1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2016 Intel Corporation. All rights reserved. 3 * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 /* 8 * NVMe over RDMA transport 9 */ 10 11 #include "spdk/stdinc.h" 12 13 #include "spdk/assert.h" 14 #include "spdk/dma.h" 15 #include "spdk/log.h" 16 #include "spdk/trace.h" 17 #include "spdk/queue.h" 18 #include "spdk/nvme.h" 19 #include "spdk/nvmf_spec.h" 20 #include "spdk/string.h" 21 #include "spdk/endian.h" 22 #include "spdk/likely.h" 23 #include "spdk/config.h" 24 25 #include "nvme_internal.h" 26 #include "spdk_internal/rdma_provider.h" 27 28 #define NVME_RDMA_TIME_OUT_IN_MS 2000 29 #define NVME_RDMA_RW_BUFFER_SIZE 131072 30 31 /* 32 * NVME RDMA qpair Resource Defaults 33 */ 34 #define NVME_RDMA_DEFAULT_TX_SGE 2 35 #define NVME_RDMA_DEFAULT_RX_SGE 1 36 37 /* Max number of NVMe-oF SGL descriptors supported by the host */ 38 #define NVME_RDMA_MAX_SGL_DESCRIPTORS 16 39 40 /* number of STAILQ entries for holding pending RDMA CM events. */ 41 #define NVME_RDMA_NUM_CM_EVENTS 256 42 43 /* The default size for a shared rdma completion queue. */ 44 #define DEFAULT_NVME_RDMA_CQ_SIZE 4096 45 46 /* 47 * In the special case of a stale connection we don't expose a mechanism 48 * for the user to retry the connection so we need to handle it internally. 49 */ 50 #define NVME_RDMA_STALE_CONN_RETRY_MAX 5 51 #define NVME_RDMA_STALE_CONN_RETRY_DELAY_US 10000 52 53 /* 54 * Maximum value of transport_retry_count used by RDMA controller 55 */ 56 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT 7 57 58 /* 59 * Maximum value of transport_ack_timeout used by RDMA controller 60 */ 61 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT 31 62 63 /* 64 * Number of microseconds to wait until the lingering qpair becomes quiet. 65 */ 66 #define NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US 1000000ull 67 68 /* 69 * The max length of keyed SGL data block (3 bytes) 70 */ 71 #define NVME_RDMA_MAX_KEYED_SGL_LENGTH ((1u << 24u) - 1) 72 73 #define WC_PER_QPAIR(queue_depth) (queue_depth * 2) 74 75 #define NVME_RDMA_POLL_GROUP_CHECK_QPN(_rqpair, qpn) \ 76 ((_rqpair)->rdma_qp && (_rqpair)->rdma_qp->qp->qp_num == (qpn)) \ 77 78 struct nvme_rdma_memory_domain { 79 TAILQ_ENTRY(nvme_rdma_memory_domain) link; 80 uint32_t ref; 81 struct ibv_pd *pd; 82 struct spdk_memory_domain *domain; 83 struct spdk_memory_domain_rdma_ctx rdma_ctx; 84 }; 85 86 enum nvme_rdma_wr_type { 87 RDMA_WR_TYPE_RECV, 88 RDMA_WR_TYPE_SEND, 89 }; 90 91 struct nvme_rdma_wr { 92 /* Using this instead of the enum allows this struct to only occupy one byte. */ 93 uint8_t type; 94 }; 95 96 struct spdk_nvmf_cmd { 97 struct spdk_nvme_cmd cmd; 98 struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS]; 99 }; 100 101 struct spdk_nvme_rdma_hooks g_nvme_hooks = {}; 102 103 /* STAILQ wrapper for cm events. */ 104 struct nvme_rdma_cm_event_entry { 105 struct rdma_cm_event *evt; 106 STAILQ_ENTRY(nvme_rdma_cm_event_entry) link; 107 }; 108 109 /* NVMe RDMA transport extensions for spdk_nvme_ctrlr */ 110 struct nvme_rdma_ctrlr { 111 struct spdk_nvme_ctrlr ctrlr; 112 113 uint16_t max_sge; 114 115 struct rdma_event_channel *cm_channel; 116 117 STAILQ_HEAD(, nvme_rdma_cm_event_entry) pending_cm_events; 118 119 STAILQ_HEAD(, nvme_rdma_cm_event_entry) free_cm_events; 120 121 struct nvme_rdma_cm_event_entry *cm_events; 122 }; 123 124 struct nvme_rdma_poller_stats { 125 uint64_t polls; 126 uint64_t idle_polls; 127 uint64_t queued_requests; 128 uint64_t completions; 129 struct spdk_rdma_provider_qp_stats rdma_stats; 130 }; 131 132 struct nvme_rdma_poll_group; 133 struct nvme_rdma_rsps; 134 135 struct nvme_rdma_poller { 136 struct ibv_context *device; 137 struct ibv_cq *cq; 138 struct spdk_rdma_provider_srq *srq; 139 struct nvme_rdma_rsps *rsps; 140 struct ibv_pd *pd; 141 struct spdk_rdma_mem_map *mr_map; 142 uint32_t refcnt; 143 int required_num_wc; 144 int current_num_wc; 145 struct nvme_rdma_poller_stats stats; 146 struct nvme_rdma_poll_group *group; 147 STAILQ_ENTRY(nvme_rdma_poller) link; 148 }; 149 150 struct nvme_rdma_qpair; 151 152 struct nvme_rdma_poll_group { 153 struct spdk_nvme_transport_poll_group group; 154 STAILQ_HEAD(, nvme_rdma_poller) pollers; 155 uint32_t num_pollers; 156 TAILQ_HEAD(, nvme_rdma_qpair) connecting_qpairs; 157 TAILQ_HEAD(, nvme_rdma_qpair) active_qpairs; 158 }; 159 160 enum nvme_rdma_qpair_state { 161 NVME_RDMA_QPAIR_STATE_INVALID = 0, 162 NVME_RDMA_QPAIR_STATE_STALE_CONN, 163 NVME_RDMA_QPAIR_STATE_INITIALIZING, 164 NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND, 165 NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL, 166 NVME_RDMA_QPAIR_STATE_RUNNING, 167 NVME_RDMA_QPAIR_STATE_EXITING, 168 NVME_RDMA_QPAIR_STATE_LINGERING, 169 NVME_RDMA_QPAIR_STATE_EXITED, 170 }; 171 172 typedef int (*nvme_rdma_cm_event_cb)(struct nvme_rdma_qpair *rqpair, int ret); 173 174 struct nvme_rdma_rsp_opts { 175 uint16_t num_entries; 176 struct nvme_rdma_qpair *rqpair; 177 struct spdk_rdma_provider_srq *srq; 178 struct spdk_rdma_mem_map *mr_map; 179 }; 180 181 struct nvme_rdma_rsps { 182 /* Parallel arrays of response buffers + response SGLs of size num_entries */ 183 struct ibv_sge *rsp_sgls; 184 struct spdk_nvme_rdma_rsp *rsps; 185 186 struct ibv_recv_wr *rsp_recv_wrs; 187 188 /* Count of outstanding recv objects */ 189 uint16_t current_num_recvs; 190 191 uint16_t num_entries; 192 }; 193 194 /* NVMe RDMA qpair extensions for spdk_nvme_qpair */ 195 struct nvme_rdma_qpair { 196 struct spdk_nvme_qpair qpair; 197 198 struct spdk_rdma_provider_qp *rdma_qp; 199 struct rdma_cm_id *cm_id; 200 struct ibv_cq *cq; 201 struct spdk_rdma_provider_srq *srq; 202 203 struct spdk_nvme_rdma_req *rdma_reqs; 204 205 uint32_t max_send_sge; 206 207 uint32_t max_recv_sge; 208 209 uint16_t num_entries; 210 211 bool delay_cmd_submit; 212 213 uint32_t num_completions; 214 uint32_t num_outstanding_reqs; 215 216 struct nvme_rdma_rsps *rsps; 217 218 /* 219 * Array of num_entries NVMe commands registered as RDMA message buffers. 220 * Indexed by rdma_req->id. 221 */ 222 struct spdk_nvmf_cmd *cmds; 223 224 struct spdk_rdma_mem_map *mr_map; 225 226 TAILQ_HEAD(, spdk_nvme_rdma_req) free_reqs; 227 TAILQ_HEAD(, spdk_nvme_rdma_req) outstanding_reqs; 228 229 struct nvme_rdma_memory_domain *memory_domain; 230 231 /* Count of outstanding send objects */ 232 uint16_t current_num_sends; 233 234 TAILQ_ENTRY(nvme_rdma_qpair) link_active; 235 236 /* Placed at the end of the struct since it is not used frequently */ 237 struct rdma_cm_event *evt; 238 struct nvme_rdma_poller *poller; 239 240 uint64_t evt_timeout_ticks; 241 nvme_rdma_cm_event_cb evt_cb; 242 enum rdma_cm_event_type expected_evt_type; 243 244 enum nvme_rdma_qpair_state state; 245 246 bool in_connect_poll; 247 248 uint8_t stale_conn_retry_count; 249 bool need_destroy; 250 251 TAILQ_ENTRY(nvme_rdma_qpair) link_connecting; 252 }; 253 254 enum NVME_RDMA_COMPLETION_FLAGS { 255 NVME_RDMA_SEND_COMPLETED = 1u << 0, 256 NVME_RDMA_RECV_COMPLETED = 1u << 1, 257 }; 258 259 struct spdk_nvme_rdma_req { 260 uint16_t id; 261 uint16_t completion_flags: 2; 262 uint16_t reserved: 14; 263 /* if completion of RDMA_RECV received before RDMA_SEND, we will complete nvme request 264 * during processing of RDMA_SEND. To complete the request we must know the response 265 * received in RDMA_RECV, so store it in this field */ 266 struct spdk_nvme_rdma_rsp *rdma_rsp; 267 268 struct nvme_rdma_wr rdma_wr; 269 270 struct ibv_send_wr send_wr; 271 272 struct nvme_request *req; 273 274 struct ibv_sge send_sgl[NVME_RDMA_DEFAULT_TX_SGE]; 275 276 TAILQ_ENTRY(spdk_nvme_rdma_req) link; 277 }; 278 279 struct spdk_nvme_rdma_rsp { 280 struct spdk_nvme_cpl cpl; 281 struct nvme_rdma_qpair *rqpair; 282 struct ibv_recv_wr *recv_wr; 283 struct nvme_rdma_wr rdma_wr; 284 }; 285 286 struct nvme_rdma_memory_translation_ctx { 287 void *addr; 288 size_t length; 289 uint32_t lkey; 290 uint32_t rkey; 291 }; 292 293 static const char *rdma_cm_event_str[] = { 294 "RDMA_CM_EVENT_ADDR_RESOLVED", 295 "RDMA_CM_EVENT_ADDR_ERROR", 296 "RDMA_CM_EVENT_ROUTE_RESOLVED", 297 "RDMA_CM_EVENT_ROUTE_ERROR", 298 "RDMA_CM_EVENT_CONNECT_REQUEST", 299 "RDMA_CM_EVENT_CONNECT_RESPONSE", 300 "RDMA_CM_EVENT_CONNECT_ERROR", 301 "RDMA_CM_EVENT_UNREACHABLE", 302 "RDMA_CM_EVENT_REJECTED", 303 "RDMA_CM_EVENT_ESTABLISHED", 304 "RDMA_CM_EVENT_DISCONNECTED", 305 "RDMA_CM_EVENT_DEVICE_REMOVAL", 306 "RDMA_CM_EVENT_MULTICAST_JOIN", 307 "RDMA_CM_EVENT_MULTICAST_ERROR", 308 "RDMA_CM_EVENT_ADDR_CHANGE", 309 "RDMA_CM_EVENT_TIMEWAIT_EXIT" 310 }; 311 312 static struct nvme_rdma_poller *nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group, 313 struct ibv_context *device); 314 static void nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group, 315 struct nvme_rdma_poller *poller); 316 317 static TAILQ_HEAD(, nvme_rdma_memory_domain) g_memory_domains = TAILQ_HEAD_INITIALIZER( 318 g_memory_domains); 319 static pthread_mutex_t g_memory_domains_lock = PTHREAD_MUTEX_INITIALIZER; 320 321 static struct nvme_rdma_memory_domain * 322 nvme_rdma_get_memory_domain(struct ibv_pd *pd) 323 { 324 struct nvme_rdma_memory_domain *domain = NULL; 325 struct spdk_memory_domain_ctx ctx; 326 int rc; 327 328 pthread_mutex_lock(&g_memory_domains_lock); 329 330 TAILQ_FOREACH(domain, &g_memory_domains, link) { 331 if (domain->pd == pd) { 332 domain->ref++; 333 pthread_mutex_unlock(&g_memory_domains_lock); 334 return domain; 335 } 336 } 337 338 domain = calloc(1, sizeof(*domain)); 339 if (!domain) { 340 SPDK_ERRLOG("Memory allocation failed\n"); 341 pthread_mutex_unlock(&g_memory_domains_lock); 342 return NULL; 343 } 344 345 domain->rdma_ctx.size = sizeof(domain->rdma_ctx); 346 domain->rdma_ctx.ibv_pd = pd; 347 ctx.size = sizeof(ctx); 348 ctx.user_ctx = &domain->rdma_ctx; 349 350 rc = spdk_memory_domain_create(&domain->domain, SPDK_DMA_DEVICE_TYPE_RDMA, &ctx, 351 SPDK_RDMA_DMA_DEVICE); 352 if (rc) { 353 SPDK_ERRLOG("Failed to create memory domain\n"); 354 free(domain); 355 pthread_mutex_unlock(&g_memory_domains_lock); 356 return NULL; 357 } 358 359 domain->pd = pd; 360 domain->ref = 1; 361 TAILQ_INSERT_TAIL(&g_memory_domains, domain, link); 362 363 pthread_mutex_unlock(&g_memory_domains_lock); 364 365 return domain; 366 } 367 368 static void 369 nvme_rdma_put_memory_domain(struct nvme_rdma_memory_domain *device) 370 { 371 if (!device) { 372 return; 373 } 374 375 pthread_mutex_lock(&g_memory_domains_lock); 376 377 assert(device->ref > 0); 378 379 device->ref--; 380 381 if (device->ref == 0) { 382 spdk_memory_domain_destroy(device->domain); 383 TAILQ_REMOVE(&g_memory_domains, device, link); 384 free(device); 385 } 386 387 pthread_mutex_unlock(&g_memory_domains_lock); 388 } 389 390 static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, 391 struct spdk_nvme_qpair *qpair); 392 393 static inline struct nvme_rdma_qpair * 394 nvme_rdma_qpair(struct spdk_nvme_qpair *qpair) 395 { 396 assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA); 397 return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair); 398 } 399 400 static inline struct nvme_rdma_poll_group * 401 nvme_rdma_poll_group(struct spdk_nvme_transport_poll_group *group) 402 { 403 return (SPDK_CONTAINEROF(group, struct nvme_rdma_poll_group, group)); 404 } 405 406 static inline struct nvme_rdma_ctrlr * 407 nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr) 408 { 409 assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA); 410 return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr); 411 } 412 413 static struct spdk_nvme_rdma_req * 414 nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair) 415 { 416 struct spdk_nvme_rdma_req *rdma_req; 417 418 rdma_req = TAILQ_FIRST(&rqpair->free_reqs); 419 if (rdma_req) { 420 TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link); 421 } 422 423 return rdma_req; 424 } 425 426 static void 427 nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) 428 { 429 rdma_req->completion_flags = 0; 430 rdma_req->req = NULL; 431 rdma_req->rdma_rsp = NULL; 432 TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link); 433 } 434 435 static void 436 nvme_rdma_req_complete(struct spdk_nvme_rdma_req *rdma_req, 437 struct spdk_nvme_cpl *rsp, 438 bool print_on_error) 439 { 440 struct nvme_request *req = rdma_req->req; 441 struct nvme_rdma_qpair *rqpair; 442 struct spdk_nvme_qpair *qpair; 443 bool error, print_error; 444 445 assert(req != NULL); 446 447 qpair = req->qpair; 448 rqpair = nvme_rdma_qpair(qpair); 449 450 error = spdk_nvme_cpl_is_error(rsp); 451 print_error = error && print_on_error && !qpair->ctrlr->opts.disable_error_logging; 452 453 if (print_error) { 454 spdk_nvme_qpair_print_command(qpair, &req->cmd); 455 } 456 457 if (print_error || SPDK_DEBUGLOG_FLAG_ENABLED("nvme")) { 458 spdk_nvme_qpair_print_completion(qpair, rsp); 459 } 460 461 assert(rqpair->num_outstanding_reqs > 0); 462 rqpair->num_outstanding_reqs--; 463 464 TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link); 465 466 nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, rsp); 467 nvme_rdma_req_put(rqpair, rdma_req); 468 } 469 470 static const char * 471 nvme_rdma_cm_event_str_get(uint32_t event) 472 { 473 if (event < SPDK_COUNTOF(rdma_cm_event_str)) { 474 return rdma_cm_event_str[event]; 475 } else { 476 return "Undefined"; 477 } 478 } 479 480 481 static int 482 nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair) 483 { 484 struct rdma_cm_event *event = rqpair->evt; 485 struct spdk_nvmf_rdma_accept_private_data *accept_data; 486 int rc = 0; 487 488 if (event) { 489 switch (event->event) { 490 case RDMA_CM_EVENT_ADDR_RESOLVED: 491 case RDMA_CM_EVENT_ADDR_ERROR: 492 case RDMA_CM_EVENT_ROUTE_RESOLVED: 493 case RDMA_CM_EVENT_ROUTE_ERROR: 494 break; 495 case RDMA_CM_EVENT_CONNECT_REQUEST: 496 break; 497 case RDMA_CM_EVENT_CONNECT_ERROR: 498 break; 499 case RDMA_CM_EVENT_UNREACHABLE: 500 case RDMA_CM_EVENT_REJECTED: 501 break; 502 case RDMA_CM_EVENT_CONNECT_RESPONSE: 503 rc = spdk_rdma_provider_qp_complete_connect(rqpair->rdma_qp); 504 /* fall through */ 505 case RDMA_CM_EVENT_ESTABLISHED: 506 accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data; 507 if (accept_data == NULL) { 508 rc = -1; 509 } else { 510 SPDK_DEBUGLOG(nvme, "Requested queue depth %d. Target receive queue depth %d.\n", 511 rqpair->num_entries + 1, accept_data->crqsize); 512 } 513 break; 514 case RDMA_CM_EVENT_DISCONNECTED: 515 rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE; 516 break; 517 case RDMA_CM_EVENT_DEVICE_REMOVAL: 518 rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; 519 rqpair->need_destroy = true; 520 break; 521 case RDMA_CM_EVENT_MULTICAST_JOIN: 522 case RDMA_CM_EVENT_MULTICAST_ERROR: 523 break; 524 case RDMA_CM_EVENT_ADDR_CHANGE: 525 rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; 526 break; 527 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 528 break; 529 default: 530 SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); 531 break; 532 } 533 rqpair->evt = NULL; 534 rdma_ack_cm_event(event); 535 } 536 537 return rc; 538 } 539 540 /* 541 * This function must be called under the nvme controller's lock 542 * because it touches global controller variables. The lock is taken 543 * by the generic transport code before invoking a few of the functions 544 * in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair, 545 * and conditionally nvme_rdma_qpair_process_completions when it is calling 546 * completions on the admin qpair. When adding a new call to this function, please 547 * verify that it is in a situation where it falls under the lock. 548 */ 549 static int 550 nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr) 551 { 552 struct nvme_rdma_cm_event_entry *entry, *tmp; 553 struct nvme_rdma_qpair *event_qpair; 554 struct rdma_cm_event *event; 555 struct rdma_event_channel *channel = rctrlr->cm_channel; 556 557 STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) { 558 event_qpair = entry->evt->id->context; 559 if (event_qpair->evt == NULL) { 560 event_qpair->evt = entry->evt; 561 STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link); 562 STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link); 563 } 564 } 565 566 while (rdma_get_cm_event(channel, &event) == 0) { 567 event_qpair = event->id->context; 568 if (event_qpair->evt == NULL) { 569 event_qpair->evt = event; 570 } else { 571 assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr)); 572 entry = STAILQ_FIRST(&rctrlr->free_cm_events); 573 if (entry == NULL) { 574 rdma_ack_cm_event(event); 575 return -ENOMEM; 576 } 577 STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link); 578 entry->evt = event; 579 STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link); 580 } 581 } 582 583 /* rdma_get_cm_event() returns -1 on error. If an error occurs, errno 584 * will be set to indicate the failure reason. So return negated errno here. 585 */ 586 return -errno; 587 } 588 589 static int 590 nvme_rdma_validate_cm_event(enum rdma_cm_event_type expected_evt_type, 591 struct rdma_cm_event *reaped_evt) 592 { 593 int rc = -EBADMSG; 594 595 if (expected_evt_type == reaped_evt->event) { 596 return 0; 597 } 598 599 switch (expected_evt_type) { 600 case RDMA_CM_EVENT_ESTABLISHED: 601 /* 602 * There is an enum ib_cm_rej_reason in the kernel headers that sets 10 as 603 * IB_CM_REJ_STALE_CONN. I can't find the corresponding userspace but we get 604 * the same values here. 605 */ 606 if (reaped_evt->event == RDMA_CM_EVENT_REJECTED && reaped_evt->status == 10) { 607 rc = -ESTALE; 608 } else if (reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE) { 609 /* 610 * If we are using a qpair which is not created using rdma cm API 611 * then we will receive RDMA_CM_EVENT_CONNECT_RESPONSE instead of 612 * RDMA_CM_EVENT_ESTABLISHED. 613 */ 614 return 0; 615 } 616 break; 617 default: 618 break; 619 } 620 621 SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n", 622 nvme_rdma_cm_event_str_get(expected_evt_type), 623 nvme_rdma_cm_event_str_get(reaped_evt->event), reaped_evt->event, 624 reaped_evt->status); 625 return rc; 626 } 627 628 static int 629 nvme_rdma_process_event_start(struct nvme_rdma_qpair *rqpair, 630 enum rdma_cm_event_type evt, 631 nvme_rdma_cm_event_cb evt_cb) 632 { 633 int rc; 634 635 assert(evt_cb != NULL); 636 637 if (rqpair->evt != NULL) { 638 rc = nvme_rdma_qpair_process_cm_event(rqpair); 639 if (rc) { 640 return rc; 641 } 642 } 643 644 rqpair->expected_evt_type = evt; 645 rqpair->evt_cb = evt_cb; 646 rqpair->evt_timeout_ticks = (g_spdk_nvme_transport_opts.rdma_cm_event_timeout_ms * 1000 * 647 spdk_get_ticks_hz()) / SPDK_SEC_TO_USEC + spdk_get_ticks(); 648 649 return 0; 650 } 651 652 static int 653 nvme_rdma_process_event_poll(struct nvme_rdma_qpair *rqpair) 654 { 655 struct nvme_rdma_ctrlr *rctrlr; 656 int rc = 0, rc2; 657 658 rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); 659 assert(rctrlr != NULL); 660 661 if (!rqpair->evt && spdk_get_ticks() < rqpair->evt_timeout_ticks) { 662 rc = nvme_rdma_poll_events(rctrlr); 663 if (rc == -EAGAIN || rc == -EWOULDBLOCK) { 664 return rc; 665 } 666 } 667 668 if (rqpair->evt == NULL) { 669 rc = -EADDRNOTAVAIL; 670 goto exit; 671 } 672 673 rc = nvme_rdma_validate_cm_event(rqpair->expected_evt_type, rqpair->evt); 674 675 rc2 = nvme_rdma_qpair_process_cm_event(rqpair); 676 /* bad message takes precedence over the other error codes from processing the event. */ 677 rc = rc == 0 ? rc2 : rc; 678 679 exit: 680 assert(rqpair->evt_cb != NULL); 681 return rqpair->evt_cb(rqpair, rc); 682 } 683 684 static int 685 nvme_rdma_resize_cq(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poller *poller) 686 { 687 int current_num_wc, required_num_wc; 688 int max_cq_size; 689 690 required_num_wc = poller->required_num_wc + WC_PER_QPAIR(rqpair->num_entries); 691 current_num_wc = poller->current_num_wc; 692 if (current_num_wc < required_num_wc) { 693 current_num_wc = spdk_max(current_num_wc * 2, required_num_wc); 694 } 695 696 max_cq_size = g_spdk_nvme_transport_opts.rdma_max_cq_size; 697 if (max_cq_size != 0 && current_num_wc > max_cq_size) { 698 current_num_wc = max_cq_size; 699 } 700 701 if (poller->current_num_wc != current_num_wc) { 702 SPDK_DEBUGLOG(nvme, "Resize RDMA CQ from %d to %d\n", poller->current_num_wc, 703 current_num_wc); 704 if (ibv_resize_cq(poller->cq, current_num_wc)) { 705 SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); 706 return -1; 707 } 708 709 poller->current_num_wc = current_num_wc; 710 } 711 712 poller->required_num_wc = required_num_wc; 713 return 0; 714 } 715 716 static int 717 nvme_rdma_qpair_set_poller(struct spdk_nvme_qpair *qpair) 718 { 719 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 720 struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group); 721 struct nvme_rdma_poller *poller; 722 723 assert(rqpair->cq == NULL); 724 725 poller = nvme_rdma_poll_group_get_poller(group, rqpair->cm_id->verbs); 726 if (!poller) { 727 SPDK_ERRLOG("Unable to find a cq for qpair %p on poll group %p\n", qpair, qpair->poll_group); 728 return -EINVAL; 729 } 730 731 if (!poller->srq) { 732 if (nvme_rdma_resize_cq(rqpair, poller)) { 733 nvme_rdma_poll_group_put_poller(group, poller); 734 return -EPROTO; 735 } 736 } 737 738 rqpair->cq = poller->cq; 739 rqpair->srq = poller->srq; 740 if (rqpair->srq) { 741 rqpair->rsps = poller->rsps; 742 } 743 rqpair->poller = poller; 744 return 0; 745 } 746 747 static int 748 nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair) 749 { 750 int rc; 751 struct spdk_rdma_provider_qp_init_attr attr = {}; 752 struct ibv_device_attr dev_attr; 753 struct nvme_rdma_ctrlr *rctrlr; 754 uint32_t num_cqe, max_num_cqe; 755 756 rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr); 757 if (rc != 0) { 758 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 759 return -1; 760 } 761 762 if (rqpair->qpair.poll_group) { 763 assert(!rqpair->cq); 764 rc = nvme_rdma_qpair_set_poller(&rqpair->qpair); 765 if (rc) { 766 SPDK_ERRLOG("Unable to activate the rdmaqpair.\n"); 767 return -1; 768 } 769 assert(rqpair->cq); 770 } else { 771 num_cqe = rqpair->num_entries * 2; 772 max_num_cqe = g_spdk_nvme_transport_opts.rdma_max_cq_size; 773 if (max_num_cqe != 0 && num_cqe > max_num_cqe) { 774 num_cqe = max_num_cqe; 775 } 776 rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, num_cqe, rqpair, NULL, 0); 777 if (!rqpair->cq) { 778 SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno)); 779 return -1; 780 } 781 } 782 783 rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); 784 if (g_nvme_hooks.get_ibv_pd) { 785 attr.pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs); 786 } else { 787 attr.pd = spdk_rdma_get_pd(rqpair->cm_id->verbs); 788 } 789 790 attr.stats = rqpair->poller ? &rqpair->poller->stats.rdma_stats : NULL; 791 attr.send_cq = rqpair->cq; 792 attr.recv_cq = rqpair->cq; 793 attr.cap.max_send_wr = rqpair->num_entries; /* SEND operations */ 794 if (rqpair->srq) { 795 attr.srq = rqpair->srq->srq; 796 } else { 797 attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */ 798 } 799 attr.cap.max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge); 800 attr.cap.max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge); 801 802 rqpair->rdma_qp = spdk_rdma_provider_qp_create(rqpair->cm_id, &attr); 803 804 if (!rqpair->rdma_qp) { 805 return -1; 806 } 807 808 rqpair->memory_domain = nvme_rdma_get_memory_domain(rqpair->rdma_qp->qp->pd); 809 if (!rqpair->memory_domain) { 810 SPDK_ERRLOG("Failed to get memory domain\n"); 811 return -1; 812 } 813 814 /* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */ 815 rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge); 816 rqpair->max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, attr.cap.max_recv_sge); 817 rqpair->current_num_sends = 0; 818 819 rqpair->cm_id->context = rqpair; 820 821 return 0; 822 } 823 824 static void 825 nvme_rdma_reset_failed_sends(struct nvme_rdma_qpair *rqpair, 826 struct ibv_send_wr *bad_send_wr, int rc) 827 { 828 SPDK_ERRLOG("Failed to post WRs on send queue, errno %d (%s), bad_wr %p\n", 829 rc, spdk_strerror(rc), bad_send_wr); 830 while (bad_send_wr != NULL) { 831 assert(rqpair->current_num_sends > 0); 832 rqpair->current_num_sends--; 833 bad_send_wr = bad_send_wr->next; 834 } 835 } 836 837 static void 838 nvme_rdma_reset_failed_recvs(struct nvme_rdma_rsps *rsps, 839 struct ibv_recv_wr *bad_recv_wr, int rc) 840 { 841 SPDK_ERRLOG("Failed to post WRs on receive queue, errno %d (%s), bad_wr %p\n", 842 rc, spdk_strerror(rc), bad_recv_wr); 843 while (bad_recv_wr != NULL) { 844 assert(rsps->current_num_recvs > 0); 845 rsps->current_num_recvs--; 846 bad_recv_wr = bad_recv_wr->next; 847 } 848 } 849 850 static inline int 851 nvme_rdma_qpair_submit_sends(struct nvme_rdma_qpair *rqpair) 852 { 853 struct ibv_send_wr *bad_send_wr = NULL; 854 int rc; 855 856 rc = spdk_rdma_provider_qp_flush_send_wrs(rqpair->rdma_qp, &bad_send_wr); 857 858 if (spdk_unlikely(rc)) { 859 nvme_rdma_reset_failed_sends(rqpair, bad_send_wr, rc); 860 } 861 862 return rc; 863 } 864 865 static inline int 866 nvme_rdma_qpair_submit_recvs(struct nvme_rdma_qpair *rqpair) 867 { 868 struct ibv_recv_wr *bad_recv_wr; 869 int rc = 0; 870 871 rc = spdk_rdma_provider_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr); 872 if (spdk_unlikely(rc)) { 873 nvme_rdma_reset_failed_recvs(rqpair->rsps, bad_recv_wr, rc); 874 } 875 876 return rc; 877 } 878 879 static inline int 880 nvme_rdma_poller_submit_recvs(struct nvme_rdma_poller *poller) 881 { 882 struct ibv_recv_wr *bad_recv_wr; 883 int rc; 884 885 rc = spdk_rdma_provider_srq_flush_recv_wrs(poller->srq, &bad_recv_wr); 886 if (spdk_unlikely(rc)) { 887 nvme_rdma_reset_failed_recvs(poller->rsps, bad_recv_wr, rc); 888 } 889 890 return rc; 891 } 892 893 #define nvme_rdma_trace_ibv_sge(sg_list) \ 894 if (sg_list) { \ 895 SPDK_DEBUGLOG(nvme, "local addr %p length 0x%x lkey 0x%x\n", \ 896 (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \ 897 } 898 899 static void 900 nvme_rdma_free_rsps(struct nvme_rdma_rsps *rsps) 901 { 902 if (!rsps) { 903 return; 904 } 905 906 spdk_free(rsps->rsps); 907 spdk_free(rsps->rsp_sgls); 908 spdk_free(rsps->rsp_recv_wrs); 909 spdk_free(rsps); 910 } 911 912 static struct nvme_rdma_rsps * 913 nvme_rdma_create_rsps(struct nvme_rdma_rsp_opts *opts) 914 { 915 struct nvme_rdma_rsps *rsps; 916 struct spdk_rdma_memory_translation translation; 917 uint16_t i; 918 int rc; 919 920 rsps = spdk_zmalloc(sizeof(*rsps), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 921 if (!rsps) { 922 SPDK_ERRLOG("Failed to allocate rsps object\n"); 923 return NULL; 924 } 925 926 rsps->rsp_sgls = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_sgls), 0, NULL, 927 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 928 if (!rsps->rsp_sgls) { 929 SPDK_ERRLOG("Failed to allocate rsp_sgls\n"); 930 goto fail; 931 } 932 933 rsps->rsp_recv_wrs = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_recv_wrs), 0, NULL, 934 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 935 if (!rsps->rsp_recv_wrs) { 936 SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n"); 937 goto fail; 938 } 939 940 rsps->rsps = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsps), 0, NULL, 941 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 942 if (!rsps->rsps) { 943 SPDK_ERRLOG("can not allocate rdma rsps\n"); 944 goto fail; 945 } 946 947 for (i = 0; i < opts->num_entries; i++) { 948 struct ibv_sge *rsp_sgl = &rsps->rsp_sgls[i]; 949 struct spdk_nvme_rdma_rsp *rsp = &rsps->rsps[i]; 950 struct ibv_recv_wr *recv_wr = &rsps->rsp_recv_wrs[i]; 951 952 rsp->rqpair = opts->rqpair; 953 rsp->rdma_wr.type = RDMA_WR_TYPE_RECV; 954 rsp->recv_wr = recv_wr; 955 rsp_sgl->addr = (uint64_t)rsp; 956 rsp_sgl->length = sizeof(struct spdk_nvme_cpl); 957 rc = spdk_rdma_get_translation(opts->mr_map, rsp, sizeof(*rsp), &translation); 958 if (rc) { 959 goto fail; 960 } 961 rsp_sgl->lkey = spdk_rdma_memory_translation_get_lkey(&translation); 962 963 recv_wr->wr_id = (uint64_t)&rsp->rdma_wr; 964 recv_wr->next = NULL; 965 recv_wr->sg_list = rsp_sgl; 966 recv_wr->num_sge = 1; 967 968 nvme_rdma_trace_ibv_sge(recv_wr->sg_list); 969 970 if (opts->rqpair) { 971 spdk_rdma_provider_qp_queue_recv_wrs(opts->rqpair->rdma_qp, recv_wr); 972 } else { 973 spdk_rdma_provider_srq_queue_recv_wrs(opts->srq, recv_wr); 974 } 975 } 976 977 rsps->num_entries = opts->num_entries; 978 rsps->current_num_recvs = opts->num_entries; 979 980 return rsps; 981 fail: 982 nvme_rdma_free_rsps(rsps); 983 return NULL; 984 } 985 986 static void 987 nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair) 988 { 989 if (!rqpair->rdma_reqs) { 990 return; 991 } 992 993 spdk_free(rqpair->cmds); 994 rqpair->cmds = NULL; 995 996 spdk_free(rqpair->rdma_reqs); 997 rqpair->rdma_reqs = NULL; 998 } 999 1000 static int 1001 nvme_rdma_create_reqs(struct nvme_rdma_qpair *rqpair) 1002 { 1003 struct spdk_rdma_memory_translation translation; 1004 uint16_t i; 1005 int rc; 1006 1007 assert(!rqpair->rdma_reqs); 1008 rqpair->rdma_reqs = spdk_zmalloc(rqpair->num_entries * sizeof(struct spdk_nvme_rdma_req), 0, NULL, 1009 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 1010 if (rqpair->rdma_reqs == NULL) { 1011 SPDK_ERRLOG("Failed to allocate rdma_reqs\n"); 1012 goto fail; 1013 } 1014 1015 assert(!rqpair->cmds); 1016 rqpair->cmds = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->cmds), 0, NULL, 1017 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 1018 if (!rqpair->cmds) { 1019 SPDK_ERRLOG("Failed to allocate RDMA cmds\n"); 1020 goto fail; 1021 } 1022 1023 TAILQ_INIT(&rqpair->free_reqs); 1024 TAILQ_INIT(&rqpair->outstanding_reqs); 1025 for (i = 0; i < rqpair->num_entries; i++) { 1026 struct spdk_nvme_rdma_req *rdma_req; 1027 struct spdk_nvmf_cmd *cmd; 1028 1029 rdma_req = &rqpair->rdma_reqs[i]; 1030 rdma_req->rdma_wr.type = RDMA_WR_TYPE_SEND; 1031 cmd = &rqpair->cmds[i]; 1032 1033 rdma_req->id = i; 1034 1035 rc = spdk_rdma_get_translation(rqpair->mr_map, cmd, sizeof(*cmd), &translation); 1036 if (rc) { 1037 goto fail; 1038 } 1039 rdma_req->send_sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation); 1040 1041 /* The first RDMA sgl element will always point 1042 * at this data structure. Depending on whether 1043 * an NVMe-oF SGL is required, the length of 1044 * this element may change. */ 1045 rdma_req->send_sgl[0].addr = (uint64_t)cmd; 1046 rdma_req->send_wr.wr_id = (uint64_t)&rdma_req->rdma_wr; 1047 rdma_req->send_wr.next = NULL; 1048 rdma_req->send_wr.opcode = IBV_WR_SEND; 1049 rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED; 1050 rdma_req->send_wr.sg_list = rdma_req->send_sgl; 1051 rdma_req->send_wr.imm_data = 0; 1052 1053 TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link); 1054 } 1055 1056 return 0; 1057 fail: 1058 nvme_rdma_free_reqs(rqpair); 1059 return -ENOMEM; 1060 } 1061 1062 static int nvme_rdma_connect(struct nvme_rdma_qpair *rqpair); 1063 1064 static int 1065 nvme_rdma_route_resolved(struct nvme_rdma_qpair *rqpair, int ret) 1066 { 1067 if (ret) { 1068 SPDK_ERRLOG("RDMA route resolution error\n"); 1069 return -1; 1070 } 1071 1072 ret = nvme_rdma_qpair_init(rqpair); 1073 if (ret < 0) { 1074 SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n"); 1075 return -1; 1076 } 1077 1078 return nvme_rdma_connect(rqpair); 1079 } 1080 1081 static int 1082 nvme_rdma_addr_resolved(struct nvme_rdma_qpair *rqpair, int ret) 1083 { 1084 if (ret) { 1085 SPDK_ERRLOG("RDMA address resolution error\n"); 1086 return -1; 1087 } 1088 1089 if (rqpair->qpair.ctrlr->opts.transport_ack_timeout != SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED) { 1090 #ifdef SPDK_CONFIG_RDMA_SET_ACK_TIMEOUT 1091 uint8_t timeout = rqpair->qpair.ctrlr->opts.transport_ack_timeout; 1092 ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, 1093 RDMA_OPTION_ID_ACK_TIMEOUT, 1094 &timeout, sizeof(timeout)); 1095 if (ret) { 1096 SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_ACK_TIMEOUT %d, ret %d\n", timeout, ret); 1097 } 1098 #else 1099 SPDK_DEBUGLOG(nvme, "transport_ack_timeout is not supported\n"); 1100 #endif 1101 } 1102 1103 if (rqpair->qpair.ctrlr->opts.transport_tos != SPDK_NVME_TRANSPORT_TOS_DISABLED) { 1104 #ifdef SPDK_CONFIG_RDMA_SET_TOS 1105 uint8_t tos = rqpair->qpair.ctrlr->opts.transport_tos; 1106 ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_TOS, &tos, sizeof(tos)); 1107 if (ret) { 1108 SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_TOS %u, ret %d\n", tos, ret); 1109 } 1110 #else 1111 SPDK_DEBUGLOG(nvme, "transport_tos is not supported\n"); 1112 #endif 1113 } 1114 1115 ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS); 1116 if (ret) { 1117 SPDK_ERRLOG("rdma_resolve_route\n"); 1118 return ret; 1119 } 1120 1121 return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ROUTE_RESOLVED, 1122 nvme_rdma_route_resolved); 1123 } 1124 1125 static int 1126 nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair, 1127 struct sockaddr *src_addr, 1128 struct sockaddr *dst_addr) 1129 { 1130 int ret; 1131 1132 if (src_addr) { 1133 int reuse = 1; 1134 1135 ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR, 1136 &reuse, sizeof(reuse)); 1137 if (ret) { 1138 SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_REUSEADDR %d, ret %d\n", 1139 reuse, ret); 1140 /* It is likely that rdma_resolve_addr() returns -EADDRINUSE, but 1141 * we may missing something. We rely on rdma_resolve_addr(). 1142 */ 1143 } 1144 } 1145 1146 ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr, 1147 NVME_RDMA_TIME_OUT_IN_MS); 1148 if (ret) { 1149 SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno); 1150 return ret; 1151 } 1152 1153 return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ADDR_RESOLVED, 1154 nvme_rdma_addr_resolved); 1155 } 1156 1157 static int nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair); 1158 1159 static int 1160 nvme_rdma_connect_established(struct nvme_rdma_qpair *rqpair, int ret) 1161 { 1162 struct nvme_rdma_rsp_opts opts = {}; 1163 1164 if (ret == -ESTALE) { 1165 return nvme_rdma_stale_conn_retry(rqpair); 1166 } else if (ret) { 1167 SPDK_ERRLOG("RDMA connect error %d\n", ret); 1168 return ret; 1169 } 1170 1171 assert(!rqpair->mr_map); 1172 rqpair->mr_map = spdk_rdma_create_mem_map(rqpair->rdma_qp->qp->pd, &g_nvme_hooks, 1173 SPDK_RDMA_MEMORY_MAP_ROLE_INITIATOR); 1174 if (!rqpair->mr_map) { 1175 SPDK_ERRLOG("Unable to register RDMA memory translation map\n"); 1176 return -1; 1177 } 1178 1179 ret = nvme_rdma_create_reqs(rqpair); 1180 SPDK_DEBUGLOG(nvme, "rc =%d\n", ret); 1181 if (ret) { 1182 SPDK_ERRLOG("Unable to create rqpair RDMA requests\n"); 1183 return -1; 1184 } 1185 SPDK_DEBUGLOG(nvme, "RDMA requests created\n"); 1186 1187 if (!rqpair->srq) { 1188 opts.num_entries = rqpair->num_entries; 1189 opts.rqpair = rqpair; 1190 opts.srq = NULL; 1191 opts.mr_map = rqpair->mr_map; 1192 1193 assert(!rqpair->rsps); 1194 rqpair->rsps = nvme_rdma_create_rsps(&opts); 1195 if (!rqpair->rsps) { 1196 SPDK_ERRLOG("Unable to create rqpair RDMA responses\n"); 1197 return -1; 1198 } 1199 SPDK_DEBUGLOG(nvme, "RDMA responses created\n"); 1200 1201 ret = nvme_rdma_qpair_submit_recvs(rqpair); 1202 SPDK_DEBUGLOG(nvme, "rc =%d\n", ret); 1203 if (ret) { 1204 SPDK_ERRLOG("Unable to submit rqpair RDMA responses\n"); 1205 return -1; 1206 } 1207 SPDK_DEBUGLOG(nvme, "RDMA responses submitted\n"); 1208 } 1209 1210 rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND; 1211 1212 return 0; 1213 } 1214 1215 static int 1216 nvme_rdma_connect(struct nvme_rdma_qpair *rqpair) 1217 { 1218 struct rdma_conn_param param = {}; 1219 struct spdk_nvmf_rdma_request_private_data request_data = {}; 1220 struct ibv_device_attr attr; 1221 int ret; 1222 struct spdk_nvme_ctrlr *ctrlr; 1223 1224 ret = ibv_query_device(rqpair->cm_id->verbs, &attr); 1225 if (ret != 0) { 1226 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 1227 return ret; 1228 } 1229 1230 param.responder_resources = attr.max_qp_rd_atom; 1231 1232 ctrlr = rqpair->qpair.ctrlr; 1233 if (!ctrlr) { 1234 return -1; 1235 } 1236 1237 request_data.qid = rqpair->qpair.id; 1238 request_data.hrqsize = rqpair->num_entries + 1; 1239 request_data.hsqsize = rqpair->num_entries; 1240 request_data.cntlid = ctrlr->cntlid; 1241 1242 param.private_data = &request_data; 1243 param.private_data_len = sizeof(request_data); 1244 param.retry_count = ctrlr->opts.transport_retry_count; 1245 param.rnr_retry_count = 7; 1246 1247 /* Fields below are ignored by rdma cm if qpair has been 1248 * created using rdma cm API. */ 1249 param.srq = 0; 1250 param.qp_num = rqpair->rdma_qp->qp->qp_num; 1251 1252 ret = rdma_connect(rqpair->cm_id, ¶m); 1253 if (ret) { 1254 SPDK_ERRLOG("nvme rdma connect error\n"); 1255 return ret; 1256 } 1257 1258 return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ESTABLISHED, 1259 nvme_rdma_connect_established); 1260 } 1261 1262 static int 1263 nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 1264 { 1265 struct sockaddr_storage dst_addr; 1266 struct sockaddr_storage src_addr; 1267 bool src_addr_specified; 1268 long int port, src_port; 1269 int rc; 1270 struct nvme_rdma_ctrlr *rctrlr; 1271 struct nvme_rdma_qpair *rqpair; 1272 struct nvme_rdma_poll_group *group; 1273 int family; 1274 1275 rqpair = nvme_rdma_qpair(qpair); 1276 rctrlr = nvme_rdma_ctrlr(ctrlr); 1277 assert(rctrlr != NULL); 1278 1279 switch (ctrlr->trid.adrfam) { 1280 case SPDK_NVMF_ADRFAM_IPV4: 1281 family = AF_INET; 1282 break; 1283 case SPDK_NVMF_ADRFAM_IPV6: 1284 family = AF_INET6; 1285 break; 1286 default: 1287 SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam); 1288 return -1; 1289 } 1290 1291 SPDK_DEBUGLOG(nvme, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family); 1292 1293 memset(&dst_addr, 0, sizeof(dst_addr)); 1294 1295 SPDK_DEBUGLOG(nvme, "trsvcid is %s\n", ctrlr->trid.trsvcid); 1296 rc = nvme_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid, &port); 1297 if (rc != 0) { 1298 SPDK_ERRLOG("dst_addr nvme_parse_addr() failed\n"); 1299 return -1; 1300 } 1301 1302 if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) { 1303 memset(&src_addr, 0, sizeof(src_addr)); 1304 rc = nvme_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid, &src_port); 1305 if (rc != 0) { 1306 SPDK_ERRLOG("src_addr nvme_parse_addr() failed\n"); 1307 return -1; 1308 } 1309 src_addr_specified = true; 1310 } else { 1311 src_addr_specified = false; 1312 } 1313 1314 rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP); 1315 if (rc < 0) { 1316 SPDK_ERRLOG("rdma_create_id() failed\n"); 1317 return -1; 1318 } 1319 1320 rc = nvme_rdma_resolve_addr(rqpair, 1321 src_addr_specified ? (struct sockaddr *)&src_addr : NULL, 1322 (struct sockaddr *)&dst_addr); 1323 if (rc < 0) { 1324 SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n"); 1325 return -1; 1326 } 1327 1328 rqpair->state = NVME_RDMA_QPAIR_STATE_INITIALIZING; 1329 1330 if (qpair->poll_group != NULL) { 1331 group = nvme_rdma_poll_group(qpair->poll_group); 1332 TAILQ_INSERT_TAIL(&group->connecting_qpairs, rqpair, link_connecting); 1333 } 1334 1335 return 0; 1336 } 1337 1338 static int 1339 nvme_rdma_stale_conn_reconnect(struct nvme_rdma_qpair *rqpair) 1340 { 1341 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 1342 1343 if (spdk_get_ticks() < rqpair->evt_timeout_ticks) { 1344 return -EAGAIN; 1345 } 1346 1347 return nvme_rdma_ctrlr_connect_qpair(qpair->ctrlr, qpair); 1348 } 1349 1350 static int 1351 nvme_rdma_ctrlr_connect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, 1352 struct spdk_nvme_qpair *qpair) 1353 { 1354 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 1355 int rc; 1356 1357 if (rqpair->in_connect_poll) { 1358 return -EAGAIN; 1359 } 1360 1361 rqpair->in_connect_poll = true; 1362 1363 switch (rqpair->state) { 1364 case NVME_RDMA_QPAIR_STATE_INVALID: 1365 rc = -EAGAIN; 1366 break; 1367 1368 case NVME_RDMA_QPAIR_STATE_INITIALIZING: 1369 case NVME_RDMA_QPAIR_STATE_EXITING: 1370 if (!nvme_qpair_is_admin_queue(qpair)) { 1371 nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); 1372 } 1373 1374 rc = nvme_rdma_process_event_poll(rqpair); 1375 1376 if (!nvme_qpair_is_admin_queue(qpair)) { 1377 nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); 1378 } 1379 1380 if (rc == 0) { 1381 rc = -EAGAIN; 1382 } 1383 rqpair->in_connect_poll = false; 1384 1385 return rc; 1386 1387 case NVME_RDMA_QPAIR_STATE_STALE_CONN: 1388 rc = nvme_rdma_stale_conn_reconnect(rqpair); 1389 if (rc == 0) { 1390 rc = -EAGAIN; 1391 } 1392 break; 1393 case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND: 1394 rc = nvme_fabric_qpair_connect_async(qpair, rqpair->num_entries + 1); 1395 if (rc == 0) { 1396 rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL; 1397 rc = -EAGAIN; 1398 } else { 1399 SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n"); 1400 } 1401 break; 1402 case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL: 1403 rc = nvme_fabric_qpair_connect_poll(qpair); 1404 if (rc == 0) { 1405 rqpair->state = NVME_RDMA_QPAIR_STATE_RUNNING; 1406 nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED); 1407 } else if (rc != -EAGAIN) { 1408 SPDK_ERRLOG("Failed to poll NVMe-oF Fabric CONNECT command\n"); 1409 } 1410 break; 1411 case NVME_RDMA_QPAIR_STATE_RUNNING: 1412 rc = 0; 1413 break; 1414 default: 1415 assert(false); 1416 rc = -EINVAL; 1417 break; 1418 } 1419 1420 rqpair->in_connect_poll = false; 1421 1422 return rc; 1423 } 1424 1425 static inline int 1426 nvme_rdma_get_memory_translation(struct nvme_request *req, struct nvme_rdma_qpair *rqpair, 1427 struct nvme_rdma_memory_translation_ctx *_ctx) 1428 { 1429 struct spdk_memory_domain_translation_ctx ctx; 1430 struct spdk_memory_domain_translation_result dma_translation = {.iov_count = 0}; 1431 struct spdk_rdma_memory_translation rdma_translation; 1432 int rc; 1433 1434 assert(req); 1435 assert(rqpair); 1436 assert(_ctx); 1437 1438 if (req->payload.opts && req->payload.opts->memory_domain) { 1439 ctx.size = sizeof(struct spdk_memory_domain_translation_ctx); 1440 ctx.rdma.ibv_qp = rqpair->rdma_qp->qp; 1441 dma_translation.size = sizeof(struct spdk_memory_domain_translation_result); 1442 1443 rc = spdk_memory_domain_translate_data(req->payload.opts->memory_domain, 1444 req->payload.opts->memory_domain_ctx, 1445 rqpair->memory_domain->domain, &ctx, _ctx->addr, 1446 _ctx->length, &dma_translation); 1447 if (spdk_unlikely(rc) || dma_translation.iov_count != 1) { 1448 SPDK_ERRLOG("DMA memory translation failed, rc %d, iov count %u\n", rc, dma_translation.iov_count); 1449 return rc; 1450 } 1451 1452 _ctx->lkey = dma_translation.rdma.lkey; 1453 _ctx->rkey = dma_translation.rdma.rkey; 1454 _ctx->addr = dma_translation.iov.iov_base; 1455 _ctx->length = dma_translation.iov.iov_len; 1456 } else { 1457 rc = spdk_rdma_get_translation(rqpair->mr_map, _ctx->addr, _ctx->length, &rdma_translation); 1458 if (spdk_unlikely(rc)) { 1459 SPDK_ERRLOG("RDMA memory translation failed, rc %d\n", rc); 1460 return rc; 1461 } 1462 if (rdma_translation.translation_type == SPDK_RDMA_TRANSLATION_MR) { 1463 _ctx->lkey = rdma_translation.mr_or_key.mr->lkey; 1464 _ctx->rkey = rdma_translation.mr_or_key.mr->rkey; 1465 } else { 1466 _ctx->lkey = _ctx->rkey = (uint32_t)rdma_translation.mr_or_key.key; 1467 } 1468 } 1469 1470 return 0; 1471 } 1472 1473 1474 /* 1475 * Build SGL describing empty payload. 1476 */ 1477 static int 1478 nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req) 1479 { 1480 struct nvme_request *req = rdma_req->req; 1481 1482 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1483 1484 /* The first element of this SGL is pointing at an 1485 * spdk_nvmf_cmd object. For this particular command, 1486 * we only need the first 64 bytes corresponding to 1487 * the NVMe command. */ 1488 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1489 1490 /* The RDMA SGL needs one element describing the NVMe command. */ 1491 rdma_req->send_wr.num_sge = 1; 1492 1493 req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; 1494 req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; 1495 req->cmd.dptr.sgl1.keyed.length = 0; 1496 req->cmd.dptr.sgl1.keyed.key = 0; 1497 req->cmd.dptr.sgl1.address = 0; 1498 1499 return 0; 1500 } 1501 1502 /* 1503 * Build inline SGL describing contiguous payload buffer. 1504 */ 1505 static int 1506 nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair, 1507 struct spdk_nvme_rdma_req *rdma_req) 1508 { 1509 struct nvme_request *req = rdma_req->req; 1510 struct nvme_rdma_memory_translation_ctx ctx = { 1511 .addr = (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset, 1512 .length = req->payload_size 1513 }; 1514 int rc; 1515 1516 assert(ctx.length != 0); 1517 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); 1518 1519 rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx); 1520 if (spdk_unlikely(rc)) { 1521 return -1; 1522 } 1523 1524 rdma_req->send_sgl[1].lkey = ctx.lkey; 1525 1526 /* The first element of this SGL is pointing at an 1527 * spdk_nvmf_cmd object. For this particular command, 1528 * we only need the first 64 bytes corresponding to 1529 * the NVMe command. */ 1530 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1531 1532 rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr; 1533 rdma_req->send_sgl[1].length = (uint32_t)ctx.length; 1534 1535 /* The RDMA SGL contains two elements. The first describes 1536 * the NVMe command and the second describes the data 1537 * payload. */ 1538 rdma_req->send_wr.num_sge = 2; 1539 1540 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1541 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 1542 req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; 1543 req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length; 1544 /* Inline only supported for icdoff == 0 currently. This function will 1545 * not get called for controllers with other values. */ 1546 req->cmd.dptr.sgl1.address = (uint64_t)0; 1547 1548 return 0; 1549 } 1550 1551 /* 1552 * Build SGL describing contiguous payload buffer. 1553 */ 1554 static int 1555 nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair, 1556 struct spdk_nvme_rdma_req *rdma_req) 1557 { 1558 struct nvme_request *req = rdma_req->req; 1559 struct nvme_rdma_memory_translation_ctx ctx = { 1560 .addr = (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset, 1561 .length = req->payload_size 1562 }; 1563 int rc; 1564 1565 assert(req->payload_size != 0); 1566 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); 1567 1568 if (spdk_unlikely(req->payload_size > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) { 1569 SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n", 1570 req->payload_size, NVME_RDMA_MAX_KEYED_SGL_LENGTH); 1571 return -1; 1572 } 1573 1574 rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx); 1575 if (spdk_unlikely(rc)) { 1576 return -1; 1577 } 1578 1579 req->cmd.dptr.sgl1.keyed.key = ctx.rkey; 1580 1581 /* The first element of this SGL is pointing at an 1582 * spdk_nvmf_cmd object. For this particular command, 1583 * we only need the first 64 bytes corresponding to 1584 * the NVMe command. */ 1585 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1586 1587 /* The RDMA SGL needs one element describing the NVMe command. */ 1588 rdma_req->send_wr.num_sge = 1; 1589 1590 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1591 req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; 1592 req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; 1593 req->cmd.dptr.sgl1.keyed.length = (uint32_t)ctx.length; 1594 req->cmd.dptr.sgl1.address = (uint64_t)ctx.addr; 1595 1596 return 0; 1597 } 1598 1599 /* 1600 * Build SGL describing scattered payload buffer. 1601 */ 1602 static int 1603 nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair, 1604 struct spdk_nvme_rdma_req *rdma_req) 1605 { 1606 struct nvme_request *req = rdma_req->req; 1607 struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id]; 1608 struct nvme_rdma_memory_translation_ctx ctx; 1609 uint32_t remaining_size; 1610 uint32_t sge_length; 1611 int rc, max_num_sgl, num_sgl_desc; 1612 1613 assert(req->payload_size != 0); 1614 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); 1615 assert(req->payload.reset_sgl_fn != NULL); 1616 assert(req->payload.next_sge_fn != NULL); 1617 req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); 1618 1619 max_num_sgl = req->qpair->ctrlr->max_sges; 1620 1621 remaining_size = req->payload_size; 1622 num_sgl_desc = 0; 1623 do { 1624 rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &sge_length); 1625 if (rc) { 1626 return -1; 1627 } 1628 1629 sge_length = spdk_min(remaining_size, sge_length); 1630 1631 if (spdk_unlikely(sge_length > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) { 1632 SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n", 1633 sge_length, NVME_RDMA_MAX_KEYED_SGL_LENGTH); 1634 return -1; 1635 } 1636 ctx.length = sge_length; 1637 rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx); 1638 if (spdk_unlikely(rc)) { 1639 return -1; 1640 } 1641 1642 cmd->sgl[num_sgl_desc].keyed.key = ctx.rkey; 1643 cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; 1644 cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; 1645 cmd->sgl[num_sgl_desc].keyed.length = (uint32_t)ctx.length; 1646 cmd->sgl[num_sgl_desc].address = (uint64_t)ctx.addr; 1647 1648 remaining_size -= ctx.length; 1649 num_sgl_desc++; 1650 } while (remaining_size > 0 && num_sgl_desc < max_num_sgl); 1651 1652 1653 /* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */ 1654 if (remaining_size > 0) { 1655 return -1; 1656 } 1657 1658 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1659 1660 /* The RDMA SGL needs one element describing some portion 1661 * of the spdk_nvmf_cmd structure. */ 1662 rdma_req->send_wr.num_sge = 1; 1663 1664 /* 1665 * If only one SGL descriptor is required, it can be embedded directly in the command 1666 * as a data block descriptor. 1667 */ 1668 if (num_sgl_desc == 1) { 1669 /* The first element of this SGL is pointing at an 1670 * spdk_nvmf_cmd object. For this particular command, 1671 * we only need the first 64 bytes corresponding to 1672 * the NVMe command. */ 1673 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1674 1675 req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type; 1676 req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype; 1677 req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length; 1678 req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key; 1679 req->cmd.dptr.sgl1.address = cmd->sgl[0].address; 1680 } else { 1681 /* 1682 * Otherwise, The SGL descriptor embedded in the command must point to the list of 1683 * SGL descriptors used to describe the operation. In that case it is a last segment descriptor. 1684 */ 1685 uint32_t descriptors_size = sizeof(struct spdk_nvme_sgl_descriptor) * num_sgl_desc; 1686 1687 if (spdk_unlikely(descriptors_size > rqpair->qpair.ctrlr->ioccsz_bytes)) { 1688 SPDK_ERRLOG("Size of SGL descriptors (%u) exceeds ICD (%u)\n", 1689 descriptors_size, rqpair->qpair.ctrlr->ioccsz_bytes); 1690 return -1; 1691 } 1692 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + descriptors_size; 1693 1694 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT; 1695 req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; 1696 req->cmd.dptr.sgl1.unkeyed.length = descriptors_size; 1697 req->cmd.dptr.sgl1.address = (uint64_t)0; 1698 } 1699 1700 return 0; 1701 } 1702 1703 /* 1704 * Build inline SGL describing sgl payload buffer. 1705 */ 1706 static int 1707 nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair, 1708 struct spdk_nvme_rdma_req *rdma_req) 1709 { 1710 struct nvme_request *req = rdma_req->req; 1711 struct nvme_rdma_memory_translation_ctx ctx; 1712 uint32_t length; 1713 int rc; 1714 1715 assert(req->payload_size != 0); 1716 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); 1717 assert(req->payload.reset_sgl_fn != NULL); 1718 assert(req->payload.next_sge_fn != NULL); 1719 req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); 1720 1721 rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &length); 1722 if (rc) { 1723 return -1; 1724 } 1725 1726 if (length < req->payload_size) { 1727 SPDK_DEBUGLOG(nvme, "Inline SGL request split so sending separately.\n"); 1728 return nvme_rdma_build_sgl_request(rqpair, rdma_req); 1729 } 1730 1731 if (length > req->payload_size) { 1732 length = req->payload_size; 1733 } 1734 1735 ctx.length = length; 1736 rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx); 1737 if (spdk_unlikely(rc)) { 1738 return -1; 1739 } 1740 1741 rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr; 1742 rdma_req->send_sgl[1].length = (uint32_t)ctx.length; 1743 rdma_req->send_sgl[1].lkey = ctx.lkey; 1744 1745 rdma_req->send_wr.num_sge = 2; 1746 1747 /* The first element of this SGL is pointing at an 1748 * spdk_nvmf_cmd object. For this particular command, 1749 * we only need the first 64 bytes corresponding to 1750 * the NVMe command. */ 1751 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1752 1753 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1754 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 1755 req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; 1756 req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length; 1757 /* Inline only supported for icdoff == 0 currently. This function will 1758 * not get called for controllers with other values. */ 1759 req->cmd.dptr.sgl1.address = (uint64_t)0; 1760 1761 return 0; 1762 } 1763 1764 static int 1765 nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req, 1766 struct spdk_nvme_rdma_req *rdma_req) 1767 { 1768 struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr; 1769 enum nvme_payload_type payload_type; 1770 bool icd_supported; 1771 int rc; 1772 1773 assert(rdma_req->req == NULL); 1774 rdma_req->req = req; 1775 req->cmd.cid = rdma_req->id; 1776 payload_type = nvme_payload_type(&req->payload); 1777 /* 1778 * Check if icdoff is non zero, to avoid interop conflicts with 1779 * targets with non-zero icdoff. Both SPDK and the Linux kernel 1780 * targets use icdoff = 0. For targets with non-zero icdoff, we 1781 * will currently just not use inline data for now. 1782 */ 1783 icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER 1784 && req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0; 1785 1786 if (req->payload_size == 0) { 1787 rc = nvme_rdma_build_null_request(rdma_req); 1788 } else if (payload_type == NVME_PAYLOAD_TYPE_CONTIG) { 1789 if (icd_supported) { 1790 rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req); 1791 } else { 1792 rc = nvme_rdma_build_contig_request(rqpair, rdma_req); 1793 } 1794 } else if (payload_type == NVME_PAYLOAD_TYPE_SGL) { 1795 if (icd_supported) { 1796 rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req); 1797 } else { 1798 rc = nvme_rdma_build_sgl_request(rqpair, rdma_req); 1799 } 1800 } else { 1801 rc = -1; 1802 } 1803 1804 if (rc) { 1805 rdma_req->req = NULL; 1806 return rc; 1807 } 1808 1809 memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd)); 1810 return 0; 1811 } 1812 1813 static struct spdk_nvme_qpair * 1814 nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr, 1815 uint16_t qid, uint32_t qsize, 1816 enum spdk_nvme_qprio qprio, 1817 uint32_t num_requests, 1818 bool delay_cmd_submit, 1819 bool async) 1820 { 1821 struct nvme_rdma_qpair *rqpair; 1822 struct spdk_nvme_qpair *qpair; 1823 int rc; 1824 1825 if (qsize < SPDK_NVME_QUEUE_MIN_ENTRIES) { 1826 SPDK_ERRLOG("Failed to create qpair with size %u. Minimum queue size is %d.\n", 1827 qsize, SPDK_NVME_QUEUE_MIN_ENTRIES); 1828 return NULL; 1829 } 1830 1831 rqpair = spdk_zmalloc(sizeof(struct nvme_rdma_qpair), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, 1832 SPDK_MALLOC_DMA); 1833 if (!rqpair) { 1834 SPDK_ERRLOG("failed to get create rqpair\n"); 1835 return NULL; 1836 } 1837 1838 /* Set num_entries one less than queue size. According to NVMe 1839 * and NVMe-oF specs we can not submit queue size requests, 1840 * one slot shall always remain empty. 1841 */ 1842 rqpair->num_entries = qsize - 1; 1843 rqpair->delay_cmd_submit = delay_cmd_submit; 1844 rqpair->state = NVME_RDMA_QPAIR_STATE_INVALID; 1845 qpair = &rqpair->qpair; 1846 rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests, async); 1847 if (rc != 0) { 1848 spdk_free(rqpair); 1849 return NULL; 1850 } 1851 1852 return qpair; 1853 } 1854 1855 static void 1856 nvme_rdma_qpair_destroy(struct nvme_rdma_qpair *rqpair) 1857 { 1858 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 1859 struct nvme_rdma_ctrlr *rctrlr; 1860 struct nvme_rdma_cm_event_entry *entry, *tmp; 1861 1862 spdk_rdma_free_mem_map(&rqpair->mr_map); 1863 1864 if (rqpair->evt) { 1865 rdma_ack_cm_event(rqpair->evt); 1866 rqpair->evt = NULL; 1867 } 1868 1869 /* 1870 * This works because we have the controller lock both in 1871 * this function and in the function where we add new events. 1872 */ 1873 if (qpair->ctrlr != NULL) { 1874 rctrlr = nvme_rdma_ctrlr(qpair->ctrlr); 1875 STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) { 1876 if (entry->evt->id->context == rqpair) { 1877 STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link); 1878 rdma_ack_cm_event(entry->evt); 1879 STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link); 1880 } 1881 } 1882 } 1883 1884 if (rqpair->cm_id) { 1885 if (rqpair->rdma_qp) { 1886 spdk_rdma_put_pd(rqpair->rdma_qp->qp->pd); 1887 spdk_rdma_provider_qp_destroy(rqpair->rdma_qp); 1888 rqpair->rdma_qp = NULL; 1889 } 1890 } 1891 1892 if (rqpair->poller) { 1893 struct nvme_rdma_poll_group *group; 1894 1895 assert(qpair->poll_group); 1896 group = nvme_rdma_poll_group(qpair->poll_group); 1897 1898 nvme_rdma_poll_group_put_poller(group, rqpair->poller); 1899 1900 rqpair->poller = NULL; 1901 rqpair->cq = NULL; 1902 if (rqpair->srq) { 1903 rqpair->srq = NULL; 1904 rqpair->rsps = NULL; 1905 } 1906 } else if (rqpair->cq) { 1907 ibv_destroy_cq(rqpair->cq); 1908 rqpair->cq = NULL; 1909 } 1910 1911 nvme_rdma_free_reqs(rqpair); 1912 nvme_rdma_free_rsps(rqpair->rsps); 1913 rqpair->rsps = NULL; 1914 1915 /* destroy cm_id last so cma device will not be freed before we destroy the cq. */ 1916 if (rqpair->cm_id) { 1917 rdma_destroy_id(rqpair->cm_id); 1918 rqpair->cm_id = NULL; 1919 } 1920 } 1921 1922 static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr); 1923 1924 static int 1925 nvme_rdma_qpair_disconnected(struct nvme_rdma_qpair *rqpair, int ret) 1926 { 1927 if (ret) { 1928 SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n"); 1929 goto quiet; 1930 } 1931 1932 if (rqpair->poller == NULL) { 1933 /* If poller is not used, cq is not shared. 1934 * So complete disconnecting qpair immediately. 1935 */ 1936 goto quiet; 1937 } 1938 1939 if (rqpair->rsps == NULL) { 1940 goto quiet; 1941 } 1942 1943 if (rqpair->need_destroy || 1944 (rqpair->current_num_sends != 0 || 1945 (!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) { 1946 rqpair->state = NVME_RDMA_QPAIR_STATE_LINGERING; 1947 rqpair->evt_timeout_ticks = (NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US * spdk_get_ticks_hz()) / 1948 SPDK_SEC_TO_USEC + spdk_get_ticks(); 1949 1950 return -EAGAIN; 1951 } 1952 1953 quiet: 1954 rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED; 1955 1956 nvme_rdma_qpair_abort_reqs(&rqpair->qpair, 0); 1957 nvme_rdma_qpair_destroy(rqpair); 1958 nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair); 1959 1960 return 0; 1961 } 1962 1963 static int 1964 nvme_rdma_qpair_wait_until_quiet(struct nvme_rdma_qpair *rqpair) 1965 { 1966 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 1967 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 1968 1969 if (spdk_get_ticks() < rqpair->evt_timeout_ticks && 1970 (rqpair->current_num_sends != 0 || 1971 (!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) { 1972 return -EAGAIN; 1973 } 1974 1975 rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED; 1976 nvme_rdma_qpair_abort_reqs(&rqpair->qpair, 0); 1977 if (!nvme_qpair_is_admin_queue(qpair)) { 1978 nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); 1979 } 1980 nvme_rdma_qpair_destroy(rqpair); 1981 if (!nvme_qpair_is_admin_queue(qpair)) { 1982 nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); 1983 } 1984 nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair); 1985 1986 return 0; 1987 } 1988 1989 static void 1990 _nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, 1991 nvme_rdma_cm_event_cb disconnected_qpair_cb) 1992 { 1993 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 1994 int rc; 1995 1996 assert(disconnected_qpair_cb != NULL); 1997 1998 rqpair->state = NVME_RDMA_QPAIR_STATE_EXITING; 1999 2000 if (rqpair->cm_id) { 2001 if (rqpair->rdma_qp) { 2002 rc = spdk_rdma_provider_qp_disconnect(rqpair->rdma_qp); 2003 if ((qpair->ctrlr != NULL) && (rc == 0)) { 2004 rc = nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_DISCONNECTED, 2005 disconnected_qpair_cb); 2006 if (rc == 0) { 2007 return; 2008 } 2009 } 2010 } 2011 } 2012 2013 disconnected_qpair_cb(rqpair, 0); 2014 } 2015 2016 static int 2017 nvme_rdma_ctrlr_disconnect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 2018 { 2019 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2020 int rc; 2021 2022 switch (rqpair->state) { 2023 case NVME_RDMA_QPAIR_STATE_EXITING: 2024 if (!nvme_qpair_is_admin_queue(qpair)) { 2025 nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); 2026 } 2027 2028 rc = nvme_rdma_process_event_poll(rqpair); 2029 2030 if (!nvme_qpair_is_admin_queue(qpair)) { 2031 nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); 2032 } 2033 break; 2034 2035 case NVME_RDMA_QPAIR_STATE_LINGERING: 2036 rc = nvme_rdma_qpair_wait_until_quiet(rqpair); 2037 break; 2038 case NVME_RDMA_QPAIR_STATE_EXITED: 2039 rc = 0; 2040 break; 2041 2042 default: 2043 assert(false); 2044 rc = -EAGAIN; 2045 break; 2046 } 2047 2048 return rc; 2049 } 2050 2051 static void 2052 nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 2053 { 2054 int rc; 2055 2056 _nvme_rdma_ctrlr_disconnect_qpair(ctrlr, qpair, nvme_rdma_qpair_disconnected); 2057 2058 /* If the async mode is disabled, poll the qpair until it is actually disconnected. 2059 * It is ensured that poll_group_process_completions() calls disconnected_qpair_cb 2060 * for any disconnected qpair. Hence, we do not have to check if the qpair is in 2061 * a poll group or not. 2062 * At the same time, if the qpair is being destroyed, i.e. this function is called by 2063 * spdk_nvme_ctrlr_free_io_qpair then we need to wait until qpair is disconnected, otherwise 2064 * we may leak some resources. 2065 */ 2066 if (qpair->async && !qpair->destroy_in_progress) { 2067 return; 2068 } 2069 2070 while (1) { 2071 rc = nvme_rdma_ctrlr_disconnect_qpair_poll(ctrlr, qpair); 2072 if (rc != -EAGAIN) { 2073 break; 2074 } 2075 } 2076 } 2077 2078 static int 2079 nvme_rdma_stale_conn_disconnected(struct nvme_rdma_qpair *rqpair, int ret) 2080 { 2081 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 2082 2083 if (ret) { 2084 SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n"); 2085 } 2086 2087 nvme_rdma_qpair_destroy(rqpair); 2088 2089 qpair->last_transport_failure_reason = qpair->transport_failure_reason; 2090 qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_NONE; 2091 2092 rqpair->state = NVME_RDMA_QPAIR_STATE_STALE_CONN; 2093 rqpair->evt_timeout_ticks = (NVME_RDMA_STALE_CONN_RETRY_DELAY_US * spdk_get_ticks_hz()) / 2094 SPDK_SEC_TO_USEC + spdk_get_ticks(); 2095 2096 return 0; 2097 } 2098 2099 static int 2100 nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair) 2101 { 2102 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 2103 2104 if (rqpair->stale_conn_retry_count >= NVME_RDMA_STALE_CONN_RETRY_MAX) { 2105 SPDK_ERRLOG("Retry failed %d times, give up stale connection to qpair (cntlid:%u, qid:%u).\n", 2106 NVME_RDMA_STALE_CONN_RETRY_MAX, qpair->ctrlr->cntlid, qpair->id); 2107 return -ESTALE; 2108 } 2109 2110 rqpair->stale_conn_retry_count++; 2111 2112 SPDK_NOTICELOG("%d times, retry stale connection to qpair (cntlid:%u, qid:%u).\n", 2113 rqpair->stale_conn_retry_count, qpair->ctrlr->cntlid, qpair->id); 2114 2115 _nvme_rdma_ctrlr_disconnect_qpair(qpair->ctrlr, qpair, nvme_rdma_stale_conn_disconnected); 2116 2117 return 0; 2118 } 2119 2120 static int 2121 nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 2122 { 2123 struct nvme_rdma_qpair *rqpair; 2124 2125 assert(qpair != NULL); 2126 rqpair = nvme_rdma_qpair(qpair); 2127 2128 if (rqpair->state != NVME_RDMA_QPAIR_STATE_EXITED) { 2129 int rc __attribute__((unused)); 2130 2131 /* qpair was removed from the poll group while the disconnect is not finished. 2132 * Destroy rdma resources forcefully. */ 2133 rc = nvme_rdma_qpair_disconnected(rqpair, 0); 2134 assert(rc == 0); 2135 } 2136 2137 nvme_rdma_qpair_abort_reqs(qpair, 0); 2138 nvme_qpair_deinit(qpair); 2139 2140 nvme_rdma_put_memory_domain(rqpair->memory_domain); 2141 2142 spdk_free(rqpair); 2143 2144 return 0; 2145 } 2146 2147 static struct spdk_nvme_qpair * 2148 nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, 2149 const struct spdk_nvme_io_qpair_opts *opts) 2150 { 2151 return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio, 2152 opts->io_queue_requests, 2153 opts->delay_cmd_submit, 2154 opts->async_mode); 2155 } 2156 2157 static int 2158 nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) 2159 { 2160 /* do nothing here */ 2161 return 0; 2162 } 2163 2164 static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr); 2165 2166 /* We have to use the typedef in the function declaration to appease astyle. */ 2167 typedef struct spdk_nvme_ctrlr spdk_nvme_ctrlr_t; 2168 2169 static spdk_nvme_ctrlr_t * 2170 nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid, 2171 const struct spdk_nvme_ctrlr_opts *opts, 2172 void *devhandle) 2173 { 2174 struct nvme_rdma_ctrlr *rctrlr; 2175 struct ibv_context **contexts; 2176 struct ibv_device_attr dev_attr; 2177 int i, flag, rc; 2178 2179 rctrlr = spdk_zmalloc(sizeof(struct nvme_rdma_ctrlr), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, 2180 SPDK_MALLOC_DMA); 2181 if (rctrlr == NULL) { 2182 SPDK_ERRLOG("could not allocate ctrlr\n"); 2183 return NULL; 2184 } 2185 2186 rctrlr->ctrlr.opts = *opts; 2187 rctrlr->ctrlr.trid = *trid; 2188 2189 if (opts->transport_retry_count > NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT) { 2190 SPDK_NOTICELOG("transport_retry_count exceeds max value %d, use max value\n", 2191 NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT); 2192 rctrlr->ctrlr.opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT; 2193 } 2194 2195 if (opts->transport_ack_timeout > NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) { 2196 SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n", 2197 NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT); 2198 rctrlr->ctrlr.opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT; 2199 } 2200 2201 contexts = rdma_get_devices(NULL); 2202 if (contexts == NULL) { 2203 SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); 2204 spdk_free(rctrlr); 2205 return NULL; 2206 } 2207 2208 i = 0; 2209 rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS; 2210 2211 while (contexts[i] != NULL) { 2212 rc = ibv_query_device(contexts[i], &dev_attr); 2213 if (rc < 0) { 2214 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 2215 rdma_free_devices(contexts); 2216 spdk_free(rctrlr); 2217 return NULL; 2218 } 2219 rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge); 2220 i++; 2221 } 2222 2223 rdma_free_devices(contexts); 2224 2225 rc = nvme_ctrlr_construct(&rctrlr->ctrlr); 2226 if (rc != 0) { 2227 spdk_free(rctrlr); 2228 return NULL; 2229 } 2230 2231 STAILQ_INIT(&rctrlr->pending_cm_events); 2232 STAILQ_INIT(&rctrlr->free_cm_events); 2233 rctrlr->cm_events = spdk_zmalloc(NVME_RDMA_NUM_CM_EVENTS * sizeof(*rctrlr->cm_events), 0, NULL, 2234 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 2235 if (rctrlr->cm_events == NULL) { 2236 SPDK_ERRLOG("unable to allocate buffers to hold CM events.\n"); 2237 goto destruct_ctrlr; 2238 } 2239 2240 for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) { 2241 STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link); 2242 } 2243 2244 rctrlr->cm_channel = rdma_create_event_channel(); 2245 if (rctrlr->cm_channel == NULL) { 2246 SPDK_ERRLOG("rdma_create_event_channel() failed\n"); 2247 goto destruct_ctrlr; 2248 } 2249 2250 flag = fcntl(rctrlr->cm_channel->fd, F_GETFL); 2251 if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { 2252 SPDK_ERRLOG("Cannot set event channel to non blocking\n"); 2253 goto destruct_ctrlr; 2254 } 2255 2256 rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0, 2257 rctrlr->ctrlr.opts.admin_queue_size, 0, 2258 rctrlr->ctrlr.opts.admin_queue_size, false, true); 2259 if (!rctrlr->ctrlr.adminq) { 2260 SPDK_ERRLOG("failed to create admin qpair\n"); 2261 goto destruct_ctrlr; 2262 } 2263 2264 if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) { 2265 SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n"); 2266 goto destruct_ctrlr; 2267 } 2268 2269 SPDK_DEBUGLOG(nvme, "successfully initialized the nvmf ctrlr\n"); 2270 return &rctrlr->ctrlr; 2271 2272 destruct_ctrlr: 2273 nvme_ctrlr_destruct(&rctrlr->ctrlr); 2274 return NULL; 2275 } 2276 2277 static int 2278 nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) 2279 { 2280 struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr); 2281 struct nvme_rdma_cm_event_entry *entry; 2282 2283 if (ctrlr->adminq) { 2284 nvme_rdma_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq); 2285 } 2286 2287 STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) { 2288 rdma_ack_cm_event(entry->evt); 2289 } 2290 2291 STAILQ_INIT(&rctrlr->free_cm_events); 2292 STAILQ_INIT(&rctrlr->pending_cm_events); 2293 spdk_free(rctrlr->cm_events); 2294 2295 if (rctrlr->cm_channel) { 2296 rdma_destroy_event_channel(rctrlr->cm_channel); 2297 rctrlr->cm_channel = NULL; 2298 } 2299 2300 nvme_ctrlr_destruct_finish(ctrlr); 2301 2302 spdk_free(rctrlr); 2303 2304 return 0; 2305 } 2306 2307 static int 2308 nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair, 2309 struct nvme_request *req) 2310 { 2311 struct nvme_rdma_qpair *rqpair; 2312 struct spdk_nvme_rdma_req *rdma_req; 2313 struct ibv_send_wr *wr; 2314 struct nvme_rdma_poll_group *group; 2315 2316 rqpair = nvme_rdma_qpair(qpair); 2317 assert(rqpair != NULL); 2318 assert(req != NULL); 2319 2320 rdma_req = nvme_rdma_req_get(rqpair); 2321 if (spdk_unlikely(!rdma_req)) { 2322 if (rqpair->poller) { 2323 rqpair->poller->stats.queued_requests++; 2324 } 2325 /* Inform the upper layer to try again later. */ 2326 return -EAGAIN; 2327 } 2328 2329 if (nvme_rdma_req_init(rqpair, req, rdma_req)) { 2330 SPDK_ERRLOG("nvme_rdma_req_init() failed\n"); 2331 nvme_rdma_req_put(rqpair, rdma_req); 2332 return -1; 2333 } 2334 2335 TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link); 2336 2337 if (!rqpair->link_active.tqe_prev && qpair->poll_group) { 2338 group = nvme_rdma_poll_group(qpair->poll_group); 2339 TAILQ_INSERT_TAIL(&group->active_qpairs, rqpair, link_active); 2340 } 2341 rqpair->num_outstanding_reqs++; 2342 2343 assert(rqpair->current_num_sends < rqpair->num_entries); 2344 rqpair->current_num_sends++; 2345 2346 wr = &rdma_req->send_wr; 2347 wr->next = NULL; 2348 nvme_rdma_trace_ibv_sge(wr->sg_list); 2349 2350 spdk_rdma_provider_qp_queue_send_wrs(rqpair->rdma_qp, wr); 2351 2352 if (!rqpair->delay_cmd_submit) { 2353 return nvme_rdma_qpair_submit_sends(rqpair); 2354 } 2355 2356 return 0; 2357 } 2358 2359 static int 2360 nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair) 2361 { 2362 /* Currently, doing nothing here */ 2363 return 0; 2364 } 2365 2366 static void 2367 nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr) 2368 { 2369 struct spdk_nvme_rdma_req *rdma_req, *tmp; 2370 struct spdk_nvme_cpl cpl; 2371 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2372 2373 cpl.sqid = qpair->id; 2374 cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; 2375 cpl.status.sct = SPDK_NVME_SCT_GENERIC; 2376 cpl.status.dnr = dnr; 2377 2378 /* 2379 * We cannot abort requests at the RDMA layer without 2380 * unregistering them. If we do, we can still get error 2381 * free completions on the shared completion queue. 2382 */ 2383 if (nvme_qpair_get_state(qpair) > NVME_QPAIR_DISCONNECTING && 2384 nvme_qpair_get_state(qpair) != NVME_QPAIR_DESTROYING) { 2385 nvme_ctrlr_disconnect_qpair(qpair); 2386 } 2387 2388 TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { 2389 nvme_rdma_req_complete(rdma_req, &cpl, true); 2390 } 2391 } 2392 2393 static void 2394 nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair) 2395 { 2396 uint64_t t02; 2397 struct spdk_nvme_rdma_req *rdma_req, *tmp; 2398 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2399 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 2400 struct spdk_nvme_ctrlr_process *active_proc; 2401 2402 /* Don't check timeouts during controller initialization. */ 2403 if (ctrlr->state != NVME_CTRLR_STATE_READY) { 2404 return; 2405 } 2406 2407 if (nvme_qpair_is_admin_queue(qpair)) { 2408 active_proc = nvme_ctrlr_get_current_process(ctrlr); 2409 } else { 2410 active_proc = qpair->active_proc; 2411 } 2412 2413 /* Only check timeouts if the current process has a timeout callback. */ 2414 if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) { 2415 return; 2416 } 2417 2418 t02 = spdk_get_ticks(); 2419 TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { 2420 assert(rdma_req->req != NULL); 2421 2422 if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) { 2423 /* 2424 * The requests are in order, so as soon as one has not timed out, 2425 * stop iterating. 2426 */ 2427 break; 2428 } 2429 } 2430 } 2431 2432 static inline void 2433 nvme_rdma_request_ready(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) 2434 { 2435 struct spdk_nvme_rdma_rsp *rdma_rsp = rdma_req->rdma_rsp; 2436 struct ibv_recv_wr *recv_wr = rdma_rsp->recv_wr; 2437 2438 nvme_rdma_req_complete(rdma_req, &rdma_rsp->cpl, true); 2439 2440 assert(rqpair->rsps->current_num_recvs < rqpair->rsps->num_entries); 2441 rqpair->rsps->current_num_recvs++; 2442 2443 recv_wr->next = NULL; 2444 nvme_rdma_trace_ibv_sge(recv_wr->sg_list); 2445 2446 if (!rqpair->srq) { 2447 spdk_rdma_provider_qp_queue_recv_wrs(rqpair->rdma_qp, recv_wr); 2448 } else { 2449 spdk_rdma_provider_srq_queue_recv_wrs(rqpair->srq, recv_wr); 2450 } 2451 } 2452 2453 #define MAX_COMPLETIONS_PER_POLL 128 2454 2455 static void 2456 nvme_rdma_fail_qpair(struct spdk_nvme_qpair *qpair, int failure_reason) 2457 { 2458 if (failure_reason == IBV_WC_RETRY_EXC_ERR) { 2459 qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE; 2460 } else if (qpair->transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_NONE) { 2461 qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN; 2462 } 2463 2464 nvme_ctrlr_disconnect_qpair(qpair); 2465 } 2466 2467 static struct nvme_rdma_qpair * 2468 get_rdma_qpair_from_wc(struct nvme_rdma_poll_group *group, struct ibv_wc *wc) 2469 { 2470 struct spdk_nvme_qpair *qpair; 2471 struct nvme_rdma_qpair *rqpair; 2472 2473 STAILQ_FOREACH(qpair, &group->group.connected_qpairs, poll_group_stailq) { 2474 rqpair = nvme_rdma_qpair(qpair); 2475 if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) { 2476 return rqpair; 2477 } 2478 } 2479 2480 STAILQ_FOREACH(qpair, &group->group.disconnected_qpairs, poll_group_stailq) { 2481 rqpair = nvme_rdma_qpair(qpair); 2482 if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) { 2483 return rqpair; 2484 } 2485 } 2486 2487 return NULL; 2488 } 2489 2490 static inline void 2491 nvme_rdma_log_wc_status(struct nvme_rdma_qpair *rqpair, struct ibv_wc *wc) 2492 { 2493 struct nvme_rdma_wr *rdma_wr = (struct nvme_rdma_wr *)wc->wr_id; 2494 2495 if (wc->status == IBV_WC_WR_FLUSH_ERR) { 2496 /* If qpair is in ERR state, we will receive completions for all posted and not completed 2497 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */ 2498 SPDK_DEBUGLOG(nvme, "WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n", 2499 rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status, 2500 ibv_wc_status_str(wc->status)); 2501 } else { 2502 SPDK_ERRLOG("WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n", 2503 rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status, 2504 ibv_wc_status_str(wc->status)); 2505 } 2506 } 2507 2508 static inline int 2509 nvme_rdma_process_recv_completion(struct nvme_rdma_poller *poller, struct ibv_wc *wc, 2510 struct nvme_rdma_wr *rdma_wr) 2511 { 2512 struct nvme_rdma_qpair *rqpair; 2513 struct spdk_nvme_rdma_req *rdma_req; 2514 struct spdk_nvme_rdma_rsp *rdma_rsp; 2515 2516 rdma_rsp = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_rsp, rdma_wr); 2517 2518 if (poller && poller->srq) { 2519 rqpair = get_rdma_qpair_from_wc(poller->group, wc); 2520 if (spdk_unlikely(!rqpair)) { 2521 /* Since we do not handle the LAST_WQE_REACHED event, we do not know when 2522 * a Receive Queue in a QP, that is associated with an SRQ, is flushed. 2523 * We may get a WC for a already destroyed QP. 2524 * 2525 * However, for the SRQ, this is not any error. Hence, just re-post the 2526 * receive request to the SRQ to reuse for other QPs, and return 0. 2527 */ 2528 spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr); 2529 return 0; 2530 } 2531 } else { 2532 rqpair = rdma_rsp->rqpair; 2533 if (spdk_unlikely(!rqpair)) { 2534 /* TODO: Fix forceful QP destroy when it is not async mode. 2535 * CQ itself did not cause any error. Hence, return 0 for now. 2536 */ 2537 SPDK_WARNLOG("QP might be already destroyed.\n"); 2538 return 0; 2539 } 2540 } 2541 2542 2543 assert(rqpair->rsps->current_num_recvs > 0); 2544 rqpair->rsps->current_num_recvs--; 2545 2546 if (wc->status) { 2547 nvme_rdma_log_wc_status(rqpair, wc); 2548 goto err_wc; 2549 } 2550 2551 SPDK_DEBUGLOG(nvme, "CQ recv completion\n"); 2552 2553 if (wc->byte_len < sizeof(struct spdk_nvme_cpl)) { 2554 SPDK_ERRLOG("recv length %u less than expected response size\n", wc->byte_len); 2555 goto err_wc; 2556 } 2557 rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid]; 2558 rdma_req->completion_flags |= NVME_RDMA_RECV_COMPLETED; 2559 rdma_req->rdma_rsp = rdma_rsp; 2560 2561 if ((rdma_req->completion_flags & NVME_RDMA_SEND_COMPLETED) == 0) { 2562 return 0; 2563 } 2564 2565 rqpair->num_completions++; 2566 2567 nvme_rdma_request_ready(rqpair, rdma_req); 2568 2569 if (!rqpair->delay_cmd_submit) { 2570 if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) { 2571 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 2572 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2573 return -ENXIO; 2574 } 2575 } 2576 2577 return 1; 2578 2579 err_wc: 2580 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2581 if (poller && poller->srq) { 2582 spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr); 2583 } 2584 return -ENXIO; 2585 } 2586 2587 static inline int 2588 nvme_rdma_process_send_completion(struct nvme_rdma_poller *poller, 2589 struct nvme_rdma_qpair *rdma_qpair, 2590 struct ibv_wc *wc, struct nvme_rdma_wr *rdma_wr) 2591 { 2592 struct nvme_rdma_qpair *rqpair; 2593 struct spdk_nvme_rdma_req *rdma_req; 2594 2595 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_req, rdma_wr); 2596 rqpair = rdma_req->req ? nvme_rdma_qpair(rdma_req->req->qpair) : NULL; 2597 if (!rqpair) { 2598 rqpair = rdma_qpair != NULL ? rdma_qpair : get_rdma_qpair_from_wc(poller->group, wc); 2599 } 2600 2601 /* If we are flushing I/O */ 2602 if (wc->status) { 2603 if (!rqpair) { 2604 /* When poll_group is used, several qpairs share the same CQ and it is possible to 2605 * receive a completion with error (e.g. IBV_WC_WR_FLUSH_ERR) for already disconnected qpair 2606 * That happens due to qpair is destroyed while there are submitted but not completed send/receive 2607 * Work Requests */ 2608 assert(poller); 2609 return 0; 2610 } 2611 assert(rqpair->current_num_sends > 0); 2612 rqpair->current_num_sends--; 2613 nvme_rdma_log_wc_status(rqpair, wc); 2614 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2615 if (rdma_req->rdma_rsp && poller && poller->srq) { 2616 spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_req->rdma_rsp->recv_wr); 2617 } 2618 return -ENXIO; 2619 } 2620 2621 /* We do not support Soft Roce anymore. Other than Soft Roce's bug, we should not 2622 * receive a completion without error status after qpair is disconnected/destroyed. 2623 */ 2624 if (spdk_unlikely(rdma_req->req == NULL)) { 2625 /* 2626 * Some infiniband drivers do not guarantee the previous assumption after we 2627 * received a RDMA_CM_EVENT_DEVICE_REMOVAL event. 2628 */ 2629 SPDK_ERRLOG("Received malformed completion: request 0x%"PRIx64" type %d\n", wc->wr_id, 2630 rdma_wr->type); 2631 if (!rqpair || !rqpair->need_destroy) { 2632 assert(0); 2633 } 2634 return -ENXIO; 2635 } 2636 2637 rdma_req->completion_flags |= NVME_RDMA_SEND_COMPLETED; 2638 assert(rqpair->current_num_sends > 0); 2639 rqpair->current_num_sends--; 2640 2641 if ((rdma_req->completion_flags & NVME_RDMA_RECV_COMPLETED) == 0) { 2642 return 0; 2643 } 2644 2645 rqpair->num_completions++; 2646 2647 nvme_rdma_request_ready(rqpair, rdma_req); 2648 2649 if (!rqpair->delay_cmd_submit) { 2650 if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) { 2651 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 2652 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2653 return -ENXIO; 2654 } 2655 } 2656 2657 return 1; 2658 } 2659 2660 static int 2661 nvme_rdma_cq_process_completions(struct ibv_cq *cq, uint32_t batch_size, 2662 struct nvme_rdma_poller *poller, 2663 struct nvme_rdma_qpair *rdma_qpair, 2664 uint64_t *rdma_completions) 2665 { 2666 struct ibv_wc wc[MAX_COMPLETIONS_PER_POLL]; 2667 struct nvme_rdma_wr *rdma_wr; 2668 uint32_t reaped = 0; 2669 int completion_rc = 0; 2670 int rc, _rc, i; 2671 2672 rc = ibv_poll_cq(cq, batch_size, wc); 2673 if (rc < 0) { 2674 SPDK_ERRLOG("Error polling CQ! (%d): %s\n", 2675 errno, spdk_strerror(errno)); 2676 return -ECANCELED; 2677 } else if (rc == 0) { 2678 return 0; 2679 } 2680 2681 for (i = 0; i < rc; i++) { 2682 rdma_wr = (struct nvme_rdma_wr *)wc[i].wr_id; 2683 switch (rdma_wr->type) { 2684 case RDMA_WR_TYPE_RECV: 2685 _rc = nvme_rdma_process_recv_completion(poller, &wc[i], rdma_wr); 2686 break; 2687 2688 case RDMA_WR_TYPE_SEND: 2689 _rc = nvme_rdma_process_send_completion(poller, rdma_qpair, &wc[i], rdma_wr); 2690 break; 2691 2692 default: 2693 SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", rdma_wr->type); 2694 return -ECANCELED; 2695 } 2696 if (spdk_likely(_rc >= 0)) { 2697 reaped += _rc; 2698 } else { 2699 completion_rc = _rc; 2700 } 2701 } 2702 2703 *rdma_completions += rc; 2704 2705 if (completion_rc) { 2706 return completion_rc; 2707 } 2708 2709 return reaped; 2710 } 2711 2712 static void 2713 dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx) 2714 { 2715 2716 } 2717 2718 static int 2719 nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair, 2720 uint32_t max_completions) 2721 { 2722 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2723 struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(qpair->ctrlr); 2724 int rc = 0, batch_size; 2725 struct ibv_cq *cq; 2726 uint64_t rdma_completions = 0; 2727 2728 /* 2729 * This is used during the connection phase. It's possible that we are still reaping error completions 2730 * from other qpairs so we need to call the poll group function. Also, it's more correct since the cq 2731 * is shared. 2732 */ 2733 if (qpair->poll_group != NULL) { 2734 return spdk_nvme_poll_group_process_completions(qpair->poll_group->group, max_completions, 2735 dummy_disconnected_qpair_cb); 2736 } 2737 2738 if (max_completions == 0) { 2739 max_completions = rqpair->num_entries; 2740 } else { 2741 max_completions = spdk_min(max_completions, rqpair->num_entries); 2742 } 2743 2744 switch (nvme_qpair_get_state(qpair)) { 2745 case NVME_QPAIR_CONNECTING: 2746 rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair); 2747 if (rc == 0) { 2748 /* Once the connection is completed, we can submit queued requests */ 2749 nvme_qpair_resubmit_requests(qpair, rqpair->num_entries); 2750 } else if (rc != -EAGAIN) { 2751 SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair); 2752 goto failed; 2753 } else if (rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING) { 2754 return 0; 2755 } 2756 break; 2757 2758 case NVME_QPAIR_DISCONNECTING: 2759 nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair); 2760 return -ENXIO; 2761 2762 default: 2763 if (nvme_qpair_is_admin_queue(qpair)) { 2764 nvme_rdma_poll_events(rctrlr); 2765 } 2766 nvme_rdma_qpair_process_cm_event(rqpair); 2767 break; 2768 } 2769 2770 if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) { 2771 goto failed; 2772 } 2773 2774 cq = rqpair->cq; 2775 2776 rqpair->num_completions = 0; 2777 do { 2778 batch_size = spdk_min((max_completions - rqpair->num_completions), MAX_COMPLETIONS_PER_POLL); 2779 rc = nvme_rdma_cq_process_completions(cq, batch_size, NULL, rqpair, &rdma_completions); 2780 2781 if (rc == 0) { 2782 break; 2783 /* Handle the case where we fail to poll the cq. */ 2784 } else if (rc == -ECANCELED) { 2785 goto failed; 2786 } else if (rc == -ENXIO) { 2787 return rc; 2788 } 2789 } while (rqpair->num_completions < max_completions); 2790 2791 if (spdk_unlikely(nvme_rdma_qpair_submit_sends(rqpair) || 2792 nvme_rdma_qpair_submit_recvs(rqpair))) { 2793 goto failed; 2794 } 2795 2796 if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) { 2797 nvme_rdma_qpair_check_timeout(qpair); 2798 } 2799 2800 return rqpair->num_completions; 2801 2802 failed: 2803 nvme_rdma_fail_qpair(qpair, 0); 2804 return -ENXIO; 2805 } 2806 2807 static uint32_t 2808 nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr) 2809 { 2810 /* max_mr_size by ibv_query_device indicates the largest value that we can 2811 * set for a registered memory region. It is independent from the actual 2812 * I/O size and is very likely to be larger than 2 MiB which is the 2813 * granularity we currently register memory regions. Hence return 2814 * UINT32_MAX here and let the generic layer use the controller data to 2815 * moderate this value. 2816 */ 2817 return UINT32_MAX; 2818 } 2819 2820 static uint16_t 2821 nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr) 2822 { 2823 struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr); 2824 uint32_t max_sge = rctrlr->max_sge; 2825 uint32_t max_in_capsule_sge = (ctrlr->cdata.nvmf_specific.ioccsz * 16 - 2826 sizeof(struct spdk_nvme_cmd)) / 2827 sizeof(struct spdk_nvme_sgl_descriptor); 2828 2829 /* Max SGE is limited by capsule size */ 2830 max_sge = spdk_min(max_sge, max_in_capsule_sge); 2831 /* Max SGE may be limited by MSDBD */ 2832 if (ctrlr->cdata.nvmf_specific.msdbd != 0) { 2833 max_sge = spdk_min(max_sge, ctrlr->cdata.nvmf_specific.msdbd); 2834 } 2835 2836 /* Max SGE can't be less than 1 */ 2837 max_sge = spdk_max(1, max_sge); 2838 return max_sge; 2839 } 2840 2841 static int 2842 nvme_rdma_qpair_iterate_requests(struct spdk_nvme_qpair *qpair, 2843 int (*iter_fn)(struct nvme_request *req, void *arg), 2844 void *arg) 2845 { 2846 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2847 struct spdk_nvme_rdma_req *rdma_req, *tmp; 2848 int rc; 2849 2850 assert(iter_fn != NULL); 2851 2852 TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { 2853 assert(rdma_req->req != NULL); 2854 2855 rc = iter_fn(rdma_req->req, arg); 2856 if (rc != 0) { 2857 return rc; 2858 } 2859 } 2860 2861 return 0; 2862 } 2863 2864 static void 2865 nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair) 2866 { 2867 struct spdk_nvme_rdma_req *rdma_req, *tmp; 2868 struct spdk_nvme_cpl cpl; 2869 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2870 2871 cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; 2872 cpl.status.sct = SPDK_NVME_SCT_GENERIC; 2873 2874 TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { 2875 assert(rdma_req->req != NULL); 2876 2877 if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { 2878 continue; 2879 } 2880 2881 nvme_rdma_req_complete(rdma_req, &cpl, false); 2882 } 2883 } 2884 2885 static void 2886 nvme_rdma_poller_destroy(struct nvme_rdma_poller *poller) 2887 { 2888 if (poller->cq) { 2889 ibv_destroy_cq(poller->cq); 2890 } 2891 if (poller->rsps) { 2892 nvme_rdma_free_rsps(poller->rsps); 2893 } 2894 if (poller->srq) { 2895 spdk_rdma_provider_srq_destroy(poller->srq); 2896 } 2897 if (poller->mr_map) { 2898 spdk_rdma_free_mem_map(&poller->mr_map); 2899 } 2900 if (poller->pd) { 2901 spdk_rdma_put_pd(poller->pd); 2902 } 2903 free(poller); 2904 } 2905 2906 static struct nvme_rdma_poller * 2907 nvme_rdma_poller_create(struct nvme_rdma_poll_group *group, struct ibv_context *ctx) 2908 { 2909 struct nvme_rdma_poller *poller; 2910 struct ibv_device_attr dev_attr; 2911 struct spdk_rdma_provider_srq_init_attr srq_init_attr = {}; 2912 struct nvme_rdma_rsp_opts opts; 2913 int num_cqe, max_num_cqe; 2914 int rc; 2915 2916 poller = calloc(1, sizeof(*poller)); 2917 if (poller == NULL) { 2918 SPDK_ERRLOG("Unable to allocate poller.\n"); 2919 return NULL; 2920 } 2921 2922 poller->group = group; 2923 poller->device = ctx; 2924 2925 if (g_spdk_nvme_transport_opts.rdma_srq_size != 0) { 2926 rc = ibv_query_device(ctx, &dev_attr); 2927 if (rc) { 2928 SPDK_ERRLOG("Unable to query RDMA device.\n"); 2929 goto fail; 2930 } 2931 2932 poller->pd = spdk_rdma_get_pd(ctx); 2933 if (poller->pd == NULL) { 2934 SPDK_ERRLOG("Unable to get PD.\n"); 2935 goto fail; 2936 } 2937 2938 poller->mr_map = spdk_rdma_create_mem_map(poller->pd, &g_nvme_hooks, 2939 SPDK_RDMA_MEMORY_MAP_ROLE_INITIATOR); 2940 if (poller->mr_map == NULL) { 2941 SPDK_ERRLOG("Unable to create memory map.\n"); 2942 goto fail; 2943 } 2944 2945 srq_init_attr.stats = &poller->stats.rdma_stats.recv; 2946 srq_init_attr.pd = poller->pd; 2947 srq_init_attr.srq_init_attr.attr.max_wr = spdk_min((uint32_t)dev_attr.max_srq_wr, 2948 g_spdk_nvme_transport_opts.rdma_srq_size); 2949 srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(dev_attr.max_sge, 2950 NVME_RDMA_DEFAULT_RX_SGE); 2951 2952 poller->srq = spdk_rdma_provider_srq_create(&srq_init_attr); 2953 if (poller->srq == NULL) { 2954 SPDK_ERRLOG("Unable to create SRQ.\n"); 2955 goto fail; 2956 } 2957 2958 opts.num_entries = g_spdk_nvme_transport_opts.rdma_srq_size; 2959 opts.rqpair = NULL; 2960 opts.srq = poller->srq; 2961 opts.mr_map = poller->mr_map; 2962 2963 poller->rsps = nvme_rdma_create_rsps(&opts); 2964 if (poller->rsps == NULL) { 2965 SPDK_ERRLOG("Unable to create poller RDMA responses.\n"); 2966 goto fail; 2967 } 2968 2969 rc = nvme_rdma_poller_submit_recvs(poller); 2970 if (rc) { 2971 SPDK_ERRLOG("Unable to submit poller RDMA responses.\n"); 2972 goto fail; 2973 } 2974 2975 /* 2976 * When using an srq, fix the size of the completion queue at startup. 2977 * The initiator sends only send and recv WRs. Hence, the multiplier is 2. 2978 * (The target sends also data WRs. Hence, the multiplier is 3.) 2979 */ 2980 num_cqe = g_spdk_nvme_transport_opts.rdma_srq_size * 2; 2981 } else { 2982 num_cqe = DEFAULT_NVME_RDMA_CQ_SIZE; 2983 } 2984 2985 max_num_cqe = g_spdk_nvme_transport_opts.rdma_max_cq_size; 2986 if (max_num_cqe != 0 && num_cqe > max_num_cqe) { 2987 num_cqe = max_num_cqe; 2988 } 2989 2990 poller->cq = ibv_create_cq(poller->device, num_cqe, group, NULL, 0); 2991 2992 if (poller->cq == NULL) { 2993 SPDK_ERRLOG("Unable to create CQ, errno %d.\n", errno); 2994 goto fail; 2995 } 2996 2997 STAILQ_INSERT_HEAD(&group->pollers, poller, link); 2998 group->num_pollers++; 2999 poller->current_num_wc = num_cqe; 3000 poller->required_num_wc = 0; 3001 return poller; 3002 3003 fail: 3004 nvme_rdma_poller_destroy(poller); 3005 return NULL; 3006 } 3007 3008 static void 3009 nvme_rdma_poll_group_free_pollers(struct nvme_rdma_poll_group *group) 3010 { 3011 struct nvme_rdma_poller *poller, *tmp_poller; 3012 3013 STAILQ_FOREACH_SAFE(poller, &group->pollers, link, tmp_poller) { 3014 assert(poller->refcnt == 0); 3015 if (poller->refcnt) { 3016 SPDK_WARNLOG("Destroying poller with non-zero ref count: poller %p, refcnt %d\n", 3017 poller, poller->refcnt); 3018 } 3019 3020 STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link); 3021 nvme_rdma_poller_destroy(poller); 3022 } 3023 } 3024 3025 static struct nvme_rdma_poller * 3026 nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group, struct ibv_context *device) 3027 { 3028 struct nvme_rdma_poller *poller = NULL; 3029 3030 STAILQ_FOREACH(poller, &group->pollers, link) { 3031 if (poller->device == device) { 3032 break; 3033 } 3034 } 3035 3036 if (!poller) { 3037 poller = nvme_rdma_poller_create(group, device); 3038 if (!poller) { 3039 SPDK_ERRLOG("Failed to create a poller for device %p\n", device); 3040 return NULL; 3041 } 3042 } 3043 3044 poller->refcnt++; 3045 return poller; 3046 } 3047 3048 static void 3049 nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group, struct nvme_rdma_poller *poller) 3050 { 3051 assert(poller->refcnt > 0); 3052 if (--poller->refcnt == 0) { 3053 STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link); 3054 group->num_pollers--; 3055 nvme_rdma_poller_destroy(poller); 3056 } 3057 } 3058 3059 static struct spdk_nvme_transport_poll_group * 3060 nvme_rdma_poll_group_create(void) 3061 { 3062 struct nvme_rdma_poll_group *group; 3063 3064 group = calloc(1, sizeof(*group)); 3065 if (group == NULL) { 3066 SPDK_ERRLOG("Unable to allocate poll group.\n"); 3067 return NULL; 3068 } 3069 3070 STAILQ_INIT(&group->pollers); 3071 TAILQ_INIT(&group->connecting_qpairs); 3072 TAILQ_INIT(&group->active_qpairs); 3073 return &group->group; 3074 } 3075 3076 static int 3077 nvme_rdma_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair) 3078 { 3079 return 0; 3080 } 3081 3082 static int 3083 nvme_rdma_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair) 3084 { 3085 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 3086 struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group); 3087 3088 if (rqpair->link_connecting.tqe_prev) { 3089 TAILQ_REMOVE(&group->connecting_qpairs, rqpair, link_connecting); 3090 /* We use prev pointer to check if qpair is in connecting list or not . 3091 * TAILQ_REMOVE doesn't do it. So, we do it manually. 3092 */ 3093 rqpair->link_connecting.tqe_prev = NULL; 3094 } 3095 3096 return 0; 3097 } 3098 3099 static int 3100 nvme_rdma_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup, 3101 struct spdk_nvme_qpair *qpair) 3102 { 3103 return 0; 3104 } 3105 3106 static int 3107 nvme_rdma_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup, 3108 struct spdk_nvme_qpair *qpair) 3109 { 3110 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 3111 struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group); 3112 3113 if (rqpair->link_active.tqe_prev) { 3114 TAILQ_REMOVE(&group->active_qpairs, rqpair, link_active); 3115 rqpair->link_active.tqe_prev = NULL; 3116 } 3117 3118 return 0; 3119 } 3120 3121 static inline void 3122 nvme_rdma_qpair_process_submits(struct nvme_rdma_poll_group *group, 3123 struct nvme_rdma_qpair *rqpair) 3124 { 3125 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 3126 3127 assert(rqpair->link_active.tqe_prev != NULL); 3128 3129 if (spdk_unlikely(rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING || 3130 rqpair->state >= NVME_RDMA_QPAIR_STATE_EXITING)) { 3131 return; 3132 } 3133 3134 if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) { 3135 nvme_rdma_qpair_check_timeout(qpair); 3136 } 3137 3138 nvme_rdma_qpair_submit_sends(rqpair); 3139 if (!rqpair->srq) { 3140 nvme_rdma_qpair_submit_recvs(rqpair); 3141 } 3142 if (rqpair->num_completions > 0) { 3143 nvme_qpair_resubmit_requests(qpair, rqpair->num_completions); 3144 rqpair->num_completions = 0; 3145 } 3146 3147 if (rqpair->num_outstanding_reqs == 0 && STAILQ_EMPTY(&qpair->queued_req)) { 3148 TAILQ_REMOVE(&group->active_qpairs, rqpair, link_active); 3149 /* We use prev pointer to check if qpair is in active list or not. 3150 * TAILQ_REMOVE doesn't do it. So, we do it manually. 3151 */ 3152 rqpair->link_active.tqe_prev = NULL; 3153 } 3154 } 3155 3156 static int64_t 3157 nvme_rdma_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup, 3158 uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb) 3159 { 3160 struct spdk_nvme_qpair *qpair, *tmp_qpair; 3161 struct nvme_rdma_qpair *rqpair, *tmp_rqpair; 3162 struct nvme_rdma_poll_group *group; 3163 struct nvme_rdma_poller *poller; 3164 int batch_size, rc, rc2 = 0; 3165 int64_t total_completions = 0; 3166 uint64_t completions_allowed = 0; 3167 uint64_t completions_per_poller = 0; 3168 uint64_t poller_completions = 0; 3169 uint64_t rdma_completions; 3170 3171 if (completions_per_qpair == 0) { 3172 completions_per_qpair = MAX_COMPLETIONS_PER_POLL; 3173 } 3174 3175 group = nvme_rdma_poll_group(tgroup); 3176 3177 STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) { 3178 rc = nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair); 3179 if (rc == 0) { 3180 disconnected_qpair_cb(qpair, tgroup->group->ctx); 3181 } 3182 } 3183 3184 TAILQ_FOREACH_SAFE(rqpair, &group->connecting_qpairs, link_connecting, tmp_rqpair) { 3185 qpair = &rqpair->qpair; 3186 3187 rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair); 3188 if (rc == 0 || rc != -EAGAIN) { 3189 TAILQ_REMOVE(&group->connecting_qpairs, rqpair, link_connecting); 3190 /* We use prev pointer to check if qpair is in connecting list or not. 3191 * TAILQ_REMOVE does not do it. So, we do it manually. 3192 */ 3193 rqpair->link_connecting.tqe_prev = NULL; 3194 3195 if (rc == 0) { 3196 /* Once the connection is completed, we can submit queued requests */ 3197 nvme_qpair_resubmit_requests(qpair, rqpair->num_entries); 3198 } else if (rc != -EAGAIN) { 3199 SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair); 3200 nvme_rdma_fail_qpair(qpair, 0); 3201 } 3202 } 3203 } 3204 3205 STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) { 3206 rqpair = nvme_rdma_qpair(qpair); 3207 3208 if (spdk_likely(nvme_qpair_get_state(qpair) != NVME_QPAIR_CONNECTING)) { 3209 nvme_rdma_qpair_process_cm_event(rqpair); 3210 } 3211 3212 if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) { 3213 rc2 = -ENXIO; 3214 nvme_rdma_fail_qpair(qpair, 0); 3215 } 3216 } 3217 3218 completions_allowed = completions_per_qpair * tgroup->num_connected_qpairs; 3219 if (group->num_pollers) { 3220 completions_per_poller = spdk_max(completions_allowed / group->num_pollers, 1); 3221 } 3222 3223 STAILQ_FOREACH(poller, &group->pollers, link) { 3224 poller_completions = 0; 3225 rdma_completions = 0; 3226 do { 3227 poller->stats.polls++; 3228 batch_size = spdk_min((completions_per_poller - poller_completions), MAX_COMPLETIONS_PER_POLL); 3229 rc = nvme_rdma_cq_process_completions(poller->cq, batch_size, poller, NULL, &rdma_completions); 3230 if (rc <= 0) { 3231 if (rc == -ECANCELED) { 3232 return -EIO; 3233 } else if (rc == 0) { 3234 poller->stats.idle_polls++; 3235 } 3236 break; 3237 } 3238 3239 poller_completions += rc; 3240 } while (poller_completions < completions_per_poller); 3241 total_completions += poller_completions; 3242 poller->stats.completions += rdma_completions; 3243 if (poller->srq) { 3244 nvme_rdma_poller_submit_recvs(poller); 3245 } 3246 } 3247 3248 TAILQ_FOREACH_SAFE(rqpair, &group->active_qpairs, link_active, tmp_rqpair) { 3249 nvme_rdma_qpair_process_submits(group, rqpair); 3250 } 3251 3252 return rc2 != 0 ? rc2 : total_completions; 3253 } 3254 3255 static int 3256 nvme_rdma_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup) 3257 { 3258 struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(tgroup); 3259 3260 if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) { 3261 return -EBUSY; 3262 } 3263 3264 nvme_rdma_poll_group_free_pollers(group); 3265 free(group); 3266 3267 return 0; 3268 } 3269 3270 static int 3271 nvme_rdma_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup, 3272 struct spdk_nvme_transport_poll_group_stat **_stats) 3273 { 3274 struct nvme_rdma_poll_group *group; 3275 struct spdk_nvme_transport_poll_group_stat *stats; 3276 struct spdk_nvme_rdma_device_stat *device_stat; 3277 struct nvme_rdma_poller *poller; 3278 uint32_t i = 0; 3279 3280 if (tgroup == NULL || _stats == NULL) { 3281 SPDK_ERRLOG("Invalid stats or group pointer\n"); 3282 return -EINVAL; 3283 } 3284 3285 group = nvme_rdma_poll_group(tgroup); 3286 stats = calloc(1, sizeof(*stats)); 3287 if (!stats) { 3288 SPDK_ERRLOG("Can't allocate memory for RDMA stats\n"); 3289 return -ENOMEM; 3290 } 3291 stats->trtype = SPDK_NVME_TRANSPORT_RDMA; 3292 stats->rdma.num_devices = group->num_pollers; 3293 3294 if (stats->rdma.num_devices == 0) { 3295 *_stats = stats; 3296 return 0; 3297 } 3298 3299 stats->rdma.device_stats = calloc(stats->rdma.num_devices, sizeof(*stats->rdma.device_stats)); 3300 if (!stats->rdma.device_stats) { 3301 SPDK_ERRLOG("Can't allocate memory for RDMA device stats\n"); 3302 free(stats); 3303 return -ENOMEM; 3304 } 3305 3306 STAILQ_FOREACH(poller, &group->pollers, link) { 3307 device_stat = &stats->rdma.device_stats[i]; 3308 device_stat->name = poller->device->device->name; 3309 device_stat->polls = poller->stats.polls; 3310 device_stat->idle_polls = poller->stats.idle_polls; 3311 device_stat->completions = poller->stats.completions; 3312 device_stat->queued_requests = poller->stats.queued_requests; 3313 device_stat->total_send_wrs = poller->stats.rdma_stats.send.num_submitted_wrs; 3314 device_stat->send_doorbell_updates = poller->stats.rdma_stats.send.doorbell_updates; 3315 device_stat->total_recv_wrs = poller->stats.rdma_stats.recv.num_submitted_wrs; 3316 device_stat->recv_doorbell_updates = poller->stats.rdma_stats.recv.doorbell_updates; 3317 i++; 3318 } 3319 3320 *_stats = stats; 3321 3322 return 0; 3323 } 3324 3325 static void 3326 nvme_rdma_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup, 3327 struct spdk_nvme_transport_poll_group_stat *stats) 3328 { 3329 if (stats) { 3330 free(stats->rdma.device_stats); 3331 } 3332 free(stats); 3333 } 3334 3335 static int 3336 nvme_rdma_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr, 3337 struct spdk_memory_domain **domains, int array_size) 3338 { 3339 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(ctrlr->adminq); 3340 3341 if (domains && array_size > 0) { 3342 domains[0] = rqpair->memory_domain->domain; 3343 } 3344 3345 return 1; 3346 } 3347 3348 void 3349 spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) 3350 { 3351 g_nvme_hooks = *hooks; 3352 } 3353 3354 const struct spdk_nvme_transport_ops rdma_ops = { 3355 .name = "RDMA", 3356 .type = SPDK_NVME_TRANSPORT_RDMA, 3357 .ctrlr_construct = nvme_rdma_ctrlr_construct, 3358 .ctrlr_scan = nvme_fabric_ctrlr_scan, 3359 .ctrlr_destruct = nvme_rdma_ctrlr_destruct, 3360 .ctrlr_enable = nvme_rdma_ctrlr_enable, 3361 3362 .ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4, 3363 .ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8, 3364 .ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4, 3365 .ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8, 3366 .ctrlr_set_reg_4_async = nvme_fabric_ctrlr_set_reg_4_async, 3367 .ctrlr_set_reg_8_async = nvme_fabric_ctrlr_set_reg_8_async, 3368 .ctrlr_get_reg_4_async = nvme_fabric_ctrlr_get_reg_4_async, 3369 .ctrlr_get_reg_8_async = nvme_fabric_ctrlr_get_reg_8_async, 3370 3371 .ctrlr_get_max_xfer_size = nvme_rdma_ctrlr_get_max_xfer_size, 3372 .ctrlr_get_max_sges = nvme_rdma_ctrlr_get_max_sges, 3373 3374 .ctrlr_create_io_qpair = nvme_rdma_ctrlr_create_io_qpair, 3375 .ctrlr_delete_io_qpair = nvme_rdma_ctrlr_delete_io_qpair, 3376 .ctrlr_connect_qpair = nvme_rdma_ctrlr_connect_qpair, 3377 .ctrlr_disconnect_qpair = nvme_rdma_ctrlr_disconnect_qpair, 3378 3379 .ctrlr_get_memory_domains = nvme_rdma_ctrlr_get_memory_domains, 3380 3381 .qpair_abort_reqs = nvme_rdma_qpair_abort_reqs, 3382 .qpair_reset = nvme_rdma_qpair_reset, 3383 .qpair_submit_request = nvme_rdma_qpair_submit_request, 3384 .qpair_process_completions = nvme_rdma_qpair_process_completions, 3385 .qpair_iterate_requests = nvme_rdma_qpair_iterate_requests, 3386 .admin_qpair_abort_aers = nvme_rdma_admin_qpair_abort_aers, 3387 3388 .poll_group_create = nvme_rdma_poll_group_create, 3389 .poll_group_connect_qpair = nvme_rdma_poll_group_connect_qpair, 3390 .poll_group_disconnect_qpair = nvme_rdma_poll_group_disconnect_qpair, 3391 .poll_group_add = nvme_rdma_poll_group_add, 3392 .poll_group_remove = nvme_rdma_poll_group_remove, 3393 .poll_group_process_completions = nvme_rdma_poll_group_process_completions, 3394 .poll_group_destroy = nvme_rdma_poll_group_destroy, 3395 .poll_group_get_stats = nvme_rdma_poll_group_get_stats, 3396 .poll_group_free_stats = nvme_rdma_poll_group_free_stats, 3397 }; 3398 3399 SPDK_NVME_TRANSPORT_REGISTER(rdma, &rdma_ops); 3400