1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * NVMe/TCP transport 36 */ 37 38 #include "nvme_internal.h" 39 40 #include "spdk/endian.h" 41 #include "spdk/likely.h" 42 #include "spdk/string.h" 43 #include "spdk/stdinc.h" 44 #include "spdk/crc32.h" 45 #include "spdk/endian.h" 46 #include "spdk/assert.h" 47 #include "spdk/string.h" 48 #include "spdk/thread.h" 49 #include "spdk/trace.h" 50 #include "spdk/util.h" 51 52 #include "spdk_internal/nvme_tcp.h" 53 54 #define NVME_TCP_RW_BUFFER_SIZE 131072 55 56 /* 57 * Maximum number of SGL elements. 58 * This is chosen to match the current nvme_pcie.c limit. 59 */ 60 #define NVME_TCP_MAX_SGL_DESCRIPTORS (253) 61 62 #define NVME_TCP_HPDA_DEFAULT 0 63 #define NVME_TCP_MAX_R2T_DEFAULT 16 64 #define NVME_TCP_PDU_H2C_MIN_DATA_SIZE 4096 65 #define NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE 8192 66 67 /* NVMe TCP transport extensions for spdk_nvme_ctrlr */ 68 struct nvme_tcp_ctrlr { 69 struct spdk_nvme_ctrlr ctrlr; 70 }; 71 72 /* NVMe TCP qpair extensions for spdk_nvme_qpair */ 73 struct nvme_tcp_qpair { 74 struct spdk_nvme_qpair qpair; 75 struct spdk_sock *sock; 76 77 TAILQ_HEAD(, nvme_tcp_req) free_reqs; 78 TAILQ_HEAD(, nvme_tcp_req) outstanding_reqs; 79 80 TAILQ_HEAD(, nvme_tcp_pdu) send_queue; 81 struct nvme_tcp_pdu recv_pdu; 82 struct nvme_tcp_pdu send_pdu; /* only for error pdu and init pdu */ 83 enum nvme_tcp_pdu_recv_state recv_state; 84 85 struct nvme_tcp_req *tcp_reqs; 86 87 uint16_t num_entries; 88 89 bool host_hdgst_enable; 90 bool host_ddgst_enable; 91 92 /** Specifies the maximum number of PDU-Data bytes per H2C Data Transfer PDU */ 93 uint32_t maxh2cdata; 94 95 int32_t max_r2t; 96 int32_t pending_r2t; 97 98 /* 0 based value, which is used to guide the padding */ 99 uint8_t cpda; 100 101 enum nvme_tcp_qpair_state state; 102 }; 103 104 enum nvme_tcp_req_state { 105 NVME_TCP_REQ_FREE, 106 NVME_TCP_REQ_ACTIVE, 107 NVME_TCP_REQ_ACTIVE_R2T, 108 }; 109 110 struct nvme_tcp_req { 111 struct nvme_request *req; 112 enum nvme_tcp_req_state state; 113 uint16_t cid; 114 uint16_t ttag; 115 uint32_t datao; 116 uint32_t r2tl_remain; 117 bool in_capsule_data; 118 struct nvme_tcp_pdu send_pdu; 119 void *buf; 120 TAILQ_ENTRY(nvme_tcp_req) link; 121 }; 122 123 static void spdk_nvme_tcp_send_h2c_data(struct nvme_tcp_req *tcp_req); 124 125 static inline struct nvme_tcp_qpair * 126 nvme_tcp_qpair(struct spdk_nvme_qpair *qpair) 127 { 128 assert(qpair->trtype == SPDK_NVME_TRANSPORT_TCP); 129 return SPDK_CONTAINEROF(qpair, struct nvme_tcp_qpair, qpair); 130 } 131 132 static inline struct nvme_tcp_ctrlr * 133 nvme_tcp_ctrlr(struct spdk_nvme_ctrlr *ctrlr) 134 { 135 assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP); 136 return SPDK_CONTAINEROF(ctrlr, struct nvme_tcp_ctrlr, ctrlr); 137 } 138 139 static struct nvme_tcp_req * 140 nvme_tcp_req_get(struct nvme_tcp_qpair *tqpair) 141 { 142 struct nvme_tcp_req *tcp_req; 143 144 tcp_req = TAILQ_FIRST(&tqpair->free_reqs); 145 if (!tcp_req) { 146 return NULL; 147 } 148 149 assert(tcp_req->state == NVME_TCP_REQ_FREE); 150 tcp_req->state = NVME_TCP_REQ_ACTIVE; 151 TAILQ_REMOVE(&tqpair->free_reqs, tcp_req, link); 152 tcp_req->datao = 0; 153 tcp_req->req = NULL; 154 tcp_req->in_capsule_data = false; 155 tcp_req->r2tl_remain = 0; 156 tcp_req->buf = NULL; 157 memset(&tcp_req->send_pdu, 0, sizeof(tcp_req->send_pdu)); 158 TAILQ_INSERT_TAIL(&tqpair->outstanding_reqs, tcp_req, link); 159 160 return tcp_req; 161 } 162 163 static void 164 nvme_tcp_req_put(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req) 165 { 166 assert(tcp_req->state != NVME_TCP_REQ_FREE); 167 tcp_req->state = NVME_TCP_REQ_FREE; 168 TAILQ_REMOVE(&tqpair->outstanding_reqs, tcp_req, link); 169 TAILQ_INSERT_TAIL(&tqpair->free_reqs, tcp_req, link); 170 } 171 172 static int 173 nvme_tcp_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service) 174 { 175 struct addrinfo *res; 176 struct addrinfo hints; 177 int ret; 178 179 memset(&hints, 0, sizeof(hints)); 180 hints.ai_family = family; 181 hints.ai_socktype = SOCK_STREAM; 182 hints.ai_protocol = 0; 183 184 ret = getaddrinfo(addr, service, &hints, &res); 185 if (ret) { 186 SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret); 187 return ret; 188 } 189 190 if (res->ai_addrlen > sizeof(*sa)) { 191 SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen); 192 ret = EINVAL; 193 } else { 194 memcpy(sa, res->ai_addr, res->ai_addrlen); 195 } 196 197 freeaddrinfo(res); 198 return ret; 199 } 200 201 static void 202 nvme_tcp_free_reqs(struct nvme_tcp_qpair *tqpair) 203 { 204 free(tqpair->tcp_reqs); 205 tqpair->tcp_reqs = NULL; 206 } 207 208 static int 209 nvme_tcp_alloc_reqs(struct nvme_tcp_qpair *tqpair) 210 { 211 int i; 212 struct nvme_tcp_req *tcp_req; 213 214 tqpair->tcp_reqs = calloc(tqpair->num_entries, sizeof(struct nvme_tcp_req)); 215 if (tqpair->tcp_reqs == NULL) { 216 SPDK_ERRLOG("Failed to allocate tcp_reqs\n"); 217 goto fail; 218 } 219 220 TAILQ_INIT(&tqpair->send_queue); 221 TAILQ_INIT(&tqpair->free_reqs); 222 TAILQ_INIT(&tqpair->outstanding_reqs); 223 for (i = 0; i < tqpair->num_entries; i++) { 224 tcp_req = &tqpair->tcp_reqs[i]; 225 tcp_req->cid = i; 226 TAILQ_INSERT_TAIL(&tqpair->free_reqs, tcp_req, link); 227 } 228 229 return 0; 230 fail: 231 nvme_tcp_free_reqs(tqpair); 232 return -ENOMEM; 233 } 234 235 static int 236 nvme_tcp_qpair_destroy(struct spdk_nvme_qpair *qpair) 237 { 238 struct nvme_tcp_qpair *tqpair; 239 240 if (!qpair) { 241 return -1; 242 } 243 244 nvme_tcp_qpair_fail(qpair); 245 nvme_qpair_deinit(qpair); 246 247 tqpair = nvme_tcp_qpair(qpair); 248 249 nvme_tcp_free_reqs(tqpair); 250 251 spdk_sock_close(&tqpair->sock); 252 free(tqpair); 253 254 return 0; 255 } 256 257 int 258 nvme_tcp_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) 259 { 260 return 0; 261 } 262 263 /* This function must only be called while holding g_spdk_nvme_driver->lock */ 264 int 265 nvme_tcp_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx, 266 bool direct_connect) 267 { 268 struct spdk_nvme_ctrlr_opts discovery_opts; 269 struct spdk_nvme_ctrlr *discovery_ctrlr; 270 union spdk_nvme_cc_register cc; 271 int rc; 272 struct nvme_completion_poll_status status; 273 274 if (strcmp(probe_ctx->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN) != 0) { 275 /* Not a discovery controller - connect directly. */ 276 rc = nvme_ctrlr_probe(&probe_ctx->trid, probe_ctx, NULL); 277 return rc; 278 } 279 280 spdk_nvme_ctrlr_get_default_ctrlr_opts(&discovery_opts, sizeof(discovery_opts)); 281 /* For discovery_ctrlr set the timeout to 0 */ 282 discovery_opts.keep_alive_timeout_ms = 0; 283 284 discovery_ctrlr = nvme_tcp_ctrlr_construct(&probe_ctx->trid, &discovery_opts, NULL); 285 if (discovery_ctrlr == NULL) { 286 return -1; 287 } 288 289 /* TODO: this should be using the normal NVMe controller initialization process */ 290 cc.raw = 0; 291 cc.bits.en = 1; 292 cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */ 293 cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */ 294 rc = nvme_transport_ctrlr_set_reg_4(discovery_ctrlr, offsetof(struct spdk_nvme_registers, cc.raw), 295 cc.raw); 296 if (rc < 0) { 297 SPDK_ERRLOG("Failed to set cc\n"); 298 nvme_ctrlr_destruct(discovery_ctrlr); 299 return -1; 300 } 301 302 /* Direct attach through spdk_nvme_connect() API */ 303 if (direct_connect == true) { 304 /* get the cdata info */ 305 status.done = false; 306 rc = nvme_ctrlr_cmd_identify(discovery_ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, 307 &discovery_ctrlr->cdata, sizeof(discovery_ctrlr->cdata), 308 nvme_completion_poll_cb, &status); 309 if (rc != 0) { 310 SPDK_ERRLOG("Failed to identify cdata\n"); 311 return rc; 312 } 313 314 if (spdk_nvme_wait_for_completion(discovery_ctrlr->adminq, &status)) { 315 SPDK_ERRLOG("nvme_identify_controller failed!\n"); 316 return -ENXIO; 317 } 318 /* Set the ready state to skip the normal init process */ 319 discovery_ctrlr->state = NVME_CTRLR_STATE_READY; 320 nvme_ctrlr_connected(probe_ctx, discovery_ctrlr); 321 nvme_ctrlr_add_process(discovery_ctrlr, 0); 322 return 0; 323 } 324 325 rc = nvme_fabric_ctrlr_discover(discovery_ctrlr, probe_ctx); 326 nvme_ctrlr_destruct(discovery_ctrlr); 327 SPDK_DEBUGLOG(SPDK_LOG_NVME, "leave\n"); 328 return rc; 329 } 330 331 int 332 nvme_tcp_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) 333 { 334 struct nvme_tcp_ctrlr *tctrlr = nvme_tcp_ctrlr(ctrlr); 335 336 if (ctrlr->adminq) { 337 nvme_tcp_qpair_destroy(ctrlr->adminq); 338 } 339 340 nvme_ctrlr_destruct_finish(ctrlr); 341 342 free(tctrlr); 343 344 return 0; 345 } 346 347 int 348 nvme_tcp_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value) 349 { 350 return nvme_fabric_ctrlr_set_reg_4(ctrlr, offset, value); 351 } 352 353 int 354 nvme_tcp_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value) 355 { 356 return nvme_fabric_ctrlr_set_reg_8(ctrlr, offset, value); 357 } 358 359 int 360 nvme_tcp_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value) 361 { 362 return nvme_fabric_ctrlr_get_reg_4(ctrlr, offset, value); 363 } 364 365 int 366 nvme_tcp_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value) 367 { 368 return nvme_fabric_ctrlr_get_reg_8(ctrlr, offset, value); 369 } 370 371 static int 372 nvme_tcp_qpair_process_send_queue(struct nvme_tcp_qpair *tqpair) 373 { 374 const int array_size = 32; 375 struct iovec iovec_array[array_size]; 376 struct iovec *iov = iovec_array; 377 int iovec_cnt = 0; 378 int bytes = 0; 379 uint32_t mapped_length; 380 struct nvme_tcp_pdu *pdu; 381 int pdu_length; 382 TAILQ_HEAD(, nvme_tcp_pdu) completed_pdus_list; 383 384 pdu = TAILQ_FIRST(&tqpair->send_queue); 385 386 if (pdu == NULL) { 387 return 0; 388 } 389 390 /* 391 * Build up a list of iovecs for the first few PDUs in the 392 * tqpair 's send_queue. 393 */ 394 while (pdu != NULL && ((array_size - iovec_cnt) >= 3)) { 395 iovec_cnt += nvme_tcp_build_iovecs(&iovec_array[iovec_cnt], array_size - iovec_cnt, 396 pdu, tqpair->host_hdgst_enable, 397 tqpair->host_ddgst_enable, &mapped_length); 398 pdu = TAILQ_NEXT(pdu, tailq); 399 } 400 401 bytes = spdk_sock_writev(tqpair->sock, iov, iovec_cnt); 402 SPDK_DEBUGLOG(SPDK_LOG_NVME, "bytes=%d are out\n", bytes); 403 if (bytes == -1) { 404 if (errno == EWOULDBLOCK || errno == EAGAIN) { 405 return 1; 406 } else { 407 SPDK_ERRLOG("spdk_sock_writev() failed, errno %d: %s\n", 408 errno, spdk_strerror(errno)); 409 return -1; 410 } 411 } 412 413 pdu = TAILQ_FIRST(&tqpair->send_queue); 414 415 /* 416 * Free any PDUs that were fully written. If a PDU was only 417 * partially written, update its writev_offset so that next 418 * time only the unwritten portion will be sent to writev(). 419 */ 420 TAILQ_INIT(&completed_pdus_list); 421 while (bytes > 0) { 422 pdu_length = pdu->hdr.common.plen - pdu->writev_offset; 423 assert(pdu_length > 0); 424 if (bytes >= pdu_length) { 425 bytes -= pdu_length; 426 TAILQ_REMOVE(&tqpair->send_queue, pdu, tailq); 427 TAILQ_INSERT_TAIL(&completed_pdus_list, pdu, tailq); 428 pdu = TAILQ_FIRST(&tqpair->send_queue); 429 430 } else { 431 pdu->writev_offset += bytes; 432 bytes = 0; 433 } 434 } 435 436 while (!TAILQ_EMPTY(&completed_pdus_list)) { 437 pdu = TAILQ_FIRST(&completed_pdus_list); 438 TAILQ_REMOVE(&completed_pdus_list, pdu, tailq); 439 assert(pdu->cb_fn != NULL); 440 pdu->cb_fn(pdu->cb_arg); 441 } 442 443 return TAILQ_EMPTY(&tqpair->send_queue) ? 0 : 1; 444 445 } 446 447 static int 448 nvme_tcp_qpair_write_pdu(struct nvme_tcp_qpair *tqpair, 449 struct nvme_tcp_pdu *pdu, 450 nvme_tcp_qpair_xfer_complete_cb cb_fn, 451 void *cb_arg) 452 { 453 int enable_digest; 454 int hlen; 455 uint32_t crc32c; 456 457 hlen = pdu->hdr.common.hlen; 458 enable_digest = 1; 459 if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ || 460 pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) { 461 /* this PDU should be sent without digest */ 462 enable_digest = 0; 463 } 464 465 /* Header Digest */ 466 if (enable_digest && tqpair->host_hdgst_enable) { 467 crc32c = nvme_tcp_pdu_calc_header_digest(pdu); 468 MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c); 469 } 470 471 /* Data Digest */ 472 if (pdu->data_len > 0 && enable_digest && tqpair->host_ddgst_enable) { 473 crc32c = nvme_tcp_pdu_calc_data_digest(pdu); 474 MAKE_DIGEST_WORD(pdu->data_digest, crc32c); 475 } 476 477 pdu->cb_fn = cb_fn; 478 pdu->cb_arg = cb_arg; 479 TAILQ_INSERT_TAIL(&tqpair->send_queue, pdu, tailq); 480 return 0; 481 } 482 483 /* 484 * Build SGL describing contiguous payload buffer. 485 */ 486 static int 487 nvme_tcp_build_contig_request(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req) 488 { 489 struct nvme_request *req = tcp_req->req; 490 tcp_req->buf = req->payload.contig_or_cb_arg + req->payload_offset; 491 492 SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n"); 493 494 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); 495 496 return 0; 497 } 498 499 /* 500 * Build SGL describing scattered payload buffer. 501 */ 502 static int 503 nvme_tcp_build_sgl_request(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req) 504 { 505 int rc; 506 uint32_t length; 507 struct nvme_request *req = tcp_req->req; 508 509 SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n"); 510 511 assert(req->payload_size != 0); 512 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); 513 assert(req->payload.reset_sgl_fn != NULL); 514 assert(req->payload.next_sge_fn != NULL); 515 req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); 516 517 /* TODO: for now, we only support a single SGL entry */ 518 rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &tcp_req->buf, &length); 519 520 if (rc) { 521 return -1; 522 } 523 524 if (length < req->payload_size) { 525 SPDK_ERRLOG("multi-element SGL currently not supported for TCP now\n"); 526 return -1; 527 } 528 529 return 0; 530 } 531 532 static inline uint32_t 533 nvme_tcp_icdsz_bytes(struct spdk_nvme_ctrlr *ctrlr) 534 { 535 return (ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd)); 536 } 537 538 static int 539 nvme_tcp_req_init(struct nvme_tcp_qpair *tqpair, struct nvme_request *req, 540 struct nvme_tcp_req *tcp_req) 541 { 542 struct spdk_nvme_ctrlr *ctrlr = tqpair->qpair.ctrlr; 543 int rc = 0; 544 enum spdk_nvme_data_transfer xfer; 545 uint32_t max_incapsule_data_size; 546 547 tcp_req->req = req; 548 req->cmd.cid = tcp_req->cid; 549 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 550 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK; 551 req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_TRANSPORT; 552 req->cmd.dptr.sgl1.unkeyed.length = req->payload_size; 553 554 if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG) { 555 rc = nvme_tcp_build_contig_request(tqpair, tcp_req); 556 } else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL) { 557 rc = nvme_tcp_build_sgl_request(tqpair, tcp_req); 558 } else { 559 rc = -1; 560 } 561 562 if (rc) { 563 return rc; 564 } 565 566 if (req->cmd.opc == SPDK_NVME_OPC_FABRIC) { 567 struct spdk_nvmf_capsule_cmd *nvmf_cmd = (struct spdk_nvmf_capsule_cmd *)&req->cmd; 568 569 xfer = spdk_nvme_opc_get_data_transfer(nvmf_cmd->fctype); 570 } else { 571 xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc); 572 } 573 if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { 574 max_incapsule_data_size = nvme_tcp_icdsz_bytes(ctrlr); 575 if ((req->cmd.opc == SPDK_NVME_OPC_FABRIC) || nvme_qpair_is_admin_queue(&tqpair->qpair)) { 576 max_incapsule_data_size = spdk_min(max_incapsule_data_size, NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE); 577 } 578 579 if (req->payload_size <= max_incapsule_data_size) { 580 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 581 req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; 582 req->cmd.dptr.sgl1.address = 0; 583 tcp_req->in_capsule_data = true; 584 } 585 } 586 587 return 0; 588 } 589 590 static void 591 nvme_tcp_qpair_cmd_send_complete(void *cb_arg) 592 { 593 } 594 595 static void 596 nvme_tcp_pdu_set_data_buf(struct nvme_tcp_pdu *pdu, 597 struct nvme_tcp_req *tcp_req) 598 { 599 pdu->data = (void *)((uint64_t)tcp_req->buf + tcp_req->datao); 600 } 601 602 static int 603 nvme_tcp_qpair_capsule_cmd_send(struct nvme_tcp_qpair *tqpair, 604 struct nvme_tcp_req *tcp_req) 605 { 606 struct nvme_tcp_pdu *pdu; 607 struct spdk_nvme_tcp_cmd *capsule_cmd; 608 uint32_t plen = 0, alignment; 609 uint8_t pdo; 610 611 SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n"); 612 pdu = &tcp_req->send_pdu; 613 614 capsule_cmd = &pdu->hdr.capsule_cmd; 615 capsule_cmd->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD; 616 plen = capsule_cmd->common.hlen = sizeof(*capsule_cmd); 617 capsule_cmd->ccsqe = tcp_req->req->cmd; 618 619 620 SPDK_DEBUGLOG(SPDK_LOG_NVME, "capsule_cmd cid=%u on tqpair(%p)\n", tcp_req->req->cmd.cid, tqpair); 621 622 if (tqpair->host_hdgst_enable) { 623 SPDK_DEBUGLOG(SPDK_LOG_NVME, "Header digest is enabled for capsule command on tcp_req=%p\n", 624 tcp_req); 625 capsule_cmd->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF; 626 plen += SPDK_NVME_TCP_DIGEST_LEN; 627 } 628 629 if ((tcp_req->req->payload_size == 0) || !tcp_req->in_capsule_data) { 630 goto end; 631 } 632 633 pdo = plen; 634 pdu->padding_len = 0; 635 if (tqpair->cpda) { 636 alignment = (tqpair->cpda + 1) << 2; 637 if (alignment > plen) { 638 pdu->padding_len = alignment - plen; 639 pdo = alignment; 640 plen = alignment; 641 } 642 } 643 644 capsule_cmd->common.pdo = pdo; 645 plen += tcp_req->req->payload_size; 646 if (tqpair->host_ddgst_enable) { 647 capsule_cmd->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF; 648 plen += SPDK_NVME_TCP_DIGEST_LEN; 649 } 650 651 tcp_req->datao = 0; 652 nvme_tcp_pdu_set_data_buf(pdu, tcp_req); 653 pdu->data_len = tcp_req->req->payload_size; 654 655 end: 656 capsule_cmd->common.plen = plen; 657 return nvme_tcp_qpair_write_pdu(tqpair, pdu, nvme_tcp_qpair_cmd_send_complete, NULL); 658 659 } 660 661 int 662 nvme_tcp_qpair_submit_request(struct spdk_nvme_qpair *qpair, 663 struct nvme_request *req) 664 { 665 struct nvme_tcp_qpair *tqpair; 666 struct nvme_tcp_req *tcp_req; 667 668 tqpair = nvme_tcp_qpair(qpair); 669 assert(tqpair != NULL); 670 assert(req != NULL); 671 672 tcp_req = nvme_tcp_req_get(tqpair); 673 if (!tcp_req) { 674 /* 675 * No tcp_req is available. Queue the request to be processed later. 676 */ 677 STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq); 678 return 0; 679 } 680 681 if (nvme_tcp_req_init(tqpair, req, tcp_req)) { 682 SPDK_ERRLOG("nvme_tcp_req_init() failed\n"); 683 nvme_tcp_req_put(tqpair, tcp_req); 684 return -1; 685 } 686 687 return nvme_tcp_qpair_capsule_cmd_send(tqpair, tcp_req); 688 } 689 690 int 691 nvme_tcp_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 692 { 693 return nvme_tcp_qpair_destroy(qpair); 694 } 695 696 int 697 nvme_tcp_ctrlr_reinit_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 698 { 699 return -1; 700 } 701 702 int 703 nvme_tcp_qpair_enable(struct spdk_nvme_qpair *qpair) 704 { 705 return 0; 706 } 707 708 int 709 nvme_tcp_qpair_disable(struct spdk_nvme_qpair *qpair) 710 { 711 return 0; 712 } 713 714 int 715 nvme_tcp_qpair_reset(struct spdk_nvme_qpair *qpair) 716 { 717 return 0; 718 } 719 720 static void 721 nvme_tcp_req_complete(struct nvme_request *req, 722 struct spdk_nvme_cpl *rsp) 723 { 724 nvme_complete_request(req, rsp); 725 nvme_free_request(req); 726 } 727 728 int 729 nvme_tcp_qpair_fail(struct spdk_nvme_qpair *qpair) 730 { 731 /* 732 * If the qpair is really failed, the connection is broken 733 * and we need to flush back all I/O 734 */ 735 struct nvme_tcp_req *tcp_req, *tmp; 736 struct nvme_request *req; 737 struct spdk_nvme_cpl cpl; 738 struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); 739 740 cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; 741 cpl.status.sct = SPDK_NVME_SCT_GENERIC; 742 743 TAILQ_FOREACH_SAFE(tcp_req, &tqpair->outstanding_reqs, link, tmp) { 744 assert(tcp_req->req != NULL); 745 req = tcp_req->req; 746 747 nvme_tcp_req_complete(req, &cpl); 748 nvme_tcp_req_put(tqpair, tcp_req); 749 } 750 751 return 0; 752 } 753 754 static void 755 nvme_tcp_qpair_set_recv_state(struct nvme_tcp_qpair *tqpair, 756 enum nvme_tcp_pdu_recv_state state) 757 { 758 if (tqpair->recv_state == state) { 759 SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n", 760 tqpair, state); 761 return; 762 } 763 764 tqpair->recv_state = state; 765 switch (state) { 766 case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY: 767 case NVME_TCP_PDU_RECV_STATE_ERROR: 768 memset(&tqpair->recv_pdu, 0, sizeof(struct nvme_tcp_pdu)); 769 break; 770 case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH: 771 case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH: 772 case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD: 773 default: 774 break; 775 } 776 } 777 778 static void 779 nvme_tcp_qpair_send_h2c_term_req_complete(void *cb_arg) 780 { 781 struct nvme_tcp_qpair *tqpair = cb_arg; 782 783 tqpair->state = NVME_TCP_QPAIR_STATE_EXITING; 784 } 785 786 static void 787 nvme_tcp_qpair_send_h2c_term_req(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu, 788 enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset) 789 { 790 struct nvme_tcp_pdu *rsp_pdu; 791 struct spdk_nvme_tcp_term_req_hdr *h2c_term_req; 792 uint32_t h2c_term_req_hdr_len = sizeof(*h2c_term_req); 793 uint8_t copy_len; 794 795 rsp_pdu = &tqpair->send_pdu; 796 memset(rsp_pdu, 0, sizeof(*rsp_pdu)); 797 h2c_term_req = &rsp_pdu->hdr.term_req; 798 h2c_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ; 799 h2c_term_req->common.hlen = h2c_term_req_hdr_len; 800 801 if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) || 802 (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) { 803 DSET32(&h2c_term_req->fei, error_offset); 804 } 805 806 rsp_pdu->data = (uint8_t *)rsp_pdu->hdr.raw + h2c_term_req_hdr_len; 807 808 copy_len = pdu->hdr.common.hlen; 809 if (copy_len > SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE) { 810 copy_len = SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE; 811 } 812 813 /* Copy the error info into the buffer */ 814 memcpy((uint8_t *)rsp_pdu->data, pdu->hdr.raw, copy_len); 815 rsp_pdu->data_len = copy_len; 816 817 /* Contain the header len of the wrong received pdu */ 818 h2c_term_req->common.plen = h2c_term_req->common.hlen + copy_len; 819 nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR); 820 nvme_tcp_qpair_write_pdu(tqpair, rsp_pdu, nvme_tcp_qpair_send_h2c_term_req_complete, NULL); 821 822 } 823 824 static void 825 nvme_tcp_pdu_ch_handle(struct nvme_tcp_qpair *tqpair) 826 { 827 struct nvme_tcp_pdu *pdu; 828 uint32_t error_offset = 0; 829 enum spdk_nvme_tcp_term_req_fes fes; 830 uint32_t expected_hlen, hd_len = 0; 831 bool plen_error = false; 832 833 pdu = &tqpair->recv_pdu; 834 835 SPDK_DEBUGLOG(SPDK_LOG_NVME, "pdu type = %d\n", pdu->hdr.common.pdu_type); 836 if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP) { 837 if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) { 838 SPDK_ERRLOG("Already received IC_RESP PDU, and we should reject this pdu=%p\n", pdu); 839 fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR; 840 goto err; 841 } 842 expected_hlen = sizeof(struct spdk_nvme_tcp_ic_resp); 843 if (pdu->hdr.common.plen != expected_hlen) { 844 plen_error = true; 845 } 846 } else { 847 if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) { 848 SPDK_ERRLOG("The TCP/IP tqpair connection is not negotitated\n"); 849 fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR; 850 goto err; 851 } 852 853 switch (pdu->hdr.common.pdu_type) { 854 case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP: 855 expected_hlen = sizeof(struct spdk_nvme_tcp_rsp); 856 if (pdu->hdr.common.flags & SPDK_NVME_TCP_CH_FLAGS_HDGSTF) { 857 hd_len = SPDK_NVME_TCP_DIGEST_LEN; 858 } 859 860 if (pdu->hdr.common.plen != (expected_hlen + hd_len)) { 861 plen_error = true; 862 } 863 break; 864 case SPDK_NVME_TCP_PDU_TYPE_C2H_DATA: 865 expected_hlen = sizeof(struct spdk_nvme_tcp_c2h_data_hdr); 866 if (pdu->hdr.common.plen < pdu->hdr.common.pdo) { 867 plen_error = true; 868 } 869 break; 870 case SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ: 871 expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr); 872 if ((pdu->hdr.common.plen <= expected_hlen) || 873 (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) { 874 plen_error = true; 875 } 876 break; 877 case SPDK_NVME_TCP_PDU_TYPE_R2T: 878 expected_hlen = sizeof(struct spdk_nvme_tcp_r2t_hdr); 879 if (pdu->hdr.common.flags & SPDK_NVME_TCP_CH_FLAGS_HDGSTF) { 880 hd_len = SPDK_NVME_TCP_DIGEST_LEN; 881 } 882 883 if (pdu->hdr.common.plen != (expected_hlen + hd_len)) { 884 plen_error = true; 885 } 886 break; 887 888 default: 889 SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->recv_pdu.hdr.common.pdu_type); 890 fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; 891 error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type); 892 goto err; 893 } 894 } 895 896 if (pdu->hdr.common.hlen != expected_hlen) { 897 SPDK_ERRLOG("Expected PDU header length %u, got %u\n", 898 expected_hlen, pdu->hdr.common.hlen); 899 fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; 900 error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen); 901 goto err; 902 903 } else if (plen_error) { 904 fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; 905 error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen); 906 goto err; 907 } else { 908 nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH); 909 return; 910 } 911 err: 912 nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); 913 } 914 915 static struct nvme_tcp_req * 916 get_nvme_active_req_by_cid(struct nvme_tcp_qpair *tqpair, uint32_t cid) 917 { 918 assert(tqpair != NULL); 919 if ((cid >= tqpair->num_entries) || (tqpair->tcp_reqs[cid].state == NVME_TCP_REQ_FREE)) { 920 return NULL; 921 } 922 923 return &tqpair->tcp_reqs[cid]; 924 } 925 926 static void 927 nvme_tcp_free_and_handle_queued_req(struct spdk_nvme_qpair *qpair) 928 { 929 struct nvme_request *req; 930 931 if (!STAILQ_EMPTY(&qpair->queued_req) && !qpair->ctrlr->is_resetting) { 932 req = STAILQ_FIRST(&qpair->queued_req); 933 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); 934 nvme_qpair_submit_request(qpair, req); 935 } 936 } 937 938 static void 939 nvme_tcp_c2h_data_payload_handle(struct nvme_tcp_qpair *tqpair, 940 struct nvme_tcp_pdu *pdu, uint32_t *reaped) 941 { 942 struct nvme_tcp_req *tcp_req; 943 struct spdk_nvme_tcp_c2h_data_hdr *c2h_data; 944 struct spdk_nvme_cpl cpl = {}; 945 uint8_t flags; 946 947 tcp_req = pdu->ctx; 948 assert(tcp_req != NULL); 949 950 SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n"); 951 c2h_data = &pdu->hdr.c2h_data; 952 tcp_req->datao += pdu->data_len; 953 flags = c2h_data->common.flags; 954 955 nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); 956 if (flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) { 957 if (tcp_req->datao == tcp_req->req->payload_size) { 958 cpl.status.p = 0; 959 } else { 960 cpl.status.p = 1; 961 } 962 963 cpl.cid = tcp_req->cid; 964 cpl.sqid = tqpair->qpair.id; 965 nvme_tcp_req_complete(tcp_req->req, &cpl); 966 nvme_tcp_req_put(tqpair, tcp_req); 967 (*reaped)++; 968 nvme_tcp_free_and_handle_queued_req(&tqpair->qpair); 969 } 970 } 971 972 static const char *spdk_nvme_tcp_term_req_fes_str[] = { 973 "Invalid PDU Header Field", 974 "PDU Sequence Error", 975 "Header Digest Error", 976 "Data Transfer Out of Range", 977 "Data Transfer Limit Exceeded", 978 "Unsupported parameter", 979 }; 980 981 static void 982 nvme_tcp_c2h_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *c2h_term_req) 983 { 984 SPDK_ERRLOG("Error info of pdu(%p): %s\n", c2h_term_req, 985 spdk_nvme_tcp_term_req_fes_str[c2h_term_req->fes]); 986 if ((c2h_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) || 987 (c2h_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) { 988 SPDK_DEBUGLOG(SPDK_LOG_NVME, "The offset from the start of the PDU header is %u\n", 989 DGET32(c2h_term_req->fei)); 990 } 991 /* we may also need to dump some other info here */ 992 } 993 994 static void 995 nvme_tcp_c2h_term_req_payload_handle(struct nvme_tcp_qpair *tqpair, 996 struct nvme_tcp_pdu *pdu) 997 { 998 nvme_tcp_c2h_term_req_dump(&pdu->hdr.term_req); 999 nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR); 1000 } 1001 1002 static void 1003 nvme_tcp_pdu_payload_handle(struct nvme_tcp_qpair *tqpair, 1004 uint32_t *reaped) 1005 { 1006 int rc = 0; 1007 struct nvme_tcp_pdu *pdu; 1008 uint32_t crc32c, error_offset = 0; 1009 enum spdk_nvme_tcp_term_req_fes fes; 1010 1011 assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD); 1012 pdu = &tqpair->recv_pdu; 1013 1014 SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n"); 1015 1016 /* check data digest if need */ 1017 if (pdu->ddgst_enable) { 1018 crc32c = nvme_tcp_pdu_calc_data_digest(pdu); 1019 rc = MATCH_DIGEST_WORD(pdu->data_digest, crc32c); 1020 if (rc == 0) { 1021 SPDK_ERRLOG("data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu); 1022 fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR; 1023 nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); 1024 return; 1025 } 1026 } 1027 1028 switch (pdu->hdr.common.pdu_type) { 1029 case SPDK_NVME_TCP_PDU_TYPE_C2H_DATA: 1030 nvme_tcp_c2h_data_payload_handle(tqpair, pdu, reaped); 1031 break; 1032 1033 case SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ: 1034 nvme_tcp_c2h_term_req_payload_handle(tqpair, pdu); 1035 break; 1036 1037 default: 1038 /* The code should not go to here */ 1039 SPDK_ERRLOG("The code should not go to here\n"); 1040 break; 1041 } 1042 } 1043 1044 static void 1045 nvme_tcp_send_icreq_complete(void *cb_arg) 1046 { 1047 SPDK_DEBUGLOG(SPDK_LOG_NVME, "Complete the icreq send for tqpair=%p\n", 1048 (struct nvme_tcp_qpair *)cb_arg); 1049 } 1050 1051 static void 1052 nvme_tcp_icresp_handle(struct nvme_tcp_qpair *tqpair, 1053 struct nvme_tcp_pdu *pdu) 1054 { 1055 struct spdk_nvme_tcp_ic_resp *ic_resp = &pdu->hdr.ic_resp; 1056 uint32_t error_offset = 0; 1057 enum spdk_nvme_tcp_term_req_fes fes; 1058 1059 /* Only PFV 0 is defined currently */ 1060 if (ic_resp->pfv != 0) { 1061 SPDK_ERRLOG("Expected ICResp PFV %u, got %u\n", 0u, ic_resp->pfv); 1062 fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; 1063 error_offset = offsetof(struct spdk_nvme_tcp_ic_resp, pfv); 1064 goto end; 1065 } 1066 1067 if (ic_resp->maxh2cdata < NVME_TCP_PDU_H2C_MIN_DATA_SIZE) { 1068 SPDK_ERRLOG("Expected ICResp maxh2cdata >=%u, got %u\n", NVME_TCP_PDU_H2C_MIN_DATA_SIZE, 1069 ic_resp->maxh2cdata); 1070 fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; 1071 error_offset = offsetof(struct spdk_nvme_tcp_ic_resp, maxh2cdata); 1072 goto end; 1073 } 1074 tqpair->maxh2cdata = ic_resp->maxh2cdata; 1075 1076 if (ic_resp->cpda > SPDK_NVME_TCP_CPDA_MAX) { 1077 SPDK_ERRLOG("Expected ICResp cpda <=%u, got %u\n", SPDK_NVME_TCP_CPDA_MAX, ic_resp->cpda); 1078 fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; 1079 error_offset = offsetof(struct spdk_nvme_tcp_ic_resp, cpda); 1080 goto end; 1081 } 1082 tqpair->cpda = ic_resp->cpda; 1083 1084 tqpair->host_hdgst_enable = ic_resp->dgst.bits.hdgst_enable ? true : false; 1085 tqpair->host_ddgst_enable = ic_resp->dgst.bits.ddgst_enable ? true : false; 1086 SPDK_DEBUGLOG(SPDK_LOG_NVME, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable); 1087 SPDK_DEBUGLOG(SPDK_LOG_NVME, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable); 1088 1089 tqpair->state = NVME_TCP_QPAIR_STATE_RUNNING; 1090 nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); 1091 return; 1092 end: 1093 nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); 1094 return; 1095 } 1096 1097 static void 1098 nvme_tcp_capsule_resp_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu, 1099 uint32_t *reaped) 1100 { 1101 struct nvme_tcp_req *tcp_req; 1102 struct spdk_nvme_tcp_rsp *capsule_resp = &pdu->hdr.capsule_resp; 1103 uint32_t cid, error_offset = 0; 1104 enum spdk_nvme_tcp_term_req_fes fes; 1105 struct spdk_nvme_cpl cpl; 1106 1107 SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n"); 1108 cpl = capsule_resp->rccqe; 1109 cid = cpl.cid; 1110 1111 /* Recv the pdu again */ 1112 nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); 1113 1114 tcp_req = get_nvme_active_req_by_cid(tqpair, cid); 1115 if (!tcp_req) { 1116 SPDK_ERRLOG("no tcp_req is found with cid=%u for tqpair=%p\n", cid, tqpair); 1117 fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; 1118 error_offset = offsetof(struct spdk_nvme_tcp_rsp, rccqe); 1119 goto end; 1120 1121 } 1122 1123 assert(tcp_req->req != NULL); 1124 assert(tcp_req->state == NVME_TCP_REQ_ACTIVE); 1125 nvme_tcp_req_complete(tcp_req->req, &cpl); 1126 nvme_tcp_req_put(tqpair, tcp_req); 1127 (*reaped)++; 1128 nvme_tcp_free_and_handle_queued_req(&tqpair->qpair); 1129 1130 SPDK_DEBUGLOG(SPDK_LOG_NVME, "complete tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair); 1131 1132 return; 1133 1134 end: 1135 nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); 1136 return; 1137 } 1138 1139 static void 1140 nvme_tcp_c2h_term_req_hdr_handle(struct nvme_tcp_qpair *tqpair, 1141 struct nvme_tcp_pdu *pdu) 1142 { 1143 struct spdk_nvme_tcp_term_req_hdr *c2h_term_req = &pdu->hdr.term_req; 1144 uint32_t error_offset = 0; 1145 enum spdk_nvme_tcp_term_req_fes fes; 1146 1147 1148 if (c2h_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) { 1149 SPDK_ERRLOG("Fatal Error Stauts(FES) is unknown for c2h_term_req pdu=%p\n", pdu); 1150 fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; 1151 error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes); 1152 goto end; 1153 } 1154 1155 /* set the data buffer */ 1156 pdu->data = (uint8_t *)pdu->hdr.raw + c2h_term_req->common.hlen; 1157 pdu->data_len = c2h_term_req->common.plen - c2h_term_req->common.hlen; 1158 nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD); 1159 return; 1160 end: 1161 nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); 1162 return; 1163 } 1164 1165 static void 1166 nvme_tcp_c2h_data_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) 1167 { 1168 struct nvme_tcp_req *tcp_req; 1169 struct spdk_nvme_tcp_c2h_data_hdr *c2h_data = &pdu->hdr.c2h_data; 1170 uint32_t error_offset = 0; 1171 enum spdk_nvme_tcp_term_req_fes fes; 1172 1173 SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n"); 1174 SPDK_DEBUGLOG(SPDK_LOG_NVME, "c2h_data info on tqpair(%p): datao=%u, datal=%u, cccid=%d\n", 1175 tqpair, c2h_data->datao, c2h_data->datal, c2h_data->cccid); 1176 tcp_req = get_nvme_active_req_by_cid(tqpair, c2h_data->cccid); 1177 if (!tcp_req) { 1178 SPDK_ERRLOG("no tcp_req found for c2hdata cid=%d\n", c2h_data->cccid); 1179 fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; 1180 error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, cccid); 1181 goto end; 1182 1183 } 1184 1185 SPDK_DEBUGLOG(SPDK_LOG_NVME, "tcp_req(%p) on tqpair(%p): datao=%u, payload_size=%u\n", 1186 tcp_req, tqpair, tcp_req->datao, tcp_req->req->payload_size); 1187 1188 if (c2h_data->datal > tcp_req->req->payload_size) { 1189 SPDK_ERRLOG("Invalid datal for tcp_req(%p), datal(%u) exceeds payload_size(%u)\n", 1190 tcp_req, c2h_data->datal, tcp_req->req->payload_size); 1191 fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE; 1192 goto end; 1193 } 1194 1195 if (tcp_req->datao != c2h_data->datao) { 1196 SPDK_ERRLOG("Invalid datao for tcp_req(%p), received datal(%u) != datao(%u) in tcp_req\n", 1197 tcp_req, c2h_data->datao, tcp_req->datao); 1198 fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; 1199 error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, datao); 1200 goto end; 1201 } 1202 1203 if ((c2h_data->datao + c2h_data->datal) > tcp_req->req->payload_size) { 1204 SPDK_ERRLOG("Invalid data range for tcp_req(%p), received (datao(%u) + datal(%u)) > datao(%u) in tcp_req\n", 1205 tcp_req, c2h_data->datao, c2h_data->datal, tcp_req->req->payload_size); 1206 fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE; 1207 error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, datal); 1208 goto end; 1209 1210 } 1211 1212 nvme_tcp_pdu_set_data_buf(pdu, tcp_req); 1213 pdu->data_len = c2h_data->datal; 1214 pdu->ctx = tcp_req; 1215 1216 nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD); 1217 return; 1218 1219 end: 1220 nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); 1221 return; 1222 } 1223 1224 static void 1225 nvme_tcp_qpair_h2c_data_send_complete(void *cb_arg) 1226 { 1227 struct nvme_tcp_req *tcp_req = cb_arg; 1228 1229 assert(tcp_req != NULL); 1230 1231 if (tcp_req->r2tl_remain) { 1232 spdk_nvme_tcp_send_h2c_data(tcp_req); 1233 } 1234 } 1235 1236 static void 1237 spdk_nvme_tcp_send_h2c_data(struct nvme_tcp_req *tcp_req) 1238 { 1239 struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(tcp_req->req->qpair); 1240 struct nvme_tcp_pdu *rsp_pdu; 1241 struct spdk_nvme_tcp_h2c_data_hdr *h2c_data; 1242 uint32_t plen, pdo, alignment; 1243 1244 rsp_pdu = &tcp_req->send_pdu; 1245 memset(rsp_pdu, 0, sizeof(*rsp_pdu)); 1246 nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req); 1247 h2c_data = &rsp_pdu->hdr.h2c_data; 1248 1249 h2c_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_H2C_DATA; 1250 plen = h2c_data->common.hlen = sizeof(*h2c_data); 1251 h2c_data->cccid = tcp_req->cid; 1252 h2c_data->ttag = tcp_req->ttag; 1253 h2c_data->datao = tcp_req->datao; 1254 1255 h2c_data->datal = spdk_min(tcp_req->r2tl_remain, tqpair->maxh2cdata); 1256 rsp_pdu->data_len = h2c_data->datal; 1257 tcp_req->r2tl_remain -= h2c_data->datal; 1258 1259 if (tqpair->host_hdgst_enable) { 1260 h2c_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF; 1261 plen += SPDK_NVME_TCP_DIGEST_LEN; 1262 } 1263 1264 rsp_pdu->padding_len = 0; 1265 pdo = plen; 1266 if (tqpair->cpda) { 1267 alignment = (tqpair->cpda + 1) << 2; 1268 if (alignment > plen) { 1269 rsp_pdu->padding_len = alignment - plen; 1270 pdo = plen = alignment; 1271 } 1272 } 1273 1274 h2c_data->common.pdo = pdo; 1275 plen += h2c_data->datal; 1276 if (tqpair->host_ddgst_enable) { 1277 h2c_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF; 1278 plen += SPDK_NVME_TCP_DIGEST_LEN; 1279 } 1280 1281 h2c_data->common.plen = plen; 1282 tcp_req->datao += h2c_data->datal; 1283 if (!tcp_req->r2tl_remain) { 1284 tqpair->pending_r2t--; 1285 assert(tqpair->pending_r2t >= 0); 1286 tcp_req->state = NVME_TCP_REQ_ACTIVE; 1287 h2c_data->common.flags |= SPDK_NVME_TCP_H2C_DATA_FLAGS_LAST_PDU; 1288 } 1289 1290 SPDK_DEBUGLOG(SPDK_LOG_NVME, "h2c_data info: datao=%u, datal=%u, pdu_len=%u for tqpair=%p\n", 1291 h2c_data->datao, h2c_data->datal, h2c_data->common.plen, tqpair); 1292 1293 nvme_tcp_qpair_write_pdu(tqpair, rsp_pdu, nvme_tcp_qpair_h2c_data_send_complete, tcp_req); 1294 } 1295 1296 static void 1297 nvme_tcp_r2t_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) 1298 { 1299 struct nvme_tcp_req *tcp_req; 1300 struct spdk_nvme_tcp_r2t_hdr *r2t = &pdu->hdr.r2t; 1301 uint32_t cid, error_offset = 0; 1302 enum spdk_nvme_tcp_term_req_fes fes; 1303 1304 SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n"); 1305 cid = r2t->cccid; 1306 tcp_req = get_nvme_active_req_by_cid(tqpair, cid); 1307 if (!tcp_req) { 1308 SPDK_ERRLOG("Cannot find tcp_req for tqpair=%p\n", tqpair); 1309 fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; 1310 error_offset = offsetof(struct spdk_nvme_tcp_r2t_hdr, cccid); 1311 goto end; 1312 } 1313 1314 SPDK_DEBUGLOG(SPDK_LOG_NVME, "r2t info: r2to=%u, r2tl=%u for tqpair=%p\n", r2t->r2to, r2t->r2tl, 1315 tqpair); 1316 1317 if (tcp_req->state != NVME_TCP_REQ_ACTIVE_R2T) { 1318 if (tqpair->pending_r2t >= tqpair->max_r2t) { 1319 fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR; 1320 SPDK_ERRLOG("Invalid R2T: it exceeds the R2T maixmal=%u for tqpair=%p\n", tqpair->max_r2t, tqpair); 1321 goto end; 1322 } 1323 tcp_req->state = NVME_TCP_REQ_ACTIVE_R2T; 1324 tqpair->pending_r2t++; 1325 } 1326 1327 if (tcp_req->datao != r2t->r2to) { 1328 fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; 1329 error_offset = offsetof(struct spdk_nvme_tcp_r2t_hdr, r2to); 1330 goto end; 1331 1332 } 1333 1334 if ((r2t->r2tl + r2t->r2to) > tcp_req->req->payload_size) { 1335 SPDK_ERRLOG("Invalid R2T info for tcp_req=%p: (r2to(%u) + r2tl(%u)) exceeds payload_size(%u)\n", 1336 tcp_req, r2t->r2to, r2t->r2tl, tqpair->maxh2cdata); 1337 fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE; 1338 error_offset = offsetof(struct spdk_nvme_tcp_r2t_hdr, r2tl); 1339 goto end; 1340 1341 } 1342 1343 tcp_req->ttag = r2t->ttag; 1344 tcp_req->r2tl_remain = r2t->r2tl; 1345 nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); 1346 1347 spdk_nvme_tcp_send_h2c_data(tcp_req); 1348 return; 1349 1350 end: 1351 nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); 1352 return; 1353 1354 } 1355 1356 static void 1357 nvme_tcp_pdu_psh_handle(struct nvme_tcp_qpair *tqpair, uint32_t *reaped) 1358 { 1359 struct nvme_tcp_pdu *pdu; 1360 int rc; 1361 uint32_t crc32c, error_offset = 0; 1362 enum spdk_nvme_tcp_term_req_fes fes; 1363 1364 assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH); 1365 pdu = &tqpair->recv_pdu; 1366 1367 SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter: pdu type =%u\n", pdu->hdr.common.pdu_type); 1368 /* check header digest if needed */ 1369 if (pdu->has_hdgst) { 1370 crc32c = nvme_tcp_pdu_calc_header_digest(pdu); 1371 rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c); 1372 if (rc == 0) { 1373 SPDK_ERRLOG("header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu); 1374 fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR; 1375 nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); 1376 return; 1377 1378 } 1379 } 1380 1381 switch (pdu->hdr.common.pdu_type) { 1382 case SPDK_NVME_TCP_PDU_TYPE_IC_RESP: 1383 nvme_tcp_icresp_handle(tqpair, pdu); 1384 break; 1385 case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP: 1386 nvme_tcp_capsule_resp_hdr_handle(tqpair, pdu, reaped); 1387 break; 1388 case SPDK_NVME_TCP_PDU_TYPE_C2H_DATA: 1389 nvme_tcp_c2h_data_hdr_handle(tqpair, pdu); 1390 break; 1391 1392 case SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ: 1393 nvme_tcp_c2h_term_req_hdr_handle(tqpair, pdu); 1394 break; 1395 case SPDK_NVME_TCP_PDU_TYPE_R2T: 1396 nvme_tcp_r2t_hdr_handle(tqpair, pdu); 1397 break; 1398 1399 default: 1400 SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->recv_pdu.hdr.common.pdu_type); 1401 fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; 1402 error_offset = 1; 1403 nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); 1404 break; 1405 } 1406 1407 } 1408 1409 static int 1410 nvme_tcp_read_pdu(struct nvme_tcp_qpair *tqpair, uint32_t *reaped) 1411 { 1412 int rc = 0; 1413 struct nvme_tcp_pdu *pdu; 1414 uint32_t data_len; 1415 uint8_t psh_len, pdo; 1416 int8_t padding_len; 1417 enum nvme_tcp_pdu_recv_state prev_state; 1418 1419 /* The loop here is to allow for several back-to-back state changes. */ 1420 do { 1421 prev_state = tqpair->recv_state; 1422 switch (tqpair->recv_state) { 1423 /* If in a new state */ 1424 case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY: 1425 nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH); 1426 break; 1427 /* common header */ 1428 case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH: 1429 pdu = &tqpair->recv_pdu; 1430 if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) { 1431 rc = nvme_tcp_read_data(tqpair->sock, 1432 sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes, 1433 (uint8_t *)&pdu->hdr.common + pdu->ch_valid_bytes); 1434 if (rc < 0) { 1435 nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR); 1436 break; 1437 } 1438 pdu->ch_valid_bytes += rc; 1439 if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) { 1440 return NVME_TCP_PDU_IN_PROGRESS; 1441 } 1442 } 1443 1444 /* The command header of this PDU has now been read from the socket. */ 1445 nvme_tcp_pdu_ch_handle(tqpair); 1446 break; 1447 /* Wait for the pdu specific header */ 1448 case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH: 1449 pdu = &tqpair->recv_pdu; 1450 psh_len = pdu->hdr.common.hlen; 1451 1452 /* The following pdus can have digest */ 1453 if (((pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP) || 1454 (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_DATA) || 1455 (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_R2T)) && 1456 tqpair->host_hdgst_enable) { 1457 pdu->has_hdgst = true; 1458 psh_len += SPDK_NVME_TCP_DIGEST_LEN; 1459 if (pdu->hdr.common.plen > psh_len) { 1460 pdo = pdu->hdr.common.pdo; 1461 padding_len = pdo - psh_len; 1462 SPDK_DEBUGLOG(SPDK_LOG_NVME, "padding length is =%d for pdu=%p on tqpair=%p\n", padding_len, 1463 pdu, tqpair); 1464 if (padding_len > 0) { 1465 psh_len = pdo; 1466 } 1467 } 1468 } 1469 1470 psh_len -= sizeof(struct spdk_nvme_tcp_common_pdu_hdr); 1471 /* The following will read psh + hdgest (if possbile) + padding (if posssible) */ 1472 if (pdu->psh_valid_bytes < psh_len) { 1473 rc = nvme_tcp_read_data(tqpair->sock, 1474 psh_len - pdu->psh_valid_bytes, 1475 (uint8_t *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes); 1476 if (rc < 0) { 1477 nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR); 1478 break; 1479 } 1480 1481 pdu->psh_valid_bytes += rc; 1482 if (pdu->psh_valid_bytes < psh_len) { 1483 return NVME_TCP_PDU_IN_PROGRESS; 1484 } 1485 } 1486 1487 /* All header(ch, psh, head digist) of this PDU has now been read from the socket. */ 1488 nvme_tcp_pdu_psh_handle(tqpair, reaped); 1489 break; 1490 case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD: 1491 pdu = &tqpair->recv_pdu; 1492 /* check whether the data is valid, if not we just return */ 1493 if (!pdu->data) { 1494 return NVME_TCP_PDU_IN_PROGRESS; 1495 } 1496 1497 data_len = pdu->data_len; 1498 /* data digest */ 1499 if (spdk_unlikely((pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_DATA) && 1500 tqpair->host_ddgst_enable)) { 1501 data_len += SPDK_NVME_TCP_DIGEST_LEN; 1502 pdu->ddgst_enable = true; 1503 1504 } 1505 1506 rc = nvme_tcp_read_payload_data(tqpair->sock, pdu); 1507 if (rc < 0) { 1508 nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR); 1509 break; 1510 } 1511 1512 pdu->readv_offset += rc; 1513 if (pdu->readv_offset < data_len) { 1514 return NVME_TCP_PDU_IN_PROGRESS; 1515 } 1516 1517 assert(pdu->readv_offset == data_len); 1518 /* All of this PDU has now been read from the socket. */ 1519 nvme_tcp_pdu_payload_handle(tqpair, reaped); 1520 break; 1521 case NVME_TCP_PDU_RECV_STATE_ERROR: 1522 rc = NVME_TCP_PDU_FATAL; 1523 break; 1524 default: 1525 assert(0); 1526 break; 1527 } 1528 } while (prev_state != tqpair->recv_state); 1529 1530 return rc; 1531 } 1532 1533 static void 1534 nvme_tcp_qpair_check_timeout(struct spdk_nvme_qpair *qpair) 1535 { 1536 uint64_t t02; 1537 struct nvme_tcp_req *tcp_req, *tmp; 1538 struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); 1539 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 1540 struct spdk_nvme_ctrlr_process *active_proc; 1541 1542 /* Don't check timeouts during controller initialization. */ 1543 if (ctrlr->state != NVME_CTRLR_STATE_READY) { 1544 return; 1545 } 1546 1547 if (nvme_qpair_is_admin_queue(qpair)) { 1548 active_proc = spdk_nvme_ctrlr_get_current_process(ctrlr); 1549 } else { 1550 active_proc = qpair->active_proc; 1551 } 1552 1553 /* Only check timeouts if the current process has a timeout callback. */ 1554 if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) { 1555 return; 1556 } 1557 1558 t02 = spdk_get_ticks(); 1559 TAILQ_FOREACH_SAFE(tcp_req, &tqpair->outstanding_reqs, link, tmp) { 1560 assert(tcp_req->req != NULL); 1561 1562 if (nvme_request_check_timeout(tcp_req->req, tcp_req->cid, active_proc, t02)) { 1563 /* 1564 * The requests are in order, so as soon as one has not timed out, 1565 * stop iterating. 1566 */ 1567 break; 1568 } 1569 } 1570 } 1571 1572 int 1573 nvme_tcp_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions) 1574 { 1575 struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); 1576 uint32_t reaped; 1577 int rc; 1578 1579 rc = nvme_tcp_qpair_process_send_queue(tqpair); 1580 if (rc) { 1581 return 0; 1582 } 1583 1584 if (max_completions == 0) { 1585 max_completions = tqpair->num_entries; 1586 } else { 1587 max_completions = spdk_min(max_completions, tqpair->num_entries); 1588 } 1589 1590 reaped = 0; 1591 do { 1592 rc = nvme_tcp_read_pdu(tqpair, &reaped); 1593 if (rc < 0) { 1594 SPDK_ERRLOG("Error polling CQ! (%d): %s\n", 1595 errno, spdk_strerror(errno)); 1596 return -1; 1597 } else if (rc == 0) { 1598 /* Partial PDU is read */ 1599 break; 1600 } 1601 1602 } while (reaped < max_completions); 1603 1604 if (spdk_unlikely(tqpair->qpair.ctrlr->timeout_enabled)) { 1605 nvme_tcp_qpair_check_timeout(qpair); 1606 } 1607 1608 return reaped; 1609 } 1610 1611 static int 1612 nvme_tcp_qpair_icreq_send(struct nvme_tcp_qpair *tqpair) 1613 { 1614 struct spdk_nvme_tcp_ic_req *ic_req; 1615 struct nvme_tcp_pdu *pdu; 1616 1617 pdu = &tqpair->send_pdu; 1618 memset(&tqpair->send_pdu, 0, sizeof(tqpair->send_pdu)); 1619 ic_req = &pdu->hdr.ic_req; 1620 1621 ic_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_REQ; 1622 ic_req->common.hlen = ic_req->common.plen = sizeof(*ic_req); 1623 ic_req->pfv = 0; 1624 ic_req->maxr2t = NVME_TCP_MAX_R2T_DEFAULT - 1; 1625 ic_req->hpda = NVME_TCP_HPDA_DEFAULT; 1626 1627 ic_req->dgst.bits.hdgst_enable = tqpair->qpair.ctrlr->opts.header_digest; 1628 ic_req->dgst.bits.ddgst_enable = tqpair->qpair.ctrlr->opts.data_digest; 1629 1630 nvme_tcp_qpair_write_pdu(tqpair, pdu, nvme_tcp_send_icreq_complete, tqpair); 1631 1632 while (tqpair->state == NVME_TCP_QPAIR_STATE_INVALID) { 1633 nvme_tcp_qpair_process_completions(&tqpair->qpair, 0); 1634 } 1635 1636 if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) { 1637 SPDK_ERRLOG("Failed to construct the tqpair=%p via correct icresp\n", tqpair); 1638 return -1; 1639 } 1640 1641 SPDK_DEBUGLOG(SPDK_LOG_NVME, "Succesfully construct the tqpair=%p via correct icresp\n", tqpair); 1642 1643 return 0; 1644 } 1645 1646 static int 1647 nvme_tcp_qpair_connect(struct nvme_tcp_qpair *tqpair) 1648 { 1649 struct sockaddr_storage dst_addr; 1650 struct sockaddr_storage src_addr; 1651 int rc; 1652 struct spdk_nvme_ctrlr *ctrlr; 1653 int family; 1654 long int port; 1655 1656 ctrlr = tqpair->qpair.ctrlr; 1657 1658 switch (ctrlr->trid.adrfam) { 1659 case SPDK_NVMF_ADRFAM_IPV4: 1660 family = AF_INET; 1661 break; 1662 case SPDK_NVMF_ADRFAM_IPV6: 1663 family = AF_INET6; 1664 break; 1665 default: 1666 SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam); 1667 return -1; 1668 } 1669 1670 SPDK_DEBUGLOG(SPDK_LOG_NVME, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family); 1671 1672 memset(&dst_addr, 0, sizeof(dst_addr)); 1673 1674 SPDK_DEBUGLOG(SPDK_LOG_NVME, "trsvcid is %s\n", ctrlr->trid.trsvcid); 1675 rc = nvme_tcp_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid); 1676 if (rc != 0) { 1677 SPDK_ERRLOG("dst_addr nvme_tcp_parse_addr() failed\n"); 1678 return -1; 1679 } 1680 1681 if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) { 1682 memset(&src_addr, 0, sizeof(src_addr)); 1683 rc = nvme_tcp_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid); 1684 if (rc != 0) { 1685 SPDK_ERRLOG("src_addr nvme_tcp_parse_addr() failed\n"); 1686 return -1; 1687 } 1688 } 1689 1690 port = spdk_strtol(ctrlr->trid.trsvcid, 10); 1691 if (port <= 0 || port >= INT_MAX) { 1692 SPDK_ERRLOG("Invalid port: %s\n", ctrlr->trid.trsvcid); 1693 return -1; 1694 } 1695 1696 tqpair->sock = spdk_sock_connect(ctrlr->trid.traddr, port); 1697 if (!tqpair->sock) { 1698 SPDK_ERRLOG("sock connection error of tqpair=%p with addr=%s, port=%ld\n", 1699 tqpair, ctrlr->trid.traddr, port); 1700 return -1; 1701 } 1702 1703 tqpair->max_r2t = NVME_TCP_MAX_R2T_DEFAULT; 1704 rc = nvme_tcp_alloc_reqs(tqpair); 1705 SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc); 1706 if (rc) { 1707 SPDK_ERRLOG("Unable to allocate tqpair tcp requests\n"); 1708 return -1; 1709 } 1710 SPDK_DEBUGLOG(SPDK_LOG_NVME, "TCP requests allocated\n"); 1711 1712 rc = nvme_tcp_qpair_icreq_send(tqpair); 1713 if (rc != 0) { 1714 SPDK_ERRLOG("Unable to connect the tqpair\n"); 1715 return -1; 1716 } 1717 1718 rc = nvme_fabric_qpair_connect(&tqpair->qpair, tqpair->num_entries); 1719 if (rc < 0) { 1720 SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n"); 1721 return -1; 1722 } 1723 1724 return 0; 1725 } 1726 1727 static struct spdk_nvme_qpair * 1728 nvme_tcp_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr, 1729 uint16_t qid, uint32_t qsize, 1730 enum spdk_nvme_qprio qprio, 1731 uint32_t num_requests) 1732 { 1733 struct nvme_tcp_qpair *tqpair; 1734 struct spdk_nvme_qpair *qpair; 1735 int rc; 1736 1737 tqpair = calloc(1, sizeof(struct nvme_tcp_qpair)); 1738 if (!tqpair) { 1739 SPDK_ERRLOG("failed to get create tqpair\n"); 1740 return NULL; 1741 } 1742 1743 tqpair->num_entries = qsize; 1744 qpair = &tqpair->qpair; 1745 1746 rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests); 1747 if (rc != 0) { 1748 free(tqpair); 1749 return NULL; 1750 } 1751 1752 rc = nvme_tcp_qpair_connect(tqpair); 1753 if (rc < 0) { 1754 nvme_tcp_qpair_destroy(qpair); 1755 return NULL; 1756 } 1757 1758 return qpair; 1759 } 1760 1761 struct spdk_nvme_qpair * 1762 nvme_tcp_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, 1763 const struct spdk_nvme_io_qpair_opts *opts) 1764 { 1765 return nvme_tcp_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio, 1766 opts->io_queue_requests); 1767 } 1768 1769 struct spdk_nvme_ctrlr *nvme_tcp_ctrlr_construct(const struct spdk_nvme_transport_id *trid, 1770 const struct spdk_nvme_ctrlr_opts *opts, 1771 void *devhandle) 1772 { 1773 struct nvme_tcp_ctrlr *tctrlr; 1774 union spdk_nvme_cap_register cap; 1775 union spdk_nvme_vs_register vs; 1776 int rc; 1777 1778 tctrlr = calloc(1, sizeof(*tctrlr)); 1779 if (tctrlr == NULL) { 1780 SPDK_ERRLOG("could not allocate ctrlr\n"); 1781 return NULL; 1782 } 1783 1784 tctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_TCP; 1785 tctrlr->ctrlr.opts = *opts; 1786 tctrlr->ctrlr.trid = *trid; 1787 1788 rc = nvme_ctrlr_construct(&tctrlr->ctrlr); 1789 if (rc != 0) { 1790 free(tctrlr); 1791 return NULL; 1792 } 1793 1794 tctrlr->ctrlr.adminq = nvme_tcp_ctrlr_create_qpair(&tctrlr->ctrlr, 0, 1795 SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES, 0, SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES); 1796 if (!tctrlr->ctrlr.adminq) { 1797 SPDK_ERRLOG("failed to create admin qpair\n"); 1798 nvme_tcp_ctrlr_destruct(&tctrlr->ctrlr); 1799 return NULL; 1800 } 1801 1802 if (nvme_ctrlr_get_cap(&tctrlr->ctrlr, &cap)) { 1803 SPDK_ERRLOG("get_cap() failed\n"); 1804 nvme_ctrlr_destruct(&tctrlr->ctrlr); 1805 return NULL; 1806 } 1807 1808 if (nvme_ctrlr_get_vs(&tctrlr->ctrlr, &vs)) { 1809 SPDK_ERRLOG("get_vs() failed\n"); 1810 nvme_ctrlr_destruct(&tctrlr->ctrlr); 1811 return NULL; 1812 } 1813 1814 if (nvme_ctrlr_add_process(&tctrlr->ctrlr, 0) != 0) { 1815 SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n"); 1816 nvme_ctrlr_destruct(&tctrlr->ctrlr); 1817 return NULL; 1818 } 1819 1820 nvme_ctrlr_init_cap(&tctrlr->ctrlr, &cap, &vs); 1821 1822 return &tctrlr->ctrlr; 1823 } 1824 1825 uint32_t 1826 nvme_tcp_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr) 1827 { 1828 return NVME_TCP_RW_BUFFER_SIZE; 1829 } 1830 1831 uint16_t 1832 nvme_tcp_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr) 1833 { 1834 /* 1835 * We do not support >1 SGE in the initiator currently, 1836 * so we can only return 1 here. Once that support is 1837 * added, this should return ctrlr->cdata.nvmf_specific.msdbd 1838 * instead. 1839 */ 1840 return 1; 1841 } 1842 1843 void * 1844 nvme_tcp_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size) 1845 { 1846 return NULL; 1847 } 1848 1849 int 1850 nvme_tcp_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size) 1851 { 1852 return 0; 1853 } 1854