xref: /spdk/lib/nvmf/rdma.c (revision 1a9ed697f0c1696ba6b5819e27e68a3fbbf3b223)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk/stdinc.h"
35 
36 #include "spdk/config.h"
37 #include "spdk/thread.h"
38 #include "spdk/likely.h"
39 #include "spdk/nvmf_transport.h"
40 #include "spdk/string.h"
41 #include "spdk/trace.h"
42 #include "spdk/util.h"
43 
44 #include "spdk_internal/assert.h"
45 #include "spdk_internal/log.h"
46 #include "spdk_internal/rdma.h"
47 
48 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
49 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma;
50 
51 /*
52  RDMA Connection Resource Defaults
53  */
54 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
55 #define NVMF_DEFAULT_RSP_SGE		1
56 #define NVMF_DEFAULT_RX_SGE		2
57 
58 /* The RDMA completion queue size */
59 #define DEFAULT_NVMF_RDMA_CQ_SIZE	4096
60 #define MAX_WR_PER_QP(queue_depth)	(queue_depth * 3 + 2)
61 
62 /* Timeout for destroying defunct rqpairs */
63 #define NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US	4000000
64 
65 static int g_spdk_nvmf_ibv_query_mask =
66 	IBV_QP_STATE |
67 	IBV_QP_PKEY_INDEX |
68 	IBV_QP_PORT |
69 	IBV_QP_ACCESS_FLAGS |
70 	IBV_QP_AV |
71 	IBV_QP_PATH_MTU |
72 	IBV_QP_DEST_QPN |
73 	IBV_QP_RQ_PSN |
74 	IBV_QP_MAX_DEST_RD_ATOMIC |
75 	IBV_QP_MIN_RNR_TIMER |
76 	IBV_QP_SQ_PSN |
77 	IBV_QP_TIMEOUT |
78 	IBV_QP_RETRY_CNT |
79 	IBV_QP_RNR_RETRY |
80 	IBV_QP_MAX_QP_RD_ATOMIC;
81 
82 enum spdk_nvmf_rdma_request_state {
83 	/* The request is not currently in use */
84 	RDMA_REQUEST_STATE_FREE = 0,
85 
86 	/* Initial state when request first received */
87 	RDMA_REQUEST_STATE_NEW,
88 
89 	/* The request is queued until a data buffer is available. */
90 	RDMA_REQUEST_STATE_NEED_BUFFER,
91 
92 	/* The request is waiting on RDMA queue depth availability
93 	 * to transfer data from the host to the controller.
94 	 */
95 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
96 
97 	/* The request is currently transferring data from the host to the controller. */
98 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
99 
100 	/* The request is ready to execute at the block device */
101 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
102 
103 	/* The request is currently executing at the block device */
104 	RDMA_REQUEST_STATE_EXECUTING,
105 
106 	/* The request finished executing at the block device */
107 	RDMA_REQUEST_STATE_EXECUTED,
108 
109 	/* The request is waiting on RDMA queue depth availability
110 	 * to transfer data from the controller to the host.
111 	 */
112 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
113 
114 	/* The request is ready to send a completion */
115 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
116 
117 	/* The request is currently transferring data from the controller to the host. */
118 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
119 
120 	/* The request currently has an outstanding completion without an
121 	 * associated data transfer.
122 	 */
123 	RDMA_REQUEST_STATE_COMPLETING,
124 
125 	/* The request completed and can be marked free. */
126 	RDMA_REQUEST_STATE_COMPLETED,
127 
128 	/* Terminator */
129 	RDMA_REQUEST_NUM_STATES,
130 };
131 
132 #define OBJECT_NVMF_RDMA_IO				0x40
133 
134 #define TRACE_GROUP_NVMF_RDMA				0x4
135 #define TRACE_RDMA_REQUEST_STATE_NEW					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x0)
136 #define TRACE_RDMA_REQUEST_STATE_NEED_BUFFER				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x1)
137 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x2)
138 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x3)
139 #define TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE			SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x4)
140 #define TRACE_RDMA_REQUEST_STATE_EXECUTING				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x5)
141 #define TRACE_RDMA_REQUEST_STATE_EXECUTED				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x6)
142 #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING		SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x7)
143 #define TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE			SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x8)
144 #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST	SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x9)
145 #define TRACE_RDMA_REQUEST_STATE_COMPLETING				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xA)
146 #define TRACE_RDMA_REQUEST_STATE_COMPLETED				SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xB)
147 #define TRACE_RDMA_QP_CREATE						SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xC)
148 #define TRACE_RDMA_IBV_ASYNC_EVENT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xD)
149 #define TRACE_RDMA_CM_ASYNC_EVENT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xE)
150 #define TRACE_RDMA_QP_STATE_CHANGE					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xF)
151 #define TRACE_RDMA_QP_DISCONNECT					SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x10)
152 #define TRACE_RDMA_QP_DESTROY						SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x11)
153 
154 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
155 {
156 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
157 	spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW,
158 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 1, "cmid:   ");
159 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
160 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
161 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H",
162 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
163 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
164 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C",
165 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
166 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
167 	spdk_trace_register_description("RDMA_REQ_TX_H2C",
168 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
169 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
170 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE",
171 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
172 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
173 	spdk_trace_register_description("RDMA_REQ_EXECUTING",
174 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
175 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
176 	spdk_trace_register_description("RDMA_REQ_EXECUTED",
177 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
178 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
179 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL",
180 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
181 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
182 	spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H",
183 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
184 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
185 	spdk_trace_register_description("RDMA_REQ_COMPLETING",
186 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
187 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
188 	spdk_trace_register_description("RDMA_REQ_COMPLETED",
189 					TRACE_RDMA_REQUEST_STATE_COMPLETED,
190 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid:   ");
191 
192 	spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE,
193 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
194 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT,
195 					OWNER_NONE, OBJECT_NONE, 0, 0, "type:   ");
196 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT,
197 					OWNER_NONE, OBJECT_NONE, 0, 0, "type:   ");
198 	spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE,
199 					OWNER_NONE, OBJECT_NONE, 0, 1, "state:  ");
200 	spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT,
201 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
202 	spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY,
203 					OWNER_NONE, OBJECT_NONE, 0, 0, "");
204 }
205 
206 enum spdk_nvmf_rdma_wr_type {
207 	RDMA_WR_TYPE_RECV,
208 	RDMA_WR_TYPE_SEND,
209 	RDMA_WR_TYPE_DATA,
210 };
211 
212 struct spdk_nvmf_rdma_wr {
213 	enum spdk_nvmf_rdma_wr_type	type;
214 };
215 
216 /* This structure holds commands as they are received off the wire.
217  * It must be dynamically paired with a full request object
218  * (spdk_nvmf_rdma_request) to service a request. It is separate
219  * from the request because RDMA does not appear to order
220  * completions, so occasionally we'll get a new incoming
221  * command when there aren't any free request objects.
222  */
223 struct spdk_nvmf_rdma_recv {
224 	struct ibv_recv_wr			wr;
225 	struct ibv_sge				sgl[NVMF_DEFAULT_RX_SGE];
226 
227 	struct spdk_nvmf_rdma_qpair		*qpair;
228 
229 	/* In-capsule data buffer */
230 	uint8_t					*buf;
231 
232 	struct spdk_nvmf_rdma_wr		rdma_wr;
233 	uint64_t				receive_tsc;
234 
235 	STAILQ_ENTRY(spdk_nvmf_rdma_recv)	link;
236 };
237 
238 struct spdk_nvmf_rdma_request_data {
239 	struct spdk_nvmf_rdma_wr	rdma_wr;
240 	struct ibv_send_wr		wr;
241 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
242 };
243 
244 struct spdk_nvmf_rdma_request {
245 	struct spdk_nvmf_request		req;
246 
247 	enum spdk_nvmf_rdma_request_state	state;
248 
249 	struct spdk_nvmf_rdma_recv		*recv;
250 
251 	struct {
252 		struct spdk_nvmf_rdma_wr	rdma_wr;
253 		struct	ibv_send_wr		wr;
254 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
255 	} rsp;
256 
257 	struct spdk_nvmf_rdma_request_data	data;
258 
259 	uint32_t				iovpos;
260 
261 	uint32_t				num_outstanding_data_wr;
262 	uint64_t				receive_tsc;
263 
264 	STAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
265 };
266 
267 enum spdk_nvmf_rdma_qpair_disconnect_flags {
268 	RDMA_QP_DISCONNECTING		= 1,
269 	RDMA_QP_RECV_DRAINED		= 1 << 1,
270 	RDMA_QP_SEND_DRAINED		= 1 << 2
271 };
272 
273 struct spdk_nvmf_rdma_resource_opts {
274 	struct spdk_nvmf_rdma_qpair	*qpair;
275 	/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
276 	void				*qp;
277 	struct ibv_pd			*pd;
278 	uint32_t			max_queue_depth;
279 	uint32_t			in_capsule_data_size;
280 	bool				shared;
281 };
282 
283 struct spdk_nvmf_send_wr_list {
284 	struct ibv_send_wr	*first;
285 	struct ibv_send_wr	*last;
286 };
287 
288 struct spdk_nvmf_recv_wr_list {
289 	struct ibv_recv_wr	*first;
290 	struct ibv_recv_wr	*last;
291 };
292 
293 struct spdk_nvmf_rdma_resources {
294 	/* Array of size "max_queue_depth" containing RDMA requests. */
295 	struct spdk_nvmf_rdma_request		*reqs;
296 
297 	/* Array of size "max_queue_depth" containing RDMA recvs. */
298 	struct spdk_nvmf_rdma_recv		*recvs;
299 
300 	/* Array of size "max_queue_depth" containing 64 byte capsules
301 	 * used for receive.
302 	 */
303 	union nvmf_h2c_msg			*cmds;
304 	struct ibv_mr				*cmds_mr;
305 
306 	/* Array of size "max_queue_depth" containing 16 byte completions
307 	 * to be sent back to the user.
308 	 */
309 	union nvmf_c2h_msg			*cpls;
310 	struct ibv_mr				*cpls_mr;
311 
312 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
313 	 * buffers to be used for in capsule data.
314 	 */
315 	void					*bufs;
316 	struct ibv_mr				*bufs_mr;
317 
318 	/* The list of pending recvs to transfer */
319 	struct spdk_nvmf_recv_wr_list		recvs_to_post;
320 
321 	/* Receives that are waiting for a request object */
322 	STAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
323 
324 	/* Queue to track free requests */
325 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	free_queue;
326 };
327 
328 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair);
329 
330 struct spdk_nvmf_rdma_ibv_event_ctx {
331 	struct spdk_nvmf_rdma_qpair			*rqpair;
332 	spdk_nvmf_rdma_qpair_ibv_event			cb_fn;
333 	/* Link to other ibv events associated with this qpair */
334 	STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx)	link;
335 };
336 
337 struct spdk_nvmf_rdma_qpair {
338 	struct spdk_nvmf_qpair			qpair;
339 
340 	struct spdk_nvmf_rdma_device		*device;
341 	struct spdk_nvmf_rdma_poller		*poller;
342 
343 	struct spdk_rdma_qp			*rdma_qp;
344 	struct rdma_cm_id			*cm_id;
345 	struct ibv_srq				*srq;
346 	struct rdma_cm_id			*listen_id;
347 
348 	/* The maximum number of I/O outstanding on this connection at one time */
349 	uint16_t				max_queue_depth;
350 
351 	/* The maximum number of active RDMA READ and ATOMIC operations at one time */
352 	uint16_t				max_read_depth;
353 
354 	/* The maximum number of RDMA SEND operations at one time */
355 	uint32_t				max_send_depth;
356 
357 	/* The current number of outstanding WRs from this qpair's
358 	 * recv queue. Should not exceed device->attr.max_queue_depth.
359 	 */
360 	uint16_t				current_recv_depth;
361 
362 	/* The current number of active RDMA READ operations */
363 	uint16_t				current_read_depth;
364 
365 	/* The current number of posted WRs from this qpair's
366 	 * send queue. Should not exceed max_send_depth.
367 	 */
368 	uint32_t				current_send_depth;
369 
370 	/* The maximum number of SGEs per WR on the send queue */
371 	uint32_t				max_send_sge;
372 
373 	/* The maximum number of SGEs per WR on the recv queue */
374 	uint32_t				max_recv_sge;
375 
376 	struct spdk_nvmf_rdma_resources		*resources;
377 
378 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_read_queue;
379 
380 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_write_queue;
381 
382 	/* Number of requests not in the free state */
383 	uint32_t				qd;
384 
385 	TAILQ_ENTRY(spdk_nvmf_rdma_qpair)	link;
386 
387 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	recv_link;
388 
389 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	send_link;
390 
391 	/* IBV queue pair attributes: they are used to manage
392 	 * qp state and recover from errors.
393 	 */
394 	enum ibv_qp_state			ibv_state;
395 
396 	uint32_t				disconnect_flags;
397 
398 	/* Poller registered in case the qpair doesn't properly
399 	 * complete the qpair destruct process and becomes defunct.
400 	 */
401 
402 	struct spdk_poller			*destruct_poller;
403 
404 	/* List of ibv async events */
405 	STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx)	ibv_events;
406 
407 	/* There are several ways a disconnect can start on a qpair
408 	 * and they are not all mutually exclusive. It is important
409 	 * that we only initialize one of these paths.
410 	 */
411 	bool					disconnect_started;
412 	/* Lets us know that we have received the last_wqe event. */
413 	bool					last_wqe_reached;
414 };
415 
416 struct spdk_nvmf_rdma_poller_stat {
417 	uint64_t				completions;
418 	uint64_t				polls;
419 	uint64_t				requests;
420 	uint64_t				request_latency;
421 	uint64_t				pending_free_request;
422 	uint64_t				pending_rdma_read;
423 	uint64_t				pending_rdma_write;
424 };
425 
426 struct spdk_nvmf_rdma_poller {
427 	struct spdk_nvmf_rdma_device		*device;
428 	struct spdk_nvmf_rdma_poll_group	*group;
429 
430 	int					num_cqe;
431 	int					required_num_wr;
432 	struct ibv_cq				*cq;
433 
434 	/* The maximum number of I/O outstanding on the shared receive queue at one time */
435 	uint16_t				max_srq_depth;
436 
437 	/* Shared receive queue */
438 	struct ibv_srq				*srq;
439 
440 	struct spdk_nvmf_rdma_resources		*resources;
441 	struct spdk_nvmf_rdma_poller_stat	stat;
442 
443 	TAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs;
444 
445 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_recv;
446 
447 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_send;
448 
449 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
450 };
451 
452 struct spdk_nvmf_rdma_poll_group_stat {
453 	uint64_t				pending_data_buffer;
454 };
455 
456 struct spdk_nvmf_rdma_poll_group {
457 	struct spdk_nvmf_transport_poll_group		group;
458 	struct spdk_nvmf_rdma_poll_group_stat		stat;
459 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)		pollers;
460 	TAILQ_ENTRY(spdk_nvmf_rdma_poll_group)		link;
461 	/*
462 	 * buffers which are split across multiple RDMA
463 	 * memory regions cannot be used by this transport.
464 	 */
465 	STAILQ_HEAD(, spdk_nvmf_transport_pg_cache_buf)	retired_bufs;
466 };
467 
468 struct spdk_nvmf_rdma_conn_sched {
469 	struct spdk_nvmf_rdma_poll_group *next_admin_pg;
470 	struct spdk_nvmf_rdma_poll_group *next_io_pg;
471 };
472 
473 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
474 struct spdk_nvmf_rdma_device {
475 	struct ibv_device_attr			attr;
476 	struct ibv_context			*context;
477 
478 	struct spdk_mem_map			*map;
479 	struct ibv_pd				*pd;
480 
481 	int					num_srq;
482 
483 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
484 };
485 
486 struct spdk_nvmf_rdma_port {
487 	const struct spdk_nvme_transport_id	*trid;
488 	struct rdma_cm_id			*id;
489 	struct spdk_nvmf_rdma_device		*device;
490 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
491 };
492 
493 struct spdk_nvmf_rdma_transport {
494 	struct spdk_nvmf_transport	transport;
495 
496 	struct spdk_nvmf_rdma_conn_sched conn_sched;
497 
498 	struct rdma_event_channel	*event_channel;
499 
500 	struct spdk_mempool		*data_wr_pool;
501 
502 	pthread_mutex_t			lock;
503 
504 	/* fields used to poll RDMA/IB events */
505 	nfds_t			npoll_fds;
506 	struct pollfd		*poll_fds;
507 
508 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
509 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
510 	TAILQ_HEAD(, spdk_nvmf_rdma_poll_group)	poll_groups;
511 };
512 
513 static inline void
514 nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair);
515 
516 static bool
517 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
518 			  struct spdk_nvmf_rdma_request *rdma_req);
519 
520 static inline int
521 nvmf_rdma_check_ibv_state(enum ibv_qp_state state)
522 {
523 	switch (state) {
524 	case IBV_QPS_RESET:
525 	case IBV_QPS_INIT:
526 	case IBV_QPS_RTR:
527 	case IBV_QPS_RTS:
528 	case IBV_QPS_SQD:
529 	case IBV_QPS_SQE:
530 	case IBV_QPS_ERR:
531 		return 0;
532 	default:
533 		return -1;
534 	}
535 }
536 
537 static inline enum spdk_nvme_media_error_status_code
538 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) {
539 	enum spdk_nvme_media_error_status_code result;
540 	switch (err_type)
541 	{
542 	case SPDK_DIF_REFTAG_ERROR:
543 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
544 		break;
545 	case SPDK_DIF_APPTAG_ERROR:
546 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
547 		break;
548 	case SPDK_DIF_GUARD_ERROR:
549 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
550 		break;
551 	default:
552 		SPDK_UNREACHABLE();
553 	}
554 
555 	return result;
556 }
557 
558 static enum ibv_qp_state
559 nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) {
560 	enum ibv_qp_state old_state, new_state;
561 	struct ibv_qp_attr qp_attr;
562 	struct ibv_qp_init_attr init_attr;
563 	int rc;
564 
565 	old_state = rqpair->ibv_state;
566 	rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr,
567 			  g_spdk_nvmf_ibv_query_mask, &init_attr);
568 
569 	if (rc)
570 	{
571 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
572 		return IBV_QPS_ERR + 1;
573 	}
574 
575 	new_state = qp_attr.qp_state;
576 	rqpair->ibv_state = new_state;
577 	qp_attr.ah_attr.port_num = qp_attr.port_num;
578 
579 	rc = nvmf_rdma_check_ibv_state(new_state);
580 	if (rc)
581 	{
582 		SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state);
583 		/*
584 		 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8
585 		 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR
586 		 */
587 		return IBV_QPS_ERR + 1;
588 	}
589 
590 	if (old_state != new_state)
591 	{
592 		spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0,
593 				  (uintptr_t)rqpair->cm_id, new_state);
594 	}
595 	return new_state;
596 }
597 
598 static void
599 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
600 			    struct spdk_nvmf_rdma_transport *rtransport)
601 {
602 	struct spdk_nvmf_rdma_request_data	*data_wr;
603 	struct ibv_send_wr			*next_send_wr;
604 	uint64_t				req_wrid;
605 
606 	rdma_req->num_outstanding_data_wr = 0;
607 	data_wr = &rdma_req->data;
608 	req_wrid = data_wr->wr.wr_id;
609 	while (data_wr && data_wr->wr.wr_id == req_wrid) {
610 		memset(data_wr->sgl, 0, sizeof(data_wr->wr.sg_list[0]) * data_wr->wr.num_sge);
611 		data_wr->wr.num_sge = 0;
612 		next_send_wr = data_wr->wr.next;
613 		if (data_wr != &rdma_req->data) {
614 			spdk_mempool_put(rtransport->data_wr_pool, data_wr);
615 		}
616 		data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL :
617 			  SPDK_CONTAINEROF(next_send_wr, struct spdk_nvmf_rdma_request_data, wr);
618 	}
619 }
620 
621 static void
622 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
623 {
624 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool);
625 	if (req->req.cmd) {
626 		SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
627 	}
628 	if (req->recv) {
629 		SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
630 	}
631 }
632 
633 static void
634 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
635 {
636 	int i;
637 
638 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
639 	for (i = 0; i < rqpair->max_queue_depth; i++) {
640 		if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
641 			nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
642 		}
643 	}
644 }
645 
646 static void
647 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
648 {
649 	if (resources->cmds_mr) {
650 		ibv_dereg_mr(resources->cmds_mr);
651 	}
652 
653 	if (resources->cpls_mr) {
654 		ibv_dereg_mr(resources->cpls_mr);
655 	}
656 
657 	if (resources->bufs_mr) {
658 		ibv_dereg_mr(resources->bufs_mr);
659 	}
660 
661 	spdk_free(resources->cmds);
662 	spdk_free(resources->cpls);
663 	spdk_free(resources->bufs);
664 	free(resources->reqs);
665 	free(resources->recvs);
666 	free(resources);
667 }
668 
669 
670 static struct spdk_nvmf_rdma_resources *
671 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
672 {
673 	struct spdk_nvmf_rdma_resources	*resources;
674 	struct spdk_nvmf_rdma_request	*rdma_req;
675 	struct spdk_nvmf_rdma_recv	*rdma_recv;
676 	struct ibv_qp			*qp;
677 	struct ibv_srq			*srq;
678 	uint32_t			i;
679 	int				rc;
680 
681 	resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
682 	if (!resources) {
683 		SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
684 		return NULL;
685 	}
686 
687 	resources->reqs = calloc(opts->max_queue_depth, sizeof(*resources->reqs));
688 	resources->recvs = calloc(opts->max_queue_depth, sizeof(*resources->recvs));
689 	resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
690 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
691 	resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
692 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
693 
694 	if (opts->in_capsule_data_size > 0) {
695 		resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size,
696 					       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY,
697 					       SPDK_MALLOC_DMA);
698 	}
699 
700 	if (!resources->reqs || !resources->recvs || !resources->cmds ||
701 	    !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
702 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
703 		goto cleanup;
704 	}
705 
706 	resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds,
707 					opts->max_queue_depth * sizeof(*resources->cmds),
708 					IBV_ACCESS_LOCAL_WRITE);
709 	resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls,
710 					opts->max_queue_depth * sizeof(*resources->cpls),
711 					0);
712 
713 	if (opts->in_capsule_data_size) {
714 		resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs,
715 						opts->max_queue_depth *
716 						opts->in_capsule_data_size,
717 						IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
718 	}
719 
720 	if (!resources->cmds_mr || !resources->cpls_mr ||
721 	    (opts->in_capsule_data_size &&
722 	     !resources->bufs_mr)) {
723 		goto cleanup;
724 	}
725 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Command Array: %p Length: %lx LKey: %x\n",
726 		      resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds),
727 		      resources->cmds_mr->lkey);
728 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Completion Array: %p Length: %lx LKey: %x\n",
729 		      resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls),
730 		      resources->cpls_mr->lkey);
731 	if (resources->bufs && resources->bufs_mr) {
732 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "In Capsule Data Array: %p Length: %x LKey: %x\n",
733 			      resources->bufs, opts->max_queue_depth *
734 			      opts->in_capsule_data_size, resources->bufs_mr->lkey);
735 	}
736 
737 	/* Initialize queues */
738 	STAILQ_INIT(&resources->incoming_queue);
739 	STAILQ_INIT(&resources->free_queue);
740 
741 	for (i = 0; i < opts->max_queue_depth; i++) {
742 		struct ibv_recv_wr *bad_wr = NULL;
743 
744 		rdma_recv = &resources->recvs[i];
745 		rdma_recv->qpair = opts->qpair;
746 
747 		/* Set up memory to receive commands */
748 		if (resources->bufs) {
749 			rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
750 						  opts->in_capsule_data_size));
751 		}
752 
753 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
754 
755 		rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
756 		rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
757 		rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey;
758 		rdma_recv->wr.num_sge = 1;
759 
760 		if (rdma_recv->buf && resources->bufs_mr) {
761 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
762 			rdma_recv->sgl[1].length = opts->in_capsule_data_size;
763 			rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey;
764 			rdma_recv->wr.num_sge++;
765 		}
766 
767 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
768 		rdma_recv->wr.sg_list = rdma_recv->sgl;
769 		if (opts->shared) {
770 			srq = (struct ibv_srq *)opts->qp;
771 			rc = ibv_post_srq_recv(srq, &rdma_recv->wr, &bad_wr);
772 		} else {
773 			qp = (struct ibv_qp *)opts->qp;
774 			rc = ibv_post_recv(qp, &rdma_recv->wr, &bad_wr);
775 		}
776 		if (rc) {
777 			goto cleanup;
778 		}
779 	}
780 
781 	for (i = 0; i < opts->max_queue_depth; i++) {
782 		rdma_req = &resources->reqs[i];
783 
784 		if (opts->qpair != NULL) {
785 			rdma_req->req.qpair = &opts->qpair->qpair;
786 		} else {
787 			rdma_req->req.qpair = NULL;
788 		}
789 		rdma_req->req.cmd = NULL;
790 
791 		/* Set up memory to send responses */
792 		rdma_req->req.rsp = &resources->cpls[i];
793 
794 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
795 		rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
796 		rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey;
797 
798 		rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND;
799 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr;
800 		rdma_req->rsp.wr.next = NULL;
801 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
802 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
803 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
804 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
805 
806 		/* Set up memory for data buffers */
807 		rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA;
808 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
809 		rdma_req->data.wr.next = NULL;
810 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
811 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
812 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
813 
814 		/* Initialize request state to FREE */
815 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
816 		STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
817 	}
818 
819 	return resources;
820 
821 cleanup:
822 	nvmf_rdma_resources_destroy(resources);
823 	return NULL;
824 }
825 
826 static void
827 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair)
828 {
829 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx;
830 	STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) {
831 		ctx->rqpair = NULL;
832 		/* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */
833 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
834 	}
835 }
836 
837 static void
838 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
839 {
840 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
841 	struct ibv_recv_wr		*bad_recv_wr = NULL;
842 	int				rc;
843 
844 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair->cm_id, 0);
845 
846 	spdk_poller_unregister(&rqpair->destruct_poller);
847 
848 	if (rqpair->qd != 0) {
849 		struct spdk_nvmf_qpair *qpair = &rqpair->qpair;
850 		struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(qpair->transport,
851 				struct spdk_nvmf_rdma_transport, transport);
852 		struct spdk_nvmf_rdma_request *req;
853 		uint32_t i, max_req_count = 0;
854 
855 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
856 
857 		if (rqpair->srq == NULL) {
858 			nvmf_rdma_dump_qpair_contents(rqpair);
859 			max_req_count = rqpair->max_queue_depth;
860 		} else if (rqpair->poller && rqpair->resources) {
861 			max_req_count = rqpair->poller->max_srq_depth;
862 		}
863 
864 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Release incomplete requests\n");
865 		for (i = 0; i < max_req_count; i++) {
866 			req = &rqpair->resources->reqs[i];
867 			if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) {
868 				/* nvmf_rdma_request_process checks qpair ibv and internal state
869 				 * and completes a request */
870 				nvmf_rdma_request_process(rtransport, req);
871 			}
872 		}
873 		assert(rqpair->qd == 0);
874 	}
875 
876 	if (rqpair->poller) {
877 		TAILQ_REMOVE(&rqpair->poller->qpairs, rqpair, link);
878 
879 		if (rqpair->srq != NULL && rqpair->resources != NULL) {
880 			/* Drop all received but unprocessed commands for this queue and return them to SRQ */
881 			STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
882 				if (rqpair == rdma_recv->qpair) {
883 					STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link);
884 					rc = ibv_post_srq_recv(rqpair->srq, &rdma_recv->wr, &bad_recv_wr);
885 					if (rc) {
886 						SPDK_ERRLOG("Unable to re-post rx descriptor\n");
887 					}
888 				}
889 			}
890 		}
891 	}
892 
893 	if (rqpair->cm_id) {
894 		if (rqpair->rdma_qp != NULL) {
895 			spdk_rdma_qp_destroy(rqpair->rdma_qp);
896 			rqpair->rdma_qp = NULL;
897 		}
898 		rdma_destroy_id(rqpair->cm_id);
899 
900 		if (rqpair->poller != NULL && rqpair->srq == NULL) {
901 			rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
902 		}
903 	}
904 
905 	if (rqpair->srq == NULL && rqpair->resources != NULL) {
906 		nvmf_rdma_resources_destroy(rqpair->resources);
907 	}
908 
909 	nvmf_rdma_qpair_clean_ibv_events(rqpair);
910 
911 	free(rqpair);
912 }
913 
914 static int
915 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
916 {
917 	struct spdk_nvmf_rdma_poller	*rpoller;
918 	int				rc, num_cqe, required_num_wr;
919 
920 	/* Enlarge CQ size dynamically */
921 	rpoller = rqpair->poller;
922 	required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
923 	num_cqe = rpoller->num_cqe;
924 	if (num_cqe < required_num_wr) {
925 		num_cqe = spdk_max(num_cqe * 2, required_num_wr);
926 		num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
927 	}
928 
929 	if (rpoller->num_cqe != num_cqe) {
930 		if (required_num_wr > device->attr.max_cqe) {
931 			SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
932 				    required_num_wr, device->attr.max_cqe);
933 			return -1;
934 		}
935 
936 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
937 		rc = ibv_resize_cq(rpoller->cq, num_cqe);
938 		if (rc) {
939 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
940 			return -1;
941 		}
942 
943 		rpoller->num_cqe = num_cqe;
944 	}
945 
946 	rpoller->required_num_wr = required_num_wr;
947 	return 0;
948 }
949 
950 static int
951 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
952 {
953 	struct spdk_nvmf_rdma_qpair		*rqpair;
954 	struct spdk_nvmf_rdma_transport		*rtransport;
955 	struct spdk_nvmf_transport		*transport;
956 	struct spdk_nvmf_rdma_resource_opts	opts;
957 	struct spdk_nvmf_rdma_device		*device;
958 	struct spdk_rdma_qp_init_attr		qp_init_attr = {};
959 
960 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
961 	device = rqpair->device;
962 
963 	qp_init_attr.qp_context	= rqpair;
964 	qp_init_attr.pd		= device->pd;
965 	qp_init_attr.send_cq	= rqpair->poller->cq;
966 	qp_init_attr.recv_cq	= rqpair->poller->cq;
967 
968 	if (rqpair->srq) {
969 		qp_init_attr.srq		= rqpair->srq;
970 	} else {
971 		qp_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth;
972 	}
973 
974 	/* SEND, READ, and WRITE operations */
975 	qp_init_attr.cap.max_send_wr	= (uint32_t)rqpair->max_queue_depth * 2;
976 	qp_init_attr.cap.max_send_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
977 	qp_init_attr.cap.max_recv_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
978 	qp_init_attr.initiator_side	= false;
979 
980 	if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
981 		SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
982 		goto error;
983 	}
984 
985 	rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr);
986 	if (!rqpair->rdma_qp) {
987 		goto error;
988 	}
989 
990 	rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2),
991 					  qp_init_attr.cap.max_send_wr);
992 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge);
993 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge);
994 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair->cm_id, 0);
995 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "New RDMA Connection: %p\n", qpair);
996 
997 	if (rqpair->poller->srq == NULL) {
998 		rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
999 		transport = &rtransport->transport;
1000 
1001 		opts.qp = rqpair->rdma_qp->qp;
1002 		opts.pd = rqpair->cm_id->pd;
1003 		opts.qpair = rqpair;
1004 		opts.shared = false;
1005 		opts.max_queue_depth = rqpair->max_queue_depth;
1006 		opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
1007 
1008 		rqpair->resources = nvmf_rdma_resources_create(&opts);
1009 
1010 		if (!rqpair->resources) {
1011 			SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
1012 			rdma_destroy_qp(rqpair->cm_id);
1013 			goto error;
1014 		}
1015 	} else {
1016 		rqpair->resources = rqpair->poller->resources;
1017 	}
1018 
1019 	rqpair->current_recv_depth = 0;
1020 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1021 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1022 
1023 	return 0;
1024 
1025 error:
1026 	rdma_destroy_id(rqpair->cm_id);
1027 	rqpair->cm_id = NULL;
1028 	return -1;
1029 }
1030 
1031 /* Append the given recv wr structure to the resource structs outstanding recvs list. */
1032 /* This function accepts either a single wr or the first wr in a linked list. */
1033 static void
1034 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first)
1035 {
1036 	struct ibv_recv_wr *last;
1037 
1038 	last = first;
1039 	while (last->next != NULL) {
1040 		last = last->next;
1041 	}
1042 
1043 	if (rqpair->resources->recvs_to_post.first == NULL) {
1044 		rqpair->resources->recvs_to_post.first = first;
1045 		rqpair->resources->recvs_to_post.last = last;
1046 		if (rqpair->srq == NULL) {
1047 			STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link);
1048 		}
1049 	} else {
1050 		rqpair->resources->recvs_to_post.last->next = first;
1051 		rqpair->resources->recvs_to_post.last = last;
1052 	}
1053 }
1054 
1055 static int
1056 request_transfer_in(struct spdk_nvmf_request *req)
1057 {
1058 	struct spdk_nvmf_rdma_request	*rdma_req;
1059 	struct spdk_nvmf_qpair		*qpair;
1060 	struct spdk_nvmf_rdma_qpair	*rqpair;
1061 
1062 	qpair = req->qpair;
1063 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1064 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1065 
1066 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1067 	assert(rdma_req != NULL);
1068 
1069 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, &rdma_req->data.wr)) {
1070 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1071 	}
1072 
1073 	rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1074 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1075 	return 0;
1076 }
1077 
1078 static int
1079 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1080 {
1081 	int				num_outstanding_data_wr = 0;
1082 	struct spdk_nvmf_rdma_request	*rdma_req;
1083 	struct spdk_nvmf_qpair		*qpair;
1084 	struct spdk_nvmf_rdma_qpair	*rqpair;
1085 	struct spdk_nvme_cpl		*rsp;
1086 	struct ibv_send_wr		*first = NULL;
1087 
1088 	*data_posted = 0;
1089 	qpair = req->qpair;
1090 	rsp = &req->rsp->nvme_cpl;
1091 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1092 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1093 
1094 	/* Advance our sq_head pointer */
1095 	if (qpair->sq_head == qpair->sq_head_max) {
1096 		qpair->sq_head = 0;
1097 	} else {
1098 		qpair->sq_head++;
1099 	}
1100 	rsp->sqhd = qpair->sq_head;
1101 
1102 	/* queue the capsule for the recv buffer */
1103 	assert(rdma_req->recv != NULL);
1104 
1105 	nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr);
1106 
1107 	rdma_req->recv = NULL;
1108 	assert(rqpair->current_recv_depth > 0);
1109 	rqpair->current_recv_depth--;
1110 
1111 	/* Build the response which consists of optional
1112 	 * RDMA WRITEs to transfer data, plus an RDMA SEND
1113 	 * containing the response.
1114 	 */
1115 	first = &rdma_req->rsp.wr;
1116 
1117 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
1118 	    req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1119 		first = &rdma_req->data.wr;
1120 		*data_posted = 1;
1121 		num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
1122 	}
1123 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) {
1124 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1125 	}
1126 
1127 	/* +1 for the rsp wr */
1128 	rqpair->current_send_depth += num_outstanding_data_wr + 1;
1129 
1130 	return 0;
1131 }
1132 
1133 static int
1134 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1135 {
1136 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
1137 	struct rdma_conn_param				ctrlr_event_data = {};
1138 	int						rc;
1139 
1140 	accept_data.recfmt = 0;
1141 	accept_data.crqsize = rqpair->max_queue_depth;
1142 
1143 	ctrlr_event_data.private_data = &accept_data;
1144 	ctrlr_event_data.private_data_len = sizeof(accept_data);
1145 	if (id->ps == RDMA_PS_TCP) {
1146 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1147 		ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1148 	}
1149 
1150 	/* Configure infinite retries for the initiator side qpair.
1151 	 * When using a shared receive queue on the target side,
1152 	 * we need to pass this value to the initiator to prevent the
1153 	 * initiator side NIC from completing SEND requests back to the
1154 	 * initiator with status rnr_retry_count_exceeded. */
1155 	if (rqpair->srq != NULL) {
1156 		ctrlr_event_data.rnr_retry_count = 0x7;
1157 	}
1158 
1159 	/* When qpair is created without use of rdma cm API, an additional
1160 	 * information must be provided to initiator in the connection response:
1161 	 * whether qpair is using SRQ and its qp_num
1162 	 * Fields below are ignored by rdma cm if qpair has been
1163 	 * created using rdma cm API. */
1164 	ctrlr_event_data.srq = rqpair->srq ? 1 : 0;
1165 	ctrlr_event_data.qp_num = rqpair->rdma_qp->qp->qp_num;
1166 
1167 	rc = rdma_accept(id, &ctrlr_event_data);
1168 	if (rc) {
1169 		SPDK_ERRLOG("Error %d on rdma_accept\n", errno);
1170 	} else {
1171 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Sent back the accept\n");
1172 	}
1173 
1174 	return rc;
1175 }
1176 
1177 static void
1178 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1179 {
1180 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
1181 
1182 	rej_data.recfmt = 0;
1183 	rej_data.sts = error;
1184 
1185 	rdma_reject(id, &rej_data, sizeof(rej_data));
1186 }
1187 
1188 static int
1189 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event,
1190 		  new_qpair_fn cb_fn, void *cb_arg)
1191 {
1192 	struct spdk_nvmf_rdma_transport *rtransport;
1193 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
1194 	struct spdk_nvmf_rdma_port	*port;
1195 	struct rdma_conn_param		*rdma_param = NULL;
1196 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1197 	uint16_t			max_queue_depth;
1198 	uint16_t			max_read_depth;
1199 
1200 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1201 
1202 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1203 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1204 
1205 	rdma_param = &event->param.conn;
1206 	if (rdma_param->private_data == NULL ||
1207 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1208 		SPDK_ERRLOG("connect request: no private data provided\n");
1209 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1210 		return -1;
1211 	}
1212 
1213 	private_data = rdma_param->private_data;
1214 	if (private_data->recfmt != 0) {
1215 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1216 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1217 		return -1;
1218 	}
1219 
1220 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Connect Recv on fabric intf name %s, dev_name %s\n",
1221 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1222 
1223 	port = event->listen_id->context;
1224 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1225 		      event->listen_id, event->listen_id->verbs, port);
1226 
1227 	/* Figure out the supported queue depth. This is a multi-step process
1228 	 * that takes into account hardware maximums, host provided values,
1229 	 * and our target's internal memory limits */
1230 
1231 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Calculating Queue Depth\n");
1232 
1233 	/* Start with the maximum queue depth allowed by the target */
1234 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1235 	max_read_depth = rtransport->transport.opts.max_queue_depth;
1236 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Target Max Queue Depth: %d\n",
1237 		      rtransport->transport.opts.max_queue_depth);
1238 
1239 	/* Next check the local NIC's hardware limitations */
1240 	SPDK_DEBUGLOG(SPDK_LOG_RDMA,
1241 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1242 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1243 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1244 	max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1245 
1246 	/* Next check the remote NIC's hardware limitations */
1247 	SPDK_DEBUGLOG(SPDK_LOG_RDMA,
1248 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1249 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1250 	if (rdma_param->initiator_depth > 0) {
1251 		max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1252 	}
1253 
1254 	/* Finally check for the host software requested values, which are
1255 	 * optional. */
1256 	if (rdma_param->private_data != NULL &&
1257 	    rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1258 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1259 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Send Queue Size: %d\n", private_data->hsqsize);
1260 		max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1261 		max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1262 	}
1263 
1264 	SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1265 		      max_queue_depth, max_read_depth);
1266 
1267 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1268 	if (rqpair == NULL) {
1269 		SPDK_ERRLOG("Could not allocate new connection.\n");
1270 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1271 		return -1;
1272 	}
1273 
1274 	rqpair->device = port->device;
1275 	rqpair->max_queue_depth = max_queue_depth;
1276 	rqpair->max_read_depth = max_read_depth;
1277 	rqpair->cm_id = event->id;
1278 	rqpair->listen_id = event->listen_id;
1279 	rqpair->qpair.transport = transport;
1280 	STAILQ_INIT(&rqpair->ibv_events);
1281 	/* use qid from the private data to determine the qpair type
1282 	   qid will be set to the appropriate value when the controller is created */
1283 	rqpair->qpair.qid = private_data->qid;
1284 
1285 	event->id->context = &rqpair->qpair;
1286 
1287 	cb_fn(&rqpair->qpair, cb_arg);
1288 
1289 	return 0;
1290 }
1291 
1292 static int
1293 nvmf_rdma_mem_notify(void *cb_ctx, struct spdk_mem_map *map,
1294 		     enum spdk_mem_map_notify_action action,
1295 		     void *vaddr, size_t size)
1296 {
1297 	struct ibv_pd *pd = cb_ctx;
1298 	struct ibv_mr *mr;
1299 	int rc;
1300 
1301 	switch (action) {
1302 	case SPDK_MEM_MAP_NOTIFY_REGISTER:
1303 		if (!g_nvmf_hooks.get_rkey) {
1304 			mr = ibv_reg_mr(pd, vaddr, size,
1305 					IBV_ACCESS_LOCAL_WRITE |
1306 					IBV_ACCESS_REMOTE_READ |
1307 					IBV_ACCESS_REMOTE_WRITE);
1308 			if (mr == NULL) {
1309 				SPDK_ERRLOG("ibv_reg_mr() failed\n");
1310 				return -1;
1311 			} else {
1312 				rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr);
1313 			}
1314 		} else {
1315 			rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size,
1316 							  g_nvmf_hooks.get_rkey(pd, vaddr, size));
1317 		}
1318 		break;
1319 	case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
1320 		if (!g_nvmf_hooks.get_rkey) {
1321 			mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL);
1322 			if (mr) {
1323 				ibv_dereg_mr(mr);
1324 			}
1325 		}
1326 		rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size);
1327 		break;
1328 	default:
1329 		SPDK_UNREACHABLE();
1330 	}
1331 
1332 	return rc;
1333 }
1334 
1335 static int
1336 nvmf_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2)
1337 {
1338 	/* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */
1339 	return addr_1 == addr_2;
1340 }
1341 
1342 static inline void
1343 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next,
1344 		   enum spdk_nvme_data_transfer xfer)
1345 {
1346 	if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1347 		wr->opcode = IBV_WR_RDMA_WRITE;
1348 		wr->send_flags = 0;
1349 		wr->next = next;
1350 	} else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1351 		wr->opcode = IBV_WR_RDMA_READ;
1352 		wr->send_flags = IBV_SEND_SIGNALED;
1353 		wr->next = NULL;
1354 	} else {
1355 		assert(0);
1356 	}
1357 }
1358 
1359 static int
1360 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1361 		       struct spdk_nvmf_rdma_request *rdma_req,
1362 		       uint32_t num_sgl_descriptors)
1363 {
1364 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1365 	struct spdk_nvmf_rdma_request_data	*current_data_wr;
1366 	uint32_t				i;
1367 
1368 	if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) {
1369 		SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n",
1370 			    num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES);
1371 		return -EINVAL;
1372 	}
1373 
1374 	if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) {
1375 		return -ENOMEM;
1376 	}
1377 
1378 	current_data_wr = &rdma_req->data;
1379 
1380 	for (i = 0; i < num_sgl_descriptors; i++) {
1381 		nvmf_rdma_setup_wr(&current_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer);
1382 		current_data_wr->wr.next = &work_requests[i]->wr;
1383 		current_data_wr = work_requests[i];
1384 		current_data_wr->wr.sg_list = current_data_wr->sgl;
1385 		current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id;
1386 	}
1387 
1388 	nvmf_rdma_setup_wr(&current_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1389 
1390 	return 0;
1391 }
1392 
1393 static inline void
1394 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req)
1395 {
1396 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1397 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1398 
1399 	wr->wr.rdma.rkey = sgl->keyed.key;
1400 	wr->wr.rdma.remote_addr = sgl->address;
1401 	nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1402 }
1403 
1404 static inline void
1405 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs)
1406 {
1407 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1408 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1409 	uint32_t			i;
1410 	int				j;
1411 	uint64_t			remote_addr_offset = 0;
1412 
1413 	for (i = 0; i < num_wrs; ++i) {
1414 		wr->wr.rdma.rkey = sgl->keyed.key;
1415 		wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset;
1416 		for (j = 0; j < wr->num_sge; ++j) {
1417 			remote_addr_offset += wr->sg_list[j].length;
1418 		}
1419 		wr = wr->next;
1420 	}
1421 }
1422 
1423 /* This function is used in the rare case that we have a buffer split over multiple memory regions. */
1424 static int
1425 nvmf_rdma_replace_buffer(struct spdk_nvmf_rdma_poll_group *rgroup, void **buf)
1426 {
1427 	struct spdk_nvmf_transport_poll_group	*group = &rgroup->group;
1428 	struct spdk_nvmf_transport		*transport = group->transport;
1429 	struct spdk_nvmf_transport_pg_cache_buf	*old_buf;
1430 	void					*new_buf;
1431 
1432 	if (!(STAILQ_EMPTY(&group->buf_cache))) {
1433 		group->buf_cache_count--;
1434 		new_buf = STAILQ_FIRST(&group->buf_cache);
1435 		STAILQ_REMOVE_HEAD(&group->buf_cache, link);
1436 		assert(*buf != NULL);
1437 	} else {
1438 		new_buf = spdk_mempool_get(transport->data_buf_pool);
1439 	}
1440 
1441 	if (*buf == NULL) {
1442 		return -ENOMEM;
1443 	}
1444 
1445 	old_buf = *buf;
1446 	STAILQ_INSERT_HEAD(&rgroup->retired_bufs, old_buf, link);
1447 	*buf = new_buf;
1448 	return 0;
1449 }
1450 
1451 static bool
1452 nvmf_rdma_get_lkey(struct spdk_nvmf_rdma_device *device, struct iovec *iov,
1453 		   uint32_t *_lkey)
1454 {
1455 	uint64_t	translation_len;
1456 	uint32_t	lkey;
1457 
1458 	translation_len = iov->iov_len;
1459 
1460 	if (!g_nvmf_hooks.get_rkey) {
1461 		lkey = ((struct ibv_mr *)spdk_mem_map_translate(device->map,
1462 				(uint64_t)iov->iov_base, &translation_len))->lkey;
1463 	} else {
1464 		lkey = spdk_mem_map_translate(device->map,
1465 					      (uint64_t)iov->iov_base, &translation_len);
1466 	}
1467 
1468 	if (spdk_unlikely(translation_len < iov->iov_len)) {
1469 		return false;
1470 	}
1471 
1472 	*_lkey = lkey;
1473 	return true;
1474 }
1475 
1476 static bool
1477 nvmf_rdma_fill_wr_sge(struct spdk_nvmf_rdma_device *device,
1478 		      struct iovec *iov, struct ibv_send_wr **_wr,
1479 		      uint32_t *_remaining_data_block, uint32_t *_offset,
1480 		      uint32_t *_num_extra_wrs,
1481 		      const struct spdk_dif_ctx *dif_ctx)
1482 {
1483 	struct ibv_send_wr *wr = *_wr;
1484 	struct ibv_sge	*sg_ele = &wr->sg_list[wr->num_sge];
1485 	uint32_t	lkey = 0;
1486 	uint32_t	remaining, data_block_size, md_size, sge_len;
1487 
1488 	if (spdk_unlikely(!nvmf_rdma_get_lkey(device, iov, &lkey))) {
1489 		/* This is a very rare case that can occur when using DPDK version < 19.05 */
1490 		SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions. Removing it from circulation.\n");
1491 		return false;
1492 	}
1493 
1494 	if (spdk_likely(!dif_ctx)) {
1495 		sg_ele->lkey = lkey;
1496 		sg_ele->addr = (uintptr_t)(iov->iov_base);
1497 		sg_ele->length = iov->iov_len;
1498 		wr->num_sge++;
1499 	} else {
1500 		remaining = iov->iov_len - *_offset;
1501 		data_block_size = dif_ctx->block_size - dif_ctx->md_size;
1502 		md_size = dif_ctx->md_size;
1503 
1504 		while (remaining) {
1505 			if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) {
1506 				if (*_num_extra_wrs > 0 && wr->next) {
1507 					*_wr = wr->next;
1508 					wr = *_wr;
1509 					wr->num_sge = 0;
1510 					sg_ele = &wr->sg_list[wr->num_sge];
1511 					(*_num_extra_wrs)--;
1512 				} else {
1513 					break;
1514 				}
1515 			}
1516 			sg_ele->lkey = lkey;
1517 			sg_ele->addr = (uintptr_t)((char *)iov->iov_base + *_offset);
1518 			sge_len = spdk_min(remaining, *_remaining_data_block);
1519 			sg_ele->length = sge_len;
1520 			remaining -= sge_len;
1521 			*_remaining_data_block -= sge_len;
1522 			*_offset += sge_len;
1523 
1524 			sg_ele++;
1525 			wr->num_sge++;
1526 
1527 			if (*_remaining_data_block == 0) {
1528 				/* skip metadata */
1529 				*_offset += md_size;
1530 				/* Metadata that do not fit this IO buffer will be included in the next IO buffer */
1531 				remaining -= spdk_min(remaining, md_size);
1532 				*_remaining_data_block = data_block_size;
1533 			}
1534 
1535 			if (remaining == 0) {
1536 				/* By subtracting the size of the last IOV from the offset, we ensure that we skip
1537 				   the remaining metadata bits at the beginning of the next buffer */
1538 				*_offset -= iov->iov_len;
1539 			}
1540 		}
1541 	}
1542 
1543 	return true;
1544 }
1545 
1546 static int
1547 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup,
1548 		      struct spdk_nvmf_rdma_device *device,
1549 		      struct spdk_nvmf_rdma_request *rdma_req,
1550 		      struct ibv_send_wr *wr,
1551 		      uint32_t length,
1552 		      uint32_t num_extra_wrs)
1553 {
1554 	struct spdk_nvmf_request *req = &rdma_req->req;
1555 	struct spdk_dif_ctx *dif_ctx = NULL;
1556 	uint32_t remaining_data_block = 0;
1557 	uint32_t offset = 0;
1558 
1559 	if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) {
1560 		dif_ctx = &rdma_req->req.dif.dif_ctx;
1561 		remaining_data_block = dif_ctx->block_size - dif_ctx->md_size;
1562 	}
1563 
1564 	wr->num_sge = 0;
1565 
1566 	while (length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) {
1567 		while (spdk_unlikely(!nvmf_rdma_fill_wr_sge(device, &req->iov[rdma_req->iovpos], &wr,
1568 				     &remaining_data_block, &offset, &num_extra_wrs, dif_ctx))) {
1569 			if (nvmf_rdma_replace_buffer(rgroup, &req->buffers[rdma_req->iovpos]) == -ENOMEM) {
1570 				return -ENOMEM;
1571 			}
1572 			req->iov[rdma_req->iovpos].iov_base = (void *)((uintptr_t)(req->buffers[rdma_req->iovpos] +
1573 							      NVMF_DATA_BUFFER_MASK) &
1574 							      ~NVMF_DATA_BUFFER_MASK);
1575 		}
1576 
1577 		length -= req->iov[rdma_req->iovpos].iov_len;
1578 		rdma_req->iovpos++;
1579 	}
1580 
1581 	if (length) {
1582 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1583 		return -EINVAL;
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 static inline uint32_t
1590 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size)
1591 {
1592 	/* estimate the number of SG entries and WRs needed to process the request */
1593 	uint32_t num_sge = 0;
1594 	uint32_t i;
1595 	uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size);
1596 
1597 	for (i = 0; i < num_buffers && length > 0; i++) {
1598 		uint32_t buffer_len = spdk_min(length, io_unit_size);
1599 		uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size);
1600 
1601 		if (num_sge_in_block * block_size > buffer_len) {
1602 			++num_sge_in_block;
1603 		}
1604 		num_sge += num_sge_in_block;
1605 		length -= buffer_len;
1606 	}
1607 	return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES);
1608 }
1609 
1610 static int
1611 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1612 			    struct spdk_nvmf_rdma_device *device,
1613 			    struct spdk_nvmf_rdma_request *rdma_req,
1614 			    uint32_t length)
1615 {
1616 	struct spdk_nvmf_rdma_qpair		*rqpair;
1617 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1618 	struct spdk_nvmf_request		*req = &rdma_req->req;
1619 	struct ibv_send_wr			*wr = &rdma_req->data.wr;
1620 	int					rc;
1621 	uint32_t				num_wrs = 1;
1622 
1623 	rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair);
1624 	rgroup = rqpair->poller->group;
1625 
1626 	/* rdma wr specifics */
1627 	nvmf_rdma_setup_request(rdma_req);
1628 
1629 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
1630 					   length);
1631 	if (rc != 0) {
1632 		return rc;
1633 	}
1634 
1635 	assert(req->iovcnt <= rqpair->max_send_sge);
1636 
1637 	rdma_req->iovpos = 0;
1638 
1639 	if (spdk_unlikely(req->dif.dif_insert_or_strip)) {
1640 		num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size,
1641 						 req->dif.dif_ctx.block_size);
1642 		if (num_wrs > 1) {
1643 			rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1);
1644 			if (rc != 0) {
1645 				goto err_exit;
1646 			}
1647 		}
1648 	}
1649 
1650 	rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length, num_wrs - 1);
1651 	if (spdk_unlikely(rc != 0)) {
1652 		goto err_exit;
1653 	}
1654 
1655 	if (spdk_unlikely(num_wrs > 1)) {
1656 		nvmf_rdma_update_remote_addr(rdma_req, num_wrs);
1657 	}
1658 
1659 	/* set the number of outstanding data WRs for this request. */
1660 	rdma_req->num_outstanding_data_wr = num_wrs;
1661 
1662 	return rc;
1663 
1664 err_exit:
1665 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1666 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1667 	req->iovcnt = 0;
1668 	return rc;
1669 }
1670 
1671 static int
1672 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1673 				      struct spdk_nvmf_rdma_device *device,
1674 				      struct spdk_nvmf_rdma_request *rdma_req)
1675 {
1676 	struct spdk_nvmf_rdma_qpair		*rqpair;
1677 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1678 	struct ibv_send_wr			*current_wr;
1679 	struct spdk_nvmf_request		*req = &rdma_req->req;
1680 	struct spdk_nvme_sgl_descriptor		*inline_segment, *desc;
1681 	uint32_t				num_sgl_descriptors;
1682 	uint32_t				lengths[SPDK_NVMF_MAX_SGL_ENTRIES];
1683 	uint32_t				i;
1684 	int					rc;
1685 
1686 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1687 	rgroup = rqpair->poller->group;
1688 
1689 	inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1690 	assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1691 	assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1692 
1693 	num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1694 	assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1695 
1696 	if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) {
1697 		return -ENOMEM;
1698 	}
1699 
1700 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1701 	for (i = 0; i < num_sgl_descriptors; i++) {
1702 		if (spdk_likely(!req->dif.dif_insert_or_strip)) {
1703 			lengths[i] = desc->keyed.length;
1704 		} else {
1705 			req->dif.orig_length += desc->keyed.length;
1706 			lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx);
1707 			req->dif.elba_length += lengths[i];
1708 		}
1709 		desc++;
1710 	}
1711 
1712 	rc = spdk_nvmf_request_get_buffers_multi(req, &rgroup->group, &rtransport->transport,
1713 			lengths, num_sgl_descriptors);
1714 	if (rc != 0) {
1715 		nvmf_rdma_request_free_data(rdma_req, rtransport);
1716 		return rc;
1717 	}
1718 
1719 	/* The first WR must always be the embedded data WR. This is how we unwind them later. */
1720 	current_wr = &rdma_req->data.wr;
1721 	assert(current_wr != NULL);
1722 
1723 	req->length = 0;
1724 	rdma_req->iovpos = 0;
1725 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1726 	for (i = 0; i < num_sgl_descriptors; i++) {
1727 		/* The descriptors must be keyed data block descriptors with an address, not an offset. */
1728 		if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1729 				  desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1730 			rc = -EINVAL;
1731 			goto err_exit;
1732 		}
1733 
1734 		current_wr->num_sge = 0;
1735 
1736 		rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i], 0);
1737 		if (rc != 0) {
1738 			rc = -ENOMEM;
1739 			goto err_exit;
1740 		}
1741 
1742 		req->length += desc->keyed.length;
1743 		current_wr->wr.rdma.rkey = desc->keyed.key;
1744 		current_wr->wr.rdma.remote_addr = desc->address;
1745 		current_wr = current_wr->next;
1746 		desc++;
1747 	}
1748 
1749 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1750 	/* Go back to the last descriptor in the list. */
1751 	desc--;
1752 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1753 		if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1754 			rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1755 			rdma_req->rsp.wr.imm_data = desc->keyed.key;
1756 		}
1757 	}
1758 #endif
1759 
1760 	rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1761 
1762 	return 0;
1763 
1764 err_exit:
1765 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1766 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1767 	return rc;
1768 }
1769 
1770 static int
1771 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1772 			    struct spdk_nvmf_rdma_device *device,
1773 			    struct spdk_nvmf_rdma_request *rdma_req)
1774 {
1775 	struct spdk_nvmf_request		*req = &rdma_req->req;
1776 	struct spdk_nvme_cpl			*rsp;
1777 	struct spdk_nvme_sgl_descriptor		*sgl;
1778 	int					rc;
1779 	uint32_t				length;
1780 
1781 	rsp = &req->rsp->nvme_cpl;
1782 	sgl = &req->cmd->nvme_cmd.dptr.sgl1;
1783 
1784 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1785 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1786 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1787 
1788 		length = sgl->keyed.length;
1789 		if (length > rtransport->transport.opts.max_io_size) {
1790 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1791 				    length, rtransport->transport.opts.max_io_size);
1792 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1793 			return -1;
1794 		}
1795 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1796 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1797 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1798 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1799 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1800 			}
1801 		}
1802 #endif
1803 
1804 		/* fill request length and populate iovs */
1805 		req->length = length;
1806 
1807 		if (spdk_unlikely(req->dif.dif_insert_or_strip)) {
1808 			req->dif.orig_length = length;
1809 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
1810 			req->dif.elba_length = length;
1811 		}
1812 
1813 		rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req, length);
1814 		if (spdk_unlikely(rc < 0)) {
1815 			if (rc == -EINVAL) {
1816 				SPDK_ERRLOG("SGL length exceeds the max I/O size\n");
1817 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1818 				return -1;
1819 			}
1820 			/* No available buffers. Queue this request up. */
1821 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req);
1822 			return 0;
1823 		}
1824 
1825 		/* backward compatible */
1826 		req->data = req->iov[0].iov_base;
1827 
1828 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req,
1829 			      req->iovcnt);
1830 
1831 		return 0;
1832 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1833 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1834 		uint64_t offset = sgl->address;
1835 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1836 
1837 		SPDK_DEBUGLOG(SPDK_LOG_NVMF, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1838 			      offset, sgl->unkeyed.length);
1839 
1840 		if (offset > max_len) {
1841 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1842 				    offset, max_len);
1843 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1844 			return -1;
1845 		}
1846 		max_len -= (uint32_t)offset;
1847 
1848 		if (sgl->unkeyed.length > max_len) {
1849 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1850 				    sgl->unkeyed.length, max_len);
1851 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1852 			return -1;
1853 		}
1854 
1855 		rdma_req->num_outstanding_data_wr = 0;
1856 		req->data = rdma_req->recv->buf + offset;
1857 		req->data_from_pool = false;
1858 		req->length = sgl->unkeyed.length;
1859 
1860 		req->iov[0].iov_base = req->data;
1861 		req->iov[0].iov_len = req->length;
1862 		req->iovcnt = 1;
1863 
1864 		return 0;
1865 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1866 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1867 
1868 		rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1869 		if (rc == -ENOMEM) {
1870 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req);
1871 			return 0;
1872 		} else if (rc == -EINVAL) {
1873 			SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1874 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1875 			return -1;
1876 		}
1877 
1878 		/* backward compatible */
1879 		req->data = req->iov[0].iov_base;
1880 
1881 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req,
1882 			      req->iovcnt);
1883 
1884 		return 0;
1885 	}
1886 
1887 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
1888 		    sgl->generic.type, sgl->generic.subtype);
1889 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1890 	return -1;
1891 }
1892 
1893 static void
1894 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1895 			struct spdk_nvmf_rdma_transport	*rtransport)
1896 {
1897 	struct spdk_nvmf_rdma_qpair		*rqpair;
1898 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1899 
1900 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1901 	if (rdma_req->req.data_from_pool) {
1902 		rgroup = rqpair->poller->group;
1903 
1904 		spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport);
1905 	}
1906 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1907 	rdma_req->req.length = 0;
1908 	rdma_req->req.iovcnt = 0;
1909 	rdma_req->req.data = NULL;
1910 	rdma_req->rsp.wr.next = NULL;
1911 	rdma_req->data.wr.next = NULL;
1912 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
1913 	rqpair->qd--;
1914 
1915 	STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
1916 	rdma_req->state = RDMA_REQUEST_STATE_FREE;
1917 }
1918 
1919 bool
1920 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
1921 			  struct spdk_nvmf_rdma_request *rdma_req)
1922 {
1923 	struct spdk_nvmf_rdma_qpair	*rqpair;
1924 	struct spdk_nvmf_rdma_device	*device;
1925 	struct spdk_nvmf_rdma_poll_group *rgroup;
1926 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
1927 	int				rc;
1928 	struct spdk_nvmf_rdma_recv	*rdma_recv;
1929 	enum spdk_nvmf_rdma_request_state prev_state;
1930 	bool				progress = false;
1931 	int				data_posted;
1932 	uint32_t			num_blocks;
1933 
1934 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1935 	device = rqpair->device;
1936 	rgroup = rqpair->poller->group;
1937 
1938 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
1939 
1940 	/* If the queue pair is in an error state, force the request to the completed state
1941 	 * to release resources. */
1942 	if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
1943 		if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) {
1944 			STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link);
1945 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) {
1946 			STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
1947 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) {
1948 			STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
1949 		}
1950 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
1951 	}
1952 
1953 	/* The loop here is to allow for several back-to-back state changes. */
1954 	do {
1955 		prev_state = rdma_req->state;
1956 
1957 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p entering state %d\n", rdma_req, prev_state);
1958 
1959 		switch (rdma_req->state) {
1960 		case RDMA_REQUEST_STATE_FREE:
1961 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
1962 			 * to escape this state. */
1963 			break;
1964 		case RDMA_REQUEST_STATE_NEW:
1965 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
1966 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
1967 			rdma_recv = rdma_req->recv;
1968 
1969 			/* The first element of the SGL is the NVMe command */
1970 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
1971 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
1972 
1973 			if (rqpair->ibv_state == IBV_QPS_ERR  || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
1974 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
1975 				break;
1976 			}
1977 
1978 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) {
1979 				rdma_req->req.dif.dif_insert_or_strip = true;
1980 			}
1981 
1982 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1983 			rdma_req->rsp.wr.opcode = IBV_WR_SEND;
1984 			rdma_req->rsp.wr.imm_data = 0;
1985 #endif
1986 
1987 			/* The next state transition depends on the data transfer needs of this request. */
1988 			rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req);
1989 
1990 			/* If no data to transfer, ready to execute. */
1991 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
1992 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
1993 				break;
1994 			}
1995 
1996 			rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
1997 			STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link);
1998 			break;
1999 		case RDMA_REQUEST_STATE_NEED_BUFFER:
2000 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
2001 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2002 
2003 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
2004 
2005 			if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) {
2006 				/* This request needs to wait in line to obtain a buffer */
2007 				break;
2008 			}
2009 
2010 			/* Try to get a data buffer */
2011 			rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
2012 			if (rc < 0) {
2013 				STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2014 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2015 				break;
2016 			}
2017 
2018 			if (!rdma_req->req.data) {
2019 				/* No buffers available. */
2020 				rgroup->stat.pending_data_buffer++;
2021 				break;
2022 			}
2023 
2024 			STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2025 
2026 			/* If data is transferring from host to controller and the data didn't
2027 			 * arrive using in capsule data, we need to do a transfer from the host.
2028 			 */
2029 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER &&
2030 			    rdma_req->req.data_from_pool) {
2031 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
2032 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
2033 				break;
2034 			}
2035 
2036 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2037 			break;
2038 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2039 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
2040 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2041 
2042 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
2043 				/* This request needs to wait in line to perform RDMA */
2044 				break;
2045 			}
2046 			if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth
2047 			    || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) {
2048 				/* We can only have so many WRs outstanding. we have to wait until some finish. */
2049 				rqpair->poller->stat.pending_rdma_read++;
2050 				break;
2051 			}
2052 
2053 			/* We have already verified that this request is the head of the queue. */
2054 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
2055 
2056 			rc = request_transfer_in(&rdma_req->req);
2057 			if (!rc) {
2058 				rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
2059 			} else {
2060 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2061 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2062 			}
2063 			break;
2064 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2065 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
2066 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2067 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
2068 			 * to escape this state. */
2069 			break;
2070 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
2071 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
2072 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2073 
2074 			if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) {
2075 				if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2076 					/* generate DIF for write operation */
2077 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2078 					assert(num_blocks > 0);
2079 
2080 					rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt,
2081 							       num_blocks, &rdma_req->req.dif.dif_ctx);
2082 					if (rc != 0) {
2083 						SPDK_ERRLOG("DIF generation failed\n");
2084 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2085 						nvmf_rdma_start_disconnect(rqpair);
2086 						break;
2087 					}
2088 				}
2089 
2090 				assert(rdma_req->req.dif.elba_length >= rdma_req->req.length);
2091 				/* set extended length before IO operation */
2092 				rdma_req->req.length = rdma_req->req.dif.elba_length;
2093 			}
2094 
2095 			rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
2096 			spdk_nvmf_request_exec(&rdma_req->req);
2097 			break;
2098 		case RDMA_REQUEST_STATE_EXECUTING:
2099 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
2100 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2101 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
2102 			 * to escape this state. */
2103 			break;
2104 		case RDMA_REQUEST_STATE_EXECUTED:
2105 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
2106 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2107 			if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2108 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
2109 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
2110 			} else {
2111 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2112 			}
2113 			if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) {
2114 				/* restore the original length */
2115 				rdma_req->req.length = rdma_req->req.dif.orig_length;
2116 
2117 				if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2118 					struct spdk_dif_error error_blk;
2119 
2120 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2121 
2122 					rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2123 							     &rdma_req->req.dif.dif_ctx, &error_blk);
2124 					if (rc) {
2125 						struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
2126 
2127 						SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type,
2128 							    error_blk.err_offset);
2129 						rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2130 						rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type);
2131 						rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2132 						STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2133 					}
2134 				}
2135 			}
2136 			break;
2137 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2138 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
2139 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2140 
2141 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
2142 				/* This request needs to wait in line to perform RDMA */
2143 				break;
2144 			}
2145 			if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
2146 			    rqpair->max_send_depth) {
2147 				/* We can only have so many WRs outstanding. we have to wait until some finish.
2148 				 * +1 since each request has an additional wr in the resp. */
2149 				rqpair->poller->stat.pending_rdma_write++;
2150 				break;
2151 			}
2152 
2153 			/* We have already verified that this request is the head of the queue. */
2154 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
2155 
2156 			/* The data transfer will be kicked off from
2157 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2158 			 */
2159 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2160 			break;
2161 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
2162 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
2163 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2164 			rc = request_transfer_out(&rdma_req->req, &data_posted);
2165 			assert(rc == 0); /* No good way to handle this currently */
2166 			if (rc) {
2167 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2168 			} else {
2169 				rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
2170 						  RDMA_REQUEST_STATE_COMPLETING;
2171 			}
2172 			break;
2173 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2174 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
2175 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2176 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2177 			 * to escape this state. */
2178 			break;
2179 		case RDMA_REQUEST_STATE_COMPLETING:
2180 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
2181 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2182 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2183 			 * to escape this state. */
2184 			break;
2185 		case RDMA_REQUEST_STATE_COMPLETED:
2186 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2187 					  (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
2188 
2189 			rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc;
2190 			_nvmf_rdma_request_free(rdma_req, rtransport);
2191 			break;
2192 		case RDMA_REQUEST_NUM_STATES:
2193 		default:
2194 			assert(0);
2195 			break;
2196 		}
2197 
2198 		if (rdma_req->state != prev_state) {
2199 			progress = true;
2200 		}
2201 	} while (rdma_req->state != prev_state);
2202 
2203 	return progress;
2204 }
2205 
2206 /* Public API callbacks begin here */
2207 
2208 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2209 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2210 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2211 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
2212 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2213 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2214 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2215 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095
2216 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32
2217 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false
2218 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false
2219 
2220 static void
2221 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2222 {
2223 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2224 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2225 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2226 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2227 	opts->io_unit_size =		SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2228 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2229 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2230 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2231 	opts->max_srq_depth =		SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2232 	opts->no_srq =			SPDK_NVMF_RDMA_DEFAULT_NO_SRQ;
2233 	opts->dif_insert_or_strip =	SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP;
2234 }
2235 
2236 const struct spdk_mem_map_ops g_nvmf_rdma_map_ops = {
2237 	.notify_cb = nvmf_rdma_mem_notify,
2238 	.are_contiguous = nvmf_rdma_check_contiguous_entries
2239 };
2240 
2241 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport);
2242 
2243 static struct spdk_nvmf_transport *
2244 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2245 {
2246 	int rc;
2247 	struct spdk_nvmf_rdma_transport *rtransport;
2248 	struct spdk_nvmf_rdma_device	*device, *tmp;
2249 	struct ibv_context		**contexts;
2250 	uint32_t			i;
2251 	int				flag;
2252 	uint32_t			sge_count;
2253 	uint32_t			min_shared_buffers;
2254 	int				max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2255 	pthread_mutexattr_t		attr;
2256 
2257 	rtransport = calloc(1, sizeof(*rtransport));
2258 	if (!rtransport) {
2259 		return NULL;
2260 	}
2261 
2262 	if (pthread_mutexattr_init(&attr)) {
2263 		SPDK_ERRLOG("pthread_mutexattr_init() failed\n");
2264 		free(rtransport);
2265 		return NULL;
2266 	}
2267 
2268 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) {
2269 		SPDK_ERRLOG("pthread_mutexattr_settype() failed\n");
2270 		pthread_mutexattr_destroy(&attr);
2271 		free(rtransport);
2272 		return NULL;
2273 	}
2274 
2275 	if (pthread_mutex_init(&rtransport->lock, &attr)) {
2276 		SPDK_ERRLOG("pthread_mutex_init() failed\n");
2277 		pthread_mutexattr_destroy(&attr);
2278 		free(rtransport);
2279 		return NULL;
2280 	}
2281 
2282 	pthread_mutexattr_destroy(&attr);
2283 
2284 	TAILQ_INIT(&rtransport->devices);
2285 	TAILQ_INIT(&rtransport->ports);
2286 	TAILQ_INIT(&rtransport->poll_groups);
2287 
2288 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2289 
2290 	SPDK_INFOLOG(SPDK_LOG_RDMA, "*** RDMA Transport Init ***\n"
2291 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
2292 		     "  max_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2293 		     "  in_capsule_data_size=%d, max_aq_depth=%d,\n"
2294 		     "  num_shared_buffers=%d, max_srq_depth=%d, no_srq=%d\n",
2295 		     opts->max_queue_depth,
2296 		     opts->max_io_size,
2297 		     opts->max_qpairs_per_ctrlr,
2298 		     opts->io_unit_size,
2299 		     opts->in_capsule_data_size,
2300 		     opts->max_aq_depth,
2301 		     opts->num_shared_buffers,
2302 		     opts->max_srq_depth,
2303 		     opts->no_srq);
2304 
2305 	/* I/O unit size cannot be larger than max I/O size */
2306 	if (opts->io_unit_size > opts->max_io_size) {
2307 		opts->io_unit_size = opts->max_io_size;
2308 	}
2309 
2310 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2311 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2312 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
2313 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2314 		nvmf_rdma_destroy(&rtransport->transport);
2315 		return NULL;
2316 	}
2317 
2318 	min_shared_buffers = spdk_thread_get_count() * opts->buf_cache_size;
2319 	if (min_shared_buffers > opts->num_shared_buffers) {
2320 		SPDK_ERRLOG("There are not enough buffers to satisfy"
2321 			    "per-poll group caches for each thread. (%" PRIu32 ")"
2322 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2323 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2324 		nvmf_rdma_destroy(&rtransport->transport);
2325 		return NULL;
2326 	}
2327 
2328 	sge_count = opts->max_io_size / opts->io_unit_size;
2329 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
2330 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2331 		nvmf_rdma_destroy(&rtransport->transport);
2332 		return NULL;
2333 	}
2334 
2335 	rtransport->event_channel = rdma_create_event_channel();
2336 	if (rtransport->event_channel == NULL) {
2337 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2338 		nvmf_rdma_destroy(&rtransport->transport);
2339 		return NULL;
2340 	}
2341 
2342 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2343 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2344 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2345 			    rtransport->event_channel->fd, spdk_strerror(errno));
2346 		nvmf_rdma_destroy(&rtransport->transport);
2347 		return NULL;
2348 	}
2349 
2350 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
2351 				   opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES,
2352 				   sizeof(struct spdk_nvmf_rdma_request_data),
2353 				   SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2354 				   SPDK_ENV_SOCKET_ID_ANY);
2355 	if (!rtransport->data_wr_pool) {
2356 		SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2357 		nvmf_rdma_destroy(&rtransport->transport);
2358 		return NULL;
2359 	}
2360 
2361 	contexts = rdma_get_devices(NULL);
2362 	if (contexts == NULL) {
2363 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2364 		nvmf_rdma_destroy(&rtransport->transport);
2365 		return NULL;
2366 	}
2367 
2368 	i = 0;
2369 	rc = 0;
2370 	while (contexts[i] != NULL) {
2371 		device = calloc(1, sizeof(*device));
2372 		if (!device) {
2373 			SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2374 			rc = -ENOMEM;
2375 			break;
2376 		}
2377 		device->context = contexts[i];
2378 		rc = ibv_query_device(device->context, &device->attr);
2379 		if (rc < 0) {
2380 			SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2381 			free(device);
2382 			break;
2383 
2384 		}
2385 
2386 		max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2387 
2388 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2389 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2390 			SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2391 			SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2392 		}
2393 
2394 		/**
2395 		 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2396 		 * The Soft-RoCE RXE driver does not currently support send with invalidate,
2397 		 * but incorrectly reports that it does. There are changes making their way
2398 		 * through the kernel now that will enable this feature. When they are merged,
2399 		 * we can conditionally enable this feature.
2400 		 *
2401 		 * TODO: enable this for versions of the kernel rxe driver that support it.
2402 		 */
2403 		if (device->attr.vendor_id == 0) {
2404 			device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2405 		}
2406 #endif
2407 
2408 		/* set up device context async ev fd as NON_BLOCKING */
2409 		flag = fcntl(device->context->async_fd, F_GETFL);
2410 		rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2411 		if (rc < 0) {
2412 			SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2413 			free(device);
2414 			break;
2415 		}
2416 
2417 		TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2418 		i++;
2419 
2420 		if (g_nvmf_hooks.get_ibv_pd) {
2421 			device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2422 		} else {
2423 			device->pd = ibv_alloc_pd(device->context);
2424 		}
2425 
2426 		if (!device->pd) {
2427 			SPDK_ERRLOG("Unable to allocate protection domain.\n");
2428 			rc = -ENOMEM;
2429 			break;
2430 		}
2431 
2432 		assert(device->map == NULL);
2433 
2434 		device->map = spdk_mem_map_alloc(0, &g_nvmf_rdma_map_ops, device->pd);
2435 		if (!device->map) {
2436 			SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2437 			rc = -ENOMEM;
2438 			break;
2439 		}
2440 
2441 		assert(device->map != NULL);
2442 		assert(device->pd != NULL);
2443 	}
2444 	rdma_free_devices(contexts);
2445 
2446 	if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2447 		/* divide and round up. */
2448 		opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2449 
2450 		/* round up to the nearest 4k. */
2451 		opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2452 
2453 		opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2454 		SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2455 			       opts->io_unit_size);
2456 	}
2457 
2458 	if (rc < 0) {
2459 		nvmf_rdma_destroy(&rtransport->transport);
2460 		return NULL;
2461 	}
2462 
2463 	/* Set up poll descriptor array to monitor events from RDMA and IB
2464 	 * in a single poll syscall
2465 	 */
2466 	rtransport->npoll_fds = i + 1;
2467 	i = 0;
2468 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2469 	if (rtransport->poll_fds == NULL) {
2470 		SPDK_ERRLOG("poll_fds allocation failed\n");
2471 		nvmf_rdma_destroy(&rtransport->transport);
2472 		return NULL;
2473 	}
2474 
2475 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2476 	rtransport->poll_fds[i++].events = POLLIN;
2477 
2478 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2479 		rtransport->poll_fds[i].fd = device->context->async_fd;
2480 		rtransport->poll_fds[i++].events = POLLIN;
2481 	}
2482 
2483 	spdk_nvmf_ctrlr_data_init(opts, &rtransport->transport.cdata);
2484 
2485 	rtransport->transport.cdata.nvmf_specific.msdbd = SPDK_NVMF_MAX_SGL_ENTRIES;
2486 
2487 	/* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled
2488 	since in-capsule data only works with NVME drives that support SGL memory layout */
2489 	if (opts->dif_insert_or_strip) {
2490 		rtransport->transport.cdata.nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16;
2491 	}
2492 
2493 	return &rtransport->transport;
2494 }
2495 
2496 static int
2497 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport)
2498 {
2499 	struct spdk_nvmf_rdma_transport	*rtransport;
2500 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
2501 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
2502 
2503 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2504 
2505 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2506 		TAILQ_REMOVE(&rtransport->ports, port, link);
2507 		rdma_destroy_id(port->id);
2508 		free(port);
2509 	}
2510 
2511 	if (rtransport->poll_fds != NULL) {
2512 		free(rtransport->poll_fds);
2513 	}
2514 
2515 	if (rtransport->event_channel != NULL) {
2516 		rdma_destroy_event_channel(rtransport->event_channel);
2517 	}
2518 
2519 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2520 		TAILQ_REMOVE(&rtransport->devices, device, link);
2521 		if (device->map) {
2522 			spdk_mem_map_free(&device->map);
2523 		}
2524 		if (device->pd) {
2525 			if (!g_nvmf_hooks.get_ibv_pd) {
2526 				ibv_dealloc_pd(device->pd);
2527 			}
2528 		}
2529 		free(device);
2530 	}
2531 
2532 	if (rtransport->data_wr_pool != NULL) {
2533 		if (spdk_mempool_count(rtransport->data_wr_pool) !=
2534 		    (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) {
2535 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2536 				    spdk_mempool_count(rtransport->data_wr_pool),
2537 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2538 		}
2539 	}
2540 
2541 	spdk_mempool_free(rtransport->data_wr_pool);
2542 
2543 	pthread_mutex_destroy(&rtransport->lock);
2544 	free(rtransport);
2545 
2546 	return 0;
2547 }
2548 
2549 static int
2550 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2551 			  struct spdk_nvme_transport_id *trid,
2552 			  bool peer);
2553 
2554 static int
2555 nvmf_rdma_listen(struct spdk_nvmf_transport *transport,
2556 		 const struct spdk_nvme_transport_id *trid)
2557 {
2558 	struct spdk_nvmf_rdma_transport	*rtransport;
2559 	struct spdk_nvmf_rdma_device	*device;
2560 	struct spdk_nvmf_rdma_port	*port;
2561 	struct addrinfo			*res;
2562 	struct addrinfo			hints;
2563 	int				family;
2564 	int				rc;
2565 
2566 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2567 	assert(rtransport->event_channel != NULL);
2568 
2569 	pthread_mutex_lock(&rtransport->lock);
2570 	port = calloc(1, sizeof(*port));
2571 	if (!port) {
2572 		SPDK_ERRLOG("Port allocation failed\n");
2573 		pthread_mutex_unlock(&rtransport->lock);
2574 		return -ENOMEM;
2575 	}
2576 
2577 	port->trid = trid;
2578 
2579 	switch (trid->adrfam) {
2580 	case SPDK_NVMF_ADRFAM_IPV4:
2581 		family = AF_INET;
2582 		break;
2583 	case SPDK_NVMF_ADRFAM_IPV6:
2584 		family = AF_INET6;
2585 		break;
2586 	default:
2587 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam);
2588 		free(port);
2589 		pthread_mutex_unlock(&rtransport->lock);
2590 		return -EINVAL;
2591 	}
2592 
2593 	memset(&hints, 0, sizeof(hints));
2594 	hints.ai_family = family;
2595 	hints.ai_flags = AI_NUMERICSERV;
2596 	hints.ai_socktype = SOCK_STREAM;
2597 	hints.ai_protocol = 0;
2598 
2599 	rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res);
2600 	if (rc) {
2601 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
2602 		free(port);
2603 		pthread_mutex_unlock(&rtransport->lock);
2604 		return -EINVAL;
2605 	}
2606 
2607 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
2608 	if (rc < 0) {
2609 		SPDK_ERRLOG("rdma_create_id() failed\n");
2610 		freeaddrinfo(res);
2611 		free(port);
2612 		pthread_mutex_unlock(&rtransport->lock);
2613 		return rc;
2614 	}
2615 
2616 	rc = rdma_bind_addr(port->id, res->ai_addr);
2617 	freeaddrinfo(res);
2618 
2619 	if (rc < 0) {
2620 		SPDK_ERRLOG("rdma_bind_addr() failed\n");
2621 		rdma_destroy_id(port->id);
2622 		free(port);
2623 		pthread_mutex_unlock(&rtransport->lock);
2624 		return rc;
2625 	}
2626 
2627 	if (!port->id->verbs) {
2628 		SPDK_ERRLOG("ibv_context is null\n");
2629 		rdma_destroy_id(port->id);
2630 		free(port);
2631 		pthread_mutex_unlock(&rtransport->lock);
2632 		return -1;
2633 	}
2634 
2635 	rc = rdma_listen(port->id, 10); /* 10 = backlog */
2636 	if (rc < 0) {
2637 		SPDK_ERRLOG("rdma_listen() failed\n");
2638 		rdma_destroy_id(port->id);
2639 		free(port);
2640 		pthread_mutex_unlock(&rtransport->lock);
2641 		return rc;
2642 	}
2643 
2644 	TAILQ_FOREACH(device, &rtransport->devices, link) {
2645 		if (device->context == port->id->verbs) {
2646 			port->device = device;
2647 			break;
2648 		}
2649 	}
2650 	if (!port->device) {
2651 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
2652 			    port->id->verbs);
2653 		rdma_destroy_id(port->id);
2654 		free(port);
2655 		pthread_mutex_unlock(&rtransport->lock);
2656 		return -EINVAL;
2657 	}
2658 
2659 	SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n",
2660 		       trid->traddr, trid->trsvcid);
2661 
2662 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
2663 	pthread_mutex_unlock(&rtransport->lock);
2664 	return 0;
2665 }
2666 
2667 static void
2668 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
2669 		      const struct spdk_nvme_transport_id *trid)
2670 {
2671 	struct spdk_nvmf_rdma_transport *rtransport;
2672 	struct spdk_nvmf_rdma_port *port, *tmp;
2673 
2674 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2675 
2676 	pthread_mutex_lock(&rtransport->lock);
2677 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
2678 		if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
2679 			TAILQ_REMOVE(&rtransport->ports, port, link);
2680 			rdma_destroy_id(port->id);
2681 			free(port);
2682 			break;
2683 		}
2684 	}
2685 
2686 	pthread_mutex_unlock(&rtransport->lock);
2687 }
2688 
2689 static void
2690 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
2691 				struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
2692 {
2693 	struct spdk_nvmf_request *req, *tmp;
2694 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
2695 	struct spdk_nvmf_rdma_resources *resources;
2696 
2697 	/* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */
2698 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
2699 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2700 			break;
2701 		}
2702 	}
2703 
2704 	/* Then RDMA writes since reads have stronger restrictions than writes */
2705 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
2706 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2707 			break;
2708 		}
2709 	}
2710 
2711 	/* The second highest priority is I/O waiting on memory buffers. */
2712 	STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) {
2713 		rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
2714 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
2715 			break;
2716 		}
2717 	}
2718 
2719 	resources = rqpair->resources;
2720 	while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
2721 		rdma_req = STAILQ_FIRST(&resources->free_queue);
2722 		STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
2723 		rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
2724 		STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
2725 
2726 		if (rqpair->srq != NULL) {
2727 			rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
2728 			rdma_req->recv->qpair->qd++;
2729 		} else {
2730 			rqpair->qd++;
2731 		}
2732 
2733 		rdma_req->receive_tsc = rdma_req->recv->receive_tsc;
2734 		rdma_req->state = RDMA_REQUEST_STATE_NEW;
2735 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
2736 			break;
2737 		}
2738 	}
2739 	if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) {
2740 		rqpair->poller->stat.pending_free_request++;
2741 	}
2742 }
2743 
2744 static void
2745 _nvmf_rdma_qpair_disconnect(void *ctx)
2746 {
2747 	struct spdk_nvmf_qpair *qpair = ctx;
2748 
2749 	spdk_nvmf_qpair_disconnect(qpair, NULL, NULL);
2750 }
2751 
2752 static void
2753 _nvmf_rdma_try_disconnect(void *ctx)
2754 {
2755 	struct spdk_nvmf_qpair *qpair = ctx;
2756 	struct spdk_nvmf_poll_group *group;
2757 
2758 	/* Read the group out of the qpair. This is normally set and accessed only from
2759 	 * the thread that created the group. Here, we're not on that thread necessarily.
2760 	 * The data member qpair->group begins it's life as NULL and then is assigned to
2761 	 * a pointer and never changes. So fortunately reading this and checking for
2762 	 * non-NULL is thread safe in the x86_64 memory model. */
2763 	group = qpair->group;
2764 
2765 	if (group == NULL) {
2766 		/* The qpair hasn't been assigned to a group yet, so we can't
2767 		 * process a disconnect. Send a message to ourself and try again. */
2768 		spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_try_disconnect, qpair);
2769 		return;
2770 	}
2771 
2772 	spdk_thread_send_msg(group->thread, _nvmf_rdma_qpair_disconnect, qpair);
2773 }
2774 
2775 static inline void
2776 nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair)
2777 {
2778 	if (!__atomic_test_and_set(&rqpair->disconnect_started, __ATOMIC_RELAXED)) {
2779 		_nvmf_rdma_try_disconnect(&rqpair->qpair);
2780 	}
2781 }
2782 
2783 static void nvmf_rdma_destroy_drained_qpair(void *ctx)
2784 {
2785 	struct spdk_nvmf_rdma_qpair *rqpair = ctx;
2786 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
2787 			struct spdk_nvmf_rdma_transport, transport);
2788 
2789 	/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
2790 	if (rqpair->current_send_depth != 0) {
2791 		return;
2792 	}
2793 
2794 	if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
2795 		return;
2796 	}
2797 
2798 	if (rqpair->srq != NULL && rqpair->last_wqe_reached == false) {
2799 		return;
2800 	}
2801 
2802 	nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
2803 
2804 	/* Qpair will be destroyed after nvmf layer closes this qpair */
2805 	if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ERROR) {
2806 		return;
2807 	}
2808 
2809 	nvmf_rdma_qpair_destroy(rqpair);
2810 }
2811 
2812 
2813 static int
2814 nvmf_rdma_disconnect(struct rdma_cm_event *evt)
2815 {
2816 	struct spdk_nvmf_qpair		*qpair;
2817 	struct spdk_nvmf_rdma_qpair	*rqpair;
2818 
2819 	if (evt->id == NULL) {
2820 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
2821 		return -1;
2822 	}
2823 
2824 	qpair = evt->id->context;
2825 	if (qpair == NULL) {
2826 		SPDK_ERRLOG("disconnect request: no active connection\n");
2827 		return -1;
2828 	}
2829 
2830 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
2831 
2832 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair->cm_id, 0);
2833 
2834 	nvmf_rdma_start_disconnect(rqpair);
2835 
2836 	return 0;
2837 }
2838 
2839 #ifdef DEBUG
2840 static const char *CM_EVENT_STR[] = {
2841 	"RDMA_CM_EVENT_ADDR_RESOLVED",
2842 	"RDMA_CM_EVENT_ADDR_ERROR",
2843 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
2844 	"RDMA_CM_EVENT_ROUTE_ERROR",
2845 	"RDMA_CM_EVENT_CONNECT_REQUEST",
2846 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
2847 	"RDMA_CM_EVENT_CONNECT_ERROR",
2848 	"RDMA_CM_EVENT_UNREACHABLE",
2849 	"RDMA_CM_EVENT_REJECTED",
2850 	"RDMA_CM_EVENT_ESTABLISHED",
2851 	"RDMA_CM_EVENT_DISCONNECTED",
2852 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
2853 	"RDMA_CM_EVENT_MULTICAST_JOIN",
2854 	"RDMA_CM_EVENT_MULTICAST_ERROR",
2855 	"RDMA_CM_EVENT_ADDR_CHANGE",
2856 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
2857 };
2858 #endif /* DEBUG */
2859 
2860 static void
2861 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport,
2862 				    struct spdk_nvmf_rdma_port *port)
2863 {
2864 	struct spdk_nvmf_rdma_poll_group	*rgroup;
2865 	struct spdk_nvmf_rdma_poller		*rpoller;
2866 	struct spdk_nvmf_rdma_qpair		*rqpair;
2867 
2868 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
2869 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
2870 			TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) {
2871 				if (rqpair->listen_id == port->id) {
2872 					nvmf_rdma_start_disconnect(rqpair);
2873 				}
2874 			}
2875 		}
2876 	}
2877 }
2878 
2879 static bool
2880 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport,
2881 				      struct rdma_cm_event *event)
2882 {
2883 	const struct spdk_nvme_transport_id	*trid;
2884 	struct spdk_nvmf_rdma_port		*port;
2885 	struct spdk_nvmf_rdma_transport		*rtransport;
2886 	bool					event_acked = false;
2887 
2888 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2889 	TAILQ_FOREACH(port, &rtransport->ports, link) {
2890 		if (port->id == event->id) {
2891 			SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid);
2892 			rdma_ack_cm_event(event);
2893 			event_acked = true;
2894 			trid = port->trid;
2895 			break;
2896 		}
2897 	}
2898 
2899 	if (event_acked) {
2900 		nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
2901 
2902 		nvmf_rdma_stop_listen(transport, trid);
2903 		nvmf_rdma_listen(transport, trid);
2904 	}
2905 
2906 	return event_acked;
2907 }
2908 
2909 static void
2910 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport,
2911 				       struct rdma_cm_event *event)
2912 {
2913 	struct spdk_nvmf_rdma_port		*port;
2914 	struct spdk_nvmf_rdma_transport		*rtransport;
2915 
2916 	port = event->id->context;
2917 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2918 
2919 	SPDK_NOTICELOG("Port %s:%s is being removed\n", port->trid->traddr, port->trid->trsvcid);
2920 
2921 	nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
2922 
2923 	rdma_ack_cm_event(event);
2924 
2925 	while (spdk_nvmf_transport_stop_listen(transport, port->trid) == 0) {
2926 		;
2927 	}
2928 }
2929 
2930 static void
2931 nvmf_process_cm_event(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn, void *cb_arg)
2932 {
2933 	struct spdk_nvmf_rdma_transport *rtransport;
2934 	struct rdma_cm_event		*event;
2935 	int				rc;
2936 	bool				event_acked;
2937 
2938 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2939 
2940 	if (rtransport->event_channel == NULL) {
2941 		return;
2942 	}
2943 
2944 	while (1) {
2945 		event_acked = false;
2946 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
2947 		if (rc) {
2948 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
2949 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
2950 			}
2951 			break;
2952 		}
2953 
2954 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
2955 
2956 		spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
2957 
2958 		switch (event->event) {
2959 		case RDMA_CM_EVENT_ADDR_RESOLVED:
2960 		case RDMA_CM_EVENT_ADDR_ERROR:
2961 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
2962 		case RDMA_CM_EVENT_ROUTE_ERROR:
2963 			/* No action required. The target never attempts to resolve routes. */
2964 			break;
2965 		case RDMA_CM_EVENT_CONNECT_REQUEST:
2966 			rc = nvmf_rdma_connect(transport, event, cb_fn, cb_arg);
2967 			if (rc < 0) {
2968 				SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
2969 				break;
2970 			}
2971 			break;
2972 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
2973 			/* The target never initiates a new connection. So this will not occur. */
2974 			break;
2975 		case RDMA_CM_EVENT_CONNECT_ERROR:
2976 			/* Can this happen? The docs say it can, but not sure what causes it. */
2977 			break;
2978 		case RDMA_CM_EVENT_UNREACHABLE:
2979 		case RDMA_CM_EVENT_REJECTED:
2980 			/* These only occur on the client side. */
2981 			break;
2982 		case RDMA_CM_EVENT_ESTABLISHED:
2983 			/* TODO: Should we be waiting for this event anywhere? */
2984 			break;
2985 		case RDMA_CM_EVENT_DISCONNECTED:
2986 			rc = nvmf_rdma_disconnect(event);
2987 			if (rc < 0) {
2988 				SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
2989 				break;
2990 			}
2991 			break;
2992 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
2993 			/* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL
2994 			 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s.
2995 			 * Once these events are sent to SPDK, we should release all IB resources and
2996 			 * don't make attempts to call any ibv_query/modify/create functions. We can only call
2997 			 * ibv_destory* functions to release user space memory allocated by IB. All kernel
2998 			 * resources are already cleaned. */
2999 			if (event->id->qp) {
3000 				/* If rdma_cm event has a valid `qp` pointer then the event refers to the
3001 				 * corresponding qpair. Otherwise the event refers to a listening device */
3002 				rc = nvmf_rdma_disconnect(event);
3003 				if (rc < 0) {
3004 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3005 					break;
3006 				}
3007 			} else {
3008 				nvmf_rdma_handle_cm_event_port_removal(transport, event);
3009 				event_acked = true;
3010 			}
3011 			break;
3012 		case RDMA_CM_EVENT_MULTICAST_JOIN:
3013 		case RDMA_CM_EVENT_MULTICAST_ERROR:
3014 			/* Multicast is not used */
3015 			break;
3016 		case RDMA_CM_EVENT_ADDR_CHANGE:
3017 			event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event);
3018 			break;
3019 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
3020 			/* For now, do nothing. The target never re-uses queue pairs. */
3021 			break;
3022 		default:
3023 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
3024 			break;
3025 		}
3026 		if (!event_acked) {
3027 			rdma_ack_cm_event(event);
3028 		}
3029 	}
3030 }
3031 
3032 static void
3033 nvmf_rdma_handle_qp_fatal(struct spdk_nvmf_rdma_qpair *rqpair)
3034 {
3035 	nvmf_rdma_update_ibv_state(rqpair);
3036 	nvmf_rdma_start_disconnect(rqpair);
3037 }
3038 
3039 static void
3040 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair)
3041 {
3042 	rqpair->last_wqe_reached = true;
3043 	nvmf_rdma_destroy_drained_qpair(rqpair);
3044 }
3045 
3046 static void
3047 nvmf_rdma_handle_sq_drained(struct spdk_nvmf_rdma_qpair *rqpair)
3048 {
3049 	nvmf_rdma_start_disconnect(rqpair);
3050 }
3051 
3052 static void
3053 nvmf_rdma_qpair_process_ibv_event(void *ctx)
3054 {
3055 	struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx;
3056 
3057 	if (event_ctx->rqpair) {
3058 		STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3059 		if (event_ctx->cb_fn) {
3060 			event_ctx->cb_fn(event_ctx->rqpair);
3061 		}
3062 	}
3063 	free(event_ctx);
3064 }
3065 
3066 static int
3067 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair,
3068 				 spdk_nvmf_rdma_qpair_ibv_event fn)
3069 {
3070 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx;
3071 
3072 	if (!rqpair->qpair.group) {
3073 		return EINVAL;
3074 	}
3075 
3076 	ctx = calloc(1, sizeof(*ctx));
3077 	if (!ctx) {
3078 		return ENOMEM;
3079 	}
3080 
3081 	ctx->rqpair = rqpair;
3082 	ctx->cb_fn = fn;
3083 	STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link);
3084 
3085 	return spdk_thread_send_msg(rqpair->qpair.group->thread, nvmf_rdma_qpair_process_ibv_event,
3086 				    ctx);
3087 }
3088 
3089 static void
3090 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
3091 {
3092 	int				rc;
3093 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
3094 	struct ibv_async_event		event;
3095 
3096 	rc = ibv_get_async_event(device->context, &event);
3097 
3098 	if (rc) {
3099 		SPDK_ERRLOG("Failed to get async_event (%d): %s\n",
3100 			    errno, spdk_strerror(errno));
3101 		return;
3102 	}
3103 
3104 	switch (event.event_type) {
3105 	case IBV_EVENT_QP_FATAL:
3106 		rqpair = event.element.qp->qp_context;
3107 		SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
3108 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3109 				  (uintptr_t)rqpair->cm_id, event.event_type);
3110 		if (nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_qp_fatal)) {
3111 			SPDK_ERRLOG("Failed to send QP_FATAL event for rqpair %p\n", rqpair);
3112 			nvmf_rdma_handle_qp_fatal(rqpair);
3113 		}
3114 		break;
3115 	case IBV_EVENT_QP_LAST_WQE_REACHED:
3116 		/* This event only occurs for shared receive queues. */
3117 		rqpair = event.element.qp->qp_context;
3118 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last WQE reached event received for rqpair %p\n", rqpair);
3119 		if (nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached)) {
3120 			SPDK_ERRLOG("Failed to send LAST_WQE_REACHED event for rqpair %p\n", rqpair);
3121 			rqpair->last_wqe_reached = true;
3122 		}
3123 		break;
3124 	case IBV_EVENT_SQ_DRAINED:
3125 		/* This event occurs frequently in both error and non-error states.
3126 		 * Check if the qpair is in an error state before sending a message. */
3127 		rqpair = event.element.qp->qp_context;
3128 		SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last sq drained event received for rqpair %p\n", rqpair);
3129 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3130 				  (uintptr_t)rqpair->cm_id, event.event_type);
3131 		if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) {
3132 			if (nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_sq_drained)) {
3133 				SPDK_ERRLOG("Failed to send SQ_DRAINED event for rqpair %p\n", rqpair);
3134 				nvmf_rdma_handle_sq_drained(rqpair);
3135 			}
3136 		}
3137 		break;
3138 	case IBV_EVENT_QP_REQ_ERR:
3139 	case IBV_EVENT_QP_ACCESS_ERR:
3140 	case IBV_EVENT_COMM_EST:
3141 	case IBV_EVENT_PATH_MIG:
3142 	case IBV_EVENT_PATH_MIG_ERR:
3143 		SPDK_NOTICELOG("Async event: %s\n",
3144 			       ibv_event_type_str(event.event_type));
3145 		rqpair = event.element.qp->qp_context;
3146 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3147 				  (uintptr_t)rqpair->cm_id, event.event_type);
3148 		nvmf_rdma_update_ibv_state(rqpair);
3149 		break;
3150 	case IBV_EVENT_CQ_ERR:
3151 	case IBV_EVENT_DEVICE_FATAL:
3152 	case IBV_EVENT_PORT_ACTIVE:
3153 	case IBV_EVENT_PORT_ERR:
3154 	case IBV_EVENT_LID_CHANGE:
3155 	case IBV_EVENT_PKEY_CHANGE:
3156 	case IBV_EVENT_SM_CHANGE:
3157 	case IBV_EVENT_SRQ_ERR:
3158 	case IBV_EVENT_SRQ_LIMIT_REACHED:
3159 	case IBV_EVENT_CLIENT_REREGISTER:
3160 	case IBV_EVENT_GID_CHANGE:
3161 	default:
3162 		SPDK_NOTICELOG("Async event: %s\n",
3163 			       ibv_event_type_str(event.event_type));
3164 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
3165 		break;
3166 	}
3167 	ibv_ack_async_event(&event);
3168 }
3169 
3170 static void
3171 nvmf_rdma_accept(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn, void *cb_arg)
3172 {
3173 	int	nfds, i = 0;
3174 	struct spdk_nvmf_rdma_transport *rtransport;
3175 	struct spdk_nvmf_rdma_device *device, *tmp;
3176 
3177 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3178 	nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
3179 
3180 	if (nfds <= 0) {
3181 		return;
3182 	}
3183 
3184 	/* The first poll descriptor is RDMA CM event */
3185 	if (rtransport->poll_fds[i++].revents & POLLIN) {
3186 		nvmf_process_cm_event(transport, cb_fn, cb_arg);
3187 		nfds--;
3188 	}
3189 
3190 	if (nfds == 0) {
3191 		return;
3192 	}
3193 
3194 	/* Second and subsequent poll descriptors are IB async events */
3195 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
3196 		if (rtransport->poll_fds[i++].revents & POLLIN) {
3197 			nvmf_process_ib_event(device);
3198 			nfds--;
3199 		}
3200 	}
3201 	/* check all flagged fd's have been served */
3202 	assert(nfds == 0);
3203 }
3204 
3205 static void
3206 nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
3207 		   struct spdk_nvme_transport_id *trid,
3208 		   struct spdk_nvmf_discovery_log_page_entry *entry)
3209 {
3210 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
3211 	entry->adrfam = trid->adrfam;
3212 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
3213 
3214 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
3215 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
3216 
3217 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
3218 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
3219 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
3220 }
3221 
3222 static void
3223 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
3224 
3225 static struct spdk_nvmf_transport_poll_group *
3226 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport)
3227 {
3228 	struct spdk_nvmf_rdma_transport		*rtransport;
3229 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3230 	struct spdk_nvmf_rdma_poller		*poller;
3231 	struct spdk_nvmf_rdma_device		*device;
3232 	struct ibv_srq_init_attr		srq_init_attr;
3233 	struct spdk_nvmf_rdma_resource_opts	opts;
3234 	int					num_cqe;
3235 
3236 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3237 
3238 	rgroup = calloc(1, sizeof(*rgroup));
3239 	if (!rgroup) {
3240 		return NULL;
3241 	}
3242 
3243 	TAILQ_INIT(&rgroup->pollers);
3244 	STAILQ_INIT(&rgroup->retired_bufs);
3245 
3246 	pthread_mutex_lock(&rtransport->lock);
3247 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3248 		poller = calloc(1, sizeof(*poller));
3249 		if (!poller) {
3250 			SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
3251 			nvmf_rdma_poll_group_destroy(&rgroup->group);
3252 			pthread_mutex_unlock(&rtransport->lock);
3253 			return NULL;
3254 		}
3255 
3256 		poller->device = device;
3257 		poller->group = rgroup;
3258 
3259 		TAILQ_INIT(&poller->qpairs);
3260 		STAILQ_INIT(&poller->qpairs_pending_send);
3261 		STAILQ_INIT(&poller->qpairs_pending_recv);
3262 
3263 		TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
3264 		if (transport->opts.no_srq == false && device->num_srq < device->attr.max_srq) {
3265 			poller->max_srq_depth = transport->opts.max_srq_depth;
3266 
3267 			device->num_srq++;
3268 			memset(&srq_init_attr, 0, sizeof(struct ibv_srq_init_attr));
3269 			srq_init_attr.attr.max_wr = poller->max_srq_depth;
3270 			srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
3271 			poller->srq = ibv_create_srq(device->pd, &srq_init_attr);
3272 			if (!poller->srq) {
3273 				SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
3274 				nvmf_rdma_poll_group_destroy(&rgroup->group);
3275 				pthread_mutex_unlock(&rtransport->lock);
3276 				return NULL;
3277 			}
3278 
3279 			opts.qp = poller->srq;
3280 			opts.pd = device->pd;
3281 			opts.qpair = NULL;
3282 			opts.shared = true;
3283 			opts.max_queue_depth = poller->max_srq_depth;
3284 			opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
3285 
3286 			poller->resources = nvmf_rdma_resources_create(&opts);
3287 			if (!poller->resources) {
3288 				SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
3289 				nvmf_rdma_poll_group_destroy(&rgroup->group);
3290 				pthread_mutex_unlock(&rtransport->lock);
3291 				return NULL;
3292 			}
3293 		}
3294 
3295 		/*
3296 		 * When using an srq, we can limit the completion queue at startup.
3297 		 * The following formula represents the calculation:
3298 		 * num_cqe = num_recv + num_data_wr + num_send_wr.
3299 		 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
3300 		 */
3301 		if (poller->srq) {
3302 			num_cqe = poller->max_srq_depth * 3;
3303 		} else {
3304 			num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
3305 		}
3306 
3307 		poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
3308 		if (!poller->cq) {
3309 			SPDK_ERRLOG("Unable to create completion queue\n");
3310 			nvmf_rdma_poll_group_destroy(&rgroup->group);
3311 			pthread_mutex_unlock(&rtransport->lock);
3312 			return NULL;
3313 		}
3314 		poller->num_cqe = num_cqe;
3315 	}
3316 
3317 	TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link);
3318 	if (rtransport->conn_sched.next_admin_pg == NULL) {
3319 		rtransport->conn_sched.next_admin_pg = rgroup;
3320 		rtransport->conn_sched.next_io_pg = rgroup;
3321 	}
3322 
3323 	pthread_mutex_unlock(&rtransport->lock);
3324 	return &rgroup->group;
3325 }
3326 
3327 static struct spdk_nvmf_transport_poll_group *
3328 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
3329 {
3330 	struct spdk_nvmf_rdma_transport *rtransport;
3331 	struct spdk_nvmf_rdma_poll_group **pg;
3332 	struct spdk_nvmf_transport_poll_group *result;
3333 
3334 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
3335 
3336 	pthread_mutex_lock(&rtransport->lock);
3337 
3338 	if (TAILQ_EMPTY(&rtransport->poll_groups)) {
3339 		pthread_mutex_unlock(&rtransport->lock);
3340 		return NULL;
3341 	}
3342 
3343 	if (qpair->qid == 0) {
3344 		pg = &rtransport->conn_sched.next_admin_pg;
3345 	} else {
3346 		pg = &rtransport->conn_sched.next_io_pg;
3347 	}
3348 
3349 	assert(*pg != NULL);
3350 
3351 	result = &(*pg)->group;
3352 
3353 	*pg = TAILQ_NEXT(*pg, link);
3354 	if (*pg == NULL) {
3355 		*pg = TAILQ_FIRST(&rtransport->poll_groups);
3356 	}
3357 
3358 	pthread_mutex_unlock(&rtransport->lock);
3359 
3360 	return result;
3361 }
3362 
3363 static void
3364 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
3365 {
3366 	struct spdk_nvmf_rdma_poll_group	*rgroup, *next_rgroup;
3367 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
3368 	struct spdk_nvmf_rdma_qpair		*qpair, *tmp_qpair;
3369 	struct spdk_nvmf_transport_pg_cache_buf	*buf, *tmp_buf;
3370 	struct spdk_nvmf_rdma_transport		*rtransport;
3371 
3372 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3373 	if (!rgroup) {
3374 		return;
3375 	}
3376 
3377 	/* free all retired buffers back to the transport so we don't short the mempool. */
3378 	STAILQ_FOREACH_SAFE(buf, &rgroup->retired_bufs, link, tmp_buf) {
3379 		STAILQ_REMOVE(&rgroup->retired_bufs, buf, spdk_nvmf_transport_pg_cache_buf, link);
3380 		assert(group->transport != NULL);
3381 		spdk_mempool_put(group->transport->data_buf_pool, buf);
3382 	}
3383 
3384 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
3385 		TAILQ_REMOVE(&rgroup->pollers, poller, link);
3386 
3387 		TAILQ_FOREACH_SAFE(qpair, &poller->qpairs, link, tmp_qpair) {
3388 			nvmf_rdma_qpair_destroy(qpair);
3389 		}
3390 
3391 		if (poller->srq) {
3392 			if (poller->resources) {
3393 				nvmf_rdma_resources_destroy(poller->resources);
3394 			}
3395 			ibv_destroy_srq(poller->srq);
3396 			SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Destroyed RDMA shared queue %p\n", poller->srq);
3397 		}
3398 
3399 		if (poller->cq) {
3400 			ibv_destroy_cq(poller->cq);
3401 		}
3402 
3403 		free(poller);
3404 	}
3405 
3406 	if (rgroup->group.transport == NULL) {
3407 		/* Transport can be NULL when nvmf_rdma_poll_group_create()
3408 		 * calls this function directly in a failure path. */
3409 		free(rgroup);
3410 		return;
3411 	}
3412 
3413 	rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport);
3414 
3415 	pthread_mutex_lock(&rtransport->lock);
3416 	next_rgroup = TAILQ_NEXT(rgroup, link);
3417 	TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link);
3418 	if (next_rgroup == NULL) {
3419 		next_rgroup = TAILQ_FIRST(&rtransport->poll_groups);
3420 	}
3421 	if (rtransport->conn_sched.next_admin_pg == rgroup) {
3422 		rtransport->conn_sched.next_admin_pg = next_rgroup;
3423 	}
3424 	if (rtransport->conn_sched.next_io_pg == rgroup) {
3425 		rtransport->conn_sched.next_io_pg = next_rgroup;
3426 	}
3427 	pthread_mutex_unlock(&rtransport->lock);
3428 
3429 	free(rgroup);
3430 }
3431 
3432 static void
3433 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
3434 {
3435 	if (rqpair->cm_id != NULL) {
3436 		nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
3437 	}
3438 	nvmf_rdma_qpair_destroy(rqpair);
3439 }
3440 
3441 static int
3442 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3443 			 struct spdk_nvmf_qpair *qpair)
3444 {
3445 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3446 	struct spdk_nvmf_rdma_qpair		*rqpair;
3447 	struct spdk_nvmf_rdma_device		*device;
3448 	struct spdk_nvmf_rdma_poller		*poller;
3449 	int					rc;
3450 
3451 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3452 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3453 
3454 	device = rqpair->device;
3455 
3456 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
3457 		if (poller->device == device) {
3458 			break;
3459 		}
3460 	}
3461 
3462 	if (!poller) {
3463 		SPDK_ERRLOG("No poller found for device.\n");
3464 		return -1;
3465 	}
3466 
3467 	TAILQ_INSERT_TAIL(&poller->qpairs, rqpair, link);
3468 	rqpair->poller = poller;
3469 	rqpair->srq = rqpair->poller->srq;
3470 
3471 	rc = nvmf_rdma_qpair_initialize(qpair);
3472 	if (rc < 0) {
3473 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
3474 		return -1;
3475 	}
3476 
3477 	rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
3478 	if (rc) {
3479 		/* Try to reject, but we probably can't */
3480 		nvmf_rdma_qpair_reject_connection(rqpair);
3481 		return -1;
3482 	}
3483 
3484 	nvmf_rdma_update_ibv_state(rqpair);
3485 
3486 	return 0;
3487 }
3488 
3489 static int
3490 nvmf_rdma_request_free(struct spdk_nvmf_request *req)
3491 {
3492 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3493 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3494 			struct spdk_nvmf_rdma_transport, transport);
3495 
3496 	_nvmf_rdma_request_free(rdma_req, rtransport);
3497 	return 0;
3498 }
3499 
3500 static int
3501 nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
3502 {
3503 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
3504 			struct spdk_nvmf_rdma_transport, transport);
3505 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
3506 			struct spdk_nvmf_rdma_request, req);
3507 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
3508 			struct spdk_nvmf_rdma_qpair, qpair);
3509 
3510 	if (rqpair->ibv_state != IBV_QPS_ERR) {
3511 		/* The connection is alive, so process the request as normal */
3512 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
3513 	} else {
3514 		/* The connection is dead. Move the request directly to the completed state. */
3515 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3516 	}
3517 
3518 	nvmf_rdma_request_process(rtransport, rdma_req);
3519 
3520 	return 0;
3521 }
3522 
3523 static int
3524 nvmf_rdma_destroy_defunct_qpair(void *ctx)
3525 {
3526 	struct spdk_nvmf_rdma_qpair	*rqpair = ctx;
3527 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
3528 			struct spdk_nvmf_rdma_transport, transport);
3529 
3530 	SPDK_INFOLOG(SPDK_LOG_RDMA, "QP#%d hasn't been drained as expected, manually destroy it\n",
3531 		     rqpair->qpair.qid);
3532 
3533 	nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
3534 	nvmf_rdma_qpair_destroy(rqpair);
3535 
3536 	return 0;
3537 }
3538 
3539 static void
3540 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair)
3541 {
3542 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3543 
3544 	if (rqpair->disconnect_flags & RDMA_QP_DISCONNECTING) {
3545 		return;
3546 	}
3547 
3548 	rqpair->disconnect_flags |= RDMA_QP_DISCONNECTING;
3549 
3550 	/* This happens only when the qpair is disconnected before
3551 	 * it is added to the poll group. Since there is no poll group,
3552 	 * the RDMA qp has not been initialized yet and the RDMA CM
3553 	 * event has not yet been acknowledged, so we need to reject it.
3554 	 */
3555 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
3556 		nvmf_rdma_qpair_reject_connection(rqpair);
3557 		return;
3558 	}
3559 
3560 	if (rqpair->cm_id) {
3561 		spdk_rdma_qp_disconnect(rqpair->rdma_qp);
3562 	}
3563 
3564 	rqpair->destruct_poller = SPDK_POLLER_REGISTER(nvmf_rdma_destroy_defunct_qpair, (void *)rqpair,
3565 				  NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US);
3566 }
3567 
3568 static struct spdk_nvmf_rdma_qpair *
3569 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
3570 {
3571 	struct spdk_nvmf_rdma_qpair *rqpair;
3572 	/* @todo: improve QP search */
3573 	TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) {
3574 		if (wc->qp_num == rqpair->rdma_qp->qp->qp_num) {
3575 			return rqpair;
3576 		}
3577 	}
3578 	SPDK_ERRLOG("Didn't find QP with qp_num %u\n", wc->qp_num);
3579 	return NULL;
3580 }
3581 
3582 #ifdef DEBUG
3583 static int
3584 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
3585 {
3586 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
3587 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
3588 }
3589 #endif
3590 
3591 static void
3592 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr,
3593 			   int rc)
3594 {
3595 	struct spdk_nvmf_rdma_recv	*rdma_recv;
3596 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
3597 
3598 	SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc);
3599 	while (bad_recv_wr != NULL) {
3600 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id;
3601 		rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
3602 
3603 		rdma_recv->qpair->current_recv_depth++;
3604 		bad_recv_wr = bad_recv_wr->next;
3605 		SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc);
3606 		nvmf_rdma_start_disconnect(rdma_recv->qpair);
3607 	}
3608 }
3609 
3610 static void
3611 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc)
3612 {
3613 	SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc);
3614 	while (bad_recv_wr != NULL) {
3615 		bad_recv_wr = bad_recv_wr->next;
3616 		rqpair->current_recv_depth++;
3617 	}
3618 	nvmf_rdma_start_disconnect(rqpair);
3619 }
3620 
3621 static void
3622 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
3623 		     struct spdk_nvmf_rdma_poller *rpoller)
3624 {
3625 	struct spdk_nvmf_rdma_qpair	*rqpair;
3626 	struct ibv_recv_wr		*bad_recv_wr;
3627 	int				rc;
3628 
3629 	if (rpoller->srq) {
3630 		if (rpoller->resources->recvs_to_post.first != NULL) {
3631 			rc = ibv_post_srq_recv(rpoller->srq, rpoller->resources->recvs_to_post.first, &bad_recv_wr);
3632 			if (rc) {
3633 				_poller_reset_failed_recvs(rpoller, bad_recv_wr, rc);
3634 			}
3635 			rpoller->resources->recvs_to_post.first = NULL;
3636 			rpoller->resources->recvs_to_post.last = NULL;
3637 		}
3638 	} else {
3639 		while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) {
3640 			rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv);
3641 			assert(rqpair->resources->recvs_to_post.first != NULL);
3642 			rc = ibv_post_recv(rqpair->rdma_qp->qp, rqpair->resources->recvs_to_post.first, &bad_recv_wr);
3643 			if (rc) {
3644 				_qp_reset_failed_recvs(rqpair, bad_recv_wr, rc);
3645 			}
3646 			rqpair->resources->recvs_to_post.first = NULL;
3647 			rqpair->resources->recvs_to_post.last = NULL;
3648 			STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link);
3649 		}
3650 	}
3651 }
3652 
3653 static void
3654 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport,
3655 		       struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc)
3656 {
3657 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
3658 	struct spdk_nvmf_rdma_request	*prev_rdma_req = NULL, *cur_rdma_req = NULL;
3659 
3660 	SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc);
3661 	for (; bad_wr != NULL; bad_wr = bad_wr->next) {
3662 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id;
3663 		assert(rqpair->current_send_depth > 0);
3664 		rqpair->current_send_depth--;
3665 		switch (bad_rdma_wr->type) {
3666 		case RDMA_WR_TYPE_DATA:
3667 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
3668 			if (bad_wr->opcode == IBV_WR_RDMA_READ) {
3669 				assert(rqpair->current_read_depth > 0);
3670 				rqpair->current_read_depth--;
3671 			}
3672 			break;
3673 		case RDMA_WR_TYPE_SEND:
3674 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
3675 			break;
3676 		default:
3677 			SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair);
3678 			prev_rdma_req = cur_rdma_req;
3679 			continue;
3680 		}
3681 
3682 		if (prev_rdma_req == cur_rdma_req) {
3683 			/* this request was handled by an earlier wr. i.e. we were performing an nvme read. */
3684 			/* We only have to check against prev_wr since each requests wrs are contiguous in this list. */
3685 			continue;
3686 		}
3687 
3688 		switch (cur_rdma_req->state) {
3689 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3690 			cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
3691 			cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
3692 			break;
3693 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3694 		case RDMA_REQUEST_STATE_COMPLETING:
3695 			cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3696 			break;
3697 		default:
3698 			SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n",
3699 				    cur_rdma_req->state, rqpair);
3700 			continue;
3701 		}
3702 
3703 		nvmf_rdma_request_process(rtransport, cur_rdma_req);
3704 		prev_rdma_req = cur_rdma_req;
3705 	}
3706 
3707 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
3708 		/* Disconnect the connection. */
3709 		nvmf_rdma_start_disconnect(rqpair);
3710 	}
3711 
3712 }
3713 
3714 static void
3715 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
3716 		     struct spdk_nvmf_rdma_poller *rpoller)
3717 {
3718 	struct spdk_nvmf_rdma_qpair	*rqpair;
3719 	struct ibv_send_wr		*bad_wr = NULL;
3720 	int				rc;
3721 
3722 	while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) {
3723 		rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send);
3724 		rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr);
3725 
3726 		/* bad wr always points to the first wr that failed. */
3727 		if (rc) {
3728 			_qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc);
3729 		}
3730 		STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link);
3731 	}
3732 }
3733 
3734 static int
3735 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
3736 		      struct spdk_nvmf_rdma_poller *rpoller)
3737 {
3738 	struct ibv_wc wc[32];
3739 	struct spdk_nvmf_rdma_wr	*rdma_wr;
3740 	struct spdk_nvmf_rdma_request	*rdma_req;
3741 	struct spdk_nvmf_rdma_recv	*rdma_recv;
3742 	struct spdk_nvmf_rdma_qpair	*rqpair;
3743 	int reaped, i;
3744 	int count = 0;
3745 	bool error = false;
3746 	uint64_t poll_tsc = spdk_get_ticks();
3747 
3748 	/* Poll for completing operations. */
3749 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
3750 	if (reaped < 0) {
3751 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
3752 			    errno, spdk_strerror(errno));
3753 		return -1;
3754 	}
3755 
3756 	rpoller->stat.polls++;
3757 	rpoller->stat.completions += reaped;
3758 
3759 	for (i = 0; i < reaped; i++) {
3760 
3761 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
3762 
3763 		switch (rdma_wr->type) {
3764 		case RDMA_WR_TYPE_SEND:
3765 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
3766 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
3767 
3768 			if (!wc[i].status) {
3769 				count++;
3770 				assert(wc[i].opcode == IBV_WC_SEND);
3771 				assert(nvmf_rdma_req_is_completing(rdma_req));
3772 			}
3773 
3774 			rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3775 			/* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */
3776 			rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1;
3777 			rdma_req->num_outstanding_data_wr = 0;
3778 
3779 			nvmf_rdma_request_process(rtransport, rdma_req);
3780 			break;
3781 		case RDMA_WR_TYPE_RECV:
3782 			/* rdma_recv->qpair will be invalid if using an SRQ.  In that case we have to get the qpair from the wc. */
3783 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
3784 			if (rpoller->srq != NULL) {
3785 				rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
3786 				/* It is possible that there are still some completions for destroyed QP
3787 				 * associated with SRQ. We just ignore these late completions and re-post
3788 				 * receive WRs back to SRQ.
3789 				 */
3790 				if (spdk_unlikely(NULL == rdma_recv->qpair)) {
3791 					struct ibv_recv_wr *bad_wr;
3792 					int rc;
3793 
3794 					rdma_recv->wr.next = NULL;
3795 					rc = ibv_post_srq_recv(rpoller->srq,
3796 							       &rdma_recv->wr,
3797 							       &bad_wr);
3798 					if (rc) {
3799 						SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc);
3800 					}
3801 					continue;
3802 				}
3803 			}
3804 			rqpair = rdma_recv->qpair;
3805 
3806 			assert(rqpair != NULL);
3807 			if (!wc[i].status) {
3808 				assert(wc[i].opcode == IBV_WC_RECV);
3809 				if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
3810 					nvmf_rdma_start_disconnect(rqpair);
3811 					break;
3812 				}
3813 			}
3814 
3815 			rdma_recv->wr.next = NULL;
3816 			rqpair->current_recv_depth++;
3817 			rdma_recv->receive_tsc = poll_tsc;
3818 			rpoller->stat.requests++;
3819 			STAILQ_INSERT_TAIL(&rqpair->resources->incoming_queue, rdma_recv, link);
3820 			break;
3821 		case RDMA_WR_TYPE_DATA:
3822 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
3823 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
3824 
3825 			assert(rdma_req->num_outstanding_data_wr > 0);
3826 
3827 			rqpair->current_send_depth--;
3828 			rdma_req->num_outstanding_data_wr--;
3829 			if (!wc[i].status) {
3830 				assert(wc[i].opcode == IBV_WC_RDMA_READ);
3831 				rqpair->current_read_depth--;
3832 				/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
3833 				if (rdma_req->num_outstanding_data_wr == 0) {
3834 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
3835 					nvmf_rdma_request_process(rtransport, rdma_req);
3836 				}
3837 			} else {
3838 				/* If the data transfer fails still force the queue into the error state,
3839 				 * if we were performing an RDMA_READ, we need to force the request into a
3840 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
3841 				 * case, we should wait for the SEND to complete. */
3842 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
3843 					rqpair->current_read_depth--;
3844 					if (rdma_req->num_outstanding_data_wr == 0) {
3845 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
3846 					}
3847 				}
3848 			}
3849 			break;
3850 		default:
3851 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
3852 			continue;
3853 		}
3854 
3855 		/* Handle error conditions */
3856 		if (wc[i].status) {
3857 			if ((rdma_wr->type == RDMA_WR_TYPE_RECV && !rpoller->srq)) {
3858 				/* When we don't use SRQ and close a qpair, we will receive completions with error
3859 				 * status for all posted ibv_recv_wrs. This is expected and we don't want to log
3860 				 * an error in that case. */
3861 				SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Error on CQ %p, request 0x%lu, type %d, status: (%d): %s\n",
3862 					      rpoller->cq, wc[i].wr_id, rdma_wr->type, wc[i].status, ibv_wc_status_str(wc[i].status));
3863 			} else {
3864 				SPDK_ERRLOG("Error on CQ %p, request 0x%lu, type %d, status: (%d): %s\n",
3865 					    rpoller->cq, wc[i].wr_id, rdma_wr->type, wc[i].status, ibv_wc_status_str(wc[i].status));
3866 			}
3867 
3868 			error = true;
3869 
3870 			if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
3871 				/* Disconnect the connection. */
3872 				nvmf_rdma_start_disconnect(rqpair);
3873 			} else {
3874 				nvmf_rdma_destroy_drained_qpair(rqpair);
3875 			}
3876 			continue;
3877 		}
3878 
3879 		nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
3880 
3881 		if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
3882 			nvmf_rdma_destroy_drained_qpair(rqpair);
3883 		}
3884 	}
3885 
3886 	if (error == true) {
3887 		return -1;
3888 	}
3889 
3890 	/* submit outstanding work requests. */
3891 	_poller_submit_recvs(rtransport, rpoller);
3892 	_poller_submit_sends(rtransport, rpoller);
3893 
3894 	return count;
3895 }
3896 
3897 static int
3898 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3899 {
3900 	struct spdk_nvmf_rdma_transport *rtransport;
3901 	struct spdk_nvmf_rdma_poll_group *rgroup;
3902 	struct spdk_nvmf_rdma_poller	*rpoller;
3903 	int				count, rc;
3904 
3905 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
3906 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
3907 
3908 	count = 0;
3909 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3910 		rc = nvmf_rdma_poller_poll(rtransport, rpoller);
3911 		if (rc < 0) {
3912 			return rc;
3913 		}
3914 		count += rc;
3915 	}
3916 
3917 	return count;
3918 }
3919 
3920 static int
3921 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
3922 			  struct spdk_nvme_transport_id *trid,
3923 			  bool peer)
3924 {
3925 	struct sockaddr *saddr;
3926 	uint16_t port;
3927 
3928 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA);
3929 
3930 	if (peer) {
3931 		saddr = rdma_get_peer_addr(id);
3932 	} else {
3933 		saddr = rdma_get_local_addr(id);
3934 	}
3935 	switch (saddr->sa_family) {
3936 	case AF_INET: {
3937 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
3938 
3939 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3940 		inet_ntop(AF_INET, &saddr_in->sin_addr,
3941 			  trid->traddr, sizeof(trid->traddr));
3942 		if (peer) {
3943 			port = ntohs(rdma_get_dst_port(id));
3944 		} else {
3945 			port = ntohs(rdma_get_src_port(id));
3946 		}
3947 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
3948 		break;
3949 	}
3950 	case AF_INET6: {
3951 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
3952 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3953 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
3954 			  trid->traddr, sizeof(trid->traddr));
3955 		if (peer) {
3956 			port = ntohs(rdma_get_dst_port(id));
3957 		} else {
3958 			port = ntohs(rdma_get_src_port(id));
3959 		}
3960 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
3961 		break;
3962 	}
3963 	default:
3964 		return -1;
3965 
3966 	}
3967 
3968 	return 0;
3969 }
3970 
3971 static int
3972 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3973 			      struct spdk_nvme_transport_id *trid)
3974 {
3975 	struct spdk_nvmf_rdma_qpair	*rqpair;
3976 
3977 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3978 
3979 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
3980 }
3981 
3982 static int
3983 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3984 			       struct spdk_nvme_transport_id *trid)
3985 {
3986 	struct spdk_nvmf_rdma_qpair	*rqpair;
3987 
3988 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3989 
3990 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
3991 }
3992 
3993 static int
3994 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3995 				struct spdk_nvme_transport_id *trid)
3996 {
3997 	struct spdk_nvmf_rdma_qpair	*rqpair;
3998 
3999 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4000 
4001 	return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
4002 }
4003 
4004 void
4005 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
4006 {
4007 	g_nvmf_hooks = *hooks;
4008 }
4009 
4010 static int
4011 nvmf_rdma_poll_group_get_stat(struct spdk_nvmf_tgt *tgt,
4012 			      struct spdk_nvmf_transport_poll_group_stat **stat)
4013 {
4014 	struct spdk_io_channel *ch;
4015 	struct spdk_nvmf_poll_group *group;
4016 	struct spdk_nvmf_transport_poll_group *tgroup;
4017 	struct spdk_nvmf_rdma_poll_group *rgroup;
4018 	struct spdk_nvmf_rdma_poller *rpoller;
4019 	struct spdk_nvmf_rdma_device_stat *device_stat;
4020 	uint64_t num_devices = 0;
4021 
4022 	if (tgt == NULL || stat == NULL) {
4023 		return -EINVAL;
4024 	}
4025 
4026 	ch = spdk_get_io_channel(tgt);
4027 	group = spdk_io_channel_get_ctx(ch);;
4028 	spdk_put_io_channel(ch);
4029 	TAILQ_FOREACH(tgroup, &group->tgroups, link) {
4030 		if (SPDK_NVME_TRANSPORT_RDMA == tgroup->transport->ops->type) {
4031 			*stat = calloc(1, sizeof(struct spdk_nvmf_transport_poll_group_stat));
4032 			if (!*stat) {
4033 				SPDK_ERRLOG("Failed to allocate memory for NVMf RDMA statistics\n");
4034 				return -ENOMEM;
4035 			}
4036 			(*stat)->trtype = SPDK_NVME_TRANSPORT_RDMA;
4037 
4038 			rgroup = SPDK_CONTAINEROF(tgroup, struct spdk_nvmf_rdma_poll_group, group);
4039 			/* Count devices to allocate enough memory */
4040 			TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
4041 				++num_devices;
4042 			}
4043 			(*stat)->rdma.devices = calloc(num_devices, sizeof(struct spdk_nvmf_rdma_device_stat));
4044 			if (!(*stat)->rdma.devices) {
4045 				SPDK_ERRLOG("Failed to allocate NVMf RDMA devices statistics\n");
4046 				free(*stat);
4047 				return -ENOMEM;
4048 			}
4049 
4050 			(*stat)->rdma.pending_data_buffer = rgroup->stat.pending_data_buffer;
4051 			(*stat)->rdma.num_devices = num_devices;
4052 			num_devices = 0;
4053 			TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
4054 				device_stat = &(*stat)->rdma.devices[num_devices++];
4055 				device_stat->name = ibv_get_device_name(rpoller->device->context->device);
4056 				device_stat->polls = rpoller->stat.polls;
4057 				device_stat->completions = rpoller->stat.completions;
4058 				device_stat->requests = rpoller->stat.requests;
4059 				device_stat->request_latency = rpoller->stat.request_latency;
4060 				device_stat->pending_free_request = rpoller->stat.pending_free_request;
4061 				device_stat->pending_rdma_read = rpoller->stat.pending_rdma_read;
4062 				device_stat->pending_rdma_write = rpoller->stat.pending_rdma_write;
4063 			}
4064 			return 0;
4065 		}
4066 	}
4067 	return -ENOENT;
4068 }
4069 
4070 static void
4071 nvmf_rdma_poll_group_free_stat(struct spdk_nvmf_transport_poll_group_stat *stat)
4072 {
4073 	if (stat) {
4074 		free(stat->rdma.devices);
4075 	}
4076 	free(stat);
4077 }
4078 
4079 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
4080 	.name = "RDMA",
4081 	.type = SPDK_NVME_TRANSPORT_RDMA,
4082 	.opts_init = nvmf_rdma_opts_init,
4083 	.create = nvmf_rdma_create,
4084 	.destroy = nvmf_rdma_destroy,
4085 
4086 	.listen = nvmf_rdma_listen,
4087 	.stop_listen = nvmf_rdma_stop_listen,
4088 	.accept = nvmf_rdma_accept,
4089 
4090 	.listener_discover = nvmf_rdma_discover,
4091 
4092 	.poll_group_create = nvmf_rdma_poll_group_create,
4093 	.get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group,
4094 	.poll_group_destroy = nvmf_rdma_poll_group_destroy,
4095 	.poll_group_add = nvmf_rdma_poll_group_add,
4096 	.poll_group_poll = nvmf_rdma_poll_group_poll,
4097 
4098 	.req_free = nvmf_rdma_request_free,
4099 	.req_complete = nvmf_rdma_request_complete,
4100 
4101 	.qpair_fini = nvmf_rdma_close_qpair,
4102 	.qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid,
4103 	.qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid,
4104 	.qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid,
4105 
4106 	.poll_group_get_stat = nvmf_rdma_poll_group_get_stat,
4107 	.poll_group_free_stat = nvmf_rdma_poll_group_free_stat,
4108 };
4109 
4110 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma);
4111 SPDK_LOG_REGISTER_COMPONENT("rdma", SPDK_LOG_RDMA)
4112