1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2016 Intel Corporation. All rights reserved. 3 * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 /* 8 * NVMe over RDMA transport 9 */ 10 11 #include "spdk/stdinc.h" 12 13 #include "spdk/assert.h" 14 #include "spdk/dma.h" 15 #include "spdk/log.h" 16 #include "spdk/trace.h" 17 #include "spdk/queue.h" 18 #include "spdk/nvme.h" 19 #include "spdk/nvmf_spec.h" 20 #include "spdk/string.h" 21 #include "spdk/endian.h" 22 #include "spdk/likely.h" 23 #include "spdk/config.h" 24 25 #include "nvme_internal.h" 26 #include "spdk_internal/rdma.h" 27 28 #define NVME_RDMA_TIME_OUT_IN_MS 2000 29 #define NVME_RDMA_RW_BUFFER_SIZE 131072 30 31 /* 32 * NVME RDMA qpair Resource Defaults 33 */ 34 #define NVME_RDMA_DEFAULT_TX_SGE 2 35 #define NVME_RDMA_DEFAULT_RX_SGE 1 36 37 /* Max number of NVMe-oF SGL descriptors supported by the host */ 38 #define NVME_RDMA_MAX_SGL_DESCRIPTORS 16 39 40 /* number of STAILQ entries for holding pending RDMA CM events. */ 41 #define NVME_RDMA_NUM_CM_EVENTS 256 42 43 /* CM event processing timeout */ 44 #define NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US 1000000 45 46 /* The default size for a shared rdma completion queue. */ 47 #define DEFAULT_NVME_RDMA_CQ_SIZE 4096 48 49 /* 50 * In the special case of a stale connection we don't expose a mechanism 51 * for the user to retry the connection so we need to handle it internally. 52 */ 53 #define NVME_RDMA_STALE_CONN_RETRY_MAX 5 54 #define NVME_RDMA_STALE_CONN_RETRY_DELAY_US 10000 55 56 /* 57 * Maximum value of transport_retry_count used by RDMA controller 58 */ 59 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT 7 60 61 /* 62 * Maximum value of transport_ack_timeout used by RDMA controller 63 */ 64 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT 31 65 66 /* 67 * Number of microseconds to wait until the lingering qpair becomes quiet. 68 */ 69 #define NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US 1000000ull 70 71 /* 72 * The max length of keyed SGL data block (3 bytes) 73 */ 74 #define NVME_RDMA_MAX_KEYED_SGL_LENGTH ((1u << 24u) - 1) 75 76 #define WC_PER_QPAIR(queue_depth) (queue_depth * 2) 77 78 #define NVME_RDMA_POLL_GROUP_CHECK_QPN(_rqpair, qpn) \ 79 ((_rqpair)->rdma_qp && (_rqpair)->rdma_qp->qp->qp_num == (qpn)) \ 80 81 struct nvme_rdma_memory_domain { 82 TAILQ_ENTRY(nvme_rdma_memory_domain) link; 83 uint32_t ref; 84 struct ibv_pd *pd; 85 struct spdk_memory_domain *domain; 86 struct spdk_memory_domain_rdma_ctx rdma_ctx; 87 }; 88 89 enum nvme_rdma_wr_type { 90 RDMA_WR_TYPE_RECV, 91 RDMA_WR_TYPE_SEND, 92 }; 93 94 struct nvme_rdma_wr { 95 /* Using this instead of the enum allows this struct to only occupy one byte. */ 96 uint8_t type; 97 }; 98 99 struct spdk_nvmf_cmd { 100 struct spdk_nvme_cmd cmd; 101 struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS]; 102 }; 103 104 struct spdk_nvme_rdma_hooks g_nvme_hooks = {}; 105 106 /* STAILQ wrapper for cm events. */ 107 struct nvme_rdma_cm_event_entry { 108 struct rdma_cm_event *evt; 109 STAILQ_ENTRY(nvme_rdma_cm_event_entry) link; 110 }; 111 112 /* NVMe RDMA transport extensions for spdk_nvme_ctrlr */ 113 struct nvme_rdma_ctrlr { 114 struct spdk_nvme_ctrlr ctrlr; 115 116 uint16_t max_sge; 117 118 struct rdma_event_channel *cm_channel; 119 120 STAILQ_HEAD(, nvme_rdma_cm_event_entry) pending_cm_events; 121 122 STAILQ_HEAD(, nvme_rdma_cm_event_entry) free_cm_events; 123 124 struct nvme_rdma_cm_event_entry *cm_events; 125 }; 126 127 struct nvme_rdma_poller_stats { 128 uint64_t polls; 129 uint64_t idle_polls; 130 uint64_t queued_requests; 131 uint64_t completions; 132 struct spdk_rdma_qp_stats rdma_stats; 133 }; 134 135 struct nvme_rdma_poll_group; 136 struct nvme_rdma_rsps; 137 138 struct nvme_rdma_poller { 139 struct ibv_context *device; 140 struct ibv_cq *cq; 141 struct spdk_rdma_srq *srq; 142 struct nvme_rdma_rsps *rsps; 143 struct ibv_pd *pd; 144 struct spdk_rdma_mem_map *mr_map; 145 uint32_t refcnt; 146 int required_num_wc; 147 int current_num_wc; 148 struct nvme_rdma_poller_stats stats; 149 struct nvme_rdma_poll_group *group; 150 STAILQ_ENTRY(nvme_rdma_poller) link; 151 }; 152 153 struct nvme_rdma_poll_group { 154 struct spdk_nvme_transport_poll_group group; 155 STAILQ_HEAD(, nvme_rdma_poller) pollers; 156 uint32_t num_pollers; 157 }; 158 159 enum nvme_rdma_qpair_state { 160 NVME_RDMA_QPAIR_STATE_INVALID = 0, 161 NVME_RDMA_QPAIR_STATE_STALE_CONN, 162 NVME_RDMA_QPAIR_STATE_INITIALIZING, 163 NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND, 164 NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL, 165 NVME_RDMA_QPAIR_STATE_RUNNING, 166 NVME_RDMA_QPAIR_STATE_EXITING, 167 NVME_RDMA_QPAIR_STATE_LINGERING, 168 NVME_RDMA_QPAIR_STATE_EXITED, 169 }; 170 171 struct nvme_rdma_qpair; 172 173 typedef int (*nvme_rdma_cm_event_cb)(struct nvme_rdma_qpair *rqpair, int ret); 174 175 struct nvme_rdma_rsp_opts { 176 uint16_t num_entries; 177 struct nvme_rdma_qpair *rqpair; 178 struct spdk_rdma_srq *srq; 179 struct spdk_rdma_mem_map *mr_map; 180 }; 181 182 struct nvme_rdma_rsps { 183 /* Parallel arrays of response buffers + response SGLs of size num_entries */ 184 struct ibv_sge *rsp_sgls; 185 struct spdk_nvme_rdma_rsp *rsps; 186 187 struct ibv_recv_wr *rsp_recv_wrs; 188 189 /* Count of outstanding recv objects */ 190 uint16_t current_num_recvs; 191 192 uint16_t num_entries; 193 }; 194 195 /* NVMe RDMA qpair extensions for spdk_nvme_qpair */ 196 struct nvme_rdma_qpair { 197 struct spdk_nvme_qpair qpair; 198 199 struct spdk_rdma_qp *rdma_qp; 200 struct rdma_cm_id *cm_id; 201 struct ibv_cq *cq; 202 struct spdk_rdma_srq *srq; 203 204 struct spdk_nvme_rdma_req *rdma_reqs; 205 206 uint32_t max_send_sge; 207 208 uint32_t max_recv_sge; 209 210 uint16_t num_entries; 211 212 bool delay_cmd_submit; 213 214 uint32_t num_completions; 215 216 struct nvme_rdma_rsps *rsps; 217 218 /* 219 * Array of num_entries NVMe commands registered as RDMA message buffers. 220 * Indexed by rdma_req->id. 221 */ 222 struct spdk_nvmf_cmd *cmds; 223 224 struct spdk_rdma_mem_map *mr_map; 225 226 TAILQ_HEAD(, spdk_nvme_rdma_req) free_reqs; 227 TAILQ_HEAD(, spdk_nvme_rdma_req) outstanding_reqs; 228 229 struct nvme_rdma_memory_domain *memory_domain; 230 231 /* Count of outstanding send objects */ 232 uint16_t current_num_sends; 233 234 /* Placed at the end of the struct since it is not used frequently */ 235 struct rdma_cm_event *evt; 236 struct nvme_rdma_poller *poller; 237 238 uint64_t evt_timeout_ticks; 239 nvme_rdma_cm_event_cb evt_cb; 240 enum rdma_cm_event_type expected_evt_type; 241 242 enum nvme_rdma_qpair_state state; 243 244 bool in_connect_poll; 245 246 uint8_t stale_conn_retry_count; 247 bool need_destroy; 248 }; 249 250 enum NVME_RDMA_COMPLETION_FLAGS { 251 NVME_RDMA_SEND_COMPLETED = 1u << 0, 252 NVME_RDMA_RECV_COMPLETED = 1u << 1, 253 }; 254 255 struct spdk_nvme_rdma_req { 256 uint16_t id; 257 uint16_t completion_flags: 2; 258 uint16_t reserved: 14; 259 /* if completion of RDMA_RECV received before RDMA_SEND, we will complete nvme request 260 * during processing of RDMA_SEND. To complete the request we must know the response 261 * received in RDMA_RECV, so store it in this field */ 262 struct spdk_nvme_rdma_rsp *rdma_rsp; 263 264 struct nvme_rdma_wr rdma_wr; 265 266 struct ibv_send_wr send_wr; 267 268 struct nvme_request *req; 269 270 struct ibv_sge send_sgl[NVME_RDMA_DEFAULT_TX_SGE]; 271 272 TAILQ_ENTRY(spdk_nvme_rdma_req) link; 273 }; 274 275 struct spdk_nvme_rdma_rsp { 276 struct spdk_nvme_cpl cpl; 277 struct nvme_rdma_qpair *rqpair; 278 struct ibv_recv_wr *recv_wr; 279 struct nvme_rdma_wr rdma_wr; 280 }; 281 282 struct nvme_rdma_memory_translation_ctx { 283 void *addr; 284 size_t length; 285 uint32_t lkey; 286 uint32_t rkey; 287 }; 288 289 static const char *rdma_cm_event_str[] = { 290 "RDMA_CM_EVENT_ADDR_RESOLVED", 291 "RDMA_CM_EVENT_ADDR_ERROR", 292 "RDMA_CM_EVENT_ROUTE_RESOLVED", 293 "RDMA_CM_EVENT_ROUTE_ERROR", 294 "RDMA_CM_EVENT_CONNECT_REQUEST", 295 "RDMA_CM_EVENT_CONNECT_RESPONSE", 296 "RDMA_CM_EVENT_CONNECT_ERROR", 297 "RDMA_CM_EVENT_UNREACHABLE", 298 "RDMA_CM_EVENT_REJECTED", 299 "RDMA_CM_EVENT_ESTABLISHED", 300 "RDMA_CM_EVENT_DISCONNECTED", 301 "RDMA_CM_EVENT_DEVICE_REMOVAL", 302 "RDMA_CM_EVENT_MULTICAST_JOIN", 303 "RDMA_CM_EVENT_MULTICAST_ERROR", 304 "RDMA_CM_EVENT_ADDR_CHANGE", 305 "RDMA_CM_EVENT_TIMEWAIT_EXIT" 306 }; 307 308 static struct nvme_rdma_poller *nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group, 309 struct ibv_context *device); 310 static void nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group, 311 struct nvme_rdma_poller *poller); 312 313 static TAILQ_HEAD(, nvme_rdma_memory_domain) g_memory_domains = TAILQ_HEAD_INITIALIZER( 314 g_memory_domains); 315 static pthread_mutex_t g_memory_domains_lock = PTHREAD_MUTEX_INITIALIZER; 316 317 static struct nvme_rdma_memory_domain * 318 nvme_rdma_get_memory_domain(struct ibv_pd *pd) 319 { 320 struct nvme_rdma_memory_domain *domain = NULL; 321 struct spdk_memory_domain_ctx ctx; 322 int rc; 323 324 pthread_mutex_lock(&g_memory_domains_lock); 325 326 TAILQ_FOREACH(domain, &g_memory_domains, link) { 327 if (domain->pd == pd) { 328 domain->ref++; 329 pthread_mutex_unlock(&g_memory_domains_lock); 330 return domain; 331 } 332 } 333 334 domain = calloc(1, sizeof(*domain)); 335 if (!domain) { 336 SPDK_ERRLOG("Memory allocation failed\n"); 337 pthread_mutex_unlock(&g_memory_domains_lock); 338 return NULL; 339 } 340 341 domain->rdma_ctx.size = sizeof(domain->rdma_ctx); 342 domain->rdma_ctx.ibv_pd = pd; 343 ctx.size = sizeof(ctx); 344 ctx.user_ctx = &domain->rdma_ctx; 345 346 rc = spdk_memory_domain_create(&domain->domain, SPDK_DMA_DEVICE_TYPE_RDMA, &ctx, 347 SPDK_RDMA_DMA_DEVICE); 348 if (rc) { 349 SPDK_ERRLOG("Failed to create memory domain\n"); 350 free(domain); 351 pthread_mutex_unlock(&g_memory_domains_lock); 352 return NULL; 353 } 354 355 domain->pd = pd; 356 domain->ref = 1; 357 TAILQ_INSERT_TAIL(&g_memory_domains, domain, link); 358 359 pthread_mutex_unlock(&g_memory_domains_lock); 360 361 return domain; 362 } 363 364 static void 365 nvme_rdma_put_memory_domain(struct nvme_rdma_memory_domain *device) 366 { 367 if (!device) { 368 return; 369 } 370 371 pthread_mutex_lock(&g_memory_domains_lock); 372 373 assert(device->ref > 0); 374 375 device->ref--; 376 377 if (device->ref == 0) { 378 spdk_memory_domain_destroy(device->domain); 379 TAILQ_REMOVE(&g_memory_domains, device, link); 380 free(device); 381 } 382 383 pthread_mutex_unlock(&g_memory_domains_lock); 384 } 385 386 static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, 387 struct spdk_nvme_qpair *qpair); 388 389 static inline struct nvme_rdma_qpair * 390 nvme_rdma_qpair(struct spdk_nvme_qpair *qpair) 391 { 392 assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA); 393 return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair); 394 } 395 396 static inline struct nvme_rdma_poll_group * 397 nvme_rdma_poll_group(struct spdk_nvme_transport_poll_group *group) 398 { 399 return (SPDK_CONTAINEROF(group, struct nvme_rdma_poll_group, group)); 400 } 401 402 static inline struct nvme_rdma_ctrlr * 403 nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr) 404 { 405 assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA); 406 return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr); 407 } 408 409 static struct spdk_nvme_rdma_req * 410 nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair) 411 { 412 struct spdk_nvme_rdma_req *rdma_req; 413 414 rdma_req = TAILQ_FIRST(&rqpair->free_reqs); 415 if (rdma_req) { 416 TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link); 417 TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link); 418 } 419 420 return rdma_req; 421 } 422 423 static void 424 nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) 425 { 426 rdma_req->completion_flags = 0; 427 rdma_req->req = NULL; 428 TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link); 429 } 430 431 static void 432 nvme_rdma_req_complete(struct spdk_nvme_rdma_req *rdma_req, 433 struct spdk_nvme_cpl *rsp, 434 bool print_on_error) 435 { 436 struct nvme_request *req = rdma_req->req; 437 struct nvme_rdma_qpair *rqpair; 438 struct spdk_nvme_qpair *qpair; 439 bool error, print_error; 440 441 assert(req != NULL); 442 443 qpair = req->qpair; 444 rqpair = nvme_rdma_qpair(qpair); 445 446 error = spdk_nvme_cpl_is_error(rsp); 447 print_error = error && print_on_error && !qpair->ctrlr->opts.disable_error_logging; 448 449 if (print_error) { 450 spdk_nvme_qpair_print_command(qpair, &req->cmd); 451 } 452 453 if (print_error || SPDK_DEBUGLOG_FLAG_ENABLED("nvme")) { 454 spdk_nvme_qpair_print_completion(qpair, rsp); 455 } 456 457 TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link); 458 459 nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, rsp); 460 nvme_free_request(req); 461 nvme_rdma_req_put(rqpair, rdma_req); 462 } 463 464 static const char * 465 nvme_rdma_cm_event_str_get(uint32_t event) 466 { 467 if (event < SPDK_COUNTOF(rdma_cm_event_str)) { 468 return rdma_cm_event_str[event]; 469 } else { 470 return "Undefined"; 471 } 472 } 473 474 475 static int 476 nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair) 477 { 478 struct rdma_cm_event *event = rqpair->evt; 479 struct spdk_nvmf_rdma_accept_private_data *accept_data; 480 int rc = 0; 481 482 if (event) { 483 switch (event->event) { 484 case RDMA_CM_EVENT_ADDR_RESOLVED: 485 case RDMA_CM_EVENT_ADDR_ERROR: 486 case RDMA_CM_EVENT_ROUTE_RESOLVED: 487 case RDMA_CM_EVENT_ROUTE_ERROR: 488 break; 489 case RDMA_CM_EVENT_CONNECT_REQUEST: 490 break; 491 case RDMA_CM_EVENT_CONNECT_ERROR: 492 break; 493 case RDMA_CM_EVENT_UNREACHABLE: 494 case RDMA_CM_EVENT_REJECTED: 495 break; 496 case RDMA_CM_EVENT_CONNECT_RESPONSE: 497 rc = spdk_rdma_qp_complete_connect(rqpair->rdma_qp); 498 /* fall through */ 499 case RDMA_CM_EVENT_ESTABLISHED: 500 accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data; 501 if (accept_data == NULL) { 502 rc = -1; 503 } else { 504 SPDK_DEBUGLOG(nvme, "Requested queue depth %d. Target receive queue depth %d.\n", 505 rqpair->num_entries + 1, accept_data->crqsize); 506 } 507 break; 508 case RDMA_CM_EVENT_DISCONNECTED: 509 rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE; 510 break; 511 case RDMA_CM_EVENT_DEVICE_REMOVAL: 512 rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; 513 rqpair->need_destroy = true; 514 break; 515 case RDMA_CM_EVENT_MULTICAST_JOIN: 516 case RDMA_CM_EVENT_MULTICAST_ERROR: 517 break; 518 case RDMA_CM_EVENT_ADDR_CHANGE: 519 rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; 520 break; 521 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 522 break; 523 default: 524 SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); 525 break; 526 } 527 rqpair->evt = NULL; 528 rdma_ack_cm_event(event); 529 } 530 531 return rc; 532 } 533 534 /* 535 * This function must be called under the nvme controller's lock 536 * because it touches global controller variables. The lock is taken 537 * by the generic transport code before invoking a few of the functions 538 * in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair, 539 * and conditionally nvme_rdma_qpair_process_completions when it is calling 540 * completions on the admin qpair. When adding a new call to this function, please 541 * verify that it is in a situation where it falls under the lock. 542 */ 543 static int 544 nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr) 545 { 546 struct nvme_rdma_cm_event_entry *entry, *tmp; 547 struct nvme_rdma_qpair *event_qpair; 548 struct rdma_cm_event *event; 549 struct rdma_event_channel *channel = rctrlr->cm_channel; 550 551 STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) { 552 event_qpair = entry->evt->id->context; 553 if (event_qpair->evt == NULL) { 554 event_qpair->evt = entry->evt; 555 STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link); 556 STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link); 557 } 558 } 559 560 while (rdma_get_cm_event(channel, &event) == 0) { 561 event_qpair = event->id->context; 562 if (event_qpair->evt == NULL) { 563 event_qpair->evt = event; 564 } else { 565 assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr)); 566 entry = STAILQ_FIRST(&rctrlr->free_cm_events); 567 if (entry == NULL) { 568 rdma_ack_cm_event(event); 569 return -ENOMEM; 570 } 571 STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link); 572 entry->evt = event; 573 STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link); 574 } 575 } 576 577 /* rdma_get_cm_event() returns -1 on error. If an error occurs, errno 578 * will be set to indicate the failure reason. So return negated errno here. 579 */ 580 return -errno; 581 } 582 583 static int 584 nvme_rdma_validate_cm_event(enum rdma_cm_event_type expected_evt_type, 585 struct rdma_cm_event *reaped_evt) 586 { 587 int rc = -EBADMSG; 588 589 if (expected_evt_type == reaped_evt->event) { 590 return 0; 591 } 592 593 switch (expected_evt_type) { 594 case RDMA_CM_EVENT_ESTABLISHED: 595 /* 596 * There is an enum ib_cm_rej_reason in the kernel headers that sets 10 as 597 * IB_CM_REJ_STALE_CONN. I can't find the corresponding userspace but we get 598 * the same values here. 599 */ 600 if (reaped_evt->event == RDMA_CM_EVENT_REJECTED && reaped_evt->status == 10) { 601 rc = -ESTALE; 602 } else if (reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE) { 603 /* 604 * If we are using a qpair which is not created using rdma cm API 605 * then we will receive RDMA_CM_EVENT_CONNECT_RESPONSE instead of 606 * RDMA_CM_EVENT_ESTABLISHED. 607 */ 608 return 0; 609 } 610 break; 611 default: 612 break; 613 } 614 615 SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n", 616 nvme_rdma_cm_event_str_get(expected_evt_type), 617 nvme_rdma_cm_event_str_get(reaped_evt->event), reaped_evt->event, 618 reaped_evt->status); 619 return rc; 620 } 621 622 static int 623 nvme_rdma_process_event_start(struct nvme_rdma_qpair *rqpair, 624 enum rdma_cm_event_type evt, 625 nvme_rdma_cm_event_cb evt_cb) 626 { 627 int rc; 628 629 assert(evt_cb != NULL); 630 631 if (rqpair->evt != NULL) { 632 rc = nvme_rdma_qpair_process_cm_event(rqpair); 633 if (rc) { 634 return rc; 635 } 636 } 637 638 rqpair->expected_evt_type = evt; 639 rqpair->evt_cb = evt_cb; 640 rqpair->evt_timeout_ticks = (NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US * spdk_get_ticks_hz()) / 641 SPDK_SEC_TO_USEC + spdk_get_ticks(); 642 643 return 0; 644 } 645 646 static int 647 nvme_rdma_process_event_poll(struct nvme_rdma_qpair *rqpair) 648 { 649 struct nvme_rdma_ctrlr *rctrlr; 650 int rc = 0, rc2; 651 652 rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); 653 assert(rctrlr != NULL); 654 655 if (!rqpair->evt && spdk_get_ticks() < rqpair->evt_timeout_ticks) { 656 rc = nvme_rdma_poll_events(rctrlr); 657 if (rc == -EAGAIN || rc == -EWOULDBLOCK) { 658 return rc; 659 } 660 } 661 662 if (rqpair->evt == NULL) { 663 rc = -EADDRNOTAVAIL; 664 goto exit; 665 } 666 667 rc = nvme_rdma_validate_cm_event(rqpair->expected_evt_type, rqpair->evt); 668 669 rc2 = nvme_rdma_qpair_process_cm_event(rqpair); 670 /* bad message takes precedence over the other error codes from processing the event. */ 671 rc = rc == 0 ? rc2 : rc; 672 673 exit: 674 assert(rqpair->evt_cb != NULL); 675 return rqpair->evt_cb(rqpair, rc); 676 } 677 678 static int 679 nvme_rdma_resize_cq(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poller *poller) 680 { 681 int current_num_wc, required_num_wc; 682 683 required_num_wc = poller->required_num_wc + WC_PER_QPAIR(rqpair->num_entries); 684 current_num_wc = poller->current_num_wc; 685 if (current_num_wc < required_num_wc) { 686 current_num_wc = spdk_max(current_num_wc * 2, required_num_wc); 687 } 688 689 if (poller->current_num_wc != current_num_wc) { 690 SPDK_DEBUGLOG(nvme, "Resize RDMA CQ from %d to %d\n", poller->current_num_wc, 691 current_num_wc); 692 if (ibv_resize_cq(poller->cq, current_num_wc)) { 693 SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); 694 return -1; 695 } 696 697 poller->current_num_wc = current_num_wc; 698 } 699 700 poller->required_num_wc = required_num_wc; 701 return 0; 702 } 703 704 static int 705 nvme_rdma_qpair_set_poller(struct spdk_nvme_qpair *qpair) 706 { 707 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 708 struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group); 709 struct nvme_rdma_poller *poller; 710 711 assert(rqpair->cq == NULL); 712 713 poller = nvme_rdma_poll_group_get_poller(group, rqpair->cm_id->verbs); 714 if (!poller) { 715 SPDK_ERRLOG("Unable to find a cq for qpair %p on poll group %p\n", qpair, qpair->poll_group); 716 return -EINVAL; 717 } 718 719 if (!poller->srq) { 720 if (nvme_rdma_resize_cq(rqpair, poller)) { 721 nvme_rdma_poll_group_put_poller(group, poller); 722 return -EPROTO; 723 } 724 } 725 726 rqpair->cq = poller->cq; 727 rqpair->srq = poller->srq; 728 if (rqpair->srq) { 729 rqpair->rsps = poller->rsps; 730 } 731 rqpair->poller = poller; 732 return 0; 733 } 734 735 static int 736 nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair) 737 { 738 int rc; 739 struct spdk_rdma_qp_init_attr attr = {}; 740 struct ibv_device_attr dev_attr; 741 struct nvme_rdma_ctrlr *rctrlr; 742 743 rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr); 744 if (rc != 0) { 745 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 746 return -1; 747 } 748 749 if (rqpair->qpair.poll_group) { 750 assert(!rqpair->cq); 751 rc = nvme_rdma_qpair_set_poller(&rqpair->qpair); 752 if (rc) { 753 SPDK_ERRLOG("Unable to activate the rdmaqpair.\n"); 754 return -1; 755 } 756 assert(rqpair->cq); 757 } else { 758 rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, rqpair->num_entries * 2, rqpair, NULL, 0); 759 if (!rqpair->cq) { 760 SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno)); 761 return -1; 762 } 763 } 764 765 rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); 766 if (g_nvme_hooks.get_ibv_pd) { 767 attr.pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs); 768 } else { 769 attr.pd = spdk_rdma_get_pd(rqpair->cm_id->verbs); 770 } 771 772 attr.stats = rqpair->poller ? &rqpair->poller->stats.rdma_stats : NULL; 773 attr.send_cq = rqpair->cq; 774 attr.recv_cq = rqpair->cq; 775 attr.cap.max_send_wr = rqpair->num_entries; /* SEND operations */ 776 if (rqpair->srq) { 777 attr.srq = rqpair->srq->srq; 778 } else { 779 attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */ 780 } 781 attr.cap.max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge); 782 attr.cap.max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge); 783 784 rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &attr); 785 786 if (!rqpair->rdma_qp) { 787 return -1; 788 } 789 790 rqpair->memory_domain = nvme_rdma_get_memory_domain(rqpair->rdma_qp->qp->pd); 791 if (!rqpair->memory_domain) { 792 SPDK_ERRLOG("Failed to get memory domain\n"); 793 return -1; 794 } 795 796 /* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */ 797 rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge); 798 rqpair->max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, attr.cap.max_recv_sge); 799 rqpair->current_num_sends = 0; 800 801 rqpair->cm_id->context = rqpair; 802 803 return 0; 804 } 805 806 static void 807 nvme_rdma_reset_failed_sends(struct nvme_rdma_qpair *rqpair, 808 struct ibv_send_wr *bad_send_wr, int rc) 809 { 810 SPDK_ERRLOG("Failed to post WRs on send queue, errno %d (%s), bad_wr %p\n", 811 rc, spdk_strerror(rc), bad_send_wr); 812 while (bad_send_wr != NULL) { 813 assert(rqpair->current_num_sends > 0); 814 rqpair->current_num_sends--; 815 bad_send_wr = bad_send_wr->next; 816 } 817 } 818 819 static void 820 nvme_rdma_reset_failed_recvs(struct nvme_rdma_rsps *rsps, 821 struct ibv_recv_wr *bad_recv_wr, int rc) 822 { 823 SPDK_ERRLOG("Failed to post WRs on receive queue, errno %d (%s), bad_wr %p\n", 824 rc, spdk_strerror(rc), bad_recv_wr); 825 while (bad_recv_wr != NULL) { 826 assert(rsps->current_num_recvs > 0); 827 rsps->current_num_recvs--; 828 bad_recv_wr = bad_recv_wr->next; 829 } 830 } 831 832 static inline int 833 nvme_rdma_qpair_submit_sends(struct nvme_rdma_qpair *rqpair) 834 { 835 struct ibv_send_wr *bad_send_wr = NULL; 836 int rc; 837 838 rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_send_wr); 839 840 if (spdk_unlikely(rc)) { 841 nvme_rdma_reset_failed_sends(rqpair, bad_send_wr, rc); 842 } 843 844 return rc; 845 } 846 847 static inline int 848 nvme_rdma_qpair_submit_recvs(struct nvme_rdma_qpair *rqpair) 849 { 850 struct ibv_recv_wr *bad_recv_wr; 851 int rc = 0; 852 853 rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr); 854 if (spdk_unlikely(rc)) { 855 nvme_rdma_reset_failed_recvs(rqpair->rsps, bad_recv_wr, rc); 856 } 857 858 return rc; 859 } 860 861 static inline int 862 nvme_rdma_poller_submit_recvs(struct nvme_rdma_poller *poller) 863 { 864 struct ibv_recv_wr *bad_recv_wr; 865 int rc; 866 867 rc = spdk_rdma_srq_flush_recv_wrs(poller->srq, &bad_recv_wr); 868 if (spdk_unlikely(rc)) { 869 nvme_rdma_reset_failed_recvs(poller->rsps, bad_recv_wr, rc); 870 } 871 872 return rc; 873 } 874 875 #define nvme_rdma_trace_ibv_sge(sg_list) \ 876 if (sg_list) { \ 877 SPDK_DEBUGLOG(nvme, "local addr %p length 0x%x lkey 0x%x\n", \ 878 (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \ 879 } 880 881 static void 882 nvme_rdma_free_rsps(struct nvme_rdma_rsps *rsps) 883 { 884 if (!rsps) { 885 return; 886 } 887 888 spdk_free(rsps->rsps); 889 spdk_free(rsps->rsp_sgls); 890 spdk_free(rsps->rsp_recv_wrs); 891 spdk_free(rsps); 892 } 893 894 static struct nvme_rdma_rsps * 895 nvme_rdma_create_rsps(struct nvme_rdma_rsp_opts *opts) 896 { 897 struct nvme_rdma_rsps *rsps; 898 struct spdk_rdma_memory_translation translation; 899 uint16_t i; 900 int rc; 901 902 rsps = spdk_zmalloc(sizeof(*rsps), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 903 if (!rsps) { 904 SPDK_ERRLOG("Failed to allocate rsps object\n"); 905 return NULL; 906 } 907 908 rsps->rsp_sgls = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_sgls), 0, NULL, 909 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 910 if (!rsps->rsp_sgls) { 911 SPDK_ERRLOG("Failed to allocate rsp_sgls\n"); 912 goto fail; 913 } 914 915 rsps->rsp_recv_wrs = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_recv_wrs), 0, NULL, 916 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 917 if (!rsps->rsp_recv_wrs) { 918 SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n"); 919 goto fail; 920 } 921 922 rsps->rsps = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsps), 0, NULL, 923 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 924 if (!rsps->rsps) { 925 SPDK_ERRLOG("can not allocate rdma rsps\n"); 926 goto fail; 927 } 928 929 for (i = 0; i < opts->num_entries; i++) { 930 struct ibv_sge *rsp_sgl = &rsps->rsp_sgls[i]; 931 struct spdk_nvme_rdma_rsp *rsp = &rsps->rsps[i]; 932 struct ibv_recv_wr *recv_wr = &rsps->rsp_recv_wrs[i]; 933 934 rsp->rqpair = opts->rqpair; 935 rsp->rdma_wr.type = RDMA_WR_TYPE_RECV; 936 rsp->recv_wr = recv_wr; 937 rsp_sgl->addr = (uint64_t)rsp; 938 rsp_sgl->length = sizeof(struct spdk_nvme_cpl); 939 rc = spdk_rdma_get_translation(opts->mr_map, rsp, sizeof(*rsp), &translation); 940 if (rc) { 941 goto fail; 942 } 943 rsp_sgl->lkey = spdk_rdma_memory_translation_get_lkey(&translation); 944 945 recv_wr->wr_id = (uint64_t)&rsp->rdma_wr; 946 recv_wr->next = NULL; 947 recv_wr->sg_list = rsp_sgl; 948 recv_wr->num_sge = 1; 949 950 nvme_rdma_trace_ibv_sge(recv_wr->sg_list); 951 952 if (opts->rqpair) { 953 spdk_rdma_qp_queue_recv_wrs(opts->rqpair->rdma_qp, recv_wr); 954 } else { 955 spdk_rdma_srq_queue_recv_wrs(opts->srq, recv_wr); 956 } 957 } 958 959 rsps->num_entries = opts->num_entries; 960 rsps->current_num_recvs = opts->num_entries; 961 962 return rsps; 963 fail: 964 nvme_rdma_free_rsps(rsps); 965 return NULL; 966 } 967 968 static void 969 nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair) 970 { 971 if (!rqpair->rdma_reqs) { 972 return; 973 } 974 975 spdk_free(rqpair->cmds); 976 rqpair->cmds = NULL; 977 978 spdk_free(rqpair->rdma_reqs); 979 rqpair->rdma_reqs = NULL; 980 } 981 982 static int 983 nvme_rdma_create_reqs(struct nvme_rdma_qpair *rqpair) 984 { 985 struct spdk_rdma_memory_translation translation; 986 uint16_t i; 987 int rc; 988 989 assert(!rqpair->rdma_reqs); 990 rqpair->rdma_reqs = spdk_zmalloc(rqpair->num_entries * sizeof(struct spdk_nvme_rdma_req), 0, NULL, 991 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 992 if (rqpair->rdma_reqs == NULL) { 993 SPDK_ERRLOG("Failed to allocate rdma_reqs\n"); 994 goto fail; 995 } 996 997 assert(!rqpair->cmds); 998 rqpair->cmds = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->cmds), 0, NULL, 999 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 1000 if (!rqpair->cmds) { 1001 SPDK_ERRLOG("Failed to allocate RDMA cmds\n"); 1002 goto fail; 1003 } 1004 1005 TAILQ_INIT(&rqpair->free_reqs); 1006 TAILQ_INIT(&rqpair->outstanding_reqs); 1007 for (i = 0; i < rqpair->num_entries; i++) { 1008 struct spdk_nvme_rdma_req *rdma_req; 1009 struct spdk_nvmf_cmd *cmd; 1010 1011 rdma_req = &rqpair->rdma_reqs[i]; 1012 rdma_req->rdma_wr.type = RDMA_WR_TYPE_SEND; 1013 cmd = &rqpair->cmds[i]; 1014 1015 rdma_req->id = i; 1016 1017 rc = spdk_rdma_get_translation(rqpair->mr_map, cmd, sizeof(*cmd), &translation); 1018 if (rc) { 1019 goto fail; 1020 } 1021 rdma_req->send_sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation); 1022 1023 /* The first RDMA sgl element will always point 1024 * at this data structure. Depending on whether 1025 * an NVMe-oF SGL is required, the length of 1026 * this element may change. */ 1027 rdma_req->send_sgl[0].addr = (uint64_t)cmd; 1028 rdma_req->send_wr.wr_id = (uint64_t)&rdma_req->rdma_wr; 1029 rdma_req->send_wr.next = NULL; 1030 rdma_req->send_wr.opcode = IBV_WR_SEND; 1031 rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED; 1032 rdma_req->send_wr.sg_list = rdma_req->send_sgl; 1033 rdma_req->send_wr.imm_data = 0; 1034 1035 TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link); 1036 } 1037 1038 return 0; 1039 fail: 1040 nvme_rdma_free_reqs(rqpair); 1041 return -ENOMEM; 1042 } 1043 1044 static int nvme_rdma_connect(struct nvme_rdma_qpair *rqpair); 1045 1046 static int 1047 nvme_rdma_route_resolved(struct nvme_rdma_qpair *rqpair, int ret) 1048 { 1049 if (ret) { 1050 SPDK_ERRLOG("RDMA route resolution error\n"); 1051 return -1; 1052 } 1053 1054 ret = nvme_rdma_qpair_init(rqpair); 1055 if (ret < 0) { 1056 SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n"); 1057 return -1; 1058 } 1059 1060 return nvme_rdma_connect(rqpair); 1061 } 1062 1063 static int 1064 nvme_rdma_addr_resolved(struct nvme_rdma_qpair *rqpair, int ret) 1065 { 1066 if (ret) { 1067 SPDK_ERRLOG("RDMA address resolution error\n"); 1068 return -1; 1069 } 1070 1071 if (rqpair->qpair.ctrlr->opts.transport_ack_timeout != SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED) { 1072 #ifdef SPDK_CONFIG_RDMA_SET_ACK_TIMEOUT 1073 uint8_t timeout = rqpair->qpair.ctrlr->opts.transport_ack_timeout; 1074 ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, 1075 RDMA_OPTION_ID_ACK_TIMEOUT, 1076 &timeout, sizeof(timeout)); 1077 if (ret) { 1078 SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_ACK_TIMEOUT %d, ret %d\n", timeout, ret); 1079 } 1080 #else 1081 SPDK_DEBUGLOG(nvme, "transport_ack_timeout is not supported\n"); 1082 #endif 1083 } 1084 1085 if (rqpair->qpair.ctrlr->opts.transport_tos != SPDK_NVME_TRANSPORT_TOS_DISABLED) { 1086 #ifdef SPDK_CONFIG_RDMA_SET_TOS 1087 uint8_t tos = rqpair->qpair.ctrlr->opts.transport_tos; 1088 ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_TOS, &tos, sizeof(tos)); 1089 if (ret) { 1090 SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_TOS %u, ret %d\n", tos, ret); 1091 } 1092 #else 1093 SPDK_DEBUGLOG(nvme, "transport_tos is not supported\n"); 1094 #endif 1095 } 1096 1097 ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS); 1098 if (ret) { 1099 SPDK_ERRLOG("rdma_resolve_route\n"); 1100 return ret; 1101 } 1102 1103 return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ROUTE_RESOLVED, 1104 nvme_rdma_route_resolved); 1105 } 1106 1107 static int 1108 nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair, 1109 struct sockaddr *src_addr, 1110 struct sockaddr *dst_addr) 1111 { 1112 int ret; 1113 1114 if (src_addr) { 1115 int reuse = 1; 1116 1117 ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR, 1118 &reuse, sizeof(reuse)); 1119 if (ret) { 1120 SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_REUSEADDR %d, ret %d\n", 1121 reuse, ret); 1122 /* It is likely that rdma_resolve_addr() returns -EADDRINUSE, but 1123 * we may missing something. We rely on rdma_resolve_addr(). 1124 */ 1125 } 1126 } 1127 1128 ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr, 1129 NVME_RDMA_TIME_OUT_IN_MS); 1130 if (ret) { 1131 SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno); 1132 return ret; 1133 } 1134 1135 return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ADDR_RESOLVED, 1136 nvme_rdma_addr_resolved); 1137 } 1138 1139 static int nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair); 1140 1141 static int 1142 nvme_rdma_connect_established(struct nvme_rdma_qpair *rqpair, int ret) 1143 { 1144 struct nvme_rdma_rsp_opts opts = {}; 1145 1146 if (ret == -ESTALE) { 1147 return nvme_rdma_stale_conn_retry(rqpair); 1148 } else if (ret) { 1149 SPDK_ERRLOG("RDMA connect error %d\n", ret); 1150 return ret; 1151 } 1152 1153 assert(!rqpair->mr_map); 1154 rqpair->mr_map = spdk_rdma_create_mem_map(rqpair->rdma_qp->qp->pd, &g_nvme_hooks, 1155 SPDK_RDMA_MEMORY_MAP_ROLE_INITIATOR); 1156 if (!rqpair->mr_map) { 1157 SPDK_ERRLOG("Unable to register RDMA memory translation map\n"); 1158 return -1; 1159 } 1160 1161 ret = nvme_rdma_create_reqs(rqpair); 1162 SPDK_DEBUGLOG(nvme, "rc =%d\n", ret); 1163 if (ret) { 1164 SPDK_ERRLOG("Unable to create rqpair RDMA requests\n"); 1165 return -1; 1166 } 1167 SPDK_DEBUGLOG(nvme, "RDMA requests created\n"); 1168 1169 if (!rqpair->srq) { 1170 opts.num_entries = rqpair->num_entries; 1171 opts.rqpair = rqpair; 1172 opts.srq = NULL; 1173 opts.mr_map = rqpair->mr_map; 1174 1175 assert(!rqpair->rsps); 1176 rqpair->rsps = nvme_rdma_create_rsps(&opts); 1177 if (!rqpair->rsps) { 1178 SPDK_ERRLOG("Unable to create rqpair RDMA responses\n"); 1179 return -1; 1180 } 1181 SPDK_DEBUGLOG(nvme, "RDMA responses created\n"); 1182 1183 ret = nvme_rdma_qpair_submit_recvs(rqpair); 1184 SPDK_DEBUGLOG(nvme, "rc =%d\n", ret); 1185 if (ret) { 1186 SPDK_ERRLOG("Unable to submit rqpair RDMA responses\n"); 1187 return -1; 1188 } 1189 SPDK_DEBUGLOG(nvme, "RDMA responses submitted\n"); 1190 } 1191 1192 rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND; 1193 1194 return 0; 1195 } 1196 1197 static int 1198 nvme_rdma_connect(struct nvme_rdma_qpair *rqpair) 1199 { 1200 struct rdma_conn_param param = {}; 1201 struct spdk_nvmf_rdma_request_private_data request_data = {}; 1202 struct ibv_device_attr attr; 1203 int ret; 1204 struct spdk_nvme_ctrlr *ctrlr; 1205 1206 ret = ibv_query_device(rqpair->cm_id->verbs, &attr); 1207 if (ret != 0) { 1208 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 1209 return ret; 1210 } 1211 1212 param.responder_resources = attr.max_qp_rd_atom; 1213 1214 ctrlr = rqpair->qpair.ctrlr; 1215 if (!ctrlr) { 1216 return -1; 1217 } 1218 1219 request_data.qid = rqpair->qpair.id; 1220 request_data.hrqsize = rqpair->num_entries + 1; 1221 request_data.hsqsize = rqpair->num_entries; 1222 request_data.cntlid = ctrlr->cntlid; 1223 1224 param.private_data = &request_data; 1225 param.private_data_len = sizeof(request_data); 1226 param.retry_count = ctrlr->opts.transport_retry_count; 1227 param.rnr_retry_count = 7; 1228 1229 /* Fields below are ignored by rdma cm if qpair has been 1230 * created using rdma cm API. */ 1231 param.srq = 0; 1232 param.qp_num = rqpair->rdma_qp->qp->qp_num; 1233 1234 ret = rdma_connect(rqpair->cm_id, ¶m); 1235 if (ret) { 1236 SPDK_ERRLOG("nvme rdma connect error\n"); 1237 return ret; 1238 } 1239 1240 return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ESTABLISHED, 1241 nvme_rdma_connect_established); 1242 } 1243 1244 static int 1245 nvme_rdma_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service) 1246 { 1247 struct addrinfo *res; 1248 struct addrinfo hints; 1249 int ret; 1250 1251 memset(&hints, 0, sizeof(hints)); 1252 hints.ai_family = family; 1253 hints.ai_socktype = SOCK_STREAM; 1254 hints.ai_protocol = 0; 1255 1256 ret = getaddrinfo(addr, service, &hints, &res); 1257 if (ret) { 1258 SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret); 1259 return -(abs(ret)); 1260 } 1261 1262 if (res->ai_addrlen > sizeof(*sa)) { 1263 SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen); 1264 ret = -EINVAL; 1265 } else { 1266 memcpy(sa, res->ai_addr, res->ai_addrlen); 1267 } 1268 1269 freeaddrinfo(res); 1270 return ret; 1271 } 1272 1273 static int 1274 nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 1275 { 1276 struct sockaddr_storage dst_addr; 1277 struct sockaddr_storage src_addr; 1278 bool src_addr_specified; 1279 int rc; 1280 struct nvme_rdma_ctrlr *rctrlr; 1281 struct nvme_rdma_qpair *rqpair; 1282 int family; 1283 1284 rqpair = nvme_rdma_qpair(qpair); 1285 rctrlr = nvme_rdma_ctrlr(ctrlr); 1286 assert(rctrlr != NULL); 1287 1288 switch (ctrlr->trid.adrfam) { 1289 case SPDK_NVMF_ADRFAM_IPV4: 1290 family = AF_INET; 1291 break; 1292 case SPDK_NVMF_ADRFAM_IPV6: 1293 family = AF_INET6; 1294 break; 1295 default: 1296 SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam); 1297 return -1; 1298 } 1299 1300 SPDK_DEBUGLOG(nvme, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family); 1301 1302 memset(&dst_addr, 0, sizeof(dst_addr)); 1303 1304 SPDK_DEBUGLOG(nvme, "trsvcid is %s\n", ctrlr->trid.trsvcid); 1305 rc = nvme_rdma_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid); 1306 if (rc != 0) { 1307 SPDK_ERRLOG("dst_addr nvme_rdma_parse_addr() failed\n"); 1308 return -1; 1309 } 1310 1311 if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) { 1312 memset(&src_addr, 0, sizeof(src_addr)); 1313 rc = nvme_rdma_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid); 1314 if (rc != 0) { 1315 SPDK_ERRLOG("src_addr nvme_rdma_parse_addr() failed\n"); 1316 return -1; 1317 } 1318 src_addr_specified = true; 1319 } else { 1320 src_addr_specified = false; 1321 } 1322 1323 rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP); 1324 if (rc < 0) { 1325 SPDK_ERRLOG("rdma_create_id() failed\n"); 1326 return -1; 1327 } 1328 1329 rc = nvme_rdma_resolve_addr(rqpair, 1330 src_addr_specified ? (struct sockaddr *)&src_addr : NULL, 1331 (struct sockaddr *)&dst_addr); 1332 if (rc < 0) { 1333 SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n"); 1334 return -1; 1335 } 1336 1337 rqpair->state = NVME_RDMA_QPAIR_STATE_INITIALIZING; 1338 1339 return 0; 1340 } 1341 1342 static int 1343 nvme_rdma_stale_conn_reconnect(struct nvme_rdma_qpair *rqpair) 1344 { 1345 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 1346 1347 if (spdk_get_ticks() < rqpair->evt_timeout_ticks) { 1348 return -EAGAIN; 1349 } 1350 1351 return nvme_rdma_ctrlr_connect_qpair(qpair->ctrlr, qpair); 1352 } 1353 1354 static int 1355 nvme_rdma_ctrlr_connect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, 1356 struct spdk_nvme_qpair *qpair) 1357 { 1358 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 1359 int rc; 1360 1361 if (rqpair->in_connect_poll) { 1362 return -EAGAIN; 1363 } 1364 1365 rqpair->in_connect_poll = true; 1366 1367 switch (rqpair->state) { 1368 case NVME_RDMA_QPAIR_STATE_INVALID: 1369 rc = -EAGAIN; 1370 break; 1371 1372 case NVME_RDMA_QPAIR_STATE_INITIALIZING: 1373 case NVME_RDMA_QPAIR_STATE_EXITING: 1374 if (!nvme_qpair_is_admin_queue(qpair)) { 1375 nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); 1376 } 1377 1378 rc = nvme_rdma_process_event_poll(rqpair); 1379 1380 if (!nvme_qpair_is_admin_queue(qpair)) { 1381 nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); 1382 } 1383 1384 if (rc == 0) { 1385 rc = -EAGAIN; 1386 } 1387 rqpair->in_connect_poll = false; 1388 1389 return rc; 1390 1391 case NVME_RDMA_QPAIR_STATE_STALE_CONN: 1392 rc = nvme_rdma_stale_conn_reconnect(rqpair); 1393 if (rc == 0) { 1394 rc = -EAGAIN; 1395 } 1396 break; 1397 case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND: 1398 rc = nvme_fabric_qpair_connect_async(qpair, rqpair->num_entries + 1); 1399 if (rc == 0) { 1400 rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL; 1401 rc = -EAGAIN; 1402 } else { 1403 SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n"); 1404 } 1405 break; 1406 case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL: 1407 rc = nvme_fabric_qpair_connect_poll(qpair); 1408 if (rc == 0) { 1409 rqpair->state = NVME_RDMA_QPAIR_STATE_RUNNING; 1410 nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED); 1411 } else if (rc != -EAGAIN) { 1412 SPDK_ERRLOG("Failed to poll NVMe-oF Fabric CONNECT command\n"); 1413 } 1414 break; 1415 case NVME_RDMA_QPAIR_STATE_RUNNING: 1416 rc = 0; 1417 break; 1418 default: 1419 assert(false); 1420 rc = -EINVAL; 1421 break; 1422 } 1423 1424 rqpair->in_connect_poll = false; 1425 1426 return rc; 1427 } 1428 1429 static inline int 1430 nvme_rdma_get_memory_translation(struct nvme_request *req, struct nvme_rdma_qpair *rqpair, 1431 struct nvme_rdma_memory_translation_ctx *_ctx) 1432 { 1433 struct spdk_memory_domain_translation_ctx ctx; 1434 struct spdk_memory_domain_translation_result dma_translation = {.iov_count = 0}; 1435 struct spdk_rdma_memory_translation rdma_translation; 1436 int rc; 1437 1438 assert(req); 1439 assert(rqpair); 1440 assert(_ctx); 1441 1442 if (req->payload.opts && req->payload.opts->memory_domain) { 1443 ctx.size = sizeof(struct spdk_memory_domain_translation_ctx); 1444 ctx.rdma.ibv_qp = rqpair->rdma_qp->qp; 1445 dma_translation.size = sizeof(struct spdk_memory_domain_translation_result); 1446 1447 rc = spdk_memory_domain_translate_data(req->payload.opts->memory_domain, 1448 req->payload.opts->memory_domain_ctx, 1449 rqpair->memory_domain->domain, &ctx, _ctx->addr, 1450 _ctx->length, &dma_translation); 1451 if (spdk_unlikely(rc) || dma_translation.iov_count != 1) { 1452 SPDK_ERRLOG("DMA memory translation failed, rc %d, iov count %u\n", rc, dma_translation.iov_count); 1453 return rc; 1454 } 1455 1456 _ctx->lkey = dma_translation.rdma.lkey; 1457 _ctx->rkey = dma_translation.rdma.rkey; 1458 _ctx->addr = dma_translation.iov.iov_base; 1459 _ctx->length = dma_translation.iov.iov_len; 1460 } else { 1461 rc = spdk_rdma_get_translation(rqpair->mr_map, _ctx->addr, _ctx->length, &rdma_translation); 1462 if (spdk_unlikely(rc)) { 1463 SPDK_ERRLOG("RDMA memory translation failed, rc %d\n", rc); 1464 return rc; 1465 } 1466 if (rdma_translation.translation_type == SPDK_RDMA_TRANSLATION_MR) { 1467 _ctx->lkey = rdma_translation.mr_or_key.mr->lkey; 1468 _ctx->rkey = rdma_translation.mr_or_key.mr->rkey; 1469 } else { 1470 _ctx->lkey = _ctx->rkey = (uint32_t)rdma_translation.mr_or_key.key; 1471 } 1472 } 1473 1474 return 0; 1475 } 1476 1477 1478 /* 1479 * Build SGL describing empty payload. 1480 */ 1481 static int 1482 nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req) 1483 { 1484 struct nvme_request *req = rdma_req->req; 1485 1486 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1487 1488 /* The first element of this SGL is pointing at an 1489 * spdk_nvmf_cmd object. For this particular command, 1490 * we only need the first 64 bytes corresponding to 1491 * the NVMe command. */ 1492 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1493 1494 /* The RDMA SGL needs one element describing the NVMe command. */ 1495 rdma_req->send_wr.num_sge = 1; 1496 1497 req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; 1498 req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; 1499 req->cmd.dptr.sgl1.keyed.length = 0; 1500 req->cmd.dptr.sgl1.keyed.key = 0; 1501 req->cmd.dptr.sgl1.address = 0; 1502 1503 return 0; 1504 } 1505 1506 /* 1507 * Build inline SGL describing contiguous payload buffer. 1508 */ 1509 static int 1510 nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair, 1511 struct spdk_nvme_rdma_req *rdma_req) 1512 { 1513 struct nvme_request *req = rdma_req->req; 1514 struct nvme_rdma_memory_translation_ctx ctx = { 1515 .addr = (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset, 1516 .length = req->payload_size 1517 }; 1518 int rc; 1519 1520 assert(ctx.length != 0); 1521 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); 1522 1523 rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx); 1524 if (spdk_unlikely(rc)) { 1525 return -1; 1526 } 1527 1528 rdma_req->send_sgl[1].lkey = ctx.lkey; 1529 1530 /* The first element of this SGL is pointing at an 1531 * spdk_nvmf_cmd object. For this particular command, 1532 * we only need the first 64 bytes corresponding to 1533 * the NVMe command. */ 1534 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1535 1536 rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr; 1537 rdma_req->send_sgl[1].length = (uint32_t)ctx.length; 1538 1539 /* The RDMA SGL contains two elements. The first describes 1540 * the NVMe command and the second describes the data 1541 * payload. */ 1542 rdma_req->send_wr.num_sge = 2; 1543 1544 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1545 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 1546 req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; 1547 req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length; 1548 /* Inline only supported for icdoff == 0 currently. This function will 1549 * not get called for controllers with other values. */ 1550 req->cmd.dptr.sgl1.address = (uint64_t)0; 1551 1552 return 0; 1553 } 1554 1555 /* 1556 * Build SGL describing contiguous payload buffer. 1557 */ 1558 static int 1559 nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair, 1560 struct spdk_nvme_rdma_req *rdma_req) 1561 { 1562 struct nvme_request *req = rdma_req->req; 1563 struct nvme_rdma_memory_translation_ctx ctx = { 1564 .addr = (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset, 1565 .length = req->payload_size 1566 }; 1567 int rc; 1568 1569 assert(req->payload_size != 0); 1570 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); 1571 1572 if (spdk_unlikely(req->payload_size > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) { 1573 SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n", 1574 req->payload_size, NVME_RDMA_MAX_KEYED_SGL_LENGTH); 1575 return -1; 1576 } 1577 1578 rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx); 1579 if (spdk_unlikely(rc)) { 1580 return -1; 1581 } 1582 1583 req->cmd.dptr.sgl1.keyed.key = ctx.rkey; 1584 1585 /* The first element of this SGL is pointing at an 1586 * spdk_nvmf_cmd object. For this particular command, 1587 * we only need the first 64 bytes corresponding to 1588 * the NVMe command. */ 1589 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1590 1591 /* The RDMA SGL needs one element describing the NVMe command. */ 1592 rdma_req->send_wr.num_sge = 1; 1593 1594 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1595 req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; 1596 req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; 1597 req->cmd.dptr.sgl1.keyed.length = (uint32_t)ctx.length; 1598 req->cmd.dptr.sgl1.address = (uint64_t)ctx.addr; 1599 1600 return 0; 1601 } 1602 1603 /* 1604 * Build SGL describing scattered payload buffer. 1605 */ 1606 static int 1607 nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair, 1608 struct spdk_nvme_rdma_req *rdma_req) 1609 { 1610 struct nvme_request *req = rdma_req->req; 1611 struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id]; 1612 struct nvme_rdma_memory_translation_ctx ctx; 1613 uint32_t remaining_size; 1614 uint32_t sge_length; 1615 int rc, max_num_sgl, num_sgl_desc; 1616 1617 assert(req->payload_size != 0); 1618 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); 1619 assert(req->payload.reset_sgl_fn != NULL); 1620 assert(req->payload.next_sge_fn != NULL); 1621 req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); 1622 1623 max_num_sgl = req->qpair->ctrlr->max_sges; 1624 1625 remaining_size = req->payload_size; 1626 num_sgl_desc = 0; 1627 do { 1628 rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &sge_length); 1629 if (rc) { 1630 return -1; 1631 } 1632 1633 sge_length = spdk_min(remaining_size, sge_length); 1634 1635 if (spdk_unlikely(sge_length > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) { 1636 SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n", 1637 sge_length, NVME_RDMA_MAX_KEYED_SGL_LENGTH); 1638 return -1; 1639 } 1640 ctx.length = sge_length; 1641 rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx); 1642 if (spdk_unlikely(rc)) { 1643 return -1; 1644 } 1645 1646 cmd->sgl[num_sgl_desc].keyed.key = ctx.rkey; 1647 cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; 1648 cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; 1649 cmd->sgl[num_sgl_desc].keyed.length = (uint32_t)ctx.length; 1650 cmd->sgl[num_sgl_desc].address = (uint64_t)ctx.addr; 1651 1652 remaining_size -= ctx.length; 1653 num_sgl_desc++; 1654 } while (remaining_size > 0 && num_sgl_desc < max_num_sgl); 1655 1656 1657 /* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */ 1658 if (remaining_size > 0) { 1659 return -1; 1660 } 1661 1662 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1663 1664 /* The RDMA SGL needs one element describing some portion 1665 * of the spdk_nvmf_cmd structure. */ 1666 rdma_req->send_wr.num_sge = 1; 1667 1668 /* 1669 * If only one SGL descriptor is required, it can be embedded directly in the command 1670 * as a data block descriptor. 1671 */ 1672 if (num_sgl_desc == 1) { 1673 /* The first element of this SGL is pointing at an 1674 * spdk_nvmf_cmd object. For this particular command, 1675 * we only need the first 64 bytes corresponding to 1676 * the NVMe command. */ 1677 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1678 1679 req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type; 1680 req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype; 1681 req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length; 1682 req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key; 1683 req->cmd.dptr.sgl1.address = cmd->sgl[0].address; 1684 } else { 1685 /* 1686 * Otherwise, The SGL descriptor embedded in the command must point to the list of 1687 * SGL descriptors used to describe the operation. In that case it is a last segment descriptor. 1688 */ 1689 uint32_t descriptors_size = sizeof(struct spdk_nvme_sgl_descriptor) * num_sgl_desc; 1690 1691 if (spdk_unlikely(descriptors_size > rqpair->qpair.ctrlr->ioccsz_bytes)) { 1692 SPDK_ERRLOG("Size of SGL descriptors (%u) exceeds ICD (%u)\n", 1693 descriptors_size, rqpair->qpair.ctrlr->ioccsz_bytes); 1694 return -1; 1695 } 1696 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + descriptors_size; 1697 1698 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT; 1699 req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; 1700 req->cmd.dptr.sgl1.unkeyed.length = descriptors_size; 1701 req->cmd.dptr.sgl1.address = (uint64_t)0; 1702 } 1703 1704 return 0; 1705 } 1706 1707 /* 1708 * Build inline SGL describing sgl payload buffer. 1709 */ 1710 static int 1711 nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair, 1712 struct spdk_nvme_rdma_req *rdma_req) 1713 { 1714 struct nvme_request *req = rdma_req->req; 1715 struct nvme_rdma_memory_translation_ctx ctx; 1716 uint32_t length; 1717 int rc; 1718 1719 assert(req->payload_size != 0); 1720 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); 1721 assert(req->payload.reset_sgl_fn != NULL); 1722 assert(req->payload.next_sge_fn != NULL); 1723 req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); 1724 1725 rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &length); 1726 if (rc) { 1727 return -1; 1728 } 1729 1730 if (length < req->payload_size) { 1731 SPDK_DEBUGLOG(nvme, "Inline SGL request split so sending separately.\n"); 1732 return nvme_rdma_build_sgl_request(rqpair, rdma_req); 1733 } 1734 1735 if (length > req->payload_size) { 1736 length = req->payload_size; 1737 } 1738 1739 ctx.length = length; 1740 rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx); 1741 if (spdk_unlikely(rc)) { 1742 return -1; 1743 } 1744 1745 rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr; 1746 rdma_req->send_sgl[1].length = (uint32_t)ctx.length; 1747 rdma_req->send_sgl[1].lkey = ctx.lkey; 1748 1749 rdma_req->send_wr.num_sge = 2; 1750 1751 /* The first element of this SGL is pointing at an 1752 * spdk_nvmf_cmd object. For this particular command, 1753 * we only need the first 64 bytes corresponding to 1754 * the NVMe command. */ 1755 rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); 1756 1757 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1758 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 1759 req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; 1760 req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length; 1761 /* Inline only supported for icdoff == 0 currently. This function will 1762 * not get called for controllers with other values. */ 1763 req->cmd.dptr.sgl1.address = (uint64_t)0; 1764 1765 return 0; 1766 } 1767 1768 static int 1769 nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req, 1770 struct spdk_nvme_rdma_req *rdma_req) 1771 { 1772 struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr; 1773 enum nvme_payload_type payload_type; 1774 bool icd_supported; 1775 int rc; 1776 1777 assert(rdma_req->req == NULL); 1778 rdma_req->req = req; 1779 req->cmd.cid = rdma_req->id; 1780 payload_type = nvme_payload_type(&req->payload); 1781 /* 1782 * Check if icdoff is non zero, to avoid interop conflicts with 1783 * targets with non-zero icdoff. Both SPDK and the Linux kernel 1784 * targets use icdoff = 0. For targets with non-zero icdoff, we 1785 * will currently just not use inline data for now. 1786 */ 1787 icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER 1788 && req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0; 1789 1790 if (req->payload_size == 0) { 1791 rc = nvme_rdma_build_null_request(rdma_req); 1792 } else if (payload_type == NVME_PAYLOAD_TYPE_CONTIG) { 1793 if (icd_supported) { 1794 rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req); 1795 } else { 1796 rc = nvme_rdma_build_contig_request(rqpair, rdma_req); 1797 } 1798 } else if (payload_type == NVME_PAYLOAD_TYPE_SGL) { 1799 if (icd_supported) { 1800 rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req); 1801 } else { 1802 rc = nvme_rdma_build_sgl_request(rqpair, rdma_req); 1803 } 1804 } else { 1805 rc = -1; 1806 } 1807 1808 if (rc) { 1809 rdma_req->req = NULL; 1810 return rc; 1811 } 1812 1813 memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd)); 1814 return 0; 1815 } 1816 1817 static struct spdk_nvme_qpair * 1818 nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr, 1819 uint16_t qid, uint32_t qsize, 1820 enum spdk_nvme_qprio qprio, 1821 uint32_t num_requests, 1822 bool delay_cmd_submit, 1823 bool async) 1824 { 1825 struct nvme_rdma_qpair *rqpair; 1826 struct spdk_nvme_qpair *qpair; 1827 int rc; 1828 1829 if (qsize < SPDK_NVME_QUEUE_MIN_ENTRIES) { 1830 SPDK_ERRLOG("Failed to create qpair with size %u. Minimum queue size is %d.\n", 1831 qsize, SPDK_NVME_QUEUE_MIN_ENTRIES); 1832 return NULL; 1833 } 1834 1835 rqpair = spdk_zmalloc(sizeof(struct nvme_rdma_qpair), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, 1836 SPDK_MALLOC_DMA); 1837 if (!rqpair) { 1838 SPDK_ERRLOG("failed to get create rqpair\n"); 1839 return NULL; 1840 } 1841 1842 /* Set num_entries one less than queue size. According to NVMe 1843 * and NVMe-oF specs we can not submit queue size requests, 1844 * one slot shall always remain empty. 1845 */ 1846 rqpair->num_entries = qsize - 1; 1847 rqpair->delay_cmd_submit = delay_cmd_submit; 1848 rqpair->state = NVME_RDMA_QPAIR_STATE_INVALID; 1849 qpair = &rqpair->qpair; 1850 rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests, async); 1851 if (rc != 0) { 1852 spdk_free(rqpair); 1853 return NULL; 1854 } 1855 1856 return qpair; 1857 } 1858 1859 static void 1860 nvme_rdma_qpair_destroy(struct nvme_rdma_qpair *rqpair) 1861 { 1862 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 1863 struct nvme_rdma_ctrlr *rctrlr; 1864 struct nvme_rdma_cm_event_entry *entry, *tmp; 1865 1866 spdk_rdma_free_mem_map(&rqpair->mr_map); 1867 1868 if (rqpair->evt) { 1869 rdma_ack_cm_event(rqpair->evt); 1870 rqpair->evt = NULL; 1871 } 1872 1873 /* 1874 * This works because we have the controller lock both in 1875 * this function and in the function where we add new events. 1876 */ 1877 if (qpair->ctrlr != NULL) { 1878 rctrlr = nvme_rdma_ctrlr(qpair->ctrlr); 1879 STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) { 1880 if (entry->evt->id->context == rqpair) { 1881 STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link); 1882 rdma_ack_cm_event(entry->evt); 1883 STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link); 1884 } 1885 } 1886 } 1887 1888 if (rqpair->cm_id) { 1889 if (rqpair->rdma_qp) { 1890 spdk_rdma_put_pd(rqpair->rdma_qp->qp->pd); 1891 spdk_rdma_qp_destroy(rqpair->rdma_qp); 1892 rqpair->rdma_qp = NULL; 1893 } 1894 } 1895 1896 if (rqpair->poller) { 1897 struct nvme_rdma_poll_group *group; 1898 1899 assert(qpair->poll_group); 1900 group = nvme_rdma_poll_group(qpair->poll_group); 1901 1902 nvme_rdma_poll_group_put_poller(group, rqpair->poller); 1903 1904 rqpair->poller = NULL; 1905 rqpair->cq = NULL; 1906 if (rqpair->srq) { 1907 rqpair->srq = NULL; 1908 rqpair->rsps = NULL; 1909 } 1910 } else if (rqpair->cq) { 1911 ibv_destroy_cq(rqpair->cq); 1912 rqpair->cq = NULL; 1913 } 1914 1915 nvme_rdma_free_reqs(rqpair); 1916 nvme_rdma_free_rsps(rqpair->rsps); 1917 rqpair->rsps = NULL; 1918 1919 /* destroy cm_id last so cma device will not be freed before we destroy the cq. */ 1920 if (rqpair->cm_id) { 1921 rdma_destroy_id(rqpair->cm_id); 1922 rqpair->cm_id = NULL; 1923 } 1924 } 1925 1926 static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr); 1927 1928 static int 1929 nvme_rdma_qpair_disconnected(struct nvme_rdma_qpair *rqpair, int ret) 1930 { 1931 if (ret) { 1932 SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n"); 1933 goto quiet; 1934 } 1935 1936 if (rqpair->poller == NULL) { 1937 /* If poller is not used, cq is not shared. 1938 * So complete disconnecting qpair immediately. 1939 */ 1940 goto quiet; 1941 } 1942 1943 if (rqpair->rsps == NULL) { 1944 goto quiet; 1945 } 1946 1947 if (rqpair->need_destroy || 1948 (rqpair->current_num_sends != 0 || 1949 (!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) { 1950 rqpair->state = NVME_RDMA_QPAIR_STATE_LINGERING; 1951 rqpair->evt_timeout_ticks = (NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US * spdk_get_ticks_hz()) / 1952 SPDK_SEC_TO_USEC + spdk_get_ticks(); 1953 1954 return -EAGAIN; 1955 } 1956 1957 quiet: 1958 rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED; 1959 1960 nvme_rdma_qpair_abort_reqs(&rqpair->qpair, 0); 1961 nvme_rdma_qpair_destroy(rqpair); 1962 nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair); 1963 1964 return 0; 1965 } 1966 1967 static int 1968 nvme_rdma_qpair_wait_until_quiet(struct nvme_rdma_qpair *rqpair) 1969 { 1970 if (spdk_get_ticks() < rqpair->evt_timeout_ticks && 1971 (rqpair->current_num_sends != 0 || 1972 (!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) { 1973 return -EAGAIN; 1974 } 1975 1976 rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED; 1977 1978 nvme_rdma_qpair_abort_reqs(&rqpair->qpair, 0); 1979 nvme_rdma_qpair_destroy(rqpair); 1980 nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair); 1981 1982 return 0; 1983 } 1984 1985 static void 1986 _nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, 1987 nvme_rdma_cm_event_cb disconnected_qpair_cb) 1988 { 1989 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 1990 int rc; 1991 1992 assert(disconnected_qpair_cb != NULL); 1993 1994 rqpair->state = NVME_RDMA_QPAIR_STATE_EXITING; 1995 1996 if (rqpair->cm_id) { 1997 if (rqpair->rdma_qp) { 1998 rc = spdk_rdma_qp_disconnect(rqpair->rdma_qp); 1999 if ((qpair->ctrlr != NULL) && (rc == 0)) { 2000 rc = nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_DISCONNECTED, 2001 disconnected_qpair_cb); 2002 if (rc == 0) { 2003 return; 2004 } 2005 } 2006 } 2007 } 2008 2009 disconnected_qpair_cb(rqpair, 0); 2010 } 2011 2012 static int 2013 nvme_rdma_ctrlr_disconnect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 2014 { 2015 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2016 int rc; 2017 2018 switch (rqpair->state) { 2019 case NVME_RDMA_QPAIR_STATE_EXITING: 2020 if (!nvme_qpair_is_admin_queue(qpair)) { 2021 nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); 2022 } 2023 2024 rc = nvme_rdma_process_event_poll(rqpair); 2025 2026 if (!nvme_qpair_is_admin_queue(qpair)) { 2027 nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); 2028 } 2029 break; 2030 2031 case NVME_RDMA_QPAIR_STATE_LINGERING: 2032 rc = nvme_rdma_qpair_wait_until_quiet(rqpair); 2033 break; 2034 case NVME_RDMA_QPAIR_STATE_EXITED: 2035 rc = 0; 2036 break; 2037 2038 default: 2039 assert(false); 2040 rc = -EAGAIN; 2041 break; 2042 } 2043 2044 return rc; 2045 } 2046 2047 static void 2048 nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 2049 { 2050 int rc; 2051 2052 _nvme_rdma_ctrlr_disconnect_qpair(ctrlr, qpair, nvme_rdma_qpair_disconnected); 2053 2054 /* If the async mode is disabled, poll the qpair until it is actually disconnected. 2055 * It is ensured that poll_group_process_completions() calls disconnected_qpair_cb 2056 * for any disconnected qpair. Hence, we do not have to check if the qpair is in 2057 * a poll group or not. 2058 * At the same time, if the qpair is being destroyed, i.e. this function is called by 2059 * spdk_nvme_ctrlr_free_io_qpair then we need to wait until qpair is disconnected, otherwise 2060 * we may leak some resources. 2061 */ 2062 if (qpair->async && !qpair->destroy_in_progress) { 2063 return; 2064 } 2065 2066 while (1) { 2067 rc = nvme_rdma_ctrlr_disconnect_qpair_poll(ctrlr, qpair); 2068 if (rc != -EAGAIN) { 2069 break; 2070 } 2071 } 2072 } 2073 2074 static int 2075 nvme_rdma_stale_conn_disconnected(struct nvme_rdma_qpair *rqpair, int ret) 2076 { 2077 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 2078 2079 if (ret) { 2080 SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n"); 2081 } 2082 2083 nvme_rdma_qpair_destroy(rqpair); 2084 2085 qpair->last_transport_failure_reason = qpair->transport_failure_reason; 2086 qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_NONE; 2087 2088 rqpair->state = NVME_RDMA_QPAIR_STATE_STALE_CONN; 2089 rqpair->evt_timeout_ticks = (NVME_RDMA_STALE_CONN_RETRY_DELAY_US * spdk_get_ticks_hz()) / 2090 SPDK_SEC_TO_USEC + spdk_get_ticks(); 2091 2092 return 0; 2093 } 2094 2095 static int 2096 nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair) 2097 { 2098 struct spdk_nvme_qpair *qpair = &rqpair->qpair; 2099 2100 if (rqpair->stale_conn_retry_count >= NVME_RDMA_STALE_CONN_RETRY_MAX) { 2101 SPDK_ERRLOG("Retry failed %d times, give up stale connection to qpair (cntlid:%u, qid:%u).\n", 2102 NVME_RDMA_STALE_CONN_RETRY_MAX, qpair->ctrlr->cntlid, qpair->id); 2103 return -ESTALE; 2104 } 2105 2106 rqpair->stale_conn_retry_count++; 2107 2108 SPDK_NOTICELOG("%d times, retry stale connection to qpair (cntlid:%u, qid:%u).\n", 2109 rqpair->stale_conn_retry_count, qpair->ctrlr->cntlid, qpair->id); 2110 2111 _nvme_rdma_ctrlr_disconnect_qpair(qpair->ctrlr, qpair, nvme_rdma_stale_conn_disconnected); 2112 2113 return 0; 2114 } 2115 2116 static int 2117 nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 2118 { 2119 struct nvme_rdma_qpair *rqpair; 2120 2121 assert(qpair != NULL); 2122 rqpair = nvme_rdma_qpair(qpair); 2123 2124 if (rqpair->state != NVME_RDMA_QPAIR_STATE_EXITED) { 2125 int rc __attribute__((unused)); 2126 2127 /* qpair was removed from the poll group while the disconnect is not finished. 2128 * Destroy rdma resources forcefully. */ 2129 rc = nvme_rdma_qpair_disconnected(rqpair, 0); 2130 assert(rc == 0); 2131 } 2132 2133 nvme_rdma_qpair_abort_reqs(qpair, 0); 2134 nvme_qpair_deinit(qpair); 2135 2136 nvme_rdma_put_memory_domain(rqpair->memory_domain); 2137 2138 spdk_free(rqpair); 2139 2140 return 0; 2141 } 2142 2143 static struct spdk_nvme_qpair * 2144 nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, 2145 const struct spdk_nvme_io_qpair_opts *opts) 2146 { 2147 return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio, 2148 opts->io_queue_requests, 2149 opts->delay_cmd_submit, 2150 opts->async_mode); 2151 } 2152 2153 static int 2154 nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) 2155 { 2156 /* do nothing here */ 2157 return 0; 2158 } 2159 2160 static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr); 2161 2162 /* We have to use the typedef in the function declaration to appease astyle. */ 2163 typedef struct spdk_nvme_ctrlr spdk_nvme_ctrlr_t; 2164 2165 static spdk_nvme_ctrlr_t * 2166 nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid, 2167 const struct spdk_nvme_ctrlr_opts *opts, 2168 void *devhandle) 2169 { 2170 struct nvme_rdma_ctrlr *rctrlr; 2171 struct ibv_context **contexts; 2172 struct ibv_device_attr dev_attr; 2173 int i, flag, rc; 2174 2175 rctrlr = spdk_zmalloc(sizeof(struct nvme_rdma_ctrlr), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, 2176 SPDK_MALLOC_DMA); 2177 if (rctrlr == NULL) { 2178 SPDK_ERRLOG("could not allocate ctrlr\n"); 2179 return NULL; 2180 } 2181 2182 rctrlr->ctrlr.opts = *opts; 2183 rctrlr->ctrlr.trid = *trid; 2184 2185 if (opts->transport_retry_count > NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT) { 2186 SPDK_NOTICELOG("transport_retry_count exceeds max value %d, use max value\n", 2187 NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT); 2188 rctrlr->ctrlr.opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT; 2189 } 2190 2191 if (opts->transport_ack_timeout > NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) { 2192 SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n", 2193 NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT); 2194 rctrlr->ctrlr.opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT; 2195 } 2196 2197 contexts = rdma_get_devices(NULL); 2198 if (contexts == NULL) { 2199 SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); 2200 spdk_free(rctrlr); 2201 return NULL; 2202 } 2203 2204 i = 0; 2205 rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS; 2206 2207 while (contexts[i] != NULL) { 2208 rc = ibv_query_device(contexts[i], &dev_attr); 2209 if (rc < 0) { 2210 SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); 2211 rdma_free_devices(contexts); 2212 spdk_free(rctrlr); 2213 return NULL; 2214 } 2215 rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge); 2216 i++; 2217 } 2218 2219 rdma_free_devices(contexts); 2220 2221 rc = nvme_ctrlr_construct(&rctrlr->ctrlr); 2222 if (rc != 0) { 2223 spdk_free(rctrlr); 2224 return NULL; 2225 } 2226 2227 STAILQ_INIT(&rctrlr->pending_cm_events); 2228 STAILQ_INIT(&rctrlr->free_cm_events); 2229 rctrlr->cm_events = spdk_zmalloc(NVME_RDMA_NUM_CM_EVENTS * sizeof(*rctrlr->cm_events), 0, NULL, 2230 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 2231 if (rctrlr->cm_events == NULL) { 2232 SPDK_ERRLOG("unable to allocate buffers to hold CM events.\n"); 2233 goto destruct_ctrlr; 2234 } 2235 2236 for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) { 2237 STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link); 2238 } 2239 2240 rctrlr->cm_channel = rdma_create_event_channel(); 2241 if (rctrlr->cm_channel == NULL) { 2242 SPDK_ERRLOG("rdma_create_event_channel() failed\n"); 2243 goto destruct_ctrlr; 2244 } 2245 2246 flag = fcntl(rctrlr->cm_channel->fd, F_GETFL); 2247 if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { 2248 SPDK_ERRLOG("Cannot set event channel to non blocking\n"); 2249 goto destruct_ctrlr; 2250 } 2251 2252 rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0, 2253 rctrlr->ctrlr.opts.admin_queue_size, 0, 2254 rctrlr->ctrlr.opts.admin_queue_size, false, true); 2255 if (!rctrlr->ctrlr.adminq) { 2256 SPDK_ERRLOG("failed to create admin qpair\n"); 2257 goto destruct_ctrlr; 2258 } 2259 2260 if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) { 2261 SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n"); 2262 goto destruct_ctrlr; 2263 } 2264 2265 SPDK_DEBUGLOG(nvme, "successfully initialized the nvmf ctrlr\n"); 2266 return &rctrlr->ctrlr; 2267 2268 destruct_ctrlr: 2269 nvme_ctrlr_destruct(&rctrlr->ctrlr); 2270 return NULL; 2271 } 2272 2273 static int 2274 nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) 2275 { 2276 struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr); 2277 struct nvme_rdma_cm_event_entry *entry; 2278 2279 if (ctrlr->adminq) { 2280 nvme_rdma_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq); 2281 } 2282 2283 STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) { 2284 rdma_ack_cm_event(entry->evt); 2285 } 2286 2287 STAILQ_INIT(&rctrlr->free_cm_events); 2288 STAILQ_INIT(&rctrlr->pending_cm_events); 2289 spdk_free(rctrlr->cm_events); 2290 2291 if (rctrlr->cm_channel) { 2292 rdma_destroy_event_channel(rctrlr->cm_channel); 2293 rctrlr->cm_channel = NULL; 2294 } 2295 2296 nvme_ctrlr_destruct_finish(ctrlr); 2297 2298 spdk_free(rctrlr); 2299 2300 return 0; 2301 } 2302 2303 static int 2304 nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair, 2305 struct nvme_request *req) 2306 { 2307 struct nvme_rdma_qpair *rqpair; 2308 struct spdk_nvme_rdma_req *rdma_req; 2309 struct ibv_send_wr *wr; 2310 2311 rqpair = nvme_rdma_qpair(qpair); 2312 assert(rqpair != NULL); 2313 assert(req != NULL); 2314 2315 rdma_req = nvme_rdma_req_get(rqpair); 2316 if (spdk_unlikely(!rdma_req)) { 2317 if (rqpair->poller) { 2318 rqpair->poller->stats.queued_requests++; 2319 } 2320 /* Inform the upper layer to try again later. */ 2321 return -EAGAIN; 2322 } 2323 2324 if (nvme_rdma_req_init(rqpair, req, rdma_req)) { 2325 SPDK_ERRLOG("nvme_rdma_req_init() failed\n"); 2326 TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link); 2327 nvme_rdma_req_put(rqpair, rdma_req); 2328 return -1; 2329 } 2330 2331 assert(rqpair->current_num_sends < rqpair->num_entries); 2332 rqpair->current_num_sends++; 2333 2334 wr = &rdma_req->send_wr; 2335 wr->next = NULL; 2336 nvme_rdma_trace_ibv_sge(wr->sg_list); 2337 2338 spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, wr); 2339 2340 if (!rqpair->delay_cmd_submit) { 2341 return nvme_rdma_qpair_submit_sends(rqpair); 2342 } 2343 2344 return 0; 2345 } 2346 2347 static int 2348 nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair) 2349 { 2350 /* Currently, doing nothing here */ 2351 return 0; 2352 } 2353 2354 static void 2355 nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr) 2356 { 2357 struct spdk_nvme_rdma_req *rdma_req, *tmp; 2358 struct spdk_nvme_cpl cpl; 2359 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2360 2361 cpl.sqid = qpair->id; 2362 cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; 2363 cpl.status.sct = SPDK_NVME_SCT_GENERIC; 2364 cpl.status.dnr = dnr; 2365 2366 /* 2367 * We cannot abort requests at the RDMA layer without 2368 * unregistering them. If we do, we can still get error 2369 * free completions on the shared completion queue. 2370 */ 2371 if (nvme_qpair_get_state(qpair) > NVME_QPAIR_DISCONNECTING && 2372 nvme_qpair_get_state(qpair) != NVME_QPAIR_DESTROYING) { 2373 nvme_ctrlr_disconnect_qpair(qpair); 2374 } 2375 2376 TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { 2377 nvme_rdma_req_complete(rdma_req, &cpl, true); 2378 } 2379 } 2380 2381 static void 2382 nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair) 2383 { 2384 uint64_t t02; 2385 struct spdk_nvme_rdma_req *rdma_req, *tmp; 2386 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2387 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 2388 struct spdk_nvme_ctrlr_process *active_proc; 2389 2390 /* Don't check timeouts during controller initialization. */ 2391 if (ctrlr->state != NVME_CTRLR_STATE_READY) { 2392 return; 2393 } 2394 2395 if (nvme_qpair_is_admin_queue(qpair)) { 2396 active_proc = nvme_ctrlr_get_current_process(ctrlr); 2397 } else { 2398 active_proc = qpair->active_proc; 2399 } 2400 2401 /* Only check timeouts if the current process has a timeout callback. */ 2402 if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) { 2403 return; 2404 } 2405 2406 t02 = spdk_get_ticks(); 2407 TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { 2408 assert(rdma_req->req != NULL); 2409 2410 if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) { 2411 /* 2412 * The requests are in order, so as soon as one has not timed out, 2413 * stop iterating. 2414 */ 2415 break; 2416 } 2417 } 2418 } 2419 2420 static inline void 2421 nvme_rdma_request_ready(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) 2422 { 2423 struct spdk_nvme_rdma_rsp *rdma_rsp = rdma_req->rdma_rsp; 2424 struct ibv_recv_wr *recv_wr = rdma_rsp->recv_wr; 2425 2426 nvme_rdma_req_complete(rdma_req, &rdma_rsp->cpl, true); 2427 2428 assert(rqpair->rsps->current_num_recvs < rqpair->rsps->num_entries); 2429 rqpair->rsps->current_num_recvs++; 2430 2431 recv_wr->next = NULL; 2432 nvme_rdma_trace_ibv_sge(recv_wr->sg_list); 2433 2434 if (!rqpair->srq) { 2435 spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, recv_wr); 2436 } else { 2437 spdk_rdma_srq_queue_recv_wrs(rqpair->srq, recv_wr); 2438 } 2439 } 2440 2441 #define MAX_COMPLETIONS_PER_POLL 128 2442 2443 static void 2444 nvme_rdma_fail_qpair(struct spdk_nvme_qpair *qpair, int failure_reason) 2445 { 2446 if (failure_reason == IBV_WC_RETRY_EXC_ERR) { 2447 qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE; 2448 } else if (qpair->transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_NONE) { 2449 qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN; 2450 } 2451 2452 nvme_ctrlr_disconnect_qpair(qpair); 2453 } 2454 2455 static struct nvme_rdma_qpair * 2456 get_rdma_qpair_from_wc(struct nvme_rdma_poll_group *group, struct ibv_wc *wc) 2457 { 2458 struct spdk_nvme_qpair *qpair; 2459 struct nvme_rdma_qpair *rqpair; 2460 2461 STAILQ_FOREACH(qpair, &group->group.connected_qpairs, poll_group_stailq) { 2462 rqpair = nvme_rdma_qpair(qpair); 2463 if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) { 2464 return rqpair; 2465 } 2466 } 2467 2468 STAILQ_FOREACH(qpair, &group->group.disconnected_qpairs, poll_group_stailq) { 2469 rqpair = nvme_rdma_qpair(qpair); 2470 if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) { 2471 return rqpair; 2472 } 2473 } 2474 2475 return NULL; 2476 } 2477 2478 static inline void 2479 nvme_rdma_log_wc_status(struct nvme_rdma_qpair *rqpair, struct ibv_wc *wc) 2480 { 2481 struct nvme_rdma_wr *rdma_wr = (struct nvme_rdma_wr *)wc->wr_id; 2482 2483 if (wc->status == IBV_WC_WR_FLUSH_ERR) { 2484 /* If qpair is in ERR state, we will receive completions for all posted and not completed 2485 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */ 2486 SPDK_DEBUGLOG(nvme, "WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n", 2487 rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status, 2488 ibv_wc_status_str(wc->status)); 2489 } else { 2490 SPDK_ERRLOG("WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n", 2491 rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status, 2492 ibv_wc_status_str(wc->status)); 2493 } 2494 } 2495 2496 static inline int 2497 nvme_rdma_process_recv_completion(struct nvme_rdma_poller *poller, struct ibv_wc *wc, 2498 struct nvme_rdma_wr *rdma_wr) 2499 { 2500 struct nvme_rdma_qpair *rqpair; 2501 struct spdk_nvme_rdma_req *rdma_req; 2502 struct spdk_nvme_rdma_rsp *rdma_rsp; 2503 2504 rdma_rsp = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_rsp, rdma_wr); 2505 2506 if (poller && poller->srq) { 2507 rqpair = get_rdma_qpair_from_wc(poller->group, wc); 2508 if (spdk_unlikely(!rqpair)) { 2509 /* Since we do not handle the LAST_WQE_REACHED event, we do not know when 2510 * a Receive Queue in a QP, that is associated with an SRQ, is flushed. 2511 * We may get a WC for a already destroyed QP. 2512 * 2513 * However, for the SRQ, this is not any error. Hence, just re-post the 2514 * receive request to the SRQ to reuse for other QPs, and return 0. 2515 */ 2516 spdk_rdma_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr); 2517 return 0; 2518 } 2519 } else { 2520 rqpair = rdma_rsp->rqpair; 2521 if (spdk_unlikely(!rqpair)) { 2522 /* TODO: Fix forceful QP destroy when it is not async mode. 2523 * CQ itself did not cause any error. Hence, return 0 for now. 2524 */ 2525 SPDK_WARNLOG("QP might be already destroyed.\n"); 2526 return 0; 2527 } 2528 } 2529 2530 2531 assert(rqpair->rsps->current_num_recvs > 0); 2532 rqpair->rsps->current_num_recvs--; 2533 2534 if (wc->status) { 2535 nvme_rdma_log_wc_status(rqpair, wc); 2536 goto err_wc; 2537 } 2538 2539 SPDK_DEBUGLOG(nvme, "CQ recv completion\n"); 2540 2541 if (wc->byte_len < sizeof(struct spdk_nvme_cpl)) { 2542 SPDK_ERRLOG("recv length %u less than expected response size\n", wc->byte_len); 2543 goto err_wc; 2544 } 2545 rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid]; 2546 rdma_req->completion_flags |= NVME_RDMA_RECV_COMPLETED; 2547 rdma_req->rdma_rsp = rdma_rsp; 2548 2549 if ((rdma_req->completion_flags & NVME_RDMA_SEND_COMPLETED) == 0) { 2550 return 0; 2551 } 2552 2553 nvme_rdma_request_ready(rqpair, rdma_req); 2554 2555 if (!rqpair->delay_cmd_submit) { 2556 if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) { 2557 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 2558 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2559 return -ENXIO; 2560 } 2561 } 2562 2563 rqpair->num_completions++; 2564 return 1; 2565 2566 err_wc: 2567 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2568 if (poller && poller->srq) { 2569 spdk_rdma_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr); 2570 } 2571 return -ENXIO; 2572 } 2573 2574 static inline int 2575 nvme_rdma_process_send_completion(struct nvme_rdma_poller *poller, 2576 struct nvme_rdma_qpair *rdma_qpair, 2577 struct ibv_wc *wc, struct nvme_rdma_wr *rdma_wr) 2578 { 2579 struct nvme_rdma_qpair *rqpair; 2580 struct spdk_nvme_rdma_req *rdma_req; 2581 2582 rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_req, rdma_wr); 2583 rqpair = rdma_req->req ? nvme_rdma_qpair(rdma_req->req->qpair) : NULL; 2584 if (!rqpair) { 2585 rqpair = rdma_qpair != NULL ? rdma_qpair : get_rdma_qpair_from_wc(poller->group, wc); 2586 } 2587 2588 /* If we are flushing I/O */ 2589 if (wc->status) { 2590 if (!rqpair) { 2591 /* When poll_group is used, several qpairs share the same CQ and it is possible to 2592 * receive a completion with error (e.g. IBV_WC_WR_FLUSH_ERR) for already disconnected qpair 2593 * That happens due to qpair is destroyed while there are submitted but not completed send/receive 2594 * Work Requests */ 2595 assert(poller); 2596 return 0; 2597 } 2598 assert(rqpair->current_num_sends > 0); 2599 rqpair->current_num_sends--; 2600 nvme_rdma_log_wc_status(rqpair, wc); 2601 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2602 if (rdma_req->rdma_rsp && poller && poller->srq) { 2603 spdk_rdma_srq_queue_recv_wrs(poller->srq, rdma_req->rdma_rsp->recv_wr); 2604 } 2605 return -ENXIO; 2606 } 2607 2608 /* We do not support Soft Roce anymore. Other than Soft Roce's bug, we should not 2609 * receive a completion without error status after qpair is disconnected/destroyed. 2610 */ 2611 if (spdk_unlikely(rdma_req->req == NULL)) { 2612 /* 2613 * Some infiniband drivers do not guarantee the previous assumption after we 2614 * received a RDMA_CM_EVENT_DEVICE_REMOVAL event. 2615 */ 2616 SPDK_ERRLOG("Received malformed completion: request 0x%"PRIx64" type %d\n", wc->wr_id, 2617 rdma_wr->type); 2618 if (!rqpair || !rqpair->need_destroy) { 2619 assert(0); 2620 } 2621 return -ENXIO; 2622 } 2623 2624 rdma_req->completion_flags |= NVME_RDMA_SEND_COMPLETED; 2625 assert(rqpair->current_num_sends > 0); 2626 rqpair->current_num_sends--; 2627 2628 if ((rdma_req->completion_flags & NVME_RDMA_RECV_COMPLETED) == 0) { 2629 return 0; 2630 } 2631 2632 nvme_rdma_request_ready(rqpair, rdma_req); 2633 2634 if (!rqpair->delay_cmd_submit) { 2635 if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) { 2636 SPDK_ERRLOG("Unable to re-post rx descriptor\n"); 2637 nvme_rdma_fail_qpair(&rqpair->qpair, 0); 2638 return -ENXIO; 2639 } 2640 } 2641 2642 rqpair->num_completions++; 2643 return 1; 2644 } 2645 2646 static int 2647 nvme_rdma_cq_process_completions(struct ibv_cq *cq, uint32_t batch_size, 2648 struct nvme_rdma_poller *poller, 2649 struct nvme_rdma_qpair *rdma_qpair, 2650 uint64_t *rdma_completions) 2651 { 2652 struct ibv_wc wc[MAX_COMPLETIONS_PER_POLL]; 2653 struct nvme_rdma_wr *rdma_wr; 2654 uint32_t reaped = 0; 2655 int completion_rc = 0; 2656 int rc, _rc, i; 2657 2658 rc = ibv_poll_cq(cq, batch_size, wc); 2659 if (rc < 0) { 2660 SPDK_ERRLOG("Error polling CQ! (%d): %s\n", 2661 errno, spdk_strerror(errno)); 2662 return -ECANCELED; 2663 } else if (rc == 0) { 2664 return 0; 2665 } 2666 2667 for (i = 0; i < rc; i++) { 2668 rdma_wr = (struct nvme_rdma_wr *)wc[i].wr_id; 2669 switch (rdma_wr->type) { 2670 case RDMA_WR_TYPE_RECV: 2671 _rc = nvme_rdma_process_recv_completion(poller, &wc[i], rdma_wr); 2672 break; 2673 2674 case RDMA_WR_TYPE_SEND: 2675 _rc = nvme_rdma_process_send_completion(poller, rdma_qpair, &wc[i], rdma_wr); 2676 break; 2677 2678 default: 2679 SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", rdma_wr->type); 2680 return -ECANCELED; 2681 } 2682 if (spdk_likely(_rc >= 0)) { 2683 reaped += _rc; 2684 } else { 2685 completion_rc = _rc; 2686 } 2687 } 2688 2689 *rdma_completions += rc; 2690 2691 if (completion_rc) { 2692 return completion_rc; 2693 } 2694 2695 return reaped; 2696 } 2697 2698 static void 2699 dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx) 2700 { 2701 2702 } 2703 2704 static int 2705 nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair, 2706 uint32_t max_completions) 2707 { 2708 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2709 struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(qpair->ctrlr); 2710 int rc = 0, batch_size; 2711 struct ibv_cq *cq; 2712 uint64_t rdma_completions = 0; 2713 2714 /* 2715 * This is used during the connection phase. It's possible that we are still reaping error completions 2716 * from other qpairs so we need to call the poll group function. Also, it's more correct since the cq 2717 * is shared. 2718 */ 2719 if (qpair->poll_group != NULL) { 2720 return spdk_nvme_poll_group_process_completions(qpair->poll_group->group, max_completions, 2721 dummy_disconnected_qpair_cb); 2722 } 2723 2724 if (max_completions == 0) { 2725 max_completions = rqpair->num_entries; 2726 } else { 2727 max_completions = spdk_min(max_completions, rqpair->num_entries); 2728 } 2729 2730 switch (nvme_qpair_get_state(qpair)) { 2731 case NVME_QPAIR_CONNECTING: 2732 rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair); 2733 if (rc == 0) { 2734 /* Once the connection is completed, we can submit queued requests */ 2735 nvme_qpair_resubmit_requests(qpair, rqpair->num_entries); 2736 } else if (rc != -EAGAIN) { 2737 SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair); 2738 goto failed; 2739 } else if (rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING) { 2740 return 0; 2741 } 2742 break; 2743 2744 case NVME_QPAIR_DISCONNECTING: 2745 nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair); 2746 return -ENXIO; 2747 2748 default: 2749 if (nvme_qpair_is_admin_queue(qpair)) { 2750 nvme_rdma_poll_events(rctrlr); 2751 } 2752 nvme_rdma_qpair_process_cm_event(rqpair); 2753 break; 2754 } 2755 2756 if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) { 2757 goto failed; 2758 } 2759 2760 cq = rqpair->cq; 2761 2762 rqpair->num_completions = 0; 2763 do { 2764 batch_size = spdk_min((max_completions - rqpair->num_completions), MAX_COMPLETIONS_PER_POLL); 2765 rc = nvme_rdma_cq_process_completions(cq, batch_size, NULL, rqpair, &rdma_completions); 2766 2767 if (rc == 0) { 2768 break; 2769 /* Handle the case where we fail to poll the cq. */ 2770 } else if (rc == -ECANCELED) { 2771 goto failed; 2772 } else if (rc == -ENXIO) { 2773 return rc; 2774 } 2775 } while (rqpair->num_completions < max_completions); 2776 2777 if (spdk_unlikely(nvme_rdma_qpair_submit_sends(rqpair) || 2778 nvme_rdma_qpair_submit_recvs(rqpair))) { 2779 goto failed; 2780 } 2781 2782 if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) { 2783 nvme_rdma_qpair_check_timeout(qpair); 2784 } 2785 2786 return rqpair->num_completions; 2787 2788 failed: 2789 nvme_rdma_fail_qpair(qpair, 0); 2790 return -ENXIO; 2791 } 2792 2793 static uint32_t 2794 nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr) 2795 { 2796 /* max_mr_size by ibv_query_device indicates the largest value that we can 2797 * set for a registered memory region. It is independent from the actual 2798 * I/O size and is very likely to be larger than 2 MiB which is the 2799 * granularity we currently register memory regions. Hence return 2800 * UINT32_MAX here and let the generic layer use the controller data to 2801 * moderate this value. 2802 */ 2803 return UINT32_MAX; 2804 } 2805 2806 static uint16_t 2807 nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr) 2808 { 2809 struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr); 2810 uint32_t max_sge = rctrlr->max_sge; 2811 uint32_t max_in_capsule_sge = (ctrlr->cdata.nvmf_specific.ioccsz * 16 - 2812 sizeof(struct spdk_nvme_cmd)) / 2813 sizeof(struct spdk_nvme_sgl_descriptor); 2814 2815 /* Max SGE is limited by capsule size */ 2816 max_sge = spdk_min(max_sge, max_in_capsule_sge); 2817 /* Max SGE may be limited by MSDBD */ 2818 if (ctrlr->cdata.nvmf_specific.msdbd != 0) { 2819 max_sge = spdk_min(max_sge, ctrlr->cdata.nvmf_specific.msdbd); 2820 } 2821 2822 /* Max SGE can't be less than 1 */ 2823 max_sge = spdk_max(1, max_sge); 2824 return max_sge; 2825 } 2826 2827 static int 2828 nvme_rdma_qpair_iterate_requests(struct spdk_nvme_qpair *qpair, 2829 int (*iter_fn)(struct nvme_request *req, void *arg), 2830 void *arg) 2831 { 2832 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2833 struct spdk_nvme_rdma_req *rdma_req, *tmp; 2834 int rc; 2835 2836 assert(iter_fn != NULL); 2837 2838 TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { 2839 assert(rdma_req->req != NULL); 2840 2841 rc = iter_fn(rdma_req->req, arg); 2842 if (rc != 0) { 2843 return rc; 2844 } 2845 } 2846 2847 return 0; 2848 } 2849 2850 static void 2851 nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair) 2852 { 2853 struct spdk_nvme_rdma_req *rdma_req, *tmp; 2854 struct spdk_nvme_cpl cpl; 2855 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); 2856 2857 cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; 2858 cpl.status.sct = SPDK_NVME_SCT_GENERIC; 2859 2860 TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { 2861 assert(rdma_req->req != NULL); 2862 2863 if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { 2864 continue; 2865 } 2866 2867 nvme_rdma_req_complete(rdma_req, &cpl, false); 2868 } 2869 } 2870 2871 static void 2872 nvme_rdma_poller_destroy(struct nvme_rdma_poller *poller) 2873 { 2874 if (poller->cq) { 2875 ibv_destroy_cq(poller->cq); 2876 } 2877 if (poller->rsps) { 2878 nvme_rdma_free_rsps(poller->rsps); 2879 } 2880 if (poller->srq) { 2881 spdk_rdma_srq_destroy(poller->srq); 2882 } 2883 if (poller->mr_map) { 2884 spdk_rdma_free_mem_map(&poller->mr_map); 2885 } 2886 if (poller->pd) { 2887 spdk_rdma_put_pd(poller->pd); 2888 } 2889 free(poller); 2890 } 2891 2892 static struct nvme_rdma_poller * 2893 nvme_rdma_poller_create(struct nvme_rdma_poll_group *group, struct ibv_context *ctx) 2894 { 2895 struct nvme_rdma_poller *poller; 2896 struct ibv_device_attr dev_attr; 2897 struct spdk_rdma_srq_init_attr srq_init_attr = {}; 2898 struct nvme_rdma_rsp_opts opts; 2899 int num_cqe; 2900 int rc; 2901 2902 poller = calloc(1, sizeof(*poller)); 2903 if (poller == NULL) { 2904 SPDK_ERRLOG("Unable to allocate poller.\n"); 2905 return NULL; 2906 } 2907 2908 poller->group = group; 2909 poller->device = ctx; 2910 2911 if (g_spdk_nvme_transport_opts.rdma_srq_size != 0) { 2912 rc = ibv_query_device(ctx, &dev_attr); 2913 if (rc) { 2914 SPDK_ERRLOG("Unable to query RDMA device.\n"); 2915 goto fail; 2916 } 2917 2918 poller->pd = spdk_rdma_get_pd(ctx); 2919 if (poller->pd == NULL) { 2920 SPDK_ERRLOG("Unable to get PD.\n"); 2921 goto fail; 2922 } 2923 2924 poller->mr_map = spdk_rdma_create_mem_map(poller->pd, &g_nvme_hooks, 2925 SPDK_RDMA_MEMORY_MAP_ROLE_INITIATOR); 2926 if (poller->mr_map == NULL) { 2927 SPDK_ERRLOG("Unable to create memory map.\n"); 2928 goto fail; 2929 } 2930 2931 srq_init_attr.stats = &poller->stats.rdma_stats.recv; 2932 srq_init_attr.pd = poller->pd; 2933 srq_init_attr.srq_init_attr.attr.max_wr = spdk_min((uint32_t)dev_attr.max_srq_wr, 2934 g_spdk_nvme_transport_opts.rdma_srq_size); 2935 srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(dev_attr.max_sge, 2936 NVME_RDMA_DEFAULT_RX_SGE); 2937 2938 poller->srq = spdk_rdma_srq_create(&srq_init_attr); 2939 if (poller->srq == NULL) { 2940 SPDK_ERRLOG("Unable to create SRQ.\n"); 2941 goto fail; 2942 } 2943 2944 opts.num_entries = g_spdk_nvme_transport_opts.rdma_srq_size; 2945 opts.rqpair = NULL; 2946 opts.srq = poller->srq; 2947 opts.mr_map = poller->mr_map; 2948 2949 poller->rsps = nvme_rdma_create_rsps(&opts); 2950 if (poller->rsps == NULL) { 2951 SPDK_ERRLOG("Unable to create poller RDMA responses.\n"); 2952 goto fail; 2953 } 2954 2955 rc = nvme_rdma_poller_submit_recvs(poller); 2956 if (rc) { 2957 SPDK_ERRLOG("Unable to submit poller RDMA responses.\n"); 2958 goto fail; 2959 } 2960 2961 /* 2962 * When using an srq, fix the size of the completion queue at startup. 2963 * The initiator sends only send and recv WRs. Hence, the multiplier is 2. 2964 * (The target sends also data WRs. Hence, the multiplier is 3.) 2965 */ 2966 num_cqe = g_spdk_nvme_transport_opts.rdma_srq_size * 2; 2967 } else { 2968 num_cqe = DEFAULT_NVME_RDMA_CQ_SIZE; 2969 } 2970 2971 poller->cq = ibv_create_cq(poller->device, num_cqe, group, NULL, 0); 2972 2973 if (poller->cq == NULL) { 2974 SPDK_ERRLOG("Unable to create CQ, errno %d.\n", errno); 2975 goto fail; 2976 } 2977 2978 STAILQ_INSERT_HEAD(&group->pollers, poller, link); 2979 group->num_pollers++; 2980 poller->current_num_wc = num_cqe; 2981 poller->required_num_wc = 0; 2982 return poller; 2983 2984 fail: 2985 nvme_rdma_poller_destroy(poller); 2986 return NULL; 2987 } 2988 2989 static void 2990 nvme_rdma_poll_group_free_pollers(struct nvme_rdma_poll_group *group) 2991 { 2992 struct nvme_rdma_poller *poller, *tmp_poller; 2993 2994 STAILQ_FOREACH_SAFE(poller, &group->pollers, link, tmp_poller) { 2995 assert(poller->refcnt == 0); 2996 if (poller->refcnt) { 2997 SPDK_WARNLOG("Destroying poller with non-zero ref count: poller %p, refcnt %d\n", 2998 poller, poller->refcnt); 2999 } 3000 3001 STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link); 3002 nvme_rdma_poller_destroy(poller); 3003 } 3004 } 3005 3006 static struct nvme_rdma_poller * 3007 nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group, struct ibv_context *device) 3008 { 3009 struct nvme_rdma_poller *poller = NULL; 3010 3011 STAILQ_FOREACH(poller, &group->pollers, link) { 3012 if (poller->device == device) { 3013 break; 3014 } 3015 } 3016 3017 if (!poller) { 3018 poller = nvme_rdma_poller_create(group, device); 3019 if (!poller) { 3020 SPDK_ERRLOG("Failed to create a poller for device %p\n", device); 3021 return NULL; 3022 } 3023 } 3024 3025 poller->refcnt++; 3026 return poller; 3027 } 3028 3029 static void 3030 nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group, struct nvme_rdma_poller *poller) 3031 { 3032 assert(poller->refcnt > 0); 3033 if (--poller->refcnt == 0) { 3034 STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link); 3035 group->num_pollers--; 3036 nvme_rdma_poller_destroy(poller); 3037 } 3038 } 3039 3040 static struct spdk_nvme_transport_poll_group * 3041 nvme_rdma_poll_group_create(void) 3042 { 3043 struct nvme_rdma_poll_group *group; 3044 3045 group = calloc(1, sizeof(*group)); 3046 if (group == NULL) { 3047 SPDK_ERRLOG("Unable to allocate poll group.\n"); 3048 return NULL; 3049 } 3050 3051 STAILQ_INIT(&group->pollers); 3052 return &group->group; 3053 } 3054 3055 static int 3056 nvme_rdma_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair) 3057 { 3058 return 0; 3059 } 3060 3061 static int 3062 nvme_rdma_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair) 3063 { 3064 return 0; 3065 } 3066 3067 static int 3068 nvme_rdma_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup, 3069 struct spdk_nvme_qpair *qpair) 3070 { 3071 return 0; 3072 } 3073 3074 static int 3075 nvme_rdma_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup, 3076 struct spdk_nvme_qpair *qpair) 3077 { 3078 return 0; 3079 } 3080 3081 static int64_t 3082 nvme_rdma_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup, 3083 uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb) 3084 { 3085 struct spdk_nvme_qpair *qpair, *tmp_qpair; 3086 struct nvme_rdma_qpair *rqpair; 3087 struct nvme_rdma_poll_group *group; 3088 struct nvme_rdma_poller *poller; 3089 int num_qpairs = 0, batch_size, rc, rc2 = 0; 3090 int64_t total_completions = 0; 3091 uint64_t completions_allowed = 0; 3092 uint64_t completions_per_poller = 0; 3093 uint64_t poller_completions = 0; 3094 uint64_t rdma_completions; 3095 3096 if (completions_per_qpair == 0) { 3097 completions_per_qpair = MAX_COMPLETIONS_PER_POLL; 3098 } 3099 3100 group = nvme_rdma_poll_group(tgroup); 3101 STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) { 3102 rc = nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair); 3103 if (rc == 0) { 3104 disconnected_qpair_cb(qpair, tgroup->group->ctx); 3105 } 3106 } 3107 3108 STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) { 3109 rqpair = nvme_rdma_qpair(qpair); 3110 rqpair->num_completions = 0; 3111 3112 if (spdk_unlikely(nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING)) { 3113 rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair); 3114 if (rc == 0) { 3115 /* Once the connection is completed, we can submit queued requests */ 3116 nvme_qpair_resubmit_requests(qpair, rqpair->num_entries); 3117 } else if (rc != -EAGAIN) { 3118 SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair); 3119 nvme_rdma_fail_qpair(qpair, 0); 3120 continue; 3121 } 3122 } else { 3123 nvme_rdma_qpair_process_cm_event(rqpair); 3124 } 3125 3126 if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) { 3127 rc2 = -ENXIO; 3128 nvme_rdma_fail_qpair(qpair, 0); 3129 continue; 3130 } 3131 num_qpairs++; 3132 } 3133 3134 completions_allowed = completions_per_qpair * num_qpairs; 3135 if (group->num_pollers) { 3136 completions_per_poller = spdk_max(completions_allowed / group->num_pollers, 1); 3137 } 3138 3139 STAILQ_FOREACH(poller, &group->pollers, link) { 3140 poller_completions = 0; 3141 rdma_completions = 0; 3142 do { 3143 poller->stats.polls++; 3144 batch_size = spdk_min((completions_per_poller - poller_completions), MAX_COMPLETIONS_PER_POLL); 3145 rc = nvme_rdma_cq_process_completions(poller->cq, batch_size, poller, NULL, &rdma_completions); 3146 if (rc <= 0) { 3147 if (rc == -ECANCELED) { 3148 return -EIO; 3149 } else if (rc == 0) { 3150 poller->stats.idle_polls++; 3151 } 3152 break; 3153 } 3154 3155 poller_completions += rc; 3156 } while (poller_completions < completions_per_poller); 3157 total_completions += poller_completions; 3158 poller->stats.completions += rdma_completions; 3159 if (poller->srq) { 3160 nvme_rdma_poller_submit_recvs(poller); 3161 } 3162 } 3163 3164 STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) { 3165 rqpair = nvme_rdma_qpair(qpair); 3166 3167 if (spdk_unlikely(rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING)) { 3168 continue; 3169 } 3170 3171 if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) { 3172 nvme_rdma_qpair_check_timeout(qpair); 3173 } 3174 3175 nvme_rdma_qpair_submit_sends(rqpair); 3176 if (!rqpair->srq) { 3177 nvme_rdma_qpair_submit_recvs(rqpair); 3178 } 3179 if (rqpair->num_completions > 0) { 3180 nvme_qpair_resubmit_requests(qpair, rqpair->num_completions); 3181 } 3182 } 3183 3184 return rc2 != 0 ? rc2 : total_completions; 3185 } 3186 3187 static int 3188 nvme_rdma_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup) 3189 { 3190 struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(tgroup); 3191 3192 if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) { 3193 return -EBUSY; 3194 } 3195 3196 nvme_rdma_poll_group_free_pollers(group); 3197 free(group); 3198 3199 return 0; 3200 } 3201 3202 static int 3203 nvme_rdma_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup, 3204 struct spdk_nvme_transport_poll_group_stat **_stats) 3205 { 3206 struct nvme_rdma_poll_group *group; 3207 struct spdk_nvme_transport_poll_group_stat *stats; 3208 struct spdk_nvme_rdma_device_stat *device_stat; 3209 struct nvme_rdma_poller *poller; 3210 uint32_t i = 0; 3211 3212 if (tgroup == NULL || _stats == NULL) { 3213 SPDK_ERRLOG("Invalid stats or group pointer\n"); 3214 return -EINVAL; 3215 } 3216 3217 group = nvme_rdma_poll_group(tgroup); 3218 stats = calloc(1, sizeof(*stats)); 3219 if (!stats) { 3220 SPDK_ERRLOG("Can't allocate memory for RDMA stats\n"); 3221 return -ENOMEM; 3222 } 3223 stats->trtype = SPDK_NVME_TRANSPORT_RDMA; 3224 stats->rdma.num_devices = group->num_pollers; 3225 3226 if (stats->rdma.num_devices == 0) { 3227 *_stats = stats; 3228 return 0; 3229 } 3230 3231 stats->rdma.device_stats = calloc(stats->rdma.num_devices, sizeof(*stats->rdma.device_stats)); 3232 if (!stats->rdma.device_stats) { 3233 SPDK_ERRLOG("Can't allocate memory for RDMA device stats\n"); 3234 free(stats); 3235 return -ENOMEM; 3236 } 3237 3238 STAILQ_FOREACH(poller, &group->pollers, link) { 3239 device_stat = &stats->rdma.device_stats[i]; 3240 device_stat->name = poller->device->device->name; 3241 device_stat->polls = poller->stats.polls; 3242 device_stat->idle_polls = poller->stats.idle_polls; 3243 device_stat->completions = poller->stats.completions; 3244 device_stat->queued_requests = poller->stats.queued_requests; 3245 device_stat->total_send_wrs = poller->stats.rdma_stats.send.num_submitted_wrs; 3246 device_stat->send_doorbell_updates = poller->stats.rdma_stats.send.doorbell_updates; 3247 device_stat->total_recv_wrs = poller->stats.rdma_stats.recv.num_submitted_wrs; 3248 device_stat->recv_doorbell_updates = poller->stats.rdma_stats.recv.doorbell_updates; 3249 i++; 3250 } 3251 3252 *_stats = stats; 3253 3254 return 0; 3255 } 3256 3257 static void 3258 nvme_rdma_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup, 3259 struct spdk_nvme_transport_poll_group_stat *stats) 3260 { 3261 if (stats) { 3262 free(stats->rdma.device_stats); 3263 } 3264 free(stats); 3265 } 3266 3267 static int 3268 nvme_rdma_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr, 3269 struct spdk_memory_domain **domains, int array_size) 3270 { 3271 struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(ctrlr->adminq); 3272 3273 if (domains && array_size > 0) { 3274 domains[0] = rqpair->memory_domain->domain; 3275 } 3276 3277 return 1; 3278 } 3279 3280 void 3281 spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) 3282 { 3283 g_nvme_hooks = *hooks; 3284 } 3285 3286 const struct spdk_nvme_transport_ops rdma_ops = { 3287 .name = "RDMA", 3288 .type = SPDK_NVME_TRANSPORT_RDMA, 3289 .ctrlr_construct = nvme_rdma_ctrlr_construct, 3290 .ctrlr_scan = nvme_fabric_ctrlr_scan, 3291 .ctrlr_destruct = nvme_rdma_ctrlr_destruct, 3292 .ctrlr_enable = nvme_rdma_ctrlr_enable, 3293 3294 .ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4, 3295 .ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8, 3296 .ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4, 3297 .ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8, 3298 .ctrlr_set_reg_4_async = nvme_fabric_ctrlr_set_reg_4_async, 3299 .ctrlr_set_reg_8_async = nvme_fabric_ctrlr_set_reg_8_async, 3300 .ctrlr_get_reg_4_async = nvme_fabric_ctrlr_get_reg_4_async, 3301 .ctrlr_get_reg_8_async = nvme_fabric_ctrlr_get_reg_8_async, 3302 3303 .ctrlr_get_max_xfer_size = nvme_rdma_ctrlr_get_max_xfer_size, 3304 .ctrlr_get_max_sges = nvme_rdma_ctrlr_get_max_sges, 3305 3306 .ctrlr_create_io_qpair = nvme_rdma_ctrlr_create_io_qpair, 3307 .ctrlr_delete_io_qpair = nvme_rdma_ctrlr_delete_io_qpair, 3308 .ctrlr_connect_qpair = nvme_rdma_ctrlr_connect_qpair, 3309 .ctrlr_disconnect_qpair = nvme_rdma_ctrlr_disconnect_qpair, 3310 3311 .ctrlr_get_memory_domains = nvme_rdma_ctrlr_get_memory_domains, 3312 3313 .qpair_abort_reqs = nvme_rdma_qpair_abort_reqs, 3314 .qpair_reset = nvme_rdma_qpair_reset, 3315 .qpair_submit_request = nvme_rdma_qpair_submit_request, 3316 .qpair_process_completions = nvme_rdma_qpair_process_completions, 3317 .qpair_iterate_requests = nvme_rdma_qpair_iterate_requests, 3318 .admin_qpair_abort_aers = nvme_rdma_admin_qpair_abort_aers, 3319 3320 .poll_group_create = nvme_rdma_poll_group_create, 3321 .poll_group_connect_qpair = nvme_rdma_poll_group_connect_qpair, 3322 .poll_group_disconnect_qpair = nvme_rdma_poll_group_disconnect_qpair, 3323 .poll_group_add = nvme_rdma_poll_group_add, 3324 .poll_group_remove = nvme_rdma_poll_group_remove, 3325 .poll_group_process_completions = nvme_rdma_poll_group_process_completions, 3326 .poll_group_destroy = nvme_rdma_poll_group_destroy, 3327 .poll_group_get_stats = nvme_rdma_poll_group_get_stats, 3328 .poll_group_free_stats = nvme_rdma_poll_group_free_stats, 3329 }; 3330 3331 SPDK_NVME_TRANSPORT_REGISTER(rdma, &rdma_ops); 3332