1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2016 Intel Corporation. All rights reserved. 3 * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 /* 8 * NVMe over RDMA transport 9 */ 10 11 #include "spdk/stdinc.h" 12 13 #include "spdk/assert.h" 14 #include "spdk/dma.h" 15 #include "spdk/log.h" 16 #include "spdk/trace.h" 17 #include "spdk/queue.h" 18 #include "spdk/nvme.h" 19 #include "spdk/nvmf_spec.h" 20 #include "spdk/string.h" 21 #include "spdk/endian.h" 22 #include "spdk/likely.h" 23 #include "spdk/config.h" 24 25 #include "nvme_internal.h" 26 #include "spdk_internal/rdma.h" 27 28 #define NVME_RDMA_TIME_OUT_IN_MS 2000 29 #define NVME_RDMA_RW_BUFFER_SIZE 131072 30 31 /* 32 * NVME RDMA qpair Resource Defaults 33 */ 34 #define NVME_RDMA_DEFAULT_TX_SGE 2 35 #define NVME_RDMA_DEFAULT_RX_SGE 1 36 37 /* Max number of NVMe-oF SGL descriptors supported by the host */ 38 #define NVME_RDMA_MAX_SGL_DESCRIPTORS 16 39 40 /* number of STAILQ entries for holding pending RDMA CM events. */ 41 #define NVME_RDMA_NUM_CM_EVENTS 256 42 43 /* CM event processing timeout */ 44 #define NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US 1000000 45 46 /* The default size for a shared rdma completion queue. */ 47 #define DEFAULT_NVME_RDMA_CQ_SIZE 4096 48 49 /* 50 * In the special case of a stale connection we don't expose a mechanism 51 * for the user to retry the connection so we need to handle it internally. 52 */ 53 #define NVME_RDMA_STALE_CONN_RETRY_MAX 5 54 #define NVME_RDMA_STALE_CONN_RETRY_DELAY_US 10000 55 56 /* 57 * Maximum value of transport_retry_count used by RDMA controller 58 */ 59 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT 7 60 61 /* 62 * Maximum value of transport_ack_timeout used by RDMA controller 63 */ 64 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT 31 65 66 /* 67 * Number of microseconds to wait until the lingering qpair becomes quiet. 68 */ 69 #define NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US 1000000ull 70 71 /* 72 * The max length of keyed SGL data block (3 bytes) 73 */ 74 #define NVME_RDMA_MAX_KEYED_SGL_LENGTH ((1u << 24u) - 1) 75 76 #define WC_PER_QPAIR(queue_depth) (queue_depth * 2) 77 78 #define NVME_RDMA_POLL_GROUP_CHECK_QPN(_rqpair, qpn) \ 79 ((_rqpair)->rdma_qp && (_rqpair)->rdma_qp->qp->qp_num == (qpn)) \ 80 81 struct nvme_rdma_memory_domain { 82 TAILQ_ENTRY(nvme_rdma_memory_domain) link; 83 uint32_t ref; 84 struct ibv_pd *pd; 85 struct spdk_memory_domain *domain; 86 struct spdk_memory_domain_rdma_ctx rdma_ctx; 87 }; 88 89 enum nvme_rdma_wr_type { 90 RDMA_WR_TYPE_RECV, 91 RDMA_WR_TYPE_SEND, 92 }; 93 94 struct nvme_rdma_wr { 95 /* Using this instead of the enum allows this struct to only occupy one byte. */ 96 uint8_t type; 97 }; 98 99 struct spdk_nvmf_cmd { 100 struct spdk_nvme_cmd cmd; 101 struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS]; 102 }; 103 104 struct spdk_nvme_rdma_hooks g_nvme_hooks = {}; 105 106 /* STAILQ wrapper for cm events. */ 107 struct nvme_rdma_cm_event_entry { 108 struct rdma_cm_event *evt; 109 STAILQ_ENTRY(nvme_rdma_cm_event_entry) link; 110 }; 111 112 /* NVMe RDMA transport extensions for spdk_nvme_ctrlr */ 113 struct nvme_rdma_ctrlr { 114 struct spdk_nvme_ctrlr ctrlr; 115 116 uint16_t max_sge; 117 118 struct rdma_event_channel *cm_channel; 119 120 STAILQ_HEAD(, nvme_rdma_cm_event_entry) pending_cm_events; 121 122 STAILQ_HEAD(, nvme_rdma_cm_event_entry) free_cm_events; 123 124 struct nvme_rdma_cm_event_entry *cm_events; 125 }; 126 127 struct nvme_rdma_poller_stats { 128 uint64_t polls; 129 uint64_t idle_polls; 130 uint64_t queued_requests; 131 uint64_t completions; 132 struct spdk_rdma_qp_stats rdma_stats; 133 }; 134 135 struct nvme_rdma_poll_group; 136 137 struct nvme_rdma_poller { 138 struct ibv_context *device; 139 struct ibv_cq *cq; 140 uint32_t refcnt; 141 int required_num_wc; 142 int current_num_wc; 143 struct nvme_rdma_poller_stats stats; 144 struct nvme_rdma_poll_group *group; 145 STAILQ_ENTRY(nvme_rdma_poller) link; 146 }; 147 148 struct nvme_rdma_poll_group { 149 struct spdk_nvme_transport_poll_group group; 150 STAILQ_HEAD(, nvme_rdma_poller) pollers; 151 uint32_t num_pollers; 152 }; 153 154 enum nvme_rdma_qpair_state { 155 NVME_RDMA_QPAIR_STATE_INVALID = 0, 156 NVME_RDMA_QPAIR_STATE_STALE_CONN, 157 NVME_RDMA_QPAIR_STATE_INITIALIZING, 158 NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND, 159 NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL, 160 NVME_RDMA_QPAIR_STATE_RUNNING, 161 NVME_RDMA_QPAIR_STATE_EXITING, 162 NVME_RDMA_QPAIR_STATE_LINGERING, 163 NVME_RDMA_QPAIR_STATE_EXITED, 164 }; 165 166 struct nvme_rdma_qpair; 167 168 typedef int (*nvme_rdma_cm_event_cb)(struct nvme_rdma_qpair *rqpair, int ret); 169 170 /* NVMe RDMA qpair extensions for spdk_nvme_qpair */ 171 struct nvme_rdma_qpair { 172 struct spdk_nvme_qpair qpair; 173 174 struct spdk_rdma_qp *rdma_qp; 175 struct rdma_cm_id *cm_id; 176 struct ibv_cq *cq; 177 178 struct spdk_nvme_rdma_req *rdma_reqs; 179 180 uint32_t max_send_sge; 181 182 uint32_t max_recv_sge; 183 184 uint16_t num_entries; 185 186 bool delay_cmd_submit; 187 188 uint32_t num_completions; 189 190 /* Parallel arrays of response buffers + response SGLs of size num_entries */ 191 struct ibv_sge *rsp_sgls; 192 struct spdk_nvme_rdma_rsp *rsps; 193 194 struct ibv_recv_wr *rsp_recv_wrs; 195 /* 196 * Array of num_entries NVMe commands registered as RDMA message buffers. 197 * Indexed by rdma_req->id. 198 */ 199 struct spdk_nvmf_cmd *cmds; 200 201 struct spdk_rdma_mem_map *mr_map; 202 203 TAILQ_HEAD(, spdk_nvme_rdma_req) free_reqs; 204 TAILQ_HEAD(, spdk_nvme_rdma_req) outstanding_reqs; 205 206 struct nvme_rdma_memory_domain *memory_domain; 207 208 /* Counts of outstanding send and recv objects */ 209 uint16_t current_num_recvs; 210 uint16_t current_num_sends; 211 212 /* Placed at the end of the struct since it is not used frequently */ 213 struct rdma_cm_event *evt; 214 struct nvme_rdma_poller *poller; 215 216 uint64_t evt_timeout_ticks; 217 nvme_rdma_cm_event_cb evt_cb; 218 enum rdma_cm_event_type expected_evt_type; 219 220 enum nvme_rdma_qpair_state state; 221 222 bool in_connect_poll; 223 224 uint8_t stale_conn_retry_count; 225 }; 226 227 enum NVME_RDMA_COMPLETION_FLAGS { 228 NVME_RDMA_SEND_COMPLETED = 1u << 0, 229 NVME_RDMA_RECV_COMPLETED = 1u << 1, 230 }; 231 232 struct spdk_nvme_rdma_req { 233 uint16_t id; 234 uint16_t completion_flags: 2; 235 uint16_t reserved: 14; 236 /* if completion of RDMA_RECV received before RDMA_SEND, we will complete nvme request 237 * during processing of RDMA_SEND. To complete the request we must know the response 238 * received in RDMA_RECV, so store it in this field */ 239 struct spdk_nvme_rdma_rsp *rdma_rsp; 240 241 struct nvme_rdma_wr rdma_wr; 242 243 struct ibv_send_wr send_wr; 244 245 struct nvme_request *req; 246 247 struct ibv_sge send_sgl[NVME_RDMA_DEFAULT_TX_SGE]; 248 249 TAILQ_ENTRY(spdk_nvme_rdma_req) link; 250 }; 251 252 struct spdk_nvme_rdma_rsp { 253 struct spdk_nvme_cpl cpl; 254 struct nvme_rdma_qpair *rqpair; 255 struct ibv_recv_wr *recv_wr; 256 struct nvme_rdma_wr rdma_wr; 257 }; 258 259 struct nvme_rdma_memory_translation_ctx { 260 void *addr; 261 size_t length; 262 uint32_t lkey; 263 uint32_t rkey; 264 }; 265 266 static const char *rdma_cm_event_str[] = { 267 "RDMA_CM_EVENT_ADDR_RESOLVED", 268 "RDMA_CM_EVENT_ADDR_ERROR", 269 "RDMA_CM_EVENT_ROUTE_RESOLVED", 270 "RDMA_CM_EVENT_ROUTE_ERROR", 271 "RDMA_CM_EVENT_CONNECT_REQUEST", 272 "RDMA_CM_EVENT_CONNECT_RESPONSE", 273 "RDMA_CM_EVENT_CONNECT_ERROR", 274 "RDMA_CM_EVENT_UNREACHABLE", 275 "RDMA_CM_EVENT_REJECTED", 276 "RDMA_CM_EVENT_ESTABLISHED", 277 "RDMA_CM_EVENT_DISCONNECTED", 278 "RDMA_CM_EVENT_DEVICE_REMOVAL", 279 "RDMA_CM_EVENT_MULTICAST_JOIN", 280 "RDMA_CM_EVENT_MULTICAST_ERROR", 281 "RDMA_CM_EVENT_ADDR_CHANGE", 282 "RDMA_CM_EVENT_TIMEWAIT_EXIT" 283 }; 284 285 static struct nvme_rdma_poller *nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group, 286 struct ibv_context *device); 287 static void nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group, 288 struct nvme_rdma_poller *poller); 289 290 static TAILQ_HEAD(, nvme_rdma_memory_domain) g_memory_domains = TAILQ_HEAD_INITIALIZER( 291 g_memory_domains); 292 static pthread_mutex_t g_memory_domains_lock = PTHREAD_MUTEX_INITIALIZER; 293 294 static struct nvme_rdma_memory_domain * 295 nvme_rdma_get_memory_domain(struct ibv_pd *pd) 296 { 297 struct nvme_rdma_memory_domain *domain = NULL; 298 struct spdk_memory_domain_ctx ctx; 299 int rc; 300 301 pthread_mutex_lock(&g_memory_domains_lock); 302 303 TAILQ_FOREACH(domain, &g_memory_domains, link) { 304 if (domain->pd == pd) { 305 domain->ref++; 306 pthread_mutex_unlock(&g_memory_domains_lock); 307 return domain; 308 } 309 } 310 311 domain = calloc(1, sizeof(*domain)); 312 if (!domain) { 313 SPDK_ERRLOG("Memory allocation failed\n"); 314 pthread_mutex_unlock(&g_memory_domains_lock); 315 return NULL; 316 } 317 318 domain->rdma_ctx.size = sizeof(domain->rdma_ctx); 319 domain->rdma_ctx.ibv_pd = pd; 320 ctx.size = sizeof(ctx); 321 ctx.user_ctx = &domain->rdma_ctx; 322 323 rc = spdk_memory_domain_create(&domain->domain, SPDK_DMA_DEVICE_TYPE_RDMA, &ctx, 324 SPDK_RDMA_DMA_DEVICE); 325 if (rc) { 326 SPDK_ERRLOG("Failed to create memory domain\n"); 327 free(domain); 328 pthread_mutex_unlock(&g_memory_domains_lock); 329 return NULL; 330 } 331 332 domain->pd = pd; 333 domain->ref = 1; 334 TAILQ_INSERT_TAIL(&g_memory_domains, domain, link); 335 336 pthread_mutex_unlock(&g_memory_domains_lock); 337 338 return domain; 339 } 340 341 static void 342 nvme_rdma_put_memory_domain(struct nvme_rdma_memory_domain *device) 343 { 344 if (!device) { 345 return; 346 } 347 348 pthread_mutex_lock(&g_memory_domains_lock); 349 350 assert(device->ref > 0); 351 352 device->ref--; 353 354 if (device->ref == 0) { 355 spdk_memory_domain_destroy(device->domain); 356 TAILQ_REMOVE(&g_memory_domains, device, link); 357 free(device); 358 } 359 360 pthread_mutex_unlock(&g_memory_domains_lock); 361 } 362 363 static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, 364 struct spdk_nvme_qpair *qpair); 365 366 static inline struct nvme_rdma_qpair * 367 nvme_rdma_qpair(struct spdk_nvme_qpair *qpair) 368 { 369 assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA); 370 return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair); 371 } 372 373 static inline struct nvme_rdma_poll_group * 374 nvme_rdma_poll_group(struct spdk_nvme_transport_poll_group *group) 375 { 376 return (SPDK_CONTAINEROF(group, struct nvme_rdma_poll_group, group)); 377 } 378 379 static inline struct nvme_rdma_ctrlr * 380 nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr) 381 { 382 assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA); 383 return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr); 384 } 385 386 static struct spdk_nvme_rdma_req * 387 nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair) 388 { 389 struct spdk_nvme_rdma_req *rdma_req; 390 391 rdma_req = TAILQ_FIRST(&rqpair->free_reqs); 392 if (rdma_req) { 393 TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link); 394 TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link); 395 } 396 397 return rdma_req; 398 } 399 400 static void 401 nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) 402 { 403 rdma_req->completion_flags = 0; 404 rdma_req->req = NULL; 405 TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link); 406 } 407 408 static void 409 nvme_rdma_req_complete(struct spdk_nvme_rdma_req *rdma_req, 410 struct spdk_nvme_cpl *rsp, 411 bool print_on_error) 412 { 413 struct nvme_request *req = rdma_req->req; 414 struct nvme_rdma_qpair *rqpair; 415 struct spdk_nvme_qpair *qpair; 416 bool error, print_error; 417 418 assert(req != NULL); 419 420 qpair = req->qpair; 421 rqpair = nvme_rdma_qpair(qpair); 422 423 error = spdk_nvme_cpl_is_error(rsp); 424 print_error = error && print_on_error && !qpair->ctrlr->opts.disable_error_logging; 425 426 if (print_error) { 427 spdk_nvme_qpair_print_command(qpair, &req->cmd); 428 } 429 430 if (print_error || SPDK_DEBUGLOG_FLAG_ENABLED("nvme")) { 431 spdk_nvme_qpair_print_completion(qpair, rsp); 432 } 433 434 TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link); 435 436 nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, rsp); 437 nvme_free_request(req); 438 nvme_rdma_req_put(rqpair, rdma_req); 439 } 440 441 static const char * 442 nvme_rdma_cm_event_str_get(uint32_t event) 443 { 444 if (event < SPDK_COUNTOF(rdma_cm_event_str)) { 445 return rdma_cm_event_str[event]; 446 } else { 447 return "Undefined"; 448 } 449 } 450 451 452 static int 453 nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair) 454 { 455 struct rdma_cm_event *event = rqpair->evt; 456 struct spdk_nvmf_rdma_accept_private_data *accept_data; 457 int rc = 0; 458 459 if (event) { 460 switch (event->event) { 461 case RDMA_CM_EVENT_ADDR_RESOLVED: 462 case RDMA_CM_EVENT_ADDR_ERROR: 463 case RDMA_CM_EVENT_ROUTE_RESOLVED: 464 case RDMA_CM_EVENT_ROUTE_ERROR: 465 break; 466 case RDMA_CM_EVENT_CONNECT_REQUEST: 467 break; 468 case RDMA_CM_EVENT_CONNECT_ERROR: 469 break; 470 case RDMA_CM_EVENT_UNREACHABLE: 471 case RDMA_CM_EVENT_REJECTED: 472 break; 473 case RDMA_CM_EVENT_CONNECT_RESPONSE: 474 rc = spdk_rdma_qp_complete_connect(rqpair->rdma_qp); 475 /* fall through */ 476 case RDMA_CM_EVENT_ESTABLISHED: 477 accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data; 478 if (accept_data == NULL) { 479 rc = -1; 480 } else { 481 SPDK_DEBUGLOG(nvme, "Requested queue depth %d. Target receive queue depth %d.\n", 482 rqpair->num_entries + 1, accept_data->crqsize); 483 } 484 break; 485 case RDMA_CM_EVENT_DISCONNECTED: 486 rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE; 487 break; 488 case RDMA_CM_EVENT_DEVICE_REMOVAL: 489 rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; 490 break; 491 case RDMA_CM_EVENT_MULTICAST_JOIN: 492 case RDMA_CM_EVENT_MULTICAST_ERROR: 493 break; 494 case RDMA_CM_EVENT_ADDR_CHANGE: 495 rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; 496 break; 497 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 498 break; 499 default: 500 SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); 501 break; 502 } 503 rqpair->evt = NULL; 504 rdma_ack_cm_event(event); 505 } 506 507 return rc; 508 } 509 510 /* 511 * This function must be called under the nvme controller's lock 512 * because it touches global controller variables. The lock is taken 513 * by the generic transport code before invoking a few of the functions 514 * in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair, 515 * and conditionally nvme_rdma_qpair_process_completions when it is calling 516 * completions on the admin qpair. When adding a new call to this function, please 517 * verify that it is in a situation where it falls under the lock. 518 */ 519 static int 520 nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr) 521 { 522 struct nvme_rdma_cm_event_entry *entry, *tmp; 523 struct nvme_rdma_qpair *event_qpair; 524 struct rdma_cm_event *event; 525 struct rdma_event_channel *channel = rctrlr->cm_channel; 526 527 STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) { 528 event_qpair = entry->evt->id->context; 529 if (event_qpair->evt == NULL) { 530 event_qpair->evt = entry->evt; 531 STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link); 532 STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link); 533 } 534 } 535 536 while (rdma_get_cm_event(channel, &event) == 0) { 537 event_qpair = event->id->context; 538 if (event_qpair->evt == NULL) { 539 event_qpair->evt = event; 540 } else { 541 assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr)); 542 entry = STAILQ_FIRST(&rctrlr->free_cm_events); 543 if (entry == NULL) { 544 rdma_ack_cm_event(event); 545 return -ENOMEM; 546 } 547 STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link); 548 entry->evt = event; 549 STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link); 550 } 551 } 552 553 /* rdma_get_cm_event() returns -1 on error. If an error occurs, errno 554 * will be set to indicate the failure reason. So return negated errno here. 555 */ 556 return -errno; 557 } 558 559 static int 560 nvme_rdma_validate_cm_event(enum rdma_cm_event_type expected_evt_type, 561 struct rdma_cm_event *reaped_evt) 562 { 563 int rc = -EBADMSG; 564 565 if (expected_evt_type == reaped_evt->event) { 566 return 0; 567 } 568 569 switch (expected_evt_type) { 570 case RDMA_CM_EVENT_ESTABLISHED: 571 /* 572 * There is an enum ib_cm_rej_reason in the kernel headers that sets 10 as 573 * IB_CM_REJ_STALE_CONN. I can't find the corresponding userspace but we get 574 * the same values here. 575 */ 576 if (reaped_evt->event == RDMA_CM_EVENT_REJECTED && reaped_evt->status == 10) { 577 rc = -ESTALE; 578 } else if (reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE) { 579 /* 580 * If we are using a qpair which is not created using rdma cm API 581 * then we will receive RDMA_CM_EVENT_CONNECT_RESPONSE instead of 582 * RDMA_CM_EVENT_ESTABLISHED. 583 */ 584 return 0; 585 } 586 break; 587 default: 588 break; 589 } 590 591 SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n", 592 nvme_rdma_cm_event_str_get(expected_evt_type), 593 nvme_rdma_cm_event_str_get(reaped_evt->event), reaped_evt->event, 594 reaped_evt->status); 595 return rc; 596 } 597 598 static int 599 nvme_rdma_process_event_start(struct nvme_rdma_qpair *rqpair, 600 enum rdma_cm_event_type evt, 601 nvme_rdma_cm_event_cb evt_cb) 602 { 603 int rc; 604 605 assert(evt_cb != NULL); 606 607 if (rqpair->evt != NULL) { 608 rc = nvme_rdma_qpair_process_cm_event(rqpair); 609 if (rc) { 610 return rc; 611 } 612 } 613 614 rqpair->expected_evt_type = evt; 615 rqpair->evt_cb = evt_cb; 616 rqpair->evt_timeout_ticks = (NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US * spdk_get_ticks_hz()) / 617 SPDK_SEC_TO_USEC + spdk_get_ticks(); 618 619 return 0; 620 } 621 622 static int 623 nvme_rdma_process_event_poll(struct nvme_rdma_qpair *rqpair) 624 { 625 struct nvme_rdma_ctrlr *rctrlr; 626 int rc = 0, rc2; 627 628 rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); 629 assert(rctrlr != NULL); 630 631 if (!rqpair->evt && spdk_get_ticks() < rqpair->evt_timeout_ticks) { 632 rc = nvme_rdma_poll_events(rctrlr); 633 if (rc == -EAGAIN || rc == -EWOULDBLOCK) { 634 return rc; 635 } 636 } 637 638 if (rqpair->evt == NULL) { 639 rc = -EADDRNOTAVAIL; 640 goto exit; 641 } 642 643 rc = nvme_rdma_validate_cm_event(rqpair->expected_evt_type, rqpair->evt); 644 645 rc2 = nvme_rdma_qpair_process_cm_event(rqpair); 646 /* bad message takes precedence over the other error codes from processing the event. */ 647 rc = rc == 0 ? rc2 : rc; 648 649 exit: 650 assert(rqpair->evt_cb != NULL); 651 return rqpair->evt_cb(rqpair, rc); 652 } 653 654 static int 655 nvme_rdma_resize_cq(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poller *poller) 656 { 657 int current_num_wc, required_num_wc; 658 659 required_num_wc = poller->required_num_wc + WC_PER_QPAIR(rqpair->num_entries); 660 current_num_wc = poller->current_num_wc; 661 if (current_num_wc < required_num_wc) { 662 current_num_wc = spdk_max(current_num_wc * 2, required_num_wc); 663 } 664 665 if (poller->current_num_wc != current_num_wc) { 666 SPDK_DEBUGLOG(nvme, "Resize RDMA CQ from %d to %d\n", poller->current_num_wc, 667 current_num_wc); 668 if (ibv_resize_cq(poller->cq, current_num_wc)) { 669 SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); 670 return -1; 671 } 672 673 poller->current_num_wc = current_num_wc; 674 } 675 676 poller->required_num_wc = required_num_wc; 677 return 0; 678 } 679 680 static int 681 nvme_rdma_qpair_set_poller(struct spdk_nvme_qpair *qpair) 682 { 683 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 684 struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group); 685 struct nvme_rdma_poller *poller; 686 687 assert(rqpair->cq == NULL); 688 689 poller = nvme_rdma_poll_group_get_poller(group, rqpair->cm_id->verbs); 690 if (!poller) { 691 SPDK_ERRLOG("Unable to find a cq for qpair %p on poll group %p\n", qpair, qpair->poll_group); 692 return -EINVAL; 693 } 694 695 if (nvme_rdma_resize_cq(rqpair, poller)) { 696 nvme_rdma_poll_group_put_poller(group, poller); 697 return -EPROTO; 698 } 699 700 rqpair->cq = poller->cq; 701 rqpair->poller = poller; 702 return 0; 703 } 704 705 static int 706 nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair) 707 { 708 int rc; 709 struct spdk_rdma_qp_init_attr attr = {}; 710 struct ibv_device_attr dev_attr; 711 struct nvme_rdma_ctrlr *rctrlr; 712 713 rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr); 714 if (rc != 0) { 715 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 716 return -1; 717 } 718 719 if (rqpair->qpair.poll_group) { 720 assert(!rqpair->cq); 721 rc = nvme_rdma_qpair_set_poller(&rqpair->qpair); 722 if (rc) { 723 SPDK_ERRLOG("Unable to activate the rdmaqpair.\n"); 724 return -1; 725 } 726 assert(rqpair->cq); 727 } else { 728 rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, rqpair->num_entries * 2, rqpair, NULL, 0); 729 if (!rqpair->cq) { 730 SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno)); 731 return -1; 732 } 733 } 734 735 rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); 736 if (g_nvme_hooks.get_ibv_pd) { 737 attr.pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs); 738 } else { 739 attr.pd = spdk_rdma_get_pd(rqpair->cm_id->verbs); 740 } 741 742 attr.stats = rqpair->poller ? &rqpair->poller->stats.rdma_stats : NULL; 743 attr.send_cq = rqpair->cq; 744 attr.recv_cq = rqpair->cq; 745 attr.cap.max_send_wr = rqpair->num_entries; /* SEND operations */ 746 attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */ 747 attr.cap.max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge); 748 attr.cap.max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge); 749 750 rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &attr); 751 752 if (!rqpair->rdma_qp) { 753 return -1; 754 } 755 756 rqpair->memory_domain = nvme_rdma_get_memory_domain(rqpair->rdma_qp->qp->pd); 757 if (!rqpair->memory_domain) { 758 SPDK_ERRLOG("Failed to get memory domain\n"); 759 return -1; 760 } 761 762 /* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */ 763 rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge); 764 rqpair->max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, attr.cap.max_recv_sge); 765 rqpair->current_num_recvs = 0; 766 rqpair->current_num_sends = 0; 767 768 rqpair->cm_id->context = rqpair; 769 770 return 0; 771 } 772 773 static void 774 nvme_rdma_reset_failed_sends(struct nvme_rdma_qpair *rqpair, 775 struct ibv_send_wr *bad_send_wr, int rc) 776 { 777 SPDK_ERRLOG("Failed to post WRs on send queue, errno %d (%s), bad_wr %p\n", 778 rc, spdk_strerror(rc), bad_send_wr); 779 while (bad_send_wr != NULL) { 780 assert(rqpair->current_num_sends > 0); 781 rqpair->current_num_sends--; 782 bad_send_wr = bad_send_wr->next; 783 } 784 } 785 786 static void 787 nvme_rdma_reset_failed_recvs(struct nvme_rdma_qpair *rqpair, 788 struct ibv_recv_wr *bad_recv_wr, int rc) 789 { 790 SPDK_ERRLOG("Failed to post WRs on receive queue, errno %d (%s), bad_wr %p\n", 791 rc, spdk_strerror(rc), bad_recv_wr); 792 while (bad_recv_wr != NULL) { 793 assert(rqpair->current_num_recvs > 0); 794 rqpair->current_num_recvs--; 795 bad_recv_wr = bad_recv_wr->next; 796 } 797 } 798 799 static inline int 800 nvme_rdma_qpair_submit_sends(struct nvme_rdma_qpair *rqpair) 801 { 802 struct ibv_send_wr *bad_send_wr = NULL; 803 int rc; 804 805 rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_send_wr); 806 807 if (spdk_unlikely(rc)) { 808 nvme_rdma_reset_failed_sends(rqpair, bad_send_wr, rc); 809 } 810 811 return rc; 812 } 813 814 static inline int 815 nvme_rdma_qpair_submit_recvs(struct nvme_rdma_qpair *rqpair) 816 { 817 struct ibv_recv_wr *bad_recv_wr; 818 int rc = 0; 819 820 rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr); 821 if (spdk_unlikely(rc)) { 822 nvme_rdma_reset_failed_recvs(rqpair, bad_recv_wr, rc); 823 } 824 825 return rc; 826 } 827 828 #define nvme_rdma_trace_ibv_sge(sg_list) \ 829 if (sg_list) { \ 830 SPDK_DEBUGLOG(nvme, "local addr %p length 0x%x lkey 0x%x\n", \ 831 (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \ 832 } 833 834 static void 835 nvme_rdma_free_rsps(struct nvme_rdma_qpair *rqpair) 836 { 837 spdk_free(rqpair->rsps); 838 rqpair->rsps = NULL; 839 spdk_free(rqpair->rsp_sgls); 840 rqpair->rsp_sgls = NULL; 841 spdk_free(rqpair->rsp_recv_wrs); 842 rqpair->rsp_recv_wrs = NULL; 843 } 844 845 static int 846 nvme_rdma_create_rsps(struct nvme_rdma_qpair *rqpair) 847 { 848 struct spdk_rdma_memory_translation translation; 849 uint16_t i; 850 int rc; 851 852 rqpair->rsps = NULL; 853 rqpair->rsp_recv_wrs = NULL; 854 855 rqpair->rsp_sgls = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->rsp_sgls), 0, NULL, 856 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 857 if (!rqpair->rsp_sgls) { 858 SPDK_ERRLOG("Failed to allocate rsp_sgls\n"); 859 goto fail; 860 } 861 862 rqpair->rsp_recv_wrs = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->rsp_recv_wrs), 0, NULL, 863 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 864 if (!rqpair->rsp_recv_wrs) { 865 SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n"); 866 goto fail; 867 } 868 869 rqpair->rsps = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->rsps), 0, NULL, 870 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 871 if (!rqpair->rsps) { 872 SPDK_ERRLOG("can not allocate rdma rsps\n"); 873 goto fail; 874 } 875 876 for (i = 0; i < rqpair->num_entries; i++) { 877 struct ibv_sge *rsp_sgl = &rqpair->rsp_sgls[i]; 878 struct spdk_nvme_rdma_rsp *rsp = &rqpair->rsps[i]; 879 struct ibv_recv_wr *recv_wr = &rqpair->rsp_recv_wrs[i]; 880 881 rsp->rqpair = rqpair; 882 rsp->rdma_wr.type = RDMA_WR_TYPE_RECV; 883 rsp->recv_wr = recv_wr; 884 rsp_sgl->addr = (uint64_t)rsp; 885 rsp_sgl->length = sizeof(struct spdk_nvme_cpl); 886 rc = spdk_rdma_get_translation(rqpair->mr_map, rsp, sizeof(*rsp), &translation); 887 if (rc) { 888 goto fail; 889 } 890 rsp_sgl->lkey = spdk_rdma_memory_translation_get_lkey(&translation); 891 892 recv_wr->wr_id = (uint64_t)&rsp->rdma_wr; 893 recv_wr->next = NULL; 894 recv_wr->sg_list = rsp_sgl; 895 recv_wr->num_sge = 1; 896 897 nvme_rdma_trace_ibv_sge(recv_wr->sg_list); 898 899 spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, recv_wr); 900 } 901 902 rqpair->current_num_recvs = rqpair->num_entries; 903 904 return 0; 905 fail: 906 nvme_rdma_free_rsps(rqpair); 907 return -ENOMEM; 908 } 909 910 static void 911 nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair) 912 { 913 if (!rqpair->rdma_reqs) { 914 return; 915 } 916 917 spdk_free(rqpair->cmds); 918 rqpair->cmds = NULL; 919 920 spdk_free(rqpair->rdma_reqs); 921 rqpair->rdma_reqs = NULL; 922 } 923 924 static int 925 nvme_rdma_create_reqs(struct nvme_rdma_qpair *rqpair) 926 { 927 struct spdk_rdma_memory_translation translation; 928 uint16_t i; 929 int rc; 930 931 rqpair->rdma_reqs = spdk_zmalloc(rqpair->num_entries * sizeof(struct spdk_nvme_rdma_req), 0, NULL, 932 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 933 if (rqpair->rdma_reqs == NULL) { 934 SPDK_ERRLOG("Failed to allocate rdma_reqs\n"); 935 goto fail; 936 } 937 938 rqpair->cmds = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->cmds), 0, NULL, 939 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 940 if (!rqpair->cmds) { 941 SPDK_ERRLOG("Failed to allocate RDMA cmds\n"); 942 goto fail; 943 } 944 945 946 TAILQ_INIT(&rqpair->free_reqs); 947 TAILQ_INIT(&rqpair->outstanding_reqs); 948 for (i = 0; i < rqpair->num_entries; i++) { 949 struct spdk_nvme_rdma_req *rdma_req; 950 struct spdk_nvmf_cmd *cmd; 951 952 rdma_req = &rqpair->rdma_reqs[i]; 953 rdma_req->rdma_wr.type = RDMA_WR_TYPE_SEND; 954 cmd = &rqpair->cmds[i]; 955 956 rdma_req->id = i; 957 958 rc = spdk_rdma_get_translation(rqpair->mr_map, cmd, sizeof(*cmd), &translation); 959 if (rc) { 960 goto fail; 961 } 962 rdma_req->send_sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation); 963 964 /* The first RDMA sgl element will always point 965 * at this data structure. Depending on whether 966 * an NVMe-oF SGL is required, the length of 967 * this element may change. */ 968 rdma_req->send_sgl[0].addr = (uint64_t)cmd; 969 rdma_req->send_wr.wr_id = (uint64_t)&rdma_req->rdma_wr; 970 rdma_req->send_wr.next = NULL; 971 rdma_req->send_wr.opcode = IBV_WR_SEND; 972 rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED; 973 rdma_req->send_wr.sg_list = rdma_req->send_sgl; 974 rdma_req->send_wr.imm_data = 0; 975 976 TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link); 977 } 978 979 return 0; 980 fail: 981 nvme_rdma_free_reqs(rqpair); 982 return -ENOMEM; 983 } 984 985 static int nvme_rdma_connect(struct nvme_rdma_qpair *rqpair); 986 987 static int 988 nvme_rdma_route_resolved(struct nvme_rdma_qpair *rqpair, int ret) 989 { 990 if (ret) { 991 SPDK_ERRLOG("RDMA route resolution error\n"); 992 return -1; 993 } 994 995 ret = nvme_rdma_qpair_init(rqpair); 996 if (ret < 0) { 997 SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n"); 998 return -1; 999 } 1000 1001 return nvme_rdma_connect(rqpair); 1002 } 1003 1004 static int 1005 nvme_rdma_addr_resolved(struct nvme_rdma_qpair *rqpair, int ret) 1006 { 1007 if (ret) { 1008 SPDK_ERRLOG("RDMA address resolution error\n"); 1009 return -1; 1010 } 1011 1012 if (rqpair->qpair.ctrlr->opts.transport_ack_timeout != SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED) { 1013 #ifdef SPDK_CONFIG_RDMA_SET_ACK_TIMEOUT 1014 uint8_t timeout = rqpair->qpair.ctrlr->opts.transport_ack_timeout; 1015 ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, 1016 RDMA_OPTION_ID_ACK_TIMEOUT, 1017 &timeout, sizeof(timeout)); 1018 if (ret) { 1019 SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_ACK_TIMEOUT %d, ret %d\n", timeout, ret); 1020 } 1021 #else 1022 SPDK_DEBUGLOG(nvme, "transport_ack_timeout is not supported\n"); 1023 #endif 1024 } 1025 1026 ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS); 1027 if (ret) { 1028 SPDK_ERRLOG("rdma_resolve_route\n"); 1029 return ret; 1030 } 1031 1032 return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ROUTE_RESOLVED, 1033 nvme_rdma_route_resolved); 1034 } 1035 1036 static int 1037 nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair, 1038 struct sockaddr *src_addr, 1039 struct sockaddr *dst_addr) 1040 { 1041 int ret; 1042 1043 if (src_addr) { 1044 int reuse = 1; 1045 1046 ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR, 1047 &reuse, sizeof(reuse)); 1048 if (ret) { 1049 SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_REUSEADDR %d, ret %d\n", 1050 reuse, ret); 1051 /* It is likely that rdma_resolve_addr() returns -EADDRINUSE, but 1052 * we may missing something. We rely on rdma_resolve_addr(). 1053 */ 1054 } 1055 } 1056 1057 ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr, 1058 NVME_RDMA_TIME_OUT_IN_MS); 1059 if (ret) { 1060 SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno); 1061 return ret; 1062 } 1063 1064 return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ADDR_RESOLVED, 1065 nvme_rdma_addr_resolved); 1066 } 1067 1068 static int nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair); 1069 1070 static int 1071 nvme_rdma_connect_established(struct nvme_rdma_qpair *rqpair, int ret) 1072 { 1073 if (ret == -ESTALE) { 1074 return nvme_rdma_stale_conn_retry(rqpair); 1075 } else if (ret) { 1076 SPDK_ERRLOG("RDMA connect error %d\n", ret); 1077 return ret; 1078 } 1079 1080 rqpair->mr_map = spdk_rdma_create_mem_map(rqpair->rdma_qp->qp->pd, &g_nvme_hooks, 1081 SPDK_RDMA_MEMORY_MAP_ROLE_INITIATOR); 1082 if (!rqpair->mr_map) { 1083 SPDK_ERRLOG("Unable to register RDMA memory translation map\n"); 1084 return -1; 1085 } 1086 1087 ret = nvme_rdma_create_reqs(rqpair); 1088 SPDK_DEBUGLOG(nvme, "rc =%d\n", ret); 1089 if (ret) { 1090 SPDK_ERRLOG("Unable to create rqpair RDMA requests\n"); 1091 return -1; 1092 } 1093 SPDK_DEBUGLOG(nvme, "RDMA requests created\n"); 1094 1095 ret = nvme_rdma_create_rsps(rqpair); 1096 SPDK_DEBUGLOG(nvme, "rc =%d\n", ret); 1097 if (ret < 0) { 1098 SPDK_ERRLOG("Unable to create rqpair RDMA responses\n"); 1099 return -1; 1100 } 1101 SPDK_DEBUGLOG(nvme, "RDMA responses created\n"); 1102 1103 ret = nvme_rdma_qpair_submit_recvs(rqpair); 1104 SPDK_DEBUGLOG(nvme, "rc =%d\n", ret); 1105 if (ret) { 1106 SPDK_ERRLOG("Unable to submit rqpair RDMA responses\n"); 1107 return -1; 1108 } 1109 SPDK_DEBUGLOG(nvme, "RDMA responses submitted\n"); 1110 1111 rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND; 1112 1113 return 0; 1114 } 1115 1116 static int 1117 nvme_rdma_connect(struct nvme_rdma_qpair *rqpair) 1118 { 1119 struct rdma_conn_param param = {}; 1120 struct spdk_nvmf_rdma_request_private_data request_data = {}; 1121 struct ibv_device_attr attr; 1122 int ret; 1123 struct spdk_nvme_ctrlr *ctrlr; 1124 1125 ret = ibv_query_device(rqpair->cm_id->verbs, &attr); 1126 if (ret != 0) { 1127 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 1128 return ret; 1129 } 1130 1131 param.responder_resources = attr.max_qp_rd_atom; 1132 1133 ctrlr = rqpair->qpair.ctrlr; 1134 if (!ctrlr) { 1135 return -1; 1136 } 1137 1138 request_data.qid = rqpair->qpair.id; 1139 request_data.hrqsize = rqpair->num_entries + 1; 1140 request_data.hsqsize = rqpair->num_entries; 1141 request_data.cntlid = ctrlr->cntlid; 1142 1143 param.private_data = &request_data; 1144 param.private_data_len = sizeof(request_data); 1145 param.retry_count = ctrlr->opts.transport_retry_count; 1146 param.rnr_retry_count = 7; 1147 1148 /* Fields below are ignored by rdma cm if qpair has been 1149 * created using rdma cm API. */ 1150 param.srq = 0; 1151 param.qp_num = rqpair->rdma_qp->qp->qp_num; 1152 1153 ret = rdma_connect(rqpair->cm_id, ¶m); 1154 if (ret) { 1155 SPDK_ERRLOG("nvme rdma connect error\n"); 1156 return ret; 1157 } 1158 1159 return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ESTABLISHED, 1160 nvme_rdma_connect_established); 1161 } 1162 1163 static int 1164 nvme_rdma_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service) 1165 { 1166 struct addrinfo *res; 1167 struct addrinfo hints; 1168 int ret; 1169 1170 memset(&hints, 0, sizeof(hints)); 1171 hints.ai_family = family; 1172 hints.ai_socktype = SOCK_STREAM; 1173 hints.ai_protocol = 0; 1174 1175 ret = getaddrinfo(addr, service, &hints, &res); 1176 if (ret) { 1177 SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret); 1178 return ret; 1179 } 1180 1181 if (res->ai_addrlen > sizeof(*sa)) { 1182 SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen); 1183 ret = EINVAL; 1184 } else { 1185 memcpy(sa, res->ai_addr, res->ai_addrlen); 1186 } 1187 1188 freeaddrinfo(res); 1189 return ret; 1190 } 1191 1192 static int 1193 nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 1194 { 1195 struct sockaddr_storage dst_addr; 1196 struct sockaddr_storage src_addr; 1197 bool src_addr_specified; 1198 int rc; 1199 struct nvme_rdma_ctrlr *rctrlr; 1200 struct nvme_rdma_qpair *rqpair; 1201 int family; 1202 1203 rqpair = nvme_rdma_qpair(qpair); 1204 rctrlr = nvme_rdma_ctrlr(ctrlr); 1205 assert(rctrlr != NULL); 1206 1207 switch (ctrlr->trid.adrfam) { 1208 case SPDK_NVMF_ADRFAM_IPV4: 1209 family = AF_INET; 1210 break; 1211 case SPDK_NVMF_ADRFAM_IPV6: 1212 family = AF_INET6; 1213 break; 1214 default: 1215 SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam); 1216 return -1; 1217 } 1218 1219 SPDK_DEBUGLOG(nvme, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family); 1220 1221 memset(&dst_addr, 0, sizeof(dst_addr)); 1222 1223 SPDK_DEBUGLOG(nvme, "trsvcid is %s\n", ctrlr->trid.trsvcid); 1224 rc = nvme_rdma_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid); 1225 if (rc != 0) { 1226 SPDK_ERRLOG("dst_addr nvme_rdma_parse_addr() failed\n"); 1227 return -1; 1228 } 1229 1230 if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) { 1231 memset(&src_addr, 0, sizeof(src_addr)); 1232 rc = nvme_rdma_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid); 1233 if (rc != 0) { 1234 SPDK_ERRLOG("src_addr nvme_rdma_parse_addr() failed\n"); 1235 return -1; 1236 } 1237 src_addr_specified = true; 1238 } else { 1239 src_addr_specified = false; 1240 } 1241 1242 rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP); 1243 if (rc < 0) { 1244 SPDK_ERRLOG("rdma_create_id() failed\n"); 1245 return -1; 1246 } 1247 1248 rc = nvme_rdma_resolve_addr(rqpair, 1249 src_addr_specified ? (struct sockaddr *)&src_addr : NULL, 1250 (struct sockaddr *)&dst_addr); 1251 if (rc < 0) { 1252 SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n"); 1253 return -1; 1254 } 1255 1256 rqpair->state = NVME_RDMA_QPAIR_STATE_INITIALIZING; 1257 1258 return 0; 1259 } 1260 1261 static int 1262 nvme_rdma_stale_conn_reconnect(struct nvme_rdma_qpair *rqpair) 1263 { 1264 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 1265 1266 if (spdk_get_ticks() < rqpair->evt_timeout_ticks) { 1267 return -EAGAIN; 1268 } 1269 1270 return nvme_rdma_ctrlr_connect_qpair(qpair->ctrlr, qpair); 1271 } 1272 1273 static int 1274 nvme_rdma_ctrlr_connect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, 1275 struct spdk_nvme_qpair *qpair) 1276 { 1277 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 1278 int rc; 1279 1280 if (rqpair->in_connect_poll) { 1281 return -EAGAIN; 1282 } 1283 1284 rqpair->in_connect_poll = true; 1285 1286 switch (rqpair->state) { 1287 case NVME_RDMA_QPAIR_STATE_INVALID: 1288 rc = -EAGAIN; 1289 break; 1290 1291 case NVME_RDMA_QPAIR_STATE_INITIALIZING: 1292 case NVME_RDMA_QPAIR_STATE_EXITING: 1293 if (!nvme_qpair_is_admin_queue(qpair)) { 1294 nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); 1295 } 1296 1297 rc = nvme_rdma_process_event_poll(rqpair); 1298 1299 if (!nvme_qpair_is_admin_queue(qpair)) { 1300 nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); 1301 } 1302 1303 if (rc == 0) { 1304 rc = -EAGAIN; 1305 } 1306 rqpair->in_connect_poll = false; 1307 1308 return rc; 1309 1310 case NVME_RDMA_QPAIR_STATE_STALE_CONN: 1311 rc = nvme_rdma_stale_conn_reconnect(rqpair); 1312 if (rc == 0) { 1313 rc = -EAGAIN; 1314 } 1315 break; 1316 case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND: 1317 rc = nvme_fabric_qpair_connect_async(qpair, rqpair->num_entries + 1); 1318 if (rc == 0) { 1319 rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL; 1320 rc = -EAGAIN; 1321 } else { 1322 SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n"); 1323 } 1324 break; 1325 case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL: 1326 rc = nvme_fabric_qpair_connect_poll(qpair); 1327 if (rc == 0) { 1328 rqpair->state = NVME_RDMA_QPAIR_STATE_RUNNING; 1329 nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED); 1330 } else if (rc != -EAGAIN) { 1331 SPDK_ERRLOG("Failed to poll NVMe-oF Fabric CONNECT command\n"); 1332 } 1333 break; 1334 case NVME_RDMA_QPAIR_STATE_RUNNING: 1335 rc = 0; 1336 break; 1337 default: 1338 assert(false); 1339 rc = -EINVAL; 1340 break; 1341 } 1342 1343 rqpair->in_connect_poll = false; 1344 1345 return rc; 1346 } 1347 1348 static inline int 1349 nvme_rdma_get_memory_translation(struct nvme_request *req, struct nvme_rdma_qpair *rqpair, 1350 struct nvme_rdma_memory_translation_ctx *_ctx) 1351 { 1352 struct spdk_memory_domain_translation_ctx ctx; 1353 struct spdk_memory_domain_translation_result dma_translation = {.iov_count = 0}; 1354 struct spdk_rdma_memory_translation rdma_translation; 1355 int rc; 1356 1357 assert(req); 1358 assert(rqpair); 1359 assert(_ctx); 1360 1361 if (req->payload.opts && req->payload.opts->memory_domain) { 1362 ctx.size = sizeof(struct spdk_memory_domain_translation_ctx); 1363 ctx.rdma.ibv_qp = rqpair->rdma_qp->qp; 1364 dma_translation.size = sizeof(struct spdk_memory_domain_translation_result); 1365 1366 rc = spdk_memory_domain_translate_data(req->payload.opts->memory_domain, 1367 req->payload.opts->memory_domain_ctx, 1368 rqpair->memory_domain->domain, &ctx, _ctx->addr, 1369 _ctx->length, &dma_translation); 1370 if (spdk_unlikely(rc) || dma_translation.iov_count != 1) { 1371 SPDK_ERRLOG("DMA memory translation failed, rc %d, iov count %u\n", rc, dma_translation.iov_count); 1372 return rc; 1373 } 1374 1375 _ctx->lkey = dma_translation.rdma.lkey; 1376 _ctx->rkey = dma_translation.rdma.rkey; 1377 _ctx->addr = dma_translation.iov.iov_base; 1378 _ctx->length = dma_translation.iov.iov_len; 1379 } else { 1380 rc = spdk_rdma_get_translation(rqpair->mr_map, _ctx->addr, _ctx->length, &rdma_translation); 1381 if (spdk_unlikely(rc)) { 1382 SPDK_ERRLOG("RDMA memory translation failed, rc %d\n", rc); 1383 return rc; 1384 } 1385 if (rdma_translation.translation_type == SPDK_RDMA_TRANSLATION_MR) { 1386 _ctx->lkey = rdma_translation.mr_or_key.mr->lkey; 1387 _ctx->rkey = rdma_translation.mr_or_key.mr->rkey; 1388 } else { 1389 _ctx->lkey = _ctx->rkey = (uint32_t)rdma_translation.mr_or_key.key; 1390 } 1391 } 1392 1393 return 0; 1394 } 1395 1396 1397 /* 1398 * Build SGL describing empty payload. 1399 */ 1400 static int 1401 nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req) 1402 { 1403 struct nvme_request *req = rdma_req->req; 1404 1405 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1406 1407 /* The first element of this SGL is pointing at an 1408 * spdk_nvmf_cmd object. For this particular command, 1409 * we only need the first 64 bytes corresponding to 1410 * the NVMe command. */ 1411 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1412 1413 /* The RDMA SGL needs one element describing the NVMe command. */ 1414 rdma_req->send_wr.num_sge = 1; 1415 1416 req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; 1417 req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; 1418 req->cmd.dptr.sgl1.keyed.length = 0; 1419 req->cmd.dptr.sgl1.keyed.key = 0; 1420 req->cmd.dptr.sgl1.address = 0; 1421 1422 return 0; 1423 } 1424 1425 /* 1426 * Build inline SGL describing contiguous payload buffer. 1427 */ 1428 static int 1429 nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair, 1430 struct spdk_nvme_rdma_req *rdma_req) 1431 { 1432 struct nvme_request *req = rdma_req->req; 1433 struct nvme_rdma_memory_translation_ctx ctx = { 1434 .addr = req->payload.contig_or_cb_arg + req->payload_offset, 1435 .length = req->payload_size 1436 }; 1437 int rc; 1438 1439 assert(ctx.length != 0); 1440 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); 1441 1442 rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx); 1443 if (spdk_unlikely(rc)) { 1444 return -1; 1445 } 1446 1447 rdma_req->send_sgl[1].lkey = ctx.lkey; 1448 1449 /* The first element of this SGL is pointing at an 1450 * spdk_nvmf_cmd object. For this particular command, 1451 * we only need the first 64 bytes corresponding to 1452 * the NVMe command. */ 1453 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1454 1455 rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr; 1456 rdma_req->send_sgl[1].length = (uint32_t)ctx.length; 1457 1458 /* The RDMA SGL contains two elements. The first describes 1459 * the NVMe command and the second describes the data 1460 * payload. */ 1461 rdma_req->send_wr.num_sge = 2; 1462 1463 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1464 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 1465 req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; 1466 req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length; 1467 /* Inline only supported for icdoff == 0 currently. This function will 1468 * not get called for controllers with other values. */ 1469 req->cmd.dptr.sgl1.address = (uint64_t)0; 1470 1471 return 0; 1472 } 1473 1474 /* 1475 * Build SGL describing contiguous payload buffer. 1476 */ 1477 static int 1478 nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair, 1479 struct spdk_nvme_rdma_req *rdma_req) 1480 { 1481 struct nvme_request *req = rdma_req->req; 1482 struct nvme_rdma_memory_translation_ctx ctx = { 1483 .addr = req->payload.contig_or_cb_arg + req->payload_offset, 1484 .length = req->payload_size 1485 }; 1486 int rc; 1487 1488 assert(req->payload_size != 0); 1489 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); 1490 1491 if (spdk_unlikely(req->payload_size > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) { 1492 SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n", 1493 req->payload_size, NVME_RDMA_MAX_KEYED_SGL_LENGTH); 1494 return -1; 1495 } 1496 1497 rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx); 1498 if (spdk_unlikely(rc)) { 1499 return -1; 1500 } 1501 1502 req->cmd.dptr.sgl1.keyed.key = ctx.rkey; 1503 1504 /* The first element of this SGL is pointing at an 1505 * spdk_nvmf_cmd object. For this particular command, 1506 * we only need the first 64 bytes corresponding to 1507 * the NVMe command. */ 1508 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1509 1510 /* The RDMA SGL needs one element describing the NVMe command. */ 1511 rdma_req->send_wr.num_sge = 1; 1512 1513 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1514 req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; 1515 req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; 1516 req->cmd.dptr.sgl1.keyed.length = (uint32_t)ctx.length; 1517 req->cmd.dptr.sgl1.address = (uint64_t)ctx.addr; 1518 1519 return 0; 1520 } 1521 1522 /* 1523 * Build SGL describing scattered payload buffer. 1524 */ 1525 static int 1526 nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair, 1527 struct spdk_nvme_rdma_req *rdma_req) 1528 { 1529 struct nvme_request *req = rdma_req->req; 1530 struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id]; 1531 struct nvme_rdma_memory_translation_ctx ctx; 1532 uint32_t remaining_size; 1533 uint32_t sge_length; 1534 int rc, max_num_sgl, num_sgl_desc; 1535 1536 assert(req->payload_size != 0); 1537 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); 1538 assert(req->payload.reset_sgl_fn != NULL); 1539 assert(req->payload.next_sge_fn != NULL); 1540 req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); 1541 1542 max_num_sgl = req->qpair->ctrlr->max_sges; 1543 1544 remaining_size = req->payload_size; 1545 num_sgl_desc = 0; 1546 do { 1547 rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &sge_length); 1548 if (rc) { 1549 return -1; 1550 } 1551 1552 sge_length = spdk_min(remaining_size, sge_length); 1553 1554 if (spdk_unlikely(sge_length > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) { 1555 SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n", 1556 sge_length, NVME_RDMA_MAX_KEYED_SGL_LENGTH); 1557 return -1; 1558 } 1559 ctx.length = sge_length; 1560 rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx); 1561 if (spdk_unlikely(rc)) { 1562 return -1; 1563 } 1564 1565 cmd->sgl[num_sgl_desc].keyed.key = ctx.rkey; 1566 cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; 1567 cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; 1568 cmd->sgl[num_sgl_desc].keyed.length = (uint32_t)ctx.length; 1569 cmd->sgl[num_sgl_desc].address = (uint64_t)ctx.addr; 1570 1571 remaining_size -= ctx.length; 1572 num_sgl_desc++; 1573 } while (remaining_size > 0 && num_sgl_desc < max_num_sgl); 1574 1575 1576 /* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */ 1577 if (remaining_size > 0) { 1578 return -1; 1579 } 1580 1581 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1582 1583 /* The RDMA SGL needs one element describing some portion 1584 * of the spdk_nvmf_cmd structure. */ 1585 rdma_req->send_wr.num_sge = 1; 1586 1587 /* 1588 * If only one SGL descriptor is required, it can be embedded directly in the command 1589 * as a data block descriptor. 1590 */ 1591 if (num_sgl_desc == 1) { 1592 /* The first element of this SGL is pointing at an 1593 * spdk_nvmf_cmd object. For this particular command, 1594 * we only need the first 64 bytes corresponding to 1595 * the NVMe command. */ 1596 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1597 1598 req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type; 1599 req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype; 1600 req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length; 1601 req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key; 1602 req->cmd.dptr.sgl1.address = cmd->sgl[0].address; 1603 } else { 1604 /* 1605 * Otherwise, The SGL descriptor embedded in the command must point to the list of 1606 * SGL descriptors used to describe the operation. In that case it is a last segment descriptor. 1607 */ 1608 uint32_t descriptors_size = sizeof(struct spdk_nvme_sgl_descriptor) * num_sgl_desc; 1609 1610 if (spdk_unlikely(descriptors_size > rqpair->qpair.ctrlr->ioccsz_bytes)) { 1611 SPDK_ERRLOG("Size of SGL descriptors (%u) exceeds ICD (%u)\n", 1612 descriptors_size, rqpair->qpair.ctrlr->ioccsz_bytes); 1613 return -1; 1614 } 1615 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + descriptors_size; 1616 1617 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT; 1618 req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; 1619 req->cmd.dptr.sgl1.unkeyed.length = descriptors_size; 1620 req->cmd.dptr.sgl1.address = (uint64_t)0; 1621 } 1622 1623 return 0; 1624 } 1625 1626 /* 1627 * Build inline SGL describing sgl payload buffer. 1628 */ 1629 static int 1630 nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair, 1631 struct spdk_nvme_rdma_req *rdma_req) 1632 { 1633 struct nvme_request *req = rdma_req->req; 1634 struct nvme_rdma_memory_translation_ctx ctx; 1635 uint32_t length; 1636 int rc; 1637 1638 assert(req->payload_size != 0); 1639 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); 1640 assert(req->payload.reset_sgl_fn != NULL); 1641 assert(req->payload.next_sge_fn != NULL); 1642 req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); 1643 1644 rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &length); 1645 if (rc) { 1646 return -1; 1647 } 1648 1649 if (length < req->payload_size) { 1650 SPDK_DEBUGLOG(nvme, "Inline SGL request split so sending separately.\n"); 1651 return nvme_rdma_build_sgl_request(rqpair, rdma_req); 1652 } 1653 1654 if (length > req->payload_size) { 1655 length = req->payload_size; 1656 } 1657 1658 ctx.length = length; 1659 rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx); 1660 if (spdk_unlikely(rc)) { 1661 return -1; 1662 } 1663 1664 rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr; 1665 rdma_req->send_sgl[1].length = (uint32_t)ctx.length; 1666 rdma_req->send_sgl[1].lkey = ctx.lkey; 1667 1668 rdma_req->send_wr.num_sge = 2; 1669 1670 /* The first element of this SGL is pointing at an 1671 * spdk_nvmf_cmd object. For this particular command, 1672 * we only need the first 64 bytes corresponding to 1673 * the NVMe command. */ 1674 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1675 1676 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1677 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 1678 req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; 1679 req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length; 1680 /* Inline only supported for icdoff == 0 currently. This function will 1681 * not get called for controllers with other values. */ 1682 req->cmd.dptr.sgl1.address = (uint64_t)0; 1683 1684 return 0; 1685 } 1686 1687 static int 1688 nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req, 1689 struct spdk_nvme_rdma_req *rdma_req) 1690 { 1691 struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr; 1692 enum nvme_payload_type payload_type; 1693 bool icd_supported; 1694 int rc; 1695 1696 assert(rdma_req->req == NULL); 1697 rdma_req->req = req; 1698 req->cmd.cid = rdma_req->id; 1699 payload_type = nvme_payload_type(&req->payload); 1700 /* 1701 * Check if icdoff is non zero, to avoid interop conflicts with 1702 * targets with non-zero icdoff. Both SPDK and the Linux kernel 1703 * targets use icdoff = 0. For targets with non-zero icdoff, we 1704 * will currently just not use inline data for now. 1705 */ 1706 icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER 1707 && req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0; 1708 1709 if (req->payload_size == 0) { 1710 rc = nvme_rdma_build_null_request(rdma_req); 1711 } else if (payload_type == NVME_PAYLOAD_TYPE_CONTIG) { 1712 if (icd_supported) { 1713 rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req); 1714 } else { 1715 rc = nvme_rdma_build_contig_request(rqpair, rdma_req); 1716 } 1717 } else if (payload_type == NVME_PAYLOAD_TYPE_SGL) { 1718 if (icd_supported) { 1719 rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req); 1720 } else { 1721 rc = nvme_rdma_build_sgl_request(rqpair, rdma_req); 1722 } 1723 } else { 1724 rc = -1; 1725 } 1726 1727 if (rc) { 1728 rdma_req->req = NULL; 1729 return rc; 1730 } 1731 1732 memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd)); 1733 return 0; 1734 } 1735 1736 static struct spdk_nvme_qpair * 1737 nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr, 1738 uint16_t qid, uint32_t qsize, 1739 enum spdk_nvme_qprio qprio, 1740 uint32_t num_requests, 1741 bool delay_cmd_submit, 1742 bool async) 1743 { 1744 struct nvme_rdma_qpair *rqpair; 1745 struct spdk_nvme_qpair *qpair; 1746 int rc; 1747 1748 if (qsize < SPDK_NVME_QUEUE_MIN_ENTRIES) { 1749 SPDK_ERRLOG("Failed to create qpair with size %u. Minimum queue size is %d.\n", 1750 qsize, SPDK_NVME_QUEUE_MIN_ENTRIES); 1751 return NULL; 1752 } 1753 1754 rqpair = spdk_zmalloc(sizeof(struct nvme_rdma_qpair), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, 1755 SPDK_MALLOC_DMA); 1756 if (!rqpair) { 1757 SPDK_ERRLOG("failed to get create rqpair\n"); 1758 return NULL; 1759 } 1760 1761 /* Set num_entries one less than queue size. According to NVMe 1762 * and NVMe-oF specs we can not submit queue size requests, 1763 * one slot shall always remain empty. 1764 */ 1765 rqpair->num_entries = qsize - 1; 1766 rqpair->delay_cmd_submit = delay_cmd_submit; 1767 rqpair->state = NVME_RDMA_QPAIR_STATE_INVALID; 1768 qpair = &rqpair->qpair; 1769 rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests, async); 1770 if (rc != 0) { 1771 spdk_free(rqpair); 1772 return NULL; 1773 } 1774 1775 return qpair; 1776 } 1777 1778 static void 1779 nvme_rdma_qpair_destroy(struct nvme_rdma_qpair *rqpair) 1780 { 1781 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 1782 struct nvme_rdma_ctrlr *rctrlr; 1783 struct nvme_rdma_cm_event_entry *entry, *tmp; 1784 1785 spdk_rdma_free_mem_map(&rqpair->mr_map); 1786 1787 if (rqpair->evt) { 1788 rdma_ack_cm_event(rqpair->evt); 1789 rqpair->evt = NULL; 1790 } 1791 1792 /* 1793 * This works because we have the controller lock both in 1794 * this function and in the function where we add new events. 1795 */ 1796 if (qpair->ctrlr != NULL) { 1797 rctrlr = nvme_rdma_ctrlr(qpair->ctrlr); 1798 STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) { 1799 if (entry->evt->id->context == rqpair) { 1800 STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link); 1801 rdma_ack_cm_event(entry->evt); 1802 STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link); 1803 } 1804 } 1805 } 1806 1807 if (rqpair->cm_id) { 1808 if (rqpair->rdma_qp) { 1809 spdk_rdma_put_pd(rqpair->rdma_qp->qp->pd); 1810 spdk_rdma_qp_destroy(rqpair->rdma_qp); 1811 rqpair->rdma_qp = NULL; 1812 } 1813 1814 rdma_destroy_id(rqpair->cm_id); 1815 rqpair->cm_id = NULL; 1816 } 1817 1818 if (rqpair->poller) { 1819 struct nvme_rdma_poll_group *group; 1820 1821 assert(qpair->poll_group); 1822 group = nvme_rdma_poll_group(qpair->poll_group); 1823 1824 nvme_rdma_poll_group_put_poller(group, rqpair->poller); 1825 1826 rqpair->poller = NULL; 1827 rqpair->cq = NULL; 1828 } else if (rqpair->cq) { 1829 ibv_destroy_cq(rqpair->cq); 1830 rqpair->cq = NULL; 1831 } 1832 } 1833 1834 static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr); 1835 1836 static int 1837 nvme_rdma_qpair_disconnected(struct nvme_rdma_qpair *rqpair, int ret) 1838 { 1839 nvme_rdma_qpair_abort_reqs(&rqpair->qpair, 0); 1840 1841 if (ret) { 1842 SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n"); 1843 goto quiet; 1844 } 1845 1846 if (rqpair->poller == NULL) { 1847 /* If poller is not used, cq is not shared or already destroyed. 1848 * So complete disconnecting qpair immediately. 1849 */ 1850 goto quiet; 1851 } 1852 1853 if (rqpair->current_num_sends != 0 || rqpair->current_num_recvs != 0) { 1854 rqpair->state = NVME_RDMA_QPAIR_STATE_LINGERING; 1855 rqpair->evt_timeout_ticks = (NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US * spdk_get_ticks_hz()) / 1856 SPDK_SEC_TO_USEC + spdk_get_ticks(); 1857 1858 return -EAGAIN; 1859 } 1860 1861 quiet: 1862 rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED; 1863 1864 nvme_rdma_qpair_destroy(rqpair); 1865 nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair); 1866 1867 return 0; 1868 } 1869 1870 static int 1871 nvme_rdma_qpair_wait_until_quiet(struct nvme_rdma_qpair *rqpair) 1872 { 1873 if (spdk_get_ticks() < rqpair->evt_timeout_ticks && 1874 (rqpair->current_num_sends != 0 || rqpair->current_num_recvs != 0)) { 1875 return -EAGAIN; 1876 } 1877 1878 rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED; 1879 1880 nvme_rdma_qpair_destroy(rqpair); 1881 nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair); 1882 1883 return 0; 1884 } 1885 1886 static void 1887 _nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, 1888 nvme_rdma_cm_event_cb disconnected_qpair_cb) 1889 { 1890 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 1891 int rc; 1892 1893 assert(disconnected_qpair_cb != NULL); 1894 1895 rqpair->state = NVME_RDMA_QPAIR_STATE_EXITING; 1896 1897 if (rqpair->cm_id) { 1898 if (rqpair->rdma_qp) { 1899 rc = spdk_rdma_qp_disconnect(rqpair->rdma_qp); 1900 if ((qpair->ctrlr != NULL) && (rc == 0)) { 1901 rc = nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_DISCONNECTED, 1902 disconnected_qpair_cb); 1903 if (rc == 0) { 1904 return; 1905 } 1906 } 1907 } 1908 } 1909 1910 disconnected_qpair_cb(rqpair, 0); 1911 } 1912 1913 static int 1914 nvme_rdma_ctrlr_disconnect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 1915 { 1916 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 1917 int rc; 1918 1919 switch (rqpair->state) { 1920 case NVME_RDMA_QPAIR_STATE_EXITING: 1921 if (!nvme_qpair_is_admin_queue(qpair)) { 1922 nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); 1923 } 1924 1925 rc = nvme_rdma_process_event_poll(rqpair); 1926 1927 if (!nvme_qpair_is_admin_queue(qpair)) { 1928 nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); 1929 } 1930 break; 1931 1932 case NVME_RDMA_QPAIR_STATE_LINGERING: 1933 rc = nvme_rdma_qpair_wait_until_quiet(rqpair); 1934 break; 1935 case NVME_RDMA_QPAIR_STATE_EXITED: 1936 rc = 0; 1937 break; 1938 1939 default: 1940 assert(false); 1941 rc = -EAGAIN; 1942 break; 1943 } 1944 1945 return rc; 1946 } 1947 1948 static void 1949 nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 1950 { 1951 int rc; 1952 1953 _nvme_rdma_ctrlr_disconnect_qpair(ctrlr, qpair, nvme_rdma_qpair_disconnected); 1954 1955 /* If the async mode is disabled, poll the qpair until it is actually disconnected. 1956 * It is ensured that poll_group_process_completions() calls disconnected_qpair_cb 1957 * for any disconnected qpair. Hence, we do not have to check if the qpair is in 1958 * a poll group or not. 1959 */ 1960 if (qpair->async) { 1961 return; 1962 } 1963 1964 while (1) { 1965 rc = nvme_rdma_ctrlr_disconnect_qpair_poll(ctrlr, qpair); 1966 if (rc != -EAGAIN) { 1967 break; 1968 } 1969 } 1970 } 1971 1972 static int 1973 nvme_rdma_stale_conn_disconnected(struct nvme_rdma_qpair *rqpair, int ret) 1974 { 1975 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 1976 1977 if (ret) { 1978 SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n"); 1979 } 1980 1981 nvme_rdma_qpair_destroy(rqpair); 1982 1983 qpair->last_transport_failure_reason = qpair->transport_failure_reason; 1984 qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_NONE; 1985 1986 rqpair->state = NVME_RDMA_QPAIR_STATE_STALE_CONN; 1987 rqpair->evt_timeout_ticks = (NVME_RDMA_STALE_CONN_RETRY_DELAY_US * spdk_get_ticks_hz()) / 1988 SPDK_SEC_TO_USEC + spdk_get_ticks(); 1989 1990 return 0; 1991 } 1992 1993 static int 1994 nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair) 1995 { 1996 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 1997 1998 if (rqpair->stale_conn_retry_count >= NVME_RDMA_STALE_CONN_RETRY_MAX) { 1999 SPDK_ERRLOG("Retry failed %d times, give up stale connection to qpair (cntlid:%u, qid:%u).\n", 2000 NVME_RDMA_STALE_CONN_RETRY_MAX, qpair->ctrlr->cntlid, qpair->id); 2001 return -ESTALE; 2002 } 2003 2004 rqpair->stale_conn_retry_count++; 2005 2006 SPDK_NOTICELOG("%d times, retry stale connection to qpair (cntlid:%u, qid:%u).\n", 2007 rqpair->stale_conn_retry_count, qpair->ctrlr->cntlid, qpair->id); 2008 2009 _nvme_rdma_ctrlr_disconnect_qpair(qpair->ctrlr, qpair, nvme_rdma_stale_conn_disconnected); 2010 2011 return 0; 2012 } 2013 2014 static int 2015 nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 2016 { 2017 struct nvme_rdma_qpair *rqpair; 2018 2019 assert(qpair != NULL); 2020 rqpair = nvme_rdma_qpair(qpair); 2021 2022 if (rqpair->state != NVME_RDMA_QPAIR_STATE_EXITED) { 2023 int rc __attribute__((unused)); 2024 2025 /* qpair was removed from the poll group while the disconnect is not finished. 2026 * Destroy rdma resources forcefully. */ 2027 rc = nvme_rdma_qpair_disconnected(rqpair, 0); 2028 assert(rc == 0); 2029 } 2030 2031 nvme_rdma_qpair_abort_reqs(qpair, 0); 2032 nvme_qpair_deinit(qpair); 2033 2034 nvme_rdma_put_memory_domain(rqpair->memory_domain); 2035 2036 nvme_rdma_free_reqs(rqpair); 2037 nvme_rdma_free_rsps(rqpair); 2038 spdk_free(rqpair); 2039 2040 return 0; 2041 } 2042 2043 static struct spdk_nvme_qpair * 2044 nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, 2045 const struct spdk_nvme_io_qpair_opts *opts) 2046 { 2047 return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio, 2048 opts->io_queue_requests, 2049 opts->delay_cmd_submit, 2050 opts->async_mode); 2051 } 2052 2053 static int 2054 nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) 2055 { 2056 /* do nothing here */ 2057 return 0; 2058 } 2059 2060 static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr); 2061 2062 /* We have to use the typedef in the function declaration to appease astyle. */ 2063 typedef struct spdk_nvme_ctrlr spdk_nvme_ctrlr_t; 2064 2065 static spdk_nvme_ctrlr_t * 2066 nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid, 2067 const struct spdk_nvme_ctrlr_opts *opts, 2068 void *devhandle) 2069 { 2070 struct nvme_rdma_ctrlr *rctrlr; 2071 struct ibv_context **contexts; 2072 struct ibv_device_attr dev_attr; 2073 int i, flag, rc; 2074 2075 rctrlr = spdk_zmalloc(sizeof(struct nvme_rdma_ctrlr), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, 2076 SPDK_MALLOC_DMA); 2077 if (rctrlr == NULL) { 2078 SPDK_ERRLOG("could not allocate ctrlr\n"); 2079 return NULL; 2080 } 2081 2082 rctrlr->ctrlr.opts = *opts; 2083 rctrlr->ctrlr.trid = *trid; 2084 2085 if (opts->transport_retry_count > NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT) { 2086 SPDK_NOTICELOG("transport_retry_count exceeds max value %d, use max value\n", 2087 NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT); 2088 rctrlr->ctrlr.opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT; 2089 } 2090 2091 if (opts->transport_ack_timeout > NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) { 2092 SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n", 2093 NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT); 2094 rctrlr->ctrlr.opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT; 2095 } 2096 2097 contexts = rdma_get_devices(NULL); 2098 if (contexts == NULL) { 2099 SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); 2100 spdk_free(rctrlr); 2101 return NULL; 2102 } 2103 2104 i = 0; 2105 rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS; 2106 2107 while (contexts[i] != NULL) { 2108 rc = ibv_query_device(contexts[i], &dev_attr); 2109 if (rc < 0) { 2110 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 2111 rdma_free_devices(contexts); 2112 spdk_free(rctrlr); 2113 return NULL; 2114 } 2115 rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge); 2116 i++; 2117 } 2118 2119 rdma_free_devices(contexts); 2120 2121 rc = nvme_ctrlr_construct(&rctrlr->ctrlr); 2122 if (rc != 0) { 2123 spdk_free(rctrlr); 2124 return NULL; 2125 } 2126 2127 STAILQ_INIT(&rctrlr->pending_cm_events); 2128 STAILQ_INIT(&rctrlr->free_cm_events); 2129 rctrlr->cm_events = spdk_zmalloc(NVME_RDMA_NUM_CM_EVENTS * sizeof(*rctrlr->cm_events), 0, NULL, 2130 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 2131 if (rctrlr->cm_events == NULL) { 2132 SPDK_ERRLOG("unable to allocate buffers to hold CM events.\n"); 2133 goto destruct_ctrlr; 2134 } 2135 2136 for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) { 2137 STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link); 2138 } 2139 2140 rctrlr->cm_channel = rdma_create_event_channel(); 2141 if (rctrlr->cm_channel == NULL) { 2142 SPDK_ERRLOG("rdma_create_event_channel() failed\n"); 2143 goto destruct_ctrlr; 2144 } 2145 2146 flag = fcntl(rctrlr->cm_channel->fd, F_GETFL); 2147 if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { 2148 SPDK_ERRLOG("Cannot set event channel to non blocking\n"); 2149 goto destruct_ctrlr; 2150 } 2151 2152 rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0, 2153 rctrlr->ctrlr.opts.admin_queue_size, 0, 2154 rctrlr->ctrlr.opts.admin_queue_size, false, true); 2155 if (!rctrlr->ctrlr.adminq) { 2156 SPDK_ERRLOG("failed to create admin qpair\n"); 2157 goto destruct_ctrlr; 2158 } 2159 2160 if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) { 2161 SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n"); 2162 goto destruct_ctrlr; 2163 } 2164 2165 SPDK_DEBUGLOG(nvme, "successfully initialized the nvmf ctrlr\n"); 2166 return &rctrlr->ctrlr; 2167 2168 destruct_ctrlr: 2169 nvme_ctrlr_destruct(&rctrlr->ctrlr); 2170 return NULL; 2171 } 2172 2173 static int 2174 nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) 2175 { 2176 struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr); 2177 struct nvme_rdma_cm_event_entry *entry; 2178 2179 if (ctrlr->adminq) { 2180 nvme_rdma_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq); 2181 } 2182 2183 STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) { 2184 rdma_ack_cm_event(entry->evt); 2185 } 2186 2187 STAILQ_INIT(&rctrlr->free_cm_events); 2188 STAILQ_INIT(&rctrlr->pending_cm_events); 2189 spdk_free(rctrlr->cm_events); 2190 2191 if (rctrlr->cm_channel) { 2192 rdma_destroy_event_channel(rctrlr->cm_channel); 2193 rctrlr->cm_channel = NULL; 2194 } 2195 2196 nvme_ctrlr_destruct_finish(ctrlr); 2197 2198 spdk_free(rctrlr); 2199 2200 return 0; 2201 } 2202 2203 static int 2204 nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair, 2205 struct nvme_request *req) 2206 { 2207 struct nvme_rdma_qpair *rqpair; 2208 struct spdk_nvme_rdma_req *rdma_req; 2209 struct ibv_send_wr *wr; 2210 2211 rqpair = nvme_rdma_qpair(qpair); 2212 assert(rqpair != NULL); 2213 assert(req != NULL); 2214 2215 rdma_req = nvme_rdma_req_get(rqpair); 2216 if (spdk_unlikely(!rdma_req)) { 2217 if (rqpair->poller) { 2218 rqpair->poller->stats.queued_requests++; 2219 } 2220 /* Inform the upper layer to try again later. */ 2221 return -EAGAIN; 2222 } 2223 2224 if (nvme_rdma_req_init(rqpair, req, rdma_req)) { 2225 SPDK_ERRLOG("nvme_rdma_req_init() failed\n"); 2226 TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link); 2227 nvme_rdma_req_put(rqpair, rdma_req); 2228 return -1; 2229 } 2230 2231 assert(rqpair->current_num_sends < rqpair->num_entries); 2232 rqpair->current_num_sends++; 2233 2234 wr = &rdma_req->send_wr; 2235 wr->next = NULL; 2236 nvme_rdma_trace_ibv_sge(wr->sg_list); 2237 2238 spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, wr); 2239 2240 if (!rqpair->delay_cmd_submit) { 2241 return nvme_rdma_qpair_submit_sends(rqpair); 2242 } 2243 2244 return 0; 2245 } 2246 2247 static int 2248 nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair) 2249 { 2250 /* Currently, doing nothing here */ 2251 return 0; 2252 } 2253 2254 static void 2255 nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr) 2256 { 2257 struct spdk_nvme_rdma_req *rdma_req, *tmp; 2258 struct spdk_nvme_cpl cpl; 2259 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2260 2261 cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; 2262 cpl.status.sct = SPDK_NVME_SCT_GENERIC; 2263 cpl.status.dnr = dnr; 2264 2265 /* 2266 * We cannot abort requests at the RDMA layer without 2267 * unregistering them. If we do, we can still get error 2268 * free completions on the shared completion queue. 2269 */ 2270 if (nvme_qpair_get_state(qpair) > NVME_QPAIR_DISCONNECTING && 2271 nvme_qpair_get_state(qpair) != NVME_QPAIR_DESTROYING) { 2272 nvme_ctrlr_disconnect_qpair(qpair); 2273 } 2274 2275 TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { 2276 nvme_rdma_req_complete(rdma_req, &cpl, true); 2277 } 2278 } 2279 2280 static void 2281 nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair) 2282 { 2283 uint64_t t02; 2284 struct spdk_nvme_rdma_req *rdma_req, *tmp; 2285 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2286 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 2287 struct spdk_nvme_ctrlr_process *active_proc; 2288 2289 /* Don't check timeouts during controller initialization. */ 2290 if (ctrlr->state != NVME_CTRLR_STATE_READY) { 2291 return; 2292 } 2293 2294 if (nvme_qpair_is_admin_queue(qpair)) { 2295 active_proc = nvme_ctrlr_get_current_process(ctrlr); 2296 } else { 2297 active_proc = qpair->active_proc; 2298 } 2299 2300 /* Only check timeouts if the current process has a timeout callback. */ 2301 if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) { 2302 return; 2303 } 2304 2305 t02 = spdk_get_ticks(); 2306 TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { 2307 assert(rdma_req->req != NULL); 2308 2309 if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) { 2310 /* 2311 * The requests are in order, so as soon as one has not timed out, 2312 * stop iterating. 2313 */ 2314 break; 2315 } 2316 } 2317 } 2318 2319 static inline void 2320 nvme_rdma_request_ready(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) 2321 { 2322 struct spdk_nvme_rdma_rsp *rdma_rsp = rdma_req->rdma_rsp; 2323 struct ibv_recv_wr *recv_wr = rdma_rsp->recv_wr; 2324 2325 nvme_rdma_req_complete(rdma_req, &rdma_rsp->cpl, true); 2326 2327 assert(rqpair->current_num_recvs < rqpair->num_entries); 2328 rqpair->current_num_recvs++; 2329 2330 recv_wr->next = NULL; 2331 nvme_rdma_trace_ibv_sge(recv_wr->sg_list); 2332 2333 spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, recv_wr); 2334 } 2335 2336 #define MAX_COMPLETIONS_PER_POLL 128 2337 2338 static void 2339 nvme_rdma_fail_qpair(struct spdk_nvme_qpair *qpair, int failure_reason) 2340 { 2341 if (failure_reason == IBV_WC_RETRY_EXC_ERR) { 2342 qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE; 2343 } else if (qpair->transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_NONE) { 2344 qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN; 2345 } 2346 2347 nvme_ctrlr_disconnect_qpair(qpair); 2348 } 2349 2350 static struct nvme_rdma_qpair * 2351 get_rdma_qpair_from_wc(struct nvme_rdma_poll_group *group, struct ibv_wc *wc) 2352 { 2353 struct spdk_nvme_qpair *qpair; 2354 struct nvme_rdma_qpair *rqpair; 2355 2356 STAILQ_FOREACH(qpair, &group->group.connected_qpairs, poll_group_stailq) { 2357 rqpair = nvme_rdma_qpair(qpair); 2358 if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) { 2359 return rqpair; 2360 } 2361 } 2362 2363 STAILQ_FOREACH(qpair, &group->group.disconnected_qpairs, poll_group_stailq) { 2364 rqpair = nvme_rdma_qpair(qpair); 2365 if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) { 2366 return rqpair; 2367 } 2368 } 2369 2370 return NULL; 2371 } 2372 2373 static inline void 2374 nvme_rdma_log_wc_status(struct nvme_rdma_qpair *rqpair, struct ibv_wc *wc) 2375 { 2376 struct nvme_rdma_wr *rdma_wr = (struct nvme_rdma_wr *)wc->wr_id; 2377 2378 if (wc->status == IBV_WC_WR_FLUSH_ERR) { 2379 /* If qpair is in ERR state, we will receive completions for all posted and not completed 2380 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */ 2381 SPDK_DEBUGLOG(nvme, "WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n", 2382 rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status, 2383 ibv_wc_status_str(wc->status)); 2384 } else { 2385 SPDK_ERRLOG("WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n", 2386 rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status, 2387 ibv_wc_status_str(wc->status)); 2388 } 2389 } 2390 2391 static inline int 2392 nvme_rdma_process_recv_completion(struct ibv_wc *wc, struct nvme_rdma_wr *rdma_wr) 2393 { 2394 struct nvme_rdma_qpair *rqpair; 2395 struct spdk_nvme_rdma_req *rdma_req; 2396 struct spdk_nvme_rdma_rsp *rdma_rsp; 2397 2398 rdma_rsp = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_rsp, rdma_wr); 2399 rqpair = rdma_rsp->rqpair; 2400 assert(rqpair->current_num_recvs > 0); 2401 rqpair->current_num_recvs--; 2402 2403 if (wc->status) { 2404 nvme_rdma_log_wc_status(rqpair, wc); 2405 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2406 return -ENXIO; 2407 } 2408 2409 SPDK_DEBUGLOG(nvme, "CQ recv completion\n"); 2410 2411 if (wc->byte_len < sizeof(struct spdk_nvme_cpl)) { 2412 SPDK_ERRLOG("recv length %u less than expected response size\n", wc->byte_len); 2413 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2414 return -ENXIO; 2415 } 2416 rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid]; 2417 rdma_req->completion_flags |= NVME_RDMA_RECV_COMPLETED; 2418 rdma_req->rdma_rsp = rdma_rsp; 2419 2420 if ((rdma_req->completion_flags & NVME_RDMA_SEND_COMPLETED) == 0) { 2421 return 0; 2422 } 2423 2424 nvme_rdma_request_ready(rqpair, rdma_req); 2425 2426 if (!rqpair->delay_cmd_submit) { 2427 if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) { 2428 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 2429 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2430 return -ENXIO; 2431 } 2432 } 2433 2434 rqpair->num_completions++; 2435 return 1; 2436 } 2437 2438 static inline int 2439 nvme_rdma_process_send_completion(struct nvme_rdma_poller *poller, 2440 struct nvme_rdma_qpair *rdma_qpair, 2441 struct ibv_wc *wc, struct nvme_rdma_wr *rdma_wr) 2442 { 2443 struct nvme_rdma_qpair *rqpair; 2444 struct spdk_nvme_rdma_req *rdma_req; 2445 2446 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_req, rdma_wr); 2447 2448 /* If we are flushing I/O */ 2449 if (wc->status) { 2450 rqpair = rdma_req->req ? nvme_rdma_qpair(rdma_req->req->qpair) : NULL; 2451 if (!rqpair) { 2452 rqpair = rdma_qpair != NULL ? rdma_qpair : get_rdma_qpair_from_wc(poller->group, wc); 2453 } 2454 if (!rqpair) { 2455 /* When poll_group is used, several qpairs share the same CQ and it is possible to 2456 * receive a completion with error (e.g. IBV_WC_WR_FLUSH_ERR) for already disconnected qpair 2457 * That happens due to qpair is destroyed while there are submitted but not completed send/receive 2458 * Work Requests */ 2459 assert(poller); 2460 return 0; 2461 } 2462 assert(rqpair->current_num_sends > 0); 2463 rqpair->current_num_sends--; 2464 nvme_rdma_log_wc_status(rqpair, wc); 2465 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2466 return -ENXIO; 2467 } 2468 2469 /* We do not support Soft Roce anymore. Other than Soft Roce's bug, we should not 2470 * receive a completion without error status after qpair is disconnected/destroyed. 2471 */ 2472 assert(rdma_req->req != NULL); 2473 2474 rqpair = nvme_rdma_qpair(rdma_req->req->qpair); 2475 rdma_req->completion_flags |= NVME_RDMA_SEND_COMPLETED; 2476 assert(rqpair->current_num_sends > 0); 2477 rqpair->current_num_sends--; 2478 2479 if ((rdma_req->completion_flags & NVME_RDMA_RECV_COMPLETED) == 0) { 2480 return 0; 2481 } 2482 2483 nvme_rdma_request_ready(rqpair, rdma_req); 2484 2485 if (!rqpair->delay_cmd_submit) { 2486 if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) { 2487 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 2488 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2489 return -ENXIO; 2490 } 2491 } 2492 2493 rqpair->num_completions++; 2494 return 1; 2495 } 2496 2497 static int 2498 nvme_rdma_cq_process_completions(struct ibv_cq *cq, uint32_t batch_size, 2499 struct nvme_rdma_poller *poller, 2500 struct nvme_rdma_qpair *rdma_qpair, 2501 uint64_t *rdma_completions) 2502 { 2503 struct ibv_wc wc[MAX_COMPLETIONS_PER_POLL]; 2504 struct nvme_rdma_wr *rdma_wr; 2505 uint32_t reaped = 0; 2506 int completion_rc = 0; 2507 int rc, _rc, i; 2508 2509 rc = ibv_poll_cq(cq, batch_size, wc); 2510 if (rc < 0) { 2511 SPDK_ERRLOG("Error polling CQ! (%d): %s\n", 2512 errno, spdk_strerror(errno)); 2513 return -ECANCELED; 2514 } else if (rc == 0) { 2515 return 0; 2516 } 2517 2518 for (i = 0; i < rc; i++) { 2519 rdma_wr = (struct nvme_rdma_wr *)wc[i].wr_id; 2520 switch (rdma_wr->type) { 2521 case RDMA_WR_TYPE_RECV: 2522 _rc = nvme_rdma_process_recv_completion(&wc[i], rdma_wr); 2523 break; 2524 2525 case RDMA_WR_TYPE_SEND: 2526 _rc = nvme_rdma_process_send_completion(poller, rdma_qpair, &wc[i], rdma_wr); 2527 break; 2528 2529 default: 2530 SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", rdma_wr->type); 2531 return -ECANCELED; 2532 } 2533 if (spdk_likely(_rc >= 0)) { 2534 reaped += _rc; 2535 } else { 2536 completion_rc = _rc; 2537 } 2538 } 2539 2540 *rdma_completions += rc; 2541 2542 if (completion_rc) { 2543 return completion_rc; 2544 } 2545 2546 return reaped; 2547 } 2548 2549 static void 2550 dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx) 2551 { 2552 2553 } 2554 2555 static int 2556 nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair, 2557 uint32_t max_completions) 2558 { 2559 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2560 struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(qpair->ctrlr); 2561 int rc = 0, batch_size; 2562 struct ibv_cq *cq; 2563 uint64_t rdma_completions = 0; 2564 2565 /* 2566 * This is used during the connection phase. It's possible that we are still reaping error completions 2567 * from other qpairs so we need to call the poll group function. Also, it's more correct since the cq 2568 * is shared. 2569 */ 2570 if (qpair->poll_group != NULL) { 2571 return spdk_nvme_poll_group_process_completions(qpair->poll_group->group, max_completions, 2572 dummy_disconnected_qpair_cb); 2573 } 2574 2575 if (max_completions == 0) { 2576 max_completions = rqpair->num_entries; 2577 } else { 2578 max_completions = spdk_min(max_completions, rqpair->num_entries); 2579 } 2580 2581 switch (nvme_qpair_get_state(qpair)) { 2582 case NVME_QPAIR_CONNECTING: 2583 rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair); 2584 if (rc == 0) { 2585 /* Once the connection is completed, we can submit queued requests */ 2586 nvme_qpair_resubmit_requests(qpair, rqpair->num_entries); 2587 } else if (rc != -EAGAIN) { 2588 SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair); 2589 goto failed; 2590 } else if (rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING) { 2591 return 0; 2592 } 2593 break; 2594 2595 case NVME_QPAIR_DISCONNECTING: 2596 nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair); 2597 return -ENXIO; 2598 2599 default: 2600 if (nvme_qpair_is_admin_queue(qpair)) { 2601 nvme_rdma_poll_events(rctrlr); 2602 } 2603 nvme_rdma_qpair_process_cm_event(rqpair); 2604 break; 2605 } 2606 2607 if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) { 2608 goto failed; 2609 } 2610 2611 cq = rqpair->cq; 2612 2613 rqpair->num_completions = 0; 2614 do { 2615 batch_size = spdk_min((max_completions - rqpair->num_completions), MAX_COMPLETIONS_PER_POLL); 2616 rc = nvme_rdma_cq_process_completions(cq, batch_size, NULL, rqpair, &rdma_completions); 2617 2618 if (rc == 0) { 2619 break; 2620 /* Handle the case where we fail to poll the cq. */ 2621 } else if (rc == -ECANCELED) { 2622 goto failed; 2623 } else if (rc == -ENXIO) { 2624 return rc; 2625 } 2626 } while (rqpair->num_completions < max_completions); 2627 2628 if (spdk_unlikely(nvme_rdma_qpair_submit_sends(rqpair) || 2629 nvme_rdma_qpair_submit_recvs(rqpair))) { 2630 goto failed; 2631 } 2632 2633 if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) { 2634 nvme_rdma_qpair_check_timeout(qpair); 2635 } 2636 2637 return rqpair->num_completions; 2638 2639 failed: 2640 nvme_rdma_fail_qpair(qpair, 0); 2641 return -ENXIO; 2642 } 2643 2644 static uint32_t 2645 nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr) 2646 { 2647 /* max_mr_size by ibv_query_device indicates the largest value that we can 2648 * set for a registered memory region. It is independent from the actual 2649 * I/O size and is very likely to be larger than 2 MiB which is the 2650 * granularity we currently register memory regions. Hence return 2651 * UINT32_MAX here and let the generic layer use the controller data to 2652 * moderate this value. 2653 */ 2654 return UINT32_MAX; 2655 } 2656 2657 static uint16_t 2658 nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr) 2659 { 2660 struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr); 2661 uint32_t max_sge = rctrlr->max_sge; 2662 uint32_t max_in_capsule_sge = (ctrlr->cdata.nvmf_specific.ioccsz * 16 - 2663 sizeof(struct spdk_nvme_cmd)) / 2664 sizeof(struct spdk_nvme_sgl_descriptor); 2665 2666 /* Max SGE is limited by capsule size */ 2667 max_sge = spdk_min(max_sge, max_in_capsule_sge); 2668 /* Max SGE may be limited by MSDBD */ 2669 if (ctrlr->cdata.nvmf_specific.msdbd != 0) { 2670 max_sge = spdk_min(max_sge, ctrlr->cdata.nvmf_specific.msdbd); 2671 } 2672 2673 /* Max SGE can't be less than 1 */ 2674 max_sge = spdk_max(1, max_sge); 2675 return max_sge; 2676 } 2677 2678 static int 2679 nvme_rdma_qpair_iterate_requests(struct spdk_nvme_qpair *qpair, 2680 int (*iter_fn)(struct nvme_request *req, void *arg), 2681 void *arg) 2682 { 2683 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2684 struct spdk_nvme_rdma_req *rdma_req, *tmp; 2685 int rc; 2686 2687 assert(iter_fn != NULL); 2688 2689 TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { 2690 assert(rdma_req->req != NULL); 2691 2692 rc = iter_fn(rdma_req->req, arg); 2693 if (rc != 0) { 2694 return rc; 2695 } 2696 } 2697 2698 return 0; 2699 } 2700 2701 static void 2702 nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair) 2703 { 2704 struct spdk_nvme_rdma_req *rdma_req, *tmp; 2705 struct spdk_nvme_cpl cpl; 2706 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2707 2708 cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; 2709 cpl.status.sct = SPDK_NVME_SCT_GENERIC; 2710 2711 TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { 2712 assert(rdma_req->req != NULL); 2713 2714 if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { 2715 continue; 2716 } 2717 2718 nvme_rdma_req_complete(rdma_req, &cpl, false); 2719 } 2720 } 2721 2722 static void 2723 nvme_rdma_poller_destroy(struct nvme_rdma_poller *poller) 2724 { 2725 if (poller->cq) { 2726 ibv_destroy_cq(poller->cq); 2727 } 2728 free(poller); 2729 } 2730 2731 static struct nvme_rdma_poller * 2732 nvme_rdma_poller_create(struct nvme_rdma_poll_group *group, struct ibv_context *ctx) 2733 { 2734 struct nvme_rdma_poller *poller; 2735 2736 poller = calloc(1, sizeof(*poller)); 2737 if (poller == NULL) { 2738 SPDK_ERRLOG("Unable to allocate poller.\n"); 2739 return NULL; 2740 } 2741 2742 poller->group = group; 2743 poller->device = ctx; 2744 poller->cq = ibv_create_cq(poller->device, DEFAULT_NVME_RDMA_CQ_SIZE, group, NULL, 0); 2745 2746 if (poller->cq == NULL) { 2747 SPDK_ERRLOG("Unable to create CQ, errno %d.\n", errno); 2748 goto fail; 2749 } 2750 2751 STAILQ_INSERT_HEAD(&group->pollers, poller, link); 2752 group->num_pollers++; 2753 poller->current_num_wc = DEFAULT_NVME_RDMA_CQ_SIZE; 2754 poller->required_num_wc = 0; 2755 return poller; 2756 2757 fail: 2758 nvme_rdma_poller_destroy(poller); 2759 return NULL; 2760 } 2761 2762 static void 2763 nvme_rdma_poll_group_free_pollers(struct nvme_rdma_poll_group *group) 2764 { 2765 struct nvme_rdma_poller *poller, *tmp_poller; 2766 2767 STAILQ_FOREACH_SAFE(poller, &group->pollers, link, tmp_poller) { 2768 assert(poller->refcnt == 0); 2769 if (poller->refcnt) { 2770 SPDK_WARNLOG("Destroying poller with non-zero ref count: poller %p, refcnt %d\n", 2771 poller, poller->refcnt); 2772 } 2773 2774 STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link); 2775 nvme_rdma_poller_destroy(poller); 2776 } 2777 } 2778 2779 static struct nvme_rdma_poller * 2780 nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group, struct ibv_context *device) 2781 { 2782 struct nvme_rdma_poller *poller = NULL; 2783 2784 STAILQ_FOREACH(poller, &group->pollers, link) { 2785 if (poller->device == device) { 2786 break; 2787 } 2788 } 2789 2790 if (!poller) { 2791 poller = nvme_rdma_poller_create(group, device); 2792 if (!poller) { 2793 SPDK_ERRLOG("Failed to create a poller for device %p\n", device); 2794 return NULL; 2795 } 2796 } 2797 2798 poller->refcnt++; 2799 return poller; 2800 } 2801 2802 static void 2803 nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group, struct nvme_rdma_poller *poller) 2804 { 2805 assert(poller->refcnt > 0); 2806 if (--poller->refcnt == 0) { 2807 STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link); 2808 group->num_pollers--; 2809 nvme_rdma_poller_destroy(poller); 2810 } 2811 } 2812 2813 static struct spdk_nvme_transport_poll_group * 2814 nvme_rdma_poll_group_create(void) 2815 { 2816 struct nvme_rdma_poll_group *group; 2817 2818 group = calloc(1, sizeof(*group)); 2819 if (group == NULL) { 2820 SPDK_ERRLOG("Unable to allocate poll group.\n"); 2821 return NULL; 2822 } 2823 2824 STAILQ_INIT(&group->pollers); 2825 return &group->group; 2826 } 2827 2828 static int 2829 nvme_rdma_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair) 2830 { 2831 return 0; 2832 } 2833 2834 static int 2835 nvme_rdma_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair) 2836 { 2837 return 0; 2838 } 2839 2840 static int 2841 nvme_rdma_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup, 2842 struct spdk_nvme_qpair *qpair) 2843 { 2844 return 0; 2845 } 2846 2847 static int 2848 nvme_rdma_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup, 2849 struct spdk_nvme_qpair *qpair) 2850 { 2851 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2852 struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(tgroup); 2853 2854 assert(qpair->poll_group_tailq_head == &tgroup->disconnected_qpairs); 2855 2856 if (rqpair->poller) { 2857 nvme_rdma_poll_group_put_poller(group, rqpair->poller); 2858 2859 rqpair->poller = NULL; 2860 rqpair->cq = NULL; 2861 } 2862 2863 return 0; 2864 } 2865 2866 static int64_t 2867 nvme_rdma_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup, 2868 uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb) 2869 { 2870 struct spdk_nvme_qpair *qpair, *tmp_qpair; 2871 struct nvme_rdma_qpair *rqpair; 2872 struct nvme_rdma_poll_group *group; 2873 struct nvme_rdma_poller *poller; 2874 int num_qpairs = 0, batch_size, rc, rc2 = 0; 2875 int64_t total_completions = 0; 2876 uint64_t completions_allowed = 0; 2877 uint64_t completions_per_poller = 0; 2878 uint64_t poller_completions = 0; 2879 uint64_t rdma_completions; 2880 2881 if (completions_per_qpair == 0) { 2882 completions_per_qpair = MAX_COMPLETIONS_PER_POLL; 2883 } 2884 2885 group = nvme_rdma_poll_group(tgroup); 2886 STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) { 2887 rc = nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair); 2888 if (rc == 0) { 2889 disconnected_qpair_cb(qpair, tgroup->group->ctx); 2890 } 2891 } 2892 2893 STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) { 2894 rqpair = nvme_rdma_qpair(qpair); 2895 rqpair->num_completions = 0; 2896 2897 if (spdk_unlikely(nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING)) { 2898 rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair); 2899 if (rc == 0) { 2900 /* Once the connection is completed, we can submit queued requests */ 2901 nvme_qpair_resubmit_requests(qpair, rqpair->num_entries); 2902 } else if (rc != -EAGAIN) { 2903 SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair); 2904 nvme_rdma_fail_qpair(qpair, 0); 2905 continue; 2906 } 2907 } else { 2908 nvme_rdma_qpair_process_cm_event(rqpair); 2909 } 2910 2911 if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) { 2912 rc2 = -ENXIO; 2913 nvme_rdma_fail_qpair(qpair, 0); 2914 continue; 2915 } 2916 num_qpairs++; 2917 } 2918 2919 completions_allowed = completions_per_qpair * num_qpairs; 2920 if (group->num_pollers) { 2921 completions_per_poller = spdk_max(completions_allowed / group->num_pollers, 1); 2922 } 2923 2924 STAILQ_FOREACH(poller, &group->pollers, link) { 2925 poller_completions = 0; 2926 rdma_completions = 0; 2927 do { 2928 poller->stats.polls++; 2929 batch_size = spdk_min((completions_per_poller - poller_completions), MAX_COMPLETIONS_PER_POLL); 2930 rc = nvme_rdma_cq_process_completions(poller->cq, batch_size, poller, NULL, &rdma_completions); 2931 if (rc <= 0) { 2932 if (rc == -ECANCELED) { 2933 return -EIO; 2934 } else if (rc == 0) { 2935 poller->stats.idle_polls++; 2936 } 2937 break; 2938 } 2939 2940 poller_completions += rc; 2941 } while (poller_completions < completions_per_poller); 2942 total_completions += poller_completions; 2943 poller->stats.completions += rdma_completions; 2944 } 2945 2946 STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) { 2947 rqpair = nvme_rdma_qpair(qpair); 2948 2949 if (spdk_unlikely(rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING)) { 2950 continue; 2951 } 2952 2953 if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) { 2954 nvme_rdma_qpair_check_timeout(qpair); 2955 } 2956 2957 nvme_rdma_qpair_submit_sends(rqpair); 2958 nvme_rdma_qpair_submit_recvs(rqpair); 2959 if (rqpair->num_completions > 0) { 2960 nvme_qpair_resubmit_requests(qpair, rqpair->num_completions); 2961 } 2962 } 2963 2964 return rc2 != 0 ? rc2 : total_completions; 2965 } 2966 2967 static int 2968 nvme_rdma_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup) 2969 { 2970 struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(tgroup); 2971 2972 if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) { 2973 return -EBUSY; 2974 } 2975 2976 nvme_rdma_poll_group_free_pollers(group); 2977 free(group); 2978 2979 return 0; 2980 } 2981 2982 static int 2983 nvme_rdma_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup, 2984 struct spdk_nvme_transport_poll_group_stat **_stats) 2985 { 2986 struct nvme_rdma_poll_group *group; 2987 struct spdk_nvme_transport_poll_group_stat *stats; 2988 struct spdk_nvme_rdma_device_stat *device_stat; 2989 struct nvme_rdma_poller *poller; 2990 uint32_t i = 0; 2991 2992 if (tgroup == NULL || _stats == NULL) { 2993 SPDK_ERRLOG("Invalid stats or group pointer\n"); 2994 return -EINVAL; 2995 } 2996 2997 group = nvme_rdma_poll_group(tgroup); 2998 stats = calloc(1, sizeof(*stats)); 2999 if (!stats) { 3000 SPDK_ERRLOG("Can't allocate memory for RDMA stats\n"); 3001 return -ENOMEM; 3002 } 3003 stats->trtype = SPDK_NVME_TRANSPORT_RDMA; 3004 stats->rdma.num_devices = group->num_pollers; 3005 3006 if (stats->rdma.num_devices == 0) { 3007 *_stats = stats; 3008 return 0; 3009 } 3010 3011 stats->rdma.device_stats = calloc(stats->rdma.num_devices, sizeof(*stats->rdma.device_stats)); 3012 if (!stats->rdma.device_stats) { 3013 SPDK_ERRLOG("Can't allocate memory for RDMA device stats\n"); 3014 free(stats); 3015 return -ENOMEM; 3016 } 3017 3018 STAILQ_FOREACH(poller, &group->pollers, link) { 3019 device_stat = &stats->rdma.device_stats[i]; 3020 device_stat->name = poller->device->device->name; 3021 device_stat->polls = poller->stats.polls; 3022 device_stat->idle_polls = poller->stats.idle_polls; 3023 device_stat->completions = poller->stats.completions; 3024 device_stat->queued_requests = poller->stats.queued_requests; 3025 device_stat->total_send_wrs = poller->stats.rdma_stats.send.num_submitted_wrs; 3026 device_stat->send_doorbell_updates = poller->stats.rdma_stats.send.doorbell_updates; 3027 device_stat->total_recv_wrs = poller->stats.rdma_stats.recv.num_submitted_wrs; 3028 device_stat->recv_doorbell_updates = poller->stats.rdma_stats.recv.doorbell_updates; 3029 i++; 3030 } 3031 3032 *_stats = stats; 3033 3034 return 0; 3035 } 3036 3037 static void 3038 nvme_rdma_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup, 3039 struct spdk_nvme_transport_poll_group_stat *stats) 3040 { 3041 if (stats) { 3042 free(stats->rdma.device_stats); 3043 } 3044 free(stats); 3045 } 3046 3047 static int 3048 nvme_rdma_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr, 3049 struct spdk_memory_domain **domains, int array_size) 3050 { 3051 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(ctrlr->adminq); 3052 3053 if (domains && array_size > 0) { 3054 domains[0] = rqpair->memory_domain->domain; 3055 } 3056 3057 return 1; 3058 } 3059 3060 void 3061 spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) 3062 { 3063 g_nvme_hooks = *hooks; 3064 } 3065 3066 const struct spdk_nvme_transport_ops rdma_ops = { 3067 .name = "RDMA", 3068 .type = SPDK_NVME_TRANSPORT_RDMA, 3069 .ctrlr_construct = nvme_rdma_ctrlr_construct, 3070 .ctrlr_scan = nvme_fabric_ctrlr_scan, 3071 .ctrlr_destruct = nvme_rdma_ctrlr_destruct, 3072 .ctrlr_enable = nvme_rdma_ctrlr_enable, 3073 3074 .ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4, 3075 .ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8, 3076 .ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4, 3077 .ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8, 3078 .ctrlr_set_reg_4_async = nvme_fabric_ctrlr_set_reg_4_async, 3079 .ctrlr_set_reg_8_async = nvme_fabric_ctrlr_set_reg_8_async, 3080 .ctrlr_get_reg_4_async = nvme_fabric_ctrlr_get_reg_4_async, 3081 .ctrlr_get_reg_8_async = nvme_fabric_ctrlr_get_reg_8_async, 3082 3083 .ctrlr_get_max_xfer_size = nvme_rdma_ctrlr_get_max_xfer_size, 3084 .ctrlr_get_max_sges = nvme_rdma_ctrlr_get_max_sges, 3085 3086 .ctrlr_create_io_qpair = nvme_rdma_ctrlr_create_io_qpair, 3087 .ctrlr_delete_io_qpair = nvme_rdma_ctrlr_delete_io_qpair, 3088 .ctrlr_connect_qpair = nvme_rdma_ctrlr_connect_qpair, 3089 .ctrlr_disconnect_qpair = nvme_rdma_ctrlr_disconnect_qpair, 3090 3091 .ctrlr_get_memory_domains = nvme_rdma_ctrlr_get_memory_domains, 3092 3093 .qpair_abort_reqs = nvme_rdma_qpair_abort_reqs, 3094 .qpair_reset = nvme_rdma_qpair_reset, 3095 .qpair_submit_request = nvme_rdma_qpair_submit_request, 3096 .qpair_process_completions = nvme_rdma_qpair_process_completions, 3097 .qpair_iterate_requests = nvme_rdma_qpair_iterate_requests, 3098 .admin_qpair_abort_aers = nvme_rdma_admin_qpair_abort_aers, 3099 3100 .poll_group_create = nvme_rdma_poll_group_create, 3101 .poll_group_connect_qpair = nvme_rdma_poll_group_connect_qpair, 3102 .poll_group_disconnect_qpair = nvme_rdma_poll_group_disconnect_qpair, 3103 .poll_group_add = nvme_rdma_poll_group_add, 3104 .poll_group_remove = nvme_rdma_poll_group_remove, 3105 .poll_group_process_completions = nvme_rdma_poll_group_process_completions, 3106 .poll_group_destroy = nvme_rdma_poll_group_destroy, 3107 .poll_group_get_stats = nvme_rdma_poll_group_get_stats, 3108 .poll_group_free_stats = nvme_rdma_poll_group_free_stats, 3109 }; 3110 3111 SPDK_NVME_TRANSPORT_REGISTER(rdma, &rdma_ops); 3112