xref: /spdk/lib/nvmf/rdma.c (revision 12fbe739a31b09aff0d05f354d4f3bbef99afc55)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "spdk/config.h"
10 #include "spdk/thread.h"
11 #include "spdk/likely.h"
12 #include "spdk/nvmf_transport.h"
13 #include "spdk/string.h"
14 #include "spdk/trace.h"
15 #include "spdk/tree.h"
16 #include "spdk/util.h"
17 
18 #include "spdk_internal/assert.h"
19 #include "spdk/log.h"
20 #include "spdk_internal/rdma.h"
21 
22 #include "nvmf_internal.h"
23 #include "transport.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
28 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma;
29 
30 /*
31  RDMA Connection Resource Defaults
32  */
33 #define NVMF_DEFAULT_MSDBD		16
34 #define NVMF_DEFAULT_TX_SGE		SPDK_NVMF_MAX_SGL_ENTRIES
35 #define NVMF_DEFAULT_RSP_SGE		1
36 #define NVMF_DEFAULT_RX_SGE		2
37 
38 SPDK_STATIC_ASSERT(NVMF_DEFAULT_MSDBD <= SPDK_NVMF_MAX_SGL_ENTRIES,
39 		   "MSDBD must not exceed SPDK_NVMF_MAX_SGL_ENTRIES");
40 
41 /* The RDMA completion queue size */
42 #define DEFAULT_NVMF_RDMA_CQ_SIZE	4096
43 #define MAX_WR_PER_QP(queue_depth)	(queue_depth * 3 + 2)
44 
45 static int g_spdk_nvmf_ibv_query_mask =
46 	IBV_QP_STATE |
47 	IBV_QP_PKEY_INDEX |
48 	IBV_QP_PORT |
49 	IBV_QP_ACCESS_FLAGS |
50 	IBV_QP_AV |
51 	IBV_QP_PATH_MTU |
52 	IBV_QP_DEST_QPN |
53 	IBV_QP_RQ_PSN |
54 	IBV_QP_MAX_DEST_RD_ATOMIC |
55 	IBV_QP_MIN_RNR_TIMER |
56 	IBV_QP_SQ_PSN |
57 	IBV_QP_TIMEOUT |
58 	IBV_QP_RETRY_CNT |
59 	IBV_QP_RNR_RETRY |
60 	IBV_QP_MAX_QP_RD_ATOMIC;
61 
62 enum spdk_nvmf_rdma_request_state {
63 	/* The request is not currently in use */
64 	RDMA_REQUEST_STATE_FREE = 0,
65 
66 	/* Initial state when request first received */
67 	RDMA_REQUEST_STATE_NEW,
68 
69 	/* The request is queued until a data buffer is available. */
70 	RDMA_REQUEST_STATE_NEED_BUFFER,
71 
72 	/* The request is waiting on RDMA queue depth availability
73 	 * to transfer data from the host to the controller.
74 	 */
75 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
76 
77 	/* The request is currently transferring data from the host to the controller. */
78 	RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
79 
80 	/* The request is ready to execute at the block device */
81 	RDMA_REQUEST_STATE_READY_TO_EXECUTE,
82 
83 	/* The request is currently executing at the block device */
84 	RDMA_REQUEST_STATE_EXECUTING,
85 
86 	/* The request finished executing at the block device */
87 	RDMA_REQUEST_STATE_EXECUTED,
88 
89 	/* The request is waiting on RDMA queue depth availability
90 	 * to transfer data from the controller to the host.
91 	 */
92 	RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
93 
94 	/* The request is ready to send a completion */
95 	RDMA_REQUEST_STATE_READY_TO_COMPLETE,
96 
97 	/* The request is currently transferring data from the controller to the host. */
98 	RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
99 
100 	/* The request currently has an outstanding completion without an
101 	 * associated data transfer.
102 	 */
103 	RDMA_REQUEST_STATE_COMPLETING,
104 
105 	/* The request completed and can be marked free. */
106 	RDMA_REQUEST_STATE_COMPLETED,
107 
108 	/* Terminator */
109 	RDMA_REQUEST_NUM_STATES,
110 };
111 
112 SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
113 {
114 	spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
115 	spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW,
116 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1,
117 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
118 	spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
119 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
120 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
121 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H",
122 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
123 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
124 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
125 	spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C",
126 					TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
127 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
128 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
129 	spdk_trace_register_description("RDMA_REQ_TX_H2C",
130 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
131 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
132 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
133 	spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE",
134 					TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
135 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
136 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
137 	spdk_trace_register_description("RDMA_REQ_EXECUTING",
138 					TRACE_RDMA_REQUEST_STATE_EXECUTING,
139 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
140 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
141 	spdk_trace_register_description("RDMA_REQ_EXECUTED",
142 					TRACE_RDMA_REQUEST_STATE_EXECUTED,
143 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
144 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
145 	spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL",
146 					TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
147 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
148 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
149 	spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H",
150 					TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
151 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
152 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
153 	spdk_trace_register_description("RDMA_REQ_COMPLETING",
154 					TRACE_RDMA_REQUEST_STATE_COMPLETING,
155 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
156 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
157 	spdk_trace_register_description("RDMA_REQ_COMPLETED",
158 					TRACE_RDMA_REQUEST_STATE_COMPLETED,
159 					OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0,
160 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
161 
162 	spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE,
163 					OWNER_NONE, OBJECT_NONE, 0,
164 					SPDK_TRACE_ARG_TYPE_INT, "");
165 	spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT,
166 					OWNER_NONE, OBJECT_NONE, 0,
167 					SPDK_TRACE_ARG_TYPE_INT, "type");
168 	spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT,
169 					OWNER_NONE, OBJECT_NONE, 0,
170 					SPDK_TRACE_ARG_TYPE_INT, "type");
171 	spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE,
172 					OWNER_NONE, OBJECT_NONE, 0,
173 					SPDK_TRACE_ARG_TYPE_PTR, "state");
174 	spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT,
175 					OWNER_NONE, OBJECT_NONE, 0,
176 					SPDK_TRACE_ARG_TYPE_INT, "");
177 	spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY,
178 					OWNER_NONE, OBJECT_NONE, 0,
179 					SPDK_TRACE_ARG_TYPE_INT, "");
180 }
181 
182 enum spdk_nvmf_rdma_wr_type {
183 	RDMA_WR_TYPE_RECV,
184 	RDMA_WR_TYPE_SEND,
185 	RDMA_WR_TYPE_DATA,
186 };
187 
188 struct spdk_nvmf_rdma_wr {
189 	/* Uses enum spdk_nvmf_rdma_wr_type */
190 	uint8_t type;
191 };
192 
193 /* This structure holds commands as they are received off the wire.
194  * It must be dynamically paired with a full request object
195  * (spdk_nvmf_rdma_request) to service a request. It is separate
196  * from the request because RDMA does not appear to order
197  * completions, so occasionally we'll get a new incoming
198  * command when there aren't any free request objects.
199  */
200 struct spdk_nvmf_rdma_recv {
201 	struct ibv_recv_wr			wr;
202 	struct ibv_sge				sgl[NVMF_DEFAULT_RX_SGE];
203 
204 	struct spdk_nvmf_rdma_qpair		*qpair;
205 
206 	/* In-capsule data buffer */
207 	uint8_t					*buf;
208 
209 	struct spdk_nvmf_rdma_wr		rdma_wr;
210 	uint64_t				receive_tsc;
211 
212 	STAILQ_ENTRY(spdk_nvmf_rdma_recv)	link;
213 };
214 
215 struct spdk_nvmf_rdma_request_data {
216 	struct ibv_send_wr		wr;
217 	struct ibv_sge			sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
218 };
219 
220 struct spdk_nvmf_rdma_request {
221 	struct spdk_nvmf_request		req;
222 
223 	bool					fused_failed;
224 
225 	struct spdk_nvmf_rdma_wr		data_wr;
226 	struct spdk_nvmf_rdma_wr		rsp_wr;
227 
228 	/* Uses enum spdk_nvmf_rdma_request_state */
229 	uint8_t					state;
230 
231 	/* Data offset in req.iov */
232 	uint32_t				offset;
233 
234 	struct spdk_nvmf_rdma_recv		*recv;
235 
236 	struct {
237 		struct	ibv_send_wr		wr;
238 		struct	ibv_sge			sgl[NVMF_DEFAULT_RSP_SGE];
239 	} rsp;
240 
241 	uint16_t				iovpos;
242 	uint16_t				num_outstanding_data_wr;
243 	/* Used to split Write IO with multi SGL payload */
244 	uint16_t				num_remaining_data_wr;
245 	uint64_t				receive_tsc;
246 	struct spdk_nvmf_rdma_request		*fused_pair;
247 	STAILQ_ENTRY(spdk_nvmf_rdma_request)	state_link;
248 	struct ibv_send_wr			*remaining_tranfer_in_wrs;
249 	struct ibv_send_wr			*transfer_wr;
250 	struct spdk_nvmf_rdma_request_data	data;
251 };
252 
253 struct spdk_nvmf_rdma_resource_opts {
254 	struct spdk_nvmf_rdma_qpair	*qpair;
255 	/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
256 	void				*qp;
257 	struct spdk_rdma_mem_map	*map;
258 	uint32_t			max_queue_depth;
259 	uint32_t			in_capsule_data_size;
260 	bool				shared;
261 };
262 
263 struct spdk_nvmf_rdma_resources {
264 	/* Array of size "max_queue_depth" containing RDMA requests. */
265 	struct spdk_nvmf_rdma_request		*reqs;
266 
267 	/* Array of size "max_queue_depth" containing RDMA recvs. */
268 	struct spdk_nvmf_rdma_recv		*recvs;
269 
270 	/* Array of size "max_queue_depth" containing 64 byte capsules
271 	 * used for receive.
272 	 */
273 	union nvmf_h2c_msg			*cmds;
274 
275 	/* Array of size "max_queue_depth" containing 16 byte completions
276 	 * to be sent back to the user.
277 	 */
278 	union nvmf_c2h_msg			*cpls;
279 
280 	/* Array of size "max_queue_depth * InCapsuleDataSize" containing
281 	 * buffers to be used for in capsule data.
282 	 */
283 	void					*bufs;
284 
285 	/* Receives that are waiting for a request object */
286 	STAILQ_HEAD(, spdk_nvmf_rdma_recv)	incoming_queue;
287 
288 	/* Queue to track free requests */
289 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	free_queue;
290 };
291 
292 typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair);
293 
294 typedef void (*spdk_poller_destroy_cb)(void *ctx);
295 
296 struct spdk_nvmf_rdma_ibv_event_ctx {
297 	struct spdk_nvmf_rdma_qpair			*rqpair;
298 	spdk_nvmf_rdma_qpair_ibv_event			cb_fn;
299 	/* Link to other ibv events associated with this qpair */
300 	STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx)	link;
301 };
302 
303 struct spdk_nvmf_rdma_qpair {
304 	struct spdk_nvmf_qpair			qpair;
305 
306 	struct spdk_nvmf_rdma_device		*device;
307 	struct spdk_nvmf_rdma_poller		*poller;
308 
309 	struct spdk_rdma_qp			*rdma_qp;
310 	struct rdma_cm_id			*cm_id;
311 	struct spdk_rdma_srq			*srq;
312 	struct rdma_cm_id			*listen_id;
313 
314 	/* Cache the QP number to improve QP search by RB tree. */
315 	uint32_t				qp_num;
316 
317 	/* The maximum number of I/O outstanding on this connection at one time */
318 	uint16_t				max_queue_depth;
319 
320 	/* The maximum number of active RDMA READ and ATOMIC operations at one time */
321 	uint16_t				max_read_depth;
322 
323 	/* The maximum number of RDMA SEND operations at one time */
324 	uint32_t				max_send_depth;
325 
326 	/* The current number of outstanding WRs from this qpair's
327 	 * recv queue. Should not exceed device->attr.max_queue_depth.
328 	 */
329 	uint16_t				current_recv_depth;
330 
331 	/* The current number of active RDMA READ operations */
332 	uint16_t				current_read_depth;
333 
334 	/* The current number of posted WRs from this qpair's
335 	 * send queue. Should not exceed max_send_depth.
336 	 */
337 	uint32_t				current_send_depth;
338 
339 	/* The maximum number of SGEs per WR on the send queue */
340 	uint32_t				max_send_sge;
341 
342 	/* The maximum number of SGEs per WR on the recv queue */
343 	uint32_t				max_recv_sge;
344 
345 	struct spdk_nvmf_rdma_resources		*resources;
346 
347 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_read_queue;
348 
349 	STAILQ_HEAD(, spdk_nvmf_rdma_request)	pending_rdma_write_queue;
350 
351 	/* Number of requests not in the free state */
352 	uint32_t				qd;
353 
354 	RB_ENTRY(spdk_nvmf_rdma_qpair)		node;
355 
356 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	recv_link;
357 
358 	STAILQ_ENTRY(spdk_nvmf_rdma_qpair)	send_link;
359 
360 	/* IBV queue pair attributes: they are used to manage
361 	 * qp state and recover from errors.
362 	 */
363 	enum ibv_qp_state			ibv_state;
364 
365 	/* Points to the a request that has fuse bits set to
366 	 * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting
367 	 * for the request that has SPDK_NVME_CMD_FUSE_SECOND.
368 	 */
369 	struct spdk_nvmf_rdma_request		*fused_first;
370 
371 	/*
372 	 * io_channel which is used to destroy qpair when it is removed from poll group
373 	 */
374 	struct spdk_io_channel		*destruct_channel;
375 
376 	/* List of ibv async events */
377 	STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx)	ibv_events;
378 
379 	/* Lets us know that we have received the last_wqe event. */
380 	bool					last_wqe_reached;
381 
382 	/* Indicate that nvmf_rdma_close_qpair is called */
383 	bool					to_close;
384 };
385 
386 struct spdk_nvmf_rdma_poller_stat {
387 	uint64_t				completions;
388 	uint64_t				polls;
389 	uint64_t				idle_polls;
390 	uint64_t				requests;
391 	uint64_t				request_latency;
392 	uint64_t				pending_free_request;
393 	uint64_t				pending_rdma_read;
394 	uint64_t				pending_rdma_write;
395 	struct spdk_rdma_qp_stats		qp_stats;
396 };
397 
398 struct spdk_nvmf_rdma_poller {
399 	struct spdk_nvmf_rdma_device		*device;
400 	struct spdk_nvmf_rdma_poll_group	*group;
401 
402 	int					num_cqe;
403 	int					required_num_wr;
404 	struct ibv_cq				*cq;
405 
406 	/* The maximum number of I/O outstanding on the shared receive queue at one time */
407 	uint16_t				max_srq_depth;
408 	bool					need_destroy;
409 
410 	/* Shared receive queue */
411 	struct spdk_rdma_srq			*srq;
412 
413 	struct spdk_nvmf_rdma_resources		*resources;
414 	struct spdk_nvmf_rdma_poller_stat	stat;
415 
416 	spdk_poller_destroy_cb			destroy_cb;
417 	void					*destroy_cb_ctx;
418 
419 	RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs;
420 
421 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_recv;
422 
423 	STAILQ_HEAD(, spdk_nvmf_rdma_qpair)	qpairs_pending_send;
424 
425 	TAILQ_ENTRY(spdk_nvmf_rdma_poller)	link;
426 };
427 
428 struct spdk_nvmf_rdma_poll_group_stat {
429 	uint64_t				pending_data_buffer;
430 };
431 
432 struct spdk_nvmf_rdma_poll_group {
433 	struct spdk_nvmf_transport_poll_group		group;
434 	struct spdk_nvmf_rdma_poll_group_stat		stat;
435 	TAILQ_HEAD(, spdk_nvmf_rdma_poller)		pollers;
436 	TAILQ_ENTRY(spdk_nvmf_rdma_poll_group)		link;
437 };
438 
439 struct spdk_nvmf_rdma_conn_sched {
440 	struct spdk_nvmf_rdma_poll_group *next_admin_pg;
441 	struct spdk_nvmf_rdma_poll_group *next_io_pg;
442 };
443 
444 /* Assuming rdma_cm uses just one protection domain per ibv_context. */
445 struct spdk_nvmf_rdma_device {
446 	struct ibv_device_attr			attr;
447 	struct ibv_context			*context;
448 
449 	struct spdk_rdma_mem_map		*map;
450 	struct ibv_pd				*pd;
451 
452 	int					num_srq;
453 	bool					need_destroy;
454 	bool					ready_to_destroy;
455 	bool					is_ready;
456 
457 	TAILQ_ENTRY(spdk_nvmf_rdma_device)	link;
458 };
459 
460 struct spdk_nvmf_rdma_port {
461 	const struct spdk_nvme_transport_id	*trid;
462 	struct rdma_cm_id			*id;
463 	struct spdk_nvmf_rdma_device		*device;
464 	TAILQ_ENTRY(spdk_nvmf_rdma_port)	link;
465 };
466 
467 struct rdma_transport_opts {
468 	int		num_cqe;
469 	uint32_t	max_srq_depth;
470 	bool		no_srq;
471 	bool		no_wr_batching;
472 	int		acceptor_backlog;
473 };
474 
475 struct spdk_nvmf_rdma_transport {
476 	struct spdk_nvmf_transport	transport;
477 	struct rdma_transport_opts	rdma_opts;
478 
479 	struct spdk_nvmf_rdma_conn_sched conn_sched;
480 
481 	struct rdma_event_channel	*event_channel;
482 
483 	struct spdk_mempool		*data_wr_pool;
484 
485 	struct spdk_poller		*accept_poller;
486 
487 	/* fields used to poll RDMA/IB events */
488 	nfds_t			npoll_fds;
489 	struct pollfd		*poll_fds;
490 
491 	TAILQ_HEAD(, spdk_nvmf_rdma_device)	devices;
492 	TAILQ_HEAD(, spdk_nvmf_rdma_port)	ports;
493 	TAILQ_HEAD(, spdk_nvmf_rdma_poll_group)	poll_groups;
494 
495 	/* ports that are removed unexpectedly and need retry listen */
496 	TAILQ_HEAD(, spdk_nvmf_rdma_port)		retry_ports;
497 };
498 
499 struct poller_manage_ctx {
500 	struct spdk_nvmf_rdma_transport		*rtransport;
501 	struct spdk_nvmf_rdma_poll_group	*rgroup;
502 	struct spdk_nvmf_rdma_poller		*rpoller;
503 	struct spdk_nvmf_rdma_device		*device;
504 
505 	struct spdk_thread			*thread;
506 	volatile int				*inflight_op_counter;
507 };
508 
509 static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = {
510 	{
511 		"num_cqe", offsetof(struct rdma_transport_opts, num_cqe),
512 		spdk_json_decode_int32, true
513 	},
514 	{
515 		"max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth),
516 		spdk_json_decode_uint32, true
517 	},
518 	{
519 		"no_srq", offsetof(struct rdma_transport_opts, no_srq),
520 		spdk_json_decode_bool, true
521 	},
522 	{
523 		"no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching),
524 		spdk_json_decode_bool, true
525 	},
526 	{
527 		"acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog),
528 		spdk_json_decode_int32, true
529 	},
530 };
531 
532 static int
533 nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2)
534 {
535 	return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num;
536 }
537 
538 RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare);
539 
540 static bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
541 				      struct spdk_nvmf_rdma_request *rdma_req);
542 
543 static void _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
544 				 struct spdk_nvmf_rdma_poller *rpoller);
545 
546 static void _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
547 				 struct spdk_nvmf_rdma_poller *rpoller);
548 
549 static void _nvmf_rdma_remove_destroyed_device(void *c);
550 
551 static inline int
552 nvmf_rdma_check_ibv_state(enum ibv_qp_state state)
553 {
554 	switch (state) {
555 	case IBV_QPS_RESET:
556 	case IBV_QPS_INIT:
557 	case IBV_QPS_RTR:
558 	case IBV_QPS_RTS:
559 	case IBV_QPS_SQD:
560 	case IBV_QPS_SQE:
561 	case IBV_QPS_ERR:
562 		return 0;
563 	default:
564 		return -1;
565 	}
566 }
567 
568 static inline enum spdk_nvme_media_error_status_code
569 nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) {
570 	enum spdk_nvme_media_error_status_code result;
571 	switch (err_type)
572 	{
573 	case SPDK_DIF_REFTAG_ERROR:
574 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
575 		break;
576 	case SPDK_DIF_APPTAG_ERROR:
577 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
578 		break;
579 	case SPDK_DIF_GUARD_ERROR:
580 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
581 		break;
582 	default:
583 		SPDK_UNREACHABLE();
584 	}
585 
586 	return result;
587 }
588 
589 static enum ibv_qp_state
590 nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) {
591 	enum ibv_qp_state old_state, new_state;
592 	struct ibv_qp_attr qp_attr;
593 	struct ibv_qp_init_attr init_attr;
594 	int rc;
595 
596 	old_state = rqpair->ibv_state;
597 	rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr,
598 			  g_spdk_nvmf_ibv_query_mask, &init_attr);
599 
600 	if (rc)
601 	{
602 		SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
603 		return IBV_QPS_ERR + 1;
604 	}
605 
606 	new_state = qp_attr.qp_state;
607 	rqpair->ibv_state = new_state;
608 	qp_attr.ah_attr.port_num = qp_attr.port_num;
609 
610 	rc = nvmf_rdma_check_ibv_state(new_state);
611 	if (rc)
612 	{
613 		SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state);
614 		/*
615 		 * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8
616 		 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR
617 		 */
618 		return IBV_QPS_ERR + 1;
619 	}
620 
621 	if (old_state != new_state)
622 	{
623 		spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, (uintptr_t)rqpair, new_state);
624 	}
625 	return new_state;
626 }
627 
628 /*
629  * Return data_wrs to pool starting from \b data_wr
630  * Request's own response and data WR are excluded
631  */
632 static void
633 _nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
634 			     struct ibv_send_wr *data_wr,
635 			     struct spdk_mempool *pool)
636 {
637 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
638 	struct spdk_nvmf_rdma_request_data	*nvmf_data;
639 	struct ibv_send_wr			*next_send_wr;
640 	uint64_t				req_wrid = (uint64_t)&rdma_req->data_wr;
641 	uint32_t				num_wrs = 0;
642 
643 	while (data_wr && data_wr->wr_id == req_wrid) {
644 		nvmf_data = SPDK_CONTAINEROF(data_wr, struct spdk_nvmf_rdma_request_data, wr);
645 		memset(nvmf_data->sgl, 0, sizeof(data_wr->sg_list[0]) * data_wr->num_sge);
646 		data_wr->num_sge = 0;
647 		next_send_wr = data_wr->next;
648 		if (data_wr != &rdma_req->data.wr) {
649 			data_wr->next = NULL;
650 			assert(num_wrs < SPDK_NVMF_MAX_SGL_ENTRIES);
651 			work_requests[num_wrs] = nvmf_data;
652 			num_wrs++;
653 		}
654 		data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : next_send_wr;
655 	}
656 
657 	if (num_wrs) {
658 		spdk_mempool_put_bulk(pool, (void **) work_requests, num_wrs);
659 	}
660 }
661 
662 static void
663 nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
664 			    struct spdk_nvmf_rdma_transport *rtransport)
665 {
666 	rdma_req->num_outstanding_data_wr = 0;
667 
668 	_nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool);
669 
670 	rdma_req->data.wr.next = NULL;
671 	rdma_req->rsp.wr.next = NULL;
672 }
673 
674 static void
675 nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
676 {
677 	SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool);
678 	if (req->req.cmd) {
679 		SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
680 	}
681 	if (req->recv) {
682 		SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
683 	}
684 }
685 
686 static void
687 nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
688 {
689 	int i;
690 
691 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
692 	for (i = 0; i < rqpair->max_queue_depth; i++) {
693 		if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
694 			nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
695 		}
696 	}
697 }
698 
699 static void
700 nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
701 {
702 	spdk_free(resources->cmds);
703 	spdk_free(resources->cpls);
704 	spdk_free(resources->bufs);
705 	spdk_free(resources->reqs);
706 	spdk_free(resources->recvs);
707 	free(resources);
708 }
709 
710 
711 static struct spdk_nvmf_rdma_resources *
712 nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
713 {
714 	struct spdk_nvmf_rdma_resources		*resources;
715 	struct spdk_nvmf_rdma_request		*rdma_req;
716 	struct spdk_nvmf_rdma_recv		*rdma_recv;
717 	struct spdk_rdma_qp			*qp = NULL;
718 	struct spdk_rdma_srq			*srq = NULL;
719 	struct ibv_recv_wr			*bad_wr = NULL;
720 	struct spdk_rdma_memory_translation	translation;
721 	uint32_t				i;
722 	int					rc = 0;
723 
724 	resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
725 	if (!resources) {
726 		SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
727 		return NULL;
728 	}
729 
730 	resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs),
731 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
732 	resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs),
733 					0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
734 	resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
735 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
736 	resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
737 				       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
738 
739 	if (opts->in_capsule_data_size > 0) {
740 		resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size,
741 					       0x1000, NULL, SPDK_ENV_LCORE_ID_ANY,
742 					       SPDK_MALLOC_DMA);
743 	}
744 
745 	if (!resources->reqs || !resources->recvs || !resources->cmds ||
746 	    !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
747 		SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
748 		goto cleanup;
749 	}
750 
751 	SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx\n",
752 		      resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds));
753 	SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx\n",
754 		      resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls));
755 	if (resources->bufs) {
756 		SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x\n",
757 			      resources->bufs, opts->max_queue_depth *
758 			      opts->in_capsule_data_size);
759 	}
760 
761 	/* Initialize queues */
762 	STAILQ_INIT(&resources->incoming_queue);
763 	STAILQ_INIT(&resources->free_queue);
764 
765 	if (opts->shared) {
766 		srq = (struct spdk_rdma_srq *)opts->qp;
767 	} else {
768 		qp = (struct spdk_rdma_qp *)opts->qp;
769 	}
770 
771 	for (i = 0; i < opts->max_queue_depth; i++) {
772 		rdma_recv = &resources->recvs[i];
773 		rdma_recv->qpair = opts->qpair;
774 
775 		/* Set up memory to receive commands */
776 		if (resources->bufs) {
777 			rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
778 						  opts->in_capsule_data_size));
779 		}
780 
781 		rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
782 
783 		rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
784 		rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
785 		rc = spdk_rdma_get_translation(opts->map, &resources->cmds[i], sizeof(resources->cmds[i]),
786 					       &translation);
787 		if (rc) {
788 			goto cleanup;
789 		}
790 		rdma_recv->sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
791 		rdma_recv->wr.num_sge = 1;
792 
793 		if (rdma_recv->buf) {
794 			rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
795 			rdma_recv->sgl[1].length = opts->in_capsule_data_size;
796 			rc = spdk_rdma_get_translation(opts->map, rdma_recv->buf, opts->in_capsule_data_size, &translation);
797 			if (rc) {
798 				goto cleanup;
799 			}
800 			rdma_recv->sgl[1].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
801 			rdma_recv->wr.num_sge++;
802 		}
803 
804 		rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
805 		rdma_recv->wr.sg_list = rdma_recv->sgl;
806 		if (srq) {
807 			spdk_rdma_srq_queue_recv_wrs(srq, &rdma_recv->wr);
808 		} else {
809 			spdk_rdma_qp_queue_recv_wrs(qp, &rdma_recv->wr);
810 		}
811 	}
812 
813 	for (i = 0; i < opts->max_queue_depth; i++) {
814 		rdma_req = &resources->reqs[i];
815 
816 		if (opts->qpair != NULL) {
817 			rdma_req->req.qpair = &opts->qpair->qpair;
818 		} else {
819 			rdma_req->req.qpair = NULL;
820 		}
821 		rdma_req->req.cmd = NULL;
822 		rdma_req->req.iovcnt = 0;
823 		rdma_req->req.stripped_data = NULL;
824 
825 		/* Set up memory to send responses */
826 		rdma_req->req.rsp = &resources->cpls[i];
827 
828 		rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
829 		rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
830 		rc = spdk_rdma_get_translation(opts->map, &resources->cpls[i], sizeof(resources->cpls[i]),
831 					       &translation);
832 		if (rc) {
833 			goto cleanup;
834 		}
835 		rdma_req->rsp.sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
836 
837 		rdma_req->rsp_wr.type = RDMA_WR_TYPE_SEND;
838 		rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp_wr;
839 		rdma_req->rsp.wr.next = NULL;
840 		rdma_req->rsp.wr.opcode = IBV_WR_SEND;
841 		rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
842 		rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
843 		rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
844 
845 		/* Set up memory for data buffers */
846 		rdma_req->data_wr.type = RDMA_WR_TYPE_DATA;
847 		rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data_wr;
848 		rdma_req->data.wr.next = NULL;
849 		rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
850 		rdma_req->data.wr.sg_list = rdma_req->data.sgl;
851 		rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
852 
853 		/* Initialize request state to FREE */
854 		rdma_req->state = RDMA_REQUEST_STATE_FREE;
855 		STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
856 	}
857 
858 	if (srq) {
859 		rc = spdk_rdma_srq_flush_recv_wrs(srq, &bad_wr);
860 	} else {
861 		rc = spdk_rdma_qp_flush_recv_wrs(qp, &bad_wr);
862 	}
863 
864 	if (rc) {
865 		goto cleanup;
866 	}
867 
868 	return resources;
869 
870 cleanup:
871 	nvmf_rdma_resources_destroy(resources);
872 	return NULL;
873 }
874 
875 static void
876 nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair)
877 {
878 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx;
879 	STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) {
880 		ctx->rqpair = NULL;
881 		/* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */
882 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
883 	}
884 }
885 
886 static void nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller);
887 
888 static void
889 nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
890 {
891 	struct spdk_nvmf_rdma_recv	*rdma_recv, *recv_tmp;
892 	struct ibv_recv_wr		*bad_recv_wr = NULL;
893 	int				rc;
894 
895 	spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair);
896 
897 	if (rqpair->qd != 0) {
898 		struct spdk_nvmf_qpair *qpair = &rqpair->qpair;
899 		struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(qpair->transport,
900 				struct spdk_nvmf_rdma_transport, transport);
901 		struct spdk_nvmf_rdma_request *req;
902 		uint32_t i, max_req_count = 0;
903 
904 		SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
905 
906 		if (rqpair->srq == NULL) {
907 			nvmf_rdma_dump_qpair_contents(rqpair);
908 			max_req_count = rqpair->max_queue_depth;
909 		} else if (rqpair->poller && rqpair->resources) {
910 			max_req_count = rqpair->poller->max_srq_depth;
911 		}
912 
913 		SPDK_DEBUGLOG(rdma, "Release incomplete requests\n");
914 		for (i = 0; i < max_req_count; i++) {
915 			req = &rqpair->resources->reqs[i];
916 			if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) {
917 				/* nvmf_rdma_request_process checks qpair ibv and internal state
918 				 * and completes a request */
919 				nvmf_rdma_request_process(rtransport, req);
920 			}
921 		}
922 		assert(rqpair->qd == 0);
923 	}
924 
925 	if (rqpair->poller) {
926 		RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair);
927 
928 		if (rqpair->srq != NULL && rqpair->resources != NULL) {
929 			/* Drop all received but unprocessed commands for this queue and return them to SRQ */
930 			STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
931 				if (rqpair == rdma_recv->qpair) {
932 					STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link);
933 					spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr);
934 					rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
935 					if (rc) {
936 						SPDK_ERRLOG("Unable to re-post rx descriptor\n");
937 					}
938 				}
939 			}
940 		}
941 	}
942 
943 	if (rqpair->cm_id) {
944 		if (rqpair->rdma_qp != NULL) {
945 			spdk_rdma_qp_destroy(rqpair->rdma_qp);
946 			rqpair->rdma_qp = NULL;
947 		}
948 
949 		if (rqpair->poller != NULL && rqpair->srq == NULL) {
950 			rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
951 		}
952 	}
953 
954 	if (rqpair->srq == NULL && rqpair->resources != NULL) {
955 		nvmf_rdma_resources_destroy(rqpair->resources);
956 	}
957 
958 	nvmf_rdma_qpair_clean_ibv_events(rqpair);
959 
960 	if (rqpair->destruct_channel) {
961 		spdk_put_io_channel(rqpair->destruct_channel);
962 		rqpair->destruct_channel = NULL;
963 	}
964 
965 	if (rqpair->poller && rqpair->poller->need_destroy && RB_EMPTY(&rqpair->poller->qpairs)) {
966 		nvmf_rdma_poller_destroy(rqpair->poller);
967 	}
968 
969 	/* destroy cm_id last so cma device will not be freed before we destroy the cq. */
970 	if (rqpair->cm_id) {
971 		rdma_destroy_id(rqpair->cm_id);
972 	}
973 
974 	free(rqpair);
975 }
976 
977 static int
978 nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
979 {
980 	struct spdk_nvmf_rdma_poller	*rpoller;
981 	int				rc, num_cqe, required_num_wr;
982 
983 	/* Enlarge CQ size dynamically */
984 	rpoller = rqpair->poller;
985 	required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
986 	num_cqe = rpoller->num_cqe;
987 	if (num_cqe < required_num_wr) {
988 		num_cqe = spdk_max(num_cqe * 2, required_num_wr);
989 		num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
990 	}
991 
992 	if (rpoller->num_cqe != num_cqe) {
993 		if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) {
994 			SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n"
995 				    "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe);
996 			return -1;
997 		}
998 		if (required_num_wr > device->attr.max_cqe) {
999 			SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
1000 				    required_num_wr, device->attr.max_cqe);
1001 			return -1;
1002 		}
1003 
1004 		SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
1005 		rc = ibv_resize_cq(rpoller->cq, num_cqe);
1006 		if (rc) {
1007 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
1008 			return -1;
1009 		}
1010 
1011 		rpoller->num_cqe = num_cqe;
1012 	}
1013 
1014 	rpoller->required_num_wr = required_num_wr;
1015 	return 0;
1016 }
1017 
1018 static int
1019 nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
1020 {
1021 	struct spdk_nvmf_rdma_qpair		*rqpair;
1022 	struct spdk_nvmf_rdma_transport		*rtransport;
1023 	struct spdk_nvmf_transport		*transport;
1024 	struct spdk_nvmf_rdma_resource_opts	opts;
1025 	struct spdk_nvmf_rdma_device		*device;
1026 	struct spdk_rdma_qp_init_attr		qp_init_attr = {};
1027 
1028 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1029 	device = rqpair->device;
1030 
1031 	qp_init_attr.qp_context	= rqpair;
1032 	qp_init_attr.pd		= device->pd;
1033 	qp_init_attr.send_cq	= rqpair->poller->cq;
1034 	qp_init_attr.recv_cq	= rqpair->poller->cq;
1035 
1036 	if (rqpair->srq) {
1037 		qp_init_attr.srq		= rqpair->srq->srq;
1038 	} else {
1039 		qp_init_attr.cap.max_recv_wr	= rqpair->max_queue_depth;
1040 	}
1041 
1042 	/* SEND, READ, and WRITE operations */
1043 	qp_init_attr.cap.max_send_wr	= (uint32_t)rqpair->max_queue_depth * 2;
1044 	qp_init_attr.cap.max_send_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
1045 	qp_init_attr.cap.max_recv_sge	= spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
1046 	qp_init_attr.stats		= &rqpair->poller->stat.qp_stats;
1047 
1048 	if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
1049 		SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
1050 		goto error;
1051 	}
1052 
1053 	rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr);
1054 	if (!rqpair->rdma_qp) {
1055 		goto error;
1056 	}
1057 
1058 	rqpair->qp_num = rqpair->rdma_qp->qp->qp_num;
1059 
1060 	rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2),
1061 					  qp_init_attr.cap.max_send_wr);
1062 	rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge);
1063 	rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge);
1064 	spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair);
1065 	SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair);
1066 
1067 	if (rqpair->poller->srq == NULL) {
1068 		rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
1069 		transport = &rtransport->transport;
1070 
1071 		opts.qp = rqpair->rdma_qp;
1072 		opts.map = device->map;
1073 		opts.qpair = rqpair;
1074 		opts.shared = false;
1075 		opts.max_queue_depth = rqpair->max_queue_depth;
1076 		opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
1077 
1078 		rqpair->resources = nvmf_rdma_resources_create(&opts);
1079 
1080 		if (!rqpair->resources) {
1081 			SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
1082 			rdma_destroy_qp(rqpair->cm_id);
1083 			goto error;
1084 		}
1085 	} else {
1086 		rqpair->resources = rqpair->poller->resources;
1087 	}
1088 
1089 	rqpair->current_recv_depth = 0;
1090 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1091 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1092 
1093 	return 0;
1094 
1095 error:
1096 	rdma_destroy_id(rqpair->cm_id);
1097 	rqpair->cm_id = NULL;
1098 	return -1;
1099 }
1100 
1101 /* Append the given recv wr structure to the resource structs outstanding recvs list. */
1102 /* This function accepts either a single wr or the first wr in a linked list. */
1103 static void
1104 nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first)
1105 {
1106 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1107 			struct spdk_nvmf_rdma_transport, transport);
1108 
1109 	if (rqpair->srq != NULL) {
1110 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, first);
1111 	} else {
1112 		if (spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, first)) {
1113 			STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link);
1114 		}
1115 	}
1116 
1117 	if (rtransport->rdma_opts.no_wr_batching) {
1118 		_poller_submit_recvs(rtransport, rqpair->poller);
1119 	}
1120 }
1121 
1122 static int
1123 request_transfer_in(struct spdk_nvmf_request *req)
1124 {
1125 	struct spdk_nvmf_rdma_request	*rdma_req;
1126 	struct spdk_nvmf_qpair		*qpair;
1127 	struct spdk_nvmf_rdma_qpair	*rqpair;
1128 	struct spdk_nvmf_rdma_transport *rtransport;
1129 
1130 	qpair = req->qpair;
1131 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1132 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1133 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1134 				      struct spdk_nvmf_rdma_transport, transport);
1135 
1136 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1137 	assert(rdma_req != NULL);
1138 
1139 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, rdma_req->transfer_wr)) {
1140 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1141 	}
1142 	if (rtransport->rdma_opts.no_wr_batching) {
1143 		_poller_submit_sends(rtransport, rqpair->poller);
1144 	}
1145 
1146 	rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1147 	rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1148 	return 0;
1149 }
1150 
1151 static inline int
1152 nvmf_rdma_request_reset_transfer_in(struct spdk_nvmf_rdma_request *rdma_req,
1153 				    struct spdk_nvmf_rdma_transport *rtransport)
1154 {
1155 	/* Put completed WRs back to pool and move transfer_wr pointer */
1156 	_nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool);
1157 	rdma_req->transfer_wr = rdma_req->remaining_tranfer_in_wrs;
1158 	rdma_req->remaining_tranfer_in_wrs = NULL;
1159 	rdma_req->num_outstanding_data_wr = rdma_req->num_remaining_data_wr;
1160 	rdma_req->num_remaining_data_wr = 0;
1161 
1162 	return 0;
1163 }
1164 
1165 static inline int
1166 request_prepare_transfer_in_part(struct spdk_nvmf_request *req, uint32_t num_reads_available)
1167 {
1168 	struct spdk_nvmf_rdma_request	*rdma_req;
1169 	struct ibv_send_wr		*wr;
1170 	uint32_t i;
1171 
1172 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1173 
1174 	assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1175 	assert(rdma_req != NULL);
1176 	assert(num_reads_available > 0);
1177 	assert(rdma_req->num_outstanding_data_wr > num_reads_available);
1178 	wr = rdma_req->transfer_wr;
1179 
1180 	for (i = 0; i < num_reads_available - 1; i++) {
1181 		wr = wr->next;
1182 	}
1183 
1184 	rdma_req->remaining_tranfer_in_wrs = wr->next;
1185 	rdma_req->num_remaining_data_wr = rdma_req->num_outstanding_data_wr - num_reads_available;
1186 	rdma_req->num_outstanding_data_wr = num_reads_available;
1187 	/* Break chain of WRs to send only part. Once this portion completes, we continue sending RDMA_READs */
1188 	wr->next = NULL;
1189 
1190 	return 0;
1191 }
1192 
1193 static int
1194 request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1195 {
1196 	int				num_outstanding_data_wr = 0;
1197 	struct spdk_nvmf_rdma_request	*rdma_req;
1198 	struct spdk_nvmf_qpair		*qpair;
1199 	struct spdk_nvmf_rdma_qpair	*rqpair;
1200 	struct spdk_nvme_cpl		*rsp;
1201 	struct ibv_send_wr		*first = NULL;
1202 	struct spdk_nvmf_rdma_transport *rtransport;
1203 
1204 	*data_posted = 0;
1205 	qpair = req->qpair;
1206 	rsp = &req->rsp->nvme_cpl;
1207 	rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1208 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1209 	rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1210 				      struct spdk_nvmf_rdma_transport, transport);
1211 
1212 	/* Advance our sq_head pointer */
1213 	if (qpair->sq_head == qpair->sq_head_max) {
1214 		qpair->sq_head = 0;
1215 	} else {
1216 		qpair->sq_head++;
1217 	}
1218 	rsp->sqhd = qpair->sq_head;
1219 
1220 	/* queue the capsule for the recv buffer */
1221 	assert(rdma_req->recv != NULL);
1222 
1223 	nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr);
1224 
1225 	rdma_req->recv = NULL;
1226 	assert(rqpair->current_recv_depth > 0);
1227 	rqpair->current_recv_depth--;
1228 
1229 	/* Build the response which consists of optional
1230 	 * RDMA WRITEs to transfer data, plus an RDMA SEND
1231 	 * containing the response.
1232 	 */
1233 	first = &rdma_req->rsp.wr;
1234 
1235 	if (rsp->status.sc != SPDK_NVME_SC_SUCCESS) {
1236 		/* On failure, data was not read from the controller. So clear the
1237 		 * number of outstanding data WRs to zero.
1238 		 */
1239 		rdma_req->num_outstanding_data_wr = 0;
1240 	} else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1241 		first = rdma_req->transfer_wr;
1242 		*data_posted = 1;
1243 		num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
1244 	}
1245 	if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) {
1246 		STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1247 	}
1248 	if (rtransport->rdma_opts.no_wr_batching) {
1249 		_poller_submit_sends(rtransport, rqpair->poller);
1250 	}
1251 
1252 	/* +1 for the rsp wr */
1253 	rqpair->current_send_depth += num_outstanding_data_wr + 1;
1254 
1255 	return 0;
1256 }
1257 
1258 static int
1259 nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1260 {
1261 	struct spdk_nvmf_rdma_accept_private_data	accept_data;
1262 	struct rdma_conn_param				ctrlr_event_data = {};
1263 	int						rc;
1264 
1265 	accept_data.recfmt = 0;
1266 	accept_data.crqsize = rqpair->max_queue_depth;
1267 
1268 	ctrlr_event_data.private_data = &accept_data;
1269 	ctrlr_event_data.private_data_len = sizeof(accept_data);
1270 	if (id->ps == RDMA_PS_TCP) {
1271 		ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1272 		ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1273 	}
1274 
1275 	/* Configure infinite retries for the initiator side qpair.
1276 	 * We need to pass this value to the initiator to prevent the
1277 	 * initiator side NIC from completing SEND requests back to the
1278 	 * initiator with status rnr_retry_count_exceeded. */
1279 	ctrlr_event_data.rnr_retry_count = 0x7;
1280 
1281 	/* When qpair is created without use of rdma cm API, an additional
1282 	 * information must be provided to initiator in the connection response:
1283 	 * whether qpair is using SRQ and its qp_num
1284 	 * Fields below are ignored by rdma cm if qpair has been
1285 	 * created using rdma cm API. */
1286 	ctrlr_event_data.srq = rqpair->srq ? 1 : 0;
1287 	ctrlr_event_data.qp_num = rqpair->qp_num;
1288 
1289 	rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data);
1290 	if (rc) {
1291 		SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno);
1292 	} else {
1293 		SPDK_DEBUGLOG(rdma, "Sent back the accept\n");
1294 	}
1295 
1296 	return rc;
1297 }
1298 
1299 static void
1300 nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1301 {
1302 	struct spdk_nvmf_rdma_reject_private_data	rej_data;
1303 
1304 	rej_data.recfmt = 0;
1305 	rej_data.sts = error;
1306 
1307 	rdma_reject(id, &rej_data, sizeof(rej_data));
1308 }
1309 
1310 static int
1311 nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event)
1312 {
1313 	struct spdk_nvmf_rdma_transport *rtransport;
1314 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
1315 	struct spdk_nvmf_rdma_port	*port;
1316 	struct rdma_conn_param		*rdma_param = NULL;
1317 	const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1318 	uint16_t			max_queue_depth;
1319 	uint16_t			max_read_depth;
1320 
1321 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1322 
1323 	assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1324 	assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1325 
1326 	rdma_param = &event->param.conn;
1327 	if (rdma_param->private_data == NULL ||
1328 	    rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1329 		SPDK_ERRLOG("connect request: no private data provided\n");
1330 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1331 		return -1;
1332 	}
1333 
1334 	private_data = rdma_param->private_data;
1335 	if (private_data->recfmt != 0) {
1336 		SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1337 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1338 		return -1;
1339 	}
1340 
1341 	SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n",
1342 		      event->id->verbs->device->name, event->id->verbs->device->dev_name);
1343 
1344 	port = event->listen_id->context;
1345 	SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1346 		      event->listen_id, event->listen_id->verbs, port);
1347 
1348 	/* Figure out the supported queue depth. This is a multi-step process
1349 	 * that takes into account hardware maximums, host provided values,
1350 	 * and our target's internal memory limits */
1351 
1352 	SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n");
1353 
1354 	/* Start with the maximum queue depth allowed by the target */
1355 	max_queue_depth = rtransport->transport.opts.max_queue_depth;
1356 	max_read_depth = rtransport->transport.opts.max_queue_depth;
1357 	SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n",
1358 		      rtransport->transport.opts.max_queue_depth);
1359 
1360 	/* Next check the local NIC's hardware limitations */
1361 	SPDK_DEBUGLOG(rdma,
1362 		      "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1363 		      port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1364 	max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1365 	max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1366 
1367 	/* Next check the remote NIC's hardware limitations */
1368 	SPDK_DEBUGLOG(rdma,
1369 		      "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1370 		      rdma_param->initiator_depth, rdma_param->responder_resources);
1371 	/* from man3 rdma_get_cm_event
1372 	 * responder_resources - Specifies the number of responder resources that is requested by the recipient.
1373 	 * The responder_resources field must match the initiator depth specified by the remote node when running
1374 	 * the rdma_connect and rdma_accept functions. */
1375 	if (rdma_param->responder_resources != 0) {
1376 		if (private_data->qid) {
1377 			SPDK_DEBUGLOG(rdma, "Host (Initiator) is not allowed to use RDMA operations,"
1378 				      " responder_resources must be 0 but set to %u\n",
1379 				      rdma_param->responder_resources);
1380 		} else {
1381 			SPDK_WARNLOG("Host (Initiator) is not allowed to use RDMA operations,"
1382 				     " responder_resources must be 0 but set to %u\n",
1383 				     rdma_param->responder_resources);
1384 		}
1385 	}
1386 	/* from man3 rdma_get_cm_event
1387 	 * initiator_depth - Specifies the maximum number of outstanding RDMA read operations that the recipient holds.
1388 	 * The initiator_depth field must match the responder resources specified by the remote node when running
1389 	 * the rdma_connect and rdma_accept functions. */
1390 	if (rdma_param->initiator_depth == 0) {
1391 		SPDK_ERRLOG("Host (Initiator) doesn't support RDMA_READ or atomic operations\n");
1392 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_IRD);
1393 		return -1;
1394 	}
1395 	max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1396 
1397 	SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1398 	SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize);
1399 	max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1400 	max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1401 
1402 	SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1403 		      max_queue_depth, max_read_depth);
1404 
1405 	rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1406 	if (rqpair == NULL) {
1407 		SPDK_ERRLOG("Could not allocate new connection.\n");
1408 		nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1409 		return -1;
1410 	}
1411 
1412 	rqpair->device = port->device;
1413 	rqpair->max_queue_depth = max_queue_depth;
1414 	rqpair->max_read_depth = max_read_depth;
1415 	rqpair->cm_id = event->id;
1416 	rqpair->listen_id = event->listen_id;
1417 	rqpair->qpair.transport = transport;
1418 	STAILQ_INIT(&rqpair->ibv_events);
1419 	/* use qid from the private data to determine the qpair type
1420 	   qid will be set to the appropriate value when the controller is created */
1421 	rqpair->qpair.qid = private_data->qid;
1422 
1423 	event->id->context = &rqpair->qpair;
1424 
1425 	spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair);
1426 
1427 	return 0;
1428 }
1429 
1430 static inline void
1431 nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next,
1432 		   enum spdk_nvme_data_transfer xfer)
1433 {
1434 	if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1435 		wr->opcode = IBV_WR_RDMA_WRITE;
1436 		wr->send_flags = 0;
1437 		wr->next = next;
1438 	} else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1439 		wr->opcode = IBV_WR_RDMA_READ;
1440 		wr->send_flags = IBV_SEND_SIGNALED;
1441 		wr->next = NULL;
1442 	} else {
1443 		assert(0);
1444 	}
1445 }
1446 
1447 static int
1448 nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1449 		       struct spdk_nvmf_rdma_request *rdma_req,
1450 		       uint32_t num_sgl_descriptors)
1451 {
1452 	struct spdk_nvmf_rdma_request_data	*work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1453 	struct spdk_nvmf_rdma_request_data	*current_data_wr;
1454 	uint32_t				i;
1455 
1456 	if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) {
1457 		SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n",
1458 			    num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES);
1459 		return -EINVAL;
1460 	}
1461 
1462 	if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) {
1463 		return -ENOMEM;
1464 	}
1465 
1466 	current_data_wr = &rdma_req->data;
1467 
1468 	for (i = 0; i < num_sgl_descriptors; i++) {
1469 		nvmf_rdma_setup_wr(&current_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer);
1470 		current_data_wr->wr.next = &work_requests[i]->wr;
1471 		current_data_wr = work_requests[i];
1472 		current_data_wr->wr.sg_list = current_data_wr->sgl;
1473 		current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id;
1474 	}
1475 
1476 	nvmf_rdma_setup_wr(&current_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1477 
1478 	return 0;
1479 }
1480 
1481 static inline void
1482 nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req)
1483 {
1484 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1485 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1486 
1487 	wr->wr.rdma.rkey = sgl->keyed.key;
1488 	wr->wr.rdma.remote_addr = sgl->address;
1489 	nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1490 }
1491 
1492 static inline void
1493 nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs)
1494 {
1495 	struct ibv_send_wr		*wr = &rdma_req->data.wr;
1496 	struct spdk_nvme_sgl_descriptor	*sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1497 	uint32_t			i;
1498 	int				j;
1499 	uint64_t			remote_addr_offset = 0;
1500 
1501 	for (i = 0; i < num_wrs; ++i) {
1502 		wr->wr.rdma.rkey = sgl->keyed.key;
1503 		wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset;
1504 		for (j = 0; j < wr->num_sge; ++j) {
1505 			remote_addr_offset += wr->sg_list[j].length;
1506 		}
1507 		wr = wr->next;
1508 	}
1509 }
1510 
1511 static int
1512 nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup,
1513 		      struct spdk_nvmf_rdma_device *device,
1514 		      struct spdk_nvmf_rdma_request *rdma_req,
1515 		      struct ibv_send_wr *wr,
1516 		      uint32_t total_length)
1517 {
1518 	struct spdk_rdma_memory_translation mem_translation;
1519 	struct ibv_sge	*sg_ele;
1520 	struct iovec *iov;
1521 	uint32_t lkey, remaining;
1522 	int rc;
1523 
1524 	wr->num_sge = 0;
1525 
1526 	while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) {
1527 		iov = &rdma_req->req.iov[rdma_req->iovpos];
1528 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1529 		if (spdk_unlikely(rc)) {
1530 			return rc;
1531 		}
1532 
1533 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1534 		sg_ele = &wr->sg_list[wr->num_sge];
1535 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1536 
1537 		sg_ele->lkey = lkey;
1538 		sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset;
1539 		sg_ele->length = remaining;
1540 		SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr,
1541 			      sg_ele->length);
1542 		rdma_req->offset += sg_ele->length;
1543 		total_length -= sg_ele->length;
1544 		wr->num_sge++;
1545 
1546 		if (rdma_req->offset == iov->iov_len) {
1547 			rdma_req->offset = 0;
1548 			rdma_req->iovpos++;
1549 		}
1550 	}
1551 
1552 	if (total_length) {
1553 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1554 		return -EINVAL;
1555 	}
1556 
1557 	return 0;
1558 }
1559 
1560 static int
1561 nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_poll_group *rgroup,
1562 			       struct spdk_nvmf_rdma_device *device,
1563 			       struct spdk_nvmf_rdma_request *rdma_req,
1564 			       struct ibv_send_wr *wr,
1565 			       uint32_t total_length,
1566 			       uint32_t num_extra_wrs)
1567 {
1568 	struct spdk_rdma_memory_translation mem_translation;
1569 	struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx;
1570 	struct ibv_sge *sg_ele;
1571 	struct iovec *iov;
1572 	struct iovec *rdma_iov;
1573 	uint32_t lkey, remaining;
1574 	uint32_t remaining_data_block, data_block_size, md_size;
1575 	uint32_t sge_len;
1576 	int rc;
1577 
1578 	data_block_size = dif_ctx->block_size - dif_ctx->md_size;
1579 
1580 	if (spdk_likely(!rdma_req->req.stripped_data)) {
1581 		rdma_iov = rdma_req->req.iov;
1582 		remaining_data_block = data_block_size;
1583 		md_size = dif_ctx->md_size;
1584 	} else {
1585 		rdma_iov = rdma_req->req.stripped_data->iov;
1586 		total_length = total_length / dif_ctx->block_size * data_block_size;
1587 		remaining_data_block = total_length;
1588 		md_size = 0;
1589 	}
1590 
1591 	wr->num_sge = 0;
1592 
1593 	while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) {
1594 		iov = rdma_iov + rdma_req->iovpos;
1595 		rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1596 		if (spdk_unlikely(rc)) {
1597 			return rc;
1598 		}
1599 
1600 		lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1601 		sg_ele = &wr->sg_list[wr->num_sge];
1602 		remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1603 
1604 		while (remaining) {
1605 			if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) {
1606 				if (num_extra_wrs > 0 && wr->next) {
1607 					wr = wr->next;
1608 					wr->num_sge = 0;
1609 					sg_ele = &wr->sg_list[wr->num_sge];
1610 					num_extra_wrs--;
1611 				} else {
1612 					break;
1613 				}
1614 			}
1615 			sg_ele->lkey = lkey;
1616 			sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset);
1617 			sge_len = spdk_min(remaining, remaining_data_block);
1618 			sg_ele->length = sge_len;
1619 			SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele,
1620 				      sg_ele->addr, sg_ele->length);
1621 			remaining -= sge_len;
1622 			remaining_data_block -= sge_len;
1623 			rdma_req->offset += sge_len;
1624 			total_length -= sge_len;
1625 
1626 			sg_ele++;
1627 			wr->num_sge++;
1628 
1629 			if (remaining_data_block == 0) {
1630 				/* skip metadata */
1631 				rdma_req->offset += md_size;
1632 				total_length -= md_size;
1633 				/* Metadata that do not fit this IO buffer will be included in the next IO buffer */
1634 				remaining -= spdk_min(remaining, md_size);
1635 				remaining_data_block = data_block_size;
1636 			}
1637 
1638 			if (remaining == 0) {
1639 				/* By subtracting the size of the last IOV from the offset, we ensure that we skip
1640 				   the remaining metadata bits at the beginning of the next buffer */
1641 				rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset);
1642 				rdma_req->iovpos++;
1643 			}
1644 		}
1645 	}
1646 
1647 	if (total_length) {
1648 		SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1649 		return -EINVAL;
1650 	}
1651 
1652 	return 0;
1653 }
1654 
1655 static inline uint32_t
1656 nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size)
1657 {
1658 	/* estimate the number of SG entries and WRs needed to process the request */
1659 	uint32_t num_sge = 0;
1660 	uint32_t i;
1661 	uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size);
1662 
1663 	for (i = 0; i < num_buffers && length > 0; i++) {
1664 		uint32_t buffer_len = spdk_min(length, io_unit_size);
1665 		uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size);
1666 
1667 		if (num_sge_in_block * block_size > buffer_len) {
1668 			++num_sge_in_block;
1669 		}
1670 		num_sge += num_sge_in_block;
1671 		length -= buffer_len;
1672 	}
1673 	return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES);
1674 }
1675 
1676 static int
1677 nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1678 			    struct spdk_nvmf_rdma_device *device,
1679 			    struct spdk_nvmf_rdma_request *rdma_req)
1680 {
1681 	struct spdk_nvmf_rdma_qpair		*rqpair;
1682 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1683 	struct spdk_nvmf_request		*req = &rdma_req->req;
1684 	struct ibv_send_wr			*wr = &rdma_req->data.wr;
1685 	int					rc;
1686 	uint32_t				num_wrs = 1;
1687 	uint32_t				length;
1688 
1689 	rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair);
1690 	rgroup = rqpair->poller->group;
1691 
1692 	/* rdma wr specifics */
1693 	nvmf_rdma_setup_request(rdma_req);
1694 
1695 	length = req->length;
1696 	if (spdk_unlikely(req->dif_enabled)) {
1697 		req->dif.orig_length = length;
1698 		length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
1699 		req->dif.elba_length = length;
1700 	}
1701 
1702 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
1703 					   length);
1704 	if (rc != 0) {
1705 		return rc;
1706 	}
1707 
1708 	assert(req->iovcnt <= rqpair->max_send_sge);
1709 
1710 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1711 	 * the stripped_buffers are got for DIF stripping. */
1712 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1713 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1714 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1715 						       &rtransport->transport, req->dif.orig_length);
1716 		if (rc != 0) {
1717 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1718 		}
1719 	}
1720 
1721 	rdma_req->iovpos = 0;
1722 
1723 	if (spdk_unlikely(req->dif_enabled)) {
1724 		num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size,
1725 						 req->dif.dif_ctx.block_size);
1726 		if (num_wrs > 1) {
1727 			rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1);
1728 			if (rc != 0) {
1729 				goto err_exit;
1730 			}
1731 		}
1732 
1733 		rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, wr, length, num_wrs - 1);
1734 		if (spdk_unlikely(rc != 0)) {
1735 			goto err_exit;
1736 		}
1737 
1738 		if (num_wrs > 1) {
1739 			nvmf_rdma_update_remote_addr(rdma_req, num_wrs);
1740 		}
1741 	} else {
1742 		rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length);
1743 		if (spdk_unlikely(rc != 0)) {
1744 			goto err_exit;
1745 		}
1746 	}
1747 
1748 	/* set the number of outstanding data WRs for this request. */
1749 	rdma_req->num_outstanding_data_wr = num_wrs;
1750 
1751 	return rc;
1752 
1753 err_exit:
1754 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1755 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1756 	req->iovcnt = 0;
1757 	return rc;
1758 }
1759 
1760 static int
1761 nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1762 				      struct spdk_nvmf_rdma_device *device,
1763 				      struct spdk_nvmf_rdma_request *rdma_req)
1764 {
1765 	struct spdk_nvmf_rdma_qpair		*rqpair;
1766 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1767 	struct ibv_send_wr			*current_wr;
1768 	struct spdk_nvmf_request		*req = &rdma_req->req;
1769 	struct spdk_nvme_sgl_descriptor		*inline_segment, *desc;
1770 	uint32_t				num_sgl_descriptors;
1771 	uint32_t				lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0;
1772 	uint32_t				i;
1773 	int					rc;
1774 
1775 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1776 	rgroup = rqpair->poller->group;
1777 
1778 	inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1779 	assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1780 	assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1781 
1782 	num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1783 	assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1784 
1785 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1786 	for (i = 0; i < num_sgl_descriptors; i++) {
1787 		if (spdk_likely(!req->dif_enabled)) {
1788 			lengths[i] = desc->keyed.length;
1789 		} else {
1790 			req->dif.orig_length += desc->keyed.length;
1791 			lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx);
1792 			req->dif.elba_length += lengths[i];
1793 		}
1794 		total_length += lengths[i];
1795 		desc++;
1796 	}
1797 
1798 	if (total_length > rtransport->transport.opts.max_io_size) {
1799 		SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n",
1800 			    total_length, rtransport->transport.opts.max_io_size);
1801 		req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1802 		return -EINVAL;
1803 	}
1804 
1805 	if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) {
1806 		return -ENOMEM;
1807 	}
1808 
1809 	rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length);
1810 	if (rc != 0) {
1811 		nvmf_rdma_request_free_data(rdma_req, rtransport);
1812 		return rc;
1813 	}
1814 
1815 	/* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1816 	 * the stripped_buffers are got for DIF stripping. */
1817 	if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1818 			  && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1819 		rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1820 						       &rtransport->transport, req->dif.orig_length);
1821 		if (rc != 0) {
1822 			SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1823 		}
1824 	}
1825 
1826 	/* The first WR must always be the embedded data WR. This is how we unwind them later. */
1827 	current_wr = &rdma_req->data.wr;
1828 	assert(current_wr != NULL);
1829 
1830 	req->length = 0;
1831 	rdma_req->iovpos = 0;
1832 	desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1833 	for (i = 0; i < num_sgl_descriptors; i++) {
1834 		/* The descriptors must be keyed data block descriptors with an address, not an offset. */
1835 		if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1836 				  desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1837 			rc = -EINVAL;
1838 			goto err_exit;
1839 		}
1840 
1841 		if (spdk_likely(!req->dif_enabled)) {
1842 			rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i]);
1843 		} else {
1844 			rc = nvmf_rdma_fill_wr_sgl_with_dif(rgroup, device, rdma_req, current_wr,
1845 							    lengths[i], 0);
1846 		}
1847 		if (rc != 0) {
1848 			rc = -ENOMEM;
1849 			goto err_exit;
1850 		}
1851 
1852 		req->length += desc->keyed.length;
1853 		current_wr->wr.rdma.rkey = desc->keyed.key;
1854 		current_wr->wr.rdma.remote_addr = desc->address;
1855 		current_wr = current_wr->next;
1856 		desc++;
1857 	}
1858 
1859 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1860 	/* Go back to the last descriptor in the list. */
1861 	desc--;
1862 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1863 		if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1864 			rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1865 			rdma_req->rsp.wr.imm_data = desc->keyed.key;
1866 		}
1867 	}
1868 #endif
1869 
1870 	rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1871 
1872 	return 0;
1873 
1874 err_exit:
1875 	spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1876 	nvmf_rdma_request_free_data(rdma_req, rtransport);
1877 	return rc;
1878 }
1879 
1880 static int
1881 nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1882 			    struct spdk_nvmf_rdma_device *device,
1883 			    struct spdk_nvmf_rdma_request *rdma_req)
1884 {
1885 	struct spdk_nvmf_request		*req = &rdma_req->req;
1886 	struct spdk_nvme_cpl			*rsp;
1887 	struct spdk_nvme_sgl_descriptor		*sgl;
1888 	int					rc;
1889 	uint32_t				length;
1890 
1891 	rsp = &req->rsp->nvme_cpl;
1892 	sgl = &req->cmd->nvme_cmd.dptr.sgl1;
1893 
1894 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1895 	    (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1896 	     sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1897 
1898 		length = sgl->keyed.length;
1899 		if (length > rtransport->transport.opts.max_io_size) {
1900 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1901 				    length, rtransport->transport.opts.max_io_size);
1902 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1903 			return -1;
1904 		}
1905 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1906 		if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1907 			if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1908 				rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1909 				rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1910 			}
1911 		}
1912 #endif
1913 
1914 		/* fill request length and populate iovs */
1915 		req->length = length;
1916 
1917 		rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req);
1918 		if (spdk_unlikely(rc < 0)) {
1919 			if (rc == -EINVAL) {
1920 				SPDK_ERRLOG("SGL length exceeds the max I/O size\n");
1921 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1922 				return -1;
1923 			}
1924 			/* No available buffers. Queue this request up. */
1925 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1926 			return 0;
1927 		}
1928 
1929 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1930 			      req->iovcnt);
1931 
1932 		return 0;
1933 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1934 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1935 		uint64_t offset = sgl->address;
1936 		uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1937 
1938 		SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1939 			      offset, sgl->unkeyed.length);
1940 
1941 		if (offset > max_len) {
1942 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1943 				    offset, max_len);
1944 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1945 			return -1;
1946 		}
1947 		max_len -= (uint32_t)offset;
1948 
1949 		if (sgl->unkeyed.length > max_len) {
1950 			SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1951 				    sgl->unkeyed.length, max_len);
1952 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1953 			return -1;
1954 		}
1955 
1956 		rdma_req->num_outstanding_data_wr = 0;
1957 		req->data_from_pool = false;
1958 		req->length = sgl->unkeyed.length;
1959 
1960 		req->iov[0].iov_base = rdma_req->recv->buf + offset;
1961 		req->iov[0].iov_len = req->length;
1962 		req->iovcnt = 1;
1963 
1964 		return 0;
1965 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1966 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1967 
1968 		rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1969 		if (rc == -ENOMEM) {
1970 			SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1971 			return 0;
1972 		} else if (rc == -EINVAL) {
1973 			SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1974 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1975 			return -1;
1976 		}
1977 
1978 		SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1979 			      req->iovcnt);
1980 
1981 		return 0;
1982 	}
1983 
1984 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
1985 		    sgl->generic.type, sgl->generic.subtype);
1986 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1987 	return -1;
1988 }
1989 
1990 static void
1991 _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1992 			struct spdk_nvmf_rdma_transport	*rtransport)
1993 {
1994 	struct spdk_nvmf_rdma_qpair		*rqpair;
1995 	struct spdk_nvmf_rdma_poll_group	*rgroup;
1996 
1997 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1998 	if (rdma_req->req.data_from_pool) {
1999 		rgroup = rqpair->poller->group;
2000 
2001 		spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport);
2002 	}
2003 	if (rdma_req->req.stripped_data) {
2004 		nvmf_request_free_stripped_buffers(&rdma_req->req,
2005 						   &rqpair->poller->group->group,
2006 						   &rtransport->transport);
2007 	}
2008 	nvmf_rdma_request_free_data(rdma_req, rtransport);
2009 	rdma_req->req.length = 0;
2010 	rdma_req->req.iovcnt = 0;
2011 	rdma_req->offset = 0;
2012 	rdma_req->req.dif_enabled = false;
2013 	rdma_req->fused_failed = false;
2014 	rdma_req->transfer_wr = NULL;
2015 	if (rdma_req->fused_pair) {
2016 		/* This req was part of a valid fused pair, but failed before it got to
2017 		 * READ_TO_EXECUTE state.  This means we need to fail the other request
2018 		 * in the pair, because it is no longer part of a valid pair.  If the pair
2019 		 * already reached READY_TO_EXECUTE state, we need to kick it.
2020 		 */
2021 		rdma_req->fused_pair->fused_failed = true;
2022 		if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2023 			nvmf_rdma_request_process(rtransport, rdma_req->fused_pair);
2024 		}
2025 		rdma_req->fused_pair = NULL;
2026 	}
2027 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
2028 	rqpair->qd--;
2029 
2030 	STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
2031 	rdma_req->state = RDMA_REQUEST_STATE_FREE;
2032 }
2033 
2034 static void
2035 nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport,
2036 			       struct spdk_nvmf_rdma_qpair *rqpair,
2037 			       struct spdk_nvmf_rdma_request *rdma_req)
2038 {
2039 	enum spdk_nvme_cmd_fuse last, next;
2040 
2041 	last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2042 	next = rdma_req->req.cmd->nvme_cmd.fuse;
2043 
2044 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2045 
2046 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2047 		return;
2048 	}
2049 
2050 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2051 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2052 			/* This is a valid pair of fused commands.  Point them at each other
2053 			 * so they can be submitted consecutively once ready to be executed.
2054 			 */
2055 			rqpair->fused_first->fused_pair = rdma_req;
2056 			rdma_req->fused_pair = rqpair->fused_first;
2057 			rqpair->fused_first = NULL;
2058 			return;
2059 		} else {
2060 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2061 			rqpair->fused_first->fused_failed = true;
2062 
2063 			/* If the last req is in READY_TO_EXECUTE state, then call
2064 			 * nvmf_rdma_request_process(), otherwise nothing else will kick it.
2065 			 */
2066 			if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2067 				nvmf_rdma_request_process(rtransport, rqpair->fused_first);
2068 			}
2069 
2070 			rqpair->fused_first = NULL;
2071 		}
2072 	}
2073 
2074 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2075 		/* Set rqpair->fused_first here so that we know to check that the next request
2076 		 * is a SECOND (and to fail this one if it isn't).
2077 		 */
2078 		rqpair->fused_first = rdma_req;
2079 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2080 		/* Mark this req failed since it ia SECOND and the last one was not a FIRST. */
2081 		rdma_req->fused_failed = true;
2082 	}
2083 }
2084 
2085 bool
2086 nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
2087 			  struct spdk_nvmf_rdma_request *rdma_req)
2088 {
2089 	struct spdk_nvmf_rdma_qpair	*rqpair;
2090 	struct spdk_nvmf_rdma_device	*device;
2091 	struct spdk_nvmf_rdma_poll_group *rgroup;
2092 	struct spdk_nvme_cpl		*rsp = &rdma_req->req.rsp->nvme_cpl;
2093 	int				rc;
2094 	struct spdk_nvmf_rdma_recv	*rdma_recv;
2095 	enum spdk_nvmf_rdma_request_state prev_state;
2096 	bool				progress = false;
2097 	int				data_posted;
2098 	uint32_t			num_blocks, num_rdma_reads_available, qdepth;
2099 
2100 	rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2101 	device = rqpair->device;
2102 	rgroup = rqpair->poller->group;
2103 
2104 	assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
2105 
2106 	/* If the queue pair is in an error state, force the request to the completed state
2107 	 * to release resources. */
2108 	if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2109 		if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) {
2110 			STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link);
2111 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) {
2112 			STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2113 		} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) {
2114 			STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2115 		}
2116 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2117 	}
2118 
2119 	/* The loop here is to allow for several back-to-back state changes. */
2120 	do {
2121 		prev_state = rdma_req->state;
2122 
2123 		SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state);
2124 
2125 		switch (rdma_req->state) {
2126 		case RDMA_REQUEST_STATE_FREE:
2127 			/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
2128 			 * to escape this state. */
2129 			break;
2130 		case RDMA_REQUEST_STATE_NEW:
2131 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
2132 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2133 			rdma_recv = rdma_req->recv;
2134 
2135 			/* The first element of the SGL is the NVMe command */
2136 			rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
2137 			memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
2138 			rdma_req->transfer_wr = &rdma_req->data.wr;
2139 
2140 			if (rqpair->ibv_state == IBV_QPS_ERR  || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2141 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2142 				break;
2143 			}
2144 
2145 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) {
2146 				rdma_req->req.dif_enabled = true;
2147 			}
2148 
2149 			nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req);
2150 
2151 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2152 			rdma_req->rsp.wr.opcode = IBV_WR_SEND;
2153 			rdma_req->rsp.wr.imm_data = 0;
2154 #endif
2155 
2156 			/* The next state transition depends on the data transfer needs of this request. */
2157 			rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req);
2158 
2159 			if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2160 				rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2161 				rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE;
2162 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2163 				SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req);
2164 				break;
2165 			}
2166 
2167 			/* If no data to transfer, ready to execute. */
2168 			if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
2169 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2170 				break;
2171 			}
2172 
2173 			rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
2174 			STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link);
2175 			break;
2176 		case RDMA_REQUEST_STATE_NEED_BUFFER:
2177 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
2178 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2179 
2180 			assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
2181 
2182 			if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) {
2183 				/* This request needs to wait in line to obtain a buffer */
2184 				break;
2185 			}
2186 
2187 			/* Try to get a data buffer */
2188 			rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
2189 			if (rc < 0) {
2190 				STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2191 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2192 				break;
2193 			}
2194 
2195 			if (rdma_req->req.iovcnt == 0) {
2196 				/* No buffers available. */
2197 				rgroup->stat.pending_data_buffer++;
2198 				break;
2199 			}
2200 
2201 			STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2202 
2203 			/* If data is transferring from host to controller and the data didn't
2204 			 * arrive using in capsule data, we need to do a transfer from the host.
2205 			 */
2206 			if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER &&
2207 			    rdma_req->req.data_from_pool) {
2208 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
2209 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
2210 				break;
2211 			}
2212 
2213 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2214 			break;
2215 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2216 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
2217 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2218 
2219 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
2220 				/* This request needs to wait in line to perform RDMA */
2221 				break;
2222 			}
2223 			qdepth = rqpair->max_send_depth - rqpair->current_send_depth;
2224 			num_rdma_reads_available = rqpair->max_read_depth - rqpair->current_read_depth;
2225 			if (rdma_req->num_outstanding_data_wr > qdepth ||
2226 			    rdma_req->num_outstanding_data_wr > num_rdma_reads_available) {
2227 				if (num_rdma_reads_available && qdepth) {
2228 					/* Send as much as we can */
2229 					request_prepare_transfer_in_part(&rdma_req->req, spdk_min(num_rdma_reads_available, qdepth));
2230 				} else {
2231 					/* We can only have so many WRs outstanding. we have to wait until some finish. */
2232 					rqpair->poller->stat.pending_rdma_read++;
2233 					break;
2234 				}
2235 			}
2236 
2237 			/* We have already verified that this request is the head of the queue. */
2238 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
2239 
2240 			rc = request_transfer_in(&rdma_req->req);
2241 			if (!rc) {
2242 				rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
2243 			} else {
2244 				rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2245 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2246 			}
2247 			break;
2248 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2249 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
2250 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2251 			/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
2252 			 * to escape this state. */
2253 			break;
2254 		case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
2255 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
2256 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2257 
2258 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2259 				if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2260 					/* generate DIF for write operation */
2261 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2262 					assert(num_blocks > 0);
2263 
2264 					rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt,
2265 							       num_blocks, &rdma_req->req.dif.dif_ctx);
2266 					if (rc != 0) {
2267 						SPDK_ERRLOG("DIF generation failed\n");
2268 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2269 						spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
2270 						break;
2271 					}
2272 				}
2273 
2274 				assert(rdma_req->req.dif.elba_length >= rdma_req->req.length);
2275 				/* set extended length before IO operation */
2276 				rdma_req->req.length = rdma_req->req.dif.elba_length;
2277 			}
2278 
2279 			if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2280 				if (rdma_req->fused_failed) {
2281 					/* This request failed FUSED semantics.  Fail it immediately, without
2282 					 * even sending it to the target layer.
2283 					 */
2284 					rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2285 					rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2286 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2287 					break;
2288 				}
2289 
2290 				if (rdma_req->fused_pair == NULL ||
2291 				    rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2292 					/* This request is ready to execute, but either we don't know yet if it's
2293 					 * valid - i.e. this is a FIRST but we haven't received the next
2294 					 * request yet or the other request of this fused pair isn't ready to
2295 					 * execute.  So break here and this request will get processed later either
2296 					 * when the other request is ready or we find that this request isn't valid.
2297 					 */
2298 					break;
2299 				}
2300 			}
2301 
2302 			/* If we get to this point, and this request is a fused command, we know that
2303 			 * it is part of valid sequence (FIRST followed by a SECOND) and that both
2304 			 * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this
2305 			 * request, and the other request of the fused pair, in the correct order.
2306 			 * Also clear the ->fused_pair pointers on both requests, since after this point
2307 			 * we no longer need to maintain the relationship between these two requests.
2308 			 */
2309 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2310 				assert(rdma_req->fused_pair != NULL);
2311 				assert(rdma_req->fused_pair->fused_pair != NULL);
2312 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2313 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2314 				rdma_req->fused_pair->fused_pair = NULL;
2315 				rdma_req->fused_pair = NULL;
2316 			}
2317 			rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
2318 			spdk_nvmf_request_exec(&rdma_req->req);
2319 			if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2320 				assert(rdma_req->fused_pair != NULL);
2321 				assert(rdma_req->fused_pair->fused_pair != NULL);
2322 				rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2323 				spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2324 				rdma_req->fused_pair->fused_pair = NULL;
2325 				rdma_req->fused_pair = NULL;
2326 			}
2327 			break;
2328 		case RDMA_REQUEST_STATE_EXECUTING:
2329 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
2330 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2331 			/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
2332 			 * to escape this state. */
2333 			break;
2334 		case RDMA_REQUEST_STATE_EXECUTED:
2335 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
2336 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2337 			if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
2338 			    rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2339 				STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
2340 				rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
2341 			} else {
2342 				rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2343 			}
2344 			if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2345 				/* restore the original length */
2346 				rdma_req->req.length = rdma_req->req.dif.orig_length;
2347 
2348 				if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2349 					struct spdk_dif_error error_blk;
2350 
2351 					num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2352 					if (!rdma_req->req.stripped_data) {
2353 						rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2354 								     &rdma_req->req.dif.dif_ctx, &error_blk);
2355 					} else {
2356 						rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov,
2357 									  rdma_req->req.stripped_data->iovcnt,
2358 									  rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2359 									  &rdma_req->req.dif.dif_ctx, &error_blk);
2360 					}
2361 					if (rc) {
2362 						struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
2363 
2364 						SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type,
2365 							    error_blk.err_offset);
2366 						rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2367 						rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type);
2368 						rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2369 						STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2370 					}
2371 				}
2372 			}
2373 			break;
2374 		case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2375 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
2376 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2377 
2378 			if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
2379 				/* This request needs to wait in line to perform RDMA */
2380 				break;
2381 			}
2382 			if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
2383 			    rqpair->max_send_depth) {
2384 				/* We can only have so many WRs outstanding. we have to wait until some finish.
2385 				 * +1 since each request has an additional wr in the resp. */
2386 				rqpair->poller->stat.pending_rdma_write++;
2387 				break;
2388 			}
2389 
2390 			/* We have already verified that this request is the head of the queue. */
2391 			STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
2392 
2393 			/* The data transfer will be kicked off from
2394 			 * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2395 			 */
2396 			rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2397 			break;
2398 		case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
2399 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
2400 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2401 			rc = request_transfer_out(&rdma_req->req, &data_posted);
2402 			assert(rc == 0); /* No good way to handle this currently */
2403 			if (rc) {
2404 				rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2405 			} else {
2406 				rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
2407 						  RDMA_REQUEST_STATE_COMPLETING;
2408 			}
2409 			break;
2410 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2411 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
2412 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2413 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2414 			 * to escape this state. */
2415 			break;
2416 		case RDMA_REQUEST_STATE_COMPLETING:
2417 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
2418 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2419 			/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2420 			 * to escape this state. */
2421 			break;
2422 		case RDMA_REQUEST_STATE_COMPLETED:
2423 			spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2424 					  (uintptr_t)rdma_req, (uintptr_t)rqpair);
2425 
2426 			rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc;
2427 			_nvmf_rdma_request_free(rdma_req, rtransport);
2428 			break;
2429 		case RDMA_REQUEST_NUM_STATES:
2430 		default:
2431 			assert(0);
2432 			break;
2433 		}
2434 
2435 		if (rdma_req->state != prev_state) {
2436 			progress = true;
2437 		}
2438 	} while (rdma_req->state != prev_state);
2439 
2440 	return progress;
2441 }
2442 
2443 /* Public API callbacks begin here */
2444 
2445 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2446 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2447 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2448 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
2449 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2450 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2451 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2452 #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095
2453 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
2454 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false
2455 #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false
2456 #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100
2457 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1
2458 #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false
2459 
2460 static void
2461 nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2462 {
2463 	opts->max_queue_depth =		SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2464 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2465 	opts->in_capsule_data_size =	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2466 	opts->max_io_size =		SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2467 	opts->io_unit_size =		SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2468 	opts->max_aq_depth =		SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2469 	opts->num_shared_buffers =	SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2470 	opts->buf_cache_size =		SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2471 	opts->dif_insert_or_strip =	SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP;
2472 	opts->abort_timeout_sec =	SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC;
2473 	opts->transport_specific =      NULL;
2474 }
2475 
2476 static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2477 			     spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg);
2478 
2479 static inline bool
2480 nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device)
2481 {
2482 	return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD ||
2483 	       device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW;
2484 }
2485 
2486 static int nvmf_rdma_accept(void *ctx);
2487 static bool nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport);
2488 static void destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
2489 			      struct spdk_nvmf_rdma_device *device);
2490 
2491 static int
2492 create_ib_device(struct spdk_nvmf_rdma_transport *rtransport, struct ibv_context *context,
2493 		 struct spdk_nvmf_rdma_device **new_device)
2494 {
2495 	struct spdk_nvmf_rdma_device	*device;
2496 	int				flag = 0;
2497 	int				rc = 0;
2498 
2499 	device = calloc(1, sizeof(*device));
2500 	if (!device) {
2501 		SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2502 		return -ENOMEM;
2503 	}
2504 	device->context = context;
2505 	rc = ibv_query_device(device->context, &device->attr);
2506 	if (rc < 0) {
2507 		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2508 		free(device);
2509 		return rc;
2510 	}
2511 
2512 #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2513 	if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2514 		SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2515 		SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2516 	}
2517 
2518 	/**
2519 	 * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2520 	 * The Soft-RoCE RXE driver does not currently support send with invalidate,
2521 	 * but incorrectly reports that it does. There are changes making their way
2522 	 * through the kernel now that will enable this feature. When they are merged,
2523 	 * we can conditionally enable this feature.
2524 	 *
2525 	 * TODO: enable this for versions of the kernel rxe driver that support it.
2526 	 */
2527 	if (nvmf_rdma_is_rxe_device(device)) {
2528 		device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2529 	}
2530 #endif
2531 
2532 	/* set up device context async ev fd as NON_BLOCKING */
2533 	flag = fcntl(device->context->async_fd, F_GETFL);
2534 	rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2535 	if (rc < 0) {
2536 		SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2537 		free(device);
2538 		return rc;
2539 	}
2540 
2541 	TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2542 	SPDK_DEBUGLOG(rdma, "New device %p is added to RDMA trasport\n", device);
2543 
2544 	if (g_nvmf_hooks.get_ibv_pd) {
2545 		device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2546 	} else {
2547 		device->pd = ibv_alloc_pd(device->context);
2548 	}
2549 
2550 	if (!device->pd) {
2551 		SPDK_ERRLOG("Unable to allocate protection domain.\n");
2552 		destroy_ib_device(rtransport, device);
2553 		return -ENOMEM;
2554 	}
2555 
2556 	assert(device->map == NULL);
2557 
2558 	device->map = spdk_rdma_create_mem_map(device->pd, &g_nvmf_hooks, SPDK_RDMA_MEMORY_MAP_ROLE_TARGET);
2559 	if (!device->map) {
2560 		SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2561 		destroy_ib_device(rtransport, device);
2562 		return -ENOMEM;
2563 	}
2564 
2565 	assert(device->map != NULL);
2566 	assert(device->pd != NULL);
2567 
2568 	if (new_device) {
2569 		*new_device = device;
2570 	}
2571 	SPDK_NOTICELOG("Create IB device %s(%p/%p) succeed.\n", ibv_get_device_name(context->device),
2572 		       device, context);
2573 
2574 	return 0;
2575 }
2576 
2577 static void
2578 free_poll_fds(struct spdk_nvmf_rdma_transport *rtransport)
2579 {
2580 	if (rtransport->poll_fds) {
2581 		free(rtransport->poll_fds);
2582 		rtransport->poll_fds = NULL;
2583 	}
2584 	rtransport->npoll_fds = 0;
2585 }
2586 
2587 static int
2588 generate_poll_fds(struct spdk_nvmf_rdma_transport *rtransport)
2589 {
2590 	/* Set up poll descriptor array to monitor events from RDMA and IB
2591 	 * in a single poll syscall
2592 	 */
2593 	int device_count = 0;
2594 	int i = 0;
2595 	struct spdk_nvmf_rdma_device *device, *tmp;
2596 
2597 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2598 		device_count++;
2599 	}
2600 
2601 	rtransport->npoll_fds = device_count + 1;
2602 
2603 	rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2604 	if (rtransport->poll_fds == NULL) {
2605 		SPDK_ERRLOG("poll_fds allocation failed\n");
2606 		return -ENOMEM;
2607 	}
2608 
2609 	rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2610 	rtransport->poll_fds[i++].events = POLLIN;
2611 
2612 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2613 		rtransport->poll_fds[i].fd = device->context->async_fd;
2614 		rtransport->poll_fds[i++].events = POLLIN;
2615 	}
2616 
2617 	return 0;
2618 }
2619 
2620 static struct spdk_nvmf_transport *
2621 nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2622 {
2623 	int rc;
2624 	struct spdk_nvmf_rdma_transport *rtransport;
2625 	struct spdk_nvmf_rdma_device	*device;
2626 	struct ibv_context		**contexts;
2627 	uint32_t			i;
2628 	int				flag;
2629 	uint32_t			sge_count;
2630 	uint32_t			min_shared_buffers;
2631 	uint32_t			min_in_capsule_data_size;
2632 	int				max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2633 
2634 	rtransport = calloc(1, sizeof(*rtransport));
2635 	if (!rtransport) {
2636 		return NULL;
2637 	}
2638 
2639 	TAILQ_INIT(&rtransport->devices);
2640 	TAILQ_INIT(&rtransport->ports);
2641 	TAILQ_INIT(&rtransport->poll_groups);
2642 	TAILQ_INIT(&rtransport->retry_ports);
2643 
2644 	rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2645 	rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
2646 	rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2647 	rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ;
2648 	rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2649 	rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING;
2650 	if (opts->transport_specific != NULL &&
2651 	    spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder,
2652 					    SPDK_COUNTOF(rdma_transport_opts_decoder),
2653 					    &rtransport->rdma_opts)) {
2654 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
2655 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2656 		return NULL;
2657 	}
2658 
2659 	SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n"
2660 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
2661 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2662 		     "  in_capsule_data_size=%d, max_aq_depth=%d,\n"
2663 		     "  num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d,"
2664 		     "  acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n",
2665 		     opts->max_queue_depth,
2666 		     opts->max_io_size,
2667 		     opts->max_qpairs_per_ctrlr - 1,
2668 		     opts->io_unit_size,
2669 		     opts->in_capsule_data_size,
2670 		     opts->max_aq_depth,
2671 		     opts->num_shared_buffers,
2672 		     rtransport->rdma_opts.num_cqe,
2673 		     rtransport->rdma_opts.max_srq_depth,
2674 		     rtransport->rdma_opts.no_srq,
2675 		     rtransport->rdma_opts.acceptor_backlog,
2676 		     rtransport->rdma_opts.no_wr_batching,
2677 		     opts->abort_timeout_sec);
2678 
2679 	/* I/O unit size cannot be larger than max I/O size */
2680 	if (opts->io_unit_size > opts->max_io_size) {
2681 		opts->io_unit_size = opts->max_io_size;
2682 	}
2683 
2684 	if (rtransport->rdma_opts.acceptor_backlog <= 0) {
2685 		SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n",
2686 			    SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG);
2687 		rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2688 	}
2689 
2690 	if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2691 		SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2692 			    "the minimum number required to guarantee that forward progress can be made (%d)\n",
2693 			    opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2694 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2695 		return NULL;
2696 	}
2697 
2698 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
2699 	if (opts->buf_cache_size < UINT32_MAX) {
2700 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
2701 		if (min_shared_buffers > opts->num_shared_buffers) {
2702 			SPDK_ERRLOG("There are not enough buffers to satisfy"
2703 				    "per-poll group caches for each thread. (%" PRIu32 ")"
2704 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2705 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2706 			nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2707 			return NULL;
2708 		}
2709 	}
2710 
2711 	sge_count = opts->max_io_size / opts->io_unit_size;
2712 	if (sge_count > NVMF_DEFAULT_TX_SGE) {
2713 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2714 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2715 		return NULL;
2716 	}
2717 
2718 	min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES;
2719 	if (opts->in_capsule_data_size < min_in_capsule_data_size) {
2720 		SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n",
2721 			     min_in_capsule_data_size);
2722 		opts->in_capsule_data_size = min_in_capsule_data_size;
2723 	}
2724 
2725 	rtransport->event_channel = rdma_create_event_channel();
2726 	if (rtransport->event_channel == NULL) {
2727 		SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2728 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2729 		return NULL;
2730 	}
2731 
2732 	flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2733 	if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2734 		SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2735 			    rtransport->event_channel->fd, spdk_strerror(errno));
2736 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2737 		return NULL;
2738 	}
2739 
2740 	rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
2741 				   opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES,
2742 				   sizeof(struct spdk_nvmf_rdma_request_data),
2743 				   SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2744 				   SPDK_ENV_SOCKET_ID_ANY);
2745 	if (!rtransport->data_wr_pool) {
2746 		if (spdk_mempool_lookup("spdk_nvmf_rdma_wr_data") != NULL) {
2747 			SPDK_ERRLOG("Unable to allocate work request pool for poll group: already exists\n");
2748 			SPDK_ERRLOG("Probably running in multiprocess environment, which is "
2749 				    "unsupported by the nvmf library\n");
2750 		} else {
2751 			SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2752 		}
2753 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2754 		return NULL;
2755 	}
2756 
2757 	contexts = rdma_get_devices(NULL);
2758 	if (contexts == NULL) {
2759 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2760 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2761 		return NULL;
2762 	}
2763 
2764 	i = 0;
2765 	rc = 0;
2766 	while (contexts[i] != NULL) {
2767 		rc = create_ib_device(rtransport, contexts[i], &device);
2768 		if (rc < 0) {
2769 			break;
2770 		}
2771 		i++;
2772 		max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2773 		device->is_ready = true;
2774 	}
2775 	rdma_free_devices(contexts);
2776 
2777 	if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2778 		/* divide and round up. */
2779 		opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2780 
2781 		/* round up to the nearest 4k. */
2782 		opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2783 
2784 		opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2785 		SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2786 			       opts->io_unit_size);
2787 	}
2788 
2789 	if (rc < 0) {
2790 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2791 		return NULL;
2792 	}
2793 
2794 	rc = generate_poll_fds(rtransport);
2795 	if (rc < 0) {
2796 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2797 		return NULL;
2798 	}
2799 
2800 	rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport,
2801 				    opts->acceptor_poll_rate);
2802 	if (!rtransport->accept_poller) {
2803 		nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2804 		return NULL;
2805 	}
2806 
2807 	return &rtransport->transport;
2808 }
2809 
2810 static void
2811 destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
2812 		  struct spdk_nvmf_rdma_device *device)
2813 {
2814 	TAILQ_REMOVE(&rtransport->devices, device, link);
2815 	spdk_rdma_free_mem_map(&device->map);
2816 	if (device->pd) {
2817 		if (!g_nvmf_hooks.get_ibv_pd) {
2818 			ibv_dealloc_pd(device->pd);
2819 		}
2820 	}
2821 	SPDK_DEBUGLOG(rdma, "IB device [%p] is destroyed.\n", device);
2822 	free(device);
2823 }
2824 
2825 static void
2826 nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
2827 {
2828 	struct spdk_nvmf_rdma_transport	*rtransport;
2829 	assert(w != NULL);
2830 
2831 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2832 	spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth);
2833 	spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq);
2834 	if (rtransport->rdma_opts.no_srq == true) {
2835 		spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe);
2836 	}
2837 	spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog);
2838 	spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching);
2839 }
2840 
2841 static int
2842 nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2843 		  spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
2844 {
2845 	struct spdk_nvmf_rdma_transport	*rtransport;
2846 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
2847 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
2848 
2849 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2850 
2851 	TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, port_tmp) {
2852 		TAILQ_REMOVE(&rtransport->retry_ports, port, link);
2853 		free(port);
2854 	}
2855 
2856 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2857 		TAILQ_REMOVE(&rtransport->ports, port, link);
2858 		rdma_destroy_id(port->id);
2859 		free(port);
2860 	}
2861 
2862 	free_poll_fds(rtransport);
2863 
2864 	if (rtransport->event_channel != NULL) {
2865 		rdma_destroy_event_channel(rtransport->event_channel);
2866 	}
2867 
2868 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2869 		destroy_ib_device(rtransport, device);
2870 	}
2871 
2872 	if (rtransport->data_wr_pool != NULL) {
2873 		if (spdk_mempool_count(rtransport->data_wr_pool) !=
2874 		    (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) {
2875 			SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2876 				    spdk_mempool_count(rtransport->data_wr_pool),
2877 				    transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2878 		}
2879 	}
2880 
2881 	spdk_mempool_free(rtransport->data_wr_pool);
2882 
2883 	spdk_poller_unregister(&rtransport->accept_poller);
2884 	free(rtransport);
2885 
2886 	if (cb_fn) {
2887 		cb_fn(cb_arg);
2888 	}
2889 	return 0;
2890 }
2891 
2892 static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2893 				     struct spdk_nvme_transport_id *trid,
2894 				     bool peer);
2895 
2896 static bool nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport);
2897 
2898 static int
2899 nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
2900 		 struct spdk_nvmf_listen_opts *listen_opts)
2901 {
2902 	struct spdk_nvmf_rdma_transport	*rtransport;
2903 	struct spdk_nvmf_rdma_device	*device;
2904 	struct spdk_nvmf_rdma_port	*port, *tmp_port;
2905 	struct addrinfo			*res;
2906 	struct addrinfo			hints;
2907 	int				family;
2908 	int				rc;
2909 	bool				is_retry = false;
2910 
2911 	if (!strlen(trid->trsvcid)) {
2912 		SPDK_ERRLOG("Service id is required\n");
2913 		return -EINVAL;
2914 	}
2915 
2916 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2917 	assert(rtransport->event_channel != NULL);
2918 
2919 	port = calloc(1, sizeof(*port));
2920 	if (!port) {
2921 		SPDK_ERRLOG("Port allocation failed\n");
2922 		return -ENOMEM;
2923 	}
2924 
2925 	port->trid = trid;
2926 
2927 	switch (trid->adrfam) {
2928 	case SPDK_NVMF_ADRFAM_IPV4:
2929 		family = AF_INET;
2930 		break;
2931 	case SPDK_NVMF_ADRFAM_IPV6:
2932 		family = AF_INET6;
2933 		break;
2934 	default:
2935 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam);
2936 		free(port);
2937 		return -EINVAL;
2938 	}
2939 
2940 	memset(&hints, 0, sizeof(hints));
2941 	hints.ai_family = family;
2942 	hints.ai_flags = AI_NUMERICSERV;
2943 	hints.ai_socktype = SOCK_STREAM;
2944 	hints.ai_protocol = 0;
2945 
2946 	rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res);
2947 	if (rc) {
2948 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
2949 		free(port);
2950 		return -(abs(rc));
2951 	}
2952 
2953 	rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
2954 	if (rc < 0) {
2955 		SPDK_ERRLOG("rdma_create_id() failed\n");
2956 		freeaddrinfo(res);
2957 		free(port);
2958 		return rc;
2959 	}
2960 
2961 	rc = rdma_bind_addr(port->id, res->ai_addr);
2962 	freeaddrinfo(res);
2963 
2964 	if (rc < 0) {
2965 		TAILQ_FOREACH(tmp_port, &rtransport->retry_ports, link) {
2966 			if (spdk_nvme_transport_id_compare(tmp_port->trid, trid) == 0) {
2967 				is_retry = true;
2968 				break;
2969 			}
2970 		}
2971 		if (!is_retry) {
2972 			SPDK_ERRLOG("rdma_bind_addr() failed\n");
2973 		}
2974 		rdma_destroy_id(port->id);
2975 		free(port);
2976 		return rc;
2977 	}
2978 
2979 	if (!port->id->verbs) {
2980 		SPDK_ERRLOG("ibv_context is null\n");
2981 		rdma_destroy_id(port->id);
2982 		free(port);
2983 		return -1;
2984 	}
2985 
2986 	rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog);
2987 	if (rc < 0) {
2988 		SPDK_ERRLOG("rdma_listen() failed\n");
2989 		rdma_destroy_id(port->id);
2990 		free(port);
2991 		return rc;
2992 	}
2993 
2994 	TAILQ_FOREACH(device, &rtransport->devices, link) {
2995 		if (device->context == port->id->verbs && device->is_ready) {
2996 			port->device = device;
2997 			break;
2998 		}
2999 	}
3000 	if (!port->device) {
3001 		SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
3002 			    port->id->verbs);
3003 		rdma_destroy_id(port->id);
3004 		free(port);
3005 		nvmf_rdma_rescan_devices(rtransport);
3006 		return -EINVAL;
3007 	}
3008 
3009 	SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n",
3010 		       trid->traddr, trid->trsvcid);
3011 
3012 	TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
3013 	return 0;
3014 }
3015 
3016 static void
3017 nvmf_rdma_stop_listen_ex(struct spdk_nvmf_transport *transport,
3018 			 const struct spdk_nvme_transport_id *trid, bool need_retry)
3019 {
3020 	struct spdk_nvmf_rdma_transport	*rtransport;
3021 	struct spdk_nvmf_rdma_port	*port, *tmp;
3022 
3023 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3024 
3025 	if (!need_retry) {
3026 		TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp) {
3027 			if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
3028 				TAILQ_REMOVE(&rtransport->retry_ports, port, link);
3029 				free(port);
3030 			}
3031 		}
3032 	}
3033 
3034 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
3035 		if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
3036 			SPDK_DEBUGLOG(rdma, "Port %s:%s removed. need retry: %d\n",
3037 				      port->trid->traddr, port->trid->trsvcid, need_retry);
3038 			TAILQ_REMOVE(&rtransport->ports, port, link);
3039 			rdma_destroy_id(port->id);
3040 			port->id = NULL;
3041 			port->device = NULL;
3042 			if (need_retry) {
3043 				TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link);
3044 			} else {
3045 				free(port);
3046 			}
3047 			break;
3048 		}
3049 	}
3050 }
3051 
3052 static void
3053 nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
3054 		      const struct spdk_nvme_transport_id *trid)
3055 {
3056 	nvmf_rdma_stop_listen_ex(transport, trid, false);
3057 }
3058 
3059 static void _nvmf_rdma_register_poller_in_group(void *c);
3060 static void _nvmf_rdma_remove_poller_in_group(void *c);
3061 
3062 static bool
3063 nvmf_rdma_all_pollers_management_done(void *c)
3064 {
3065 	struct poller_manage_ctx	*ctx = c;
3066 	int				counter;
3067 
3068 	counter = __atomic_sub_fetch(ctx->inflight_op_counter, 1, __ATOMIC_SEQ_CST);
3069 	SPDK_DEBUGLOG(rdma, "nvmf_rdma_all_pollers_management_done called. counter: %d, poller: %p\n",
3070 		      counter, ctx->rpoller);
3071 
3072 	if (counter == 0) {
3073 		free((void *)ctx->inflight_op_counter);
3074 	}
3075 	free(ctx);
3076 
3077 	return counter == 0;
3078 }
3079 
3080 static int
3081 nvmf_rdma_manage_poller(struct spdk_nvmf_rdma_transport *rtransport,
3082 			struct spdk_nvmf_rdma_device *device, bool *has_inflight, bool is_add)
3083 {
3084 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3085 	struct spdk_nvmf_rdma_poller		*rpoller;
3086 	struct spdk_nvmf_poll_group		*poll_group;
3087 	struct poller_manage_ctx		*ctx;
3088 	bool					found;
3089 	int					*inflight_counter;
3090 	spdk_msg_fn				do_fn;
3091 
3092 	*has_inflight = false;
3093 	do_fn = is_add ? _nvmf_rdma_register_poller_in_group : _nvmf_rdma_remove_poller_in_group;
3094 	inflight_counter = calloc(1, sizeof(int));
3095 	if (!inflight_counter) {
3096 		SPDK_ERRLOG("Failed to allocate inflight counter when removing pollers\n");
3097 		return -ENOMEM;
3098 	}
3099 
3100 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3101 		(*inflight_counter)++;
3102 	}
3103 
3104 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3105 		found = false;
3106 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3107 			if (rpoller->device == device) {
3108 				found = true;
3109 				break;
3110 			}
3111 		}
3112 		if (found == is_add) {
3113 			__atomic_fetch_sub(inflight_counter, 1, __ATOMIC_SEQ_CST);
3114 			continue;
3115 		}
3116 
3117 		ctx = calloc(1, sizeof(struct poller_manage_ctx));
3118 		if (!ctx) {
3119 			SPDK_ERRLOG("Failed to allocate poller_manage_ctx when removing pollers\n");
3120 			if (!*has_inflight) {
3121 				free(inflight_counter);
3122 			}
3123 			return -ENOMEM;
3124 		}
3125 
3126 		ctx->rtransport = rtransport;
3127 		ctx->rgroup = rgroup;
3128 		ctx->rpoller = rpoller;
3129 		ctx->device = device;
3130 		ctx->thread = spdk_get_thread();
3131 		ctx->inflight_op_counter = inflight_counter;
3132 		*has_inflight = true;
3133 
3134 		poll_group = rgroup->group.group;
3135 		if (poll_group->thread != spdk_get_thread()) {
3136 			spdk_thread_send_msg(poll_group->thread, do_fn, ctx);
3137 		} else {
3138 			do_fn(ctx);
3139 		}
3140 	}
3141 
3142 	if (!*has_inflight) {
3143 		free(inflight_counter);
3144 	}
3145 
3146 	return 0;
3147 }
3148 
3149 static void nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport,
3150 		struct spdk_nvmf_rdma_device *device);
3151 
3152 static struct spdk_nvmf_rdma_device *
3153 nvmf_rdma_find_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
3154 			 struct ibv_context *context)
3155 {
3156 	struct spdk_nvmf_rdma_device	*device, *tmp_device;
3157 
3158 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp_device) {
3159 		if (device->need_destroy) {
3160 			continue;
3161 		}
3162 
3163 		if (strcmp(device->context->device->dev_name, context->device->dev_name) == 0) {
3164 			return device;
3165 		}
3166 	}
3167 
3168 	return NULL;
3169 }
3170 
3171 static bool
3172 nvmf_rdma_check_devices_context(struct spdk_nvmf_rdma_transport *rtransport,
3173 				struct ibv_context *context)
3174 {
3175 	struct spdk_nvmf_rdma_device	*old_device, *new_device;
3176 	int				rc = 0;
3177 	bool				has_inflight;
3178 
3179 	old_device = nvmf_rdma_find_ib_device(rtransport, context);
3180 
3181 	if (old_device) {
3182 		if (old_device->context != context && !old_device->need_destroy && old_device->is_ready) {
3183 			/* context may not have time to be cleaned when rescan. exactly one context
3184 			 * is valid for a device so this context must be invalid and just remove it. */
3185 			SPDK_WARNLOG("Device %p has a invalid context %p\n", old_device, old_device->context);
3186 			old_device->need_destroy = true;
3187 			nvmf_rdma_handle_device_removal(rtransport, old_device);
3188 		}
3189 		return false;
3190 	}
3191 
3192 	rc = create_ib_device(rtransport, context, &new_device);
3193 	/* TODO: update transport opts. */
3194 	if (rc < 0) {
3195 		SPDK_ERRLOG("Failed to create ib device for context: %s(%p)\n",
3196 			    ibv_get_device_name(context->device), context);
3197 		return false;
3198 	}
3199 
3200 	rc = nvmf_rdma_manage_poller(rtransport, new_device, &has_inflight, true);
3201 	if (rc < 0) {
3202 		SPDK_ERRLOG("Failed to add poller for device context: %s(%p)\n",
3203 			    ibv_get_device_name(context->device), context);
3204 		return false;
3205 	}
3206 
3207 	if (has_inflight) {
3208 		new_device->is_ready = true;
3209 	}
3210 
3211 	return true;
3212 }
3213 
3214 static bool
3215 nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport)
3216 {
3217 	struct spdk_nvmf_rdma_device	*device;
3218 	struct ibv_device		**ibv_device_list = NULL;
3219 	struct ibv_context		**contexts = NULL;
3220 	int				i = 0;
3221 	int				num_dev = 0;
3222 	bool				new_create = false, has_new_device = false;
3223 	struct ibv_context		*tmp_verbs = NULL;
3224 
3225 	/* do not rescan when any device is destroying, or context may be freed when
3226 	 * regenerating the poll fds.
3227 	 */
3228 	TAILQ_FOREACH(device, &rtransport->devices, link) {
3229 		if (device->need_destroy) {
3230 			return false;
3231 		}
3232 	}
3233 
3234 	ibv_device_list = ibv_get_device_list(&num_dev);
3235 
3236 	/* There is a bug in librdmacm. If verbs init failed in rdma_get_devices, it'll be
3237 	 * marked as dead verbs and never be init again. So we need to make sure the
3238 	 * verbs is available before we call rdma_get_devices. */
3239 	if (num_dev >= 0) {
3240 		for (i = 0; i < num_dev; i++) {
3241 			tmp_verbs = ibv_open_device(ibv_device_list[i]);
3242 			if (!tmp_verbs) {
3243 				SPDK_WARNLOG("Failed to init ibv device %p, err %d. Skip rescan.\n", ibv_device_list[i], errno);
3244 				break;
3245 			}
3246 			if (nvmf_rdma_find_ib_device(rtransport, tmp_verbs) == NULL) {
3247 				SPDK_DEBUGLOG(rdma, "Find new verbs init ibv device %p(%s).\n", ibv_device_list[i],
3248 					      tmp_verbs->device->dev_name);
3249 				has_new_device = true;
3250 			}
3251 			ibv_close_device(tmp_verbs);
3252 		}
3253 		ibv_free_device_list(ibv_device_list);
3254 		if (!tmp_verbs || !has_new_device) {
3255 			return false;
3256 		}
3257 	}
3258 
3259 	contexts = rdma_get_devices(NULL);
3260 
3261 	for (i = 0; contexts && contexts[i] != NULL; i++) {
3262 		new_create |= nvmf_rdma_check_devices_context(rtransport, contexts[i]);
3263 	}
3264 
3265 	if (new_create) {
3266 		free_poll_fds(rtransport);
3267 		generate_poll_fds(rtransport);
3268 	}
3269 
3270 	if (contexts) {
3271 		rdma_free_devices(contexts);
3272 	}
3273 
3274 	return new_create;
3275 }
3276 
3277 static bool
3278 nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport)
3279 {
3280 	struct spdk_nvmf_rdma_port	*port, *tmp_port;
3281 	int				rc = 0;
3282 	bool				new_create = false;
3283 
3284 	if (TAILQ_EMPTY(&rtransport->retry_ports)) {
3285 		return false;
3286 	}
3287 
3288 	new_create = nvmf_rdma_rescan_devices(rtransport);
3289 
3290 	TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp_port) {
3291 		rc = nvmf_rdma_listen(&rtransport->transport, port->trid, NULL);
3292 
3293 		TAILQ_REMOVE(&rtransport->retry_ports, port, link);
3294 		if (rc) {
3295 			if (new_create) {
3296 				SPDK_ERRLOG("Found new IB device but port %s:%s is still failed(%d) to listen.\n",
3297 					    port->trid->traddr, port->trid->trsvcid, rc);
3298 			}
3299 			TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link);
3300 			break;
3301 		} else {
3302 			SPDK_NOTICELOG("Port %s:%s come back\n", port->trid->traddr, port->trid->trsvcid);
3303 			free(port);
3304 		}
3305 	}
3306 
3307 	return true;
3308 }
3309 
3310 static void
3311 nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
3312 				struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
3313 {
3314 	struct spdk_nvmf_request *req, *tmp;
3315 	struct spdk_nvmf_rdma_request	*rdma_req, *req_tmp;
3316 	struct spdk_nvmf_rdma_resources *resources;
3317 
3318 	/* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */
3319 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
3320 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3321 			break;
3322 		}
3323 	}
3324 
3325 	/* Then RDMA writes since reads have stronger restrictions than writes */
3326 	STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
3327 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3328 			break;
3329 		}
3330 	}
3331 
3332 	/* Then we handle request waiting on memory buffers. */
3333 	STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) {
3334 		rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3335 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3336 			break;
3337 		}
3338 	}
3339 
3340 	resources = rqpair->resources;
3341 	while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
3342 		rdma_req = STAILQ_FIRST(&resources->free_queue);
3343 		STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
3344 		rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
3345 		STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
3346 
3347 		if (rqpair->srq != NULL) {
3348 			rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
3349 			rdma_req->recv->qpair->qd++;
3350 		} else {
3351 			rqpair->qd++;
3352 		}
3353 
3354 		rdma_req->receive_tsc = rdma_req->recv->receive_tsc;
3355 		rdma_req->state = RDMA_REQUEST_STATE_NEW;
3356 		if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
3357 			break;
3358 		}
3359 	}
3360 	if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) {
3361 		rqpair->poller->stat.pending_free_request++;
3362 	}
3363 }
3364 
3365 static inline bool
3366 nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device)
3367 {
3368 	/* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */
3369 	return nvmf_rdma_is_rxe_device(device) ||
3370 	       device->context->device->transport_type == IBV_TRANSPORT_IWARP;
3371 }
3372 
3373 static void
3374 nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair)
3375 {
3376 	struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
3377 			struct spdk_nvmf_rdma_transport, transport);
3378 
3379 	nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
3380 
3381 	/* nvmf_rdma_close_qpair is not called */
3382 	if (!rqpair->to_close) {
3383 		return;
3384 	}
3385 
3386 	/* device is already destroyed and we should force destroy this qpair. */
3387 	if (rqpair->poller && rqpair->poller->need_destroy) {
3388 		nvmf_rdma_qpair_destroy(rqpair);
3389 		return;
3390 	}
3391 
3392 	/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
3393 	if (rqpair->current_send_depth != 0) {
3394 		return;
3395 	}
3396 
3397 	if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
3398 		return;
3399 	}
3400 
3401 	if (rqpair->srq != NULL && rqpair->last_wqe_reached == false &&
3402 	    !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) {
3403 		return;
3404 	}
3405 
3406 	assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR);
3407 
3408 	nvmf_rdma_qpair_destroy(rqpair);
3409 }
3410 
3411 static int
3412 nvmf_rdma_disconnect(struct rdma_cm_event *evt, bool *event_acked)
3413 {
3414 	struct spdk_nvmf_qpair		*qpair;
3415 	struct spdk_nvmf_rdma_qpair	*rqpair;
3416 
3417 	if (evt->id == NULL) {
3418 		SPDK_ERRLOG("disconnect request: missing cm_id\n");
3419 		return -1;
3420 	}
3421 
3422 	qpair = evt->id->context;
3423 	if (qpair == NULL) {
3424 		SPDK_ERRLOG("disconnect request: no active connection\n");
3425 		return -1;
3426 	}
3427 
3428 	rdma_ack_cm_event(evt);
3429 	*event_acked = true;
3430 
3431 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3432 
3433 	spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair);
3434 
3435 	spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3436 
3437 	return 0;
3438 }
3439 
3440 #ifdef DEBUG
3441 static const char *CM_EVENT_STR[] = {
3442 	"RDMA_CM_EVENT_ADDR_RESOLVED",
3443 	"RDMA_CM_EVENT_ADDR_ERROR",
3444 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
3445 	"RDMA_CM_EVENT_ROUTE_ERROR",
3446 	"RDMA_CM_EVENT_CONNECT_REQUEST",
3447 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
3448 	"RDMA_CM_EVENT_CONNECT_ERROR",
3449 	"RDMA_CM_EVENT_UNREACHABLE",
3450 	"RDMA_CM_EVENT_REJECTED",
3451 	"RDMA_CM_EVENT_ESTABLISHED",
3452 	"RDMA_CM_EVENT_DISCONNECTED",
3453 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
3454 	"RDMA_CM_EVENT_MULTICAST_JOIN",
3455 	"RDMA_CM_EVENT_MULTICAST_ERROR",
3456 	"RDMA_CM_EVENT_ADDR_CHANGE",
3457 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
3458 };
3459 #endif /* DEBUG */
3460 
3461 static void
3462 nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport,
3463 				    struct spdk_nvmf_rdma_port *port)
3464 {
3465 	struct spdk_nvmf_rdma_poll_group	*rgroup;
3466 	struct spdk_nvmf_rdma_poller		*rpoller;
3467 	struct spdk_nvmf_rdma_qpair		*rqpair;
3468 
3469 	TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3470 		TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3471 			RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) {
3472 				if (rqpair->listen_id == port->id) {
3473 					spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3474 				}
3475 			}
3476 		}
3477 	}
3478 }
3479 
3480 static bool
3481 nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport,
3482 				      struct rdma_cm_event *event)
3483 {
3484 	const struct spdk_nvme_transport_id	*trid;
3485 	struct spdk_nvmf_rdma_port		*port;
3486 	struct spdk_nvmf_rdma_transport		*rtransport;
3487 	bool					event_acked = false;
3488 
3489 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3490 	TAILQ_FOREACH(port, &rtransport->ports, link) {
3491 		if (port->id == event->id) {
3492 			SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid);
3493 			rdma_ack_cm_event(event);
3494 			event_acked = true;
3495 			trid = port->trid;
3496 			break;
3497 		}
3498 	}
3499 
3500 	if (event_acked) {
3501 		nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
3502 
3503 		nvmf_rdma_stop_listen(transport, trid);
3504 		nvmf_rdma_listen(transport, trid, NULL);
3505 	}
3506 
3507 	return event_acked;
3508 }
3509 
3510 static void
3511 nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport,
3512 				struct spdk_nvmf_rdma_device *device)
3513 {
3514 	struct spdk_nvmf_rdma_port	*port, *port_tmp;
3515 	int				rc;
3516 	bool				has_inflight;
3517 
3518 	rc = nvmf_rdma_manage_poller(rtransport, device, &has_inflight, false);
3519 	if (rc) {
3520 		SPDK_ERRLOG("Failed to handle device removal, rc %d\n", rc);
3521 		return;
3522 	}
3523 
3524 	if (!has_inflight) {
3525 		/* no pollers, destroy the device */
3526 		device->ready_to_destroy = true;
3527 		spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_remove_destroyed_device, rtransport);
3528 	}
3529 
3530 	TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
3531 		if (port->device == device) {
3532 			SPDK_NOTICELOG("Port %s:%s on device %s is being removed.\n",
3533 				       port->trid->traddr,
3534 				       port->trid->trsvcid,
3535 				       ibv_get_device_name(port->device->context->device));
3536 
3537 			/* keep NVMF listener and only destroy structures of the
3538 			 * RDMA transport. when the device comes back we can retry listening
3539 			 * and the application's workflow will not be interrupted.
3540 			 */
3541 			nvmf_rdma_stop_listen_ex(&rtransport->transport, port->trid, true);
3542 		}
3543 	}
3544 }
3545 
3546 static void
3547 nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport,
3548 				       struct rdma_cm_event *event)
3549 {
3550 	struct spdk_nvmf_rdma_port		*port, *tmp_port;
3551 	struct spdk_nvmf_rdma_transport		*rtransport;
3552 
3553 	port = event->id->context;
3554 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3555 
3556 	rdma_ack_cm_event(event);
3557 
3558 	/* if device removal happens during ctrl qpair disconnecting, it's possible that we receive
3559 	 * an DEVICE_REMOVAL event on qpair but the id->qp is just NULL. So we should make sure that
3560 	 * we are handling a port event here.
3561 	 */
3562 	TAILQ_FOREACH(tmp_port, &rtransport->ports, link) {
3563 		if (port == tmp_port && port->device && !port->device->need_destroy) {
3564 			port->device->need_destroy = true;
3565 			nvmf_rdma_handle_device_removal(rtransport, port->device);
3566 		}
3567 	}
3568 }
3569 
3570 static void
3571 nvmf_process_cm_event(struct spdk_nvmf_transport *transport)
3572 {
3573 	struct spdk_nvmf_rdma_transport *rtransport;
3574 	struct rdma_cm_event		*event;
3575 	int				rc;
3576 	bool				event_acked;
3577 
3578 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3579 
3580 	if (rtransport->event_channel == NULL) {
3581 		return;
3582 	}
3583 
3584 	while (1) {
3585 		event_acked = false;
3586 		rc = rdma_get_cm_event(rtransport->event_channel, &event);
3587 		if (rc) {
3588 			if (errno != EAGAIN && errno != EWOULDBLOCK) {
3589 				SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
3590 			}
3591 			break;
3592 		}
3593 
3594 		SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
3595 
3596 		spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
3597 
3598 		switch (event->event) {
3599 		case RDMA_CM_EVENT_ADDR_RESOLVED:
3600 		case RDMA_CM_EVENT_ADDR_ERROR:
3601 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
3602 		case RDMA_CM_EVENT_ROUTE_ERROR:
3603 			/* No action required. The target never attempts to resolve routes. */
3604 			break;
3605 		case RDMA_CM_EVENT_CONNECT_REQUEST:
3606 			rc = nvmf_rdma_connect(transport, event);
3607 			if (rc < 0) {
3608 				SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
3609 				break;
3610 			}
3611 			break;
3612 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
3613 			/* The target never initiates a new connection. So this will not occur. */
3614 			break;
3615 		case RDMA_CM_EVENT_CONNECT_ERROR:
3616 			/* Can this happen? The docs say it can, but not sure what causes it. */
3617 			break;
3618 		case RDMA_CM_EVENT_UNREACHABLE:
3619 		case RDMA_CM_EVENT_REJECTED:
3620 			/* These only occur on the client side. */
3621 			break;
3622 		case RDMA_CM_EVENT_ESTABLISHED:
3623 			/* TODO: Should we be waiting for this event anywhere? */
3624 			break;
3625 		case RDMA_CM_EVENT_DISCONNECTED:
3626 			rc = nvmf_rdma_disconnect(event, &event_acked);
3627 			if (rc < 0) {
3628 				SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3629 				break;
3630 			}
3631 			break;
3632 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
3633 			/* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL
3634 			 * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s.
3635 			 * Once these events are sent to SPDK, we should release all IB resources and
3636 			 * don't make attempts to call any ibv_query/modify/create functions. We can only call
3637 			 * ibv_destroy* functions to release user space memory allocated by IB. All kernel
3638 			 * resources are already cleaned. */
3639 			if (event->id->qp) {
3640 				/* If rdma_cm event has a valid `qp` pointer then the event refers to the
3641 				 * corresponding qpair. Otherwise the event refers to a listening device. */
3642 				rc = nvmf_rdma_disconnect(event, &event_acked);
3643 				if (rc < 0) {
3644 					SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3645 					break;
3646 				}
3647 			} else {
3648 				nvmf_rdma_handle_cm_event_port_removal(transport, event);
3649 				event_acked = true;
3650 			}
3651 			break;
3652 		case RDMA_CM_EVENT_MULTICAST_JOIN:
3653 		case RDMA_CM_EVENT_MULTICAST_ERROR:
3654 			/* Multicast is not used */
3655 			break;
3656 		case RDMA_CM_EVENT_ADDR_CHANGE:
3657 			event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event);
3658 			break;
3659 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
3660 			/* For now, do nothing. The target never re-uses queue pairs. */
3661 			break;
3662 		default:
3663 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
3664 			break;
3665 		}
3666 		if (!event_acked) {
3667 			rdma_ack_cm_event(event);
3668 		}
3669 	}
3670 }
3671 
3672 static void
3673 nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair)
3674 {
3675 	rqpair->last_wqe_reached = true;
3676 	nvmf_rdma_destroy_drained_qpair(rqpair);
3677 }
3678 
3679 static void
3680 nvmf_rdma_qpair_process_ibv_event(void *ctx)
3681 {
3682 	struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx;
3683 
3684 	if (event_ctx->rqpair) {
3685 		STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3686 		if (event_ctx->cb_fn) {
3687 			event_ctx->cb_fn(event_ctx->rqpair);
3688 		}
3689 	}
3690 	free(event_ctx);
3691 }
3692 
3693 static int
3694 nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair,
3695 				 spdk_nvmf_rdma_qpair_ibv_event fn)
3696 {
3697 	struct spdk_nvmf_rdma_ibv_event_ctx *ctx;
3698 	struct spdk_thread *thr = NULL;
3699 	int rc;
3700 
3701 	if (rqpair->qpair.group) {
3702 		thr = rqpair->qpair.group->thread;
3703 	} else if (rqpair->destruct_channel) {
3704 		thr = spdk_io_channel_get_thread(rqpair->destruct_channel);
3705 	}
3706 
3707 	if (!thr) {
3708 		SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair);
3709 		return -EINVAL;
3710 	}
3711 
3712 	ctx = calloc(1, sizeof(*ctx));
3713 	if (!ctx) {
3714 		return -ENOMEM;
3715 	}
3716 
3717 	ctx->rqpair = rqpair;
3718 	ctx->cb_fn = fn;
3719 	STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link);
3720 
3721 	rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx);
3722 	if (rc) {
3723 		STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3724 		free(ctx);
3725 	}
3726 
3727 	return rc;
3728 }
3729 
3730 static int
3731 nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
3732 {
3733 	int				rc;
3734 	struct spdk_nvmf_rdma_qpair	*rqpair = NULL;
3735 	struct ibv_async_event		event;
3736 
3737 	rc = ibv_get_async_event(device->context, &event);
3738 
3739 	if (rc) {
3740 		/* In non-blocking mode -1 means there are no events available */
3741 		return rc;
3742 	}
3743 
3744 	switch (event.event_type) {
3745 	case IBV_EVENT_QP_FATAL:
3746 	case IBV_EVENT_QP_LAST_WQE_REACHED:
3747 	case IBV_EVENT_SQ_DRAINED:
3748 	case IBV_EVENT_QP_REQ_ERR:
3749 	case IBV_EVENT_QP_ACCESS_ERR:
3750 	case IBV_EVENT_COMM_EST:
3751 	case IBV_EVENT_PATH_MIG:
3752 	case IBV_EVENT_PATH_MIG_ERR:
3753 		rqpair = event.element.qp->qp_context;
3754 		if (!rqpair) {
3755 			/* Any QP event for NVMe-RDMA initiator may be returned. */
3756 			SPDK_NOTICELOG("Async QP event for unknown QP: %s\n",
3757 				       ibv_event_type_str(event.event_type));
3758 			break;
3759 		}
3760 
3761 		switch (event.event_type) {
3762 		case IBV_EVENT_QP_FATAL:
3763 			SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
3764 			spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3765 					  (uintptr_t)rqpair, event.event_type);
3766 			nvmf_rdma_update_ibv_state(rqpair);
3767 			spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3768 			break;
3769 		case IBV_EVENT_QP_LAST_WQE_REACHED:
3770 			/* This event only occurs for shared receive queues. */
3771 			SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair);
3772 			rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached);
3773 			if (rc) {
3774 				SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc);
3775 				rqpair->last_wqe_reached = true;
3776 			}
3777 			break;
3778 		case IBV_EVENT_SQ_DRAINED:
3779 			/* This event occurs frequently in both error and non-error states.
3780 			 * Check if the qpair is in an error state before sending a message. */
3781 			SPDK_DEBUGLOG(rdma, "Last sq drained event received for rqpair %p\n", rqpair);
3782 			spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3783 					  (uintptr_t)rqpair, event.event_type);
3784 			if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) {
3785 				spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
3786 			}
3787 			break;
3788 		case IBV_EVENT_QP_REQ_ERR:
3789 		case IBV_EVENT_QP_ACCESS_ERR:
3790 		case IBV_EVENT_COMM_EST:
3791 		case IBV_EVENT_PATH_MIG:
3792 		case IBV_EVENT_PATH_MIG_ERR:
3793 			SPDK_NOTICELOG("Async QP event: %s\n",
3794 				       ibv_event_type_str(event.event_type));
3795 			spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3796 					  (uintptr_t)rqpair, event.event_type);
3797 			nvmf_rdma_update_ibv_state(rqpair);
3798 			break;
3799 		default:
3800 			break;
3801 		}
3802 		break;
3803 	case IBV_EVENT_DEVICE_FATAL:
3804 		SPDK_ERRLOG("Device Fatal event[%s] received on %s. device: %p\n",
3805 			    ibv_event_type_str(event.event_type), ibv_get_device_name(device->context->device), device);
3806 		device->need_destroy = true;
3807 		break;
3808 	case IBV_EVENT_CQ_ERR:
3809 	case IBV_EVENT_PORT_ACTIVE:
3810 	case IBV_EVENT_PORT_ERR:
3811 	case IBV_EVENT_LID_CHANGE:
3812 	case IBV_EVENT_PKEY_CHANGE:
3813 	case IBV_EVENT_SM_CHANGE:
3814 	case IBV_EVENT_SRQ_ERR:
3815 	case IBV_EVENT_SRQ_LIMIT_REACHED:
3816 	case IBV_EVENT_CLIENT_REREGISTER:
3817 	case IBV_EVENT_GID_CHANGE:
3818 	default:
3819 		SPDK_NOTICELOG("Async event: %s\n",
3820 			       ibv_event_type_str(event.event_type));
3821 		spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
3822 		break;
3823 	}
3824 	ibv_ack_async_event(&event);
3825 
3826 	return 0;
3827 }
3828 
3829 static void
3830 nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events)
3831 {
3832 	int rc = 0;
3833 	uint32_t i = 0;
3834 
3835 	for (i = 0; i < max_events; i++) {
3836 		rc = nvmf_process_ib_event(device);
3837 		if (rc) {
3838 			break;
3839 		}
3840 	}
3841 
3842 	SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i);
3843 }
3844 
3845 static int
3846 nvmf_rdma_accept(void *ctx)
3847 {
3848 	int	nfds, i = 0;
3849 	struct spdk_nvmf_transport *transport = ctx;
3850 	struct spdk_nvmf_rdma_transport *rtransport;
3851 	struct spdk_nvmf_rdma_device *device, *tmp;
3852 	uint32_t count;
3853 	short revents;
3854 	bool do_retry;
3855 
3856 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3857 	do_retry = nvmf_rdma_retry_listen_port(rtransport);
3858 
3859 	count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
3860 
3861 	if (nfds <= 0) {
3862 		return do_retry ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3863 	}
3864 
3865 	/* The first poll descriptor is RDMA CM event */
3866 	if (rtransport->poll_fds[i++].revents & POLLIN) {
3867 		nvmf_process_cm_event(transport);
3868 		nfds--;
3869 	}
3870 
3871 	if (nfds == 0) {
3872 		return SPDK_POLLER_BUSY;
3873 	}
3874 
3875 	/* Second and subsequent poll descriptors are IB async events */
3876 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
3877 		revents = rtransport->poll_fds[i++].revents;
3878 		if (revents & POLLIN) {
3879 			if (spdk_likely(!device->need_destroy)) {
3880 				nvmf_process_ib_events(device, 32);
3881 				if (spdk_unlikely(device->need_destroy)) {
3882 					nvmf_rdma_handle_device_removal(rtransport, device);
3883 				}
3884 			}
3885 			nfds--;
3886 		} else if (revents & POLLNVAL || revents & POLLHUP) {
3887 			SPDK_ERRLOG("Receive unknown revent %x on device %p\n", (int)revents, device);
3888 			nfds--;
3889 		}
3890 	}
3891 	/* check all flagged fd's have been served */
3892 	assert(nfds == 0);
3893 
3894 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3895 }
3896 
3897 static void
3898 nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem,
3899 		     struct spdk_nvmf_ctrlr_data *cdata)
3900 {
3901 	cdata->nvmf_specific.msdbd = NVMF_DEFAULT_MSDBD;
3902 
3903 	/* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled
3904 	since in-capsule data only works with NVME drives that support SGL memory layout */
3905 	if (transport->opts.dif_insert_or_strip) {
3906 		cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16;
3907 	}
3908 
3909 	if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) {
3910 		SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule"
3911 			     " data is greater than 4KiB.\n");
3912 		SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux "
3913 			     "kernel between versions 5.4 and 5.12 data corruption may occur for "
3914 			     "writes that are not a multiple of 4KiB in size.\n");
3915 	}
3916 }
3917 
3918 static void
3919 nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
3920 		   struct spdk_nvme_transport_id *trid,
3921 		   struct spdk_nvmf_discovery_log_page_entry *entry)
3922 {
3923 	entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
3924 	entry->adrfam = trid->adrfam;
3925 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
3926 
3927 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
3928 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
3929 
3930 	entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
3931 	entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
3932 	entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
3933 }
3934 
3935 static int
3936 nvmf_rdma_poller_create(struct spdk_nvmf_rdma_transport *rtransport,
3937 			struct spdk_nvmf_rdma_poll_group *rgroup, struct spdk_nvmf_rdma_device *device,
3938 			struct spdk_nvmf_rdma_poller **out_poller)
3939 {
3940 	struct spdk_nvmf_rdma_poller		*poller;
3941 	struct spdk_rdma_srq_init_attr		srq_init_attr;
3942 	struct spdk_nvmf_rdma_resource_opts	opts;
3943 	int					num_cqe;
3944 
3945 	poller = calloc(1, sizeof(*poller));
3946 	if (!poller) {
3947 		SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
3948 		return -1;
3949 	}
3950 
3951 	poller->device = device;
3952 	poller->group = rgroup;
3953 	*out_poller = poller;
3954 
3955 	RB_INIT(&poller->qpairs);
3956 	STAILQ_INIT(&poller->qpairs_pending_send);
3957 	STAILQ_INIT(&poller->qpairs_pending_recv);
3958 
3959 	TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
3960 	SPDK_DEBUGLOG(rdma, "Create poller %p on device %p in poll group %p.\n", poller, device, rgroup);
3961 	if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) {
3962 		if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) {
3963 			SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n",
3964 				     rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr);
3965 		}
3966 		poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr);
3967 
3968 		device->num_srq++;
3969 		memset(&srq_init_attr, 0, sizeof(srq_init_attr));
3970 		srq_init_attr.pd = device->pd;
3971 		srq_init_attr.stats = &poller->stat.qp_stats.recv;
3972 		srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth;
3973 		srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
3974 		poller->srq = spdk_rdma_srq_create(&srq_init_attr);
3975 		if (!poller->srq) {
3976 			SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
3977 			return -1;
3978 		}
3979 
3980 		opts.qp = poller->srq;
3981 		opts.map = device->map;
3982 		opts.qpair = NULL;
3983 		opts.shared = true;
3984 		opts.max_queue_depth = poller->max_srq_depth;
3985 		opts.in_capsule_data_size = rtransport->transport.opts.in_capsule_data_size;
3986 
3987 		poller->resources = nvmf_rdma_resources_create(&opts);
3988 		if (!poller->resources) {
3989 			SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
3990 			return -1;
3991 		}
3992 	}
3993 
3994 	/*
3995 	 * When using an srq, we can limit the completion queue at startup.
3996 	 * The following formula represents the calculation:
3997 	 * num_cqe = num_recv + num_data_wr + num_send_wr.
3998 	 * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
3999 	 */
4000 	if (poller->srq) {
4001 		num_cqe = poller->max_srq_depth * 3;
4002 	} else {
4003 		num_cqe = rtransport->rdma_opts.num_cqe;
4004 	}
4005 
4006 	poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
4007 	if (!poller->cq) {
4008 		SPDK_ERRLOG("Unable to create completion queue\n");
4009 		return -1;
4010 	}
4011 	poller->num_cqe = num_cqe;
4012 	return 0;
4013 }
4014 
4015 static void
4016 _nvmf_rdma_register_poller_in_group(void *c)
4017 {
4018 	struct spdk_nvmf_rdma_poller	*poller;
4019 	struct poller_manage_ctx	*ctx = c;
4020 	struct spdk_nvmf_rdma_device	*device;
4021 	int				rc;
4022 
4023 	rc = nvmf_rdma_poller_create(ctx->rtransport, ctx->rgroup, ctx->device, &poller);
4024 	if (rc < 0 && poller) {
4025 		nvmf_rdma_poller_destroy(poller);
4026 	}
4027 
4028 	device = ctx->device;
4029 	if (nvmf_rdma_all_pollers_management_done(ctx)) {
4030 		device->is_ready = true;
4031 	}
4032 }
4033 
4034 static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
4035 
4036 static struct spdk_nvmf_transport_poll_group *
4037 nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport,
4038 			    struct spdk_nvmf_poll_group *group)
4039 {
4040 	struct spdk_nvmf_rdma_transport		*rtransport;
4041 	struct spdk_nvmf_rdma_poll_group	*rgroup;
4042 	struct spdk_nvmf_rdma_poller		*poller;
4043 	struct spdk_nvmf_rdma_device		*device;
4044 	int					rc;
4045 
4046 	rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
4047 
4048 	rgroup = calloc(1, sizeof(*rgroup));
4049 	if (!rgroup) {
4050 		return NULL;
4051 	}
4052 
4053 	TAILQ_INIT(&rgroup->pollers);
4054 
4055 	TAILQ_FOREACH(device, &rtransport->devices, link) {
4056 		rc = nvmf_rdma_poller_create(rtransport, rgroup, device, &poller);
4057 		if (rc < 0) {
4058 			nvmf_rdma_poll_group_destroy(&rgroup->group);
4059 			return NULL;
4060 		}
4061 	}
4062 
4063 	TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link);
4064 	if (rtransport->conn_sched.next_admin_pg == NULL) {
4065 		rtransport->conn_sched.next_admin_pg = rgroup;
4066 		rtransport->conn_sched.next_io_pg = rgroup;
4067 	}
4068 
4069 	return &rgroup->group;
4070 }
4071 
4072 static uint32_t
4073 nvmf_poll_group_get_io_qpair_count(struct spdk_nvmf_poll_group *pg)
4074 {
4075 	uint32_t count;
4076 
4077 	/* Just assume that unassociated qpairs will eventually be io
4078 	 * qpairs.  This is close enough for the use cases for this
4079 	 * function.
4080 	 */
4081 	pthread_mutex_lock(&pg->mutex);
4082 	count = pg->stat.current_io_qpairs + pg->current_unassociated_qpairs;
4083 	pthread_mutex_unlock(&pg->mutex);
4084 
4085 	return count;
4086 }
4087 
4088 static struct spdk_nvmf_transport_poll_group *
4089 nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
4090 {
4091 	struct spdk_nvmf_rdma_transport *rtransport;
4092 	struct spdk_nvmf_rdma_poll_group **pg;
4093 	struct spdk_nvmf_transport_poll_group *result;
4094 	uint32_t count;
4095 
4096 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
4097 
4098 	if (TAILQ_EMPTY(&rtransport->poll_groups)) {
4099 		return NULL;
4100 	}
4101 
4102 	if (qpair->qid == 0) {
4103 		pg = &rtransport->conn_sched.next_admin_pg;
4104 	} else {
4105 		struct spdk_nvmf_rdma_poll_group *pg_min, *pg_start, *pg_current;
4106 		uint32_t min_value;
4107 
4108 		pg = &rtransport->conn_sched.next_io_pg;
4109 		pg_min = *pg;
4110 		pg_start = *pg;
4111 		pg_current = *pg;
4112 		min_value = nvmf_poll_group_get_io_qpair_count(pg_current->group.group);
4113 
4114 		while ((count = nvmf_poll_group_get_io_qpair_count(pg_current->group.group)) > 0) {
4115 			if (count < min_value) {
4116 				min_value = count;
4117 				pg_min = pg_current;
4118 			}
4119 
4120 			pg_current = TAILQ_NEXT(pg_current, link);
4121 			if (pg_current == NULL) {
4122 				pg_current = TAILQ_FIRST(&rtransport->poll_groups);
4123 			}
4124 
4125 			if (pg_current == pg_start) {
4126 				break;
4127 			}
4128 		}
4129 		*pg = pg_min;
4130 	}
4131 
4132 	assert(*pg != NULL);
4133 
4134 	result = &(*pg)->group;
4135 
4136 	*pg = TAILQ_NEXT(*pg, link);
4137 	if (*pg == NULL) {
4138 		*pg = TAILQ_FIRST(&rtransport->poll_groups);
4139 	}
4140 
4141 	return result;
4142 }
4143 
4144 static void
4145 nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller)
4146 {
4147 	struct spdk_nvmf_rdma_qpair	*qpair, *tmp_qpair;
4148 	int				rc;
4149 
4150 	TAILQ_REMOVE(&poller->group->pollers, poller, link);
4151 	RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) {
4152 		nvmf_rdma_qpair_destroy(qpair);
4153 	}
4154 
4155 	if (poller->srq) {
4156 		if (poller->resources) {
4157 			nvmf_rdma_resources_destroy(poller->resources);
4158 		}
4159 		spdk_rdma_srq_destroy(poller->srq);
4160 		SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq);
4161 	}
4162 
4163 	if (poller->cq) {
4164 		rc = ibv_destroy_cq(poller->cq);
4165 		if (rc != 0) {
4166 			SPDK_ERRLOG("Destroy cq return %d, error: %s\n", rc, strerror(errno));
4167 		}
4168 	}
4169 
4170 	if (poller->destroy_cb) {
4171 		poller->destroy_cb(poller->destroy_cb_ctx);
4172 		poller->destroy_cb = NULL;
4173 	}
4174 
4175 	free(poller);
4176 }
4177 
4178 static void
4179 nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
4180 {
4181 	struct spdk_nvmf_rdma_poll_group	*rgroup, *next_rgroup;
4182 	struct spdk_nvmf_rdma_poller		*poller, *tmp;
4183 	struct spdk_nvmf_rdma_transport		*rtransport;
4184 
4185 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4186 	if (!rgroup) {
4187 		return;
4188 	}
4189 
4190 	TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
4191 		nvmf_rdma_poller_destroy(poller);
4192 	}
4193 
4194 	if (rgroup->group.transport == NULL) {
4195 		/* Transport can be NULL when nvmf_rdma_poll_group_create()
4196 		 * calls this function directly in a failure path. */
4197 		free(rgroup);
4198 		return;
4199 	}
4200 
4201 	rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport);
4202 
4203 	next_rgroup = TAILQ_NEXT(rgroup, link);
4204 	TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link);
4205 	if (next_rgroup == NULL) {
4206 		next_rgroup = TAILQ_FIRST(&rtransport->poll_groups);
4207 	}
4208 	if (rtransport->conn_sched.next_admin_pg == rgroup) {
4209 		rtransport->conn_sched.next_admin_pg = next_rgroup;
4210 	}
4211 	if (rtransport->conn_sched.next_io_pg == rgroup) {
4212 		rtransport->conn_sched.next_io_pg = next_rgroup;
4213 	}
4214 
4215 	free(rgroup);
4216 }
4217 
4218 static void
4219 nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
4220 {
4221 	if (rqpair->cm_id != NULL) {
4222 		nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
4223 	}
4224 }
4225 
4226 static int
4227 nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
4228 			 struct spdk_nvmf_qpair *qpair)
4229 {
4230 	struct spdk_nvmf_rdma_poll_group	*rgroup;
4231 	struct spdk_nvmf_rdma_qpair		*rqpair;
4232 	struct spdk_nvmf_rdma_device		*device;
4233 	struct spdk_nvmf_rdma_poller		*poller;
4234 	int					rc;
4235 
4236 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4237 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4238 
4239 	device = rqpair->device;
4240 
4241 	TAILQ_FOREACH(poller, &rgroup->pollers, link) {
4242 		if (poller->device == device) {
4243 			break;
4244 		}
4245 	}
4246 
4247 	if (!poller) {
4248 		SPDK_ERRLOG("No poller found for device.\n");
4249 		return -1;
4250 	}
4251 
4252 	if (poller->need_destroy) {
4253 		SPDK_ERRLOG("Poller is destroying.\n");
4254 		return -1;
4255 	}
4256 
4257 	rqpair->poller = poller;
4258 	rqpair->srq = rqpair->poller->srq;
4259 
4260 	rc = nvmf_rdma_qpair_initialize(qpair);
4261 	if (rc < 0) {
4262 		SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
4263 		rqpair->poller = NULL;
4264 		rqpair->srq = NULL;
4265 		return -1;
4266 	}
4267 
4268 	RB_INSERT(qpairs_tree, &poller->qpairs, rqpair);
4269 
4270 	rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
4271 	if (rc) {
4272 		/* Try to reject, but we probably can't */
4273 		nvmf_rdma_qpair_reject_connection(rqpair);
4274 		return -1;
4275 	}
4276 
4277 	nvmf_rdma_update_ibv_state(rqpair);
4278 
4279 	return 0;
4280 }
4281 
4282 static int
4283 nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
4284 			    struct spdk_nvmf_qpair *qpair)
4285 {
4286 	struct spdk_nvmf_rdma_qpair		*rqpair;
4287 
4288 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4289 	assert(group->transport->tgt != NULL);
4290 
4291 	rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt);
4292 
4293 	if (!rqpair->destruct_channel) {
4294 		SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair);
4295 		return 0;
4296 	}
4297 
4298 	/* Sanity check that we get io_channel on the correct thread */
4299 	if (qpair->group) {
4300 		assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel));
4301 	}
4302 
4303 	return 0;
4304 }
4305 
4306 static int
4307 nvmf_rdma_request_free(struct spdk_nvmf_request *req)
4308 {
4309 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
4310 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
4311 			struct spdk_nvmf_rdma_transport, transport);
4312 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
4313 					      struct spdk_nvmf_rdma_qpair, qpair);
4314 
4315 	/*
4316 	 * AER requests are freed when a qpair is destroyed. The recv corresponding to that request
4317 	 * needs to be returned to the shared receive queue or the poll group will eventually be
4318 	 * starved of RECV structures.
4319 	 */
4320 	if (rqpair->srq && rdma_req->recv) {
4321 		int rc;
4322 		struct ibv_recv_wr *bad_recv_wr;
4323 
4324 		spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr);
4325 		rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
4326 		if (rc) {
4327 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
4328 		}
4329 	}
4330 
4331 	_nvmf_rdma_request_free(rdma_req, rtransport);
4332 	return 0;
4333 }
4334 
4335 static int
4336 nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
4337 {
4338 	struct spdk_nvmf_rdma_transport	*rtransport = SPDK_CONTAINEROF(req->qpair->transport,
4339 			struct spdk_nvmf_rdma_transport, transport);
4340 	struct spdk_nvmf_rdma_request	*rdma_req = SPDK_CONTAINEROF(req,
4341 			struct spdk_nvmf_rdma_request, req);
4342 	struct spdk_nvmf_rdma_qpair     *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
4343 			struct spdk_nvmf_rdma_qpair, qpair);
4344 
4345 	if (rqpair->ibv_state != IBV_QPS_ERR) {
4346 		/* The connection is alive, so process the request as normal */
4347 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
4348 	} else {
4349 		/* The connection is dead. Move the request directly to the completed state. */
4350 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4351 	}
4352 
4353 	nvmf_rdma_request_process(rtransport, rdma_req);
4354 
4355 	return 0;
4356 }
4357 
4358 static void
4359 nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair,
4360 		      spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
4361 {
4362 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4363 
4364 	rqpair->to_close = true;
4365 
4366 	/* This happens only when the qpair is disconnected before
4367 	 * it is added to the poll group. Since there is no poll group,
4368 	 * the RDMA qp has not been initialized yet and the RDMA CM
4369 	 * event has not yet been acknowledged, so we need to reject it.
4370 	 */
4371 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
4372 		nvmf_rdma_qpair_reject_connection(rqpair);
4373 		nvmf_rdma_qpair_destroy(rqpair);
4374 		return;
4375 	}
4376 
4377 	if (rqpair->rdma_qp) {
4378 		spdk_rdma_qp_disconnect(rqpair->rdma_qp);
4379 	}
4380 
4381 	nvmf_rdma_destroy_drained_qpair(rqpair);
4382 
4383 	if (cb_fn) {
4384 		cb_fn(cb_arg);
4385 	}
4386 }
4387 
4388 static struct spdk_nvmf_rdma_qpair *
4389 get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
4390 {
4391 	struct spdk_nvmf_rdma_qpair find;
4392 
4393 	find.qp_num = wc->qp_num;
4394 
4395 	return RB_FIND(qpairs_tree, &rpoller->qpairs, &find);
4396 }
4397 
4398 #ifdef DEBUG
4399 static int
4400 nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
4401 {
4402 	return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
4403 	       rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
4404 }
4405 #endif
4406 
4407 static void
4408 _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr,
4409 			   int rc)
4410 {
4411 	struct spdk_nvmf_rdma_recv	*rdma_recv;
4412 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
4413 
4414 	SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc);
4415 	while (bad_recv_wr != NULL) {
4416 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id;
4417 		rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4418 
4419 		rdma_recv->qpair->current_recv_depth++;
4420 		bad_recv_wr = bad_recv_wr->next;
4421 		SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc);
4422 		spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair, NULL, NULL);
4423 	}
4424 }
4425 
4426 static void
4427 _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc)
4428 {
4429 	SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc);
4430 	while (bad_recv_wr != NULL) {
4431 		bad_recv_wr = bad_recv_wr->next;
4432 		rqpair->current_recv_depth++;
4433 	}
4434 	spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4435 }
4436 
4437 static void
4438 _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
4439 		     struct spdk_nvmf_rdma_poller *rpoller)
4440 {
4441 	struct spdk_nvmf_rdma_qpair	*rqpair;
4442 	struct ibv_recv_wr		*bad_recv_wr;
4443 	int				rc;
4444 
4445 	if (rpoller->srq) {
4446 		rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr);
4447 		if (rc) {
4448 			_poller_reset_failed_recvs(rpoller, bad_recv_wr, rc);
4449 		}
4450 	} else {
4451 		while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) {
4452 			rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv);
4453 			rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
4454 			if (rc) {
4455 				_qp_reset_failed_recvs(rqpair, bad_recv_wr, rc);
4456 			}
4457 			STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link);
4458 		}
4459 	}
4460 }
4461 
4462 static void
4463 _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport,
4464 		       struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc)
4465 {
4466 	struct spdk_nvmf_rdma_wr	*bad_rdma_wr;
4467 	struct spdk_nvmf_rdma_request	*prev_rdma_req = NULL, *cur_rdma_req = NULL;
4468 
4469 	SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc);
4470 	for (; bad_wr != NULL; bad_wr = bad_wr->next) {
4471 		bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id;
4472 		assert(rqpair->current_send_depth > 0);
4473 		rqpair->current_send_depth--;
4474 		switch (bad_rdma_wr->type) {
4475 		case RDMA_WR_TYPE_DATA:
4476 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data_wr);
4477 			if (bad_wr->opcode == IBV_WR_RDMA_READ) {
4478 				assert(rqpair->current_read_depth > 0);
4479 				rqpair->current_read_depth--;
4480 			}
4481 			break;
4482 		case RDMA_WR_TYPE_SEND:
4483 			cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr);
4484 			break;
4485 		default:
4486 			SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair);
4487 			prev_rdma_req = cur_rdma_req;
4488 			continue;
4489 		}
4490 
4491 		if (prev_rdma_req == cur_rdma_req) {
4492 			/* this request was handled by an earlier wr. i.e. we were performing an nvme read. */
4493 			/* We only have to check against prev_wr since each requests wrs are contiguous in this list. */
4494 			continue;
4495 		}
4496 
4497 		switch (cur_rdma_req->state) {
4498 		case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
4499 			cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
4500 			cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
4501 			break;
4502 		case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
4503 		case RDMA_REQUEST_STATE_COMPLETING:
4504 			cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4505 			break;
4506 		default:
4507 			SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n",
4508 				    cur_rdma_req->state, rqpair);
4509 			continue;
4510 		}
4511 
4512 		nvmf_rdma_request_process(rtransport, cur_rdma_req);
4513 		prev_rdma_req = cur_rdma_req;
4514 	}
4515 
4516 	if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
4517 		/* Disconnect the connection. */
4518 		spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4519 	}
4520 
4521 }
4522 
4523 static void
4524 _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
4525 		     struct spdk_nvmf_rdma_poller *rpoller)
4526 {
4527 	struct spdk_nvmf_rdma_qpair	*rqpair;
4528 	struct ibv_send_wr		*bad_wr = NULL;
4529 	int				rc;
4530 
4531 	while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) {
4532 		rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send);
4533 		rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr);
4534 
4535 		/* bad wr always points to the first wr that failed. */
4536 		if (rc) {
4537 			_qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc);
4538 		}
4539 		STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link);
4540 	}
4541 }
4542 
4543 static const char *
4544 nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type)
4545 {
4546 	switch (wr_type) {
4547 	case RDMA_WR_TYPE_RECV:
4548 		return "RECV";
4549 	case RDMA_WR_TYPE_SEND:
4550 		return "SEND";
4551 	case RDMA_WR_TYPE_DATA:
4552 		return "DATA";
4553 	default:
4554 		SPDK_ERRLOG("Unknown WR type %d\n", wr_type);
4555 		SPDK_UNREACHABLE();
4556 	}
4557 }
4558 
4559 static inline void
4560 nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc)
4561 {
4562 	enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type;
4563 
4564 	if (wc->status == IBV_WC_WR_FLUSH_ERR) {
4565 		/* If qpair is in ERR state, we will receive completions for all posted and not completed
4566 		 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
4567 		SPDK_DEBUGLOG(rdma,
4568 			      "Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n",
4569 			      rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id,
4570 			      nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
4571 	} else {
4572 		SPDK_ERRLOG("Error on CQ %p, (qp state %d ibv_state %d) request 0x%lu, type %s, status: (%d): %s\n",
4573 			    rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_state, wc->wr_id,
4574 			    nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
4575 	}
4576 }
4577 
4578 static int
4579 nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
4580 		      struct spdk_nvmf_rdma_poller *rpoller)
4581 {
4582 	struct ibv_wc wc[32];
4583 	struct spdk_nvmf_rdma_wr	*rdma_wr;
4584 	struct spdk_nvmf_rdma_request	*rdma_req;
4585 	struct spdk_nvmf_rdma_recv	*rdma_recv;
4586 	struct spdk_nvmf_rdma_qpair	*rqpair, *tmp_rqpair;
4587 	int reaped, i;
4588 	int count = 0;
4589 	int rc;
4590 	bool error = false;
4591 	uint64_t poll_tsc = spdk_get_ticks();
4592 
4593 	if (spdk_unlikely(rpoller->need_destroy)) {
4594 		/* If qpair is closed before poller destroy, nvmf_rdma_destroy_drained_qpair may not
4595 		 * be called because we cannot poll anything from cq. So we call that here to force
4596 		 * destroy the qpair after to_close turning true.
4597 		 */
4598 		RB_FOREACH_SAFE(rqpair, qpairs_tree, &rpoller->qpairs, tmp_rqpair) {
4599 			nvmf_rdma_destroy_drained_qpair(rqpair);
4600 		}
4601 		return 0;
4602 	}
4603 
4604 	/* Poll for completing operations. */
4605 	reaped = ibv_poll_cq(rpoller->cq, 32, wc);
4606 	if (reaped < 0) {
4607 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
4608 			    errno, spdk_strerror(errno));
4609 		return -1;
4610 	} else if (reaped == 0) {
4611 		rpoller->stat.idle_polls++;
4612 	}
4613 
4614 	rpoller->stat.polls++;
4615 	rpoller->stat.completions += reaped;
4616 
4617 	for (i = 0; i < reaped; i++) {
4618 
4619 		rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
4620 
4621 		switch (rdma_wr->type) {
4622 		case RDMA_WR_TYPE_SEND:
4623 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr);
4624 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4625 
4626 			if (!wc[i].status) {
4627 				count++;
4628 				assert(wc[i].opcode == IBV_WC_SEND);
4629 				assert(nvmf_rdma_req_is_completing(rdma_req));
4630 			}
4631 
4632 			rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4633 			/* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */
4634 			rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1;
4635 			rdma_req->num_outstanding_data_wr = 0;
4636 
4637 			nvmf_rdma_request_process(rtransport, rdma_req);
4638 			break;
4639 		case RDMA_WR_TYPE_RECV:
4640 			/* rdma_recv->qpair will be invalid if using an SRQ.  In that case we have to get the qpair from the wc. */
4641 			rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4642 			if (rpoller->srq != NULL) {
4643 				rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
4644 				/* It is possible that there are still some completions for destroyed QP
4645 				 * associated with SRQ. We just ignore these late completions and re-post
4646 				 * receive WRs back to SRQ.
4647 				 */
4648 				if (spdk_unlikely(NULL == rdma_recv->qpair)) {
4649 					struct ibv_recv_wr *bad_wr;
4650 
4651 					rdma_recv->wr.next = NULL;
4652 					spdk_rdma_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr);
4653 					rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_wr);
4654 					if (rc) {
4655 						SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc);
4656 					}
4657 					continue;
4658 				}
4659 			}
4660 			rqpair = rdma_recv->qpair;
4661 
4662 			assert(rqpair != NULL);
4663 			if (!wc[i].status) {
4664 				assert(wc[i].opcode == IBV_WC_RECV);
4665 				if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
4666 					spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4667 					break;
4668 				}
4669 			}
4670 
4671 			rdma_recv->wr.next = NULL;
4672 			rqpair->current_recv_depth++;
4673 			rdma_recv->receive_tsc = poll_tsc;
4674 			rpoller->stat.requests++;
4675 			STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link);
4676 			break;
4677 		case RDMA_WR_TYPE_DATA:
4678 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data_wr);
4679 			rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4680 
4681 			assert(rdma_req->num_outstanding_data_wr > 0);
4682 
4683 			rqpair->current_send_depth--;
4684 			rdma_req->num_outstanding_data_wr--;
4685 			if (!wc[i].status) {
4686 				assert(wc[i].opcode == IBV_WC_RDMA_READ);
4687 				rqpair->current_read_depth--;
4688 				/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
4689 				if (rdma_req->num_outstanding_data_wr == 0) {
4690 					if (spdk_unlikely(rdma_req->num_remaining_data_wr)) {
4691 						/* Only part of RDMA_READ operations was submitted, process the rest */
4692 						rc = nvmf_rdma_request_reset_transfer_in(rdma_req, rtransport);
4693 						if (spdk_likely(!rc)) {
4694 							STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
4695 							rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
4696 						} else {
4697 							rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
4698 							rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
4699 						}
4700 						nvmf_rdma_request_process(rtransport, rdma_req);
4701 						break;
4702 					}
4703 					rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
4704 					nvmf_rdma_request_process(rtransport, rdma_req);
4705 				}
4706 			} else {
4707 				/* If the data transfer fails still force the queue into the error state,
4708 				 * if we were performing an RDMA_READ, we need to force the request into a
4709 				 * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
4710 				 * case, we should wait for the SEND to complete. */
4711 				if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
4712 					rqpair->current_read_depth--;
4713 					if (rdma_req->num_outstanding_data_wr == 0) {
4714 						rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4715 					}
4716 				}
4717 			}
4718 			break;
4719 		default:
4720 			SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
4721 			continue;
4722 		}
4723 
4724 		/* Handle error conditions */
4725 		if (wc[i].status) {
4726 			nvmf_rdma_update_ibv_state(rqpair);
4727 			nvmf_rdma_log_wc_status(rqpair, &wc[i]);
4728 
4729 			error = true;
4730 
4731 			if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
4732 				/* Disconnect the connection. */
4733 				spdk_nvmf_qpair_disconnect(&rqpair->qpair, NULL, NULL);
4734 			} else {
4735 				nvmf_rdma_destroy_drained_qpair(rqpair);
4736 			}
4737 			continue;
4738 		}
4739 
4740 		nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
4741 
4742 		if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
4743 			nvmf_rdma_destroy_drained_qpair(rqpair);
4744 		}
4745 	}
4746 
4747 	if (error == true) {
4748 		return -1;
4749 	}
4750 
4751 	/* submit outstanding work requests. */
4752 	_poller_submit_recvs(rtransport, rpoller);
4753 	_poller_submit_sends(rtransport, rpoller);
4754 
4755 	return count;
4756 }
4757 
4758 static void
4759 _nvmf_rdma_remove_destroyed_device(void *c)
4760 {
4761 	struct spdk_nvmf_rdma_transport	*rtransport = c;
4762 	struct spdk_nvmf_rdma_device	*device, *device_tmp;
4763 	int				rc;
4764 
4765 	TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
4766 		if (device->ready_to_destroy) {
4767 			destroy_ib_device(rtransport, device);
4768 		}
4769 	}
4770 
4771 	free_poll_fds(rtransport);
4772 	rc = generate_poll_fds(rtransport);
4773 	/* cannot handle fd allocation error here */
4774 	if (rc != 0) {
4775 		SPDK_ERRLOG("Failed to generate poll fds after remove ib device.\n");
4776 	}
4777 }
4778 
4779 static void
4780 _nvmf_rdma_remove_poller_in_group_cb(void *c)
4781 {
4782 	struct poller_manage_ctx	*ctx = c;
4783 	struct spdk_nvmf_rdma_transport	*rtransport = ctx->rtransport;
4784 	struct spdk_nvmf_rdma_device	*device = ctx->device;
4785 	struct spdk_thread		*thread = ctx->thread;
4786 
4787 	if (nvmf_rdma_all_pollers_management_done(c)) {
4788 		/* destroy device when last poller is destroyed */
4789 		device->ready_to_destroy = true;
4790 		spdk_thread_send_msg(thread, _nvmf_rdma_remove_destroyed_device, rtransport);
4791 	}
4792 }
4793 
4794 static void
4795 _nvmf_rdma_remove_poller_in_group(void *c)
4796 {
4797 	struct poller_manage_ctx		*ctx = c;
4798 
4799 	ctx->rpoller->need_destroy = true;
4800 	ctx->rpoller->destroy_cb_ctx = ctx;
4801 	ctx->rpoller->destroy_cb = _nvmf_rdma_remove_poller_in_group_cb;
4802 
4803 	/* qp will be disconnected after receiving a RDMA_CM_EVENT_DEVICE_REMOVAL event. */
4804 	if (RB_EMPTY(&ctx->rpoller->qpairs)) {
4805 		nvmf_rdma_poller_destroy(ctx->rpoller);
4806 	}
4807 }
4808 
4809 static int
4810 nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
4811 {
4812 	struct spdk_nvmf_rdma_transport *rtransport;
4813 	struct spdk_nvmf_rdma_poll_group *rgroup;
4814 	struct spdk_nvmf_rdma_poller	*rpoller, *tmp;
4815 	int				count, rc;
4816 
4817 	rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
4818 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4819 
4820 	count = 0;
4821 	TAILQ_FOREACH_SAFE(rpoller, &rgroup->pollers, link, tmp) {
4822 		rc = nvmf_rdma_poller_poll(rtransport, rpoller);
4823 		if (rc < 0) {
4824 			return rc;
4825 		}
4826 		count += rc;
4827 	}
4828 
4829 	return count;
4830 }
4831 
4832 static int
4833 nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
4834 			  struct spdk_nvme_transport_id *trid,
4835 			  bool peer)
4836 {
4837 	struct sockaddr *saddr;
4838 	uint16_t port;
4839 
4840 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA);
4841 
4842 	if (peer) {
4843 		saddr = rdma_get_peer_addr(id);
4844 	} else {
4845 		saddr = rdma_get_local_addr(id);
4846 	}
4847 	switch (saddr->sa_family) {
4848 	case AF_INET: {
4849 		struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
4850 
4851 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
4852 		inet_ntop(AF_INET, &saddr_in->sin_addr,
4853 			  trid->traddr, sizeof(trid->traddr));
4854 		if (peer) {
4855 			port = ntohs(rdma_get_dst_port(id));
4856 		} else {
4857 			port = ntohs(rdma_get_src_port(id));
4858 		}
4859 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4860 		break;
4861 	}
4862 	case AF_INET6: {
4863 		struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
4864 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
4865 		inet_ntop(AF_INET6, &saddr_in->sin6_addr,
4866 			  trid->traddr, sizeof(trid->traddr));
4867 		if (peer) {
4868 			port = ntohs(rdma_get_dst_port(id));
4869 		} else {
4870 			port = ntohs(rdma_get_src_port(id));
4871 		}
4872 		snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4873 		break;
4874 	}
4875 	default:
4876 		return -1;
4877 
4878 	}
4879 
4880 	return 0;
4881 }
4882 
4883 static int
4884 nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
4885 			      struct spdk_nvme_transport_id *trid)
4886 {
4887 	struct spdk_nvmf_rdma_qpair	*rqpair;
4888 
4889 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4890 
4891 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
4892 }
4893 
4894 static int
4895 nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
4896 			       struct spdk_nvme_transport_id *trid)
4897 {
4898 	struct spdk_nvmf_rdma_qpair	*rqpair;
4899 
4900 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4901 
4902 	return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
4903 }
4904 
4905 static int
4906 nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
4907 				struct spdk_nvme_transport_id *trid)
4908 {
4909 	struct spdk_nvmf_rdma_qpair	*rqpair;
4910 
4911 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4912 
4913 	return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
4914 }
4915 
4916 void
4917 spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
4918 {
4919 	g_nvmf_hooks = *hooks;
4920 }
4921 
4922 static void
4923 nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req,
4924 				   struct spdk_nvmf_rdma_request *rdma_req_to_abort)
4925 {
4926 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
4927 	rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
4928 
4929 	rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
4930 
4931 	req->rsp->nvme_cpl.cdw0 &= ~1U;	/* Command was successfully aborted. */
4932 }
4933 
4934 static int
4935 _nvmf_rdma_qpair_abort_request(void *ctx)
4936 {
4937 	struct spdk_nvmf_request *req = ctx;
4938 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF(
4939 				req->req_to_abort, struct spdk_nvmf_rdma_request, req);
4940 	struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
4941 					      struct spdk_nvmf_rdma_qpair, qpair);
4942 	int rc;
4943 
4944 	spdk_poller_unregister(&req->poller);
4945 
4946 	switch (rdma_req_to_abort->state) {
4947 	case RDMA_REQUEST_STATE_EXECUTING:
4948 		rc = nvmf_ctrlr_abort_request(req);
4949 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
4950 			return SPDK_POLLER_BUSY;
4951 		}
4952 		break;
4953 
4954 	case RDMA_REQUEST_STATE_NEED_BUFFER:
4955 		STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue,
4956 			      &rdma_req_to_abort->req, spdk_nvmf_request, buf_link);
4957 
4958 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4959 		break;
4960 
4961 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
4962 		STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort,
4963 			      spdk_nvmf_rdma_request, state_link);
4964 
4965 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4966 		break;
4967 
4968 	case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
4969 		STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort,
4970 			      spdk_nvmf_rdma_request, state_link);
4971 
4972 		nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort);
4973 		break;
4974 
4975 	case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
4976 		if (spdk_get_ticks() < req->timeout_tsc) {
4977 			req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0);
4978 			return SPDK_POLLER_BUSY;
4979 		}
4980 		break;
4981 
4982 	default:
4983 		break;
4984 	}
4985 
4986 	spdk_nvmf_request_complete(req);
4987 	return SPDK_POLLER_BUSY;
4988 }
4989 
4990 static void
4991 nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
4992 			      struct spdk_nvmf_request *req)
4993 {
4994 	struct spdk_nvmf_rdma_qpair *rqpair;
4995 	struct spdk_nvmf_rdma_transport *rtransport;
4996 	struct spdk_nvmf_transport *transport;
4997 	uint16_t cid;
4998 	uint32_t i, max_req_count;
4999 	struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req;
5000 
5001 	rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
5002 	rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
5003 	transport = &rtransport->transport;
5004 
5005 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
5006 	max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth;
5007 
5008 	for (i = 0; i < max_req_count; i++) {
5009 		rdma_req = &rqpair->resources->reqs[i];
5010 		/* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair
5011 		 * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to
5012 		 * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */
5013 		if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid &&
5014 		    rdma_req->req.qpair == qpair) {
5015 			rdma_req_to_abort = rdma_req;
5016 			break;
5017 		}
5018 	}
5019 
5020 	if (rdma_req_to_abort == NULL) {
5021 		spdk_nvmf_request_complete(req);
5022 		return;
5023 	}
5024 
5025 	req->req_to_abort = &rdma_req_to_abort->req;
5026 	req->timeout_tsc = spdk_get_ticks() +
5027 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
5028 	req->poller = NULL;
5029 
5030 	_nvmf_rdma_qpair_abort_request(req);
5031 }
5032 
5033 static void
5034 nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group,
5035 			       struct spdk_json_write_ctx *w)
5036 {
5037 	struct spdk_nvmf_rdma_poll_group *rgroup;
5038 	struct spdk_nvmf_rdma_poller *rpoller;
5039 
5040 	assert(w != NULL);
5041 
5042 	rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
5043 
5044 	spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer);
5045 
5046 	spdk_json_write_named_array_begin(w, "devices");
5047 
5048 	TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
5049 		spdk_json_write_object_begin(w);
5050 		spdk_json_write_named_string(w, "name",
5051 					     ibv_get_device_name(rpoller->device->context->device));
5052 		spdk_json_write_named_uint64(w, "polls",
5053 					     rpoller->stat.polls);
5054 		spdk_json_write_named_uint64(w, "idle_polls",
5055 					     rpoller->stat.idle_polls);
5056 		spdk_json_write_named_uint64(w, "completions",
5057 					     rpoller->stat.completions);
5058 		spdk_json_write_named_uint64(w, "requests",
5059 					     rpoller->stat.requests);
5060 		spdk_json_write_named_uint64(w, "request_latency",
5061 					     rpoller->stat.request_latency);
5062 		spdk_json_write_named_uint64(w, "pending_free_request",
5063 					     rpoller->stat.pending_free_request);
5064 		spdk_json_write_named_uint64(w, "pending_rdma_read",
5065 					     rpoller->stat.pending_rdma_read);
5066 		spdk_json_write_named_uint64(w, "pending_rdma_write",
5067 					     rpoller->stat.pending_rdma_write);
5068 		spdk_json_write_named_uint64(w, "total_send_wrs",
5069 					     rpoller->stat.qp_stats.send.num_submitted_wrs);
5070 		spdk_json_write_named_uint64(w, "send_doorbell_updates",
5071 					     rpoller->stat.qp_stats.send.doorbell_updates);
5072 		spdk_json_write_named_uint64(w, "total_recv_wrs",
5073 					     rpoller->stat.qp_stats.recv.num_submitted_wrs);
5074 		spdk_json_write_named_uint64(w, "recv_doorbell_updates",
5075 					     rpoller->stat.qp_stats.recv.doorbell_updates);
5076 		spdk_json_write_object_end(w);
5077 	}
5078 
5079 	spdk_json_write_array_end(w);
5080 }
5081 
5082 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
5083 	.name = "RDMA",
5084 	.type = SPDK_NVME_TRANSPORT_RDMA,
5085 	.opts_init = nvmf_rdma_opts_init,
5086 	.create = nvmf_rdma_create,
5087 	.dump_opts = nvmf_rdma_dump_opts,
5088 	.destroy = nvmf_rdma_destroy,
5089 
5090 	.listen = nvmf_rdma_listen,
5091 	.stop_listen = nvmf_rdma_stop_listen,
5092 	.cdata_init = nvmf_rdma_cdata_init,
5093 
5094 	.listener_discover = nvmf_rdma_discover,
5095 
5096 	.poll_group_create = nvmf_rdma_poll_group_create,
5097 	.get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group,
5098 	.poll_group_destroy = nvmf_rdma_poll_group_destroy,
5099 	.poll_group_add = nvmf_rdma_poll_group_add,
5100 	.poll_group_remove = nvmf_rdma_poll_group_remove,
5101 	.poll_group_poll = nvmf_rdma_poll_group_poll,
5102 
5103 	.req_free = nvmf_rdma_request_free,
5104 	.req_complete = nvmf_rdma_request_complete,
5105 
5106 	.qpair_fini = nvmf_rdma_close_qpair,
5107 	.qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid,
5108 	.qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid,
5109 	.qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid,
5110 	.qpair_abort_request = nvmf_rdma_qpair_abort_request,
5111 
5112 	.poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat,
5113 };
5114 
5115 SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma);
5116 SPDK_LOG_REGISTER_COMPONENT(rdma)
5117