1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2016 Intel Corporation. All rights reserved. 3 * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 /* 8 * NVMe over RDMA transport 9 */ 10 11 #include "spdk/stdinc.h" 12 13 #include "spdk/assert.h" 14 #include "spdk/dma.h" 15 #include "spdk/log.h" 16 #include "spdk/trace.h" 17 #include "spdk/queue.h" 18 #include "spdk/nvme.h" 19 #include "spdk/nvmf_spec.h" 20 #include "spdk/string.h" 21 #include "spdk/endian.h" 22 #include "spdk/likely.h" 23 #include "spdk/config.h" 24 25 #include "nvme_internal.h" 26 #include "spdk_internal/rdma_provider.h" 27 #include "spdk_internal/rdma_utils.h" 28 29 #define NVME_RDMA_TIME_OUT_IN_MS 2000 30 #define NVME_RDMA_RW_BUFFER_SIZE 131072 31 32 /* 33 * NVME RDMA qpair Resource Defaults 34 */ 35 #define NVME_RDMA_DEFAULT_TX_SGE 2 36 #define NVME_RDMA_DEFAULT_RX_SGE 1 37 38 /* Max number of NVMe-oF SGL descriptors supported by the host */ 39 #define NVME_RDMA_MAX_SGL_DESCRIPTORS 16 40 41 /* number of STAILQ entries for holding pending RDMA CM events. */ 42 #define NVME_RDMA_NUM_CM_EVENTS 256 43 44 /* The default size for a shared rdma completion queue. */ 45 #define DEFAULT_NVME_RDMA_CQ_SIZE 4096 46 47 /* 48 * In the special case of a stale connection we don't expose a mechanism 49 * for the user to retry the connection so we need to handle it internally. 50 */ 51 #define NVME_RDMA_STALE_CONN_RETRY_MAX 5 52 #define NVME_RDMA_STALE_CONN_RETRY_DELAY_US 10000 53 54 /* 55 * Maximum value of transport_retry_count used by RDMA controller 56 */ 57 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT 7 58 59 /* 60 * Maximum value of transport_ack_timeout used by RDMA controller 61 */ 62 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT 31 63 64 /* 65 * Number of microseconds to wait until the lingering qpair becomes quiet. 66 */ 67 #define NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US 1000000ull 68 69 /* 70 * The max length of keyed SGL data block (3 bytes) 71 */ 72 #define NVME_RDMA_MAX_KEYED_SGL_LENGTH ((1u << 24u) - 1) 73 74 #define WC_PER_QPAIR(queue_depth) (queue_depth * 2) 75 76 #define NVME_RDMA_POLL_GROUP_CHECK_QPN(_rqpair, qpn) \ 77 ((_rqpair)->rdma_qp && (_rqpair)->rdma_qp->qp->qp_num == (qpn)) \ 78 79 enum nvme_rdma_wr_type { 80 RDMA_WR_TYPE_RECV, 81 RDMA_WR_TYPE_SEND, 82 }; 83 84 struct nvme_rdma_wr { 85 /* Using this instead of the enum allows this struct to only occupy one byte. */ 86 uint8_t type; 87 }; 88 89 struct spdk_nvmf_cmd { 90 struct spdk_nvme_cmd cmd; 91 struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS]; 92 }; 93 94 struct spdk_nvme_rdma_hooks g_nvme_hooks = {}; 95 96 /* STAILQ wrapper for cm events. */ 97 struct nvme_rdma_cm_event_entry { 98 struct rdma_cm_event *evt; 99 STAILQ_ENTRY(nvme_rdma_cm_event_entry) link; 100 }; 101 102 /* NVMe RDMA transport extensions for spdk_nvme_ctrlr */ 103 struct nvme_rdma_ctrlr { 104 struct spdk_nvme_ctrlr ctrlr; 105 106 uint16_t max_sge; 107 108 struct rdma_event_channel *cm_channel; 109 110 STAILQ_HEAD(, nvme_rdma_cm_event_entry) pending_cm_events; 111 112 STAILQ_HEAD(, nvme_rdma_cm_event_entry) free_cm_events; 113 114 struct nvme_rdma_cm_event_entry *cm_events; 115 }; 116 117 struct nvme_rdma_poller_stats { 118 uint64_t polls; 119 uint64_t idle_polls; 120 uint64_t queued_requests; 121 uint64_t completions; 122 struct spdk_rdma_provider_qp_stats rdma_stats; 123 }; 124 125 struct nvme_rdma_poll_group; 126 struct nvme_rdma_rsps; 127 128 struct nvme_rdma_poller { 129 struct ibv_context *device; 130 struct ibv_cq *cq; 131 struct spdk_rdma_provider_srq *srq; 132 struct nvme_rdma_rsps *rsps; 133 struct ibv_pd *pd; 134 struct spdk_rdma_utils_mem_map *mr_map; 135 uint32_t refcnt; 136 int required_num_wc; 137 int current_num_wc; 138 struct nvme_rdma_poller_stats stats; 139 struct nvme_rdma_poll_group *group; 140 STAILQ_ENTRY(nvme_rdma_poller) link; 141 }; 142 143 struct nvme_rdma_qpair; 144 145 struct nvme_rdma_poll_group { 146 struct spdk_nvme_transport_poll_group group; 147 STAILQ_HEAD(, nvme_rdma_poller) pollers; 148 uint32_t num_pollers; 149 TAILQ_HEAD(, nvme_rdma_qpair) connecting_qpairs; 150 TAILQ_HEAD(, nvme_rdma_qpair) active_qpairs; 151 }; 152 153 enum nvme_rdma_qpair_state { 154 NVME_RDMA_QPAIR_STATE_INVALID = 0, 155 NVME_RDMA_QPAIR_STATE_STALE_CONN, 156 NVME_RDMA_QPAIR_STATE_INITIALIZING, 157 NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND, 158 NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL, 159 NVME_RDMA_QPAIR_STATE_AUTHENTICATING, 160 NVME_RDMA_QPAIR_STATE_RUNNING, 161 NVME_RDMA_QPAIR_STATE_EXITING, 162 NVME_RDMA_QPAIR_STATE_LINGERING, 163 NVME_RDMA_QPAIR_STATE_EXITED, 164 }; 165 166 typedef int (*nvme_rdma_cm_event_cb)(struct nvme_rdma_qpair *rqpair, int ret); 167 168 struct nvme_rdma_rsp_opts { 169 uint16_t num_entries; 170 struct nvme_rdma_qpair *rqpair; 171 struct spdk_rdma_provider_srq *srq; 172 struct spdk_rdma_utils_mem_map *mr_map; 173 }; 174 175 struct nvme_rdma_rsps { 176 /* Parallel arrays of response buffers + response SGLs of size num_entries */ 177 struct ibv_sge *rsp_sgls; 178 struct spdk_nvme_rdma_rsp *rsps; 179 180 struct ibv_recv_wr *rsp_recv_wrs; 181 182 /* Count of outstanding recv objects */ 183 uint16_t current_num_recvs; 184 185 uint16_t num_entries; 186 }; 187 188 /* NVMe RDMA qpair extensions for spdk_nvme_qpair */ 189 struct nvme_rdma_qpair { 190 struct spdk_nvme_qpair qpair; 191 192 struct spdk_rdma_provider_qp *rdma_qp; 193 struct rdma_cm_id *cm_id; 194 struct ibv_cq *cq; 195 struct spdk_rdma_provider_srq *srq; 196 197 struct spdk_nvme_rdma_req *rdma_reqs; 198 199 uint32_t max_send_sge; 200 201 uint16_t num_entries; 202 203 bool delay_cmd_submit; 204 205 uint32_t num_completions; 206 uint32_t num_outstanding_reqs; 207 208 struct nvme_rdma_rsps *rsps; 209 210 /* 211 * Array of num_entries NVMe commands registered as RDMA message buffers. 212 * Indexed by rdma_req->id. 213 */ 214 struct spdk_nvmf_cmd *cmds; 215 216 struct spdk_rdma_utils_mem_map *mr_map; 217 218 TAILQ_HEAD(, spdk_nvme_rdma_req) free_reqs; 219 TAILQ_HEAD(, spdk_nvme_rdma_req) outstanding_reqs; 220 221 /* Count of outstanding send objects */ 222 uint16_t current_num_sends; 223 224 TAILQ_ENTRY(nvme_rdma_qpair) link_active; 225 226 /* Placed at the end of the struct since it is not used frequently */ 227 struct rdma_cm_event *evt; 228 struct nvme_rdma_poller *poller; 229 230 uint64_t evt_timeout_ticks; 231 nvme_rdma_cm_event_cb evt_cb; 232 enum rdma_cm_event_type expected_evt_type; 233 234 enum nvme_rdma_qpair_state state; 235 236 bool in_connect_poll; 237 238 uint8_t stale_conn_retry_count; 239 bool need_destroy; 240 241 TAILQ_ENTRY(nvme_rdma_qpair) link_connecting; 242 }; 243 244 enum NVME_RDMA_COMPLETION_FLAGS { 245 NVME_RDMA_SEND_COMPLETED = 1u << 0, 246 NVME_RDMA_RECV_COMPLETED = 1u << 1, 247 }; 248 249 struct spdk_nvme_rdma_req { 250 uint16_t id; 251 uint16_t completion_flags: 2; 252 uint16_t reserved: 14; 253 /* if completion of RDMA_RECV received before RDMA_SEND, we will complete nvme request 254 * during processing of RDMA_SEND. To complete the request we must know the response 255 * received in RDMA_RECV, so store it in this field */ 256 struct spdk_nvme_rdma_rsp *rdma_rsp; 257 258 struct nvme_rdma_wr rdma_wr; 259 260 struct ibv_send_wr send_wr; 261 262 struct nvme_request *req; 263 264 struct ibv_sge send_sgl[NVME_RDMA_DEFAULT_TX_SGE]; 265 266 TAILQ_ENTRY(spdk_nvme_rdma_req) link; 267 }; 268 269 struct spdk_nvme_rdma_rsp { 270 struct spdk_nvme_cpl cpl; 271 struct nvme_rdma_qpair *rqpair; 272 struct ibv_recv_wr *recv_wr; 273 struct nvme_rdma_wr rdma_wr; 274 }; 275 276 struct nvme_rdma_memory_translation_ctx { 277 void *addr; 278 size_t length; 279 uint32_t lkey; 280 uint32_t rkey; 281 }; 282 283 static const char *rdma_cm_event_str[] = { 284 "RDMA_CM_EVENT_ADDR_RESOLVED", 285 "RDMA_CM_EVENT_ADDR_ERROR", 286 "RDMA_CM_EVENT_ROUTE_RESOLVED", 287 "RDMA_CM_EVENT_ROUTE_ERROR", 288 "RDMA_CM_EVENT_CONNECT_REQUEST", 289 "RDMA_CM_EVENT_CONNECT_RESPONSE", 290 "RDMA_CM_EVENT_CONNECT_ERROR", 291 "RDMA_CM_EVENT_UNREACHABLE", 292 "RDMA_CM_EVENT_REJECTED", 293 "RDMA_CM_EVENT_ESTABLISHED", 294 "RDMA_CM_EVENT_DISCONNECTED", 295 "RDMA_CM_EVENT_DEVICE_REMOVAL", 296 "RDMA_CM_EVENT_MULTICAST_JOIN", 297 "RDMA_CM_EVENT_MULTICAST_ERROR", 298 "RDMA_CM_EVENT_ADDR_CHANGE", 299 "RDMA_CM_EVENT_TIMEWAIT_EXIT" 300 }; 301 302 static struct nvme_rdma_poller *nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group, 303 struct ibv_context *device); 304 static void nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group, 305 struct nvme_rdma_poller *poller); 306 307 static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, 308 struct spdk_nvme_qpair *qpair); 309 310 static inline struct nvme_rdma_qpair * 311 nvme_rdma_qpair(struct spdk_nvme_qpair *qpair) 312 { 313 assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA); 314 return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair); 315 } 316 317 static inline struct nvme_rdma_poll_group * 318 nvme_rdma_poll_group(struct spdk_nvme_transport_poll_group *group) 319 { 320 return (SPDK_CONTAINEROF(group, struct nvme_rdma_poll_group, group)); 321 } 322 323 static inline struct nvme_rdma_ctrlr * 324 nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr) 325 { 326 assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA); 327 return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr); 328 } 329 330 static inline struct spdk_nvme_rdma_req * 331 nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair) 332 { 333 struct spdk_nvme_rdma_req *rdma_req; 334 335 rdma_req = TAILQ_FIRST(&rqpair->free_reqs); 336 if (spdk_likely(rdma_req)) { 337 TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link); 338 } 339 340 return rdma_req; 341 } 342 343 static inline void 344 nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) 345 { 346 rdma_req->completion_flags = 0; 347 rdma_req->req = NULL; 348 rdma_req->rdma_rsp = NULL; 349 TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link); 350 } 351 352 static void 353 nvme_rdma_req_complete(struct spdk_nvme_rdma_req *rdma_req, 354 struct spdk_nvme_cpl *rsp, 355 bool print_on_error) 356 { 357 struct nvme_request *req = rdma_req->req; 358 struct nvme_rdma_qpair *rqpair; 359 struct spdk_nvme_qpair *qpair; 360 bool error, print_error; 361 362 assert(req != NULL); 363 364 qpair = req->qpair; 365 rqpair = nvme_rdma_qpair(qpair); 366 367 error = spdk_nvme_cpl_is_error(rsp); 368 print_error = error && print_on_error && !qpair->ctrlr->opts.disable_error_logging; 369 370 if (print_error) { 371 spdk_nvme_qpair_print_command(qpair, &req->cmd); 372 } 373 374 if (print_error || SPDK_DEBUGLOG_FLAG_ENABLED("nvme")) { 375 spdk_nvme_qpair_print_completion(qpair, rsp); 376 } 377 378 assert(rqpair->num_outstanding_reqs > 0); 379 rqpair->num_outstanding_reqs--; 380 381 TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link); 382 383 nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, rsp); 384 nvme_rdma_req_put(rqpair, rdma_req); 385 } 386 387 static const char * 388 nvme_rdma_cm_event_str_get(uint32_t event) 389 { 390 if (event < SPDK_COUNTOF(rdma_cm_event_str)) { 391 return rdma_cm_event_str[event]; 392 } else { 393 return "Undefined"; 394 } 395 } 396 397 398 static int 399 nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair) 400 { 401 struct rdma_cm_event *event = rqpair->evt; 402 struct spdk_nvmf_rdma_accept_private_data *accept_data; 403 int rc = 0; 404 405 if (event) { 406 switch (event->event) { 407 case RDMA_CM_EVENT_ADDR_RESOLVED: 408 case RDMA_CM_EVENT_ADDR_ERROR: 409 case RDMA_CM_EVENT_ROUTE_RESOLVED: 410 case RDMA_CM_EVENT_ROUTE_ERROR: 411 break; 412 case RDMA_CM_EVENT_CONNECT_REQUEST: 413 break; 414 case RDMA_CM_EVENT_CONNECT_ERROR: 415 break; 416 case RDMA_CM_EVENT_UNREACHABLE: 417 case RDMA_CM_EVENT_REJECTED: 418 break; 419 case RDMA_CM_EVENT_CONNECT_RESPONSE: 420 rc = spdk_rdma_provider_qp_complete_connect(rqpair->rdma_qp); 421 /* fall through */ 422 case RDMA_CM_EVENT_ESTABLISHED: 423 accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data; 424 if (accept_data == NULL) { 425 rc = -1; 426 } else { 427 SPDK_DEBUGLOG(nvme, "Requested queue depth %d. Target receive queue depth %d.\n", 428 rqpair->num_entries + 1, accept_data->crqsize); 429 } 430 break; 431 case RDMA_CM_EVENT_DISCONNECTED: 432 rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE; 433 break; 434 case RDMA_CM_EVENT_DEVICE_REMOVAL: 435 rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; 436 rqpair->need_destroy = true; 437 break; 438 case RDMA_CM_EVENT_MULTICAST_JOIN: 439 case RDMA_CM_EVENT_MULTICAST_ERROR: 440 break; 441 case RDMA_CM_EVENT_ADDR_CHANGE: 442 rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; 443 break; 444 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 445 break; 446 default: 447 SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); 448 break; 449 } 450 rqpair->evt = NULL; 451 rdma_ack_cm_event(event); 452 } 453 454 return rc; 455 } 456 457 /* 458 * This function must be called under the nvme controller's lock 459 * because it touches global controller variables. The lock is taken 460 * by the generic transport code before invoking a few of the functions 461 * in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair, 462 * and conditionally nvme_rdma_qpair_process_completions when it is calling 463 * completions on the admin qpair. When adding a new call to this function, please 464 * verify that it is in a situation where it falls under the lock. 465 */ 466 static int 467 nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr) 468 { 469 struct nvme_rdma_cm_event_entry *entry, *tmp; 470 struct nvme_rdma_qpair *event_qpair; 471 struct rdma_cm_event *event; 472 struct rdma_event_channel *channel = rctrlr->cm_channel; 473 474 STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) { 475 event_qpair = entry->evt->id->context; 476 if (event_qpair->evt == NULL) { 477 event_qpair->evt = entry->evt; 478 STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link); 479 STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link); 480 } 481 } 482 483 while (rdma_get_cm_event(channel, &event) == 0) { 484 event_qpair = event->id->context; 485 if (event_qpair->evt == NULL) { 486 event_qpair->evt = event; 487 } else { 488 assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr)); 489 entry = STAILQ_FIRST(&rctrlr->free_cm_events); 490 if (entry == NULL) { 491 rdma_ack_cm_event(event); 492 return -ENOMEM; 493 } 494 STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link); 495 entry->evt = event; 496 STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link); 497 } 498 } 499 500 /* rdma_get_cm_event() returns -1 on error. If an error occurs, errno 501 * will be set to indicate the failure reason. So return negated errno here. 502 */ 503 return -errno; 504 } 505 506 static int 507 nvme_rdma_validate_cm_event(enum rdma_cm_event_type expected_evt_type, 508 struct rdma_cm_event *reaped_evt) 509 { 510 int rc = -EBADMSG; 511 512 if (expected_evt_type == reaped_evt->event) { 513 return 0; 514 } 515 516 switch (expected_evt_type) { 517 case RDMA_CM_EVENT_ESTABLISHED: 518 /* 519 * There is an enum ib_cm_rej_reason in the kernel headers that sets 10 as 520 * IB_CM_REJ_STALE_CONN. I can't find the corresponding userspace but we get 521 * the same values here. 522 */ 523 if (reaped_evt->event == RDMA_CM_EVENT_REJECTED && reaped_evt->status == 10) { 524 rc = -ESTALE; 525 } else if (reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE) { 526 /* 527 * If we are using a qpair which is not created using rdma cm API 528 * then we will receive RDMA_CM_EVENT_CONNECT_RESPONSE instead of 529 * RDMA_CM_EVENT_ESTABLISHED. 530 */ 531 return 0; 532 } 533 break; 534 default: 535 break; 536 } 537 538 SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n", 539 nvme_rdma_cm_event_str_get(expected_evt_type), 540 nvme_rdma_cm_event_str_get(reaped_evt->event), reaped_evt->event, 541 reaped_evt->status); 542 return rc; 543 } 544 545 static int 546 nvme_rdma_process_event_start(struct nvme_rdma_qpair *rqpair, 547 enum rdma_cm_event_type evt, 548 nvme_rdma_cm_event_cb evt_cb) 549 { 550 int rc; 551 552 assert(evt_cb != NULL); 553 554 if (rqpair->evt != NULL) { 555 rc = nvme_rdma_qpair_process_cm_event(rqpair); 556 if (rc) { 557 return rc; 558 } 559 } 560 561 rqpair->expected_evt_type = evt; 562 rqpair->evt_cb = evt_cb; 563 rqpair->evt_timeout_ticks = (g_spdk_nvme_transport_opts.rdma_cm_event_timeout_ms * 1000 * 564 spdk_get_ticks_hz()) / SPDK_SEC_TO_USEC + spdk_get_ticks(); 565 566 return 0; 567 } 568 569 static int 570 nvme_rdma_process_event_poll(struct nvme_rdma_qpair *rqpair) 571 { 572 struct nvme_rdma_ctrlr *rctrlr; 573 int rc = 0, rc2; 574 575 rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); 576 assert(rctrlr != NULL); 577 578 if (!rqpair->evt && spdk_get_ticks() < rqpair->evt_timeout_ticks) { 579 rc = nvme_rdma_poll_events(rctrlr); 580 if (rc == -EAGAIN || rc == -EWOULDBLOCK) { 581 return rc; 582 } 583 } 584 585 if (rqpair->evt == NULL) { 586 rc = -EADDRNOTAVAIL; 587 goto exit; 588 } 589 590 rc = nvme_rdma_validate_cm_event(rqpair->expected_evt_type, rqpair->evt); 591 592 rc2 = nvme_rdma_qpair_process_cm_event(rqpair); 593 /* bad message takes precedence over the other error codes from processing the event. */ 594 rc = rc == 0 ? rc2 : rc; 595 596 exit: 597 assert(rqpair->evt_cb != NULL); 598 return rqpair->evt_cb(rqpair, rc); 599 } 600 601 static int 602 nvme_rdma_resize_cq(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poller *poller) 603 { 604 int current_num_wc, required_num_wc; 605 int max_cq_size; 606 607 required_num_wc = poller->required_num_wc + WC_PER_QPAIR(rqpair->num_entries); 608 current_num_wc = poller->current_num_wc; 609 if (current_num_wc < required_num_wc) { 610 current_num_wc = spdk_max(current_num_wc * 2, required_num_wc); 611 } 612 613 max_cq_size = g_spdk_nvme_transport_opts.rdma_max_cq_size; 614 if (max_cq_size != 0 && current_num_wc > max_cq_size) { 615 current_num_wc = max_cq_size; 616 } 617 618 if (poller->current_num_wc != current_num_wc) { 619 SPDK_DEBUGLOG(nvme, "Resize RDMA CQ from %d to %d\n", poller->current_num_wc, 620 current_num_wc); 621 if (ibv_resize_cq(poller->cq, current_num_wc)) { 622 SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); 623 return -1; 624 } 625 626 poller->current_num_wc = current_num_wc; 627 } 628 629 poller->required_num_wc = required_num_wc; 630 return 0; 631 } 632 633 static int 634 nvme_rdma_qpair_set_poller(struct spdk_nvme_qpair *qpair) 635 { 636 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 637 struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group); 638 struct nvme_rdma_poller *poller; 639 640 assert(rqpair->cq == NULL); 641 642 poller = nvme_rdma_poll_group_get_poller(group, rqpair->cm_id->verbs); 643 if (!poller) { 644 SPDK_ERRLOG("Unable to find a cq for qpair %p on poll group %p\n", qpair, qpair->poll_group); 645 return -EINVAL; 646 } 647 648 if (!poller->srq) { 649 if (nvme_rdma_resize_cq(rqpair, poller)) { 650 nvme_rdma_poll_group_put_poller(group, poller); 651 return -EPROTO; 652 } 653 } 654 655 rqpair->cq = poller->cq; 656 rqpair->srq = poller->srq; 657 if (rqpair->srq) { 658 rqpair->rsps = poller->rsps; 659 } 660 rqpair->poller = poller; 661 return 0; 662 } 663 664 static int 665 nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair) 666 { 667 int rc; 668 struct spdk_rdma_provider_qp_init_attr attr = {}; 669 struct ibv_device_attr dev_attr; 670 struct nvme_rdma_ctrlr *rctrlr; 671 uint32_t num_cqe, max_num_cqe; 672 673 rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr); 674 if (rc != 0) { 675 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 676 return -1; 677 } 678 679 if (rqpair->qpair.poll_group) { 680 assert(!rqpair->cq); 681 rc = nvme_rdma_qpair_set_poller(&rqpair->qpair); 682 if (rc) { 683 SPDK_ERRLOG("Unable to activate the rdmaqpair.\n"); 684 return -1; 685 } 686 assert(rqpair->cq); 687 } else { 688 num_cqe = rqpair->num_entries * 2; 689 max_num_cqe = g_spdk_nvme_transport_opts.rdma_max_cq_size; 690 if (max_num_cqe != 0 && num_cqe > max_num_cqe) { 691 num_cqe = max_num_cqe; 692 } 693 rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, num_cqe, rqpair, NULL, 0); 694 if (!rqpair->cq) { 695 SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno)); 696 return -1; 697 } 698 } 699 700 rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); 701 if (g_nvme_hooks.get_ibv_pd) { 702 attr.pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs); 703 } else { 704 attr.pd = spdk_rdma_utils_get_pd(rqpair->cm_id->verbs); 705 } 706 707 attr.stats = rqpair->poller ? &rqpair->poller->stats.rdma_stats : NULL; 708 attr.send_cq = rqpair->cq; 709 attr.recv_cq = rqpair->cq; 710 attr.cap.max_send_wr = rqpair->num_entries; /* SEND operations */ 711 if (rqpair->srq) { 712 attr.srq = rqpair->srq->srq; 713 } else { 714 attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */ 715 } 716 attr.cap.max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge); 717 attr.cap.max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge); 718 719 rqpair->rdma_qp = spdk_rdma_provider_qp_create(rqpair->cm_id, &attr); 720 721 if (!rqpair->rdma_qp) { 722 return -1; 723 } 724 725 /* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */ 726 rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge); 727 rqpair->current_num_sends = 0; 728 729 rqpair->cm_id->context = rqpair; 730 731 return 0; 732 } 733 734 static void 735 nvme_rdma_reset_failed_sends(struct nvme_rdma_qpair *rqpair, 736 struct ibv_send_wr *bad_send_wr, int rc) 737 { 738 SPDK_ERRLOG("Failed to post WRs on send queue, errno %d (%s), bad_wr %p\n", 739 rc, spdk_strerror(rc), bad_send_wr); 740 while (bad_send_wr != NULL) { 741 assert(rqpair->current_num_sends > 0); 742 rqpair->current_num_sends--; 743 bad_send_wr = bad_send_wr->next; 744 } 745 } 746 747 static void 748 nvme_rdma_reset_failed_recvs(struct nvme_rdma_rsps *rsps, 749 struct ibv_recv_wr *bad_recv_wr, int rc) 750 { 751 SPDK_ERRLOG("Failed to post WRs on receive queue, errno %d (%s), bad_wr %p\n", 752 rc, spdk_strerror(rc), bad_recv_wr); 753 while (bad_recv_wr != NULL) { 754 assert(rsps->current_num_recvs > 0); 755 rsps->current_num_recvs--; 756 bad_recv_wr = bad_recv_wr->next; 757 } 758 } 759 760 static inline int 761 nvme_rdma_qpair_submit_sends(struct nvme_rdma_qpair *rqpair) 762 { 763 struct ibv_send_wr *bad_send_wr = NULL; 764 int rc; 765 766 rc = spdk_rdma_provider_qp_flush_send_wrs(rqpair->rdma_qp, &bad_send_wr); 767 768 if (spdk_unlikely(rc)) { 769 nvme_rdma_reset_failed_sends(rqpair, bad_send_wr, rc); 770 } 771 772 return rc; 773 } 774 775 static inline int 776 nvme_rdma_qpair_submit_recvs(struct nvme_rdma_qpair *rqpair) 777 { 778 struct ibv_recv_wr *bad_recv_wr; 779 int rc = 0; 780 781 rc = spdk_rdma_provider_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr); 782 if (spdk_unlikely(rc)) { 783 nvme_rdma_reset_failed_recvs(rqpair->rsps, bad_recv_wr, rc); 784 } 785 786 return rc; 787 } 788 789 static inline int 790 nvme_rdma_poller_submit_recvs(struct nvme_rdma_poller *poller) 791 { 792 struct ibv_recv_wr *bad_recv_wr; 793 int rc; 794 795 rc = spdk_rdma_provider_srq_flush_recv_wrs(poller->srq, &bad_recv_wr); 796 if (spdk_unlikely(rc)) { 797 nvme_rdma_reset_failed_recvs(poller->rsps, bad_recv_wr, rc); 798 } 799 800 return rc; 801 } 802 803 #define nvme_rdma_trace_ibv_sge(sg_list) \ 804 if (sg_list) { \ 805 SPDK_DEBUGLOG(nvme, "local addr %p length 0x%x lkey 0x%x\n", \ 806 (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \ 807 } 808 809 static void 810 nvme_rdma_free_rsps(struct nvme_rdma_rsps *rsps) 811 { 812 if (!rsps) { 813 return; 814 } 815 816 spdk_free(rsps->rsps); 817 spdk_free(rsps->rsp_sgls); 818 spdk_free(rsps->rsp_recv_wrs); 819 spdk_free(rsps); 820 } 821 822 static struct nvme_rdma_rsps * 823 nvme_rdma_create_rsps(struct nvme_rdma_rsp_opts *opts) 824 { 825 struct nvme_rdma_rsps *rsps; 826 struct spdk_rdma_utils_memory_translation translation; 827 uint16_t i; 828 int rc; 829 830 rsps = spdk_zmalloc(sizeof(*rsps), 0, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA); 831 if (!rsps) { 832 SPDK_ERRLOG("Failed to allocate rsps object\n"); 833 return NULL; 834 } 835 836 rsps->rsp_sgls = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_sgls), 0, NULL, 837 SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA); 838 if (!rsps->rsp_sgls) { 839 SPDK_ERRLOG("Failed to allocate rsp_sgls\n"); 840 goto fail; 841 } 842 843 rsps->rsp_recv_wrs = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_recv_wrs), 0, NULL, 844 SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA); 845 if (!rsps->rsp_recv_wrs) { 846 SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n"); 847 goto fail; 848 } 849 850 rsps->rsps = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsps), 0, NULL, 851 SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA); 852 if (!rsps->rsps) { 853 SPDK_ERRLOG("can not allocate rdma rsps\n"); 854 goto fail; 855 } 856 857 for (i = 0; i < opts->num_entries; i++) { 858 struct ibv_sge *rsp_sgl = &rsps->rsp_sgls[i]; 859 struct spdk_nvme_rdma_rsp *rsp = &rsps->rsps[i]; 860 struct ibv_recv_wr *recv_wr = &rsps->rsp_recv_wrs[i]; 861 862 rsp->rqpair = opts->rqpair; 863 rsp->rdma_wr.type = RDMA_WR_TYPE_RECV; 864 rsp->recv_wr = recv_wr; 865 rsp_sgl->addr = (uint64_t)rsp; 866 rsp_sgl->length = sizeof(struct spdk_nvme_cpl); 867 rc = spdk_rdma_utils_get_translation(opts->mr_map, rsp, sizeof(*rsp), &translation); 868 if (rc) { 869 goto fail; 870 } 871 rsp_sgl->lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation); 872 873 recv_wr->wr_id = (uint64_t)&rsp->rdma_wr; 874 recv_wr->next = NULL; 875 recv_wr->sg_list = rsp_sgl; 876 recv_wr->num_sge = 1; 877 878 nvme_rdma_trace_ibv_sge(recv_wr->sg_list); 879 880 if (opts->rqpair) { 881 spdk_rdma_provider_qp_queue_recv_wrs(opts->rqpair->rdma_qp, recv_wr); 882 } else { 883 spdk_rdma_provider_srq_queue_recv_wrs(opts->srq, recv_wr); 884 } 885 } 886 887 rsps->num_entries = opts->num_entries; 888 rsps->current_num_recvs = opts->num_entries; 889 890 return rsps; 891 fail: 892 nvme_rdma_free_rsps(rsps); 893 return NULL; 894 } 895 896 static void 897 nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair) 898 { 899 if (!rqpair->rdma_reqs) { 900 return; 901 } 902 903 spdk_free(rqpair->cmds); 904 rqpair->cmds = NULL; 905 906 spdk_free(rqpair->rdma_reqs); 907 rqpair->rdma_reqs = NULL; 908 } 909 910 static int 911 nvme_rdma_create_reqs(struct nvme_rdma_qpair *rqpair) 912 { 913 struct spdk_rdma_utils_memory_translation translation; 914 uint16_t i; 915 int rc; 916 917 assert(!rqpair->rdma_reqs); 918 rqpair->rdma_reqs = spdk_zmalloc(rqpair->num_entries * sizeof(struct spdk_nvme_rdma_req), 0, NULL, 919 SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA); 920 if (rqpair->rdma_reqs == NULL) { 921 SPDK_ERRLOG("Failed to allocate rdma_reqs\n"); 922 goto fail; 923 } 924 925 assert(!rqpair->cmds); 926 rqpair->cmds = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->cmds), 0, NULL, 927 SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA); 928 if (!rqpair->cmds) { 929 SPDK_ERRLOG("Failed to allocate RDMA cmds\n"); 930 goto fail; 931 } 932 933 TAILQ_INIT(&rqpair->free_reqs); 934 TAILQ_INIT(&rqpair->outstanding_reqs); 935 for (i = 0; i < rqpair->num_entries; i++) { 936 struct spdk_nvme_rdma_req *rdma_req; 937 struct spdk_nvmf_cmd *cmd; 938 939 rdma_req = &rqpair->rdma_reqs[i]; 940 rdma_req->rdma_wr.type = RDMA_WR_TYPE_SEND; 941 cmd = &rqpair->cmds[i]; 942 943 rdma_req->id = i; 944 945 rc = spdk_rdma_utils_get_translation(rqpair->mr_map, cmd, sizeof(*cmd), &translation); 946 if (rc) { 947 goto fail; 948 } 949 rdma_req->send_sgl[0].lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation); 950 951 /* The first RDMA sgl element will always point 952 * at this data structure. Depending on whether 953 * an NVMe-oF SGL is required, the length of 954 * this element may change. */ 955 rdma_req->send_sgl[0].addr = (uint64_t)cmd; 956 rdma_req->send_wr.wr_id = (uint64_t)&rdma_req->rdma_wr; 957 rdma_req->send_wr.next = NULL; 958 rdma_req->send_wr.opcode = IBV_WR_SEND; 959 rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED; 960 rdma_req->send_wr.sg_list = rdma_req->send_sgl; 961 rdma_req->send_wr.imm_data = 0; 962 963 TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link); 964 } 965 966 return 0; 967 fail: 968 nvme_rdma_free_reqs(rqpair); 969 return -ENOMEM; 970 } 971 972 static int nvme_rdma_connect(struct nvme_rdma_qpair *rqpair); 973 974 static int 975 nvme_rdma_route_resolved(struct nvme_rdma_qpair *rqpair, int ret) 976 { 977 if (ret) { 978 SPDK_ERRLOG("RDMA route resolution error\n"); 979 return -1; 980 } 981 982 ret = nvme_rdma_qpair_init(rqpair); 983 if (ret < 0) { 984 SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n"); 985 return -1; 986 } 987 988 return nvme_rdma_connect(rqpair); 989 } 990 991 static int 992 nvme_rdma_addr_resolved(struct nvme_rdma_qpair *rqpair, int ret) 993 { 994 if (ret) { 995 SPDK_ERRLOG("RDMA address resolution error\n"); 996 return -1; 997 } 998 999 if (rqpair->qpair.ctrlr->opts.transport_ack_timeout != SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED) { 1000 #ifdef SPDK_CONFIG_RDMA_SET_ACK_TIMEOUT 1001 uint8_t timeout = rqpair->qpair.ctrlr->opts.transport_ack_timeout; 1002 ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, 1003 RDMA_OPTION_ID_ACK_TIMEOUT, 1004 &timeout, sizeof(timeout)); 1005 if (ret) { 1006 SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_ACK_TIMEOUT %d, ret %d\n", timeout, ret); 1007 } 1008 #else 1009 SPDK_DEBUGLOG(nvme, "transport_ack_timeout is not supported\n"); 1010 #endif 1011 } 1012 1013 if (rqpair->qpair.ctrlr->opts.transport_tos != SPDK_NVME_TRANSPORT_TOS_DISABLED) { 1014 #ifdef SPDK_CONFIG_RDMA_SET_TOS 1015 uint8_t tos = rqpair->qpair.ctrlr->opts.transport_tos; 1016 ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_TOS, &tos, sizeof(tos)); 1017 if (ret) { 1018 SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_TOS %u, ret %d\n", tos, ret); 1019 } 1020 #else 1021 SPDK_DEBUGLOG(nvme, "transport_tos is not supported\n"); 1022 #endif 1023 } 1024 1025 ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS); 1026 if (ret) { 1027 SPDK_ERRLOG("rdma_resolve_route\n"); 1028 return ret; 1029 } 1030 1031 return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ROUTE_RESOLVED, 1032 nvme_rdma_route_resolved); 1033 } 1034 1035 static int 1036 nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair, 1037 struct sockaddr *src_addr, 1038 struct sockaddr *dst_addr) 1039 { 1040 int ret; 1041 1042 if (src_addr) { 1043 int reuse = 1; 1044 1045 ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR, 1046 &reuse, sizeof(reuse)); 1047 if (ret) { 1048 SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_REUSEADDR %d, ret %d\n", 1049 reuse, ret); 1050 /* It is likely that rdma_resolve_addr() returns -EADDRINUSE, but 1051 * we may missing something. We rely on rdma_resolve_addr(). 1052 */ 1053 } 1054 } 1055 1056 ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr, 1057 NVME_RDMA_TIME_OUT_IN_MS); 1058 if (ret) { 1059 SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno); 1060 return ret; 1061 } 1062 1063 return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ADDR_RESOLVED, 1064 nvme_rdma_addr_resolved); 1065 } 1066 1067 static int nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair); 1068 1069 static int 1070 nvme_rdma_connect_established(struct nvme_rdma_qpair *rqpair, int ret) 1071 { 1072 struct nvme_rdma_rsp_opts opts = {}; 1073 1074 if (ret == -ESTALE) { 1075 return nvme_rdma_stale_conn_retry(rqpair); 1076 } else if (ret) { 1077 SPDK_ERRLOG("RDMA connect error %d\n", ret); 1078 return ret; 1079 } 1080 1081 assert(!rqpair->mr_map); 1082 rqpair->mr_map = spdk_rdma_utils_create_mem_map(rqpair->rdma_qp->qp->pd, &g_nvme_hooks, 1083 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_READ | IBV_ACCESS_REMOTE_WRITE); 1084 if (!rqpair->mr_map) { 1085 SPDK_ERRLOG("Unable to register RDMA memory translation map\n"); 1086 return -1; 1087 } 1088 1089 ret = nvme_rdma_create_reqs(rqpair); 1090 SPDK_DEBUGLOG(nvme, "rc =%d\n", ret); 1091 if (ret) { 1092 SPDK_ERRLOG("Unable to create rqpair RDMA requests\n"); 1093 return -1; 1094 } 1095 SPDK_DEBUGLOG(nvme, "RDMA requests created\n"); 1096 1097 if (!rqpair->srq) { 1098 opts.num_entries = rqpair->num_entries; 1099 opts.rqpair = rqpair; 1100 opts.srq = NULL; 1101 opts.mr_map = rqpair->mr_map; 1102 1103 assert(!rqpair->rsps); 1104 rqpair->rsps = nvme_rdma_create_rsps(&opts); 1105 if (!rqpair->rsps) { 1106 SPDK_ERRLOG("Unable to create rqpair RDMA responses\n"); 1107 return -1; 1108 } 1109 SPDK_DEBUGLOG(nvme, "RDMA responses created\n"); 1110 1111 ret = nvme_rdma_qpair_submit_recvs(rqpair); 1112 SPDK_DEBUGLOG(nvme, "rc =%d\n", ret); 1113 if (ret) { 1114 SPDK_ERRLOG("Unable to submit rqpair RDMA responses\n"); 1115 return -1; 1116 } 1117 SPDK_DEBUGLOG(nvme, "RDMA responses submitted\n"); 1118 } 1119 1120 rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND; 1121 1122 return 0; 1123 } 1124 1125 static int 1126 nvme_rdma_connect(struct nvme_rdma_qpair *rqpair) 1127 { 1128 struct rdma_conn_param param = {}; 1129 struct spdk_nvmf_rdma_request_private_data request_data = {}; 1130 struct ibv_device_attr attr; 1131 int ret; 1132 struct spdk_nvme_ctrlr *ctrlr; 1133 1134 ret = ibv_query_device(rqpair->cm_id->verbs, &attr); 1135 if (ret != 0) { 1136 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 1137 return ret; 1138 } 1139 1140 param.responder_resources = attr.max_qp_rd_atom; 1141 1142 ctrlr = rqpair->qpair.ctrlr; 1143 if (!ctrlr) { 1144 return -1; 1145 } 1146 1147 request_data.qid = rqpair->qpair.id; 1148 request_data.hrqsize = rqpair->num_entries + 1; 1149 request_data.hsqsize = rqpair->num_entries; 1150 request_data.cntlid = ctrlr->cntlid; 1151 1152 param.private_data = &request_data; 1153 param.private_data_len = sizeof(request_data); 1154 param.retry_count = ctrlr->opts.transport_retry_count; 1155 param.rnr_retry_count = 7; 1156 1157 /* Fields below are ignored by rdma cm if qpair has been 1158 * created using rdma cm API. */ 1159 param.srq = 0; 1160 param.qp_num = rqpair->rdma_qp->qp->qp_num; 1161 1162 ret = rdma_connect(rqpair->cm_id, ¶m); 1163 if (ret) { 1164 SPDK_ERRLOG("nvme rdma connect error\n"); 1165 return ret; 1166 } 1167 1168 ctrlr->numa.id_valid = 1; 1169 ctrlr->numa.id = spdk_rdma_cm_id_get_numa_id(rqpair->cm_id); 1170 1171 return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ESTABLISHED, 1172 nvme_rdma_connect_established); 1173 } 1174 1175 static int 1176 nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 1177 { 1178 struct sockaddr_storage dst_addr; 1179 struct sockaddr_storage src_addr; 1180 bool src_addr_specified; 1181 long int port, src_port = 0; 1182 int rc; 1183 struct nvme_rdma_ctrlr *rctrlr; 1184 struct nvme_rdma_qpair *rqpair; 1185 struct nvme_rdma_poll_group *group; 1186 int family; 1187 1188 rqpair = nvme_rdma_qpair(qpair); 1189 rctrlr = nvme_rdma_ctrlr(ctrlr); 1190 assert(rctrlr != NULL); 1191 1192 switch (ctrlr->trid.adrfam) { 1193 case SPDK_NVMF_ADRFAM_IPV4: 1194 family = AF_INET; 1195 break; 1196 case SPDK_NVMF_ADRFAM_IPV6: 1197 family = AF_INET6; 1198 break; 1199 default: 1200 SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam); 1201 return -1; 1202 } 1203 1204 SPDK_DEBUGLOG(nvme, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family); 1205 1206 memset(&dst_addr, 0, sizeof(dst_addr)); 1207 1208 SPDK_DEBUGLOG(nvme, "trsvcid is %s\n", ctrlr->trid.trsvcid); 1209 rc = nvme_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid, &port); 1210 if (rc != 0) { 1211 SPDK_ERRLOG("dst_addr nvme_parse_addr() failed\n"); 1212 return -1; 1213 } 1214 1215 if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) { 1216 memset(&src_addr, 0, sizeof(src_addr)); 1217 rc = nvme_parse_addr(&src_addr, family, 1218 ctrlr->opts.src_addr[0] ? ctrlr->opts.src_addr : NULL, 1219 ctrlr->opts.src_svcid[0] ? ctrlr->opts.src_svcid : NULL, 1220 &src_port); 1221 if (rc != 0) { 1222 SPDK_ERRLOG("src_addr nvme_parse_addr() failed\n"); 1223 return -1; 1224 } 1225 src_addr_specified = true; 1226 } else { 1227 src_addr_specified = false; 1228 } 1229 1230 rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP); 1231 if (rc < 0) { 1232 SPDK_ERRLOG("rdma_create_id() failed\n"); 1233 return -1; 1234 } 1235 1236 rc = nvme_rdma_resolve_addr(rqpair, 1237 src_addr_specified ? (struct sockaddr *)&src_addr : NULL, 1238 (struct sockaddr *)&dst_addr); 1239 if (rc < 0) { 1240 SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n"); 1241 return -1; 1242 } 1243 1244 rqpair->state = NVME_RDMA_QPAIR_STATE_INITIALIZING; 1245 1246 if (qpair->poll_group != NULL) { 1247 group = nvme_rdma_poll_group(qpair->poll_group); 1248 TAILQ_INSERT_TAIL(&group->connecting_qpairs, rqpair, link_connecting); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static int 1255 nvme_rdma_stale_conn_reconnect(struct nvme_rdma_qpair *rqpair) 1256 { 1257 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 1258 1259 if (spdk_get_ticks() < rqpair->evt_timeout_ticks) { 1260 return -EAGAIN; 1261 } 1262 1263 return nvme_rdma_ctrlr_connect_qpair(qpair->ctrlr, qpair); 1264 } 1265 1266 static int 1267 nvme_rdma_ctrlr_connect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, 1268 struct spdk_nvme_qpair *qpair) 1269 { 1270 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 1271 int rc; 1272 1273 if (rqpair->in_connect_poll) { 1274 return -EAGAIN; 1275 } 1276 1277 rqpair->in_connect_poll = true; 1278 1279 switch (rqpair->state) { 1280 case NVME_RDMA_QPAIR_STATE_INVALID: 1281 rc = -EAGAIN; 1282 break; 1283 1284 case NVME_RDMA_QPAIR_STATE_INITIALIZING: 1285 case NVME_RDMA_QPAIR_STATE_EXITING: 1286 if (!nvme_qpair_is_admin_queue(qpair)) { 1287 nvme_ctrlr_lock(ctrlr); 1288 } 1289 1290 rc = nvme_rdma_process_event_poll(rqpair); 1291 1292 if (!nvme_qpair_is_admin_queue(qpair)) { 1293 nvme_ctrlr_unlock(ctrlr); 1294 } 1295 1296 if (rc == 0) { 1297 rc = -EAGAIN; 1298 } 1299 rqpair->in_connect_poll = false; 1300 1301 return rc; 1302 1303 case NVME_RDMA_QPAIR_STATE_STALE_CONN: 1304 rc = nvme_rdma_stale_conn_reconnect(rqpair); 1305 if (rc == 0) { 1306 rc = -EAGAIN; 1307 } 1308 break; 1309 case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND: 1310 rc = nvme_fabric_qpair_connect_async(qpair, rqpair->num_entries + 1); 1311 if (rc == 0) { 1312 rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL; 1313 rc = -EAGAIN; 1314 } else { 1315 SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n"); 1316 } 1317 break; 1318 case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL: 1319 rc = nvme_fabric_qpair_connect_poll(qpair); 1320 if (rc == 0) { 1321 if (nvme_fabric_qpair_auth_required(qpair)) { 1322 rc = nvme_fabric_qpair_authenticate_async(qpair); 1323 if (rc == 0) { 1324 rqpair->state = NVME_RDMA_QPAIR_STATE_AUTHENTICATING; 1325 rc = -EAGAIN; 1326 } 1327 } else { 1328 rqpair->state = NVME_RDMA_QPAIR_STATE_RUNNING; 1329 nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED); 1330 } 1331 } else if (rc != -EAGAIN) { 1332 SPDK_ERRLOG("Failed to poll NVMe-oF Fabric CONNECT command\n"); 1333 } 1334 break; 1335 case NVME_RDMA_QPAIR_STATE_AUTHENTICATING: 1336 rc = nvme_fabric_qpair_authenticate_poll(qpair); 1337 if (rc == 0) { 1338 rqpair->state = NVME_RDMA_QPAIR_STATE_RUNNING; 1339 nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED); 1340 } 1341 break; 1342 case NVME_RDMA_QPAIR_STATE_RUNNING: 1343 rc = 0; 1344 break; 1345 default: 1346 assert(false); 1347 rc = -EINVAL; 1348 break; 1349 } 1350 1351 rqpair->in_connect_poll = false; 1352 1353 return rc; 1354 } 1355 1356 static inline int 1357 nvme_rdma_get_memory_translation(struct nvme_request *req, struct nvme_rdma_qpair *rqpair, 1358 struct nvme_rdma_memory_translation_ctx *_ctx) 1359 { 1360 struct spdk_memory_domain_translation_ctx ctx; 1361 struct spdk_memory_domain_translation_result dma_translation = {.iov_count = 0}; 1362 struct spdk_rdma_utils_memory_translation rdma_translation; 1363 int rc; 1364 1365 assert(req); 1366 assert(rqpair); 1367 assert(_ctx); 1368 1369 if (req->payload.opts && req->payload.opts->memory_domain) { 1370 ctx.size = sizeof(struct spdk_memory_domain_translation_ctx); 1371 ctx.rdma.ibv_qp = rqpair->rdma_qp->qp; 1372 dma_translation.size = sizeof(struct spdk_memory_domain_translation_result); 1373 1374 rc = spdk_memory_domain_translate_data(req->payload.opts->memory_domain, 1375 req->payload.opts->memory_domain_ctx, 1376 rqpair->rdma_qp->domain, &ctx, _ctx->addr, 1377 _ctx->length, &dma_translation); 1378 if (spdk_unlikely(rc) || dma_translation.iov_count != 1) { 1379 SPDK_ERRLOG("DMA memory translation failed, rc %d, iov count %u\n", rc, dma_translation.iov_count); 1380 return rc; 1381 } 1382 1383 _ctx->lkey = dma_translation.rdma.lkey; 1384 _ctx->rkey = dma_translation.rdma.rkey; 1385 _ctx->addr = dma_translation.iov.iov_base; 1386 _ctx->length = dma_translation.iov.iov_len; 1387 } else { 1388 rc = spdk_rdma_utils_get_translation(rqpair->mr_map, _ctx->addr, _ctx->length, &rdma_translation); 1389 if (spdk_unlikely(rc)) { 1390 SPDK_ERRLOG("RDMA memory translation failed, rc %d\n", rc); 1391 return rc; 1392 } 1393 if (rdma_translation.translation_type == SPDK_RDMA_UTILS_TRANSLATION_MR) { 1394 _ctx->lkey = rdma_translation.mr_or_key.mr->lkey; 1395 _ctx->rkey = rdma_translation.mr_or_key.mr->rkey; 1396 } else { 1397 _ctx->lkey = _ctx->rkey = (uint32_t)rdma_translation.mr_or_key.key; 1398 } 1399 } 1400 1401 return 0; 1402 } 1403 1404 1405 /* 1406 * Build SGL describing empty payload. 1407 */ 1408 static int 1409 nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req) 1410 { 1411 struct nvme_request *req = rdma_req->req; 1412 1413 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1414 1415 /* The first element of this SGL is pointing at an 1416 * spdk_nvmf_cmd object. For this particular command, 1417 * we only need the first 64 bytes corresponding to 1418 * the NVMe command. */ 1419 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1420 1421 /* The RDMA SGL needs one element describing the NVMe command. */ 1422 rdma_req->send_wr.num_sge = 1; 1423 1424 req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; 1425 req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; 1426 req->cmd.dptr.sgl1.keyed.length = 0; 1427 req->cmd.dptr.sgl1.keyed.key = 0; 1428 req->cmd.dptr.sgl1.address = 0; 1429 1430 return 0; 1431 } 1432 1433 static inline void 1434 nvme_rdma_configure_contig_inline_request(struct spdk_nvme_rdma_req *rdma_req, 1435 struct nvme_request *req, struct nvme_rdma_memory_translation_ctx *ctx) 1436 { 1437 rdma_req->send_sgl[1].lkey = ctx->lkey; 1438 1439 /* The first element of this SGL is pointing at an 1440 * spdk_nvmf_cmd object. For this particular command, 1441 * we only need the first 64 bytes corresponding to 1442 * the NVMe command. */ 1443 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1444 1445 rdma_req->send_sgl[1].addr = (uint64_t)ctx->addr; 1446 rdma_req->send_sgl[1].length = (uint32_t)ctx->length; 1447 1448 /* The RDMA SGL contains two elements. The first describes 1449 * the NVMe command and the second describes the data 1450 * payload. */ 1451 rdma_req->send_wr.num_sge = 2; 1452 1453 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1454 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 1455 req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; 1456 req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx->length; 1457 /* Inline only supported for icdoff == 0 currently. This function will 1458 * not get called for controllers with other values. */ 1459 req->cmd.dptr.sgl1.address = (uint64_t)0; 1460 } 1461 1462 /* 1463 * Build inline SGL describing contiguous payload buffer. 1464 */ 1465 static inline int 1466 nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair, 1467 struct spdk_nvme_rdma_req *rdma_req) 1468 { 1469 struct nvme_request *req = rdma_req->req; 1470 struct nvme_rdma_memory_translation_ctx ctx = { 1471 .addr = (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset, 1472 .length = req->payload_size 1473 }; 1474 int rc; 1475 1476 assert(ctx.length != 0); 1477 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); 1478 1479 rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx); 1480 if (spdk_unlikely(rc)) { 1481 return -1; 1482 } 1483 1484 nvme_rdma_configure_contig_inline_request(rdma_req, req, &ctx); 1485 1486 return 0; 1487 } 1488 1489 static inline void 1490 nvme_rdma_configure_contig_request(struct spdk_nvme_rdma_req *rdma_req, struct nvme_request *req, 1491 struct nvme_rdma_memory_translation_ctx *ctx) 1492 { 1493 req->cmd.dptr.sgl1.keyed.key = ctx->rkey; 1494 1495 /* The first element of this SGL is pointing at an 1496 * spdk_nvmf_cmd object. For this particular command, 1497 * we only need the first 64 bytes corresponding to 1498 * the NVMe command. */ 1499 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1500 1501 /* The RDMA SGL needs one element describing the NVMe command. */ 1502 rdma_req->send_wr.num_sge = 1; 1503 1504 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1505 req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; 1506 req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; 1507 req->cmd.dptr.sgl1.keyed.length = (uint32_t)ctx->length; 1508 req->cmd.dptr.sgl1.address = (uint64_t)ctx->addr; 1509 } 1510 1511 /* 1512 * Build SGL describing contiguous payload buffer. 1513 */ 1514 static inline int 1515 nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair, 1516 struct spdk_nvme_rdma_req *rdma_req) 1517 { 1518 struct nvme_request *req = rdma_req->req; 1519 struct nvme_rdma_memory_translation_ctx ctx = { 1520 .addr = (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset, 1521 .length = req->payload_size 1522 }; 1523 int rc; 1524 1525 assert(req->payload_size != 0); 1526 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); 1527 1528 if (spdk_unlikely(req->payload_size > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) { 1529 SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n", 1530 req->payload_size, NVME_RDMA_MAX_KEYED_SGL_LENGTH); 1531 return -1; 1532 } 1533 1534 rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx); 1535 if (spdk_unlikely(rc)) { 1536 return -1; 1537 } 1538 1539 nvme_rdma_configure_contig_request(rdma_req, req, &ctx); 1540 1541 return 0; 1542 } 1543 1544 /* 1545 * Build SGL describing scattered payload buffer. 1546 */ 1547 static inline int 1548 nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair, 1549 struct spdk_nvme_rdma_req *rdma_req) 1550 { 1551 struct nvme_request *req = rdma_req->req; 1552 struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id]; 1553 struct nvme_rdma_memory_translation_ctx ctx; 1554 uint32_t remaining_size; 1555 uint32_t sge_length; 1556 int rc, max_num_sgl, num_sgl_desc; 1557 1558 assert(req->payload_size != 0); 1559 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); 1560 assert(req->payload.reset_sgl_fn != NULL); 1561 assert(req->payload.next_sge_fn != NULL); 1562 req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); 1563 1564 max_num_sgl = req->qpair->ctrlr->max_sges; 1565 1566 remaining_size = req->payload_size; 1567 num_sgl_desc = 0; 1568 do { 1569 rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &sge_length); 1570 if (spdk_unlikely(rc)) { 1571 return -1; 1572 } 1573 1574 sge_length = spdk_min(remaining_size, sge_length); 1575 1576 if (spdk_unlikely(sge_length > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) { 1577 SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n", 1578 sge_length, NVME_RDMA_MAX_KEYED_SGL_LENGTH); 1579 return -1; 1580 } 1581 ctx.length = sge_length; 1582 rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx); 1583 if (spdk_unlikely(rc)) { 1584 return -1; 1585 } 1586 1587 cmd->sgl[num_sgl_desc].keyed.key = ctx.rkey; 1588 cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; 1589 cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; 1590 cmd->sgl[num_sgl_desc].keyed.length = (uint32_t)ctx.length; 1591 cmd->sgl[num_sgl_desc].address = (uint64_t)ctx.addr; 1592 1593 remaining_size -= ctx.length; 1594 num_sgl_desc++; 1595 } while (remaining_size > 0 && num_sgl_desc < max_num_sgl); 1596 1597 1598 /* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */ 1599 if (spdk_unlikely(remaining_size > 0)) { 1600 return -1; 1601 } 1602 1603 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1604 1605 /* The RDMA SGL needs one element describing some portion 1606 * of the spdk_nvmf_cmd structure. */ 1607 rdma_req->send_wr.num_sge = 1; 1608 1609 /* 1610 * If only one SGL descriptor is required, it can be embedded directly in the command 1611 * as a data block descriptor. 1612 */ 1613 if (num_sgl_desc == 1) { 1614 /* The first element of this SGL is pointing at an 1615 * spdk_nvmf_cmd object. For this particular command, 1616 * we only need the first 64 bytes corresponding to 1617 * the NVMe command. */ 1618 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1619 1620 req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type; 1621 req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype; 1622 req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length; 1623 req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key; 1624 req->cmd.dptr.sgl1.address = cmd->sgl[0].address; 1625 } else { 1626 /* 1627 * Otherwise, The SGL descriptor embedded in the command must point to the list of 1628 * SGL descriptors used to describe the operation. In that case it is a last segment descriptor. 1629 */ 1630 uint32_t descriptors_size = sizeof(struct spdk_nvme_sgl_descriptor) * num_sgl_desc; 1631 1632 if (spdk_unlikely(descriptors_size > rqpair->qpair.ctrlr->ioccsz_bytes)) { 1633 SPDK_ERRLOG("Size of SGL descriptors (%u) exceeds ICD (%u)\n", 1634 descriptors_size, rqpair->qpair.ctrlr->ioccsz_bytes); 1635 return -1; 1636 } 1637 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + descriptors_size; 1638 1639 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT; 1640 req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; 1641 req->cmd.dptr.sgl1.unkeyed.length = descriptors_size; 1642 req->cmd.dptr.sgl1.address = (uint64_t)0; 1643 } 1644 1645 return 0; 1646 } 1647 1648 /* 1649 * Build inline SGL describing sgl payload buffer. 1650 */ 1651 static inline int 1652 nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair, 1653 struct spdk_nvme_rdma_req *rdma_req) 1654 { 1655 struct nvme_request *req = rdma_req->req; 1656 struct nvme_rdma_memory_translation_ctx ctx; 1657 uint32_t length; 1658 int rc; 1659 1660 assert(req->payload_size != 0); 1661 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); 1662 assert(req->payload.reset_sgl_fn != NULL); 1663 assert(req->payload.next_sge_fn != NULL); 1664 req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); 1665 1666 rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &length); 1667 if (spdk_unlikely(rc)) { 1668 return -1; 1669 } 1670 1671 if (length < req->payload_size) { 1672 SPDK_DEBUGLOG(nvme, "Inline SGL request split so sending separately.\n"); 1673 return nvme_rdma_build_sgl_request(rqpair, rdma_req); 1674 } 1675 1676 if (length > req->payload_size) { 1677 length = req->payload_size; 1678 } 1679 1680 ctx.length = length; 1681 rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx); 1682 if (spdk_unlikely(rc)) { 1683 return -1; 1684 } 1685 1686 rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr; 1687 rdma_req->send_sgl[1].length = (uint32_t)ctx.length; 1688 rdma_req->send_sgl[1].lkey = ctx.lkey; 1689 1690 rdma_req->send_wr.num_sge = 2; 1691 1692 /* The first element of this SGL is pointing at an 1693 * spdk_nvmf_cmd object. For this particular command, 1694 * we only need the first 64 bytes corresponding to 1695 * the NVMe command. */ 1696 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1697 1698 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1699 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 1700 req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; 1701 req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length; 1702 /* Inline only supported for icdoff == 0 currently. This function will 1703 * not get called for controllers with other values. */ 1704 req->cmd.dptr.sgl1.address = (uint64_t)0; 1705 1706 return 0; 1707 } 1708 1709 static inline int 1710 nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) 1711 { 1712 struct nvme_request *req = rdma_req->req; 1713 struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr; 1714 enum nvme_payload_type payload_type; 1715 bool icd_supported; 1716 int rc = -1; 1717 1718 payload_type = nvme_payload_type(&req->payload); 1719 /* 1720 * Check if icdoff is non zero, to avoid interop conflicts with 1721 * targets with non-zero icdoff. Both SPDK and the Linux kernel 1722 * targets use icdoff = 0. For targets with non-zero icdoff, we 1723 * will currently just not use inline data for now. 1724 */ 1725 icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER 1726 && req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0; 1727 1728 if (spdk_unlikely(req->payload_size == 0)) { 1729 rc = nvme_rdma_build_null_request(rdma_req); 1730 } else if (payload_type == NVME_PAYLOAD_TYPE_CONTIG) { 1731 if (icd_supported) { 1732 rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req); 1733 } else { 1734 rc = nvme_rdma_build_contig_request(rqpair, rdma_req); 1735 } 1736 } else if (payload_type == NVME_PAYLOAD_TYPE_SGL) { 1737 if (icd_supported) { 1738 rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req); 1739 } else { 1740 rc = nvme_rdma_build_sgl_request(rqpair, rdma_req); 1741 } 1742 } 1743 1744 if (spdk_unlikely(rc)) { 1745 return rc; 1746 } 1747 1748 memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd)); 1749 return 0; 1750 } 1751 1752 static struct spdk_nvme_qpair * 1753 nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr, 1754 uint16_t qid, uint32_t qsize, 1755 enum spdk_nvme_qprio qprio, 1756 uint32_t num_requests, 1757 bool delay_cmd_submit, 1758 bool async) 1759 { 1760 struct nvme_rdma_qpair *rqpair; 1761 struct spdk_nvme_qpair *qpair; 1762 int rc; 1763 1764 if (qsize < SPDK_NVME_QUEUE_MIN_ENTRIES) { 1765 SPDK_ERRLOG("Failed to create qpair with size %u. Minimum queue size is %d.\n", 1766 qsize, SPDK_NVME_QUEUE_MIN_ENTRIES); 1767 return NULL; 1768 } 1769 1770 rqpair = spdk_zmalloc(sizeof(struct nvme_rdma_qpair), 0, NULL, SPDK_ENV_NUMA_ID_ANY, 1771 SPDK_MALLOC_DMA); 1772 if (!rqpair) { 1773 SPDK_ERRLOG("failed to get create rqpair\n"); 1774 return NULL; 1775 } 1776 1777 /* Set num_entries one less than queue size. According to NVMe 1778 * and NVMe-oF specs we can not submit queue size requests, 1779 * one slot shall always remain empty. 1780 */ 1781 rqpair->num_entries = qsize - 1; 1782 rqpair->delay_cmd_submit = delay_cmd_submit; 1783 rqpair->state = NVME_RDMA_QPAIR_STATE_INVALID; 1784 qpair = &rqpair->qpair; 1785 rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests, async); 1786 if (rc != 0) { 1787 spdk_free(rqpair); 1788 return NULL; 1789 } 1790 1791 return qpair; 1792 } 1793 1794 static void 1795 nvme_rdma_qpair_destroy(struct nvme_rdma_qpair *rqpair) 1796 { 1797 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 1798 struct nvme_rdma_ctrlr *rctrlr; 1799 struct nvme_rdma_cm_event_entry *entry, *tmp; 1800 1801 spdk_rdma_utils_free_mem_map(&rqpair->mr_map); 1802 1803 if (rqpair->evt) { 1804 rdma_ack_cm_event(rqpair->evt); 1805 rqpair->evt = NULL; 1806 } 1807 1808 /* 1809 * This works because we have the controller lock both in 1810 * this function and in the function where we add new events. 1811 */ 1812 if (qpair->ctrlr != NULL) { 1813 rctrlr = nvme_rdma_ctrlr(qpair->ctrlr); 1814 STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) { 1815 if (entry->evt->id->context == rqpair) { 1816 STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link); 1817 rdma_ack_cm_event(entry->evt); 1818 STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link); 1819 } 1820 } 1821 } 1822 1823 if (rqpair->cm_id) { 1824 if (rqpair->rdma_qp) { 1825 spdk_rdma_utils_put_pd(rqpair->rdma_qp->qp->pd); 1826 spdk_rdma_provider_qp_destroy(rqpair->rdma_qp); 1827 rqpair->rdma_qp = NULL; 1828 } 1829 } 1830 1831 if (rqpair->poller) { 1832 struct nvme_rdma_poll_group *group; 1833 1834 assert(qpair->poll_group); 1835 group = nvme_rdma_poll_group(qpair->poll_group); 1836 1837 nvme_rdma_poll_group_put_poller(group, rqpair->poller); 1838 1839 rqpair->poller = NULL; 1840 rqpair->cq = NULL; 1841 if (rqpair->srq) { 1842 rqpair->srq = NULL; 1843 rqpair->rsps = NULL; 1844 } 1845 } else if (rqpair->cq) { 1846 ibv_destroy_cq(rqpair->cq); 1847 rqpair->cq = NULL; 1848 } 1849 1850 nvme_rdma_free_reqs(rqpair); 1851 nvme_rdma_free_rsps(rqpair->rsps); 1852 rqpair->rsps = NULL; 1853 1854 /* destroy cm_id last so cma device will not be freed before we destroy the cq. */ 1855 if (rqpair->cm_id) { 1856 rdma_destroy_id(rqpair->cm_id); 1857 rqpair->cm_id = NULL; 1858 } 1859 } 1860 1861 static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr); 1862 1863 static int 1864 nvme_rdma_qpair_disconnected(struct nvme_rdma_qpair *rqpair, int ret) 1865 { 1866 if (ret) { 1867 SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n"); 1868 goto quiet; 1869 } 1870 1871 if (rqpair->poller == NULL) { 1872 /* If poller is not used, cq is not shared. 1873 * So complete disconnecting qpair immediately. 1874 */ 1875 goto quiet; 1876 } 1877 1878 if (rqpair->rsps == NULL) { 1879 goto quiet; 1880 } 1881 1882 if (rqpair->need_destroy || 1883 (rqpair->current_num_sends != 0 || 1884 (!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) { 1885 rqpair->state = NVME_RDMA_QPAIR_STATE_LINGERING; 1886 rqpair->evt_timeout_ticks = (NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US * spdk_get_ticks_hz()) / 1887 SPDK_SEC_TO_USEC + spdk_get_ticks(); 1888 1889 return -EAGAIN; 1890 } 1891 1892 quiet: 1893 rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED; 1894 1895 nvme_rdma_qpair_abort_reqs(&rqpair->qpair, rqpair->qpair.abort_dnr); 1896 nvme_rdma_qpair_destroy(rqpair); 1897 nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair); 1898 1899 return 0; 1900 } 1901 1902 static int 1903 nvme_rdma_qpair_wait_until_quiet(struct nvme_rdma_qpair *rqpair) 1904 { 1905 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 1906 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 1907 1908 if (spdk_get_ticks() < rqpair->evt_timeout_ticks && 1909 (rqpair->current_num_sends != 0 || 1910 (!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) { 1911 return -EAGAIN; 1912 } 1913 1914 rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED; 1915 nvme_rdma_qpair_abort_reqs(qpair, qpair->abort_dnr); 1916 if (!nvme_qpair_is_admin_queue(qpair)) { 1917 nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); 1918 } 1919 nvme_rdma_qpair_destroy(rqpair); 1920 if (!nvme_qpair_is_admin_queue(qpair)) { 1921 nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); 1922 } 1923 nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair); 1924 1925 return 0; 1926 } 1927 1928 static void 1929 _nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, 1930 nvme_rdma_cm_event_cb disconnected_qpair_cb) 1931 { 1932 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 1933 int rc; 1934 1935 assert(disconnected_qpair_cb != NULL); 1936 1937 rqpair->state = NVME_RDMA_QPAIR_STATE_EXITING; 1938 1939 if (rqpair->cm_id) { 1940 if (rqpair->rdma_qp) { 1941 rc = spdk_rdma_provider_qp_disconnect(rqpair->rdma_qp); 1942 if ((qpair->ctrlr != NULL) && (rc == 0)) { 1943 rc = nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_DISCONNECTED, 1944 disconnected_qpair_cb); 1945 if (rc == 0) { 1946 return; 1947 } 1948 } 1949 } 1950 } 1951 1952 disconnected_qpair_cb(rqpair, 0); 1953 } 1954 1955 static int 1956 nvme_rdma_ctrlr_disconnect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 1957 { 1958 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 1959 int rc; 1960 1961 switch (rqpair->state) { 1962 case NVME_RDMA_QPAIR_STATE_EXITING: 1963 if (!nvme_qpair_is_admin_queue(qpair)) { 1964 nvme_ctrlr_lock(ctrlr); 1965 } 1966 1967 rc = nvme_rdma_process_event_poll(rqpair); 1968 1969 if (!nvme_qpair_is_admin_queue(qpair)) { 1970 nvme_ctrlr_unlock(ctrlr); 1971 } 1972 break; 1973 1974 case NVME_RDMA_QPAIR_STATE_LINGERING: 1975 rc = nvme_rdma_qpair_wait_until_quiet(rqpair); 1976 break; 1977 case NVME_RDMA_QPAIR_STATE_EXITED: 1978 rc = 0; 1979 break; 1980 1981 default: 1982 assert(false); 1983 rc = -EAGAIN; 1984 break; 1985 } 1986 1987 return rc; 1988 } 1989 1990 static void 1991 nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 1992 { 1993 int rc; 1994 1995 _nvme_rdma_ctrlr_disconnect_qpair(ctrlr, qpair, nvme_rdma_qpair_disconnected); 1996 1997 /* If the async mode is disabled, poll the qpair until it is actually disconnected. 1998 * It is ensured that poll_group_process_completions() calls disconnected_qpair_cb 1999 * for any disconnected qpair. Hence, we do not have to check if the qpair is in 2000 * a poll group or not. 2001 * At the same time, if the qpair is being destroyed, i.e. this function is called by 2002 * spdk_nvme_ctrlr_free_io_qpair then we need to wait until qpair is disconnected, otherwise 2003 * we may leak some resources. 2004 */ 2005 if (qpair->async && !qpair->destroy_in_progress) { 2006 return; 2007 } 2008 2009 while (1) { 2010 rc = nvme_rdma_ctrlr_disconnect_qpair_poll(ctrlr, qpair); 2011 if (rc != -EAGAIN) { 2012 break; 2013 } 2014 } 2015 } 2016 2017 static int 2018 nvme_rdma_stale_conn_disconnected(struct nvme_rdma_qpair *rqpair, int ret) 2019 { 2020 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 2021 2022 if (ret) { 2023 SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n"); 2024 } 2025 2026 nvme_rdma_qpair_destroy(rqpair); 2027 2028 qpair->last_transport_failure_reason = qpair->transport_failure_reason; 2029 qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_NONE; 2030 2031 rqpair->state = NVME_RDMA_QPAIR_STATE_STALE_CONN; 2032 rqpair->evt_timeout_ticks = (NVME_RDMA_STALE_CONN_RETRY_DELAY_US * spdk_get_ticks_hz()) / 2033 SPDK_SEC_TO_USEC + spdk_get_ticks(); 2034 2035 return 0; 2036 } 2037 2038 static int 2039 nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair) 2040 { 2041 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 2042 2043 if (rqpair->stale_conn_retry_count >= NVME_RDMA_STALE_CONN_RETRY_MAX) { 2044 SPDK_ERRLOG("Retry failed %d times, give up stale connection to qpair (cntlid:%u, qid:%u).\n", 2045 NVME_RDMA_STALE_CONN_RETRY_MAX, qpair->ctrlr->cntlid, qpair->id); 2046 return -ESTALE; 2047 } 2048 2049 rqpair->stale_conn_retry_count++; 2050 2051 SPDK_NOTICELOG("%d times, retry stale connection to qpair (cntlid:%u, qid:%u).\n", 2052 rqpair->stale_conn_retry_count, qpair->ctrlr->cntlid, qpair->id); 2053 2054 _nvme_rdma_ctrlr_disconnect_qpair(qpair->ctrlr, qpair, nvme_rdma_stale_conn_disconnected); 2055 2056 return 0; 2057 } 2058 2059 static int 2060 nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 2061 { 2062 struct nvme_rdma_qpair *rqpair; 2063 2064 assert(qpair != NULL); 2065 rqpair = nvme_rdma_qpair(qpair); 2066 2067 if (rqpair->state != NVME_RDMA_QPAIR_STATE_EXITED) { 2068 int rc __attribute__((unused)); 2069 2070 /* qpair was removed from the poll group while the disconnect is not finished. 2071 * Destroy rdma resources forcefully. */ 2072 rc = nvme_rdma_qpair_disconnected(rqpair, 0); 2073 assert(rc == 0); 2074 } 2075 2076 nvme_rdma_qpair_abort_reqs(qpair, qpair->abort_dnr); 2077 nvme_qpair_deinit(qpair); 2078 2079 spdk_free(rqpair); 2080 2081 return 0; 2082 } 2083 2084 static struct spdk_nvme_qpair * 2085 nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, 2086 const struct spdk_nvme_io_qpair_opts *opts) 2087 { 2088 return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio, 2089 opts->io_queue_requests, 2090 opts->delay_cmd_submit, 2091 opts->async_mode); 2092 } 2093 2094 static int 2095 nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) 2096 { 2097 /* do nothing here */ 2098 return 0; 2099 } 2100 2101 static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr); 2102 2103 /* We have to use the typedef in the function declaration to appease astyle. */ 2104 typedef struct spdk_nvme_ctrlr spdk_nvme_ctrlr_t; 2105 2106 static spdk_nvme_ctrlr_t * 2107 nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid, 2108 const struct spdk_nvme_ctrlr_opts *opts, 2109 void *devhandle) 2110 { 2111 struct nvme_rdma_ctrlr *rctrlr; 2112 struct ibv_context **contexts; 2113 struct ibv_device_attr dev_attr; 2114 int i, flag, rc; 2115 2116 rctrlr = spdk_zmalloc(sizeof(struct nvme_rdma_ctrlr), 0, NULL, SPDK_ENV_NUMA_ID_ANY, 2117 SPDK_MALLOC_DMA); 2118 if (rctrlr == NULL) { 2119 SPDK_ERRLOG("could not allocate ctrlr\n"); 2120 return NULL; 2121 } 2122 2123 rctrlr->ctrlr.opts = *opts; 2124 rctrlr->ctrlr.trid = *trid; 2125 2126 if (opts->transport_retry_count > NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT) { 2127 SPDK_NOTICELOG("transport_retry_count exceeds max value %d, use max value\n", 2128 NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT); 2129 rctrlr->ctrlr.opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT; 2130 } 2131 2132 if (opts->transport_ack_timeout > NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) { 2133 SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n", 2134 NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT); 2135 rctrlr->ctrlr.opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT; 2136 } 2137 2138 contexts = rdma_get_devices(NULL); 2139 if (contexts == NULL) { 2140 SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); 2141 spdk_free(rctrlr); 2142 return NULL; 2143 } 2144 2145 i = 0; 2146 rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS; 2147 2148 while (contexts[i] != NULL) { 2149 rc = ibv_query_device(contexts[i], &dev_attr); 2150 if (rc < 0) { 2151 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 2152 rdma_free_devices(contexts); 2153 spdk_free(rctrlr); 2154 return NULL; 2155 } 2156 rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge); 2157 i++; 2158 } 2159 2160 rdma_free_devices(contexts); 2161 2162 rc = nvme_ctrlr_construct(&rctrlr->ctrlr); 2163 if (rc != 0) { 2164 spdk_free(rctrlr); 2165 return NULL; 2166 } 2167 2168 STAILQ_INIT(&rctrlr->pending_cm_events); 2169 STAILQ_INIT(&rctrlr->free_cm_events); 2170 rctrlr->cm_events = spdk_zmalloc(NVME_RDMA_NUM_CM_EVENTS * sizeof(*rctrlr->cm_events), 0, NULL, 2171 SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA); 2172 if (rctrlr->cm_events == NULL) { 2173 SPDK_ERRLOG("unable to allocate buffers to hold CM events.\n"); 2174 goto destruct_ctrlr; 2175 } 2176 2177 for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) { 2178 STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link); 2179 } 2180 2181 rctrlr->cm_channel = rdma_create_event_channel(); 2182 if (rctrlr->cm_channel == NULL) { 2183 SPDK_ERRLOG("rdma_create_event_channel() failed\n"); 2184 goto destruct_ctrlr; 2185 } 2186 2187 flag = fcntl(rctrlr->cm_channel->fd, F_GETFL); 2188 if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { 2189 SPDK_ERRLOG("Cannot set event channel to non blocking\n"); 2190 goto destruct_ctrlr; 2191 } 2192 2193 rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0, 2194 rctrlr->ctrlr.opts.admin_queue_size, 0, 2195 rctrlr->ctrlr.opts.admin_queue_size, false, true); 2196 if (!rctrlr->ctrlr.adminq) { 2197 SPDK_ERRLOG("failed to create admin qpair\n"); 2198 goto destruct_ctrlr; 2199 } 2200 2201 if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) { 2202 SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n"); 2203 goto destruct_ctrlr; 2204 } 2205 2206 SPDK_DEBUGLOG(nvme, "successfully initialized the nvmf ctrlr\n"); 2207 return &rctrlr->ctrlr; 2208 2209 destruct_ctrlr: 2210 nvme_ctrlr_destruct(&rctrlr->ctrlr); 2211 return NULL; 2212 } 2213 2214 static int 2215 nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) 2216 { 2217 struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr); 2218 struct nvme_rdma_cm_event_entry *entry; 2219 2220 if (ctrlr->adminq) { 2221 nvme_rdma_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq); 2222 } 2223 2224 STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) { 2225 rdma_ack_cm_event(entry->evt); 2226 } 2227 2228 STAILQ_INIT(&rctrlr->free_cm_events); 2229 STAILQ_INIT(&rctrlr->pending_cm_events); 2230 spdk_free(rctrlr->cm_events); 2231 2232 if (rctrlr->cm_channel) { 2233 rdma_destroy_event_channel(rctrlr->cm_channel); 2234 rctrlr->cm_channel = NULL; 2235 } 2236 2237 nvme_ctrlr_destruct_finish(ctrlr); 2238 2239 spdk_free(rctrlr); 2240 2241 return 0; 2242 } 2243 2244 static inline int 2245 _nvme_rdma_qpair_submit_request(struct nvme_rdma_qpair *rqpair, 2246 struct spdk_nvme_rdma_req *rdma_req) 2247 { 2248 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 2249 struct ibv_send_wr *wr; 2250 struct nvme_rdma_poll_group *group; 2251 2252 if (!rqpair->link_active.tqe_prev && qpair->poll_group) { 2253 group = nvme_rdma_poll_group(qpair->poll_group); 2254 TAILQ_INSERT_TAIL(&group->active_qpairs, rqpair, link_active); 2255 } 2256 assert(rqpair->current_num_sends < rqpair->num_entries); 2257 rqpair->current_num_sends++; 2258 2259 wr = &rdma_req->send_wr; 2260 wr->next = NULL; 2261 nvme_rdma_trace_ibv_sge(wr->sg_list); 2262 2263 spdk_rdma_provider_qp_queue_send_wrs(rqpair->rdma_qp, wr); 2264 2265 if (!rqpair->delay_cmd_submit) { 2266 return nvme_rdma_qpair_submit_sends(rqpair); 2267 } 2268 2269 return 0; 2270 } 2271 2272 static int 2273 nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair, 2274 struct nvme_request *req) 2275 { 2276 struct nvme_rdma_qpair *rqpair; 2277 struct spdk_nvme_rdma_req *rdma_req; 2278 int rc; 2279 2280 rqpair = nvme_rdma_qpair(qpair); 2281 assert(rqpair != NULL); 2282 assert(req != NULL); 2283 2284 rdma_req = nvme_rdma_req_get(rqpair); 2285 if (spdk_unlikely(!rdma_req)) { 2286 if (rqpair->poller) { 2287 rqpair->poller->stats.queued_requests++; 2288 } 2289 /* Inform the upper layer to try again later. */ 2290 return -EAGAIN; 2291 } 2292 2293 assert(rdma_req->req == NULL); 2294 rdma_req->req = req; 2295 req->cmd.cid = rdma_req->id; 2296 rc = nvme_rdma_req_init(rqpair, rdma_req); 2297 if (spdk_unlikely(rc)) { 2298 SPDK_ERRLOG("nvme_rdma_req_init() failed\n"); 2299 nvme_rdma_req_put(rqpair, rdma_req); 2300 return -1; 2301 } 2302 2303 TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link); 2304 rqpair->num_outstanding_reqs++; 2305 2306 return _nvme_rdma_qpair_submit_request(rqpair, rdma_req); 2307 } 2308 2309 static int 2310 nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair) 2311 { 2312 /* Currently, doing nothing here */ 2313 return 0; 2314 } 2315 2316 static void 2317 nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr) 2318 { 2319 struct spdk_nvme_rdma_req *rdma_req, *tmp; 2320 struct spdk_nvme_cpl cpl; 2321 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2322 2323 cpl.sqid = qpair->id; 2324 cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; 2325 cpl.status.sct = SPDK_NVME_SCT_GENERIC; 2326 cpl.status.dnr = dnr; 2327 2328 /* 2329 * We cannot abort requests at the RDMA layer without 2330 * unregistering them. If we do, we can still get error 2331 * free completions on the shared completion queue. 2332 */ 2333 if (nvme_qpair_get_state(qpair) > NVME_QPAIR_DISCONNECTING && 2334 nvme_qpair_get_state(qpair) != NVME_QPAIR_DESTROYING) { 2335 nvme_ctrlr_disconnect_qpair(qpair); 2336 } 2337 2338 TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { 2339 nvme_rdma_req_complete(rdma_req, &cpl, true); 2340 } 2341 } 2342 2343 static void 2344 nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair) 2345 { 2346 uint64_t t02; 2347 struct spdk_nvme_rdma_req *rdma_req, *tmp; 2348 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2349 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 2350 struct spdk_nvme_ctrlr_process *active_proc; 2351 2352 /* Don't check timeouts during controller initialization. */ 2353 if (ctrlr->state != NVME_CTRLR_STATE_READY) { 2354 return; 2355 } 2356 2357 if (nvme_qpair_is_admin_queue(qpair)) { 2358 active_proc = nvme_ctrlr_get_current_process(ctrlr); 2359 } else { 2360 active_proc = qpair->active_proc; 2361 } 2362 2363 /* Only check timeouts if the current process has a timeout callback. */ 2364 if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) { 2365 return; 2366 } 2367 2368 t02 = spdk_get_ticks(); 2369 TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { 2370 assert(rdma_req->req != NULL); 2371 2372 if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) { 2373 /* 2374 * The requests are in order, so as soon as one has not timed out, 2375 * stop iterating. 2376 */ 2377 break; 2378 } 2379 } 2380 } 2381 2382 static inline void 2383 nvme_rdma_request_ready(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) 2384 { 2385 struct spdk_nvme_rdma_rsp *rdma_rsp = rdma_req->rdma_rsp; 2386 struct ibv_recv_wr *recv_wr = rdma_rsp->recv_wr; 2387 2388 nvme_rdma_req_complete(rdma_req, &rdma_rsp->cpl, true); 2389 2390 assert(rqpair->rsps->current_num_recvs < rqpair->rsps->num_entries); 2391 rqpair->rsps->current_num_recvs++; 2392 2393 recv_wr->next = NULL; 2394 nvme_rdma_trace_ibv_sge(recv_wr->sg_list); 2395 2396 if (!rqpair->srq) { 2397 spdk_rdma_provider_qp_queue_recv_wrs(rqpair->rdma_qp, recv_wr); 2398 } else { 2399 spdk_rdma_provider_srq_queue_recv_wrs(rqpair->srq, recv_wr); 2400 } 2401 } 2402 2403 #define MAX_COMPLETIONS_PER_POLL 128 2404 2405 static void 2406 nvme_rdma_fail_qpair(struct spdk_nvme_qpair *qpair, int failure_reason) 2407 { 2408 if (failure_reason == IBV_WC_RETRY_EXC_ERR) { 2409 qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE; 2410 } else if (qpair->transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_NONE) { 2411 qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN; 2412 } 2413 2414 nvme_ctrlr_disconnect_qpair(qpair); 2415 } 2416 2417 static struct nvme_rdma_qpair * 2418 get_rdma_qpair_from_wc(struct nvme_rdma_poll_group *group, struct ibv_wc *wc) 2419 { 2420 struct spdk_nvme_qpair *qpair; 2421 struct nvme_rdma_qpair *rqpair; 2422 2423 STAILQ_FOREACH(qpair, &group->group.connected_qpairs, poll_group_stailq) { 2424 rqpair = nvme_rdma_qpair(qpair); 2425 if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) { 2426 return rqpair; 2427 } 2428 } 2429 2430 STAILQ_FOREACH(qpair, &group->group.disconnected_qpairs, poll_group_stailq) { 2431 rqpair = nvme_rdma_qpair(qpair); 2432 if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) { 2433 return rqpair; 2434 } 2435 } 2436 2437 return NULL; 2438 } 2439 2440 static inline void 2441 nvme_rdma_log_wc_status(struct nvme_rdma_qpair *rqpair, struct ibv_wc *wc) 2442 { 2443 struct nvme_rdma_wr *rdma_wr = (struct nvme_rdma_wr *)wc->wr_id; 2444 2445 if (wc->status == IBV_WC_WR_FLUSH_ERR) { 2446 /* If qpair is in ERR state, we will receive completions for all posted and not completed 2447 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */ 2448 SPDK_DEBUGLOG(nvme, "WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n", 2449 rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status, 2450 ibv_wc_status_str(wc->status)); 2451 } else { 2452 SPDK_ERRLOG("WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n", 2453 rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status, 2454 ibv_wc_status_str(wc->status)); 2455 } 2456 } 2457 2458 static inline int 2459 nvme_rdma_process_recv_completion(struct nvme_rdma_poller *poller, struct ibv_wc *wc, 2460 struct nvme_rdma_wr *rdma_wr) 2461 { 2462 struct nvme_rdma_qpair *rqpair; 2463 struct spdk_nvme_rdma_req *rdma_req; 2464 struct spdk_nvme_rdma_rsp *rdma_rsp; 2465 2466 rdma_rsp = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_rsp, rdma_wr); 2467 2468 if (poller && poller->srq) { 2469 rqpair = get_rdma_qpair_from_wc(poller->group, wc); 2470 if (spdk_unlikely(!rqpair)) { 2471 /* Since we do not handle the LAST_WQE_REACHED event, we do not know when 2472 * a Receive Queue in a QP, that is associated with an SRQ, is flushed. 2473 * We may get a WC for a already destroyed QP. 2474 * 2475 * However, for the SRQ, this is not any error. Hence, just re-post the 2476 * receive request to the SRQ to reuse for other QPs, and return 0. 2477 */ 2478 spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr); 2479 return 0; 2480 } 2481 } else { 2482 rqpair = rdma_rsp->rqpair; 2483 if (spdk_unlikely(!rqpair)) { 2484 /* TODO: Fix forceful QP destroy when it is not async mode. 2485 * CQ itself did not cause any error. Hence, return 0 for now. 2486 */ 2487 SPDK_WARNLOG("QP might be already destroyed.\n"); 2488 return 0; 2489 } 2490 } 2491 2492 2493 assert(rqpair->rsps->current_num_recvs > 0); 2494 rqpair->rsps->current_num_recvs--; 2495 2496 if (spdk_unlikely(wc->status)) { 2497 nvme_rdma_log_wc_status(rqpair, wc); 2498 goto err_wc; 2499 } 2500 2501 SPDK_DEBUGLOG(nvme, "CQ recv completion\n"); 2502 2503 if (spdk_unlikely(wc->byte_len < sizeof(struct spdk_nvme_cpl))) { 2504 SPDK_ERRLOG("recv length %u less than expected response size\n", wc->byte_len); 2505 goto err_wc; 2506 } 2507 rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid]; 2508 rdma_req->completion_flags |= NVME_RDMA_RECV_COMPLETED; 2509 rdma_req->rdma_rsp = rdma_rsp; 2510 2511 if ((rdma_req->completion_flags & NVME_RDMA_SEND_COMPLETED) == 0) { 2512 return 0; 2513 } 2514 2515 rqpair->num_completions++; 2516 2517 nvme_rdma_request_ready(rqpair, rdma_req); 2518 2519 if (!rqpair->delay_cmd_submit) { 2520 if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) { 2521 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 2522 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2523 return -ENXIO; 2524 } 2525 } 2526 2527 return 1; 2528 2529 err_wc: 2530 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2531 if (poller && poller->srq) { 2532 spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr); 2533 } 2534 return -ENXIO; 2535 } 2536 2537 static inline int 2538 nvme_rdma_process_send_completion(struct nvme_rdma_poller *poller, 2539 struct nvme_rdma_qpair *rdma_qpair, 2540 struct ibv_wc *wc, struct nvme_rdma_wr *rdma_wr) 2541 { 2542 struct nvme_rdma_qpair *rqpair; 2543 struct spdk_nvme_rdma_req *rdma_req; 2544 2545 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_req, rdma_wr); 2546 rqpair = rdma_req->req ? nvme_rdma_qpair(rdma_req->req->qpair) : NULL; 2547 if (spdk_unlikely(!rqpair)) { 2548 rqpair = rdma_qpair != NULL ? rdma_qpair : get_rdma_qpair_from_wc(poller->group, wc); 2549 } 2550 2551 /* If we are flushing I/O */ 2552 if (spdk_unlikely(wc->status)) { 2553 if (!rqpair) { 2554 /* When poll_group is used, several qpairs share the same CQ and it is possible to 2555 * receive a completion with error (e.g. IBV_WC_WR_FLUSH_ERR) for already disconnected qpair 2556 * That happens due to qpair is destroyed while there are submitted but not completed send/receive 2557 * Work Requests */ 2558 assert(poller); 2559 return 0; 2560 } 2561 assert(rqpair->current_num_sends > 0); 2562 rqpair->current_num_sends--; 2563 nvme_rdma_log_wc_status(rqpair, wc); 2564 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2565 if (rdma_req->rdma_rsp && poller && poller->srq) { 2566 spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_req->rdma_rsp->recv_wr); 2567 } 2568 return -ENXIO; 2569 } 2570 2571 /* We do not support Soft Roce anymore. Other than Soft Roce's bug, we should not 2572 * receive a completion without error status after qpair is disconnected/destroyed. 2573 */ 2574 if (spdk_unlikely(rdma_req->req == NULL)) { 2575 /* 2576 * Some infiniband drivers do not guarantee the previous assumption after we 2577 * received a RDMA_CM_EVENT_DEVICE_REMOVAL event. 2578 */ 2579 SPDK_ERRLOG("Received malformed completion: request 0x%"PRIx64" type %d\n", wc->wr_id, 2580 rdma_wr->type); 2581 if (!rqpair || !rqpair->need_destroy) { 2582 assert(0); 2583 } 2584 return -ENXIO; 2585 } 2586 2587 rdma_req->completion_flags |= NVME_RDMA_SEND_COMPLETED; 2588 assert(rqpair->current_num_sends > 0); 2589 rqpair->current_num_sends--; 2590 2591 if ((rdma_req->completion_flags & NVME_RDMA_RECV_COMPLETED) == 0) { 2592 return 0; 2593 } 2594 2595 rqpair->num_completions++; 2596 2597 nvme_rdma_request_ready(rqpair, rdma_req); 2598 2599 if (!rqpair->delay_cmd_submit) { 2600 if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) { 2601 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 2602 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2603 return -ENXIO; 2604 } 2605 } 2606 2607 return 1; 2608 } 2609 2610 static inline int 2611 nvme_rdma_cq_process_completions(struct ibv_cq *cq, uint32_t batch_size, 2612 struct nvme_rdma_poller *poller, 2613 struct nvme_rdma_qpair *rdma_qpair, 2614 uint64_t *rdma_completions) 2615 { 2616 struct ibv_wc wc[MAX_COMPLETIONS_PER_POLL]; 2617 struct nvme_rdma_wr *rdma_wr; 2618 uint32_t reaped = 0; 2619 int completion_rc = 0; 2620 int rc, _rc, i; 2621 2622 rc = ibv_poll_cq(cq, batch_size, wc); 2623 if (spdk_unlikely(rc < 0)) { 2624 SPDK_ERRLOG("Error polling CQ! (%d): %s\n", 2625 errno, spdk_strerror(errno)); 2626 return -ECANCELED; 2627 } else if (rc == 0) { 2628 return 0; 2629 } 2630 2631 for (i = 0; i < rc; i++) { 2632 rdma_wr = (struct nvme_rdma_wr *)wc[i].wr_id; 2633 switch (rdma_wr->type) { 2634 case RDMA_WR_TYPE_RECV: 2635 _rc = nvme_rdma_process_recv_completion(poller, &wc[i], rdma_wr); 2636 break; 2637 2638 case RDMA_WR_TYPE_SEND: 2639 _rc = nvme_rdma_process_send_completion(poller, rdma_qpair, &wc[i], rdma_wr); 2640 break; 2641 2642 default: 2643 SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", rdma_wr->type); 2644 return -ECANCELED; 2645 } 2646 if (spdk_likely(_rc >= 0)) { 2647 reaped += _rc; 2648 } else { 2649 completion_rc = _rc; 2650 } 2651 } 2652 2653 *rdma_completions += rc; 2654 2655 if (spdk_unlikely(completion_rc)) { 2656 return completion_rc; 2657 } 2658 2659 return reaped; 2660 } 2661 2662 static void 2663 dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx) 2664 { 2665 2666 } 2667 2668 static int 2669 nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair, 2670 uint32_t max_completions) 2671 { 2672 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2673 struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(qpair->ctrlr); 2674 int rc = 0, batch_size; 2675 struct ibv_cq *cq; 2676 uint64_t rdma_completions = 0; 2677 2678 /* 2679 * This is used during the connection phase. It's possible that we are still reaping error completions 2680 * from other qpairs so we need to call the poll group function. Also, it's more correct since the cq 2681 * is shared. 2682 */ 2683 if (qpair->poll_group != NULL) { 2684 return spdk_nvme_poll_group_process_completions(qpair->poll_group->group, max_completions, 2685 dummy_disconnected_qpair_cb); 2686 } 2687 2688 if (max_completions == 0) { 2689 max_completions = rqpair->num_entries; 2690 } else { 2691 max_completions = spdk_min(max_completions, rqpair->num_entries); 2692 } 2693 2694 switch (nvme_qpair_get_state(qpair)) { 2695 case NVME_QPAIR_CONNECTING: 2696 rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair); 2697 if (rc == 0) { 2698 /* Once the connection is completed, we can submit queued requests */ 2699 nvme_qpair_resubmit_requests(qpair, rqpair->num_entries); 2700 } else if (rc != -EAGAIN) { 2701 SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair); 2702 goto failed; 2703 } else if (rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING) { 2704 return 0; 2705 } 2706 break; 2707 2708 case NVME_QPAIR_DISCONNECTING: 2709 nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair); 2710 return -ENXIO; 2711 2712 default: 2713 if (nvme_qpair_is_admin_queue(qpair)) { 2714 nvme_rdma_poll_events(rctrlr); 2715 } 2716 nvme_rdma_qpair_process_cm_event(rqpair); 2717 break; 2718 } 2719 2720 if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) { 2721 goto failed; 2722 } 2723 2724 cq = rqpair->cq; 2725 2726 rqpair->num_completions = 0; 2727 do { 2728 batch_size = spdk_min((max_completions - rqpair->num_completions), MAX_COMPLETIONS_PER_POLL); 2729 rc = nvme_rdma_cq_process_completions(cq, batch_size, NULL, rqpair, &rdma_completions); 2730 2731 if (rc == 0) { 2732 break; 2733 /* Handle the case where we fail to poll the cq. */ 2734 } else if (rc == -ECANCELED) { 2735 goto failed; 2736 } else if (rc == -ENXIO) { 2737 return rc; 2738 } 2739 } while (rqpair->num_completions < max_completions); 2740 2741 if (spdk_unlikely(nvme_rdma_qpair_submit_sends(rqpair) || 2742 nvme_rdma_qpair_submit_recvs(rqpair))) { 2743 goto failed; 2744 } 2745 2746 if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) { 2747 nvme_rdma_qpair_check_timeout(qpair); 2748 } 2749 2750 return rqpair->num_completions; 2751 2752 failed: 2753 nvme_rdma_fail_qpair(qpair, 0); 2754 return -ENXIO; 2755 } 2756 2757 static uint32_t 2758 nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr) 2759 { 2760 /* max_mr_size by ibv_query_device indicates the largest value that we can 2761 * set for a registered memory region. It is independent from the actual 2762 * I/O size and is very likely to be larger than 2 MiB which is the 2763 * granularity we currently register memory regions. Hence return 2764 * UINT32_MAX here and let the generic layer use the controller data to 2765 * moderate this value. 2766 */ 2767 return UINT32_MAX; 2768 } 2769 2770 static uint16_t 2771 nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr) 2772 { 2773 struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr); 2774 uint32_t max_sge = rctrlr->max_sge; 2775 uint32_t max_in_capsule_sge = (ctrlr->cdata.nvmf_specific.ioccsz * 16 - 2776 sizeof(struct spdk_nvme_cmd)) / 2777 sizeof(struct spdk_nvme_sgl_descriptor); 2778 2779 /* Max SGE is limited by capsule size */ 2780 max_sge = spdk_min(max_sge, max_in_capsule_sge); 2781 /* Max SGE may be limited by MSDBD */ 2782 if (ctrlr->cdata.nvmf_specific.msdbd != 0) { 2783 max_sge = spdk_min(max_sge, ctrlr->cdata.nvmf_specific.msdbd); 2784 } 2785 2786 /* Max SGE can't be less than 1 */ 2787 max_sge = spdk_max(1, max_sge); 2788 return max_sge; 2789 } 2790 2791 static int 2792 nvme_rdma_qpair_iterate_requests(struct spdk_nvme_qpair *qpair, 2793 int (*iter_fn)(struct nvme_request *req, void *arg), 2794 void *arg) 2795 { 2796 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2797 struct spdk_nvme_rdma_req *rdma_req, *tmp; 2798 int rc; 2799 2800 assert(iter_fn != NULL); 2801 2802 TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { 2803 assert(rdma_req->req != NULL); 2804 2805 rc = iter_fn(rdma_req->req, arg); 2806 if (rc != 0) { 2807 return rc; 2808 } 2809 } 2810 2811 return 0; 2812 } 2813 2814 static int 2815 nvme_rdma_qpair_authenticate(struct spdk_nvme_qpair *qpair) 2816 { 2817 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2818 int rc; 2819 2820 /* If the qpair is still connecting, it'll be forced to authenticate later on */ 2821 if (rqpair->state < NVME_RDMA_QPAIR_STATE_RUNNING) { 2822 return 0; 2823 } else if (rqpair->state != NVME_RDMA_QPAIR_STATE_RUNNING) { 2824 return -ENOTCONN; 2825 } 2826 2827 rc = nvme_fabric_qpair_authenticate_async(qpair); 2828 if (rc == 0) { 2829 nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTING); 2830 rqpair->state = NVME_RDMA_QPAIR_STATE_AUTHENTICATING; 2831 } 2832 2833 return rc; 2834 } 2835 2836 static void 2837 nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair) 2838 { 2839 struct spdk_nvme_rdma_req *rdma_req, *tmp; 2840 struct spdk_nvme_cpl cpl; 2841 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2842 2843 cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; 2844 cpl.status.sct = SPDK_NVME_SCT_GENERIC; 2845 2846 TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { 2847 assert(rdma_req->req != NULL); 2848 2849 if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { 2850 continue; 2851 } 2852 2853 nvme_rdma_req_complete(rdma_req, &cpl, false); 2854 } 2855 } 2856 2857 static void 2858 nvme_rdma_poller_destroy(struct nvme_rdma_poller *poller) 2859 { 2860 if (poller->cq) { 2861 ibv_destroy_cq(poller->cq); 2862 } 2863 if (poller->rsps) { 2864 nvme_rdma_free_rsps(poller->rsps); 2865 } 2866 if (poller->srq) { 2867 spdk_rdma_provider_srq_destroy(poller->srq); 2868 } 2869 if (poller->mr_map) { 2870 spdk_rdma_utils_free_mem_map(&poller->mr_map); 2871 } 2872 if (poller->pd) { 2873 spdk_rdma_utils_put_pd(poller->pd); 2874 } 2875 free(poller); 2876 } 2877 2878 static struct nvme_rdma_poller * 2879 nvme_rdma_poller_create(struct nvme_rdma_poll_group *group, struct ibv_context *ctx) 2880 { 2881 struct nvme_rdma_poller *poller; 2882 struct ibv_device_attr dev_attr; 2883 struct spdk_rdma_provider_srq_init_attr srq_init_attr = {}; 2884 struct nvme_rdma_rsp_opts opts; 2885 int num_cqe, max_num_cqe; 2886 int rc; 2887 2888 poller = calloc(1, sizeof(*poller)); 2889 if (poller == NULL) { 2890 SPDK_ERRLOG("Unable to allocate poller.\n"); 2891 return NULL; 2892 } 2893 2894 poller->group = group; 2895 poller->device = ctx; 2896 2897 if (g_spdk_nvme_transport_opts.rdma_srq_size != 0) { 2898 rc = ibv_query_device(ctx, &dev_attr); 2899 if (rc) { 2900 SPDK_ERRLOG("Unable to query RDMA device.\n"); 2901 goto fail; 2902 } 2903 2904 poller->pd = spdk_rdma_utils_get_pd(ctx); 2905 if (poller->pd == NULL) { 2906 SPDK_ERRLOG("Unable to get PD.\n"); 2907 goto fail; 2908 } 2909 2910 poller->mr_map = spdk_rdma_utils_create_mem_map(poller->pd, &g_nvme_hooks, 2911 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_READ | IBV_ACCESS_REMOTE_WRITE); 2912 if (poller->mr_map == NULL) { 2913 SPDK_ERRLOG("Unable to create memory map.\n"); 2914 goto fail; 2915 } 2916 2917 srq_init_attr.stats = &poller->stats.rdma_stats.recv; 2918 srq_init_attr.pd = poller->pd; 2919 srq_init_attr.srq_init_attr.attr.max_wr = spdk_min((uint32_t)dev_attr.max_srq_wr, 2920 g_spdk_nvme_transport_opts.rdma_srq_size); 2921 srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(dev_attr.max_sge, 2922 NVME_RDMA_DEFAULT_RX_SGE); 2923 2924 poller->srq = spdk_rdma_provider_srq_create(&srq_init_attr); 2925 if (poller->srq == NULL) { 2926 SPDK_ERRLOG("Unable to create SRQ.\n"); 2927 goto fail; 2928 } 2929 2930 opts.num_entries = g_spdk_nvme_transport_opts.rdma_srq_size; 2931 opts.rqpair = NULL; 2932 opts.srq = poller->srq; 2933 opts.mr_map = poller->mr_map; 2934 2935 poller->rsps = nvme_rdma_create_rsps(&opts); 2936 if (poller->rsps == NULL) { 2937 SPDK_ERRLOG("Unable to create poller RDMA responses.\n"); 2938 goto fail; 2939 } 2940 2941 rc = nvme_rdma_poller_submit_recvs(poller); 2942 if (rc) { 2943 SPDK_ERRLOG("Unable to submit poller RDMA responses.\n"); 2944 goto fail; 2945 } 2946 2947 /* 2948 * When using an srq, fix the size of the completion queue at startup. 2949 * The initiator sends only send and recv WRs. Hence, the multiplier is 2. 2950 * (The target sends also data WRs. Hence, the multiplier is 3.) 2951 */ 2952 num_cqe = g_spdk_nvme_transport_opts.rdma_srq_size * 2; 2953 } else { 2954 num_cqe = DEFAULT_NVME_RDMA_CQ_SIZE; 2955 } 2956 2957 max_num_cqe = g_spdk_nvme_transport_opts.rdma_max_cq_size; 2958 if (max_num_cqe != 0 && num_cqe > max_num_cqe) { 2959 num_cqe = max_num_cqe; 2960 } 2961 2962 poller->cq = ibv_create_cq(poller->device, num_cqe, group, NULL, 0); 2963 2964 if (poller->cq == NULL) { 2965 SPDK_ERRLOG("Unable to create CQ, errno %d.\n", errno); 2966 goto fail; 2967 } 2968 2969 STAILQ_INSERT_HEAD(&group->pollers, poller, link); 2970 group->num_pollers++; 2971 poller->current_num_wc = num_cqe; 2972 poller->required_num_wc = 0; 2973 return poller; 2974 2975 fail: 2976 nvme_rdma_poller_destroy(poller); 2977 return NULL; 2978 } 2979 2980 static void 2981 nvme_rdma_poll_group_free_pollers(struct nvme_rdma_poll_group *group) 2982 { 2983 struct nvme_rdma_poller *poller, *tmp_poller; 2984 2985 STAILQ_FOREACH_SAFE(poller, &group->pollers, link, tmp_poller) { 2986 assert(poller->refcnt == 0); 2987 if (poller->refcnt) { 2988 SPDK_WARNLOG("Destroying poller with non-zero ref count: poller %p, refcnt %d\n", 2989 poller, poller->refcnt); 2990 } 2991 2992 STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link); 2993 nvme_rdma_poller_destroy(poller); 2994 } 2995 } 2996 2997 static struct nvme_rdma_poller * 2998 nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group, struct ibv_context *device) 2999 { 3000 struct nvme_rdma_poller *poller = NULL; 3001 3002 STAILQ_FOREACH(poller, &group->pollers, link) { 3003 if (poller->device == device) { 3004 break; 3005 } 3006 } 3007 3008 if (!poller) { 3009 poller = nvme_rdma_poller_create(group, device); 3010 if (!poller) { 3011 SPDK_ERRLOG("Failed to create a poller for device %p\n", device); 3012 return NULL; 3013 } 3014 } 3015 3016 poller->refcnt++; 3017 return poller; 3018 } 3019 3020 static void 3021 nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group, struct nvme_rdma_poller *poller) 3022 { 3023 assert(poller->refcnt > 0); 3024 if (--poller->refcnt == 0) { 3025 STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link); 3026 group->num_pollers--; 3027 nvme_rdma_poller_destroy(poller); 3028 } 3029 } 3030 3031 static struct spdk_nvme_transport_poll_group * 3032 nvme_rdma_poll_group_create(void) 3033 { 3034 struct nvme_rdma_poll_group *group; 3035 3036 group = calloc(1, sizeof(*group)); 3037 if (group == NULL) { 3038 SPDK_ERRLOG("Unable to allocate poll group.\n"); 3039 return NULL; 3040 } 3041 3042 STAILQ_INIT(&group->pollers); 3043 TAILQ_INIT(&group->connecting_qpairs); 3044 TAILQ_INIT(&group->active_qpairs); 3045 return &group->group; 3046 } 3047 3048 static int 3049 nvme_rdma_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair) 3050 { 3051 return 0; 3052 } 3053 3054 static int 3055 nvme_rdma_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair) 3056 { 3057 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 3058 struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group); 3059 3060 if (rqpair->link_connecting.tqe_prev) { 3061 TAILQ_REMOVE(&group->connecting_qpairs, rqpair, link_connecting); 3062 /* We use prev pointer to check if qpair is in connecting list or not . 3063 * TAILQ_REMOVE doesn't do it. So, we do it manually. 3064 */ 3065 rqpair->link_connecting.tqe_prev = NULL; 3066 } 3067 3068 return 0; 3069 } 3070 3071 static int 3072 nvme_rdma_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup, 3073 struct spdk_nvme_qpair *qpair) 3074 { 3075 return 0; 3076 } 3077 3078 static int 3079 nvme_rdma_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup, 3080 struct spdk_nvme_qpair *qpair) 3081 { 3082 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 3083 struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group); 3084 3085 if (rqpair->link_active.tqe_prev) { 3086 TAILQ_REMOVE(&group->active_qpairs, rqpair, link_active); 3087 rqpair->link_active.tqe_prev = NULL; 3088 } 3089 3090 return 0; 3091 } 3092 3093 static inline void 3094 nvme_rdma_qpair_process_submits(struct nvme_rdma_poll_group *group, 3095 struct nvme_rdma_qpair *rqpair) 3096 { 3097 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 3098 3099 assert(rqpair->link_active.tqe_prev != NULL); 3100 3101 if (spdk_unlikely(rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING || 3102 rqpair->state >= NVME_RDMA_QPAIR_STATE_EXITING)) { 3103 return; 3104 } 3105 3106 if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) { 3107 nvme_rdma_qpair_check_timeout(qpair); 3108 } 3109 3110 nvme_rdma_qpair_submit_sends(rqpair); 3111 if (!rqpair->srq) { 3112 nvme_rdma_qpair_submit_recvs(rqpair); 3113 } 3114 if (rqpair->num_completions > 0) { 3115 nvme_qpair_resubmit_requests(qpair, rqpair->num_completions); 3116 rqpair->num_completions = 0; 3117 } 3118 3119 if (rqpair->num_outstanding_reqs == 0 && STAILQ_EMPTY(&qpair->queued_req)) { 3120 TAILQ_REMOVE(&group->active_qpairs, rqpair, link_active); 3121 /* We use prev pointer to check if qpair is in active list or not. 3122 * TAILQ_REMOVE doesn't do it. So, we do it manually. 3123 */ 3124 rqpair->link_active.tqe_prev = NULL; 3125 } 3126 } 3127 3128 static int64_t 3129 nvme_rdma_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup, 3130 uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb) 3131 { 3132 struct spdk_nvme_qpair *qpair, *tmp_qpair; 3133 struct nvme_rdma_qpair *rqpair, *tmp_rqpair; 3134 struct nvme_rdma_poll_group *group; 3135 struct nvme_rdma_poller *poller; 3136 int batch_size, rc, rc2 = 0; 3137 int64_t total_completions = 0; 3138 uint64_t completions_allowed = 0; 3139 uint64_t completions_per_poller = 0; 3140 uint64_t poller_completions = 0; 3141 uint64_t rdma_completions; 3142 3143 if (completions_per_qpair == 0) { 3144 completions_per_qpair = MAX_COMPLETIONS_PER_POLL; 3145 } 3146 3147 group = nvme_rdma_poll_group(tgroup); 3148 3149 STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) { 3150 rc = nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair); 3151 if (rc == 0) { 3152 disconnected_qpair_cb(qpair, tgroup->group->ctx); 3153 } 3154 } 3155 3156 TAILQ_FOREACH_SAFE(rqpair, &group->connecting_qpairs, link_connecting, tmp_rqpair) { 3157 qpair = &rqpair->qpair; 3158 3159 rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair); 3160 if (rc == 0 || rc != -EAGAIN) { 3161 TAILQ_REMOVE(&group->connecting_qpairs, rqpair, link_connecting); 3162 /* We use prev pointer to check if qpair is in connecting list or not. 3163 * TAILQ_REMOVE does not do it. So, we do it manually. 3164 */ 3165 rqpair->link_connecting.tqe_prev = NULL; 3166 3167 if (rc == 0) { 3168 /* Once the connection is completed, we can submit queued requests */ 3169 nvme_qpair_resubmit_requests(qpair, rqpair->num_entries); 3170 } else if (rc != -EAGAIN) { 3171 SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair); 3172 nvme_rdma_fail_qpair(qpair, 0); 3173 } 3174 } 3175 } 3176 3177 STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) { 3178 rqpair = nvme_rdma_qpair(qpair); 3179 3180 if (spdk_likely(nvme_qpair_get_state(qpair) != NVME_QPAIR_CONNECTING)) { 3181 nvme_rdma_qpair_process_cm_event(rqpair); 3182 } 3183 3184 if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) { 3185 rc2 = -ENXIO; 3186 nvme_rdma_fail_qpair(qpair, 0); 3187 } 3188 } 3189 3190 completions_allowed = completions_per_qpair * tgroup->num_connected_qpairs; 3191 if (spdk_likely(group->num_pollers)) { 3192 completions_per_poller = spdk_max(completions_allowed / group->num_pollers, 1); 3193 } 3194 3195 STAILQ_FOREACH(poller, &group->pollers, link) { 3196 poller_completions = 0; 3197 rdma_completions = 0; 3198 do { 3199 poller->stats.polls++; 3200 batch_size = spdk_min((completions_per_poller - poller_completions), MAX_COMPLETIONS_PER_POLL); 3201 rc = nvme_rdma_cq_process_completions(poller->cq, batch_size, poller, NULL, &rdma_completions); 3202 if (rc <= 0) { 3203 if (rc == -ECANCELED) { 3204 return -EIO; 3205 } else if (rc == 0) { 3206 poller->stats.idle_polls++; 3207 } 3208 break; 3209 } 3210 3211 poller_completions += rc; 3212 } while (poller_completions < completions_per_poller); 3213 total_completions += poller_completions; 3214 poller->stats.completions += rdma_completions; 3215 if (poller->srq) { 3216 nvme_rdma_poller_submit_recvs(poller); 3217 } 3218 } 3219 3220 TAILQ_FOREACH_SAFE(rqpair, &group->active_qpairs, link_active, tmp_rqpair) { 3221 nvme_rdma_qpair_process_submits(group, rqpair); 3222 } 3223 3224 return rc2 != 0 ? rc2 : total_completions; 3225 } 3226 3227 /* 3228 * Handle disconnected qpairs when interrupt support gets added. 3229 */ 3230 static void 3231 nvme_rdma_poll_group_check_disconnected_qpairs(struct spdk_nvme_transport_poll_group *tgroup, 3232 spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb) 3233 { 3234 } 3235 3236 static int 3237 nvme_rdma_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup) 3238 { 3239 struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(tgroup); 3240 3241 if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) { 3242 return -EBUSY; 3243 } 3244 3245 nvme_rdma_poll_group_free_pollers(group); 3246 free(group); 3247 3248 return 0; 3249 } 3250 3251 static int 3252 nvme_rdma_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup, 3253 struct spdk_nvme_transport_poll_group_stat **_stats) 3254 { 3255 struct nvme_rdma_poll_group *group; 3256 struct spdk_nvme_transport_poll_group_stat *stats; 3257 struct spdk_nvme_rdma_device_stat *device_stat; 3258 struct nvme_rdma_poller *poller; 3259 uint32_t i = 0; 3260 3261 if (tgroup == NULL || _stats == NULL) { 3262 SPDK_ERRLOG("Invalid stats or group pointer\n"); 3263 return -EINVAL; 3264 } 3265 3266 group = nvme_rdma_poll_group(tgroup); 3267 stats = calloc(1, sizeof(*stats)); 3268 if (!stats) { 3269 SPDK_ERRLOG("Can't allocate memory for RDMA stats\n"); 3270 return -ENOMEM; 3271 } 3272 stats->trtype = SPDK_NVME_TRANSPORT_RDMA; 3273 stats->rdma.num_devices = group->num_pollers; 3274 3275 if (stats->rdma.num_devices == 0) { 3276 *_stats = stats; 3277 return 0; 3278 } 3279 3280 stats->rdma.device_stats = calloc(stats->rdma.num_devices, sizeof(*stats->rdma.device_stats)); 3281 if (!stats->rdma.device_stats) { 3282 SPDK_ERRLOG("Can't allocate memory for RDMA device stats\n"); 3283 free(stats); 3284 return -ENOMEM; 3285 } 3286 3287 STAILQ_FOREACH(poller, &group->pollers, link) { 3288 device_stat = &stats->rdma.device_stats[i]; 3289 device_stat->name = poller->device->device->name; 3290 device_stat->polls = poller->stats.polls; 3291 device_stat->idle_polls = poller->stats.idle_polls; 3292 device_stat->completions = poller->stats.completions; 3293 device_stat->queued_requests = poller->stats.queued_requests; 3294 device_stat->total_send_wrs = poller->stats.rdma_stats.send.num_submitted_wrs; 3295 device_stat->send_doorbell_updates = poller->stats.rdma_stats.send.doorbell_updates; 3296 device_stat->total_recv_wrs = poller->stats.rdma_stats.recv.num_submitted_wrs; 3297 device_stat->recv_doorbell_updates = poller->stats.rdma_stats.recv.doorbell_updates; 3298 i++; 3299 } 3300 3301 *_stats = stats; 3302 3303 return 0; 3304 } 3305 3306 static void 3307 nvme_rdma_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup, 3308 struct spdk_nvme_transport_poll_group_stat *stats) 3309 { 3310 if (stats) { 3311 free(stats->rdma.device_stats); 3312 } 3313 free(stats); 3314 } 3315 3316 static int 3317 nvme_rdma_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr, 3318 struct spdk_memory_domain **domains, int array_size) 3319 { 3320 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(ctrlr->adminq); 3321 3322 if (domains && array_size > 0) { 3323 domains[0] = rqpair->rdma_qp->domain; 3324 } 3325 3326 return 1; 3327 } 3328 3329 void 3330 spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) 3331 { 3332 g_nvme_hooks = *hooks; 3333 } 3334 3335 const struct spdk_nvme_transport_ops rdma_ops = { 3336 .name = "RDMA", 3337 .type = SPDK_NVME_TRANSPORT_RDMA, 3338 .ctrlr_construct = nvme_rdma_ctrlr_construct, 3339 .ctrlr_scan = nvme_fabric_ctrlr_scan, 3340 .ctrlr_destruct = nvme_rdma_ctrlr_destruct, 3341 .ctrlr_enable = nvme_rdma_ctrlr_enable, 3342 3343 .ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4, 3344 .ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8, 3345 .ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4, 3346 .ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8, 3347 .ctrlr_set_reg_4_async = nvme_fabric_ctrlr_set_reg_4_async, 3348 .ctrlr_set_reg_8_async = nvme_fabric_ctrlr_set_reg_8_async, 3349 .ctrlr_get_reg_4_async = nvme_fabric_ctrlr_get_reg_4_async, 3350 .ctrlr_get_reg_8_async = nvme_fabric_ctrlr_get_reg_8_async, 3351 3352 .ctrlr_get_max_xfer_size = nvme_rdma_ctrlr_get_max_xfer_size, 3353 .ctrlr_get_max_sges = nvme_rdma_ctrlr_get_max_sges, 3354 3355 .ctrlr_create_io_qpair = nvme_rdma_ctrlr_create_io_qpair, 3356 .ctrlr_delete_io_qpair = nvme_rdma_ctrlr_delete_io_qpair, 3357 .ctrlr_connect_qpair = nvme_rdma_ctrlr_connect_qpair, 3358 .ctrlr_disconnect_qpair = nvme_rdma_ctrlr_disconnect_qpair, 3359 3360 .ctrlr_get_memory_domains = nvme_rdma_ctrlr_get_memory_domains, 3361 3362 .qpair_abort_reqs = nvme_rdma_qpair_abort_reqs, 3363 .qpair_reset = nvme_rdma_qpair_reset, 3364 .qpair_submit_request = nvme_rdma_qpair_submit_request, 3365 .qpair_process_completions = nvme_rdma_qpair_process_completions, 3366 .qpair_iterate_requests = nvme_rdma_qpair_iterate_requests, 3367 .qpair_authenticate = nvme_rdma_qpair_authenticate, 3368 .admin_qpair_abort_aers = nvme_rdma_admin_qpair_abort_aers, 3369 3370 .poll_group_create = nvme_rdma_poll_group_create, 3371 .poll_group_connect_qpair = nvme_rdma_poll_group_connect_qpair, 3372 .poll_group_disconnect_qpair = nvme_rdma_poll_group_disconnect_qpair, 3373 .poll_group_add = nvme_rdma_poll_group_add, 3374 .poll_group_remove = nvme_rdma_poll_group_remove, 3375 .poll_group_process_completions = nvme_rdma_poll_group_process_completions, 3376 .poll_group_check_disconnected_qpairs = nvme_rdma_poll_group_check_disconnected_qpairs, 3377 .poll_group_destroy = nvme_rdma_poll_group_destroy, 3378 .poll_group_get_stats = nvme_rdma_poll_group_get_stats, 3379 .poll_group_free_stats = nvme_rdma_poll_group_free_stats, 3380 }; 3381 3382 SPDK_NVME_TRANSPORT_REGISTER(rdma, &rdma_ops); 3383