xref: /spdk/lib/nvme/nvme_rdma.c (revision b30d57cdad6d2bc75cc1e4e2ebbcebcb0d98dcfa)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * NVMe over RDMA transport
36  */
37 
38 #include "spdk/stdinc.h"
39 
40 #include "spdk/assert.h"
41 #include "spdk/log.h"
42 #include "spdk/trace.h"
43 #include "spdk/queue.h"
44 #include "spdk/nvme.h"
45 #include "spdk/nvmf_spec.h"
46 #include "spdk/string.h"
47 #include "spdk/endian.h"
48 #include "spdk/likely.h"
49 #include "spdk/config.h"
50 
51 #include "nvme_internal.h"
52 #include "spdk_internal/rdma.h"
53 
54 #define NVME_RDMA_TIME_OUT_IN_MS 2000
55 #define NVME_RDMA_RW_BUFFER_SIZE 131072
56 
57 /*
58  * NVME RDMA qpair Resource Defaults
59  */
60 #define NVME_RDMA_DEFAULT_TX_SGE		2
61 #define NVME_RDMA_DEFAULT_RX_SGE		1
62 
63 /* Max number of NVMe-oF SGL descriptors supported by the host */
64 #define NVME_RDMA_MAX_SGL_DESCRIPTORS		16
65 
66 /* number of STAILQ entries for holding pending RDMA CM events. */
67 #define NVME_RDMA_NUM_CM_EVENTS			256
68 
69 /* CM event processing timeout */
70 #define NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US	1000000
71 
72 /* The default size for a shared rdma completion queue. */
73 #define DEFAULT_NVME_RDMA_CQ_SIZE		4096
74 
75 /*
76  * In the special case of a stale connection we don't expose a mechanism
77  * for the user to retry the connection so we need to handle it internally.
78  */
79 #define NVME_RDMA_STALE_CONN_RETRY_MAX		5
80 #define NVME_RDMA_STALE_CONN_RETRY_DELAY_US	10000
81 
82 /*
83  * Maximum value of transport_retry_count used by RDMA controller
84  */
85 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT	7
86 
87 /*
88  * Maximum value of transport_ack_timeout used by RDMA controller
89  */
90 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT	31
91 
92 /*
93  * Number of poller cycles to keep a pointer to destroyed qpairs
94  * in the poll group.
95  */
96 #define NVME_RDMA_DESTROYED_QPAIR_EXPIRATION_CYCLES	50
97 
98 /*
99  * The max length of keyed SGL data block (3 bytes)
100  */
101 #define NVME_RDMA_MAX_KEYED_SGL_LENGTH ((1u << 24u) - 1)
102 
103 #define WC_PER_QPAIR(queue_depth)	(queue_depth * 2)
104 
105 enum nvme_rdma_wr_type {
106 	RDMA_WR_TYPE_RECV,
107 	RDMA_WR_TYPE_SEND,
108 };
109 
110 struct nvme_rdma_wr {
111 	/* Using this instead of the enum allows this struct to only occupy one byte. */
112 	uint8_t	type;
113 };
114 
115 struct spdk_nvmf_cmd {
116 	struct spdk_nvme_cmd cmd;
117 	struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS];
118 };
119 
120 struct spdk_nvme_rdma_hooks g_nvme_hooks = {};
121 
122 /* STAILQ wrapper for cm events. */
123 struct nvme_rdma_cm_event_entry {
124 	struct rdma_cm_event			*evt;
125 	STAILQ_ENTRY(nvme_rdma_cm_event_entry)	link;
126 };
127 
128 /* NVMe RDMA transport extensions for spdk_nvme_ctrlr */
129 struct nvme_rdma_ctrlr {
130 	struct spdk_nvme_ctrlr			ctrlr;
131 
132 	struct ibv_pd				*pd;
133 
134 	uint16_t				max_sge;
135 
136 	struct rdma_event_channel		*cm_channel;
137 
138 	STAILQ_HEAD(, nvme_rdma_cm_event_entry)	pending_cm_events;
139 
140 	STAILQ_HEAD(, nvme_rdma_cm_event_entry)	free_cm_events;
141 
142 	struct nvme_rdma_cm_event_entry		*cm_events;
143 };
144 
145 struct nvme_rdma_destroyed_qpair {
146 	struct nvme_rdma_qpair			*destroyed_qpair_tracker;
147 	uint32_t				completed_cycles;
148 	STAILQ_ENTRY(nvme_rdma_destroyed_qpair)	link;
149 };
150 
151 struct nvme_rdma_poller {
152 	struct ibv_context		*device;
153 	struct ibv_cq			*cq;
154 	int				required_num_wc;
155 	int				current_num_wc;
156 	STAILQ_ENTRY(nvme_rdma_poller)	link;
157 };
158 
159 struct nvme_rdma_poll_group {
160 	struct spdk_nvme_transport_poll_group		group;
161 	STAILQ_HEAD(, nvme_rdma_poller)			pollers;
162 	int						num_pollers;
163 	STAILQ_HEAD(, nvme_rdma_destroyed_qpair)	destroyed_qpairs;
164 };
165 
166 struct spdk_nvme_recv_wr_list {
167 	struct ibv_recv_wr	*first;
168 	struct ibv_recv_wr	*last;
169 };
170 
171 /* Memory regions */
172 union nvme_rdma_mr {
173 	struct ibv_mr	*mr;
174 	uint64_t	key;
175 };
176 
177 /* NVMe RDMA qpair extensions for spdk_nvme_qpair */
178 struct nvme_rdma_qpair {
179 	struct spdk_nvme_qpair			qpair;
180 
181 	struct spdk_rdma_qp			*rdma_qp;
182 	struct rdma_cm_id			*cm_id;
183 	struct ibv_cq				*cq;
184 
185 	struct	spdk_nvme_rdma_req		*rdma_reqs;
186 
187 	uint32_t				max_send_sge;
188 
189 	uint32_t				max_recv_sge;
190 
191 	uint16_t				num_entries;
192 
193 	bool					delay_cmd_submit;
194 
195 	bool					poll_group_disconnect_in_progress;
196 
197 	uint32_t				num_completions;
198 
199 	/* Parallel arrays of response buffers + response SGLs of size num_entries */
200 	struct ibv_sge				*rsp_sgls;
201 	struct spdk_nvme_rdma_rsp		*rsps;
202 
203 	struct ibv_recv_wr			*rsp_recv_wrs;
204 
205 	struct spdk_nvme_recv_wr_list		recvs_to_post;
206 
207 	/* Memory region describing all rsps for this qpair */
208 	union nvme_rdma_mr			rsp_mr;
209 
210 	/*
211 	 * Array of num_entries NVMe commands registered as RDMA message buffers.
212 	 * Indexed by rdma_req->id.
213 	 */
214 	struct spdk_nvmf_cmd			*cmds;
215 
216 	/* Memory region describing all cmds for this qpair */
217 	union nvme_rdma_mr			cmd_mr;
218 
219 	struct spdk_rdma_mem_map		*mr_map;
220 
221 	TAILQ_HEAD(, spdk_nvme_rdma_req)	free_reqs;
222 	TAILQ_HEAD(, spdk_nvme_rdma_req)	outstanding_reqs;
223 
224 	/* Counts of outstanding send and recv objects */
225 	uint16_t				current_num_recvs;
226 	uint16_t				current_num_sends;
227 
228 	/* Placed at the end of the struct since it is not used frequently */
229 	struct rdma_cm_event			*evt;
230 
231 	/* Used by poll group to keep the qpair around until it is ready to remove it. */
232 	bool					defer_deletion_to_pg;
233 };
234 
235 enum NVME_RDMA_COMPLETION_FLAGS {
236 	NVME_RDMA_SEND_COMPLETED = 1u << 0,
237 	NVME_RDMA_RECV_COMPLETED = 1u << 1,
238 };
239 
240 struct spdk_nvme_rdma_req {
241 	uint16_t				id;
242 	uint16_t				completion_flags: 2;
243 	uint16_t				reserved: 14;
244 	/* if completion of RDMA_RECV received before RDMA_SEND, we will complete nvme request
245 	 * during processing of RDMA_SEND. To complete the request we must know the index
246 	 * of nvme_cpl received in RDMA_RECV, so store it in this field */
247 	uint16_t				rsp_idx;
248 
249 	struct nvme_rdma_wr			rdma_wr;
250 
251 	struct ibv_send_wr			send_wr;
252 
253 	struct nvme_request			*req;
254 
255 	struct ibv_sge				send_sgl[NVME_RDMA_DEFAULT_TX_SGE];
256 
257 	TAILQ_ENTRY(spdk_nvme_rdma_req)		link;
258 };
259 
260 struct spdk_nvme_rdma_rsp {
261 	struct spdk_nvme_cpl	cpl;
262 	struct nvme_rdma_qpair	*rqpair;
263 	uint16_t		idx;
264 	struct nvme_rdma_wr	rdma_wr;
265 };
266 
267 static const char *rdma_cm_event_str[] = {
268 	"RDMA_CM_EVENT_ADDR_RESOLVED",
269 	"RDMA_CM_EVENT_ADDR_ERROR",
270 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
271 	"RDMA_CM_EVENT_ROUTE_ERROR",
272 	"RDMA_CM_EVENT_CONNECT_REQUEST",
273 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
274 	"RDMA_CM_EVENT_CONNECT_ERROR",
275 	"RDMA_CM_EVENT_UNREACHABLE",
276 	"RDMA_CM_EVENT_REJECTED",
277 	"RDMA_CM_EVENT_ESTABLISHED",
278 	"RDMA_CM_EVENT_DISCONNECTED",
279 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
280 	"RDMA_CM_EVENT_MULTICAST_JOIN",
281 	"RDMA_CM_EVENT_MULTICAST_ERROR",
282 	"RDMA_CM_EVENT_ADDR_CHANGE",
283 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
284 };
285 
286 struct nvme_rdma_qpair *nvme_rdma_poll_group_get_qpair_by_id(struct nvme_rdma_poll_group *group,
287 		uint32_t qp_num);
288 
289 static inline void *
290 nvme_rdma_calloc(size_t nmemb, size_t size)
291 {
292 	if (!nmemb || !size) {
293 		return NULL;
294 	}
295 
296 	if (!g_nvme_hooks.get_rkey) {
297 		return calloc(nmemb, size);
298 	} else {
299 		return spdk_zmalloc(nmemb * size, 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
300 	}
301 }
302 
303 static inline void
304 nvme_rdma_free(void *buf)
305 {
306 	if (!g_nvme_hooks.get_rkey) {
307 		free(buf);
308 	} else {
309 		spdk_free(buf);
310 	}
311 }
312 
313 static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
314 		struct spdk_nvme_qpair *qpair);
315 
316 static inline struct nvme_rdma_qpair *
317 nvme_rdma_qpair(struct spdk_nvme_qpair *qpair)
318 {
319 	assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA);
320 	return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair);
321 }
322 
323 static inline struct nvme_rdma_poll_group *
324 nvme_rdma_poll_group(struct spdk_nvme_transport_poll_group *group)
325 {
326 	return (SPDK_CONTAINEROF(group, struct nvme_rdma_poll_group, group));
327 }
328 
329 static inline struct nvme_rdma_ctrlr *
330 nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
331 {
332 	assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA);
333 	return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr);
334 }
335 
336 static struct spdk_nvme_rdma_req *
337 nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair)
338 {
339 	struct spdk_nvme_rdma_req *rdma_req;
340 
341 	rdma_req = TAILQ_FIRST(&rqpair->free_reqs);
342 	if (rdma_req) {
343 		TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link);
344 		TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link);
345 	}
346 
347 	return rdma_req;
348 }
349 
350 static void
351 nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
352 {
353 	rdma_req->completion_flags = 0;
354 	rdma_req->req = NULL;
355 	TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link);
356 }
357 
358 static void
359 nvme_rdma_req_complete(struct spdk_nvme_rdma_req *rdma_req,
360 		       struct spdk_nvme_cpl *rsp)
361 {
362 	struct nvme_request *req = rdma_req->req;
363 	struct nvme_rdma_qpair *rqpair;
364 
365 	assert(req != NULL);
366 
367 	rqpair = nvme_rdma_qpair(req->qpair);
368 	TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
369 
370 	nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, rsp);
371 	nvme_free_request(req);
372 }
373 
374 static const char *
375 nvme_rdma_cm_event_str_get(uint32_t event)
376 {
377 	if (event < SPDK_COUNTOF(rdma_cm_event_str)) {
378 		return rdma_cm_event_str[event];
379 	} else {
380 		return "Undefined";
381 	}
382 }
383 
384 
385 static int
386 nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair)
387 {
388 	struct rdma_cm_event				*event = rqpair->evt;
389 	struct spdk_nvmf_rdma_accept_private_data	*accept_data;
390 	int						rc = 0;
391 
392 	if (event) {
393 		switch (event->event) {
394 		case RDMA_CM_EVENT_ADDR_RESOLVED:
395 		case RDMA_CM_EVENT_ADDR_ERROR:
396 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
397 		case RDMA_CM_EVENT_ROUTE_ERROR:
398 			break;
399 		case RDMA_CM_EVENT_CONNECT_REQUEST:
400 			break;
401 		case RDMA_CM_EVENT_CONNECT_ERROR:
402 			break;
403 		case RDMA_CM_EVENT_UNREACHABLE:
404 		case RDMA_CM_EVENT_REJECTED:
405 			break;
406 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
407 			rc = spdk_rdma_qp_complete_connect(rqpair->rdma_qp);
408 		/* fall through */
409 		case RDMA_CM_EVENT_ESTABLISHED:
410 			accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data;
411 			if (accept_data == NULL) {
412 				rc = -1;
413 			} else {
414 				SPDK_DEBUGLOG(nvme, "Requested queue depth %d. Actually got queue depth %d.\n",
415 					      rqpair->num_entries, accept_data->crqsize);
416 				rqpair->num_entries = spdk_min(rqpair->num_entries, accept_data->crqsize);
417 			}
418 			break;
419 		case RDMA_CM_EVENT_DISCONNECTED:
420 			rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
421 			break;
422 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
423 			rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
424 			break;
425 		case RDMA_CM_EVENT_MULTICAST_JOIN:
426 		case RDMA_CM_EVENT_MULTICAST_ERROR:
427 			break;
428 		case RDMA_CM_EVENT_ADDR_CHANGE:
429 			rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
430 			break;
431 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
432 			break;
433 		default:
434 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
435 			break;
436 		}
437 		rqpair->evt = NULL;
438 		rdma_ack_cm_event(event);
439 	}
440 
441 	return rc;
442 }
443 
444 /*
445  * This function must be called under the nvme controller's lock
446  * because it touches global controller variables. The lock is taken
447  * by the generic transport code before invoking a few of the functions
448  * in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair,
449  * and conditionally nvme_rdma_qpair_process_completions when it is calling
450  * completions on the admin qpair. When adding a new call to this function, please
451  * verify that it is in a situation where it falls under the lock.
452  */
453 static int
454 nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr)
455 {
456 	struct nvme_rdma_cm_event_entry	*entry, *tmp;
457 	struct nvme_rdma_qpair		*event_qpair;
458 	struct rdma_cm_event		*event;
459 	struct rdma_event_channel	*channel = rctrlr->cm_channel;
460 
461 	STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
462 		event_qpair = nvme_rdma_qpair(entry->evt->id->context);
463 		if (event_qpair->evt == NULL) {
464 			event_qpair->evt = entry->evt;
465 			STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
466 			STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
467 		}
468 	}
469 
470 	while (rdma_get_cm_event(channel, &event) == 0) {
471 		event_qpair = nvme_rdma_qpair(event->id->context);
472 		if (event_qpair->evt == NULL) {
473 			event_qpair->evt = event;
474 		} else {
475 			assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr));
476 			entry = STAILQ_FIRST(&rctrlr->free_cm_events);
477 			if (entry == NULL) {
478 				rdma_ack_cm_event(event);
479 				return -ENOMEM;
480 			}
481 			STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link);
482 			entry->evt = event;
483 			STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link);
484 		}
485 	}
486 
487 	if (errno == EAGAIN || errno == EWOULDBLOCK) {
488 		return 0;
489 	} else {
490 		return errno;
491 	}
492 }
493 
494 static int
495 nvme_rdma_validate_cm_event(enum rdma_cm_event_type expected_evt_type,
496 			    struct rdma_cm_event *reaped_evt)
497 {
498 	int rc = -EBADMSG;
499 
500 	if (expected_evt_type == reaped_evt->event) {
501 		return 0;
502 	}
503 
504 	switch (expected_evt_type) {
505 	case RDMA_CM_EVENT_ESTABLISHED:
506 		/*
507 		 * There is an enum ib_cm_rej_reason in the kernel headers that sets 10 as
508 		 * IB_CM_REJ_STALE_CONN. I can't find the corresponding userspace but we get
509 		 * the same values here.
510 		 */
511 		if (reaped_evt->event == RDMA_CM_EVENT_REJECTED && reaped_evt->status == 10) {
512 			rc = -ESTALE;
513 		} else if (reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE) {
514 			/*
515 			 *  If we are using a qpair which is not created using rdma cm API
516 			 *  then we will receive RDMA_CM_EVENT_CONNECT_RESPONSE instead of
517 			 *  RDMA_CM_EVENT_ESTABLISHED.
518 			 */
519 			return 0;
520 		}
521 		break;
522 	default:
523 		break;
524 	}
525 
526 	SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n",
527 		    nvme_rdma_cm_event_str_get(expected_evt_type),
528 		    nvme_rdma_cm_event_str_get(reaped_evt->event), reaped_evt->event,
529 		    reaped_evt->status);
530 	return rc;
531 }
532 
533 static int
534 nvme_rdma_process_event(struct nvme_rdma_qpair *rqpair,
535 			struct rdma_event_channel *channel,
536 			enum rdma_cm_event_type evt)
537 {
538 	struct nvme_rdma_ctrlr	*rctrlr;
539 	uint64_t timeout_ticks;
540 	int	rc = 0, rc2;
541 
542 	if (rqpair->evt != NULL) {
543 		rc = nvme_rdma_qpair_process_cm_event(rqpair);
544 		if (rc) {
545 			return rc;
546 		}
547 	}
548 
549 	timeout_ticks = (NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US * spdk_get_ticks_hz()) / SPDK_SEC_TO_USEC +
550 			spdk_get_ticks();
551 	rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
552 	assert(rctrlr != NULL);
553 
554 	while (!rqpair->evt && spdk_get_ticks() < timeout_ticks && rc == 0) {
555 		rc = nvme_rdma_poll_events(rctrlr);
556 	}
557 
558 	if (rc) {
559 		return rc;
560 	}
561 
562 	if (rqpair->evt == NULL) {
563 		return -EADDRNOTAVAIL;
564 	}
565 
566 	rc = nvme_rdma_validate_cm_event(evt, rqpair->evt);
567 
568 	rc2 = nvme_rdma_qpair_process_cm_event(rqpair);
569 	/* bad message takes precedence over the other error codes from processing the event. */
570 	return rc == 0 ? rc2 : rc;
571 }
572 
573 static int
574 nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair)
575 {
576 	int			rc;
577 	struct spdk_rdma_qp_init_attr	attr = {};
578 	struct ibv_device_attr	dev_attr;
579 	struct nvme_rdma_ctrlr	*rctrlr;
580 
581 	rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr);
582 	if (rc != 0) {
583 		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
584 		return -1;
585 	}
586 
587 	if (rqpair->qpair.poll_group) {
588 		assert(!rqpair->cq);
589 		rc = nvme_poll_group_connect_qpair(&rqpair->qpair);
590 		if (rc) {
591 			SPDK_ERRLOG("Unable to activate the rdmaqpair.\n");
592 			return -1;
593 		}
594 		assert(rqpair->cq);
595 	} else {
596 		rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, rqpair->num_entries * 2, rqpair, NULL, 0);
597 		if (!rqpair->cq) {
598 			SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno));
599 			return -1;
600 		}
601 	}
602 
603 	rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
604 	if (g_nvme_hooks.get_ibv_pd) {
605 		rctrlr->pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs);
606 	} else {
607 		rctrlr->pd = NULL;
608 	}
609 
610 	attr.pd =		rctrlr->pd;
611 	attr.send_cq		= rqpair->cq;
612 	attr.recv_cq		= rqpair->cq;
613 	attr.cap.max_send_wr	= rqpair->num_entries; /* SEND operations */
614 	attr.cap.max_recv_wr	= rqpair->num_entries; /* RECV operations */
615 	attr.cap.max_send_sge	= spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge);
616 	attr.cap.max_recv_sge	= spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge);
617 
618 	rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &attr);
619 
620 	if (!rqpair->rdma_qp) {
621 		return -1;
622 	}
623 
624 	/* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */
625 	rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge);
626 	rqpair->max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, attr.cap.max_recv_sge);
627 	rqpair->current_num_recvs = 0;
628 	rqpair->current_num_sends = 0;
629 
630 	rctrlr->pd = rqpair->rdma_qp->qp->pd;
631 
632 	rqpair->cm_id->context = &rqpair->qpair;
633 
634 	return 0;
635 }
636 
637 static inline int
638 nvme_rdma_qpair_submit_sends(struct nvme_rdma_qpair *rqpair)
639 {
640 	struct ibv_send_wr *bad_send_wr = NULL;
641 	int rc;
642 
643 	rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_send_wr);
644 
645 	if (spdk_unlikely(rc)) {
646 		SPDK_ERRLOG("Failed to post WRs on send queue, errno %d (%s), bad_wr %p\n",
647 			    rc, spdk_strerror(rc), bad_send_wr);
648 		while (bad_send_wr != NULL) {
649 			assert(rqpair->current_num_sends > 0);
650 			rqpair->current_num_sends--;
651 			bad_send_wr = bad_send_wr->next;
652 		}
653 		return rc;
654 	}
655 
656 	return 0;
657 }
658 
659 static inline int
660 nvme_rdma_qpair_submit_recvs(struct nvme_rdma_qpair *rqpair)
661 {
662 	struct ibv_recv_wr *bad_recv_wr;
663 	int rc = 0;
664 
665 	if (rqpair->recvs_to_post.first) {
666 		rc = ibv_post_recv(rqpair->rdma_qp->qp, rqpair->recvs_to_post.first, &bad_recv_wr);
667 		if (spdk_unlikely(rc)) {
668 			SPDK_ERRLOG("Failed to post WRs on receive queue, errno %d (%s), bad_wr %p\n",
669 				    rc, spdk_strerror(rc), bad_recv_wr);
670 			while (bad_recv_wr != NULL) {
671 				assert(rqpair->current_num_sends > 0);
672 				rqpair->current_num_recvs--;
673 				bad_recv_wr = bad_recv_wr->next;
674 			}
675 		}
676 
677 		rqpair->recvs_to_post.first = NULL;
678 	}
679 	return rc;
680 }
681 
682 /* Append the given send wr structure to the qpair's outstanding sends list. */
683 /* This function accepts only a single wr. */
684 static inline int
685 nvme_rdma_qpair_queue_send_wr(struct nvme_rdma_qpair *rqpair, struct ibv_send_wr *wr)
686 {
687 	assert(wr->next == NULL);
688 
689 	assert(rqpair->current_num_sends < rqpair->num_entries);
690 
691 	rqpair->current_num_sends++;
692 	spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, wr);
693 
694 	if (!rqpair->delay_cmd_submit) {
695 		return nvme_rdma_qpair_submit_sends(rqpair);
696 	}
697 
698 	return 0;
699 }
700 
701 /* Append the given recv wr structure to the qpair's outstanding recvs list. */
702 /* This function accepts only a single wr. */
703 static inline int
704 nvme_rdma_qpair_queue_recv_wr(struct nvme_rdma_qpair *rqpair, struct ibv_recv_wr *wr)
705 {
706 
707 	assert(wr->next == NULL);
708 	assert(rqpair->current_num_recvs < rqpair->num_entries);
709 
710 	rqpair->current_num_recvs++;
711 	if (rqpair->recvs_to_post.first == NULL) {
712 		rqpair->recvs_to_post.first = wr;
713 	} else {
714 		rqpair->recvs_to_post.last->next = wr;
715 	}
716 
717 	rqpair->recvs_to_post.last = wr;
718 
719 	if (!rqpair->delay_cmd_submit) {
720 		return nvme_rdma_qpair_submit_recvs(rqpair);
721 	}
722 
723 	return 0;
724 }
725 
726 #define nvme_rdma_trace_ibv_sge(sg_list) \
727 	if (sg_list) { \
728 		SPDK_DEBUGLOG(nvme, "local addr %p length 0x%x lkey 0x%x\n", \
729 			      (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \
730 	}
731 
732 static int
733 nvme_rdma_post_recv(struct nvme_rdma_qpair *rqpair, uint16_t rsp_idx)
734 {
735 	struct ibv_recv_wr *wr;
736 
737 	wr = &rqpair->rsp_recv_wrs[rsp_idx];
738 	wr->next = NULL;
739 	nvme_rdma_trace_ibv_sge(wr->sg_list);
740 	return nvme_rdma_qpair_queue_recv_wr(rqpair, wr);
741 }
742 
743 static int
744 nvme_rdma_reg_mr(struct rdma_cm_id *cm_id, union nvme_rdma_mr *mr, void *mem, size_t length)
745 {
746 	if (!g_nvme_hooks.get_rkey) {
747 		mr->mr = rdma_reg_msgs(cm_id, mem, length);
748 		if (mr->mr == NULL) {
749 			SPDK_ERRLOG("Unable to register mr: %s (%d)\n",
750 				    spdk_strerror(errno), errno);
751 			return -1;
752 		}
753 	} else {
754 		mr->key = g_nvme_hooks.get_rkey(cm_id->pd, mem, length);
755 	}
756 
757 	return 0;
758 }
759 
760 static void
761 nvme_rdma_dereg_mr(union nvme_rdma_mr *mr)
762 {
763 	if (!g_nvme_hooks.get_rkey) {
764 		if (mr->mr && rdma_dereg_mr(mr->mr)) {
765 			SPDK_ERRLOG("Unable to de-register mr\n");
766 		}
767 	} else {
768 		if (mr->key) {
769 			g_nvme_hooks.put_rkey(mr->key);
770 		}
771 	}
772 	memset(mr, 0, sizeof(*mr));
773 }
774 
775 static uint32_t
776 nvme_rdma_mr_get_lkey(union nvme_rdma_mr *mr)
777 {
778 	uint32_t lkey;
779 
780 	if (!g_nvme_hooks.get_rkey) {
781 		lkey = mr->mr->lkey;
782 	} else {
783 		lkey = *((uint64_t *) mr->key);
784 	}
785 
786 	return lkey;
787 }
788 
789 static void
790 nvme_rdma_unregister_rsps(struct nvme_rdma_qpair *rqpair)
791 {
792 	nvme_rdma_dereg_mr(&rqpair->rsp_mr);
793 }
794 
795 static void
796 nvme_rdma_free_rsps(struct nvme_rdma_qpair *rqpair)
797 {
798 	nvme_rdma_free(rqpair->rsps);
799 	rqpair->rsps = NULL;
800 	nvme_rdma_free(rqpair->rsp_sgls);
801 	rqpair->rsp_sgls = NULL;
802 	nvme_rdma_free(rqpair->rsp_recv_wrs);
803 	rqpair->rsp_recv_wrs = NULL;
804 }
805 
806 static int
807 nvme_rdma_alloc_rsps(struct nvme_rdma_qpair *rqpair)
808 {
809 	rqpair->rsps = NULL;
810 	rqpair->rsp_recv_wrs = NULL;
811 
812 	rqpair->rsp_sgls = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->rsp_sgls));
813 	if (!rqpair->rsp_sgls) {
814 		SPDK_ERRLOG("Failed to allocate rsp_sgls\n");
815 		goto fail;
816 	}
817 
818 	rqpair->rsp_recv_wrs = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->rsp_recv_wrs));
819 	if (!rqpair->rsp_recv_wrs) {
820 		SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n");
821 		goto fail;
822 	}
823 
824 	rqpair->rsps = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->rsps));
825 	if (!rqpair->rsps) {
826 		SPDK_ERRLOG("can not allocate rdma rsps\n");
827 		goto fail;
828 	}
829 
830 	return 0;
831 fail:
832 	nvme_rdma_free_rsps(rqpair);
833 	return -ENOMEM;
834 }
835 
836 static int
837 nvme_rdma_register_rsps(struct nvme_rdma_qpair *rqpair)
838 {
839 	uint16_t i;
840 	int rc;
841 	uint32_t lkey;
842 
843 	rc = nvme_rdma_reg_mr(rqpair->cm_id, &rqpair->rsp_mr,
844 			      rqpair->rsps, rqpair->num_entries * sizeof(*rqpair->rsps));
845 
846 	if (rc < 0) {
847 		goto fail;
848 	}
849 
850 	lkey = nvme_rdma_mr_get_lkey(&rqpair->rsp_mr);
851 
852 	for (i = 0; i < rqpair->num_entries; i++) {
853 		struct ibv_sge *rsp_sgl = &rqpair->rsp_sgls[i];
854 		struct spdk_nvme_rdma_rsp *rsp = &rqpair->rsps[i];
855 
856 		rsp->rqpair = rqpair;
857 		rsp->rdma_wr.type = RDMA_WR_TYPE_RECV;
858 		rsp->idx = i;
859 		rsp_sgl->addr = (uint64_t)&rqpair->rsps[i];
860 		rsp_sgl->length = sizeof(struct spdk_nvme_cpl);
861 		rsp_sgl->lkey = lkey;
862 
863 		rqpair->rsp_recv_wrs[i].wr_id = (uint64_t)&rsp->rdma_wr;
864 		rqpair->rsp_recv_wrs[i].next = NULL;
865 		rqpair->rsp_recv_wrs[i].sg_list = rsp_sgl;
866 		rqpair->rsp_recv_wrs[i].num_sge = 1;
867 
868 		rc = nvme_rdma_post_recv(rqpair, i);
869 		if (rc) {
870 			goto fail;
871 		}
872 	}
873 
874 	rc = nvme_rdma_qpair_submit_recvs(rqpair);
875 	if (rc) {
876 		goto fail;
877 	}
878 
879 	return 0;
880 
881 fail:
882 	nvme_rdma_unregister_rsps(rqpair);
883 	return rc;
884 }
885 
886 static void
887 nvme_rdma_unregister_reqs(struct nvme_rdma_qpair *rqpair)
888 {
889 	nvme_rdma_dereg_mr(&rqpair->cmd_mr);
890 }
891 
892 static void
893 nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair)
894 {
895 	if (!rqpair->rdma_reqs) {
896 		return;
897 	}
898 
899 	nvme_rdma_free(rqpair->cmds);
900 	rqpair->cmds = NULL;
901 
902 	nvme_rdma_free(rqpair->rdma_reqs);
903 	rqpair->rdma_reqs = NULL;
904 }
905 
906 static int
907 nvme_rdma_alloc_reqs(struct nvme_rdma_qpair *rqpair)
908 {
909 	uint16_t i;
910 
911 	rqpair->rdma_reqs = nvme_rdma_calloc(rqpair->num_entries, sizeof(struct spdk_nvme_rdma_req));
912 	if (rqpair->rdma_reqs == NULL) {
913 		SPDK_ERRLOG("Failed to allocate rdma_reqs\n");
914 		goto fail;
915 	}
916 
917 	rqpair->cmds = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->cmds));
918 	if (!rqpair->cmds) {
919 		SPDK_ERRLOG("Failed to allocate RDMA cmds\n");
920 		goto fail;
921 	}
922 
923 
924 	TAILQ_INIT(&rqpair->free_reqs);
925 	TAILQ_INIT(&rqpair->outstanding_reqs);
926 	for (i = 0; i < rqpair->num_entries; i++) {
927 		struct spdk_nvme_rdma_req	*rdma_req;
928 		struct spdk_nvmf_cmd		*cmd;
929 
930 		rdma_req = &rqpair->rdma_reqs[i];
931 		rdma_req->rdma_wr.type = RDMA_WR_TYPE_SEND;
932 		cmd = &rqpair->cmds[i];
933 
934 		rdma_req->id = i;
935 
936 		/* The first RDMA sgl element will always point
937 		 * at this data structure. Depending on whether
938 		 * an NVMe-oF SGL is required, the length of
939 		 * this element may change. */
940 		rdma_req->send_sgl[0].addr = (uint64_t)cmd;
941 		rdma_req->send_wr.wr_id = (uint64_t)&rdma_req->rdma_wr;
942 		rdma_req->send_wr.next = NULL;
943 		rdma_req->send_wr.opcode = IBV_WR_SEND;
944 		rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED;
945 		rdma_req->send_wr.sg_list = rdma_req->send_sgl;
946 		rdma_req->send_wr.imm_data = 0;
947 
948 		TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link);
949 	}
950 
951 	return 0;
952 fail:
953 	nvme_rdma_free_reqs(rqpair);
954 	return -ENOMEM;
955 }
956 
957 static int
958 nvme_rdma_register_reqs(struct nvme_rdma_qpair *rqpair)
959 {
960 	int i;
961 	int rc;
962 	uint32_t lkey;
963 
964 	rc = nvme_rdma_reg_mr(rqpair->cm_id, &rqpair->cmd_mr,
965 			      rqpair->cmds, rqpair->num_entries * sizeof(*rqpair->cmds));
966 
967 	if (rc < 0) {
968 		goto fail;
969 	}
970 
971 	lkey = nvme_rdma_mr_get_lkey(&rqpair->cmd_mr);
972 
973 	for (i = 0; i < rqpair->num_entries; i++) {
974 		rqpair->rdma_reqs[i].send_sgl[0].lkey = lkey;
975 	}
976 
977 	return 0;
978 
979 fail:
980 	nvme_rdma_unregister_reqs(rqpair);
981 	return -ENOMEM;
982 }
983 
984 static int
985 nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair,
986 		       struct sockaddr *src_addr,
987 		       struct sockaddr *dst_addr,
988 		       struct rdma_event_channel *cm_channel)
989 {
990 	int ret;
991 
992 	ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr,
993 				NVME_RDMA_TIME_OUT_IN_MS);
994 	if (ret) {
995 		SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno);
996 		return ret;
997 	}
998 
999 	ret = nvme_rdma_process_event(rqpair, cm_channel, RDMA_CM_EVENT_ADDR_RESOLVED);
1000 	if (ret) {
1001 		SPDK_ERRLOG("RDMA address resolution error\n");
1002 		return -1;
1003 	}
1004 
1005 	if (rqpair->qpair.ctrlr->opts.transport_ack_timeout != SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED) {
1006 #ifdef SPDK_CONFIG_RDMA_SET_ACK_TIMEOUT
1007 		uint8_t timeout = rqpair->qpair.ctrlr->opts.transport_ack_timeout;
1008 		ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID,
1009 				      RDMA_OPTION_ID_ACK_TIMEOUT,
1010 				      &timeout, sizeof(timeout));
1011 		if (ret) {
1012 			SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_ACK_TIMEOUT %d, ret %d\n", timeout, ret);
1013 		}
1014 #else
1015 		SPDK_DEBUGLOG(nvme, "transport_ack_timeout is not supported\n");
1016 #endif
1017 	}
1018 
1019 
1020 	ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS);
1021 	if (ret) {
1022 		SPDK_ERRLOG("rdma_resolve_route\n");
1023 		return ret;
1024 	}
1025 
1026 	ret = nvme_rdma_process_event(rqpair, cm_channel, RDMA_CM_EVENT_ROUTE_RESOLVED);
1027 	if (ret) {
1028 		SPDK_ERRLOG("RDMA route resolution error\n");
1029 		return -1;
1030 	}
1031 
1032 	return 0;
1033 }
1034 
1035 static int
1036 nvme_rdma_connect(struct nvme_rdma_qpair *rqpair)
1037 {
1038 	struct rdma_conn_param				param = {};
1039 	struct spdk_nvmf_rdma_request_private_data	request_data = {};
1040 	struct ibv_device_attr				attr;
1041 	int						ret;
1042 	struct spdk_nvme_ctrlr				*ctrlr;
1043 	struct nvme_rdma_ctrlr				*rctrlr;
1044 
1045 	ret = ibv_query_device(rqpair->cm_id->verbs, &attr);
1046 	if (ret != 0) {
1047 		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
1048 		return ret;
1049 	}
1050 
1051 	param.responder_resources = spdk_min(rqpair->num_entries, attr.max_qp_rd_atom);
1052 
1053 	ctrlr = rqpair->qpair.ctrlr;
1054 	if (!ctrlr) {
1055 		return -1;
1056 	}
1057 	rctrlr = nvme_rdma_ctrlr(ctrlr);
1058 	assert(rctrlr != NULL);
1059 
1060 	request_data.qid = rqpair->qpair.id;
1061 	request_data.hrqsize = rqpair->num_entries;
1062 	request_data.hsqsize = rqpair->num_entries - 1;
1063 	request_data.cntlid = ctrlr->cntlid;
1064 
1065 	param.private_data = &request_data;
1066 	param.private_data_len = sizeof(request_data);
1067 	param.retry_count = ctrlr->opts.transport_retry_count;
1068 	param.rnr_retry_count = 7;
1069 
1070 	/* Fields below are ignored by rdma cm if qpair has been
1071 	 * created using rdma cm API. */
1072 	param.srq = 0;
1073 	param.qp_num = rqpair->rdma_qp->qp->qp_num;
1074 
1075 	ret = rdma_connect(rqpair->cm_id, &param);
1076 	if (ret) {
1077 		SPDK_ERRLOG("nvme rdma connect error\n");
1078 		return ret;
1079 	}
1080 
1081 	ret = nvme_rdma_process_event(rqpair, rctrlr->cm_channel, RDMA_CM_EVENT_ESTABLISHED);
1082 	if (ret == -ESTALE) {
1083 		SPDK_NOTICELOG("Received a stale connection notice during connection.\n");
1084 		return -EAGAIN;
1085 	} else if (ret) {
1086 		SPDK_ERRLOG("RDMA connect error %d\n", ret);
1087 		return ret;
1088 	} else {
1089 		return 0;
1090 	}
1091 }
1092 
1093 static int
1094 nvme_rdma_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service)
1095 {
1096 	struct addrinfo *res;
1097 	struct addrinfo hints;
1098 	int ret;
1099 
1100 	memset(&hints, 0, sizeof(hints));
1101 	hints.ai_family = family;
1102 	hints.ai_socktype = SOCK_STREAM;
1103 	hints.ai_protocol = 0;
1104 
1105 	ret = getaddrinfo(addr, service, &hints, &res);
1106 	if (ret) {
1107 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret);
1108 		return ret;
1109 	}
1110 
1111 	if (res->ai_addrlen > sizeof(*sa)) {
1112 		SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen);
1113 		ret = EINVAL;
1114 	} else {
1115 		memcpy(sa, res->ai_addr, res->ai_addrlen);
1116 	}
1117 
1118 	freeaddrinfo(res);
1119 	return ret;
1120 }
1121 
1122 static int
1123 _nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1124 {
1125 	struct sockaddr_storage dst_addr;
1126 	struct sockaddr_storage src_addr;
1127 	bool src_addr_specified;
1128 	int rc;
1129 	struct nvme_rdma_ctrlr *rctrlr;
1130 	struct nvme_rdma_qpair *rqpair;
1131 	int family;
1132 
1133 	rqpair = nvme_rdma_qpair(qpair);
1134 	rctrlr = nvme_rdma_ctrlr(ctrlr);
1135 	assert(rctrlr != NULL);
1136 
1137 	switch (ctrlr->trid.adrfam) {
1138 	case SPDK_NVMF_ADRFAM_IPV4:
1139 		family = AF_INET;
1140 		break;
1141 	case SPDK_NVMF_ADRFAM_IPV6:
1142 		family = AF_INET6;
1143 		break;
1144 	default:
1145 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
1146 		return -1;
1147 	}
1148 
1149 	SPDK_DEBUGLOG(nvme, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);
1150 
1151 	memset(&dst_addr, 0, sizeof(dst_addr));
1152 
1153 	SPDK_DEBUGLOG(nvme, "trsvcid is %s\n", ctrlr->trid.trsvcid);
1154 	rc = nvme_rdma_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid);
1155 	if (rc != 0) {
1156 		SPDK_ERRLOG("dst_addr nvme_rdma_parse_addr() failed\n");
1157 		return -1;
1158 	}
1159 
1160 	if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) {
1161 		memset(&src_addr, 0, sizeof(src_addr));
1162 		rc = nvme_rdma_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid);
1163 		if (rc != 0) {
1164 			SPDK_ERRLOG("src_addr nvme_rdma_parse_addr() failed\n");
1165 			return -1;
1166 		}
1167 		src_addr_specified = true;
1168 	} else {
1169 		src_addr_specified = false;
1170 	}
1171 
1172 	rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP);
1173 	if (rc < 0) {
1174 		SPDK_ERRLOG("rdma_create_id() failed\n");
1175 		return -1;
1176 	}
1177 
1178 	rc = nvme_rdma_resolve_addr(rqpair,
1179 				    src_addr_specified ? (struct sockaddr *)&src_addr : NULL,
1180 				    (struct sockaddr *)&dst_addr, rctrlr->cm_channel);
1181 	if (rc < 0) {
1182 		SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n");
1183 		return -1;
1184 	}
1185 
1186 	rc = nvme_rdma_qpair_init(rqpair);
1187 	if (rc < 0) {
1188 		SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n");
1189 		return -1;
1190 	}
1191 
1192 	rc = nvme_rdma_connect(rqpair);
1193 	if (rc != 0) {
1194 		SPDK_ERRLOG("Unable to connect the rqpair\n");
1195 		return rc;
1196 	}
1197 
1198 	rc = nvme_rdma_register_reqs(rqpair);
1199 	SPDK_DEBUGLOG(nvme, "rc =%d\n", rc);
1200 	if (rc) {
1201 		SPDK_ERRLOG("Unable to register rqpair RDMA requests\n");
1202 		return -1;
1203 	}
1204 	SPDK_DEBUGLOG(nvme, "RDMA requests registered\n");
1205 
1206 	rc = nvme_rdma_register_rsps(rqpair);
1207 	SPDK_DEBUGLOG(nvme, "rc =%d\n", rc);
1208 	if (rc < 0) {
1209 		SPDK_ERRLOG("Unable to register rqpair RDMA responses\n");
1210 		return -1;
1211 	}
1212 	SPDK_DEBUGLOG(nvme, "RDMA responses registered\n");
1213 
1214 	rqpair->mr_map = spdk_rdma_create_mem_map(rqpair->rdma_qp->qp->pd, &g_nvme_hooks);
1215 	if (!rqpair->mr_map) {
1216 		SPDK_ERRLOG("Unable to register RDMA memory translation map\n");
1217 		return -1;
1218 	}
1219 
1220 	rc = nvme_fabric_qpair_connect(&rqpair->qpair, rqpair->num_entries);
1221 	if (rc < 0) {
1222 		rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN;
1223 		SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n");
1224 		return rc;
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 static int
1231 nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1232 {
1233 	int rc;
1234 	int retry_count = 0;
1235 
1236 	rc = _nvme_rdma_ctrlr_connect_qpair(ctrlr, qpair);
1237 
1238 	/*
1239 	 * -EAGAIN represents the special case where the target side still thought it was connected.
1240 	 * Most NICs will fail the first connection attempt, and the NICs will clean up whatever
1241 	 * state they need to. After that, subsequent connection attempts will succeed.
1242 	 */
1243 	if (rc == -EAGAIN) {
1244 		SPDK_NOTICELOG("Detected stale connection on Target side for qpid: %d\n", qpair->id);
1245 		do {
1246 			nvme_delay(NVME_RDMA_STALE_CONN_RETRY_DELAY_US);
1247 			nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
1248 			rc = _nvme_rdma_ctrlr_connect_qpair(ctrlr, qpair);
1249 			retry_count++;
1250 		} while (rc == -EAGAIN && retry_count < NVME_RDMA_STALE_CONN_RETRY_MAX);
1251 	}
1252 
1253 	return rc;
1254 }
1255 
1256 /*
1257  * Build SGL describing empty payload.
1258  */
1259 static int
1260 nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req)
1261 {
1262 	struct nvme_request *req = rdma_req->req;
1263 
1264 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1265 
1266 	/* The first element of this SGL is pointing at an
1267 	 * spdk_nvmf_cmd object. For this particular command,
1268 	 * we only need the first 64 bytes corresponding to
1269 	 * the NVMe command. */
1270 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1271 
1272 	/* The RDMA SGL needs one element describing the NVMe command. */
1273 	rdma_req->send_wr.num_sge = 1;
1274 
1275 	req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1276 	req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1277 	req->cmd.dptr.sgl1.keyed.length = 0;
1278 	req->cmd.dptr.sgl1.keyed.key = 0;
1279 	req->cmd.dptr.sgl1.address = 0;
1280 
1281 	return 0;
1282 }
1283 
1284 /*
1285  * Build inline SGL describing contiguous payload buffer.
1286  */
1287 static int
1288 nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair,
1289 				      struct spdk_nvme_rdma_req *rdma_req)
1290 {
1291 	struct nvme_request *req = rdma_req->req;
1292 	struct spdk_rdma_memory_translation mem_translation;
1293 	void *payload;
1294 	int rc;
1295 
1296 	payload = req->payload.contig_or_cb_arg + req->payload_offset;
1297 	assert(req->payload_size != 0);
1298 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1299 
1300 	rc = spdk_rdma_get_translation(rqpair->mr_map, payload, req->payload_size, &mem_translation);
1301 	if (spdk_unlikely(rc)) {
1302 		SPDK_ERRLOG("Memory translation failed, rc %d\n", rc);
1303 		return -1;
1304 	}
1305 
1306 	rdma_req->send_sgl[1].lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1307 
1308 	/* The first element of this SGL is pointing at an
1309 	 * spdk_nvmf_cmd object. For this particular command,
1310 	 * we only need the first 64 bytes corresponding to
1311 	 * the NVMe command. */
1312 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1313 
1314 	rdma_req->send_sgl[1].addr = (uint64_t)payload;
1315 	rdma_req->send_sgl[1].length = (uint32_t)req->payload_size;
1316 
1317 	/* The RDMA SGL contains two elements. The first describes
1318 	 * the NVMe command and the second describes the data
1319 	 * payload. */
1320 	rdma_req->send_wr.num_sge = 2;
1321 
1322 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1323 	req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1324 	req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1325 	req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size;
1326 	/* Inline only supported for icdoff == 0 currently.  This function will
1327 	 * not get called for controllers with other values. */
1328 	req->cmd.dptr.sgl1.address = (uint64_t)0;
1329 
1330 	return 0;
1331 }
1332 
1333 /*
1334  * Build SGL describing contiguous payload buffer.
1335  */
1336 static int
1337 nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair,
1338 			       struct spdk_nvme_rdma_req *rdma_req)
1339 {
1340 	struct nvme_request *req = rdma_req->req;
1341 	void *payload = req->payload.contig_or_cb_arg + req->payload_offset;
1342 	struct spdk_rdma_memory_translation mem_translation;
1343 	int rc;
1344 
1345 	assert(req->payload_size != 0);
1346 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1347 
1348 	if (spdk_unlikely(req->payload_size > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
1349 		SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
1350 			    req->payload_size, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
1351 		return -1;
1352 	}
1353 
1354 	rc = spdk_rdma_get_translation(rqpair->mr_map, payload, req->payload_size, &mem_translation);
1355 	if (spdk_unlikely(rc)) {
1356 		SPDK_ERRLOG("Memory translation failed, rc %d\n", rc);
1357 		return -1;
1358 	}
1359 
1360 	req->cmd.dptr.sgl1.keyed.key = spdk_rdma_memory_translation_get_rkey(&mem_translation);
1361 
1362 	/* The first element of this SGL is pointing at an
1363 	 * spdk_nvmf_cmd object. For this particular command,
1364 	 * we only need the first 64 bytes corresponding to
1365 	 * the NVMe command. */
1366 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1367 
1368 	/* The RDMA SGL needs one element describing the NVMe command. */
1369 	rdma_req->send_wr.num_sge = 1;
1370 
1371 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1372 	req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1373 	req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1374 	req->cmd.dptr.sgl1.keyed.length = req->payload_size;
1375 	req->cmd.dptr.sgl1.address = (uint64_t)payload;
1376 
1377 	return 0;
1378 }
1379 
1380 /*
1381  * Build SGL describing scattered payload buffer.
1382  */
1383 static int
1384 nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair,
1385 			    struct spdk_nvme_rdma_req *rdma_req)
1386 {
1387 	struct nvme_request *req = rdma_req->req;
1388 	struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id];
1389 	struct spdk_rdma_memory_translation mem_translation;
1390 	void *virt_addr;
1391 	uint32_t remaining_size;
1392 	uint32_t sge_length;
1393 	int rc, max_num_sgl, num_sgl_desc;
1394 
1395 	assert(req->payload_size != 0);
1396 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1397 	assert(req->payload.reset_sgl_fn != NULL);
1398 	assert(req->payload.next_sge_fn != NULL);
1399 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1400 
1401 	max_num_sgl = req->qpair->ctrlr->max_sges;
1402 
1403 	remaining_size = req->payload_size;
1404 	num_sgl_desc = 0;
1405 	do {
1406 		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &sge_length);
1407 		if (rc) {
1408 			return -1;
1409 		}
1410 
1411 		sge_length = spdk_min(remaining_size, sge_length);
1412 
1413 		if (spdk_unlikely(sge_length > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
1414 			SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
1415 				    sge_length, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
1416 			return -1;
1417 		}
1418 		rc = spdk_rdma_get_translation(rqpair->mr_map, virt_addr, sge_length, &mem_translation);
1419 		if (spdk_unlikely(rc)) {
1420 			SPDK_ERRLOG("Memory translation failed, rc %d\n", rc);
1421 			return -1;
1422 		}
1423 
1424 		cmd->sgl[num_sgl_desc].keyed.key = spdk_rdma_memory_translation_get_rkey(&mem_translation);
1425 		cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1426 		cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1427 		cmd->sgl[num_sgl_desc].keyed.length = sge_length;
1428 		cmd->sgl[num_sgl_desc].address = (uint64_t)virt_addr;
1429 
1430 		remaining_size -= sge_length;
1431 		num_sgl_desc++;
1432 	} while (remaining_size > 0 && num_sgl_desc < max_num_sgl);
1433 
1434 
1435 	/* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */
1436 	if (remaining_size > 0) {
1437 		return -1;
1438 	}
1439 
1440 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1441 
1442 	/* The RDMA SGL needs one element describing some portion
1443 	 * of the spdk_nvmf_cmd structure. */
1444 	rdma_req->send_wr.num_sge = 1;
1445 
1446 	/*
1447 	 * If only one SGL descriptor is required, it can be embedded directly in the command
1448 	 * as a data block descriptor.
1449 	 */
1450 	if (num_sgl_desc == 1) {
1451 		/* The first element of this SGL is pointing at an
1452 		 * spdk_nvmf_cmd object. For this particular command,
1453 		 * we only need the first 64 bytes corresponding to
1454 		 * the NVMe command. */
1455 		rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1456 
1457 		req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type;
1458 		req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype;
1459 		req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length;
1460 		req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key;
1461 		req->cmd.dptr.sgl1.address = cmd->sgl[0].address;
1462 	} else {
1463 		/*
1464 		 * Otherwise, The SGL descriptor embedded in the command must point to the list of
1465 		 * SGL descriptors used to describe the operation. In that case it is a last segment descriptor.
1466 		 */
1467 		uint32_t descriptors_size = sizeof(struct spdk_nvme_sgl_descriptor) * num_sgl_desc;
1468 
1469 		if (spdk_unlikely(descriptors_size > rqpair->qpair.ctrlr->ioccsz_bytes)) {
1470 			SPDK_ERRLOG("Size of SGL descriptors (%u) exceeds ICD (%u)\n",
1471 				    descriptors_size, rqpair->qpair.ctrlr->ioccsz_bytes);
1472 			return -1;
1473 		}
1474 		rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + descriptors_size;
1475 
1476 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1477 		req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1478 		req->cmd.dptr.sgl1.unkeyed.length = descriptors_size;
1479 		req->cmd.dptr.sgl1.address = (uint64_t)0;
1480 	}
1481 
1482 	return 0;
1483 }
1484 
1485 /*
1486  * Build inline SGL describing sgl payload buffer.
1487  */
1488 static int
1489 nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair,
1490 				   struct spdk_nvme_rdma_req *rdma_req)
1491 {
1492 	struct nvme_request *req = rdma_req->req;
1493 	struct spdk_rdma_memory_translation mem_translation;
1494 	uint32_t length;
1495 	void *virt_addr;
1496 	int rc;
1497 
1498 	assert(req->payload_size != 0);
1499 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1500 	assert(req->payload.reset_sgl_fn != NULL);
1501 	assert(req->payload.next_sge_fn != NULL);
1502 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1503 
1504 	rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
1505 	if (rc) {
1506 		return -1;
1507 	}
1508 
1509 	if (length < req->payload_size) {
1510 		SPDK_DEBUGLOG(nvme, "Inline SGL request split so sending separately.\n");
1511 		return nvme_rdma_build_sgl_request(rqpair, rdma_req);
1512 	}
1513 
1514 	if (length > req->payload_size) {
1515 		length = req->payload_size;
1516 	}
1517 
1518 	rc = spdk_rdma_get_translation(rqpair->mr_map, virt_addr, length, &mem_translation);
1519 	if (spdk_unlikely(rc)) {
1520 		SPDK_ERRLOG("Memory translation failed, rc %d\n", rc);
1521 		return -1;
1522 	}
1523 
1524 	rdma_req->send_sgl[1].addr = (uint64_t)virt_addr;
1525 	rdma_req->send_sgl[1].length = length;
1526 	rdma_req->send_sgl[1].lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1527 
1528 	rdma_req->send_wr.num_sge = 2;
1529 
1530 	/* The first element of this SGL is pointing at an
1531 	 * spdk_nvmf_cmd object. For this particular command,
1532 	 * we only need the first 64 bytes corresponding to
1533 	 * the NVMe command. */
1534 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1535 
1536 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1537 	req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1538 	req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1539 	req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size;
1540 	/* Inline only supported for icdoff == 0 currently.  This function will
1541 	 * not get called for controllers with other values. */
1542 	req->cmd.dptr.sgl1.address = (uint64_t)0;
1543 
1544 	return 0;
1545 }
1546 
1547 static int
1548 nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req,
1549 		   struct spdk_nvme_rdma_req *rdma_req)
1550 {
1551 	struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr;
1552 	enum nvme_payload_type payload_type;
1553 	bool icd_supported;
1554 	int rc;
1555 
1556 	assert(rdma_req->req == NULL);
1557 	rdma_req->req = req;
1558 	req->cmd.cid = rdma_req->id;
1559 	payload_type = nvme_payload_type(&req->payload);
1560 	/*
1561 	 * Check if icdoff is non zero, to avoid interop conflicts with
1562 	 * targets with non-zero icdoff.  Both SPDK and the Linux kernel
1563 	 * targets use icdoff = 0.  For targets with non-zero icdoff, we
1564 	 * will currently just not use inline data for now.
1565 	 */
1566 	icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER
1567 			&& req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0;
1568 
1569 	if (req->payload_size == 0) {
1570 		rc = nvme_rdma_build_null_request(rdma_req);
1571 	} else if (payload_type == NVME_PAYLOAD_TYPE_CONTIG) {
1572 		if (icd_supported) {
1573 			rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req);
1574 		} else {
1575 			rc = nvme_rdma_build_contig_request(rqpair, rdma_req);
1576 		}
1577 	} else if (payload_type == NVME_PAYLOAD_TYPE_SGL) {
1578 		if (icd_supported) {
1579 			rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req);
1580 		} else {
1581 			rc = nvme_rdma_build_sgl_request(rqpair, rdma_req);
1582 		}
1583 	} else {
1584 		rc = -1;
1585 	}
1586 
1587 	if (rc) {
1588 		rdma_req->req = NULL;
1589 		return rc;
1590 	}
1591 
1592 	memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd));
1593 	return 0;
1594 }
1595 
1596 static struct spdk_nvme_qpair *
1597 nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
1598 			     uint16_t qid, uint32_t qsize,
1599 			     enum spdk_nvme_qprio qprio,
1600 			     uint32_t num_requests,
1601 			     bool delay_cmd_submit)
1602 {
1603 	struct nvme_rdma_qpair *rqpair;
1604 	struct spdk_nvme_qpair *qpair;
1605 	int rc;
1606 
1607 	rqpair = nvme_rdma_calloc(1, sizeof(struct nvme_rdma_qpair));
1608 	if (!rqpair) {
1609 		SPDK_ERRLOG("failed to get create rqpair\n");
1610 		return NULL;
1611 	}
1612 
1613 	rqpair->num_entries = qsize;
1614 	rqpair->delay_cmd_submit = delay_cmd_submit;
1615 	qpair = &rqpair->qpair;
1616 	rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests);
1617 	if (rc != 0) {
1618 		return NULL;
1619 	}
1620 
1621 	rc = nvme_rdma_alloc_reqs(rqpair);
1622 	SPDK_DEBUGLOG(nvme, "rc =%d\n", rc);
1623 	if (rc) {
1624 		SPDK_ERRLOG("Unable to allocate rqpair RDMA requests\n");
1625 		nvme_rdma_free(rqpair);
1626 		return NULL;
1627 	}
1628 	SPDK_DEBUGLOG(nvme, "RDMA requests allocated\n");
1629 
1630 	rc = nvme_rdma_alloc_rsps(rqpair);
1631 	SPDK_DEBUGLOG(nvme, "rc =%d\n", rc);
1632 	if (rc < 0) {
1633 		SPDK_ERRLOG("Unable to allocate rqpair RDMA responses\n");
1634 		nvme_rdma_free_reqs(rqpair);
1635 		nvme_rdma_free(rqpair);
1636 		return NULL;
1637 	}
1638 	SPDK_DEBUGLOG(nvme, "RDMA responses allocated\n");
1639 
1640 	return qpair;
1641 }
1642 
1643 static void
1644 nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1645 {
1646 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1647 	struct nvme_rdma_ctrlr *rctrlr = NULL;
1648 	struct nvme_rdma_cm_event_entry *entry, *tmp;
1649 
1650 	spdk_rdma_free_mem_map(&rqpair->mr_map);
1651 	nvme_rdma_unregister_reqs(rqpair);
1652 	nvme_rdma_unregister_rsps(rqpair);
1653 
1654 	if (rqpair->evt) {
1655 		rdma_ack_cm_event(rqpair->evt);
1656 		rqpair->evt = NULL;
1657 	}
1658 
1659 	/*
1660 	 * This works because we have the controller lock both in
1661 	 * this function and in the function where we add new events.
1662 	 */
1663 	if (qpair->ctrlr != NULL) {
1664 		rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
1665 		STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
1666 			if (nvme_rdma_qpair(entry->evt->id->context) == rqpair) {
1667 				STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
1668 				rdma_ack_cm_event(entry->evt);
1669 				STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
1670 			}
1671 		}
1672 	}
1673 
1674 	if (rqpair->cm_id) {
1675 		if (rqpair->rdma_qp) {
1676 			spdk_rdma_qp_disconnect(rqpair->rdma_qp);
1677 			if (rctrlr != NULL) {
1678 				if (nvme_rdma_process_event(rqpair, rctrlr->cm_channel, RDMA_CM_EVENT_DISCONNECTED)) {
1679 					SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n");
1680 				}
1681 			}
1682 			spdk_rdma_qp_destroy(rqpair->rdma_qp);
1683 			rqpair->rdma_qp = NULL;
1684 		}
1685 
1686 		rdma_destroy_id(rqpair->cm_id);
1687 		rqpair->cm_id = NULL;
1688 	}
1689 
1690 	if (rqpair->cq) {
1691 		ibv_destroy_cq(rqpair->cq);
1692 		rqpair->cq = NULL;
1693 	}
1694 }
1695 
1696 static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr);
1697 
1698 static int
1699 nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1700 {
1701 	struct nvme_rdma_qpair *rqpair;
1702 
1703 	rqpair = nvme_rdma_qpair(qpair);
1704 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
1705 	if (rqpair->defer_deletion_to_pg) {
1706 		nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
1707 		return 0;
1708 	}
1709 
1710 	nvme_rdma_qpair_abort_reqs(qpair, 1);
1711 	nvme_qpair_deinit(qpair);
1712 
1713 	nvme_rdma_free_reqs(rqpair);
1714 	nvme_rdma_free_rsps(rqpair);
1715 	nvme_rdma_free(rqpair);
1716 
1717 	return 0;
1718 }
1719 
1720 static struct spdk_nvme_qpair *
1721 nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
1722 				const struct spdk_nvme_io_qpair_opts *opts)
1723 {
1724 	return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio,
1725 					    opts->io_queue_requests,
1726 					    opts->delay_cmd_submit);
1727 }
1728 
1729 static int
1730 nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
1731 {
1732 	/* do nothing here */
1733 	return 0;
1734 }
1735 
1736 static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr);
1737 
1738 static struct spdk_nvme_ctrlr *nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
1739 		const struct spdk_nvme_ctrlr_opts *opts,
1740 		void *devhandle)
1741 {
1742 	struct nvme_rdma_ctrlr *rctrlr;
1743 	union spdk_nvme_cap_register cap;
1744 	union spdk_nvme_vs_register vs;
1745 	struct ibv_context **contexts;
1746 	struct ibv_device_attr dev_attr;
1747 	int i, flag, rc;
1748 
1749 	rctrlr = nvme_rdma_calloc(1, sizeof(struct nvme_rdma_ctrlr));
1750 	if (rctrlr == NULL) {
1751 		SPDK_ERRLOG("could not allocate ctrlr\n");
1752 		return NULL;
1753 	}
1754 
1755 	rctrlr->ctrlr.opts = *opts;
1756 	rctrlr->ctrlr.trid = *trid;
1757 
1758 	if (opts->transport_retry_count > NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT) {
1759 		SPDK_NOTICELOG("transport_retry_count exceeds max value %d, use max value\n",
1760 			       NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT);
1761 		rctrlr->ctrlr.opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT;
1762 	}
1763 
1764 	if (opts->transport_ack_timeout > NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) {
1765 		SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n",
1766 			       NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT);
1767 		rctrlr->ctrlr.opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT;
1768 	}
1769 
1770 	contexts = rdma_get_devices(NULL);
1771 	if (contexts == NULL) {
1772 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
1773 		nvme_rdma_free(rctrlr);
1774 		return NULL;
1775 	}
1776 
1777 	i = 0;
1778 	rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS;
1779 
1780 	while (contexts[i] != NULL) {
1781 		rc = ibv_query_device(contexts[i], &dev_attr);
1782 		if (rc < 0) {
1783 			SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
1784 			rdma_free_devices(contexts);
1785 			nvme_rdma_free(rctrlr);
1786 			return NULL;
1787 		}
1788 		rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge);
1789 		i++;
1790 	}
1791 
1792 	rdma_free_devices(contexts);
1793 
1794 	rc = nvme_ctrlr_construct(&rctrlr->ctrlr);
1795 	if (rc != 0) {
1796 		nvme_rdma_free(rctrlr);
1797 		return NULL;
1798 	}
1799 
1800 	STAILQ_INIT(&rctrlr->pending_cm_events);
1801 	STAILQ_INIT(&rctrlr->free_cm_events);
1802 	rctrlr->cm_events = nvme_rdma_calloc(NVME_RDMA_NUM_CM_EVENTS, sizeof(*rctrlr->cm_events));
1803 	if (rctrlr->cm_events == NULL) {
1804 		SPDK_ERRLOG("unable to allocat buffers to hold CM events.\n");
1805 		goto destruct_ctrlr;
1806 	}
1807 
1808 	for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) {
1809 		STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link);
1810 	}
1811 
1812 	rctrlr->cm_channel = rdma_create_event_channel();
1813 	if (rctrlr->cm_channel == NULL) {
1814 		SPDK_ERRLOG("rdma_create_event_channel() failed\n");
1815 		goto destruct_ctrlr;
1816 	}
1817 
1818 	flag = fcntl(rctrlr->cm_channel->fd, F_GETFL);
1819 	if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
1820 		SPDK_ERRLOG("Cannot set event channel to non blocking\n");
1821 		goto destruct_ctrlr;
1822 	}
1823 
1824 	rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0,
1825 			       rctrlr->ctrlr.opts.admin_queue_size, 0,
1826 			       rctrlr->ctrlr.opts.admin_queue_size, false);
1827 	if (!rctrlr->ctrlr.adminq) {
1828 		SPDK_ERRLOG("failed to create admin qpair\n");
1829 		goto destruct_ctrlr;
1830 	}
1831 
1832 	rc = nvme_transport_ctrlr_connect_qpair(&rctrlr->ctrlr, rctrlr->ctrlr.adminq);
1833 	if (rc < 0) {
1834 		SPDK_ERRLOG("failed to connect admin qpair\n");
1835 		goto destruct_ctrlr;
1836 	}
1837 
1838 	if (nvme_ctrlr_get_cap(&rctrlr->ctrlr, &cap)) {
1839 		SPDK_ERRLOG("get_cap() failed\n");
1840 		goto destruct_ctrlr;
1841 	}
1842 
1843 	if (nvme_ctrlr_get_vs(&rctrlr->ctrlr, &vs)) {
1844 		SPDK_ERRLOG("get_vs() failed\n");
1845 		goto destruct_ctrlr;
1846 	}
1847 
1848 	if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) {
1849 		SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n");
1850 		goto destruct_ctrlr;
1851 	}
1852 
1853 	nvme_ctrlr_init_cap(&rctrlr->ctrlr, &cap, &vs);
1854 
1855 	SPDK_DEBUGLOG(nvme, "successfully initialized the nvmf ctrlr\n");
1856 	return &rctrlr->ctrlr;
1857 
1858 destruct_ctrlr:
1859 	nvme_ctrlr_destruct(&rctrlr->ctrlr);
1860 	return NULL;
1861 }
1862 
1863 static int
1864 nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
1865 {
1866 	struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
1867 	struct nvme_rdma_cm_event_entry *entry;
1868 
1869 	if (ctrlr->adminq) {
1870 		nvme_rdma_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq);
1871 	}
1872 
1873 	STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) {
1874 		rdma_ack_cm_event(entry->evt);
1875 	}
1876 
1877 	STAILQ_INIT(&rctrlr->free_cm_events);
1878 	STAILQ_INIT(&rctrlr->pending_cm_events);
1879 	nvme_rdma_free(rctrlr->cm_events);
1880 
1881 	if (rctrlr->cm_channel) {
1882 		rdma_destroy_event_channel(rctrlr->cm_channel);
1883 		rctrlr->cm_channel = NULL;
1884 	}
1885 
1886 	nvme_ctrlr_destruct_finish(ctrlr);
1887 
1888 	nvme_rdma_free(rctrlr);
1889 
1890 	return 0;
1891 }
1892 
1893 static int
1894 nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair,
1895 			       struct nvme_request *req)
1896 {
1897 	struct nvme_rdma_qpair *rqpair;
1898 	struct spdk_nvme_rdma_req *rdma_req;
1899 	struct ibv_send_wr *wr;
1900 
1901 	rqpair = nvme_rdma_qpair(qpair);
1902 	assert(rqpair != NULL);
1903 	assert(req != NULL);
1904 
1905 	rdma_req = nvme_rdma_req_get(rqpair);
1906 	if (!rdma_req) {
1907 		/* Inform the upper layer to try again later. */
1908 		return -EAGAIN;
1909 	}
1910 
1911 	if (nvme_rdma_req_init(rqpair, req, rdma_req)) {
1912 		SPDK_ERRLOG("nvme_rdma_req_init() failed\n");
1913 		TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
1914 		nvme_rdma_req_put(rqpair, rdma_req);
1915 		return -1;
1916 	}
1917 
1918 	wr = &rdma_req->send_wr;
1919 	wr->next = NULL;
1920 	nvme_rdma_trace_ibv_sge(wr->sg_list);
1921 	return nvme_rdma_qpair_queue_send_wr(rqpair, wr);
1922 }
1923 
1924 static int
1925 nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair)
1926 {
1927 	/* Currently, doing nothing here */
1928 	return 0;
1929 }
1930 
1931 static void
1932 nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
1933 {
1934 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
1935 	struct spdk_nvme_cpl cpl;
1936 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1937 
1938 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
1939 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
1940 	cpl.status.dnr = dnr;
1941 
1942 	/*
1943 	 * We cannot abort requests at the RDMA layer without
1944 	 * unregistering them. If we do, we can still get error
1945 	 * free completions on the shared completion queue.
1946 	 */
1947 	if (nvme_qpair_get_state(qpair) > NVME_QPAIR_DISCONNECTING &&
1948 	    nvme_qpair_get_state(qpair) != NVME_QPAIR_DESTROYING) {
1949 		nvme_ctrlr_disconnect_qpair(qpair);
1950 	}
1951 
1952 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
1953 		nvme_rdma_req_complete(rdma_req, &cpl);
1954 		nvme_rdma_req_put(rqpair, rdma_req);
1955 	}
1956 }
1957 
1958 static void
1959 nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
1960 {
1961 	uint64_t t02;
1962 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
1963 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1964 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
1965 	struct spdk_nvme_ctrlr_process *active_proc;
1966 
1967 	/* Don't check timeouts during controller initialization. */
1968 	if (ctrlr->state != NVME_CTRLR_STATE_READY) {
1969 		return;
1970 	}
1971 
1972 	if (nvme_qpair_is_admin_queue(qpair)) {
1973 		active_proc = nvme_ctrlr_get_current_process(ctrlr);
1974 	} else {
1975 		active_proc = qpair->active_proc;
1976 	}
1977 
1978 	/* Only check timeouts if the current process has a timeout callback. */
1979 	if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
1980 		return;
1981 	}
1982 
1983 	t02 = spdk_get_ticks();
1984 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
1985 		assert(rdma_req->req != NULL);
1986 
1987 		if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) {
1988 			/*
1989 			 * The requests are in order, so as soon as one has not timed out,
1990 			 * stop iterating.
1991 			 */
1992 			break;
1993 		}
1994 	}
1995 }
1996 
1997 static inline int
1998 nvme_rdma_request_ready(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
1999 {
2000 	nvme_rdma_req_complete(rdma_req, &rqpair->rsps[rdma_req->rsp_idx].cpl);
2001 	nvme_rdma_req_put(rqpair, rdma_req);
2002 	return nvme_rdma_post_recv(rqpair, rdma_req->rsp_idx);
2003 }
2004 
2005 #define MAX_COMPLETIONS_PER_POLL 128
2006 
2007 static void
2008 nvme_rdma_fail_qpair(struct spdk_nvme_qpair *qpair, int failure_reason)
2009 {
2010 	if (failure_reason == IBV_WC_RETRY_EXC_ERR) {
2011 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
2012 	} else if (qpair->transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_NONE) {
2013 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN;
2014 	}
2015 
2016 	nvme_ctrlr_disconnect_qpair(qpair);
2017 }
2018 
2019 static void
2020 nvme_rdma_conditional_fail_qpair(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poll_group *group)
2021 {
2022 	struct nvme_rdma_destroyed_qpair	*qpair_tracker;
2023 
2024 	assert(rqpair);
2025 	if (group) {
2026 		STAILQ_FOREACH(qpair_tracker, &group->destroyed_qpairs, link) {
2027 			if (qpair_tracker->destroyed_qpair_tracker == rqpair) {
2028 				return;
2029 			}
2030 		}
2031 	}
2032 	nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2033 }
2034 
2035 static int
2036 nvme_rdma_cq_process_completions(struct ibv_cq *cq, uint32_t batch_size,
2037 				 struct nvme_rdma_poll_group *group,
2038 				 struct nvme_rdma_qpair *rdma_qpair)
2039 {
2040 	struct ibv_wc			wc[MAX_COMPLETIONS_PER_POLL];
2041 	struct nvme_rdma_qpair		*rqpair;
2042 	struct spdk_nvme_rdma_req	*rdma_req;
2043 	struct spdk_nvme_rdma_rsp	*rdma_rsp;
2044 	struct nvme_rdma_wr		*rdma_wr;
2045 	uint32_t			reaped = 0;
2046 	int				completion_rc = 0;
2047 	int				rc, i;
2048 
2049 	rc = ibv_poll_cq(cq, batch_size, wc);
2050 	if (rc < 0) {
2051 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
2052 			    errno, spdk_strerror(errno));
2053 		return -ECANCELED;
2054 	} else if (rc == 0) {
2055 		return 0;
2056 	}
2057 
2058 	for (i = 0; i < rc; i++) {
2059 		rdma_wr = (struct nvme_rdma_wr *)wc[i].wr_id;
2060 		switch (rdma_wr->type) {
2061 		case RDMA_WR_TYPE_RECV:
2062 			rdma_rsp = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_rsp, rdma_wr);
2063 			rqpair = rdma_rsp->rqpair;
2064 			assert(rqpair->current_num_recvs > 0);
2065 			rqpair->current_num_recvs--;
2066 
2067 			if (wc[i].status) {
2068 				SPDK_ERRLOG("CQ error on Queue Pair %p, Response Index %lu (%d): %s\n",
2069 					    rqpair, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
2070 				nvme_rdma_conditional_fail_qpair(rqpair, group);
2071 				completion_rc = -ENXIO;
2072 				continue;
2073 			}
2074 
2075 			SPDK_DEBUGLOG(nvme, "CQ recv completion\n");
2076 
2077 			if (wc[i].byte_len < sizeof(struct spdk_nvme_cpl)) {
2078 				SPDK_ERRLOG("recv length %u less than expected response size\n", wc[i].byte_len);
2079 				nvme_rdma_conditional_fail_qpair(rqpair, group);
2080 				completion_rc = -ENXIO;
2081 				continue;
2082 			}
2083 			rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid];
2084 			rdma_req->completion_flags |= NVME_RDMA_RECV_COMPLETED;
2085 			rdma_req->rsp_idx = rdma_rsp->idx;
2086 
2087 			if ((rdma_req->completion_flags & NVME_RDMA_SEND_COMPLETED) != 0) {
2088 				if (spdk_unlikely(nvme_rdma_request_ready(rqpair, rdma_req))) {
2089 					SPDK_ERRLOG("Unable to re-post rx descriptor\n");
2090 					nvme_rdma_conditional_fail_qpair(rqpair, group);
2091 					completion_rc = -ENXIO;
2092 					continue;
2093 				}
2094 				reaped++;
2095 				rqpair->num_completions++;
2096 			}
2097 			break;
2098 
2099 		case RDMA_WR_TYPE_SEND:
2100 			rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_req, rdma_wr);
2101 
2102 			/* If we are flushing I/O */
2103 			if (wc[i].status) {
2104 				rqpair = rdma_req->req ? nvme_rdma_qpair(rdma_req->req->qpair) : NULL;
2105 				if (!rqpair) {
2106 					rqpair = rdma_qpair != NULL ? rdma_qpair : nvme_rdma_poll_group_get_qpair_by_id(group,
2107 							wc[i].qp_num);
2108 				}
2109 				assert(rqpair);
2110 				assert(rqpair->current_num_sends > 0);
2111 				rqpair->current_num_sends--;
2112 				nvme_rdma_conditional_fail_qpair(rqpair, group);
2113 				SPDK_ERRLOG("CQ error on Queue Pair %p, Response Index %lu (%d): %s\n",
2114 					    rqpair, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
2115 				completion_rc = -ENXIO;
2116 				continue;
2117 			}
2118 
2119 			rqpair = nvme_rdma_qpair(rdma_req->req->qpair);
2120 			rdma_req->completion_flags |= NVME_RDMA_SEND_COMPLETED;
2121 			rqpair->current_num_sends--;
2122 
2123 			if ((rdma_req->completion_flags & NVME_RDMA_RECV_COMPLETED) != 0) {
2124 				if (spdk_unlikely(nvme_rdma_request_ready(rqpair, rdma_req))) {
2125 					SPDK_ERRLOG("Unable to re-post rx descriptor\n");
2126 					nvme_rdma_conditional_fail_qpair(rqpair, group);
2127 					completion_rc = -ENXIO;
2128 					continue;
2129 				}
2130 				reaped++;
2131 				rqpair->num_completions++;
2132 			}
2133 			break;
2134 
2135 		default:
2136 			SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", rdma_wr->type);
2137 			return -ECANCELED;
2138 		}
2139 	}
2140 
2141 	if (completion_rc) {
2142 		return completion_rc;
2143 	}
2144 
2145 	return reaped;
2146 }
2147 
2148 static void
2149 dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
2150 {
2151 
2152 }
2153 
2154 static int
2155 nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair,
2156 				    uint32_t max_completions)
2157 {
2158 	struct nvme_rdma_qpair		*rqpair = nvme_rdma_qpair(qpair);
2159 	int				rc = 0, batch_size;
2160 	struct ibv_cq			*cq;
2161 	struct nvme_rdma_ctrlr		*rctrlr;
2162 
2163 	/*
2164 	 * This is used during the connection phase. It's possible that we are still reaping error completions
2165 	 * from other qpairs so we need to call the poll group function. Also, it's more correct since the cq
2166 	 * is shared.
2167 	 */
2168 	if (qpair->poll_group != NULL) {
2169 		return spdk_nvme_poll_group_process_completions(qpair->poll_group->group, max_completions,
2170 				dummy_disconnected_qpair_cb);
2171 	}
2172 
2173 	if (max_completions == 0) {
2174 		max_completions = rqpair->num_entries;
2175 	} else {
2176 		max_completions = spdk_min(max_completions, rqpair->num_entries);
2177 	}
2178 
2179 	if (nvme_qpair_is_admin_queue(&rqpair->qpair)) {
2180 		rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
2181 		nvme_rdma_poll_events(rctrlr);
2182 	}
2183 	nvme_rdma_qpair_process_cm_event(rqpair);
2184 
2185 	if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
2186 		nvme_rdma_fail_qpair(qpair, 0);
2187 		return -ENXIO;
2188 	}
2189 
2190 	cq = rqpair->cq;
2191 
2192 	rqpair->num_completions = 0;
2193 	do {
2194 		batch_size = spdk_min((max_completions - rqpair->num_completions), MAX_COMPLETIONS_PER_POLL);
2195 		rc = nvme_rdma_cq_process_completions(cq, batch_size, NULL, rqpair);
2196 
2197 		if (rc == 0) {
2198 			break;
2199 			/* Handle the case where we fail to poll the cq. */
2200 		} else if (rc == -ECANCELED) {
2201 			nvme_rdma_fail_qpair(qpair, 0);
2202 			return -ENXIO;
2203 		} else if (rc == -ENXIO) {
2204 			return rc;
2205 		}
2206 	} while (rqpair->num_completions < max_completions);
2207 
2208 	if (spdk_unlikely(nvme_rdma_qpair_submit_sends(rqpair) ||
2209 			  nvme_rdma_qpair_submit_recvs(rqpair))) {
2210 		nvme_rdma_fail_qpair(qpair, 0);
2211 		return -ENXIO;
2212 	}
2213 
2214 	if (spdk_unlikely(rqpair->qpair.ctrlr->timeout_enabled)) {
2215 		nvme_rdma_qpair_check_timeout(qpair);
2216 	}
2217 
2218 	return rqpair->num_completions;
2219 }
2220 
2221 static uint32_t
2222 nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
2223 {
2224 	/* max_mr_size by ibv_query_device indicates the largest value that we can
2225 	 * set for a registered memory region.  It is independent from the actual
2226 	 * I/O size and is very likely to be larger than 2 MiB which is the
2227 	 * granularity we currently register memory regions.  Hence return
2228 	 * UINT32_MAX here and let the generic layer use the controller data to
2229 	 * moderate this value.
2230 	 */
2231 	return UINT32_MAX;
2232 }
2233 
2234 static uint16_t
2235 nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
2236 {
2237 	struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
2238 
2239 	return rctrlr->max_sge;
2240 }
2241 
2242 static int
2243 nvme_rdma_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
2244 				 int (*iter_fn)(struct nvme_request *req, void *arg),
2245 				 void *arg)
2246 {
2247 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2248 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
2249 	int rc;
2250 
2251 	assert(iter_fn != NULL);
2252 
2253 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2254 		assert(rdma_req->req != NULL);
2255 
2256 		rc = iter_fn(rdma_req->req, arg);
2257 		if (rc != 0) {
2258 			return rc;
2259 		}
2260 	}
2261 
2262 	return 0;
2263 }
2264 
2265 static void
2266 nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
2267 {
2268 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
2269 	struct spdk_nvme_cpl cpl;
2270 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2271 
2272 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
2273 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2274 
2275 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2276 		assert(rdma_req->req != NULL);
2277 
2278 		if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
2279 			continue;
2280 		}
2281 
2282 		nvme_rdma_req_complete(rdma_req, &cpl);
2283 		nvme_rdma_req_put(rqpair, rdma_req);
2284 	}
2285 }
2286 
2287 static int
2288 nvme_rdma_poller_create(struct nvme_rdma_poll_group *group, struct ibv_context *ctx)
2289 {
2290 	struct nvme_rdma_poller *poller;
2291 
2292 	poller = calloc(1, sizeof(*poller));
2293 	if (poller == NULL) {
2294 		SPDK_ERRLOG("Unable to allocate poller.\n");
2295 		return -ENOMEM;
2296 	}
2297 
2298 	poller->device = ctx;
2299 	poller->cq = ibv_create_cq(poller->device, DEFAULT_NVME_RDMA_CQ_SIZE, group, NULL, 0);
2300 
2301 	if (poller->cq == NULL) {
2302 		free(poller);
2303 		return -EINVAL;
2304 	}
2305 
2306 	STAILQ_INSERT_HEAD(&group->pollers, poller, link);
2307 	group->num_pollers++;
2308 	poller->current_num_wc = DEFAULT_NVME_RDMA_CQ_SIZE;
2309 	poller->required_num_wc = 0;
2310 	return 0;
2311 }
2312 
2313 static void
2314 nvme_rdma_poll_group_free_pollers(struct nvme_rdma_poll_group *group)
2315 {
2316 	struct nvme_rdma_poller	*poller, *tmp_poller;
2317 
2318 	STAILQ_FOREACH_SAFE(poller, &group->pollers, link, tmp_poller) {
2319 		if (poller->cq) {
2320 			ibv_destroy_cq(poller->cq);
2321 		}
2322 		STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
2323 		free(poller);
2324 	}
2325 }
2326 
2327 static struct spdk_nvme_transport_poll_group *
2328 nvme_rdma_poll_group_create(void)
2329 {
2330 	struct nvme_rdma_poll_group	*group;
2331 	struct ibv_context		**contexts;
2332 	int i = 0;
2333 
2334 	group = calloc(1, sizeof(*group));
2335 	if (group == NULL) {
2336 		SPDK_ERRLOG("Unable to allocate poll group.\n");
2337 		return NULL;
2338 	}
2339 
2340 	STAILQ_INIT(&group->pollers);
2341 
2342 	contexts = rdma_get_devices(NULL);
2343 	if (contexts == NULL) {
2344 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2345 		free(group);
2346 		return NULL;
2347 	}
2348 
2349 	while (contexts[i] != NULL) {
2350 		if (nvme_rdma_poller_create(group, contexts[i])) {
2351 			nvme_rdma_poll_group_free_pollers(group);
2352 			free(group);
2353 			rdma_free_devices(contexts);
2354 			return NULL;
2355 		}
2356 		i++;
2357 	}
2358 
2359 	rdma_free_devices(contexts);
2360 	STAILQ_INIT(&group->destroyed_qpairs);
2361 	return &group->group;
2362 }
2363 
2364 struct nvme_rdma_qpair *
2365 nvme_rdma_poll_group_get_qpair_by_id(struct nvme_rdma_poll_group *group, uint32_t qp_num)
2366 {
2367 	struct spdk_nvme_qpair *qpair;
2368 	struct nvme_rdma_destroyed_qpair *rqpair_tracker;
2369 	struct nvme_rdma_qpair *rqpair;
2370 
2371 	STAILQ_FOREACH(qpair, &group->group.disconnected_qpairs, poll_group_stailq) {
2372 		rqpair = nvme_rdma_qpair(qpair);
2373 		if (rqpair->rdma_qp->qp->qp_num == qp_num) {
2374 			return rqpair;
2375 		}
2376 	}
2377 
2378 	STAILQ_FOREACH(qpair, &group->group.connected_qpairs, poll_group_stailq) {
2379 		rqpair = nvme_rdma_qpair(qpair);
2380 		if (rqpair->rdma_qp->qp->qp_num == qp_num) {
2381 			return rqpair;
2382 		}
2383 	}
2384 
2385 	STAILQ_FOREACH(rqpair_tracker, &group->destroyed_qpairs, link) {
2386 		rqpair = rqpair_tracker->destroyed_qpair_tracker;
2387 		if (rqpair->rdma_qp->qp->qp_num == qp_num) {
2388 			return rqpair;
2389 		}
2390 	}
2391 
2392 	return NULL;
2393 }
2394 
2395 static int
2396 nvme_rdma_resize_cq(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poller *poller)
2397 {
2398 	int	current_num_wc, required_num_wc;
2399 
2400 	required_num_wc = poller->required_num_wc + WC_PER_QPAIR(rqpair->num_entries);
2401 	current_num_wc = poller->current_num_wc;
2402 	if (current_num_wc < required_num_wc) {
2403 		current_num_wc = spdk_max(current_num_wc * 2, required_num_wc);
2404 	}
2405 
2406 	if (poller->current_num_wc != current_num_wc) {
2407 		SPDK_DEBUGLOG(nvme, "Resize RDMA CQ from %d to %d\n", poller->current_num_wc,
2408 			      current_num_wc);
2409 		if (ibv_resize_cq(poller->cq, current_num_wc)) {
2410 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
2411 			return -1;
2412 		}
2413 
2414 		poller->current_num_wc = current_num_wc;
2415 	}
2416 
2417 	poller->required_num_wc = required_num_wc;
2418 	return 0;
2419 }
2420 
2421 static int
2422 nvme_rdma_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
2423 {
2424 	struct nvme_rdma_qpair		*rqpair = nvme_rdma_qpair(qpair);
2425 	struct nvme_rdma_poll_group	*group = nvme_rdma_poll_group(qpair->poll_group);
2426 	struct nvme_rdma_poller		*poller;
2427 
2428 	assert(rqpair->cq == NULL);
2429 
2430 	STAILQ_FOREACH(poller, &group->pollers, link) {
2431 		if (poller->device == rqpair->cm_id->verbs) {
2432 			if (nvme_rdma_resize_cq(rqpair, poller)) {
2433 				return -EPROTO;
2434 			}
2435 			rqpair->cq = poller->cq;
2436 			break;
2437 		}
2438 	}
2439 
2440 	if (rqpair->cq == NULL) {
2441 		SPDK_ERRLOG("Unable to find a cq for qpair %p on poll group %p\n", qpair, qpair->poll_group);
2442 		return -EINVAL;
2443 	}
2444 
2445 	return 0;
2446 }
2447 
2448 static int
2449 nvme_rdma_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
2450 {
2451 	struct nvme_rdma_qpair			*rqpair = nvme_rdma_qpair(qpair);
2452 	struct nvme_rdma_poll_group		*group;
2453 	struct nvme_rdma_destroyed_qpair	*destroyed_qpair;
2454 	enum nvme_qpair_state			state;
2455 
2456 	if (rqpair->poll_group_disconnect_in_progress) {
2457 		return -EINPROGRESS;
2458 	}
2459 
2460 	rqpair->poll_group_disconnect_in_progress = true;
2461 	state = nvme_qpair_get_state(qpair);
2462 	group = nvme_rdma_poll_group(qpair->poll_group);
2463 	rqpair->cq = NULL;
2464 
2465 	/*
2466 	 * We want to guard against an endless recursive loop while making
2467 	 * sure the qpair is disconnected before we disconnect it from the qpair.
2468 	 */
2469 	if (state > NVME_QPAIR_DISCONNECTING && state != NVME_QPAIR_DESTROYING) {
2470 		nvme_ctrlr_disconnect_qpair(qpair);
2471 	}
2472 
2473 	/*
2474 	 * If this fails, the system is in serious trouble,
2475 	 * just let the qpair get cleaned up immediately.
2476 	 */
2477 	destroyed_qpair = calloc(1, sizeof(*destroyed_qpair));
2478 	if (destroyed_qpair == NULL) {
2479 		return 0;
2480 	}
2481 
2482 	destroyed_qpair->destroyed_qpair_tracker = rqpair;
2483 	destroyed_qpair->completed_cycles = 0;
2484 	STAILQ_INSERT_TAIL(&group->destroyed_qpairs, destroyed_qpair, link);
2485 
2486 	rqpair->defer_deletion_to_pg = true;
2487 
2488 	rqpair->poll_group_disconnect_in_progress = false;
2489 	return 0;
2490 }
2491 
2492 static int
2493 nvme_rdma_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
2494 			 struct spdk_nvme_qpair *qpair)
2495 {
2496 	return 0;
2497 }
2498 
2499 static int
2500 nvme_rdma_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
2501 			    struct spdk_nvme_qpair *qpair)
2502 {
2503 	if (qpair->poll_group_tailq_head == &tgroup->connected_qpairs) {
2504 		return nvme_poll_group_disconnect_qpair(qpair);
2505 	}
2506 
2507 	return 0;
2508 }
2509 
2510 static void
2511 nvme_rdma_poll_group_delete_qpair(struct nvme_rdma_poll_group *group,
2512 				  struct nvme_rdma_destroyed_qpair *qpair_tracker)
2513 {
2514 	struct nvme_rdma_qpair *rqpair = qpair_tracker->destroyed_qpair_tracker;
2515 
2516 	rqpair->defer_deletion_to_pg = false;
2517 	if (nvme_qpair_get_state(&rqpair->qpair) == NVME_QPAIR_DESTROYING) {
2518 		nvme_rdma_ctrlr_delete_io_qpair(rqpair->qpair.ctrlr, &rqpair->qpair);
2519 	}
2520 	STAILQ_REMOVE(&group->destroyed_qpairs, qpair_tracker, nvme_rdma_destroyed_qpair, link);
2521 	free(qpair_tracker);
2522 }
2523 
2524 static int64_t
2525 nvme_rdma_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
2526 		uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
2527 {
2528 	struct spdk_nvme_qpair			*qpair, *tmp_qpair;
2529 	struct nvme_rdma_destroyed_qpair	*qpair_tracker, *tmp_qpair_tracker;
2530 	struct nvme_rdma_qpair			*rqpair;
2531 	struct nvme_rdma_poll_group		*group;
2532 	struct nvme_rdma_poller			*poller;
2533 	int					num_qpairs = 0, batch_size, rc;
2534 	int64_t					total_completions = 0;
2535 	uint64_t				completions_allowed = 0;
2536 	uint64_t				completions_per_poller = 0;
2537 	uint64_t				poller_completions = 0;
2538 
2539 
2540 	if (completions_per_qpair == 0) {
2541 		completions_per_qpair = MAX_COMPLETIONS_PER_POLL;
2542 	}
2543 
2544 	group = nvme_rdma_poll_group(tgroup);
2545 	STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
2546 		disconnected_qpair_cb(qpair, tgroup->group->ctx);
2547 	}
2548 
2549 	STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
2550 		rqpair = nvme_rdma_qpair(qpair);
2551 		rqpair->num_completions = 0;
2552 		nvme_rdma_qpair_process_cm_event(rqpair);
2553 
2554 		if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
2555 			nvme_rdma_fail_qpair(qpair, 0);
2556 			disconnected_qpair_cb(qpair, tgroup->group->ctx);
2557 			continue;
2558 		}
2559 		num_qpairs++;
2560 	}
2561 
2562 	completions_allowed = completions_per_qpair * num_qpairs;
2563 	completions_per_poller = spdk_max(completions_allowed / group->num_pollers, 1);
2564 
2565 	STAILQ_FOREACH(poller, &group->pollers, link) {
2566 		poller_completions = 0;
2567 		do {
2568 			batch_size = spdk_min((completions_per_poller - poller_completions), MAX_COMPLETIONS_PER_POLL);
2569 			rc = nvme_rdma_cq_process_completions(poller->cq, batch_size, group, NULL);
2570 			if (rc <= 0) {
2571 				if (rc == -ECANCELED) {
2572 					return -EIO;
2573 				}
2574 				break;
2575 			}
2576 
2577 			poller_completions += rc;
2578 		} while (poller_completions < completions_per_poller);
2579 		total_completions += poller_completions;
2580 	}
2581 
2582 	STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
2583 		rqpair = nvme_rdma_qpair(qpair);
2584 		if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
2585 			nvme_rdma_qpair_check_timeout(qpair);
2586 		}
2587 
2588 		nvme_rdma_qpair_submit_sends(rqpair);
2589 		nvme_rdma_qpair_submit_recvs(rqpair);
2590 		nvme_qpair_resubmit_requests(&rqpair->qpair, rqpair->num_completions);
2591 	}
2592 
2593 	/*
2594 	 * Once a qpair is disconnected, we can still get flushed completions for those disconnected qpairs.
2595 	 * For most pieces of hardware, those requests will complete immediately. However, there are certain
2596 	 * cases where flushed requests will linger. Default is to destroy qpair after all completions are freed,
2597 	 * but have a fallback for other cases where we don't get all of our completions back.
2598 	 */
2599 	STAILQ_FOREACH_SAFE(qpair_tracker, &group->destroyed_qpairs, link, tmp_qpair_tracker) {
2600 		qpair_tracker->completed_cycles++;
2601 		rqpair = qpair_tracker->destroyed_qpair_tracker;
2602 		if ((rqpair->current_num_sends == 0 && rqpair->current_num_recvs == 0) ||
2603 		    qpair_tracker->completed_cycles > NVME_RDMA_DESTROYED_QPAIR_EXPIRATION_CYCLES) {
2604 			nvme_rdma_poll_group_delete_qpair(group, qpair_tracker);
2605 		}
2606 	}
2607 
2608 	return total_completions;
2609 }
2610 
2611 static int
2612 nvme_rdma_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
2613 {
2614 	struct nvme_rdma_poll_group		*group = nvme_rdma_poll_group(tgroup);
2615 	struct nvme_rdma_destroyed_qpair	*qpair_tracker, *tmp_qpair_tracker;
2616 	struct nvme_rdma_qpair			*rqpair;
2617 
2618 	if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
2619 		return -EBUSY;
2620 	}
2621 
2622 	STAILQ_FOREACH_SAFE(qpair_tracker, &group->destroyed_qpairs, link, tmp_qpair_tracker) {
2623 		rqpair = qpair_tracker->destroyed_qpair_tracker;
2624 		if (nvme_qpair_get_state(&rqpair->qpair) == NVME_QPAIR_DESTROYING) {
2625 			rqpair->defer_deletion_to_pg = false;
2626 			nvme_rdma_ctrlr_delete_io_qpair(rqpair->qpair.ctrlr, &rqpair->qpair);
2627 		}
2628 
2629 		STAILQ_REMOVE(&group->destroyed_qpairs, qpair_tracker, nvme_rdma_destroyed_qpair, link);
2630 		free(qpair_tracker);
2631 	}
2632 
2633 	nvme_rdma_poll_group_free_pollers(group);
2634 	free(group);
2635 
2636 	return 0;
2637 }
2638 
2639 void
2640 spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
2641 {
2642 	g_nvme_hooks = *hooks;
2643 }
2644 
2645 const struct spdk_nvme_transport_ops rdma_ops = {
2646 	.name = "RDMA",
2647 	.type = SPDK_NVME_TRANSPORT_RDMA,
2648 	.ctrlr_construct = nvme_rdma_ctrlr_construct,
2649 	.ctrlr_scan = nvme_fabric_ctrlr_scan,
2650 	.ctrlr_destruct = nvme_rdma_ctrlr_destruct,
2651 	.ctrlr_enable = nvme_rdma_ctrlr_enable,
2652 
2653 	.ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4,
2654 	.ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8,
2655 	.ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4,
2656 	.ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8,
2657 
2658 	.ctrlr_get_max_xfer_size = nvme_rdma_ctrlr_get_max_xfer_size,
2659 	.ctrlr_get_max_sges = nvme_rdma_ctrlr_get_max_sges,
2660 
2661 	.ctrlr_create_io_qpair = nvme_rdma_ctrlr_create_io_qpair,
2662 	.ctrlr_delete_io_qpair = nvme_rdma_ctrlr_delete_io_qpair,
2663 	.ctrlr_connect_qpair = nvme_rdma_ctrlr_connect_qpair,
2664 	.ctrlr_disconnect_qpair = nvme_rdma_ctrlr_disconnect_qpair,
2665 
2666 	.qpair_abort_reqs = nvme_rdma_qpair_abort_reqs,
2667 	.qpair_reset = nvme_rdma_qpair_reset,
2668 	.qpair_submit_request = nvme_rdma_qpair_submit_request,
2669 	.qpair_process_completions = nvme_rdma_qpair_process_completions,
2670 	.qpair_iterate_requests = nvme_rdma_qpair_iterate_requests,
2671 	.admin_qpair_abort_aers = nvme_rdma_admin_qpair_abort_aers,
2672 
2673 	.poll_group_create = nvme_rdma_poll_group_create,
2674 	.poll_group_connect_qpair = nvme_rdma_poll_group_connect_qpair,
2675 	.poll_group_disconnect_qpair = nvme_rdma_poll_group_disconnect_qpair,
2676 	.poll_group_add = nvme_rdma_poll_group_add,
2677 	.poll_group_remove = nvme_rdma_poll_group_remove,
2678 	.poll_group_process_completions = nvme_rdma_poll_group_process_completions,
2679 	.poll_group_destroy = nvme_rdma_poll_group_destroy,
2680 
2681 };
2682 
2683 SPDK_NVME_TRANSPORT_REGISTER(rdma, &rdma_ops);
2684