xref: /spdk/lib/nvme/nvme_rdma.c (revision fecffda6ecf8853b82edccde429b68252f0a62c5)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 /*
8  * NVMe over RDMA transport
9  */
10 
11 #include "spdk/stdinc.h"
12 
13 #include "spdk/assert.h"
14 #include "spdk/dma.h"
15 #include "spdk/log.h"
16 #include "spdk/trace.h"
17 #include "spdk/queue.h"
18 #include "spdk/nvme.h"
19 #include "spdk/nvmf_spec.h"
20 #include "spdk/string.h"
21 #include "spdk/endian.h"
22 #include "spdk/likely.h"
23 #include "spdk/config.h"
24 
25 #include "nvme_internal.h"
26 #include "spdk_internal/rdma.h"
27 
28 #define NVME_RDMA_TIME_OUT_IN_MS 2000
29 #define NVME_RDMA_RW_BUFFER_SIZE 131072
30 
31 /*
32  * NVME RDMA qpair Resource Defaults
33  */
34 #define NVME_RDMA_DEFAULT_TX_SGE		2
35 #define NVME_RDMA_DEFAULT_RX_SGE		1
36 
37 /* Max number of NVMe-oF SGL descriptors supported by the host */
38 #define NVME_RDMA_MAX_SGL_DESCRIPTORS		16
39 
40 /* number of STAILQ entries for holding pending RDMA CM events. */
41 #define NVME_RDMA_NUM_CM_EVENTS			256
42 
43 /* CM event processing timeout */
44 #define NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US	1000000
45 
46 /* The default size for a shared rdma completion queue. */
47 #define DEFAULT_NVME_RDMA_CQ_SIZE		4096
48 
49 /*
50  * In the special case of a stale connection we don't expose a mechanism
51  * for the user to retry the connection so we need to handle it internally.
52  */
53 #define NVME_RDMA_STALE_CONN_RETRY_MAX		5
54 #define NVME_RDMA_STALE_CONN_RETRY_DELAY_US	10000
55 
56 /*
57  * Maximum value of transport_retry_count used by RDMA controller
58  */
59 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT	7
60 
61 /*
62  * Maximum value of transport_ack_timeout used by RDMA controller
63  */
64 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT	31
65 
66 /*
67  * Number of microseconds to wait until the lingering qpair becomes quiet.
68  */
69 #define NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US	1000000ull
70 
71 /*
72  * The max length of keyed SGL data block (3 bytes)
73  */
74 #define NVME_RDMA_MAX_KEYED_SGL_LENGTH ((1u << 24u) - 1)
75 
76 #define WC_PER_QPAIR(queue_depth)	(queue_depth * 2)
77 
78 #define NVME_RDMA_POLL_GROUP_CHECK_QPN(_rqpair, qpn)				\
79 	((_rqpair)->rdma_qp && (_rqpair)->rdma_qp->qp->qp_num == (qpn))	\
80 
81 struct nvme_rdma_memory_domain {
82 	TAILQ_ENTRY(nvme_rdma_memory_domain) link;
83 	uint32_t ref;
84 	struct ibv_pd *pd;
85 	struct spdk_memory_domain *domain;
86 	struct spdk_memory_domain_rdma_ctx rdma_ctx;
87 };
88 
89 enum nvme_rdma_wr_type {
90 	RDMA_WR_TYPE_RECV,
91 	RDMA_WR_TYPE_SEND,
92 };
93 
94 struct nvme_rdma_wr {
95 	/* Using this instead of the enum allows this struct to only occupy one byte. */
96 	uint8_t	type;
97 };
98 
99 struct spdk_nvmf_cmd {
100 	struct spdk_nvme_cmd cmd;
101 	struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS];
102 };
103 
104 struct spdk_nvme_rdma_hooks g_nvme_hooks = {};
105 
106 /* STAILQ wrapper for cm events. */
107 struct nvme_rdma_cm_event_entry {
108 	struct rdma_cm_event			*evt;
109 	STAILQ_ENTRY(nvme_rdma_cm_event_entry)	link;
110 };
111 
112 /* NVMe RDMA transport extensions for spdk_nvme_ctrlr */
113 struct nvme_rdma_ctrlr {
114 	struct spdk_nvme_ctrlr			ctrlr;
115 
116 	uint16_t				max_sge;
117 
118 	struct rdma_event_channel		*cm_channel;
119 
120 	STAILQ_HEAD(, nvme_rdma_cm_event_entry)	pending_cm_events;
121 
122 	STAILQ_HEAD(, nvme_rdma_cm_event_entry)	free_cm_events;
123 
124 	struct nvme_rdma_cm_event_entry		*cm_events;
125 };
126 
127 struct nvme_rdma_poller_stats {
128 	uint64_t polls;
129 	uint64_t idle_polls;
130 	uint64_t queued_requests;
131 	uint64_t completions;
132 	struct spdk_rdma_qp_stats rdma_stats;
133 };
134 
135 struct nvme_rdma_poll_group;
136 
137 struct nvme_rdma_poller {
138 	struct ibv_context		*device;
139 	struct ibv_cq			*cq;
140 	uint32_t			refcnt;
141 	int				required_num_wc;
142 	int				current_num_wc;
143 	struct nvme_rdma_poller_stats	stats;
144 	struct nvme_rdma_poll_group	*group;
145 	STAILQ_ENTRY(nvme_rdma_poller)	link;
146 };
147 
148 struct nvme_rdma_poll_group {
149 	struct spdk_nvme_transport_poll_group		group;
150 	STAILQ_HEAD(, nvme_rdma_poller)			pollers;
151 	uint32_t					num_pollers;
152 };
153 
154 enum nvme_rdma_qpair_state {
155 	NVME_RDMA_QPAIR_STATE_INVALID = 0,
156 	NVME_RDMA_QPAIR_STATE_STALE_CONN,
157 	NVME_RDMA_QPAIR_STATE_INITIALIZING,
158 	NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND,
159 	NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL,
160 	NVME_RDMA_QPAIR_STATE_RUNNING,
161 	NVME_RDMA_QPAIR_STATE_EXITING,
162 	NVME_RDMA_QPAIR_STATE_LINGERING,
163 	NVME_RDMA_QPAIR_STATE_EXITED,
164 };
165 
166 struct nvme_rdma_qpair;
167 
168 typedef int (*nvme_rdma_cm_event_cb)(struct nvme_rdma_qpair *rqpair, int ret);
169 
170 /* NVMe RDMA qpair extensions for spdk_nvme_qpair */
171 struct nvme_rdma_qpair {
172 	struct spdk_nvme_qpair			qpair;
173 
174 	struct spdk_rdma_qp			*rdma_qp;
175 	struct rdma_cm_id			*cm_id;
176 	struct ibv_cq				*cq;
177 
178 	struct	spdk_nvme_rdma_req		*rdma_reqs;
179 
180 	uint32_t				max_send_sge;
181 
182 	uint32_t				max_recv_sge;
183 
184 	uint16_t				num_entries;
185 
186 	bool					delay_cmd_submit;
187 
188 	uint32_t				num_completions;
189 
190 	/* Parallel arrays of response buffers + response SGLs of size num_entries */
191 	struct ibv_sge				*rsp_sgls;
192 	struct spdk_nvme_rdma_rsp		*rsps;
193 
194 	struct ibv_recv_wr			*rsp_recv_wrs;
195 	/*
196 	 * Array of num_entries NVMe commands registered as RDMA message buffers.
197 	 * Indexed by rdma_req->id.
198 	 */
199 	struct spdk_nvmf_cmd			*cmds;
200 
201 	struct spdk_rdma_mem_map		*mr_map;
202 
203 	TAILQ_HEAD(, spdk_nvme_rdma_req)	free_reqs;
204 	TAILQ_HEAD(, spdk_nvme_rdma_req)	outstanding_reqs;
205 
206 	struct nvme_rdma_memory_domain		*memory_domain;
207 
208 	/* Counts of outstanding send and recv objects */
209 	uint16_t				current_num_recvs;
210 	uint16_t				current_num_sends;
211 
212 	/* Placed at the end of the struct since it is not used frequently */
213 	struct rdma_cm_event			*evt;
214 	struct nvme_rdma_poller			*poller;
215 
216 	uint64_t				evt_timeout_ticks;
217 	nvme_rdma_cm_event_cb			evt_cb;
218 	enum rdma_cm_event_type			expected_evt_type;
219 
220 	enum nvme_rdma_qpair_state		state;
221 
222 	bool					in_connect_poll;
223 
224 	uint8_t					stale_conn_retry_count;
225 };
226 
227 enum NVME_RDMA_COMPLETION_FLAGS {
228 	NVME_RDMA_SEND_COMPLETED = 1u << 0,
229 	NVME_RDMA_RECV_COMPLETED = 1u << 1,
230 };
231 
232 struct spdk_nvme_rdma_req {
233 	uint16_t				id;
234 	uint16_t				completion_flags: 2;
235 	uint16_t				reserved: 14;
236 	/* if completion of RDMA_RECV received before RDMA_SEND, we will complete nvme request
237 	 * during processing of RDMA_SEND. To complete the request we must know the response
238 	 * received in RDMA_RECV, so store it in this field */
239 	struct spdk_nvme_rdma_rsp		*rdma_rsp;
240 
241 	struct nvme_rdma_wr			rdma_wr;
242 
243 	struct ibv_send_wr			send_wr;
244 
245 	struct nvme_request			*req;
246 
247 	struct ibv_sge				send_sgl[NVME_RDMA_DEFAULT_TX_SGE];
248 
249 	TAILQ_ENTRY(spdk_nvme_rdma_req)		link;
250 };
251 
252 struct spdk_nvme_rdma_rsp {
253 	struct spdk_nvme_cpl	cpl;
254 	struct nvme_rdma_qpair	*rqpair;
255 	struct ibv_recv_wr	*recv_wr;
256 	struct nvme_rdma_wr	rdma_wr;
257 };
258 
259 struct nvme_rdma_memory_translation_ctx {
260 	void *addr;
261 	size_t length;
262 	uint32_t lkey;
263 	uint32_t rkey;
264 };
265 
266 static const char *rdma_cm_event_str[] = {
267 	"RDMA_CM_EVENT_ADDR_RESOLVED",
268 	"RDMA_CM_EVENT_ADDR_ERROR",
269 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
270 	"RDMA_CM_EVENT_ROUTE_ERROR",
271 	"RDMA_CM_EVENT_CONNECT_REQUEST",
272 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
273 	"RDMA_CM_EVENT_CONNECT_ERROR",
274 	"RDMA_CM_EVENT_UNREACHABLE",
275 	"RDMA_CM_EVENT_REJECTED",
276 	"RDMA_CM_EVENT_ESTABLISHED",
277 	"RDMA_CM_EVENT_DISCONNECTED",
278 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
279 	"RDMA_CM_EVENT_MULTICAST_JOIN",
280 	"RDMA_CM_EVENT_MULTICAST_ERROR",
281 	"RDMA_CM_EVENT_ADDR_CHANGE",
282 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
283 };
284 
285 static struct nvme_rdma_poller *nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group,
286 		struct ibv_context *device);
287 static void nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group,
288 		struct nvme_rdma_poller *poller);
289 
290 static TAILQ_HEAD(, nvme_rdma_memory_domain) g_memory_domains = TAILQ_HEAD_INITIALIZER(
291 			g_memory_domains);
292 static pthread_mutex_t g_memory_domains_lock = PTHREAD_MUTEX_INITIALIZER;
293 
294 static struct nvme_rdma_memory_domain *
295 nvme_rdma_get_memory_domain(struct ibv_pd *pd)
296 {
297 	struct nvme_rdma_memory_domain *domain = NULL;
298 	struct spdk_memory_domain_ctx ctx;
299 	int rc;
300 
301 	pthread_mutex_lock(&g_memory_domains_lock);
302 
303 	TAILQ_FOREACH(domain, &g_memory_domains, link) {
304 		if (domain->pd == pd) {
305 			domain->ref++;
306 			pthread_mutex_unlock(&g_memory_domains_lock);
307 			return domain;
308 		}
309 	}
310 
311 	domain = calloc(1, sizeof(*domain));
312 	if (!domain) {
313 		SPDK_ERRLOG("Memory allocation failed\n");
314 		pthread_mutex_unlock(&g_memory_domains_lock);
315 		return NULL;
316 	}
317 
318 	domain->rdma_ctx.size = sizeof(domain->rdma_ctx);
319 	domain->rdma_ctx.ibv_pd = pd;
320 	ctx.size = sizeof(ctx);
321 	ctx.user_ctx = &domain->rdma_ctx;
322 
323 	rc = spdk_memory_domain_create(&domain->domain, SPDK_DMA_DEVICE_TYPE_RDMA, &ctx,
324 				       SPDK_RDMA_DMA_DEVICE);
325 	if (rc) {
326 		SPDK_ERRLOG("Failed to create memory domain\n");
327 		free(domain);
328 		pthread_mutex_unlock(&g_memory_domains_lock);
329 		return NULL;
330 	}
331 
332 	domain->pd = pd;
333 	domain->ref = 1;
334 	TAILQ_INSERT_TAIL(&g_memory_domains, domain, link);
335 
336 	pthread_mutex_unlock(&g_memory_domains_lock);
337 
338 	return domain;
339 }
340 
341 static void
342 nvme_rdma_put_memory_domain(struct nvme_rdma_memory_domain *device)
343 {
344 	if (!device) {
345 		return;
346 	}
347 
348 	pthread_mutex_lock(&g_memory_domains_lock);
349 
350 	assert(device->ref > 0);
351 
352 	device->ref--;
353 
354 	if (device->ref == 0) {
355 		spdk_memory_domain_destroy(device->domain);
356 		TAILQ_REMOVE(&g_memory_domains, device, link);
357 		free(device);
358 	}
359 
360 	pthread_mutex_unlock(&g_memory_domains_lock);
361 }
362 
363 static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
364 		struct spdk_nvme_qpair *qpair);
365 
366 static inline struct nvme_rdma_qpair *
367 nvme_rdma_qpair(struct spdk_nvme_qpair *qpair)
368 {
369 	assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA);
370 	return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair);
371 }
372 
373 static inline struct nvme_rdma_poll_group *
374 nvme_rdma_poll_group(struct spdk_nvme_transport_poll_group *group)
375 {
376 	return (SPDK_CONTAINEROF(group, struct nvme_rdma_poll_group, group));
377 }
378 
379 static inline struct nvme_rdma_ctrlr *
380 nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
381 {
382 	assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA);
383 	return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr);
384 }
385 
386 static struct spdk_nvme_rdma_req *
387 nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair)
388 {
389 	struct spdk_nvme_rdma_req *rdma_req;
390 
391 	rdma_req = TAILQ_FIRST(&rqpair->free_reqs);
392 	if (rdma_req) {
393 		TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link);
394 		TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link);
395 	}
396 
397 	return rdma_req;
398 }
399 
400 static void
401 nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
402 {
403 	rdma_req->completion_flags = 0;
404 	rdma_req->req = NULL;
405 	TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link);
406 }
407 
408 static void
409 nvme_rdma_req_complete(struct spdk_nvme_rdma_req *rdma_req,
410 		       struct spdk_nvme_cpl *rsp,
411 		       bool print_on_error)
412 {
413 	struct nvme_request *req = rdma_req->req;
414 	struct nvme_rdma_qpair *rqpair;
415 	struct spdk_nvme_qpair *qpair;
416 	bool error, print_error;
417 
418 	assert(req != NULL);
419 
420 	qpair = req->qpair;
421 	rqpair = nvme_rdma_qpair(qpair);
422 
423 	error = spdk_nvme_cpl_is_error(rsp);
424 	print_error = error && print_on_error && !qpair->ctrlr->opts.disable_error_logging;
425 
426 	if (print_error) {
427 		spdk_nvme_qpair_print_command(qpair, &req->cmd);
428 	}
429 
430 	if (print_error || SPDK_DEBUGLOG_FLAG_ENABLED("nvme")) {
431 		spdk_nvme_qpair_print_completion(qpair, rsp);
432 	}
433 
434 	TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
435 
436 	nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, rsp);
437 	nvme_free_request(req);
438 	nvme_rdma_req_put(rqpair, rdma_req);
439 }
440 
441 static const char *
442 nvme_rdma_cm_event_str_get(uint32_t event)
443 {
444 	if (event < SPDK_COUNTOF(rdma_cm_event_str)) {
445 		return rdma_cm_event_str[event];
446 	} else {
447 		return "Undefined";
448 	}
449 }
450 
451 
452 static int
453 nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair)
454 {
455 	struct rdma_cm_event				*event = rqpair->evt;
456 	struct spdk_nvmf_rdma_accept_private_data	*accept_data;
457 	int						rc = 0;
458 
459 	if (event) {
460 		switch (event->event) {
461 		case RDMA_CM_EVENT_ADDR_RESOLVED:
462 		case RDMA_CM_EVENT_ADDR_ERROR:
463 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
464 		case RDMA_CM_EVENT_ROUTE_ERROR:
465 			break;
466 		case RDMA_CM_EVENT_CONNECT_REQUEST:
467 			break;
468 		case RDMA_CM_EVENT_CONNECT_ERROR:
469 			break;
470 		case RDMA_CM_EVENT_UNREACHABLE:
471 		case RDMA_CM_EVENT_REJECTED:
472 			break;
473 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
474 			rc = spdk_rdma_qp_complete_connect(rqpair->rdma_qp);
475 		/* fall through */
476 		case RDMA_CM_EVENT_ESTABLISHED:
477 			accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data;
478 			if (accept_data == NULL) {
479 				rc = -1;
480 			} else {
481 				SPDK_DEBUGLOG(nvme, "Requested queue depth %d. Target receive queue depth %d.\n",
482 					      rqpair->num_entries + 1, accept_data->crqsize);
483 			}
484 			break;
485 		case RDMA_CM_EVENT_DISCONNECTED:
486 			rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
487 			break;
488 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
489 			rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
490 			break;
491 		case RDMA_CM_EVENT_MULTICAST_JOIN:
492 		case RDMA_CM_EVENT_MULTICAST_ERROR:
493 			break;
494 		case RDMA_CM_EVENT_ADDR_CHANGE:
495 			rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
496 			break;
497 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
498 			break;
499 		default:
500 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
501 			break;
502 		}
503 		rqpair->evt = NULL;
504 		rdma_ack_cm_event(event);
505 	}
506 
507 	return rc;
508 }
509 
510 /*
511  * This function must be called under the nvme controller's lock
512  * because it touches global controller variables. The lock is taken
513  * by the generic transport code before invoking a few of the functions
514  * in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair,
515  * and conditionally nvme_rdma_qpair_process_completions when it is calling
516  * completions on the admin qpair. When adding a new call to this function, please
517  * verify that it is in a situation where it falls under the lock.
518  */
519 static int
520 nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr)
521 {
522 	struct nvme_rdma_cm_event_entry	*entry, *tmp;
523 	struct nvme_rdma_qpair		*event_qpair;
524 	struct rdma_cm_event		*event;
525 	struct rdma_event_channel	*channel = rctrlr->cm_channel;
526 
527 	STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
528 		event_qpair = entry->evt->id->context;
529 		if (event_qpair->evt == NULL) {
530 			event_qpair->evt = entry->evt;
531 			STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
532 			STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
533 		}
534 	}
535 
536 	while (rdma_get_cm_event(channel, &event) == 0) {
537 		event_qpair = event->id->context;
538 		if (event_qpair->evt == NULL) {
539 			event_qpair->evt = event;
540 		} else {
541 			assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr));
542 			entry = STAILQ_FIRST(&rctrlr->free_cm_events);
543 			if (entry == NULL) {
544 				rdma_ack_cm_event(event);
545 				return -ENOMEM;
546 			}
547 			STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link);
548 			entry->evt = event;
549 			STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link);
550 		}
551 	}
552 
553 	/* rdma_get_cm_event() returns -1 on error. If an error occurs, errno
554 	 * will be set to indicate the failure reason. So return negated errno here.
555 	 */
556 	return -errno;
557 }
558 
559 static int
560 nvme_rdma_validate_cm_event(enum rdma_cm_event_type expected_evt_type,
561 			    struct rdma_cm_event *reaped_evt)
562 {
563 	int rc = -EBADMSG;
564 
565 	if (expected_evt_type == reaped_evt->event) {
566 		return 0;
567 	}
568 
569 	switch (expected_evt_type) {
570 	case RDMA_CM_EVENT_ESTABLISHED:
571 		/*
572 		 * There is an enum ib_cm_rej_reason in the kernel headers that sets 10 as
573 		 * IB_CM_REJ_STALE_CONN. I can't find the corresponding userspace but we get
574 		 * the same values here.
575 		 */
576 		if (reaped_evt->event == RDMA_CM_EVENT_REJECTED && reaped_evt->status == 10) {
577 			rc = -ESTALE;
578 		} else if (reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE) {
579 			/*
580 			 *  If we are using a qpair which is not created using rdma cm API
581 			 *  then we will receive RDMA_CM_EVENT_CONNECT_RESPONSE instead of
582 			 *  RDMA_CM_EVENT_ESTABLISHED.
583 			 */
584 			return 0;
585 		}
586 		break;
587 	default:
588 		break;
589 	}
590 
591 	SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n",
592 		    nvme_rdma_cm_event_str_get(expected_evt_type),
593 		    nvme_rdma_cm_event_str_get(reaped_evt->event), reaped_evt->event,
594 		    reaped_evt->status);
595 	return rc;
596 }
597 
598 static int
599 nvme_rdma_process_event_start(struct nvme_rdma_qpair *rqpair,
600 			      enum rdma_cm_event_type evt,
601 			      nvme_rdma_cm_event_cb evt_cb)
602 {
603 	int	rc;
604 
605 	assert(evt_cb != NULL);
606 
607 	if (rqpair->evt != NULL) {
608 		rc = nvme_rdma_qpair_process_cm_event(rqpair);
609 		if (rc) {
610 			return rc;
611 		}
612 	}
613 
614 	rqpair->expected_evt_type = evt;
615 	rqpair->evt_cb = evt_cb;
616 	rqpair->evt_timeout_ticks = (NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US * spdk_get_ticks_hz()) /
617 				    SPDK_SEC_TO_USEC + spdk_get_ticks();
618 
619 	return 0;
620 }
621 
622 static int
623 nvme_rdma_process_event_poll(struct nvme_rdma_qpair *rqpair)
624 {
625 	struct nvme_rdma_ctrlr	*rctrlr;
626 	int	rc = 0, rc2;
627 
628 	rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
629 	assert(rctrlr != NULL);
630 
631 	if (!rqpair->evt && spdk_get_ticks() < rqpair->evt_timeout_ticks) {
632 		rc = nvme_rdma_poll_events(rctrlr);
633 		if (rc == -EAGAIN || rc == -EWOULDBLOCK) {
634 			return rc;
635 		}
636 	}
637 
638 	if (rqpair->evt == NULL) {
639 		rc = -EADDRNOTAVAIL;
640 		goto exit;
641 	}
642 
643 	rc = nvme_rdma_validate_cm_event(rqpair->expected_evt_type, rqpair->evt);
644 
645 	rc2 = nvme_rdma_qpair_process_cm_event(rqpair);
646 	/* bad message takes precedence over the other error codes from processing the event. */
647 	rc = rc == 0 ? rc2 : rc;
648 
649 exit:
650 	assert(rqpair->evt_cb != NULL);
651 	return rqpair->evt_cb(rqpair, rc);
652 }
653 
654 static int
655 nvme_rdma_resize_cq(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poller *poller)
656 {
657 	int	current_num_wc, required_num_wc;
658 
659 	required_num_wc = poller->required_num_wc + WC_PER_QPAIR(rqpair->num_entries);
660 	current_num_wc = poller->current_num_wc;
661 	if (current_num_wc < required_num_wc) {
662 		current_num_wc = spdk_max(current_num_wc * 2, required_num_wc);
663 	}
664 
665 	if (poller->current_num_wc != current_num_wc) {
666 		SPDK_DEBUGLOG(nvme, "Resize RDMA CQ from %d to %d\n", poller->current_num_wc,
667 			      current_num_wc);
668 		if (ibv_resize_cq(poller->cq, current_num_wc)) {
669 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
670 			return -1;
671 		}
672 
673 		poller->current_num_wc = current_num_wc;
674 	}
675 
676 	poller->required_num_wc = required_num_wc;
677 	return 0;
678 }
679 
680 static int
681 nvme_rdma_qpair_set_poller(struct spdk_nvme_qpair *qpair)
682 {
683 	struct nvme_rdma_qpair          *rqpair = nvme_rdma_qpair(qpair);
684 	struct nvme_rdma_poll_group     *group = nvme_rdma_poll_group(qpair->poll_group);
685 	struct nvme_rdma_poller         *poller;
686 
687 	assert(rqpair->cq == NULL);
688 
689 	poller = nvme_rdma_poll_group_get_poller(group, rqpair->cm_id->verbs);
690 	if (!poller) {
691 		SPDK_ERRLOG("Unable to find a cq for qpair %p on poll group %p\n", qpair, qpair->poll_group);
692 		return -EINVAL;
693 	}
694 
695 	if (nvme_rdma_resize_cq(rqpair, poller)) {
696 		nvme_rdma_poll_group_put_poller(group, poller);
697 		return -EPROTO;
698 	}
699 
700 	rqpair->cq = poller->cq;
701 	rqpair->poller = poller;
702 	return 0;
703 }
704 
705 static int
706 nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair)
707 {
708 	int			rc;
709 	struct spdk_rdma_qp_init_attr	attr = {};
710 	struct ibv_device_attr	dev_attr;
711 	struct nvme_rdma_ctrlr	*rctrlr;
712 
713 	rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr);
714 	if (rc != 0) {
715 		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
716 		return -1;
717 	}
718 
719 	if (rqpair->qpair.poll_group) {
720 		assert(!rqpair->cq);
721 		rc = nvme_rdma_qpair_set_poller(&rqpair->qpair);
722 		if (rc) {
723 			SPDK_ERRLOG("Unable to activate the rdmaqpair.\n");
724 			return -1;
725 		}
726 		assert(rqpair->cq);
727 	} else {
728 		rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, rqpair->num_entries * 2, rqpair, NULL, 0);
729 		if (!rqpair->cq) {
730 			SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno));
731 			return -1;
732 		}
733 	}
734 
735 	rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
736 	if (g_nvme_hooks.get_ibv_pd) {
737 		attr.pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs);
738 	} else {
739 		attr.pd = spdk_rdma_get_pd(rqpair->cm_id->verbs);
740 	}
741 
742 	attr.stats =		rqpair->poller ? &rqpair->poller->stats.rdma_stats : NULL;
743 	attr.send_cq		= rqpair->cq;
744 	attr.recv_cq		= rqpair->cq;
745 	attr.cap.max_send_wr	= rqpair->num_entries; /* SEND operations */
746 	attr.cap.max_recv_wr	= rqpair->num_entries; /* RECV operations */
747 	attr.cap.max_send_sge	= spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge);
748 	attr.cap.max_recv_sge	= spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge);
749 
750 	rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &attr);
751 
752 	if (!rqpair->rdma_qp) {
753 		return -1;
754 	}
755 
756 	rqpair->memory_domain = nvme_rdma_get_memory_domain(rqpair->rdma_qp->qp->pd);
757 	if (!rqpair->memory_domain) {
758 		SPDK_ERRLOG("Failed to get memory domain\n");
759 		return -1;
760 	}
761 
762 	/* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */
763 	rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge);
764 	rqpair->max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, attr.cap.max_recv_sge);
765 	rqpair->current_num_recvs = 0;
766 	rqpair->current_num_sends = 0;
767 
768 	rqpair->cm_id->context = rqpair;
769 
770 	return 0;
771 }
772 
773 static void
774 nvme_rdma_reset_failed_sends(struct nvme_rdma_qpair *rqpair,
775 			     struct ibv_send_wr *bad_send_wr, int rc)
776 {
777 	SPDK_ERRLOG("Failed to post WRs on send queue, errno %d (%s), bad_wr %p\n",
778 		    rc, spdk_strerror(rc), bad_send_wr);
779 	while (bad_send_wr != NULL) {
780 		assert(rqpair->current_num_sends > 0);
781 		rqpair->current_num_sends--;
782 		bad_send_wr = bad_send_wr->next;
783 	}
784 }
785 
786 static void
787 nvme_rdma_reset_failed_recvs(struct nvme_rdma_qpair *rqpair,
788 			     struct ibv_recv_wr *bad_recv_wr, int rc)
789 {
790 	SPDK_ERRLOG("Failed to post WRs on receive queue, errno %d (%s), bad_wr %p\n",
791 		    rc, spdk_strerror(rc), bad_recv_wr);
792 	while (bad_recv_wr != NULL) {
793 		assert(rqpair->current_num_recvs > 0);
794 		rqpair->current_num_recvs--;
795 		bad_recv_wr = bad_recv_wr->next;
796 	}
797 }
798 
799 static inline int
800 nvme_rdma_qpair_submit_sends(struct nvme_rdma_qpair *rqpair)
801 {
802 	struct ibv_send_wr *bad_send_wr = NULL;
803 	int rc;
804 
805 	rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_send_wr);
806 
807 	if (spdk_unlikely(rc)) {
808 		nvme_rdma_reset_failed_sends(rqpair, bad_send_wr, rc);
809 	}
810 
811 	return rc;
812 }
813 
814 static inline int
815 nvme_rdma_qpair_submit_recvs(struct nvme_rdma_qpair *rqpair)
816 {
817 	struct ibv_recv_wr *bad_recv_wr;
818 	int rc = 0;
819 
820 	rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
821 	if (spdk_unlikely(rc)) {
822 		nvme_rdma_reset_failed_recvs(rqpair, bad_recv_wr, rc);
823 	}
824 
825 	return rc;
826 }
827 
828 #define nvme_rdma_trace_ibv_sge(sg_list) \
829 	if (sg_list) { \
830 		SPDK_DEBUGLOG(nvme, "local addr %p length 0x%x lkey 0x%x\n", \
831 			      (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \
832 	}
833 
834 static void
835 nvme_rdma_free_rsps(struct nvme_rdma_qpair *rqpair)
836 {
837 	spdk_free(rqpair->rsps);
838 	rqpair->rsps = NULL;
839 	spdk_free(rqpair->rsp_sgls);
840 	rqpair->rsp_sgls = NULL;
841 	spdk_free(rqpair->rsp_recv_wrs);
842 	rqpair->rsp_recv_wrs = NULL;
843 }
844 
845 static int
846 nvme_rdma_create_rsps(struct nvme_rdma_qpair *rqpair)
847 {
848 	struct spdk_rdma_memory_translation translation;
849 	uint16_t i;
850 	int rc;
851 
852 	rqpair->rsps = NULL;
853 	rqpair->rsp_recv_wrs = NULL;
854 
855 	rqpair->rsp_sgls = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->rsp_sgls), 0, NULL,
856 					SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
857 	if (!rqpair->rsp_sgls) {
858 		SPDK_ERRLOG("Failed to allocate rsp_sgls\n");
859 		goto fail;
860 	}
861 
862 	rqpair->rsp_recv_wrs = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->rsp_recv_wrs), 0, NULL,
863 					    SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
864 	if (!rqpair->rsp_recv_wrs) {
865 		SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n");
866 		goto fail;
867 	}
868 
869 	rqpair->rsps = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->rsps), 0, NULL,
870 				    SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
871 	if (!rqpair->rsps) {
872 		SPDK_ERRLOG("can not allocate rdma rsps\n");
873 		goto fail;
874 	}
875 
876 	for (i = 0; i < rqpair->num_entries; i++) {
877 		struct ibv_sge *rsp_sgl = &rqpair->rsp_sgls[i];
878 		struct spdk_nvme_rdma_rsp *rsp = &rqpair->rsps[i];
879 		struct ibv_recv_wr *recv_wr = &rqpair->rsp_recv_wrs[i];
880 
881 		rsp->rqpair = rqpair;
882 		rsp->rdma_wr.type = RDMA_WR_TYPE_RECV;
883 		rsp->recv_wr = recv_wr;
884 		rsp_sgl->addr = (uint64_t)rsp;
885 		rsp_sgl->length = sizeof(struct spdk_nvme_cpl);
886 		rc = spdk_rdma_get_translation(rqpair->mr_map, rsp, sizeof(*rsp), &translation);
887 		if (rc) {
888 			goto fail;
889 		}
890 		rsp_sgl->lkey = spdk_rdma_memory_translation_get_lkey(&translation);
891 
892 		recv_wr->wr_id = (uint64_t)&rsp->rdma_wr;
893 		recv_wr->next = NULL;
894 		recv_wr->sg_list = rsp_sgl;
895 		recv_wr->num_sge = 1;
896 
897 		nvme_rdma_trace_ibv_sge(recv_wr->sg_list);
898 
899 		spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, recv_wr);
900 	}
901 
902 	rqpair->current_num_recvs = rqpair->num_entries;
903 
904 	return 0;
905 fail:
906 	nvme_rdma_free_rsps(rqpair);
907 	return -ENOMEM;
908 }
909 
910 static void
911 nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair)
912 {
913 	if (!rqpair->rdma_reqs) {
914 		return;
915 	}
916 
917 	spdk_free(rqpair->cmds);
918 	rqpair->cmds = NULL;
919 
920 	spdk_free(rqpair->rdma_reqs);
921 	rqpair->rdma_reqs = NULL;
922 }
923 
924 static int
925 nvme_rdma_create_reqs(struct nvme_rdma_qpair *rqpair)
926 {
927 	struct spdk_rdma_memory_translation translation;
928 	uint16_t i;
929 	int rc;
930 
931 	rqpair->rdma_reqs = spdk_zmalloc(rqpair->num_entries * sizeof(struct spdk_nvme_rdma_req), 0, NULL,
932 					 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
933 	if (rqpair->rdma_reqs == NULL) {
934 		SPDK_ERRLOG("Failed to allocate rdma_reqs\n");
935 		goto fail;
936 	}
937 
938 	rqpair->cmds = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->cmds), 0, NULL,
939 				    SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
940 	if (!rqpair->cmds) {
941 		SPDK_ERRLOG("Failed to allocate RDMA cmds\n");
942 		goto fail;
943 	}
944 
945 
946 	TAILQ_INIT(&rqpair->free_reqs);
947 	TAILQ_INIT(&rqpair->outstanding_reqs);
948 	for (i = 0; i < rqpair->num_entries; i++) {
949 		struct spdk_nvme_rdma_req	*rdma_req;
950 		struct spdk_nvmf_cmd		*cmd;
951 
952 		rdma_req = &rqpair->rdma_reqs[i];
953 		rdma_req->rdma_wr.type = RDMA_WR_TYPE_SEND;
954 		cmd = &rqpair->cmds[i];
955 
956 		rdma_req->id = i;
957 
958 		rc = spdk_rdma_get_translation(rqpair->mr_map, cmd, sizeof(*cmd), &translation);
959 		if (rc) {
960 			goto fail;
961 		}
962 		rdma_req->send_sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
963 
964 		/* The first RDMA sgl element will always point
965 		 * at this data structure. Depending on whether
966 		 * an NVMe-oF SGL is required, the length of
967 		 * this element may change. */
968 		rdma_req->send_sgl[0].addr = (uint64_t)cmd;
969 		rdma_req->send_wr.wr_id = (uint64_t)&rdma_req->rdma_wr;
970 		rdma_req->send_wr.next = NULL;
971 		rdma_req->send_wr.opcode = IBV_WR_SEND;
972 		rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED;
973 		rdma_req->send_wr.sg_list = rdma_req->send_sgl;
974 		rdma_req->send_wr.imm_data = 0;
975 
976 		TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link);
977 	}
978 
979 	return 0;
980 fail:
981 	nvme_rdma_free_reqs(rqpair);
982 	return -ENOMEM;
983 }
984 
985 static int nvme_rdma_connect(struct nvme_rdma_qpair *rqpair);
986 
987 static int
988 nvme_rdma_route_resolved(struct nvme_rdma_qpair *rqpair, int ret)
989 {
990 	if (ret) {
991 		SPDK_ERRLOG("RDMA route resolution error\n");
992 		return -1;
993 	}
994 
995 	ret = nvme_rdma_qpair_init(rqpair);
996 	if (ret < 0) {
997 		SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n");
998 		return -1;
999 	}
1000 
1001 	return nvme_rdma_connect(rqpair);
1002 }
1003 
1004 static int
1005 nvme_rdma_addr_resolved(struct nvme_rdma_qpair *rqpair, int ret)
1006 {
1007 	if (ret) {
1008 		SPDK_ERRLOG("RDMA address resolution error\n");
1009 		return -1;
1010 	}
1011 
1012 	if (rqpair->qpair.ctrlr->opts.transport_ack_timeout != SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED) {
1013 #ifdef SPDK_CONFIG_RDMA_SET_ACK_TIMEOUT
1014 		uint8_t timeout = rqpair->qpair.ctrlr->opts.transport_ack_timeout;
1015 		ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID,
1016 				      RDMA_OPTION_ID_ACK_TIMEOUT,
1017 				      &timeout, sizeof(timeout));
1018 		if (ret) {
1019 			SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_ACK_TIMEOUT %d, ret %d\n", timeout, ret);
1020 		}
1021 #else
1022 		SPDK_DEBUGLOG(nvme, "transport_ack_timeout is not supported\n");
1023 #endif
1024 	}
1025 
1026 	ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS);
1027 	if (ret) {
1028 		SPDK_ERRLOG("rdma_resolve_route\n");
1029 		return ret;
1030 	}
1031 
1032 	return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ROUTE_RESOLVED,
1033 					     nvme_rdma_route_resolved);
1034 }
1035 
1036 static int
1037 nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair,
1038 		       struct sockaddr *src_addr,
1039 		       struct sockaddr *dst_addr)
1040 {
1041 	int ret;
1042 
1043 	if (src_addr) {
1044 		int reuse = 1;
1045 
1046 		ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
1047 				      &reuse, sizeof(reuse));
1048 		if (ret) {
1049 			SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_REUSEADDR %d, ret %d\n",
1050 				       reuse, ret);
1051 			/* It is likely that rdma_resolve_addr() returns -EADDRINUSE, but
1052 			 * we may missing something. We rely on rdma_resolve_addr().
1053 			 */
1054 		}
1055 	}
1056 
1057 	ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr,
1058 				NVME_RDMA_TIME_OUT_IN_MS);
1059 	if (ret) {
1060 		SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno);
1061 		return ret;
1062 	}
1063 
1064 	return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ADDR_RESOLVED,
1065 					     nvme_rdma_addr_resolved);
1066 }
1067 
1068 static int nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair);
1069 
1070 static int
1071 nvme_rdma_connect_established(struct nvme_rdma_qpair *rqpair, int ret)
1072 {
1073 	if (ret == -ESTALE) {
1074 		return nvme_rdma_stale_conn_retry(rqpair);
1075 	} else if (ret) {
1076 		SPDK_ERRLOG("RDMA connect error %d\n", ret);
1077 		return ret;
1078 	}
1079 
1080 	rqpair->mr_map = spdk_rdma_create_mem_map(rqpair->rdma_qp->qp->pd, &g_nvme_hooks,
1081 			 SPDK_RDMA_MEMORY_MAP_ROLE_INITIATOR);
1082 	if (!rqpair->mr_map) {
1083 		SPDK_ERRLOG("Unable to register RDMA memory translation map\n");
1084 		return -1;
1085 	}
1086 
1087 	ret = nvme_rdma_create_reqs(rqpair);
1088 	SPDK_DEBUGLOG(nvme, "rc =%d\n", ret);
1089 	if (ret) {
1090 		SPDK_ERRLOG("Unable to create rqpair RDMA requests\n");
1091 		return -1;
1092 	}
1093 	SPDK_DEBUGLOG(nvme, "RDMA requests created\n");
1094 
1095 	ret = nvme_rdma_create_rsps(rqpair);
1096 	SPDK_DEBUGLOG(nvme, "rc =%d\n", ret);
1097 	if (ret < 0) {
1098 		SPDK_ERRLOG("Unable to create rqpair RDMA responses\n");
1099 		return -1;
1100 	}
1101 	SPDK_DEBUGLOG(nvme, "RDMA responses created\n");
1102 
1103 	ret = nvme_rdma_qpair_submit_recvs(rqpair);
1104 	SPDK_DEBUGLOG(nvme, "rc =%d\n", ret);
1105 	if (ret) {
1106 		SPDK_ERRLOG("Unable to submit rqpair RDMA responses\n");
1107 		return -1;
1108 	}
1109 	SPDK_DEBUGLOG(nvme, "RDMA responses submitted\n");
1110 
1111 	rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND;
1112 
1113 	return 0;
1114 }
1115 
1116 static int
1117 nvme_rdma_connect(struct nvme_rdma_qpair *rqpair)
1118 {
1119 	struct rdma_conn_param				param = {};
1120 	struct spdk_nvmf_rdma_request_private_data	request_data = {};
1121 	struct ibv_device_attr				attr;
1122 	int						ret;
1123 	struct spdk_nvme_ctrlr				*ctrlr;
1124 
1125 	ret = ibv_query_device(rqpair->cm_id->verbs, &attr);
1126 	if (ret != 0) {
1127 		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
1128 		return ret;
1129 	}
1130 
1131 	param.responder_resources = attr.max_qp_rd_atom;
1132 
1133 	ctrlr = rqpair->qpair.ctrlr;
1134 	if (!ctrlr) {
1135 		return -1;
1136 	}
1137 
1138 	request_data.qid = rqpair->qpair.id;
1139 	request_data.hrqsize = rqpair->num_entries + 1;
1140 	request_data.hsqsize = rqpair->num_entries;
1141 	request_data.cntlid = ctrlr->cntlid;
1142 
1143 	param.private_data = &request_data;
1144 	param.private_data_len = sizeof(request_data);
1145 	param.retry_count = ctrlr->opts.transport_retry_count;
1146 	param.rnr_retry_count = 7;
1147 
1148 	/* Fields below are ignored by rdma cm if qpair has been
1149 	 * created using rdma cm API. */
1150 	param.srq = 0;
1151 	param.qp_num = rqpair->rdma_qp->qp->qp_num;
1152 
1153 	ret = rdma_connect(rqpair->cm_id, &param);
1154 	if (ret) {
1155 		SPDK_ERRLOG("nvme rdma connect error\n");
1156 		return ret;
1157 	}
1158 
1159 	return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ESTABLISHED,
1160 					     nvme_rdma_connect_established);
1161 }
1162 
1163 static int
1164 nvme_rdma_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service)
1165 {
1166 	struct addrinfo *res;
1167 	struct addrinfo hints;
1168 	int ret;
1169 
1170 	memset(&hints, 0, sizeof(hints));
1171 	hints.ai_family = family;
1172 	hints.ai_socktype = SOCK_STREAM;
1173 	hints.ai_protocol = 0;
1174 
1175 	ret = getaddrinfo(addr, service, &hints, &res);
1176 	if (ret) {
1177 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret);
1178 		return ret;
1179 	}
1180 
1181 	if (res->ai_addrlen > sizeof(*sa)) {
1182 		SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen);
1183 		ret = EINVAL;
1184 	} else {
1185 		memcpy(sa, res->ai_addr, res->ai_addrlen);
1186 	}
1187 
1188 	freeaddrinfo(res);
1189 	return ret;
1190 }
1191 
1192 static int
1193 nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1194 {
1195 	struct sockaddr_storage dst_addr;
1196 	struct sockaddr_storage src_addr;
1197 	bool src_addr_specified;
1198 	int rc;
1199 	struct nvme_rdma_ctrlr *rctrlr;
1200 	struct nvme_rdma_qpair *rqpair;
1201 	int family;
1202 
1203 	rqpair = nvme_rdma_qpair(qpair);
1204 	rctrlr = nvme_rdma_ctrlr(ctrlr);
1205 	assert(rctrlr != NULL);
1206 
1207 	switch (ctrlr->trid.adrfam) {
1208 	case SPDK_NVMF_ADRFAM_IPV4:
1209 		family = AF_INET;
1210 		break;
1211 	case SPDK_NVMF_ADRFAM_IPV6:
1212 		family = AF_INET6;
1213 		break;
1214 	default:
1215 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
1216 		return -1;
1217 	}
1218 
1219 	SPDK_DEBUGLOG(nvme, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);
1220 
1221 	memset(&dst_addr, 0, sizeof(dst_addr));
1222 
1223 	SPDK_DEBUGLOG(nvme, "trsvcid is %s\n", ctrlr->trid.trsvcid);
1224 	rc = nvme_rdma_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid);
1225 	if (rc != 0) {
1226 		SPDK_ERRLOG("dst_addr nvme_rdma_parse_addr() failed\n");
1227 		return -1;
1228 	}
1229 
1230 	if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) {
1231 		memset(&src_addr, 0, sizeof(src_addr));
1232 		rc = nvme_rdma_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid);
1233 		if (rc != 0) {
1234 			SPDK_ERRLOG("src_addr nvme_rdma_parse_addr() failed\n");
1235 			return -1;
1236 		}
1237 		src_addr_specified = true;
1238 	} else {
1239 		src_addr_specified = false;
1240 	}
1241 
1242 	rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP);
1243 	if (rc < 0) {
1244 		SPDK_ERRLOG("rdma_create_id() failed\n");
1245 		return -1;
1246 	}
1247 
1248 	rc = nvme_rdma_resolve_addr(rqpair,
1249 				    src_addr_specified ? (struct sockaddr *)&src_addr : NULL,
1250 				    (struct sockaddr *)&dst_addr);
1251 	if (rc < 0) {
1252 		SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n");
1253 		return -1;
1254 	}
1255 
1256 	rqpair->state = NVME_RDMA_QPAIR_STATE_INITIALIZING;
1257 
1258 	return 0;
1259 }
1260 
1261 static int
1262 nvme_rdma_stale_conn_reconnect(struct nvme_rdma_qpair *rqpair)
1263 {
1264 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1265 
1266 	if (spdk_get_ticks() < rqpair->evt_timeout_ticks) {
1267 		return -EAGAIN;
1268 	}
1269 
1270 	return nvme_rdma_ctrlr_connect_qpair(qpair->ctrlr, qpair);
1271 }
1272 
1273 static int
1274 nvme_rdma_ctrlr_connect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr,
1275 				   struct spdk_nvme_qpair *qpair)
1276 {
1277 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1278 	int rc;
1279 
1280 	if (rqpair->in_connect_poll) {
1281 		return -EAGAIN;
1282 	}
1283 
1284 	rqpair->in_connect_poll = true;
1285 
1286 	switch (rqpair->state) {
1287 	case NVME_RDMA_QPAIR_STATE_INVALID:
1288 		rc = -EAGAIN;
1289 		break;
1290 
1291 	case NVME_RDMA_QPAIR_STATE_INITIALIZING:
1292 	case NVME_RDMA_QPAIR_STATE_EXITING:
1293 		if (!nvme_qpair_is_admin_queue(qpair)) {
1294 			nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1295 		}
1296 
1297 		rc = nvme_rdma_process_event_poll(rqpair);
1298 
1299 		if (!nvme_qpair_is_admin_queue(qpair)) {
1300 			nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1301 		}
1302 
1303 		if (rc == 0) {
1304 			rc = -EAGAIN;
1305 		}
1306 		rqpair->in_connect_poll = false;
1307 
1308 		return rc;
1309 
1310 	case NVME_RDMA_QPAIR_STATE_STALE_CONN:
1311 		rc = nvme_rdma_stale_conn_reconnect(rqpair);
1312 		if (rc == 0) {
1313 			rc = -EAGAIN;
1314 		}
1315 		break;
1316 	case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND:
1317 		rc = nvme_fabric_qpair_connect_async(qpair, rqpair->num_entries + 1);
1318 		if (rc == 0) {
1319 			rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL;
1320 			rc = -EAGAIN;
1321 		} else {
1322 			SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n");
1323 		}
1324 		break;
1325 	case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL:
1326 		rc = nvme_fabric_qpair_connect_poll(qpair);
1327 		if (rc == 0) {
1328 			rqpair->state = NVME_RDMA_QPAIR_STATE_RUNNING;
1329 			nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
1330 		} else if (rc != -EAGAIN) {
1331 			SPDK_ERRLOG("Failed to poll NVMe-oF Fabric CONNECT command\n");
1332 		}
1333 		break;
1334 	case NVME_RDMA_QPAIR_STATE_RUNNING:
1335 		rc = 0;
1336 		break;
1337 	default:
1338 		assert(false);
1339 		rc = -EINVAL;
1340 		break;
1341 	}
1342 
1343 	rqpair->in_connect_poll = false;
1344 
1345 	return rc;
1346 }
1347 
1348 static inline int
1349 nvme_rdma_get_memory_translation(struct nvme_request *req, struct nvme_rdma_qpair *rqpair,
1350 				 struct nvme_rdma_memory_translation_ctx *_ctx)
1351 {
1352 	struct spdk_memory_domain_translation_ctx ctx;
1353 	struct spdk_memory_domain_translation_result dma_translation = {.iov_count = 0};
1354 	struct spdk_rdma_memory_translation rdma_translation;
1355 	int rc;
1356 
1357 	assert(req);
1358 	assert(rqpair);
1359 	assert(_ctx);
1360 
1361 	if (req->payload.opts && req->payload.opts->memory_domain) {
1362 		ctx.size = sizeof(struct spdk_memory_domain_translation_ctx);
1363 		ctx.rdma.ibv_qp = rqpair->rdma_qp->qp;
1364 		dma_translation.size = sizeof(struct spdk_memory_domain_translation_result);
1365 
1366 		rc = spdk_memory_domain_translate_data(req->payload.opts->memory_domain,
1367 						       req->payload.opts->memory_domain_ctx,
1368 						       rqpair->memory_domain->domain, &ctx, _ctx->addr,
1369 						       _ctx->length, &dma_translation);
1370 		if (spdk_unlikely(rc) || dma_translation.iov_count != 1) {
1371 			SPDK_ERRLOG("DMA memory translation failed, rc %d, iov count %u\n", rc, dma_translation.iov_count);
1372 			return rc;
1373 		}
1374 
1375 		_ctx->lkey = dma_translation.rdma.lkey;
1376 		_ctx->rkey = dma_translation.rdma.rkey;
1377 		_ctx->addr = dma_translation.iov.iov_base;
1378 		_ctx->length = dma_translation.iov.iov_len;
1379 	} else {
1380 		rc = spdk_rdma_get_translation(rqpair->mr_map, _ctx->addr, _ctx->length, &rdma_translation);
1381 		if (spdk_unlikely(rc)) {
1382 			SPDK_ERRLOG("RDMA memory translation failed, rc %d\n", rc);
1383 			return rc;
1384 		}
1385 		if (rdma_translation.translation_type == SPDK_RDMA_TRANSLATION_MR) {
1386 			_ctx->lkey = rdma_translation.mr_or_key.mr->lkey;
1387 			_ctx->rkey = rdma_translation.mr_or_key.mr->rkey;
1388 		} else {
1389 			_ctx->lkey = _ctx->rkey = (uint32_t)rdma_translation.mr_or_key.key;
1390 		}
1391 	}
1392 
1393 	return 0;
1394 }
1395 
1396 
1397 /*
1398  * Build SGL describing empty payload.
1399  */
1400 static int
1401 nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req)
1402 {
1403 	struct nvme_request *req = rdma_req->req;
1404 
1405 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1406 
1407 	/* The first element of this SGL is pointing at an
1408 	 * spdk_nvmf_cmd object. For this particular command,
1409 	 * we only need the first 64 bytes corresponding to
1410 	 * the NVMe command. */
1411 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1412 
1413 	/* The RDMA SGL needs one element describing the NVMe command. */
1414 	rdma_req->send_wr.num_sge = 1;
1415 
1416 	req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1417 	req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1418 	req->cmd.dptr.sgl1.keyed.length = 0;
1419 	req->cmd.dptr.sgl1.keyed.key = 0;
1420 	req->cmd.dptr.sgl1.address = 0;
1421 
1422 	return 0;
1423 }
1424 
1425 /*
1426  * Build inline SGL describing contiguous payload buffer.
1427  */
1428 static int
1429 nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair,
1430 				      struct spdk_nvme_rdma_req *rdma_req)
1431 {
1432 	struct nvme_request *req = rdma_req->req;
1433 	struct nvme_rdma_memory_translation_ctx ctx = {
1434 		.addr = req->payload.contig_or_cb_arg + req->payload_offset,
1435 		.length = req->payload_size
1436 	};
1437 	int rc;
1438 
1439 	assert(ctx.length != 0);
1440 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1441 
1442 	rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1443 	if (spdk_unlikely(rc)) {
1444 		return -1;
1445 	}
1446 
1447 	rdma_req->send_sgl[1].lkey = ctx.lkey;
1448 
1449 	/* The first element of this SGL is pointing at an
1450 	 * spdk_nvmf_cmd object. For this particular command,
1451 	 * we only need the first 64 bytes corresponding to
1452 	 * the NVMe command. */
1453 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1454 
1455 	rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr;
1456 	rdma_req->send_sgl[1].length = (uint32_t)ctx.length;
1457 
1458 	/* The RDMA SGL contains two elements. The first describes
1459 	 * the NVMe command and the second describes the data
1460 	 * payload. */
1461 	rdma_req->send_wr.num_sge = 2;
1462 
1463 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1464 	req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1465 	req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1466 	req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length;
1467 	/* Inline only supported for icdoff == 0 currently.  This function will
1468 	 * not get called for controllers with other values. */
1469 	req->cmd.dptr.sgl1.address = (uint64_t)0;
1470 
1471 	return 0;
1472 }
1473 
1474 /*
1475  * Build SGL describing contiguous payload buffer.
1476  */
1477 static int
1478 nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair,
1479 			       struct spdk_nvme_rdma_req *rdma_req)
1480 {
1481 	struct nvme_request *req = rdma_req->req;
1482 	struct nvme_rdma_memory_translation_ctx ctx = {
1483 		.addr = req->payload.contig_or_cb_arg + req->payload_offset,
1484 		.length = req->payload_size
1485 	};
1486 	int rc;
1487 
1488 	assert(req->payload_size != 0);
1489 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1490 
1491 	if (spdk_unlikely(req->payload_size > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
1492 		SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
1493 			    req->payload_size, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
1494 		return -1;
1495 	}
1496 
1497 	rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1498 	if (spdk_unlikely(rc)) {
1499 		return -1;
1500 	}
1501 
1502 	req->cmd.dptr.sgl1.keyed.key = ctx.rkey;
1503 
1504 	/* The first element of this SGL is pointing at an
1505 	 * spdk_nvmf_cmd object. For this particular command,
1506 	 * we only need the first 64 bytes corresponding to
1507 	 * the NVMe command. */
1508 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1509 
1510 	/* The RDMA SGL needs one element describing the NVMe command. */
1511 	rdma_req->send_wr.num_sge = 1;
1512 
1513 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1514 	req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1515 	req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1516 	req->cmd.dptr.sgl1.keyed.length = (uint32_t)ctx.length;
1517 	req->cmd.dptr.sgl1.address = (uint64_t)ctx.addr;
1518 
1519 	return 0;
1520 }
1521 
1522 /*
1523  * Build SGL describing scattered payload buffer.
1524  */
1525 static int
1526 nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair,
1527 			    struct spdk_nvme_rdma_req *rdma_req)
1528 {
1529 	struct nvme_request *req = rdma_req->req;
1530 	struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id];
1531 	struct nvme_rdma_memory_translation_ctx ctx;
1532 	uint32_t remaining_size;
1533 	uint32_t sge_length;
1534 	int rc, max_num_sgl, num_sgl_desc;
1535 
1536 	assert(req->payload_size != 0);
1537 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1538 	assert(req->payload.reset_sgl_fn != NULL);
1539 	assert(req->payload.next_sge_fn != NULL);
1540 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1541 
1542 	max_num_sgl = req->qpair->ctrlr->max_sges;
1543 
1544 	remaining_size = req->payload_size;
1545 	num_sgl_desc = 0;
1546 	do {
1547 		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &sge_length);
1548 		if (rc) {
1549 			return -1;
1550 		}
1551 
1552 		sge_length = spdk_min(remaining_size, sge_length);
1553 
1554 		if (spdk_unlikely(sge_length > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
1555 			SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
1556 				    sge_length, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
1557 			return -1;
1558 		}
1559 		ctx.length = sge_length;
1560 		rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1561 		if (spdk_unlikely(rc)) {
1562 			return -1;
1563 		}
1564 
1565 		cmd->sgl[num_sgl_desc].keyed.key = ctx.rkey;
1566 		cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1567 		cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1568 		cmd->sgl[num_sgl_desc].keyed.length = (uint32_t)ctx.length;
1569 		cmd->sgl[num_sgl_desc].address = (uint64_t)ctx.addr;
1570 
1571 		remaining_size -= ctx.length;
1572 		num_sgl_desc++;
1573 	} while (remaining_size > 0 && num_sgl_desc < max_num_sgl);
1574 
1575 
1576 	/* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */
1577 	if (remaining_size > 0) {
1578 		return -1;
1579 	}
1580 
1581 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1582 
1583 	/* The RDMA SGL needs one element describing some portion
1584 	 * of the spdk_nvmf_cmd structure. */
1585 	rdma_req->send_wr.num_sge = 1;
1586 
1587 	/*
1588 	 * If only one SGL descriptor is required, it can be embedded directly in the command
1589 	 * as a data block descriptor.
1590 	 */
1591 	if (num_sgl_desc == 1) {
1592 		/* The first element of this SGL is pointing at an
1593 		 * spdk_nvmf_cmd object. For this particular command,
1594 		 * we only need the first 64 bytes corresponding to
1595 		 * the NVMe command. */
1596 		rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1597 
1598 		req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type;
1599 		req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype;
1600 		req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length;
1601 		req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key;
1602 		req->cmd.dptr.sgl1.address = cmd->sgl[0].address;
1603 	} else {
1604 		/*
1605 		 * Otherwise, The SGL descriptor embedded in the command must point to the list of
1606 		 * SGL descriptors used to describe the operation. In that case it is a last segment descriptor.
1607 		 */
1608 		uint32_t descriptors_size = sizeof(struct spdk_nvme_sgl_descriptor) * num_sgl_desc;
1609 
1610 		if (spdk_unlikely(descriptors_size > rqpair->qpair.ctrlr->ioccsz_bytes)) {
1611 			SPDK_ERRLOG("Size of SGL descriptors (%u) exceeds ICD (%u)\n",
1612 				    descriptors_size, rqpair->qpair.ctrlr->ioccsz_bytes);
1613 			return -1;
1614 		}
1615 		rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + descriptors_size;
1616 
1617 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1618 		req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1619 		req->cmd.dptr.sgl1.unkeyed.length = descriptors_size;
1620 		req->cmd.dptr.sgl1.address = (uint64_t)0;
1621 	}
1622 
1623 	return 0;
1624 }
1625 
1626 /*
1627  * Build inline SGL describing sgl payload buffer.
1628  */
1629 static int
1630 nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair,
1631 				   struct spdk_nvme_rdma_req *rdma_req)
1632 {
1633 	struct nvme_request *req = rdma_req->req;
1634 	struct nvme_rdma_memory_translation_ctx ctx;
1635 	uint32_t length;
1636 	int rc;
1637 
1638 	assert(req->payload_size != 0);
1639 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1640 	assert(req->payload.reset_sgl_fn != NULL);
1641 	assert(req->payload.next_sge_fn != NULL);
1642 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1643 
1644 	rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &length);
1645 	if (rc) {
1646 		return -1;
1647 	}
1648 
1649 	if (length < req->payload_size) {
1650 		SPDK_DEBUGLOG(nvme, "Inline SGL request split so sending separately.\n");
1651 		return nvme_rdma_build_sgl_request(rqpair, rdma_req);
1652 	}
1653 
1654 	if (length > req->payload_size) {
1655 		length = req->payload_size;
1656 	}
1657 
1658 	ctx.length = length;
1659 	rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1660 	if (spdk_unlikely(rc)) {
1661 		return -1;
1662 	}
1663 
1664 	rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr;
1665 	rdma_req->send_sgl[1].length = (uint32_t)ctx.length;
1666 	rdma_req->send_sgl[1].lkey = ctx.lkey;
1667 
1668 	rdma_req->send_wr.num_sge = 2;
1669 
1670 	/* The first element of this SGL is pointing at an
1671 	 * spdk_nvmf_cmd object. For this particular command,
1672 	 * we only need the first 64 bytes corresponding to
1673 	 * the NVMe command. */
1674 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1675 
1676 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1677 	req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1678 	req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1679 	req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length;
1680 	/* Inline only supported for icdoff == 0 currently.  This function will
1681 	 * not get called for controllers with other values. */
1682 	req->cmd.dptr.sgl1.address = (uint64_t)0;
1683 
1684 	return 0;
1685 }
1686 
1687 static int
1688 nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req,
1689 		   struct spdk_nvme_rdma_req *rdma_req)
1690 {
1691 	struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr;
1692 	enum nvme_payload_type payload_type;
1693 	bool icd_supported;
1694 	int rc;
1695 
1696 	assert(rdma_req->req == NULL);
1697 	rdma_req->req = req;
1698 	req->cmd.cid = rdma_req->id;
1699 	payload_type = nvme_payload_type(&req->payload);
1700 	/*
1701 	 * Check if icdoff is non zero, to avoid interop conflicts with
1702 	 * targets with non-zero icdoff.  Both SPDK and the Linux kernel
1703 	 * targets use icdoff = 0.  For targets with non-zero icdoff, we
1704 	 * will currently just not use inline data for now.
1705 	 */
1706 	icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER
1707 			&& req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0;
1708 
1709 	if (req->payload_size == 0) {
1710 		rc = nvme_rdma_build_null_request(rdma_req);
1711 	} else if (payload_type == NVME_PAYLOAD_TYPE_CONTIG) {
1712 		if (icd_supported) {
1713 			rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req);
1714 		} else {
1715 			rc = nvme_rdma_build_contig_request(rqpair, rdma_req);
1716 		}
1717 	} else if (payload_type == NVME_PAYLOAD_TYPE_SGL) {
1718 		if (icd_supported) {
1719 			rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req);
1720 		} else {
1721 			rc = nvme_rdma_build_sgl_request(rqpair, rdma_req);
1722 		}
1723 	} else {
1724 		rc = -1;
1725 	}
1726 
1727 	if (rc) {
1728 		rdma_req->req = NULL;
1729 		return rc;
1730 	}
1731 
1732 	memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd));
1733 	return 0;
1734 }
1735 
1736 static struct spdk_nvme_qpair *
1737 nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
1738 			     uint16_t qid, uint32_t qsize,
1739 			     enum spdk_nvme_qprio qprio,
1740 			     uint32_t num_requests,
1741 			     bool delay_cmd_submit,
1742 			     bool async)
1743 {
1744 	struct nvme_rdma_qpair *rqpair;
1745 	struct spdk_nvme_qpair *qpair;
1746 	int rc;
1747 
1748 	if (qsize < SPDK_NVME_QUEUE_MIN_ENTRIES) {
1749 		SPDK_ERRLOG("Failed to create qpair with size %u. Minimum queue size is %d.\n",
1750 			    qsize, SPDK_NVME_QUEUE_MIN_ENTRIES);
1751 		return NULL;
1752 	}
1753 
1754 	rqpair = spdk_zmalloc(sizeof(struct nvme_rdma_qpair), 0, NULL, SPDK_ENV_SOCKET_ID_ANY,
1755 			      SPDK_MALLOC_DMA);
1756 	if (!rqpair) {
1757 		SPDK_ERRLOG("failed to get create rqpair\n");
1758 		return NULL;
1759 	}
1760 
1761 	/* Set num_entries one less than queue size. According to NVMe
1762 	 * and NVMe-oF specs we can not submit queue size requests,
1763 	 * one slot shall always remain empty.
1764 	 */
1765 	rqpair->num_entries = qsize - 1;
1766 	rqpair->delay_cmd_submit = delay_cmd_submit;
1767 	rqpair->state = NVME_RDMA_QPAIR_STATE_INVALID;
1768 	qpair = &rqpair->qpair;
1769 	rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests, async);
1770 	if (rc != 0) {
1771 		spdk_free(rqpair);
1772 		return NULL;
1773 	}
1774 
1775 	return qpair;
1776 }
1777 
1778 static void
1779 nvme_rdma_qpair_destroy(struct nvme_rdma_qpair *rqpair)
1780 {
1781 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1782 	struct nvme_rdma_ctrlr *rctrlr;
1783 	struct nvme_rdma_cm_event_entry *entry, *tmp;
1784 
1785 	spdk_rdma_free_mem_map(&rqpair->mr_map);
1786 
1787 	if (rqpair->evt) {
1788 		rdma_ack_cm_event(rqpair->evt);
1789 		rqpair->evt = NULL;
1790 	}
1791 
1792 	/*
1793 	 * This works because we have the controller lock both in
1794 	 * this function and in the function where we add new events.
1795 	 */
1796 	if (qpair->ctrlr != NULL) {
1797 		rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
1798 		STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
1799 			if (entry->evt->id->context == rqpair) {
1800 				STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
1801 				rdma_ack_cm_event(entry->evt);
1802 				STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
1803 			}
1804 		}
1805 	}
1806 
1807 	if (rqpair->cm_id) {
1808 		if (rqpair->rdma_qp) {
1809 			spdk_rdma_put_pd(rqpair->rdma_qp->qp->pd);
1810 			spdk_rdma_qp_destroy(rqpair->rdma_qp);
1811 			rqpair->rdma_qp = NULL;
1812 		}
1813 
1814 		rdma_destroy_id(rqpair->cm_id);
1815 		rqpair->cm_id = NULL;
1816 	}
1817 
1818 	if (rqpair->poller) {
1819 		struct nvme_rdma_poll_group     *group;
1820 
1821 		assert(qpair->poll_group);
1822 		group = nvme_rdma_poll_group(qpair->poll_group);
1823 
1824 		nvme_rdma_poll_group_put_poller(group, rqpair->poller);
1825 
1826 		rqpair->poller = NULL;
1827 		rqpair->cq = NULL;
1828 	} else if (rqpair->cq) {
1829 		ibv_destroy_cq(rqpair->cq);
1830 		rqpair->cq = NULL;
1831 	}
1832 }
1833 
1834 static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr);
1835 
1836 static int
1837 nvme_rdma_qpair_disconnected(struct nvme_rdma_qpair *rqpair, int ret)
1838 {
1839 	nvme_rdma_qpair_abort_reqs(&rqpair->qpair, 0);
1840 
1841 	if (ret) {
1842 		SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n");
1843 		goto quiet;
1844 	}
1845 
1846 	if (rqpair->poller == NULL) {
1847 		/* If poller is not used, cq is not shared or already destroyed.
1848 		 * So complete disconnecting qpair immediately.
1849 		 */
1850 		goto quiet;
1851 	}
1852 
1853 	if (rqpair->current_num_sends != 0 || rqpair->current_num_recvs != 0) {
1854 		rqpair->state = NVME_RDMA_QPAIR_STATE_LINGERING;
1855 		rqpair->evt_timeout_ticks = (NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US * spdk_get_ticks_hz()) /
1856 					    SPDK_SEC_TO_USEC + spdk_get_ticks();
1857 
1858 		return -EAGAIN;
1859 	}
1860 
1861 quiet:
1862 	rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED;
1863 
1864 	nvme_rdma_qpair_destroy(rqpair);
1865 	nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair);
1866 
1867 	return 0;
1868 }
1869 
1870 static int
1871 nvme_rdma_qpair_wait_until_quiet(struct nvme_rdma_qpair *rqpair)
1872 {
1873 	if (spdk_get_ticks() < rqpair->evt_timeout_ticks &&
1874 	    (rqpair->current_num_sends != 0 || rqpair->current_num_recvs != 0)) {
1875 		return -EAGAIN;
1876 	}
1877 
1878 	rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED;
1879 
1880 	nvme_rdma_qpair_destroy(rqpair);
1881 	nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair);
1882 
1883 	return 0;
1884 }
1885 
1886 static void
1887 _nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
1888 				  nvme_rdma_cm_event_cb disconnected_qpair_cb)
1889 {
1890 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1891 	int rc;
1892 
1893 	assert(disconnected_qpair_cb != NULL);
1894 
1895 	rqpair->state = NVME_RDMA_QPAIR_STATE_EXITING;
1896 
1897 	if (rqpair->cm_id) {
1898 		if (rqpair->rdma_qp) {
1899 			rc = spdk_rdma_qp_disconnect(rqpair->rdma_qp);
1900 			if ((qpair->ctrlr != NULL) && (rc == 0)) {
1901 				rc = nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_DISCONNECTED,
1902 								   disconnected_qpair_cb);
1903 				if (rc == 0) {
1904 					return;
1905 				}
1906 			}
1907 		}
1908 	}
1909 
1910 	disconnected_qpair_cb(rqpair, 0);
1911 }
1912 
1913 static int
1914 nvme_rdma_ctrlr_disconnect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1915 {
1916 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1917 	int rc;
1918 
1919 	switch (rqpair->state) {
1920 	case NVME_RDMA_QPAIR_STATE_EXITING:
1921 		if (!nvme_qpair_is_admin_queue(qpair)) {
1922 			nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1923 		}
1924 
1925 		rc = nvme_rdma_process_event_poll(rqpair);
1926 
1927 		if (!nvme_qpair_is_admin_queue(qpair)) {
1928 			nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1929 		}
1930 		break;
1931 
1932 	case NVME_RDMA_QPAIR_STATE_LINGERING:
1933 		rc = nvme_rdma_qpair_wait_until_quiet(rqpair);
1934 		break;
1935 	case NVME_RDMA_QPAIR_STATE_EXITED:
1936 		rc = 0;
1937 		break;
1938 
1939 	default:
1940 		assert(false);
1941 		rc = -EAGAIN;
1942 		break;
1943 	}
1944 
1945 	return rc;
1946 }
1947 
1948 static void
1949 nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1950 {
1951 	int rc;
1952 
1953 	_nvme_rdma_ctrlr_disconnect_qpair(ctrlr, qpair, nvme_rdma_qpair_disconnected);
1954 
1955 	/* If the async mode is disabled, poll the qpair until it is actually disconnected.
1956 	 * It is ensured that poll_group_process_completions() calls disconnected_qpair_cb
1957 	 * for any disconnected qpair. Hence, we do not have to check if the qpair is in
1958 	 * a poll group or not.
1959 	 */
1960 	if (qpair->async) {
1961 		return;
1962 	}
1963 
1964 	while (1) {
1965 		rc = nvme_rdma_ctrlr_disconnect_qpair_poll(ctrlr, qpair);
1966 		if (rc != -EAGAIN) {
1967 			break;
1968 		}
1969 	}
1970 }
1971 
1972 static int
1973 nvme_rdma_stale_conn_disconnected(struct nvme_rdma_qpair *rqpair, int ret)
1974 {
1975 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1976 
1977 	if (ret) {
1978 		SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n");
1979 	}
1980 
1981 	nvme_rdma_qpair_destroy(rqpair);
1982 
1983 	qpair->last_transport_failure_reason = qpair->transport_failure_reason;
1984 	qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_NONE;
1985 
1986 	rqpair->state = NVME_RDMA_QPAIR_STATE_STALE_CONN;
1987 	rqpair->evt_timeout_ticks = (NVME_RDMA_STALE_CONN_RETRY_DELAY_US * spdk_get_ticks_hz()) /
1988 				    SPDK_SEC_TO_USEC + spdk_get_ticks();
1989 
1990 	return 0;
1991 }
1992 
1993 static int
1994 nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair)
1995 {
1996 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1997 
1998 	if (rqpair->stale_conn_retry_count >= NVME_RDMA_STALE_CONN_RETRY_MAX) {
1999 		SPDK_ERRLOG("Retry failed %d times, give up stale connection to qpair (cntlid:%u, qid:%u).\n",
2000 			    NVME_RDMA_STALE_CONN_RETRY_MAX, qpair->ctrlr->cntlid, qpair->id);
2001 		return -ESTALE;
2002 	}
2003 
2004 	rqpair->stale_conn_retry_count++;
2005 
2006 	SPDK_NOTICELOG("%d times, retry stale connection to qpair (cntlid:%u, qid:%u).\n",
2007 		       rqpair->stale_conn_retry_count, qpair->ctrlr->cntlid, qpair->id);
2008 
2009 	_nvme_rdma_ctrlr_disconnect_qpair(qpair->ctrlr, qpair, nvme_rdma_stale_conn_disconnected);
2010 
2011 	return 0;
2012 }
2013 
2014 static int
2015 nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
2016 {
2017 	struct nvme_rdma_qpair *rqpair;
2018 
2019 	assert(qpair != NULL);
2020 	rqpair = nvme_rdma_qpair(qpair);
2021 
2022 	if (rqpair->state != NVME_RDMA_QPAIR_STATE_EXITED) {
2023 		int rc __attribute__((unused));
2024 
2025 		/* qpair was removed from the poll group while the disconnect is not finished.
2026 		 * Destroy rdma resources forcefully. */
2027 		rc = nvme_rdma_qpair_disconnected(rqpair, 0);
2028 		assert(rc == 0);
2029 	}
2030 
2031 	nvme_rdma_qpair_abort_reqs(qpair, 0);
2032 	nvme_qpair_deinit(qpair);
2033 
2034 	nvme_rdma_put_memory_domain(rqpair->memory_domain);
2035 
2036 	nvme_rdma_free_reqs(rqpair);
2037 	nvme_rdma_free_rsps(rqpair);
2038 	spdk_free(rqpair);
2039 
2040 	return 0;
2041 }
2042 
2043 static struct spdk_nvme_qpair *
2044 nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
2045 				const struct spdk_nvme_io_qpair_opts *opts)
2046 {
2047 	return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio,
2048 					    opts->io_queue_requests,
2049 					    opts->delay_cmd_submit,
2050 					    opts->async_mode);
2051 }
2052 
2053 static int
2054 nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
2055 {
2056 	/* do nothing here */
2057 	return 0;
2058 }
2059 
2060 static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr);
2061 
2062 /* We have to use the typedef in the function declaration to appease astyle. */
2063 typedef struct spdk_nvme_ctrlr spdk_nvme_ctrlr_t;
2064 
2065 static spdk_nvme_ctrlr_t *
2066 nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
2067 			  const struct spdk_nvme_ctrlr_opts *opts,
2068 			  void *devhandle)
2069 {
2070 	struct nvme_rdma_ctrlr *rctrlr;
2071 	struct ibv_context **contexts;
2072 	struct ibv_device_attr dev_attr;
2073 	int i, flag, rc;
2074 
2075 	rctrlr = spdk_zmalloc(sizeof(struct nvme_rdma_ctrlr), 0, NULL, SPDK_ENV_SOCKET_ID_ANY,
2076 			      SPDK_MALLOC_DMA);
2077 	if (rctrlr == NULL) {
2078 		SPDK_ERRLOG("could not allocate ctrlr\n");
2079 		return NULL;
2080 	}
2081 
2082 	rctrlr->ctrlr.opts = *opts;
2083 	rctrlr->ctrlr.trid = *trid;
2084 
2085 	if (opts->transport_retry_count > NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT) {
2086 		SPDK_NOTICELOG("transport_retry_count exceeds max value %d, use max value\n",
2087 			       NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT);
2088 		rctrlr->ctrlr.opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT;
2089 	}
2090 
2091 	if (opts->transport_ack_timeout > NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) {
2092 		SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n",
2093 			       NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT);
2094 		rctrlr->ctrlr.opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT;
2095 	}
2096 
2097 	contexts = rdma_get_devices(NULL);
2098 	if (contexts == NULL) {
2099 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2100 		spdk_free(rctrlr);
2101 		return NULL;
2102 	}
2103 
2104 	i = 0;
2105 	rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS;
2106 
2107 	while (contexts[i] != NULL) {
2108 		rc = ibv_query_device(contexts[i], &dev_attr);
2109 		if (rc < 0) {
2110 			SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2111 			rdma_free_devices(contexts);
2112 			spdk_free(rctrlr);
2113 			return NULL;
2114 		}
2115 		rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge);
2116 		i++;
2117 	}
2118 
2119 	rdma_free_devices(contexts);
2120 
2121 	rc = nvme_ctrlr_construct(&rctrlr->ctrlr);
2122 	if (rc != 0) {
2123 		spdk_free(rctrlr);
2124 		return NULL;
2125 	}
2126 
2127 	STAILQ_INIT(&rctrlr->pending_cm_events);
2128 	STAILQ_INIT(&rctrlr->free_cm_events);
2129 	rctrlr->cm_events = spdk_zmalloc(NVME_RDMA_NUM_CM_EVENTS * sizeof(*rctrlr->cm_events), 0, NULL,
2130 					 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
2131 	if (rctrlr->cm_events == NULL) {
2132 		SPDK_ERRLOG("unable to allocate buffers to hold CM events.\n");
2133 		goto destruct_ctrlr;
2134 	}
2135 
2136 	for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) {
2137 		STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link);
2138 	}
2139 
2140 	rctrlr->cm_channel = rdma_create_event_channel();
2141 	if (rctrlr->cm_channel == NULL) {
2142 		SPDK_ERRLOG("rdma_create_event_channel() failed\n");
2143 		goto destruct_ctrlr;
2144 	}
2145 
2146 	flag = fcntl(rctrlr->cm_channel->fd, F_GETFL);
2147 	if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2148 		SPDK_ERRLOG("Cannot set event channel to non blocking\n");
2149 		goto destruct_ctrlr;
2150 	}
2151 
2152 	rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0,
2153 			       rctrlr->ctrlr.opts.admin_queue_size, 0,
2154 			       rctrlr->ctrlr.opts.admin_queue_size, false, true);
2155 	if (!rctrlr->ctrlr.adminq) {
2156 		SPDK_ERRLOG("failed to create admin qpair\n");
2157 		goto destruct_ctrlr;
2158 	}
2159 
2160 	if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) {
2161 		SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n");
2162 		goto destruct_ctrlr;
2163 	}
2164 
2165 	SPDK_DEBUGLOG(nvme, "successfully initialized the nvmf ctrlr\n");
2166 	return &rctrlr->ctrlr;
2167 
2168 destruct_ctrlr:
2169 	nvme_ctrlr_destruct(&rctrlr->ctrlr);
2170 	return NULL;
2171 }
2172 
2173 static int
2174 nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
2175 {
2176 	struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
2177 	struct nvme_rdma_cm_event_entry *entry;
2178 
2179 	if (ctrlr->adminq) {
2180 		nvme_rdma_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq);
2181 	}
2182 
2183 	STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) {
2184 		rdma_ack_cm_event(entry->evt);
2185 	}
2186 
2187 	STAILQ_INIT(&rctrlr->free_cm_events);
2188 	STAILQ_INIT(&rctrlr->pending_cm_events);
2189 	spdk_free(rctrlr->cm_events);
2190 
2191 	if (rctrlr->cm_channel) {
2192 		rdma_destroy_event_channel(rctrlr->cm_channel);
2193 		rctrlr->cm_channel = NULL;
2194 	}
2195 
2196 	nvme_ctrlr_destruct_finish(ctrlr);
2197 
2198 	spdk_free(rctrlr);
2199 
2200 	return 0;
2201 }
2202 
2203 static int
2204 nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair,
2205 			       struct nvme_request *req)
2206 {
2207 	struct nvme_rdma_qpair *rqpair;
2208 	struct spdk_nvme_rdma_req *rdma_req;
2209 	struct ibv_send_wr *wr;
2210 
2211 	rqpair = nvme_rdma_qpair(qpair);
2212 	assert(rqpair != NULL);
2213 	assert(req != NULL);
2214 
2215 	rdma_req = nvme_rdma_req_get(rqpair);
2216 	if (spdk_unlikely(!rdma_req)) {
2217 		if (rqpair->poller) {
2218 			rqpair->poller->stats.queued_requests++;
2219 		}
2220 		/* Inform the upper layer to try again later. */
2221 		return -EAGAIN;
2222 	}
2223 
2224 	if (nvme_rdma_req_init(rqpair, req, rdma_req)) {
2225 		SPDK_ERRLOG("nvme_rdma_req_init() failed\n");
2226 		TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
2227 		nvme_rdma_req_put(rqpair, rdma_req);
2228 		return -1;
2229 	}
2230 
2231 	assert(rqpair->current_num_sends < rqpair->num_entries);
2232 	rqpair->current_num_sends++;
2233 
2234 	wr = &rdma_req->send_wr;
2235 	wr->next = NULL;
2236 	nvme_rdma_trace_ibv_sge(wr->sg_list);
2237 
2238 	spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, wr);
2239 
2240 	if (!rqpair->delay_cmd_submit) {
2241 		return nvme_rdma_qpair_submit_sends(rqpair);
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 static int
2248 nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair)
2249 {
2250 	/* Currently, doing nothing here */
2251 	return 0;
2252 }
2253 
2254 static void
2255 nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
2256 {
2257 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
2258 	struct spdk_nvme_cpl cpl;
2259 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2260 
2261 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
2262 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2263 	cpl.status.dnr = dnr;
2264 
2265 	/*
2266 	 * We cannot abort requests at the RDMA layer without
2267 	 * unregistering them. If we do, we can still get error
2268 	 * free completions on the shared completion queue.
2269 	 */
2270 	if (nvme_qpair_get_state(qpair) > NVME_QPAIR_DISCONNECTING &&
2271 	    nvme_qpair_get_state(qpair) != NVME_QPAIR_DESTROYING) {
2272 		nvme_ctrlr_disconnect_qpair(qpair);
2273 	}
2274 
2275 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2276 		nvme_rdma_req_complete(rdma_req, &cpl, true);
2277 	}
2278 }
2279 
2280 static void
2281 nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
2282 {
2283 	uint64_t t02;
2284 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
2285 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2286 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
2287 	struct spdk_nvme_ctrlr_process *active_proc;
2288 
2289 	/* Don't check timeouts during controller initialization. */
2290 	if (ctrlr->state != NVME_CTRLR_STATE_READY) {
2291 		return;
2292 	}
2293 
2294 	if (nvme_qpair_is_admin_queue(qpair)) {
2295 		active_proc = nvme_ctrlr_get_current_process(ctrlr);
2296 	} else {
2297 		active_proc = qpair->active_proc;
2298 	}
2299 
2300 	/* Only check timeouts if the current process has a timeout callback. */
2301 	if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
2302 		return;
2303 	}
2304 
2305 	t02 = spdk_get_ticks();
2306 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2307 		assert(rdma_req->req != NULL);
2308 
2309 		if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) {
2310 			/*
2311 			 * The requests are in order, so as soon as one has not timed out,
2312 			 * stop iterating.
2313 			 */
2314 			break;
2315 		}
2316 	}
2317 }
2318 
2319 static inline void
2320 nvme_rdma_request_ready(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
2321 {
2322 	struct spdk_nvme_rdma_rsp *rdma_rsp = rdma_req->rdma_rsp;
2323 	struct ibv_recv_wr *recv_wr = rdma_rsp->recv_wr;
2324 
2325 	nvme_rdma_req_complete(rdma_req, &rdma_rsp->cpl, true);
2326 
2327 	assert(rqpair->current_num_recvs < rqpair->num_entries);
2328 	rqpair->current_num_recvs++;
2329 
2330 	recv_wr->next = NULL;
2331 	nvme_rdma_trace_ibv_sge(recv_wr->sg_list);
2332 
2333 	spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, recv_wr);
2334 }
2335 
2336 #define MAX_COMPLETIONS_PER_POLL 128
2337 
2338 static void
2339 nvme_rdma_fail_qpair(struct spdk_nvme_qpair *qpair, int failure_reason)
2340 {
2341 	if (failure_reason == IBV_WC_RETRY_EXC_ERR) {
2342 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
2343 	} else if (qpair->transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_NONE) {
2344 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN;
2345 	}
2346 
2347 	nvme_ctrlr_disconnect_qpair(qpair);
2348 }
2349 
2350 static struct nvme_rdma_qpair *
2351 get_rdma_qpair_from_wc(struct nvme_rdma_poll_group *group, struct ibv_wc *wc)
2352 {
2353 	struct spdk_nvme_qpair *qpair;
2354 	struct nvme_rdma_qpair *rqpair;
2355 
2356 	STAILQ_FOREACH(qpair, &group->group.connected_qpairs, poll_group_stailq) {
2357 		rqpair = nvme_rdma_qpair(qpair);
2358 		if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) {
2359 			return rqpair;
2360 		}
2361 	}
2362 
2363 	STAILQ_FOREACH(qpair, &group->group.disconnected_qpairs, poll_group_stailq) {
2364 		rqpair = nvme_rdma_qpair(qpair);
2365 		if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) {
2366 			return rqpair;
2367 		}
2368 	}
2369 
2370 	return NULL;
2371 }
2372 
2373 static inline void
2374 nvme_rdma_log_wc_status(struct nvme_rdma_qpair *rqpair, struct ibv_wc *wc)
2375 {
2376 	struct nvme_rdma_wr *rdma_wr = (struct nvme_rdma_wr *)wc->wr_id;
2377 
2378 	if (wc->status == IBV_WC_WR_FLUSH_ERR) {
2379 		/* If qpair is in ERR state, we will receive completions for all posted and not completed
2380 		 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
2381 		SPDK_DEBUGLOG(nvme, "WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n",
2382 			      rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status,
2383 			      ibv_wc_status_str(wc->status));
2384 	} else {
2385 		SPDK_ERRLOG("WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n",
2386 			    rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status,
2387 			    ibv_wc_status_str(wc->status));
2388 	}
2389 }
2390 
2391 static inline int
2392 nvme_rdma_process_recv_completion(struct ibv_wc *wc, struct nvme_rdma_wr *rdma_wr)
2393 {
2394 	struct nvme_rdma_qpair		*rqpair;
2395 	struct spdk_nvme_rdma_req	*rdma_req;
2396 	struct spdk_nvme_rdma_rsp	*rdma_rsp;
2397 
2398 	rdma_rsp = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_rsp, rdma_wr);
2399 	rqpair = rdma_rsp->rqpair;
2400 	assert(rqpair->current_num_recvs > 0);
2401 	rqpair->current_num_recvs--;
2402 
2403 	if (wc->status) {
2404 		nvme_rdma_log_wc_status(rqpair, wc);
2405 		nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2406 		return -ENXIO;
2407 	}
2408 
2409 	SPDK_DEBUGLOG(nvme, "CQ recv completion\n");
2410 
2411 	if (wc->byte_len < sizeof(struct spdk_nvme_cpl)) {
2412 		SPDK_ERRLOG("recv length %u less than expected response size\n", wc->byte_len);
2413 		nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2414 		return -ENXIO;
2415 	}
2416 	rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid];
2417 	rdma_req->completion_flags |= NVME_RDMA_RECV_COMPLETED;
2418 	rdma_req->rdma_rsp = rdma_rsp;
2419 
2420 	if ((rdma_req->completion_flags & NVME_RDMA_SEND_COMPLETED) == 0) {
2421 		return 0;
2422 	}
2423 
2424 	nvme_rdma_request_ready(rqpair, rdma_req);
2425 
2426 	if (!rqpair->delay_cmd_submit) {
2427 		if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) {
2428 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
2429 			nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2430 			return -ENXIO;
2431 		}
2432 	}
2433 
2434 	rqpair->num_completions++;
2435 	return 1;
2436 }
2437 
2438 static inline int
2439 nvme_rdma_process_send_completion(struct nvme_rdma_poller *poller,
2440 				  struct nvme_rdma_qpair *rdma_qpair,
2441 				  struct ibv_wc *wc, struct nvme_rdma_wr *rdma_wr)
2442 {
2443 	struct nvme_rdma_qpair		*rqpair;
2444 	struct spdk_nvme_rdma_req	*rdma_req;
2445 
2446 	rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_req, rdma_wr);
2447 
2448 	/* If we are flushing I/O */
2449 	if (wc->status) {
2450 		rqpair = rdma_req->req ? nvme_rdma_qpair(rdma_req->req->qpair) : NULL;
2451 		if (!rqpair) {
2452 			rqpair = rdma_qpair != NULL ? rdma_qpair : get_rdma_qpair_from_wc(poller->group, wc);
2453 		}
2454 		if (!rqpair) {
2455 			/* When poll_group is used, several qpairs share the same CQ and it is possible to
2456 			 * receive a completion with error (e.g. IBV_WC_WR_FLUSH_ERR) for already disconnected qpair
2457 			 * That happens due to qpair is destroyed while there are submitted but not completed send/receive
2458 			 * Work Requests */
2459 			assert(poller);
2460 			return 0;
2461 		}
2462 		assert(rqpair->current_num_sends > 0);
2463 		rqpair->current_num_sends--;
2464 		nvme_rdma_log_wc_status(rqpair, wc);
2465 		nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2466 		return -ENXIO;
2467 	}
2468 
2469 	/* We do not support Soft Roce anymore. Other than Soft Roce's bug, we should not
2470 	 * receive a completion without error status after qpair is disconnected/destroyed.
2471 	 */
2472 	assert(rdma_req->req != NULL);
2473 
2474 	rqpair = nvme_rdma_qpair(rdma_req->req->qpair);
2475 	rdma_req->completion_flags |= NVME_RDMA_SEND_COMPLETED;
2476 	assert(rqpair->current_num_sends > 0);
2477 	rqpair->current_num_sends--;
2478 
2479 	if ((rdma_req->completion_flags & NVME_RDMA_RECV_COMPLETED) == 0) {
2480 		return 0;
2481 	}
2482 
2483 	nvme_rdma_request_ready(rqpair, rdma_req);
2484 
2485 	if (!rqpair->delay_cmd_submit) {
2486 		if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) {
2487 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
2488 			nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2489 			return -ENXIO;
2490 		}
2491 	}
2492 
2493 	rqpair->num_completions++;
2494 	return 1;
2495 }
2496 
2497 static int
2498 nvme_rdma_cq_process_completions(struct ibv_cq *cq, uint32_t batch_size,
2499 				 struct nvme_rdma_poller *poller,
2500 				 struct nvme_rdma_qpair *rdma_qpair,
2501 				 uint64_t *rdma_completions)
2502 {
2503 	struct ibv_wc			wc[MAX_COMPLETIONS_PER_POLL];
2504 	struct nvme_rdma_wr		*rdma_wr;
2505 	uint32_t			reaped = 0;
2506 	int				completion_rc = 0;
2507 	int				rc, _rc, i;
2508 
2509 	rc = ibv_poll_cq(cq, batch_size, wc);
2510 	if (rc < 0) {
2511 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
2512 			    errno, spdk_strerror(errno));
2513 		return -ECANCELED;
2514 	} else if (rc == 0) {
2515 		return 0;
2516 	}
2517 
2518 	for (i = 0; i < rc; i++) {
2519 		rdma_wr = (struct nvme_rdma_wr *)wc[i].wr_id;
2520 		switch (rdma_wr->type) {
2521 		case RDMA_WR_TYPE_RECV:
2522 			_rc = nvme_rdma_process_recv_completion(&wc[i], rdma_wr);
2523 			break;
2524 
2525 		case RDMA_WR_TYPE_SEND:
2526 			_rc = nvme_rdma_process_send_completion(poller, rdma_qpair, &wc[i], rdma_wr);
2527 			break;
2528 
2529 		default:
2530 			SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", rdma_wr->type);
2531 			return -ECANCELED;
2532 		}
2533 		if (spdk_likely(_rc >= 0)) {
2534 			reaped += _rc;
2535 		} else {
2536 			completion_rc = _rc;
2537 		}
2538 	}
2539 
2540 	*rdma_completions += rc;
2541 
2542 	if (completion_rc) {
2543 		return completion_rc;
2544 	}
2545 
2546 	return reaped;
2547 }
2548 
2549 static void
2550 dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
2551 {
2552 
2553 }
2554 
2555 static int
2556 nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair,
2557 				    uint32_t max_completions)
2558 {
2559 	struct nvme_rdma_qpair		*rqpair = nvme_rdma_qpair(qpair);
2560 	struct nvme_rdma_ctrlr		*rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
2561 	int				rc = 0, batch_size;
2562 	struct ibv_cq			*cq;
2563 	uint64_t			rdma_completions = 0;
2564 
2565 	/*
2566 	 * This is used during the connection phase. It's possible that we are still reaping error completions
2567 	 * from other qpairs so we need to call the poll group function. Also, it's more correct since the cq
2568 	 * is shared.
2569 	 */
2570 	if (qpair->poll_group != NULL) {
2571 		return spdk_nvme_poll_group_process_completions(qpair->poll_group->group, max_completions,
2572 				dummy_disconnected_qpair_cb);
2573 	}
2574 
2575 	if (max_completions == 0) {
2576 		max_completions = rqpair->num_entries;
2577 	} else {
2578 		max_completions = spdk_min(max_completions, rqpair->num_entries);
2579 	}
2580 
2581 	switch (nvme_qpair_get_state(qpair)) {
2582 	case NVME_QPAIR_CONNECTING:
2583 		rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair);
2584 		if (rc == 0) {
2585 			/* Once the connection is completed, we can submit queued requests */
2586 			nvme_qpair_resubmit_requests(qpair, rqpair->num_entries);
2587 		} else if (rc != -EAGAIN) {
2588 			SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair);
2589 			goto failed;
2590 		} else if (rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING) {
2591 			return 0;
2592 		}
2593 		break;
2594 
2595 	case NVME_QPAIR_DISCONNECTING:
2596 		nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair);
2597 		return -ENXIO;
2598 
2599 	default:
2600 		if (nvme_qpair_is_admin_queue(qpair)) {
2601 			nvme_rdma_poll_events(rctrlr);
2602 		}
2603 		nvme_rdma_qpair_process_cm_event(rqpair);
2604 		break;
2605 	}
2606 
2607 	if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
2608 		goto failed;
2609 	}
2610 
2611 	cq = rqpair->cq;
2612 
2613 	rqpair->num_completions = 0;
2614 	do {
2615 		batch_size = spdk_min((max_completions - rqpair->num_completions), MAX_COMPLETIONS_PER_POLL);
2616 		rc = nvme_rdma_cq_process_completions(cq, batch_size, NULL, rqpair, &rdma_completions);
2617 
2618 		if (rc == 0) {
2619 			break;
2620 			/* Handle the case where we fail to poll the cq. */
2621 		} else if (rc == -ECANCELED) {
2622 			goto failed;
2623 		} else if (rc == -ENXIO) {
2624 			return rc;
2625 		}
2626 	} while (rqpair->num_completions < max_completions);
2627 
2628 	if (spdk_unlikely(nvme_rdma_qpair_submit_sends(rqpair) ||
2629 			  nvme_rdma_qpair_submit_recvs(rqpair))) {
2630 		goto failed;
2631 	}
2632 
2633 	if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
2634 		nvme_rdma_qpair_check_timeout(qpair);
2635 	}
2636 
2637 	return rqpair->num_completions;
2638 
2639 failed:
2640 	nvme_rdma_fail_qpair(qpair, 0);
2641 	return -ENXIO;
2642 }
2643 
2644 static uint32_t
2645 nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
2646 {
2647 	/* max_mr_size by ibv_query_device indicates the largest value that we can
2648 	 * set for a registered memory region.  It is independent from the actual
2649 	 * I/O size and is very likely to be larger than 2 MiB which is the
2650 	 * granularity we currently register memory regions.  Hence return
2651 	 * UINT32_MAX here and let the generic layer use the controller data to
2652 	 * moderate this value.
2653 	 */
2654 	return UINT32_MAX;
2655 }
2656 
2657 static uint16_t
2658 nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
2659 {
2660 	struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
2661 	uint32_t max_sge = rctrlr->max_sge;
2662 	uint32_t max_in_capsule_sge = (ctrlr->cdata.nvmf_specific.ioccsz * 16 -
2663 				       sizeof(struct spdk_nvme_cmd)) /
2664 				      sizeof(struct spdk_nvme_sgl_descriptor);
2665 
2666 	/* Max SGE is limited by capsule size */
2667 	max_sge = spdk_min(max_sge, max_in_capsule_sge);
2668 	/* Max SGE may be limited by MSDBD */
2669 	if (ctrlr->cdata.nvmf_specific.msdbd != 0) {
2670 		max_sge = spdk_min(max_sge, ctrlr->cdata.nvmf_specific.msdbd);
2671 	}
2672 
2673 	/* Max SGE can't be less than 1 */
2674 	max_sge = spdk_max(1, max_sge);
2675 	return max_sge;
2676 }
2677 
2678 static int
2679 nvme_rdma_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
2680 				 int (*iter_fn)(struct nvme_request *req, void *arg),
2681 				 void *arg)
2682 {
2683 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2684 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
2685 	int rc;
2686 
2687 	assert(iter_fn != NULL);
2688 
2689 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2690 		assert(rdma_req->req != NULL);
2691 
2692 		rc = iter_fn(rdma_req->req, arg);
2693 		if (rc != 0) {
2694 			return rc;
2695 		}
2696 	}
2697 
2698 	return 0;
2699 }
2700 
2701 static void
2702 nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
2703 {
2704 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
2705 	struct spdk_nvme_cpl cpl;
2706 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2707 
2708 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
2709 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2710 
2711 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2712 		assert(rdma_req->req != NULL);
2713 
2714 		if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
2715 			continue;
2716 		}
2717 
2718 		nvme_rdma_req_complete(rdma_req, &cpl, false);
2719 	}
2720 }
2721 
2722 static void
2723 nvme_rdma_poller_destroy(struct nvme_rdma_poller *poller)
2724 {
2725 	if (poller->cq) {
2726 		ibv_destroy_cq(poller->cq);
2727 	}
2728 	free(poller);
2729 }
2730 
2731 static struct nvme_rdma_poller *
2732 nvme_rdma_poller_create(struct nvme_rdma_poll_group *group, struct ibv_context *ctx)
2733 {
2734 	struct nvme_rdma_poller *poller;
2735 
2736 	poller = calloc(1, sizeof(*poller));
2737 	if (poller == NULL) {
2738 		SPDK_ERRLOG("Unable to allocate poller.\n");
2739 		return NULL;
2740 	}
2741 
2742 	poller->group = group;
2743 	poller->device = ctx;
2744 	poller->cq = ibv_create_cq(poller->device, DEFAULT_NVME_RDMA_CQ_SIZE, group, NULL, 0);
2745 
2746 	if (poller->cq == NULL) {
2747 		SPDK_ERRLOG("Unable to create CQ, errno %d.\n", errno);
2748 		goto fail;
2749 	}
2750 
2751 	STAILQ_INSERT_HEAD(&group->pollers, poller, link);
2752 	group->num_pollers++;
2753 	poller->current_num_wc = DEFAULT_NVME_RDMA_CQ_SIZE;
2754 	poller->required_num_wc = 0;
2755 	return poller;
2756 
2757 fail:
2758 	nvme_rdma_poller_destroy(poller);
2759 	return NULL;
2760 }
2761 
2762 static void
2763 nvme_rdma_poll_group_free_pollers(struct nvme_rdma_poll_group *group)
2764 {
2765 	struct nvme_rdma_poller	*poller, *tmp_poller;
2766 
2767 	STAILQ_FOREACH_SAFE(poller, &group->pollers, link, tmp_poller) {
2768 		assert(poller->refcnt == 0);
2769 		if (poller->refcnt) {
2770 			SPDK_WARNLOG("Destroying poller with non-zero ref count: poller %p, refcnt %d\n",
2771 				     poller, poller->refcnt);
2772 		}
2773 
2774 		STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
2775 		nvme_rdma_poller_destroy(poller);
2776 	}
2777 }
2778 
2779 static struct nvme_rdma_poller *
2780 nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group, struct ibv_context *device)
2781 {
2782 	struct nvme_rdma_poller *poller = NULL;
2783 
2784 	STAILQ_FOREACH(poller, &group->pollers, link) {
2785 		if (poller->device == device) {
2786 			break;
2787 		}
2788 	}
2789 
2790 	if (!poller) {
2791 		poller = nvme_rdma_poller_create(group, device);
2792 		if (!poller) {
2793 			SPDK_ERRLOG("Failed to create a poller for device %p\n", device);
2794 			return NULL;
2795 		}
2796 	}
2797 
2798 	poller->refcnt++;
2799 	return poller;
2800 }
2801 
2802 static void
2803 nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group, struct nvme_rdma_poller *poller)
2804 {
2805 	assert(poller->refcnt > 0);
2806 	if (--poller->refcnt == 0) {
2807 		STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
2808 		group->num_pollers--;
2809 		nvme_rdma_poller_destroy(poller);
2810 	}
2811 }
2812 
2813 static struct spdk_nvme_transport_poll_group *
2814 nvme_rdma_poll_group_create(void)
2815 {
2816 	struct nvme_rdma_poll_group	*group;
2817 
2818 	group = calloc(1, sizeof(*group));
2819 	if (group == NULL) {
2820 		SPDK_ERRLOG("Unable to allocate poll group.\n");
2821 		return NULL;
2822 	}
2823 
2824 	STAILQ_INIT(&group->pollers);
2825 	return &group->group;
2826 }
2827 
2828 static int
2829 nvme_rdma_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
2830 {
2831 	return 0;
2832 }
2833 
2834 static int
2835 nvme_rdma_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
2836 {
2837 	return 0;
2838 }
2839 
2840 static int
2841 nvme_rdma_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
2842 			 struct spdk_nvme_qpair *qpair)
2843 {
2844 	return 0;
2845 }
2846 
2847 static int
2848 nvme_rdma_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
2849 			    struct spdk_nvme_qpair *qpair)
2850 {
2851 	struct nvme_rdma_qpair		*rqpair = nvme_rdma_qpair(qpair);
2852 	struct nvme_rdma_poll_group	*group = nvme_rdma_poll_group(tgroup);
2853 
2854 	assert(qpair->poll_group_tailq_head == &tgroup->disconnected_qpairs);
2855 
2856 	if (rqpair->poller) {
2857 		nvme_rdma_poll_group_put_poller(group, rqpair->poller);
2858 
2859 		rqpair->poller = NULL;
2860 		rqpair->cq = NULL;
2861 	}
2862 
2863 	return 0;
2864 }
2865 
2866 static int64_t
2867 nvme_rdma_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
2868 		uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
2869 {
2870 	struct spdk_nvme_qpair			*qpair, *tmp_qpair;
2871 	struct nvme_rdma_qpair			*rqpair;
2872 	struct nvme_rdma_poll_group		*group;
2873 	struct nvme_rdma_poller			*poller;
2874 	int					num_qpairs = 0, batch_size, rc, rc2 = 0;
2875 	int64_t					total_completions = 0;
2876 	uint64_t				completions_allowed = 0;
2877 	uint64_t				completions_per_poller = 0;
2878 	uint64_t				poller_completions = 0;
2879 	uint64_t				rdma_completions;
2880 
2881 	if (completions_per_qpair == 0) {
2882 		completions_per_qpair = MAX_COMPLETIONS_PER_POLL;
2883 	}
2884 
2885 	group = nvme_rdma_poll_group(tgroup);
2886 	STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
2887 		rc = nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair);
2888 		if (rc == 0) {
2889 			disconnected_qpair_cb(qpair, tgroup->group->ctx);
2890 		}
2891 	}
2892 
2893 	STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
2894 		rqpair = nvme_rdma_qpair(qpair);
2895 		rqpair->num_completions = 0;
2896 
2897 		if (spdk_unlikely(nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING)) {
2898 			rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair);
2899 			if (rc == 0) {
2900 				/* Once the connection is completed, we can submit queued requests */
2901 				nvme_qpair_resubmit_requests(qpair, rqpair->num_entries);
2902 			} else if (rc != -EAGAIN) {
2903 				SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair);
2904 				nvme_rdma_fail_qpair(qpair, 0);
2905 				continue;
2906 			}
2907 		} else {
2908 			nvme_rdma_qpair_process_cm_event(rqpair);
2909 		}
2910 
2911 		if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
2912 			rc2 = -ENXIO;
2913 			nvme_rdma_fail_qpair(qpair, 0);
2914 			continue;
2915 		}
2916 		num_qpairs++;
2917 	}
2918 
2919 	completions_allowed = completions_per_qpair * num_qpairs;
2920 	if (group->num_pollers) {
2921 		completions_per_poller = spdk_max(completions_allowed / group->num_pollers, 1);
2922 	}
2923 
2924 	STAILQ_FOREACH(poller, &group->pollers, link) {
2925 		poller_completions = 0;
2926 		rdma_completions = 0;
2927 		do {
2928 			poller->stats.polls++;
2929 			batch_size = spdk_min((completions_per_poller - poller_completions), MAX_COMPLETIONS_PER_POLL);
2930 			rc = nvme_rdma_cq_process_completions(poller->cq, batch_size, poller, NULL, &rdma_completions);
2931 			if (rc <= 0) {
2932 				if (rc == -ECANCELED) {
2933 					return -EIO;
2934 				} else if (rc == 0) {
2935 					poller->stats.idle_polls++;
2936 				}
2937 				break;
2938 			}
2939 
2940 			poller_completions += rc;
2941 		} while (poller_completions < completions_per_poller);
2942 		total_completions += poller_completions;
2943 		poller->stats.completions += rdma_completions;
2944 	}
2945 
2946 	STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
2947 		rqpair = nvme_rdma_qpair(qpair);
2948 
2949 		if (spdk_unlikely(rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING)) {
2950 			continue;
2951 		}
2952 
2953 		if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
2954 			nvme_rdma_qpair_check_timeout(qpair);
2955 		}
2956 
2957 		nvme_rdma_qpair_submit_sends(rqpair);
2958 		nvme_rdma_qpair_submit_recvs(rqpair);
2959 		if (rqpair->num_completions > 0) {
2960 			nvme_qpair_resubmit_requests(qpair, rqpair->num_completions);
2961 		}
2962 	}
2963 
2964 	return rc2 != 0 ? rc2 : total_completions;
2965 }
2966 
2967 static int
2968 nvme_rdma_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
2969 {
2970 	struct nvme_rdma_poll_group	*group = nvme_rdma_poll_group(tgroup);
2971 
2972 	if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
2973 		return -EBUSY;
2974 	}
2975 
2976 	nvme_rdma_poll_group_free_pollers(group);
2977 	free(group);
2978 
2979 	return 0;
2980 }
2981 
2982 static int
2983 nvme_rdma_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup,
2984 			       struct spdk_nvme_transport_poll_group_stat **_stats)
2985 {
2986 	struct nvme_rdma_poll_group *group;
2987 	struct spdk_nvme_transport_poll_group_stat *stats;
2988 	struct spdk_nvme_rdma_device_stat *device_stat;
2989 	struct nvme_rdma_poller *poller;
2990 	uint32_t i = 0;
2991 
2992 	if (tgroup == NULL || _stats == NULL) {
2993 		SPDK_ERRLOG("Invalid stats or group pointer\n");
2994 		return -EINVAL;
2995 	}
2996 
2997 	group = nvme_rdma_poll_group(tgroup);
2998 	stats = calloc(1, sizeof(*stats));
2999 	if (!stats) {
3000 		SPDK_ERRLOG("Can't allocate memory for RDMA stats\n");
3001 		return -ENOMEM;
3002 	}
3003 	stats->trtype = SPDK_NVME_TRANSPORT_RDMA;
3004 	stats->rdma.num_devices = group->num_pollers;
3005 
3006 	if (stats->rdma.num_devices == 0) {
3007 		*_stats = stats;
3008 		return 0;
3009 	}
3010 
3011 	stats->rdma.device_stats = calloc(stats->rdma.num_devices, sizeof(*stats->rdma.device_stats));
3012 	if (!stats->rdma.device_stats) {
3013 		SPDK_ERRLOG("Can't allocate memory for RDMA device stats\n");
3014 		free(stats);
3015 		return -ENOMEM;
3016 	}
3017 
3018 	STAILQ_FOREACH(poller, &group->pollers, link) {
3019 		device_stat = &stats->rdma.device_stats[i];
3020 		device_stat->name = poller->device->device->name;
3021 		device_stat->polls = poller->stats.polls;
3022 		device_stat->idle_polls = poller->stats.idle_polls;
3023 		device_stat->completions = poller->stats.completions;
3024 		device_stat->queued_requests = poller->stats.queued_requests;
3025 		device_stat->total_send_wrs = poller->stats.rdma_stats.send.num_submitted_wrs;
3026 		device_stat->send_doorbell_updates = poller->stats.rdma_stats.send.doorbell_updates;
3027 		device_stat->total_recv_wrs = poller->stats.rdma_stats.recv.num_submitted_wrs;
3028 		device_stat->recv_doorbell_updates = poller->stats.rdma_stats.recv.doorbell_updates;
3029 		i++;
3030 	}
3031 
3032 	*_stats = stats;
3033 
3034 	return 0;
3035 }
3036 
3037 static void
3038 nvme_rdma_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup,
3039 				struct spdk_nvme_transport_poll_group_stat *stats)
3040 {
3041 	if (stats) {
3042 		free(stats->rdma.device_stats);
3043 	}
3044 	free(stats);
3045 }
3046 
3047 static int
3048 nvme_rdma_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
3049 				   struct spdk_memory_domain **domains, int array_size)
3050 {
3051 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(ctrlr->adminq);
3052 
3053 	if (domains && array_size > 0) {
3054 		domains[0] = rqpair->memory_domain->domain;
3055 	}
3056 
3057 	return 1;
3058 }
3059 
3060 void
3061 spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
3062 {
3063 	g_nvme_hooks = *hooks;
3064 }
3065 
3066 const struct spdk_nvme_transport_ops rdma_ops = {
3067 	.name = "RDMA",
3068 	.type = SPDK_NVME_TRANSPORT_RDMA,
3069 	.ctrlr_construct = nvme_rdma_ctrlr_construct,
3070 	.ctrlr_scan = nvme_fabric_ctrlr_scan,
3071 	.ctrlr_destruct = nvme_rdma_ctrlr_destruct,
3072 	.ctrlr_enable = nvme_rdma_ctrlr_enable,
3073 
3074 	.ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4,
3075 	.ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8,
3076 	.ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4,
3077 	.ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8,
3078 	.ctrlr_set_reg_4_async = nvme_fabric_ctrlr_set_reg_4_async,
3079 	.ctrlr_set_reg_8_async = nvme_fabric_ctrlr_set_reg_8_async,
3080 	.ctrlr_get_reg_4_async = nvme_fabric_ctrlr_get_reg_4_async,
3081 	.ctrlr_get_reg_8_async = nvme_fabric_ctrlr_get_reg_8_async,
3082 
3083 	.ctrlr_get_max_xfer_size = nvme_rdma_ctrlr_get_max_xfer_size,
3084 	.ctrlr_get_max_sges = nvme_rdma_ctrlr_get_max_sges,
3085 
3086 	.ctrlr_create_io_qpair = nvme_rdma_ctrlr_create_io_qpair,
3087 	.ctrlr_delete_io_qpair = nvme_rdma_ctrlr_delete_io_qpair,
3088 	.ctrlr_connect_qpair = nvme_rdma_ctrlr_connect_qpair,
3089 	.ctrlr_disconnect_qpair = nvme_rdma_ctrlr_disconnect_qpair,
3090 
3091 	.ctrlr_get_memory_domains = nvme_rdma_ctrlr_get_memory_domains,
3092 
3093 	.qpair_abort_reqs = nvme_rdma_qpair_abort_reqs,
3094 	.qpair_reset = nvme_rdma_qpair_reset,
3095 	.qpair_submit_request = nvme_rdma_qpair_submit_request,
3096 	.qpair_process_completions = nvme_rdma_qpair_process_completions,
3097 	.qpair_iterate_requests = nvme_rdma_qpair_iterate_requests,
3098 	.admin_qpair_abort_aers = nvme_rdma_admin_qpair_abort_aers,
3099 
3100 	.poll_group_create = nvme_rdma_poll_group_create,
3101 	.poll_group_connect_qpair = nvme_rdma_poll_group_connect_qpair,
3102 	.poll_group_disconnect_qpair = nvme_rdma_poll_group_disconnect_qpair,
3103 	.poll_group_add = nvme_rdma_poll_group_add,
3104 	.poll_group_remove = nvme_rdma_poll_group_remove,
3105 	.poll_group_process_completions = nvme_rdma_poll_group_process_completions,
3106 	.poll_group_destroy = nvme_rdma_poll_group_destroy,
3107 	.poll_group_get_stats = nvme_rdma_poll_group_get_stats,
3108 	.poll_group_free_stats = nvme_rdma_poll_group_free_stats,
3109 };
3110 
3111 SPDK_NVME_TRANSPORT_REGISTER(rdma, &rdma_ops);
3112