xref: /spdk/lib/nvme/nvme_rdma.c (revision d5eb9855ccfb15c200795f98c61584b6ad5a76b0)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 /*
8  * NVMe over RDMA transport
9  */
10 
11 #include "spdk/stdinc.h"
12 
13 #include "spdk/assert.h"
14 #include "spdk/dma.h"
15 #include "spdk/log.h"
16 #include "spdk/trace.h"
17 #include "spdk/queue.h"
18 #include "spdk/nvme.h"
19 #include "spdk/nvmf_spec.h"
20 #include "spdk/string.h"
21 #include "spdk/endian.h"
22 #include "spdk/likely.h"
23 #include "spdk/config.h"
24 
25 #include "nvme_internal.h"
26 #include "spdk_internal/rdma_provider.h"
27 #include "spdk_internal/rdma_utils.h"
28 
29 #define NVME_RDMA_TIME_OUT_IN_MS 2000
30 #define NVME_RDMA_RW_BUFFER_SIZE 131072
31 
32 /*
33  * NVME RDMA qpair Resource Defaults
34  */
35 #define NVME_RDMA_DEFAULT_TX_SGE		2
36 #define NVME_RDMA_DEFAULT_RX_SGE		1
37 
38 /* Max number of NVMe-oF SGL descriptors supported by the host */
39 #define NVME_RDMA_MAX_SGL_DESCRIPTORS		16
40 
41 /* number of STAILQ entries for holding pending RDMA CM events. */
42 #define NVME_RDMA_NUM_CM_EVENTS			256
43 
44 /* The default size for a shared rdma completion queue. */
45 #define DEFAULT_NVME_RDMA_CQ_SIZE		4096
46 
47 /*
48  * In the special case of a stale connection we don't expose a mechanism
49  * for the user to retry the connection so we need to handle it internally.
50  */
51 #define NVME_RDMA_STALE_CONN_RETRY_MAX		5
52 #define NVME_RDMA_STALE_CONN_RETRY_DELAY_US	10000
53 
54 /*
55  * Maximum value of transport_retry_count used by RDMA controller
56  */
57 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT	7
58 
59 /*
60  * Maximum value of transport_ack_timeout used by RDMA controller
61  */
62 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT	31
63 
64 /*
65  * Number of microseconds to wait until the lingering qpair becomes quiet.
66  */
67 #define NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US	1000000ull
68 
69 /*
70  * The max length of keyed SGL data block (3 bytes)
71  */
72 #define NVME_RDMA_MAX_KEYED_SGL_LENGTH ((1u << 24u) - 1)
73 
74 #define WC_PER_QPAIR(queue_depth)	(queue_depth * 2)
75 
76 #define NVME_RDMA_POLL_GROUP_CHECK_QPN(_rqpair, qpn)				\
77 	((_rqpair)->rdma_qp && (_rqpair)->rdma_qp->qp->qp_num == (qpn))	\
78 
79 enum nvme_rdma_wr_type {
80 	RDMA_WR_TYPE_RECV,
81 	RDMA_WR_TYPE_SEND,
82 };
83 
84 struct nvme_rdma_wr {
85 	/* Using this instead of the enum allows this struct to only occupy one byte. */
86 	uint8_t	type;
87 };
88 
89 struct spdk_nvmf_cmd {
90 	struct spdk_nvme_cmd cmd;
91 	struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS];
92 };
93 
94 struct spdk_nvme_rdma_hooks g_nvme_hooks = {};
95 
96 /* STAILQ wrapper for cm events. */
97 struct nvme_rdma_cm_event_entry {
98 	struct rdma_cm_event			*evt;
99 	STAILQ_ENTRY(nvme_rdma_cm_event_entry)	link;
100 };
101 
102 /* NVMe RDMA transport extensions for spdk_nvme_ctrlr */
103 struct nvme_rdma_ctrlr {
104 	struct spdk_nvme_ctrlr			ctrlr;
105 
106 	uint16_t				max_sge;
107 
108 	struct rdma_event_channel		*cm_channel;
109 
110 	STAILQ_HEAD(, nvme_rdma_cm_event_entry)	pending_cm_events;
111 
112 	STAILQ_HEAD(, nvme_rdma_cm_event_entry)	free_cm_events;
113 
114 	struct nvme_rdma_cm_event_entry		*cm_events;
115 };
116 
117 struct nvme_rdma_poller_stats {
118 	uint64_t polls;
119 	uint64_t idle_polls;
120 	uint64_t queued_requests;
121 	uint64_t completions;
122 	struct spdk_rdma_provider_qp_stats rdma_stats;
123 };
124 
125 struct nvme_rdma_poll_group;
126 struct nvme_rdma_rsps;
127 
128 struct nvme_rdma_poller {
129 	struct ibv_context		*device;
130 	struct ibv_cq			*cq;
131 	struct spdk_rdma_provider_srq	*srq;
132 	struct nvme_rdma_rsps		*rsps;
133 	struct ibv_pd			*pd;
134 	struct spdk_rdma_utils_mem_map	*mr_map;
135 	uint32_t			refcnt;
136 	int				required_num_wc;
137 	int				current_num_wc;
138 	struct nvme_rdma_poller_stats	stats;
139 	struct nvme_rdma_poll_group	*group;
140 	STAILQ_ENTRY(nvme_rdma_poller)	link;
141 };
142 
143 struct nvme_rdma_qpair;
144 
145 struct nvme_rdma_poll_group {
146 	struct spdk_nvme_transport_poll_group		group;
147 	STAILQ_HEAD(, nvme_rdma_poller)			pollers;
148 	uint32_t					num_pollers;
149 	TAILQ_HEAD(, nvme_rdma_qpair)			connecting_qpairs;
150 	TAILQ_HEAD(, nvme_rdma_qpair)			active_qpairs;
151 };
152 
153 enum nvme_rdma_qpair_state {
154 	NVME_RDMA_QPAIR_STATE_INVALID = 0,
155 	NVME_RDMA_QPAIR_STATE_STALE_CONN,
156 	NVME_RDMA_QPAIR_STATE_INITIALIZING,
157 	NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND,
158 	NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL,
159 	NVME_RDMA_QPAIR_STATE_RUNNING,
160 	NVME_RDMA_QPAIR_STATE_EXITING,
161 	NVME_RDMA_QPAIR_STATE_LINGERING,
162 	NVME_RDMA_QPAIR_STATE_EXITED,
163 };
164 
165 typedef int (*nvme_rdma_cm_event_cb)(struct nvme_rdma_qpair *rqpair, int ret);
166 
167 struct nvme_rdma_rsp_opts {
168 	uint16_t				num_entries;
169 	struct nvme_rdma_qpair			*rqpair;
170 	struct spdk_rdma_provider_srq		*srq;
171 	struct spdk_rdma_utils_mem_map		*mr_map;
172 };
173 
174 struct nvme_rdma_rsps {
175 	/* Parallel arrays of response buffers + response SGLs of size num_entries */
176 	struct ibv_sge				*rsp_sgls;
177 	struct spdk_nvme_rdma_rsp		*rsps;
178 
179 	struct ibv_recv_wr			*rsp_recv_wrs;
180 
181 	/* Count of outstanding recv objects */
182 	uint16_t				current_num_recvs;
183 
184 	uint16_t				num_entries;
185 };
186 
187 /* NVMe RDMA qpair extensions for spdk_nvme_qpair */
188 struct nvme_rdma_qpair {
189 	struct spdk_nvme_qpair			qpair;
190 
191 	struct spdk_rdma_provider_qp		*rdma_qp;
192 	struct rdma_cm_id			*cm_id;
193 	struct ibv_cq				*cq;
194 	struct spdk_rdma_provider_srq		*srq;
195 
196 	struct	spdk_nvme_rdma_req		*rdma_reqs;
197 
198 	uint32_t				max_send_sge;
199 
200 	uint32_t				max_recv_sge;
201 
202 	uint16_t				num_entries;
203 
204 	bool					delay_cmd_submit;
205 
206 	uint32_t				num_completions;
207 	uint32_t				num_outstanding_reqs;
208 
209 	struct nvme_rdma_rsps			*rsps;
210 
211 	/*
212 	 * Array of num_entries NVMe commands registered as RDMA message buffers.
213 	 * Indexed by rdma_req->id.
214 	 */
215 	struct spdk_nvmf_cmd			*cmds;
216 
217 	struct spdk_rdma_utils_mem_map		*mr_map;
218 
219 	TAILQ_HEAD(, spdk_nvme_rdma_req)	free_reqs;
220 	TAILQ_HEAD(, spdk_nvme_rdma_req)	outstanding_reqs;
221 
222 	struct spdk_memory_domain		*memory_domain;
223 
224 	/* Count of outstanding send objects */
225 	uint16_t				current_num_sends;
226 
227 	TAILQ_ENTRY(nvme_rdma_qpair)		link_active;
228 
229 	/* Placed at the end of the struct since it is not used frequently */
230 	struct rdma_cm_event			*evt;
231 	struct nvme_rdma_poller			*poller;
232 
233 	uint64_t				evt_timeout_ticks;
234 	nvme_rdma_cm_event_cb			evt_cb;
235 	enum rdma_cm_event_type			expected_evt_type;
236 
237 	enum nvme_rdma_qpair_state		state;
238 
239 	bool					in_connect_poll;
240 
241 	uint8_t					stale_conn_retry_count;
242 	bool					need_destroy;
243 
244 	TAILQ_ENTRY(nvme_rdma_qpair)		link_connecting;
245 };
246 
247 enum NVME_RDMA_COMPLETION_FLAGS {
248 	NVME_RDMA_SEND_COMPLETED = 1u << 0,
249 	NVME_RDMA_RECV_COMPLETED = 1u << 1,
250 };
251 
252 struct spdk_nvme_rdma_req {
253 	uint16_t				id;
254 	uint16_t				completion_flags: 2;
255 	uint16_t				reserved: 14;
256 	/* if completion of RDMA_RECV received before RDMA_SEND, we will complete nvme request
257 	 * during processing of RDMA_SEND. To complete the request we must know the response
258 	 * received in RDMA_RECV, so store it in this field */
259 	struct spdk_nvme_rdma_rsp		*rdma_rsp;
260 
261 	struct nvme_rdma_wr			rdma_wr;
262 
263 	struct ibv_send_wr			send_wr;
264 
265 	struct nvme_request			*req;
266 
267 	struct ibv_sge				send_sgl[NVME_RDMA_DEFAULT_TX_SGE];
268 
269 	TAILQ_ENTRY(spdk_nvme_rdma_req)		link;
270 };
271 
272 struct spdk_nvme_rdma_rsp {
273 	struct spdk_nvme_cpl	cpl;
274 	struct nvme_rdma_qpair	*rqpair;
275 	struct ibv_recv_wr	*recv_wr;
276 	struct nvme_rdma_wr	rdma_wr;
277 };
278 
279 struct nvme_rdma_memory_translation_ctx {
280 	void *addr;
281 	size_t length;
282 	uint32_t lkey;
283 	uint32_t rkey;
284 };
285 
286 static const char *rdma_cm_event_str[] = {
287 	"RDMA_CM_EVENT_ADDR_RESOLVED",
288 	"RDMA_CM_EVENT_ADDR_ERROR",
289 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
290 	"RDMA_CM_EVENT_ROUTE_ERROR",
291 	"RDMA_CM_EVENT_CONNECT_REQUEST",
292 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
293 	"RDMA_CM_EVENT_CONNECT_ERROR",
294 	"RDMA_CM_EVENT_UNREACHABLE",
295 	"RDMA_CM_EVENT_REJECTED",
296 	"RDMA_CM_EVENT_ESTABLISHED",
297 	"RDMA_CM_EVENT_DISCONNECTED",
298 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
299 	"RDMA_CM_EVENT_MULTICAST_JOIN",
300 	"RDMA_CM_EVENT_MULTICAST_ERROR",
301 	"RDMA_CM_EVENT_ADDR_CHANGE",
302 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
303 };
304 
305 static struct nvme_rdma_poller *nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group,
306 		struct ibv_context *device);
307 static void nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group,
308 		struct nvme_rdma_poller *poller);
309 
310 static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
311 		struct spdk_nvme_qpair *qpair);
312 
313 static inline struct nvme_rdma_qpair *
314 nvme_rdma_qpair(struct spdk_nvme_qpair *qpair)
315 {
316 	assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA);
317 	return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair);
318 }
319 
320 static inline struct nvme_rdma_poll_group *
321 nvme_rdma_poll_group(struct spdk_nvme_transport_poll_group *group)
322 {
323 	return (SPDK_CONTAINEROF(group, struct nvme_rdma_poll_group, group));
324 }
325 
326 static inline struct nvme_rdma_ctrlr *
327 nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
328 {
329 	assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA);
330 	return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr);
331 }
332 
333 static struct spdk_nvme_rdma_req *
334 nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair)
335 {
336 	struct spdk_nvme_rdma_req *rdma_req;
337 
338 	rdma_req = TAILQ_FIRST(&rqpair->free_reqs);
339 	if (rdma_req) {
340 		TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link);
341 	}
342 
343 	return rdma_req;
344 }
345 
346 static void
347 nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
348 {
349 	rdma_req->completion_flags = 0;
350 	rdma_req->req = NULL;
351 	rdma_req->rdma_rsp = NULL;
352 	TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link);
353 }
354 
355 static void
356 nvme_rdma_req_complete(struct spdk_nvme_rdma_req *rdma_req,
357 		       struct spdk_nvme_cpl *rsp,
358 		       bool print_on_error)
359 {
360 	struct nvme_request *req = rdma_req->req;
361 	struct nvme_rdma_qpair *rqpair;
362 	struct spdk_nvme_qpair *qpair;
363 	bool error, print_error;
364 
365 	assert(req != NULL);
366 
367 	qpair = req->qpair;
368 	rqpair = nvme_rdma_qpair(qpair);
369 
370 	error = spdk_nvme_cpl_is_error(rsp);
371 	print_error = error && print_on_error && !qpair->ctrlr->opts.disable_error_logging;
372 
373 	if (print_error) {
374 		spdk_nvme_qpair_print_command(qpair, &req->cmd);
375 	}
376 
377 	if (print_error || SPDK_DEBUGLOG_FLAG_ENABLED("nvme")) {
378 		spdk_nvme_qpair_print_completion(qpair, rsp);
379 	}
380 
381 	assert(rqpair->num_outstanding_reqs > 0);
382 	rqpair->num_outstanding_reqs--;
383 
384 	TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
385 
386 	nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, rsp);
387 	nvme_rdma_req_put(rqpair, rdma_req);
388 }
389 
390 static const char *
391 nvme_rdma_cm_event_str_get(uint32_t event)
392 {
393 	if (event < SPDK_COUNTOF(rdma_cm_event_str)) {
394 		return rdma_cm_event_str[event];
395 	} else {
396 		return "Undefined";
397 	}
398 }
399 
400 
401 static int
402 nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair)
403 {
404 	struct rdma_cm_event				*event = rqpair->evt;
405 	struct spdk_nvmf_rdma_accept_private_data	*accept_data;
406 	int						rc = 0;
407 
408 	if (event) {
409 		switch (event->event) {
410 		case RDMA_CM_EVENT_ADDR_RESOLVED:
411 		case RDMA_CM_EVENT_ADDR_ERROR:
412 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
413 		case RDMA_CM_EVENT_ROUTE_ERROR:
414 			break;
415 		case RDMA_CM_EVENT_CONNECT_REQUEST:
416 			break;
417 		case RDMA_CM_EVENT_CONNECT_ERROR:
418 			break;
419 		case RDMA_CM_EVENT_UNREACHABLE:
420 		case RDMA_CM_EVENT_REJECTED:
421 			break;
422 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
423 			rc = spdk_rdma_provider_qp_complete_connect(rqpair->rdma_qp);
424 		/* fall through */
425 		case RDMA_CM_EVENT_ESTABLISHED:
426 			accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data;
427 			if (accept_data == NULL) {
428 				rc = -1;
429 			} else {
430 				SPDK_DEBUGLOG(nvme, "Requested queue depth %d. Target receive queue depth %d.\n",
431 					      rqpair->num_entries + 1, accept_data->crqsize);
432 			}
433 			break;
434 		case RDMA_CM_EVENT_DISCONNECTED:
435 			rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
436 			break;
437 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
438 			rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
439 			rqpair->need_destroy = true;
440 			break;
441 		case RDMA_CM_EVENT_MULTICAST_JOIN:
442 		case RDMA_CM_EVENT_MULTICAST_ERROR:
443 			break;
444 		case RDMA_CM_EVENT_ADDR_CHANGE:
445 			rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
446 			break;
447 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
448 			break;
449 		default:
450 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
451 			break;
452 		}
453 		rqpair->evt = NULL;
454 		rdma_ack_cm_event(event);
455 	}
456 
457 	return rc;
458 }
459 
460 /*
461  * This function must be called under the nvme controller's lock
462  * because it touches global controller variables. The lock is taken
463  * by the generic transport code before invoking a few of the functions
464  * in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair,
465  * and conditionally nvme_rdma_qpair_process_completions when it is calling
466  * completions on the admin qpair. When adding a new call to this function, please
467  * verify that it is in a situation where it falls under the lock.
468  */
469 static int
470 nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr)
471 {
472 	struct nvme_rdma_cm_event_entry	*entry, *tmp;
473 	struct nvme_rdma_qpair		*event_qpair;
474 	struct rdma_cm_event		*event;
475 	struct rdma_event_channel	*channel = rctrlr->cm_channel;
476 
477 	STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
478 		event_qpair = entry->evt->id->context;
479 		if (event_qpair->evt == NULL) {
480 			event_qpair->evt = entry->evt;
481 			STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
482 			STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
483 		}
484 	}
485 
486 	while (rdma_get_cm_event(channel, &event) == 0) {
487 		event_qpair = event->id->context;
488 		if (event_qpair->evt == NULL) {
489 			event_qpair->evt = event;
490 		} else {
491 			assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr));
492 			entry = STAILQ_FIRST(&rctrlr->free_cm_events);
493 			if (entry == NULL) {
494 				rdma_ack_cm_event(event);
495 				return -ENOMEM;
496 			}
497 			STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link);
498 			entry->evt = event;
499 			STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link);
500 		}
501 	}
502 
503 	/* rdma_get_cm_event() returns -1 on error. If an error occurs, errno
504 	 * will be set to indicate the failure reason. So return negated errno here.
505 	 */
506 	return -errno;
507 }
508 
509 static int
510 nvme_rdma_validate_cm_event(enum rdma_cm_event_type expected_evt_type,
511 			    struct rdma_cm_event *reaped_evt)
512 {
513 	int rc = -EBADMSG;
514 
515 	if (expected_evt_type == reaped_evt->event) {
516 		return 0;
517 	}
518 
519 	switch (expected_evt_type) {
520 	case RDMA_CM_EVENT_ESTABLISHED:
521 		/*
522 		 * There is an enum ib_cm_rej_reason in the kernel headers that sets 10 as
523 		 * IB_CM_REJ_STALE_CONN. I can't find the corresponding userspace but we get
524 		 * the same values here.
525 		 */
526 		if (reaped_evt->event == RDMA_CM_EVENT_REJECTED && reaped_evt->status == 10) {
527 			rc = -ESTALE;
528 		} else if (reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE) {
529 			/*
530 			 *  If we are using a qpair which is not created using rdma cm API
531 			 *  then we will receive RDMA_CM_EVENT_CONNECT_RESPONSE instead of
532 			 *  RDMA_CM_EVENT_ESTABLISHED.
533 			 */
534 			return 0;
535 		}
536 		break;
537 	default:
538 		break;
539 	}
540 
541 	SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n",
542 		    nvme_rdma_cm_event_str_get(expected_evt_type),
543 		    nvme_rdma_cm_event_str_get(reaped_evt->event), reaped_evt->event,
544 		    reaped_evt->status);
545 	return rc;
546 }
547 
548 static int
549 nvme_rdma_process_event_start(struct nvme_rdma_qpair *rqpair,
550 			      enum rdma_cm_event_type evt,
551 			      nvme_rdma_cm_event_cb evt_cb)
552 {
553 	int	rc;
554 
555 	assert(evt_cb != NULL);
556 
557 	if (rqpair->evt != NULL) {
558 		rc = nvme_rdma_qpair_process_cm_event(rqpair);
559 		if (rc) {
560 			return rc;
561 		}
562 	}
563 
564 	rqpair->expected_evt_type = evt;
565 	rqpair->evt_cb = evt_cb;
566 	rqpair->evt_timeout_ticks = (g_spdk_nvme_transport_opts.rdma_cm_event_timeout_ms * 1000 *
567 				     spdk_get_ticks_hz()) / SPDK_SEC_TO_USEC + spdk_get_ticks();
568 
569 	return 0;
570 }
571 
572 static int
573 nvme_rdma_process_event_poll(struct nvme_rdma_qpair *rqpair)
574 {
575 	struct nvme_rdma_ctrlr	*rctrlr;
576 	int	rc = 0, rc2;
577 
578 	rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
579 	assert(rctrlr != NULL);
580 
581 	if (!rqpair->evt && spdk_get_ticks() < rqpair->evt_timeout_ticks) {
582 		rc = nvme_rdma_poll_events(rctrlr);
583 		if (rc == -EAGAIN || rc == -EWOULDBLOCK) {
584 			return rc;
585 		}
586 	}
587 
588 	if (rqpair->evt == NULL) {
589 		rc = -EADDRNOTAVAIL;
590 		goto exit;
591 	}
592 
593 	rc = nvme_rdma_validate_cm_event(rqpair->expected_evt_type, rqpair->evt);
594 
595 	rc2 = nvme_rdma_qpair_process_cm_event(rqpair);
596 	/* bad message takes precedence over the other error codes from processing the event. */
597 	rc = rc == 0 ? rc2 : rc;
598 
599 exit:
600 	assert(rqpair->evt_cb != NULL);
601 	return rqpair->evt_cb(rqpair, rc);
602 }
603 
604 static int
605 nvme_rdma_resize_cq(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poller *poller)
606 {
607 	int	current_num_wc, required_num_wc;
608 	int	max_cq_size;
609 
610 	required_num_wc = poller->required_num_wc + WC_PER_QPAIR(rqpair->num_entries);
611 	current_num_wc = poller->current_num_wc;
612 	if (current_num_wc < required_num_wc) {
613 		current_num_wc = spdk_max(current_num_wc * 2, required_num_wc);
614 	}
615 
616 	max_cq_size = g_spdk_nvme_transport_opts.rdma_max_cq_size;
617 	if (max_cq_size != 0 && current_num_wc > max_cq_size) {
618 		current_num_wc = max_cq_size;
619 	}
620 
621 	if (poller->current_num_wc != current_num_wc) {
622 		SPDK_DEBUGLOG(nvme, "Resize RDMA CQ from %d to %d\n", poller->current_num_wc,
623 			      current_num_wc);
624 		if (ibv_resize_cq(poller->cq, current_num_wc)) {
625 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
626 			return -1;
627 		}
628 
629 		poller->current_num_wc = current_num_wc;
630 	}
631 
632 	poller->required_num_wc = required_num_wc;
633 	return 0;
634 }
635 
636 static int
637 nvme_rdma_qpair_set_poller(struct spdk_nvme_qpair *qpair)
638 {
639 	struct nvme_rdma_qpair          *rqpair = nvme_rdma_qpair(qpair);
640 	struct nvme_rdma_poll_group     *group = nvme_rdma_poll_group(qpair->poll_group);
641 	struct nvme_rdma_poller         *poller;
642 
643 	assert(rqpair->cq == NULL);
644 
645 	poller = nvme_rdma_poll_group_get_poller(group, rqpair->cm_id->verbs);
646 	if (!poller) {
647 		SPDK_ERRLOG("Unable to find a cq for qpair %p on poll group %p\n", qpair, qpair->poll_group);
648 		return -EINVAL;
649 	}
650 
651 	if (!poller->srq) {
652 		if (nvme_rdma_resize_cq(rqpair, poller)) {
653 			nvme_rdma_poll_group_put_poller(group, poller);
654 			return -EPROTO;
655 		}
656 	}
657 
658 	rqpair->cq = poller->cq;
659 	rqpair->srq = poller->srq;
660 	if (rqpair->srq) {
661 		rqpair->rsps = poller->rsps;
662 	}
663 	rqpair->poller = poller;
664 	return 0;
665 }
666 
667 static int
668 nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair)
669 {
670 	int			rc;
671 	struct spdk_rdma_provider_qp_init_attr	attr = {};
672 	struct ibv_device_attr	dev_attr;
673 	struct nvme_rdma_ctrlr	*rctrlr;
674 	uint32_t num_cqe, max_num_cqe;
675 
676 	rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr);
677 	if (rc != 0) {
678 		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
679 		return -1;
680 	}
681 
682 	if (rqpair->qpair.poll_group) {
683 		assert(!rqpair->cq);
684 		rc = nvme_rdma_qpair_set_poller(&rqpair->qpair);
685 		if (rc) {
686 			SPDK_ERRLOG("Unable to activate the rdmaqpair.\n");
687 			return -1;
688 		}
689 		assert(rqpair->cq);
690 	} else {
691 		num_cqe = rqpair->num_entries * 2;
692 		max_num_cqe = g_spdk_nvme_transport_opts.rdma_max_cq_size;
693 		if (max_num_cqe != 0 && num_cqe > max_num_cqe) {
694 			num_cqe = max_num_cqe;
695 		}
696 		rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, num_cqe, rqpair, NULL, 0);
697 		if (!rqpair->cq) {
698 			SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno));
699 			return -1;
700 		}
701 	}
702 
703 	rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
704 	if (g_nvme_hooks.get_ibv_pd) {
705 		attr.pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs);
706 	} else {
707 		attr.pd = spdk_rdma_utils_get_pd(rqpair->cm_id->verbs);
708 	}
709 
710 	attr.stats =		rqpair->poller ? &rqpair->poller->stats.rdma_stats : NULL;
711 	attr.send_cq		= rqpair->cq;
712 	attr.recv_cq		= rqpair->cq;
713 	attr.cap.max_send_wr	= rqpair->num_entries; /* SEND operations */
714 	if (rqpair->srq) {
715 		attr.srq	= rqpair->srq->srq;
716 	} else {
717 		attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */
718 	}
719 	attr.cap.max_send_sge	= spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge);
720 	attr.cap.max_recv_sge	= spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge);
721 
722 	rqpair->rdma_qp = spdk_rdma_provider_qp_create(rqpair->cm_id, &attr);
723 
724 	if (!rqpair->rdma_qp) {
725 		return -1;
726 	}
727 
728 	rqpair->memory_domain = spdk_rdma_utils_get_memory_domain(rqpair->rdma_qp->qp->pd);
729 	if (!rqpair->memory_domain) {
730 		SPDK_ERRLOG("Failed to get memory domain\n");
731 		return -1;
732 	}
733 
734 	/* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */
735 	rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge);
736 	rqpair->max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, attr.cap.max_recv_sge);
737 	rqpair->current_num_sends = 0;
738 
739 	rqpair->cm_id->context = rqpair;
740 
741 	return 0;
742 }
743 
744 static void
745 nvme_rdma_reset_failed_sends(struct nvme_rdma_qpair *rqpair,
746 			     struct ibv_send_wr *bad_send_wr, int rc)
747 {
748 	SPDK_ERRLOG("Failed to post WRs on send queue, errno %d (%s), bad_wr %p\n",
749 		    rc, spdk_strerror(rc), bad_send_wr);
750 	while (bad_send_wr != NULL) {
751 		assert(rqpair->current_num_sends > 0);
752 		rqpair->current_num_sends--;
753 		bad_send_wr = bad_send_wr->next;
754 	}
755 }
756 
757 static void
758 nvme_rdma_reset_failed_recvs(struct nvme_rdma_rsps *rsps,
759 			     struct ibv_recv_wr *bad_recv_wr, int rc)
760 {
761 	SPDK_ERRLOG("Failed to post WRs on receive queue, errno %d (%s), bad_wr %p\n",
762 		    rc, spdk_strerror(rc), bad_recv_wr);
763 	while (bad_recv_wr != NULL) {
764 		assert(rsps->current_num_recvs > 0);
765 		rsps->current_num_recvs--;
766 		bad_recv_wr = bad_recv_wr->next;
767 	}
768 }
769 
770 static inline int
771 nvme_rdma_qpair_submit_sends(struct nvme_rdma_qpair *rqpair)
772 {
773 	struct ibv_send_wr *bad_send_wr = NULL;
774 	int rc;
775 
776 	rc = spdk_rdma_provider_qp_flush_send_wrs(rqpair->rdma_qp, &bad_send_wr);
777 
778 	if (spdk_unlikely(rc)) {
779 		nvme_rdma_reset_failed_sends(rqpair, bad_send_wr, rc);
780 	}
781 
782 	return rc;
783 }
784 
785 static inline int
786 nvme_rdma_qpair_submit_recvs(struct nvme_rdma_qpair *rqpair)
787 {
788 	struct ibv_recv_wr *bad_recv_wr;
789 	int rc = 0;
790 
791 	rc = spdk_rdma_provider_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
792 	if (spdk_unlikely(rc)) {
793 		nvme_rdma_reset_failed_recvs(rqpair->rsps, bad_recv_wr, rc);
794 	}
795 
796 	return rc;
797 }
798 
799 static inline int
800 nvme_rdma_poller_submit_recvs(struct nvme_rdma_poller *poller)
801 {
802 	struct ibv_recv_wr *bad_recv_wr;
803 	int rc;
804 
805 	rc = spdk_rdma_provider_srq_flush_recv_wrs(poller->srq, &bad_recv_wr);
806 	if (spdk_unlikely(rc)) {
807 		nvme_rdma_reset_failed_recvs(poller->rsps, bad_recv_wr, rc);
808 	}
809 
810 	return rc;
811 }
812 
813 #define nvme_rdma_trace_ibv_sge(sg_list) \
814 	if (sg_list) { \
815 		SPDK_DEBUGLOG(nvme, "local addr %p length 0x%x lkey 0x%x\n", \
816 			      (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \
817 	}
818 
819 static void
820 nvme_rdma_free_rsps(struct nvme_rdma_rsps *rsps)
821 {
822 	if (!rsps) {
823 		return;
824 	}
825 
826 	spdk_free(rsps->rsps);
827 	spdk_free(rsps->rsp_sgls);
828 	spdk_free(rsps->rsp_recv_wrs);
829 	spdk_free(rsps);
830 }
831 
832 static struct nvme_rdma_rsps *
833 nvme_rdma_create_rsps(struct nvme_rdma_rsp_opts *opts)
834 {
835 	struct nvme_rdma_rsps *rsps;
836 	struct spdk_rdma_utils_memory_translation translation;
837 	uint16_t i;
838 	int rc;
839 
840 	rsps = spdk_zmalloc(sizeof(*rsps), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
841 	if (!rsps) {
842 		SPDK_ERRLOG("Failed to allocate rsps object\n");
843 		return NULL;
844 	}
845 
846 	rsps->rsp_sgls = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_sgls), 0, NULL,
847 				      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
848 	if (!rsps->rsp_sgls) {
849 		SPDK_ERRLOG("Failed to allocate rsp_sgls\n");
850 		goto fail;
851 	}
852 
853 	rsps->rsp_recv_wrs = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_recv_wrs), 0, NULL,
854 					  SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
855 	if (!rsps->rsp_recv_wrs) {
856 		SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n");
857 		goto fail;
858 	}
859 
860 	rsps->rsps = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsps), 0, NULL,
861 				  SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
862 	if (!rsps->rsps) {
863 		SPDK_ERRLOG("can not allocate rdma rsps\n");
864 		goto fail;
865 	}
866 
867 	for (i = 0; i < opts->num_entries; i++) {
868 		struct ibv_sge *rsp_sgl = &rsps->rsp_sgls[i];
869 		struct spdk_nvme_rdma_rsp *rsp = &rsps->rsps[i];
870 		struct ibv_recv_wr *recv_wr = &rsps->rsp_recv_wrs[i];
871 
872 		rsp->rqpair = opts->rqpair;
873 		rsp->rdma_wr.type = RDMA_WR_TYPE_RECV;
874 		rsp->recv_wr = recv_wr;
875 		rsp_sgl->addr = (uint64_t)rsp;
876 		rsp_sgl->length = sizeof(struct spdk_nvme_cpl);
877 		rc = spdk_rdma_utils_get_translation(opts->mr_map, rsp, sizeof(*rsp), &translation);
878 		if (rc) {
879 			goto fail;
880 		}
881 		rsp_sgl->lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation);
882 
883 		recv_wr->wr_id = (uint64_t)&rsp->rdma_wr;
884 		recv_wr->next = NULL;
885 		recv_wr->sg_list = rsp_sgl;
886 		recv_wr->num_sge = 1;
887 
888 		nvme_rdma_trace_ibv_sge(recv_wr->sg_list);
889 
890 		if (opts->rqpair) {
891 			spdk_rdma_provider_qp_queue_recv_wrs(opts->rqpair->rdma_qp, recv_wr);
892 		} else {
893 			spdk_rdma_provider_srq_queue_recv_wrs(opts->srq, recv_wr);
894 		}
895 	}
896 
897 	rsps->num_entries = opts->num_entries;
898 	rsps->current_num_recvs = opts->num_entries;
899 
900 	return rsps;
901 fail:
902 	nvme_rdma_free_rsps(rsps);
903 	return NULL;
904 }
905 
906 static void
907 nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair)
908 {
909 	if (!rqpair->rdma_reqs) {
910 		return;
911 	}
912 
913 	spdk_free(rqpair->cmds);
914 	rqpair->cmds = NULL;
915 
916 	spdk_free(rqpair->rdma_reqs);
917 	rqpair->rdma_reqs = NULL;
918 }
919 
920 static int
921 nvme_rdma_create_reqs(struct nvme_rdma_qpair *rqpair)
922 {
923 	struct spdk_rdma_utils_memory_translation translation;
924 	uint16_t i;
925 	int rc;
926 
927 	assert(!rqpair->rdma_reqs);
928 	rqpair->rdma_reqs = spdk_zmalloc(rqpair->num_entries * sizeof(struct spdk_nvme_rdma_req), 0, NULL,
929 					 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
930 	if (rqpair->rdma_reqs == NULL) {
931 		SPDK_ERRLOG("Failed to allocate rdma_reqs\n");
932 		goto fail;
933 	}
934 
935 	assert(!rqpair->cmds);
936 	rqpair->cmds = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->cmds), 0, NULL,
937 				    SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
938 	if (!rqpair->cmds) {
939 		SPDK_ERRLOG("Failed to allocate RDMA cmds\n");
940 		goto fail;
941 	}
942 
943 	TAILQ_INIT(&rqpair->free_reqs);
944 	TAILQ_INIT(&rqpair->outstanding_reqs);
945 	for (i = 0; i < rqpair->num_entries; i++) {
946 		struct spdk_nvme_rdma_req	*rdma_req;
947 		struct spdk_nvmf_cmd		*cmd;
948 
949 		rdma_req = &rqpair->rdma_reqs[i];
950 		rdma_req->rdma_wr.type = RDMA_WR_TYPE_SEND;
951 		cmd = &rqpair->cmds[i];
952 
953 		rdma_req->id = i;
954 
955 		rc = spdk_rdma_utils_get_translation(rqpair->mr_map, cmd, sizeof(*cmd), &translation);
956 		if (rc) {
957 			goto fail;
958 		}
959 		rdma_req->send_sgl[0].lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation);
960 
961 		/* The first RDMA sgl element will always point
962 		 * at this data structure. Depending on whether
963 		 * an NVMe-oF SGL is required, the length of
964 		 * this element may change. */
965 		rdma_req->send_sgl[0].addr = (uint64_t)cmd;
966 		rdma_req->send_wr.wr_id = (uint64_t)&rdma_req->rdma_wr;
967 		rdma_req->send_wr.next = NULL;
968 		rdma_req->send_wr.opcode = IBV_WR_SEND;
969 		rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED;
970 		rdma_req->send_wr.sg_list = rdma_req->send_sgl;
971 		rdma_req->send_wr.imm_data = 0;
972 
973 		TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link);
974 	}
975 
976 	return 0;
977 fail:
978 	nvme_rdma_free_reqs(rqpair);
979 	return -ENOMEM;
980 }
981 
982 static int nvme_rdma_connect(struct nvme_rdma_qpair *rqpair);
983 
984 static int
985 nvme_rdma_route_resolved(struct nvme_rdma_qpair *rqpair, int ret)
986 {
987 	if (ret) {
988 		SPDK_ERRLOG("RDMA route resolution error\n");
989 		return -1;
990 	}
991 
992 	ret = nvme_rdma_qpair_init(rqpair);
993 	if (ret < 0) {
994 		SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n");
995 		return -1;
996 	}
997 
998 	return nvme_rdma_connect(rqpair);
999 }
1000 
1001 static int
1002 nvme_rdma_addr_resolved(struct nvme_rdma_qpair *rqpair, int ret)
1003 {
1004 	if (ret) {
1005 		SPDK_ERRLOG("RDMA address resolution error\n");
1006 		return -1;
1007 	}
1008 
1009 	if (rqpair->qpair.ctrlr->opts.transport_ack_timeout != SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED) {
1010 #ifdef SPDK_CONFIG_RDMA_SET_ACK_TIMEOUT
1011 		uint8_t timeout = rqpair->qpair.ctrlr->opts.transport_ack_timeout;
1012 		ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID,
1013 				      RDMA_OPTION_ID_ACK_TIMEOUT,
1014 				      &timeout, sizeof(timeout));
1015 		if (ret) {
1016 			SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_ACK_TIMEOUT %d, ret %d\n", timeout, ret);
1017 		}
1018 #else
1019 		SPDK_DEBUGLOG(nvme, "transport_ack_timeout is not supported\n");
1020 #endif
1021 	}
1022 
1023 	if (rqpair->qpair.ctrlr->opts.transport_tos != SPDK_NVME_TRANSPORT_TOS_DISABLED) {
1024 #ifdef SPDK_CONFIG_RDMA_SET_TOS
1025 		uint8_t tos = rqpair->qpair.ctrlr->opts.transport_tos;
1026 		ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_TOS, &tos, sizeof(tos));
1027 		if (ret) {
1028 			SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_TOS %u, ret %d\n", tos, ret);
1029 		}
1030 #else
1031 		SPDK_DEBUGLOG(nvme, "transport_tos is not supported\n");
1032 #endif
1033 	}
1034 
1035 	ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS);
1036 	if (ret) {
1037 		SPDK_ERRLOG("rdma_resolve_route\n");
1038 		return ret;
1039 	}
1040 
1041 	return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ROUTE_RESOLVED,
1042 					     nvme_rdma_route_resolved);
1043 }
1044 
1045 static int
1046 nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair,
1047 		       struct sockaddr *src_addr,
1048 		       struct sockaddr *dst_addr)
1049 {
1050 	int ret;
1051 
1052 	if (src_addr) {
1053 		int reuse = 1;
1054 
1055 		ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
1056 				      &reuse, sizeof(reuse));
1057 		if (ret) {
1058 			SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_REUSEADDR %d, ret %d\n",
1059 				       reuse, ret);
1060 			/* It is likely that rdma_resolve_addr() returns -EADDRINUSE, but
1061 			 * we may missing something. We rely on rdma_resolve_addr().
1062 			 */
1063 		}
1064 	}
1065 
1066 	ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr,
1067 				NVME_RDMA_TIME_OUT_IN_MS);
1068 	if (ret) {
1069 		SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno);
1070 		return ret;
1071 	}
1072 
1073 	return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ADDR_RESOLVED,
1074 					     nvme_rdma_addr_resolved);
1075 }
1076 
1077 static int nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair);
1078 
1079 static int
1080 nvme_rdma_connect_established(struct nvme_rdma_qpair *rqpair, int ret)
1081 {
1082 	struct nvme_rdma_rsp_opts opts = {};
1083 
1084 	if (ret == -ESTALE) {
1085 		return nvme_rdma_stale_conn_retry(rqpair);
1086 	} else if (ret) {
1087 		SPDK_ERRLOG("RDMA connect error %d\n", ret);
1088 		return ret;
1089 	}
1090 
1091 	assert(!rqpair->mr_map);
1092 	rqpair->mr_map = spdk_rdma_utils_create_mem_map(rqpair->rdma_qp->qp->pd, &g_nvme_hooks,
1093 			 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_READ | IBV_ACCESS_REMOTE_WRITE);
1094 	if (!rqpair->mr_map) {
1095 		SPDK_ERRLOG("Unable to register RDMA memory translation map\n");
1096 		return -1;
1097 	}
1098 
1099 	ret = nvme_rdma_create_reqs(rqpair);
1100 	SPDK_DEBUGLOG(nvme, "rc =%d\n", ret);
1101 	if (ret) {
1102 		SPDK_ERRLOG("Unable to create rqpair RDMA requests\n");
1103 		return -1;
1104 	}
1105 	SPDK_DEBUGLOG(nvme, "RDMA requests created\n");
1106 
1107 	if (!rqpair->srq) {
1108 		opts.num_entries = rqpair->num_entries;
1109 		opts.rqpair = rqpair;
1110 		opts.srq = NULL;
1111 		opts.mr_map = rqpair->mr_map;
1112 
1113 		assert(!rqpair->rsps);
1114 		rqpair->rsps = nvme_rdma_create_rsps(&opts);
1115 		if (!rqpair->rsps) {
1116 			SPDK_ERRLOG("Unable to create rqpair RDMA responses\n");
1117 			return -1;
1118 		}
1119 		SPDK_DEBUGLOG(nvme, "RDMA responses created\n");
1120 
1121 		ret = nvme_rdma_qpair_submit_recvs(rqpair);
1122 		SPDK_DEBUGLOG(nvme, "rc =%d\n", ret);
1123 		if (ret) {
1124 			SPDK_ERRLOG("Unable to submit rqpair RDMA responses\n");
1125 			return -1;
1126 		}
1127 		SPDK_DEBUGLOG(nvme, "RDMA responses submitted\n");
1128 	}
1129 
1130 	rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND;
1131 
1132 	return 0;
1133 }
1134 
1135 static int
1136 nvme_rdma_connect(struct nvme_rdma_qpair *rqpair)
1137 {
1138 	struct rdma_conn_param				param = {};
1139 	struct spdk_nvmf_rdma_request_private_data	request_data = {};
1140 	struct ibv_device_attr				attr;
1141 	int						ret;
1142 	struct spdk_nvme_ctrlr				*ctrlr;
1143 
1144 	ret = ibv_query_device(rqpair->cm_id->verbs, &attr);
1145 	if (ret != 0) {
1146 		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
1147 		return ret;
1148 	}
1149 
1150 	param.responder_resources = attr.max_qp_rd_atom;
1151 
1152 	ctrlr = rqpair->qpair.ctrlr;
1153 	if (!ctrlr) {
1154 		return -1;
1155 	}
1156 
1157 	request_data.qid = rqpair->qpair.id;
1158 	request_data.hrqsize = rqpair->num_entries + 1;
1159 	request_data.hsqsize = rqpair->num_entries;
1160 	request_data.cntlid = ctrlr->cntlid;
1161 
1162 	param.private_data = &request_data;
1163 	param.private_data_len = sizeof(request_data);
1164 	param.retry_count = ctrlr->opts.transport_retry_count;
1165 	param.rnr_retry_count = 7;
1166 
1167 	/* Fields below are ignored by rdma cm if qpair has been
1168 	 * created using rdma cm API. */
1169 	param.srq = 0;
1170 	param.qp_num = rqpair->rdma_qp->qp->qp_num;
1171 
1172 	ret = rdma_connect(rqpair->cm_id, &param);
1173 	if (ret) {
1174 		SPDK_ERRLOG("nvme rdma connect error\n");
1175 		return ret;
1176 	}
1177 
1178 	return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ESTABLISHED,
1179 					     nvme_rdma_connect_established);
1180 }
1181 
1182 static int
1183 nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1184 {
1185 	struct sockaddr_storage dst_addr;
1186 	struct sockaddr_storage src_addr;
1187 	bool src_addr_specified;
1188 	long int port, src_port;
1189 	int rc;
1190 	struct nvme_rdma_ctrlr *rctrlr;
1191 	struct nvme_rdma_qpair *rqpair;
1192 	struct nvme_rdma_poll_group *group;
1193 	int family;
1194 
1195 	rqpair = nvme_rdma_qpair(qpair);
1196 	rctrlr = nvme_rdma_ctrlr(ctrlr);
1197 	assert(rctrlr != NULL);
1198 
1199 	switch (ctrlr->trid.adrfam) {
1200 	case SPDK_NVMF_ADRFAM_IPV4:
1201 		family = AF_INET;
1202 		break;
1203 	case SPDK_NVMF_ADRFAM_IPV6:
1204 		family = AF_INET6;
1205 		break;
1206 	default:
1207 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
1208 		return -1;
1209 	}
1210 
1211 	SPDK_DEBUGLOG(nvme, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);
1212 
1213 	memset(&dst_addr, 0, sizeof(dst_addr));
1214 
1215 	SPDK_DEBUGLOG(nvme, "trsvcid is %s\n", ctrlr->trid.trsvcid);
1216 	rc = nvme_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid, &port);
1217 	if (rc != 0) {
1218 		SPDK_ERRLOG("dst_addr nvme_parse_addr() failed\n");
1219 		return -1;
1220 	}
1221 
1222 	if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) {
1223 		memset(&src_addr, 0, sizeof(src_addr));
1224 		rc = nvme_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid, &src_port);
1225 		if (rc != 0) {
1226 			SPDK_ERRLOG("src_addr nvme_parse_addr() failed\n");
1227 			return -1;
1228 		}
1229 		src_addr_specified = true;
1230 	} else {
1231 		src_addr_specified = false;
1232 	}
1233 
1234 	rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP);
1235 	if (rc < 0) {
1236 		SPDK_ERRLOG("rdma_create_id() failed\n");
1237 		return -1;
1238 	}
1239 
1240 	rc = nvme_rdma_resolve_addr(rqpair,
1241 				    src_addr_specified ? (struct sockaddr *)&src_addr : NULL,
1242 				    (struct sockaddr *)&dst_addr);
1243 	if (rc < 0) {
1244 		SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n");
1245 		return -1;
1246 	}
1247 
1248 	rqpair->state = NVME_RDMA_QPAIR_STATE_INITIALIZING;
1249 
1250 	if (qpair->poll_group != NULL) {
1251 		group = nvme_rdma_poll_group(qpair->poll_group);
1252 		TAILQ_INSERT_TAIL(&group->connecting_qpairs, rqpair, link_connecting);
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 static int
1259 nvme_rdma_stale_conn_reconnect(struct nvme_rdma_qpair *rqpair)
1260 {
1261 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1262 
1263 	if (spdk_get_ticks() < rqpair->evt_timeout_ticks) {
1264 		return -EAGAIN;
1265 	}
1266 
1267 	return nvme_rdma_ctrlr_connect_qpair(qpair->ctrlr, qpair);
1268 }
1269 
1270 static int
1271 nvme_rdma_ctrlr_connect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr,
1272 				   struct spdk_nvme_qpair *qpair)
1273 {
1274 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1275 	int rc;
1276 
1277 	if (rqpair->in_connect_poll) {
1278 		return -EAGAIN;
1279 	}
1280 
1281 	rqpair->in_connect_poll = true;
1282 
1283 	switch (rqpair->state) {
1284 	case NVME_RDMA_QPAIR_STATE_INVALID:
1285 		rc = -EAGAIN;
1286 		break;
1287 
1288 	case NVME_RDMA_QPAIR_STATE_INITIALIZING:
1289 	case NVME_RDMA_QPAIR_STATE_EXITING:
1290 		if (!nvme_qpair_is_admin_queue(qpair)) {
1291 			nvme_ctrlr_lock(ctrlr);
1292 		}
1293 
1294 		rc = nvme_rdma_process_event_poll(rqpair);
1295 
1296 		if (!nvme_qpair_is_admin_queue(qpair)) {
1297 			nvme_ctrlr_unlock(ctrlr);
1298 		}
1299 
1300 		if (rc == 0) {
1301 			rc = -EAGAIN;
1302 		}
1303 		rqpair->in_connect_poll = false;
1304 
1305 		return rc;
1306 
1307 	case NVME_RDMA_QPAIR_STATE_STALE_CONN:
1308 		rc = nvme_rdma_stale_conn_reconnect(rqpair);
1309 		if (rc == 0) {
1310 			rc = -EAGAIN;
1311 		}
1312 		break;
1313 	case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND:
1314 		rc = nvme_fabric_qpair_connect_async(qpair, rqpair->num_entries + 1);
1315 		if (rc == 0) {
1316 			rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL;
1317 			rc = -EAGAIN;
1318 		} else {
1319 			SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n");
1320 		}
1321 		break;
1322 	case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL:
1323 		rc = nvme_fabric_qpair_connect_poll(qpair);
1324 		if (rc == 0) {
1325 			rqpair->state = NVME_RDMA_QPAIR_STATE_RUNNING;
1326 			nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
1327 		} else if (rc != -EAGAIN) {
1328 			SPDK_ERRLOG("Failed to poll NVMe-oF Fabric CONNECT command\n");
1329 		}
1330 		break;
1331 	case NVME_RDMA_QPAIR_STATE_RUNNING:
1332 		rc = 0;
1333 		break;
1334 	default:
1335 		assert(false);
1336 		rc = -EINVAL;
1337 		break;
1338 	}
1339 
1340 	rqpair->in_connect_poll = false;
1341 
1342 	return rc;
1343 }
1344 
1345 static inline int
1346 nvme_rdma_get_memory_translation(struct nvme_request *req, struct nvme_rdma_qpair *rqpair,
1347 				 struct nvme_rdma_memory_translation_ctx *_ctx)
1348 {
1349 	struct spdk_memory_domain_translation_ctx ctx;
1350 	struct spdk_memory_domain_translation_result dma_translation = {.iov_count = 0};
1351 	struct spdk_rdma_utils_memory_translation rdma_translation;
1352 	int rc;
1353 
1354 	assert(req);
1355 	assert(rqpair);
1356 	assert(_ctx);
1357 
1358 	if (req->payload.opts && req->payload.opts->memory_domain) {
1359 		ctx.size = sizeof(struct spdk_memory_domain_translation_ctx);
1360 		ctx.rdma.ibv_qp = rqpair->rdma_qp->qp;
1361 		dma_translation.size = sizeof(struct spdk_memory_domain_translation_result);
1362 
1363 		rc = spdk_memory_domain_translate_data(req->payload.opts->memory_domain,
1364 						       req->payload.opts->memory_domain_ctx,
1365 						       rqpair->memory_domain, &ctx, _ctx->addr,
1366 						       _ctx->length, &dma_translation);
1367 		if (spdk_unlikely(rc) || dma_translation.iov_count != 1) {
1368 			SPDK_ERRLOG("DMA memory translation failed, rc %d, iov count %u\n", rc, dma_translation.iov_count);
1369 			return rc;
1370 		}
1371 
1372 		_ctx->lkey = dma_translation.rdma.lkey;
1373 		_ctx->rkey = dma_translation.rdma.rkey;
1374 		_ctx->addr = dma_translation.iov.iov_base;
1375 		_ctx->length = dma_translation.iov.iov_len;
1376 	} else {
1377 		rc = spdk_rdma_utils_get_translation(rqpair->mr_map, _ctx->addr, _ctx->length, &rdma_translation);
1378 		if (spdk_unlikely(rc)) {
1379 			SPDK_ERRLOG("RDMA memory translation failed, rc %d\n", rc);
1380 			return rc;
1381 		}
1382 		if (rdma_translation.translation_type == SPDK_RDMA_UTILS_TRANSLATION_MR) {
1383 			_ctx->lkey = rdma_translation.mr_or_key.mr->lkey;
1384 			_ctx->rkey = rdma_translation.mr_or_key.mr->rkey;
1385 		} else {
1386 			_ctx->lkey = _ctx->rkey = (uint32_t)rdma_translation.mr_or_key.key;
1387 		}
1388 	}
1389 
1390 	return 0;
1391 }
1392 
1393 
1394 /*
1395  * Build SGL describing empty payload.
1396  */
1397 static int
1398 nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req)
1399 {
1400 	struct nvme_request *req = rdma_req->req;
1401 
1402 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1403 
1404 	/* The first element of this SGL is pointing at an
1405 	 * spdk_nvmf_cmd object. For this particular command,
1406 	 * we only need the first 64 bytes corresponding to
1407 	 * the NVMe command. */
1408 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1409 
1410 	/* The RDMA SGL needs one element describing the NVMe command. */
1411 	rdma_req->send_wr.num_sge = 1;
1412 
1413 	req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1414 	req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1415 	req->cmd.dptr.sgl1.keyed.length = 0;
1416 	req->cmd.dptr.sgl1.keyed.key = 0;
1417 	req->cmd.dptr.sgl1.address = 0;
1418 
1419 	return 0;
1420 }
1421 
1422 /*
1423  * Build inline SGL describing contiguous payload buffer.
1424  */
1425 static int
1426 nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair,
1427 				      struct spdk_nvme_rdma_req *rdma_req)
1428 {
1429 	struct nvme_request *req = rdma_req->req;
1430 	struct nvme_rdma_memory_translation_ctx ctx = {
1431 		.addr = (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset,
1432 		.length = req->payload_size
1433 	};
1434 	int rc;
1435 
1436 	assert(ctx.length != 0);
1437 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1438 
1439 	rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1440 	if (spdk_unlikely(rc)) {
1441 		return -1;
1442 	}
1443 
1444 	rdma_req->send_sgl[1].lkey = ctx.lkey;
1445 
1446 	/* The first element of this SGL is pointing at an
1447 	 * spdk_nvmf_cmd object. For this particular command,
1448 	 * we only need the first 64 bytes corresponding to
1449 	 * the NVMe command. */
1450 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1451 
1452 	rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr;
1453 	rdma_req->send_sgl[1].length = (uint32_t)ctx.length;
1454 
1455 	/* The RDMA SGL contains two elements. The first describes
1456 	 * the NVMe command and the second describes the data
1457 	 * payload. */
1458 	rdma_req->send_wr.num_sge = 2;
1459 
1460 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1461 	req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1462 	req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1463 	req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length;
1464 	/* Inline only supported for icdoff == 0 currently.  This function will
1465 	 * not get called for controllers with other values. */
1466 	req->cmd.dptr.sgl1.address = (uint64_t)0;
1467 
1468 	return 0;
1469 }
1470 
1471 /*
1472  * Build SGL describing contiguous payload buffer.
1473  */
1474 static int
1475 nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair,
1476 			       struct spdk_nvme_rdma_req *rdma_req)
1477 {
1478 	struct nvme_request *req = rdma_req->req;
1479 	struct nvme_rdma_memory_translation_ctx ctx = {
1480 		.addr = (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset,
1481 		.length = req->payload_size
1482 	};
1483 	int rc;
1484 
1485 	assert(req->payload_size != 0);
1486 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1487 
1488 	if (spdk_unlikely(req->payload_size > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
1489 		SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
1490 			    req->payload_size, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
1491 		return -1;
1492 	}
1493 
1494 	rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1495 	if (spdk_unlikely(rc)) {
1496 		return -1;
1497 	}
1498 
1499 	req->cmd.dptr.sgl1.keyed.key = ctx.rkey;
1500 
1501 	/* The first element of this SGL is pointing at an
1502 	 * spdk_nvmf_cmd object. For this particular command,
1503 	 * we only need the first 64 bytes corresponding to
1504 	 * the NVMe command. */
1505 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1506 
1507 	/* The RDMA SGL needs one element describing the NVMe command. */
1508 	rdma_req->send_wr.num_sge = 1;
1509 
1510 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1511 	req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1512 	req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1513 	req->cmd.dptr.sgl1.keyed.length = (uint32_t)ctx.length;
1514 	req->cmd.dptr.sgl1.address = (uint64_t)ctx.addr;
1515 
1516 	return 0;
1517 }
1518 
1519 /*
1520  * Build SGL describing scattered payload buffer.
1521  */
1522 static int
1523 nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair,
1524 			    struct spdk_nvme_rdma_req *rdma_req)
1525 {
1526 	struct nvme_request *req = rdma_req->req;
1527 	struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id];
1528 	struct nvme_rdma_memory_translation_ctx ctx;
1529 	uint32_t remaining_size;
1530 	uint32_t sge_length;
1531 	int rc, max_num_sgl, num_sgl_desc;
1532 
1533 	assert(req->payload_size != 0);
1534 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1535 	assert(req->payload.reset_sgl_fn != NULL);
1536 	assert(req->payload.next_sge_fn != NULL);
1537 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1538 
1539 	max_num_sgl = req->qpair->ctrlr->max_sges;
1540 
1541 	remaining_size = req->payload_size;
1542 	num_sgl_desc = 0;
1543 	do {
1544 		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &sge_length);
1545 		if (rc) {
1546 			return -1;
1547 		}
1548 
1549 		sge_length = spdk_min(remaining_size, sge_length);
1550 
1551 		if (spdk_unlikely(sge_length > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
1552 			SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
1553 				    sge_length, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
1554 			return -1;
1555 		}
1556 		ctx.length = sge_length;
1557 		rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1558 		if (spdk_unlikely(rc)) {
1559 			return -1;
1560 		}
1561 
1562 		cmd->sgl[num_sgl_desc].keyed.key = ctx.rkey;
1563 		cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1564 		cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1565 		cmd->sgl[num_sgl_desc].keyed.length = (uint32_t)ctx.length;
1566 		cmd->sgl[num_sgl_desc].address = (uint64_t)ctx.addr;
1567 
1568 		remaining_size -= ctx.length;
1569 		num_sgl_desc++;
1570 	} while (remaining_size > 0 && num_sgl_desc < max_num_sgl);
1571 
1572 
1573 	/* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */
1574 	if (remaining_size > 0) {
1575 		return -1;
1576 	}
1577 
1578 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1579 
1580 	/* The RDMA SGL needs one element describing some portion
1581 	 * of the spdk_nvmf_cmd structure. */
1582 	rdma_req->send_wr.num_sge = 1;
1583 
1584 	/*
1585 	 * If only one SGL descriptor is required, it can be embedded directly in the command
1586 	 * as a data block descriptor.
1587 	 */
1588 	if (num_sgl_desc == 1) {
1589 		/* The first element of this SGL is pointing at an
1590 		 * spdk_nvmf_cmd object. For this particular command,
1591 		 * we only need the first 64 bytes corresponding to
1592 		 * the NVMe command. */
1593 		rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1594 
1595 		req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type;
1596 		req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype;
1597 		req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length;
1598 		req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key;
1599 		req->cmd.dptr.sgl1.address = cmd->sgl[0].address;
1600 	} else {
1601 		/*
1602 		 * Otherwise, The SGL descriptor embedded in the command must point to the list of
1603 		 * SGL descriptors used to describe the operation. In that case it is a last segment descriptor.
1604 		 */
1605 		uint32_t descriptors_size = sizeof(struct spdk_nvme_sgl_descriptor) * num_sgl_desc;
1606 
1607 		if (spdk_unlikely(descriptors_size > rqpair->qpair.ctrlr->ioccsz_bytes)) {
1608 			SPDK_ERRLOG("Size of SGL descriptors (%u) exceeds ICD (%u)\n",
1609 				    descriptors_size, rqpair->qpair.ctrlr->ioccsz_bytes);
1610 			return -1;
1611 		}
1612 		rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + descriptors_size;
1613 
1614 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1615 		req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1616 		req->cmd.dptr.sgl1.unkeyed.length = descriptors_size;
1617 		req->cmd.dptr.sgl1.address = (uint64_t)0;
1618 	}
1619 
1620 	return 0;
1621 }
1622 
1623 /*
1624  * Build inline SGL describing sgl payload buffer.
1625  */
1626 static int
1627 nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair,
1628 				   struct spdk_nvme_rdma_req *rdma_req)
1629 {
1630 	struct nvme_request *req = rdma_req->req;
1631 	struct nvme_rdma_memory_translation_ctx ctx;
1632 	uint32_t length;
1633 	int rc;
1634 
1635 	assert(req->payload_size != 0);
1636 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1637 	assert(req->payload.reset_sgl_fn != NULL);
1638 	assert(req->payload.next_sge_fn != NULL);
1639 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1640 
1641 	rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &length);
1642 	if (rc) {
1643 		return -1;
1644 	}
1645 
1646 	if (length < req->payload_size) {
1647 		SPDK_DEBUGLOG(nvme, "Inline SGL request split so sending separately.\n");
1648 		return nvme_rdma_build_sgl_request(rqpair, rdma_req);
1649 	}
1650 
1651 	if (length > req->payload_size) {
1652 		length = req->payload_size;
1653 	}
1654 
1655 	ctx.length = length;
1656 	rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1657 	if (spdk_unlikely(rc)) {
1658 		return -1;
1659 	}
1660 
1661 	rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr;
1662 	rdma_req->send_sgl[1].length = (uint32_t)ctx.length;
1663 	rdma_req->send_sgl[1].lkey = ctx.lkey;
1664 
1665 	rdma_req->send_wr.num_sge = 2;
1666 
1667 	/* The first element of this SGL is pointing at an
1668 	 * spdk_nvmf_cmd object. For this particular command,
1669 	 * we only need the first 64 bytes corresponding to
1670 	 * the NVMe command. */
1671 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1672 
1673 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1674 	req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1675 	req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1676 	req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length;
1677 	/* Inline only supported for icdoff == 0 currently.  This function will
1678 	 * not get called for controllers with other values. */
1679 	req->cmd.dptr.sgl1.address = (uint64_t)0;
1680 
1681 	return 0;
1682 }
1683 
1684 static int
1685 nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req,
1686 		   struct spdk_nvme_rdma_req *rdma_req)
1687 {
1688 	struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr;
1689 	enum nvme_payload_type payload_type;
1690 	bool icd_supported;
1691 	int rc;
1692 
1693 	assert(rdma_req->req == NULL);
1694 	rdma_req->req = req;
1695 	req->cmd.cid = rdma_req->id;
1696 	payload_type = nvme_payload_type(&req->payload);
1697 	/*
1698 	 * Check if icdoff is non zero, to avoid interop conflicts with
1699 	 * targets with non-zero icdoff.  Both SPDK and the Linux kernel
1700 	 * targets use icdoff = 0.  For targets with non-zero icdoff, we
1701 	 * will currently just not use inline data for now.
1702 	 */
1703 	icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER
1704 			&& req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0;
1705 
1706 	if (req->payload_size == 0) {
1707 		rc = nvme_rdma_build_null_request(rdma_req);
1708 	} else if (payload_type == NVME_PAYLOAD_TYPE_CONTIG) {
1709 		if (icd_supported) {
1710 			rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req);
1711 		} else {
1712 			rc = nvme_rdma_build_contig_request(rqpair, rdma_req);
1713 		}
1714 	} else if (payload_type == NVME_PAYLOAD_TYPE_SGL) {
1715 		if (icd_supported) {
1716 			rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req);
1717 		} else {
1718 			rc = nvme_rdma_build_sgl_request(rqpair, rdma_req);
1719 		}
1720 	} else {
1721 		rc = -1;
1722 	}
1723 
1724 	if (rc) {
1725 		rdma_req->req = NULL;
1726 		return rc;
1727 	}
1728 
1729 	memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd));
1730 	return 0;
1731 }
1732 
1733 static struct spdk_nvme_qpair *
1734 nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
1735 			     uint16_t qid, uint32_t qsize,
1736 			     enum spdk_nvme_qprio qprio,
1737 			     uint32_t num_requests,
1738 			     bool delay_cmd_submit,
1739 			     bool async)
1740 {
1741 	struct nvme_rdma_qpair *rqpair;
1742 	struct spdk_nvme_qpair *qpair;
1743 	int rc;
1744 
1745 	if (qsize < SPDK_NVME_QUEUE_MIN_ENTRIES) {
1746 		SPDK_ERRLOG("Failed to create qpair with size %u. Minimum queue size is %d.\n",
1747 			    qsize, SPDK_NVME_QUEUE_MIN_ENTRIES);
1748 		return NULL;
1749 	}
1750 
1751 	rqpair = spdk_zmalloc(sizeof(struct nvme_rdma_qpair), 0, NULL, SPDK_ENV_SOCKET_ID_ANY,
1752 			      SPDK_MALLOC_DMA);
1753 	if (!rqpair) {
1754 		SPDK_ERRLOG("failed to get create rqpair\n");
1755 		return NULL;
1756 	}
1757 
1758 	/* Set num_entries one less than queue size. According to NVMe
1759 	 * and NVMe-oF specs we can not submit queue size requests,
1760 	 * one slot shall always remain empty.
1761 	 */
1762 	rqpair->num_entries = qsize - 1;
1763 	rqpair->delay_cmd_submit = delay_cmd_submit;
1764 	rqpair->state = NVME_RDMA_QPAIR_STATE_INVALID;
1765 	qpair = &rqpair->qpair;
1766 	rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests, async);
1767 	if (rc != 0) {
1768 		spdk_free(rqpair);
1769 		return NULL;
1770 	}
1771 
1772 	return qpair;
1773 }
1774 
1775 static void
1776 nvme_rdma_qpair_destroy(struct nvme_rdma_qpair *rqpair)
1777 {
1778 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1779 	struct nvme_rdma_ctrlr *rctrlr;
1780 	struct nvme_rdma_cm_event_entry *entry, *tmp;
1781 
1782 	spdk_rdma_utils_free_mem_map(&rqpair->mr_map);
1783 
1784 	if (rqpair->evt) {
1785 		rdma_ack_cm_event(rqpair->evt);
1786 		rqpair->evt = NULL;
1787 	}
1788 
1789 	/*
1790 	 * This works because we have the controller lock both in
1791 	 * this function and in the function where we add new events.
1792 	 */
1793 	if (qpair->ctrlr != NULL) {
1794 		rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
1795 		STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
1796 			if (entry->evt->id->context == rqpair) {
1797 				STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
1798 				rdma_ack_cm_event(entry->evt);
1799 				STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
1800 			}
1801 		}
1802 	}
1803 
1804 	if (rqpair->cm_id) {
1805 		if (rqpair->rdma_qp) {
1806 			spdk_rdma_utils_put_pd(rqpair->rdma_qp->qp->pd);
1807 			spdk_rdma_provider_qp_destroy(rqpair->rdma_qp);
1808 			rqpair->rdma_qp = NULL;
1809 		}
1810 	}
1811 
1812 	if (rqpair->poller) {
1813 		struct nvme_rdma_poll_group     *group;
1814 
1815 		assert(qpair->poll_group);
1816 		group = nvme_rdma_poll_group(qpair->poll_group);
1817 
1818 		nvme_rdma_poll_group_put_poller(group, rqpair->poller);
1819 
1820 		rqpair->poller = NULL;
1821 		rqpair->cq = NULL;
1822 		if (rqpair->srq) {
1823 			rqpair->srq = NULL;
1824 			rqpair->rsps = NULL;
1825 		}
1826 	} else if (rqpair->cq) {
1827 		ibv_destroy_cq(rqpair->cq);
1828 		rqpair->cq = NULL;
1829 	}
1830 
1831 	nvme_rdma_free_reqs(rqpair);
1832 	nvme_rdma_free_rsps(rqpair->rsps);
1833 	rqpair->rsps = NULL;
1834 
1835 	/* destroy cm_id last so cma device will not be freed before we destroy the cq. */
1836 	if (rqpair->cm_id) {
1837 		rdma_destroy_id(rqpair->cm_id);
1838 		rqpair->cm_id = NULL;
1839 	}
1840 }
1841 
1842 static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr);
1843 
1844 static int
1845 nvme_rdma_qpair_disconnected(struct nvme_rdma_qpair *rqpair, int ret)
1846 {
1847 	if (ret) {
1848 		SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n");
1849 		goto quiet;
1850 	}
1851 
1852 	if (rqpair->poller == NULL) {
1853 		/* If poller is not used, cq is not shared.
1854 		 * So complete disconnecting qpair immediately.
1855 		 */
1856 		goto quiet;
1857 	}
1858 
1859 	if (rqpair->rsps == NULL) {
1860 		goto quiet;
1861 	}
1862 
1863 	if (rqpair->need_destroy ||
1864 	    (rqpair->current_num_sends != 0 ||
1865 	     (!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) {
1866 		rqpair->state = NVME_RDMA_QPAIR_STATE_LINGERING;
1867 		rqpair->evt_timeout_ticks = (NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US * spdk_get_ticks_hz()) /
1868 					    SPDK_SEC_TO_USEC + spdk_get_ticks();
1869 
1870 		return -EAGAIN;
1871 	}
1872 
1873 quiet:
1874 	rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED;
1875 
1876 	nvme_rdma_qpair_abort_reqs(&rqpair->qpair, 0);
1877 	nvme_rdma_qpair_destroy(rqpair);
1878 	nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair);
1879 
1880 	return 0;
1881 }
1882 
1883 static int
1884 nvme_rdma_qpair_wait_until_quiet(struct nvme_rdma_qpair *rqpair)
1885 {
1886 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1887 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
1888 
1889 	if (spdk_get_ticks() < rqpair->evt_timeout_ticks &&
1890 	    (rqpair->current_num_sends != 0 ||
1891 	     (!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) {
1892 		return -EAGAIN;
1893 	}
1894 
1895 	rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED;
1896 	nvme_rdma_qpair_abort_reqs(&rqpair->qpair, 0);
1897 	if (!nvme_qpair_is_admin_queue(qpair)) {
1898 		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1899 	}
1900 	nvme_rdma_qpair_destroy(rqpair);
1901 	if (!nvme_qpair_is_admin_queue(qpair)) {
1902 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1903 	}
1904 	nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair);
1905 
1906 	return 0;
1907 }
1908 
1909 static void
1910 _nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
1911 				  nvme_rdma_cm_event_cb disconnected_qpair_cb)
1912 {
1913 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1914 	int rc;
1915 
1916 	assert(disconnected_qpair_cb != NULL);
1917 
1918 	rqpair->state = NVME_RDMA_QPAIR_STATE_EXITING;
1919 
1920 	if (rqpair->cm_id) {
1921 		if (rqpair->rdma_qp) {
1922 			rc = spdk_rdma_provider_qp_disconnect(rqpair->rdma_qp);
1923 			if ((qpair->ctrlr != NULL) && (rc == 0)) {
1924 				rc = nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_DISCONNECTED,
1925 								   disconnected_qpair_cb);
1926 				if (rc == 0) {
1927 					return;
1928 				}
1929 			}
1930 		}
1931 	}
1932 
1933 	disconnected_qpair_cb(rqpair, 0);
1934 }
1935 
1936 static int
1937 nvme_rdma_ctrlr_disconnect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1938 {
1939 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1940 	int rc;
1941 
1942 	switch (rqpair->state) {
1943 	case NVME_RDMA_QPAIR_STATE_EXITING:
1944 		if (!nvme_qpair_is_admin_queue(qpair)) {
1945 			nvme_ctrlr_lock(ctrlr);
1946 		}
1947 
1948 		rc = nvme_rdma_process_event_poll(rqpair);
1949 
1950 		if (!nvme_qpair_is_admin_queue(qpair)) {
1951 			nvme_ctrlr_unlock(ctrlr);
1952 		}
1953 		break;
1954 
1955 	case NVME_RDMA_QPAIR_STATE_LINGERING:
1956 		rc = nvme_rdma_qpair_wait_until_quiet(rqpair);
1957 		break;
1958 	case NVME_RDMA_QPAIR_STATE_EXITED:
1959 		rc = 0;
1960 		break;
1961 
1962 	default:
1963 		assert(false);
1964 		rc = -EAGAIN;
1965 		break;
1966 	}
1967 
1968 	return rc;
1969 }
1970 
1971 static void
1972 nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1973 {
1974 	int rc;
1975 
1976 	_nvme_rdma_ctrlr_disconnect_qpair(ctrlr, qpair, nvme_rdma_qpair_disconnected);
1977 
1978 	/* If the async mode is disabled, poll the qpair until it is actually disconnected.
1979 	 * It is ensured that poll_group_process_completions() calls disconnected_qpair_cb
1980 	 * for any disconnected qpair. Hence, we do not have to check if the qpair is in
1981 	 * a poll group or not.
1982 	 * At the same time, if the qpair is being destroyed, i.e. this function is called by
1983 	 * spdk_nvme_ctrlr_free_io_qpair then we need to wait until qpair is disconnected, otherwise
1984 	 * we may leak some resources.
1985 	 */
1986 	if (qpair->async && !qpair->destroy_in_progress) {
1987 		return;
1988 	}
1989 
1990 	while (1) {
1991 		rc = nvme_rdma_ctrlr_disconnect_qpair_poll(ctrlr, qpair);
1992 		if (rc != -EAGAIN) {
1993 			break;
1994 		}
1995 	}
1996 }
1997 
1998 static int
1999 nvme_rdma_stale_conn_disconnected(struct nvme_rdma_qpair *rqpair, int ret)
2000 {
2001 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
2002 
2003 	if (ret) {
2004 		SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n");
2005 	}
2006 
2007 	nvme_rdma_qpair_destroy(rqpair);
2008 
2009 	qpair->last_transport_failure_reason = qpair->transport_failure_reason;
2010 	qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_NONE;
2011 
2012 	rqpair->state = NVME_RDMA_QPAIR_STATE_STALE_CONN;
2013 	rqpair->evt_timeout_ticks = (NVME_RDMA_STALE_CONN_RETRY_DELAY_US * spdk_get_ticks_hz()) /
2014 				    SPDK_SEC_TO_USEC + spdk_get_ticks();
2015 
2016 	return 0;
2017 }
2018 
2019 static int
2020 nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair)
2021 {
2022 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
2023 
2024 	if (rqpair->stale_conn_retry_count >= NVME_RDMA_STALE_CONN_RETRY_MAX) {
2025 		SPDK_ERRLOG("Retry failed %d times, give up stale connection to qpair (cntlid:%u, qid:%u).\n",
2026 			    NVME_RDMA_STALE_CONN_RETRY_MAX, qpair->ctrlr->cntlid, qpair->id);
2027 		return -ESTALE;
2028 	}
2029 
2030 	rqpair->stale_conn_retry_count++;
2031 
2032 	SPDK_NOTICELOG("%d times, retry stale connection to qpair (cntlid:%u, qid:%u).\n",
2033 		       rqpair->stale_conn_retry_count, qpair->ctrlr->cntlid, qpair->id);
2034 
2035 	_nvme_rdma_ctrlr_disconnect_qpair(qpair->ctrlr, qpair, nvme_rdma_stale_conn_disconnected);
2036 
2037 	return 0;
2038 }
2039 
2040 static int
2041 nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
2042 {
2043 	struct nvme_rdma_qpair *rqpair;
2044 
2045 	assert(qpair != NULL);
2046 	rqpair = nvme_rdma_qpair(qpair);
2047 
2048 	if (rqpair->state != NVME_RDMA_QPAIR_STATE_EXITED) {
2049 		int rc __attribute__((unused));
2050 
2051 		/* qpair was removed from the poll group while the disconnect is not finished.
2052 		 * Destroy rdma resources forcefully. */
2053 		rc = nvme_rdma_qpair_disconnected(rqpair, 0);
2054 		assert(rc == 0);
2055 	}
2056 
2057 	nvme_rdma_qpair_abort_reqs(qpair, 0);
2058 	nvme_qpair_deinit(qpair);
2059 
2060 	if (spdk_rdma_utils_put_memory_domain(rqpair->memory_domain) != 0) {
2061 		SPDK_ERRLOG("Failed to release memory domain\n");
2062 		assert(0);
2063 	}
2064 
2065 	spdk_free(rqpair);
2066 
2067 	return 0;
2068 }
2069 
2070 static struct spdk_nvme_qpair *
2071 nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
2072 				const struct spdk_nvme_io_qpair_opts *opts)
2073 {
2074 	return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio,
2075 					    opts->io_queue_requests,
2076 					    opts->delay_cmd_submit,
2077 					    opts->async_mode);
2078 }
2079 
2080 static int
2081 nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
2082 {
2083 	/* do nothing here */
2084 	return 0;
2085 }
2086 
2087 static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr);
2088 
2089 /* We have to use the typedef in the function declaration to appease astyle. */
2090 typedef struct spdk_nvme_ctrlr spdk_nvme_ctrlr_t;
2091 
2092 static spdk_nvme_ctrlr_t *
2093 nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
2094 			  const struct spdk_nvme_ctrlr_opts *opts,
2095 			  void *devhandle)
2096 {
2097 	struct nvme_rdma_ctrlr *rctrlr;
2098 	struct ibv_context **contexts;
2099 	struct ibv_device_attr dev_attr;
2100 	int i, flag, rc;
2101 
2102 	rctrlr = spdk_zmalloc(sizeof(struct nvme_rdma_ctrlr), 0, NULL, SPDK_ENV_SOCKET_ID_ANY,
2103 			      SPDK_MALLOC_DMA);
2104 	if (rctrlr == NULL) {
2105 		SPDK_ERRLOG("could not allocate ctrlr\n");
2106 		return NULL;
2107 	}
2108 
2109 	rctrlr->ctrlr.opts = *opts;
2110 	rctrlr->ctrlr.trid = *trid;
2111 
2112 	if (opts->transport_retry_count > NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT) {
2113 		SPDK_NOTICELOG("transport_retry_count exceeds max value %d, use max value\n",
2114 			       NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT);
2115 		rctrlr->ctrlr.opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT;
2116 	}
2117 
2118 	if (opts->transport_ack_timeout > NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) {
2119 		SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n",
2120 			       NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT);
2121 		rctrlr->ctrlr.opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT;
2122 	}
2123 
2124 	contexts = rdma_get_devices(NULL);
2125 	if (contexts == NULL) {
2126 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2127 		spdk_free(rctrlr);
2128 		return NULL;
2129 	}
2130 
2131 	i = 0;
2132 	rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS;
2133 
2134 	while (contexts[i] != NULL) {
2135 		rc = ibv_query_device(contexts[i], &dev_attr);
2136 		if (rc < 0) {
2137 			SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2138 			rdma_free_devices(contexts);
2139 			spdk_free(rctrlr);
2140 			return NULL;
2141 		}
2142 		rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge);
2143 		i++;
2144 	}
2145 
2146 	rdma_free_devices(contexts);
2147 
2148 	rc = nvme_ctrlr_construct(&rctrlr->ctrlr);
2149 	if (rc != 0) {
2150 		spdk_free(rctrlr);
2151 		return NULL;
2152 	}
2153 
2154 	STAILQ_INIT(&rctrlr->pending_cm_events);
2155 	STAILQ_INIT(&rctrlr->free_cm_events);
2156 	rctrlr->cm_events = spdk_zmalloc(NVME_RDMA_NUM_CM_EVENTS * sizeof(*rctrlr->cm_events), 0, NULL,
2157 					 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
2158 	if (rctrlr->cm_events == NULL) {
2159 		SPDK_ERRLOG("unable to allocate buffers to hold CM events.\n");
2160 		goto destruct_ctrlr;
2161 	}
2162 
2163 	for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) {
2164 		STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link);
2165 	}
2166 
2167 	rctrlr->cm_channel = rdma_create_event_channel();
2168 	if (rctrlr->cm_channel == NULL) {
2169 		SPDK_ERRLOG("rdma_create_event_channel() failed\n");
2170 		goto destruct_ctrlr;
2171 	}
2172 
2173 	flag = fcntl(rctrlr->cm_channel->fd, F_GETFL);
2174 	if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2175 		SPDK_ERRLOG("Cannot set event channel to non blocking\n");
2176 		goto destruct_ctrlr;
2177 	}
2178 
2179 	rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0,
2180 			       rctrlr->ctrlr.opts.admin_queue_size, 0,
2181 			       rctrlr->ctrlr.opts.admin_queue_size, false, true);
2182 	if (!rctrlr->ctrlr.adminq) {
2183 		SPDK_ERRLOG("failed to create admin qpair\n");
2184 		goto destruct_ctrlr;
2185 	}
2186 
2187 	if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) {
2188 		SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n");
2189 		goto destruct_ctrlr;
2190 	}
2191 
2192 	SPDK_DEBUGLOG(nvme, "successfully initialized the nvmf ctrlr\n");
2193 	return &rctrlr->ctrlr;
2194 
2195 destruct_ctrlr:
2196 	nvme_ctrlr_destruct(&rctrlr->ctrlr);
2197 	return NULL;
2198 }
2199 
2200 static int
2201 nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
2202 {
2203 	struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
2204 	struct nvme_rdma_cm_event_entry *entry;
2205 
2206 	if (ctrlr->adminq) {
2207 		nvme_rdma_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq);
2208 	}
2209 
2210 	STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) {
2211 		rdma_ack_cm_event(entry->evt);
2212 	}
2213 
2214 	STAILQ_INIT(&rctrlr->free_cm_events);
2215 	STAILQ_INIT(&rctrlr->pending_cm_events);
2216 	spdk_free(rctrlr->cm_events);
2217 
2218 	if (rctrlr->cm_channel) {
2219 		rdma_destroy_event_channel(rctrlr->cm_channel);
2220 		rctrlr->cm_channel = NULL;
2221 	}
2222 
2223 	nvme_ctrlr_destruct_finish(ctrlr);
2224 
2225 	spdk_free(rctrlr);
2226 
2227 	return 0;
2228 }
2229 
2230 static int
2231 nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair,
2232 			       struct nvme_request *req)
2233 {
2234 	struct nvme_rdma_qpair *rqpair;
2235 	struct spdk_nvme_rdma_req *rdma_req;
2236 	struct ibv_send_wr *wr;
2237 	struct nvme_rdma_poll_group *group;
2238 
2239 	rqpair = nvme_rdma_qpair(qpair);
2240 	assert(rqpair != NULL);
2241 	assert(req != NULL);
2242 
2243 	rdma_req = nvme_rdma_req_get(rqpair);
2244 	if (spdk_unlikely(!rdma_req)) {
2245 		if (rqpair->poller) {
2246 			rqpair->poller->stats.queued_requests++;
2247 		}
2248 		/* Inform the upper layer to try again later. */
2249 		return -EAGAIN;
2250 	}
2251 
2252 	if (nvme_rdma_req_init(rqpair, req, rdma_req)) {
2253 		SPDK_ERRLOG("nvme_rdma_req_init() failed\n");
2254 		nvme_rdma_req_put(rqpair, rdma_req);
2255 		return -1;
2256 	}
2257 
2258 	TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link);
2259 
2260 	if (!rqpair->link_active.tqe_prev && qpair->poll_group) {
2261 		group = nvme_rdma_poll_group(qpair->poll_group);
2262 		TAILQ_INSERT_TAIL(&group->active_qpairs, rqpair, link_active);
2263 	}
2264 	rqpair->num_outstanding_reqs++;
2265 
2266 	assert(rqpair->current_num_sends < rqpair->num_entries);
2267 	rqpair->current_num_sends++;
2268 
2269 	wr = &rdma_req->send_wr;
2270 	wr->next = NULL;
2271 	nvme_rdma_trace_ibv_sge(wr->sg_list);
2272 
2273 	spdk_rdma_provider_qp_queue_send_wrs(rqpair->rdma_qp, wr);
2274 
2275 	if (!rqpair->delay_cmd_submit) {
2276 		return nvme_rdma_qpair_submit_sends(rqpair);
2277 	}
2278 
2279 	return 0;
2280 }
2281 
2282 static int
2283 nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair)
2284 {
2285 	/* Currently, doing nothing here */
2286 	return 0;
2287 }
2288 
2289 static void
2290 nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
2291 {
2292 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
2293 	struct spdk_nvme_cpl cpl;
2294 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2295 
2296 	cpl.sqid = qpair->id;
2297 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
2298 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2299 	cpl.status.dnr = dnr;
2300 
2301 	/*
2302 	 * We cannot abort requests at the RDMA layer without
2303 	 * unregistering them. If we do, we can still get error
2304 	 * free completions on the shared completion queue.
2305 	 */
2306 	if (nvme_qpair_get_state(qpair) > NVME_QPAIR_DISCONNECTING &&
2307 	    nvme_qpair_get_state(qpair) != NVME_QPAIR_DESTROYING) {
2308 		nvme_ctrlr_disconnect_qpair(qpair);
2309 	}
2310 
2311 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2312 		nvme_rdma_req_complete(rdma_req, &cpl, true);
2313 	}
2314 }
2315 
2316 static void
2317 nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
2318 {
2319 	uint64_t t02;
2320 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
2321 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2322 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
2323 	struct spdk_nvme_ctrlr_process *active_proc;
2324 
2325 	/* Don't check timeouts during controller initialization. */
2326 	if (ctrlr->state != NVME_CTRLR_STATE_READY) {
2327 		return;
2328 	}
2329 
2330 	if (nvme_qpair_is_admin_queue(qpair)) {
2331 		active_proc = nvme_ctrlr_get_current_process(ctrlr);
2332 	} else {
2333 		active_proc = qpair->active_proc;
2334 	}
2335 
2336 	/* Only check timeouts if the current process has a timeout callback. */
2337 	if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
2338 		return;
2339 	}
2340 
2341 	t02 = spdk_get_ticks();
2342 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2343 		assert(rdma_req->req != NULL);
2344 
2345 		if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) {
2346 			/*
2347 			 * The requests are in order, so as soon as one has not timed out,
2348 			 * stop iterating.
2349 			 */
2350 			break;
2351 		}
2352 	}
2353 }
2354 
2355 static inline void
2356 nvme_rdma_request_ready(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
2357 {
2358 	struct spdk_nvme_rdma_rsp *rdma_rsp = rdma_req->rdma_rsp;
2359 	struct ibv_recv_wr *recv_wr = rdma_rsp->recv_wr;
2360 
2361 	nvme_rdma_req_complete(rdma_req, &rdma_rsp->cpl, true);
2362 
2363 	assert(rqpair->rsps->current_num_recvs < rqpair->rsps->num_entries);
2364 	rqpair->rsps->current_num_recvs++;
2365 
2366 	recv_wr->next = NULL;
2367 	nvme_rdma_trace_ibv_sge(recv_wr->sg_list);
2368 
2369 	if (!rqpair->srq) {
2370 		spdk_rdma_provider_qp_queue_recv_wrs(rqpair->rdma_qp, recv_wr);
2371 	} else {
2372 		spdk_rdma_provider_srq_queue_recv_wrs(rqpair->srq, recv_wr);
2373 	}
2374 }
2375 
2376 #define MAX_COMPLETIONS_PER_POLL 128
2377 
2378 static void
2379 nvme_rdma_fail_qpair(struct spdk_nvme_qpair *qpair, int failure_reason)
2380 {
2381 	if (failure_reason == IBV_WC_RETRY_EXC_ERR) {
2382 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
2383 	} else if (qpair->transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_NONE) {
2384 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN;
2385 	}
2386 
2387 	nvme_ctrlr_disconnect_qpair(qpair);
2388 }
2389 
2390 static struct nvme_rdma_qpair *
2391 get_rdma_qpair_from_wc(struct nvme_rdma_poll_group *group, struct ibv_wc *wc)
2392 {
2393 	struct spdk_nvme_qpair *qpair;
2394 	struct nvme_rdma_qpair *rqpair;
2395 
2396 	STAILQ_FOREACH(qpair, &group->group.connected_qpairs, poll_group_stailq) {
2397 		rqpair = nvme_rdma_qpair(qpair);
2398 		if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) {
2399 			return rqpair;
2400 		}
2401 	}
2402 
2403 	STAILQ_FOREACH(qpair, &group->group.disconnected_qpairs, poll_group_stailq) {
2404 		rqpair = nvme_rdma_qpair(qpair);
2405 		if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) {
2406 			return rqpair;
2407 		}
2408 	}
2409 
2410 	return NULL;
2411 }
2412 
2413 static inline void
2414 nvme_rdma_log_wc_status(struct nvme_rdma_qpair *rqpair, struct ibv_wc *wc)
2415 {
2416 	struct nvme_rdma_wr *rdma_wr = (struct nvme_rdma_wr *)wc->wr_id;
2417 
2418 	if (wc->status == IBV_WC_WR_FLUSH_ERR) {
2419 		/* If qpair is in ERR state, we will receive completions for all posted and not completed
2420 		 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
2421 		SPDK_DEBUGLOG(nvme, "WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n",
2422 			      rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status,
2423 			      ibv_wc_status_str(wc->status));
2424 	} else {
2425 		SPDK_ERRLOG("WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n",
2426 			    rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status,
2427 			    ibv_wc_status_str(wc->status));
2428 	}
2429 }
2430 
2431 static inline int
2432 nvme_rdma_process_recv_completion(struct nvme_rdma_poller *poller, struct ibv_wc *wc,
2433 				  struct nvme_rdma_wr *rdma_wr)
2434 {
2435 	struct nvme_rdma_qpair		*rqpair;
2436 	struct spdk_nvme_rdma_req	*rdma_req;
2437 	struct spdk_nvme_rdma_rsp	*rdma_rsp;
2438 
2439 	rdma_rsp = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_rsp, rdma_wr);
2440 
2441 	if (poller && poller->srq) {
2442 		rqpair = get_rdma_qpair_from_wc(poller->group, wc);
2443 		if (spdk_unlikely(!rqpair)) {
2444 			/* Since we do not handle the LAST_WQE_REACHED event, we do not know when
2445 			 * a Receive Queue in a QP, that is associated with an SRQ, is flushed.
2446 			 * We may get a WC for a already destroyed QP.
2447 			 *
2448 			 * However, for the SRQ, this is not any error. Hence, just re-post the
2449 			 * receive request to the SRQ to reuse for other QPs, and return 0.
2450 			 */
2451 			spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr);
2452 			return 0;
2453 		}
2454 	} else {
2455 		rqpair = rdma_rsp->rqpair;
2456 		if (spdk_unlikely(!rqpair)) {
2457 			/* TODO: Fix forceful QP destroy when it is not async mode.
2458 			 * CQ itself did not cause any error. Hence, return 0 for now.
2459 			 */
2460 			SPDK_WARNLOG("QP might be already destroyed.\n");
2461 			return 0;
2462 		}
2463 	}
2464 
2465 
2466 	assert(rqpair->rsps->current_num_recvs > 0);
2467 	rqpair->rsps->current_num_recvs--;
2468 
2469 	if (wc->status) {
2470 		nvme_rdma_log_wc_status(rqpair, wc);
2471 		goto err_wc;
2472 	}
2473 
2474 	SPDK_DEBUGLOG(nvme, "CQ recv completion\n");
2475 
2476 	if (wc->byte_len < sizeof(struct spdk_nvme_cpl)) {
2477 		SPDK_ERRLOG("recv length %u less than expected response size\n", wc->byte_len);
2478 		goto err_wc;
2479 	}
2480 	rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid];
2481 	rdma_req->completion_flags |= NVME_RDMA_RECV_COMPLETED;
2482 	rdma_req->rdma_rsp = rdma_rsp;
2483 
2484 	if ((rdma_req->completion_flags & NVME_RDMA_SEND_COMPLETED) == 0) {
2485 		return 0;
2486 	}
2487 
2488 	rqpair->num_completions++;
2489 
2490 	nvme_rdma_request_ready(rqpair, rdma_req);
2491 
2492 	if (!rqpair->delay_cmd_submit) {
2493 		if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) {
2494 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
2495 			nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2496 			return -ENXIO;
2497 		}
2498 	}
2499 
2500 	return 1;
2501 
2502 err_wc:
2503 	nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2504 	if (poller && poller->srq) {
2505 		spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr);
2506 	}
2507 	return -ENXIO;
2508 }
2509 
2510 static inline int
2511 nvme_rdma_process_send_completion(struct nvme_rdma_poller *poller,
2512 				  struct nvme_rdma_qpair *rdma_qpair,
2513 				  struct ibv_wc *wc, struct nvme_rdma_wr *rdma_wr)
2514 {
2515 	struct nvme_rdma_qpair		*rqpair;
2516 	struct spdk_nvme_rdma_req	*rdma_req;
2517 
2518 	rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_req, rdma_wr);
2519 	rqpair = rdma_req->req ? nvme_rdma_qpair(rdma_req->req->qpair) : NULL;
2520 	if (!rqpair) {
2521 		rqpair = rdma_qpair != NULL ? rdma_qpair : get_rdma_qpair_from_wc(poller->group, wc);
2522 	}
2523 
2524 	/* If we are flushing I/O */
2525 	if (wc->status) {
2526 		if (!rqpair) {
2527 			/* When poll_group is used, several qpairs share the same CQ and it is possible to
2528 			 * receive a completion with error (e.g. IBV_WC_WR_FLUSH_ERR) for already disconnected qpair
2529 			 * That happens due to qpair is destroyed while there are submitted but not completed send/receive
2530 			 * Work Requests */
2531 			assert(poller);
2532 			return 0;
2533 		}
2534 		assert(rqpair->current_num_sends > 0);
2535 		rqpair->current_num_sends--;
2536 		nvme_rdma_log_wc_status(rqpair, wc);
2537 		nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2538 		if (rdma_req->rdma_rsp && poller && poller->srq) {
2539 			spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_req->rdma_rsp->recv_wr);
2540 		}
2541 		return -ENXIO;
2542 	}
2543 
2544 	/* We do not support Soft Roce anymore. Other than Soft Roce's bug, we should not
2545 	 * receive a completion without error status after qpair is disconnected/destroyed.
2546 	 */
2547 	if (spdk_unlikely(rdma_req->req == NULL)) {
2548 		/*
2549 		 * Some infiniband drivers do not guarantee the previous assumption after we
2550 		 * received a RDMA_CM_EVENT_DEVICE_REMOVAL event.
2551 		 */
2552 		SPDK_ERRLOG("Received malformed completion: request 0x%"PRIx64" type %d\n", wc->wr_id,
2553 			    rdma_wr->type);
2554 		if (!rqpair || !rqpair->need_destroy) {
2555 			assert(0);
2556 		}
2557 		return -ENXIO;
2558 	}
2559 
2560 	rdma_req->completion_flags |= NVME_RDMA_SEND_COMPLETED;
2561 	assert(rqpair->current_num_sends > 0);
2562 	rqpair->current_num_sends--;
2563 
2564 	if ((rdma_req->completion_flags & NVME_RDMA_RECV_COMPLETED) == 0) {
2565 		return 0;
2566 	}
2567 
2568 	rqpair->num_completions++;
2569 
2570 	nvme_rdma_request_ready(rqpair, rdma_req);
2571 
2572 	if (!rqpair->delay_cmd_submit) {
2573 		if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) {
2574 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
2575 			nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2576 			return -ENXIO;
2577 		}
2578 	}
2579 
2580 	return 1;
2581 }
2582 
2583 static int
2584 nvme_rdma_cq_process_completions(struct ibv_cq *cq, uint32_t batch_size,
2585 				 struct nvme_rdma_poller *poller,
2586 				 struct nvme_rdma_qpair *rdma_qpair,
2587 				 uint64_t *rdma_completions)
2588 {
2589 	struct ibv_wc			wc[MAX_COMPLETIONS_PER_POLL];
2590 	struct nvme_rdma_wr		*rdma_wr;
2591 	uint32_t			reaped = 0;
2592 	int				completion_rc = 0;
2593 	int				rc, _rc, i;
2594 
2595 	rc = ibv_poll_cq(cq, batch_size, wc);
2596 	if (rc < 0) {
2597 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
2598 			    errno, spdk_strerror(errno));
2599 		return -ECANCELED;
2600 	} else if (rc == 0) {
2601 		return 0;
2602 	}
2603 
2604 	for (i = 0; i < rc; i++) {
2605 		rdma_wr = (struct nvme_rdma_wr *)wc[i].wr_id;
2606 		switch (rdma_wr->type) {
2607 		case RDMA_WR_TYPE_RECV:
2608 			_rc = nvme_rdma_process_recv_completion(poller, &wc[i], rdma_wr);
2609 			break;
2610 
2611 		case RDMA_WR_TYPE_SEND:
2612 			_rc = nvme_rdma_process_send_completion(poller, rdma_qpair, &wc[i], rdma_wr);
2613 			break;
2614 
2615 		default:
2616 			SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", rdma_wr->type);
2617 			return -ECANCELED;
2618 		}
2619 		if (spdk_likely(_rc >= 0)) {
2620 			reaped += _rc;
2621 		} else {
2622 			completion_rc = _rc;
2623 		}
2624 	}
2625 
2626 	*rdma_completions += rc;
2627 
2628 	if (completion_rc) {
2629 		return completion_rc;
2630 	}
2631 
2632 	return reaped;
2633 }
2634 
2635 static void
2636 dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
2637 {
2638 
2639 }
2640 
2641 static int
2642 nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair,
2643 				    uint32_t max_completions)
2644 {
2645 	struct nvme_rdma_qpair		*rqpair = nvme_rdma_qpair(qpair);
2646 	struct nvme_rdma_ctrlr		*rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
2647 	int				rc = 0, batch_size;
2648 	struct ibv_cq			*cq;
2649 	uint64_t			rdma_completions = 0;
2650 
2651 	/*
2652 	 * This is used during the connection phase. It's possible that we are still reaping error completions
2653 	 * from other qpairs so we need to call the poll group function. Also, it's more correct since the cq
2654 	 * is shared.
2655 	 */
2656 	if (qpair->poll_group != NULL) {
2657 		return spdk_nvme_poll_group_process_completions(qpair->poll_group->group, max_completions,
2658 				dummy_disconnected_qpair_cb);
2659 	}
2660 
2661 	if (max_completions == 0) {
2662 		max_completions = rqpair->num_entries;
2663 	} else {
2664 		max_completions = spdk_min(max_completions, rqpair->num_entries);
2665 	}
2666 
2667 	switch (nvme_qpair_get_state(qpair)) {
2668 	case NVME_QPAIR_CONNECTING:
2669 		rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair);
2670 		if (rc == 0) {
2671 			/* Once the connection is completed, we can submit queued requests */
2672 			nvme_qpair_resubmit_requests(qpair, rqpair->num_entries);
2673 		} else if (rc != -EAGAIN) {
2674 			SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair);
2675 			goto failed;
2676 		} else if (rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING) {
2677 			return 0;
2678 		}
2679 		break;
2680 
2681 	case NVME_QPAIR_DISCONNECTING:
2682 		nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair);
2683 		return -ENXIO;
2684 
2685 	default:
2686 		if (nvme_qpair_is_admin_queue(qpair)) {
2687 			nvme_rdma_poll_events(rctrlr);
2688 		}
2689 		nvme_rdma_qpair_process_cm_event(rqpair);
2690 		break;
2691 	}
2692 
2693 	if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
2694 		goto failed;
2695 	}
2696 
2697 	cq = rqpair->cq;
2698 
2699 	rqpair->num_completions = 0;
2700 	do {
2701 		batch_size = spdk_min((max_completions - rqpair->num_completions), MAX_COMPLETIONS_PER_POLL);
2702 		rc = nvme_rdma_cq_process_completions(cq, batch_size, NULL, rqpair, &rdma_completions);
2703 
2704 		if (rc == 0) {
2705 			break;
2706 			/* Handle the case where we fail to poll the cq. */
2707 		} else if (rc == -ECANCELED) {
2708 			goto failed;
2709 		} else if (rc == -ENXIO) {
2710 			return rc;
2711 		}
2712 	} while (rqpair->num_completions < max_completions);
2713 
2714 	if (spdk_unlikely(nvme_rdma_qpair_submit_sends(rqpair) ||
2715 			  nvme_rdma_qpair_submit_recvs(rqpair))) {
2716 		goto failed;
2717 	}
2718 
2719 	if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
2720 		nvme_rdma_qpair_check_timeout(qpair);
2721 	}
2722 
2723 	return rqpair->num_completions;
2724 
2725 failed:
2726 	nvme_rdma_fail_qpair(qpair, 0);
2727 	return -ENXIO;
2728 }
2729 
2730 static uint32_t
2731 nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
2732 {
2733 	/* max_mr_size by ibv_query_device indicates the largest value that we can
2734 	 * set for a registered memory region.  It is independent from the actual
2735 	 * I/O size and is very likely to be larger than 2 MiB which is the
2736 	 * granularity we currently register memory regions.  Hence return
2737 	 * UINT32_MAX here and let the generic layer use the controller data to
2738 	 * moderate this value.
2739 	 */
2740 	return UINT32_MAX;
2741 }
2742 
2743 static uint16_t
2744 nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
2745 {
2746 	struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
2747 	uint32_t max_sge = rctrlr->max_sge;
2748 	uint32_t max_in_capsule_sge = (ctrlr->cdata.nvmf_specific.ioccsz * 16 -
2749 				       sizeof(struct spdk_nvme_cmd)) /
2750 				      sizeof(struct spdk_nvme_sgl_descriptor);
2751 
2752 	/* Max SGE is limited by capsule size */
2753 	max_sge = spdk_min(max_sge, max_in_capsule_sge);
2754 	/* Max SGE may be limited by MSDBD */
2755 	if (ctrlr->cdata.nvmf_specific.msdbd != 0) {
2756 		max_sge = spdk_min(max_sge, ctrlr->cdata.nvmf_specific.msdbd);
2757 	}
2758 
2759 	/* Max SGE can't be less than 1 */
2760 	max_sge = spdk_max(1, max_sge);
2761 	return max_sge;
2762 }
2763 
2764 static int
2765 nvme_rdma_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
2766 				 int (*iter_fn)(struct nvme_request *req, void *arg),
2767 				 void *arg)
2768 {
2769 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2770 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
2771 	int rc;
2772 
2773 	assert(iter_fn != NULL);
2774 
2775 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2776 		assert(rdma_req->req != NULL);
2777 
2778 		rc = iter_fn(rdma_req->req, arg);
2779 		if (rc != 0) {
2780 			return rc;
2781 		}
2782 	}
2783 
2784 	return 0;
2785 }
2786 
2787 static void
2788 nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
2789 {
2790 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
2791 	struct spdk_nvme_cpl cpl;
2792 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2793 
2794 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
2795 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2796 
2797 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2798 		assert(rdma_req->req != NULL);
2799 
2800 		if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
2801 			continue;
2802 		}
2803 
2804 		nvme_rdma_req_complete(rdma_req, &cpl, false);
2805 	}
2806 }
2807 
2808 static void
2809 nvme_rdma_poller_destroy(struct nvme_rdma_poller *poller)
2810 {
2811 	if (poller->cq) {
2812 		ibv_destroy_cq(poller->cq);
2813 	}
2814 	if (poller->rsps) {
2815 		nvme_rdma_free_rsps(poller->rsps);
2816 	}
2817 	if (poller->srq) {
2818 		spdk_rdma_provider_srq_destroy(poller->srq);
2819 	}
2820 	if (poller->mr_map) {
2821 		spdk_rdma_utils_free_mem_map(&poller->mr_map);
2822 	}
2823 	if (poller->pd) {
2824 		spdk_rdma_utils_put_pd(poller->pd);
2825 	}
2826 	free(poller);
2827 }
2828 
2829 static struct nvme_rdma_poller *
2830 nvme_rdma_poller_create(struct nvme_rdma_poll_group *group, struct ibv_context *ctx)
2831 {
2832 	struct nvme_rdma_poller *poller;
2833 	struct ibv_device_attr dev_attr;
2834 	struct spdk_rdma_provider_srq_init_attr srq_init_attr = {};
2835 	struct nvme_rdma_rsp_opts opts;
2836 	int num_cqe, max_num_cqe;
2837 	int rc;
2838 
2839 	poller = calloc(1, sizeof(*poller));
2840 	if (poller == NULL) {
2841 		SPDK_ERRLOG("Unable to allocate poller.\n");
2842 		return NULL;
2843 	}
2844 
2845 	poller->group = group;
2846 	poller->device = ctx;
2847 
2848 	if (g_spdk_nvme_transport_opts.rdma_srq_size != 0) {
2849 		rc = ibv_query_device(ctx, &dev_attr);
2850 		if (rc) {
2851 			SPDK_ERRLOG("Unable to query RDMA device.\n");
2852 			goto fail;
2853 		}
2854 
2855 		poller->pd = spdk_rdma_utils_get_pd(ctx);
2856 		if (poller->pd == NULL) {
2857 			SPDK_ERRLOG("Unable to get PD.\n");
2858 			goto fail;
2859 		}
2860 
2861 		poller->mr_map = spdk_rdma_utils_create_mem_map(poller->pd, &g_nvme_hooks,
2862 				 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_READ | IBV_ACCESS_REMOTE_WRITE);
2863 		if (poller->mr_map == NULL) {
2864 			SPDK_ERRLOG("Unable to create memory map.\n");
2865 			goto fail;
2866 		}
2867 
2868 		srq_init_attr.stats = &poller->stats.rdma_stats.recv;
2869 		srq_init_attr.pd = poller->pd;
2870 		srq_init_attr.srq_init_attr.attr.max_wr = spdk_min((uint32_t)dev_attr.max_srq_wr,
2871 				g_spdk_nvme_transport_opts.rdma_srq_size);
2872 		srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(dev_attr.max_sge,
2873 				NVME_RDMA_DEFAULT_RX_SGE);
2874 
2875 		poller->srq = spdk_rdma_provider_srq_create(&srq_init_attr);
2876 		if (poller->srq == NULL) {
2877 			SPDK_ERRLOG("Unable to create SRQ.\n");
2878 			goto fail;
2879 		}
2880 
2881 		opts.num_entries = g_spdk_nvme_transport_opts.rdma_srq_size;
2882 		opts.rqpair = NULL;
2883 		opts.srq = poller->srq;
2884 		opts.mr_map = poller->mr_map;
2885 
2886 		poller->rsps = nvme_rdma_create_rsps(&opts);
2887 		if (poller->rsps == NULL) {
2888 			SPDK_ERRLOG("Unable to create poller RDMA responses.\n");
2889 			goto fail;
2890 		}
2891 
2892 		rc = nvme_rdma_poller_submit_recvs(poller);
2893 		if (rc) {
2894 			SPDK_ERRLOG("Unable to submit poller RDMA responses.\n");
2895 			goto fail;
2896 		}
2897 
2898 		/*
2899 		 * When using an srq, fix the size of the completion queue at startup.
2900 		 * The initiator sends only send and recv WRs. Hence, the multiplier is 2.
2901 		 * (The target sends also data WRs. Hence, the multiplier is 3.)
2902 		 */
2903 		num_cqe = g_spdk_nvme_transport_opts.rdma_srq_size * 2;
2904 	} else {
2905 		num_cqe = DEFAULT_NVME_RDMA_CQ_SIZE;
2906 	}
2907 
2908 	max_num_cqe = g_spdk_nvme_transport_opts.rdma_max_cq_size;
2909 	if (max_num_cqe != 0 && num_cqe > max_num_cqe) {
2910 		num_cqe = max_num_cqe;
2911 	}
2912 
2913 	poller->cq = ibv_create_cq(poller->device, num_cqe, group, NULL, 0);
2914 
2915 	if (poller->cq == NULL) {
2916 		SPDK_ERRLOG("Unable to create CQ, errno %d.\n", errno);
2917 		goto fail;
2918 	}
2919 
2920 	STAILQ_INSERT_HEAD(&group->pollers, poller, link);
2921 	group->num_pollers++;
2922 	poller->current_num_wc = num_cqe;
2923 	poller->required_num_wc = 0;
2924 	return poller;
2925 
2926 fail:
2927 	nvme_rdma_poller_destroy(poller);
2928 	return NULL;
2929 }
2930 
2931 static void
2932 nvme_rdma_poll_group_free_pollers(struct nvme_rdma_poll_group *group)
2933 {
2934 	struct nvme_rdma_poller	*poller, *tmp_poller;
2935 
2936 	STAILQ_FOREACH_SAFE(poller, &group->pollers, link, tmp_poller) {
2937 		assert(poller->refcnt == 0);
2938 		if (poller->refcnt) {
2939 			SPDK_WARNLOG("Destroying poller with non-zero ref count: poller %p, refcnt %d\n",
2940 				     poller, poller->refcnt);
2941 		}
2942 
2943 		STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
2944 		nvme_rdma_poller_destroy(poller);
2945 	}
2946 }
2947 
2948 static struct nvme_rdma_poller *
2949 nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group, struct ibv_context *device)
2950 {
2951 	struct nvme_rdma_poller *poller = NULL;
2952 
2953 	STAILQ_FOREACH(poller, &group->pollers, link) {
2954 		if (poller->device == device) {
2955 			break;
2956 		}
2957 	}
2958 
2959 	if (!poller) {
2960 		poller = nvme_rdma_poller_create(group, device);
2961 		if (!poller) {
2962 			SPDK_ERRLOG("Failed to create a poller for device %p\n", device);
2963 			return NULL;
2964 		}
2965 	}
2966 
2967 	poller->refcnt++;
2968 	return poller;
2969 }
2970 
2971 static void
2972 nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group, struct nvme_rdma_poller *poller)
2973 {
2974 	assert(poller->refcnt > 0);
2975 	if (--poller->refcnt == 0) {
2976 		STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
2977 		group->num_pollers--;
2978 		nvme_rdma_poller_destroy(poller);
2979 	}
2980 }
2981 
2982 static struct spdk_nvme_transport_poll_group *
2983 nvme_rdma_poll_group_create(void)
2984 {
2985 	struct nvme_rdma_poll_group	*group;
2986 
2987 	group = calloc(1, sizeof(*group));
2988 	if (group == NULL) {
2989 		SPDK_ERRLOG("Unable to allocate poll group.\n");
2990 		return NULL;
2991 	}
2992 
2993 	STAILQ_INIT(&group->pollers);
2994 	TAILQ_INIT(&group->connecting_qpairs);
2995 	TAILQ_INIT(&group->active_qpairs);
2996 	return &group->group;
2997 }
2998 
2999 static int
3000 nvme_rdma_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
3001 {
3002 	return 0;
3003 }
3004 
3005 static int
3006 nvme_rdma_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
3007 {
3008 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
3009 	struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group);
3010 
3011 	if (rqpair->link_connecting.tqe_prev) {
3012 		TAILQ_REMOVE(&group->connecting_qpairs, rqpair, link_connecting);
3013 		/* We use prev pointer to check if qpair is in connecting list or not .
3014 		 * TAILQ_REMOVE doesn't do it. So, we do it manually.
3015 		 */
3016 		rqpair->link_connecting.tqe_prev = NULL;
3017 	}
3018 
3019 	return 0;
3020 }
3021 
3022 static int
3023 nvme_rdma_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
3024 			 struct spdk_nvme_qpair *qpair)
3025 {
3026 	return 0;
3027 }
3028 
3029 static int
3030 nvme_rdma_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
3031 			    struct spdk_nvme_qpair *qpair)
3032 {
3033 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
3034 	struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group);
3035 
3036 	if (rqpair->link_active.tqe_prev) {
3037 		TAILQ_REMOVE(&group->active_qpairs, rqpair, link_active);
3038 		rqpair->link_active.tqe_prev = NULL;
3039 	}
3040 
3041 	return 0;
3042 }
3043 
3044 static inline void
3045 nvme_rdma_qpair_process_submits(struct nvme_rdma_poll_group *group,
3046 				struct nvme_rdma_qpair *rqpair)
3047 {
3048 	struct spdk_nvme_qpair	*qpair = &rqpair->qpair;
3049 
3050 	assert(rqpair->link_active.tqe_prev != NULL);
3051 
3052 	if (spdk_unlikely(rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING ||
3053 			  rqpair->state >= NVME_RDMA_QPAIR_STATE_EXITING)) {
3054 		return;
3055 	}
3056 
3057 	if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
3058 		nvme_rdma_qpair_check_timeout(qpair);
3059 	}
3060 
3061 	nvme_rdma_qpair_submit_sends(rqpair);
3062 	if (!rqpair->srq) {
3063 		nvme_rdma_qpair_submit_recvs(rqpair);
3064 	}
3065 	if (rqpair->num_completions > 0) {
3066 		nvme_qpair_resubmit_requests(qpair, rqpair->num_completions);
3067 		rqpair->num_completions = 0;
3068 	}
3069 
3070 	if (rqpair->num_outstanding_reqs == 0 && STAILQ_EMPTY(&qpair->queued_req)) {
3071 		TAILQ_REMOVE(&group->active_qpairs, rqpair, link_active);
3072 		/* We use prev pointer to check if qpair is in active list or not.
3073 		 * TAILQ_REMOVE doesn't do it. So, we do it manually.
3074 		 */
3075 		rqpair->link_active.tqe_prev = NULL;
3076 	}
3077 }
3078 
3079 static int64_t
3080 nvme_rdma_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
3081 		uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
3082 {
3083 	struct spdk_nvme_qpair			*qpair, *tmp_qpair;
3084 	struct nvme_rdma_qpair			*rqpair, *tmp_rqpair;
3085 	struct nvme_rdma_poll_group		*group;
3086 	struct nvme_rdma_poller			*poller;
3087 	int					batch_size, rc, rc2 = 0;
3088 	int64_t					total_completions = 0;
3089 	uint64_t				completions_allowed = 0;
3090 	uint64_t				completions_per_poller = 0;
3091 	uint64_t				poller_completions = 0;
3092 	uint64_t				rdma_completions;
3093 
3094 	if (completions_per_qpair == 0) {
3095 		completions_per_qpair = MAX_COMPLETIONS_PER_POLL;
3096 	}
3097 
3098 	group = nvme_rdma_poll_group(tgroup);
3099 
3100 	STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
3101 		rc = nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair);
3102 		if (rc == 0) {
3103 			disconnected_qpair_cb(qpair, tgroup->group->ctx);
3104 		}
3105 	}
3106 
3107 	TAILQ_FOREACH_SAFE(rqpair, &group->connecting_qpairs, link_connecting, tmp_rqpair) {
3108 		qpair = &rqpair->qpair;
3109 
3110 		rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair);
3111 		if (rc == 0 || rc != -EAGAIN) {
3112 			TAILQ_REMOVE(&group->connecting_qpairs, rqpair, link_connecting);
3113 			/* We use prev pointer to check if qpair is in connecting list or not.
3114 			 * TAILQ_REMOVE does not do it. So, we do it manually.
3115 			 */
3116 			rqpair->link_connecting.tqe_prev = NULL;
3117 
3118 			if (rc == 0) {
3119 				/* Once the connection is completed, we can submit queued requests */
3120 				nvme_qpair_resubmit_requests(qpair, rqpair->num_entries);
3121 			} else if (rc != -EAGAIN) {
3122 				SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair);
3123 				nvme_rdma_fail_qpair(qpair, 0);
3124 			}
3125 		}
3126 	}
3127 
3128 	STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
3129 		rqpair = nvme_rdma_qpair(qpair);
3130 
3131 		if (spdk_likely(nvme_qpair_get_state(qpair) != NVME_QPAIR_CONNECTING)) {
3132 			nvme_rdma_qpair_process_cm_event(rqpair);
3133 		}
3134 
3135 		if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
3136 			rc2 = -ENXIO;
3137 			nvme_rdma_fail_qpair(qpair, 0);
3138 		}
3139 	}
3140 
3141 	completions_allowed = completions_per_qpair * tgroup->num_connected_qpairs;
3142 	if (group->num_pollers) {
3143 		completions_per_poller = spdk_max(completions_allowed / group->num_pollers, 1);
3144 	}
3145 
3146 	STAILQ_FOREACH(poller, &group->pollers, link) {
3147 		poller_completions = 0;
3148 		rdma_completions = 0;
3149 		do {
3150 			poller->stats.polls++;
3151 			batch_size = spdk_min((completions_per_poller - poller_completions), MAX_COMPLETIONS_PER_POLL);
3152 			rc = nvme_rdma_cq_process_completions(poller->cq, batch_size, poller, NULL, &rdma_completions);
3153 			if (rc <= 0) {
3154 				if (rc == -ECANCELED) {
3155 					return -EIO;
3156 				} else if (rc == 0) {
3157 					poller->stats.idle_polls++;
3158 				}
3159 				break;
3160 			}
3161 
3162 			poller_completions += rc;
3163 		} while (poller_completions < completions_per_poller);
3164 		total_completions += poller_completions;
3165 		poller->stats.completions += rdma_completions;
3166 		if (poller->srq) {
3167 			nvme_rdma_poller_submit_recvs(poller);
3168 		}
3169 	}
3170 
3171 	TAILQ_FOREACH_SAFE(rqpair, &group->active_qpairs, link_active, tmp_rqpair) {
3172 		nvme_rdma_qpair_process_submits(group, rqpair);
3173 	}
3174 
3175 	return rc2 != 0 ? rc2 : total_completions;
3176 }
3177 
3178 static int
3179 nvme_rdma_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
3180 {
3181 	struct nvme_rdma_poll_group	*group = nvme_rdma_poll_group(tgroup);
3182 
3183 	if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
3184 		return -EBUSY;
3185 	}
3186 
3187 	nvme_rdma_poll_group_free_pollers(group);
3188 	free(group);
3189 
3190 	return 0;
3191 }
3192 
3193 static int
3194 nvme_rdma_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup,
3195 			       struct spdk_nvme_transport_poll_group_stat **_stats)
3196 {
3197 	struct nvme_rdma_poll_group *group;
3198 	struct spdk_nvme_transport_poll_group_stat *stats;
3199 	struct spdk_nvme_rdma_device_stat *device_stat;
3200 	struct nvme_rdma_poller *poller;
3201 	uint32_t i = 0;
3202 
3203 	if (tgroup == NULL || _stats == NULL) {
3204 		SPDK_ERRLOG("Invalid stats or group pointer\n");
3205 		return -EINVAL;
3206 	}
3207 
3208 	group = nvme_rdma_poll_group(tgroup);
3209 	stats = calloc(1, sizeof(*stats));
3210 	if (!stats) {
3211 		SPDK_ERRLOG("Can't allocate memory for RDMA stats\n");
3212 		return -ENOMEM;
3213 	}
3214 	stats->trtype = SPDK_NVME_TRANSPORT_RDMA;
3215 	stats->rdma.num_devices = group->num_pollers;
3216 
3217 	if (stats->rdma.num_devices == 0) {
3218 		*_stats = stats;
3219 		return 0;
3220 	}
3221 
3222 	stats->rdma.device_stats = calloc(stats->rdma.num_devices, sizeof(*stats->rdma.device_stats));
3223 	if (!stats->rdma.device_stats) {
3224 		SPDK_ERRLOG("Can't allocate memory for RDMA device stats\n");
3225 		free(stats);
3226 		return -ENOMEM;
3227 	}
3228 
3229 	STAILQ_FOREACH(poller, &group->pollers, link) {
3230 		device_stat = &stats->rdma.device_stats[i];
3231 		device_stat->name = poller->device->device->name;
3232 		device_stat->polls = poller->stats.polls;
3233 		device_stat->idle_polls = poller->stats.idle_polls;
3234 		device_stat->completions = poller->stats.completions;
3235 		device_stat->queued_requests = poller->stats.queued_requests;
3236 		device_stat->total_send_wrs = poller->stats.rdma_stats.send.num_submitted_wrs;
3237 		device_stat->send_doorbell_updates = poller->stats.rdma_stats.send.doorbell_updates;
3238 		device_stat->total_recv_wrs = poller->stats.rdma_stats.recv.num_submitted_wrs;
3239 		device_stat->recv_doorbell_updates = poller->stats.rdma_stats.recv.doorbell_updates;
3240 		i++;
3241 	}
3242 
3243 	*_stats = stats;
3244 
3245 	return 0;
3246 }
3247 
3248 static void
3249 nvme_rdma_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup,
3250 				struct spdk_nvme_transport_poll_group_stat *stats)
3251 {
3252 	if (stats) {
3253 		free(stats->rdma.device_stats);
3254 	}
3255 	free(stats);
3256 }
3257 
3258 static int
3259 nvme_rdma_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
3260 				   struct spdk_memory_domain **domains, int array_size)
3261 {
3262 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(ctrlr->adminq);
3263 
3264 	if (domains && array_size > 0) {
3265 		domains[0] = rqpair->memory_domain;
3266 	}
3267 
3268 	return 1;
3269 }
3270 
3271 void
3272 spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
3273 {
3274 	g_nvme_hooks = *hooks;
3275 }
3276 
3277 const struct spdk_nvme_transport_ops rdma_ops = {
3278 	.name = "RDMA",
3279 	.type = SPDK_NVME_TRANSPORT_RDMA,
3280 	.ctrlr_construct = nvme_rdma_ctrlr_construct,
3281 	.ctrlr_scan = nvme_fabric_ctrlr_scan,
3282 	.ctrlr_destruct = nvme_rdma_ctrlr_destruct,
3283 	.ctrlr_enable = nvme_rdma_ctrlr_enable,
3284 
3285 	.ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4,
3286 	.ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8,
3287 	.ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4,
3288 	.ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8,
3289 	.ctrlr_set_reg_4_async = nvme_fabric_ctrlr_set_reg_4_async,
3290 	.ctrlr_set_reg_8_async = nvme_fabric_ctrlr_set_reg_8_async,
3291 	.ctrlr_get_reg_4_async = nvme_fabric_ctrlr_get_reg_4_async,
3292 	.ctrlr_get_reg_8_async = nvme_fabric_ctrlr_get_reg_8_async,
3293 
3294 	.ctrlr_get_max_xfer_size = nvme_rdma_ctrlr_get_max_xfer_size,
3295 	.ctrlr_get_max_sges = nvme_rdma_ctrlr_get_max_sges,
3296 
3297 	.ctrlr_create_io_qpair = nvme_rdma_ctrlr_create_io_qpair,
3298 	.ctrlr_delete_io_qpair = nvme_rdma_ctrlr_delete_io_qpair,
3299 	.ctrlr_connect_qpair = nvme_rdma_ctrlr_connect_qpair,
3300 	.ctrlr_disconnect_qpair = nvme_rdma_ctrlr_disconnect_qpair,
3301 
3302 	.ctrlr_get_memory_domains = nvme_rdma_ctrlr_get_memory_domains,
3303 
3304 	.qpair_abort_reqs = nvme_rdma_qpair_abort_reqs,
3305 	.qpair_reset = nvme_rdma_qpair_reset,
3306 	.qpair_submit_request = nvme_rdma_qpair_submit_request,
3307 	.qpair_process_completions = nvme_rdma_qpair_process_completions,
3308 	.qpair_iterate_requests = nvme_rdma_qpair_iterate_requests,
3309 	.admin_qpair_abort_aers = nvme_rdma_admin_qpair_abort_aers,
3310 
3311 	.poll_group_create = nvme_rdma_poll_group_create,
3312 	.poll_group_connect_qpair = nvme_rdma_poll_group_connect_qpair,
3313 	.poll_group_disconnect_qpair = nvme_rdma_poll_group_disconnect_qpair,
3314 	.poll_group_add = nvme_rdma_poll_group_add,
3315 	.poll_group_remove = nvme_rdma_poll_group_remove,
3316 	.poll_group_process_completions = nvme_rdma_poll_group_process_completions,
3317 	.poll_group_destroy = nvme_rdma_poll_group_destroy,
3318 	.poll_group_get_stats = nvme_rdma_poll_group_get_stats,
3319 	.poll_group_free_stats = nvme_rdma_poll_group_free_stats,
3320 };
3321 
3322 SPDK_NVME_TRANSPORT_REGISTER(rdma, &rdma_ops);
3323