54 /*
55  RDMA Connection Resource Defaults
56  */
57 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
58 #define NVMF_DEFAULT_RSP_SGE		1
59 #define NVMF_DEFAULT_RX_SGE		2
60 
61 /* The RDMA completion queue size */
62 #define DEFAULT_NVMF_RDMA_CQ_SIZE	4096
63 #define MAX_WR_PER_QP(queue_depth)	(queue_depth * 3 + 2)
64 
65 /* Timeout for destroying defunct rqpairs */
66 #define NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US	4000000
67 
68 static int g_spdk_nvmf_ibv_query_mask =
69 	IBV_QP_STATE |
70 	IBV_QP_PKEY_INDEX |
71 	IBV_QP_PORT |
72 	IBV_QP_ACCESS_FLAGS |
73 	IBV_QP_AV |
74 	IBV_QP_PATH_MTU |
75 	IBV_QP_DEST_QPN |
76 	IBV_QP_RQ_PSN |
77 	IBV_QP_MAX_DEST_RD_ATOMIC |
78 	IBV_QP_MIN_RNR_TIMER |
79 	IBV_QP_SQ_PSN |
80 	IBV_QP_TIMEOUT |
81 	IBV_QP_RETRY_CNT |
82 	IBV_QP_RNR_RETRY |
83 	IBV_QP_MAX_QP_RD_ATOMIC;
84 
85 enum spdk_nvmf_rdma_request_state {
86 	/* The request is not currently in use */
87 	RDMA_REQUEST_STATE_FREE = 0,
88 
89 	/* Initial state when request first received */
90 	RDMA_REQUEST_STATE_NEW,
91 
92 	/* The request is queued until a data buffer is available. */
93 	RDMA_REQUEST_STATE_NEED_BUFFER,
94 
95 	/* The request is waiting on RDMA queue depth availability
96 	 * to transfer data from the host to the controller.
97 	 */
98 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
99 
100 	/* The request is currently transferring data from the host to the controller. */
101 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
102 
103 	/* The request is ready to execute at the block device */
104 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
105 
106 	/* The request is currently executing at the block device */
107 	RDMA_REQUEST_STATE_EXECUTING,
108 
109 	/* The request finished executing at the block device */
110 	RDMA_REQUEST_STATE_EXECUTED,
111 
112 	/* The request is waiting on RDMA queue depth availability
113 	 * to transfer data from the controller to the host.
114 	 */
115 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
116 
117 	/* The request is ready to send a completion */
118 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
119 
120 	/* The request is currently transferring data from the controller to the host. */
121 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
122 
123 	/* The request currently has an outstanding completion without an
124 	 * associated data transfer.
125 	 */
126 	RDMA_REQUEST_STATE_COMPLETING,
127 
128 	/* The request completed and can be marked free. */
129 	RDMA_REQUEST_STATE_COMPLETED,
130 
131 	/* Terminator */
132 	RDMA_REQUEST_NUM_STATES,
133 };
134 
135 #define OBJECT_NVMF_RDMA_IO				0x40
136 
137 #define TRACE_GROUP_NVMF_RDMA				0x4
138 #define TRACE_RDMA_REQUEST_STATE_NEW					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x0)
139 #define TRACE_RDMA_REQUEST_STATE_NEED_BUFFER				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x1)
140 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x2)
141 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x3)
142 #define TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE			SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x4)
143 #define TRACE_RDMA_REQUEST_STATE_EXECUTING				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x5)
144 #define TRACE_RDMA_REQUEST_STATE_EXECUTED				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x6)
145 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING		SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x7)
146 #define TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE			SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x8)
147 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x9)
148 #define TRACE_RDMA_REQUEST_STATE_COMPLETING				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xA)
149 #define TRACE_RDMA_REQUEST_STATE_COMPLETED				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xB)
150 #define TRACE_RDMA_QP_CREATE						SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xC)
151 #define TRACE_RDMA_IBV_ASYNC_EVENT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xD)
152 #define TRACE_RDMA_CM_ASYNC_EVENT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xE)
153 #define TRACE_RDMA_QP_STATE_CHANGE					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xF)
154 #define TRACE_RDMA_QP_DISCONNECT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x10)
155 #define TRACE_RDMA_QP_DESTROY						SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x11)
156 
157 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
158 {
159 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
160 	spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW,
161 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 1, "cmid:   ");
162 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
163 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
164 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H",
165 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
166 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
167 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C",
168 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
169 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
170 	spdk_trace_register_description("RDMA_REQ_TX_H2C",
171 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
172 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
173 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE",
174 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
175 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
176 	spdk_trace_register_description("RDMA_REQ_EXECUTING",
177 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
178 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
179 	spdk_trace_register_description("RDMA_REQ_EXECUTED",
180 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
181 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
182 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL",
183 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
184 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
185 	spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H",
186 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
187 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
188 	spdk_trace_register_description("RDMA_REQ_COMPLETING",
189 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
190 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
191 	spdk_trace_register_description("RDMA_REQ_COMPLETED",
192 					TRACE_RDMA_REQUEST_STATE_COMPLETED,
193 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
194 
195 	spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE,
196 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
197 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT,
198 					OWNER_NONE, OBJECT_NONE, 0, 0, "type:   ");
199 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT,
200 					OWNER_NONE, OBJECT_NONE, 0, 0, "type:   ");
201 	spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE,
202 					OWNER_NONE, OBJECT_NONE, 0, 1, "state:  ");
203 	spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT,
204 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
205 	spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY,
206 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
207 }
208 
209 enum spdk_nvmf_rdma_wr_type {
210 	RDMA_WR_TYPE_RECV,
211 	RDMA_WR_TYPE_SEND,
212 	RDMA_WR_TYPE_DATA,
213 };
214 
215 struct spdk_nvmf_rdma_wr {
216 	enum spdk_nvmf_rdma_wr_type	type;
217 };
218 
219 /* This structure holds commands as they are received off the wire.
220  * It must be dynamically paired with a full request object
221  * (spdk_nvmf_rdma_request) to service a request. It is separate
222  * from the request because RDMA does not appear to order
223  * completions, so occasionally we'll get a new incoming
224  * command when there aren't any free request objects.
225  */
226 struct spdk_nvmf_rdma_recv {
227 	struct ibv_recv_wr			wr;
228 	struct ibv_sge				sgl[NVMF_DEFAULT_RX_SGE];
229 
230 	struct spdk_nvmf_rdma_qpair		*qpair;
231 
232 	/* In-capsule data buffer */
233 	uint8_t					*buf;
234 
235 	struct spdk_nvmf_rdma_wr		rdma_wr;
236 	uint64_t				receive_tsc;
237 
238 	STAILQ_ENTRY(spdk_nvmf_rdma_recv)	link;
239 };
240 
241 struct spdk_nvmf_rdma_request_data {
242 	struct spdk_nvmf_rdma_wr	rdma_wr;
243 	struct ibv_send_wr		wr;
244 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
245 };
246 
247 struct spdk_nvmf_rdma_request {
248 	struct spdk_nvmf_request		req;
249 
250 	enum spdk_nvmf_rdma_request_state	state;
251 
252 	struct spdk_nvmf_rdma_recv		*recv;
253 
254 	struct {
255 		struct spdk_nvmf_rdma_wr	rdma_wr;
256 		struct	ibv_send_wr		wr;
257 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
258 	} rsp;
259 
260 	struct spdk_nvmf_rdma_request_data	data;
261 
262 	uint32_t				iovpos;
263 
264 	uint32_t				num_outstanding_data_wr;
265 	uint64_t				receive_tsc;
266 
267 	STAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
268 };
269 
270 enum spdk_nvmf_rdma_qpair_disconnect_flags {
271 	RDMA_QP_DISCONNECTING		= 1,
272 	RDMA_QP_RECV_DRAINED		= 1 << 1,
273 	RDMA_QP_SEND_DRAINED		= 1 << 2
274 };
275 
276 struct spdk_nvmf_rdma_resource_opts {
277 	struct spdk_nvmf_rdma_qpair	*qpair;
278 	/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
279 	void				*qp;
280 	struct ibv_pd			*pd;
281 	uint32_t			max_queue_depth;
282 	uint32_t			in_capsule_data_size;
283 	bool				shared;
284 };
285 
286 struct spdk_nvmf_send_wr_list {
287 	struct ibv_send_wr	*first;
288 	struct ibv_send_wr	*last;
289 };
290 
291 struct spdk_nvmf_recv_wr_list {
292 	struct ibv_recv_wr	*first;
293 	struct ibv_recv_wr	*last;
294 };
295 
296 struct spdk_nvmf_rdma_resources {
297 	/* Array of size "max_queue_depth" containing RDMA requests. */
298 	struct spdk_nvmf_rdma_request		*reqs;
299 
300 	/* Array of size "max_queue_depth" containing RDMA recvs. */
301 	struct spdk_nvmf_rdma_recv		*recvs;
302 
303 	/* Array of size "max_queue_depth" containing 64 byte capsules
304 	 * used for receive.
305 	 */
306 	union nvmf_h2c_msg			*cmds;
307 	struct ibv_mr				*cmds_mr;
308 
309 	/* Array of size "max_queue_depth" containing 16 byte completions
310 	 * to be sent back to the user.
311 	 */
312 	union nvmf_c2h_msg			*cpls;
313 	struct ibv_mr				*cpls_mr;
314 
315 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
316 	 * buffers to be used for in capsule data.
317 	 */
318 	void					*bufs;
319 	struct ibv_mr				*bufs_mr;
320 
321 	/* The list of pending recvs to transfer */
322 	struct spdk_nvmf_recv_wr_list		recvs_to_post;
323 
324 	/* Receives that are waiting for a request object */
325 	STAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
326 
327 	/* Queue to track free requests */
328 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	free_queue;
329 };
330 
331 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair);
332 
333 struct spdk_nvmf_rdma_ibv_event_ctx {
334 	struct spdk_nvmf_rdma_qpair			*rqpair;
335 	spdk_nvmf_rdma_qpair_ibv_event			cb_fn;
336 	/* Link to other ibv events associated with this qpair */
337 	STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx)	link;
338 };
339 
340 struct spdk_nvmf_rdma_qpair {
341 	struct spdk_nvmf_qpair			qpair;
342 
343 	struct spdk_nvmf_rdma_device		*device;
344 	struct spdk_nvmf_rdma_poller		*poller;
345 
346 	struct rdma_cm_id			*cm_id;
347 	struct ibv_srq				*srq;
348 	struct rdma_cm_id			*listen_id;
349 
350 	/* The maximum number of I/O outstanding on this connection at one time */
351 	uint16_t				max_queue_depth;
352 
353 	/* The maximum number of active RDMA READ and ATOMIC operations at one time */
354 	uint16_t				max_read_depth;
355 
356 	/* The maximum number of RDMA SEND operations at one time */
357 	uint32_t				max_send_depth;
358 
359 	/* The current number of outstanding WRs from this qpair's
360 	 * recv queue. Should not exceed device->attr.max_queue_depth.
361 	 */
362 	uint16_t				current_recv_depth;
363 
364 	/* The current number of active RDMA READ operations */
365 	uint16_t				current_read_depth;
366 
367 	/* The current number of posted WRs from this qpair's
368 	 * send queue. Should not exceed max_send_depth.
369 	 */
370 	uint32_t				current_send_depth;
371 
372 	/* The maximum number of SGEs per WR on the send queue */
373 	uint32_t				max_send_sge;
374 
375 	/* The maximum number of SGEs per WR on the recv queue */
376 	uint32_t				max_recv_sge;
377 
378 	/* The list of pending send requests for a transfer */
379 	struct spdk_nvmf_send_wr_list		sends_to_post;
380 
381 	struct spdk_nvmf_rdma_resources		*resources;
382 
383 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_read_queue;
384 
385 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_write_queue;
386 
387 	/* Number of requests not in the free state */
388 	uint32_t				qd;
389 
390 	TAILQ_ENTRY(spdk_nvmf_rdma_qpair)	link;
391 
392 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	recv_link;
393 
394 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	send_link;
395 
396 	/* IBV queue pair attributes: they are used to manage
397 	 * qp state and recover from errors.
398 	 */
399 	enum ibv_qp_state			ibv_state;
400 
401 	uint32_t				disconnect_flags;
402 
403 	/* Poller registered in case the qpair doesn't properly
404 	 * complete the qpair destruct process and becomes defunct.
405 	 */
406 
407 	struct spdk_poller			*destruct_poller;
408 
409 	/* List of ibv async events */
410 	STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx)	ibv_events;
411 
412 	/* There are several ways a disconnect can start on a qpair
413 	 * and they are not all mutually exclusive. It is important
414 	 * that we only initialize one of these paths.
415 	 */
416 	bool					disconnect_started;
417 	/* Lets us know that we have received the last_wqe event. */
418 	bool					last_wqe_reached;
419 };
420 
421 struct spdk_nvmf_rdma_poller_stat {
422 	uint64_t				completions;
423 	uint64_t				polls;
424 	uint64_t				requests;
425 	uint64_t				request_latency;
426 	uint64_t				pending_free_request;
427 	uint64_t				pending_rdma_read;
428 	uint64_t				pending_rdma_write;
429 };
430 
431 struct spdk_nvmf_rdma_poller {
432 	struct spdk_nvmf_rdma_device		*device;
433 	struct spdk_nvmf_rdma_poll_group	*group;
434 
435 	int					num_cqe;
436 	int					required_num_wr;
437 	struct ibv_cq				*cq;
438 
439 	/* The maximum number of I/O outstanding on the shared receive queue at one time */
440 	uint16_t				max_srq_depth;
441 
442 	/* Shared receive queue */
443 	struct ibv_srq				*srq;
444 
445 	struct spdk_nvmf_rdma_resources		*resources;
446 	struct spdk_nvmf_rdma_poller_stat	stat;
447 
448 	TAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs;
449 
450 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_recv;
451 
452 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_send;
453 
454 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
455 };
456 
457 struct spdk_nvmf_rdma_poll_group_stat {
458 	uint64_t				pending_data_buffer;
459 };
460 
461 struct spdk_nvmf_rdma_poll_group {
462 	struct spdk_nvmf_transport_poll_group		group;
463 	struct spdk_nvmf_rdma_poll_group_stat		stat;
464 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)		pollers;
465 	TAILQ_ENTRY(spdk_nvmf_rdma_poll_group)		link;
466 	/*
467 	 * buffers which are split across multiple RDMA
468 	 * memory regions cannot be used by this transport.
469 	 */
470 	STAILQ_HEAD(, spdk_nvmf_transport_pg_cache_buf)	retired_bufs;
471 };
472 
473 struct spdk_nvmf_rdma_conn_sched {
474 	struct spdk_nvmf_rdma_poll_group *next_admin_pg;
475 	struct spdk_nvmf_rdma_poll_group *next_io_pg;
476 };
477 
478 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
479 struct spdk_nvmf_rdma_device {
480 	struct ibv_device_attr			attr;
481 	struct ibv_context			*context;
482 
483 	struct spdk_mem_map			*map;
484 	struct ibv_pd				*pd;
485 
486 	int					num_srq;
487 
488 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
489 };
490 
491 struct spdk_nvmf_rdma_port {
492 	const struct spdk_nvme_transport_id	*trid;
493 	struct rdma_cm_id			*id;
494 	struct spdk_nvmf_rdma_device		*device;
495 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
496 };
497 
498 struct spdk_nvmf_rdma_transport {
499 	struct spdk_nvmf_transport	transport;
500 
501 	struct spdk_nvmf_rdma_conn_sched conn_sched;
502 
503 	struct rdma_event_channel	*event_channel;
504 
505 	struct spdk_mempool		*data_wr_pool;
506 
507 	pthread_mutex_t			lock;
508 
509 	/* fields used to poll RDMA/IB events */
510 	nfds_t			npoll_fds;
511 	struct pollfd		*poll_fds;
512 
513 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
514 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
515 	TAILQ_HEAD(, spdk_nvmf_rdma_poll_group)	poll_groups;
516 };
517 
518 static inline void
519 spdk_nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair);
520 
521 static bool
522 spdk_nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
523 			       struct spdk_nvmf_rdma_request *rdma_req);
524 
525 static inline int
526 spdk_nvmf_rdma_check_ibv_state(enum ibv_qp_state state)
527 {
528 	switch (state) {
529 	case IBV_QPS_RESET:
530 	case IBV_QPS_INIT:
531 	case IBV_QPS_RTR:
532 	case IBV_QPS_RTS:
533 	case IBV_QPS_SQD:
534 	case IBV_QPS_SQE:
535 	case IBV_QPS_ERR:
536 		return 0;
537 	default:
538 		return -1;
539 	}
540 }
541 
542 static inline enum spdk_nvme_media_error_status_code
543 spdk_nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) {
544 	enum spdk_nvme_media_error_status_code result;
545 	switch (err_type)
546 	{
547 	case SPDK_DIF_REFTAG_ERROR:
548 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
549 		break;
550 	case SPDK_DIF_APPTAG_ERROR:
551 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
552 		break;
553 	case SPDK_DIF_GUARD_ERROR:
554 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
555 		break;
556 	default:
557 		SPDK_UNREACHABLE();
558 	}
559 
560 	return result;
561 }
562 
563 static enum ibv_qp_state
564 spdk_nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) {
565 	enum ibv_qp_state old_state, new_state;
566 	struct ibv_qp_attr qp_attr;
567 	struct ibv_qp_init_attr init_attr;
568 	int rc;
569 
570 	old_state = rqpair->ibv_state;
571 	rc = ibv_query_qp(rqpair->cm_id->qp, &qp_attr,
572 			  g_spdk_nvmf_ibv_query_mask, &init_attr);
573 
574 	if (rc)
575 	{
576 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
577 		return IBV_QPS_ERR + 1;
578 	}
579 
580 	new_state = qp_attr.qp_state;
581 	rqpair->ibv_state = new_state;
582 	qp_attr.ah_attr.port_num = qp_attr.port_num;
583 
584 	rc = spdk_nvmf_rdma_check_ibv_state(new_state);
585 	if (rc)
586 	{
587 		SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state);
588 		/*
589 		 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8
590 		 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR
591 		 */
592 		return IBV_QPS_ERR + 1;
593 	}
594 
595 	if (old_state != new_state)
596 	{
597 		spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0,
598 				  (uintptr_t)rqpair->cm_id, new_state);
599 	}
600 	return new_state;
601 }
602 
603 static void
604 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
605 			    struct spdk_nvmf_rdma_transport *rtransport)
606 {
607 	struct spdk_nvmf_rdma_request_data	*data_wr;
608 	struct ibv_send_wr			*next_send_wr;
609 	uint64_t				req_wrid;
610 
611 	rdma_req->num_outstanding_data_wr = 0;
612 	data_wr = &rdma_req->data;
613 	req_wrid = data_wr->wr.wr_id;
614 	while (data_wr && data_wr->wr.wr_id == req_wrid) {
615 		memset(data_wr->sgl, 0, sizeof(data_wr->wr.sg_list[0]) * data_wr->wr.num_sge);
616 		data_wr->wr.num_sge = 0;
617 		next_send_wr = data_wr->wr.next;
618 		if (data_wr != &rdma_req->data) {
619 			spdk_mempool_put(rtransport->data_wr_pool, data_wr);
620 		}
621 		data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL :
622 			  SPDK_CONTAINEROF(next_send_wr, struct spdk_nvmf_rdma_request_data, wr);
623 	}
624 }
625 
626 static void
627 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
628 {
629 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool);
630 	if (req->req.cmd) {
631 		SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
632 	}
633 	if (req->recv) {
634 		SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
635 	}
636 }
637 
638 static void
639 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
640 {
641 	int i;
642 
643 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
644 	for (i = 0; i < rqpair->max_queue_depth; i++) {
645 		if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
646 			nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
647 		}
648 	}
649 }
650 
651 static void
652 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
653 {
654 	if (resources->cmds_mr) {
655 		ibv_dereg_mr(resources->cmds_mr);
656 	}
657 
658 	if (resources->cpls_mr) {
659 		ibv_dereg_mr(resources->cpls_mr);
660 	}
661 
662 	if (resources->bufs_mr) {
663 		ibv_dereg_mr(resources->bufs_mr);
664 	}
665 
666 	spdk_free(resources->cmds);
667 	spdk_free(resources->cpls);
668 	spdk_free(resources->bufs);
669 	free(resources->reqs);
670 	free(resources->recvs);
671 	free(resources);
672 }
673 
674 
675 static struct spdk_nvmf_rdma_resources *
676 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
677 {
678 	struct spdk_nvmf_rdma_resources	*resources;
679 	struct spdk_nvmf_rdma_request	*rdma_req;
680 	struct spdk_nvmf_rdma_recv	*rdma_recv;
681 	struct ibv_qp			*qp;
682 	struct ibv_srq			*srq;
683 	uint32_t			i;
684 	int				rc;
685 
686 	resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
687 	if (!resources) {
688 		SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
689 		return NULL;
690 	}
691 
692 	resources->reqs = calloc(opts->max_queue_depth, sizeof(*resources->reqs));
693 	resources->recvs = calloc(opts->max_queue_depth, sizeof(*resources->recvs));
694 	resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
695 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
696 	resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
697 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
698 
699 	if (opts->in_capsule_data_size > 0) {
700 		resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size,
701 					       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY,
702 					       SPDK_MALLOC_DMA);
703 	}
704 
705 	if (!resources->reqs || !resources->recvs || !resources->cmds ||
706 	    !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
707 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
708 		goto cleanup;
709 	}
710 
711 	resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds,
712 					opts->max_queue_depth * sizeof(*resources->cmds),
713 					IBV_ACCESS_LOCAL_WRITE);
714 	resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls,
715 					opts->max_queue_depth * sizeof(*resources->cpls),
716 					0);
717 
718 	if (opts->in_capsule_data_size) {
719 		resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs,
720 						opts->max_queue_depth *
721 						opts->in_capsule_data_size,
722 						IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
723 	}
724 
725 	if (!resources->cmds_mr || !resources->cpls_mr ||
726 	    (opts->in_capsule_data_size &&
727 	     !resources->bufs_mr)) {
728 		goto cleanup;
729 	}
730 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Command Array: %p Length: %lx LKey: %x\n",
731 		      resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds),
732 		      resources->cmds_mr->lkey);
733 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Completion Array: %p Length: %lx LKey: %x\n",
734 		      resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls),
735 		      resources->cpls_mr->lkey);
736 	if (resources->bufs && resources->bufs_mr) {
737 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "In Capsule Data Array: %p Length: %x LKey: %x\n",
738 			      resources->bufs, opts->max_queue_depth *
739 			      opts->in_capsule_data_size, resources->bufs_mr->lkey);
740 	}
741 
742 	/* Initialize queues */
743 	STAILQ_INIT(&resources->incoming_queue);
744 	STAILQ_INIT(&resources->free_queue);
745 
746 	for (i = 0; i < opts->max_queue_depth; i++) {
747 		struct ibv_recv_wr *bad_wr = NULL;
748 
749 		rdma_recv = &resources->recvs[i];
750 		rdma_recv->qpair = opts->qpair;
751 
752 		/* Set up memory to receive commands */
753 		if (resources->bufs) {
754 			rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
755 						  opts->in_capsule_data_size));
756 		}
757 
758 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
759 
760 		rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
761 		rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
762 		rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey;
763 		rdma_recv->wr.num_sge = 1;
764 
765 		if (rdma_recv->buf && resources->bufs_mr) {
766 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
767 			rdma_recv->sgl[1].length = opts->in_capsule_data_size;
768 			rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey;
769 			rdma_recv->wr.num_sge++;
770 		}
771 
772 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
773 		rdma_recv->wr.sg_list = rdma_recv->sgl;
774 		if (opts->shared) {
775 			srq = (struct ibv_srq *)opts->qp;
776 			rc = ibv_post_srq_recv(srq, &rdma_recv->wr, &bad_wr);
777 		} else {
778 			qp = (struct ibv_qp *)opts->qp;
779 			rc = ibv_post_recv(qp, &rdma_recv->wr, &bad_wr);
780 		}
781 		if (rc) {
782 			goto cleanup;
783 		}
784 	}
785 
786 	for (i = 0; i < opts->max_queue_depth; i++) {
787 		rdma_req = &resources->reqs[i];
788 
789 		if (opts->qpair != NULL) {
790 			rdma_req->req.qpair = &opts->qpair->qpair;
791 		} else {
792 			rdma_req->req.qpair = NULL;
793 		}
794 		rdma_req->req.cmd = NULL;
795 
796 		/* Set up memory to send responses */
797 		rdma_req->req.rsp = &resources->cpls[i];
798 
799 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
800 		rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
801 		rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey;
802 
803 		rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND;
804 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr;
805 		rdma_req->rsp.wr.next = NULL;
806 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
807 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
808 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
809 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
810 
811 		/* Set up memory for data buffers */
812 		rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA;
813 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
814 		rdma_req->data.wr.next = NULL;
815 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
816 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
817 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
818 
819 		/* Initialize request state to FREE */
820 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
821 		STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
822 	}
823 
824 	return resources;
825 
826 cleanup:
827 	nvmf_rdma_resources_destroy(resources);
828 	return NULL;
829 }
830 
831 static void
832 spdk_nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair)
833 {
834 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx;
835 	STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) {
836 		ctx->rqpair = NULL;
837 		/* Memory allocated for ctx is freed in spdk_nvmf_rdma_qpair_process_ibv_event */
838 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
839 	}
840 }
841 
842 static void
843 spdk_nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
844 {
845 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
846 	struct ibv_recv_wr		*bad_recv_wr = NULL;
847 	int				rc;
848 
849 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair->cm_id, 0);
850 
851 	spdk_poller_unregister(&rqpair->destruct_poller);
852 
853 	if (rqpair->qd != 0) {
854 		struct spdk_nvmf_qpair *qpair = &rqpair->qpair;
855 		struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(qpair->transport,
856 				struct spdk_nvmf_rdma_transport, transport);
857 		struct spdk_nvmf_rdma_request *req;
858 		uint32_t i, max_req_count = 0;
859 
860 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
861 
862 		if (rqpair->srq == NULL) {
863 			nvmf_rdma_dump_qpair_contents(rqpair);
864 			max_req_count = rqpair->max_queue_depth;
865 		} else if (rqpair->poller && rqpair->resources) {
866 			max_req_count = rqpair->poller->max_srq_depth;
867 		}
868 
869 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Release incomplete requests\n");
870 		for (i = 0; i < max_req_count; i++) {
871 			req = &rqpair->resources->reqs[i];
872 			if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) {
873 				/* spdk_nvmf_rdma_request_process checks qpair ibv and internal state
874 				 * and completes a request */
875 				spdk_nvmf_rdma_request_process(rtransport, req);
876 			}
877 		}
878 		assert(rqpair->qd == 0);
879 	}
880 
881 	if (rqpair->poller) {
882 		TAILQ_REMOVE(&rqpair->poller->qpairs, rqpair, link);
883 
884 		if (rqpair->srq != NULL && rqpair->resources != NULL) {
885 			/* Drop all received but unprocessed commands for this queue and return them to SRQ */
886 			STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
887 				if (rqpair == rdma_recv->qpair) {
888 					STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link);
889 					rc = ibv_post_srq_recv(rqpair->srq, &rdma_recv->wr, &bad_recv_wr);
890 					if (rc) {
891 						SPDK_ERRLOG("Unable to re-post rx descriptor\n");
892 					}
893 				}
894 			}
895 		}
896 	}
897 
898 	if (rqpair->cm_id) {
899 		if (rqpair->cm_id->qp != NULL) {
900 			rdma_destroy_qp(rqpair->cm_id);
901 		}
902 		rdma_destroy_id(rqpair->cm_id);
903 
904 		if (rqpair->poller != NULL && rqpair->srq == NULL) {
905 			rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
906 		}
907 	}
908 
909 	if (rqpair->srq == NULL && rqpair->resources != NULL) {
910 		nvmf_rdma_resources_destroy(rqpair->resources);
911 	}
912 
913 	spdk_nvmf_rdma_qpair_clean_ibv_events(rqpair);
914 
915 	free(rqpair);
916 }
917 
918 static int
919 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
920 {
921 	struct spdk_nvmf_rdma_poller	*rpoller;
922 	int				rc, num_cqe, required_num_wr;
923 
924 	/* Enlarge CQ size dynamically */
925 	rpoller = rqpair->poller;
926 	required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
927 	num_cqe = rpoller->num_cqe;
928 	if (num_cqe < required_num_wr) {
929 		num_cqe = spdk_max(num_cqe * 2, required_num_wr);
930 		num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
931 	}
932 
933 	if (rpoller->num_cqe != num_cqe) {
934 		if (required_num_wr > device->attr.max_cqe) {
935 			SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
936 				    required_num_wr, device->attr.max_cqe);
937 			return -1;
938 		}
939 
940 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
941 		rc = ibv_resize_cq(rpoller->cq, num_cqe);
942 		if (rc) {
943 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
944 			return -1;
945 		}
946 
947 		rpoller->num_cqe = num_cqe;
948 	}
949 
950 	rpoller->required_num_wr = required_num_wr;
951 	return 0;
952 }
953 
954 static int
955 spdk_nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
956 {
957 	struct spdk_nvmf_rdma_qpair		*rqpair;
958 	int					rc;
959 	struct spdk_nvmf_rdma_transport		*rtransport;
960 	struct spdk_nvmf_transport		*transport;
961 	struct spdk_nvmf_rdma_resource_opts	opts;
962 	struct spdk_nvmf_rdma_device		*device;
963 	struct ibv_qp_init_attr			ibv_init_attr;
964 
965 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
966 	device = rqpair->device;
967 
968 	memset(&ibv_init_attr, 0, sizeof(struct ibv_qp_init_attr));
969 	ibv_init_attr.qp_context	= rqpair;
970 	ibv_init_attr.qp_type		= IBV_QPT_RC;
971 	ibv_init_attr.send_cq		= rqpair->poller->cq;
972 	ibv_init_attr.recv_cq		= rqpair->poller->cq;
973 
974 	if (rqpair->srq) {
975 		ibv_init_attr.srq		= rqpair->srq;
976 	} else {
977 		ibv_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth;
978 	}
979 
980 	ibv_init_attr.cap.max_send_wr	= (uint32_t)rqpair->max_queue_depth *
981 					  2; /* SEND, READ or WRITE operations */
982 	ibv_init_attr.cap.max_send_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
983 	ibv_init_attr.cap.max_recv_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
984 
985 	if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
986 		SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
987 		goto error;
988 	}
989 
990 	rc = rdma_create_qp(rqpair->cm_id, device->pd, &ibv_init_attr);
991 	if (rc) {
992 		SPDK_ERRLOG("rdma_create_qp failed: errno %d: %s\n", errno, spdk_strerror(errno));
993 		goto error;
994 	}
995 
996 	rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2),
997 					  ibv_init_attr.cap.max_send_wr);
998 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, ibv_init_attr.cap.max_send_sge);
999 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, ibv_init_attr.cap.max_recv_sge);
1000 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair->cm_id, 0);
1001 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "New RDMA Connection: %p\n", qpair);
1002 
1003 	rqpair->sends_to_post.first = NULL;
1004 	rqpair->sends_to_post.last = NULL;
1005 
1006 	if (rqpair->poller->srq == NULL) {
1007 		rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
1008 		transport = &rtransport->transport;
1009 
1010 		opts.qp = rqpair->cm_id->qp;
1011 		opts.pd = rqpair->cm_id->pd;
1012 		opts.qpair = rqpair;
1013 		opts.shared = false;
1014 		opts.max_queue_depth = rqpair->max_queue_depth;
1015 		opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
1016 
1017 		rqpair->resources = nvmf_rdma_resources_create(&opts);
1018 
1019 		if (!rqpair->resources) {
1020 			SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
1021 			rdma_destroy_qp(rqpair->cm_id);
1022 			goto error;
1023 		}
1024 	} else {
1025 		rqpair->resources = rqpair->poller->resources;
1026 	}
1027 
1028 	rqpair->current_recv_depth = 0;
1029 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1030 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1031 
1032 	return 0;
1033 
1034 error:
1035 	rdma_destroy_id(rqpair->cm_id);
1036 	rqpair->cm_id = NULL;
1037 	return -1;
1038 }
1039 
1040 /* Append the given recv wr structure to the resource structs outstanding recvs list. */
1041 /* This function accepts either a single wr or the first wr in a linked list. */
1042 static void
1043 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first)
1044 {
1045 	struct ibv_recv_wr *last;
1046 
1047 	last = first;
1048 	while (last->next != NULL) {
1049 		last = last->next;
1050 	}
1051 
1052 	if (rqpair->resources->recvs_to_post.first == NULL) {
1053 		rqpair->resources->recvs_to_post.first = first;
1054 		rqpair->resources->recvs_to_post.last = last;
1055 		if (rqpair->srq == NULL) {
1056 			STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link);
1057 		}
1058 	} else {
1059 		rqpair->resources->recvs_to_post.last->next = first;
1060 		rqpair->resources->recvs_to_post.last = last;
1061 	}
1062 }
1063 
1064 /* Append the given send wr structure to the qpair's outstanding sends list. */
1065 /* This function accepts either a single wr or the first wr in a linked list. */
1066 static void
1067 nvmf_rdma_qpair_queue_send_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *first)
1068 {
1069 	struct ibv_send_wr *last;
1070 
1071 	last = first;
1072 	while (last->next != NULL) {
1073 		last = last->next;
1074 	}
1075 
1076 	if (rqpair->sends_to_post.first == NULL) {
1077 		rqpair->sends_to_post.first = first;
1078 		rqpair->sends_to_post.last = last;
1079 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1080 	} else {
1081 		rqpair->sends_to_post.last->next = first;
1082 		rqpair->sends_to_post.last = last;
1083 	}
1084 }
1085 
1086 static int
1087 request_transfer_in(struct spdk_nvmf_request *req)
1088 {
1089 	struct spdk_nvmf_rdma_request	*rdma_req;
1090 	struct spdk_nvmf_qpair		*qpair;
1091 	struct spdk_nvmf_rdma_qpair	*rqpair;
1092 
1093 	qpair = req->qpair;
1094 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1095 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1096 
1097 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1098 	assert(rdma_req != NULL);
1099 
1100 	nvmf_rdma_qpair_queue_send_wrs(rqpair, &rdma_req->data.wr);
1101 	rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1102 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1103 	return 0;
1104 }
1105 
1106 static int
1107 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1108 {
1109 	int				num_outstanding_data_wr = 0;
1110 	struct spdk_nvmf_rdma_request	*rdma_req;
1111 	struct spdk_nvmf_qpair		*qpair;
1112 	struct spdk_nvmf_rdma_qpair	*rqpair;
1113 	struct spdk_nvme_cpl		*rsp;
1114 	struct ibv_send_wr		*first = NULL;
1115 
1116 	*data_posted = 0;
1117 	qpair = req->qpair;
1118 	rsp = &req->rsp->nvme_cpl;
1119 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1120 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1121 
1122 	/* Advance our sq_head pointer */
1123 	if (qpair->sq_head == qpair->sq_head_max) {
1124 		qpair->sq_head = 0;
1125 	} else {
1126 		qpair->sq_head++;
1127 	}
1128 	rsp->sqhd = qpair->sq_head;
1129 
1130 	/* queue the capsule for the recv buffer */
1131 	assert(rdma_req->recv != NULL);
1132 
1133 	nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr);
1134 
1135 	rdma_req->recv = NULL;
1136 	assert(rqpair->current_recv_depth > 0);
1137 	rqpair->current_recv_depth--;
1138 
1139 	/* Build the response which consists of optional
1140 	 * RDMA WRITEs to transfer data, plus an RDMA SEND
1141 	 * containing the response.
1142 	 */
1143 	first = &rdma_req->rsp.wr;
1144 
1145 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
1146 	    req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1147 		first = &rdma_req->data.wr;
1148 		*data_posted = 1;
1149 		num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
1150 	}
1151 	nvmf_rdma_qpair_queue_send_wrs(rqpair, first);
1152 	/* +1 for the rsp wr */
1153 	rqpair->current_send_depth += num_outstanding_data_wr + 1;
1154 
1155 	return 0;
1156 }
1157 
1158 static int
1159 spdk_nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1160 {
1161 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
1162 	struct rdma_conn_param				ctrlr_event_data = {};
1163 	int						rc;
1164 
1165 	accept_data.recfmt = 0;
1166 	accept_data.crqsize = rqpair->max_queue_depth;
1167 
1168 	ctrlr_event_data.private_data = &accept_data;
1169 	ctrlr_event_data.private_data_len = sizeof(accept_data);
1170 	if (id->ps == RDMA_PS_TCP) {
1171 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1172 		ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1173 	}
1174 
1175 	/* Configure infinite retries for the initiator side qpair.
1176 	 * When using a shared receive queue on the target side,
1177 	 * we need to pass this value to the initiator to prevent the
1178 	 * initiator side NIC from completing SEND requests back to the
1179 	 * initiator with status rnr_retry_count_exceeded. */
1180 	if (rqpair->srq != NULL) {
1181 		ctrlr_event_data.rnr_retry_count = 0x7;
1182 	}
1183 
1184 	rc = rdma_accept(id, &ctrlr_event_data);
1185 	if (rc) {
1186 		SPDK_ERRLOG("Error %d on rdma_accept\n", errno);
1187 	} else {
1188 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Sent back the accept\n");
1189 	}
1190 
1191 	return rc;
1192 }
1193 
1194 static void
1195 spdk_nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1196 {
1197 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
1198 
1199 	rej_data.recfmt = 0;
1200 	rej_data.sts = error;
1201 
1202 	rdma_reject(id, &rej_data, sizeof(rej_data));
1203 }
1204 
1205 static int
1206 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event,
1207 		  new_qpair_fn cb_fn, void *cb_arg)
1208 {
1209 	struct spdk_nvmf_rdma_transport *rtransport;
1210 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
1211 	struct spdk_nvmf_rdma_port	*port;
1212 	struct rdma_conn_param		*rdma_param = NULL;
1213 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1214 	uint16_t			max_queue_depth;
1215 	uint16_t			max_read_depth;
1216 
1217 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1218 
1219 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1220 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1221 
1222 	rdma_param = &event->param.conn;
1223 	if (rdma_param->private_data == NULL ||
1224 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1225 		SPDK_ERRLOG("connect request: no private data provided\n");
1226 		spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1227 		return -1;
1228 	}
1229 
1230 	private_data = rdma_param->private_data;
1231 	if (private_data->recfmt != 0) {
1232 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1233 		spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1234 		return -1;
1235 	}
1236 
1237 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Connect Recv on fabric intf name %s, dev_name %s\n",
1238 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1239 
1240 	port = event->listen_id->context;
1241 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1242 		      event->listen_id, event->listen_id->verbs, port);
1243 
1244 	/* Figure out the supported queue depth. This is a multi-step process
1245 	 * that takes into account hardware maximums, host provided values,
1246 	 * and our target's internal memory limits */
1247 
1248 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Calculating Queue Depth\n");
1249 
1250 	/* Start with the maximum queue depth allowed by the target */
1251 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1252 	max_read_depth = rtransport->transport.opts.max_queue_depth;
1253 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Target Max Queue Depth: %d\n",
1254 		      rtransport->transport.opts.max_queue_depth);
1255 
1256 	/* Next check the local NIC's hardware limitations */
1257 	SPDK_DEBUGLOG(SPDK_LOG_RDMA,
1258 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1259 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1260 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1261 	max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1262 
1263 	/* Next check the remote NIC's hardware limitations */
1264 	SPDK_DEBUGLOG(SPDK_LOG_RDMA,
1265 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1266 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1267 	if (rdma_param->initiator_depth > 0) {
1268 		max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1269 	}
1270 
1271 	/* Finally check for the host software requested values, which are
1272 	 * optional. */
1273 	if (rdma_param->private_data != NULL &&
1274 	    rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1275 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1276 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Send Queue Size: %d\n", private_data->hsqsize);
1277 		max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1278 		max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1279 	}
1280 
1281 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1282 		      max_queue_depth, max_read_depth);
1283 
1284 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1285 	if (rqpair == NULL) {
1286 		SPDK_ERRLOG("Could not allocate new connection.\n");
1287 		spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1288 		return -1;
1289 	}
1290 
1291 	rqpair->device = port->device;
1292 	rqpair->max_queue_depth = max_queue_depth;
1293 	rqpair->max_read_depth = max_read_depth;
1294 	rqpair->cm_id = event->id;
1295 	rqpair->listen_id = event->listen_id;
1296 	rqpair->qpair.transport = transport;
1297 	STAILQ_INIT(&rqpair->ibv_events);
1298 	/* use qid from the private data to determine the qpair type
1299 	   qid will be set to the appropriate value when the controller is created */
1300 	rqpair->qpair.qid = private_data->qid;
1301 
1302 	event->id->context = &rqpair->qpair;
1303 
1304 	cb_fn(&rqpair->qpair, cb_arg);
1305 
1306 	return 0;
1307 }
1308 
1309 static int
1310 spdk_nvmf_rdma_mem_notify(void *cb_ctx, struct spdk_mem_map *map,
1311 			  enum spdk_mem_map_notify_action action,
1312 			  void *vaddr, size_t size)
1313 {
1314 	struct ibv_pd *pd = cb_ctx;
1315 	struct ibv_mr *mr;
1316 	int rc;
1317 
1318 	switch (action) {
1319 	case SPDK_MEM_MAP_NOTIFY_REGISTER:
1320 		if (!g_nvmf_hooks.get_rkey) {
1321 			mr = ibv_reg_mr(pd, vaddr, size,
1322 					IBV_ACCESS_LOCAL_WRITE |
1323 					IBV_ACCESS_REMOTE_READ |
1324 					IBV_ACCESS_REMOTE_WRITE);
1325 			if (mr == NULL) {
1326 				SPDK_ERRLOG("ibv_reg_mr() failed\n");
1327 				return -1;
1328 			} else {
1329 				rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr);
1330 			}
1331 		} else {
1332 			rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size,
1333 							  g_nvmf_hooks.get_rkey(pd, vaddr, size));
1334 		}
1335 		break;
1336 	case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
1337 		if (!g_nvmf_hooks.get_rkey) {
1338 			mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL);
1339 			if (mr) {
1340 				ibv_dereg_mr(mr);
1341 			}
1342 		}
1343 		rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size);
1344 		break;
1345 	default:
1346 		SPDK_UNREACHABLE();
1347 	}
1348 
1349 	return rc;
1350 }
1351 
1352 static int
1353 spdk_nvmf_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2)
1354 {
1355 	/* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */
1356 	return addr_1 == addr_2;
1357 }
1358 
1359 static inline void
1360 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next,
1361 		   enum spdk_nvme_data_transfer xfer)
1362 {
1363 	if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1364 		wr->opcode = IBV_WR_RDMA_WRITE;
1365 		wr->send_flags = 0;
1366 		wr->next = next;
1367 	} else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1368 		wr->opcode = IBV_WR_RDMA_READ;
1369 		wr->send_flags = IBV_SEND_SIGNALED;
1370 		wr->next = NULL;
1371 	} else {
1372 		assert(0);
1373 	}
1374 }
1375 
1376 static int
1377 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1378 		       struct spdk_nvmf_rdma_request *rdma_req,
1379 		       uint32_t num_sgl_descriptors)
1380 {
1381 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1382 	struct spdk_nvmf_rdma_request_data	*current_data_wr;
1383 	uint32_t				i;
1384 
1385 	if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) {
1386 		SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n",
1387 			    num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES);
1388 		return -EINVAL;
1389 	}
1390 
1391 	if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) {
1392 		return -ENOMEM;
1393 	}
1394 
1395 	current_data_wr = &rdma_req->data;
1396 
1397 	for (i = 0; i < num_sgl_descriptors; i++) {
1398 		nvmf_rdma_setup_wr(&current_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer);
1399 		current_data_wr->wr.next = &work_requests[i]->wr;
1400 		current_data_wr = work_requests[i];
1401 		current_data_wr->wr.sg_list = current_data_wr->sgl;
1402 		current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id;
1403 	}
1404 
1405 	nvmf_rdma_setup_wr(&current_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1406 
1407 	return 0;
1408 }
1409 
1410 static inline void
1411 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req)
1412 {
1413 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1414 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1415 
1416 	wr->wr.rdma.rkey = sgl->keyed.key;
1417 	wr->wr.rdma.remote_addr = sgl->address;
1418 	nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1419 }
1420 
1421 static inline void
1422 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs)
1423 {
1424 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1425 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1426 	uint32_t			i;
1427 	int				j;
1428 	uint64_t			remote_addr_offset = 0;
1429 
1430 	for (i = 0; i < num_wrs; ++i) {
1431 		wr->wr.rdma.rkey = sgl->keyed.key;
1432 		wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset;
1433 		for (j = 0; j < wr->num_sge; ++j) {
1434 			remote_addr_offset += wr->sg_list[j].length;
1435 		}
1436 		wr = wr->next;
1437 	}
1438 }
1439 
1440 /* This function is used in the rare case that we have a buffer split over multiple memory regions. */
1441 static int
1442 nvmf_rdma_replace_buffer(struct spdk_nvmf_rdma_poll_group *rgroup, void **buf)
1443 {
1444 	struct spdk_nvmf_transport_poll_group	*group = &rgroup->group;
1445 	struct spdk_nvmf_transport		*transport = group->transport;
1446 	struct spdk_nvmf_transport_pg_cache_buf	*old_buf;
1447 	void					*new_buf;
1448 
1449 	if (!(STAILQ_EMPTY(&group->buf_cache))) {
1450 		group->buf_cache_count--;
1451 		new_buf = STAILQ_FIRST(&group->buf_cache);
1452 		STAILQ_REMOVE_HEAD(&group->buf_cache, link);
1453 		assert(*buf != NULL);
1454 	} else {
1455 		new_buf = spdk_mempool_get(transport->data_buf_pool);
1456 	}
1457 
1458 	if (*buf == NULL) {
1459 		return -ENOMEM;
1460 	}
1461 
1462 	old_buf = *buf;
1463 	STAILQ_INSERT_HEAD(&rgroup->retired_bufs, old_buf, link);
1464 	*buf = new_buf;
1465 	return 0;
1466 }
1467 
1468 static bool
1469 nvmf_rdma_get_lkey(struct spdk_nvmf_rdma_device *device, struct iovec *iov,
1470 		   uint32_t *_lkey)
1471 {
1472 	uint64_t	translation_len;
1473 	uint32_t	lkey;
1474 
1475 	translation_len = iov->iov_len;
1476 
1477 	if (!g_nvmf_hooks.get_rkey) {
1478 		lkey = ((struct ibv_mr *)spdk_mem_map_translate(device->map,
1479 				(uint64_t)iov->iov_base, &translation_len))->lkey;
1480 	} else {
1481 		lkey = spdk_mem_map_translate(device->map,
1482 					      (uint64_t)iov->iov_base, &translation_len);
1483 	}
1484 
1485 	if (spdk_unlikely(translation_len < iov->iov_len)) {
1486 		return false;
1487 	}
1488 
1489 	*_lkey = lkey;
1490 	return true;
1491 }
1492 
1493 static bool
1494 nvmf_rdma_fill_wr_sge(struct spdk_nvmf_rdma_device *device,
1495 		      struct iovec *iov, struct ibv_send_wr **_wr,
1496 		      uint32_t *_remaining_data_block, uint32_t *_offset,
1497 		      uint32_t *_num_extra_wrs,
1498 		      const struct spdk_dif_ctx *dif_ctx)
1499 {
1500 	struct ibv_send_wr *wr = *_wr;
1501 	struct ibv_sge	*sg_ele = &wr->sg_list[wr->num_sge];
1502 	uint32_t	lkey = 0;
1503 	uint32_t	remaining, data_block_size, md_size, sge_len;
1504 
1505 	if (spdk_unlikely(!nvmf_rdma_get_lkey(device, iov, &lkey))) {
1506 		/* This is a very rare case that can occur when using DPDK version < 19.05 */
1507 		SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions. Removing it from circulation.\n");
1508 		return false;
1509 	}
1510 
1511 	if (spdk_likely(!dif_ctx)) {
1512 		sg_ele->lkey = lkey;
1513 		sg_ele->addr = (uintptr_t)(iov->iov_base);
1514 		sg_ele->length = iov->iov_len;
1515 		wr->num_sge++;
1516 	} else {
1517 		remaining = iov->iov_len - *_offset;
1518 		data_block_size = dif_ctx->block_size - dif_ctx->md_size;
1519 		md_size = dif_ctx->md_size;
1520 
1521 		while (remaining) {
1522 			if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) {
1523 				if (*_num_extra_wrs > 0 && wr->next) {
1524 					*_wr = wr->next;
1525 					wr = *_wr;
1526 					wr->num_sge = 0;
1527 					sg_ele = &wr->sg_list[wr->num_sge];
1528 					(*_num_extra_wrs)--;
1529 				} else {
1530 					break;
1531 				}
1532 			}
1533 			sg_ele->lkey = lkey;
1534 			sg_ele->addr = (uintptr_t)((char *)iov->iov_base + *_offset);
1535 			sge_len = spdk_min(remaining, *_remaining_data_block);
1536 			sg_ele->length = sge_len;
1537 			remaining -= sge_len;
1538 			*_remaining_data_block -= sge_len;
1539 			*_offset += sge_len;
1540 
1541 			sg_ele++;
1542 			wr->num_sge++;
1543 
1544 			if (*_remaining_data_block == 0) {
1545 				/* skip metadata */
1546 				*_offset += md_size;
1547 				/* Metadata that do not fit this IO buffer will be included in the next IO buffer */
1548 				remaining -= spdk_min(remaining, md_size);
1549 				*_remaining_data_block = data_block_size;
1550 			}
1551 
1552 			if (remaining == 0) {
1553 				/* By subtracting the size of the last IOV from the offset, we ensure that we skip
1554 				   the remaining metadata bits at the beginning of the next buffer */
1555 				*_offset -= iov->iov_len;
1556 			}
1557 		}
1558 	}
1559 
1560 	return true;
1561 }
1562 
1563 static int
1564 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup,
1565 		      struct spdk_nvmf_rdma_device *device,
1566 		      struct spdk_nvmf_rdma_request *rdma_req,
1567 		      struct ibv_send_wr *wr,
1568 		      uint32_t length,
1569 		      uint32_t num_extra_wrs)
1570 {
1571 	struct spdk_nvmf_request *req = &rdma_req->req;
1572 	struct spdk_dif_ctx *dif_ctx = NULL;
1573 	uint32_t remaining_data_block = 0;
1574 	uint32_t offset = 0;
1575 
1576 	if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) {
1577 		dif_ctx = &rdma_req->req.dif.dif_ctx;
1578 		remaining_data_block = dif_ctx->block_size - dif_ctx->md_size;
1579 	}
1580 
1581 	wr->num_sge = 0;
1582 
1583 	while (length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) {
1584 		while (spdk_unlikely(!nvmf_rdma_fill_wr_sge(device, &req->iov[rdma_req->iovpos], &wr,
1585 				     &remaining_data_block, &offset, &num_extra_wrs, dif_ctx))) {
1586 			if (nvmf_rdma_replace_buffer(rgroup, &req->buffers[rdma_req->iovpos]) == -ENOMEM) {
1587 				return -ENOMEM;
1588 			}
1589 			req->iov[rdma_req->iovpos].iov_base = (void *)((uintptr_t)(req->buffers[rdma_req->iovpos] +
1590 							      NVMF_DATA_BUFFER_MASK) &
1591 							      ~NVMF_DATA_BUFFER_MASK);
1592 		}
1593 
1594 		length -= req->iov[rdma_req->iovpos].iov_len;
1595 		rdma_req->iovpos++;
1596 	}
1597 
1598 	if (length) {
1599 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1600 		return -EINVAL;
1601 	}
1602 
1603 	return 0;
1604 }
1605 
1606 static inline uint32_t
1607 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size)
1608 {
1609 	/* estimate the number of SG entries and WRs needed to process the request */
1610 	uint32_t num_sge = 0;
1611 	uint32_t i;
1612 	uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size);
1613 
1614 	for (i = 0; i < num_buffers && length > 0; i++) {
1615 		uint32_t buffer_len = spdk_min(length, io_unit_size);
1616 		uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size);
1617 
1618 		if (num_sge_in_block * block_size > buffer_len) {
1619 			++num_sge_in_block;
1620 		}
1621 		num_sge += num_sge_in_block;
1622 		length -= buffer_len;
1623 	}
1624 	return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES);
1625 }
1626 
1627 static int
1628 spdk_nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1629 				 struct spdk_nvmf_rdma_device *device,
1630 				 struct spdk_nvmf_rdma_request *rdma_req,
1631 				 uint32_t length)
1632 {
1633 	struct spdk_nvmf_rdma_qpair		*rqpair;
1634 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1635 	struct spdk_nvmf_request		*req = &rdma_req->req;
1636 	struct ibv_send_wr			*wr = &rdma_req->data.wr;
1637 	int					rc;
1638 	uint32_t				num_wrs = 1;
1639 
1640 	rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair);
1641 	rgroup = rqpair->poller->group;
1642 
1643 	/* rdma wr specifics */
1644 	nvmf_rdma_setup_request(rdma_req);
1645 
1646 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
1647 					   length);
1648 	if (rc != 0) {
1649 		return rc;
1650 	}
1651 
1652 	assert(req->iovcnt <= rqpair->max_send_sge);
1653 
1654 	rdma_req->iovpos = 0;
1655 
1656 	if (spdk_unlikely(req->dif.dif_insert_or_strip)) {
1657 		num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size,
1658 						 req->dif.dif_ctx.block_size);
1659 		if (num_wrs > 1) {
1660 			rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1);
1661 			if (rc != 0) {
1662 				goto err_exit;
1663 			}
1664 		}
1665 	}
1666 
1667 	rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length, num_wrs - 1);
1668 	if (spdk_unlikely(rc != 0)) {
1669 		goto err_exit;
1670 	}
1671 
1672 	if (spdk_unlikely(num_wrs > 1)) {
1673 		nvmf_rdma_update_remote_addr(rdma_req, num_wrs);
1674 	}
1675 
1676 	/* set the number of outstanding data WRs for this request. */
1677 	rdma_req->num_outstanding_data_wr = num_wrs;
1678 
1679 	return rc;
1680 
1681 err_exit:
1682 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1683 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1684 	req->iovcnt = 0;
1685 	return rc;
1686 }
1687 
1688 static int
1689 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1690 				      struct spdk_nvmf_rdma_device *device,
1691 				      struct spdk_nvmf_rdma_request *rdma_req)
1692 {
1693 	struct spdk_nvmf_rdma_qpair		*rqpair;
1694 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1695 	struct ibv_send_wr			*current_wr;
1696 	struct spdk_nvmf_request		*req = &rdma_req->req;
1697 	struct spdk_nvme_sgl_descriptor		*inline_segment, *desc;
1698 	uint32_t				num_sgl_descriptors;
1699 	uint32_t				lengths[SPDK_NVMF_MAX_SGL_ENTRIES];
1700 	uint32_t				i;
1701 	int					rc;
1702 
1703 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1704 	rgroup = rqpair->poller->group;
1705 
1706 	inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1707 	assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1708 	assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1709 
1710 	num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1711 	assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1712 
1713 	if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) {
1714 		return -ENOMEM;
1715 	}
1716 
1717 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1718 	for (i = 0; i < num_sgl_descriptors; i++) {
1719 		if (spdk_likely(!req->dif.dif_insert_or_strip)) {
1720 			lengths[i] = desc->keyed.length;
1721 		} else {
1722 			req->dif.orig_length += desc->keyed.length;
1723 			lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx);
1724 			req->dif.elba_length += lengths[i];
1725 		}
1726 		desc++;
1727 	}
1728 
1729 	rc = spdk_nvmf_request_get_buffers_multi(req, &rgroup->group, &rtransport->transport,
1730 			lengths, num_sgl_descriptors);
1731 	if (rc != 0) {
1732 		nvmf_rdma_request_free_data(rdma_req, rtransport);
1733 		return rc;
1734 	}
1735 
1736 	/* The first WR must always be the embedded data WR. This is how we unwind them later. */
1737 	current_wr = &rdma_req->data.wr;
1738 	assert(current_wr != NULL);
1739 
1740 	req->length = 0;
1741 	rdma_req->iovpos = 0;
1742 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1743 	for (i = 0; i < num_sgl_descriptors; i++) {
1744 		/* The descriptors must be keyed data block descriptors with an address, not an offset. */
1745 		if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1746 				  desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1747 			rc = -EINVAL;
1748 			goto err_exit;
1749 		}
1750 
1751 		current_wr->num_sge = 0;
1752 
1753 		rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i], 0);
1754 		if (rc != 0) {
1755 			rc = -ENOMEM;
1756 			goto err_exit;
1757 		}
1758 
1759 		req->length += desc->keyed.length;
1760 		current_wr->wr.rdma.rkey = desc->keyed.key;
1761 		current_wr->wr.rdma.remote_addr = desc->address;
1762 		current_wr = current_wr->next;
1763 		desc++;
1764 	}
1765 
1766 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1767 	/* Go back to the last descriptor in the list. */
1768 	desc--;
1769 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1770 		if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1771 			rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1772 			rdma_req->rsp.wr.imm_data = desc->keyed.key;
1773 		}
1774 	}
1775 #endif
1776 
1777 	rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1778 
1779 	return 0;
1780 
1781 err_exit:
1782 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1783 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1784 	return rc;
1785 }
1786 
1787 static int
1788 spdk_nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1789 				 struct spdk_nvmf_rdma_device *device,
1790 				 struct spdk_nvmf_rdma_request *rdma_req)
1791 {
1792 	struct spdk_nvmf_request		*req = &rdma_req->req;
1793 	struct spdk_nvme_cpl			*rsp;
1794 	struct spdk_nvme_sgl_descriptor		*sgl;
1795 	int					rc;
1796 	uint32_t				length;
1797 
1798 	rsp = &req->rsp->nvme_cpl;
1799 	sgl = &req->cmd->nvme_cmd.dptr.sgl1;
1800 
1801 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1802 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1803 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1804 
1805 		length = sgl->keyed.length;
1806 		if (length > rtransport->transport.opts.max_io_size) {
1807 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1808 				    length, rtransport->transport.opts.max_io_size);
1809 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1810 			return -1;
1811 		}
1812 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1813 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1814 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1815 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1816 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1817 			}
1818 		}
1819 #endif
1820 
1821 		/* fill request length and populate iovs */
1822 		req->length = length;
1823 
1824 		if (spdk_unlikely(req->dif.dif_insert_or_strip)) {
1825 			req->dif.orig_length = length;
1826 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
1827 			req->dif.elba_length = length;
1828 		}
1829 
1830 		rc = spdk_nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req, length);
1831 		if (spdk_unlikely(rc < 0)) {
1832 			if (rc == -EINVAL) {
1833 				SPDK_ERRLOG("SGL length exceeds the max I/O size\n");
1834 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1835 				return -1;
1836 			}
1837 			/* No available buffers. Queue this request up. */
1838 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req);
1839 			return 0;
1840 		}
1841 
1842 		/* backward compatible */
1843 		req->data = req->iov[0].iov_base;
1844 
1845 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req,
1846 			      req->iovcnt);
1847 
1848 		return 0;
1849 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1850 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1851 		uint64_t offset = sgl->address;
1852 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1853 
1854 		SPDK_DEBUGLOG(SPDK_LOG_NVMF, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1855 			      offset, sgl->unkeyed.length);
1856 
1857 		if (offset > max_len) {
1858 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1859 				    offset, max_len);
1860 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1861 			return -1;
1862 		}
1863 		max_len -= (uint32_t)offset;
1864 
1865 		if (sgl->unkeyed.length > max_len) {
1866 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1867 				    sgl->unkeyed.length, max_len);
1868 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1869 			return -1;
1870 		}
1871 
1872 		rdma_req->num_outstanding_data_wr = 0;
1873 		req->data = rdma_req->recv->buf + offset;
1874 		req->data_from_pool = false;
1875 		req->length = sgl->unkeyed.length;
1876 
1877 		req->iov[0].iov_base = req->data;
1878 		req->iov[0].iov_len = req->length;
1879 		req->iovcnt = 1;
1880 
1881 		return 0;
1882 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1883 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1884 
1885 		rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1886 		if (rc == -ENOMEM) {
1887 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req);
1888 			return 0;
1889 		} else if (rc == -EINVAL) {
1890 			SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1891 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1892 			return -1;
1893 		}
1894 
1895 		/* backward compatible */
1896 		req->data = req->iov[0].iov_base;
1897 
1898 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req,
1899 			      req->iovcnt);
1900 
1901 		return 0;
1902 	}
1903 
1904 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
1905 		    sgl->generic.type, sgl->generic.subtype);
1906 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1907 	return -1;
1908 }
1909 
1910 static void
1911 nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1912 		       struct spdk_nvmf_rdma_transport	*rtransport)
1913 {
1914 	struct spdk_nvmf_rdma_qpair		*rqpair;
1915 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1916 
1917 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1918 	if (rdma_req->req.data_from_pool) {
1919 		rgroup = rqpair->poller->group;
1920 
1921 		spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport);
1922 	}
1923 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1924 	rdma_req->req.length = 0;
1925 	rdma_req->req.iovcnt = 0;
1926 	rdma_req->req.data = NULL;
1927 	rdma_req->rsp.wr.next = NULL;
1928 	rdma_req->data.wr.next = NULL;
1929 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
1930 	rqpair->qd--;
1931 
1932 	STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
1933 	rdma_req->state = RDMA_REQUEST_STATE_FREE;
1934 }
1935 
1936 bool
1937 spdk_nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
1938 			       struct spdk_nvmf_rdma_request *rdma_req)
1939 {
1940 	struct spdk_nvmf_rdma_qpair	*rqpair;
1941 	struct spdk_nvmf_rdma_device	*device;
1942 	struct spdk_nvmf_rdma_poll_group *rgroup;
1943 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
1944 	int				rc;
1945 	struct spdk_nvmf_rdma_recv	*rdma_recv;
1946 	enum spdk_nvmf_rdma_request_state prev_state;
1947 	bool				progress = false;
1948 	int				data_posted;
1949 	uint32_t			num_blocks;
1950 
1951 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1952 	device = rqpair->device;
1953 	rgroup = rqpair->poller->group;
1954 
1955 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
1956 
1957 	/* If the queue pair is in an error state, force the request to the completed state
1958 	 * to release resources. */
1959 	if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
1960 		if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) {
1961 			STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link);
1962 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) {
1963 			STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
1964 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) {
1965 			STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
1966 		}
1967 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
1968 	}
1969 
1970 	/* The loop here is to allow for several back-to-back state changes. */
1971 	do {
1972 		prev_state = rdma_req->state;
1973 
1974 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p entering state %d\n", rdma_req, prev_state);
1975 
1976 		switch (rdma_req->state) {
1977 		case RDMA_REQUEST_STATE_FREE:
1978 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
1979 			 * to escape this state. */
1980 			break;
1981 		case RDMA_REQUEST_STATE_NEW:
1982 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
1983 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1984 			rdma_recv = rdma_req->recv;
1985 
1986 			/* The first element of the SGL is the NVMe command */
1987 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
1988 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
1989 
1990 			if (rqpair->ibv_state == IBV_QPS_ERR  || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
1991 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
1992 				break;
1993 			}
1994 
1995 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) {
1996 				rdma_req->req.dif.dif_insert_or_strip = true;
1997 			}
1998 
1999 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2000 			rdma_req->rsp.wr.opcode = IBV_WR_SEND;
2001 			rdma_req->rsp.wr.imm_data = 0;
2002 #endif
2003 
2004 			/* The next state transition depends on the data transfer needs of this request. */
2005 			rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req);
2006 
2007 			/* If no data to transfer, ready to execute. */
2008 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
2009 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2010 				break;
2011 			}
2012 
2013 			rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
2014 			STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link);
2015 			break;
2016 		case RDMA_REQUEST_STATE_NEED_BUFFER:
2017 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
2018 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2019 
2020 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
2021 
2022 			if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) {
2023 				/* This request needs to wait in line to obtain a buffer */
2024 				break;
2025 			}
2026 
2027 			/* Try to get a data buffer */
2028 			rc = spdk_nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
2029 			if (rc < 0) {
2030 				STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2031 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2032 				break;
2033 			}
2034 
2035 			if (!rdma_req->req.data) {
2036 				/* No buffers available. */
2037 				rgroup->stat.pending_data_buffer++;
2038 				break;
2039 			}
2040 
2041 			STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2042 
2043 			/* If data is transferring from host to controller and the data didn't
2044 			 * arrive using in capsule data, we need to do a transfer from the host.
2045 			 */
2046 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER &&
2047 			    rdma_req->req.data_from_pool) {
2048 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
2049 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
2050 				break;
2051 			}
2052 
2053 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2054 			break;
2055 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2056 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
2057 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2058 
2059 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
2060 				/* This request needs to wait in line to perform RDMA */
2061 				break;
2062 			}
2063 			if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth
2064 			    || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) {
2065 				/* We can only have so many WRs outstanding. we have to wait until some finish. */
2066 				rqpair->poller->stat.pending_rdma_read++;
2067 				break;
2068 			}
2069 
2070 			/* We have already verified that this request is the head of the queue. */
2071 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
2072 
2073 			rc = request_transfer_in(&rdma_req->req);
2074 			if (!rc) {
2075 				rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
2076 			} else {
2077 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2078 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2079 			}
2080 			break;
2081 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2082 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
2083 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2084 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
2085 			 * to escape this state. */
2086 			break;
2087 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
2088 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
2089 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2090 
2091 			if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) {
2092 				if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2093 					/* generate DIF for write operation */
2094 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2095 					assert(num_blocks > 0);
2096 
2097 					rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt,
2098 							       num_blocks, &rdma_req->req.dif.dif_ctx);
2099 					if (rc != 0) {
2100 						SPDK_ERRLOG("DIF generation failed\n");
2101 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2102 						spdk_nvmf_rdma_start_disconnect(rqpair);
2103 						break;
2104 					}
2105 				}
2106 
2107 				assert(rdma_req->req.dif.elba_length >= rdma_req->req.length);
2108 				/* set extended length before IO operation */
2109 				rdma_req->req.length = rdma_req->req.dif.elba_length;
2110 			}
2111 
2112 			rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
2113 			spdk_nvmf_request_exec(&rdma_req->req);
2114 			break;
2115 		case RDMA_REQUEST_STATE_EXECUTING:
2116 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
2117 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2118 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
2119 			 * to escape this state. */
2120 			break;
2121 		case RDMA_REQUEST_STATE_EXECUTED:
2122 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
2123 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2124 			if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2125 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
2126 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
2127 			} else {
2128 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2129 			}
2130 			if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) {
2131 				/* restore the original length */
2132 				rdma_req->req.length = rdma_req->req.dif.orig_length;
2133 
2134 				if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2135 					struct spdk_dif_error error_blk;
2136 
2137 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2138 
2139 					rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2140 							     &rdma_req->req.dif.dif_ctx, &error_blk);
2141 					if (rc) {
2142 						struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
2143 
2144 						SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type,
2145 							    error_blk.err_offset);
2146 						rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2147 						rsp->status.sc = spdk_nvmf_rdma_dif_error_to_compl_status(error_blk.err_type);
2148 						rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2149 						STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2150 					}
2151 				}
2152 			}
2153 			break;
2154 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2155 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
2156 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2157 
2158 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
2159 				/* This request needs to wait in line to perform RDMA */
2160 				break;
2161 			}
2162 			if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
2163 			    rqpair->max_send_depth) {
2164 				/* We can only have so many WRs outstanding. we have to wait until some finish.
2165 				 * +1 since each request has an additional wr in the resp. */
2166 				rqpair->poller->stat.pending_rdma_write++;
2167 				break;
2168 			}
2169 
2170 			/* We have already verified that this request is the head of the queue. */
2171 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
2172 
2173 			/* The data transfer will be kicked off from
2174 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2175 			 */
2176 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2177 			break;
2178 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
2179 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
2180 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2181 			rc = request_transfer_out(&rdma_req->req, &data_posted);
2182 			assert(rc == 0); /* No good way to handle this currently */
2183 			if (rc) {
2184 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2185 			} else {
2186 				rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
2187 						  RDMA_REQUEST_STATE_COMPLETING;
2188 			}
2189 			break;
2190 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2191 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
2192 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2193 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2194 			 * to escape this state. */
2195 			break;
2196 		case RDMA_REQUEST_STATE_COMPLETING:
2197 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
2198 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2199 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2200 			 * to escape this state. */
2201 			break;
2202 		case RDMA_REQUEST_STATE_COMPLETED:
2203 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2204 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2205 
2206 			rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc;
2207 			nvmf_rdma_request_free(rdma_req, rtransport);
2208 			break;
2209 		case RDMA_REQUEST_NUM_STATES:
2210 		default:
2211 			assert(0);
2212 			break;
2213 		}
2214 
2215 		if (rdma_req->state != prev_state) {
2216 			progress = true;
2217 		}
2218 	} while (rdma_req->state != prev_state);
2219 
2220 	return progress;
2221 }
2222 
2223 /* Public API callbacks begin here */
2224 
2225 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2226 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2227 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2228 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
2229 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2230 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2231 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2232 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095
2233 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32
2234 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false
2235 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false
2236 
2237 static void
2238 spdk_nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2239 {
2240 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2241 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2242 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2243 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2244 	opts->io_unit_size =		SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2245 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2246 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2247 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2248 	opts->max_srq_depth =		SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2249 	opts->no_srq =			SPDK_NVMF_RDMA_DEFAULT_NO_SRQ;
2250 	opts->dif_insert_or_strip =	SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP;
2251 }
2252 
2253 const struct spdk_mem_map_ops g_nvmf_rdma_map_ops = {
2254 	.notify_cb = spdk_nvmf_rdma_mem_notify,
2255 	.are_contiguous = spdk_nvmf_rdma_check_contiguous_entries
2256 };
2257 
2258 static int spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport);
2259 
2260 static struct spdk_nvmf_transport *
2261 spdk_nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2262 {
2263 	int rc;
2264 	struct spdk_nvmf_rdma_transport *rtransport;
2265 	struct spdk_nvmf_rdma_device	*device, *tmp;
2266 	struct ibv_context		**contexts;
2267 	uint32_t			i;
2268 	int				flag;
2269 	uint32_t			sge_count;
2270 	uint32_t			min_shared_buffers;
2271 	int				max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2272 	pthread_mutexattr_t		attr;
2273 
2274 	rtransport = calloc(1, sizeof(*rtransport));
2275 	if (!rtransport) {
2276 		return NULL;
2277 	}
2278 
2279 	if (pthread_mutexattr_init(&attr)) {
2280 		SPDK_ERRLOG("pthread_mutexattr_init() failed\n");
2281 		free(rtransport);
2282 		return NULL;
2283 	}
2284 
2285 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) {
2286 		SPDK_ERRLOG("pthread_mutexattr_settype() failed\n");
2287 		pthread_mutexattr_destroy(&attr);
2288 		free(rtransport);
2289 		return NULL;
2290 	}
2291 
2292 	if (pthread_mutex_init(&rtransport->lock, &attr)) {
2293 		SPDK_ERRLOG("pthread_mutex_init() failed\n");
2294 		pthread_mutexattr_destroy(&attr);
2295 		free(rtransport);
2296 		return NULL;
2297 	}
2298 
2299 	pthread_mutexattr_destroy(&attr);
2300 
2301 	TAILQ_INIT(&rtransport->devices);
2302 	TAILQ_INIT(&rtransport->ports);
2303 	TAILQ_INIT(&rtransport->poll_groups);
2304 
2305 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2306 
2307 	SPDK_INFOLOG(SPDK_LOG_RDMA, "*** RDMA Transport Init ***\n"
2308 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
2309 		     "  max_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2310 		     "  in_capsule_data_size=%d, max_aq_depth=%d,\n"
2311 		     "  num_shared_buffers=%d, max_srq_depth=%d, no_srq=%d\n",
2312 		     opts->max_queue_depth,
2313 		     opts->max_io_size,
2314 		     opts->max_qpairs_per_ctrlr,
2315 		     opts->io_unit_size,
2316 		     opts->in_capsule_data_size,
2317 		     opts->max_aq_depth,
2318 		     opts->num_shared_buffers,
2319 		     opts->max_srq_depth,
2320 		     opts->no_srq);
2321 
2322 	/* I/O unit size cannot be larger than max I/O size */
2323 	if (opts->io_unit_size > opts->max_io_size) {
2324 		opts->io_unit_size = opts->max_io_size;
2325 	}
2326 
2327 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2328 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2329 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
2330 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2331 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2332 		return NULL;
2333 	}
2334 
2335 	min_shared_buffers = spdk_thread_get_count() * opts->buf_cache_size;
2336 	if (min_shared_buffers > opts->num_shared_buffers) {
2337 		SPDK_ERRLOG("There are not enough buffers to satisfy"
2338 			    "per-poll group caches for each thread. (%" PRIu32 ")"
2339 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2340 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2341 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2342 		return NULL;
2343 	}
2344 
2345 	sge_count = opts->max_io_size / opts->io_unit_size;
2346 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
2347 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2348 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2349 		return NULL;
2350 	}
2351 
2352 	rtransport->event_channel = rdma_create_event_channel();
2353 	if (rtransport->event_channel == NULL) {
2354 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2355 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2356 		return NULL;
2357 	}
2358 
2359 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2360 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2361 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2362 			    rtransport->event_channel->fd, spdk_strerror(errno));
2363 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2364 		return NULL;
2365 	}
2366 
2367 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
2368 				   opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES,
2369 				   sizeof(struct spdk_nvmf_rdma_request_data),
2370 				   SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2371 				   SPDK_ENV_SOCKET_ID_ANY);
2372 	if (!rtransport->data_wr_pool) {
2373 		SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2374 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2375 		return NULL;
2376 	}
2377 
2378 	contexts = rdma_get_devices(NULL);
2379 	if (contexts == NULL) {
2380 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2381 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2382 		return NULL;
2383 	}
2384 
2385 	i = 0;
2386 	rc = 0;
2387 	while (contexts[i] != NULL) {
2388 		device = calloc(1, sizeof(*device));
2389 		if (!device) {
2390 			SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2391 			rc = -ENOMEM;
2392 			break;
2393 		}
2394 		device->context = contexts[i];
2395 		rc = ibv_query_device(device->context, &device->attr);
2396 		if (rc < 0) {
2397 			SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2398 			free(device);
2399 			break;
2400 
2401 		}
2402 
2403 		max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2404 
2405 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2406 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2407 			SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2408 			SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2409 		}
2410 
2411 		/**
2412 		 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2413 		 * The Soft-RoCE RXE driver does not currently support send with invalidate,
2414 		 * but incorrectly reports that it does. There are changes making their way
2415 		 * through the kernel now that will enable this feature. When they are merged,
2416 		 * we can conditionally enable this feature.
2417 		 *
2418 		 * TODO: enable this for versions of the kernel rxe driver that support it.
2419 		 */
2420 		if (device->attr.vendor_id == 0) {
2421 			device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2422 		}
2423 #endif
2424 
2425 		/* set up device context async ev fd as NON_BLOCKING */
2426 		flag = fcntl(device->context->async_fd, F_GETFL);
2427 		rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2428 		if (rc < 0) {
2429 			SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2430 			free(device);
2431 			break;
2432 		}
2433 
2434 		TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2435 		i++;
2436 
2437 		if (g_nvmf_hooks.get_ibv_pd) {
2438 			device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2439 		} else {
2440 			device->pd = ibv_alloc_pd(device->context);
2441 		}
2442 
2443 		if (!device->pd) {
2444 			SPDK_ERRLOG("Unable to allocate protection domain.\n");
2445 			rc = -ENOMEM;
2446 			break;
2447 		}
2448 
2449 		assert(device->map == NULL);
2450 
2451 		device->map = spdk_mem_map_alloc(0, &g_nvmf_rdma_map_ops, device->pd);
2452 		if (!device->map) {
2453 			SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2454 			rc = -ENOMEM;
2455 			break;
2456 		}
2457 
2458 		assert(device->map != NULL);
2459 		assert(device->pd != NULL);
2460 	}
2461 	rdma_free_devices(contexts);
2462 
2463 	if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2464 		/* divide and round up. */
2465 		opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2466 
2467 		/* round up to the nearest 4k. */
2468 		opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2469 
2470 		opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2471 		SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2472 			       opts->io_unit_size);
2473 	}
2474 
2475 	if (rc < 0) {
2476 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2477 		return NULL;
2478 	}
2479 
2480 	/* Set up poll descriptor array to monitor events from RDMA and IB
2481 	 * in a single poll syscall
2482 	 */
2483 	rtransport->npoll_fds = i + 1;
2484 	i = 0;
2485 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2486 	if (rtransport->poll_fds == NULL) {
2487 		SPDK_ERRLOG("poll_fds allocation failed\n");
2488 		spdk_nvmf_rdma_destroy(&rtransport->transport);
2489 		return NULL;
2490 	}
2491 
2492 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2493 	rtransport->poll_fds[i++].events = POLLIN;
2494 
2495 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2496 		rtransport->poll_fds[i].fd = device->context->async_fd;
2497 		rtransport->poll_fds[i++].events = POLLIN;
2498 	}
2499 
2500 	spdk_nvmf_ctrlr_data_init(opts, &rtransport->transport.cdata);
2501 
2502 	rtransport->transport.cdata.nvmf_specific.msdbd = SPDK_NVMF_MAX_SGL_ENTRIES;
2503 
2504 	/* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled
2505 	since in-capsule data only works with NVME drives that support SGL memory layout */
2506 	if (opts->dif_insert_or_strip) {
2507 		rtransport->transport.cdata.nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16;
2508 	}
2509 
2510 	return &rtransport->transport;
2511 }
2512 
2513 static int
2514 spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport)
2515 {
2516 	struct spdk_nvmf_rdma_transport	*rtransport;
2517 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
2518 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
2519 
2520 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2521 
2522 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2523 		TAILQ_REMOVE(&rtransport->ports, port, link);
2524 		rdma_destroy_id(port->id);
2525 		free(port);
2526 	}
2527 
2528 	if (rtransport->poll_fds != NULL) {
2529 		free(rtransport->poll_fds);
2530 	}
2531 
2532 	if (rtransport->event_channel != NULL) {
2533 		rdma_destroy_event_channel(rtransport->event_channel);
2534 	}
2535 
2536 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2537 		TAILQ_REMOVE(&rtransport->devices, device, link);
2538 		if (device->map) {
2539 			spdk_mem_map_free(&device->map);
2540 		}
2541 		if (device->pd) {
2542 			if (!g_nvmf_hooks.get_ibv_pd) {
2543 				ibv_dealloc_pd(device->pd);
2544 			}
2545 		}
2546 		free(device);
2547 	}
2548 
2549 	if (rtransport->data_wr_pool != NULL) {
2550 		if (spdk_mempool_count(rtransport->data_wr_pool) !=
2551 		    (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) {
2552 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2553 				    spdk_mempool_count(rtransport->data_wr_pool),
2554 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2555 		}
2556 	}
2557 
2558 	spdk_mempool_free(rtransport->data_wr_pool);
2559 
2560 	pthread_mutex_destroy(&rtransport->lock);
2561 	free(rtransport);
2562 
2563 	return 0;
2564 }
2565 
2566 static int
2567 spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2568 			       struct spdk_nvme_transport_id *trid,
2569 			       bool peer);
2570 
2571 static int
2572 spdk_nvmf_rdma_listen(struct spdk_nvmf_transport *transport,
2573 		      const struct spdk_nvme_transport_id *trid)
2574 {
2575 	struct spdk_nvmf_rdma_transport	*rtransport;
2576 	struct spdk_nvmf_rdma_device	*device;
2577 	struct spdk_nvmf_rdma_port	*port;
2578 	struct addrinfo			*res;
2579 	struct addrinfo			hints;
2580 	int				family;
2581 	int				rc;
2582 
2583 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2584 	assert(rtransport->event_channel != NULL);
2585 
2586 	pthread_mutex_lock(&rtransport->lock);
2587 	port = calloc(1, sizeof(*port));
2588 	if (!port) {
2589 		SPDK_ERRLOG("Port allocation failed\n");
2590 		pthread_mutex_unlock(&rtransport->lock);
2591 		return -ENOMEM;
2592 	}
2593 
2594 	port->trid = trid;
2595 
2596 	switch (trid->adrfam) {
2597 	case SPDK_NVMF_ADRFAM_IPV4:
2598 		family = AF_INET;
2599 		break;
2600 	case SPDK_NVMF_ADRFAM_IPV6:
2601 		family = AF_INET6;
2602 		break;
2603 	default:
2604 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam);
2605 		free(port);
2606 		pthread_mutex_unlock(&rtransport->lock);
2607 		return -EINVAL;
2608 	}
2609 
2610 	memset(&hints, 0, sizeof(hints));
2611 	hints.ai_family = family;
2612 	hints.ai_flags = AI_NUMERICSERV;
2613 	hints.ai_socktype = SOCK_STREAM;
2614 	hints.ai_protocol = 0;
2615 
2616 	rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res);
2617 	if (rc) {
2618 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
2619 		free(port);
2620 		pthread_mutex_unlock(&rtransport->lock);
2621 		return -EINVAL;
2622 	}
2623 
2624 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
2625 	if (rc < 0) {
2626 		SPDK_ERRLOG("rdma_create_id() failed\n");
2627 		freeaddrinfo(res);
2628 		free(port);
2629 		pthread_mutex_unlock(&rtransport->lock);
2630 		return rc;
2631 	}
2632 
2633 	rc = rdma_bind_addr(port->id, res->ai_addr);
2634 	freeaddrinfo(res);
2635 
2636 	if (rc < 0) {
2637 		SPDK_ERRLOG("rdma_bind_addr() failed\n");
2638 		rdma_destroy_id(port->id);
2639 		free(port);
2640 		pthread_mutex_unlock(&rtransport->lock);
2641 		return rc;
2642 	}
2643 
2644 	if (!port->id->verbs) {
2645 		SPDK_ERRLOG("ibv_context is null\n");
2646 		rdma_destroy_id(port->id);
2647 		free(port);
2648 		pthread_mutex_unlock(&rtransport->lock);
2649 		return -1;
2650 	}
2651 
2652 	rc = rdma_listen(port->id, 10); /* 10 = backlog */
2653 	if (rc < 0) {
2654 		SPDK_ERRLOG("rdma_listen() failed\n");
2655 		rdma_destroy_id(port->id);
2656 		free(port);
2657 		pthread_mutex_unlock(&rtransport->lock);
2658 		return rc;
2659 	}
2660 
2661 	TAILQ_FOREACH(device, &rtransport->devices, link) {
2662 		if (device->context == port->id->verbs) {
2663 			port->device = device;
2664 			break;
2665 		}
2666 	}
2667 	if (!port->device) {
2668 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
2669 			    port->id->verbs);
2670 		rdma_destroy_id(port->id);
2671 		free(port);
2672 		pthread_mutex_unlock(&rtransport->lock);
2673 		return -EINVAL;
2674 	}
2675 
2676 	SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n",
2677 		       trid->traddr, trid->trsvcid);
2678 
2679 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
2680 	pthread_mutex_unlock(&rtransport->lock);
2681 	return 0;
2682 }
2683 
2684 static void
2685 spdk_nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
2686 			   const struct spdk_nvme_transport_id *trid)
2687 {
2688 	struct spdk_nvmf_rdma_transport *rtransport;
2689 	struct spdk_nvmf_rdma_port *port, *tmp;
2690 
2691 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2692 
2693 	pthread_mutex_lock(&rtransport->lock);
2694 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
2695 		if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
2696 			TAILQ_REMOVE(&rtransport->ports, port, link);
2697 			rdma_destroy_id(port->id);
2698 			free(port);
2699 			break;
2700 		}
2701 	}
2702 
2703 	pthread_mutex_unlock(&rtransport->lock);
2704 }
2705 
2706 static void
2707 spdk_nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
2708 				     struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
2709 {
2710 	struct spdk_nvmf_request *req, *tmp;
2711 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
2712 	struct spdk_nvmf_rdma_resources *resources;
2713 
2714 	/* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */
2715 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
2716 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2717 			break;
2718 		}
2719 	}
2720 
2721 	/* Then RDMA writes since reads have stronger restrictions than writes */
2722 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
2723 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2724 			break;
2725 		}
2726 	}
2727 
2728 	/* The second highest priority is I/O waiting on memory buffers. */
2729 	STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) {
2730 		rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
2731 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2732 			break;
2733 		}
2734 	}
2735 
2736 	resources = rqpair->resources;
2737 	while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
2738 		rdma_req = STAILQ_FIRST(&resources->free_queue);
2739 		STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
2740 		rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
2741 		STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
2742 
2743 		if (rqpair->srq != NULL) {
2744 			rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
2745 			rdma_req->recv->qpair->qd++;
2746 		} else {
2747 			rqpair->qd++;
2748 		}
2749 
2750 		rdma_req->receive_tsc = rdma_req->recv->receive_tsc;
2751 		rdma_req->state = RDMA_REQUEST_STATE_NEW;
2752 		if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false) {
2753 			break;
2754 		}
2755 	}
2756 	if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) {
2757 		rqpair->poller->stat.pending_free_request++;
2758 	}
2759 }
2760 
2761 static void
2762 _nvmf_rdma_qpair_disconnect(void *ctx)
2763 {
2764 	struct spdk_nvmf_qpair *qpair = ctx;
2765 
2766 	spdk_nvmf_qpair_disconnect(qpair, NULL, NULL);
2767 }
2768 
2769 static void
2770 _nvmf_rdma_try_disconnect(void *ctx)
2771 {
2772 	struct spdk_nvmf_qpair *qpair = ctx;
2773 	struct spdk_nvmf_poll_group *group;
2774 
2775 	/* Read the group out of the qpair. This is normally set and accessed only from
2776 	 * the thread that created the group. Here, we're not on that thread necessarily.
2777 	 * The data member qpair->group begins it's life as NULL and then is assigned to
2778 	 * a pointer and never changes. So fortunately reading this and checking for
2779 	 * non-NULL is thread safe in the x86_64 memory model. */
2780 	group = qpair->group;
2781 
2782 	if (group == NULL) {
2783 		/* The qpair hasn't been assigned to a group yet, so we can't
2784 		 * process a disconnect. Send a message to ourself and try again. */
2785 		spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_try_disconnect, qpair);
2786 		return;
2787 	}
2788 
2789 	spdk_thread_send_msg(group->thread, _nvmf_rdma_qpair_disconnect, qpair);
2790 }
2791 
2792 static inline void
2793 spdk_nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair)
2794 {
2795 	if (!__atomic_test_and_set(&rqpair->disconnect_started, __ATOMIC_RELAXED)) {
2796 		_nvmf_rdma_try_disconnect(&rqpair->qpair);
2797 	}
2798 }
2799 
2800 static void nvmf_rdma_destroy_drained_qpair(void *ctx)
2801 {
2802 	struct spdk_nvmf_rdma_qpair *rqpair = ctx;
2803 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
2804 			struct spdk_nvmf_rdma_transport, transport);
2805 
2806 	/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
2807 	if (rqpair->current_send_depth != 0) {
2808 		return;
2809 	}
2810 
2811 	if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
2812 		return;
2813 	}
2814 
2815 	if (rqpair->srq != NULL && rqpair->last_wqe_reached == false) {
2816 		return;
2817 	}
2818 
2819 	spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
2820 
2821 	/* Qpair will be destroyed after nvmf layer closes this qpair */
2822 	if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ERROR) {
2823 		return;
2824 	}
2825 
2826 	spdk_nvmf_rdma_qpair_destroy(rqpair);
2827 }
2828 
2829 
2830 static int
2831 nvmf_rdma_disconnect(struct rdma_cm_event *evt)
2832 {
2833 	struct spdk_nvmf_qpair		*qpair;
2834 	struct spdk_nvmf_rdma_qpair	*rqpair;
2835 
2836 	if (evt->id == NULL) {
2837 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
2838 		return -1;
2839 	}
2840 
2841 	qpair = evt->id->context;
2842 	if (qpair == NULL) {
2843 		SPDK_ERRLOG("disconnect request: no active connection\n");
2844 		return -1;
2845 	}
2846 
2847 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
2848 
2849 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair->cm_id, 0);
2850 
2851 	spdk_nvmf_rdma_start_disconnect(rqpair);
2852 
2853 	return 0;
2854 }
2855 
2856 #ifdef DEBUG
2857 static const char *CM_EVENT_STR[] = {
2858 	"RDMA_CM_EVENT_ADDR_RESOLVED",
2859 	"RDMA_CM_EVENT_ADDR_ERROR",
2860 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
2861 	"RDMA_CM_EVENT_ROUTE_ERROR",
2862 	"RDMA_CM_EVENT_CONNECT_REQUEST",
2863 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
2864 	"RDMA_CM_EVENT_CONNECT_ERROR",
2865 	"RDMA_CM_EVENT_UNREACHABLE",
2866 	"RDMA_CM_EVENT_REJECTED",
2867 	"RDMA_CM_EVENT_ESTABLISHED",
2868 	"RDMA_CM_EVENT_DISCONNECTED",
2869 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
2870 	"RDMA_CM_EVENT_MULTICAST_JOIN",
2871 	"RDMA_CM_EVENT_MULTICAST_ERROR",
2872 	"RDMA_CM_EVENT_ADDR_CHANGE",
2873 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
2874 };
2875 #endif /* DEBUG */
2876 
2877 static void
2878 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport,
2879 				    struct spdk_nvmf_rdma_port *port)
2880 {
2881 	struct spdk_nvmf_rdma_poll_group	*rgroup;
2882 	struct spdk_nvmf_rdma_poller		*rpoller;
2883 	struct spdk_nvmf_rdma_qpair		*rqpair;
2884 
2885 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
2886 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
2887 			TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) {
2888 				if (rqpair->listen_id == port->id) {
2889 					spdk_nvmf_rdma_start_disconnect(rqpair);
2890 				}
2891 			}
2892 		}
2893 	}
2894 }
2895 
2896 static bool
2897 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport,
2898 				      struct rdma_cm_event *event)
2899 {
2900 	const struct spdk_nvme_transport_id	*trid;
2901 	struct spdk_nvmf_rdma_port		*port;
2902 	struct spdk_nvmf_rdma_transport		*rtransport;
2903 	bool					event_acked = false;
2904 
2905 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2906 	TAILQ_FOREACH(port, &rtransport->ports, link) {
2907 		if (port->id == event->id) {
2908 			SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid);
2909 			rdma_ack_cm_event(event);
2910 			event_acked = true;
2911 			trid = port->trid;
2912 			break;
2913 		}
2914 	}
2915 
2916 	if (event_acked) {
2917 		nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
2918 
2919 		spdk_nvmf_rdma_stop_listen(transport, trid);
2920 		spdk_nvmf_rdma_listen(transport, trid);
2921 	}
2922 
2923 	return event_acked;
2924 }
2925 
2926 static void
2927 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport,
2928 				       struct rdma_cm_event *event)
2929 {
2930 	struct spdk_nvmf_rdma_port		*port;
2931 	struct spdk_nvmf_rdma_transport		*rtransport;
2932 
2933 	port = event->id->context;
2934 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2935 
2936 	SPDK_NOTICELOG("Port %s:%s is being removed\n", port->trid->traddr, port->trid->trsvcid);
2937 
2938 	nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
2939 
2940 	rdma_ack_cm_event(event);
2941 
2942 	while (spdk_nvmf_transport_stop_listen(transport, port->trid) == 0) {
2943 		;
2944 	}
2945 }
2946 
2947 static void
2948 spdk_nvmf_process_cm_event(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn, void *cb_arg)
2949 {
2950 	struct spdk_nvmf_rdma_transport *rtransport;
2951 	struct rdma_cm_event		*event;
2952 	int				rc;
2953 	bool				event_acked;
2954 
2955 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2956 
2957 	if (rtransport->event_channel == NULL) {
2958 		return;
2959 	}
2960 
2961 	while (1) {
2962 		event_acked = false;
2963 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
2964 		if (rc) {
2965 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
2966 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
2967 			}
2968 			break;
2969 		}
2970 
2971 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
2972 
2973 		spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
2974 
2975 		switch (event->event) {
2976 		case RDMA_CM_EVENT_ADDR_RESOLVED:
2977 		case RDMA_CM_EVENT_ADDR_ERROR:
2978 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
2979 		case RDMA_CM_EVENT_ROUTE_ERROR:
2980 			/* No action required. The target never attempts to resolve routes. */
2981 			break;
2982 		case RDMA_CM_EVENT_CONNECT_REQUEST:
2983 			rc = nvmf_rdma_connect(transport, event, cb_fn, cb_arg);
2984 			if (rc < 0) {
2985 				SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
2986 				break;
2987 			}
2988 			break;
2989 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
2990 			/* The target never initiates a new connection. So this will not occur. */
2991 			break;
2992 		case RDMA_CM_EVENT_CONNECT_ERROR:
2993 			/* Can this happen? The docs say it can, but not sure what causes it. */
2994 			break;
2995 		case RDMA_CM_EVENT_UNREACHABLE:
2996 		case RDMA_CM_EVENT_REJECTED:
2997 			/* These only occur on the client side. */
2998 			break;
2999 		case RDMA_CM_EVENT_ESTABLISHED:
3000 			/* TODO: Should we be waiting for this event anywhere? */
3001 			break;
3002 		case RDMA_CM_EVENT_DISCONNECTED:
3003 			rc = nvmf_rdma_disconnect(event);
3004 			if (rc < 0) {
3005 				SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3006 				break;
3007 			}
3008 			break;
3009 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
3010 			/* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL
3011 			 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s.
3012 			 * Once these events are sent to SPDK, we should release all IB resources and
3013 			 * don't make attempts to call any ibv_query/modify/create functions. We can only call
3014 			 * ibv_destory* functions to release user space memory allocated by IB. All kernel
3015 			 * resources are already cleaned. */
3016 			if (event->id->qp) {
3017 				/* If rdma_cm event has a valid `qp` pointer then the event refers to the
3018 				 * corresponding qpair. Otherwise the event refers to a listening device */
3019 				rc = nvmf_rdma_disconnect(event);
3020 				if (rc < 0) {
3021 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3022 					break;
3023 				}
3024 			} else {
3025 				nvmf_rdma_handle_cm_event_port_removal(transport, event);
3026 				event_acked = true;
3027 			}
3028 			break;
3029 		case RDMA_CM_EVENT_MULTICAST_JOIN:
3030 		case RDMA_CM_EVENT_MULTICAST_ERROR:
3031 			/* Multicast is not used */
3032 			break;
3033 		case RDMA_CM_EVENT_ADDR_CHANGE:
3034 			event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event);
3035 			break;
3036 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
3037 			/* For now, do nothing. The target never re-uses queue pairs. */
3038 			break;
3039 		default:
3040 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
3041 			break;
3042 		}
3043 		if (!event_acked) {
3044 			rdma_ack_cm_event(event);
3045 		}
3046 	}
3047 }
3048 
3049 static void
3050 nvmf_rdma_handle_qp_fatal(struct spdk_nvmf_rdma_qpair *rqpair)
3051 {
3052 	spdk_nvmf_rdma_update_ibv_state(rqpair);
3053 	spdk_nvmf_rdma_start_disconnect(rqpair);
3054 }
3055 
3056 static void
3057 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair)
3058 {
3059 	rqpair->last_wqe_reached = true;
3060 	nvmf_rdma_destroy_drained_qpair(rqpair);
3061 }
3062 
3063 static void
3064 nvmf_rdma_handle_sq_drained(struct spdk_nvmf_rdma_qpair *rqpair)
3065 {
3066 	spdk_nvmf_rdma_start_disconnect(rqpair);
3067 }
3068 
3069 static void
3070 spdk_nvmf_rdma_qpair_process_ibv_event(void *ctx)
3071 {
3072 	struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx;
3073 
3074 	if (event_ctx->rqpair) {
3075 		STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3076 		if (event_ctx->cb_fn) {
3077 			event_ctx->cb_fn(event_ctx->rqpair);
3078 		}
3079 	}
3080 	free(event_ctx);
3081 }
3082 
3083 static int
3084 spdk_nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair,
3085 				      spdk_nvmf_rdma_qpair_ibv_event fn)
3086 {
3087 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx;
3088 
3089 	if (!rqpair->qpair.group) {
3090 		return EINVAL;
3091 	}
3092 
3093 	ctx = calloc(1, sizeof(*ctx));
3094 	if (!ctx) {
3095 		return ENOMEM;
3096 	}
3097 
3098 	ctx->rqpair = rqpair;
3099 	ctx->cb_fn = fn;
3100 	STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link);
3101 
3102 	return spdk_thread_send_msg(rqpair->qpair.group->thread, spdk_nvmf_rdma_qpair_process_ibv_event,
3103 				    ctx);
3104 }
3105 
3106 static void
3107 spdk_nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
3108 {
3109 	int				rc;
3110 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
3111 	struct ibv_async_event		event;
3112 
3113 	rc = ibv_get_async_event(device->context, &event);
3114 
3115 	if (rc) {
3116 		SPDK_ERRLOG("Failed to get async_event (%d): %s\n",
3117 			    errno, spdk_strerror(errno));
3118 		return;
3119 	}
3120 
3121 	switch (event.event_type) {
3122 	case IBV_EVENT_QP_FATAL:
3123 		rqpair = event.element.qp->qp_context;
3124 		SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
3125 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3126 				  (uintptr_t)rqpair->cm_id, event.event_type);
3127 		if (spdk_nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_qp_fatal)) {
3128 			SPDK_ERRLOG("Failed to send QP_FATAL event for rqpair %p\n", rqpair);
3129 			nvmf_rdma_handle_qp_fatal(rqpair);
3130 		}
3131 		break;
3132 	case IBV_EVENT_QP_LAST_WQE_REACHED:
3133 		/* This event only occurs for shared receive queues. */
3134 		rqpair = event.element.qp->qp_context;
3135 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last WQE reached event received for rqpair %p\n", rqpair);
3136 		if (spdk_nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached)) {
3137 			SPDK_ERRLOG("Failed to send LAST_WQE_REACHED event for rqpair %p\n", rqpair);
3138 			rqpair->last_wqe_reached = true;
3139 		}
3140 		break;
3141 	case IBV_EVENT_SQ_DRAINED:
3142 		/* This event occurs frequently in both error and non-error states.
3143 		 * Check if the qpair is in an error state before sending a message. */
3144 		rqpair = event.element.qp->qp_context;
3145 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last sq drained event received for rqpair %p\n", rqpair);
3146 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3147 				  (uintptr_t)rqpair->cm_id, event.event_type);
3148 		if (spdk_nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) {
3149 			if (spdk_nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_sq_drained)) {
3150 				SPDK_ERRLOG("Failed to send SQ_DRAINED event for rqpair %p\n", rqpair);
3151 				nvmf_rdma_handle_sq_drained(rqpair);
3152 			}
3153 		}
3154 		break;
3155 	case IBV_EVENT_QP_REQ_ERR:
3156 	case IBV_EVENT_QP_ACCESS_ERR:
3157 	case IBV_EVENT_COMM_EST:
3158 	case IBV_EVENT_PATH_MIG:
3159 	case IBV_EVENT_PATH_MIG_ERR:
3160 		SPDK_NOTICELOG("Async event: %s\n",
3161 			       ibv_event_type_str(event.event_type));
3162 		rqpair = event.element.qp->qp_context;
3163 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3164 				  (uintptr_t)rqpair->cm_id, event.event_type);
3165 		spdk_nvmf_rdma_update_ibv_state(rqpair);
3166 		break;
3167 	case IBV_EVENT_CQ_ERR:
3168 	case IBV_EVENT_DEVICE_FATAL:
3169 	case IBV_EVENT_PORT_ACTIVE:
3170 	case IBV_EVENT_PORT_ERR:
3171 	case IBV_EVENT_LID_CHANGE:
3172 	case IBV_EVENT_PKEY_CHANGE:
3173 	case IBV_EVENT_SM_CHANGE:
3174 	case IBV_EVENT_SRQ_ERR:
3175 	case IBV_EVENT_SRQ_LIMIT_REACHED:
3176 	case IBV_EVENT_CLIENT_REREGISTER:
3177 	case IBV_EVENT_GID_CHANGE:
3178 	default:
3179 		SPDK_NOTICELOG("Async event: %s\n",
3180 			       ibv_event_type_str(event.event_type));
3181 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
3182 		break;
3183 	}
3184 	ibv_ack_async_event(&event);
3185 }
3186 
3187 static void
3188 spdk_nvmf_rdma_accept(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn, void *cb_arg)
3189 {
3190 	int	nfds, i = 0;
3191 	struct spdk_nvmf_rdma_transport *rtransport;
3192 	struct spdk_nvmf_rdma_device *device, *tmp;
3193 
3194 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3195 	nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
3196 
3197 	if (nfds <= 0) {
3198 		return;
3199 	}
3200 
3201 	/* The first poll descriptor is RDMA CM event */
3202 	if (rtransport->poll_fds[i++].revents & POLLIN) {
3203 		spdk_nvmf_process_cm_event(transport, cb_fn, cb_arg);
3204 		nfds--;
3205 	}
3206 
3207 	if (nfds == 0) {
3208 		return;
3209 	}
3210 
3211 	/* Second and subsequent poll descriptors are IB async events */
3212 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
3213 		if (rtransport->poll_fds[i++].revents & POLLIN) {
3214 			spdk_nvmf_process_ib_event(device);
3215 			nfds--;
3216 		}
3217 	}
3218 	/* check all flagged fd's have been served */
3219 	assert(nfds == 0);
3220 }
3221 
3222 static void
3223 spdk_nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
3224 			struct spdk_nvme_transport_id *trid,
3225 			struct spdk_nvmf_discovery_log_page_entry *entry)
3226 {
3227 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
3228 	entry->adrfam = trid->adrfam;
3229 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
3230 
3231 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
3232 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
3233 
3234 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
3235 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
3236 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
3237 }
3238 
3239 static void
3240 spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
3241 
3242 static struct spdk_nvmf_transport_poll_group *
3243 spdk_nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport)
3244 {
3245 	struct spdk_nvmf_rdma_transport		*rtransport;
3246 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3247 	struct spdk_nvmf_rdma_poller		*poller;
3248 	struct spdk_nvmf_rdma_device		*device;
3249 	struct ibv_srq_init_attr		srq_init_attr;
3250 	struct spdk_nvmf_rdma_resource_opts	opts;
3251 	int					num_cqe;
3252 
3253 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3254 
3255 	rgroup = calloc(1, sizeof(*rgroup));
3256 	if (!rgroup) {
3257 		return NULL;
3258 	}
3259 
3260 	TAILQ_INIT(&rgroup->pollers);
3261 	STAILQ_INIT(&rgroup->retired_bufs);
3262 
3263 	pthread_mutex_lock(&rtransport->lock);
3264 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3265 		poller = calloc(1, sizeof(*poller));
3266 		if (!poller) {
3267 			SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
3268 			spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
3269 			pthread_mutex_unlock(&rtransport->lock);
3270 			return NULL;
3271 		}
3272 
3273 		poller->device = device;
3274 		poller->group = rgroup;
3275 
3276 		TAILQ_INIT(&poller->qpairs);
3277 		STAILQ_INIT(&poller->qpairs_pending_send);
3278 		STAILQ_INIT(&poller->qpairs_pending_recv);
3279 
3280 		TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
3281 		if (transport->opts.no_srq == false && device->num_srq < device->attr.max_srq) {
3282 			poller->max_srq_depth = transport->opts.max_srq_depth;
3283 
3284 			device->num_srq++;
3285 			memset(&srq_init_attr, 0, sizeof(struct ibv_srq_init_attr));
3286 			srq_init_attr.attr.max_wr = poller->max_srq_depth;
3287 			srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
3288 			poller->srq = ibv_create_srq(device->pd, &srq_init_attr);
3289 			if (!poller->srq) {
3290 				SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
3291 				spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
3292 				pthread_mutex_unlock(&rtransport->lock);
3293 				return NULL;
3294 			}
3295 
3296 			opts.qp = poller->srq;
3297 			opts.pd = device->pd;
3298 			opts.qpair = NULL;
3299 			opts.shared = true;
3300 			opts.max_queue_depth = poller->max_srq_depth;
3301 			opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
3302 
3303 			poller->resources = nvmf_rdma_resources_create(&opts);
3304 			if (!poller->resources) {
3305 				SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
3306 				spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
3307 				pthread_mutex_unlock(&rtransport->lock);
3308 				return NULL;
3309 			}
3310 		}
3311 
3312 		/*
3313 		 * When using an srq, we can limit the completion queue at startup.
3314 		 * The following formula represents the calculation:
3315 		 * num_cqe = num_recv + num_data_wr + num_send_wr.
3316 		 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
3317 		 */
3318 		if (poller->srq) {
3319 			num_cqe = poller->max_srq_depth * 3;
3320 		} else {
3321 			num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
3322 		}
3323 
3324 		poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
3325 		if (!poller->cq) {
3326 			SPDK_ERRLOG("Unable to create completion queue\n");
3327 			spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
3328 			pthread_mutex_unlock(&rtransport->lock);
3329 			return NULL;
3330 		}
3331 		poller->num_cqe = num_cqe;
3332 	}
3333 
3334 	TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link);
3335 	if (rtransport->conn_sched.next_admin_pg == NULL) {
3336 		rtransport->conn_sched.next_admin_pg = rgroup;
3337 		rtransport->conn_sched.next_io_pg = rgroup;
3338 	}
3339 
3340 	pthread_mutex_unlock(&rtransport->lock);
3341 	return &rgroup->group;
3342 }
3343 
3344 static struct spdk_nvmf_transport_poll_group *
3345 spdk_nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
3346 {
3347 	struct spdk_nvmf_rdma_transport *rtransport;
3348 	struct spdk_nvmf_rdma_poll_group **pg;
3349 	struct spdk_nvmf_transport_poll_group *result;
3350 
3351 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
3352 
3353 	pthread_mutex_lock(&rtransport->lock);
3354 
3355 	if (TAILQ_EMPTY(&rtransport->poll_groups)) {
3356 		pthread_mutex_unlock(&rtransport->lock);
3357 		return NULL;
3358 	}
3359 
3360 	if (qpair->qid == 0) {
3361 		pg = &rtransport->conn_sched.next_admin_pg;
3362 	} else {
3363 		pg = &rtransport->conn_sched.next_io_pg;
3364 	}
3365 
3366 	assert(*pg != NULL);
3367 
3368 	result = &(*pg)->group;
3369 
3370 	*pg = TAILQ_NEXT(*pg, link);
3371 	if (*pg == NULL) {
3372 		*pg = TAILQ_FIRST(&rtransport->poll_groups);
3373 	}
3374 
3375 	pthread_mutex_unlock(&rtransport->lock);
3376 
3377 	return result;
3378 }
3379 
3380 static void
3381 spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
3382 {
3383 	struct spdk_nvmf_rdma_poll_group	*rgroup, *next_rgroup;
3384 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
3385 	struct spdk_nvmf_rdma_qpair		*qpair, *tmp_qpair;
3386 	struct spdk_nvmf_transport_pg_cache_buf	*buf, *tmp_buf;
3387 	struct spdk_nvmf_rdma_transport		*rtransport;
3388 
3389 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3390 	if (!rgroup) {
3391 		return;
3392 	}
3393 
3394 	/* free all retired buffers back to the transport so we don't short the mempool. */
3395 	STAILQ_FOREACH_SAFE(buf, &rgroup->retired_bufs, link, tmp_buf) {
3396 		STAILQ_REMOVE(&rgroup->retired_bufs, buf, spdk_nvmf_transport_pg_cache_buf, link);
3397 		assert(group->transport != NULL);
3398 		spdk_mempool_put(group->transport->data_buf_pool, buf);
3399 	}
3400 
3401 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
3402 		TAILQ_REMOVE(&rgroup->pollers, poller, link);
3403 
3404 		TAILQ_FOREACH_SAFE(qpair, &poller->qpairs, link, tmp_qpair) {
3405 			spdk_nvmf_rdma_qpair_destroy(qpair);
3406 		}
3407 
3408 		if (poller->srq) {
3409 			if (poller->resources) {
3410 				nvmf_rdma_resources_destroy(poller->resources);
3411 			}
3412 			ibv_destroy_srq(poller->srq);
3413 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Destroyed RDMA shared queue %p\n", poller->srq);
3414 		}
3415 
3416 		if (poller->cq) {
3417 			ibv_destroy_cq(poller->cq);
3418 		}
3419 
3420 		free(poller);
3421 	}
3422 
3423 	if (rgroup->group.transport == NULL) {
3424 		/* Transport can be NULL when spdk_nvmf_rdma_poll_group_create()
3425 		 * calls this function directly in a failure path. */
3426 		free(rgroup);
3427 		return;
3428 	}
3429 
3430 	rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport);
3431 
3432 	pthread_mutex_lock(&rtransport->lock);
3433 	next_rgroup = TAILQ_NEXT(rgroup, link);
3434 	TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link);
3435 	if (next_rgroup == NULL) {
3436 		next_rgroup = TAILQ_FIRST(&rtransport->poll_groups);
3437 	}
3438 	if (rtransport->conn_sched.next_admin_pg == rgroup) {
3439 		rtransport->conn_sched.next_admin_pg = next_rgroup;
3440 	}
3441 	if (rtransport->conn_sched.next_io_pg == rgroup) {
3442 		rtransport->conn_sched.next_io_pg = next_rgroup;
3443 	}
3444 	pthread_mutex_unlock(&rtransport->lock);
3445 
3446 	free(rgroup);
3447 }
3448 
3449 static void
3450 spdk_nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
3451 {
3452 	if (rqpair->cm_id != NULL) {
3453 		spdk_nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
3454 	}
3455 	spdk_nvmf_rdma_qpair_destroy(rqpair);
3456 }
3457 
3458 static int
3459 spdk_nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3460 			      struct spdk_nvmf_qpair *qpair)
3461 {
3462 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3463 	struct spdk_nvmf_rdma_qpair		*rqpair;
3464 	struct spdk_nvmf_rdma_device		*device;
3465 	struct spdk_nvmf_rdma_poller		*poller;
3466 	int					rc;
3467 
3468 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3469 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3470 
3471 	device = rqpair->device;
3472 
3473 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
3474 		if (poller->device == device) {
3475 			break;
3476 		}
3477 	}
3478 
3479 	if (!poller) {
3480 		SPDK_ERRLOG("No poller found for device.\n");
3481 		return -1;
3482 	}
3483 
3484 	TAILQ_INSERT_TAIL(&poller->qpairs, rqpair, link);
3485 	rqpair->poller = poller;
3486 	rqpair->srq = rqpair->poller->srq;
3487 
3488 	rc = spdk_nvmf_rdma_qpair_initialize(qpair);
3489 	if (rc < 0) {
3490 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
3491 		return -1;
3492 	}
3493 
3494 	rc = spdk_nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
3495 	if (rc) {
3496 		/* Try to reject, but we probably can't */
3497 		spdk_nvmf_rdma_qpair_reject_connection(rqpair);
3498 		return -1;
3499 	}
3500 
3501 	spdk_nvmf_rdma_update_ibv_state(rqpair);
3502 
3503 	return 0;
3504 }
3505 
3506 static int
3507 spdk_nvmf_rdma_request_free(struct spdk_nvmf_request *req)
3508 {
3509 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3510 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3511 			struct spdk_nvmf_rdma_transport, transport);
3512 
3513 	nvmf_rdma_request_free(rdma_req, rtransport);
3514 	return 0;
3515 }
3516 
3517 static int
3518 spdk_nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
3519 {
3520 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3521 			struct spdk_nvmf_rdma_transport, transport);
3522 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
3523 			struct spdk_nvmf_rdma_request, req);
3524 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
3525 			struct spdk_nvmf_rdma_qpair, qpair);
3526 
3527 	if (rqpair->ibv_state != IBV_QPS_ERR) {
3528 		/* The connection is alive, so process the request as normal */
3529 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
3530 	} else {
3531 		/* The connection is dead. Move the request directly to the completed state. */
3532 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3533 	}
3534 
3535 	spdk_nvmf_rdma_request_process(rtransport, rdma_req);
3536 
3537 	return 0;
3538 }
3539 
3540 static int
3541 spdk_nvmf_rdma_destroy_defunct_qpair(void *ctx)
3542 {
3543 	struct spdk_nvmf_rdma_qpair	*rqpair = ctx;
3544 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
3545 			struct spdk_nvmf_rdma_transport, transport);
3546 
3547 	SPDK_INFOLOG(SPDK_LOG_RDMA, "QP#%d hasn't been drained as expected, manually destroy it\n",
3548 		     rqpair->qpair.qid);
3549 
3550 	spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
3551 	spdk_nvmf_rdma_qpair_destroy(rqpair);
3552 
3553 	return 0;
3554 }
3555 
3556 static void
3557 spdk_nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair)
3558 {
3559 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3560 
3561 	if (rqpair->disconnect_flags & RDMA_QP_DISCONNECTING) {
3562 		return;
3563 	}
3564 
3565 	rqpair->disconnect_flags |= RDMA_QP_DISCONNECTING;
3566 
3567 	/* This happens only when the qpair is disconnected before
3568 	 * it is added to the poll group. Since there is no poll group,
3569 	 * the RDMA qp has not been initialized yet and the RDMA CM
3570 	 * event has not yet been acknowledged, so we need to reject it.
3571 	 */
3572 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
3573 		spdk_nvmf_rdma_qpair_reject_connection(rqpair);
3574 		return;
3575 	}
3576 
3577 	if (rqpair->cm_id) {
3578 		rdma_disconnect(rqpair->cm_id);
3579 	}
3580 
3581 	rqpair->destruct_poller = SPDK_POLLER_REGISTER(spdk_nvmf_rdma_destroy_defunct_qpair, (void *)rqpair,
3582 				  NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US);
3583 }
3584 
3585 static struct spdk_nvmf_rdma_qpair *
3586 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
3587 {
3588 	struct spdk_nvmf_rdma_qpair *rqpair;
3589 	/* @todo: improve QP search */
3590 	TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) {
3591 		if (wc->qp_num == rqpair->cm_id->qp->qp_num) {
3592 			return rqpair;
3593 		}
3594 	}
3595 	SPDK_ERRLOG("Didn't find QP with qp_num %u\n", wc->qp_num);
3596 	return NULL;
3597 }
3598 
3599 #ifdef DEBUG
3600 static int
3601 spdk_nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
3602 {
3603 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
3604 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
3605 }
3606 #endif
3607 
3608 static void
3609 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr,
3610 			   int rc)
3611 {
3612 	struct spdk_nvmf_rdma_recv	*rdma_recv;
3613 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
3614 
3615 	SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc);
3616 	while (bad_recv_wr != NULL) {
3617 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id;
3618 		rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
3619 
3620 		rdma_recv->qpair->current_recv_depth++;
3621 		bad_recv_wr = bad_recv_wr->next;
3622 		SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc);
3623 		spdk_nvmf_rdma_start_disconnect(rdma_recv->qpair);
3624 	}
3625 }
3626 
3627 static void
3628 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc)
3629 {
3630 	SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc);
3631 	while (bad_recv_wr != NULL) {
3632 		bad_recv_wr = bad_recv_wr->next;
3633 		rqpair->current_recv_depth++;
3634 	}
3635 	spdk_nvmf_rdma_start_disconnect(rqpair);
3636 }
3637 
3638 static void
3639 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
3640 		     struct spdk_nvmf_rdma_poller *rpoller)
3641 {
3642 	struct spdk_nvmf_rdma_qpair	*rqpair;
3643 	struct ibv_recv_wr		*bad_recv_wr;
3644 	int				rc;
3645 
3646 	if (rpoller->srq) {
3647 		if (rpoller->resources->recvs_to_post.first != NULL) {
3648 			rc = ibv_post_srq_recv(rpoller->srq, rpoller->resources->recvs_to_post.first, &bad_recv_wr);
3649 			if (rc) {
3650 				_poller_reset_failed_recvs(rpoller, bad_recv_wr, rc);
3651 			}
3652 			rpoller->resources->recvs_to_post.first = NULL;
3653 			rpoller->resources->recvs_to_post.last = NULL;
3654 		}
3655 	} else {
3656 		while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) {
3657 			rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv);
3658 			assert(rqpair->resources->recvs_to_post.first != NULL);
3659 			rc = ibv_post_recv(rqpair->cm_id->qp, rqpair->resources->recvs_to_post.first, &bad_recv_wr);
3660 			if (rc) {
3661 				_qp_reset_failed_recvs(rqpair, bad_recv_wr, rc);
3662 			}
3663 			rqpair->resources->recvs_to_post.first = NULL;
3664 			rqpair->resources->recvs_to_post.last = NULL;
3665 			STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link);
3666 		}
3667 	}
3668 }
3669 
3670 static void
3671 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport,
3672 		       struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc)
3673 {
3674 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
3675 	struct spdk_nvmf_rdma_request	*prev_rdma_req = NULL, *cur_rdma_req = NULL;
3676 
3677 	SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc);
3678 	for (; bad_wr != NULL; bad_wr = bad_wr->next) {
3679 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id;
3680 		assert(rqpair->current_send_depth > 0);
3681 		rqpair->current_send_depth--;
3682 		switch (bad_rdma_wr->type) {
3683 		case RDMA_WR_TYPE_DATA:
3684 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
3685 			if (bad_wr->opcode == IBV_WR_RDMA_READ) {
3686 				assert(rqpair->current_read_depth > 0);
3687 				rqpair->current_read_depth--;
3688 			}
3689 			break;
3690 		case RDMA_WR_TYPE_SEND:
3691 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
3692 			break;
3693 		default:
3694 			SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair);
3695 			prev_rdma_req = cur_rdma_req;
3696 			continue;
3697 		}
3698 
3699 		if (prev_rdma_req == cur_rdma_req) {
3700 			/* this request was handled by an earlier wr. i.e. we were performing an nvme read. */
3701 			/* We only have to check against prev_wr since each requests wrs are contiguous in this list. */
3702 			continue;
3703 		}
3704 
3705 		switch (cur_rdma_req->state) {
3706 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3707 			cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
3708 			cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
3709 			break;
3710 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3711 		case RDMA_REQUEST_STATE_COMPLETING:
3712 			cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3713 			break;
3714 		default:
3715 			SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n",
3716 				    cur_rdma_req->state, rqpair);
3717 			continue;
3718 		}
3719 
3720 		spdk_nvmf_rdma_request_process(rtransport, cur_rdma_req);
3721 		prev_rdma_req = cur_rdma_req;
3722 	}
3723 
3724 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
3725 		/* Disconnect the connection. */
3726 		spdk_nvmf_rdma_start_disconnect(rqpair);
3727 	}
3728 
3729 }
3730 
3731 static void
3732 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
3733 		     struct spdk_nvmf_rdma_poller *rpoller)
3734 {
3735 	struct spdk_nvmf_rdma_qpair	*rqpair;
3736 	struct ibv_send_wr		*bad_wr = NULL;
3737 	int				rc;
3738 
3739 	while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) {
3740 		rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send);
3741 		assert(rqpair->sends_to_post.first != NULL);
3742 		rc = ibv_post_send(rqpair->cm_id->qp, rqpair->sends_to_post.first, &bad_wr);
3743 
3744 		/* bad wr always points to the first wr that failed. */
3745 		if (rc) {
3746 			_qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc);
3747 		}
3748 		rqpair->sends_to_post.first = NULL;
3749 		rqpair->sends_to_post.last = NULL;
3750 		STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link);
3751 	}
3752 }
3753 
3754 static int
3755 spdk_nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
3756 			   struct spdk_nvmf_rdma_poller *rpoller)
3757 {
3758 	struct ibv_wc wc[32];
3759 	struct spdk_nvmf_rdma_wr	*rdma_wr;
3760 	struct spdk_nvmf_rdma_request	*rdma_req;
3761 	struct spdk_nvmf_rdma_recv	*rdma_recv;
3762 	struct spdk_nvmf_rdma_qpair	*rqpair;
3763 	int reaped, i;
3764 	int count = 0;
3765 	bool error = false;
3766 	uint64_t poll_tsc = spdk_get_ticks();
3767 
3768 	/* Poll for completing operations. */
3769 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
3770 	if (reaped < 0) {
3771 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
3772 			    errno, spdk_strerror(errno));
3773 		return -1;
3774 	}
3775 
3776 	rpoller->stat.polls++;
3777 	rpoller->stat.completions += reaped;
3778 
3779 	for (i = 0; i < reaped; i++) {
3780 
3781 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
3782 
3783 		switch (rdma_wr->type) {
3784 		case RDMA_WR_TYPE_SEND:
3785 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
3786 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
3787 
3788 			if (!wc[i].status) {
3789 				count++;
3790 				assert(wc[i].opcode == IBV_WC_SEND);
3791 				assert(spdk_nvmf_rdma_req_is_completing(rdma_req));
3792 			}
3793 
3794 			rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3795 			/* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */
3796 			rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1;
3797 			rdma_req->num_outstanding_data_wr = 0;
3798 
3799 			spdk_nvmf_rdma_request_process(rtransport, rdma_req);
3800 			break;
3801 		case RDMA_WR_TYPE_RECV:
3802 			/* rdma_recv->qpair will be invalid if using an SRQ.  In that case we have to get the qpair from the wc. */
3803 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
3804 			if (rpoller->srq != NULL) {
3805 				rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
3806 				/* It is possible that there are still some completions for destroyed QP
3807 				 * associated with SRQ. We just ignore these late completions and re-post
3808 				 * receive WRs back to SRQ.
3809 				 */
3810 				if (spdk_unlikely(NULL == rdma_recv->qpair)) {
3811 					struct ibv_recv_wr *bad_wr;
3812 					int rc;
3813 
3814 					rdma_recv->wr.next = NULL;
3815 					rc = ibv_post_srq_recv(rpoller->srq,
3816 							       &rdma_recv->wr,
3817 							       &bad_wr);
3818 					if (rc) {
3819 						SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc);
3820 					}
3821 					continue;
3822 				}
3823 			}
3824 			rqpair = rdma_recv->qpair;
3825 
3826 			assert(rqpair != NULL);
3827 			if (!wc[i].status) {
3828 				assert(wc[i].opcode == IBV_WC_RECV);
3829 				if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
3830 					spdk_nvmf_rdma_start_disconnect(rqpair);
3831 					break;
3832 				}
3833 			}
3834 
3835 			rdma_recv->wr.next = NULL;
3836 			rqpair->current_recv_depth++;
3837 			rdma_recv->receive_tsc = poll_tsc;
3838 			rpoller->stat.requests++;
3839 			STAILQ_INSERT_TAIL(&rqpair->resources->incoming_queue, rdma_recv, link);
3840 			break;
3841 		case RDMA_WR_TYPE_DATA:
3842 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
3843 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
3844 
3845 			assert(rdma_req->num_outstanding_data_wr > 0);
3846 
3847 			rqpair->current_send_depth--;
3848 			rdma_req->num_outstanding_data_wr--;
3849 			if (!wc[i].status) {
3850 				assert(wc[i].opcode == IBV_WC_RDMA_READ);
3851 				rqpair->current_read_depth--;
3852 				/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
3853 				if (rdma_req->num_outstanding_data_wr == 0) {
3854 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
3855 					spdk_nvmf_rdma_request_process(rtransport, rdma_req);
3856 				}
3857 			} else {
3858 				/* If the data transfer fails still force the queue into the error state,
3859 				 * if we were performing an RDMA_READ, we need to force the request into a
3860 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
3861 				 * case, we should wait for the SEND to complete. */
3862 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
3863 					rqpair->current_read_depth--;
3864 					if (rdma_req->num_outstanding_data_wr == 0) {
3865 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3866 					}
3867 				}
3868 			}
3869 			break;
3870 		default:
3871 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
3872 			continue;
3873 		}
3874 
3875 		/* Handle error conditions */
3876 		if (wc[i].status) {
3877 			SPDK_ERRLOG("Error on CQ %p, request 0x%lu, type %d, status: (%d): %s\n",
3878 				    rpoller->cq, wc[i].wr_id, rdma_wr->type, wc[i].status, ibv_wc_status_str(wc[i].status));
3879 
3880 			error = true;
3881 
3882 			if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
3883 				/* Disconnect the connection. */
3884 				spdk_nvmf_rdma_start_disconnect(rqpair);
3885 			} else {
3886 				nvmf_rdma_destroy_drained_qpair(rqpair);
3887 			}
3888 			continue;
3889 		}
3890 
3891 		spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
3892 
3893 		if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
3894 			nvmf_rdma_destroy_drained_qpair(rqpair);
3895 		}
3896 	}
3897 
3898 	if (error == true) {
3899 		return -1;
3900 	}
3901 
3902 	/* submit outstanding work requests. */
3903 	_poller_submit_recvs(rtransport, rpoller);
3904 	_poller_submit_sends(rtransport, rpoller);
3905 
3906 	return count;
3907 }
3908 
3909 static int
3910 spdk_nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3911 {
3912 	struct spdk_nvmf_rdma_transport *rtransport;
3913 	struct spdk_nvmf_rdma_poll_group *rgroup;
3914 	struct spdk_nvmf_rdma_poller	*rpoller;
3915 	int				count, rc;
3916 
3917 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
3918 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3919 
3920 	count = 0;
3921 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3922 		rc = spdk_nvmf_rdma_poller_poll(rtransport, rpoller);
3923 		if (rc < 0) {
3924 			return rc;
3925 		}
3926 		count += rc;
3927 	}
3928 
3929 	return count;
3930 }
3931 
3932 static int
3933 spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
3934 			       struct spdk_nvme_transport_id *trid,
3935 			       bool peer)
3936 {
3937 	struct sockaddr *saddr;
3938 	uint16_t port;
3939 
3940 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA);
3941 
3942 	if (peer) {
3943 		saddr = rdma_get_peer_addr(id);
3944 	} else {
3945 		saddr = rdma_get_local_addr(id);
3946 	}
3947 	switch (saddr->sa_family) {
3948 	case AF_INET: {
3949 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
3950 
3951 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3952 		inet_ntop(AF_INET, &saddr_in->sin_addr,
3953 			  trid->traddr, sizeof(trid->traddr));
3954 		if (peer) {
3955 			port = ntohs(rdma_get_dst_port(id));
3956 		} else {
3957 			port = ntohs(rdma_get_src_port(id));
3958 		}
3959 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
3960 		break;
3961 	}
3962 	case AF_INET6: {
3963 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
3964 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3965 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
3966 			  trid->traddr, sizeof(trid->traddr));
3967 		if (peer) {
3968 			port = ntohs(rdma_get_dst_port(id));
3969 		} else {
3970 			port = ntohs(rdma_get_src_port(id));
3971 		}
3972 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
3973 		break;
3974 	}
3975 	default:
3976 		return -1;
3977 
3978 	}
3979 
3980 	return 0;
3981 }
3982 
3983 static int
3984 spdk_nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3985 				   struct spdk_nvme_transport_id *trid)
3986 {
3987 	struct spdk_nvmf_rdma_qpair	*rqpair;
3988 
3989 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3990 
3991 	return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
3992 }
3993 
3994 static int
3995 spdk_nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3996 				    struct spdk_nvme_transport_id *trid)
3997 {
3998 	struct spdk_nvmf_rdma_qpair	*rqpair;
3999 
4000 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4001 
4002 	return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
4003 }
4004 
4005 static int
4006 spdk_nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
4007 				     struct spdk_nvme_transport_id *trid)
4008 {
4009 	struct spdk_nvmf_rdma_qpair	*rqpair;
4010 
4011 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4012 
4013 	return spdk_nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
4014 }
4015 
4016 void
4017 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
4018 {
4019 	g_nvmf_hooks = *hooks;
4020 }
4021 
4022 static int
4023 spdk_nvmf_rdma_poll_group_get_stat(struct spdk_nvmf_tgt *tgt,
4024 				   struct spdk_nvmf_transport_poll_group_stat **stat)
4025 {
4026 	struct spdk_io_channel *ch;
4027 	struct spdk_nvmf_poll_group *group;
4028 	struct spdk_nvmf_transport_poll_group *tgroup;
4029 	struct spdk_nvmf_rdma_poll_group *rgroup;
4030 	struct spdk_nvmf_rdma_poller *rpoller;
4031 	struct spdk_nvmf_rdma_device_stat *device_stat;
4032 	uint64_t num_devices = 0;
4033 
4034 	if (tgt == NULL || stat == NULL) {
4035 		return -EINVAL;
4036 	}
4037 
4038 	ch = spdk_get_io_channel(tgt);
4039 	group = spdk_io_channel_get_ctx(ch);;
4040 	spdk_put_io_channel(ch);
4041 	TAILQ_FOREACH(tgroup, &group->tgroups, link) {
4042 		if (SPDK_NVME_TRANSPORT_RDMA == tgroup->transport->ops->type) {
4043 			*stat = calloc(1, sizeof(struct spdk_nvmf_transport_poll_group_stat));
4044 			if (!*stat) {
4045 				SPDK_ERRLOG("Failed to allocate memory for NVMf RDMA statistics\n");
4046 				return -ENOMEM;
4047 			}
4048 			(*stat)->trtype = SPDK_NVME_TRANSPORT_RDMA;
4049 
4050 			rgroup = SPDK_CONTAINEROF(tgroup, struct spdk_nvmf_rdma_poll_group, group);
4051 			/* Count devices to allocate enough memory */
4052 			TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
4053 				++num_devices;
4054 			}
4055 			(*stat)->rdma.devices = calloc(num_devices, sizeof(struct spdk_nvmf_rdma_device_stat));
4056 			if (!(*stat)->rdma.devices) {
4057 				SPDK_ERRLOG("Failed to allocate NVMf RDMA devices statistics\n");
4058 				free(*stat);
4059 				return -ENOMEM;
4060 			}
4061 
4062 			(*stat)->rdma.pending_data_buffer = rgroup->stat.pending_data_buffer;
4063 			(*stat)->rdma.num_devices = num_devices;
4064 			num_devices = 0;
4065 			TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
4066 				device_stat = &(*stat)->rdma.devices[num_devices++];
4067 				device_stat->name = ibv_get_device_name(rpoller->device->context->device);
4068 				device_stat->polls = rpoller->stat.polls;
4069 				device_stat->completions = rpoller->stat.completions;
4070 				device_stat->requests = rpoller->stat.requests;
4071 				device_stat->request_latency = rpoller->stat.request_latency;
4072 				device_stat->pending_free_request = rpoller->stat.pending_free_request;
4073 				device_stat->pending_rdma_read = rpoller->stat.pending_rdma_read;
4074 				device_stat->pending_rdma_write = rpoller->stat.pending_rdma_write;
4075 			}
4076 			return 0;
4077 		}
4078 	}
4079 	return -ENOENT;
4080 }
4081 
4082 static void
4083 spdk_nvmf_rdma_poll_group_free_stat(struct spdk_nvmf_transport_poll_group_stat *stat)
4084 {
4085 	if (stat) {
4086 		free(stat->rdma.devices);
4087 	}
4088 	free(stat);
4089 }
4090 
4091 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
4092 	.name = "RDMA",
4093 	.type = SPDK_NVME_TRANSPORT_RDMA,
4094 	.opts_init = spdk_nvmf_rdma_opts_init,
4095 	.create = spdk_nvmf_rdma_create,
4096 	.destroy = spdk_nvmf_rdma_destroy,
4097 
4098 	.listen = spdk_nvmf_rdma_listen,
4099 	.stop_listen = spdk_nvmf_rdma_stop_listen,
4100 	.accept = spdk_nvmf_rdma_accept,
4101 
4102 	.listener_discover = spdk_nvmf_rdma_discover,
4103 
4104 	.poll_group_create = spdk_nvmf_rdma_poll_group_create,
4105 	.get_optimal_poll_group = spdk_nvmf_rdma_get_optimal_poll_group,
4106 	.poll_group_destroy = spdk_nvmf_rdma_poll_group_destroy,
4107 	.poll_group_add = spdk_nvmf_rdma_poll_group_add,
4108 	.poll_group_poll = spdk_nvmf_rdma_poll_group_poll,
4109 
4110 	.req_free = spdk_nvmf_rdma_request_free,
4111 	.req_complete = spdk_nvmf_rdma_request_complete,
4112 
4113 	.qpair_fini = spdk_nvmf_rdma_close_qpair,
4114 	.qpair_get_peer_trid = spdk_nvmf_rdma_qpair_get_peer_trid,
4115 	.qpair_get_local_trid = spdk_nvmf_rdma_qpair_get_local_trid,
4116 	.qpair_get_listen_trid = spdk_nvmf_rdma_qpair_get_listen_trid,
4117 
4118 	.poll_group_get_stat = spdk_nvmf_rdma_poll_group_get_stat,
4119 	.poll_group_free_stat = spdk_nvmf_rdma_poll_group_free_stat,
4120 };
4121 
4122 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma);
4123 SPDK_LOG_REGISTER_COMPONENT("rdma", SPDK_LOG_RDMA)
4124