1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. All rights reserved. 5 * Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk/stdinc.h" 35 36 #include "spdk/config.h" 37 #include "spdk/thread.h" 38 #include "spdk/likely.h" 39 #include "spdk/nvmf_transport.h" 40 #include "spdk/string.h" 41 #include "spdk/trace.h" 42 #include "spdk/util.h" 43 44 #include "spdk_internal/assert.h" 45 #include "spdk_internal/log.h" 46 #include "spdk_internal/rdma.h" 47 48 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {}; 49 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma; 50 51 /* 52 RDMA Connection Resource Defaults 53 */ 54 #define NVMF_DEFAULT_TX_SGE SPDK_NVMF_MAX_SGL_ENTRIES 55 #define NVMF_DEFAULT_RSP_SGE 1 56 #define NVMF_DEFAULT_RX_SGE 2 57 58 /* The RDMA completion queue size */ 59 #define DEFAULT_NVMF_RDMA_CQ_SIZE 4096 60 #define MAX_WR_PER_QP(queue_depth) (queue_depth * 3 + 2) 61 62 /* Timeout for destroying defunct rqpairs */ 63 #define NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US 4000000 64 65 static int g_spdk_nvmf_ibv_query_mask = 66 IBV_QP_STATE | 67 IBV_QP_PKEY_INDEX | 68 IBV_QP_PORT | 69 IBV_QP_ACCESS_FLAGS | 70 IBV_QP_AV | 71 IBV_QP_PATH_MTU | 72 IBV_QP_DEST_QPN | 73 IBV_QP_RQ_PSN | 74 IBV_QP_MAX_DEST_RD_ATOMIC | 75 IBV_QP_MIN_RNR_TIMER | 76 IBV_QP_SQ_PSN | 77 IBV_QP_TIMEOUT | 78 IBV_QP_RETRY_CNT | 79 IBV_QP_RNR_RETRY | 80 IBV_QP_MAX_QP_RD_ATOMIC; 81 82 enum spdk_nvmf_rdma_request_state { 83 /* The request is not currently in use */ 84 RDMA_REQUEST_STATE_FREE = 0, 85 86 /* Initial state when request first received */ 87 RDMA_REQUEST_STATE_NEW, 88 89 /* The request is queued until a data buffer is available. */ 90 RDMA_REQUEST_STATE_NEED_BUFFER, 91 92 /* The request is waiting on RDMA queue depth availability 93 * to transfer data from the host to the controller. 94 */ 95 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 96 97 /* The request is currently transferring data from the host to the controller. */ 98 RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 99 100 /* The request is ready to execute at the block device */ 101 RDMA_REQUEST_STATE_READY_TO_EXECUTE, 102 103 /* The request is currently executing at the block device */ 104 RDMA_REQUEST_STATE_EXECUTING, 105 106 /* The request finished executing at the block device */ 107 RDMA_REQUEST_STATE_EXECUTED, 108 109 /* The request is waiting on RDMA queue depth availability 110 * to transfer data from the controller to the host. 111 */ 112 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 113 114 /* The request is ready to send a completion */ 115 RDMA_REQUEST_STATE_READY_TO_COMPLETE, 116 117 /* The request is currently transferring data from the controller to the host. */ 118 RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 119 120 /* The request currently has an outstanding completion without an 121 * associated data transfer. 122 */ 123 RDMA_REQUEST_STATE_COMPLETING, 124 125 /* The request completed and can be marked free. */ 126 RDMA_REQUEST_STATE_COMPLETED, 127 128 /* Terminator */ 129 RDMA_REQUEST_NUM_STATES, 130 }; 131 132 #define OBJECT_NVMF_RDMA_IO 0x40 133 134 #define TRACE_GROUP_NVMF_RDMA 0x4 135 #define TRACE_RDMA_REQUEST_STATE_NEW SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x0) 136 #define TRACE_RDMA_REQUEST_STATE_NEED_BUFFER SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x1) 137 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x2) 138 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x3) 139 #define TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x4) 140 #define TRACE_RDMA_REQUEST_STATE_EXECUTING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x5) 141 #define TRACE_RDMA_REQUEST_STATE_EXECUTED SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x6) 142 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x7) 143 #define TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x8) 144 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x9) 145 #define TRACE_RDMA_REQUEST_STATE_COMPLETING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xA) 146 #define TRACE_RDMA_REQUEST_STATE_COMPLETED SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xB) 147 #define TRACE_RDMA_QP_CREATE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xC) 148 #define TRACE_RDMA_IBV_ASYNC_EVENT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xD) 149 #define TRACE_RDMA_CM_ASYNC_EVENT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xE) 150 #define TRACE_RDMA_QP_STATE_CHANGE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xF) 151 #define TRACE_RDMA_QP_DISCONNECT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x10) 152 #define TRACE_RDMA_QP_DESTROY SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x11) 153 154 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA) 155 { 156 spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r'); 157 spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW, 158 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 1, "cmid: "); 159 spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 160 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 161 spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H", 162 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 163 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 164 spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C", 165 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 166 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 167 spdk_trace_register_description("RDMA_REQ_TX_H2C", 168 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 169 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 170 spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE", 171 TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 172 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 173 spdk_trace_register_description("RDMA_REQ_EXECUTING", 174 TRACE_RDMA_REQUEST_STATE_EXECUTING, 175 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 176 spdk_trace_register_description("RDMA_REQ_EXECUTED", 177 TRACE_RDMA_REQUEST_STATE_EXECUTED, 178 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 179 spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL", 180 TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 181 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 182 spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H", 183 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 184 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 185 spdk_trace_register_description("RDMA_REQ_COMPLETING", 186 TRACE_RDMA_REQUEST_STATE_COMPLETING, 187 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 188 spdk_trace_register_description("RDMA_REQ_COMPLETED", 189 TRACE_RDMA_REQUEST_STATE_COMPLETED, 190 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); 191 192 spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE, 193 OWNER_NONE, OBJECT_NONE, 0, 0, ""); 194 spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT, 195 OWNER_NONE, OBJECT_NONE, 0, 0, "type: "); 196 spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT, 197 OWNER_NONE, OBJECT_NONE, 0, 0, "type: "); 198 spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE, 199 OWNER_NONE, OBJECT_NONE, 0, 1, "state: "); 200 spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT, 201 OWNER_NONE, OBJECT_NONE, 0, 0, ""); 202 spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY, 203 OWNER_NONE, OBJECT_NONE, 0, 0, ""); 204 } 205 206 enum spdk_nvmf_rdma_wr_type { 207 RDMA_WR_TYPE_RECV, 208 RDMA_WR_TYPE_SEND, 209 RDMA_WR_TYPE_DATA, 210 }; 211 212 struct spdk_nvmf_rdma_wr { 213 enum spdk_nvmf_rdma_wr_type type; 214 }; 215 216 /* This structure holds commands as they are received off the wire. 217 * It must be dynamically paired with a full request object 218 * (spdk_nvmf_rdma_request) to service a request. It is separate 219 * from the request because RDMA does not appear to order 220 * completions, so occasionally we'll get a new incoming 221 * command when there aren't any free request objects. 222 */ 223 struct spdk_nvmf_rdma_recv { 224 struct ibv_recv_wr wr; 225 struct ibv_sge sgl[NVMF_DEFAULT_RX_SGE]; 226 227 struct spdk_nvmf_rdma_qpair *qpair; 228 229 /* In-capsule data buffer */ 230 uint8_t *buf; 231 232 struct spdk_nvmf_rdma_wr rdma_wr; 233 uint64_t receive_tsc; 234 235 STAILQ_ENTRY(spdk_nvmf_rdma_recv) link; 236 }; 237 238 struct spdk_nvmf_rdma_request_data { 239 struct spdk_nvmf_rdma_wr rdma_wr; 240 struct ibv_send_wr wr; 241 struct ibv_sge sgl[SPDK_NVMF_MAX_SGL_ENTRIES]; 242 }; 243 244 struct spdk_nvmf_rdma_request { 245 struct spdk_nvmf_request req; 246 247 enum spdk_nvmf_rdma_request_state state; 248 249 struct spdk_nvmf_rdma_recv *recv; 250 251 struct { 252 struct spdk_nvmf_rdma_wr rdma_wr; 253 struct ibv_send_wr wr; 254 struct ibv_sge sgl[NVMF_DEFAULT_RSP_SGE]; 255 } rsp; 256 257 struct spdk_nvmf_rdma_request_data data; 258 259 uint32_t iovpos; 260 261 uint32_t num_outstanding_data_wr; 262 uint64_t receive_tsc; 263 264 STAILQ_ENTRY(spdk_nvmf_rdma_request) state_link; 265 }; 266 267 enum spdk_nvmf_rdma_qpair_disconnect_flags { 268 RDMA_QP_DISCONNECTING = 1, 269 RDMA_QP_RECV_DRAINED = 1 << 1, 270 RDMA_QP_SEND_DRAINED = 1 << 2 271 }; 272 273 struct spdk_nvmf_rdma_resource_opts { 274 struct spdk_nvmf_rdma_qpair *qpair; 275 /* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */ 276 void *qp; 277 struct ibv_pd *pd; 278 uint32_t max_queue_depth; 279 uint32_t in_capsule_data_size; 280 bool shared; 281 }; 282 283 struct spdk_nvmf_send_wr_list { 284 struct ibv_send_wr *first; 285 struct ibv_send_wr *last; 286 }; 287 288 struct spdk_nvmf_recv_wr_list { 289 struct ibv_recv_wr *first; 290 struct ibv_recv_wr *last; 291 }; 292 293 struct spdk_nvmf_rdma_resources { 294 /* Array of size "max_queue_depth" containing RDMA requests. */ 295 struct spdk_nvmf_rdma_request *reqs; 296 297 /* Array of size "max_queue_depth" containing RDMA recvs. */ 298 struct spdk_nvmf_rdma_recv *recvs; 299 300 /* Array of size "max_queue_depth" containing 64 byte capsules 301 * used for receive. 302 */ 303 union nvmf_h2c_msg *cmds; 304 struct ibv_mr *cmds_mr; 305 306 /* Array of size "max_queue_depth" containing 16 byte completions 307 * to be sent back to the user. 308 */ 309 union nvmf_c2h_msg *cpls; 310 struct ibv_mr *cpls_mr; 311 312 /* Array of size "max_queue_depth * InCapsuleDataSize" containing 313 * buffers to be used for in capsule data. 314 */ 315 void *bufs; 316 struct ibv_mr *bufs_mr; 317 318 /* The list of pending recvs to transfer */ 319 struct spdk_nvmf_recv_wr_list recvs_to_post; 320 321 /* Receives that are waiting for a request object */ 322 STAILQ_HEAD(, spdk_nvmf_rdma_recv) incoming_queue; 323 324 /* Queue to track free requests */ 325 STAILQ_HEAD(, spdk_nvmf_rdma_request) free_queue; 326 }; 327 328 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair); 329 330 struct spdk_nvmf_rdma_ibv_event_ctx { 331 struct spdk_nvmf_rdma_qpair *rqpair; 332 spdk_nvmf_rdma_qpair_ibv_event cb_fn; 333 /* Link to other ibv events associated with this qpair */ 334 STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx) link; 335 }; 336 337 struct spdk_nvmf_rdma_qpair { 338 struct spdk_nvmf_qpair qpair; 339 340 struct spdk_nvmf_rdma_device *device; 341 struct spdk_nvmf_rdma_poller *poller; 342 343 struct spdk_rdma_qp *rdma_qp; 344 struct rdma_cm_id *cm_id; 345 struct ibv_srq *srq; 346 struct rdma_cm_id *listen_id; 347 348 /* The maximum number of I/O outstanding on this connection at one time */ 349 uint16_t max_queue_depth; 350 351 /* The maximum number of active RDMA READ and ATOMIC operations at one time */ 352 uint16_t max_read_depth; 353 354 /* The maximum number of RDMA SEND operations at one time */ 355 uint32_t max_send_depth; 356 357 /* The current number of outstanding WRs from this qpair's 358 * recv queue. Should not exceed device->attr.max_queue_depth. 359 */ 360 uint16_t current_recv_depth; 361 362 /* The current number of active RDMA READ operations */ 363 uint16_t current_read_depth; 364 365 /* The current number of posted WRs from this qpair's 366 * send queue. Should not exceed max_send_depth. 367 */ 368 uint32_t current_send_depth; 369 370 /* The maximum number of SGEs per WR on the send queue */ 371 uint32_t max_send_sge; 372 373 /* The maximum number of SGEs per WR on the recv queue */ 374 uint32_t max_recv_sge; 375 376 struct spdk_nvmf_rdma_resources *resources; 377 378 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_read_queue; 379 380 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_write_queue; 381 382 /* Number of requests not in the free state */ 383 uint32_t qd; 384 385 TAILQ_ENTRY(spdk_nvmf_rdma_qpair) link; 386 387 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) recv_link; 388 389 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) send_link; 390 391 /* IBV queue pair attributes: they are used to manage 392 * qp state and recover from errors. 393 */ 394 enum ibv_qp_state ibv_state; 395 396 uint32_t disconnect_flags; 397 398 /* Poller registered in case the qpair doesn't properly 399 * complete the qpair destruct process and becomes defunct. 400 */ 401 402 struct spdk_poller *destruct_poller; 403 404 /* List of ibv async events */ 405 STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx) ibv_events; 406 407 /* There are several ways a disconnect can start on a qpair 408 * and they are not all mutually exclusive. It is important 409 * that we only initialize one of these paths. 410 */ 411 bool disconnect_started; 412 /* Lets us know that we have received the last_wqe event. */ 413 bool last_wqe_reached; 414 }; 415 416 struct spdk_nvmf_rdma_poller_stat { 417 uint64_t completions; 418 uint64_t polls; 419 uint64_t requests; 420 uint64_t request_latency; 421 uint64_t pending_free_request; 422 uint64_t pending_rdma_read; 423 uint64_t pending_rdma_write; 424 }; 425 426 struct spdk_nvmf_rdma_poller { 427 struct spdk_nvmf_rdma_device *device; 428 struct spdk_nvmf_rdma_poll_group *group; 429 430 int num_cqe; 431 int required_num_wr; 432 struct ibv_cq *cq; 433 434 /* The maximum number of I/O outstanding on the shared receive queue at one time */ 435 uint16_t max_srq_depth; 436 437 /* Shared receive queue */ 438 struct ibv_srq *srq; 439 440 struct spdk_nvmf_rdma_resources *resources; 441 struct spdk_nvmf_rdma_poller_stat stat; 442 443 TAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs; 444 445 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_recv; 446 447 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_send; 448 449 TAILQ_ENTRY(spdk_nvmf_rdma_poller) link; 450 }; 451 452 struct spdk_nvmf_rdma_poll_group_stat { 453 uint64_t pending_data_buffer; 454 }; 455 456 struct spdk_nvmf_rdma_poll_group { 457 struct spdk_nvmf_transport_poll_group group; 458 struct spdk_nvmf_rdma_poll_group_stat stat; 459 TAILQ_HEAD(, spdk_nvmf_rdma_poller) pollers; 460 TAILQ_ENTRY(spdk_nvmf_rdma_poll_group) link; 461 /* 462 * buffers which are split across multiple RDMA 463 * memory regions cannot be used by this transport. 464 */ 465 STAILQ_HEAD(, spdk_nvmf_transport_pg_cache_buf) retired_bufs; 466 }; 467 468 struct spdk_nvmf_rdma_conn_sched { 469 struct spdk_nvmf_rdma_poll_group *next_admin_pg; 470 struct spdk_nvmf_rdma_poll_group *next_io_pg; 471 }; 472 473 /* Assuming rdma_cm uses just one protection domain per ibv_context. */ 474 struct spdk_nvmf_rdma_device { 475 struct ibv_device_attr attr; 476 struct ibv_context *context; 477 478 struct spdk_mem_map *map; 479 struct ibv_pd *pd; 480 481 int num_srq; 482 483 TAILQ_ENTRY(spdk_nvmf_rdma_device) link; 484 }; 485 486 struct spdk_nvmf_rdma_port { 487 const struct spdk_nvme_transport_id *trid; 488 struct rdma_cm_id *id; 489 struct spdk_nvmf_rdma_device *device; 490 TAILQ_ENTRY(spdk_nvmf_rdma_port) link; 491 }; 492 493 struct spdk_nvmf_rdma_transport { 494 struct spdk_nvmf_transport transport; 495 496 struct spdk_nvmf_rdma_conn_sched conn_sched; 497 498 struct rdma_event_channel *event_channel; 499 500 struct spdk_mempool *data_wr_pool; 501 502 pthread_mutex_t lock; 503 504 /* fields used to poll RDMA/IB events */ 505 nfds_t npoll_fds; 506 struct pollfd *poll_fds; 507 508 TAILQ_HEAD(, spdk_nvmf_rdma_device) devices; 509 TAILQ_HEAD(, spdk_nvmf_rdma_port) ports; 510 TAILQ_HEAD(, spdk_nvmf_rdma_poll_group) poll_groups; 511 }; 512 513 static inline void 514 nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair); 515 516 static bool 517 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 518 struct spdk_nvmf_rdma_request *rdma_req); 519 520 static inline int 521 nvmf_rdma_check_ibv_state(enum ibv_qp_state state) 522 { 523 switch (state) { 524 case IBV_QPS_RESET: 525 case IBV_QPS_INIT: 526 case IBV_QPS_RTR: 527 case IBV_QPS_RTS: 528 case IBV_QPS_SQD: 529 case IBV_QPS_SQE: 530 case IBV_QPS_ERR: 531 return 0; 532 default: 533 return -1; 534 } 535 } 536 537 static inline enum spdk_nvme_media_error_status_code 538 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) { 539 enum spdk_nvme_media_error_status_code result; 540 switch (err_type) 541 { 542 case SPDK_DIF_REFTAG_ERROR: 543 result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR; 544 break; 545 case SPDK_DIF_APPTAG_ERROR: 546 result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR; 547 break; 548 case SPDK_DIF_GUARD_ERROR: 549 result = SPDK_NVME_SC_GUARD_CHECK_ERROR; 550 break; 551 default: 552 SPDK_UNREACHABLE(); 553 } 554 555 return result; 556 } 557 558 static enum ibv_qp_state 559 nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) { 560 enum ibv_qp_state old_state, new_state; 561 struct ibv_qp_attr qp_attr; 562 struct ibv_qp_init_attr init_attr; 563 int rc; 564 565 old_state = rqpair->ibv_state; 566 rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr, 567 g_spdk_nvmf_ibv_query_mask, &init_attr); 568 569 if (rc) 570 { 571 SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n"); 572 return IBV_QPS_ERR + 1; 573 } 574 575 new_state = qp_attr.qp_state; 576 rqpair->ibv_state = new_state; 577 qp_attr.ah_attr.port_num = qp_attr.port_num; 578 579 rc = nvmf_rdma_check_ibv_state(new_state); 580 if (rc) 581 { 582 SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state); 583 /* 584 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8 585 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR 586 */ 587 return IBV_QPS_ERR + 1; 588 } 589 590 if (old_state != new_state) 591 { 592 spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, 593 (uintptr_t)rqpair->cm_id, new_state); 594 } 595 return new_state; 596 } 597 598 static void 599 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req, 600 struct spdk_nvmf_rdma_transport *rtransport) 601 { 602 struct spdk_nvmf_rdma_request_data *data_wr; 603 struct ibv_send_wr *next_send_wr; 604 uint64_t req_wrid; 605 606 rdma_req->num_outstanding_data_wr = 0; 607 data_wr = &rdma_req->data; 608 req_wrid = data_wr->wr.wr_id; 609 while (data_wr && data_wr->wr.wr_id == req_wrid) { 610 memset(data_wr->sgl, 0, sizeof(data_wr->wr.sg_list[0]) * data_wr->wr.num_sge); 611 data_wr->wr.num_sge = 0; 612 next_send_wr = data_wr->wr.next; 613 if (data_wr != &rdma_req->data) { 614 spdk_mempool_put(rtransport->data_wr_pool, data_wr); 615 } 616 data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : 617 SPDK_CONTAINEROF(next_send_wr, struct spdk_nvmf_rdma_request_data, wr); 618 } 619 } 620 621 static void 622 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req) 623 { 624 SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool); 625 if (req->req.cmd) { 626 SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode); 627 } 628 if (req->recv) { 629 SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id); 630 } 631 } 632 633 static void 634 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair) 635 { 636 int i; 637 638 SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid); 639 for (i = 0; i < rqpair->max_queue_depth; i++) { 640 if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) { 641 nvmf_rdma_dump_request(&rqpair->resources->reqs[i]); 642 } 643 } 644 } 645 646 static void 647 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources) 648 { 649 if (resources->cmds_mr) { 650 ibv_dereg_mr(resources->cmds_mr); 651 } 652 653 if (resources->cpls_mr) { 654 ibv_dereg_mr(resources->cpls_mr); 655 } 656 657 if (resources->bufs_mr) { 658 ibv_dereg_mr(resources->bufs_mr); 659 } 660 661 spdk_free(resources->cmds); 662 spdk_free(resources->cpls); 663 spdk_free(resources->bufs); 664 free(resources->reqs); 665 free(resources->recvs); 666 free(resources); 667 } 668 669 670 static struct spdk_nvmf_rdma_resources * 671 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts) 672 { 673 struct spdk_nvmf_rdma_resources *resources; 674 struct spdk_nvmf_rdma_request *rdma_req; 675 struct spdk_nvmf_rdma_recv *rdma_recv; 676 struct ibv_qp *qp; 677 struct ibv_srq *srq; 678 uint32_t i; 679 int rc; 680 681 resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources)); 682 if (!resources) { 683 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 684 return NULL; 685 } 686 687 resources->reqs = calloc(opts->max_queue_depth, sizeof(*resources->reqs)); 688 resources->recvs = calloc(opts->max_queue_depth, sizeof(*resources->recvs)); 689 resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds), 690 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 691 resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls), 692 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 693 694 if (opts->in_capsule_data_size > 0) { 695 resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size, 696 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, 697 SPDK_MALLOC_DMA); 698 } 699 700 if (!resources->reqs || !resources->recvs || !resources->cmds || 701 !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) { 702 SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n"); 703 goto cleanup; 704 } 705 706 resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds, 707 opts->max_queue_depth * sizeof(*resources->cmds), 708 IBV_ACCESS_LOCAL_WRITE); 709 resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls, 710 opts->max_queue_depth * sizeof(*resources->cpls), 711 0); 712 713 if (opts->in_capsule_data_size) { 714 resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs, 715 opts->max_queue_depth * 716 opts->in_capsule_data_size, 717 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); 718 } 719 720 if (!resources->cmds_mr || !resources->cpls_mr || 721 (opts->in_capsule_data_size && 722 !resources->bufs_mr)) { 723 goto cleanup; 724 } 725 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Command Array: %p Length: %lx LKey: %x\n", 726 resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds), 727 resources->cmds_mr->lkey); 728 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Completion Array: %p Length: %lx LKey: %x\n", 729 resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls), 730 resources->cpls_mr->lkey); 731 if (resources->bufs && resources->bufs_mr) { 732 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "In Capsule Data Array: %p Length: %x LKey: %x\n", 733 resources->bufs, opts->max_queue_depth * 734 opts->in_capsule_data_size, resources->bufs_mr->lkey); 735 } 736 737 /* Initialize queues */ 738 STAILQ_INIT(&resources->incoming_queue); 739 STAILQ_INIT(&resources->free_queue); 740 741 for (i = 0; i < opts->max_queue_depth; i++) { 742 struct ibv_recv_wr *bad_wr = NULL; 743 744 rdma_recv = &resources->recvs[i]; 745 rdma_recv->qpair = opts->qpair; 746 747 /* Set up memory to receive commands */ 748 if (resources->bufs) { 749 rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i * 750 opts->in_capsule_data_size)); 751 } 752 753 rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV; 754 755 rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i]; 756 rdma_recv->sgl[0].length = sizeof(resources->cmds[i]); 757 rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey; 758 rdma_recv->wr.num_sge = 1; 759 760 if (rdma_recv->buf && resources->bufs_mr) { 761 rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf; 762 rdma_recv->sgl[1].length = opts->in_capsule_data_size; 763 rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey; 764 rdma_recv->wr.num_sge++; 765 } 766 767 rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr; 768 rdma_recv->wr.sg_list = rdma_recv->sgl; 769 if (opts->shared) { 770 srq = (struct ibv_srq *)opts->qp; 771 rc = ibv_post_srq_recv(srq, &rdma_recv->wr, &bad_wr); 772 } else { 773 qp = (struct ibv_qp *)opts->qp; 774 rc = ibv_post_recv(qp, &rdma_recv->wr, &bad_wr); 775 } 776 if (rc) { 777 goto cleanup; 778 } 779 } 780 781 for (i = 0; i < opts->max_queue_depth; i++) { 782 rdma_req = &resources->reqs[i]; 783 784 if (opts->qpair != NULL) { 785 rdma_req->req.qpair = &opts->qpair->qpair; 786 } else { 787 rdma_req->req.qpair = NULL; 788 } 789 rdma_req->req.cmd = NULL; 790 791 /* Set up memory to send responses */ 792 rdma_req->req.rsp = &resources->cpls[i]; 793 794 rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i]; 795 rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]); 796 rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey; 797 798 rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND; 799 rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr; 800 rdma_req->rsp.wr.next = NULL; 801 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 802 rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED; 803 rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl; 804 rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl); 805 806 /* Set up memory for data buffers */ 807 rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA; 808 rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr; 809 rdma_req->data.wr.next = NULL; 810 rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED; 811 rdma_req->data.wr.sg_list = rdma_req->data.sgl; 812 rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl); 813 814 /* Initialize request state to FREE */ 815 rdma_req->state = RDMA_REQUEST_STATE_FREE; 816 STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link); 817 } 818 819 return resources; 820 821 cleanup: 822 nvmf_rdma_resources_destroy(resources); 823 return NULL; 824 } 825 826 static void 827 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair) 828 { 829 struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx; 830 STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) { 831 ctx->rqpair = NULL; 832 /* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */ 833 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 834 } 835 } 836 837 static void 838 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair) 839 { 840 struct spdk_nvmf_rdma_recv *rdma_recv, *recv_tmp; 841 struct ibv_recv_wr *bad_recv_wr = NULL; 842 int rc; 843 844 spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair->cm_id, 0); 845 846 spdk_poller_unregister(&rqpair->destruct_poller); 847 848 if (rqpair->qd != 0) { 849 struct spdk_nvmf_qpair *qpair = &rqpair->qpair; 850 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(qpair->transport, 851 struct spdk_nvmf_rdma_transport, transport); 852 struct spdk_nvmf_rdma_request *req; 853 uint32_t i, max_req_count = 0; 854 855 SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd); 856 857 if (rqpair->srq == NULL) { 858 nvmf_rdma_dump_qpair_contents(rqpair); 859 max_req_count = rqpair->max_queue_depth; 860 } else if (rqpair->poller && rqpair->resources) { 861 max_req_count = rqpair->poller->max_srq_depth; 862 } 863 864 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Release incomplete requests\n"); 865 for (i = 0; i < max_req_count; i++) { 866 req = &rqpair->resources->reqs[i]; 867 if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) { 868 /* nvmf_rdma_request_process checks qpair ibv and internal state 869 * and completes a request */ 870 nvmf_rdma_request_process(rtransport, req); 871 } 872 } 873 assert(rqpair->qd == 0); 874 } 875 876 if (rqpair->poller) { 877 TAILQ_REMOVE(&rqpair->poller->qpairs, rqpair, link); 878 879 if (rqpair->srq != NULL && rqpair->resources != NULL) { 880 /* Drop all received but unprocessed commands for this queue and return them to SRQ */ 881 STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) { 882 if (rqpair == rdma_recv->qpair) { 883 STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link); 884 rc = ibv_post_srq_recv(rqpair->srq, &rdma_recv->wr, &bad_recv_wr); 885 if (rc) { 886 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 887 } 888 } 889 } 890 } 891 } 892 893 if (rqpair->cm_id) { 894 if (rqpair->rdma_qp != NULL) { 895 spdk_rdma_qp_destroy(rqpair->rdma_qp); 896 rqpair->rdma_qp = NULL; 897 } 898 rdma_destroy_id(rqpair->cm_id); 899 900 if (rqpair->poller != NULL && rqpair->srq == NULL) { 901 rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth); 902 } 903 } 904 905 if (rqpair->srq == NULL && rqpair->resources != NULL) { 906 nvmf_rdma_resources_destroy(rqpair->resources); 907 } 908 909 nvmf_rdma_qpair_clean_ibv_events(rqpair); 910 911 free(rqpair); 912 } 913 914 static int 915 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device) 916 { 917 struct spdk_nvmf_rdma_poller *rpoller; 918 int rc, num_cqe, required_num_wr; 919 920 /* Enlarge CQ size dynamically */ 921 rpoller = rqpair->poller; 922 required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth); 923 num_cqe = rpoller->num_cqe; 924 if (num_cqe < required_num_wr) { 925 num_cqe = spdk_max(num_cqe * 2, required_num_wr); 926 num_cqe = spdk_min(num_cqe, device->attr.max_cqe); 927 } 928 929 if (rpoller->num_cqe != num_cqe) { 930 if (required_num_wr > device->attr.max_cqe) { 931 SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n", 932 required_num_wr, device->attr.max_cqe); 933 return -1; 934 } 935 936 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe); 937 rc = ibv_resize_cq(rpoller->cq, num_cqe); 938 if (rc) { 939 SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); 940 return -1; 941 } 942 943 rpoller->num_cqe = num_cqe; 944 } 945 946 rpoller->required_num_wr = required_num_wr; 947 return 0; 948 } 949 950 static int 951 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair) 952 { 953 struct spdk_nvmf_rdma_qpair *rqpair; 954 struct spdk_nvmf_rdma_transport *rtransport; 955 struct spdk_nvmf_transport *transport; 956 struct spdk_nvmf_rdma_resource_opts opts; 957 struct spdk_nvmf_rdma_device *device; 958 struct spdk_rdma_qp_init_attr qp_init_attr = {}; 959 960 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 961 device = rqpair->device; 962 963 qp_init_attr.qp_context = rqpair; 964 qp_init_attr.pd = device->pd; 965 qp_init_attr.send_cq = rqpair->poller->cq; 966 qp_init_attr.recv_cq = rqpair->poller->cq; 967 968 if (rqpair->srq) { 969 qp_init_attr.srq = rqpair->srq; 970 } else { 971 qp_init_attr.cap.max_recv_wr = rqpair->max_queue_depth; 972 } 973 974 /* SEND, READ, and WRITE operations */ 975 qp_init_attr.cap.max_send_wr = (uint32_t)rqpair->max_queue_depth * 2; 976 qp_init_attr.cap.max_send_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE); 977 qp_init_attr.cap.max_recv_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 978 qp_init_attr.initiator_side = false; 979 980 if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) { 981 SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n"); 982 goto error; 983 } 984 985 rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr); 986 if (!rqpair->rdma_qp) { 987 goto error; 988 } 989 990 rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2), 991 qp_init_attr.cap.max_send_wr); 992 rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge); 993 rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge); 994 spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair->cm_id, 0); 995 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "New RDMA Connection: %p\n", qpair); 996 997 if (rqpair->poller->srq == NULL) { 998 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 999 transport = &rtransport->transport; 1000 1001 opts.qp = rqpair->rdma_qp->qp; 1002 opts.pd = rqpair->cm_id->pd; 1003 opts.qpair = rqpair; 1004 opts.shared = false; 1005 opts.max_queue_depth = rqpair->max_queue_depth; 1006 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 1007 1008 rqpair->resources = nvmf_rdma_resources_create(&opts); 1009 1010 if (!rqpair->resources) { 1011 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 1012 rdma_destroy_qp(rqpair->cm_id); 1013 goto error; 1014 } 1015 } else { 1016 rqpair->resources = rqpair->poller->resources; 1017 } 1018 1019 rqpair->current_recv_depth = 0; 1020 STAILQ_INIT(&rqpair->pending_rdma_read_queue); 1021 STAILQ_INIT(&rqpair->pending_rdma_write_queue); 1022 1023 return 0; 1024 1025 error: 1026 rdma_destroy_id(rqpair->cm_id); 1027 rqpair->cm_id = NULL; 1028 return -1; 1029 } 1030 1031 /* Append the given recv wr structure to the resource structs outstanding recvs list. */ 1032 /* This function accepts either a single wr or the first wr in a linked list. */ 1033 static void 1034 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first) 1035 { 1036 struct ibv_recv_wr *last; 1037 1038 last = first; 1039 while (last->next != NULL) { 1040 last = last->next; 1041 } 1042 1043 if (rqpair->resources->recvs_to_post.first == NULL) { 1044 rqpair->resources->recvs_to_post.first = first; 1045 rqpair->resources->recvs_to_post.last = last; 1046 if (rqpair->srq == NULL) { 1047 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link); 1048 } 1049 } else { 1050 rqpair->resources->recvs_to_post.last->next = first; 1051 rqpair->resources->recvs_to_post.last = last; 1052 } 1053 } 1054 1055 static int 1056 request_transfer_in(struct spdk_nvmf_request *req) 1057 { 1058 struct spdk_nvmf_rdma_request *rdma_req; 1059 struct spdk_nvmf_qpair *qpair; 1060 struct spdk_nvmf_rdma_qpair *rqpair; 1061 1062 qpair = req->qpair; 1063 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1064 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1065 1066 assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); 1067 assert(rdma_req != NULL); 1068 1069 if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, &rdma_req->data.wr)) { 1070 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1071 } 1072 1073 rqpair->current_read_depth += rdma_req->num_outstanding_data_wr; 1074 rqpair->current_send_depth += rdma_req->num_outstanding_data_wr; 1075 return 0; 1076 } 1077 1078 static int 1079 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted) 1080 { 1081 int num_outstanding_data_wr = 0; 1082 struct spdk_nvmf_rdma_request *rdma_req; 1083 struct spdk_nvmf_qpair *qpair; 1084 struct spdk_nvmf_rdma_qpair *rqpair; 1085 struct spdk_nvme_cpl *rsp; 1086 struct ibv_send_wr *first = NULL; 1087 1088 *data_posted = 0; 1089 qpair = req->qpair; 1090 rsp = &req->rsp->nvme_cpl; 1091 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1092 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1093 1094 /* Advance our sq_head pointer */ 1095 if (qpair->sq_head == qpair->sq_head_max) { 1096 qpair->sq_head = 0; 1097 } else { 1098 qpair->sq_head++; 1099 } 1100 rsp->sqhd = qpair->sq_head; 1101 1102 /* queue the capsule for the recv buffer */ 1103 assert(rdma_req->recv != NULL); 1104 1105 nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr); 1106 1107 rdma_req->recv = NULL; 1108 assert(rqpair->current_recv_depth > 0); 1109 rqpair->current_recv_depth--; 1110 1111 /* Build the response which consists of optional 1112 * RDMA WRITEs to transfer data, plus an RDMA SEND 1113 * containing the response. 1114 */ 1115 first = &rdma_req->rsp.wr; 1116 1117 if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && 1118 req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1119 first = &rdma_req->data.wr; 1120 *data_posted = 1; 1121 num_outstanding_data_wr = rdma_req->num_outstanding_data_wr; 1122 } 1123 if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) { 1124 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1125 } 1126 1127 /* +1 for the rsp wr */ 1128 rqpair->current_send_depth += num_outstanding_data_wr + 1; 1129 1130 return 0; 1131 } 1132 1133 static int 1134 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair) 1135 { 1136 struct spdk_nvmf_rdma_accept_private_data accept_data; 1137 struct rdma_conn_param ctrlr_event_data = {}; 1138 int rc; 1139 1140 accept_data.recfmt = 0; 1141 accept_data.crqsize = rqpair->max_queue_depth; 1142 1143 ctrlr_event_data.private_data = &accept_data; 1144 ctrlr_event_data.private_data_len = sizeof(accept_data); 1145 if (id->ps == RDMA_PS_TCP) { 1146 ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */ 1147 ctrlr_event_data.initiator_depth = rqpair->max_read_depth; 1148 } 1149 1150 /* Configure infinite retries for the initiator side qpair. 1151 * When using a shared receive queue on the target side, 1152 * we need to pass this value to the initiator to prevent the 1153 * initiator side NIC from completing SEND requests back to the 1154 * initiator with status rnr_retry_count_exceeded. */ 1155 if (rqpair->srq != NULL) { 1156 ctrlr_event_data.rnr_retry_count = 0x7; 1157 } 1158 1159 /* When qpair is created without use of rdma cm API, an additional 1160 * information must be provided to initiator in the connection response: 1161 * whether qpair is using SRQ and its qp_num 1162 * Fields below are ignored by rdma cm if qpair has been 1163 * created using rdma cm API. */ 1164 ctrlr_event_data.srq = rqpair->srq ? 1 : 0; 1165 ctrlr_event_data.qp_num = rqpair->rdma_qp->qp->qp_num; 1166 1167 rc = rdma_accept(id, &ctrlr_event_data); 1168 if (rc) { 1169 SPDK_ERRLOG("Error %d on rdma_accept\n", errno); 1170 } else { 1171 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Sent back the accept\n"); 1172 } 1173 1174 return rc; 1175 } 1176 1177 static void 1178 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error) 1179 { 1180 struct spdk_nvmf_rdma_reject_private_data rej_data; 1181 1182 rej_data.recfmt = 0; 1183 rej_data.sts = error; 1184 1185 rdma_reject(id, &rej_data, sizeof(rej_data)); 1186 } 1187 1188 static int 1189 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event, 1190 new_qpair_fn cb_fn, void *cb_arg) 1191 { 1192 struct spdk_nvmf_rdma_transport *rtransport; 1193 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 1194 struct spdk_nvmf_rdma_port *port; 1195 struct rdma_conn_param *rdma_param = NULL; 1196 const struct spdk_nvmf_rdma_request_private_data *private_data = NULL; 1197 uint16_t max_queue_depth; 1198 uint16_t max_read_depth; 1199 1200 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 1201 1202 assert(event->id != NULL); /* Impossible. Can't even reject the connection. */ 1203 assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */ 1204 1205 rdma_param = &event->param.conn; 1206 if (rdma_param->private_data == NULL || 1207 rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1208 SPDK_ERRLOG("connect request: no private data provided\n"); 1209 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH); 1210 return -1; 1211 } 1212 1213 private_data = rdma_param->private_data; 1214 if (private_data->recfmt != 0) { 1215 SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n"); 1216 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT); 1217 return -1; 1218 } 1219 1220 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Connect Recv on fabric intf name %s, dev_name %s\n", 1221 event->id->verbs->device->name, event->id->verbs->device->dev_name); 1222 1223 port = event->listen_id->context; 1224 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Listen Id was %p with verbs %p. ListenAddr: %p\n", 1225 event->listen_id, event->listen_id->verbs, port); 1226 1227 /* Figure out the supported queue depth. This is a multi-step process 1228 * that takes into account hardware maximums, host provided values, 1229 * and our target's internal memory limits */ 1230 1231 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Calculating Queue Depth\n"); 1232 1233 /* Start with the maximum queue depth allowed by the target */ 1234 max_queue_depth = rtransport->transport.opts.max_queue_depth; 1235 max_read_depth = rtransport->transport.opts.max_queue_depth; 1236 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Target Max Queue Depth: %d\n", 1237 rtransport->transport.opts.max_queue_depth); 1238 1239 /* Next check the local NIC's hardware limitations */ 1240 SPDK_DEBUGLOG(SPDK_LOG_RDMA, 1241 "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n", 1242 port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom); 1243 max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr); 1244 max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom); 1245 1246 /* Next check the remote NIC's hardware limitations */ 1247 SPDK_DEBUGLOG(SPDK_LOG_RDMA, 1248 "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n", 1249 rdma_param->initiator_depth, rdma_param->responder_resources); 1250 if (rdma_param->initiator_depth > 0) { 1251 max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth); 1252 } 1253 1254 /* Finally check for the host software requested values, which are 1255 * optional. */ 1256 if (rdma_param->private_data != NULL && 1257 rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1258 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Receive Queue Size: %d\n", private_data->hrqsize); 1259 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Send Queue Size: %d\n", private_data->hsqsize); 1260 max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize); 1261 max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1); 1262 } 1263 1264 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Final Negotiated Queue Depth: %d R/W Depth: %d\n", 1265 max_queue_depth, max_read_depth); 1266 1267 rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair)); 1268 if (rqpair == NULL) { 1269 SPDK_ERRLOG("Could not allocate new connection.\n"); 1270 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 1271 return -1; 1272 } 1273 1274 rqpair->device = port->device; 1275 rqpair->max_queue_depth = max_queue_depth; 1276 rqpair->max_read_depth = max_read_depth; 1277 rqpair->cm_id = event->id; 1278 rqpair->listen_id = event->listen_id; 1279 rqpair->qpair.transport = transport; 1280 STAILQ_INIT(&rqpair->ibv_events); 1281 /* use qid from the private data to determine the qpair type 1282 qid will be set to the appropriate value when the controller is created */ 1283 rqpair->qpair.qid = private_data->qid; 1284 1285 event->id->context = &rqpair->qpair; 1286 1287 cb_fn(&rqpair->qpair, cb_arg); 1288 1289 return 0; 1290 } 1291 1292 static int 1293 nvmf_rdma_mem_notify(void *cb_ctx, struct spdk_mem_map *map, 1294 enum spdk_mem_map_notify_action action, 1295 void *vaddr, size_t size) 1296 { 1297 struct ibv_pd *pd = cb_ctx; 1298 struct ibv_mr *mr; 1299 int rc; 1300 1301 switch (action) { 1302 case SPDK_MEM_MAP_NOTIFY_REGISTER: 1303 if (!g_nvmf_hooks.get_rkey) { 1304 mr = ibv_reg_mr(pd, vaddr, size, 1305 IBV_ACCESS_LOCAL_WRITE | 1306 IBV_ACCESS_REMOTE_READ | 1307 IBV_ACCESS_REMOTE_WRITE); 1308 if (mr == NULL) { 1309 SPDK_ERRLOG("ibv_reg_mr() failed\n"); 1310 return -1; 1311 } else { 1312 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr); 1313 } 1314 } else { 1315 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, 1316 g_nvmf_hooks.get_rkey(pd, vaddr, size)); 1317 } 1318 break; 1319 case SPDK_MEM_MAP_NOTIFY_UNREGISTER: 1320 if (!g_nvmf_hooks.get_rkey) { 1321 mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL); 1322 if (mr) { 1323 ibv_dereg_mr(mr); 1324 } 1325 } 1326 rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size); 1327 break; 1328 default: 1329 SPDK_UNREACHABLE(); 1330 } 1331 1332 return rc; 1333 } 1334 1335 static int 1336 nvmf_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2) 1337 { 1338 /* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */ 1339 return addr_1 == addr_2; 1340 } 1341 1342 static inline void 1343 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next, 1344 enum spdk_nvme_data_transfer xfer) 1345 { 1346 if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1347 wr->opcode = IBV_WR_RDMA_WRITE; 1348 wr->send_flags = 0; 1349 wr->next = next; 1350 } else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 1351 wr->opcode = IBV_WR_RDMA_READ; 1352 wr->send_flags = IBV_SEND_SIGNALED; 1353 wr->next = NULL; 1354 } else { 1355 assert(0); 1356 } 1357 } 1358 1359 static int 1360 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport, 1361 struct spdk_nvmf_rdma_request *rdma_req, 1362 uint32_t num_sgl_descriptors) 1363 { 1364 struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES]; 1365 struct spdk_nvmf_rdma_request_data *current_data_wr; 1366 uint32_t i; 1367 1368 if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) { 1369 SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n", 1370 num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES); 1371 return -EINVAL; 1372 } 1373 1374 if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) { 1375 return -ENOMEM; 1376 } 1377 1378 current_data_wr = &rdma_req->data; 1379 1380 for (i = 0; i < num_sgl_descriptors; i++) { 1381 nvmf_rdma_setup_wr(¤t_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer); 1382 current_data_wr->wr.next = &work_requests[i]->wr; 1383 current_data_wr = work_requests[i]; 1384 current_data_wr->wr.sg_list = current_data_wr->sgl; 1385 current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id; 1386 } 1387 1388 nvmf_rdma_setup_wr(¤t_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1389 1390 return 0; 1391 } 1392 1393 static inline void 1394 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req) 1395 { 1396 struct ibv_send_wr *wr = &rdma_req->data.wr; 1397 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1398 1399 wr->wr.rdma.rkey = sgl->keyed.key; 1400 wr->wr.rdma.remote_addr = sgl->address; 1401 nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1402 } 1403 1404 static inline void 1405 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs) 1406 { 1407 struct ibv_send_wr *wr = &rdma_req->data.wr; 1408 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1409 uint32_t i; 1410 int j; 1411 uint64_t remote_addr_offset = 0; 1412 1413 for (i = 0; i < num_wrs; ++i) { 1414 wr->wr.rdma.rkey = sgl->keyed.key; 1415 wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset; 1416 for (j = 0; j < wr->num_sge; ++j) { 1417 remote_addr_offset += wr->sg_list[j].length; 1418 } 1419 wr = wr->next; 1420 } 1421 } 1422 1423 /* This function is used in the rare case that we have a buffer split over multiple memory regions. */ 1424 static int 1425 nvmf_rdma_replace_buffer(struct spdk_nvmf_rdma_poll_group *rgroup, void **buf) 1426 { 1427 struct spdk_nvmf_transport_poll_group *group = &rgroup->group; 1428 struct spdk_nvmf_transport *transport = group->transport; 1429 struct spdk_nvmf_transport_pg_cache_buf *old_buf; 1430 void *new_buf; 1431 1432 if (!(STAILQ_EMPTY(&group->buf_cache))) { 1433 group->buf_cache_count--; 1434 new_buf = STAILQ_FIRST(&group->buf_cache); 1435 STAILQ_REMOVE_HEAD(&group->buf_cache, link); 1436 assert(*buf != NULL); 1437 } else { 1438 new_buf = spdk_mempool_get(transport->data_buf_pool); 1439 } 1440 1441 if (*buf == NULL) { 1442 return -ENOMEM; 1443 } 1444 1445 old_buf = *buf; 1446 STAILQ_INSERT_HEAD(&rgroup->retired_bufs, old_buf, link); 1447 *buf = new_buf; 1448 return 0; 1449 } 1450 1451 static bool 1452 nvmf_rdma_get_lkey(struct spdk_nvmf_rdma_device *device, struct iovec *iov, 1453 uint32_t *_lkey) 1454 { 1455 uint64_t translation_len; 1456 uint32_t lkey; 1457 1458 translation_len = iov->iov_len; 1459 1460 if (!g_nvmf_hooks.get_rkey) { 1461 lkey = ((struct ibv_mr *)spdk_mem_map_translate(device->map, 1462 (uint64_t)iov->iov_base, &translation_len))->lkey; 1463 } else { 1464 lkey = spdk_mem_map_translate(device->map, 1465 (uint64_t)iov->iov_base, &translation_len); 1466 } 1467 1468 if (spdk_unlikely(translation_len < iov->iov_len)) { 1469 return false; 1470 } 1471 1472 *_lkey = lkey; 1473 return true; 1474 } 1475 1476 static bool 1477 nvmf_rdma_fill_wr_sge(struct spdk_nvmf_rdma_device *device, 1478 struct iovec *iov, struct ibv_send_wr **_wr, 1479 uint32_t *_remaining_data_block, uint32_t *_offset, 1480 uint32_t *_num_extra_wrs, 1481 const struct spdk_dif_ctx *dif_ctx) 1482 { 1483 struct ibv_send_wr *wr = *_wr; 1484 struct ibv_sge *sg_ele = &wr->sg_list[wr->num_sge]; 1485 uint32_t lkey = 0; 1486 uint32_t remaining, data_block_size, md_size, sge_len; 1487 1488 if (spdk_unlikely(!nvmf_rdma_get_lkey(device, iov, &lkey))) { 1489 /* This is a very rare case that can occur when using DPDK version < 19.05 */ 1490 SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions. Removing it from circulation.\n"); 1491 return false; 1492 } 1493 1494 if (spdk_likely(!dif_ctx)) { 1495 sg_ele->lkey = lkey; 1496 sg_ele->addr = (uintptr_t)(iov->iov_base); 1497 sg_ele->length = iov->iov_len; 1498 wr->num_sge++; 1499 } else { 1500 remaining = iov->iov_len - *_offset; 1501 data_block_size = dif_ctx->block_size - dif_ctx->md_size; 1502 md_size = dif_ctx->md_size; 1503 1504 while (remaining) { 1505 if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) { 1506 if (*_num_extra_wrs > 0 && wr->next) { 1507 *_wr = wr->next; 1508 wr = *_wr; 1509 wr->num_sge = 0; 1510 sg_ele = &wr->sg_list[wr->num_sge]; 1511 (*_num_extra_wrs)--; 1512 } else { 1513 break; 1514 } 1515 } 1516 sg_ele->lkey = lkey; 1517 sg_ele->addr = (uintptr_t)((char *)iov->iov_base + *_offset); 1518 sge_len = spdk_min(remaining, *_remaining_data_block); 1519 sg_ele->length = sge_len; 1520 remaining -= sge_len; 1521 *_remaining_data_block -= sge_len; 1522 *_offset += sge_len; 1523 1524 sg_ele++; 1525 wr->num_sge++; 1526 1527 if (*_remaining_data_block == 0) { 1528 /* skip metadata */ 1529 *_offset += md_size; 1530 /* Metadata that do not fit this IO buffer will be included in the next IO buffer */ 1531 remaining -= spdk_min(remaining, md_size); 1532 *_remaining_data_block = data_block_size; 1533 } 1534 1535 if (remaining == 0) { 1536 /* By subtracting the size of the last IOV from the offset, we ensure that we skip 1537 the remaining metadata bits at the beginning of the next buffer */ 1538 *_offset -= iov->iov_len; 1539 } 1540 } 1541 } 1542 1543 return true; 1544 } 1545 1546 static int 1547 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup, 1548 struct spdk_nvmf_rdma_device *device, 1549 struct spdk_nvmf_rdma_request *rdma_req, 1550 struct ibv_send_wr *wr, 1551 uint32_t length, 1552 uint32_t num_extra_wrs) 1553 { 1554 struct spdk_nvmf_request *req = &rdma_req->req; 1555 struct spdk_dif_ctx *dif_ctx = NULL; 1556 uint32_t remaining_data_block = 0; 1557 uint32_t offset = 0; 1558 1559 if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) { 1560 dif_ctx = &rdma_req->req.dif.dif_ctx; 1561 remaining_data_block = dif_ctx->block_size - dif_ctx->md_size; 1562 } 1563 1564 wr->num_sge = 0; 1565 1566 while (length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) { 1567 while (spdk_unlikely(!nvmf_rdma_fill_wr_sge(device, &req->iov[rdma_req->iovpos], &wr, 1568 &remaining_data_block, &offset, &num_extra_wrs, dif_ctx))) { 1569 if (nvmf_rdma_replace_buffer(rgroup, &req->buffers[rdma_req->iovpos]) == -ENOMEM) { 1570 return -ENOMEM; 1571 } 1572 req->iov[rdma_req->iovpos].iov_base = (void *)((uintptr_t)(req->buffers[rdma_req->iovpos] + 1573 NVMF_DATA_BUFFER_MASK) & 1574 ~NVMF_DATA_BUFFER_MASK); 1575 } 1576 1577 length -= req->iov[rdma_req->iovpos].iov_len; 1578 rdma_req->iovpos++; 1579 } 1580 1581 if (length) { 1582 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1583 return -EINVAL; 1584 } 1585 1586 return 0; 1587 } 1588 1589 static inline uint32_t 1590 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size) 1591 { 1592 /* estimate the number of SG entries and WRs needed to process the request */ 1593 uint32_t num_sge = 0; 1594 uint32_t i; 1595 uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size); 1596 1597 for (i = 0; i < num_buffers && length > 0; i++) { 1598 uint32_t buffer_len = spdk_min(length, io_unit_size); 1599 uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size); 1600 1601 if (num_sge_in_block * block_size > buffer_len) { 1602 ++num_sge_in_block; 1603 } 1604 num_sge += num_sge_in_block; 1605 length -= buffer_len; 1606 } 1607 return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES); 1608 } 1609 1610 static int 1611 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport, 1612 struct spdk_nvmf_rdma_device *device, 1613 struct spdk_nvmf_rdma_request *rdma_req, 1614 uint32_t length) 1615 { 1616 struct spdk_nvmf_rdma_qpair *rqpair; 1617 struct spdk_nvmf_rdma_poll_group *rgroup; 1618 struct spdk_nvmf_request *req = &rdma_req->req; 1619 struct ibv_send_wr *wr = &rdma_req->data.wr; 1620 int rc; 1621 uint32_t num_wrs = 1; 1622 1623 rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair); 1624 rgroup = rqpair->poller->group; 1625 1626 /* rdma wr specifics */ 1627 nvmf_rdma_setup_request(rdma_req); 1628 1629 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, 1630 length); 1631 if (rc != 0) { 1632 return rc; 1633 } 1634 1635 assert(req->iovcnt <= rqpair->max_send_sge); 1636 1637 rdma_req->iovpos = 0; 1638 1639 if (spdk_unlikely(req->dif.dif_insert_or_strip)) { 1640 num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size, 1641 req->dif.dif_ctx.block_size); 1642 if (num_wrs > 1) { 1643 rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1); 1644 if (rc != 0) { 1645 goto err_exit; 1646 } 1647 } 1648 } 1649 1650 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length, num_wrs - 1); 1651 if (spdk_unlikely(rc != 0)) { 1652 goto err_exit; 1653 } 1654 1655 if (spdk_unlikely(num_wrs > 1)) { 1656 nvmf_rdma_update_remote_addr(rdma_req, num_wrs); 1657 } 1658 1659 /* set the number of outstanding data WRs for this request. */ 1660 rdma_req->num_outstanding_data_wr = num_wrs; 1661 1662 return rc; 1663 1664 err_exit: 1665 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1666 nvmf_rdma_request_free_data(rdma_req, rtransport); 1667 req->iovcnt = 0; 1668 return rc; 1669 } 1670 1671 static int 1672 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1673 struct spdk_nvmf_rdma_device *device, 1674 struct spdk_nvmf_rdma_request *rdma_req) 1675 { 1676 struct spdk_nvmf_rdma_qpair *rqpair; 1677 struct spdk_nvmf_rdma_poll_group *rgroup; 1678 struct ibv_send_wr *current_wr; 1679 struct spdk_nvmf_request *req = &rdma_req->req; 1680 struct spdk_nvme_sgl_descriptor *inline_segment, *desc; 1681 uint32_t num_sgl_descriptors; 1682 uint32_t lengths[SPDK_NVMF_MAX_SGL_ENTRIES]; 1683 uint32_t i; 1684 int rc; 1685 1686 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1687 rgroup = rqpair->poller->group; 1688 1689 inline_segment = &req->cmd->nvme_cmd.dptr.sgl1; 1690 assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT); 1691 assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET); 1692 1693 num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor); 1694 assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES); 1695 1696 if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) { 1697 return -ENOMEM; 1698 } 1699 1700 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1701 for (i = 0; i < num_sgl_descriptors; i++) { 1702 if (spdk_likely(!req->dif.dif_insert_or_strip)) { 1703 lengths[i] = desc->keyed.length; 1704 } else { 1705 req->dif.orig_length += desc->keyed.length; 1706 lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx); 1707 req->dif.elba_length += lengths[i]; 1708 } 1709 desc++; 1710 } 1711 1712 rc = spdk_nvmf_request_get_buffers_multi(req, &rgroup->group, &rtransport->transport, 1713 lengths, num_sgl_descriptors); 1714 if (rc != 0) { 1715 nvmf_rdma_request_free_data(rdma_req, rtransport); 1716 return rc; 1717 } 1718 1719 /* The first WR must always be the embedded data WR. This is how we unwind them later. */ 1720 current_wr = &rdma_req->data.wr; 1721 assert(current_wr != NULL); 1722 1723 req->length = 0; 1724 rdma_req->iovpos = 0; 1725 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1726 for (i = 0; i < num_sgl_descriptors; i++) { 1727 /* The descriptors must be keyed data block descriptors with an address, not an offset. */ 1728 if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK || 1729 desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) { 1730 rc = -EINVAL; 1731 goto err_exit; 1732 } 1733 1734 current_wr->num_sge = 0; 1735 1736 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i], 0); 1737 if (rc != 0) { 1738 rc = -ENOMEM; 1739 goto err_exit; 1740 } 1741 1742 req->length += desc->keyed.length; 1743 current_wr->wr.rdma.rkey = desc->keyed.key; 1744 current_wr->wr.rdma.remote_addr = desc->address; 1745 current_wr = current_wr->next; 1746 desc++; 1747 } 1748 1749 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1750 /* Go back to the last descriptor in the list. */ 1751 desc--; 1752 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1753 if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1754 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1755 rdma_req->rsp.wr.imm_data = desc->keyed.key; 1756 } 1757 } 1758 #endif 1759 1760 rdma_req->num_outstanding_data_wr = num_sgl_descriptors; 1761 1762 return 0; 1763 1764 err_exit: 1765 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1766 nvmf_rdma_request_free_data(rdma_req, rtransport); 1767 return rc; 1768 } 1769 1770 static int 1771 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1772 struct spdk_nvmf_rdma_device *device, 1773 struct spdk_nvmf_rdma_request *rdma_req) 1774 { 1775 struct spdk_nvmf_request *req = &rdma_req->req; 1776 struct spdk_nvme_cpl *rsp; 1777 struct spdk_nvme_sgl_descriptor *sgl; 1778 int rc; 1779 uint32_t length; 1780 1781 rsp = &req->rsp->nvme_cpl; 1782 sgl = &req->cmd->nvme_cmd.dptr.sgl1; 1783 1784 if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK && 1785 (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS || 1786 sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) { 1787 1788 length = sgl->keyed.length; 1789 if (length > rtransport->transport.opts.max_io_size) { 1790 SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n", 1791 length, rtransport->transport.opts.max_io_size); 1792 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1793 return -1; 1794 } 1795 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1796 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1797 if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1798 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1799 rdma_req->rsp.wr.imm_data = sgl->keyed.key; 1800 } 1801 } 1802 #endif 1803 1804 /* fill request length and populate iovs */ 1805 req->length = length; 1806 1807 if (spdk_unlikely(req->dif.dif_insert_or_strip)) { 1808 req->dif.orig_length = length; 1809 length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx); 1810 req->dif.elba_length = length; 1811 } 1812 1813 rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req, length); 1814 if (spdk_unlikely(rc < 0)) { 1815 if (rc == -EINVAL) { 1816 SPDK_ERRLOG("SGL length exceeds the max I/O size\n"); 1817 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1818 return -1; 1819 } 1820 /* No available buffers. Queue this request up. */ 1821 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req); 1822 return 0; 1823 } 1824 1825 /* backward compatible */ 1826 req->data = req->iov[0].iov_base; 1827 1828 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req, 1829 req->iovcnt); 1830 1831 return 0; 1832 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK && 1833 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1834 uint64_t offset = sgl->address; 1835 uint32_t max_len = rtransport->transport.opts.in_capsule_data_size; 1836 1837 SPDK_DEBUGLOG(SPDK_LOG_NVMF, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n", 1838 offset, sgl->unkeyed.length); 1839 1840 if (offset > max_len) { 1841 SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n", 1842 offset, max_len); 1843 rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET; 1844 return -1; 1845 } 1846 max_len -= (uint32_t)offset; 1847 1848 if (sgl->unkeyed.length > max_len) { 1849 SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n", 1850 sgl->unkeyed.length, max_len); 1851 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1852 return -1; 1853 } 1854 1855 rdma_req->num_outstanding_data_wr = 0; 1856 req->data = rdma_req->recv->buf + offset; 1857 req->data_from_pool = false; 1858 req->length = sgl->unkeyed.length; 1859 1860 req->iov[0].iov_base = req->data; 1861 req->iov[0].iov_len = req->length; 1862 req->iovcnt = 1; 1863 1864 return 0; 1865 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT && 1866 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1867 1868 rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req); 1869 if (rc == -ENOMEM) { 1870 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req); 1871 return 0; 1872 } else if (rc == -EINVAL) { 1873 SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n"); 1874 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1875 return -1; 1876 } 1877 1878 /* backward compatible */ 1879 req->data = req->iov[0].iov_base; 1880 1881 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req, 1882 req->iovcnt); 1883 1884 return 0; 1885 } 1886 1887 SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n", 1888 sgl->generic.type, sgl->generic.subtype); 1889 rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID; 1890 return -1; 1891 } 1892 1893 static void 1894 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req, 1895 struct spdk_nvmf_rdma_transport *rtransport) 1896 { 1897 struct spdk_nvmf_rdma_qpair *rqpair; 1898 struct spdk_nvmf_rdma_poll_group *rgroup; 1899 1900 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1901 if (rdma_req->req.data_from_pool) { 1902 rgroup = rqpair->poller->group; 1903 1904 spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport); 1905 } 1906 nvmf_rdma_request_free_data(rdma_req, rtransport); 1907 rdma_req->req.length = 0; 1908 rdma_req->req.iovcnt = 0; 1909 rdma_req->req.data = NULL; 1910 rdma_req->rsp.wr.next = NULL; 1911 rdma_req->data.wr.next = NULL; 1912 memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif)); 1913 rqpair->qd--; 1914 1915 STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link); 1916 rdma_req->state = RDMA_REQUEST_STATE_FREE; 1917 } 1918 1919 bool 1920 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 1921 struct spdk_nvmf_rdma_request *rdma_req) 1922 { 1923 struct spdk_nvmf_rdma_qpair *rqpair; 1924 struct spdk_nvmf_rdma_device *device; 1925 struct spdk_nvmf_rdma_poll_group *rgroup; 1926 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 1927 int rc; 1928 struct spdk_nvmf_rdma_recv *rdma_recv; 1929 enum spdk_nvmf_rdma_request_state prev_state; 1930 bool progress = false; 1931 int data_posted; 1932 uint32_t num_blocks; 1933 1934 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1935 device = rqpair->device; 1936 rgroup = rqpair->poller->group; 1937 1938 assert(rdma_req->state != RDMA_REQUEST_STATE_FREE); 1939 1940 /* If the queue pair is in an error state, force the request to the completed state 1941 * to release resources. */ 1942 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 1943 if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) { 1944 STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link); 1945 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) { 1946 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 1947 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) { 1948 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 1949 } 1950 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 1951 } 1952 1953 /* The loop here is to allow for several back-to-back state changes. */ 1954 do { 1955 prev_state = rdma_req->state; 1956 1957 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p entering state %d\n", rdma_req, prev_state); 1958 1959 switch (rdma_req->state) { 1960 case RDMA_REQUEST_STATE_FREE: 1961 /* Some external code must kick a request into RDMA_REQUEST_STATE_NEW 1962 * to escape this state. */ 1963 break; 1964 case RDMA_REQUEST_STATE_NEW: 1965 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0, 1966 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 1967 rdma_recv = rdma_req->recv; 1968 1969 /* The first element of the SGL is the NVMe command */ 1970 rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr; 1971 memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp)); 1972 1973 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 1974 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 1975 break; 1976 } 1977 1978 if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) { 1979 rdma_req->req.dif.dif_insert_or_strip = true; 1980 } 1981 1982 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1983 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 1984 rdma_req->rsp.wr.imm_data = 0; 1985 #endif 1986 1987 /* The next state transition depends on the data transfer needs of this request. */ 1988 rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req); 1989 1990 /* If no data to transfer, ready to execute. */ 1991 if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) { 1992 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 1993 break; 1994 } 1995 1996 rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER; 1997 STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link); 1998 break; 1999 case RDMA_REQUEST_STATE_NEED_BUFFER: 2000 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0, 2001 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2002 2003 assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE); 2004 2005 if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) { 2006 /* This request needs to wait in line to obtain a buffer */ 2007 break; 2008 } 2009 2010 /* Try to get a data buffer */ 2011 rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req); 2012 if (rc < 0) { 2013 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2014 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2015 break; 2016 } 2017 2018 if (!rdma_req->req.data) { 2019 /* No buffers available. */ 2020 rgroup->stat.pending_data_buffer++; 2021 break; 2022 } 2023 2024 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2025 2026 /* If data is transferring from host to controller and the data didn't 2027 * arrive using in capsule data, we need to do a transfer from the host. 2028 */ 2029 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && 2030 rdma_req->req.data_from_pool) { 2031 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link); 2032 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING; 2033 break; 2034 } 2035 2036 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2037 break; 2038 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 2039 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0, 2040 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2041 2042 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) { 2043 /* This request needs to wait in line to perform RDMA */ 2044 break; 2045 } 2046 if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth 2047 || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) { 2048 /* We can only have so many WRs outstanding. we have to wait until some finish. */ 2049 rqpair->poller->stat.pending_rdma_read++; 2050 break; 2051 } 2052 2053 /* We have already verified that this request is the head of the queue. */ 2054 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link); 2055 2056 rc = request_transfer_in(&rdma_req->req); 2057 if (!rc) { 2058 rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER; 2059 } else { 2060 rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 2061 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2062 } 2063 break; 2064 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 2065 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0, 2066 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2067 /* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE 2068 * to escape this state. */ 2069 break; 2070 case RDMA_REQUEST_STATE_READY_TO_EXECUTE: 2071 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0, 2072 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2073 2074 if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) { 2075 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 2076 /* generate DIF for write operation */ 2077 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2078 assert(num_blocks > 0); 2079 2080 rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt, 2081 num_blocks, &rdma_req->req.dif.dif_ctx); 2082 if (rc != 0) { 2083 SPDK_ERRLOG("DIF generation failed\n"); 2084 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2085 nvmf_rdma_start_disconnect(rqpair); 2086 break; 2087 } 2088 } 2089 2090 assert(rdma_req->req.dif.elba_length >= rdma_req->req.length); 2091 /* set extended length before IO operation */ 2092 rdma_req->req.length = rdma_req->req.dif.elba_length; 2093 } 2094 2095 rdma_req->state = RDMA_REQUEST_STATE_EXECUTING; 2096 spdk_nvmf_request_exec(&rdma_req->req); 2097 break; 2098 case RDMA_REQUEST_STATE_EXECUTING: 2099 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0, 2100 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2101 /* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED 2102 * to escape this state. */ 2103 break; 2104 case RDMA_REQUEST_STATE_EXECUTED: 2105 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0, 2106 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2107 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2108 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link); 2109 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING; 2110 } else { 2111 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2112 } 2113 if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) { 2114 /* restore the original length */ 2115 rdma_req->req.length = rdma_req->req.dif.orig_length; 2116 2117 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2118 struct spdk_dif_error error_blk; 2119 2120 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2121 2122 rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2123 &rdma_req->req.dif.dif_ctx, &error_blk); 2124 if (rc) { 2125 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2126 2127 SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type, 2128 error_blk.err_offset); 2129 rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR; 2130 rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type); 2131 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2132 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2133 } 2134 } 2135 } 2136 break; 2137 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 2138 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0, 2139 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2140 2141 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) { 2142 /* This request needs to wait in line to perform RDMA */ 2143 break; 2144 } 2145 if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) > 2146 rqpair->max_send_depth) { 2147 /* We can only have so many WRs outstanding. we have to wait until some finish. 2148 * +1 since each request has an additional wr in the resp. */ 2149 rqpair->poller->stat.pending_rdma_write++; 2150 break; 2151 } 2152 2153 /* We have already verified that this request is the head of the queue. */ 2154 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link); 2155 2156 /* The data transfer will be kicked off from 2157 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state. 2158 */ 2159 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2160 break; 2161 case RDMA_REQUEST_STATE_READY_TO_COMPLETE: 2162 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0, 2163 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2164 rc = request_transfer_out(&rdma_req->req, &data_posted); 2165 assert(rc == 0); /* No good way to handle this currently */ 2166 if (rc) { 2167 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2168 } else { 2169 rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST : 2170 RDMA_REQUEST_STATE_COMPLETING; 2171 } 2172 break; 2173 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 2174 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0, 2175 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2176 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2177 * to escape this state. */ 2178 break; 2179 case RDMA_REQUEST_STATE_COMPLETING: 2180 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0, 2181 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2182 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2183 * to escape this state. */ 2184 break; 2185 case RDMA_REQUEST_STATE_COMPLETED: 2186 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0, 2187 (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); 2188 2189 rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc; 2190 _nvmf_rdma_request_free(rdma_req, rtransport); 2191 break; 2192 case RDMA_REQUEST_NUM_STATES: 2193 default: 2194 assert(0); 2195 break; 2196 } 2197 2198 if (rdma_req->state != prev_state) { 2199 progress = true; 2200 } 2201 } while (rdma_req->state != prev_state); 2202 2203 return progress; 2204 } 2205 2206 /* Public API callbacks begin here */ 2207 2208 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128 2209 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128 2210 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096 2211 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128 2212 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096 2213 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072 2214 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES) 2215 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095 2216 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32 2217 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false 2218 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false 2219 2220 static void 2221 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts) 2222 { 2223 opts->max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH; 2224 opts->max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR; 2225 opts->in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE; 2226 opts->max_io_size = SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE; 2227 opts->io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE; 2228 opts->max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH; 2229 opts->num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS; 2230 opts->buf_cache_size = SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE; 2231 opts->max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH; 2232 opts->no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ; 2233 opts->dif_insert_or_strip = SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP; 2234 } 2235 2236 const struct spdk_mem_map_ops g_nvmf_rdma_map_ops = { 2237 .notify_cb = nvmf_rdma_mem_notify, 2238 .are_contiguous = nvmf_rdma_check_contiguous_entries 2239 }; 2240 2241 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport); 2242 2243 static struct spdk_nvmf_transport * 2244 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts) 2245 { 2246 int rc; 2247 struct spdk_nvmf_rdma_transport *rtransport; 2248 struct spdk_nvmf_rdma_device *device, *tmp; 2249 struct ibv_context **contexts; 2250 uint32_t i; 2251 int flag; 2252 uint32_t sge_count; 2253 uint32_t min_shared_buffers; 2254 int max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES; 2255 pthread_mutexattr_t attr; 2256 2257 rtransport = calloc(1, sizeof(*rtransport)); 2258 if (!rtransport) { 2259 return NULL; 2260 } 2261 2262 if (pthread_mutexattr_init(&attr)) { 2263 SPDK_ERRLOG("pthread_mutexattr_init() failed\n"); 2264 free(rtransport); 2265 return NULL; 2266 } 2267 2268 if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) { 2269 SPDK_ERRLOG("pthread_mutexattr_settype() failed\n"); 2270 pthread_mutexattr_destroy(&attr); 2271 free(rtransport); 2272 return NULL; 2273 } 2274 2275 if (pthread_mutex_init(&rtransport->lock, &attr)) { 2276 SPDK_ERRLOG("pthread_mutex_init() failed\n"); 2277 pthread_mutexattr_destroy(&attr); 2278 free(rtransport); 2279 return NULL; 2280 } 2281 2282 pthread_mutexattr_destroy(&attr); 2283 2284 TAILQ_INIT(&rtransport->devices); 2285 TAILQ_INIT(&rtransport->ports); 2286 TAILQ_INIT(&rtransport->poll_groups); 2287 2288 rtransport->transport.ops = &spdk_nvmf_transport_rdma; 2289 2290 SPDK_INFOLOG(SPDK_LOG_RDMA, "*** RDMA Transport Init ***\n" 2291 " Transport opts: max_ioq_depth=%d, max_io_size=%d,\n" 2292 " max_qpairs_per_ctrlr=%d, io_unit_size=%d,\n" 2293 " in_capsule_data_size=%d, max_aq_depth=%d,\n" 2294 " num_shared_buffers=%d, max_srq_depth=%d, no_srq=%d\n", 2295 opts->max_queue_depth, 2296 opts->max_io_size, 2297 opts->max_qpairs_per_ctrlr, 2298 opts->io_unit_size, 2299 opts->in_capsule_data_size, 2300 opts->max_aq_depth, 2301 opts->num_shared_buffers, 2302 opts->max_srq_depth, 2303 opts->no_srq); 2304 2305 /* I/O unit size cannot be larger than max I/O size */ 2306 if (opts->io_unit_size > opts->max_io_size) { 2307 opts->io_unit_size = opts->max_io_size; 2308 } 2309 2310 if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) { 2311 SPDK_ERRLOG("The number of shared data buffers (%d) is less than" 2312 "the minimum number required to guarantee that forward progress can be made (%d)\n", 2313 opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2)); 2314 nvmf_rdma_destroy(&rtransport->transport); 2315 return NULL; 2316 } 2317 2318 min_shared_buffers = spdk_thread_get_count() * opts->buf_cache_size; 2319 if (min_shared_buffers > opts->num_shared_buffers) { 2320 SPDK_ERRLOG("There are not enough buffers to satisfy" 2321 "per-poll group caches for each thread. (%" PRIu32 ")" 2322 "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers); 2323 SPDK_ERRLOG("Please specify a larger number of shared buffers\n"); 2324 nvmf_rdma_destroy(&rtransport->transport); 2325 return NULL; 2326 } 2327 2328 sge_count = opts->max_io_size / opts->io_unit_size; 2329 if (sge_count > NVMF_DEFAULT_TX_SGE) { 2330 SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size); 2331 nvmf_rdma_destroy(&rtransport->transport); 2332 return NULL; 2333 } 2334 2335 rtransport->event_channel = rdma_create_event_channel(); 2336 if (rtransport->event_channel == NULL) { 2337 SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno)); 2338 nvmf_rdma_destroy(&rtransport->transport); 2339 return NULL; 2340 } 2341 2342 flag = fcntl(rtransport->event_channel->fd, F_GETFL); 2343 if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { 2344 SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n", 2345 rtransport->event_channel->fd, spdk_strerror(errno)); 2346 nvmf_rdma_destroy(&rtransport->transport); 2347 return NULL; 2348 } 2349 2350 rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data", 2351 opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES, 2352 sizeof(struct spdk_nvmf_rdma_request_data), 2353 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 2354 SPDK_ENV_SOCKET_ID_ANY); 2355 if (!rtransport->data_wr_pool) { 2356 SPDK_ERRLOG("Unable to allocate work request pool for poll group\n"); 2357 nvmf_rdma_destroy(&rtransport->transport); 2358 return NULL; 2359 } 2360 2361 contexts = rdma_get_devices(NULL); 2362 if (contexts == NULL) { 2363 SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); 2364 nvmf_rdma_destroy(&rtransport->transport); 2365 return NULL; 2366 } 2367 2368 i = 0; 2369 rc = 0; 2370 while (contexts[i] != NULL) { 2371 device = calloc(1, sizeof(*device)); 2372 if (!device) { 2373 SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n"); 2374 rc = -ENOMEM; 2375 break; 2376 } 2377 device->context = contexts[i]; 2378 rc = ibv_query_device(device->context, &device->attr); 2379 if (rc < 0) { 2380 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 2381 free(device); 2382 break; 2383 2384 } 2385 2386 max_device_sge = spdk_min(max_device_sge, device->attr.max_sge); 2387 2388 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2389 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) { 2390 SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,"); 2391 SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id); 2392 } 2393 2394 /** 2395 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE. 2396 * The Soft-RoCE RXE driver does not currently support send with invalidate, 2397 * but incorrectly reports that it does. There are changes making their way 2398 * through the kernel now that will enable this feature. When they are merged, 2399 * we can conditionally enable this feature. 2400 * 2401 * TODO: enable this for versions of the kernel rxe driver that support it. 2402 */ 2403 if (device->attr.vendor_id == 0) { 2404 device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS); 2405 } 2406 #endif 2407 2408 /* set up device context async ev fd as NON_BLOCKING */ 2409 flag = fcntl(device->context->async_fd, F_GETFL); 2410 rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK); 2411 if (rc < 0) { 2412 SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n"); 2413 free(device); 2414 break; 2415 } 2416 2417 TAILQ_INSERT_TAIL(&rtransport->devices, device, link); 2418 i++; 2419 2420 if (g_nvmf_hooks.get_ibv_pd) { 2421 device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context); 2422 } else { 2423 device->pd = ibv_alloc_pd(device->context); 2424 } 2425 2426 if (!device->pd) { 2427 SPDK_ERRLOG("Unable to allocate protection domain.\n"); 2428 rc = -ENOMEM; 2429 break; 2430 } 2431 2432 assert(device->map == NULL); 2433 2434 device->map = spdk_mem_map_alloc(0, &g_nvmf_rdma_map_ops, device->pd); 2435 if (!device->map) { 2436 SPDK_ERRLOG("Unable to allocate memory map for listen address\n"); 2437 rc = -ENOMEM; 2438 break; 2439 } 2440 2441 assert(device->map != NULL); 2442 assert(device->pd != NULL); 2443 } 2444 rdma_free_devices(contexts); 2445 2446 if (opts->io_unit_size * max_device_sge < opts->max_io_size) { 2447 /* divide and round up. */ 2448 opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge; 2449 2450 /* round up to the nearest 4k. */ 2451 opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK; 2452 2453 opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE); 2454 SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n", 2455 opts->io_unit_size); 2456 } 2457 2458 if (rc < 0) { 2459 nvmf_rdma_destroy(&rtransport->transport); 2460 return NULL; 2461 } 2462 2463 /* Set up poll descriptor array to monitor events from RDMA and IB 2464 * in a single poll syscall 2465 */ 2466 rtransport->npoll_fds = i + 1; 2467 i = 0; 2468 rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd)); 2469 if (rtransport->poll_fds == NULL) { 2470 SPDK_ERRLOG("poll_fds allocation failed\n"); 2471 nvmf_rdma_destroy(&rtransport->transport); 2472 return NULL; 2473 } 2474 2475 rtransport->poll_fds[i].fd = rtransport->event_channel->fd; 2476 rtransport->poll_fds[i++].events = POLLIN; 2477 2478 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 2479 rtransport->poll_fds[i].fd = device->context->async_fd; 2480 rtransport->poll_fds[i++].events = POLLIN; 2481 } 2482 2483 spdk_nvmf_ctrlr_data_init(opts, &rtransport->transport.cdata); 2484 2485 rtransport->transport.cdata.nvmf_specific.msdbd = SPDK_NVMF_MAX_SGL_ENTRIES; 2486 2487 /* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled 2488 since in-capsule data only works with NVME drives that support SGL memory layout */ 2489 if (opts->dif_insert_or_strip) { 2490 rtransport->transport.cdata.nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16; 2491 } 2492 2493 return &rtransport->transport; 2494 } 2495 2496 static int 2497 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport) 2498 { 2499 struct spdk_nvmf_rdma_transport *rtransport; 2500 struct spdk_nvmf_rdma_port *port, *port_tmp; 2501 struct spdk_nvmf_rdma_device *device, *device_tmp; 2502 2503 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2504 2505 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) { 2506 TAILQ_REMOVE(&rtransport->ports, port, link); 2507 rdma_destroy_id(port->id); 2508 free(port); 2509 } 2510 2511 if (rtransport->poll_fds != NULL) { 2512 free(rtransport->poll_fds); 2513 } 2514 2515 if (rtransport->event_channel != NULL) { 2516 rdma_destroy_event_channel(rtransport->event_channel); 2517 } 2518 2519 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) { 2520 TAILQ_REMOVE(&rtransport->devices, device, link); 2521 if (device->map) { 2522 spdk_mem_map_free(&device->map); 2523 } 2524 if (device->pd) { 2525 if (!g_nvmf_hooks.get_ibv_pd) { 2526 ibv_dealloc_pd(device->pd); 2527 } 2528 } 2529 free(device); 2530 } 2531 2532 if (rtransport->data_wr_pool != NULL) { 2533 if (spdk_mempool_count(rtransport->data_wr_pool) != 2534 (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) { 2535 SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n", 2536 spdk_mempool_count(rtransport->data_wr_pool), 2537 transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES); 2538 } 2539 } 2540 2541 spdk_mempool_free(rtransport->data_wr_pool); 2542 2543 pthread_mutex_destroy(&rtransport->lock); 2544 free(rtransport); 2545 2546 return 0; 2547 } 2548 2549 static int 2550 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 2551 struct spdk_nvme_transport_id *trid, 2552 bool peer); 2553 2554 static int 2555 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, 2556 const struct spdk_nvme_transport_id *trid) 2557 { 2558 struct spdk_nvmf_rdma_transport *rtransport; 2559 struct spdk_nvmf_rdma_device *device; 2560 struct spdk_nvmf_rdma_port *port; 2561 struct addrinfo *res; 2562 struct addrinfo hints; 2563 int family; 2564 int rc; 2565 2566 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2567 assert(rtransport->event_channel != NULL); 2568 2569 pthread_mutex_lock(&rtransport->lock); 2570 port = calloc(1, sizeof(*port)); 2571 if (!port) { 2572 SPDK_ERRLOG("Port allocation failed\n"); 2573 pthread_mutex_unlock(&rtransport->lock); 2574 return -ENOMEM; 2575 } 2576 2577 port->trid = trid; 2578 2579 switch (trid->adrfam) { 2580 case SPDK_NVMF_ADRFAM_IPV4: 2581 family = AF_INET; 2582 break; 2583 case SPDK_NVMF_ADRFAM_IPV6: 2584 family = AF_INET6; 2585 break; 2586 default: 2587 SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam); 2588 free(port); 2589 pthread_mutex_unlock(&rtransport->lock); 2590 return -EINVAL; 2591 } 2592 2593 memset(&hints, 0, sizeof(hints)); 2594 hints.ai_family = family; 2595 hints.ai_flags = AI_NUMERICSERV; 2596 hints.ai_socktype = SOCK_STREAM; 2597 hints.ai_protocol = 0; 2598 2599 rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res); 2600 if (rc) { 2601 SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc); 2602 free(port); 2603 pthread_mutex_unlock(&rtransport->lock); 2604 return -EINVAL; 2605 } 2606 2607 rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP); 2608 if (rc < 0) { 2609 SPDK_ERRLOG("rdma_create_id() failed\n"); 2610 freeaddrinfo(res); 2611 free(port); 2612 pthread_mutex_unlock(&rtransport->lock); 2613 return rc; 2614 } 2615 2616 rc = rdma_bind_addr(port->id, res->ai_addr); 2617 freeaddrinfo(res); 2618 2619 if (rc < 0) { 2620 SPDK_ERRLOG("rdma_bind_addr() failed\n"); 2621 rdma_destroy_id(port->id); 2622 free(port); 2623 pthread_mutex_unlock(&rtransport->lock); 2624 return rc; 2625 } 2626 2627 if (!port->id->verbs) { 2628 SPDK_ERRLOG("ibv_context is null\n"); 2629 rdma_destroy_id(port->id); 2630 free(port); 2631 pthread_mutex_unlock(&rtransport->lock); 2632 return -1; 2633 } 2634 2635 rc = rdma_listen(port->id, 10); /* 10 = backlog */ 2636 if (rc < 0) { 2637 SPDK_ERRLOG("rdma_listen() failed\n"); 2638 rdma_destroy_id(port->id); 2639 free(port); 2640 pthread_mutex_unlock(&rtransport->lock); 2641 return rc; 2642 } 2643 2644 TAILQ_FOREACH(device, &rtransport->devices, link) { 2645 if (device->context == port->id->verbs) { 2646 port->device = device; 2647 break; 2648 } 2649 } 2650 if (!port->device) { 2651 SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n", 2652 port->id->verbs); 2653 rdma_destroy_id(port->id); 2654 free(port); 2655 pthread_mutex_unlock(&rtransport->lock); 2656 return -EINVAL; 2657 } 2658 2659 SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n", 2660 trid->traddr, trid->trsvcid); 2661 2662 TAILQ_INSERT_TAIL(&rtransport->ports, port, link); 2663 pthread_mutex_unlock(&rtransport->lock); 2664 return 0; 2665 } 2666 2667 static void 2668 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport, 2669 const struct spdk_nvme_transport_id *trid) 2670 { 2671 struct spdk_nvmf_rdma_transport *rtransport; 2672 struct spdk_nvmf_rdma_port *port, *tmp; 2673 2674 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2675 2676 pthread_mutex_lock(&rtransport->lock); 2677 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) { 2678 if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) { 2679 TAILQ_REMOVE(&rtransport->ports, port, link); 2680 rdma_destroy_id(port->id); 2681 free(port); 2682 break; 2683 } 2684 } 2685 2686 pthread_mutex_unlock(&rtransport->lock); 2687 } 2688 2689 static void 2690 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport, 2691 struct spdk_nvmf_rdma_qpair *rqpair, bool drain) 2692 { 2693 struct spdk_nvmf_request *req, *tmp; 2694 struct spdk_nvmf_rdma_request *rdma_req, *req_tmp; 2695 struct spdk_nvmf_rdma_resources *resources; 2696 2697 /* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */ 2698 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) { 2699 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2700 break; 2701 } 2702 } 2703 2704 /* Then RDMA writes since reads have stronger restrictions than writes */ 2705 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) { 2706 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2707 break; 2708 } 2709 } 2710 2711 /* The second highest priority is I/O waiting on memory buffers. */ 2712 STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) { 2713 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 2714 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 2715 break; 2716 } 2717 } 2718 2719 resources = rqpair->resources; 2720 while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) { 2721 rdma_req = STAILQ_FIRST(&resources->free_queue); 2722 STAILQ_REMOVE_HEAD(&resources->free_queue, state_link); 2723 rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue); 2724 STAILQ_REMOVE_HEAD(&resources->incoming_queue, link); 2725 2726 if (rqpair->srq != NULL) { 2727 rdma_req->req.qpair = &rdma_req->recv->qpair->qpair; 2728 rdma_req->recv->qpair->qd++; 2729 } else { 2730 rqpair->qd++; 2731 } 2732 2733 rdma_req->receive_tsc = rdma_req->recv->receive_tsc; 2734 rdma_req->state = RDMA_REQUEST_STATE_NEW; 2735 if (nvmf_rdma_request_process(rtransport, rdma_req) == false) { 2736 break; 2737 } 2738 } 2739 if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) { 2740 rqpair->poller->stat.pending_free_request++; 2741 } 2742 } 2743 2744 static void 2745 _nvmf_rdma_qpair_disconnect(void *ctx) 2746 { 2747 struct spdk_nvmf_qpair *qpair = ctx; 2748 2749 spdk_nvmf_qpair_disconnect(qpair, NULL, NULL); 2750 } 2751 2752 static void 2753 _nvmf_rdma_try_disconnect(void *ctx) 2754 { 2755 struct spdk_nvmf_qpair *qpair = ctx; 2756 struct spdk_nvmf_poll_group *group; 2757 2758 /* Read the group out of the qpair. This is normally set and accessed only from 2759 * the thread that created the group. Here, we're not on that thread necessarily. 2760 * The data member qpair->group begins it's life as NULL and then is assigned to 2761 * a pointer and never changes. So fortunately reading this and checking for 2762 * non-NULL is thread safe in the x86_64 memory model. */ 2763 group = qpair->group; 2764 2765 if (group == NULL) { 2766 /* The qpair hasn't been assigned to a group yet, so we can't 2767 * process a disconnect. Send a message to ourself and try again. */ 2768 spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_try_disconnect, qpair); 2769 return; 2770 } 2771 2772 spdk_thread_send_msg(group->thread, _nvmf_rdma_qpair_disconnect, qpair); 2773 } 2774 2775 static inline void 2776 nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair) 2777 { 2778 if (!__atomic_test_and_set(&rqpair->disconnect_started, __ATOMIC_RELAXED)) { 2779 _nvmf_rdma_try_disconnect(&rqpair->qpair); 2780 } 2781 } 2782 2783 static void nvmf_rdma_destroy_drained_qpair(void *ctx) 2784 { 2785 struct spdk_nvmf_rdma_qpair *rqpair = ctx; 2786 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 2787 struct spdk_nvmf_rdma_transport, transport); 2788 2789 /* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */ 2790 if (rqpair->current_send_depth != 0) { 2791 return; 2792 } 2793 2794 if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) { 2795 return; 2796 } 2797 2798 if (rqpair->srq != NULL && rqpair->last_wqe_reached == false) { 2799 return; 2800 } 2801 2802 nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); 2803 2804 /* Qpair will be destroyed after nvmf layer closes this qpair */ 2805 if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ERROR) { 2806 return; 2807 } 2808 2809 nvmf_rdma_qpair_destroy(rqpair); 2810 } 2811 2812 2813 static int 2814 nvmf_rdma_disconnect(struct rdma_cm_event *evt) 2815 { 2816 struct spdk_nvmf_qpair *qpair; 2817 struct spdk_nvmf_rdma_qpair *rqpair; 2818 2819 if (evt->id == NULL) { 2820 SPDK_ERRLOG("disconnect request: missing cm_id\n"); 2821 return -1; 2822 } 2823 2824 qpair = evt->id->context; 2825 if (qpair == NULL) { 2826 SPDK_ERRLOG("disconnect request: no active connection\n"); 2827 return -1; 2828 } 2829 2830 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 2831 2832 spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair->cm_id, 0); 2833 2834 nvmf_rdma_start_disconnect(rqpair); 2835 2836 return 0; 2837 } 2838 2839 #ifdef DEBUG 2840 static const char *CM_EVENT_STR[] = { 2841 "RDMA_CM_EVENT_ADDR_RESOLVED", 2842 "RDMA_CM_EVENT_ADDR_ERROR", 2843 "RDMA_CM_EVENT_ROUTE_RESOLVED", 2844 "RDMA_CM_EVENT_ROUTE_ERROR", 2845 "RDMA_CM_EVENT_CONNECT_REQUEST", 2846 "RDMA_CM_EVENT_CONNECT_RESPONSE", 2847 "RDMA_CM_EVENT_CONNECT_ERROR", 2848 "RDMA_CM_EVENT_UNREACHABLE", 2849 "RDMA_CM_EVENT_REJECTED", 2850 "RDMA_CM_EVENT_ESTABLISHED", 2851 "RDMA_CM_EVENT_DISCONNECTED", 2852 "RDMA_CM_EVENT_DEVICE_REMOVAL", 2853 "RDMA_CM_EVENT_MULTICAST_JOIN", 2854 "RDMA_CM_EVENT_MULTICAST_ERROR", 2855 "RDMA_CM_EVENT_ADDR_CHANGE", 2856 "RDMA_CM_EVENT_TIMEWAIT_EXIT" 2857 }; 2858 #endif /* DEBUG */ 2859 2860 static void 2861 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport, 2862 struct spdk_nvmf_rdma_port *port) 2863 { 2864 struct spdk_nvmf_rdma_poll_group *rgroup; 2865 struct spdk_nvmf_rdma_poller *rpoller; 2866 struct spdk_nvmf_rdma_qpair *rqpair; 2867 2868 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 2869 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 2870 TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) { 2871 if (rqpair->listen_id == port->id) { 2872 nvmf_rdma_start_disconnect(rqpair); 2873 } 2874 } 2875 } 2876 } 2877 } 2878 2879 static bool 2880 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport, 2881 struct rdma_cm_event *event) 2882 { 2883 const struct spdk_nvme_transport_id *trid; 2884 struct spdk_nvmf_rdma_port *port; 2885 struct spdk_nvmf_rdma_transport *rtransport; 2886 bool event_acked = false; 2887 2888 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2889 TAILQ_FOREACH(port, &rtransport->ports, link) { 2890 if (port->id == event->id) { 2891 SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid); 2892 rdma_ack_cm_event(event); 2893 event_acked = true; 2894 trid = port->trid; 2895 break; 2896 } 2897 } 2898 2899 if (event_acked) { 2900 nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); 2901 2902 nvmf_rdma_stop_listen(transport, trid); 2903 nvmf_rdma_listen(transport, trid); 2904 } 2905 2906 return event_acked; 2907 } 2908 2909 static void 2910 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport, 2911 struct rdma_cm_event *event) 2912 { 2913 struct spdk_nvmf_rdma_port *port; 2914 struct spdk_nvmf_rdma_transport *rtransport; 2915 2916 port = event->id->context; 2917 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2918 2919 SPDK_NOTICELOG("Port %s:%s is being removed\n", port->trid->traddr, port->trid->trsvcid); 2920 2921 nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); 2922 2923 rdma_ack_cm_event(event); 2924 2925 while (spdk_nvmf_transport_stop_listen(transport, port->trid) == 0) { 2926 ; 2927 } 2928 } 2929 2930 static void 2931 nvmf_process_cm_event(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn, void *cb_arg) 2932 { 2933 struct spdk_nvmf_rdma_transport *rtransport; 2934 struct rdma_cm_event *event; 2935 int rc; 2936 bool event_acked; 2937 2938 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2939 2940 if (rtransport->event_channel == NULL) { 2941 return; 2942 } 2943 2944 while (1) { 2945 event_acked = false; 2946 rc = rdma_get_cm_event(rtransport->event_channel, &event); 2947 if (rc) { 2948 if (errno != EAGAIN && errno != EWOULDBLOCK) { 2949 SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno)); 2950 } 2951 break; 2952 } 2953 2954 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]); 2955 2956 spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event); 2957 2958 switch (event->event) { 2959 case RDMA_CM_EVENT_ADDR_RESOLVED: 2960 case RDMA_CM_EVENT_ADDR_ERROR: 2961 case RDMA_CM_EVENT_ROUTE_RESOLVED: 2962 case RDMA_CM_EVENT_ROUTE_ERROR: 2963 /* No action required. The target never attempts to resolve routes. */ 2964 break; 2965 case RDMA_CM_EVENT_CONNECT_REQUEST: 2966 rc = nvmf_rdma_connect(transport, event, cb_fn, cb_arg); 2967 if (rc < 0) { 2968 SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc); 2969 break; 2970 } 2971 break; 2972 case RDMA_CM_EVENT_CONNECT_RESPONSE: 2973 /* The target never initiates a new connection. So this will not occur. */ 2974 break; 2975 case RDMA_CM_EVENT_CONNECT_ERROR: 2976 /* Can this happen? The docs say it can, but not sure what causes it. */ 2977 break; 2978 case RDMA_CM_EVENT_UNREACHABLE: 2979 case RDMA_CM_EVENT_REJECTED: 2980 /* These only occur on the client side. */ 2981 break; 2982 case RDMA_CM_EVENT_ESTABLISHED: 2983 /* TODO: Should we be waiting for this event anywhere? */ 2984 break; 2985 case RDMA_CM_EVENT_DISCONNECTED: 2986 rc = nvmf_rdma_disconnect(event); 2987 if (rc < 0) { 2988 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 2989 break; 2990 } 2991 break; 2992 case RDMA_CM_EVENT_DEVICE_REMOVAL: 2993 /* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL 2994 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s. 2995 * Once these events are sent to SPDK, we should release all IB resources and 2996 * don't make attempts to call any ibv_query/modify/create functions. We can only call 2997 * ibv_destory* functions to release user space memory allocated by IB. All kernel 2998 * resources are already cleaned. */ 2999 if (event->id->qp) { 3000 /* If rdma_cm event has a valid `qp` pointer then the event refers to the 3001 * corresponding qpair. Otherwise the event refers to a listening device */ 3002 rc = nvmf_rdma_disconnect(event); 3003 if (rc < 0) { 3004 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3005 break; 3006 } 3007 } else { 3008 nvmf_rdma_handle_cm_event_port_removal(transport, event); 3009 event_acked = true; 3010 } 3011 break; 3012 case RDMA_CM_EVENT_MULTICAST_JOIN: 3013 case RDMA_CM_EVENT_MULTICAST_ERROR: 3014 /* Multicast is not used */ 3015 break; 3016 case RDMA_CM_EVENT_ADDR_CHANGE: 3017 event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event); 3018 break; 3019 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 3020 /* For now, do nothing. The target never re-uses queue pairs. */ 3021 break; 3022 default: 3023 SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); 3024 break; 3025 } 3026 if (!event_acked) { 3027 rdma_ack_cm_event(event); 3028 } 3029 } 3030 } 3031 3032 static void 3033 nvmf_rdma_handle_qp_fatal(struct spdk_nvmf_rdma_qpair *rqpair) 3034 { 3035 nvmf_rdma_update_ibv_state(rqpair); 3036 nvmf_rdma_start_disconnect(rqpair); 3037 } 3038 3039 static void 3040 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair) 3041 { 3042 rqpair->last_wqe_reached = true; 3043 nvmf_rdma_destroy_drained_qpair(rqpair); 3044 } 3045 3046 static void 3047 nvmf_rdma_handle_sq_drained(struct spdk_nvmf_rdma_qpair *rqpair) 3048 { 3049 nvmf_rdma_start_disconnect(rqpair); 3050 } 3051 3052 static void 3053 nvmf_rdma_qpair_process_ibv_event(void *ctx) 3054 { 3055 struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx; 3056 3057 if (event_ctx->rqpair) { 3058 STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3059 if (event_ctx->cb_fn) { 3060 event_ctx->cb_fn(event_ctx->rqpair); 3061 } 3062 } 3063 free(event_ctx); 3064 } 3065 3066 static int 3067 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair, 3068 spdk_nvmf_rdma_qpair_ibv_event fn) 3069 { 3070 struct spdk_nvmf_rdma_ibv_event_ctx *ctx; 3071 3072 if (!rqpair->qpair.group) { 3073 return EINVAL; 3074 } 3075 3076 ctx = calloc(1, sizeof(*ctx)); 3077 if (!ctx) { 3078 return ENOMEM; 3079 } 3080 3081 ctx->rqpair = rqpair; 3082 ctx->cb_fn = fn; 3083 STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link); 3084 3085 return spdk_thread_send_msg(rqpair->qpair.group->thread, nvmf_rdma_qpair_process_ibv_event, 3086 ctx); 3087 } 3088 3089 static void 3090 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device) 3091 { 3092 int rc; 3093 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 3094 struct ibv_async_event event; 3095 3096 rc = ibv_get_async_event(device->context, &event); 3097 3098 if (rc) { 3099 SPDK_ERRLOG("Failed to get async_event (%d): %s\n", 3100 errno, spdk_strerror(errno)); 3101 return; 3102 } 3103 3104 switch (event.event_type) { 3105 case IBV_EVENT_QP_FATAL: 3106 rqpair = event.element.qp->qp_context; 3107 SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair); 3108 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3109 (uintptr_t)rqpair->cm_id, event.event_type); 3110 if (nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_qp_fatal)) { 3111 SPDK_ERRLOG("Failed to send QP_FATAL event for rqpair %p\n", rqpair); 3112 nvmf_rdma_handle_qp_fatal(rqpair); 3113 } 3114 break; 3115 case IBV_EVENT_QP_LAST_WQE_REACHED: 3116 /* This event only occurs for shared receive queues. */ 3117 rqpair = event.element.qp->qp_context; 3118 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last WQE reached event received for rqpair %p\n", rqpair); 3119 if (nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached)) { 3120 SPDK_ERRLOG("Failed to send LAST_WQE_REACHED event for rqpair %p\n", rqpair); 3121 rqpair->last_wqe_reached = true; 3122 } 3123 break; 3124 case IBV_EVENT_SQ_DRAINED: 3125 /* This event occurs frequently in both error and non-error states. 3126 * Check if the qpair is in an error state before sending a message. */ 3127 rqpair = event.element.qp->qp_context; 3128 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last sq drained event received for rqpair %p\n", rqpair); 3129 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3130 (uintptr_t)rqpair->cm_id, event.event_type); 3131 if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) { 3132 if (nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_sq_drained)) { 3133 SPDK_ERRLOG("Failed to send SQ_DRAINED event for rqpair %p\n", rqpair); 3134 nvmf_rdma_handle_sq_drained(rqpair); 3135 } 3136 } 3137 break; 3138 case IBV_EVENT_QP_REQ_ERR: 3139 case IBV_EVENT_QP_ACCESS_ERR: 3140 case IBV_EVENT_COMM_EST: 3141 case IBV_EVENT_PATH_MIG: 3142 case IBV_EVENT_PATH_MIG_ERR: 3143 SPDK_NOTICELOG("Async event: %s\n", 3144 ibv_event_type_str(event.event_type)); 3145 rqpair = event.element.qp->qp_context; 3146 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3147 (uintptr_t)rqpair->cm_id, event.event_type); 3148 nvmf_rdma_update_ibv_state(rqpair); 3149 break; 3150 case IBV_EVENT_CQ_ERR: 3151 case IBV_EVENT_DEVICE_FATAL: 3152 case IBV_EVENT_PORT_ACTIVE: 3153 case IBV_EVENT_PORT_ERR: 3154 case IBV_EVENT_LID_CHANGE: 3155 case IBV_EVENT_PKEY_CHANGE: 3156 case IBV_EVENT_SM_CHANGE: 3157 case IBV_EVENT_SRQ_ERR: 3158 case IBV_EVENT_SRQ_LIMIT_REACHED: 3159 case IBV_EVENT_CLIENT_REREGISTER: 3160 case IBV_EVENT_GID_CHANGE: 3161 default: 3162 SPDK_NOTICELOG("Async event: %s\n", 3163 ibv_event_type_str(event.event_type)); 3164 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type); 3165 break; 3166 } 3167 ibv_ack_async_event(&event); 3168 } 3169 3170 static void 3171 nvmf_rdma_accept(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn, void *cb_arg) 3172 { 3173 int nfds, i = 0; 3174 struct spdk_nvmf_rdma_transport *rtransport; 3175 struct spdk_nvmf_rdma_device *device, *tmp; 3176 3177 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3178 nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0); 3179 3180 if (nfds <= 0) { 3181 return; 3182 } 3183 3184 /* The first poll descriptor is RDMA CM event */ 3185 if (rtransport->poll_fds[i++].revents & POLLIN) { 3186 nvmf_process_cm_event(transport, cb_fn, cb_arg); 3187 nfds--; 3188 } 3189 3190 if (nfds == 0) { 3191 return; 3192 } 3193 3194 /* Second and subsequent poll descriptors are IB async events */ 3195 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 3196 if (rtransport->poll_fds[i++].revents & POLLIN) { 3197 nvmf_process_ib_event(device); 3198 nfds--; 3199 } 3200 } 3201 /* check all flagged fd's have been served */ 3202 assert(nfds == 0); 3203 } 3204 3205 static void 3206 nvmf_rdma_discover(struct spdk_nvmf_transport *transport, 3207 struct spdk_nvme_transport_id *trid, 3208 struct spdk_nvmf_discovery_log_page_entry *entry) 3209 { 3210 entry->trtype = SPDK_NVMF_TRTYPE_RDMA; 3211 entry->adrfam = trid->adrfam; 3212 entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED; 3213 3214 spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' '); 3215 spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' '); 3216 3217 entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED; 3218 entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE; 3219 entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM; 3220 } 3221 3222 static void 3223 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group); 3224 3225 static struct spdk_nvmf_transport_poll_group * 3226 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport) 3227 { 3228 struct spdk_nvmf_rdma_transport *rtransport; 3229 struct spdk_nvmf_rdma_poll_group *rgroup; 3230 struct spdk_nvmf_rdma_poller *poller; 3231 struct spdk_nvmf_rdma_device *device; 3232 struct ibv_srq_init_attr srq_init_attr; 3233 struct spdk_nvmf_rdma_resource_opts opts; 3234 int num_cqe; 3235 3236 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3237 3238 rgroup = calloc(1, sizeof(*rgroup)); 3239 if (!rgroup) { 3240 return NULL; 3241 } 3242 3243 TAILQ_INIT(&rgroup->pollers); 3244 STAILQ_INIT(&rgroup->retired_bufs); 3245 3246 pthread_mutex_lock(&rtransport->lock); 3247 TAILQ_FOREACH(device, &rtransport->devices, link) { 3248 poller = calloc(1, sizeof(*poller)); 3249 if (!poller) { 3250 SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n"); 3251 nvmf_rdma_poll_group_destroy(&rgroup->group); 3252 pthread_mutex_unlock(&rtransport->lock); 3253 return NULL; 3254 } 3255 3256 poller->device = device; 3257 poller->group = rgroup; 3258 3259 TAILQ_INIT(&poller->qpairs); 3260 STAILQ_INIT(&poller->qpairs_pending_send); 3261 STAILQ_INIT(&poller->qpairs_pending_recv); 3262 3263 TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link); 3264 if (transport->opts.no_srq == false && device->num_srq < device->attr.max_srq) { 3265 poller->max_srq_depth = transport->opts.max_srq_depth; 3266 3267 device->num_srq++; 3268 memset(&srq_init_attr, 0, sizeof(struct ibv_srq_init_attr)); 3269 srq_init_attr.attr.max_wr = poller->max_srq_depth; 3270 srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 3271 poller->srq = ibv_create_srq(device->pd, &srq_init_attr); 3272 if (!poller->srq) { 3273 SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno); 3274 nvmf_rdma_poll_group_destroy(&rgroup->group); 3275 pthread_mutex_unlock(&rtransport->lock); 3276 return NULL; 3277 } 3278 3279 opts.qp = poller->srq; 3280 opts.pd = device->pd; 3281 opts.qpair = NULL; 3282 opts.shared = true; 3283 opts.max_queue_depth = poller->max_srq_depth; 3284 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 3285 3286 poller->resources = nvmf_rdma_resources_create(&opts); 3287 if (!poller->resources) { 3288 SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n"); 3289 nvmf_rdma_poll_group_destroy(&rgroup->group); 3290 pthread_mutex_unlock(&rtransport->lock); 3291 return NULL; 3292 } 3293 } 3294 3295 /* 3296 * When using an srq, we can limit the completion queue at startup. 3297 * The following formula represents the calculation: 3298 * num_cqe = num_recv + num_data_wr + num_send_wr. 3299 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth 3300 */ 3301 if (poller->srq) { 3302 num_cqe = poller->max_srq_depth * 3; 3303 } else { 3304 num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE; 3305 } 3306 3307 poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0); 3308 if (!poller->cq) { 3309 SPDK_ERRLOG("Unable to create completion queue\n"); 3310 nvmf_rdma_poll_group_destroy(&rgroup->group); 3311 pthread_mutex_unlock(&rtransport->lock); 3312 return NULL; 3313 } 3314 poller->num_cqe = num_cqe; 3315 } 3316 3317 TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link); 3318 if (rtransport->conn_sched.next_admin_pg == NULL) { 3319 rtransport->conn_sched.next_admin_pg = rgroup; 3320 rtransport->conn_sched.next_io_pg = rgroup; 3321 } 3322 3323 pthread_mutex_unlock(&rtransport->lock); 3324 return &rgroup->group; 3325 } 3326 3327 static struct spdk_nvmf_transport_poll_group * 3328 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair) 3329 { 3330 struct spdk_nvmf_rdma_transport *rtransport; 3331 struct spdk_nvmf_rdma_poll_group **pg; 3332 struct spdk_nvmf_transport_poll_group *result; 3333 3334 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 3335 3336 pthread_mutex_lock(&rtransport->lock); 3337 3338 if (TAILQ_EMPTY(&rtransport->poll_groups)) { 3339 pthread_mutex_unlock(&rtransport->lock); 3340 return NULL; 3341 } 3342 3343 if (qpair->qid == 0) { 3344 pg = &rtransport->conn_sched.next_admin_pg; 3345 } else { 3346 pg = &rtransport->conn_sched.next_io_pg; 3347 } 3348 3349 assert(*pg != NULL); 3350 3351 result = &(*pg)->group; 3352 3353 *pg = TAILQ_NEXT(*pg, link); 3354 if (*pg == NULL) { 3355 *pg = TAILQ_FIRST(&rtransport->poll_groups); 3356 } 3357 3358 pthread_mutex_unlock(&rtransport->lock); 3359 3360 return result; 3361 } 3362 3363 static void 3364 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group) 3365 { 3366 struct spdk_nvmf_rdma_poll_group *rgroup, *next_rgroup; 3367 struct spdk_nvmf_rdma_poller *poller, *tmp; 3368 struct spdk_nvmf_rdma_qpair *qpair, *tmp_qpair; 3369 struct spdk_nvmf_transport_pg_cache_buf *buf, *tmp_buf; 3370 struct spdk_nvmf_rdma_transport *rtransport; 3371 3372 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3373 if (!rgroup) { 3374 return; 3375 } 3376 3377 /* free all retired buffers back to the transport so we don't short the mempool. */ 3378 STAILQ_FOREACH_SAFE(buf, &rgroup->retired_bufs, link, tmp_buf) { 3379 STAILQ_REMOVE(&rgroup->retired_bufs, buf, spdk_nvmf_transport_pg_cache_buf, link); 3380 assert(group->transport != NULL); 3381 spdk_mempool_put(group->transport->data_buf_pool, buf); 3382 } 3383 3384 TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) { 3385 TAILQ_REMOVE(&rgroup->pollers, poller, link); 3386 3387 TAILQ_FOREACH_SAFE(qpair, &poller->qpairs, link, tmp_qpair) { 3388 nvmf_rdma_qpair_destroy(qpair); 3389 } 3390 3391 if (poller->srq) { 3392 if (poller->resources) { 3393 nvmf_rdma_resources_destroy(poller->resources); 3394 } 3395 ibv_destroy_srq(poller->srq); 3396 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Destroyed RDMA shared queue %p\n", poller->srq); 3397 } 3398 3399 if (poller->cq) { 3400 ibv_destroy_cq(poller->cq); 3401 } 3402 3403 free(poller); 3404 } 3405 3406 if (rgroup->group.transport == NULL) { 3407 /* Transport can be NULL when nvmf_rdma_poll_group_create() 3408 * calls this function directly in a failure path. */ 3409 free(rgroup); 3410 return; 3411 } 3412 3413 rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport); 3414 3415 pthread_mutex_lock(&rtransport->lock); 3416 next_rgroup = TAILQ_NEXT(rgroup, link); 3417 TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link); 3418 if (next_rgroup == NULL) { 3419 next_rgroup = TAILQ_FIRST(&rtransport->poll_groups); 3420 } 3421 if (rtransport->conn_sched.next_admin_pg == rgroup) { 3422 rtransport->conn_sched.next_admin_pg = next_rgroup; 3423 } 3424 if (rtransport->conn_sched.next_io_pg == rgroup) { 3425 rtransport->conn_sched.next_io_pg = next_rgroup; 3426 } 3427 pthread_mutex_unlock(&rtransport->lock); 3428 3429 free(rgroup); 3430 } 3431 3432 static void 3433 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair) 3434 { 3435 if (rqpair->cm_id != NULL) { 3436 nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 3437 } 3438 nvmf_rdma_qpair_destroy(rqpair); 3439 } 3440 3441 static int 3442 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group, 3443 struct spdk_nvmf_qpair *qpair) 3444 { 3445 struct spdk_nvmf_rdma_poll_group *rgroup; 3446 struct spdk_nvmf_rdma_qpair *rqpair; 3447 struct spdk_nvmf_rdma_device *device; 3448 struct spdk_nvmf_rdma_poller *poller; 3449 int rc; 3450 3451 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3452 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3453 3454 device = rqpair->device; 3455 3456 TAILQ_FOREACH(poller, &rgroup->pollers, link) { 3457 if (poller->device == device) { 3458 break; 3459 } 3460 } 3461 3462 if (!poller) { 3463 SPDK_ERRLOG("No poller found for device.\n"); 3464 return -1; 3465 } 3466 3467 TAILQ_INSERT_TAIL(&poller->qpairs, rqpair, link); 3468 rqpair->poller = poller; 3469 rqpair->srq = rqpair->poller->srq; 3470 3471 rc = nvmf_rdma_qpair_initialize(qpair); 3472 if (rc < 0) { 3473 SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair); 3474 return -1; 3475 } 3476 3477 rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair); 3478 if (rc) { 3479 /* Try to reject, but we probably can't */ 3480 nvmf_rdma_qpair_reject_connection(rqpair); 3481 return -1; 3482 } 3483 3484 nvmf_rdma_update_ibv_state(rqpair); 3485 3486 return 0; 3487 } 3488 3489 static int 3490 nvmf_rdma_request_free(struct spdk_nvmf_request *req) 3491 { 3492 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 3493 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 3494 struct spdk_nvmf_rdma_transport, transport); 3495 3496 _nvmf_rdma_request_free(rdma_req, rtransport); 3497 return 0; 3498 } 3499 3500 static int 3501 nvmf_rdma_request_complete(struct spdk_nvmf_request *req) 3502 { 3503 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 3504 struct spdk_nvmf_rdma_transport, transport); 3505 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, 3506 struct spdk_nvmf_rdma_request, req); 3507 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 3508 struct spdk_nvmf_rdma_qpair, qpair); 3509 3510 if (rqpair->ibv_state != IBV_QPS_ERR) { 3511 /* The connection is alive, so process the request as normal */ 3512 rdma_req->state = RDMA_REQUEST_STATE_EXECUTED; 3513 } else { 3514 /* The connection is dead. Move the request directly to the completed state. */ 3515 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3516 } 3517 3518 nvmf_rdma_request_process(rtransport, rdma_req); 3519 3520 return 0; 3521 } 3522 3523 static int 3524 nvmf_rdma_destroy_defunct_qpair(void *ctx) 3525 { 3526 struct spdk_nvmf_rdma_qpair *rqpair = ctx; 3527 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 3528 struct spdk_nvmf_rdma_transport, transport); 3529 3530 SPDK_INFOLOG(SPDK_LOG_RDMA, "QP#%d hasn't been drained as expected, manually destroy it\n", 3531 rqpair->qpair.qid); 3532 3533 nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); 3534 nvmf_rdma_qpair_destroy(rqpair); 3535 3536 return 0; 3537 } 3538 3539 static void 3540 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair) 3541 { 3542 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3543 3544 if (rqpair->disconnect_flags & RDMA_QP_DISCONNECTING) { 3545 return; 3546 } 3547 3548 rqpair->disconnect_flags |= RDMA_QP_DISCONNECTING; 3549 3550 /* This happens only when the qpair is disconnected before 3551 * it is added to the poll group. Since there is no poll group, 3552 * the RDMA qp has not been initialized yet and the RDMA CM 3553 * event has not yet been acknowledged, so we need to reject it. 3554 */ 3555 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) { 3556 nvmf_rdma_qpair_reject_connection(rqpair); 3557 return; 3558 } 3559 3560 if (rqpair->cm_id) { 3561 spdk_rdma_qp_disconnect(rqpair->rdma_qp); 3562 } 3563 3564 rqpair->destruct_poller = SPDK_POLLER_REGISTER(nvmf_rdma_destroy_defunct_qpair, (void *)rqpair, 3565 NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US); 3566 } 3567 3568 static struct spdk_nvmf_rdma_qpair * 3569 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc) 3570 { 3571 struct spdk_nvmf_rdma_qpair *rqpair; 3572 /* @todo: improve QP search */ 3573 TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) { 3574 if (wc->qp_num == rqpair->rdma_qp->qp->qp_num) { 3575 return rqpair; 3576 } 3577 } 3578 SPDK_ERRLOG("Didn't find QP with qp_num %u\n", wc->qp_num); 3579 return NULL; 3580 } 3581 3582 #ifdef DEBUG 3583 static int 3584 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req) 3585 { 3586 return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST || 3587 rdma_req->state == RDMA_REQUEST_STATE_COMPLETING; 3588 } 3589 #endif 3590 3591 static void 3592 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr, 3593 int rc) 3594 { 3595 struct spdk_nvmf_rdma_recv *rdma_recv; 3596 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 3597 3598 SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc); 3599 while (bad_recv_wr != NULL) { 3600 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id; 3601 rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 3602 3603 rdma_recv->qpair->current_recv_depth++; 3604 bad_recv_wr = bad_recv_wr->next; 3605 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc); 3606 nvmf_rdma_start_disconnect(rdma_recv->qpair); 3607 } 3608 } 3609 3610 static void 3611 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc) 3612 { 3613 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc); 3614 while (bad_recv_wr != NULL) { 3615 bad_recv_wr = bad_recv_wr->next; 3616 rqpair->current_recv_depth++; 3617 } 3618 nvmf_rdma_start_disconnect(rqpair); 3619 } 3620 3621 static void 3622 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 3623 struct spdk_nvmf_rdma_poller *rpoller) 3624 { 3625 struct spdk_nvmf_rdma_qpair *rqpair; 3626 struct ibv_recv_wr *bad_recv_wr; 3627 int rc; 3628 3629 if (rpoller->srq) { 3630 if (rpoller->resources->recvs_to_post.first != NULL) { 3631 rc = ibv_post_srq_recv(rpoller->srq, rpoller->resources->recvs_to_post.first, &bad_recv_wr); 3632 if (rc) { 3633 _poller_reset_failed_recvs(rpoller, bad_recv_wr, rc); 3634 } 3635 rpoller->resources->recvs_to_post.first = NULL; 3636 rpoller->resources->recvs_to_post.last = NULL; 3637 } 3638 } else { 3639 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) { 3640 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv); 3641 assert(rqpair->resources->recvs_to_post.first != NULL); 3642 rc = ibv_post_recv(rqpair->rdma_qp->qp, rqpair->resources->recvs_to_post.first, &bad_recv_wr); 3643 if (rc) { 3644 _qp_reset_failed_recvs(rqpair, bad_recv_wr, rc); 3645 } 3646 rqpair->resources->recvs_to_post.first = NULL; 3647 rqpair->resources->recvs_to_post.last = NULL; 3648 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link); 3649 } 3650 } 3651 } 3652 3653 static void 3654 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport, 3655 struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc) 3656 { 3657 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 3658 struct spdk_nvmf_rdma_request *prev_rdma_req = NULL, *cur_rdma_req = NULL; 3659 3660 SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc); 3661 for (; bad_wr != NULL; bad_wr = bad_wr->next) { 3662 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id; 3663 assert(rqpair->current_send_depth > 0); 3664 rqpair->current_send_depth--; 3665 switch (bad_rdma_wr->type) { 3666 case RDMA_WR_TYPE_DATA: 3667 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr); 3668 if (bad_wr->opcode == IBV_WR_RDMA_READ) { 3669 assert(rqpair->current_read_depth > 0); 3670 rqpair->current_read_depth--; 3671 } 3672 break; 3673 case RDMA_WR_TYPE_SEND: 3674 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr); 3675 break; 3676 default: 3677 SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair); 3678 prev_rdma_req = cur_rdma_req; 3679 continue; 3680 } 3681 3682 if (prev_rdma_req == cur_rdma_req) { 3683 /* this request was handled by an earlier wr. i.e. we were performing an nvme read. */ 3684 /* We only have to check against prev_wr since each requests wrs are contiguous in this list. */ 3685 continue; 3686 } 3687 3688 switch (cur_rdma_req->state) { 3689 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 3690 cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 3691 cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 3692 break; 3693 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 3694 case RDMA_REQUEST_STATE_COMPLETING: 3695 cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3696 break; 3697 default: 3698 SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n", 3699 cur_rdma_req->state, rqpair); 3700 continue; 3701 } 3702 3703 nvmf_rdma_request_process(rtransport, cur_rdma_req); 3704 prev_rdma_req = cur_rdma_req; 3705 } 3706 3707 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 3708 /* Disconnect the connection. */ 3709 nvmf_rdma_start_disconnect(rqpair); 3710 } 3711 3712 } 3713 3714 static void 3715 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 3716 struct spdk_nvmf_rdma_poller *rpoller) 3717 { 3718 struct spdk_nvmf_rdma_qpair *rqpair; 3719 struct ibv_send_wr *bad_wr = NULL; 3720 int rc; 3721 3722 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) { 3723 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send); 3724 rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr); 3725 3726 /* bad wr always points to the first wr that failed. */ 3727 if (rc) { 3728 _qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc); 3729 } 3730 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link); 3731 } 3732 } 3733 3734 static int 3735 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport, 3736 struct spdk_nvmf_rdma_poller *rpoller) 3737 { 3738 struct ibv_wc wc[32]; 3739 struct spdk_nvmf_rdma_wr *rdma_wr; 3740 struct spdk_nvmf_rdma_request *rdma_req; 3741 struct spdk_nvmf_rdma_recv *rdma_recv; 3742 struct spdk_nvmf_rdma_qpair *rqpair; 3743 int reaped, i; 3744 int count = 0; 3745 bool error = false; 3746 uint64_t poll_tsc = spdk_get_ticks(); 3747 3748 /* Poll for completing operations. */ 3749 reaped = ibv_poll_cq(rpoller->cq, 32, wc); 3750 if (reaped < 0) { 3751 SPDK_ERRLOG("Error polling CQ! (%d): %s\n", 3752 errno, spdk_strerror(errno)); 3753 return -1; 3754 } 3755 3756 rpoller->stat.polls++; 3757 rpoller->stat.completions += reaped; 3758 3759 for (i = 0; i < reaped; i++) { 3760 3761 rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id; 3762 3763 switch (rdma_wr->type) { 3764 case RDMA_WR_TYPE_SEND: 3765 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr); 3766 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 3767 3768 if (!wc[i].status) { 3769 count++; 3770 assert(wc[i].opcode == IBV_WC_SEND); 3771 assert(nvmf_rdma_req_is_completing(rdma_req)); 3772 } 3773 3774 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3775 /* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */ 3776 rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1; 3777 rdma_req->num_outstanding_data_wr = 0; 3778 3779 nvmf_rdma_request_process(rtransport, rdma_req); 3780 break; 3781 case RDMA_WR_TYPE_RECV: 3782 /* rdma_recv->qpair will be invalid if using an SRQ. In that case we have to get the qpair from the wc. */ 3783 rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 3784 if (rpoller->srq != NULL) { 3785 rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]); 3786 /* It is possible that there are still some completions for destroyed QP 3787 * associated with SRQ. We just ignore these late completions and re-post 3788 * receive WRs back to SRQ. 3789 */ 3790 if (spdk_unlikely(NULL == rdma_recv->qpair)) { 3791 struct ibv_recv_wr *bad_wr; 3792 int rc; 3793 3794 rdma_recv->wr.next = NULL; 3795 rc = ibv_post_srq_recv(rpoller->srq, 3796 &rdma_recv->wr, 3797 &bad_wr); 3798 if (rc) { 3799 SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc); 3800 } 3801 continue; 3802 } 3803 } 3804 rqpair = rdma_recv->qpair; 3805 3806 assert(rqpair != NULL); 3807 if (!wc[i].status) { 3808 assert(wc[i].opcode == IBV_WC_RECV); 3809 if (rqpair->current_recv_depth >= rqpair->max_queue_depth) { 3810 nvmf_rdma_start_disconnect(rqpair); 3811 break; 3812 } 3813 } 3814 3815 rdma_recv->wr.next = NULL; 3816 rqpair->current_recv_depth++; 3817 rdma_recv->receive_tsc = poll_tsc; 3818 rpoller->stat.requests++; 3819 STAILQ_INSERT_TAIL(&rqpair->resources->incoming_queue, rdma_recv, link); 3820 break; 3821 case RDMA_WR_TYPE_DATA: 3822 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr); 3823 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 3824 3825 assert(rdma_req->num_outstanding_data_wr > 0); 3826 3827 rqpair->current_send_depth--; 3828 rdma_req->num_outstanding_data_wr--; 3829 if (!wc[i].status) { 3830 assert(wc[i].opcode == IBV_WC_RDMA_READ); 3831 rqpair->current_read_depth--; 3832 /* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */ 3833 if (rdma_req->num_outstanding_data_wr == 0) { 3834 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 3835 nvmf_rdma_request_process(rtransport, rdma_req); 3836 } 3837 } else { 3838 /* If the data transfer fails still force the queue into the error state, 3839 * if we were performing an RDMA_READ, we need to force the request into a 3840 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE 3841 * case, we should wait for the SEND to complete. */ 3842 if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) { 3843 rqpair->current_read_depth--; 3844 if (rdma_req->num_outstanding_data_wr == 0) { 3845 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 3846 } 3847 } 3848 } 3849 break; 3850 default: 3851 SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode); 3852 continue; 3853 } 3854 3855 /* Handle error conditions */ 3856 if (wc[i].status) { 3857 if ((rdma_wr->type == RDMA_WR_TYPE_RECV && !rpoller->srq)) { 3858 /* When we don't use SRQ and close a qpair, we will receive completions with error 3859 * status for all posted ibv_recv_wrs. This is expected and we don't want to log 3860 * an error in that case. */ 3861 SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Error on CQ %p, request 0x%lu, type %d, status: (%d): %s\n", 3862 rpoller->cq, wc[i].wr_id, rdma_wr->type, wc[i].status, ibv_wc_status_str(wc[i].status)); 3863 } else { 3864 SPDK_ERRLOG("Error on CQ %p, request 0x%lu, type %d, status: (%d): %s\n", 3865 rpoller->cq, wc[i].wr_id, rdma_wr->type, wc[i].status, ibv_wc_status_str(wc[i].status)); 3866 } 3867 3868 error = true; 3869 3870 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 3871 /* Disconnect the connection. */ 3872 nvmf_rdma_start_disconnect(rqpair); 3873 } else { 3874 nvmf_rdma_destroy_drained_qpair(rqpair); 3875 } 3876 continue; 3877 } 3878 3879 nvmf_rdma_qpair_process_pending(rtransport, rqpair, false); 3880 3881 if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 3882 nvmf_rdma_destroy_drained_qpair(rqpair); 3883 } 3884 } 3885 3886 if (error == true) { 3887 return -1; 3888 } 3889 3890 /* submit outstanding work requests. */ 3891 _poller_submit_recvs(rtransport, rpoller); 3892 _poller_submit_sends(rtransport, rpoller); 3893 3894 return count; 3895 } 3896 3897 static int 3898 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group) 3899 { 3900 struct spdk_nvmf_rdma_transport *rtransport; 3901 struct spdk_nvmf_rdma_poll_group *rgroup; 3902 struct spdk_nvmf_rdma_poller *rpoller; 3903 int count, rc; 3904 3905 rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport); 3906 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 3907 3908 count = 0; 3909 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 3910 rc = nvmf_rdma_poller_poll(rtransport, rpoller); 3911 if (rc < 0) { 3912 return rc; 3913 } 3914 count += rc; 3915 } 3916 3917 return count; 3918 } 3919 3920 static int 3921 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 3922 struct spdk_nvme_transport_id *trid, 3923 bool peer) 3924 { 3925 struct sockaddr *saddr; 3926 uint16_t port; 3927 3928 spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA); 3929 3930 if (peer) { 3931 saddr = rdma_get_peer_addr(id); 3932 } else { 3933 saddr = rdma_get_local_addr(id); 3934 } 3935 switch (saddr->sa_family) { 3936 case AF_INET: { 3937 struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr; 3938 3939 trid->adrfam = SPDK_NVMF_ADRFAM_IPV4; 3940 inet_ntop(AF_INET, &saddr_in->sin_addr, 3941 trid->traddr, sizeof(trid->traddr)); 3942 if (peer) { 3943 port = ntohs(rdma_get_dst_port(id)); 3944 } else { 3945 port = ntohs(rdma_get_src_port(id)); 3946 } 3947 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 3948 break; 3949 } 3950 case AF_INET6: { 3951 struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr; 3952 trid->adrfam = SPDK_NVMF_ADRFAM_IPV6; 3953 inet_ntop(AF_INET6, &saddr_in->sin6_addr, 3954 trid->traddr, sizeof(trid->traddr)); 3955 if (peer) { 3956 port = ntohs(rdma_get_dst_port(id)); 3957 } else { 3958 port = ntohs(rdma_get_src_port(id)); 3959 } 3960 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 3961 break; 3962 } 3963 default: 3964 return -1; 3965 3966 } 3967 3968 return 0; 3969 } 3970 3971 static int 3972 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair, 3973 struct spdk_nvme_transport_id *trid) 3974 { 3975 struct spdk_nvmf_rdma_qpair *rqpair; 3976 3977 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3978 3979 return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true); 3980 } 3981 3982 static int 3983 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair, 3984 struct spdk_nvme_transport_id *trid) 3985 { 3986 struct spdk_nvmf_rdma_qpair *rqpair; 3987 3988 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3989 3990 return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false); 3991 } 3992 3993 static int 3994 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair, 3995 struct spdk_nvme_transport_id *trid) 3996 { 3997 struct spdk_nvmf_rdma_qpair *rqpair; 3998 3999 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4000 4001 return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false); 4002 } 4003 4004 void 4005 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) 4006 { 4007 g_nvmf_hooks = *hooks; 4008 } 4009 4010 static int 4011 nvmf_rdma_poll_group_get_stat(struct spdk_nvmf_tgt *tgt, 4012 struct spdk_nvmf_transport_poll_group_stat **stat) 4013 { 4014 struct spdk_io_channel *ch; 4015 struct spdk_nvmf_poll_group *group; 4016 struct spdk_nvmf_transport_poll_group *tgroup; 4017 struct spdk_nvmf_rdma_poll_group *rgroup; 4018 struct spdk_nvmf_rdma_poller *rpoller; 4019 struct spdk_nvmf_rdma_device_stat *device_stat; 4020 uint64_t num_devices = 0; 4021 4022 if (tgt == NULL || stat == NULL) { 4023 return -EINVAL; 4024 } 4025 4026 ch = spdk_get_io_channel(tgt); 4027 group = spdk_io_channel_get_ctx(ch);; 4028 spdk_put_io_channel(ch); 4029 TAILQ_FOREACH(tgroup, &group->tgroups, link) { 4030 if (SPDK_NVME_TRANSPORT_RDMA == tgroup->transport->ops->type) { 4031 *stat = calloc(1, sizeof(struct spdk_nvmf_transport_poll_group_stat)); 4032 if (!*stat) { 4033 SPDK_ERRLOG("Failed to allocate memory for NVMf RDMA statistics\n"); 4034 return -ENOMEM; 4035 } 4036 (*stat)->trtype = SPDK_NVME_TRANSPORT_RDMA; 4037 4038 rgroup = SPDK_CONTAINEROF(tgroup, struct spdk_nvmf_rdma_poll_group, group); 4039 /* Count devices to allocate enough memory */ 4040 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 4041 ++num_devices; 4042 } 4043 (*stat)->rdma.devices = calloc(num_devices, sizeof(struct spdk_nvmf_rdma_device_stat)); 4044 if (!(*stat)->rdma.devices) { 4045 SPDK_ERRLOG("Failed to allocate NVMf RDMA devices statistics\n"); 4046 free(*stat); 4047 return -ENOMEM; 4048 } 4049 4050 (*stat)->rdma.pending_data_buffer = rgroup->stat.pending_data_buffer; 4051 (*stat)->rdma.num_devices = num_devices; 4052 num_devices = 0; 4053 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 4054 device_stat = &(*stat)->rdma.devices[num_devices++]; 4055 device_stat->name = ibv_get_device_name(rpoller->device->context->device); 4056 device_stat->polls = rpoller->stat.polls; 4057 device_stat->completions = rpoller->stat.completions; 4058 device_stat->requests = rpoller->stat.requests; 4059 device_stat->request_latency = rpoller->stat.request_latency; 4060 device_stat->pending_free_request = rpoller->stat.pending_free_request; 4061 device_stat->pending_rdma_read = rpoller->stat.pending_rdma_read; 4062 device_stat->pending_rdma_write = rpoller->stat.pending_rdma_write; 4063 } 4064 return 0; 4065 } 4066 } 4067 return -ENOENT; 4068 } 4069 4070 static void 4071 nvmf_rdma_poll_group_free_stat(struct spdk_nvmf_transport_poll_group_stat *stat) 4072 { 4073 if (stat) { 4074 free(stat->rdma.devices); 4075 } 4076 free(stat); 4077 } 4078 4079 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = { 4080 .name = "RDMA", 4081 .type = SPDK_NVME_TRANSPORT_RDMA, 4082 .opts_init = nvmf_rdma_opts_init, 4083 .create = nvmf_rdma_create, 4084 .destroy = nvmf_rdma_destroy, 4085 4086 .listen = nvmf_rdma_listen, 4087 .stop_listen = nvmf_rdma_stop_listen, 4088 .accept = nvmf_rdma_accept, 4089 4090 .listener_discover = nvmf_rdma_discover, 4091 4092 .poll_group_create = nvmf_rdma_poll_group_create, 4093 .get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group, 4094 .poll_group_destroy = nvmf_rdma_poll_group_destroy, 4095 .poll_group_add = nvmf_rdma_poll_group_add, 4096 .poll_group_poll = nvmf_rdma_poll_group_poll, 4097 4098 .req_free = nvmf_rdma_request_free, 4099 .req_complete = nvmf_rdma_request_complete, 4100 4101 .qpair_fini = nvmf_rdma_close_qpair, 4102 .qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid, 4103 .qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid, 4104 .qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid, 4105 4106 .poll_group_get_stat = nvmf_rdma_poll_group_get_stat, 4107 .poll_group_free_stat = nvmf_rdma_poll_group_free_stat, 4108 }; 4109 4110 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma); 4111 SPDK_LOG_REGISTER_COMPONENT("rdma", SPDK_LOG_RDMA) 4112