1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2016 Intel Corporation. All rights reserved. 3 * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk/stdinc.h" 8 9 #include "spdk/config.h" 10 #include "spdk/thread.h" 11 #include "spdk/likely.h" 12 #include "spdk/nvmf_transport.h" 13 #include "spdk/string.h" 14 #include "spdk/trace.h" 15 #include "spdk/tree.h" 16 #include "spdk/util.h" 17 18 #include "spdk_internal/assert.h" 19 #include "spdk/log.h" 20 #include "spdk_internal/rdma.h" 21 22 #include "nvmf_internal.h" 23 #include "transport.h" 24 25 #include "spdk_internal/trace_defs.h" 26 27 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {}; 28 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma; 29 30 /* 31 RDMA Connection Resource Defaults 32 */ 33 #define NVMF_DEFAULT_MSDBD 16 34 #define NVMF_DEFAULT_TX_SGE SPDK_NVMF_MAX_SGL_ENTRIES 35 #define NVMF_DEFAULT_RSP_SGE 1 36 #define NVMF_DEFAULT_RX_SGE 2 37 38 SPDK_STATIC_ASSERT(NVMF_DEFAULT_MSDBD <= SPDK_NVMF_MAX_SGL_ENTRIES, 39 "MSDBD must not exceed SPDK_NVMF_MAX_SGL_ENTRIES"); 40 41 /* The RDMA completion queue size */ 42 #define DEFAULT_NVMF_RDMA_CQ_SIZE 4096 43 #define MAX_WR_PER_QP(queue_depth) (queue_depth * 3 + 2) 44 45 static int g_spdk_nvmf_ibv_query_mask = 46 IBV_QP_STATE | 47 IBV_QP_PKEY_INDEX | 48 IBV_QP_PORT | 49 IBV_QP_ACCESS_FLAGS | 50 IBV_QP_AV | 51 IBV_QP_PATH_MTU | 52 IBV_QP_DEST_QPN | 53 IBV_QP_RQ_PSN | 54 IBV_QP_MAX_DEST_RD_ATOMIC | 55 IBV_QP_MIN_RNR_TIMER | 56 IBV_QP_SQ_PSN | 57 IBV_QP_TIMEOUT | 58 IBV_QP_RETRY_CNT | 59 IBV_QP_RNR_RETRY | 60 IBV_QP_MAX_QP_RD_ATOMIC; 61 62 enum spdk_nvmf_rdma_request_state { 63 /* The request is not currently in use */ 64 RDMA_REQUEST_STATE_FREE = 0, 65 66 /* Initial state when request first received */ 67 RDMA_REQUEST_STATE_NEW, 68 69 /* The request is queued until a data buffer is available. */ 70 RDMA_REQUEST_STATE_NEED_BUFFER, 71 72 /* The request is waiting on RDMA queue depth availability 73 * to transfer data from the host to the controller. 74 */ 75 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 76 77 /* The request is currently transferring data from the host to the controller. */ 78 RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 79 80 /* The request is ready to execute at the block device */ 81 RDMA_REQUEST_STATE_READY_TO_EXECUTE, 82 83 /* The request is currently executing at the block device */ 84 RDMA_REQUEST_STATE_EXECUTING, 85 86 /* The request finished executing at the block device */ 87 RDMA_REQUEST_STATE_EXECUTED, 88 89 /* The request is waiting on RDMA queue depth availability 90 * to transfer data from the controller to the host. 91 */ 92 RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 93 94 /* The request is ready to send a completion */ 95 RDMA_REQUEST_STATE_READY_TO_COMPLETE, 96 97 /* The request is currently transferring data from the controller to the host. */ 98 RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 99 100 /* The request currently has an outstanding completion without an 101 * associated data transfer. 102 */ 103 RDMA_REQUEST_STATE_COMPLETING, 104 105 /* The request completed and can be marked free. */ 106 RDMA_REQUEST_STATE_COMPLETED, 107 108 /* Terminator */ 109 RDMA_REQUEST_NUM_STATES, 110 }; 111 112 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA) 113 { 114 spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r'); 115 spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW, 116 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 117 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 118 spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 119 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 120 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 121 spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H", 122 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 123 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 124 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 125 spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C", 126 TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 127 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 128 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 129 spdk_trace_register_description("RDMA_REQ_TX_H2C", 130 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 131 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 132 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 133 spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE", 134 TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 135 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 136 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 137 spdk_trace_register_description("RDMA_REQ_EXECUTING", 138 TRACE_RDMA_REQUEST_STATE_EXECUTING, 139 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 140 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 141 spdk_trace_register_description("RDMA_REQ_EXECUTED", 142 TRACE_RDMA_REQUEST_STATE_EXECUTED, 143 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 144 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 145 spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL", 146 TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 147 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 148 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 149 spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H", 150 TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 151 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 152 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 153 spdk_trace_register_description("RDMA_REQ_COMPLETING", 154 TRACE_RDMA_REQUEST_STATE_COMPLETING, 155 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 156 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 157 spdk_trace_register_description("RDMA_REQ_COMPLETED", 158 TRACE_RDMA_REQUEST_STATE_COMPLETED, 159 OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 160 SPDK_TRACE_ARG_TYPE_PTR, "qpair"); 161 162 spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE, 163 OWNER_NONE, OBJECT_NONE, 0, 164 SPDK_TRACE_ARG_TYPE_INT, ""); 165 spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT, 166 OWNER_NONE, OBJECT_NONE, 0, 167 SPDK_TRACE_ARG_TYPE_INT, "type"); 168 spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT, 169 OWNER_NONE, OBJECT_NONE, 0, 170 SPDK_TRACE_ARG_TYPE_INT, "type"); 171 spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE, 172 OWNER_NONE, OBJECT_NONE, 0, 173 SPDK_TRACE_ARG_TYPE_PTR, "state"); 174 spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT, 175 OWNER_NONE, OBJECT_NONE, 0, 176 SPDK_TRACE_ARG_TYPE_INT, ""); 177 spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY, 178 OWNER_NONE, OBJECT_NONE, 0, 179 SPDK_TRACE_ARG_TYPE_INT, ""); 180 } 181 182 enum spdk_nvmf_rdma_wr_type { 183 RDMA_WR_TYPE_RECV, 184 RDMA_WR_TYPE_SEND, 185 RDMA_WR_TYPE_DATA, 186 }; 187 188 struct spdk_nvmf_rdma_wr { 189 /* Uses enum spdk_nvmf_rdma_wr_type */ 190 uint8_t type; 191 }; 192 193 /* This structure holds commands as they are received off the wire. 194 * It must be dynamically paired with a full request object 195 * (spdk_nvmf_rdma_request) to service a request. It is separate 196 * from the request because RDMA does not appear to order 197 * completions, so occasionally we'll get a new incoming 198 * command when there aren't any free request objects. 199 */ 200 struct spdk_nvmf_rdma_recv { 201 struct ibv_recv_wr wr; 202 struct ibv_sge sgl[NVMF_DEFAULT_RX_SGE]; 203 204 struct spdk_nvmf_rdma_qpair *qpair; 205 206 /* In-capsule data buffer */ 207 uint8_t *buf; 208 209 struct spdk_nvmf_rdma_wr rdma_wr; 210 uint64_t receive_tsc; 211 212 STAILQ_ENTRY(spdk_nvmf_rdma_recv) link; 213 }; 214 215 struct spdk_nvmf_rdma_request_data { 216 struct ibv_send_wr wr; 217 struct ibv_sge sgl[SPDK_NVMF_MAX_SGL_ENTRIES]; 218 }; 219 220 struct spdk_nvmf_rdma_request { 221 struct spdk_nvmf_request req; 222 223 bool fused_failed; 224 225 struct spdk_nvmf_rdma_wr data_wr; 226 struct spdk_nvmf_rdma_wr rsp_wr; 227 228 /* Uses enum spdk_nvmf_rdma_request_state */ 229 uint8_t state; 230 231 /* Data offset in req.iov */ 232 uint32_t offset; 233 234 struct spdk_nvmf_rdma_recv *recv; 235 236 struct { 237 struct ibv_send_wr wr; 238 struct ibv_sge sgl[NVMF_DEFAULT_RSP_SGE]; 239 } rsp; 240 241 uint16_t iovpos; 242 uint16_t num_outstanding_data_wr; 243 /* Used to split Write IO with multi SGL payload */ 244 uint16_t num_remaining_data_wr; 245 uint64_t receive_tsc; 246 struct spdk_nvmf_rdma_request *fused_pair; 247 STAILQ_ENTRY(spdk_nvmf_rdma_request) state_link; 248 struct ibv_send_wr *remaining_tranfer_in_wrs; 249 struct ibv_send_wr *transfer_wr; 250 struct spdk_nvmf_rdma_request_data data; 251 }; 252 253 struct spdk_nvmf_rdma_resource_opts { 254 struct spdk_nvmf_rdma_qpair *qpair; 255 /* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */ 256 void *qp; 257 struct spdk_rdma_mem_map *map; 258 uint32_t max_queue_depth; 259 uint32_t in_capsule_data_size; 260 bool shared; 261 }; 262 263 struct spdk_nvmf_rdma_resources { 264 /* Array of size "max_queue_depth" containing RDMA requests. */ 265 struct spdk_nvmf_rdma_request *reqs; 266 267 /* Array of size "max_queue_depth" containing RDMA recvs. */ 268 struct spdk_nvmf_rdma_recv *recvs; 269 270 /* Array of size "max_queue_depth" containing 64 byte capsules 271 * used for receive. 272 */ 273 union nvmf_h2c_msg *cmds; 274 275 /* Array of size "max_queue_depth" containing 16 byte completions 276 * to be sent back to the user. 277 */ 278 union nvmf_c2h_msg *cpls; 279 280 /* Array of size "max_queue_depth * InCapsuleDataSize" containing 281 * buffers to be used for in capsule data. 282 */ 283 void *bufs; 284 285 /* Receives that are waiting for a request object */ 286 STAILQ_HEAD(, spdk_nvmf_rdma_recv) incoming_queue; 287 288 /* Queue to track free requests */ 289 STAILQ_HEAD(, spdk_nvmf_rdma_request) free_queue; 290 }; 291 292 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair); 293 294 typedef void (*spdk_poller_destroy_cb)(void *ctx); 295 296 struct spdk_nvmf_rdma_ibv_event_ctx { 297 struct spdk_nvmf_rdma_qpair *rqpair; 298 spdk_nvmf_rdma_qpair_ibv_event cb_fn; 299 /* Link to other ibv events associated with this qpair */ 300 STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx) link; 301 }; 302 303 struct spdk_nvmf_rdma_qpair { 304 struct spdk_nvmf_qpair qpair; 305 306 struct spdk_nvmf_rdma_device *device; 307 struct spdk_nvmf_rdma_poller *poller; 308 309 struct spdk_rdma_qp *rdma_qp; 310 struct rdma_cm_id *cm_id; 311 struct spdk_rdma_srq *srq; 312 struct rdma_cm_id *listen_id; 313 314 /* Cache the QP number to improve QP search by RB tree. */ 315 uint32_t qp_num; 316 317 /* The maximum number of I/O outstanding on this connection at one time */ 318 uint16_t max_queue_depth; 319 320 /* The maximum number of active RDMA READ and ATOMIC operations at one time */ 321 uint16_t max_read_depth; 322 323 /* The maximum number of RDMA SEND operations at one time */ 324 uint32_t max_send_depth; 325 326 /* The current number of outstanding WRs from this qpair's 327 * recv queue. Should not exceed device->attr.max_queue_depth. 328 */ 329 uint16_t current_recv_depth; 330 331 /* The current number of active RDMA READ operations */ 332 uint16_t current_read_depth; 333 334 /* The current number of posted WRs from this qpair's 335 * send queue. Should not exceed max_send_depth. 336 */ 337 uint32_t current_send_depth; 338 339 /* The maximum number of SGEs per WR on the send queue */ 340 uint32_t max_send_sge; 341 342 /* The maximum number of SGEs per WR on the recv queue */ 343 uint32_t max_recv_sge; 344 345 struct spdk_nvmf_rdma_resources *resources; 346 347 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_read_queue; 348 349 STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_write_queue; 350 351 /* Number of requests not in the free state */ 352 uint32_t qd; 353 354 RB_ENTRY(spdk_nvmf_rdma_qpair) node; 355 356 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) recv_link; 357 358 STAILQ_ENTRY(spdk_nvmf_rdma_qpair) send_link; 359 360 /* IBV queue pair attributes: they are used to manage 361 * qp state and recover from errors. 362 */ 363 enum ibv_qp_state ibv_state; 364 365 /* Points to the a request that has fuse bits set to 366 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting 367 * for the request that has SPDK_NVME_CMD_FUSE_SECOND. 368 */ 369 struct spdk_nvmf_rdma_request *fused_first; 370 371 /* 372 * io_channel which is used to destroy qpair when it is removed from poll group 373 */ 374 struct spdk_io_channel *destruct_channel; 375 376 /* List of ibv async events */ 377 STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx) ibv_events; 378 379 /* Lets us know that we have received the last_wqe event. */ 380 bool last_wqe_reached; 381 382 /* Indicate that nvmf_rdma_close_qpair is called */ 383 bool to_close; 384 }; 385 386 struct spdk_nvmf_rdma_poller_stat { 387 uint64_t completions; 388 uint64_t polls; 389 uint64_t idle_polls; 390 uint64_t requests; 391 uint64_t request_latency; 392 uint64_t pending_free_request; 393 uint64_t pending_rdma_read; 394 uint64_t pending_rdma_write; 395 struct spdk_rdma_qp_stats qp_stats; 396 }; 397 398 struct spdk_nvmf_rdma_poller { 399 struct spdk_nvmf_rdma_device *device; 400 struct spdk_nvmf_rdma_poll_group *group; 401 402 int num_cqe; 403 int required_num_wr; 404 struct ibv_cq *cq; 405 406 /* The maximum number of I/O outstanding on the shared receive queue at one time */ 407 uint16_t max_srq_depth; 408 bool need_destroy; 409 410 /* Shared receive queue */ 411 struct spdk_rdma_srq *srq; 412 413 struct spdk_nvmf_rdma_resources *resources; 414 struct spdk_nvmf_rdma_poller_stat stat; 415 416 spdk_poller_destroy_cb destroy_cb; 417 void *destroy_cb_ctx; 418 419 RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs; 420 421 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_recv; 422 423 STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_send; 424 425 TAILQ_ENTRY(spdk_nvmf_rdma_poller) link; 426 }; 427 428 struct spdk_nvmf_rdma_poll_group_stat { 429 uint64_t pending_data_buffer; 430 }; 431 432 struct spdk_nvmf_rdma_poll_group { 433 struct spdk_nvmf_transport_poll_group group; 434 struct spdk_nvmf_rdma_poll_group_stat stat; 435 TAILQ_HEAD(, spdk_nvmf_rdma_poller) pollers; 436 TAILQ_ENTRY(spdk_nvmf_rdma_poll_group) link; 437 }; 438 439 struct spdk_nvmf_rdma_conn_sched { 440 struct spdk_nvmf_rdma_poll_group *next_admin_pg; 441 struct spdk_nvmf_rdma_poll_group *next_io_pg; 442 }; 443 444 /* Assuming rdma_cm uses just one protection domain per ibv_context. */ 445 struct spdk_nvmf_rdma_device { 446 struct ibv_device_attr attr; 447 struct ibv_context *context; 448 449 struct spdk_rdma_mem_map *map; 450 struct ibv_pd *pd; 451 452 int num_srq; 453 bool need_destroy; 454 bool ready_to_destroy; 455 bool is_ready; 456 457 TAILQ_ENTRY(spdk_nvmf_rdma_device) link; 458 }; 459 460 struct spdk_nvmf_rdma_port { 461 const struct spdk_nvme_transport_id *trid; 462 struct rdma_cm_id *id; 463 struct spdk_nvmf_rdma_device *device; 464 TAILQ_ENTRY(spdk_nvmf_rdma_port) link; 465 }; 466 467 struct rdma_transport_opts { 468 int num_cqe; 469 uint32_t max_srq_depth; 470 bool no_srq; 471 bool no_wr_batching; 472 int acceptor_backlog; 473 }; 474 475 struct spdk_nvmf_rdma_transport { 476 struct spdk_nvmf_transport transport; 477 struct rdma_transport_opts rdma_opts; 478 479 struct spdk_nvmf_rdma_conn_sched conn_sched; 480 481 struct rdma_event_channel *event_channel; 482 483 struct spdk_mempool *data_wr_pool; 484 485 struct spdk_poller *accept_poller; 486 487 /* fields used to poll RDMA/IB events */ 488 nfds_t npoll_fds; 489 struct pollfd *poll_fds; 490 491 TAILQ_HEAD(, spdk_nvmf_rdma_device) devices; 492 TAILQ_HEAD(, spdk_nvmf_rdma_port) ports; 493 TAILQ_HEAD(, spdk_nvmf_rdma_poll_group) poll_groups; 494 495 /* ports that are removed unexpectedly and need retry listen */ 496 TAILQ_HEAD(, spdk_nvmf_rdma_port) retry_ports; 497 }; 498 499 struct poller_manage_ctx { 500 struct spdk_nvmf_rdma_transport *rtransport; 501 struct spdk_nvmf_rdma_poll_group *rgroup; 502 struct spdk_nvmf_rdma_poller *rpoller; 503 struct spdk_nvmf_rdma_device *device; 504 505 struct spdk_thread *thread; 506 volatile int *inflight_op_counter; 507 }; 508 509 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = { 510 { 511 "num_cqe", offsetof(struct rdma_transport_opts, num_cqe), 512 spdk_json_decode_int32, true 513 }, 514 { 515 "max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth), 516 spdk_json_decode_uint32, true 517 }, 518 { 519 "no_srq", offsetof(struct rdma_transport_opts, no_srq), 520 spdk_json_decode_bool, true 521 }, 522 { 523 "no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching), 524 spdk_json_decode_bool, true 525 }, 526 { 527 "acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog), 528 spdk_json_decode_int32, true 529 }, 530 }; 531 532 static int 533 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2) 534 { 535 return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num; 536 } 537 538 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare); 539 540 static bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 541 struct spdk_nvmf_rdma_request *rdma_req); 542 543 static void _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 544 struct spdk_nvmf_rdma_poller *rpoller); 545 546 static void _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 547 struct spdk_nvmf_rdma_poller *rpoller); 548 549 static void _nvmf_rdma_remove_destroyed_device(void *c); 550 551 static inline int 552 nvmf_rdma_check_ibv_state(enum ibv_qp_state state) 553 { 554 switch (state) { 555 case IBV_QPS_RESET: 556 case IBV_QPS_INIT: 557 case IBV_QPS_RTR: 558 case IBV_QPS_RTS: 559 case IBV_QPS_SQD: 560 case IBV_QPS_SQE: 561 case IBV_QPS_ERR: 562 return 0; 563 default: 564 return -1; 565 } 566 } 567 568 static inline enum spdk_nvme_media_error_status_code 569 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) { 570 enum spdk_nvme_media_error_status_code result; 571 switch (err_type) 572 { 573 case SPDK_DIF_REFTAG_ERROR: 574 result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR; 575 break; 576 case SPDK_DIF_APPTAG_ERROR: 577 result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR; 578 break; 579 case SPDK_DIF_GUARD_ERROR: 580 result = SPDK_NVME_SC_GUARD_CHECK_ERROR; 581 break; 582 default: 583 SPDK_UNREACHABLE(); 584 } 585 586 return result; 587 } 588 589 static enum ibv_qp_state 590 nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) { 591 enum ibv_qp_state old_state, new_state; 592 struct ibv_qp_attr qp_attr; 593 struct ibv_qp_init_attr init_attr; 594 int rc; 595 596 old_state = rqpair->ibv_state; 597 rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr, 598 g_spdk_nvmf_ibv_query_mask, &init_attr); 599 600 if (rc) 601 { 602 SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n"); 603 return IBV_QPS_ERR + 1; 604 } 605 606 new_state = qp_attr.qp_state; 607 rqpair->ibv_state = new_state; 608 qp_attr.ah_attr.port_num = qp_attr.port_num; 609 610 rc = nvmf_rdma_check_ibv_state(new_state); 611 if (rc) 612 { 613 SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state); 614 /* 615 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8 616 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR 617 */ 618 return IBV_QPS_ERR + 1; 619 } 620 621 if (old_state != new_state) 622 { 623 spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, (uintptr_t)rqpair, new_state); 624 } 625 return new_state; 626 } 627 628 /* 629 * Return data_wrs to pool starting from \b data_wr 630 * Request's own response and data WR are excluded 631 */ 632 static void 633 _nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req, 634 struct ibv_send_wr *data_wr, 635 struct spdk_mempool *pool) 636 { 637 struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES]; 638 struct spdk_nvmf_rdma_request_data *nvmf_data; 639 struct ibv_send_wr *next_send_wr; 640 uint64_t req_wrid = (uint64_t)&rdma_req->data_wr; 641 uint32_t num_wrs = 0; 642 643 while (data_wr && data_wr->wr_id == req_wrid) { 644 nvmf_data = SPDK_CONTAINEROF(data_wr, struct spdk_nvmf_rdma_request_data, wr); 645 memset(nvmf_data->sgl, 0, sizeof(data_wr->sg_list[0]) * data_wr->num_sge); 646 data_wr->num_sge = 0; 647 next_send_wr = data_wr->next; 648 if (data_wr != &rdma_req->data.wr) { 649 data_wr->next = NULL; 650 assert(num_wrs < SPDK_NVMF_MAX_SGL_ENTRIES); 651 work_requests[num_wrs] = nvmf_data; 652 num_wrs++; 653 } 654 data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : next_send_wr; 655 } 656 657 if (num_wrs) { 658 spdk_mempool_put_bulk(pool, (void **) work_requests, num_wrs); 659 } 660 } 661 662 static void 663 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req, 664 struct spdk_nvmf_rdma_transport *rtransport) 665 { 666 rdma_req->num_outstanding_data_wr = 0; 667 668 _nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool); 669 670 rdma_req->data.wr.next = NULL; 671 rdma_req->rsp.wr.next = NULL; 672 } 673 674 static void 675 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req) 676 { 677 SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool); 678 if (req->req.cmd) { 679 SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode); 680 } 681 if (req->recv) { 682 SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id); 683 } 684 } 685 686 static void 687 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair) 688 { 689 int i; 690 691 SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid); 692 for (i = 0; i < rqpair->max_queue_depth; i++) { 693 if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) { 694 nvmf_rdma_dump_request(&rqpair->resources->reqs[i]); 695 } 696 } 697 } 698 699 static void 700 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources) 701 { 702 spdk_free(resources->cmds); 703 spdk_free(resources->cpls); 704 spdk_free(resources->bufs); 705 spdk_free(resources->reqs); 706 spdk_free(resources->recvs); 707 free(resources); 708 } 709 710 711 static struct spdk_nvmf_rdma_resources * 712 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts) 713 { 714 struct spdk_nvmf_rdma_resources *resources; 715 struct spdk_nvmf_rdma_request *rdma_req; 716 struct spdk_nvmf_rdma_recv *rdma_recv; 717 struct spdk_rdma_qp *qp = NULL; 718 struct spdk_rdma_srq *srq = NULL; 719 struct ibv_recv_wr *bad_wr = NULL; 720 struct spdk_rdma_memory_translation translation; 721 uint32_t i; 722 int rc = 0; 723 724 resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources)); 725 if (!resources) { 726 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 727 return NULL; 728 } 729 730 resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs), 731 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 732 resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs), 733 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 734 resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds), 735 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 736 resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls), 737 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 738 739 if (opts->in_capsule_data_size > 0) { 740 resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size, 741 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, 742 SPDK_MALLOC_DMA); 743 } 744 745 if (!resources->reqs || !resources->recvs || !resources->cmds || 746 !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) { 747 SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n"); 748 goto cleanup; 749 } 750 751 SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx\n", 752 resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds)); 753 SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx\n", 754 resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls)); 755 if (resources->bufs) { 756 SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x\n", 757 resources->bufs, opts->max_queue_depth * 758 opts->in_capsule_data_size); 759 } 760 761 /* Initialize queues */ 762 STAILQ_INIT(&resources->incoming_queue); 763 STAILQ_INIT(&resources->free_queue); 764 765 if (opts->shared) { 766 srq = (struct spdk_rdma_srq *)opts->qp; 767 } else { 768 qp = (struct spdk_rdma_qp *)opts->qp; 769 } 770 771 for (i = 0; i < opts->max_queue_depth; i++) { 772 rdma_recv = &resources->recvs[i]; 773 rdma_recv->qpair = opts->qpair; 774 775 /* Set up memory to receive commands */ 776 if (resources->bufs) { 777 rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i * 778 opts->in_capsule_data_size)); 779 } 780 781 rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV; 782 783 rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i]; 784 rdma_recv->sgl[0].length = sizeof(resources->cmds[i]); 785 rc = spdk_rdma_get_translation(opts->map, &resources->cmds[i], sizeof(resources->cmds[i]), 786 &translation); 787 if (rc) { 788 goto cleanup; 789 } 790 rdma_recv->sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation); 791 rdma_recv->wr.num_sge = 1; 792 793 if (rdma_recv->buf) { 794 rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf; 795 rdma_recv->sgl[1].length = opts->in_capsule_data_size; 796 rc = spdk_rdma_get_translation(opts->map, rdma_recv->buf, opts->in_capsule_data_size, &translation); 797 if (rc) { 798 goto cleanup; 799 } 800 rdma_recv->sgl[1].lkey = spdk_rdma_memory_translation_get_lkey(&translation); 801 rdma_recv->wr.num_sge++; 802 } 803 804 rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr; 805 rdma_recv->wr.sg_list = rdma_recv->sgl; 806 if (srq) { 807 spdk_rdma_srq_queue_recv_wrs(srq, &rdma_recv->wr); 808 } else { 809 spdk_rdma_qp_queue_recv_wrs(qp, &rdma_recv->wr); 810 } 811 } 812 813 for (i = 0; i < opts->max_queue_depth; i++) { 814 rdma_req = &resources->reqs[i]; 815 816 if (opts->qpair != NULL) { 817 rdma_req->req.qpair = &opts->qpair->qpair; 818 } else { 819 rdma_req->req.qpair = NULL; 820 } 821 rdma_req->req.cmd = NULL; 822 rdma_req->req.iovcnt = 0; 823 rdma_req->req.stripped_data = NULL; 824 825 /* Set up memory to send responses */ 826 rdma_req->req.rsp = &resources->cpls[i]; 827 828 rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i]; 829 rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]); 830 rc = spdk_rdma_get_translation(opts->map, &resources->cpls[i], sizeof(resources->cpls[i]), 831 &translation); 832 if (rc) { 833 goto cleanup; 834 } 835 rdma_req->rsp.sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation); 836 837 rdma_req->rsp_wr.type = RDMA_WR_TYPE_SEND; 838 rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp_wr; 839 rdma_req->rsp.wr.next = NULL; 840 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 841 rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED; 842 rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl; 843 rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl); 844 845 /* Set up memory for data buffers */ 846 rdma_req->data_wr.type = RDMA_WR_TYPE_DATA; 847 rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data_wr; 848 rdma_req->data.wr.next = NULL; 849 rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED; 850 rdma_req->data.wr.sg_list = rdma_req->data.sgl; 851 rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl); 852 853 /* Initialize request state to FREE */ 854 rdma_req->state = RDMA_REQUEST_STATE_FREE; 855 STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link); 856 } 857 858 if (srq) { 859 rc = spdk_rdma_srq_flush_recv_wrs(srq, &bad_wr); 860 } else { 861 rc = spdk_rdma_qp_flush_recv_wrs(qp, &bad_wr); 862 } 863 864 if (rc) { 865 goto cleanup; 866 } 867 868 return resources; 869 870 cleanup: 871 nvmf_rdma_resources_destroy(resources); 872 return NULL; 873 } 874 875 static void 876 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair) 877 { 878 struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx; 879 STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) { 880 ctx->rqpair = NULL; 881 /* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */ 882 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 883 } 884 } 885 886 static void nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller); 887 888 static void 889 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair) 890 { 891 struct spdk_nvmf_rdma_recv *rdma_recv, *recv_tmp; 892 struct ibv_recv_wr *bad_recv_wr = NULL; 893 int rc; 894 895 spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair); 896 897 if (rqpair->qd != 0) { 898 struct spdk_nvmf_qpair *qpair = &rqpair->qpair; 899 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(qpair->transport, 900 struct spdk_nvmf_rdma_transport, transport); 901 struct spdk_nvmf_rdma_request *req; 902 uint32_t i, max_req_count = 0; 903 904 SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd); 905 906 if (rqpair->srq == NULL) { 907 nvmf_rdma_dump_qpair_contents(rqpair); 908 max_req_count = rqpair->max_queue_depth; 909 } else if (rqpair->poller && rqpair->resources) { 910 max_req_count = rqpair->poller->max_srq_depth; 911 } 912 913 SPDK_DEBUGLOG(rdma, "Release incomplete requests\n"); 914 for (i = 0; i < max_req_count; i++) { 915 req = &rqpair->resources->reqs[i]; 916 if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) { 917 /* nvmf_rdma_request_process checks qpair ibv and internal state 918 * and completes a request */ 919 nvmf_rdma_request_process(rtransport, req); 920 } 921 } 922 assert(rqpair->qd == 0); 923 } 924 925 if (rqpair->poller) { 926 RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair); 927 928 if (rqpair->srq != NULL && rqpair->resources != NULL) { 929 /* Drop all received but unprocessed commands for this queue and return them to SRQ */ 930 STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) { 931 if (rqpair == rdma_recv->qpair) { 932 STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link); 933 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr); 934 rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr); 935 if (rc) { 936 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 937 } 938 } 939 } 940 } 941 } 942 943 if (rqpair->cm_id) { 944 if (rqpair->rdma_qp != NULL) { 945 spdk_rdma_qp_destroy(rqpair->rdma_qp); 946 rqpair->rdma_qp = NULL; 947 } 948 949 if (rqpair->poller != NULL && rqpair->srq == NULL) { 950 rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth); 951 } 952 } 953 954 if (rqpair->srq == NULL && rqpair->resources != NULL) { 955 nvmf_rdma_resources_destroy(rqpair->resources); 956 } 957 958 nvmf_rdma_qpair_clean_ibv_events(rqpair); 959 960 if (rqpair->destruct_channel) { 961 spdk_put_io_channel(rqpair->destruct_channel); 962 rqpair->destruct_channel = NULL; 963 } 964 965 if (rqpair->poller && rqpair->poller->need_destroy && RB_EMPTY(&rqpair->poller->qpairs)) { 966 nvmf_rdma_poller_destroy(rqpair->poller); 967 } 968 969 /* destroy cm_id last so cma device will not be freed before we destroy the cq. */ 970 if (rqpair->cm_id) { 971 rdma_destroy_id(rqpair->cm_id); 972 } 973 974 free(rqpair); 975 } 976 977 static int 978 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device) 979 { 980 struct spdk_nvmf_rdma_poller *rpoller; 981 int rc, num_cqe, required_num_wr; 982 983 /* Enlarge CQ size dynamically */ 984 rpoller = rqpair->poller; 985 required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth); 986 num_cqe = rpoller->num_cqe; 987 if (num_cqe < required_num_wr) { 988 num_cqe = spdk_max(num_cqe * 2, required_num_wr); 989 num_cqe = spdk_min(num_cqe, device->attr.max_cqe); 990 } 991 992 if (rpoller->num_cqe != num_cqe) { 993 if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) { 994 SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n" 995 "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe); 996 return -1; 997 } 998 if (required_num_wr > device->attr.max_cqe) { 999 SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n", 1000 required_num_wr, device->attr.max_cqe); 1001 return -1; 1002 } 1003 1004 SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe); 1005 rc = ibv_resize_cq(rpoller->cq, num_cqe); 1006 if (rc) { 1007 SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); 1008 return -1; 1009 } 1010 1011 rpoller->num_cqe = num_cqe; 1012 } 1013 1014 rpoller->required_num_wr = required_num_wr; 1015 return 0; 1016 } 1017 1018 static int 1019 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair) 1020 { 1021 struct spdk_nvmf_rdma_qpair *rqpair; 1022 struct spdk_nvmf_rdma_transport *rtransport; 1023 struct spdk_nvmf_transport *transport; 1024 struct spdk_nvmf_rdma_resource_opts opts; 1025 struct spdk_nvmf_rdma_device *device; 1026 struct spdk_rdma_qp_init_attr qp_init_attr = {}; 1027 1028 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1029 device = rqpair->device; 1030 1031 qp_init_attr.qp_context = rqpair; 1032 qp_init_attr.pd = device->pd; 1033 qp_init_attr.send_cq = rqpair->poller->cq; 1034 qp_init_attr.recv_cq = rqpair->poller->cq; 1035 1036 if (rqpair->srq) { 1037 qp_init_attr.srq = rqpair->srq->srq; 1038 } else { 1039 qp_init_attr.cap.max_recv_wr = rqpair->max_queue_depth; 1040 } 1041 1042 /* SEND, READ, and WRITE operations */ 1043 qp_init_attr.cap.max_send_wr = (uint32_t)rqpair->max_queue_depth * 2; 1044 qp_init_attr.cap.max_send_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE); 1045 qp_init_attr.cap.max_recv_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 1046 qp_init_attr.stats = &rqpair->poller->stat.qp_stats; 1047 1048 if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) { 1049 SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n"); 1050 goto error; 1051 } 1052 1053 rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr); 1054 if (!rqpair->rdma_qp) { 1055 goto error; 1056 } 1057 1058 rqpair->qp_num = rqpair->rdma_qp->qp->qp_num; 1059 1060 rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2), 1061 qp_init_attr.cap.max_send_wr); 1062 rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge); 1063 rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge); 1064 spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair); 1065 SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair); 1066 1067 if (rqpair->poller->srq == NULL) { 1068 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 1069 transport = &rtransport->transport; 1070 1071 opts.qp = rqpair->rdma_qp; 1072 opts.map = device->map; 1073 opts.qpair = rqpair; 1074 opts.shared = false; 1075 opts.max_queue_depth = rqpair->max_queue_depth; 1076 opts.in_capsule_data_size = transport->opts.in_capsule_data_size; 1077 1078 rqpair->resources = nvmf_rdma_resources_create(&opts); 1079 1080 if (!rqpair->resources) { 1081 SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); 1082 rdma_destroy_qp(rqpair->cm_id); 1083 goto error; 1084 } 1085 } else { 1086 rqpair->resources = rqpair->poller->resources; 1087 } 1088 1089 rqpair->current_recv_depth = 0; 1090 STAILQ_INIT(&rqpair->pending_rdma_read_queue); 1091 STAILQ_INIT(&rqpair->pending_rdma_write_queue); 1092 1093 return 0; 1094 1095 error: 1096 rdma_destroy_id(rqpair->cm_id); 1097 rqpair->cm_id = NULL; 1098 return -1; 1099 } 1100 1101 /* Append the given recv wr structure to the resource structs outstanding recvs list. */ 1102 /* This function accepts either a single wr or the first wr in a linked list. */ 1103 static void 1104 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first) 1105 { 1106 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1107 struct spdk_nvmf_rdma_transport, transport); 1108 1109 if (rqpair->srq != NULL) { 1110 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, first); 1111 } else { 1112 if (spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, first)) { 1113 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link); 1114 } 1115 } 1116 1117 if (rtransport->rdma_opts.no_wr_batching) { 1118 _poller_submit_recvs(rtransport, rqpair->poller); 1119 } 1120 } 1121 1122 static int 1123 request_transfer_in(struct spdk_nvmf_request *req) 1124 { 1125 struct spdk_nvmf_rdma_request *rdma_req; 1126 struct spdk_nvmf_qpair *qpair; 1127 struct spdk_nvmf_rdma_qpair *rqpair; 1128 struct spdk_nvmf_rdma_transport *rtransport; 1129 1130 qpair = req->qpair; 1131 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1132 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1133 rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1134 struct spdk_nvmf_rdma_transport, transport); 1135 1136 assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); 1137 assert(rdma_req != NULL); 1138 1139 if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, rdma_req->transfer_wr)) { 1140 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1141 } 1142 if (rtransport->rdma_opts.no_wr_batching) { 1143 _poller_submit_sends(rtransport, rqpair->poller); 1144 } 1145 1146 rqpair->current_read_depth += rdma_req->num_outstanding_data_wr; 1147 rqpair->current_send_depth += rdma_req->num_outstanding_data_wr; 1148 return 0; 1149 } 1150 1151 static inline int 1152 nvmf_rdma_request_reset_transfer_in(struct spdk_nvmf_rdma_request *rdma_req, 1153 struct spdk_nvmf_rdma_transport *rtransport) 1154 { 1155 /* Put completed WRs back to pool and move transfer_wr pointer */ 1156 _nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool); 1157 rdma_req->transfer_wr = rdma_req->remaining_tranfer_in_wrs; 1158 rdma_req->remaining_tranfer_in_wrs = NULL; 1159 rdma_req->num_outstanding_data_wr = rdma_req->num_remaining_data_wr; 1160 rdma_req->num_remaining_data_wr = 0; 1161 1162 return 0; 1163 } 1164 1165 static inline int 1166 request_prepare_transfer_in_part(struct spdk_nvmf_request *req, uint32_t num_reads_available) 1167 { 1168 struct spdk_nvmf_rdma_request *rdma_req; 1169 struct ibv_send_wr *wr; 1170 uint32_t i; 1171 1172 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1173 1174 assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); 1175 assert(rdma_req != NULL); 1176 assert(num_reads_available > 0); 1177 assert(rdma_req->num_outstanding_data_wr > num_reads_available); 1178 wr = rdma_req->transfer_wr; 1179 1180 for (i = 0; i < num_reads_available - 1; i++) { 1181 wr = wr->next; 1182 } 1183 1184 rdma_req->remaining_tranfer_in_wrs = wr->next; 1185 rdma_req->num_remaining_data_wr = rdma_req->num_outstanding_data_wr - num_reads_available; 1186 rdma_req->num_outstanding_data_wr = num_reads_available; 1187 /* Break chain of WRs to send only part. Once this portion completes, we continue sending RDMA_READs */ 1188 wr->next = NULL; 1189 1190 return 0; 1191 } 1192 1193 static int 1194 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted) 1195 { 1196 int num_outstanding_data_wr = 0; 1197 struct spdk_nvmf_rdma_request *rdma_req; 1198 struct spdk_nvmf_qpair *qpair; 1199 struct spdk_nvmf_rdma_qpair *rqpair; 1200 struct spdk_nvme_cpl *rsp; 1201 struct ibv_send_wr *first = NULL; 1202 struct spdk_nvmf_rdma_transport *rtransport; 1203 1204 *data_posted = 0; 1205 qpair = req->qpair; 1206 rsp = &req->rsp->nvme_cpl; 1207 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 1208 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 1209 rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 1210 struct spdk_nvmf_rdma_transport, transport); 1211 1212 /* Advance our sq_head pointer */ 1213 if (qpair->sq_head == qpair->sq_head_max) { 1214 qpair->sq_head = 0; 1215 } else { 1216 qpair->sq_head++; 1217 } 1218 rsp->sqhd = qpair->sq_head; 1219 1220 /* queue the capsule for the recv buffer */ 1221 assert(rdma_req->recv != NULL); 1222 1223 nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr); 1224 1225 rdma_req->recv = NULL; 1226 assert(rqpair->current_recv_depth > 0); 1227 rqpair->current_recv_depth--; 1228 1229 /* Build the response which consists of optional 1230 * RDMA WRITEs to transfer data, plus an RDMA SEND 1231 * containing the response. 1232 */ 1233 first = &rdma_req->rsp.wr; 1234 1235 if (rsp->status.sc != SPDK_NVME_SC_SUCCESS) { 1236 /* On failure, data was not read from the controller. So clear the 1237 * number of outstanding data WRs to zero. 1238 */ 1239 rdma_req->num_outstanding_data_wr = 0; 1240 } else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1241 first = rdma_req->transfer_wr; 1242 *data_posted = 1; 1243 num_outstanding_data_wr = rdma_req->num_outstanding_data_wr; 1244 } 1245 if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) { 1246 STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); 1247 } 1248 if (rtransport->rdma_opts.no_wr_batching) { 1249 _poller_submit_sends(rtransport, rqpair->poller); 1250 } 1251 1252 /* +1 for the rsp wr */ 1253 rqpair->current_send_depth += num_outstanding_data_wr + 1; 1254 1255 return 0; 1256 } 1257 1258 static int 1259 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair) 1260 { 1261 struct spdk_nvmf_rdma_accept_private_data accept_data; 1262 struct rdma_conn_param ctrlr_event_data = {}; 1263 int rc; 1264 1265 accept_data.recfmt = 0; 1266 accept_data.crqsize = rqpair->max_queue_depth; 1267 1268 ctrlr_event_data.private_data = &accept_data; 1269 ctrlr_event_data.private_data_len = sizeof(accept_data); 1270 if (id->ps == RDMA_PS_TCP) { 1271 ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */ 1272 ctrlr_event_data.initiator_depth = rqpair->max_read_depth; 1273 } 1274 1275 /* Configure infinite retries for the initiator side qpair. 1276 * We need to pass this value to the initiator to prevent the 1277 * initiator side NIC from completing SEND requests back to the 1278 * initiator with status rnr_retry_count_exceeded. */ 1279 ctrlr_event_data.rnr_retry_count = 0x7; 1280 1281 /* When qpair is created without use of rdma cm API, an additional 1282 * information must be provided to initiator in the connection response: 1283 * whether qpair is using SRQ and its qp_num 1284 * Fields below are ignored by rdma cm if qpair has been 1285 * created using rdma cm API. */ 1286 ctrlr_event_data.srq = rqpair->srq ? 1 : 0; 1287 ctrlr_event_data.qp_num = rqpair->qp_num; 1288 1289 rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data); 1290 if (rc) { 1291 SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno); 1292 } else { 1293 SPDK_DEBUGLOG(rdma, "Sent back the accept\n"); 1294 } 1295 1296 return rc; 1297 } 1298 1299 static void 1300 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error) 1301 { 1302 struct spdk_nvmf_rdma_reject_private_data rej_data; 1303 1304 rej_data.recfmt = 0; 1305 rej_data.sts = error; 1306 1307 rdma_reject(id, &rej_data, sizeof(rej_data)); 1308 } 1309 1310 static int 1311 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event) 1312 { 1313 struct spdk_nvmf_rdma_transport *rtransport; 1314 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 1315 struct spdk_nvmf_rdma_port *port; 1316 struct rdma_conn_param *rdma_param = NULL; 1317 const struct spdk_nvmf_rdma_request_private_data *private_data = NULL; 1318 uint16_t max_queue_depth; 1319 uint16_t max_read_depth; 1320 1321 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 1322 1323 assert(event->id != NULL); /* Impossible. Can't even reject the connection. */ 1324 assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */ 1325 1326 rdma_param = &event->param.conn; 1327 if (rdma_param->private_data == NULL || 1328 rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) { 1329 SPDK_ERRLOG("connect request: no private data provided\n"); 1330 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH); 1331 return -1; 1332 } 1333 1334 private_data = rdma_param->private_data; 1335 if (private_data->recfmt != 0) { 1336 SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n"); 1337 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT); 1338 return -1; 1339 } 1340 1341 SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n", 1342 event->id->verbs->device->name, event->id->verbs->device->dev_name); 1343 1344 port = event->listen_id->context; 1345 SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n", 1346 event->listen_id, event->listen_id->verbs, port); 1347 1348 /* Figure out the supported queue depth. This is a multi-step process 1349 * that takes into account hardware maximums, host provided values, 1350 * and our target's internal memory limits */ 1351 1352 SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n"); 1353 1354 /* Start with the maximum queue depth allowed by the target */ 1355 max_queue_depth = rtransport->transport.opts.max_queue_depth; 1356 max_read_depth = rtransport->transport.opts.max_queue_depth; 1357 SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n", 1358 rtransport->transport.opts.max_queue_depth); 1359 1360 /* Next check the local NIC's hardware limitations */ 1361 SPDK_DEBUGLOG(rdma, 1362 "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n", 1363 port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom); 1364 max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr); 1365 max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom); 1366 1367 /* Next check the remote NIC's hardware limitations */ 1368 SPDK_DEBUGLOG(rdma, 1369 "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n", 1370 rdma_param->initiator_depth, rdma_param->responder_resources); 1371 /* from man3 rdma_get_cm_event 1372 * responder_resources - Specifies the number of responder resources that is requested by the recipient. 1373 * The responder_resources field must match the initiator depth specified by the remote node when running 1374 * the rdma_connect and rdma_accept functions. */ 1375 if (rdma_param->responder_resources != 0) { 1376 if (private_data->qid) { 1377 SPDK_DEBUGLOG(rdma, "Host (Initiator) is not allowed to use RDMA operations," 1378 " responder_resources must be 0 but set to %u\n", 1379 rdma_param->responder_resources); 1380 } else { 1381 SPDK_WARNLOG("Host (Initiator) is not allowed to use RDMA operations," 1382 " responder_resources must be 0 but set to %u\n", 1383 rdma_param->responder_resources); 1384 } 1385 } 1386 /* from man3 rdma_get_cm_event 1387 * initiator_depth - Specifies the maximum number of outstanding RDMA read operations that the recipient holds. 1388 * The initiator_depth field must match the responder resources specified by the remote node when running 1389 * the rdma_connect and rdma_accept functions. */ 1390 if (rdma_param->initiator_depth == 0) { 1391 SPDK_ERRLOG("Host (Initiator) doesn't support RDMA_READ or atomic operations\n"); 1392 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_IRD); 1393 return -1; 1394 } 1395 max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth); 1396 1397 SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize); 1398 SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize); 1399 max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize); 1400 max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1); 1401 1402 SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n", 1403 max_queue_depth, max_read_depth); 1404 1405 rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair)); 1406 if (rqpair == NULL) { 1407 SPDK_ERRLOG("Could not allocate new connection.\n"); 1408 nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 1409 return -1; 1410 } 1411 1412 rqpair->device = port->device; 1413 rqpair->max_queue_depth = max_queue_depth; 1414 rqpair->max_read_depth = max_read_depth; 1415 rqpair->cm_id = event->id; 1416 rqpair->listen_id = event->listen_id; 1417 rqpair->qpair.transport = transport; 1418 STAILQ_INIT(&rqpair->ibv_events); 1419 /* use qid from the private data to determine the qpair type 1420 qid will be set to the appropriate value when the controller is created */ 1421 rqpair->qpair.qid = private_data->qid; 1422 1423 event->id->context = &rqpair->qpair; 1424 1425 spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair); 1426 1427 return 0; 1428 } 1429 1430 static inline void 1431 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next, 1432 enum spdk_nvme_data_transfer xfer) 1433 { 1434 if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 1435 wr->opcode = IBV_WR_RDMA_WRITE; 1436 wr->send_flags = 0; 1437 wr->next = next; 1438 } else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 1439 wr->opcode = IBV_WR_RDMA_READ; 1440 wr->send_flags = IBV_SEND_SIGNALED; 1441 wr->next = NULL; 1442 } else { 1443 assert(0); 1444 } 1445 } 1446 1447 static int 1448 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport, 1449 struct spdk_nvmf_rdma_request *rdma_req, 1450 uint32_t num_sgl_descriptors) 1451 { 1452 struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES]; 1453 struct spdk_nvmf_rdma_request_data *current_data_wr; 1454 uint32_t i; 1455 1456 if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) { 1457 SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n", 1458 num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES); 1459 return -EINVAL; 1460 } 1461 1462 if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) { 1463 return -ENOMEM; 1464 } 1465 1466 current_data_wr = &rdma_req->data; 1467 1468 for (i = 0; i < num_sgl_descriptors; i++) { 1469 nvmf_rdma_setup_wr(¤t_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer); 1470 current_data_wr->wr.next = &work_requests[i]->wr; 1471 current_data_wr = work_requests[i]; 1472 current_data_wr->wr.sg_list = current_data_wr->sgl; 1473 current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id; 1474 } 1475 1476 nvmf_rdma_setup_wr(¤t_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1477 1478 return 0; 1479 } 1480 1481 static inline void 1482 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req) 1483 { 1484 struct ibv_send_wr *wr = &rdma_req->data.wr; 1485 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1486 1487 wr->wr.rdma.rkey = sgl->keyed.key; 1488 wr->wr.rdma.remote_addr = sgl->address; 1489 nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer); 1490 } 1491 1492 static inline void 1493 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs) 1494 { 1495 struct ibv_send_wr *wr = &rdma_req->data.wr; 1496 struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; 1497 uint32_t i; 1498 int j; 1499 uint64_t remote_addr_offset = 0; 1500 1501 for (i = 0; i < num_wrs; ++i) { 1502 wr->wr.rdma.rkey = sgl->keyed.key; 1503 wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset; 1504 for (j = 0; j < wr->num_sge; ++j) { 1505 remote_addr_offset += wr->sg_list[j].length; 1506 } 1507 wr = wr->next; 1508 } 1509 } 1510 1511 static int 1512 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup, 1513 struct spdk_nvmf_rdma_device *device, 1514 struct spdk_nvmf_rdma_request *rdma_req, 1515 struct ibv_send_wr *wr, 1516 uint32_t total_length) 1517 { 1518 struct spdk_rdma_memory_translation mem_translation; 1519 struct ibv_sge *sg_ele; 1520 struct iovec *iov; 1521 uint32_t lkey, remaining; 1522 int rc; 1523 1524 wr->num_sge = 0; 1525 1526 while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) { 1527 iov = &rdma_req->req.iov[rdma_req->iovpos]; 1528 rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation); 1529 if (spdk_unlikely(rc)) { 1530 return rc; 1531 } 1532 1533 lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation); 1534 sg_ele = &wr->sg_list[wr->num_sge]; 1535 remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length); 1536 1537 sg_ele->lkey = lkey; 1538 sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset; 1539 sg_ele->length = remaining; 1540 SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr, 1541 sg_ele->length); 1542 rdma_req->offset += sg_ele->length; 1543 total_length -= sg_ele->length; 1544 wr->num_sge++; 1545 1546 if (rdma_req->offset == iov->iov_len) { 1547 rdma_req->offset = 0; 1548 rdma_req->iovpos++; 1549 } 1550 } 1551 1552 if (total_length) { 1553 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1554 return -EINVAL; 1555 } 1556 1557 return 0; 1558 } 1559 1560 static int 1561 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_poll_group *rgroup, 1562 struct spdk_nvmf_rdma_device *device, 1563 struct spdk_nvmf_rdma_request *rdma_req, 1564 struct ibv_send_wr *wr, 1565 uint32_t total_length, 1566 uint32_t num_extra_wrs) 1567 { 1568 struct spdk_rdma_memory_translation mem_translation; 1569 struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx; 1570 struct ibv_sge *sg_ele; 1571 struct iovec *iov; 1572 struct iovec *rdma_iov; 1573 uint32_t lkey, remaining; 1574 uint32_t remaining_data_block, data_block_size, md_size; 1575 uint32_t sge_len; 1576 int rc; 1577 1578 data_block_size = dif_ctx->block_size - dif_ctx->md_size; 1579 1580 if (spdk_likely(!rdma_req->req.stripped_data)) { 1581 rdma_iov = rdma_req->req.iov; 1582 remaining_data_block = data_block_size; 1583 md_size = dif_ctx->md_size; 1584 } else { 1585 rdma_iov = rdma_req->req.stripped_data->iov; 1586 total_length = total_length / dif_ctx->block_size * data_block_size; 1587 remaining_data_block = total_length; 1588 md_size = 0; 1589 } 1590 1591 wr->num_sge = 0; 1592 1593 while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) { 1594 iov = rdma_iov + rdma_req->iovpos; 1595 rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation); 1596 if (spdk_unlikely(rc)) { 1597 return rc; 1598 } 1599 1600 lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation); 1601 sg_ele = &wr->sg_list[wr->num_sge]; 1602 remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length); 1603 1604 while (remaining) { 1605 if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) { 1606 if (num_extra_wrs > 0 && wr->next) { 1607 wr = wr->next; 1608 wr->num_sge = 0; 1609 sg_ele = &wr->sg_list[wr->num_sge]; 1610 num_extra_wrs--; 1611 } else { 1612 break; 1613 } 1614 } 1615 sg_ele->lkey = lkey; 1616 sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset); 1617 sge_len = spdk_min(remaining, remaining_data_block); 1618 sg_ele->length = sge_len; 1619 SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, 1620 sg_ele->addr, sg_ele->length); 1621 remaining -= sge_len; 1622 remaining_data_block -= sge_len; 1623 rdma_req->offset += sge_len; 1624 total_length -= sge_len; 1625 1626 sg_ele++; 1627 wr->num_sge++; 1628 1629 if (remaining_data_block == 0) { 1630 /* skip metadata */ 1631 rdma_req->offset += md_size; 1632 total_length -= md_size; 1633 /* Metadata that do not fit this IO buffer will be included in the next IO buffer */ 1634 remaining -= spdk_min(remaining, md_size); 1635 remaining_data_block = data_block_size; 1636 } 1637 1638 if (remaining == 0) { 1639 /* By subtracting the size of the last IOV from the offset, we ensure that we skip 1640 the remaining metadata bits at the beginning of the next buffer */ 1641 rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset); 1642 rdma_req->iovpos++; 1643 } 1644 } 1645 } 1646 1647 if (total_length) { 1648 SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); 1649 return -EINVAL; 1650 } 1651 1652 return 0; 1653 } 1654 1655 static inline uint32_t 1656 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size) 1657 { 1658 /* estimate the number of SG entries and WRs needed to process the request */ 1659 uint32_t num_sge = 0; 1660 uint32_t i; 1661 uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size); 1662 1663 for (i = 0; i < num_buffers && length > 0; i++) { 1664 uint32_t buffer_len = spdk_min(length, io_unit_size); 1665 uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size); 1666 1667 if (num_sge_in_block * block_size > buffer_len) { 1668 ++num_sge_in_block; 1669 } 1670 num_sge += num_sge_in_block; 1671 length -= buffer_len; 1672 } 1673 return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES); 1674 } 1675 1676 static int 1677 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport, 1678 struct spdk_nvmf_rdma_device *device, 1679 struct spdk_nvmf_rdma_request *rdma_req) 1680 { 1681 struct spdk_nvmf_rdma_qpair *rqpair; 1682 struct spdk_nvmf_rdma_poll_group *rgroup; 1683 struct spdk_nvmf_request *req = &rdma_req->req; 1684 struct ibv_send_wr *wr = &rdma_req->data.wr; 1685 int rc; 1686 uint32_t num_wrs = 1; 1687 uint32_t length; 1688 1689 rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair); 1690 rgroup = rqpair->poller->group; 1691 1692 /* rdma wr specifics */ 1693 nvmf_rdma_setup_request(rdma_req); 1694 1695 length = req->length; 1696 if (spdk_unlikely(req->dif_enabled)) { 1697 req->dif.orig_length = length; 1698 length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx); 1699 req->dif.elba_length = length; 1700 } 1701 1702 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, 1703 length); 1704 if (rc != 0) { 1705 return rc; 1706 } 1707 1708 assert(req->iovcnt <= rqpair->max_send_sge); 1709 1710 /* When dif_insert_or_strip is true and the I/O data length is greater than one block, 1711 * the stripped_buffers are got for DIF stripping. */ 1712 if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) 1713 && (req->dif.elba_length > req->dif.dif_ctx.block_size))) { 1714 rc = nvmf_request_get_stripped_buffers(req, &rgroup->group, 1715 &rtransport->transport, req->dif.orig_length); 1716 if (rc != 0) { 1717 SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc); 1718 } 1719 } 1720 1721 rdma_req->iovpos = 0; 1722 1723 if (spdk_unlikely(req->dif_enabled)) { 1724 num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size, 1725 req->dif.dif_ctx.block_size); 1726 if (num_wrs > 1) { 1727 rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1); 1728 if (rc != 0) { 1729 goto err_exit; 1730 } 1731 } 1732 1733 rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, wr, length, num_wrs - 1); 1734 if (spdk_unlikely(rc != 0)) { 1735 goto err_exit; 1736 } 1737 1738 if (num_wrs > 1) { 1739 nvmf_rdma_update_remote_addr(rdma_req, num_wrs); 1740 } 1741 } else { 1742 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length); 1743 if (spdk_unlikely(rc != 0)) { 1744 goto err_exit; 1745 } 1746 } 1747 1748 /* set the number of outstanding data WRs for this request. */ 1749 rdma_req->num_outstanding_data_wr = num_wrs; 1750 1751 return rc; 1752 1753 err_exit: 1754 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1755 nvmf_rdma_request_free_data(rdma_req, rtransport); 1756 req->iovcnt = 0; 1757 return rc; 1758 } 1759 1760 static int 1761 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1762 struct spdk_nvmf_rdma_device *device, 1763 struct spdk_nvmf_rdma_request *rdma_req) 1764 { 1765 struct spdk_nvmf_rdma_qpair *rqpair; 1766 struct spdk_nvmf_rdma_poll_group *rgroup; 1767 struct ibv_send_wr *current_wr; 1768 struct spdk_nvmf_request *req = &rdma_req->req; 1769 struct spdk_nvme_sgl_descriptor *inline_segment, *desc; 1770 uint32_t num_sgl_descriptors; 1771 uint32_t lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0; 1772 uint32_t i; 1773 int rc; 1774 1775 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1776 rgroup = rqpair->poller->group; 1777 1778 inline_segment = &req->cmd->nvme_cmd.dptr.sgl1; 1779 assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT); 1780 assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET); 1781 1782 num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor); 1783 assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES); 1784 1785 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1786 for (i = 0; i < num_sgl_descriptors; i++) { 1787 if (spdk_likely(!req->dif_enabled)) { 1788 lengths[i] = desc->keyed.length; 1789 } else { 1790 req->dif.orig_length += desc->keyed.length; 1791 lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx); 1792 req->dif.elba_length += lengths[i]; 1793 } 1794 total_length += lengths[i]; 1795 desc++; 1796 } 1797 1798 if (total_length > rtransport->transport.opts.max_io_size) { 1799 SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n", 1800 total_length, rtransport->transport.opts.max_io_size); 1801 req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1802 return -EINVAL; 1803 } 1804 1805 if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) { 1806 return -ENOMEM; 1807 } 1808 1809 rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length); 1810 if (rc != 0) { 1811 nvmf_rdma_request_free_data(rdma_req, rtransport); 1812 return rc; 1813 } 1814 1815 /* When dif_insert_or_strip is true and the I/O data length is greater than one block, 1816 * the stripped_buffers are got for DIF stripping. */ 1817 if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) 1818 && (req->dif.elba_length > req->dif.dif_ctx.block_size))) { 1819 rc = nvmf_request_get_stripped_buffers(req, &rgroup->group, 1820 &rtransport->transport, req->dif.orig_length); 1821 if (rc != 0) { 1822 SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc); 1823 } 1824 } 1825 1826 /* The first WR must always be the embedded data WR. This is how we unwind them later. */ 1827 current_wr = &rdma_req->data.wr; 1828 assert(current_wr != NULL); 1829 1830 req->length = 0; 1831 rdma_req->iovpos = 0; 1832 desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; 1833 for (i = 0; i < num_sgl_descriptors; i++) { 1834 /* The descriptors must be keyed data block descriptors with an address, not an offset. */ 1835 if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK || 1836 desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) { 1837 rc = -EINVAL; 1838 goto err_exit; 1839 } 1840 1841 if (spdk_likely(!req->dif_enabled)) { 1842 rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i]); 1843 } else { 1844 rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, current_wr, 1845 lengths[i], 0); 1846 } 1847 if (rc != 0) { 1848 rc = -ENOMEM; 1849 goto err_exit; 1850 } 1851 1852 req->length += desc->keyed.length; 1853 current_wr->wr.rdma.rkey = desc->keyed.key; 1854 current_wr->wr.rdma.remote_addr = desc->address; 1855 current_wr = current_wr->next; 1856 desc++; 1857 } 1858 1859 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1860 /* Go back to the last descriptor in the list. */ 1861 desc--; 1862 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1863 if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1864 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1865 rdma_req->rsp.wr.imm_data = desc->keyed.key; 1866 } 1867 } 1868 #endif 1869 1870 rdma_req->num_outstanding_data_wr = num_sgl_descriptors; 1871 1872 return 0; 1873 1874 err_exit: 1875 spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); 1876 nvmf_rdma_request_free_data(rdma_req, rtransport); 1877 return rc; 1878 } 1879 1880 static int 1881 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport, 1882 struct spdk_nvmf_rdma_device *device, 1883 struct spdk_nvmf_rdma_request *rdma_req) 1884 { 1885 struct spdk_nvmf_request *req = &rdma_req->req; 1886 struct spdk_nvme_cpl *rsp; 1887 struct spdk_nvme_sgl_descriptor *sgl; 1888 int rc; 1889 uint32_t length; 1890 1891 rsp = &req->rsp->nvme_cpl; 1892 sgl = &req->cmd->nvme_cmd.dptr.sgl1; 1893 1894 if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK && 1895 (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS || 1896 sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) { 1897 1898 length = sgl->keyed.length; 1899 if (length > rtransport->transport.opts.max_io_size) { 1900 SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n", 1901 length, rtransport->transport.opts.max_io_size); 1902 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1903 return -1; 1904 } 1905 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 1906 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { 1907 if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { 1908 rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; 1909 rdma_req->rsp.wr.imm_data = sgl->keyed.key; 1910 } 1911 } 1912 #endif 1913 1914 /* fill request length and populate iovs */ 1915 req->length = length; 1916 1917 rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req); 1918 if (spdk_unlikely(rc < 0)) { 1919 if (rc == -EINVAL) { 1920 SPDK_ERRLOG("SGL length exceeds the max I/O size\n"); 1921 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1922 return -1; 1923 } 1924 /* No available buffers. Queue this request up. */ 1925 SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req); 1926 return 0; 1927 } 1928 1929 SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req, 1930 req->iovcnt); 1931 1932 return 0; 1933 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK && 1934 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1935 uint64_t offset = sgl->address; 1936 uint32_t max_len = rtransport->transport.opts.in_capsule_data_size; 1937 1938 SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n", 1939 offset, sgl->unkeyed.length); 1940 1941 if (offset > max_len) { 1942 SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n", 1943 offset, max_len); 1944 rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET; 1945 return -1; 1946 } 1947 max_len -= (uint32_t)offset; 1948 1949 if (sgl->unkeyed.length > max_len) { 1950 SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n", 1951 sgl->unkeyed.length, max_len); 1952 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1953 return -1; 1954 } 1955 1956 rdma_req->num_outstanding_data_wr = 0; 1957 req->data_from_pool = false; 1958 req->length = sgl->unkeyed.length; 1959 1960 req->iov[0].iov_base = rdma_req->recv->buf + offset; 1961 req->iov[0].iov_len = req->length; 1962 req->iovcnt = 1; 1963 1964 return 0; 1965 } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT && 1966 sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { 1967 1968 rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req); 1969 if (rc == -ENOMEM) { 1970 SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req); 1971 return 0; 1972 } else if (rc == -EINVAL) { 1973 SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n"); 1974 rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; 1975 return -1; 1976 } 1977 1978 SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req, 1979 req->iovcnt); 1980 1981 return 0; 1982 } 1983 1984 SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n", 1985 sgl->generic.type, sgl->generic.subtype); 1986 rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID; 1987 return -1; 1988 } 1989 1990 static void 1991 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req, 1992 struct spdk_nvmf_rdma_transport *rtransport) 1993 { 1994 struct spdk_nvmf_rdma_qpair *rqpair; 1995 struct spdk_nvmf_rdma_poll_group *rgroup; 1996 1997 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 1998 if (rdma_req->req.data_from_pool) { 1999 rgroup = rqpair->poller->group; 2000 2001 spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport); 2002 } 2003 if (rdma_req->req.stripped_data) { 2004 nvmf_request_free_stripped_buffers(&rdma_req->req, 2005 &rqpair->poller->group->group, 2006 &rtransport->transport); 2007 } 2008 nvmf_rdma_request_free_data(rdma_req, rtransport); 2009 rdma_req->req.length = 0; 2010 rdma_req->req.iovcnt = 0; 2011 rdma_req->offset = 0; 2012 rdma_req->req.dif_enabled = false; 2013 rdma_req->fused_failed = false; 2014 rdma_req->transfer_wr = NULL; 2015 if (rdma_req->fused_pair) { 2016 /* This req was part of a valid fused pair, but failed before it got to 2017 * READ_TO_EXECUTE state. This means we need to fail the other request 2018 * in the pair, because it is no longer part of a valid pair. If the pair 2019 * already reached READY_TO_EXECUTE state, we need to kick it. 2020 */ 2021 rdma_req->fused_pair->fused_failed = true; 2022 if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 2023 nvmf_rdma_request_process(rtransport, rdma_req->fused_pair); 2024 } 2025 rdma_req->fused_pair = NULL; 2026 } 2027 memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif)); 2028 rqpair->qd--; 2029 2030 STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link); 2031 rdma_req->state = RDMA_REQUEST_STATE_FREE; 2032 } 2033 2034 static void 2035 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport, 2036 struct spdk_nvmf_rdma_qpair *rqpair, 2037 struct spdk_nvmf_rdma_request *rdma_req) 2038 { 2039 enum spdk_nvme_cmd_fuse last, next; 2040 2041 last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE; 2042 next = rdma_req->req.cmd->nvme_cmd.fuse; 2043 2044 assert(last != SPDK_NVME_CMD_FUSE_SECOND); 2045 2046 if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) { 2047 return; 2048 } 2049 2050 if (last == SPDK_NVME_CMD_FUSE_FIRST) { 2051 if (next == SPDK_NVME_CMD_FUSE_SECOND) { 2052 /* This is a valid pair of fused commands. Point them at each other 2053 * so they can be submitted consecutively once ready to be executed. 2054 */ 2055 rqpair->fused_first->fused_pair = rdma_req; 2056 rdma_req->fused_pair = rqpair->fused_first; 2057 rqpair->fused_first = NULL; 2058 return; 2059 } else { 2060 /* Mark the last req as failed since it wasn't followed by a SECOND. */ 2061 rqpair->fused_first->fused_failed = true; 2062 2063 /* If the last req is in READY_TO_EXECUTE state, then call 2064 * nvmf_rdma_request_process(), otherwise nothing else will kick it. 2065 */ 2066 if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 2067 nvmf_rdma_request_process(rtransport, rqpair->fused_first); 2068 } 2069 2070 rqpair->fused_first = NULL; 2071 } 2072 } 2073 2074 if (next == SPDK_NVME_CMD_FUSE_FIRST) { 2075 /* Set rqpair->fused_first here so that we know to check that the next request 2076 * is a SECOND (and to fail this one if it isn't). 2077 */ 2078 rqpair->fused_first = rdma_req; 2079 } else if (next == SPDK_NVME_CMD_FUSE_SECOND) { 2080 /* Mark this req failed since it ia SECOND and the last one was not a FIRST. */ 2081 rdma_req->fused_failed = true; 2082 } 2083 } 2084 2085 bool 2086 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, 2087 struct spdk_nvmf_rdma_request *rdma_req) 2088 { 2089 struct spdk_nvmf_rdma_qpair *rqpair; 2090 struct spdk_nvmf_rdma_device *device; 2091 struct spdk_nvmf_rdma_poll_group *rgroup; 2092 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2093 int rc; 2094 struct spdk_nvmf_rdma_recv *rdma_recv; 2095 enum spdk_nvmf_rdma_request_state prev_state; 2096 bool progress = false; 2097 int data_posted; 2098 uint32_t num_blocks, num_rdma_reads_available, qdepth; 2099 2100 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 2101 device = rqpair->device; 2102 rgroup = rqpair->poller->group; 2103 2104 assert(rdma_req->state != RDMA_REQUEST_STATE_FREE); 2105 2106 /* If the queue pair is in an error state, force the request to the completed state 2107 * to release resources. */ 2108 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 2109 if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) { 2110 STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link); 2111 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) { 2112 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2113 } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) { 2114 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2115 } 2116 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2117 } 2118 2119 /* The loop here is to allow for several back-to-back state changes. */ 2120 do { 2121 prev_state = rdma_req->state; 2122 2123 SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state); 2124 2125 switch (rdma_req->state) { 2126 case RDMA_REQUEST_STATE_FREE: 2127 /* Some external code must kick a request into RDMA_REQUEST_STATE_NEW 2128 * to escape this state. */ 2129 break; 2130 case RDMA_REQUEST_STATE_NEW: 2131 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0, 2132 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2133 rdma_recv = rdma_req->recv; 2134 2135 /* The first element of the SGL is the NVMe command */ 2136 rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr; 2137 memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp)); 2138 rdma_req->transfer_wr = &rdma_req->data.wr; 2139 2140 if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 2141 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2142 break; 2143 } 2144 2145 if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) { 2146 rdma_req->req.dif_enabled = true; 2147 } 2148 2149 nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req); 2150 2151 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2152 rdma_req->rsp.wr.opcode = IBV_WR_SEND; 2153 rdma_req->rsp.wr.imm_data = 0; 2154 #endif 2155 2156 /* The next state transition depends on the data transfer needs of this request. */ 2157 rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req); 2158 2159 if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) { 2160 rsp->status.sct = SPDK_NVME_SCT_GENERIC; 2161 rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE; 2162 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2163 SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req); 2164 break; 2165 } 2166 2167 /* If no data to transfer, ready to execute. */ 2168 if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) { 2169 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2170 break; 2171 } 2172 2173 rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER; 2174 STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link); 2175 break; 2176 case RDMA_REQUEST_STATE_NEED_BUFFER: 2177 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0, 2178 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2179 2180 assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE); 2181 2182 if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) { 2183 /* This request needs to wait in line to obtain a buffer */ 2184 break; 2185 } 2186 2187 /* Try to get a data buffer */ 2188 rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req); 2189 if (rc < 0) { 2190 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2191 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2192 break; 2193 } 2194 2195 if (rdma_req->req.iovcnt == 0) { 2196 /* No buffers available. */ 2197 rgroup->stat.pending_data_buffer++; 2198 break; 2199 } 2200 2201 STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); 2202 2203 /* If data is transferring from host to controller and the data didn't 2204 * arrive using in capsule data, we need to do a transfer from the host. 2205 */ 2206 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && 2207 rdma_req->req.data_from_pool) { 2208 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link); 2209 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING; 2210 break; 2211 } 2212 2213 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 2214 break; 2215 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 2216 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0, 2217 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2218 2219 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) { 2220 /* This request needs to wait in line to perform RDMA */ 2221 break; 2222 } 2223 qdepth = rqpair->max_send_depth - rqpair->current_send_depth; 2224 num_rdma_reads_available = rqpair->max_read_depth - rqpair->current_read_depth; 2225 if (rdma_req->num_outstanding_data_wr > qdepth || 2226 rdma_req->num_outstanding_data_wr > num_rdma_reads_available) { 2227 if (num_rdma_reads_available && qdepth) { 2228 /* Send as much as we can */ 2229 request_prepare_transfer_in_part(&rdma_req->req, spdk_min(num_rdma_reads_available, qdepth)); 2230 } else { 2231 /* We can only have so many WRs outstanding. we have to wait until some finish. */ 2232 rqpair->poller->stat.pending_rdma_read++; 2233 break; 2234 } 2235 } 2236 2237 /* We have already verified that this request is the head of the queue. */ 2238 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link); 2239 2240 rc = request_transfer_in(&rdma_req->req); 2241 if (!rc) { 2242 rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER; 2243 } else { 2244 rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 2245 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2246 } 2247 break; 2248 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 2249 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0, 2250 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2251 /* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE 2252 * to escape this state. */ 2253 break; 2254 case RDMA_REQUEST_STATE_READY_TO_EXECUTE: 2255 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0, 2256 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2257 2258 if (spdk_unlikely(rdma_req->req.dif_enabled)) { 2259 if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 2260 /* generate DIF for write operation */ 2261 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2262 assert(num_blocks > 0); 2263 2264 rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt, 2265 num_blocks, &rdma_req->req.dif.dif_ctx); 2266 if (rc != 0) { 2267 SPDK_ERRLOG("DIF generation failed\n"); 2268 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2269 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 2270 break; 2271 } 2272 } 2273 2274 assert(rdma_req->req.dif.elba_length >= rdma_req->req.length); 2275 /* set extended length before IO operation */ 2276 rdma_req->req.length = rdma_req->req.dif.elba_length; 2277 } 2278 2279 if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) { 2280 if (rdma_req->fused_failed) { 2281 /* This request failed FUSED semantics. Fail it immediately, without 2282 * even sending it to the target layer. 2283 */ 2284 rsp->status.sct = SPDK_NVME_SCT_GENERIC; 2285 rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED; 2286 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2287 break; 2288 } 2289 2290 if (rdma_req->fused_pair == NULL || 2291 rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) { 2292 /* This request is ready to execute, but either we don't know yet if it's 2293 * valid - i.e. this is a FIRST but we haven't received the next 2294 * request yet or the other request of this fused pair isn't ready to 2295 * execute. So break here and this request will get processed later either 2296 * when the other request is ready or we find that this request isn't valid. 2297 */ 2298 break; 2299 } 2300 } 2301 2302 /* If we get to this point, and this request is a fused command, we know that 2303 * it is part of valid sequence (FIRST followed by a SECOND) and that both 2304 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this 2305 * request, and the other request of the fused pair, in the correct order. 2306 * Also clear the ->fused_pair pointers on both requests, since after this point 2307 * we no longer need to maintain the relationship between these two requests. 2308 */ 2309 if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) { 2310 assert(rdma_req->fused_pair != NULL); 2311 assert(rdma_req->fused_pair->fused_pair != NULL); 2312 rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING; 2313 spdk_nvmf_request_exec(&rdma_req->fused_pair->req); 2314 rdma_req->fused_pair->fused_pair = NULL; 2315 rdma_req->fused_pair = NULL; 2316 } 2317 rdma_req->state = RDMA_REQUEST_STATE_EXECUTING; 2318 spdk_nvmf_request_exec(&rdma_req->req); 2319 if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) { 2320 assert(rdma_req->fused_pair != NULL); 2321 assert(rdma_req->fused_pair->fused_pair != NULL); 2322 rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING; 2323 spdk_nvmf_request_exec(&rdma_req->fused_pair->req); 2324 rdma_req->fused_pair->fused_pair = NULL; 2325 rdma_req->fused_pair = NULL; 2326 } 2327 break; 2328 case RDMA_REQUEST_STATE_EXECUTING: 2329 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0, 2330 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2331 /* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED 2332 * to escape this state. */ 2333 break; 2334 case RDMA_REQUEST_STATE_EXECUTED: 2335 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0, 2336 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2337 if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && 2338 rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2339 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link); 2340 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING; 2341 } else { 2342 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2343 } 2344 if (spdk_unlikely(rdma_req->req.dif_enabled)) { 2345 /* restore the original length */ 2346 rdma_req->req.length = rdma_req->req.dif.orig_length; 2347 2348 if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { 2349 struct spdk_dif_error error_blk; 2350 2351 num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); 2352 if (!rdma_req->req.stripped_data) { 2353 rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2354 &rdma_req->req.dif.dif_ctx, &error_blk); 2355 } else { 2356 rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov, 2357 rdma_req->req.stripped_data->iovcnt, 2358 rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, 2359 &rdma_req->req.dif.dif_ctx, &error_blk); 2360 } 2361 if (rc) { 2362 struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; 2363 2364 SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type, 2365 error_blk.err_offset); 2366 rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR; 2367 rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type); 2368 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2369 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); 2370 } 2371 } 2372 } 2373 break; 2374 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 2375 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0, 2376 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2377 2378 if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) { 2379 /* This request needs to wait in line to perform RDMA */ 2380 break; 2381 } 2382 if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) > 2383 rqpair->max_send_depth) { 2384 /* We can only have so many WRs outstanding. we have to wait until some finish. 2385 * +1 since each request has an additional wr in the resp. */ 2386 rqpair->poller->stat.pending_rdma_write++; 2387 break; 2388 } 2389 2390 /* We have already verified that this request is the head of the queue. */ 2391 STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link); 2392 2393 /* The data transfer will be kicked off from 2394 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state. 2395 */ 2396 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 2397 break; 2398 case RDMA_REQUEST_STATE_READY_TO_COMPLETE: 2399 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0, 2400 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2401 rc = request_transfer_out(&rdma_req->req, &data_posted); 2402 assert(rc == 0); /* No good way to handle this currently */ 2403 if (rc) { 2404 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 2405 } else { 2406 rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST : 2407 RDMA_REQUEST_STATE_COMPLETING; 2408 } 2409 break; 2410 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 2411 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0, 2412 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2413 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2414 * to escape this state. */ 2415 break; 2416 case RDMA_REQUEST_STATE_COMPLETING: 2417 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0, 2418 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2419 /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED 2420 * to escape this state. */ 2421 break; 2422 case RDMA_REQUEST_STATE_COMPLETED: 2423 spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0, 2424 (uintptr_t)rdma_req, (uintptr_t)rqpair); 2425 2426 rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc; 2427 _nvmf_rdma_request_free(rdma_req, rtransport); 2428 break; 2429 case RDMA_REQUEST_NUM_STATES: 2430 default: 2431 assert(0); 2432 break; 2433 } 2434 2435 if (rdma_req->state != prev_state) { 2436 progress = true; 2437 } 2438 } while (rdma_req->state != prev_state); 2439 2440 return progress; 2441 } 2442 2443 /* Public API callbacks begin here */ 2444 2445 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128 2446 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128 2447 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096 2448 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128 2449 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096 2450 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072 2451 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES) 2452 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095 2453 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX 2454 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false 2455 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false 2456 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100 2457 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1 2458 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false 2459 2460 static void 2461 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts) 2462 { 2463 opts->max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH; 2464 opts->max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR; 2465 opts->in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE; 2466 opts->max_io_size = SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE; 2467 opts->io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE; 2468 opts->max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH; 2469 opts->num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS; 2470 opts->buf_cache_size = SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE; 2471 opts->dif_insert_or_strip = SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP; 2472 opts->abort_timeout_sec = SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC; 2473 opts->transport_specific = NULL; 2474 } 2475 2476 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport, 2477 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg); 2478 2479 static inline bool 2480 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device) 2481 { 2482 return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD || 2483 device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW; 2484 } 2485 2486 static int nvmf_rdma_accept(void *ctx); 2487 static bool nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport); 2488 static void destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport, 2489 struct spdk_nvmf_rdma_device *device); 2490 2491 static int 2492 create_ib_device(struct spdk_nvmf_rdma_transport *rtransport, struct ibv_context *context, 2493 struct spdk_nvmf_rdma_device **new_device) 2494 { 2495 struct spdk_nvmf_rdma_device *device; 2496 int flag = 0; 2497 int rc = 0; 2498 2499 device = calloc(1, sizeof(*device)); 2500 if (!device) { 2501 SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n"); 2502 return -ENOMEM; 2503 } 2504 device->context = context; 2505 rc = ibv_query_device(device->context, &device->attr); 2506 if (rc < 0) { 2507 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 2508 free(device); 2509 return rc; 2510 } 2511 2512 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL 2513 if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) { 2514 SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,"); 2515 SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id); 2516 } 2517 2518 /** 2519 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE. 2520 * The Soft-RoCE RXE driver does not currently support send with invalidate, 2521 * but incorrectly reports that it does. There are changes making their way 2522 * through the kernel now that will enable this feature. When they are merged, 2523 * we can conditionally enable this feature. 2524 * 2525 * TODO: enable this for versions of the kernel rxe driver that support it. 2526 */ 2527 if (nvmf_rdma_is_rxe_device(device)) { 2528 device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS); 2529 } 2530 #endif 2531 2532 /* set up device context async ev fd as NON_BLOCKING */ 2533 flag = fcntl(device->context->async_fd, F_GETFL); 2534 rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK); 2535 if (rc < 0) { 2536 SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n"); 2537 free(device); 2538 return rc; 2539 } 2540 2541 TAILQ_INSERT_TAIL(&rtransport->devices, device, link); 2542 SPDK_DEBUGLOG(rdma, "New device %p is added to RDMA trasport\n", device); 2543 2544 if (g_nvmf_hooks.get_ibv_pd) { 2545 device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context); 2546 } else { 2547 device->pd = ibv_alloc_pd(device->context); 2548 } 2549 2550 if (!device->pd) { 2551 SPDK_ERRLOG("Unable to allocate protection domain.\n"); 2552 destroy_ib_device(rtransport, device); 2553 return -ENOMEM; 2554 } 2555 2556 assert(device->map == NULL); 2557 2558 device->map = spdk_rdma_create_mem_map(device->pd, &g_nvmf_hooks, SPDK_RDMA_MEMORY_MAP_ROLE_TARGET); 2559 if (!device->map) { 2560 SPDK_ERRLOG("Unable to allocate memory map for listen address\n"); 2561 destroy_ib_device(rtransport, device); 2562 return -ENOMEM; 2563 } 2564 2565 assert(device->map != NULL); 2566 assert(device->pd != NULL); 2567 2568 if (new_device) { 2569 *new_device = device; 2570 } 2571 SPDK_NOTICELOG("Create IB device %s(%p/%p) succeed.\n", ibv_get_device_name(context->device), 2572 device, context); 2573 2574 return 0; 2575 } 2576 2577 static void 2578 free_poll_fds(struct spdk_nvmf_rdma_transport *rtransport) 2579 { 2580 if (rtransport->poll_fds) { 2581 free(rtransport->poll_fds); 2582 rtransport->poll_fds = NULL; 2583 } 2584 rtransport->npoll_fds = 0; 2585 } 2586 2587 static int 2588 generate_poll_fds(struct spdk_nvmf_rdma_transport *rtransport) 2589 { 2590 /* Set up poll descriptor array to monitor events from RDMA and IB 2591 * in a single poll syscall 2592 */ 2593 int device_count = 0; 2594 int i = 0; 2595 struct spdk_nvmf_rdma_device *device, *tmp; 2596 2597 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 2598 device_count++; 2599 } 2600 2601 rtransport->npoll_fds = device_count + 1; 2602 2603 rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd)); 2604 if (rtransport->poll_fds == NULL) { 2605 SPDK_ERRLOG("poll_fds allocation failed\n"); 2606 return -ENOMEM; 2607 } 2608 2609 rtransport->poll_fds[i].fd = rtransport->event_channel->fd; 2610 rtransport->poll_fds[i++].events = POLLIN; 2611 2612 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 2613 rtransport->poll_fds[i].fd = device->context->async_fd; 2614 rtransport->poll_fds[i++].events = POLLIN; 2615 } 2616 2617 return 0; 2618 } 2619 2620 static struct spdk_nvmf_transport * 2621 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts) 2622 { 2623 int rc; 2624 struct spdk_nvmf_rdma_transport *rtransport; 2625 struct spdk_nvmf_rdma_device *device; 2626 struct ibv_context **contexts; 2627 uint32_t i; 2628 int flag; 2629 uint32_t sge_count; 2630 uint32_t min_shared_buffers; 2631 uint32_t min_in_capsule_data_size; 2632 int max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES; 2633 2634 rtransport = calloc(1, sizeof(*rtransport)); 2635 if (!rtransport) { 2636 return NULL; 2637 } 2638 2639 TAILQ_INIT(&rtransport->devices); 2640 TAILQ_INIT(&rtransport->ports); 2641 TAILQ_INIT(&rtransport->poll_groups); 2642 TAILQ_INIT(&rtransport->retry_ports); 2643 2644 rtransport->transport.ops = &spdk_nvmf_transport_rdma; 2645 rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE; 2646 rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH; 2647 rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ; 2648 rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG; 2649 rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING; 2650 if (opts->transport_specific != NULL && 2651 spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder, 2652 SPDK_COUNTOF(rdma_transport_opts_decoder), 2653 &rtransport->rdma_opts)) { 2654 SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n"); 2655 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2656 return NULL; 2657 } 2658 2659 SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n" 2660 " Transport opts: max_ioq_depth=%d, max_io_size=%d,\n" 2661 " max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n" 2662 " in_capsule_data_size=%d, max_aq_depth=%d,\n" 2663 " num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d," 2664 " acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n", 2665 opts->max_queue_depth, 2666 opts->max_io_size, 2667 opts->max_qpairs_per_ctrlr - 1, 2668 opts->io_unit_size, 2669 opts->in_capsule_data_size, 2670 opts->max_aq_depth, 2671 opts->num_shared_buffers, 2672 rtransport->rdma_opts.num_cqe, 2673 rtransport->rdma_opts.max_srq_depth, 2674 rtransport->rdma_opts.no_srq, 2675 rtransport->rdma_opts.acceptor_backlog, 2676 rtransport->rdma_opts.no_wr_batching, 2677 opts->abort_timeout_sec); 2678 2679 /* I/O unit size cannot be larger than max I/O size */ 2680 if (opts->io_unit_size > opts->max_io_size) { 2681 opts->io_unit_size = opts->max_io_size; 2682 } 2683 2684 if (rtransport->rdma_opts.acceptor_backlog <= 0) { 2685 SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n", 2686 SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG); 2687 rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG; 2688 } 2689 2690 if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) { 2691 SPDK_ERRLOG("The number of shared data buffers (%d) is less than" 2692 "the minimum number required to guarantee that forward progress can be made (%d)\n", 2693 opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2)); 2694 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2695 return NULL; 2696 } 2697 2698 /* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */ 2699 if (opts->buf_cache_size < UINT32_MAX) { 2700 min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size; 2701 if (min_shared_buffers > opts->num_shared_buffers) { 2702 SPDK_ERRLOG("There are not enough buffers to satisfy" 2703 "per-poll group caches for each thread. (%" PRIu32 ")" 2704 "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers); 2705 SPDK_ERRLOG("Please specify a larger number of shared buffers\n"); 2706 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2707 return NULL; 2708 } 2709 } 2710 2711 sge_count = opts->max_io_size / opts->io_unit_size; 2712 if (sge_count > NVMF_DEFAULT_TX_SGE) { 2713 SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size); 2714 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2715 return NULL; 2716 } 2717 2718 min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES; 2719 if (opts->in_capsule_data_size < min_in_capsule_data_size) { 2720 SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n", 2721 min_in_capsule_data_size); 2722 opts->in_capsule_data_size = min_in_capsule_data_size; 2723 } 2724 2725 rtransport->event_channel = rdma_create_event_channel(); 2726 if (rtransport->event_channel == NULL) { 2727 SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno)); 2728 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2729 return NULL; 2730 } 2731 2732 flag = fcntl(rtransport->event_channel->fd, F_GETFL); 2733 if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { 2734 SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n", 2735 rtransport->event_channel->fd, spdk_strerror(errno)); 2736 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2737 return NULL; 2738 } 2739 2740 rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data", 2741 opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES, 2742 sizeof(struct spdk_nvmf_rdma_request_data), 2743 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 2744 SPDK_ENV_SOCKET_ID_ANY); 2745 if (!rtransport->data_wr_pool) { 2746 if (spdk_mempool_lookup("spdk_nvmf_rdma_wr_data") != NULL) { 2747 SPDK_ERRLOG("Unable to allocate work request pool for poll group: already exists\n"); 2748 SPDK_ERRLOG("Probably running in multiprocess environment, which is " 2749 "unsupported by the nvmf library\n"); 2750 } else { 2751 SPDK_ERRLOG("Unable to allocate work request pool for poll group\n"); 2752 } 2753 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2754 return NULL; 2755 } 2756 2757 contexts = rdma_get_devices(NULL); 2758 if (contexts == NULL) { 2759 SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); 2760 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2761 return NULL; 2762 } 2763 2764 i = 0; 2765 rc = 0; 2766 while (contexts[i] != NULL) { 2767 rc = create_ib_device(rtransport, contexts[i], &device); 2768 if (rc < 0) { 2769 break; 2770 } 2771 i++; 2772 max_device_sge = spdk_min(max_device_sge, device->attr.max_sge); 2773 device->is_ready = true; 2774 } 2775 rdma_free_devices(contexts); 2776 2777 if (opts->io_unit_size * max_device_sge < opts->max_io_size) { 2778 /* divide and round up. */ 2779 opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge; 2780 2781 /* round up to the nearest 4k. */ 2782 opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK; 2783 2784 opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE); 2785 SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n", 2786 opts->io_unit_size); 2787 } 2788 2789 if (rc < 0) { 2790 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2791 return NULL; 2792 } 2793 2794 rc = generate_poll_fds(rtransport); 2795 if (rc < 0) { 2796 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2797 return NULL; 2798 } 2799 2800 rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport, 2801 opts->acceptor_poll_rate); 2802 if (!rtransport->accept_poller) { 2803 nvmf_rdma_destroy(&rtransport->transport, NULL, NULL); 2804 return NULL; 2805 } 2806 2807 return &rtransport->transport; 2808 } 2809 2810 static void 2811 destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport, 2812 struct spdk_nvmf_rdma_device *device) 2813 { 2814 TAILQ_REMOVE(&rtransport->devices, device, link); 2815 spdk_rdma_free_mem_map(&device->map); 2816 if (device->pd) { 2817 if (!g_nvmf_hooks.get_ibv_pd) { 2818 ibv_dealloc_pd(device->pd); 2819 } 2820 } 2821 SPDK_DEBUGLOG(rdma, "IB device [%p] is destroyed.\n", device); 2822 free(device); 2823 } 2824 2825 static void 2826 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w) 2827 { 2828 struct spdk_nvmf_rdma_transport *rtransport; 2829 assert(w != NULL); 2830 2831 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2832 spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth); 2833 spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq); 2834 if (rtransport->rdma_opts.no_srq == true) { 2835 spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe); 2836 } 2837 spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog); 2838 spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching); 2839 } 2840 2841 static int 2842 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport, 2843 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg) 2844 { 2845 struct spdk_nvmf_rdma_transport *rtransport; 2846 struct spdk_nvmf_rdma_port *port, *port_tmp; 2847 struct spdk_nvmf_rdma_device *device, *device_tmp; 2848 2849 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2850 2851 TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, port_tmp) { 2852 TAILQ_REMOVE(&rtransport->retry_ports, port, link); 2853 free(port); 2854 } 2855 2856 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) { 2857 TAILQ_REMOVE(&rtransport->ports, port, link); 2858 rdma_destroy_id(port->id); 2859 free(port); 2860 } 2861 2862 free_poll_fds(rtransport); 2863 2864 if (rtransport->event_channel != NULL) { 2865 rdma_destroy_event_channel(rtransport->event_channel); 2866 } 2867 2868 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) { 2869 destroy_ib_device(rtransport, device); 2870 } 2871 2872 if (rtransport->data_wr_pool != NULL) { 2873 if (spdk_mempool_count(rtransport->data_wr_pool) != 2874 (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) { 2875 SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n", 2876 spdk_mempool_count(rtransport->data_wr_pool), 2877 transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES); 2878 } 2879 } 2880 2881 spdk_mempool_free(rtransport->data_wr_pool); 2882 2883 spdk_poller_unregister(&rtransport->accept_poller); 2884 free(rtransport); 2885 2886 if (cb_fn) { 2887 cb_fn(cb_arg); 2888 } 2889 return 0; 2890 } 2891 2892 static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 2893 struct spdk_nvme_transport_id *trid, 2894 bool peer); 2895 2896 static bool nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport); 2897 2898 static int 2899 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid, 2900 struct spdk_nvmf_listen_opts *listen_opts) 2901 { 2902 struct spdk_nvmf_rdma_transport *rtransport; 2903 struct spdk_nvmf_rdma_device *device; 2904 struct spdk_nvmf_rdma_port *port, *tmp_port; 2905 struct addrinfo *res; 2906 struct addrinfo hints; 2907 int family; 2908 int rc; 2909 bool is_retry = false; 2910 2911 if (!strlen(trid->trsvcid)) { 2912 SPDK_ERRLOG("Service id is required\n"); 2913 return -EINVAL; 2914 } 2915 2916 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 2917 assert(rtransport->event_channel != NULL); 2918 2919 port = calloc(1, sizeof(*port)); 2920 if (!port) { 2921 SPDK_ERRLOG("Port allocation failed\n"); 2922 return -ENOMEM; 2923 } 2924 2925 port->trid = trid; 2926 2927 switch (trid->adrfam) { 2928 case SPDK_NVMF_ADRFAM_IPV4: 2929 family = AF_INET; 2930 break; 2931 case SPDK_NVMF_ADRFAM_IPV6: 2932 family = AF_INET6; 2933 break; 2934 default: 2935 SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam); 2936 free(port); 2937 return -EINVAL; 2938 } 2939 2940 memset(&hints, 0, sizeof(hints)); 2941 hints.ai_family = family; 2942 hints.ai_flags = AI_NUMERICSERV; 2943 hints.ai_socktype = SOCK_STREAM; 2944 hints.ai_protocol = 0; 2945 2946 rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res); 2947 if (rc) { 2948 SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc); 2949 free(port); 2950 return -(abs(rc)); 2951 } 2952 2953 rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP); 2954 if (rc < 0) { 2955 SPDK_ERRLOG("rdma_create_id() failed\n"); 2956 freeaddrinfo(res); 2957 free(port); 2958 return rc; 2959 } 2960 2961 rc = rdma_bind_addr(port->id, res->ai_addr); 2962 freeaddrinfo(res); 2963 2964 if (rc < 0) { 2965 TAILQ_FOREACH(tmp_port, &rtransport->retry_ports, link) { 2966 if (spdk_nvme_transport_id_compare(tmp_port->trid, trid) == 0) { 2967 is_retry = true; 2968 break; 2969 } 2970 } 2971 if (!is_retry) { 2972 SPDK_ERRLOG("rdma_bind_addr() failed\n"); 2973 } 2974 rdma_destroy_id(port->id); 2975 free(port); 2976 return rc; 2977 } 2978 2979 if (!port->id->verbs) { 2980 SPDK_ERRLOG("ibv_context is null\n"); 2981 rdma_destroy_id(port->id); 2982 free(port); 2983 return -1; 2984 } 2985 2986 rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog); 2987 if (rc < 0) { 2988 SPDK_ERRLOG("rdma_listen() failed\n"); 2989 rdma_destroy_id(port->id); 2990 free(port); 2991 return rc; 2992 } 2993 2994 TAILQ_FOREACH(device, &rtransport->devices, link) { 2995 if (device->context == port->id->verbs && device->is_ready) { 2996 port->device = device; 2997 break; 2998 } 2999 } 3000 if (!port->device) { 3001 SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n", 3002 port->id->verbs); 3003 rdma_destroy_id(port->id); 3004 free(port); 3005 nvmf_rdma_rescan_devices(rtransport); 3006 return -EINVAL; 3007 } 3008 3009 SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n", 3010 trid->traddr, trid->trsvcid); 3011 3012 TAILQ_INSERT_TAIL(&rtransport->ports, port, link); 3013 return 0; 3014 } 3015 3016 static void 3017 nvmf_rdma_stop_listen_ex(struct spdk_nvmf_transport *transport, 3018 const struct spdk_nvme_transport_id *trid, bool need_retry) 3019 { 3020 struct spdk_nvmf_rdma_transport *rtransport; 3021 struct spdk_nvmf_rdma_port *port, *tmp; 3022 3023 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3024 3025 if (!need_retry) { 3026 TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp) { 3027 if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) { 3028 TAILQ_REMOVE(&rtransport->retry_ports, port, link); 3029 free(port); 3030 } 3031 } 3032 } 3033 3034 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) { 3035 if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) { 3036 SPDK_DEBUGLOG(rdma, "Port %s:%s removed. need retry: %d\n", 3037 port->trid->traddr, port->trid->trsvcid, need_retry); 3038 TAILQ_REMOVE(&rtransport->ports, port, link); 3039 rdma_destroy_id(port->id); 3040 port->id = NULL; 3041 port->device = NULL; 3042 if (need_retry) { 3043 TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link); 3044 } else { 3045 free(port); 3046 } 3047 break; 3048 } 3049 } 3050 } 3051 3052 static void 3053 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport, 3054 const struct spdk_nvme_transport_id *trid) 3055 { 3056 nvmf_rdma_stop_listen_ex(transport, trid, false); 3057 } 3058 3059 static void _nvmf_rdma_register_poller_in_group(void *c); 3060 static void _nvmf_rdma_remove_poller_in_group(void *c); 3061 3062 static bool 3063 nvmf_rdma_all_pollers_management_done(void *c) 3064 { 3065 struct poller_manage_ctx *ctx = c; 3066 int counter; 3067 3068 counter = __atomic_sub_fetch(ctx->inflight_op_counter, 1, __ATOMIC_SEQ_CST); 3069 SPDK_DEBUGLOG(rdma, "nvmf_rdma_all_pollers_management_done called. counter: %d, poller: %p\n", 3070 counter, ctx->rpoller); 3071 3072 if (counter == 0) { 3073 free((void *)ctx->inflight_op_counter); 3074 } 3075 free(ctx); 3076 3077 return counter == 0; 3078 } 3079 3080 static int 3081 nvmf_rdma_manage_poller(struct spdk_nvmf_rdma_transport *rtransport, 3082 struct spdk_nvmf_rdma_device *device, bool *has_inflight, bool is_add) 3083 { 3084 struct spdk_nvmf_rdma_poll_group *rgroup; 3085 struct spdk_nvmf_rdma_poller *rpoller; 3086 struct spdk_nvmf_poll_group *poll_group; 3087 struct poller_manage_ctx *ctx; 3088 bool found; 3089 int *inflight_counter; 3090 spdk_msg_fn do_fn; 3091 3092 *has_inflight = false; 3093 do_fn = is_add ? _nvmf_rdma_register_poller_in_group : _nvmf_rdma_remove_poller_in_group; 3094 inflight_counter = calloc(1, sizeof(int)); 3095 if (!inflight_counter) { 3096 SPDK_ERRLOG("Failed to allocate inflight counter when removing pollers\n"); 3097 return -ENOMEM; 3098 } 3099 3100 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 3101 (*inflight_counter)++; 3102 } 3103 3104 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 3105 found = false; 3106 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 3107 if (rpoller->device == device) { 3108 found = true; 3109 break; 3110 } 3111 } 3112 if (found == is_add) { 3113 __atomic_fetch_sub(inflight_counter, 1, __ATOMIC_SEQ_CST); 3114 continue; 3115 } 3116 3117 ctx = calloc(1, sizeof(struct poller_manage_ctx)); 3118 if (!ctx) { 3119 SPDK_ERRLOG("Failed to allocate poller_manage_ctx when removing pollers\n"); 3120 if (!*has_inflight) { 3121 free(inflight_counter); 3122 } 3123 return -ENOMEM; 3124 } 3125 3126 ctx->rtransport = rtransport; 3127 ctx->rgroup = rgroup; 3128 ctx->rpoller = rpoller; 3129 ctx->device = device; 3130 ctx->thread = spdk_get_thread(); 3131 ctx->inflight_op_counter = inflight_counter; 3132 *has_inflight = true; 3133 3134 poll_group = rgroup->group.group; 3135 if (poll_group->thread != spdk_get_thread()) { 3136 spdk_thread_send_msg(poll_group->thread, do_fn, ctx); 3137 } else { 3138 do_fn(ctx); 3139 } 3140 } 3141 3142 if (!*has_inflight) { 3143 free(inflight_counter); 3144 } 3145 3146 return 0; 3147 } 3148 3149 static void nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport, 3150 struct spdk_nvmf_rdma_device *device); 3151 3152 static struct spdk_nvmf_rdma_device * 3153 nvmf_rdma_find_ib_device(struct spdk_nvmf_rdma_transport *rtransport, 3154 struct ibv_context *context) 3155 { 3156 struct spdk_nvmf_rdma_device *device, *tmp_device; 3157 3158 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp_device) { 3159 if (device->need_destroy) { 3160 continue; 3161 } 3162 3163 if (strcmp(device->context->device->dev_name, context->device->dev_name) == 0) { 3164 return device; 3165 } 3166 } 3167 3168 return NULL; 3169 } 3170 3171 static bool 3172 nvmf_rdma_check_devices_context(struct spdk_nvmf_rdma_transport *rtransport, 3173 struct ibv_context *context) 3174 { 3175 struct spdk_nvmf_rdma_device *old_device, *new_device; 3176 int rc = 0; 3177 bool has_inflight; 3178 3179 old_device = nvmf_rdma_find_ib_device(rtransport, context); 3180 3181 if (old_device) { 3182 if (old_device->context != context && !old_device->need_destroy && old_device->is_ready) { 3183 /* context may not have time to be cleaned when rescan. exactly one context 3184 * is valid for a device so this context must be invalid and just remove it. */ 3185 SPDK_WARNLOG("Device %p has a invalid context %p\n", old_device, old_device->context); 3186 old_device->need_destroy = true; 3187 nvmf_rdma_handle_device_removal(rtransport, old_device); 3188 } 3189 return false; 3190 } 3191 3192 rc = create_ib_device(rtransport, context, &new_device); 3193 /* TODO: update transport opts. */ 3194 if (rc < 0) { 3195 SPDK_ERRLOG("Failed to create ib device for context: %s(%p)\n", 3196 ibv_get_device_name(context->device), context); 3197 return false; 3198 } 3199 3200 rc = nvmf_rdma_manage_poller(rtransport, new_device, &has_inflight, true); 3201 if (rc < 0) { 3202 SPDK_ERRLOG("Failed to add poller for device context: %s(%p)\n", 3203 ibv_get_device_name(context->device), context); 3204 return false; 3205 } 3206 3207 if (has_inflight) { 3208 new_device->is_ready = true; 3209 } 3210 3211 return true; 3212 } 3213 3214 static bool 3215 nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport) 3216 { 3217 struct spdk_nvmf_rdma_device *device; 3218 struct ibv_device **ibv_device_list = NULL; 3219 struct ibv_context **contexts = NULL; 3220 int i = 0; 3221 int num_dev = 0; 3222 bool new_create = false, has_new_device = false; 3223 struct ibv_context *tmp_verbs = NULL; 3224 3225 /* do not rescan when any device is destroying, or context may be freed when 3226 * regenerating the poll fds. 3227 */ 3228 TAILQ_FOREACH(device, &rtransport->devices, link) { 3229 if (device->need_destroy) { 3230 return false; 3231 } 3232 } 3233 3234 ibv_device_list = ibv_get_device_list(&num_dev); 3235 3236 /* There is a bug in librdmacm. If verbs init failed in rdma_get_devices, it'll be 3237 * marked as dead verbs and never be init again. So we need to make sure the 3238 * verbs is available before we call rdma_get_devices. */ 3239 if (num_dev >= 0) { 3240 for (i = 0; i < num_dev; i++) { 3241 tmp_verbs = ibv_open_device(ibv_device_list[i]); 3242 if (!tmp_verbs) { 3243 SPDK_WARNLOG("Failed to init ibv device %p, err %d. Skip rescan.\n", ibv_device_list[i], errno); 3244 break; 3245 } 3246 if (nvmf_rdma_find_ib_device(rtransport, tmp_verbs) == NULL) { 3247 SPDK_DEBUGLOG(rdma, "Find new verbs init ibv device %p(%s).\n", ibv_device_list[i], 3248 tmp_verbs->device->dev_name); 3249 has_new_device = true; 3250 } 3251 ibv_close_device(tmp_verbs); 3252 } 3253 ibv_free_device_list(ibv_device_list); 3254 if (!tmp_verbs || !has_new_device) { 3255 return false; 3256 } 3257 } 3258 3259 contexts = rdma_get_devices(NULL); 3260 3261 for (i = 0; contexts && contexts[i] != NULL; i++) { 3262 new_create |= nvmf_rdma_check_devices_context(rtransport, contexts[i]); 3263 } 3264 3265 if (new_create) { 3266 free_poll_fds(rtransport); 3267 generate_poll_fds(rtransport); 3268 } 3269 3270 if (contexts) { 3271 rdma_free_devices(contexts); 3272 } 3273 3274 return new_create; 3275 } 3276 3277 static bool 3278 nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport) 3279 { 3280 struct spdk_nvmf_rdma_port *port, *tmp_port; 3281 int rc = 0; 3282 bool new_create = false; 3283 3284 if (TAILQ_EMPTY(&rtransport->retry_ports)) { 3285 return false; 3286 } 3287 3288 new_create = nvmf_rdma_rescan_devices(rtransport); 3289 3290 TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp_port) { 3291 rc = nvmf_rdma_listen(&rtransport->transport, port->trid, NULL); 3292 3293 TAILQ_REMOVE(&rtransport->retry_ports, port, link); 3294 if (rc) { 3295 if (new_create) { 3296 SPDK_ERRLOG("Found new IB device but port %s:%s is still failed(%d) to listen.\n", 3297 port->trid->traddr, port->trid->trsvcid, rc); 3298 } 3299 TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link); 3300 break; 3301 } else { 3302 SPDK_NOTICELOG("Port %s:%s come back\n", port->trid->traddr, port->trid->trsvcid); 3303 free(port); 3304 } 3305 } 3306 3307 return true; 3308 } 3309 3310 static void 3311 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport, 3312 struct spdk_nvmf_rdma_qpair *rqpair, bool drain) 3313 { 3314 struct spdk_nvmf_request *req, *tmp; 3315 struct spdk_nvmf_rdma_request *rdma_req, *req_tmp; 3316 struct spdk_nvmf_rdma_resources *resources; 3317 3318 /* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */ 3319 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) { 3320 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 3321 break; 3322 } 3323 } 3324 3325 /* Then RDMA writes since reads have stronger restrictions than writes */ 3326 STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) { 3327 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 3328 break; 3329 } 3330 } 3331 3332 /* Then we handle request waiting on memory buffers. */ 3333 STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) { 3334 rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 3335 if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { 3336 break; 3337 } 3338 } 3339 3340 resources = rqpair->resources; 3341 while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) { 3342 rdma_req = STAILQ_FIRST(&resources->free_queue); 3343 STAILQ_REMOVE_HEAD(&resources->free_queue, state_link); 3344 rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue); 3345 STAILQ_REMOVE_HEAD(&resources->incoming_queue, link); 3346 3347 if (rqpair->srq != NULL) { 3348 rdma_req->req.qpair = &rdma_req->recv->qpair->qpair; 3349 rdma_req->recv->qpair->qd++; 3350 } else { 3351 rqpair->qd++; 3352 } 3353 3354 rdma_req->receive_tsc = rdma_req->recv->receive_tsc; 3355 rdma_req->state = RDMA_REQUEST_STATE_NEW; 3356 if (nvmf_rdma_request_process(rtransport, rdma_req) == false) { 3357 break; 3358 } 3359 } 3360 if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) { 3361 rqpair->poller->stat.pending_free_request++; 3362 } 3363 } 3364 3365 static inline bool 3366 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device) 3367 { 3368 /* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */ 3369 return nvmf_rdma_is_rxe_device(device) || 3370 device->context->device->transport_type == IBV_TRANSPORT_IWARP; 3371 } 3372 3373 static void 3374 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair) 3375 { 3376 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, 3377 struct spdk_nvmf_rdma_transport, transport); 3378 3379 nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); 3380 3381 /* nvmf_rdma_close_qpair is not called */ 3382 if (!rqpair->to_close) { 3383 return; 3384 } 3385 3386 /* device is already destroyed and we should force destroy this qpair. */ 3387 if (rqpair->poller && rqpair->poller->need_destroy) { 3388 nvmf_rdma_qpair_destroy(rqpair); 3389 return; 3390 } 3391 3392 /* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */ 3393 if (rqpair->current_send_depth != 0) { 3394 return; 3395 } 3396 3397 if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) { 3398 return; 3399 } 3400 3401 if (rqpair->srq != NULL && rqpair->last_wqe_reached == false && 3402 !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) { 3403 return; 3404 } 3405 3406 assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR); 3407 3408 nvmf_rdma_qpair_destroy(rqpair); 3409 } 3410 3411 static int 3412 nvmf_rdma_disconnect(struct rdma_cm_event *evt, bool *event_acked) 3413 { 3414 struct spdk_nvmf_qpair *qpair; 3415 struct spdk_nvmf_rdma_qpair *rqpair; 3416 3417 if (evt->id == NULL) { 3418 SPDK_ERRLOG("disconnect request: missing cm_id\n"); 3419 return -1; 3420 } 3421 3422 qpair = evt->id->context; 3423 if (qpair == NULL) { 3424 SPDK_ERRLOG("disconnect request: no active connection\n"); 3425 return -1; 3426 } 3427 3428 rdma_ack_cm_event(evt); 3429 *event_acked = true; 3430 3431 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 3432 3433 spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair); 3434 3435 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3436 3437 return 0; 3438 } 3439 3440 #ifdef DEBUG 3441 static const char *CM_EVENT_STR[] = { 3442 "RDMA_CM_EVENT_ADDR_RESOLVED", 3443 "RDMA_CM_EVENT_ADDR_ERROR", 3444 "RDMA_CM_EVENT_ROUTE_RESOLVED", 3445 "RDMA_CM_EVENT_ROUTE_ERROR", 3446 "RDMA_CM_EVENT_CONNECT_REQUEST", 3447 "RDMA_CM_EVENT_CONNECT_RESPONSE", 3448 "RDMA_CM_EVENT_CONNECT_ERROR", 3449 "RDMA_CM_EVENT_UNREACHABLE", 3450 "RDMA_CM_EVENT_REJECTED", 3451 "RDMA_CM_EVENT_ESTABLISHED", 3452 "RDMA_CM_EVENT_DISCONNECTED", 3453 "RDMA_CM_EVENT_DEVICE_REMOVAL", 3454 "RDMA_CM_EVENT_MULTICAST_JOIN", 3455 "RDMA_CM_EVENT_MULTICAST_ERROR", 3456 "RDMA_CM_EVENT_ADDR_CHANGE", 3457 "RDMA_CM_EVENT_TIMEWAIT_EXIT" 3458 }; 3459 #endif /* DEBUG */ 3460 3461 static void 3462 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport, 3463 struct spdk_nvmf_rdma_port *port) 3464 { 3465 struct spdk_nvmf_rdma_poll_group *rgroup; 3466 struct spdk_nvmf_rdma_poller *rpoller; 3467 struct spdk_nvmf_rdma_qpair *rqpair; 3468 3469 TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { 3470 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 3471 RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) { 3472 if (rqpair->listen_id == port->id) { 3473 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3474 } 3475 } 3476 } 3477 } 3478 } 3479 3480 static bool 3481 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport, 3482 struct rdma_cm_event *event) 3483 { 3484 const struct spdk_nvme_transport_id *trid; 3485 struct spdk_nvmf_rdma_port *port; 3486 struct spdk_nvmf_rdma_transport *rtransport; 3487 bool event_acked = false; 3488 3489 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3490 TAILQ_FOREACH(port, &rtransport->ports, link) { 3491 if (port->id == event->id) { 3492 SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid); 3493 rdma_ack_cm_event(event); 3494 event_acked = true; 3495 trid = port->trid; 3496 break; 3497 } 3498 } 3499 3500 if (event_acked) { 3501 nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); 3502 3503 nvmf_rdma_stop_listen(transport, trid); 3504 nvmf_rdma_listen(transport, trid, NULL); 3505 } 3506 3507 return event_acked; 3508 } 3509 3510 static void 3511 nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport, 3512 struct spdk_nvmf_rdma_device *device) 3513 { 3514 struct spdk_nvmf_rdma_port *port, *port_tmp; 3515 int rc; 3516 bool has_inflight; 3517 3518 rc = nvmf_rdma_manage_poller(rtransport, device, &has_inflight, false); 3519 if (rc) { 3520 SPDK_ERRLOG("Failed to handle device removal, rc %d\n", rc); 3521 return; 3522 } 3523 3524 if (!has_inflight) { 3525 /* no pollers, destroy the device */ 3526 device->ready_to_destroy = true; 3527 spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_remove_destroyed_device, rtransport); 3528 } 3529 3530 TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) { 3531 if (port->device == device) { 3532 SPDK_NOTICELOG("Port %s:%s on device %s is being removed.\n", 3533 port->trid->traddr, 3534 port->trid->trsvcid, 3535 ibv_get_device_name(port->device->context->device)); 3536 3537 /* keep NVMF listener and only destroy structures of the 3538 * RDMA transport. when the device comes back we can retry listening 3539 * and the application's workflow will not be interrupted. 3540 */ 3541 nvmf_rdma_stop_listen_ex(&rtransport->transport, port->trid, true); 3542 } 3543 } 3544 } 3545 3546 static void 3547 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport, 3548 struct rdma_cm_event *event) 3549 { 3550 struct spdk_nvmf_rdma_port *port, *tmp_port; 3551 struct spdk_nvmf_rdma_transport *rtransport; 3552 3553 port = event->id->context; 3554 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3555 3556 rdma_ack_cm_event(event); 3557 3558 /* if device removal happens during ctrl qpair disconnecting, it's possible that we receive 3559 * an DEVICE_REMOVAL event on qpair but the id->qp is just NULL. So we should make sure that 3560 * we are handling a port event here. 3561 */ 3562 TAILQ_FOREACH(tmp_port, &rtransport->ports, link) { 3563 if (port == tmp_port && port->device && !port->device->need_destroy) { 3564 port->device->need_destroy = true; 3565 nvmf_rdma_handle_device_removal(rtransport, port->device); 3566 } 3567 } 3568 } 3569 3570 static void 3571 nvmf_process_cm_event(struct spdk_nvmf_transport *transport) 3572 { 3573 struct spdk_nvmf_rdma_transport *rtransport; 3574 struct rdma_cm_event *event; 3575 int rc; 3576 bool event_acked; 3577 3578 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3579 3580 if (rtransport->event_channel == NULL) { 3581 return; 3582 } 3583 3584 while (1) { 3585 event_acked = false; 3586 rc = rdma_get_cm_event(rtransport->event_channel, &event); 3587 if (rc) { 3588 if (errno != EAGAIN && errno != EWOULDBLOCK) { 3589 SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno)); 3590 } 3591 break; 3592 } 3593 3594 SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]); 3595 3596 spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event); 3597 3598 switch (event->event) { 3599 case RDMA_CM_EVENT_ADDR_RESOLVED: 3600 case RDMA_CM_EVENT_ADDR_ERROR: 3601 case RDMA_CM_EVENT_ROUTE_RESOLVED: 3602 case RDMA_CM_EVENT_ROUTE_ERROR: 3603 /* No action required. The target never attempts to resolve routes. */ 3604 break; 3605 case RDMA_CM_EVENT_CONNECT_REQUEST: 3606 rc = nvmf_rdma_connect(transport, event); 3607 if (rc < 0) { 3608 SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc); 3609 break; 3610 } 3611 break; 3612 case RDMA_CM_EVENT_CONNECT_RESPONSE: 3613 /* The target never initiates a new connection. So this will not occur. */ 3614 break; 3615 case RDMA_CM_EVENT_CONNECT_ERROR: 3616 /* Can this happen? The docs say it can, but not sure what causes it. */ 3617 break; 3618 case RDMA_CM_EVENT_UNREACHABLE: 3619 case RDMA_CM_EVENT_REJECTED: 3620 /* These only occur on the client side. */ 3621 break; 3622 case RDMA_CM_EVENT_ESTABLISHED: 3623 /* TODO: Should we be waiting for this event anywhere? */ 3624 break; 3625 case RDMA_CM_EVENT_DISCONNECTED: 3626 rc = nvmf_rdma_disconnect(event, &event_acked); 3627 if (rc < 0) { 3628 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3629 break; 3630 } 3631 break; 3632 case RDMA_CM_EVENT_DEVICE_REMOVAL: 3633 /* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL 3634 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s. 3635 * Once these events are sent to SPDK, we should release all IB resources and 3636 * don't make attempts to call any ibv_query/modify/create functions. We can only call 3637 * ibv_destroy* functions to release user space memory allocated by IB. All kernel 3638 * resources are already cleaned. */ 3639 if (event->id->qp) { 3640 /* If rdma_cm event has a valid `qp` pointer then the event refers to the 3641 * corresponding qpair. Otherwise the event refers to a listening device. */ 3642 rc = nvmf_rdma_disconnect(event, &event_acked); 3643 if (rc < 0) { 3644 SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); 3645 break; 3646 } 3647 } else { 3648 nvmf_rdma_handle_cm_event_port_removal(transport, event); 3649 event_acked = true; 3650 } 3651 break; 3652 case RDMA_CM_EVENT_MULTICAST_JOIN: 3653 case RDMA_CM_EVENT_MULTICAST_ERROR: 3654 /* Multicast is not used */ 3655 break; 3656 case RDMA_CM_EVENT_ADDR_CHANGE: 3657 event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event); 3658 break; 3659 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 3660 /* For now, do nothing. The target never re-uses queue pairs. */ 3661 break; 3662 default: 3663 SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); 3664 break; 3665 } 3666 if (!event_acked) { 3667 rdma_ack_cm_event(event); 3668 } 3669 } 3670 } 3671 3672 static void 3673 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair) 3674 { 3675 rqpair->last_wqe_reached = true; 3676 nvmf_rdma_destroy_drained_qpair(rqpair); 3677 } 3678 3679 static void 3680 nvmf_rdma_qpair_process_ibv_event(void *ctx) 3681 { 3682 struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx; 3683 3684 if (event_ctx->rqpair) { 3685 STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3686 if (event_ctx->cb_fn) { 3687 event_ctx->cb_fn(event_ctx->rqpair); 3688 } 3689 } 3690 free(event_ctx); 3691 } 3692 3693 static int 3694 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair, 3695 spdk_nvmf_rdma_qpair_ibv_event fn) 3696 { 3697 struct spdk_nvmf_rdma_ibv_event_ctx *ctx; 3698 struct spdk_thread *thr = NULL; 3699 int rc; 3700 3701 if (rqpair->qpair.group) { 3702 thr = rqpair->qpair.group->thread; 3703 } else if (rqpair->destruct_channel) { 3704 thr = spdk_io_channel_get_thread(rqpair->destruct_channel); 3705 } 3706 3707 if (!thr) { 3708 SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair); 3709 return -EINVAL; 3710 } 3711 3712 ctx = calloc(1, sizeof(*ctx)); 3713 if (!ctx) { 3714 return -ENOMEM; 3715 } 3716 3717 ctx->rqpair = rqpair; 3718 ctx->cb_fn = fn; 3719 STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link); 3720 3721 rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx); 3722 if (rc) { 3723 STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); 3724 free(ctx); 3725 } 3726 3727 return rc; 3728 } 3729 3730 static int 3731 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device) 3732 { 3733 int rc; 3734 struct spdk_nvmf_rdma_qpair *rqpair = NULL; 3735 struct ibv_async_event event; 3736 3737 rc = ibv_get_async_event(device->context, &event); 3738 3739 if (rc) { 3740 /* In non-blocking mode -1 means there are no events available */ 3741 return rc; 3742 } 3743 3744 switch (event.event_type) { 3745 case IBV_EVENT_QP_FATAL: 3746 case IBV_EVENT_QP_LAST_WQE_REACHED: 3747 case IBV_EVENT_SQ_DRAINED: 3748 case IBV_EVENT_QP_REQ_ERR: 3749 case IBV_EVENT_QP_ACCESS_ERR: 3750 case IBV_EVENT_COMM_EST: 3751 case IBV_EVENT_PATH_MIG: 3752 case IBV_EVENT_PATH_MIG_ERR: 3753 rqpair = event.element.qp->qp_context; 3754 if (!rqpair) { 3755 /* Any QP event for NVMe-RDMA initiator may be returned. */ 3756 SPDK_NOTICELOG("Async QP event for unknown QP: %s\n", 3757 ibv_event_type_str(event.event_type)); 3758 break; 3759 } 3760 3761 switch (event.event_type) { 3762 case IBV_EVENT_QP_FATAL: 3763 SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair); 3764 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3765 (uintptr_t)rqpair, event.event_type); 3766 nvmf_rdma_update_ibv_state(rqpair); 3767 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3768 break; 3769 case IBV_EVENT_QP_LAST_WQE_REACHED: 3770 /* This event only occurs for shared receive queues. */ 3771 SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair); 3772 rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached); 3773 if (rc) { 3774 SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc); 3775 rqpair->last_wqe_reached = true; 3776 } 3777 break; 3778 case IBV_EVENT_SQ_DRAINED: 3779 /* This event occurs frequently in both error and non-error states. 3780 * Check if the qpair is in an error state before sending a message. */ 3781 SPDK_DEBUGLOG(rdma, "Last sq drained event received for rqpair %p\n", rqpair); 3782 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3783 (uintptr_t)rqpair, event.event_type); 3784 if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) { 3785 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 3786 } 3787 break; 3788 case IBV_EVENT_QP_REQ_ERR: 3789 case IBV_EVENT_QP_ACCESS_ERR: 3790 case IBV_EVENT_COMM_EST: 3791 case IBV_EVENT_PATH_MIG: 3792 case IBV_EVENT_PATH_MIG_ERR: 3793 SPDK_NOTICELOG("Async QP event: %s\n", 3794 ibv_event_type_str(event.event_type)); 3795 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 3796 (uintptr_t)rqpair, event.event_type); 3797 nvmf_rdma_update_ibv_state(rqpair); 3798 break; 3799 default: 3800 break; 3801 } 3802 break; 3803 case IBV_EVENT_DEVICE_FATAL: 3804 SPDK_ERRLOG("Device Fatal event[%s] received on %s. device: %p\n", 3805 ibv_event_type_str(event.event_type), ibv_get_device_name(device->context->device), device); 3806 device->need_destroy = true; 3807 break; 3808 case IBV_EVENT_CQ_ERR: 3809 case IBV_EVENT_PORT_ACTIVE: 3810 case IBV_EVENT_PORT_ERR: 3811 case IBV_EVENT_LID_CHANGE: 3812 case IBV_EVENT_PKEY_CHANGE: 3813 case IBV_EVENT_SM_CHANGE: 3814 case IBV_EVENT_SRQ_ERR: 3815 case IBV_EVENT_SRQ_LIMIT_REACHED: 3816 case IBV_EVENT_CLIENT_REREGISTER: 3817 case IBV_EVENT_GID_CHANGE: 3818 default: 3819 SPDK_NOTICELOG("Async event: %s\n", 3820 ibv_event_type_str(event.event_type)); 3821 spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type); 3822 break; 3823 } 3824 ibv_ack_async_event(&event); 3825 3826 return 0; 3827 } 3828 3829 static void 3830 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events) 3831 { 3832 int rc = 0; 3833 uint32_t i = 0; 3834 3835 for (i = 0; i < max_events; i++) { 3836 rc = nvmf_process_ib_event(device); 3837 if (rc) { 3838 break; 3839 } 3840 } 3841 3842 SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i); 3843 } 3844 3845 static int 3846 nvmf_rdma_accept(void *ctx) 3847 { 3848 int nfds, i = 0; 3849 struct spdk_nvmf_transport *transport = ctx; 3850 struct spdk_nvmf_rdma_transport *rtransport; 3851 struct spdk_nvmf_rdma_device *device, *tmp; 3852 uint32_t count; 3853 short revents; 3854 bool do_retry; 3855 3856 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 3857 do_retry = nvmf_rdma_retry_listen_port(rtransport); 3858 3859 count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0); 3860 3861 if (nfds <= 0) { 3862 return do_retry ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE; 3863 } 3864 3865 /* The first poll descriptor is RDMA CM event */ 3866 if (rtransport->poll_fds[i++].revents & POLLIN) { 3867 nvmf_process_cm_event(transport); 3868 nfds--; 3869 } 3870 3871 if (nfds == 0) { 3872 return SPDK_POLLER_BUSY; 3873 } 3874 3875 /* Second and subsequent poll descriptors are IB async events */ 3876 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { 3877 revents = rtransport->poll_fds[i++].revents; 3878 if (revents & POLLIN) { 3879 if (spdk_likely(!device->need_destroy)) { 3880 nvmf_process_ib_events(device, 32); 3881 if (spdk_unlikely(device->need_destroy)) { 3882 nvmf_rdma_handle_device_removal(rtransport, device); 3883 } 3884 } 3885 nfds--; 3886 } else if (revents & POLLNVAL || revents & POLLHUP) { 3887 SPDK_ERRLOG("Receive unknown revent %x on device %p\n", (int)revents, device); 3888 nfds--; 3889 } 3890 } 3891 /* check all flagged fd's have been served */ 3892 assert(nfds == 0); 3893 3894 return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE; 3895 } 3896 3897 static void 3898 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem, 3899 struct spdk_nvmf_ctrlr_data *cdata) 3900 { 3901 cdata->nvmf_specific.msdbd = NVMF_DEFAULT_MSDBD; 3902 3903 /* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled 3904 since in-capsule data only works with NVME drives that support SGL memory layout */ 3905 if (transport->opts.dif_insert_or_strip) { 3906 cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16; 3907 } 3908 3909 if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) { 3910 SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule" 3911 " data is greater than 4KiB.\n"); 3912 SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux " 3913 "kernel between versions 5.4 and 5.12 data corruption may occur for " 3914 "writes that are not a multiple of 4KiB in size.\n"); 3915 } 3916 } 3917 3918 static void 3919 nvmf_rdma_discover(struct spdk_nvmf_transport *transport, 3920 struct spdk_nvme_transport_id *trid, 3921 struct spdk_nvmf_discovery_log_page_entry *entry) 3922 { 3923 entry->trtype = SPDK_NVMF_TRTYPE_RDMA; 3924 entry->adrfam = trid->adrfam; 3925 entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED; 3926 3927 spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' '); 3928 spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' '); 3929 3930 entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED; 3931 entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE; 3932 entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM; 3933 } 3934 3935 static int 3936 nvmf_rdma_poller_create(struct spdk_nvmf_rdma_transport *rtransport, 3937 struct spdk_nvmf_rdma_poll_group *rgroup, struct spdk_nvmf_rdma_device *device, 3938 struct spdk_nvmf_rdma_poller **out_poller) 3939 { 3940 struct spdk_nvmf_rdma_poller *poller; 3941 struct spdk_rdma_srq_init_attr srq_init_attr; 3942 struct spdk_nvmf_rdma_resource_opts opts; 3943 int num_cqe; 3944 3945 poller = calloc(1, sizeof(*poller)); 3946 if (!poller) { 3947 SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n"); 3948 return -1; 3949 } 3950 3951 poller->device = device; 3952 poller->group = rgroup; 3953 *out_poller = poller; 3954 3955 RB_INIT(&poller->qpairs); 3956 STAILQ_INIT(&poller->qpairs_pending_send); 3957 STAILQ_INIT(&poller->qpairs_pending_recv); 3958 3959 TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link); 3960 SPDK_DEBUGLOG(rdma, "Create poller %p on device %p in poll group %p.\n", poller, device, rgroup); 3961 if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) { 3962 if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) { 3963 SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n", 3964 rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr); 3965 } 3966 poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr); 3967 3968 device->num_srq++; 3969 memset(&srq_init_attr, 0, sizeof(srq_init_attr)); 3970 srq_init_attr.pd = device->pd; 3971 srq_init_attr.stats = &poller->stat.qp_stats.recv; 3972 srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth; 3973 srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE); 3974 poller->srq = spdk_rdma_srq_create(&srq_init_attr); 3975 if (!poller->srq) { 3976 SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno); 3977 return -1; 3978 } 3979 3980 opts.qp = poller->srq; 3981 opts.map = device->map; 3982 opts.qpair = NULL; 3983 opts.shared = true; 3984 opts.max_queue_depth = poller->max_srq_depth; 3985 opts.in_capsule_data_size = rtransport->transport.opts.in_capsule_data_size; 3986 3987 poller->resources = nvmf_rdma_resources_create(&opts); 3988 if (!poller->resources) { 3989 SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n"); 3990 return -1; 3991 } 3992 } 3993 3994 /* 3995 * When using an srq, we can limit the completion queue at startup. 3996 * The following formula represents the calculation: 3997 * num_cqe = num_recv + num_data_wr + num_send_wr. 3998 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth 3999 */ 4000 if (poller->srq) { 4001 num_cqe = poller->max_srq_depth * 3; 4002 } else { 4003 num_cqe = rtransport->rdma_opts.num_cqe; 4004 } 4005 4006 poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0); 4007 if (!poller->cq) { 4008 SPDK_ERRLOG("Unable to create completion queue\n"); 4009 return -1; 4010 } 4011 poller->num_cqe = num_cqe; 4012 return 0; 4013 } 4014 4015 static void 4016 _nvmf_rdma_register_poller_in_group(void *c) 4017 { 4018 struct spdk_nvmf_rdma_poller *poller; 4019 struct poller_manage_ctx *ctx = c; 4020 struct spdk_nvmf_rdma_device *device; 4021 int rc; 4022 4023 rc = nvmf_rdma_poller_create(ctx->rtransport, ctx->rgroup, ctx->device, &poller); 4024 if (rc < 0 && poller) { 4025 nvmf_rdma_poller_destroy(poller); 4026 } 4027 4028 device = ctx->device; 4029 if (nvmf_rdma_all_pollers_management_done(ctx)) { 4030 device->is_ready = true; 4031 } 4032 } 4033 4034 static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group); 4035 4036 static struct spdk_nvmf_transport_poll_group * 4037 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport, 4038 struct spdk_nvmf_poll_group *group) 4039 { 4040 struct spdk_nvmf_rdma_transport *rtransport; 4041 struct spdk_nvmf_rdma_poll_group *rgroup; 4042 struct spdk_nvmf_rdma_poller *poller; 4043 struct spdk_nvmf_rdma_device *device; 4044 int rc; 4045 4046 rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); 4047 4048 rgroup = calloc(1, sizeof(*rgroup)); 4049 if (!rgroup) { 4050 return NULL; 4051 } 4052 4053 TAILQ_INIT(&rgroup->pollers); 4054 4055 TAILQ_FOREACH(device, &rtransport->devices, link) { 4056 rc = nvmf_rdma_poller_create(rtransport, rgroup, device, &poller); 4057 if (rc < 0) { 4058 nvmf_rdma_poll_group_destroy(&rgroup->group); 4059 return NULL; 4060 } 4061 } 4062 4063 TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link); 4064 if (rtransport->conn_sched.next_admin_pg == NULL) { 4065 rtransport->conn_sched.next_admin_pg = rgroup; 4066 rtransport->conn_sched.next_io_pg = rgroup; 4067 } 4068 4069 return &rgroup->group; 4070 } 4071 4072 static uint32_t 4073 nvmf_poll_group_get_io_qpair_count(struct spdk_nvmf_poll_group *pg) 4074 { 4075 uint32_t count; 4076 4077 /* Just assume that unassociated qpairs will eventually be io 4078 * qpairs. This is close enough for the use cases for this 4079 * function. 4080 */ 4081 pthread_mutex_lock(&pg->mutex); 4082 count = pg->stat.current_io_qpairs + pg->current_unassociated_qpairs; 4083 pthread_mutex_unlock(&pg->mutex); 4084 4085 return count; 4086 } 4087 4088 static struct spdk_nvmf_transport_poll_group * 4089 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair) 4090 { 4091 struct spdk_nvmf_rdma_transport *rtransport; 4092 struct spdk_nvmf_rdma_poll_group **pg; 4093 struct spdk_nvmf_transport_poll_group *result; 4094 uint32_t count; 4095 4096 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 4097 4098 if (TAILQ_EMPTY(&rtransport->poll_groups)) { 4099 return NULL; 4100 } 4101 4102 if (qpair->qid == 0) { 4103 pg = &rtransport->conn_sched.next_admin_pg; 4104 } else { 4105 struct spdk_nvmf_rdma_poll_group *pg_min, *pg_start, *pg_current; 4106 uint32_t min_value; 4107 4108 pg = &rtransport->conn_sched.next_io_pg; 4109 pg_min = *pg; 4110 pg_start = *pg; 4111 pg_current = *pg; 4112 min_value = nvmf_poll_group_get_io_qpair_count(pg_current->group.group); 4113 4114 while ((count = nvmf_poll_group_get_io_qpair_count(pg_current->group.group)) > 0) { 4115 if (count < min_value) { 4116 min_value = count; 4117 pg_min = pg_current; 4118 } 4119 4120 pg_current = TAILQ_NEXT(pg_current, link); 4121 if (pg_current == NULL) { 4122 pg_current = TAILQ_FIRST(&rtransport->poll_groups); 4123 } 4124 4125 if (pg_current == pg_start) { 4126 break; 4127 } 4128 } 4129 *pg = pg_min; 4130 } 4131 4132 assert(*pg != NULL); 4133 4134 result = &(*pg)->group; 4135 4136 *pg = TAILQ_NEXT(*pg, link); 4137 if (*pg == NULL) { 4138 *pg = TAILQ_FIRST(&rtransport->poll_groups); 4139 } 4140 4141 return result; 4142 } 4143 4144 static void 4145 nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller) 4146 { 4147 struct spdk_nvmf_rdma_qpair *qpair, *tmp_qpair; 4148 int rc; 4149 4150 TAILQ_REMOVE(&poller->group->pollers, poller, link); 4151 RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) { 4152 nvmf_rdma_qpair_destroy(qpair); 4153 } 4154 4155 if (poller->srq) { 4156 if (poller->resources) { 4157 nvmf_rdma_resources_destroy(poller->resources); 4158 } 4159 spdk_rdma_srq_destroy(poller->srq); 4160 SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq); 4161 } 4162 4163 if (poller->cq) { 4164 rc = ibv_destroy_cq(poller->cq); 4165 if (rc != 0) { 4166 SPDK_ERRLOG("Destroy cq return %d, error: %s\n", rc, strerror(errno)); 4167 } 4168 } 4169 4170 if (poller->destroy_cb) { 4171 poller->destroy_cb(poller->destroy_cb_ctx); 4172 poller->destroy_cb = NULL; 4173 } 4174 4175 free(poller); 4176 } 4177 4178 static void 4179 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group) 4180 { 4181 struct spdk_nvmf_rdma_poll_group *rgroup, *next_rgroup; 4182 struct spdk_nvmf_rdma_poller *poller, *tmp; 4183 struct spdk_nvmf_rdma_transport *rtransport; 4184 4185 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4186 if (!rgroup) { 4187 return; 4188 } 4189 4190 TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) { 4191 nvmf_rdma_poller_destroy(poller); 4192 } 4193 4194 if (rgroup->group.transport == NULL) { 4195 /* Transport can be NULL when nvmf_rdma_poll_group_create() 4196 * calls this function directly in a failure path. */ 4197 free(rgroup); 4198 return; 4199 } 4200 4201 rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport); 4202 4203 next_rgroup = TAILQ_NEXT(rgroup, link); 4204 TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link); 4205 if (next_rgroup == NULL) { 4206 next_rgroup = TAILQ_FIRST(&rtransport->poll_groups); 4207 } 4208 if (rtransport->conn_sched.next_admin_pg == rgroup) { 4209 rtransport->conn_sched.next_admin_pg = next_rgroup; 4210 } 4211 if (rtransport->conn_sched.next_io_pg == rgroup) { 4212 rtransport->conn_sched.next_io_pg = next_rgroup; 4213 } 4214 4215 free(rgroup); 4216 } 4217 4218 static void 4219 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair) 4220 { 4221 if (rqpair->cm_id != NULL) { 4222 nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); 4223 } 4224 } 4225 4226 static int 4227 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group, 4228 struct spdk_nvmf_qpair *qpair) 4229 { 4230 struct spdk_nvmf_rdma_poll_group *rgroup; 4231 struct spdk_nvmf_rdma_qpair *rqpair; 4232 struct spdk_nvmf_rdma_device *device; 4233 struct spdk_nvmf_rdma_poller *poller; 4234 int rc; 4235 4236 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4237 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4238 4239 device = rqpair->device; 4240 4241 TAILQ_FOREACH(poller, &rgroup->pollers, link) { 4242 if (poller->device == device) { 4243 break; 4244 } 4245 } 4246 4247 if (!poller) { 4248 SPDK_ERRLOG("No poller found for device.\n"); 4249 return -1; 4250 } 4251 4252 if (poller->need_destroy) { 4253 SPDK_ERRLOG("Poller is destroying.\n"); 4254 return -1; 4255 } 4256 4257 rqpair->poller = poller; 4258 rqpair->srq = rqpair->poller->srq; 4259 4260 rc = nvmf_rdma_qpair_initialize(qpair); 4261 if (rc < 0) { 4262 SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair); 4263 rqpair->poller = NULL; 4264 rqpair->srq = NULL; 4265 return -1; 4266 } 4267 4268 RB_INSERT(qpairs_tree, &poller->qpairs, rqpair); 4269 4270 rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair); 4271 if (rc) { 4272 /* Try to reject, but we probably can't */ 4273 nvmf_rdma_qpair_reject_connection(rqpair); 4274 return -1; 4275 } 4276 4277 nvmf_rdma_update_ibv_state(rqpair); 4278 4279 return 0; 4280 } 4281 4282 static int 4283 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group, 4284 struct spdk_nvmf_qpair *qpair) 4285 { 4286 struct spdk_nvmf_rdma_qpair *rqpair; 4287 4288 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4289 assert(group->transport->tgt != NULL); 4290 4291 rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt); 4292 4293 if (!rqpair->destruct_channel) { 4294 SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair); 4295 return 0; 4296 } 4297 4298 /* Sanity check that we get io_channel on the correct thread */ 4299 if (qpair->group) { 4300 assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel)); 4301 } 4302 4303 return 0; 4304 } 4305 4306 static int 4307 nvmf_rdma_request_free(struct spdk_nvmf_request *req) 4308 { 4309 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); 4310 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 4311 struct spdk_nvmf_rdma_transport, transport); 4312 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 4313 struct spdk_nvmf_rdma_qpair, qpair); 4314 4315 /* 4316 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request 4317 * needs to be returned to the shared receive queue or the poll group will eventually be 4318 * starved of RECV structures. 4319 */ 4320 if (rqpair->srq && rdma_req->recv) { 4321 int rc; 4322 struct ibv_recv_wr *bad_recv_wr; 4323 4324 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr); 4325 rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr); 4326 if (rc) { 4327 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 4328 } 4329 } 4330 4331 _nvmf_rdma_request_free(rdma_req, rtransport); 4332 return 0; 4333 } 4334 4335 static int 4336 nvmf_rdma_request_complete(struct spdk_nvmf_request *req) 4337 { 4338 struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, 4339 struct spdk_nvmf_rdma_transport, transport); 4340 struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, 4341 struct spdk_nvmf_rdma_request, req); 4342 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, 4343 struct spdk_nvmf_rdma_qpair, qpair); 4344 4345 if (rqpair->ibv_state != IBV_QPS_ERR) { 4346 /* The connection is alive, so process the request as normal */ 4347 rdma_req->state = RDMA_REQUEST_STATE_EXECUTED; 4348 } else { 4349 /* The connection is dead. Move the request directly to the completed state. */ 4350 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4351 } 4352 4353 nvmf_rdma_request_process(rtransport, rdma_req); 4354 4355 return 0; 4356 } 4357 4358 static void 4359 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair, 4360 spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg) 4361 { 4362 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4363 4364 rqpair->to_close = true; 4365 4366 /* This happens only when the qpair is disconnected before 4367 * it is added to the poll group. Since there is no poll group, 4368 * the RDMA qp has not been initialized yet and the RDMA CM 4369 * event has not yet been acknowledged, so we need to reject it. 4370 */ 4371 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) { 4372 nvmf_rdma_qpair_reject_connection(rqpair); 4373 nvmf_rdma_qpair_destroy(rqpair); 4374 return; 4375 } 4376 4377 if (rqpair->rdma_qp) { 4378 spdk_rdma_qp_disconnect(rqpair->rdma_qp); 4379 } 4380 4381 nvmf_rdma_destroy_drained_qpair(rqpair); 4382 4383 if (cb_fn) { 4384 cb_fn(cb_arg); 4385 } 4386 } 4387 4388 static struct spdk_nvmf_rdma_qpair * 4389 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc) 4390 { 4391 struct spdk_nvmf_rdma_qpair find; 4392 4393 find.qp_num = wc->qp_num; 4394 4395 return RB_FIND(qpairs_tree, &rpoller->qpairs, &find); 4396 } 4397 4398 #ifdef DEBUG 4399 static int 4400 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req) 4401 { 4402 return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST || 4403 rdma_req->state == RDMA_REQUEST_STATE_COMPLETING; 4404 } 4405 #endif 4406 4407 static void 4408 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr, 4409 int rc) 4410 { 4411 struct spdk_nvmf_rdma_recv *rdma_recv; 4412 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 4413 4414 SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc); 4415 while (bad_recv_wr != NULL) { 4416 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id; 4417 rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 4418 4419 rdma_recv->qpair->current_recv_depth++; 4420 bad_recv_wr = bad_recv_wr->next; 4421 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc); 4422 spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair, NULL, NULL); 4423 } 4424 } 4425 4426 static void 4427 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc) 4428 { 4429 SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc); 4430 while (bad_recv_wr != NULL) { 4431 bad_recv_wr = bad_recv_wr->next; 4432 rqpair->current_recv_depth++; 4433 } 4434 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4435 } 4436 4437 static void 4438 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, 4439 struct spdk_nvmf_rdma_poller *rpoller) 4440 { 4441 struct spdk_nvmf_rdma_qpair *rqpair; 4442 struct ibv_recv_wr *bad_recv_wr; 4443 int rc; 4444 4445 if (rpoller->srq) { 4446 rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr); 4447 if (rc) { 4448 _poller_reset_failed_recvs(rpoller, bad_recv_wr, rc); 4449 } 4450 } else { 4451 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) { 4452 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv); 4453 rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr); 4454 if (rc) { 4455 _qp_reset_failed_recvs(rqpair, bad_recv_wr, rc); 4456 } 4457 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link); 4458 } 4459 } 4460 } 4461 4462 static void 4463 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport, 4464 struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc) 4465 { 4466 struct spdk_nvmf_rdma_wr *bad_rdma_wr; 4467 struct spdk_nvmf_rdma_request *prev_rdma_req = NULL, *cur_rdma_req = NULL; 4468 4469 SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc); 4470 for (; bad_wr != NULL; bad_wr = bad_wr->next) { 4471 bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id; 4472 assert(rqpair->current_send_depth > 0); 4473 rqpair->current_send_depth--; 4474 switch (bad_rdma_wr->type) { 4475 case RDMA_WR_TYPE_DATA: 4476 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data_wr); 4477 if (bad_wr->opcode == IBV_WR_RDMA_READ) { 4478 assert(rqpair->current_read_depth > 0); 4479 rqpair->current_read_depth--; 4480 } 4481 break; 4482 case RDMA_WR_TYPE_SEND: 4483 cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr); 4484 break; 4485 default: 4486 SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair); 4487 prev_rdma_req = cur_rdma_req; 4488 continue; 4489 } 4490 4491 if (prev_rdma_req == cur_rdma_req) { 4492 /* this request was handled by an earlier wr. i.e. we were performing an nvme read. */ 4493 /* We only have to check against prev_wr since each requests wrs are contiguous in this list. */ 4494 continue; 4495 } 4496 4497 switch (cur_rdma_req->state) { 4498 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 4499 cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 4500 cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 4501 break; 4502 case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: 4503 case RDMA_REQUEST_STATE_COMPLETING: 4504 cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4505 break; 4506 default: 4507 SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n", 4508 cur_rdma_req->state, rqpair); 4509 continue; 4510 } 4511 4512 nvmf_rdma_request_process(rtransport, cur_rdma_req); 4513 prev_rdma_req = cur_rdma_req; 4514 } 4515 4516 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 4517 /* Disconnect the connection. */ 4518 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4519 } 4520 4521 } 4522 4523 static void 4524 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, 4525 struct spdk_nvmf_rdma_poller *rpoller) 4526 { 4527 struct spdk_nvmf_rdma_qpair *rqpair; 4528 struct ibv_send_wr *bad_wr = NULL; 4529 int rc; 4530 4531 while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) { 4532 rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send); 4533 rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr); 4534 4535 /* bad wr always points to the first wr that failed. */ 4536 if (rc) { 4537 _qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc); 4538 } 4539 STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link); 4540 } 4541 } 4542 4543 static const char * 4544 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type) 4545 { 4546 switch (wr_type) { 4547 case RDMA_WR_TYPE_RECV: 4548 return "RECV"; 4549 case RDMA_WR_TYPE_SEND: 4550 return "SEND"; 4551 case RDMA_WR_TYPE_DATA: 4552 return "DATA"; 4553 default: 4554 SPDK_ERRLOG("Unknown WR type %d\n", wr_type); 4555 SPDK_UNREACHABLE(); 4556 } 4557 } 4558 4559 static inline void 4560 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc) 4561 { 4562 enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type; 4563 4564 if (wc->status == IBV_WC_WR_FLUSH_ERR) { 4565 /* If qpair is in ERR state, we will receive completions for all posted and not completed 4566 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */ 4567 SPDK_DEBUGLOG(rdma, 4568 "Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n", 4569 rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id, 4570 nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status)); 4571 } else { 4572 SPDK_ERRLOG("Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n", 4573 rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id, 4574 nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status)); 4575 } 4576 } 4577 4578 static int 4579 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport, 4580 struct spdk_nvmf_rdma_poller *rpoller) 4581 { 4582 struct ibv_wc wc[32]; 4583 struct spdk_nvmf_rdma_wr *rdma_wr; 4584 struct spdk_nvmf_rdma_request *rdma_req; 4585 struct spdk_nvmf_rdma_recv *rdma_recv; 4586 struct spdk_nvmf_rdma_qpair *rqpair, *tmp_rqpair; 4587 int reaped, i; 4588 int count = 0; 4589 int rc; 4590 bool error = false; 4591 uint64_t poll_tsc = spdk_get_ticks(); 4592 4593 if (spdk_unlikely(rpoller->need_destroy)) { 4594 /* If qpair is closed before poller destroy, nvmf_rdma_destroy_drained_qpair may not 4595 * be called because we cannot poll anything from cq. So we call that here to force 4596 * destroy the qpair after to_close turning true. 4597 */ 4598 RB_FOREACH_SAFE(rqpair, qpairs_tree, &rpoller->qpairs, tmp_rqpair) { 4599 nvmf_rdma_destroy_drained_qpair(rqpair); 4600 } 4601 return 0; 4602 } 4603 4604 /* Poll for completing operations. */ 4605 reaped = ibv_poll_cq(rpoller->cq, 32, wc); 4606 if (reaped < 0) { 4607 SPDK_ERRLOG("Error polling CQ! (%d): %s\n", 4608 errno, spdk_strerror(errno)); 4609 return -1; 4610 } else if (reaped == 0) { 4611 rpoller->stat.idle_polls++; 4612 } 4613 4614 rpoller->stat.polls++; 4615 rpoller->stat.completions += reaped; 4616 4617 for (i = 0; i < reaped; i++) { 4618 4619 rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id; 4620 4621 switch (rdma_wr->type) { 4622 case RDMA_WR_TYPE_SEND: 4623 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr); 4624 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 4625 4626 if (!wc[i].status) { 4627 count++; 4628 assert(wc[i].opcode == IBV_WC_SEND); 4629 assert(nvmf_rdma_req_is_completing(rdma_req)); 4630 } 4631 4632 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4633 /* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */ 4634 rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1; 4635 rdma_req->num_outstanding_data_wr = 0; 4636 4637 nvmf_rdma_request_process(rtransport, rdma_req); 4638 break; 4639 case RDMA_WR_TYPE_RECV: 4640 /* rdma_recv->qpair will be invalid if using an SRQ. In that case we have to get the qpair from the wc. */ 4641 rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); 4642 if (rpoller->srq != NULL) { 4643 rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]); 4644 /* It is possible that there are still some completions for destroyed QP 4645 * associated with SRQ. We just ignore these late completions and re-post 4646 * receive WRs back to SRQ. 4647 */ 4648 if (spdk_unlikely(NULL == rdma_recv->qpair)) { 4649 struct ibv_recv_wr *bad_wr; 4650 4651 rdma_recv->wr.next = NULL; 4652 spdk_rdma_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr); 4653 rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_wr); 4654 if (rc) { 4655 SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc); 4656 } 4657 continue; 4658 } 4659 } 4660 rqpair = rdma_recv->qpair; 4661 4662 assert(rqpair != NULL); 4663 if (!wc[i].status) { 4664 assert(wc[i].opcode == IBV_WC_RECV); 4665 if (rqpair->current_recv_depth >= rqpair->max_queue_depth) { 4666 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4667 break; 4668 } 4669 } 4670 4671 rdma_recv->wr.next = NULL; 4672 rqpair->current_recv_depth++; 4673 rdma_recv->receive_tsc = poll_tsc; 4674 rpoller->stat.requests++; 4675 STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link); 4676 break; 4677 case RDMA_WR_TYPE_DATA: 4678 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data_wr); 4679 rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); 4680 4681 assert(rdma_req->num_outstanding_data_wr > 0); 4682 4683 rqpair->current_send_depth--; 4684 rdma_req->num_outstanding_data_wr--; 4685 if (!wc[i].status) { 4686 assert(wc[i].opcode == IBV_WC_RDMA_READ); 4687 rqpair->current_read_depth--; 4688 /* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */ 4689 if (rdma_req->num_outstanding_data_wr == 0) { 4690 if (spdk_unlikely(rdma_req->num_remaining_data_wr)) { 4691 /* Only part of RDMA_READ operations was submitted, process the rest */ 4692 rc = nvmf_rdma_request_reset_transfer_in(rdma_req, rtransport); 4693 if (spdk_likely(!rc)) { 4694 STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link); 4695 rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING; 4696 } else { 4697 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 4698 rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 4699 } 4700 nvmf_rdma_request_process(rtransport, rdma_req); 4701 break; 4702 } 4703 rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; 4704 nvmf_rdma_request_process(rtransport, rdma_req); 4705 } 4706 } else { 4707 /* If the data transfer fails still force the queue into the error state, 4708 * if we were performing an RDMA_READ, we need to force the request into a 4709 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE 4710 * case, we should wait for the SEND to complete. */ 4711 if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) { 4712 rqpair->current_read_depth--; 4713 if (rdma_req->num_outstanding_data_wr == 0) { 4714 rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; 4715 } 4716 } 4717 } 4718 break; 4719 default: 4720 SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode); 4721 continue; 4722 } 4723 4724 /* Handle error conditions */ 4725 if (wc[i].status) { 4726 nvmf_rdma_update_ibv_state(rqpair); 4727 nvmf_rdma_log_wc_status(rqpair, &wc[i]); 4728 4729 error = true; 4730 4731 if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { 4732 /* Disconnect the connection. */ 4733 spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL); 4734 } else { 4735 nvmf_rdma_destroy_drained_qpair(rqpair); 4736 } 4737 continue; 4738 } 4739 4740 nvmf_rdma_qpair_process_pending(rtransport, rqpair, false); 4741 4742 if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { 4743 nvmf_rdma_destroy_drained_qpair(rqpair); 4744 } 4745 } 4746 4747 if (error == true) { 4748 return -1; 4749 } 4750 4751 /* submit outstanding work requests. */ 4752 _poller_submit_recvs(rtransport, rpoller); 4753 _poller_submit_sends(rtransport, rpoller); 4754 4755 return count; 4756 } 4757 4758 static void 4759 _nvmf_rdma_remove_destroyed_device(void *c) 4760 { 4761 struct spdk_nvmf_rdma_transport *rtransport = c; 4762 struct spdk_nvmf_rdma_device *device, *device_tmp; 4763 int rc; 4764 4765 TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) { 4766 if (device->ready_to_destroy) { 4767 destroy_ib_device(rtransport, device); 4768 } 4769 } 4770 4771 free_poll_fds(rtransport); 4772 rc = generate_poll_fds(rtransport); 4773 /* cannot handle fd allocation error here */ 4774 if (rc != 0) { 4775 SPDK_ERRLOG("Failed to generate poll fds after remove ib device.\n"); 4776 } 4777 } 4778 4779 static void 4780 _nvmf_rdma_remove_poller_in_group_cb(void *c) 4781 { 4782 struct poller_manage_ctx *ctx = c; 4783 struct spdk_nvmf_rdma_transport *rtransport = ctx->rtransport; 4784 struct spdk_nvmf_rdma_device *device = ctx->device; 4785 struct spdk_thread *thread = ctx->thread; 4786 4787 if (nvmf_rdma_all_pollers_management_done(c)) { 4788 /* destroy device when last poller is destroyed */ 4789 device->ready_to_destroy = true; 4790 spdk_thread_send_msg(thread, _nvmf_rdma_remove_destroyed_device, rtransport); 4791 } 4792 } 4793 4794 static void 4795 _nvmf_rdma_remove_poller_in_group(void *c) 4796 { 4797 struct poller_manage_ctx *ctx = c; 4798 4799 ctx->rpoller->need_destroy = true; 4800 ctx->rpoller->destroy_cb_ctx = ctx; 4801 ctx->rpoller->destroy_cb = _nvmf_rdma_remove_poller_in_group_cb; 4802 4803 /* qp will be disconnected after receiving a RDMA_CM_EVENT_DEVICE_REMOVAL event. */ 4804 if (RB_EMPTY(&ctx->rpoller->qpairs)) { 4805 nvmf_rdma_poller_destroy(ctx->rpoller); 4806 } 4807 } 4808 4809 static int 4810 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group) 4811 { 4812 struct spdk_nvmf_rdma_transport *rtransport; 4813 struct spdk_nvmf_rdma_poll_group *rgroup; 4814 struct spdk_nvmf_rdma_poller *rpoller, *tmp; 4815 int count, rc; 4816 4817 rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport); 4818 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 4819 4820 count = 0; 4821 TAILQ_FOREACH_SAFE(rpoller, &rgroup->pollers, link, tmp) { 4822 rc = nvmf_rdma_poller_poll(rtransport, rpoller); 4823 if (rc < 0) { 4824 return rc; 4825 } 4826 count += rc; 4827 } 4828 4829 return count; 4830 } 4831 4832 static int 4833 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, 4834 struct spdk_nvme_transport_id *trid, 4835 bool peer) 4836 { 4837 struct sockaddr *saddr; 4838 uint16_t port; 4839 4840 spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA); 4841 4842 if (peer) { 4843 saddr = rdma_get_peer_addr(id); 4844 } else { 4845 saddr = rdma_get_local_addr(id); 4846 } 4847 switch (saddr->sa_family) { 4848 case AF_INET: { 4849 struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr; 4850 4851 trid->adrfam = SPDK_NVMF_ADRFAM_IPV4; 4852 inet_ntop(AF_INET, &saddr_in->sin_addr, 4853 trid->traddr, sizeof(trid->traddr)); 4854 if (peer) { 4855 port = ntohs(rdma_get_dst_port(id)); 4856 } else { 4857 port = ntohs(rdma_get_src_port(id)); 4858 } 4859 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 4860 break; 4861 } 4862 case AF_INET6: { 4863 struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr; 4864 trid->adrfam = SPDK_NVMF_ADRFAM_IPV6; 4865 inet_ntop(AF_INET6, &saddr_in->sin6_addr, 4866 trid->traddr, sizeof(trid->traddr)); 4867 if (peer) { 4868 port = ntohs(rdma_get_dst_port(id)); 4869 } else { 4870 port = ntohs(rdma_get_src_port(id)); 4871 } 4872 snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); 4873 break; 4874 } 4875 default: 4876 return -1; 4877 4878 } 4879 4880 return 0; 4881 } 4882 4883 static int 4884 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair, 4885 struct spdk_nvme_transport_id *trid) 4886 { 4887 struct spdk_nvmf_rdma_qpair *rqpair; 4888 4889 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4890 4891 return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true); 4892 } 4893 4894 static int 4895 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair, 4896 struct spdk_nvme_transport_id *trid) 4897 { 4898 struct spdk_nvmf_rdma_qpair *rqpair; 4899 4900 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4901 4902 return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false); 4903 } 4904 4905 static int 4906 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair, 4907 struct spdk_nvme_transport_id *trid) 4908 { 4909 struct spdk_nvmf_rdma_qpair *rqpair; 4910 4911 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 4912 4913 return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false); 4914 } 4915 4916 void 4917 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) 4918 { 4919 g_nvmf_hooks = *hooks; 4920 } 4921 4922 static void 4923 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req, 4924 struct spdk_nvmf_rdma_request *rdma_req_to_abort) 4925 { 4926 rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC; 4927 rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; 4928 4929 rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; 4930 4931 req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */ 4932 } 4933 4934 static int 4935 _nvmf_rdma_qpair_abort_request(void *ctx) 4936 { 4937 struct spdk_nvmf_request *req = ctx; 4938 struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF( 4939 req->req_to_abort, struct spdk_nvmf_rdma_request, req); 4940 struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair, 4941 struct spdk_nvmf_rdma_qpair, qpair); 4942 int rc; 4943 4944 spdk_poller_unregister(&req->poller); 4945 4946 switch (rdma_req_to_abort->state) { 4947 case RDMA_REQUEST_STATE_EXECUTING: 4948 rc = nvmf_ctrlr_abort_request(req); 4949 if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) { 4950 return SPDK_POLLER_BUSY; 4951 } 4952 break; 4953 4954 case RDMA_REQUEST_STATE_NEED_BUFFER: 4955 STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue, 4956 &rdma_req_to_abort->req, spdk_nvmf_request, buf_link); 4957 4958 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); 4959 break; 4960 4961 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: 4962 STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort, 4963 spdk_nvmf_rdma_request, state_link); 4964 4965 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); 4966 break; 4967 4968 case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: 4969 STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort, 4970 spdk_nvmf_rdma_request, state_link); 4971 4972 nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); 4973 break; 4974 4975 case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: 4976 if (spdk_get_ticks() < req->timeout_tsc) { 4977 req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0); 4978 return SPDK_POLLER_BUSY; 4979 } 4980 break; 4981 4982 default: 4983 break; 4984 } 4985 4986 spdk_nvmf_request_complete(req); 4987 return SPDK_POLLER_BUSY; 4988 } 4989 4990 static void 4991 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair, 4992 struct spdk_nvmf_request *req) 4993 { 4994 struct spdk_nvmf_rdma_qpair *rqpair; 4995 struct spdk_nvmf_rdma_transport *rtransport; 4996 struct spdk_nvmf_transport *transport; 4997 uint16_t cid; 4998 uint32_t i, max_req_count; 4999 struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req; 5000 5001 rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); 5002 rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); 5003 transport = &rtransport->transport; 5004 5005 cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid; 5006 max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth; 5007 5008 for (i = 0; i < max_req_count; i++) { 5009 rdma_req = &rqpair->resources->reqs[i]; 5010 /* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair 5011 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to 5012 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */ 5013 if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid && 5014 rdma_req->req.qpair == qpair) { 5015 rdma_req_to_abort = rdma_req; 5016 break; 5017 } 5018 } 5019 5020 if (rdma_req_to_abort == NULL) { 5021 spdk_nvmf_request_complete(req); 5022 return; 5023 } 5024 5025 req->req_to_abort = &rdma_req_to_abort->req; 5026 req->timeout_tsc = spdk_get_ticks() + 5027 transport->opts.abort_timeout_sec * spdk_get_ticks_hz(); 5028 req->poller = NULL; 5029 5030 _nvmf_rdma_qpair_abort_request(req); 5031 } 5032 5033 static void 5034 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group, 5035 struct spdk_json_write_ctx *w) 5036 { 5037 struct spdk_nvmf_rdma_poll_group *rgroup; 5038 struct spdk_nvmf_rdma_poller *rpoller; 5039 5040 assert(w != NULL); 5041 5042 rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); 5043 5044 spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer); 5045 5046 spdk_json_write_named_array_begin(w, "devices"); 5047 5048 TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { 5049 spdk_json_write_object_begin(w); 5050 spdk_json_write_named_string(w, "name", 5051 ibv_get_device_name(rpoller->device->context->device)); 5052 spdk_json_write_named_uint64(w, "polls", 5053 rpoller->stat.polls); 5054 spdk_json_write_named_uint64(w, "idle_polls", 5055 rpoller->stat.idle_polls); 5056 spdk_json_write_named_uint64(w, "completions", 5057 rpoller->stat.completions); 5058 spdk_json_write_named_uint64(w, "requests", 5059 rpoller->stat.requests); 5060 spdk_json_write_named_uint64(w, "request_latency", 5061 rpoller->stat.request_latency); 5062 spdk_json_write_named_uint64(w, "pending_free_request", 5063 rpoller->stat.pending_free_request); 5064 spdk_json_write_named_uint64(w, "pending_rdma_read", 5065 rpoller->stat.pending_rdma_read); 5066 spdk_json_write_named_uint64(w, "pending_rdma_write", 5067 rpoller->stat.pending_rdma_write); 5068 spdk_json_write_named_uint64(w, "total_send_wrs", 5069 rpoller->stat.qp_stats.send.num_submitted_wrs); 5070 spdk_json_write_named_uint64(w, "send_doorbell_updates", 5071 rpoller->stat.qp_stats.send.doorbell_updates); 5072 spdk_json_write_named_uint64(w, "total_recv_wrs", 5073 rpoller->stat.qp_stats.recv.num_submitted_wrs); 5074 spdk_json_write_named_uint64(w, "recv_doorbell_updates", 5075 rpoller->stat.qp_stats.recv.doorbell_updates); 5076 spdk_json_write_object_end(w); 5077 } 5078 5079 spdk_json_write_array_end(w); 5080 } 5081 5082 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = { 5083 .name = "RDMA", 5084 .type = SPDK_NVME_TRANSPORT_RDMA, 5085 .opts_init = nvmf_rdma_opts_init, 5086 .create = nvmf_rdma_create, 5087 .dump_opts = nvmf_rdma_dump_opts, 5088 .destroy = nvmf_rdma_destroy, 5089 5090 .listen = nvmf_rdma_listen, 5091 .stop_listen = nvmf_rdma_stop_listen, 5092 .cdata_init = nvmf_rdma_cdata_init, 5093 5094 .listener_discover = nvmf_rdma_discover, 5095 5096 .poll_group_create = nvmf_rdma_poll_group_create, 5097 .get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group, 5098 .poll_group_destroy = nvmf_rdma_poll_group_destroy, 5099 .poll_group_add = nvmf_rdma_poll_group_add, 5100 .poll_group_remove = nvmf_rdma_poll_group_remove, 5101 .poll_group_poll = nvmf_rdma_poll_group_poll, 5102 5103 .req_free = nvmf_rdma_request_free, 5104 .req_complete = nvmf_rdma_request_complete, 5105 5106 .qpair_fini = nvmf_rdma_close_qpair, 5107 .qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid, 5108 .qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid, 5109 .qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid, 5110 .qpair_abort_request = nvmf_rdma_qpair_abort_request, 5111 5112 .poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat, 5113 }; 5114 5115 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma); 5116 SPDK_LOG_REGISTER_COMPONENT(rdma) 5117