xref: /spdk/lib/nvme/nvme_rdma.c (revision d1c46ed8e5f61500a9ef69d922f8d3f89a4e9cb3)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 /*
8  * NVMe over RDMA transport
9  */
10 
11 #include "spdk/stdinc.h"
12 
13 #include "spdk/assert.h"
14 #include "spdk/dma.h"
15 #include "spdk/log.h"
16 #include "spdk/trace.h"
17 #include "spdk/queue.h"
18 #include "spdk/nvme.h"
19 #include "spdk/nvmf_spec.h"
20 #include "spdk/string.h"
21 #include "spdk/endian.h"
22 #include "spdk/likely.h"
23 #include "spdk/config.h"
24 
25 #include "nvme_internal.h"
26 #include "spdk_internal/rdma_provider.h"
27 #include "spdk_internal/rdma_utils.h"
28 
29 #define NVME_RDMA_TIME_OUT_IN_MS 2000
30 #define NVME_RDMA_RW_BUFFER_SIZE 131072
31 
32 /*
33  * NVME RDMA qpair Resource Defaults
34  */
35 #define NVME_RDMA_DEFAULT_TX_SGE		2
36 #define NVME_RDMA_DEFAULT_RX_SGE		1
37 
38 /* Max number of NVMe-oF SGL descriptors supported by the host */
39 #define NVME_RDMA_MAX_SGL_DESCRIPTORS		16
40 
41 /* number of STAILQ entries for holding pending RDMA CM events. */
42 #define NVME_RDMA_NUM_CM_EVENTS			256
43 
44 /* The default size for a shared rdma completion queue. */
45 #define DEFAULT_NVME_RDMA_CQ_SIZE		4096
46 
47 /*
48  * In the special case of a stale connection we don't expose a mechanism
49  * for the user to retry the connection so we need to handle it internally.
50  */
51 #define NVME_RDMA_STALE_CONN_RETRY_MAX		5
52 #define NVME_RDMA_STALE_CONN_RETRY_DELAY_US	10000
53 
54 /*
55  * Maximum value of transport_retry_count used by RDMA controller
56  */
57 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT	7
58 
59 /*
60  * Maximum value of transport_ack_timeout used by RDMA controller
61  */
62 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT	31
63 
64 /*
65  * Number of microseconds to wait until the lingering qpair becomes quiet.
66  */
67 #define NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US	1000000ull
68 
69 /*
70  * The max length of keyed SGL data block (3 bytes)
71  */
72 #define NVME_RDMA_MAX_KEYED_SGL_LENGTH ((1u << 24u) - 1)
73 
74 #define WC_PER_QPAIR(queue_depth)	(queue_depth * 2)
75 
76 #define NVME_RDMA_POLL_GROUP_CHECK_QPN(_rqpair, qpn)				\
77 	((_rqpair)->rdma_qp && (_rqpair)->rdma_qp->qp->qp_num == (qpn))	\
78 
79 enum nvme_rdma_wr_type {
80 	RDMA_WR_TYPE_RECV,
81 	RDMA_WR_TYPE_SEND,
82 };
83 
84 struct nvme_rdma_wr {
85 	/* Using this instead of the enum allows this struct to only occupy one byte. */
86 	uint8_t	type;
87 };
88 
89 struct spdk_nvmf_cmd {
90 	struct spdk_nvme_cmd cmd;
91 	struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS];
92 };
93 
94 struct spdk_nvme_rdma_hooks g_nvme_hooks = {};
95 
96 /* STAILQ wrapper for cm events. */
97 struct nvme_rdma_cm_event_entry {
98 	struct rdma_cm_event			*evt;
99 	STAILQ_ENTRY(nvme_rdma_cm_event_entry)	link;
100 };
101 
102 /* NVMe RDMA transport extensions for spdk_nvme_ctrlr */
103 struct nvme_rdma_ctrlr {
104 	struct spdk_nvme_ctrlr			ctrlr;
105 
106 	uint16_t				max_sge;
107 
108 	struct rdma_event_channel		*cm_channel;
109 
110 	STAILQ_HEAD(, nvme_rdma_cm_event_entry)	pending_cm_events;
111 
112 	STAILQ_HEAD(, nvme_rdma_cm_event_entry)	free_cm_events;
113 
114 	struct nvme_rdma_cm_event_entry		*cm_events;
115 };
116 
117 struct nvme_rdma_poller_stats {
118 	uint64_t polls;
119 	uint64_t idle_polls;
120 	uint64_t queued_requests;
121 	uint64_t completions;
122 	struct spdk_rdma_provider_qp_stats rdma_stats;
123 };
124 
125 struct nvme_rdma_poll_group;
126 struct nvme_rdma_rsps;
127 
128 struct nvme_rdma_poller {
129 	struct ibv_context		*device;
130 	struct ibv_cq			*cq;
131 	struct spdk_rdma_provider_srq	*srq;
132 	struct nvme_rdma_rsps		*rsps;
133 	struct ibv_pd			*pd;
134 	struct spdk_rdma_utils_mem_map	*mr_map;
135 	uint32_t			refcnt;
136 	int				required_num_wc;
137 	int				current_num_wc;
138 	struct nvme_rdma_poller_stats	stats;
139 	struct nvme_rdma_poll_group	*group;
140 	STAILQ_ENTRY(nvme_rdma_poller)	link;
141 };
142 
143 struct nvme_rdma_qpair;
144 
145 struct nvme_rdma_poll_group {
146 	struct spdk_nvme_transport_poll_group		group;
147 	STAILQ_HEAD(, nvme_rdma_poller)			pollers;
148 	uint32_t					num_pollers;
149 	TAILQ_HEAD(, nvme_rdma_qpair)			connecting_qpairs;
150 	TAILQ_HEAD(, nvme_rdma_qpair)			active_qpairs;
151 };
152 
153 enum nvme_rdma_qpair_state {
154 	NVME_RDMA_QPAIR_STATE_INVALID = 0,
155 	NVME_RDMA_QPAIR_STATE_STALE_CONN,
156 	NVME_RDMA_QPAIR_STATE_INITIALIZING,
157 	NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND,
158 	NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL,
159 	NVME_RDMA_QPAIR_STATE_AUTHENTICATING,
160 	NVME_RDMA_QPAIR_STATE_RUNNING,
161 	NVME_RDMA_QPAIR_STATE_EXITING,
162 	NVME_RDMA_QPAIR_STATE_LINGERING,
163 	NVME_RDMA_QPAIR_STATE_EXITED,
164 };
165 
166 typedef int (*nvme_rdma_cm_event_cb)(struct nvme_rdma_qpair *rqpair, int ret);
167 
168 struct nvme_rdma_rsp_opts {
169 	uint16_t				num_entries;
170 	struct nvme_rdma_qpair			*rqpair;
171 	struct spdk_rdma_provider_srq		*srq;
172 	struct spdk_rdma_utils_mem_map		*mr_map;
173 };
174 
175 struct nvme_rdma_rsps {
176 	/* Parallel arrays of response buffers + response SGLs of size num_entries */
177 	struct ibv_sge				*rsp_sgls;
178 	struct spdk_nvme_rdma_rsp		*rsps;
179 
180 	struct ibv_recv_wr			*rsp_recv_wrs;
181 
182 	/* Count of outstanding recv objects */
183 	uint16_t				current_num_recvs;
184 
185 	uint16_t				num_entries;
186 };
187 
188 /* NVMe RDMA qpair extensions for spdk_nvme_qpair */
189 struct nvme_rdma_qpair {
190 	struct spdk_nvme_qpair			qpair;
191 
192 	struct spdk_rdma_provider_qp		*rdma_qp;
193 	struct rdma_cm_id			*cm_id;
194 	struct ibv_cq				*cq;
195 	struct spdk_rdma_provider_srq		*srq;
196 
197 	struct	spdk_nvme_rdma_req		*rdma_reqs;
198 
199 	uint32_t				max_send_sge;
200 
201 	uint16_t				num_entries;
202 
203 	bool					delay_cmd_submit;
204 
205 	uint32_t				num_completions;
206 	uint32_t				num_outstanding_reqs;
207 
208 	struct nvme_rdma_rsps			*rsps;
209 
210 	/*
211 	 * Array of num_entries NVMe commands registered as RDMA message buffers.
212 	 * Indexed by rdma_req->id.
213 	 */
214 	struct spdk_nvmf_cmd			*cmds;
215 
216 	struct spdk_rdma_utils_mem_map		*mr_map;
217 
218 	TAILQ_HEAD(, spdk_nvme_rdma_req)	free_reqs;
219 	TAILQ_HEAD(, spdk_nvme_rdma_req)	outstanding_reqs;
220 
221 	/* Count of outstanding send objects */
222 	uint16_t				current_num_sends;
223 
224 	TAILQ_ENTRY(nvme_rdma_qpair)		link_active;
225 
226 	/* Placed at the end of the struct since it is not used frequently */
227 	struct rdma_cm_event			*evt;
228 	struct nvme_rdma_poller			*poller;
229 
230 	uint64_t				evt_timeout_ticks;
231 	nvme_rdma_cm_event_cb			evt_cb;
232 	enum rdma_cm_event_type			expected_evt_type;
233 
234 	enum nvme_rdma_qpair_state		state;
235 
236 	bool					in_connect_poll;
237 
238 	uint8_t					stale_conn_retry_count;
239 	bool					need_destroy;
240 
241 	TAILQ_ENTRY(nvme_rdma_qpair)		link_connecting;
242 };
243 
244 enum NVME_RDMA_COMPLETION_FLAGS {
245 	NVME_RDMA_SEND_COMPLETED = 1u << 0,
246 	NVME_RDMA_RECV_COMPLETED = 1u << 1,
247 };
248 
249 struct spdk_nvme_rdma_req {
250 	uint16_t				id;
251 	uint16_t				completion_flags: 2;
252 	uint16_t				reserved: 14;
253 	/* if completion of RDMA_RECV received before RDMA_SEND, we will complete nvme request
254 	 * during processing of RDMA_SEND. To complete the request we must know the response
255 	 * received in RDMA_RECV, so store it in this field */
256 	struct spdk_nvme_rdma_rsp		*rdma_rsp;
257 
258 	struct nvme_rdma_wr			rdma_wr;
259 
260 	struct ibv_send_wr			send_wr;
261 
262 	struct nvme_request			*req;
263 
264 	struct ibv_sge				send_sgl[NVME_RDMA_DEFAULT_TX_SGE];
265 
266 	TAILQ_ENTRY(spdk_nvme_rdma_req)		link;
267 };
268 
269 struct spdk_nvme_rdma_rsp {
270 	struct spdk_nvme_cpl	cpl;
271 	struct nvme_rdma_qpair	*rqpair;
272 	struct ibv_recv_wr	*recv_wr;
273 	struct nvme_rdma_wr	rdma_wr;
274 };
275 
276 struct nvme_rdma_memory_translation_ctx {
277 	void *addr;
278 	size_t length;
279 	uint32_t lkey;
280 	uint32_t rkey;
281 };
282 
283 static const char *rdma_cm_event_str[] = {
284 	"RDMA_CM_EVENT_ADDR_RESOLVED",
285 	"RDMA_CM_EVENT_ADDR_ERROR",
286 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
287 	"RDMA_CM_EVENT_ROUTE_ERROR",
288 	"RDMA_CM_EVENT_CONNECT_REQUEST",
289 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
290 	"RDMA_CM_EVENT_CONNECT_ERROR",
291 	"RDMA_CM_EVENT_UNREACHABLE",
292 	"RDMA_CM_EVENT_REJECTED",
293 	"RDMA_CM_EVENT_ESTABLISHED",
294 	"RDMA_CM_EVENT_DISCONNECTED",
295 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
296 	"RDMA_CM_EVENT_MULTICAST_JOIN",
297 	"RDMA_CM_EVENT_MULTICAST_ERROR",
298 	"RDMA_CM_EVENT_ADDR_CHANGE",
299 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
300 };
301 
302 static struct nvme_rdma_poller *nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group,
303 		struct ibv_context *device);
304 static void nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group,
305 		struct nvme_rdma_poller *poller);
306 
307 static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
308 		struct spdk_nvme_qpair *qpair);
309 
310 static inline struct nvme_rdma_qpair *
311 nvme_rdma_qpair(struct spdk_nvme_qpair *qpair)
312 {
313 	assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA);
314 	return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair);
315 }
316 
317 static inline struct nvme_rdma_poll_group *
318 nvme_rdma_poll_group(struct spdk_nvme_transport_poll_group *group)
319 {
320 	return (SPDK_CONTAINEROF(group, struct nvme_rdma_poll_group, group));
321 }
322 
323 static inline struct nvme_rdma_ctrlr *
324 nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
325 {
326 	assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA);
327 	return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr);
328 }
329 
330 static inline struct spdk_nvme_rdma_req *
331 nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair)
332 {
333 	struct spdk_nvme_rdma_req *rdma_req;
334 
335 	rdma_req = TAILQ_FIRST(&rqpair->free_reqs);
336 	if (spdk_likely(rdma_req)) {
337 		TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link);
338 	}
339 
340 	return rdma_req;
341 }
342 
343 static inline void
344 nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
345 {
346 	rdma_req->completion_flags = 0;
347 	rdma_req->req = NULL;
348 	rdma_req->rdma_rsp = NULL;
349 	TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link);
350 }
351 
352 static void
353 nvme_rdma_req_complete(struct spdk_nvme_rdma_req *rdma_req,
354 		       struct spdk_nvme_cpl *rsp,
355 		       bool print_on_error)
356 {
357 	struct nvme_request *req = rdma_req->req;
358 	struct nvme_rdma_qpair *rqpair;
359 	struct spdk_nvme_qpair *qpair;
360 	bool error, print_error;
361 
362 	assert(req != NULL);
363 
364 	qpair = req->qpair;
365 	rqpair = nvme_rdma_qpair(qpair);
366 
367 	error = spdk_nvme_cpl_is_error(rsp);
368 	print_error = error && print_on_error && !qpair->ctrlr->opts.disable_error_logging;
369 
370 	if (print_error) {
371 		spdk_nvme_qpair_print_command(qpair, &req->cmd);
372 	}
373 
374 	if (print_error || SPDK_DEBUGLOG_FLAG_ENABLED("nvme")) {
375 		spdk_nvme_qpair_print_completion(qpair, rsp);
376 	}
377 
378 	assert(rqpair->num_outstanding_reqs > 0);
379 	rqpair->num_outstanding_reqs--;
380 
381 	TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
382 
383 	nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, rsp);
384 	nvme_rdma_req_put(rqpair, rdma_req);
385 }
386 
387 static const char *
388 nvme_rdma_cm_event_str_get(uint32_t event)
389 {
390 	if (event < SPDK_COUNTOF(rdma_cm_event_str)) {
391 		return rdma_cm_event_str[event];
392 	} else {
393 		return "Undefined";
394 	}
395 }
396 
397 
398 static int
399 nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair)
400 {
401 	struct rdma_cm_event				*event = rqpair->evt;
402 	struct spdk_nvmf_rdma_accept_private_data	*accept_data;
403 	int						rc = 0;
404 
405 	if (event) {
406 		switch (event->event) {
407 		case RDMA_CM_EVENT_ADDR_RESOLVED:
408 		case RDMA_CM_EVENT_ADDR_ERROR:
409 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
410 		case RDMA_CM_EVENT_ROUTE_ERROR:
411 			break;
412 		case RDMA_CM_EVENT_CONNECT_REQUEST:
413 			break;
414 		case RDMA_CM_EVENT_CONNECT_ERROR:
415 			break;
416 		case RDMA_CM_EVENT_UNREACHABLE:
417 		case RDMA_CM_EVENT_REJECTED:
418 			break;
419 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
420 			rc = spdk_rdma_provider_qp_complete_connect(rqpair->rdma_qp);
421 		/* fall through */
422 		case RDMA_CM_EVENT_ESTABLISHED:
423 			accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data;
424 			if (accept_data == NULL) {
425 				rc = -1;
426 			} else {
427 				SPDK_DEBUGLOG(nvme, "Requested queue depth %d. Target receive queue depth %d.\n",
428 					      rqpair->num_entries + 1, accept_data->crqsize);
429 			}
430 			break;
431 		case RDMA_CM_EVENT_DISCONNECTED:
432 			rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
433 			break;
434 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
435 			rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
436 			rqpair->need_destroy = true;
437 			break;
438 		case RDMA_CM_EVENT_MULTICAST_JOIN:
439 		case RDMA_CM_EVENT_MULTICAST_ERROR:
440 			break;
441 		case RDMA_CM_EVENT_ADDR_CHANGE:
442 			rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
443 			break;
444 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
445 			break;
446 		default:
447 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
448 			break;
449 		}
450 		rqpair->evt = NULL;
451 		rdma_ack_cm_event(event);
452 	}
453 
454 	return rc;
455 }
456 
457 /*
458  * This function must be called under the nvme controller's lock
459  * because it touches global controller variables. The lock is taken
460  * by the generic transport code before invoking a few of the functions
461  * in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair,
462  * and conditionally nvme_rdma_qpair_process_completions when it is calling
463  * completions on the admin qpair. When adding a new call to this function, please
464  * verify that it is in a situation where it falls under the lock.
465  */
466 static int
467 nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr)
468 {
469 	struct nvme_rdma_cm_event_entry	*entry, *tmp;
470 	struct nvme_rdma_qpair		*event_qpair;
471 	struct rdma_cm_event		*event;
472 	struct rdma_event_channel	*channel = rctrlr->cm_channel;
473 
474 	STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
475 		event_qpair = entry->evt->id->context;
476 		if (event_qpair->evt == NULL) {
477 			event_qpair->evt = entry->evt;
478 			STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
479 			STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
480 		}
481 	}
482 
483 	while (rdma_get_cm_event(channel, &event) == 0) {
484 		event_qpair = event->id->context;
485 		if (event_qpair->evt == NULL) {
486 			event_qpair->evt = event;
487 		} else {
488 			assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr));
489 			entry = STAILQ_FIRST(&rctrlr->free_cm_events);
490 			if (entry == NULL) {
491 				rdma_ack_cm_event(event);
492 				return -ENOMEM;
493 			}
494 			STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link);
495 			entry->evt = event;
496 			STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link);
497 		}
498 	}
499 
500 	/* rdma_get_cm_event() returns -1 on error. If an error occurs, errno
501 	 * will be set to indicate the failure reason. So return negated errno here.
502 	 */
503 	return -errno;
504 }
505 
506 static int
507 nvme_rdma_validate_cm_event(enum rdma_cm_event_type expected_evt_type,
508 			    struct rdma_cm_event *reaped_evt)
509 {
510 	int rc = -EBADMSG;
511 
512 	if (expected_evt_type == reaped_evt->event) {
513 		return 0;
514 	}
515 
516 	switch (expected_evt_type) {
517 	case RDMA_CM_EVENT_ESTABLISHED:
518 		/*
519 		 * There is an enum ib_cm_rej_reason in the kernel headers that sets 10 as
520 		 * IB_CM_REJ_STALE_CONN. I can't find the corresponding userspace but we get
521 		 * the same values here.
522 		 */
523 		if (reaped_evt->event == RDMA_CM_EVENT_REJECTED && reaped_evt->status == 10) {
524 			rc = -ESTALE;
525 		} else if (reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE) {
526 			/*
527 			 *  If we are using a qpair which is not created using rdma cm API
528 			 *  then we will receive RDMA_CM_EVENT_CONNECT_RESPONSE instead of
529 			 *  RDMA_CM_EVENT_ESTABLISHED.
530 			 */
531 			return 0;
532 		}
533 		break;
534 	default:
535 		break;
536 	}
537 
538 	SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n",
539 		    nvme_rdma_cm_event_str_get(expected_evt_type),
540 		    nvme_rdma_cm_event_str_get(reaped_evt->event), reaped_evt->event,
541 		    reaped_evt->status);
542 	return rc;
543 }
544 
545 static int
546 nvme_rdma_process_event_start(struct nvme_rdma_qpair *rqpair,
547 			      enum rdma_cm_event_type evt,
548 			      nvme_rdma_cm_event_cb evt_cb)
549 {
550 	int	rc;
551 
552 	assert(evt_cb != NULL);
553 
554 	if (rqpair->evt != NULL) {
555 		rc = nvme_rdma_qpair_process_cm_event(rqpair);
556 		if (rc) {
557 			return rc;
558 		}
559 	}
560 
561 	rqpair->expected_evt_type = evt;
562 	rqpair->evt_cb = evt_cb;
563 	rqpair->evt_timeout_ticks = (g_spdk_nvme_transport_opts.rdma_cm_event_timeout_ms * 1000 *
564 				     spdk_get_ticks_hz()) / SPDK_SEC_TO_USEC + spdk_get_ticks();
565 
566 	return 0;
567 }
568 
569 static int
570 nvme_rdma_process_event_poll(struct nvme_rdma_qpair *rqpair)
571 {
572 	struct nvme_rdma_ctrlr	*rctrlr;
573 	int	rc = 0, rc2;
574 
575 	rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
576 	assert(rctrlr != NULL);
577 
578 	if (!rqpair->evt && spdk_get_ticks() < rqpair->evt_timeout_ticks) {
579 		rc = nvme_rdma_poll_events(rctrlr);
580 		if (rc == -EAGAIN || rc == -EWOULDBLOCK) {
581 			return rc;
582 		}
583 	}
584 
585 	if (rqpair->evt == NULL) {
586 		rc = -EADDRNOTAVAIL;
587 		goto exit;
588 	}
589 
590 	rc = nvme_rdma_validate_cm_event(rqpair->expected_evt_type, rqpair->evt);
591 
592 	rc2 = nvme_rdma_qpair_process_cm_event(rqpair);
593 	/* bad message takes precedence over the other error codes from processing the event. */
594 	rc = rc == 0 ? rc2 : rc;
595 
596 exit:
597 	assert(rqpair->evt_cb != NULL);
598 	return rqpair->evt_cb(rqpair, rc);
599 }
600 
601 static int
602 nvme_rdma_resize_cq(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poller *poller)
603 {
604 	int	current_num_wc, required_num_wc;
605 	int	max_cq_size;
606 
607 	required_num_wc = poller->required_num_wc + WC_PER_QPAIR(rqpair->num_entries);
608 	current_num_wc = poller->current_num_wc;
609 	if (current_num_wc < required_num_wc) {
610 		current_num_wc = spdk_max(current_num_wc * 2, required_num_wc);
611 	}
612 
613 	max_cq_size = g_spdk_nvme_transport_opts.rdma_max_cq_size;
614 	if (max_cq_size != 0 && current_num_wc > max_cq_size) {
615 		current_num_wc = max_cq_size;
616 	}
617 
618 	if (poller->current_num_wc != current_num_wc) {
619 		SPDK_DEBUGLOG(nvme, "Resize RDMA CQ from %d to %d\n", poller->current_num_wc,
620 			      current_num_wc);
621 		if (ibv_resize_cq(poller->cq, current_num_wc)) {
622 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
623 			return -1;
624 		}
625 
626 		poller->current_num_wc = current_num_wc;
627 	}
628 
629 	poller->required_num_wc = required_num_wc;
630 	return 0;
631 }
632 
633 static int
634 nvme_rdma_qpair_set_poller(struct spdk_nvme_qpair *qpair)
635 {
636 	struct nvme_rdma_qpair          *rqpair = nvme_rdma_qpair(qpair);
637 	struct nvme_rdma_poll_group     *group = nvme_rdma_poll_group(qpair->poll_group);
638 	struct nvme_rdma_poller         *poller;
639 
640 	assert(rqpair->cq == NULL);
641 
642 	poller = nvme_rdma_poll_group_get_poller(group, rqpair->cm_id->verbs);
643 	if (!poller) {
644 		SPDK_ERRLOG("Unable to find a cq for qpair %p on poll group %p\n", qpair, qpair->poll_group);
645 		return -EINVAL;
646 	}
647 
648 	if (!poller->srq) {
649 		if (nvme_rdma_resize_cq(rqpair, poller)) {
650 			nvme_rdma_poll_group_put_poller(group, poller);
651 			return -EPROTO;
652 		}
653 	}
654 
655 	rqpair->cq = poller->cq;
656 	rqpair->srq = poller->srq;
657 	if (rqpair->srq) {
658 		rqpair->rsps = poller->rsps;
659 	}
660 	rqpair->poller = poller;
661 	return 0;
662 }
663 
664 static int
665 nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair)
666 {
667 	int			rc;
668 	struct spdk_rdma_provider_qp_init_attr	attr = {};
669 	struct ibv_device_attr	dev_attr;
670 	struct nvme_rdma_ctrlr	*rctrlr;
671 	uint32_t num_cqe, max_num_cqe;
672 
673 	rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr);
674 	if (rc != 0) {
675 		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
676 		return -1;
677 	}
678 
679 	if (rqpair->qpair.poll_group) {
680 		assert(!rqpair->cq);
681 		rc = nvme_rdma_qpair_set_poller(&rqpair->qpair);
682 		if (rc) {
683 			SPDK_ERRLOG("Unable to activate the rdmaqpair.\n");
684 			return -1;
685 		}
686 		assert(rqpair->cq);
687 	} else {
688 		num_cqe = rqpair->num_entries * 2;
689 		max_num_cqe = g_spdk_nvme_transport_opts.rdma_max_cq_size;
690 		if (max_num_cqe != 0 && num_cqe > max_num_cqe) {
691 			num_cqe = max_num_cqe;
692 		}
693 		rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, num_cqe, rqpair, NULL, 0);
694 		if (!rqpair->cq) {
695 			SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno));
696 			return -1;
697 		}
698 	}
699 
700 	rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
701 	if (g_nvme_hooks.get_ibv_pd) {
702 		attr.pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs);
703 	} else {
704 		attr.pd = spdk_rdma_utils_get_pd(rqpair->cm_id->verbs);
705 	}
706 
707 	attr.stats =		rqpair->poller ? &rqpair->poller->stats.rdma_stats : NULL;
708 	attr.send_cq		= rqpair->cq;
709 	attr.recv_cq		= rqpair->cq;
710 	attr.cap.max_send_wr	= rqpair->num_entries; /* SEND operations */
711 	if (rqpair->srq) {
712 		attr.srq	= rqpair->srq->srq;
713 	} else {
714 		attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */
715 	}
716 	attr.cap.max_send_sge	= spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge);
717 	attr.cap.max_recv_sge	= spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge);
718 
719 	rqpair->rdma_qp = spdk_rdma_provider_qp_create(rqpair->cm_id, &attr);
720 
721 	if (!rqpair->rdma_qp) {
722 		return -1;
723 	}
724 
725 	/* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */
726 	rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge);
727 	rqpair->current_num_sends = 0;
728 
729 	rqpair->cm_id->context = rqpair;
730 
731 	return 0;
732 }
733 
734 static void
735 nvme_rdma_reset_failed_sends(struct nvme_rdma_qpair *rqpair,
736 			     struct ibv_send_wr *bad_send_wr, int rc)
737 {
738 	SPDK_ERRLOG("Failed to post WRs on send queue, errno %d (%s), bad_wr %p\n",
739 		    rc, spdk_strerror(rc), bad_send_wr);
740 	while (bad_send_wr != NULL) {
741 		assert(rqpair->current_num_sends > 0);
742 		rqpair->current_num_sends--;
743 		bad_send_wr = bad_send_wr->next;
744 	}
745 }
746 
747 static void
748 nvme_rdma_reset_failed_recvs(struct nvme_rdma_rsps *rsps,
749 			     struct ibv_recv_wr *bad_recv_wr, int rc)
750 {
751 	SPDK_ERRLOG("Failed to post WRs on receive queue, errno %d (%s), bad_wr %p\n",
752 		    rc, spdk_strerror(rc), bad_recv_wr);
753 	while (bad_recv_wr != NULL) {
754 		assert(rsps->current_num_recvs > 0);
755 		rsps->current_num_recvs--;
756 		bad_recv_wr = bad_recv_wr->next;
757 	}
758 }
759 
760 static inline int
761 nvme_rdma_qpair_submit_sends(struct nvme_rdma_qpair *rqpair)
762 {
763 	struct ibv_send_wr *bad_send_wr = NULL;
764 	int rc;
765 
766 	rc = spdk_rdma_provider_qp_flush_send_wrs(rqpair->rdma_qp, &bad_send_wr);
767 
768 	if (spdk_unlikely(rc)) {
769 		nvme_rdma_reset_failed_sends(rqpair, bad_send_wr, rc);
770 	}
771 
772 	return rc;
773 }
774 
775 static inline int
776 nvme_rdma_qpair_submit_recvs(struct nvme_rdma_qpair *rqpair)
777 {
778 	struct ibv_recv_wr *bad_recv_wr;
779 	int rc = 0;
780 
781 	rc = spdk_rdma_provider_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
782 	if (spdk_unlikely(rc)) {
783 		nvme_rdma_reset_failed_recvs(rqpair->rsps, bad_recv_wr, rc);
784 	}
785 
786 	return rc;
787 }
788 
789 static inline int
790 nvme_rdma_poller_submit_recvs(struct nvme_rdma_poller *poller)
791 {
792 	struct ibv_recv_wr *bad_recv_wr;
793 	int rc;
794 
795 	rc = spdk_rdma_provider_srq_flush_recv_wrs(poller->srq, &bad_recv_wr);
796 	if (spdk_unlikely(rc)) {
797 		nvme_rdma_reset_failed_recvs(poller->rsps, bad_recv_wr, rc);
798 	}
799 
800 	return rc;
801 }
802 
803 #define nvme_rdma_trace_ibv_sge(sg_list) \
804 	if (sg_list) { \
805 		SPDK_DEBUGLOG(nvme, "local addr %p length 0x%x lkey 0x%x\n", \
806 			      (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \
807 	}
808 
809 static void
810 nvme_rdma_free_rsps(struct nvme_rdma_rsps *rsps)
811 {
812 	if (!rsps) {
813 		return;
814 	}
815 
816 	spdk_free(rsps->rsps);
817 	spdk_free(rsps->rsp_sgls);
818 	spdk_free(rsps->rsp_recv_wrs);
819 	spdk_free(rsps);
820 }
821 
822 static struct nvme_rdma_rsps *
823 nvme_rdma_create_rsps(struct nvme_rdma_rsp_opts *opts)
824 {
825 	struct nvme_rdma_rsps *rsps;
826 	struct spdk_rdma_utils_memory_translation translation;
827 	uint16_t i;
828 	int rc;
829 
830 	rsps = spdk_zmalloc(sizeof(*rsps), 0, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
831 	if (!rsps) {
832 		SPDK_ERRLOG("Failed to allocate rsps object\n");
833 		return NULL;
834 	}
835 
836 	rsps->rsp_sgls = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_sgls), 0, NULL,
837 				      SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
838 	if (!rsps->rsp_sgls) {
839 		SPDK_ERRLOG("Failed to allocate rsp_sgls\n");
840 		goto fail;
841 	}
842 
843 	rsps->rsp_recv_wrs = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_recv_wrs), 0, NULL,
844 					  SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
845 	if (!rsps->rsp_recv_wrs) {
846 		SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n");
847 		goto fail;
848 	}
849 
850 	rsps->rsps = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsps), 0, NULL,
851 				  SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
852 	if (!rsps->rsps) {
853 		SPDK_ERRLOG("can not allocate rdma rsps\n");
854 		goto fail;
855 	}
856 
857 	for (i = 0; i < opts->num_entries; i++) {
858 		struct ibv_sge *rsp_sgl = &rsps->rsp_sgls[i];
859 		struct spdk_nvme_rdma_rsp *rsp = &rsps->rsps[i];
860 		struct ibv_recv_wr *recv_wr = &rsps->rsp_recv_wrs[i];
861 
862 		rsp->rqpair = opts->rqpair;
863 		rsp->rdma_wr.type = RDMA_WR_TYPE_RECV;
864 		rsp->recv_wr = recv_wr;
865 		rsp_sgl->addr = (uint64_t)rsp;
866 		rsp_sgl->length = sizeof(struct spdk_nvme_cpl);
867 		rc = spdk_rdma_utils_get_translation(opts->mr_map, rsp, sizeof(*rsp), &translation);
868 		if (rc) {
869 			goto fail;
870 		}
871 		rsp_sgl->lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation);
872 
873 		recv_wr->wr_id = (uint64_t)&rsp->rdma_wr;
874 		recv_wr->next = NULL;
875 		recv_wr->sg_list = rsp_sgl;
876 		recv_wr->num_sge = 1;
877 
878 		nvme_rdma_trace_ibv_sge(recv_wr->sg_list);
879 
880 		if (opts->rqpair) {
881 			spdk_rdma_provider_qp_queue_recv_wrs(opts->rqpair->rdma_qp, recv_wr);
882 		} else {
883 			spdk_rdma_provider_srq_queue_recv_wrs(opts->srq, recv_wr);
884 		}
885 	}
886 
887 	rsps->num_entries = opts->num_entries;
888 	rsps->current_num_recvs = opts->num_entries;
889 
890 	return rsps;
891 fail:
892 	nvme_rdma_free_rsps(rsps);
893 	return NULL;
894 }
895 
896 static void
897 nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair)
898 {
899 	if (!rqpair->rdma_reqs) {
900 		return;
901 	}
902 
903 	spdk_free(rqpair->cmds);
904 	rqpair->cmds = NULL;
905 
906 	spdk_free(rqpair->rdma_reqs);
907 	rqpair->rdma_reqs = NULL;
908 }
909 
910 static int
911 nvme_rdma_create_reqs(struct nvme_rdma_qpair *rqpair)
912 {
913 	struct spdk_rdma_utils_memory_translation translation;
914 	uint16_t i;
915 	int rc;
916 
917 	assert(!rqpair->rdma_reqs);
918 	rqpair->rdma_reqs = spdk_zmalloc(rqpair->num_entries * sizeof(struct spdk_nvme_rdma_req), 0, NULL,
919 					 SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
920 	if (rqpair->rdma_reqs == NULL) {
921 		SPDK_ERRLOG("Failed to allocate rdma_reqs\n");
922 		goto fail;
923 	}
924 
925 	assert(!rqpair->cmds);
926 	rqpair->cmds = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->cmds), 0, NULL,
927 				    SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
928 	if (!rqpair->cmds) {
929 		SPDK_ERRLOG("Failed to allocate RDMA cmds\n");
930 		goto fail;
931 	}
932 
933 	TAILQ_INIT(&rqpair->free_reqs);
934 	TAILQ_INIT(&rqpair->outstanding_reqs);
935 	for (i = 0; i < rqpair->num_entries; i++) {
936 		struct spdk_nvme_rdma_req	*rdma_req;
937 		struct spdk_nvmf_cmd		*cmd;
938 
939 		rdma_req = &rqpair->rdma_reqs[i];
940 		rdma_req->rdma_wr.type = RDMA_WR_TYPE_SEND;
941 		cmd = &rqpair->cmds[i];
942 
943 		rdma_req->id = i;
944 
945 		rc = spdk_rdma_utils_get_translation(rqpair->mr_map, cmd, sizeof(*cmd), &translation);
946 		if (rc) {
947 			goto fail;
948 		}
949 		rdma_req->send_sgl[0].lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation);
950 
951 		/* The first RDMA sgl element will always point
952 		 * at this data structure. Depending on whether
953 		 * an NVMe-oF SGL is required, the length of
954 		 * this element may change. */
955 		rdma_req->send_sgl[0].addr = (uint64_t)cmd;
956 		rdma_req->send_wr.wr_id = (uint64_t)&rdma_req->rdma_wr;
957 		rdma_req->send_wr.next = NULL;
958 		rdma_req->send_wr.opcode = IBV_WR_SEND;
959 		rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED;
960 		rdma_req->send_wr.sg_list = rdma_req->send_sgl;
961 		rdma_req->send_wr.imm_data = 0;
962 
963 		TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link);
964 	}
965 
966 	return 0;
967 fail:
968 	nvme_rdma_free_reqs(rqpair);
969 	return -ENOMEM;
970 }
971 
972 static int nvme_rdma_connect(struct nvme_rdma_qpair *rqpair);
973 
974 static int
975 nvme_rdma_route_resolved(struct nvme_rdma_qpair *rqpair, int ret)
976 {
977 	if (ret) {
978 		SPDK_ERRLOG("RDMA route resolution error\n");
979 		return -1;
980 	}
981 
982 	ret = nvme_rdma_qpair_init(rqpair);
983 	if (ret < 0) {
984 		SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n");
985 		return -1;
986 	}
987 
988 	return nvme_rdma_connect(rqpair);
989 }
990 
991 static int
992 nvme_rdma_addr_resolved(struct nvme_rdma_qpair *rqpair, int ret)
993 {
994 	if (ret) {
995 		SPDK_ERRLOG("RDMA address resolution error\n");
996 		return -1;
997 	}
998 
999 	if (rqpair->qpair.ctrlr->opts.transport_ack_timeout != SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED) {
1000 #ifdef SPDK_CONFIG_RDMA_SET_ACK_TIMEOUT
1001 		uint8_t timeout = rqpair->qpair.ctrlr->opts.transport_ack_timeout;
1002 		ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID,
1003 				      RDMA_OPTION_ID_ACK_TIMEOUT,
1004 				      &timeout, sizeof(timeout));
1005 		if (ret) {
1006 			SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_ACK_TIMEOUT %d, ret %d\n", timeout, ret);
1007 		}
1008 #else
1009 		SPDK_DEBUGLOG(nvme, "transport_ack_timeout is not supported\n");
1010 #endif
1011 	}
1012 
1013 	if (rqpair->qpair.ctrlr->opts.transport_tos != SPDK_NVME_TRANSPORT_TOS_DISABLED) {
1014 #ifdef SPDK_CONFIG_RDMA_SET_TOS
1015 		uint8_t tos = rqpair->qpair.ctrlr->opts.transport_tos;
1016 		ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_TOS, &tos, sizeof(tos));
1017 		if (ret) {
1018 			SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_TOS %u, ret %d\n", tos, ret);
1019 		}
1020 #else
1021 		SPDK_DEBUGLOG(nvme, "transport_tos is not supported\n");
1022 #endif
1023 	}
1024 
1025 	ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS);
1026 	if (ret) {
1027 		SPDK_ERRLOG("rdma_resolve_route\n");
1028 		return ret;
1029 	}
1030 
1031 	return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ROUTE_RESOLVED,
1032 					     nvme_rdma_route_resolved);
1033 }
1034 
1035 static int
1036 nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair,
1037 		       struct sockaddr *src_addr,
1038 		       struct sockaddr *dst_addr)
1039 {
1040 	int ret;
1041 
1042 	if (src_addr) {
1043 		int reuse = 1;
1044 
1045 		ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
1046 				      &reuse, sizeof(reuse));
1047 		if (ret) {
1048 			SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_REUSEADDR %d, ret %d\n",
1049 				       reuse, ret);
1050 			/* It is likely that rdma_resolve_addr() returns -EADDRINUSE, but
1051 			 * we may missing something. We rely on rdma_resolve_addr().
1052 			 */
1053 		}
1054 	}
1055 
1056 	ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr,
1057 				NVME_RDMA_TIME_OUT_IN_MS);
1058 	if (ret) {
1059 		SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno);
1060 		return ret;
1061 	}
1062 
1063 	return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ADDR_RESOLVED,
1064 					     nvme_rdma_addr_resolved);
1065 }
1066 
1067 static int nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair);
1068 
1069 static int
1070 nvme_rdma_connect_established(struct nvme_rdma_qpair *rqpair, int ret)
1071 {
1072 	struct nvme_rdma_rsp_opts opts = {};
1073 
1074 	if (ret == -ESTALE) {
1075 		return nvme_rdma_stale_conn_retry(rqpair);
1076 	} else if (ret) {
1077 		SPDK_ERRLOG("RDMA connect error %d\n", ret);
1078 		return ret;
1079 	}
1080 
1081 	assert(!rqpair->mr_map);
1082 	rqpair->mr_map = spdk_rdma_utils_create_mem_map(rqpair->rdma_qp->qp->pd, &g_nvme_hooks,
1083 			 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_READ | IBV_ACCESS_REMOTE_WRITE);
1084 	if (!rqpair->mr_map) {
1085 		SPDK_ERRLOG("Unable to register RDMA memory translation map\n");
1086 		return -1;
1087 	}
1088 
1089 	ret = nvme_rdma_create_reqs(rqpair);
1090 	SPDK_DEBUGLOG(nvme, "rc =%d\n", ret);
1091 	if (ret) {
1092 		SPDK_ERRLOG("Unable to create rqpair RDMA requests\n");
1093 		return -1;
1094 	}
1095 	SPDK_DEBUGLOG(nvme, "RDMA requests created\n");
1096 
1097 	if (!rqpair->srq) {
1098 		opts.num_entries = rqpair->num_entries;
1099 		opts.rqpair = rqpair;
1100 		opts.srq = NULL;
1101 		opts.mr_map = rqpair->mr_map;
1102 
1103 		assert(!rqpair->rsps);
1104 		rqpair->rsps = nvme_rdma_create_rsps(&opts);
1105 		if (!rqpair->rsps) {
1106 			SPDK_ERRLOG("Unable to create rqpair RDMA responses\n");
1107 			return -1;
1108 		}
1109 		SPDK_DEBUGLOG(nvme, "RDMA responses created\n");
1110 
1111 		ret = nvme_rdma_qpair_submit_recvs(rqpair);
1112 		SPDK_DEBUGLOG(nvme, "rc =%d\n", ret);
1113 		if (ret) {
1114 			SPDK_ERRLOG("Unable to submit rqpair RDMA responses\n");
1115 			return -1;
1116 		}
1117 		SPDK_DEBUGLOG(nvme, "RDMA responses submitted\n");
1118 	}
1119 
1120 	rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND;
1121 
1122 	return 0;
1123 }
1124 
1125 static int
1126 nvme_rdma_connect(struct nvme_rdma_qpair *rqpair)
1127 {
1128 	struct rdma_conn_param				param = {};
1129 	struct spdk_nvmf_rdma_request_private_data	request_data = {};
1130 	struct ibv_device_attr				attr;
1131 	int						ret;
1132 	struct spdk_nvme_ctrlr				*ctrlr;
1133 
1134 	ret = ibv_query_device(rqpair->cm_id->verbs, &attr);
1135 	if (ret != 0) {
1136 		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
1137 		return ret;
1138 	}
1139 
1140 	param.responder_resources = attr.max_qp_rd_atom;
1141 
1142 	ctrlr = rqpair->qpair.ctrlr;
1143 	if (!ctrlr) {
1144 		return -1;
1145 	}
1146 
1147 	request_data.qid = rqpair->qpair.id;
1148 	request_data.hrqsize = rqpair->num_entries + 1;
1149 	request_data.hsqsize = rqpair->num_entries;
1150 	request_data.cntlid = ctrlr->cntlid;
1151 
1152 	param.private_data = &request_data;
1153 	param.private_data_len = sizeof(request_data);
1154 	param.retry_count = ctrlr->opts.transport_retry_count;
1155 	param.rnr_retry_count = 7;
1156 
1157 	/* Fields below are ignored by rdma cm if qpair has been
1158 	 * created using rdma cm API. */
1159 	param.srq = 0;
1160 	param.qp_num = rqpair->rdma_qp->qp->qp_num;
1161 
1162 	ret = rdma_connect(rqpair->cm_id, &param);
1163 	if (ret) {
1164 		SPDK_ERRLOG("nvme rdma connect error\n");
1165 		return ret;
1166 	}
1167 
1168 	ctrlr->numa.id_valid = 1;
1169 	ctrlr->numa.id = spdk_rdma_cm_id_get_numa_id(rqpair->cm_id);
1170 
1171 	return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ESTABLISHED,
1172 					     nvme_rdma_connect_established);
1173 }
1174 
1175 static int
1176 nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1177 {
1178 	struct sockaddr_storage dst_addr;
1179 	struct sockaddr_storage src_addr;
1180 	bool src_addr_specified;
1181 	long int port, src_port = 0;
1182 	int rc;
1183 	struct nvme_rdma_ctrlr *rctrlr;
1184 	struct nvme_rdma_qpair *rqpair;
1185 	struct nvme_rdma_poll_group *group;
1186 	int family;
1187 
1188 	rqpair = nvme_rdma_qpair(qpair);
1189 	rctrlr = nvme_rdma_ctrlr(ctrlr);
1190 	assert(rctrlr != NULL);
1191 
1192 	switch (ctrlr->trid.adrfam) {
1193 	case SPDK_NVMF_ADRFAM_IPV4:
1194 		family = AF_INET;
1195 		break;
1196 	case SPDK_NVMF_ADRFAM_IPV6:
1197 		family = AF_INET6;
1198 		break;
1199 	default:
1200 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
1201 		return -1;
1202 	}
1203 
1204 	SPDK_DEBUGLOG(nvme, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);
1205 
1206 	memset(&dst_addr, 0, sizeof(dst_addr));
1207 
1208 	SPDK_DEBUGLOG(nvme, "trsvcid is %s\n", ctrlr->trid.trsvcid);
1209 	rc = nvme_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid, &port);
1210 	if (rc != 0) {
1211 		SPDK_ERRLOG("dst_addr nvme_parse_addr() failed\n");
1212 		return -1;
1213 	}
1214 
1215 	if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) {
1216 		memset(&src_addr, 0, sizeof(src_addr));
1217 		rc = nvme_parse_addr(&src_addr, family,
1218 				     ctrlr->opts.src_addr[0] ? ctrlr->opts.src_addr : NULL,
1219 				     ctrlr->opts.src_svcid[0] ? ctrlr->opts.src_svcid : NULL,
1220 				     &src_port);
1221 		if (rc != 0) {
1222 			SPDK_ERRLOG("src_addr nvme_parse_addr() failed\n");
1223 			return -1;
1224 		}
1225 		src_addr_specified = true;
1226 	} else {
1227 		src_addr_specified = false;
1228 	}
1229 
1230 	rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP);
1231 	if (rc < 0) {
1232 		SPDK_ERRLOG("rdma_create_id() failed\n");
1233 		return -1;
1234 	}
1235 
1236 	rc = nvme_rdma_resolve_addr(rqpair,
1237 				    src_addr_specified ? (struct sockaddr *)&src_addr : NULL,
1238 				    (struct sockaddr *)&dst_addr);
1239 	if (rc < 0) {
1240 		SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n");
1241 		return -1;
1242 	}
1243 
1244 	rqpair->state = NVME_RDMA_QPAIR_STATE_INITIALIZING;
1245 
1246 	if (qpair->poll_group != NULL) {
1247 		group = nvme_rdma_poll_group(qpair->poll_group);
1248 		TAILQ_INSERT_TAIL(&group->connecting_qpairs, rqpair, link_connecting);
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 static int
1255 nvme_rdma_stale_conn_reconnect(struct nvme_rdma_qpair *rqpair)
1256 {
1257 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1258 
1259 	if (spdk_get_ticks() < rqpair->evt_timeout_ticks) {
1260 		return -EAGAIN;
1261 	}
1262 
1263 	return nvme_rdma_ctrlr_connect_qpair(qpair->ctrlr, qpair);
1264 }
1265 
1266 static int
1267 nvme_rdma_ctrlr_connect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr,
1268 				   struct spdk_nvme_qpair *qpair)
1269 {
1270 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1271 	int rc;
1272 
1273 	if (rqpair->in_connect_poll) {
1274 		return -EAGAIN;
1275 	}
1276 
1277 	rqpair->in_connect_poll = true;
1278 
1279 	switch (rqpair->state) {
1280 	case NVME_RDMA_QPAIR_STATE_INVALID:
1281 		rc = -EAGAIN;
1282 		break;
1283 
1284 	case NVME_RDMA_QPAIR_STATE_INITIALIZING:
1285 	case NVME_RDMA_QPAIR_STATE_EXITING:
1286 		if (!nvme_qpair_is_admin_queue(qpair)) {
1287 			nvme_ctrlr_lock(ctrlr);
1288 		}
1289 
1290 		rc = nvme_rdma_process_event_poll(rqpair);
1291 
1292 		if (!nvme_qpair_is_admin_queue(qpair)) {
1293 			nvme_ctrlr_unlock(ctrlr);
1294 		}
1295 
1296 		if (rc == 0) {
1297 			rc = -EAGAIN;
1298 		}
1299 		rqpair->in_connect_poll = false;
1300 
1301 		return rc;
1302 
1303 	case NVME_RDMA_QPAIR_STATE_STALE_CONN:
1304 		rc = nvme_rdma_stale_conn_reconnect(rqpair);
1305 		if (rc == 0) {
1306 			rc = -EAGAIN;
1307 		}
1308 		break;
1309 	case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND:
1310 		rc = nvme_fabric_qpair_connect_async(qpair, rqpair->num_entries + 1);
1311 		if (rc == 0) {
1312 			rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL;
1313 			rc = -EAGAIN;
1314 		} else {
1315 			SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n");
1316 		}
1317 		break;
1318 	case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL:
1319 		rc = nvme_fabric_qpair_connect_poll(qpair);
1320 		if (rc == 0) {
1321 			if (nvme_fabric_qpair_auth_required(qpair)) {
1322 				rc = nvme_fabric_qpair_authenticate_async(qpair);
1323 				if (rc == 0) {
1324 					rqpair->state = NVME_RDMA_QPAIR_STATE_AUTHENTICATING;
1325 					rc = -EAGAIN;
1326 				}
1327 			} else {
1328 				rqpair->state = NVME_RDMA_QPAIR_STATE_RUNNING;
1329 				nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
1330 			}
1331 		} else if (rc != -EAGAIN) {
1332 			SPDK_ERRLOG("Failed to poll NVMe-oF Fabric CONNECT command\n");
1333 		}
1334 		break;
1335 	case NVME_RDMA_QPAIR_STATE_AUTHENTICATING:
1336 		rc = nvme_fabric_qpair_authenticate_poll(qpair);
1337 		if (rc == 0) {
1338 			rqpair->state = NVME_RDMA_QPAIR_STATE_RUNNING;
1339 			nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
1340 		}
1341 		break;
1342 	case NVME_RDMA_QPAIR_STATE_RUNNING:
1343 		rc = 0;
1344 		break;
1345 	default:
1346 		assert(false);
1347 		rc = -EINVAL;
1348 		break;
1349 	}
1350 
1351 	rqpair->in_connect_poll = false;
1352 
1353 	return rc;
1354 }
1355 
1356 static inline int
1357 nvme_rdma_get_memory_translation(struct nvme_request *req, struct nvme_rdma_qpair *rqpair,
1358 				 struct nvme_rdma_memory_translation_ctx *_ctx)
1359 {
1360 	struct spdk_memory_domain_translation_ctx ctx;
1361 	struct spdk_memory_domain_translation_result dma_translation = {.iov_count = 0};
1362 	struct spdk_rdma_utils_memory_translation rdma_translation;
1363 	int rc;
1364 
1365 	assert(req);
1366 	assert(rqpair);
1367 	assert(_ctx);
1368 
1369 	if (req->payload.opts && req->payload.opts->memory_domain) {
1370 		ctx.size = sizeof(struct spdk_memory_domain_translation_ctx);
1371 		ctx.rdma.ibv_qp = rqpair->rdma_qp->qp;
1372 		dma_translation.size = sizeof(struct spdk_memory_domain_translation_result);
1373 
1374 		rc = spdk_memory_domain_translate_data(req->payload.opts->memory_domain,
1375 						       req->payload.opts->memory_domain_ctx,
1376 						       rqpair->rdma_qp->domain, &ctx, _ctx->addr,
1377 						       _ctx->length, &dma_translation);
1378 		if (spdk_unlikely(rc) || dma_translation.iov_count != 1) {
1379 			SPDK_ERRLOG("DMA memory translation failed, rc %d, iov count %u\n", rc, dma_translation.iov_count);
1380 			return rc;
1381 		}
1382 
1383 		_ctx->lkey = dma_translation.rdma.lkey;
1384 		_ctx->rkey = dma_translation.rdma.rkey;
1385 		_ctx->addr = dma_translation.iov.iov_base;
1386 		_ctx->length = dma_translation.iov.iov_len;
1387 	} else {
1388 		rc = spdk_rdma_utils_get_translation(rqpair->mr_map, _ctx->addr, _ctx->length, &rdma_translation);
1389 		if (spdk_unlikely(rc)) {
1390 			SPDK_ERRLOG("RDMA memory translation failed, rc %d\n", rc);
1391 			return rc;
1392 		}
1393 		if (rdma_translation.translation_type == SPDK_RDMA_UTILS_TRANSLATION_MR) {
1394 			_ctx->lkey = rdma_translation.mr_or_key.mr->lkey;
1395 			_ctx->rkey = rdma_translation.mr_or_key.mr->rkey;
1396 		} else {
1397 			_ctx->lkey = _ctx->rkey = (uint32_t)rdma_translation.mr_or_key.key;
1398 		}
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 
1405 /*
1406  * Build SGL describing empty payload.
1407  */
1408 static int
1409 nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req)
1410 {
1411 	struct nvme_request *req = rdma_req->req;
1412 
1413 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1414 
1415 	/* The first element of this SGL is pointing at an
1416 	 * spdk_nvmf_cmd object. For this particular command,
1417 	 * we only need the first 64 bytes corresponding to
1418 	 * the NVMe command. */
1419 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1420 
1421 	/* The RDMA SGL needs one element describing the NVMe command. */
1422 	rdma_req->send_wr.num_sge = 1;
1423 
1424 	req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1425 	req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1426 	req->cmd.dptr.sgl1.keyed.length = 0;
1427 	req->cmd.dptr.sgl1.keyed.key = 0;
1428 	req->cmd.dptr.sgl1.address = 0;
1429 
1430 	return 0;
1431 }
1432 
1433 static inline void
1434 nvme_rdma_configure_contig_inline_request(struct spdk_nvme_rdma_req *rdma_req,
1435 		struct nvme_request *req, struct nvme_rdma_memory_translation_ctx *ctx)
1436 {
1437 	rdma_req->send_sgl[1].lkey = ctx->lkey;
1438 
1439 	/* The first element of this SGL is pointing at an
1440 	 * spdk_nvmf_cmd object. For this particular command,
1441 	 * we only need the first 64 bytes corresponding to
1442 	 * the NVMe command. */
1443 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1444 
1445 	rdma_req->send_sgl[1].addr = (uint64_t)ctx->addr;
1446 	rdma_req->send_sgl[1].length = (uint32_t)ctx->length;
1447 
1448 	/* The RDMA SGL contains two elements. The first describes
1449 	 * the NVMe command and the second describes the data
1450 	 * payload. */
1451 	rdma_req->send_wr.num_sge = 2;
1452 
1453 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1454 	req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1455 	req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1456 	req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx->length;
1457 	/* Inline only supported for icdoff == 0 currently.  This function will
1458 	 * not get called for controllers with other values. */
1459 	req->cmd.dptr.sgl1.address = (uint64_t)0;
1460 }
1461 
1462 /*
1463  * Build inline SGL describing contiguous payload buffer.
1464  */
1465 static inline int
1466 nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair,
1467 				      struct spdk_nvme_rdma_req *rdma_req)
1468 {
1469 	struct nvme_request *req = rdma_req->req;
1470 	struct nvme_rdma_memory_translation_ctx ctx = {
1471 		.addr = (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset,
1472 		.length = req->payload_size
1473 	};
1474 	int rc;
1475 
1476 	assert(ctx.length != 0);
1477 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1478 
1479 	rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1480 	if (spdk_unlikely(rc)) {
1481 		return -1;
1482 	}
1483 
1484 	nvme_rdma_configure_contig_inline_request(rdma_req, req, &ctx);
1485 
1486 	return 0;
1487 }
1488 
1489 static inline void
1490 nvme_rdma_configure_contig_request(struct spdk_nvme_rdma_req *rdma_req, struct nvme_request *req,
1491 				   struct nvme_rdma_memory_translation_ctx *ctx)
1492 {
1493 	req->cmd.dptr.sgl1.keyed.key = ctx->rkey;
1494 
1495 	/* The first element of this SGL is pointing at an
1496 	 * spdk_nvmf_cmd object. For this particular command,
1497 	 * we only need the first 64 bytes corresponding to
1498 	 * the NVMe command. */
1499 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1500 
1501 	/* The RDMA SGL needs one element describing the NVMe command. */
1502 	rdma_req->send_wr.num_sge = 1;
1503 
1504 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1505 	req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1506 	req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1507 	req->cmd.dptr.sgl1.keyed.length = (uint32_t)ctx->length;
1508 	req->cmd.dptr.sgl1.address = (uint64_t)ctx->addr;
1509 }
1510 
1511 /*
1512  * Build SGL describing contiguous payload buffer.
1513  */
1514 static inline int
1515 nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair,
1516 			       struct spdk_nvme_rdma_req *rdma_req)
1517 {
1518 	struct nvme_request *req = rdma_req->req;
1519 	struct nvme_rdma_memory_translation_ctx ctx = {
1520 		.addr = (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset,
1521 		.length = req->payload_size
1522 	};
1523 	int rc;
1524 
1525 	assert(req->payload_size != 0);
1526 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1527 
1528 	if (spdk_unlikely(req->payload_size > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
1529 		SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
1530 			    req->payload_size, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
1531 		return -1;
1532 	}
1533 
1534 	rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1535 	if (spdk_unlikely(rc)) {
1536 		return -1;
1537 	}
1538 
1539 	nvme_rdma_configure_contig_request(rdma_req, req, &ctx);
1540 
1541 	return 0;
1542 }
1543 
1544 /*
1545  * Build SGL describing scattered payload buffer.
1546  */
1547 static inline int
1548 nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair,
1549 			    struct spdk_nvme_rdma_req *rdma_req)
1550 {
1551 	struct nvme_request *req = rdma_req->req;
1552 	struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id];
1553 	struct nvme_rdma_memory_translation_ctx ctx;
1554 	uint32_t remaining_size;
1555 	uint32_t sge_length;
1556 	int rc, max_num_sgl, num_sgl_desc;
1557 
1558 	assert(req->payload_size != 0);
1559 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1560 	assert(req->payload.reset_sgl_fn != NULL);
1561 	assert(req->payload.next_sge_fn != NULL);
1562 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1563 
1564 	max_num_sgl = req->qpair->ctrlr->max_sges;
1565 
1566 	remaining_size = req->payload_size;
1567 	num_sgl_desc = 0;
1568 	do {
1569 		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &sge_length);
1570 		if (spdk_unlikely(rc)) {
1571 			return -1;
1572 		}
1573 
1574 		sge_length = spdk_min(remaining_size, sge_length);
1575 
1576 		if (spdk_unlikely(sge_length > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
1577 			SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
1578 				    sge_length, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
1579 			return -1;
1580 		}
1581 		ctx.length = sge_length;
1582 		rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1583 		if (spdk_unlikely(rc)) {
1584 			return -1;
1585 		}
1586 
1587 		cmd->sgl[num_sgl_desc].keyed.key = ctx.rkey;
1588 		cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1589 		cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1590 		cmd->sgl[num_sgl_desc].keyed.length = (uint32_t)ctx.length;
1591 		cmd->sgl[num_sgl_desc].address = (uint64_t)ctx.addr;
1592 
1593 		remaining_size -= ctx.length;
1594 		num_sgl_desc++;
1595 	} while (remaining_size > 0 && num_sgl_desc < max_num_sgl);
1596 
1597 
1598 	/* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */
1599 	if (spdk_unlikely(remaining_size > 0)) {
1600 		return -1;
1601 	}
1602 
1603 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1604 
1605 	/* The RDMA SGL needs one element describing some portion
1606 	 * of the spdk_nvmf_cmd structure. */
1607 	rdma_req->send_wr.num_sge = 1;
1608 
1609 	/*
1610 	 * If only one SGL descriptor is required, it can be embedded directly in the command
1611 	 * as a data block descriptor.
1612 	 */
1613 	if (num_sgl_desc == 1) {
1614 		/* The first element of this SGL is pointing at an
1615 		 * spdk_nvmf_cmd object. For this particular command,
1616 		 * we only need the first 64 bytes corresponding to
1617 		 * the NVMe command. */
1618 		rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1619 
1620 		req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type;
1621 		req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype;
1622 		req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length;
1623 		req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key;
1624 		req->cmd.dptr.sgl1.address = cmd->sgl[0].address;
1625 	} else {
1626 		/*
1627 		 * Otherwise, The SGL descriptor embedded in the command must point to the list of
1628 		 * SGL descriptors used to describe the operation. In that case it is a last segment descriptor.
1629 		 */
1630 		uint32_t descriptors_size = sizeof(struct spdk_nvme_sgl_descriptor) * num_sgl_desc;
1631 
1632 		if (spdk_unlikely(descriptors_size > rqpair->qpair.ctrlr->ioccsz_bytes)) {
1633 			SPDK_ERRLOG("Size of SGL descriptors (%u) exceeds ICD (%u)\n",
1634 				    descriptors_size, rqpair->qpair.ctrlr->ioccsz_bytes);
1635 			return -1;
1636 		}
1637 		rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + descriptors_size;
1638 
1639 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1640 		req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1641 		req->cmd.dptr.sgl1.unkeyed.length = descriptors_size;
1642 		req->cmd.dptr.sgl1.address = (uint64_t)0;
1643 	}
1644 
1645 	return 0;
1646 }
1647 
1648 /*
1649  * Build inline SGL describing sgl payload buffer.
1650  */
1651 static inline int
1652 nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair,
1653 				   struct spdk_nvme_rdma_req *rdma_req)
1654 {
1655 	struct nvme_request *req = rdma_req->req;
1656 	struct nvme_rdma_memory_translation_ctx ctx;
1657 	uint32_t length;
1658 	int rc;
1659 
1660 	assert(req->payload_size != 0);
1661 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1662 	assert(req->payload.reset_sgl_fn != NULL);
1663 	assert(req->payload.next_sge_fn != NULL);
1664 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1665 
1666 	rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &length);
1667 	if (spdk_unlikely(rc)) {
1668 		return -1;
1669 	}
1670 
1671 	if (length < req->payload_size) {
1672 		SPDK_DEBUGLOG(nvme, "Inline SGL request split so sending separately.\n");
1673 		return nvme_rdma_build_sgl_request(rqpair, rdma_req);
1674 	}
1675 
1676 	if (length > req->payload_size) {
1677 		length = req->payload_size;
1678 	}
1679 
1680 	ctx.length = length;
1681 	rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1682 	if (spdk_unlikely(rc)) {
1683 		return -1;
1684 	}
1685 
1686 	rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr;
1687 	rdma_req->send_sgl[1].length = (uint32_t)ctx.length;
1688 	rdma_req->send_sgl[1].lkey = ctx.lkey;
1689 
1690 	rdma_req->send_wr.num_sge = 2;
1691 
1692 	/* The first element of this SGL is pointing at an
1693 	 * spdk_nvmf_cmd object. For this particular command,
1694 	 * we only need the first 64 bytes corresponding to
1695 	 * the NVMe command. */
1696 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1697 
1698 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1699 	req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1700 	req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1701 	req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length;
1702 	/* Inline only supported for icdoff == 0 currently.  This function will
1703 	 * not get called for controllers with other values. */
1704 	req->cmd.dptr.sgl1.address = (uint64_t)0;
1705 
1706 	return 0;
1707 }
1708 
1709 static inline int
1710 nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
1711 {
1712 	struct nvme_request *req = rdma_req->req;
1713 	struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr;
1714 	enum nvme_payload_type payload_type;
1715 	bool icd_supported;
1716 	int rc = -1;
1717 
1718 	payload_type = nvme_payload_type(&req->payload);
1719 	/*
1720 	 * Check if icdoff is non zero, to avoid interop conflicts with
1721 	 * targets with non-zero icdoff.  Both SPDK and the Linux kernel
1722 	 * targets use icdoff = 0.  For targets with non-zero icdoff, we
1723 	 * will currently just not use inline data for now.
1724 	 */
1725 	icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER
1726 			&& req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0;
1727 
1728 	if (spdk_unlikely(req->payload_size == 0)) {
1729 		rc = nvme_rdma_build_null_request(rdma_req);
1730 	} else if (payload_type == NVME_PAYLOAD_TYPE_CONTIG) {
1731 		if (icd_supported) {
1732 			rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req);
1733 		} else {
1734 			rc = nvme_rdma_build_contig_request(rqpair, rdma_req);
1735 		}
1736 	} else if (payload_type == NVME_PAYLOAD_TYPE_SGL) {
1737 		if (icd_supported) {
1738 			rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req);
1739 		} else {
1740 			rc = nvme_rdma_build_sgl_request(rqpair, rdma_req);
1741 		}
1742 	}
1743 
1744 	if (spdk_unlikely(rc)) {
1745 		return rc;
1746 	}
1747 
1748 	memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd));
1749 	return 0;
1750 }
1751 
1752 static struct spdk_nvme_qpair *
1753 nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
1754 			     uint16_t qid, uint32_t qsize,
1755 			     enum spdk_nvme_qprio qprio,
1756 			     uint32_t num_requests,
1757 			     bool delay_cmd_submit,
1758 			     bool async)
1759 {
1760 	struct nvme_rdma_qpair *rqpair;
1761 	struct spdk_nvme_qpair *qpair;
1762 	int rc;
1763 
1764 	if (qsize < SPDK_NVME_QUEUE_MIN_ENTRIES) {
1765 		SPDK_ERRLOG("Failed to create qpair with size %u. Minimum queue size is %d.\n",
1766 			    qsize, SPDK_NVME_QUEUE_MIN_ENTRIES);
1767 		return NULL;
1768 	}
1769 
1770 	rqpair = spdk_zmalloc(sizeof(struct nvme_rdma_qpair), 0, NULL, SPDK_ENV_NUMA_ID_ANY,
1771 			      SPDK_MALLOC_DMA);
1772 	if (!rqpair) {
1773 		SPDK_ERRLOG("failed to get create rqpair\n");
1774 		return NULL;
1775 	}
1776 
1777 	/* Set num_entries one less than queue size. According to NVMe
1778 	 * and NVMe-oF specs we can not submit queue size requests,
1779 	 * one slot shall always remain empty.
1780 	 */
1781 	rqpair->num_entries = qsize - 1;
1782 	rqpair->delay_cmd_submit = delay_cmd_submit;
1783 	rqpair->state = NVME_RDMA_QPAIR_STATE_INVALID;
1784 	qpair = &rqpair->qpair;
1785 	rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests, async);
1786 	if (rc != 0) {
1787 		spdk_free(rqpair);
1788 		return NULL;
1789 	}
1790 
1791 	return qpair;
1792 }
1793 
1794 static void
1795 nvme_rdma_qpair_destroy(struct nvme_rdma_qpair *rqpair)
1796 {
1797 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1798 	struct nvme_rdma_ctrlr *rctrlr;
1799 	struct nvme_rdma_cm_event_entry *entry, *tmp;
1800 
1801 	spdk_rdma_utils_free_mem_map(&rqpair->mr_map);
1802 
1803 	if (rqpair->evt) {
1804 		rdma_ack_cm_event(rqpair->evt);
1805 		rqpair->evt = NULL;
1806 	}
1807 
1808 	/*
1809 	 * This works because we have the controller lock both in
1810 	 * this function and in the function where we add new events.
1811 	 */
1812 	if (qpair->ctrlr != NULL) {
1813 		rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
1814 		STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
1815 			if (entry->evt->id->context == rqpair) {
1816 				STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
1817 				rdma_ack_cm_event(entry->evt);
1818 				STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
1819 			}
1820 		}
1821 	}
1822 
1823 	if (rqpair->cm_id) {
1824 		if (rqpair->rdma_qp) {
1825 			spdk_rdma_utils_put_pd(rqpair->rdma_qp->qp->pd);
1826 			spdk_rdma_provider_qp_destroy(rqpair->rdma_qp);
1827 			rqpair->rdma_qp = NULL;
1828 		}
1829 	}
1830 
1831 	if (rqpair->poller) {
1832 		struct nvme_rdma_poll_group     *group;
1833 
1834 		assert(qpair->poll_group);
1835 		group = nvme_rdma_poll_group(qpair->poll_group);
1836 
1837 		nvme_rdma_poll_group_put_poller(group, rqpair->poller);
1838 
1839 		rqpair->poller = NULL;
1840 		rqpair->cq = NULL;
1841 		if (rqpair->srq) {
1842 			rqpair->srq = NULL;
1843 			rqpair->rsps = NULL;
1844 		}
1845 	} else if (rqpair->cq) {
1846 		ibv_destroy_cq(rqpair->cq);
1847 		rqpair->cq = NULL;
1848 	}
1849 
1850 	nvme_rdma_free_reqs(rqpair);
1851 	nvme_rdma_free_rsps(rqpair->rsps);
1852 	rqpair->rsps = NULL;
1853 
1854 	/* destroy cm_id last so cma device will not be freed before we destroy the cq. */
1855 	if (rqpair->cm_id) {
1856 		rdma_destroy_id(rqpair->cm_id);
1857 		rqpair->cm_id = NULL;
1858 	}
1859 }
1860 
1861 static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr);
1862 
1863 static int
1864 nvme_rdma_qpair_disconnected(struct nvme_rdma_qpair *rqpair, int ret)
1865 {
1866 	if (ret) {
1867 		SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n");
1868 		goto quiet;
1869 	}
1870 
1871 	if (rqpair->poller == NULL) {
1872 		/* If poller is not used, cq is not shared.
1873 		 * So complete disconnecting qpair immediately.
1874 		 */
1875 		goto quiet;
1876 	}
1877 
1878 	if (rqpair->rsps == NULL) {
1879 		goto quiet;
1880 	}
1881 
1882 	if (rqpair->need_destroy ||
1883 	    (rqpair->current_num_sends != 0 ||
1884 	     (!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) {
1885 		rqpair->state = NVME_RDMA_QPAIR_STATE_LINGERING;
1886 		rqpair->evt_timeout_ticks = (NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US * spdk_get_ticks_hz()) /
1887 					    SPDK_SEC_TO_USEC + spdk_get_ticks();
1888 
1889 		return -EAGAIN;
1890 	}
1891 
1892 quiet:
1893 	rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED;
1894 
1895 	nvme_rdma_qpair_abort_reqs(&rqpair->qpair, rqpair->qpair.abort_dnr);
1896 	nvme_rdma_qpair_destroy(rqpair);
1897 	nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair);
1898 
1899 	return 0;
1900 }
1901 
1902 static int
1903 nvme_rdma_qpair_wait_until_quiet(struct nvme_rdma_qpair *rqpair)
1904 {
1905 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1906 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
1907 
1908 	if (spdk_get_ticks() < rqpair->evt_timeout_ticks &&
1909 	    (rqpair->current_num_sends != 0 ||
1910 	     (!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) {
1911 		return -EAGAIN;
1912 	}
1913 
1914 	rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED;
1915 	nvme_rdma_qpair_abort_reqs(qpair, qpair->abort_dnr);
1916 	if (!nvme_qpair_is_admin_queue(qpair)) {
1917 		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1918 	}
1919 	nvme_rdma_qpair_destroy(rqpair);
1920 	if (!nvme_qpair_is_admin_queue(qpair)) {
1921 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1922 	}
1923 	nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair);
1924 
1925 	return 0;
1926 }
1927 
1928 static void
1929 _nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
1930 				  nvme_rdma_cm_event_cb disconnected_qpair_cb)
1931 {
1932 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1933 	int rc;
1934 
1935 	assert(disconnected_qpair_cb != NULL);
1936 
1937 	rqpair->state = NVME_RDMA_QPAIR_STATE_EXITING;
1938 
1939 	if (rqpair->cm_id) {
1940 		if (rqpair->rdma_qp) {
1941 			rc = spdk_rdma_provider_qp_disconnect(rqpair->rdma_qp);
1942 			if ((qpair->ctrlr != NULL) && (rc == 0)) {
1943 				rc = nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_DISCONNECTED,
1944 								   disconnected_qpair_cb);
1945 				if (rc == 0) {
1946 					return;
1947 				}
1948 			}
1949 		}
1950 	}
1951 
1952 	disconnected_qpair_cb(rqpair, 0);
1953 }
1954 
1955 static int
1956 nvme_rdma_ctrlr_disconnect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1957 {
1958 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1959 	int rc;
1960 
1961 	switch (rqpair->state) {
1962 	case NVME_RDMA_QPAIR_STATE_EXITING:
1963 		if (!nvme_qpair_is_admin_queue(qpair)) {
1964 			nvme_ctrlr_lock(ctrlr);
1965 		}
1966 
1967 		rc = nvme_rdma_process_event_poll(rqpair);
1968 
1969 		if (!nvme_qpair_is_admin_queue(qpair)) {
1970 			nvme_ctrlr_unlock(ctrlr);
1971 		}
1972 		break;
1973 
1974 	case NVME_RDMA_QPAIR_STATE_LINGERING:
1975 		rc = nvme_rdma_qpair_wait_until_quiet(rqpair);
1976 		break;
1977 	case NVME_RDMA_QPAIR_STATE_EXITED:
1978 		rc = 0;
1979 		break;
1980 
1981 	default:
1982 		assert(false);
1983 		rc = -EAGAIN;
1984 		break;
1985 	}
1986 
1987 	return rc;
1988 }
1989 
1990 static void
1991 nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1992 {
1993 	int rc;
1994 
1995 	_nvme_rdma_ctrlr_disconnect_qpair(ctrlr, qpair, nvme_rdma_qpair_disconnected);
1996 
1997 	/* If the async mode is disabled, poll the qpair until it is actually disconnected.
1998 	 * It is ensured that poll_group_process_completions() calls disconnected_qpair_cb
1999 	 * for any disconnected qpair. Hence, we do not have to check if the qpair is in
2000 	 * a poll group or not.
2001 	 * At the same time, if the qpair is being destroyed, i.e. this function is called by
2002 	 * spdk_nvme_ctrlr_free_io_qpair then we need to wait until qpair is disconnected, otherwise
2003 	 * we may leak some resources.
2004 	 */
2005 	if (qpair->async && !qpair->destroy_in_progress) {
2006 		return;
2007 	}
2008 
2009 	while (1) {
2010 		rc = nvme_rdma_ctrlr_disconnect_qpair_poll(ctrlr, qpair);
2011 		if (rc != -EAGAIN) {
2012 			break;
2013 		}
2014 	}
2015 }
2016 
2017 static int
2018 nvme_rdma_stale_conn_disconnected(struct nvme_rdma_qpair *rqpair, int ret)
2019 {
2020 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
2021 
2022 	if (ret) {
2023 		SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n");
2024 	}
2025 
2026 	nvme_rdma_qpair_destroy(rqpair);
2027 
2028 	qpair->last_transport_failure_reason = qpair->transport_failure_reason;
2029 	qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_NONE;
2030 
2031 	rqpair->state = NVME_RDMA_QPAIR_STATE_STALE_CONN;
2032 	rqpair->evt_timeout_ticks = (NVME_RDMA_STALE_CONN_RETRY_DELAY_US * spdk_get_ticks_hz()) /
2033 				    SPDK_SEC_TO_USEC + spdk_get_ticks();
2034 
2035 	return 0;
2036 }
2037 
2038 static int
2039 nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair)
2040 {
2041 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
2042 
2043 	if (rqpair->stale_conn_retry_count >= NVME_RDMA_STALE_CONN_RETRY_MAX) {
2044 		SPDK_ERRLOG("Retry failed %d times, give up stale connection to qpair (cntlid:%u, qid:%u).\n",
2045 			    NVME_RDMA_STALE_CONN_RETRY_MAX, qpair->ctrlr->cntlid, qpair->id);
2046 		return -ESTALE;
2047 	}
2048 
2049 	rqpair->stale_conn_retry_count++;
2050 
2051 	SPDK_NOTICELOG("%d times, retry stale connection to qpair (cntlid:%u, qid:%u).\n",
2052 		       rqpair->stale_conn_retry_count, qpair->ctrlr->cntlid, qpair->id);
2053 
2054 	_nvme_rdma_ctrlr_disconnect_qpair(qpair->ctrlr, qpair, nvme_rdma_stale_conn_disconnected);
2055 
2056 	return 0;
2057 }
2058 
2059 static int
2060 nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
2061 {
2062 	struct nvme_rdma_qpair *rqpair;
2063 
2064 	assert(qpair != NULL);
2065 	rqpair = nvme_rdma_qpair(qpair);
2066 
2067 	if (rqpair->state != NVME_RDMA_QPAIR_STATE_EXITED) {
2068 		int rc __attribute__((unused));
2069 
2070 		/* qpair was removed from the poll group while the disconnect is not finished.
2071 		 * Destroy rdma resources forcefully. */
2072 		rc = nvme_rdma_qpair_disconnected(rqpair, 0);
2073 		assert(rc == 0);
2074 	}
2075 
2076 	nvme_rdma_qpair_abort_reqs(qpair, qpair->abort_dnr);
2077 	nvme_qpair_deinit(qpair);
2078 
2079 	spdk_free(rqpair);
2080 
2081 	return 0;
2082 }
2083 
2084 static struct spdk_nvme_qpair *
2085 nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
2086 				const struct spdk_nvme_io_qpair_opts *opts)
2087 {
2088 	return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio,
2089 					    opts->io_queue_requests,
2090 					    opts->delay_cmd_submit,
2091 					    opts->async_mode);
2092 }
2093 
2094 static int
2095 nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
2096 {
2097 	/* do nothing here */
2098 	return 0;
2099 }
2100 
2101 static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr);
2102 
2103 /* We have to use the typedef in the function declaration to appease astyle. */
2104 typedef struct spdk_nvme_ctrlr spdk_nvme_ctrlr_t;
2105 
2106 static spdk_nvme_ctrlr_t *
2107 nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
2108 			  const struct spdk_nvme_ctrlr_opts *opts,
2109 			  void *devhandle)
2110 {
2111 	struct nvme_rdma_ctrlr *rctrlr;
2112 	struct ibv_context **contexts;
2113 	struct ibv_device_attr dev_attr;
2114 	int i, flag, rc;
2115 
2116 	rctrlr = spdk_zmalloc(sizeof(struct nvme_rdma_ctrlr), 0, NULL, SPDK_ENV_NUMA_ID_ANY,
2117 			      SPDK_MALLOC_DMA);
2118 	if (rctrlr == NULL) {
2119 		SPDK_ERRLOG("could not allocate ctrlr\n");
2120 		return NULL;
2121 	}
2122 
2123 	rctrlr->ctrlr.opts = *opts;
2124 	rctrlr->ctrlr.trid = *trid;
2125 
2126 	if (opts->transport_retry_count > NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT) {
2127 		SPDK_NOTICELOG("transport_retry_count exceeds max value %d, use max value\n",
2128 			       NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT);
2129 		rctrlr->ctrlr.opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT;
2130 	}
2131 
2132 	if (opts->transport_ack_timeout > NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) {
2133 		SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n",
2134 			       NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT);
2135 		rctrlr->ctrlr.opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT;
2136 	}
2137 
2138 	contexts = rdma_get_devices(NULL);
2139 	if (contexts == NULL) {
2140 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2141 		spdk_free(rctrlr);
2142 		return NULL;
2143 	}
2144 
2145 	i = 0;
2146 	rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS;
2147 
2148 	while (contexts[i] != NULL) {
2149 		rc = ibv_query_device(contexts[i], &dev_attr);
2150 		if (rc < 0) {
2151 			SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2152 			rdma_free_devices(contexts);
2153 			spdk_free(rctrlr);
2154 			return NULL;
2155 		}
2156 		rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge);
2157 		i++;
2158 	}
2159 
2160 	rdma_free_devices(contexts);
2161 
2162 	rc = nvme_ctrlr_construct(&rctrlr->ctrlr);
2163 	if (rc != 0) {
2164 		spdk_free(rctrlr);
2165 		return NULL;
2166 	}
2167 
2168 	STAILQ_INIT(&rctrlr->pending_cm_events);
2169 	STAILQ_INIT(&rctrlr->free_cm_events);
2170 	rctrlr->cm_events = spdk_zmalloc(NVME_RDMA_NUM_CM_EVENTS * sizeof(*rctrlr->cm_events), 0, NULL,
2171 					 SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
2172 	if (rctrlr->cm_events == NULL) {
2173 		SPDK_ERRLOG("unable to allocate buffers to hold CM events.\n");
2174 		goto destruct_ctrlr;
2175 	}
2176 
2177 	for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) {
2178 		STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link);
2179 	}
2180 
2181 	rctrlr->cm_channel = rdma_create_event_channel();
2182 	if (rctrlr->cm_channel == NULL) {
2183 		SPDK_ERRLOG("rdma_create_event_channel() failed\n");
2184 		goto destruct_ctrlr;
2185 	}
2186 
2187 	flag = fcntl(rctrlr->cm_channel->fd, F_GETFL);
2188 	if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2189 		SPDK_ERRLOG("Cannot set event channel to non blocking\n");
2190 		goto destruct_ctrlr;
2191 	}
2192 
2193 	rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0,
2194 			       rctrlr->ctrlr.opts.admin_queue_size, 0,
2195 			       rctrlr->ctrlr.opts.admin_queue_size, false, true);
2196 	if (!rctrlr->ctrlr.adminq) {
2197 		SPDK_ERRLOG("failed to create admin qpair\n");
2198 		goto destruct_ctrlr;
2199 	}
2200 
2201 	if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) {
2202 		SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n");
2203 		goto destruct_ctrlr;
2204 	}
2205 
2206 	SPDK_DEBUGLOG(nvme, "successfully initialized the nvmf ctrlr\n");
2207 	return &rctrlr->ctrlr;
2208 
2209 destruct_ctrlr:
2210 	nvme_ctrlr_destruct(&rctrlr->ctrlr);
2211 	return NULL;
2212 }
2213 
2214 static int
2215 nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
2216 {
2217 	struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
2218 	struct nvme_rdma_cm_event_entry *entry;
2219 
2220 	if (ctrlr->adminq) {
2221 		nvme_rdma_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq);
2222 	}
2223 
2224 	STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) {
2225 		rdma_ack_cm_event(entry->evt);
2226 	}
2227 
2228 	STAILQ_INIT(&rctrlr->free_cm_events);
2229 	STAILQ_INIT(&rctrlr->pending_cm_events);
2230 	spdk_free(rctrlr->cm_events);
2231 
2232 	if (rctrlr->cm_channel) {
2233 		rdma_destroy_event_channel(rctrlr->cm_channel);
2234 		rctrlr->cm_channel = NULL;
2235 	}
2236 
2237 	nvme_ctrlr_destruct_finish(ctrlr);
2238 
2239 	spdk_free(rctrlr);
2240 
2241 	return 0;
2242 }
2243 
2244 static inline int
2245 _nvme_rdma_qpair_submit_request(struct nvme_rdma_qpair *rqpair,
2246 				struct spdk_nvme_rdma_req *rdma_req)
2247 {
2248 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
2249 	struct ibv_send_wr *wr;
2250 	struct nvme_rdma_poll_group *group;
2251 
2252 	if (!rqpair->link_active.tqe_prev && qpair->poll_group) {
2253 		group = nvme_rdma_poll_group(qpair->poll_group);
2254 		TAILQ_INSERT_TAIL(&group->active_qpairs, rqpair, link_active);
2255 	}
2256 	assert(rqpair->current_num_sends < rqpair->num_entries);
2257 	rqpair->current_num_sends++;
2258 
2259 	wr = &rdma_req->send_wr;
2260 	wr->next = NULL;
2261 	nvme_rdma_trace_ibv_sge(wr->sg_list);
2262 
2263 	spdk_rdma_provider_qp_queue_send_wrs(rqpair->rdma_qp, wr);
2264 
2265 	if (!rqpair->delay_cmd_submit) {
2266 		return nvme_rdma_qpair_submit_sends(rqpair);
2267 	}
2268 
2269 	return 0;
2270 }
2271 
2272 static int
2273 nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair,
2274 			       struct nvme_request *req)
2275 {
2276 	struct nvme_rdma_qpair *rqpair;
2277 	struct spdk_nvme_rdma_req *rdma_req;
2278 	int rc;
2279 
2280 	rqpair = nvme_rdma_qpair(qpair);
2281 	assert(rqpair != NULL);
2282 	assert(req != NULL);
2283 
2284 	rdma_req = nvme_rdma_req_get(rqpair);
2285 	if (spdk_unlikely(!rdma_req)) {
2286 		if (rqpair->poller) {
2287 			rqpair->poller->stats.queued_requests++;
2288 		}
2289 		/* Inform the upper layer to try again later. */
2290 		return -EAGAIN;
2291 	}
2292 
2293 	assert(rdma_req->req == NULL);
2294 	rdma_req->req = req;
2295 	req->cmd.cid = rdma_req->id;
2296 	rc = nvme_rdma_req_init(rqpair, rdma_req);
2297 	if (spdk_unlikely(rc)) {
2298 		SPDK_ERRLOG("nvme_rdma_req_init() failed\n");
2299 		nvme_rdma_req_put(rqpair, rdma_req);
2300 		return -1;
2301 	}
2302 
2303 	TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link);
2304 	rqpair->num_outstanding_reqs++;
2305 
2306 	return _nvme_rdma_qpair_submit_request(rqpair, rdma_req);
2307 }
2308 
2309 static int
2310 nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair)
2311 {
2312 	/* Currently, doing nothing here */
2313 	return 0;
2314 }
2315 
2316 static void
2317 nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
2318 {
2319 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
2320 	struct spdk_nvme_cpl cpl;
2321 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2322 
2323 	cpl.sqid = qpair->id;
2324 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
2325 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2326 	cpl.status.dnr = dnr;
2327 
2328 	/*
2329 	 * We cannot abort requests at the RDMA layer without
2330 	 * unregistering them. If we do, we can still get error
2331 	 * free completions on the shared completion queue.
2332 	 */
2333 	if (nvme_qpair_get_state(qpair) > NVME_QPAIR_DISCONNECTING &&
2334 	    nvme_qpair_get_state(qpair) != NVME_QPAIR_DESTROYING) {
2335 		nvme_ctrlr_disconnect_qpair(qpair);
2336 	}
2337 
2338 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2339 		nvme_rdma_req_complete(rdma_req, &cpl, true);
2340 	}
2341 }
2342 
2343 static void
2344 nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
2345 {
2346 	uint64_t t02;
2347 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
2348 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2349 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
2350 	struct spdk_nvme_ctrlr_process *active_proc;
2351 
2352 	/* Don't check timeouts during controller initialization. */
2353 	if (ctrlr->state != NVME_CTRLR_STATE_READY) {
2354 		return;
2355 	}
2356 
2357 	if (nvme_qpair_is_admin_queue(qpair)) {
2358 		active_proc = nvme_ctrlr_get_current_process(ctrlr);
2359 	} else {
2360 		active_proc = qpair->active_proc;
2361 	}
2362 
2363 	/* Only check timeouts if the current process has a timeout callback. */
2364 	if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
2365 		return;
2366 	}
2367 
2368 	t02 = spdk_get_ticks();
2369 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2370 		assert(rdma_req->req != NULL);
2371 
2372 		if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) {
2373 			/*
2374 			 * The requests are in order, so as soon as one has not timed out,
2375 			 * stop iterating.
2376 			 */
2377 			break;
2378 		}
2379 	}
2380 }
2381 
2382 static inline void
2383 nvme_rdma_request_ready(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
2384 {
2385 	struct spdk_nvme_rdma_rsp *rdma_rsp = rdma_req->rdma_rsp;
2386 	struct ibv_recv_wr *recv_wr = rdma_rsp->recv_wr;
2387 
2388 	nvme_rdma_req_complete(rdma_req, &rdma_rsp->cpl, true);
2389 
2390 	assert(rqpair->rsps->current_num_recvs < rqpair->rsps->num_entries);
2391 	rqpair->rsps->current_num_recvs++;
2392 
2393 	recv_wr->next = NULL;
2394 	nvme_rdma_trace_ibv_sge(recv_wr->sg_list);
2395 
2396 	if (!rqpair->srq) {
2397 		spdk_rdma_provider_qp_queue_recv_wrs(rqpair->rdma_qp, recv_wr);
2398 	} else {
2399 		spdk_rdma_provider_srq_queue_recv_wrs(rqpair->srq, recv_wr);
2400 	}
2401 }
2402 
2403 #define MAX_COMPLETIONS_PER_POLL 128
2404 
2405 static void
2406 nvme_rdma_fail_qpair(struct spdk_nvme_qpair *qpair, int failure_reason)
2407 {
2408 	if (failure_reason == IBV_WC_RETRY_EXC_ERR) {
2409 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
2410 	} else if (qpair->transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_NONE) {
2411 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN;
2412 	}
2413 
2414 	nvme_ctrlr_disconnect_qpair(qpair);
2415 }
2416 
2417 static struct nvme_rdma_qpair *
2418 get_rdma_qpair_from_wc(struct nvme_rdma_poll_group *group, struct ibv_wc *wc)
2419 {
2420 	struct spdk_nvme_qpair *qpair;
2421 	struct nvme_rdma_qpair *rqpair;
2422 
2423 	STAILQ_FOREACH(qpair, &group->group.connected_qpairs, poll_group_stailq) {
2424 		rqpair = nvme_rdma_qpair(qpair);
2425 		if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) {
2426 			return rqpair;
2427 		}
2428 	}
2429 
2430 	STAILQ_FOREACH(qpair, &group->group.disconnected_qpairs, poll_group_stailq) {
2431 		rqpair = nvme_rdma_qpair(qpair);
2432 		if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) {
2433 			return rqpair;
2434 		}
2435 	}
2436 
2437 	return NULL;
2438 }
2439 
2440 static inline void
2441 nvme_rdma_log_wc_status(struct nvme_rdma_qpair *rqpair, struct ibv_wc *wc)
2442 {
2443 	struct nvme_rdma_wr *rdma_wr = (struct nvme_rdma_wr *)wc->wr_id;
2444 
2445 	if (wc->status == IBV_WC_WR_FLUSH_ERR) {
2446 		/* If qpair is in ERR state, we will receive completions for all posted and not completed
2447 		 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
2448 		SPDK_DEBUGLOG(nvme, "WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n",
2449 			      rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status,
2450 			      ibv_wc_status_str(wc->status));
2451 	} else {
2452 		SPDK_ERRLOG("WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n",
2453 			    rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status,
2454 			    ibv_wc_status_str(wc->status));
2455 	}
2456 }
2457 
2458 static inline int
2459 nvme_rdma_process_recv_completion(struct nvme_rdma_poller *poller, struct ibv_wc *wc,
2460 				  struct nvme_rdma_wr *rdma_wr)
2461 {
2462 	struct nvme_rdma_qpair		*rqpair;
2463 	struct spdk_nvme_rdma_req	*rdma_req;
2464 	struct spdk_nvme_rdma_rsp	*rdma_rsp;
2465 
2466 	rdma_rsp = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_rsp, rdma_wr);
2467 
2468 	if (poller && poller->srq) {
2469 		rqpair = get_rdma_qpair_from_wc(poller->group, wc);
2470 		if (spdk_unlikely(!rqpair)) {
2471 			/* Since we do not handle the LAST_WQE_REACHED event, we do not know when
2472 			 * a Receive Queue in a QP, that is associated with an SRQ, is flushed.
2473 			 * We may get a WC for a already destroyed QP.
2474 			 *
2475 			 * However, for the SRQ, this is not any error. Hence, just re-post the
2476 			 * receive request to the SRQ to reuse for other QPs, and return 0.
2477 			 */
2478 			spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr);
2479 			return 0;
2480 		}
2481 	} else {
2482 		rqpair = rdma_rsp->rqpair;
2483 		if (spdk_unlikely(!rqpair)) {
2484 			/* TODO: Fix forceful QP destroy when it is not async mode.
2485 			 * CQ itself did not cause any error. Hence, return 0 for now.
2486 			 */
2487 			SPDK_WARNLOG("QP might be already destroyed.\n");
2488 			return 0;
2489 		}
2490 	}
2491 
2492 
2493 	assert(rqpair->rsps->current_num_recvs > 0);
2494 	rqpair->rsps->current_num_recvs--;
2495 
2496 	if (spdk_unlikely(wc->status)) {
2497 		nvme_rdma_log_wc_status(rqpair, wc);
2498 		goto err_wc;
2499 	}
2500 
2501 	SPDK_DEBUGLOG(nvme, "CQ recv completion\n");
2502 
2503 	if (spdk_unlikely(wc->byte_len < sizeof(struct spdk_nvme_cpl))) {
2504 		SPDK_ERRLOG("recv length %u less than expected response size\n", wc->byte_len);
2505 		goto err_wc;
2506 	}
2507 	rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid];
2508 	rdma_req->completion_flags |= NVME_RDMA_RECV_COMPLETED;
2509 	rdma_req->rdma_rsp = rdma_rsp;
2510 
2511 	if ((rdma_req->completion_flags & NVME_RDMA_SEND_COMPLETED) == 0) {
2512 		return 0;
2513 	}
2514 
2515 	rqpair->num_completions++;
2516 
2517 	nvme_rdma_request_ready(rqpair, rdma_req);
2518 
2519 	if (!rqpair->delay_cmd_submit) {
2520 		if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) {
2521 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
2522 			nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2523 			return -ENXIO;
2524 		}
2525 	}
2526 
2527 	return 1;
2528 
2529 err_wc:
2530 	nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2531 	if (poller && poller->srq) {
2532 		spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr);
2533 	}
2534 	return -ENXIO;
2535 }
2536 
2537 static inline int
2538 nvme_rdma_process_send_completion(struct nvme_rdma_poller *poller,
2539 				  struct nvme_rdma_qpair *rdma_qpair,
2540 				  struct ibv_wc *wc, struct nvme_rdma_wr *rdma_wr)
2541 {
2542 	struct nvme_rdma_qpair		*rqpair;
2543 	struct spdk_nvme_rdma_req	*rdma_req;
2544 
2545 	rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_req, rdma_wr);
2546 	rqpair = rdma_req->req ? nvme_rdma_qpair(rdma_req->req->qpair) : NULL;
2547 	if (spdk_unlikely(!rqpair)) {
2548 		rqpair = rdma_qpair != NULL ? rdma_qpair : get_rdma_qpair_from_wc(poller->group, wc);
2549 	}
2550 
2551 	/* If we are flushing I/O */
2552 	if (spdk_unlikely(wc->status)) {
2553 		if (!rqpair) {
2554 			/* When poll_group is used, several qpairs share the same CQ and it is possible to
2555 			 * receive a completion with error (e.g. IBV_WC_WR_FLUSH_ERR) for already disconnected qpair
2556 			 * That happens due to qpair is destroyed while there are submitted but not completed send/receive
2557 			 * Work Requests */
2558 			assert(poller);
2559 			return 0;
2560 		}
2561 		assert(rqpair->current_num_sends > 0);
2562 		rqpair->current_num_sends--;
2563 		nvme_rdma_log_wc_status(rqpair, wc);
2564 		nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2565 		if (rdma_req->rdma_rsp && poller && poller->srq) {
2566 			spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_req->rdma_rsp->recv_wr);
2567 		}
2568 		return -ENXIO;
2569 	}
2570 
2571 	/* We do not support Soft Roce anymore. Other than Soft Roce's bug, we should not
2572 	 * receive a completion without error status after qpair is disconnected/destroyed.
2573 	 */
2574 	if (spdk_unlikely(rdma_req->req == NULL)) {
2575 		/*
2576 		 * Some infiniband drivers do not guarantee the previous assumption after we
2577 		 * received a RDMA_CM_EVENT_DEVICE_REMOVAL event.
2578 		 */
2579 		SPDK_ERRLOG("Received malformed completion: request 0x%"PRIx64" type %d\n", wc->wr_id,
2580 			    rdma_wr->type);
2581 		if (!rqpair || !rqpair->need_destroy) {
2582 			assert(0);
2583 		}
2584 		return -ENXIO;
2585 	}
2586 
2587 	rdma_req->completion_flags |= NVME_RDMA_SEND_COMPLETED;
2588 	assert(rqpair->current_num_sends > 0);
2589 	rqpair->current_num_sends--;
2590 
2591 	if ((rdma_req->completion_flags & NVME_RDMA_RECV_COMPLETED) == 0) {
2592 		return 0;
2593 	}
2594 
2595 	rqpair->num_completions++;
2596 
2597 	nvme_rdma_request_ready(rqpair, rdma_req);
2598 
2599 	if (!rqpair->delay_cmd_submit) {
2600 		if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) {
2601 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
2602 			nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2603 			return -ENXIO;
2604 		}
2605 	}
2606 
2607 	return 1;
2608 }
2609 
2610 static inline int
2611 nvme_rdma_cq_process_completions(struct ibv_cq *cq, uint32_t batch_size,
2612 				 struct nvme_rdma_poller *poller,
2613 				 struct nvme_rdma_qpair *rdma_qpair,
2614 				 uint64_t *rdma_completions)
2615 {
2616 	struct ibv_wc			wc[MAX_COMPLETIONS_PER_POLL];
2617 	struct nvme_rdma_wr		*rdma_wr;
2618 	uint32_t			reaped = 0;
2619 	int				completion_rc = 0;
2620 	int				rc, _rc, i;
2621 
2622 	rc = ibv_poll_cq(cq, batch_size, wc);
2623 	if (spdk_unlikely(rc < 0)) {
2624 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
2625 			    errno, spdk_strerror(errno));
2626 		return -ECANCELED;
2627 	} else if (rc == 0) {
2628 		return 0;
2629 	}
2630 
2631 	for (i = 0; i < rc; i++) {
2632 		rdma_wr = (struct nvme_rdma_wr *)wc[i].wr_id;
2633 		switch (rdma_wr->type) {
2634 		case RDMA_WR_TYPE_RECV:
2635 			_rc = nvme_rdma_process_recv_completion(poller, &wc[i], rdma_wr);
2636 			break;
2637 
2638 		case RDMA_WR_TYPE_SEND:
2639 			_rc = nvme_rdma_process_send_completion(poller, rdma_qpair, &wc[i], rdma_wr);
2640 			break;
2641 
2642 		default:
2643 			SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", rdma_wr->type);
2644 			return -ECANCELED;
2645 		}
2646 		if (spdk_likely(_rc >= 0)) {
2647 			reaped += _rc;
2648 		} else {
2649 			completion_rc = _rc;
2650 		}
2651 	}
2652 
2653 	*rdma_completions += rc;
2654 
2655 	if (spdk_unlikely(completion_rc)) {
2656 		return completion_rc;
2657 	}
2658 
2659 	return reaped;
2660 }
2661 
2662 static void
2663 dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
2664 {
2665 
2666 }
2667 
2668 static int
2669 nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair,
2670 				    uint32_t max_completions)
2671 {
2672 	struct nvme_rdma_qpair		*rqpair = nvme_rdma_qpair(qpair);
2673 	struct nvme_rdma_ctrlr		*rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
2674 	int				rc = 0, batch_size;
2675 	struct ibv_cq			*cq;
2676 	uint64_t			rdma_completions = 0;
2677 
2678 	/*
2679 	 * This is used during the connection phase. It's possible that we are still reaping error completions
2680 	 * from other qpairs so we need to call the poll group function. Also, it's more correct since the cq
2681 	 * is shared.
2682 	 */
2683 	if (qpair->poll_group != NULL) {
2684 		return spdk_nvme_poll_group_process_completions(qpair->poll_group->group, max_completions,
2685 				dummy_disconnected_qpair_cb);
2686 	}
2687 
2688 	if (max_completions == 0) {
2689 		max_completions = rqpair->num_entries;
2690 	} else {
2691 		max_completions = spdk_min(max_completions, rqpair->num_entries);
2692 	}
2693 
2694 	switch (nvme_qpair_get_state(qpair)) {
2695 	case NVME_QPAIR_CONNECTING:
2696 		rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair);
2697 		if (rc == 0) {
2698 			/* Once the connection is completed, we can submit queued requests */
2699 			nvme_qpair_resubmit_requests(qpair, rqpair->num_entries);
2700 		} else if (rc != -EAGAIN) {
2701 			SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair);
2702 			goto failed;
2703 		} else if (rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING) {
2704 			return 0;
2705 		}
2706 		break;
2707 
2708 	case NVME_QPAIR_DISCONNECTING:
2709 		nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair);
2710 		return -ENXIO;
2711 
2712 	default:
2713 		if (nvme_qpair_is_admin_queue(qpair)) {
2714 			nvme_rdma_poll_events(rctrlr);
2715 		}
2716 		nvme_rdma_qpair_process_cm_event(rqpair);
2717 		break;
2718 	}
2719 
2720 	if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
2721 		goto failed;
2722 	}
2723 
2724 	cq = rqpair->cq;
2725 
2726 	rqpair->num_completions = 0;
2727 	do {
2728 		batch_size = spdk_min((max_completions - rqpair->num_completions), MAX_COMPLETIONS_PER_POLL);
2729 		rc = nvme_rdma_cq_process_completions(cq, batch_size, NULL, rqpair, &rdma_completions);
2730 
2731 		if (rc == 0) {
2732 			break;
2733 			/* Handle the case where we fail to poll the cq. */
2734 		} else if (rc == -ECANCELED) {
2735 			goto failed;
2736 		} else if (rc == -ENXIO) {
2737 			return rc;
2738 		}
2739 	} while (rqpair->num_completions < max_completions);
2740 
2741 	if (spdk_unlikely(nvme_rdma_qpair_submit_sends(rqpair) ||
2742 			  nvme_rdma_qpair_submit_recvs(rqpair))) {
2743 		goto failed;
2744 	}
2745 
2746 	if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
2747 		nvme_rdma_qpair_check_timeout(qpair);
2748 	}
2749 
2750 	return rqpair->num_completions;
2751 
2752 failed:
2753 	nvme_rdma_fail_qpair(qpair, 0);
2754 	return -ENXIO;
2755 }
2756 
2757 static uint32_t
2758 nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
2759 {
2760 	/* max_mr_size by ibv_query_device indicates the largest value that we can
2761 	 * set for a registered memory region.  It is independent from the actual
2762 	 * I/O size and is very likely to be larger than 2 MiB which is the
2763 	 * granularity we currently register memory regions.  Hence return
2764 	 * UINT32_MAX here and let the generic layer use the controller data to
2765 	 * moderate this value.
2766 	 */
2767 	return UINT32_MAX;
2768 }
2769 
2770 static uint16_t
2771 nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
2772 {
2773 	struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
2774 	uint32_t max_sge = rctrlr->max_sge;
2775 	uint32_t max_in_capsule_sge = (ctrlr->cdata.nvmf_specific.ioccsz * 16 -
2776 				       sizeof(struct spdk_nvme_cmd)) /
2777 				      sizeof(struct spdk_nvme_sgl_descriptor);
2778 
2779 	/* Max SGE is limited by capsule size */
2780 	max_sge = spdk_min(max_sge, max_in_capsule_sge);
2781 	/* Max SGE may be limited by MSDBD */
2782 	if (ctrlr->cdata.nvmf_specific.msdbd != 0) {
2783 		max_sge = spdk_min(max_sge, ctrlr->cdata.nvmf_specific.msdbd);
2784 	}
2785 
2786 	/* Max SGE can't be less than 1 */
2787 	max_sge = spdk_max(1, max_sge);
2788 	return max_sge;
2789 }
2790 
2791 static int
2792 nvme_rdma_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
2793 				 int (*iter_fn)(struct nvme_request *req, void *arg),
2794 				 void *arg)
2795 {
2796 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2797 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
2798 	int rc;
2799 
2800 	assert(iter_fn != NULL);
2801 
2802 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2803 		assert(rdma_req->req != NULL);
2804 
2805 		rc = iter_fn(rdma_req->req, arg);
2806 		if (rc != 0) {
2807 			return rc;
2808 		}
2809 	}
2810 
2811 	return 0;
2812 }
2813 
2814 static int
2815 nvme_rdma_qpair_authenticate(struct spdk_nvme_qpair *qpair)
2816 {
2817 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2818 	int rc;
2819 
2820 	/* If the qpair is still connecting, it'll be forced to authenticate later on */
2821 	if (rqpair->state < NVME_RDMA_QPAIR_STATE_RUNNING) {
2822 		return 0;
2823 	} else if (rqpair->state != NVME_RDMA_QPAIR_STATE_RUNNING) {
2824 		return -ENOTCONN;
2825 	}
2826 
2827 	rc = nvme_fabric_qpair_authenticate_async(qpair);
2828 	if (rc == 0) {
2829 		nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTING);
2830 		rqpair->state = NVME_RDMA_QPAIR_STATE_AUTHENTICATING;
2831 	}
2832 
2833 	return rc;
2834 }
2835 
2836 static void
2837 nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
2838 {
2839 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
2840 	struct spdk_nvme_cpl cpl;
2841 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2842 
2843 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
2844 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2845 
2846 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2847 		assert(rdma_req->req != NULL);
2848 
2849 		if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
2850 			continue;
2851 		}
2852 
2853 		nvme_rdma_req_complete(rdma_req, &cpl, false);
2854 	}
2855 }
2856 
2857 static void
2858 nvme_rdma_poller_destroy(struct nvme_rdma_poller *poller)
2859 {
2860 	if (poller->cq) {
2861 		ibv_destroy_cq(poller->cq);
2862 	}
2863 	if (poller->rsps) {
2864 		nvme_rdma_free_rsps(poller->rsps);
2865 	}
2866 	if (poller->srq) {
2867 		spdk_rdma_provider_srq_destroy(poller->srq);
2868 	}
2869 	if (poller->mr_map) {
2870 		spdk_rdma_utils_free_mem_map(&poller->mr_map);
2871 	}
2872 	if (poller->pd) {
2873 		spdk_rdma_utils_put_pd(poller->pd);
2874 	}
2875 	free(poller);
2876 }
2877 
2878 static struct nvme_rdma_poller *
2879 nvme_rdma_poller_create(struct nvme_rdma_poll_group *group, struct ibv_context *ctx)
2880 {
2881 	struct nvme_rdma_poller *poller;
2882 	struct ibv_device_attr dev_attr;
2883 	struct spdk_rdma_provider_srq_init_attr srq_init_attr = {};
2884 	struct nvme_rdma_rsp_opts opts;
2885 	int num_cqe, max_num_cqe;
2886 	int rc;
2887 
2888 	poller = calloc(1, sizeof(*poller));
2889 	if (poller == NULL) {
2890 		SPDK_ERRLOG("Unable to allocate poller.\n");
2891 		return NULL;
2892 	}
2893 
2894 	poller->group = group;
2895 	poller->device = ctx;
2896 
2897 	if (g_spdk_nvme_transport_opts.rdma_srq_size != 0) {
2898 		rc = ibv_query_device(ctx, &dev_attr);
2899 		if (rc) {
2900 			SPDK_ERRLOG("Unable to query RDMA device.\n");
2901 			goto fail;
2902 		}
2903 
2904 		poller->pd = spdk_rdma_utils_get_pd(ctx);
2905 		if (poller->pd == NULL) {
2906 			SPDK_ERRLOG("Unable to get PD.\n");
2907 			goto fail;
2908 		}
2909 
2910 		poller->mr_map = spdk_rdma_utils_create_mem_map(poller->pd, &g_nvme_hooks,
2911 				 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_READ | IBV_ACCESS_REMOTE_WRITE);
2912 		if (poller->mr_map == NULL) {
2913 			SPDK_ERRLOG("Unable to create memory map.\n");
2914 			goto fail;
2915 		}
2916 
2917 		srq_init_attr.stats = &poller->stats.rdma_stats.recv;
2918 		srq_init_attr.pd = poller->pd;
2919 		srq_init_attr.srq_init_attr.attr.max_wr = spdk_min((uint32_t)dev_attr.max_srq_wr,
2920 				g_spdk_nvme_transport_opts.rdma_srq_size);
2921 		srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(dev_attr.max_sge,
2922 				NVME_RDMA_DEFAULT_RX_SGE);
2923 
2924 		poller->srq = spdk_rdma_provider_srq_create(&srq_init_attr);
2925 		if (poller->srq == NULL) {
2926 			SPDK_ERRLOG("Unable to create SRQ.\n");
2927 			goto fail;
2928 		}
2929 
2930 		opts.num_entries = g_spdk_nvme_transport_opts.rdma_srq_size;
2931 		opts.rqpair = NULL;
2932 		opts.srq = poller->srq;
2933 		opts.mr_map = poller->mr_map;
2934 
2935 		poller->rsps = nvme_rdma_create_rsps(&opts);
2936 		if (poller->rsps == NULL) {
2937 			SPDK_ERRLOG("Unable to create poller RDMA responses.\n");
2938 			goto fail;
2939 		}
2940 
2941 		rc = nvme_rdma_poller_submit_recvs(poller);
2942 		if (rc) {
2943 			SPDK_ERRLOG("Unable to submit poller RDMA responses.\n");
2944 			goto fail;
2945 		}
2946 
2947 		/*
2948 		 * When using an srq, fix the size of the completion queue at startup.
2949 		 * The initiator sends only send and recv WRs. Hence, the multiplier is 2.
2950 		 * (The target sends also data WRs. Hence, the multiplier is 3.)
2951 		 */
2952 		num_cqe = g_spdk_nvme_transport_opts.rdma_srq_size * 2;
2953 	} else {
2954 		num_cqe = DEFAULT_NVME_RDMA_CQ_SIZE;
2955 	}
2956 
2957 	max_num_cqe = g_spdk_nvme_transport_opts.rdma_max_cq_size;
2958 	if (max_num_cqe != 0 && num_cqe > max_num_cqe) {
2959 		num_cqe = max_num_cqe;
2960 	}
2961 
2962 	poller->cq = ibv_create_cq(poller->device, num_cqe, group, NULL, 0);
2963 
2964 	if (poller->cq == NULL) {
2965 		SPDK_ERRLOG("Unable to create CQ, errno %d.\n", errno);
2966 		goto fail;
2967 	}
2968 
2969 	STAILQ_INSERT_HEAD(&group->pollers, poller, link);
2970 	group->num_pollers++;
2971 	poller->current_num_wc = num_cqe;
2972 	poller->required_num_wc = 0;
2973 	return poller;
2974 
2975 fail:
2976 	nvme_rdma_poller_destroy(poller);
2977 	return NULL;
2978 }
2979 
2980 static void
2981 nvme_rdma_poll_group_free_pollers(struct nvme_rdma_poll_group *group)
2982 {
2983 	struct nvme_rdma_poller	*poller, *tmp_poller;
2984 
2985 	STAILQ_FOREACH_SAFE(poller, &group->pollers, link, tmp_poller) {
2986 		assert(poller->refcnt == 0);
2987 		if (poller->refcnt) {
2988 			SPDK_WARNLOG("Destroying poller with non-zero ref count: poller %p, refcnt %d\n",
2989 				     poller, poller->refcnt);
2990 		}
2991 
2992 		STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
2993 		nvme_rdma_poller_destroy(poller);
2994 	}
2995 }
2996 
2997 static struct nvme_rdma_poller *
2998 nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group, struct ibv_context *device)
2999 {
3000 	struct nvme_rdma_poller *poller = NULL;
3001 
3002 	STAILQ_FOREACH(poller, &group->pollers, link) {
3003 		if (poller->device == device) {
3004 			break;
3005 		}
3006 	}
3007 
3008 	if (!poller) {
3009 		poller = nvme_rdma_poller_create(group, device);
3010 		if (!poller) {
3011 			SPDK_ERRLOG("Failed to create a poller for device %p\n", device);
3012 			return NULL;
3013 		}
3014 	}
3015 
3016 	poller->refcnt++;
3017 	return poller;
3018 }
3019 
3020 static void
3021 nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group, struct nvme_rdma_poller *poller)
3022 {
3023 	assert(poller->refcnt > 0);
3024 	if (--poller->refcnt == 0) {
3025 		STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
3026 		group->num_pollers--;
3027 		nvme_rdma_poller_destroy(poller);
3028 	}
3029 }
3030 
3031 static struct spdk_nvme_transport_poll_group *
3032 nvme_rdma_poll_group_create(void)
3033 {
3034 	struct nvme_rdma_poll_group	*group;
3035 
3036 	group = calloc(1, sizeof(*group));
3037 	if (group == NULL) {
3038 		SPDK_ERRLOG("Unable to allocate poll group.\n");
3039 		return NULL;
3040 	}
3041 
3042 	STAILQ_INIT(&group->pollers);
3043 	TAILQ_INIT(&group->connecting_qpairs);
3044 	TAILQ_INIT(&group->active_qpairs);
3045 	return &group->group;
3046 }
3047 
3048 static int
3049 nvme_rdma_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
3050 {
3051 	return 0;
3052 }
3053 
3054 static int
3055 nvme_rdma_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
3056 {
3057 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
3058 	struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group);
3059 
3060 	if (rqpair->link_connecting.tqe_prev) {
3061 		TAILQ_REMOVE(&group->connecting_qpairs, rqpair, link_connecting);
3062 		/* We use prev pointer to check if qpair is in connecting list or not .
3063 		 * TAILQ_REMOVE doesn't do it. So, we do it manually.
3064 		 */
3065 		rqpair->link_connecting.tqe_prev = NULL;
3066 	}
3067 
3068 	return 0;
3069 }
3070 
3071 static int
3072 nvme_rdma_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
3073 			 struct spdk_nvme_qpair *qpair)
3074 {
3075 	return 0;
3076 }
3077 
3078 static int
3079 nvme_rdma_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
3080 			    struct spdk_nvme_qpair *qpair)
3081 {
3082 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
3083 	struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group);
3084 
3085 	if (rqpair->link_active.tqe_prev) {
3086 		TAILQ_REMOVE(&group->active_qpairs, rqpair, link_active);
3087 		rqpair->link_active.tqe_prev = NULL;
3088 	}
3089 
3090 	return 0;
3091 }
3092 
3093 static inline void
3094 nvme_rdma_qpair_process_submits(struct nvme_rdma_poll_group *group,
3095 				struct nvme_rdma_qpair *rqpair)
3096 {
3097 	struct spdk_nvme_qpair	*qpair = &rqpair->qpair;
3098 
3099 	assert(rqpair->link_active.tqe_prev != NULL);
3100 
3101 	if (spdk_unlikely(rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING ||
3102 			  rqpair->state >= NVME_RDMA_QPAIR_STATE_EXITING)) {
3103 		return;
3104 	}
3105 
3106 	if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
3107 		nvme_rdma_qpair_check_timeout(qpair);
3108 	}
3109 
3110 	nvme_rdma_qpair_submit_sends(rqpair);
3111 	if (!rqpair->srq) {
3112 		nvme_rdma_qpair_submit_recvs(rqpair);
3113 	}
3114 	if (rqpair->num_completions > 0) {
3115 		nvme_qpair_resubmit_requests(qpair, rqpair->num_completions);
3116 		rqpair->num_completions = 0;
3117 	}
3118 
3119 	if (rqpair->num_outstanding_reqs == 0 && STAILQ_EMPTY(&qpair->queued_req)) {
3120 		TAILQ_REMOVE(&group->active_qpairs, rqpair, link_active);
3121 		/* We use prev pointer to check if qpair is in active list or not.
3122 		 * TAILQ_REMOVE doesn't do it. So, we do it manually.
3123 		 */
3124 		rqpair->link_active.tqe_prev = NULL;
3125 	}
3126 }
3127 
3128 static int64_t
3129 nvme_rdma_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
3130 		uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
3131 {
3132 	struct spdk_nvme_qpair			*qpair, *tmp_qpair;
3133 	struct nvme_rdma_qpair			*rqpair, *tmp_rqpair;
3134 	struct nvme_rdma_poll_group		*group;
3135 	struct nvme_rdma_poller			*poller;
3136 	int					batch_size, rc, rc2 = 0;
3137 	int64_t					total_completions = 0;
3138 	uint64_t				completions_allowed = 0;
3139 	uint64_t				completions_per_poller = 0;
3140 	uint64_t				poller_completions = 0;
3141 	uint64_t				rdma_completions;
3142 
3143 	if (completions_per_qpair == 0) {
3144 		completions_per_qpair = MAX_COMPLETIONS_PER_POLL;
3145 	}
3146 
3147 	group = nvme_rdma_poll_group(tgroup);
3148 
3149 	STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
3150 		rc = nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair);
3151 		if (rc == 0) {
3152 			disconnected_qpair_cb(qpair, tgroup->group->ctx);
3153 		}
3154 	}
3155 
3156 	TAILQ_FOREACH_SAFE(rqpair, &group->connecting_qpairs, link_connecting, tmp_rqpair) {
3157 		qpair = &rqpair->qpair;
3158 
3159 		rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair);
3160 		if (rc == 0 || rc != -EAGAIN) {
3161 			TAILQ_REMOVE(&group->connecting_qpairs, rqpair, link_connecting);
3162 			/* We use prev pointer to check if qpair is in connecting list or not.
3163 			 * TAILQ_REMOVE does not do it. So, we do it manually.
3164 			 */
3165 			rqpair->link_connecting.tqe_prev = NULL;
3166 
3167 			if (rc == 0) {
3168 				/* Once the connection is completed, we can submit queued requests */
3169 				nvme_qpair_resubmit_requests(qpair, rqpair->num_entries);
3170 			} else if (rc != -EAGAIN) {
3171 				SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair);
3172 				nvme_rdma_fail_qpair(qpair, 0);
3173 			}
3174 		}
3175 	}
3176 
3177 	STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
3178 		rqpair = nvme_rdma_qpair(qpair);
3179 
3180 		if (spdk_likely(nvme_qpair_get_state(qpair) != NVME_QPAIR_CONNECTING)) {
3181 			nvme_rdma_qpair_process_cm_event(rqpair);
3182 		}
3183 
3184 		if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
3185 			rc2 = -ENXIO;
3186 			nvme_rdma_fail_qpair(qpair, 0);
3187 		}
3188 	}
3189 
3190 	completions_allowed = completions_per_qpair * tgroup->num_connected_qpairs;
3191 	if (spdk_likely(group->num_pollers)) {
3192 		completions_per_poller = spdk_max(completions_allowed / group->num_pollers, 1);
3193 	}
3194 
3195 	STAILQ_FOREACH(poller, &group->pollers, link) {
3196 		poller_completions = 0;
3197 		rdma_completions = 0;
3198 		do {
3199 			poller->stats.polls++;
3200 			batch_size = spdk_min((completions_per_poller - poller_completions), MAX_COMPLETIONS_PER_POLL);
3201 			rc = nvme_rdma_cq_process_completions(poller->cq, batch_size, poller, NULL, &rdma_completions);
3202 			if (rc <= 0) {
3203 				if (rc == -ECANCELED) {
3204 					return -EIO;
3205 				} else if (rc == 0) {
3206 					poller->stats.idle_polls++;
3207 				}
3208 				break;
3209 			}
3210 
3211 			poller_completions += rc;
3212 		} while (poller_completions < completions_per_poller);
3213 		total_completions += poller_completions;
3214 		poller->stats.completions += rdma_completions;
3215 		if (poller->srq) {
3216 			nvme_rdma_poller_submit_recvs(poller);
3217 		}
3218 	}
3219 
3220 	TAILQ_FOREACH_SAFE(rqpair, &group->active_qpairs, link_active, tmp_rqpair) {
3221 		nvme_rdma_qpair_process_submits(group, rqpair);
3222 	}
3223 
3224 	return rc2 != 0 ? rc2 : total_completions;
3225 }
3226 
3227 /*
3228  * Handle disconnected qpairs when interrupt support gets added.
3229  */
3230 static void
3231 nvme_rdma_poll_group_check_disconnected_qpairs(struct spdk_nvme_transport_poll_group *tgroup,
3232 		spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
3233 {
3234 }
3235 
3236 static int
3237 nvme_rdma_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
3238 {
3239 	struct nvme_rdma_poll_group	*group = nvme_rdma_poll_group(tgroup);
3240 
3241 	if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
3242 		return -EBUSY;
3243 	}
3244 
3245 	nvme_rdma_poll_group_free_pollers(group);
3246 	free(group);
3247 
3248 	return 0;
3249 }
3250 
3251 static int
3252 nvme_rdma_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup,
3253 			       struct spdk_nvme_transport_poll_group_stat **_stats)
3254 {
3255 	struct nvme_rdma_poll_group *group;
3256 	struct spdk_nvme_transport_poll_group_stat *stats;
3257 	struct spdk_nvme_rdma_device_stat *device_stat;
3258 	struct nvme_rdma_poller *poller;
3259 	uint32_t i = 0;
3260 
3261 	if (tgroup == NULL || _stats == NULL) {
3262 		SPDK_ERRLOG("Invalid stats or group pointer\n");
3263 		return -EINVAL;
3264 	}
3265 
3266 	group = nvme_rdma_poll_group(tgroup);
3267 	stats = calloc(1, sizeof(*stats));
3268 	if (!stats) {
3269 		SPDK_ERRLOG("Can't allocate memory for RDMA stats\n");
3270 		return -ENOMEM;
3271 	}
3272 	stats->trtype = SPDK_NVME_TRANSPORT_RDMA;
3273 	stats->rdma.num_devices = group->num_pollers;
3274 
3275 	if (stats->rdma.num_devices == 0) {
3276 		*_stats = stats;
3277 		return 0;
3278 	}
3279 
3280 	stats->rdma.device_stats = calloc(stats->rdma.num_devices, sizeof(*stats->rdma.device_stats));
3281 	if (!stats->rdma.device_stats) {
3282 		SPDK_ERRLOG("Can't allocate memory for RDMA device stats\n");
3283 		free(stats);
3284 		return -ENOMEM;
3285 	}
3286 
3287 	STAILQ_FOREACH(poller, &group->pollers, link) {
3288 		device_stat = &stats->rdma.device_stats[i];
3289 		device_stat->name = poller->device->device->name;
3290 		device_stat->polls = poller->stats.polls;
3291 		device_stat->idle_polls = poller->stats.idle_polls;
3292 		device_stat->completions = poller->stats.completions;
3293 		device_stat->queued_requests = poller->stats.queued_requests;
3294 		device_stat->total_send_wrs = poller->stats.rdma_stats.send.num_submitted_wrs;
3295 		device_stat->send_doorbell_updates = poller->stats.rdma_stats.send.doorbell_updates;
3296 		device_stat->total_recv_wrs = poller->stats.rdma_stats.recv.num_submitted_wrs;
3297 		device_stat->recv_doorbell_updates = poller->stats.rdma_stats.recv.doorbell_updates;
3298 		i++;
3299 	}
3300 
3301 	*_stats = stats;
3302 
3303 	return 0;
3304 }
3305 
3306 static void
3307 nvme_rdma_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup,
3308 				struct spdk_nvme_transport_poll_group_stat *stats)
3309 {
3310 	if (stats) {
3311 		free(stats->rdma.device_stats);
3312 	}
3313 	free(stats);
3314 }
3315 
3316 static int
3317 nvme_rdma_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
3318 				   struct spdk_memory_domain **domains, int array_size)
3319 {
3320 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(ctrlr->adminq);
3321 
3322 	if (domains && array_size > 0) {
3323 		domains[0] = rqpair->rdma_qp->domain;
3324 	}
3325 
3326 	return 1;
3327 }
3328 
3329 void
3330 spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
3331 {
3332 	g_nvme_hooks = *hooks;
3333 }
3334 
3335 const struct spdk_nvme_transport_ops rdma_ops = {
3336 	.name = "RDMA",
3337 	.type = SPDK_NVME_TRANSPORT_RDMA,
3338 	.ctrlr_construct = nvme_rdma_ctrlr_construct,
3339 	.ctrlr_scan = nvme_fabric_ctrlr_scan,
3340 	.ctrlr_destruct = nvme_rdma_ctrlr_destruct,
3341 	.ctrlr_enable = nvme_rdma_ctrlr_enable,
3342 
3343 	.ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4,
3344 	.ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8,
3345 	.ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4,
3346 	.ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8,
3347 	.ctrlr_set_reg_4_async = nvme_fabric_ctrlr_set_reg_4_async,
3348 	.ctrlr_set_reg_8_async = nvme_fabric_ctrlr_set_reg_8_async,
3349 	.ctrlr_get_reg_4_async = nvme_fabric_ctrlr_get_reg_4_async,
3350 	.ctrlr_get_reg_8_async = nvme_fabric_ctrlr_get_reg_8_async,
3351 
3352 	.ctrlr_get_max_xfer_size = nvme_rdma_ctrlr_get_max_xfer_size,
3353 	.ctrlr_get_max_sges = nvme_rdma_ctrlr_get_max_sges,
3354 
3355 	.ctrlr_create_io_qpair = nvme_rdma_ctrlr_create_io_qpair,
3356 	.ctrlr_delete_io_qpair = nvme_rdma_ctrlr_delete_io_qpair,
3357 	.ctrlr_connect_qpair = nvme_rdma_ctrlr_connect_qpair,
3358 	.ctrlr_disconnect_qpair = nvme_rdma_ctrlr_disconnect_qpair,
3359 
3360 	.ctrlr_get_memory_domains = nvme_rdma_ctrlr_get_memory_domains,
3361 
3362 	.qpair_abort_reqs = nvme_rdma_qpair_abort_reqs,
3363 	.qpair_reset = nvme_rdma_qpair_reset,
3364 	.qpair_submit_request = nvme_rdma_qpair_submit_request,
3365 	.qpair_process_completions = nvme_rdma_qpair_process_completions,
3366 	.qpair_iterate_requests = nvme_rdma_qpair_iterate_requests,
3367 	.qpair_authenticate = nvme_rdma_qpair_authenticate,
3368 	.admin_qpair_abort_aers = nvme_rdma_admin_qpair_abort_aers,
3369 
3370 	.poll_group_create = nvme_rdma_poll_group_create,
3371 	.poll_group_connect_qpair = nvme_rdma_poll_group_connect_qpair,
3372 	.poll_group_disconnect_qpair = nvme_rdma_poll_group_disconnect_qpair,
3373 	.poll_group_add = nvme_rdma_poll_group_add,
3374 	.poll_group_remove = nvme_rdma_poll_group_remove,
3375 	.poll_group_process_completions = nvme_rdma_poll_group_process_completions,
3376 	.poll_group_check_disconnected_qpairs = nvme_rdma_poll_group_check_disconnected_qpairs,
3377 	.poll_group_destroy = nvme_rdma_poll_group_destroy,
3378 	.poll_group_get_stats = nvme_rdma_poll_group_get_stats,
3379 	.poll_group_free_stats = nvme_rdma_poll_group_free_stats,
3380 };
3381 
3382 SPDK_NVME_TRANSPORT_REGISTER(rdma, &rdma_ops);
3383