xref: /spdk/lib/nvme/nvme_qpair.c (revision b30d57cdad6d2bc75cc1e4e2ebbcebcb0d98dcfa)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "nvme_internal.h"
35 #include "spdk/nvme_ocssd.h"
36 
37 #define NVME_CMD_DPTR_STR_SIZE 256
38 
39 static int nvme_qpair_resubmit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req);
40 
41 struct nvme_string {
42 	uint16_t	value;
43 	const char	*str;
44 };
45 
46 static const struct nvme_string admin_opcode[] = {
47 	{ SPDK_NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
48 	{ SPDK_NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
49 	{ SPDK_NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
50 	{ SPDK_NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
51 	{ SPDK_NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
52 	{ SPDK_NVME_OPC_IDENTIFY, "IDENTIFY" },
53 	{ SPDK_NVME_OPC_ABORT, "ABORT" },
54 	{ SPDK_NVME_OPC_SET_FEATURES, "SET FEATURES" },
55 	{ SPDK_NVME_OPC_GET_FEATURES, "GET FEATURES" },
56 	{ SPDK_NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
57 	{ SPDK_NVME_OPC_NS_MANAGEMENT, "NAMESPACE MANAGEMENT" },
58 	{ SPDK_NVME_OPC_FIRMWARE_COMMIT, "FIRMWARE COMMIT" },
59 	{ SPDK_NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
60 	{ SPDK_NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
61 	{ SPDK_NVME_OPC_NS_ATTACHMENT, "NAMESPACE ATTACHMENT" },
62 	{ SPDK_NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
63 	{ SPDK_NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
64 	{ SPDK_NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
65 	{ SPDK_NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
66 	{ SPDK_NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
67 	{ SPDK_NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
68 	{ SPDK_NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
69 	{ SPDK_NVME_OPC_FABRIC, "FABRIC" },
70 	{ SPDK_NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
71 	{ SPDK_NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
72 	{ SPDK_NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
73 	{ SPDK_NVME_OPC_SANITIZE, "SANITIZE" },
74 	{ SPDK_NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" },
75 	{ SPDK_OCSSD_OPC_GEOMETRY, "OCSSD / GEOMETRY" },
76 	{ 0xFFFF, "ADMIN COMMAND" }
77 };
78 
79 static const struct nvme_string fabric_opcode[] = {
80 	{ SPDK_NVMF_FABRIC_COMMAND_PROPERTY_SET, "PROPERTY SET" },
81 	{ SPDK_NVMF_FABRIC_COMMAND_CONNECT, "CONNECT" },
82 	{ SPDK_NVMF_FABRIC_COMMAND_PROPERTY_GET, "PROPERTY GET" },
83 	{ SPDK_NVMF_FABRIC_COMMAND_AUTHENTICATION_SEND, "AUTHENTICATION SEND" },
84 	{ SPDK_NVMF_FABRIC_COMMAND_AUTHENTICATION_RECV, "AUTHENTICATION RECV" },
85 	{ 0xFFFF, "RESERVED / VENDOR SPECIFIC" }
86 };
87 
88 static const struct nvme_string feat_opcode[] = {
89 	{ SPDK_NVME_FEAT_ARBITRATION, "ARBITRATION" },
90 	{ SPDK_NVME_FEAT_POWER_MANAGEMENT, "POWER MANAGEMENT" },
91 	{ SPDK_NVME_FEAT_LBA_RANGE_TYPE, "LBA RANGE TYPE" },
92 	{ SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD, "TEMPERATURE THRESHOLD" },
93 	{ SPDK_NVME_FEAT_ERROR_RECOVERY, "ERROR_RECOVERY" },
94 	{ SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE, "VOLATILE WRITE CACHE" },
95 	{ SPDK_NVME_FEAT_NUMBER_OF_QUEUES, "NUMBER OF QUEUES" },
96 	{ SPDK_NVME_FEAT_INTERRUPT_COALESCING, "INTERRUPT COALESCING" },
97 	{ SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION, "INTERRUPT VECTOR CONFIGURATION" },
98 	{ SPDK_NVME_FEAT_WRITE_ATOMICITY, "WRITE ATOMICITY" },
99 	{ SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION, "ASYNC EVENT CONFIGURATION" },
100 	{ SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION, "AUTONOMOUS POWER STATE TRANSITION" },
101 	{ SPDK_NVME_FEAT_HOST_MEM_BUFFER, "HOST MEM BUFFER" },
102 	{ SPDK_NVME_FEAT_TIMESTAMP, "TIMESTAMP" },
103 	{ SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, "KEEP ALIVE TIMER" },
104 	{ SPDK_NVME_FEAT_HOST_CONTROLLED_THERMAL_MANAGEMENT, "HOST CONTROLLED THERMAL MANAGEMENT" },
105 	{ SPDK_NVME_FEAT_NON_OPERATIONAL_POWER_STATE_CONFIG, "NON OPERATIONAL POWER STATE CONFIG" },
106 	{ SPDK_NVME_FEAT_SOFTWARE_PROGRESS_MARKER, "SOFTWARE PROGRESS MARKER" },
107 	{ SPDK_NVME_FEAT_HOST_IDENTIFIER, "HOST IDENTIFIER" },
108 	{ SPDK_NVME_FEAT_HOST_RESERVE_MASK, "HOST RESERVE MASK" },
109 	{ SPDK_NVME_FEAT_HOST_RESERVE_PERSIST, "HOST RESERVE PERSIST" },
110 	{ 0xFFFF, "RESERVED" }
111 };
112 
113 static const struct nvme_string io_opcode[] = {
114 	{ SPDK_NVME_OPC_FLUSH, "FLUSH" },
115 	{ SPDK_NVME_OPC_WRITE, "WRITE" },
116 	{ SPDK_NVME_OPC_READ, "READ" },
117 	{ SPDK_NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
118 	{ SPDK_NVME_OPC_COMPARE, "COMPARE" },
119 	{ SPDK_NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
120 	{ SPDK_NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
121 	{ SPDK_NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
122 	{ SPDK_NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
123 	{ SPDK_NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
124 	{ SPDK_NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
125 	{ SPDK_OCSSD_OPC_VECTOR_RESET, "OCSSD / VECTOR RESET" },
126 	{ SPDK_OCSSD_OPC_VECTOR_WRITE, "OCSSD / VECTOR WRITE" },
127 	{ SPDK_OCSSD_OPC_VECTOR_READ, "OCSSD / VECTOR READ" },
128 	{ SPDK_OCSSD_OPC_VECTOR_COPY, "OCSSD / VECTOR COPY" },
129 	{ 0xFFFF, "IO COMMAND" }
130 };
131 
132 static const struct nvme_string sgl_type[] = {
133 	{ SPDK_NVME_SGL_TYPE_DATA_BLOCK, "DATA BLOCK" },
134 	{ SPDK_NVME_SGL_TYPE_BIT_BUCKET, "BIT BUCKET" },
135 	{ SPDK_NVME_SGL_TYPE_SEGMENT, "SEGMENT" },
136 	{ SPDK_NVME_SGL_TYPE_LAST_SEGMENT, "LAST SEGMENT" },
137 	{ SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK, "TRANSPORT DATA BLOCK" },
138 	{ SPDK_NVME_SGL_TYPE_VENDOR_SPECIFIC, "VENDOR SPECIFIC" },
139 	{ 0xFFFF, "RESERVED" }
140 };
141 
142 static const struct nvme_string sgl_subtype[] = {
143 	{ SPDK_NVME_SGL_SUBTYPE_ADDRESS, "ADDRESS" },
144 	{ SPDK_NVME_SGL_SUBTYPE_OFFSET, "OFFSET" },
145 	{ SPDK_NVME_SGL_SUBTYPE_TRANSPORT, "TRANSPORT" },
146 	{ SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY, "INVALIDATE KEY" },
147 	{ 0xFFFF, "RESERVED" }
148 };
149 
150 static const char *
151 nvme_get_string(const struct nvme_string *strings, uint16_t value)
152 {
153 	const struct nvme_string *entry;
154 
155 	entry = strings;
156 
157 	while (entry->value != 0xFFFF) {
158 		if (entry->value == value) {
159 			return entry->str;
160 		}
161 		entry++;
162 	}
163 	return entry->str;
164 }
165 
166 static void
167 nvme_get_sgl_unkeyed(char *buf, size_t size, struct spdk_nvme_cmd *cmd)
168 {
169 	struct spdk_nvme_sgl_descriptor *sgl = &cmd->dptr.sgl1;
170 
171 	snprintf(buf, size, " len:0x%x", sgl->unkeyed.length);
172 }
173 
174 static void
175 nvme_get_sgl_keyed(char *buf, size_t size, struct spdk_nvme_cmd *cmd)
176 {
177 	struct spdk_nvme_sgl_descriptor *sgl = &cmd->dptr.sgl1;
178 
179 	snprintf(buf, size, " len:0x%x key:0x%x", sgl->keyed.length, sgl->keyed.key);
180 }
181 
182 static void
183 nvme_get_sgl(char *buf, size_t size, struct spdk_nvme_cmd *cmd)
184 {
185 	struct spdk_nvme_sgl_descriptor *sgl = &cmd->dptr.sgl1;
186 	int c;
187 
188 	c = snprintf(buf, size, "SGL %s %s 0x%" PRIx64, nvme_get_string(sgl_type, sgl->generic.type),
189 		     nvme_get_string(sgl_subtype, sgl->generic.subtype), sgl->address);
190 	assert(c >= 0 && (size_t)c < size);
191 
192 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK) {
193 		nvme_get_sgl_unkeyed(buf + c, size - c, cmd);
194 	}
195 
196 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK) {
197 		nvme_get_sgl_keyed(buf + c, size - c, cmd);
198 	}
199 }
200 
201 static void
202 nvme_get_prp(char *buf, size_t size, struct spdk_nvme_cmd *cmd)
203 {
204 	snprintf(buf, size, "PRP1 0x%" PRIx64 " PRP2 0x%" PRIx64, cmd->dptr.prp.prp1, cmd->dptr.prp.prp2);
205 }
206 
207 static void
208 nvme_get_dptr(char *buf, size_t size, struct spdk_nvme_cmd *cmd)
209 {
210 	if (spdk_nvme_opc_get_data_transfer(cmd->opc) != SPDK_NVME_DATA_NONE) {
211 		switch (cmd->psdt) {
212 		case SPDK_NVME_PSDT_PRP:
213 			nvme_get_prp(buf, size, cmd);
214 			break;
215 		case SPDK_NVME_PSDT_SGL_MPTR_CONTIG:
216 		case SPDK_NVME_PSDT_SGL_MPTR_SGL:
217 			nvme_get_sgl(buf, size, cmd);
218 			break;
219 		default:
220 			;
221 		}
222 	}
223 }
224 
225 static void
226 nvme_admin_qpair_print_command(uint16_t qid, struct spdk_nvme_cmd *cmd)
227 {
228 	struct spdk_nvmf_capsule_cmd *fcmd = (void *)cmd;
229 	char dptr[NVME_CMD_DPTR_STR_SIZE] = {'\0'};
230 
231 	assert(cmd != NULL);
232 
233 	nvme_get_dptr(dptr, sizeof(dptr), cmd);
234 
235 	switch ((int)cmd->opc) {
236 	case SPDK_NVME_OPC_SET_FEATURES:
237 	case SPDK_NVME_OPC_GET_FEATURES:
238 		SPDK_NOTICELOG("%s %s cid:%d cdw10:%08x %s\n",
239 			       nvme_get_string(admin_opcode, cmd->opc), nvme_get_string(feat_opcode,
240 					       cmd->cdw10_bits.set_features.fid), cmd->cid, cmd->cdw10, dptr);
241 		break;
242 	case SPDK_NVME_OPC_FABRIC:
243 		SPDK_NOTICELOG("%s %s qid:%d cid:%d %s\n",
244 			       nvme_get_string(admin_opcode, cmd->opc), nvme_get_string(fabric_opcode, fcmd->fctype), qid,
245 			       fcmd->cid, dptr);
246 		break;
247 	default:
248 		SPDK_NOTICELOG("%s (%02x) qid:%d cid:%d nsid:%x cdw10:%08x cdw11:%08x %s\n",
249 			       nvme_get_string(admin_opcode, cmd->opc), cmd->opc, qid, cmd->cid, cmd->nsid, cmd->cdw10,
250 			       cmd->cdw11, dptr);
251 	}
252 }
253 
254 static void
255 nvme_io_qpair_print_command(uint16_t qid, struct spdk_nvme_cmd *cmd)
256 {
257 	char dptr[NVME_CMD_DPTR_STR_SIZE] = {'\0'};
258 
259 	assert(cmd != NULL);
260 
261 	nvme_get_dptr(dptr, sizeof(dptr), cmd);
262 
263 	switch ((int)cmd->opc) {
264 	case SPDK_NVME_OPC_WRITE:
265 	case SPDK_NVME_OPC_READ:
266 	case SPDK_NVME_OPC_WRITE_UNCORRECTABLE:
267 	case SPDK_NVME_OPC_COMPARE:
268 		SPDK_NOTICELOG("%s sqid:%d cid:%d nsid:%d "
269 			       "lba:%llu len:%d %s\n",
270 			       nvme_get_string(io_opcode, cmd->opc), qid, cmd->cid, cmd->nsid,
271 			       ((unsigned long long)cmd->cdw11 << 32) + cmd->cdw10,
272 			       (cmd->cdw12 & 0xFFFF) + 1, dptr);
273 		break;
274 	case SPDK_NVME_OPC_FLUSH:
275 	case SPDK_NVME_OPC_DATASET_MANAGEMENT:
276 		SPDK_NOTICELOG("%s sqid:%d cid:%d nsid:%d\n",
277 			       nvme_get_string(io_opcode, cmd->opc), qid, cmd->cid, cmd->nsid);
278 		break;
279 	default:
280 		SPDK_NOTICELOG("%s (%02x) sqid:%d cid:%d nsid:%d\n",
281 			       nvme_get_string(io_opcode, cmd->opc), cmd->opc, qid, cmd->cid, cmd->nsid);
282 		break;
283 	}
284 }
285 
286 void
287 spdk_nvme_print_command(uint16_t qid, struct spdk_nvme_cmd *cmd)
288 {
289 	assert(cmd != NULL);
290 
291 	if (qid == 0 || cmd->opc == SPDK_NVME_OPC_FABRIC) {
292 		nvme_admin_qpair_print_command(qid, cmd);
293 	} else {
294 		nvme_io_qpair_print_command(qid, cmd);
295 	}
296 }
297 
298 void
299 spdk_nvme_qpair_print_command(struct spdk_nvme_qpair *qpair, struct spdk_nvme_cmd *cmd)
300 {
301 	assert(qpair != NULL);
302 	assert(cmd != NULL);
303 
304 	spdk_nvme_print_command(qpair->id, cmd);
305 }
306 
307 static const struct nvme_string generic_status[] = {
308 	{ SPDK_NVME_SC_SUCCESS, "SUCCESS" },
309 	{ SPDK_NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
310 	{ SPDK_NVME_SC_INVALID_FIELD, "INVALID FIELD" },
311 	{ SPDK_NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
312 	{ SPDK_NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
313 	{ SPDK_NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
314 	{ SPDK_NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
315 	{ SPDK_NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
316 	{ SPDK_NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
317 	{ SPDK_NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
318 	{ SPDK_NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
319 	{ SPDK_NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
320 	{ SPDK_NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
321 	{ SPDK_NVME_SC_INVALID_SGL_SEG_DESCRIPTOR, "INVALID SGL SEGMENT DESCRIPTOR" },
322 	{ SPDK_NVME_SC_INVALID_NUM_SGL_DESCIRPTORS, "INVALID NUMBER OF SGL DESCRIPTORS" },
323 	{ SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
324 	{ SPDK_NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
325 	{ SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
326 	{ SPDK_NVME_SC_INVALID_CONTROLLER_MEM_BUF, "INVALID CONTROLLER MEMORY BUFFER" },
327 	{ SPDK_NVME_SC_INVALID_PRP_OFFSET, "INVALID PRP OFFSET" },
328 	{ SPDK_NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
329 	{ SPDK_NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
330 	{ SPDK_NVME_SC_INVALID_SGL_OFFSET, "INVALID SGL OFFSET" },
331 	{ SPDK_NVME_SC_HOSTID_INCONSISTENT_FORMAT, "HOSTID INCONSISTENT FORMAT" },
332 	{ SPDK_NVME_SC_KEEP_ALIVE_EXPIRED, "KEEP ALIVE EXPIRED" },
333 	{ SPDK_NVME_SC_KEEP_ALIVE_INVALID, "KEEP ALIVE INVALID" },
334 	{ SPDK_NVME_SC_ABORTED_PREEMPT, "ABORTED - PREEMPT AND ABORT" },
335 	{ SPDK_NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
336 	{ SPDK_NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
337 	{ SPDK_NVME_SC_SGL_DATA_BLOCK_GRANULARITY_INVALID, "DATA BLOCK GRANULARITY INVALID" },
338 	{ SPDK_NVME_SC_COMMAND_INVALID_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
339 	{ SPDK_NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
340 	{ SPDK_NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
341 	{ SPDK_NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
342 	{ SPDK_NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
343 	{ SPDK_NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
344 	{ 0xFFFF, "GENERIC" }
345 };
346 
347 static const struct nvme_string command_specific_status[] = {
348 	{ SPDK_NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
349 	{ SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
350 	{ SPDK_NVME_SC_INVALID_QUEUE_SIZE, "INVALID QUEUE SIZE" },
351 	{ SPDK_NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
352 	{ SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
353 	{ SPDK_NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
354 	{ SPDK_NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
355 	{ SPDK_NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
356 	{ SPDK_NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
357 	{ SPDK_NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
358 	{ SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET, "FIRMWARE REQUIRES CONVENTIONAL RESET" },
359 	{ SPDK_NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
360 	{ SPDK_NVME_SC_FEATURE_ID_NOT_SAVEABLE, "FEATURE ID NOT SAVEABLE" },
361 	{ SPDK_NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
362 	{ SPDK_NVME_SC_FEATURE_NOT_NAMESPACE_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
363 	{ SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET, "FIRMWARE REQUIRES NVM RESET" },
364 	{ SPDK_NVME_SC_FIRMWARE_REQ_RESET, "FIRMWARE REQUIRES RESET" },
365 	{ SPDK_NVME_SC_FIRMWARE_REQ_MAX_TIME_VIOLATION, "FIRMWARE REQUIRES MAX TIME VIOLATION" },
366 	{ SPDK_NVME_SC_FIRMWARE_ACTIVATION_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
367 	{ SPDK_NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
368 	{ SPDK_NVME_SC_NAMESPACE_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
369 	{ SPDK_NVME_SC_NAMESPACE_ID_UNAVAILABLE, "NAMESPACE ID UNAVAILABLE" },
370 	{ SPDK_NVME_SC_NAMESPACE_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
371 	{ SPDK_NVME_SC_NAMESPACE_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
372 	{ SPDK_NVME_SC_NAMESPACE_NOT_ATTACHED, "NAMESPACE NOT ATTACHED" },
373 	{ SPDK_NVME_SC_THINPROVISIONING_NOT_SUPPORTED, "THINPROVISIONING NOT SUPPORTED" },
374 	{ SPDK_NVME_SC_CONTROLLER_LIST_INVALID, "CONTROLLER LIST INVALID" },
375 	{ SPDK_NVME_SC_DEVICE_SELF_TEST_IN_PROGRESS, "DEVICE SELF-TEST IN PROGRESS" },
376 	{ SPDK_NVME_SC_BOOT_PARTITION_WRITE_PROHIBITED, "BOOT PARTITION WRITE PROHIBITED" },
377 	{ SPDK_NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER ID" },
378 	{ SPDK_NVME_SC_INVALID_SECONDARY_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
379 	{ SPDK_NVME_SC_INVALID_NUM_CTRLR_RESOURCES, "INVALID NUMBER OF CONTROLLER RESOURCES" },
380 	{ SPDK_NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
381 	{ SPDK_NVME_SC_STREAM_RESOURCE_ALLOCATION_FAILED, "STREAM RESOURCE ALLOCATION FAILED"},
382 	{ SPDK_NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
383 	{ SPDK_NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
384 	{ SPDK_NVME_SC_ATTEMPTED_WRITE_TO_RO_RANGE, "WRITE TO RO RANGE" },
385 	{ 0xFFFF, "COMMAND SPECIFIC" }
386 };
387 
388 static const struct nvme_string media_error_status[] = {
389 	{ SPDK_NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
390 	{ SPDK_NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
391 	{ SPDK_NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
392 	{ SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
393 	{ SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
394 	{ SPDK_NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
395 	{ SPDK_NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
396 	{ SPDK_NVME_SC_DEALLOCATED_OR_UNWRITTEN_BLOCK, "DEALLOCATED OR UNWRITTEN BLOCK" },
397 	{ SPDK_OCSSD_SC_OFFLINE_CHUNK, "RESET OFFLINE CHUNK" },
398 	{ SPDK_OCSSD_SC_INVALID_RESET, "INVALID RESET" },
399 	{ SPDK_OCSSD_SC_WRITE_FAIL_WRITE_NEXT_UNIT, "WRITE FAIL WRITE NEXT UNIT" },
400 	{ SPDK_OCSSD_SC_WRITE_FAIL_CHUNK_EARLY_CLOSE, "WRITE FAIL CHUNK EARLY CLOSE" },
401 	{ SPDK_OCSSD_SC_OUT_OF_ORDER_WRITE, "OUT OF ORDER WRITE" },
402 	{ SPDK_OCSSD_SC_READ_HIGH_ECC, "READ HIGH ECC" },
403 	{ 0xFFFF, "MEDIA ERROR" }
404 };
405 
406 static const struct nvme_string path_status[] = {
407 	{ SPDK_NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" },
408 	{ SPDK_NVME_SC_CONTROLLER_PATH_ERROR, "CONTROLLER PATH ERROR" },
409 	{ SPDK_NVME_SC_HOST_PATH_ERROR, "HOST PATH ERROR" },
410 	{ SPDK_NVME_SC_ABORTED_BY_HOST, "ABORTED BY HOST" },
411 	{ 0xFFFF, "PATH ERROR" }
412 };
413 
414 const char *
415 spdk_nvme_cpl_get_status_string(const struct spdk_nvme_status *status)
416 {
417 	const struct nvme_string *entry;
418 
419 	switch (status->sct) {
420 	case SPDK_NVME_SCT_GENERIC:
421 		entry = generic_status;
422 		break;
423 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
424 		entry = command_specific_status;
425 		break;
426 	case SPDK_NVME_SCT_MEDIA_ERROR:
427 		entry = media_error_status;
428 		break;
429 	case SPDK_NVME_SCT_PATH:
430 		entry = path_status;
431 		break;
432 	case SPDK_NVME_SCT_VENDOR_SPECIFIC:
433 		return "VENDOR SPECIFIC";
434 	default:
435 		return "RESERVED";
436 	}
437 
438 	return nvme_get_string(entry, status->sc);
439 }
440 
441 void
442 spdk_nvme_print_completion(uint16_t qid, struct spdk_nvme_cpl *cpl)
443 {
444 	assert(cpl != NULL);
445 
446 	/* Check that sqid matches qid. Note that sqid is reserved
447 	 * for fabrics so don't print an error when sqid is 0. */
448 	if (cpl->sqid != qid && cpl->sqid != 0) {
449 		SPDK_ERRLOG("sqid %u doesn't match qid\n", cpl->sqid);
450 	}
451 
452 	SPDK_NOTICELOG("%s (%02x/%02x) qid:%d cid:%d cdw0:%x sqhd:%04x p:%x m:%x dnr:%x\n",
453 		       spdk_nvme_cpl_get_status_string(&cpl->status),
454 		       cpl->status.sct, cpl->status.sc, qid, cpl->cid, cpl->cdw0,
455 		       cpl->sqhd, cpl->status.p, cpl->status.m, cpl->status.dnr);
456 }
457 
458 void
459 spdk_nvme_qpair_print_completion(struct spdk_nvme_qpair *qpair, struct spdk_nvme_cpl *cpl)
460 {
461 	spdk_nvme_print_completion(qpair->id, cpl);
462 }
463 
464 bool
465 nvme_completion_is_retry(const struct spdk_nvme_cpl *cpl)
466 {
467 	/*
468 	 * TODO: spec is not clear how commands that are aborted due
469 	 *  to TLER will be marked.  So for now, it seems
470 	 *  NAMESPACE_NOT_READY is the only case where we should
471 	 *  look at the DNR bit.
472 	 */
473 	switch ((int)cpl->status.sct) {
474 	case SPDK_NVME_SCT_GENERIC:
475 		switch ((int)cpl->status.sc) {
476 		case SPDK_NVME_SC_NAMESPACE_NOT_READY:
477 		case SPDK_NVME_SC_FORMAT_IN_PROGRESS:
478 			if (cpl->status.dnr) {
479 				return false;
480 			} else {
481 				return true;
482 			}
483 		case SPDK_NVME_SC_INVALID_OPCODE:
484 		case SPDK_NVME_SC_INVALID_FIELD:
485 		case SPDK_NVME_SC_COMMAND_ID_CONFLICT:
486 		case SPDK_NVME_SC_DATA_TRANSFER_ERROR:
487 		case SPDK_NVME_SC_ABORTED_POWER_LOSS:
488 		case SPDK_NVME_SC_INTERNAL_DEVICE_ERROR:
489 		case SPDK_NVME_SC_ABORTED_BY_REQUEST:
490 		case SPDK_NVME_SC_ABORTED_SQ_DELETION:
491 		case SPDK_NVME_SC_ABORTED_FAILED_FUSED:
492 		case SPDK_NVME_SC_ABORTED_MISSING_FUSED:
493 		case SPDK_NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
494 		case SPDK_NVME_SC_COMMAND_SEQUENCE_ERROR:
495 		case SPDK_NVME_SC_LBA_OUT_OF_RANGE:
496 		case SPDK_NVME_SC_CAPACITY_EXCEEDED:
497 		default:
498 			return false;
499 		}
500 	case SPDK_NVME_SCT_PATH:
501 		/*
502 		 * Per NVMe TP 4028 (Path and Transport Error Enhancements), retries should be
503 		 * based on the setting of the DNR bit for Internal Path Error
504 		 */
505 		switch ((int)cpl->status.sc) {
506 		case SPDK_NVME_SC_INTERNAL_PATH_ERROR:
507 			return !cpl->status.dnr;
508 		default:
509 			return false;
510 		}
511 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
512 	case SPDK_NVME_SCT_MEDIA_ERROR:
513 	case SPDK_NVME_SCT_VENDOR_SPECIFIC:
514 	default:
515 		return false;
516 	}
517 }
518 
519 static void
520 nvme_qpair_manual_complete_request(struct spdk_nvme_qpair *qpair,
521 				   struct nvme_request *req, uint32_t sct, uint32_t sc,
522 				   uint32_t dnr, bool print_on_error)
523 {
524 	struct spdk_nvme_cpl	cpl;
525 	bool			error;
526 
527 	memset(&cpl, 0, sizeof(cpl));
528 	cpl.sqid = qpair->id;
529 	cpl.status.sct = sct;
530 	cpl.status.sc = sc;
531 	cpl.status.dnr = dnr;
532 
533 	error = spdk_nvme_cpl_is_error(&cpl);
534 
535 	if (error && print_on_error && !qpair->ctrlr->opts.disable_error_logging) {
536 		SPDK_NOTICELOG("Command completed manually:\n");
537 		spdk_nvme_qpair_print_command(qpair, &req->cmd);
538 		spdk_nvme_qpair_print_completion(qpair, &cpl);
539 	}
540 
541 	nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, &cpl);
542 	nvme_free_request(req);
543 }
544 
545 static void
546 _nvme_qpair_abort_queued_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
547 {
548 	struct nvme_request		*req;
549 	STAILQ_HEAD(, nvme_request)	tmp;
550 
551 	STAILQ_INIT(&tmp);
552 	STAILQ_SWAP(&tmp, &qpair->queued_req, nvme_request);
553 
554 	while (!STAILQ_EMPTY(&tmp)) {
555 		req = STAILQ_FIRST(&tmp);
556 		STAILQ_REMOVE_HEAD(&tmp, stailq);
557 		if (!qpair->ctrlr->opts.disable_error_logging) {
558 			SPDK_ERRLOG("aborting queued i/o\n");
559 		}
560 		nvme_qpair_manual_complete_request(qpair, req, SPDK_NVME_SCT_GENERIC,
561 						   SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true);
562 	}
563 }
564 
565 /* The callback to a request may submit the next request which is queued and
566  * then the same callback may abort it immediately. This repetition may cause
567  * infinite recursive calls. Hence move aborting requests to another list here
568  * and abort them later at resubmission.
569  */
570 static void
571 _nvme_qpair_complete_abort_queued_reqs(struct spdk_nvme_qpair *qpair)
572 {
573 	struct nvme_request		*req;
574 
575 	while (!STAILQ_EMPTY(&qpair->aborting_queued_req)) {
576 		req = STAILQ_FIRST(&qpair->aborting_queued_req);
577 		STAILQ_REMOVE_HEAD(&qpair->aborting_queued_req, stailq);
578 		nvme_qpair_manual_complete_request(qpair, req, SPDK_NVME_SCT_GENERIC,
579 						   SPDK_NVME_SC_ABORTED_BY_REQUEST, 1, true);
580 	}
581 }
582 
583 uint32_t
584 nvme_qpair_abort_queued_reqs(struct spdk_nvme_qpair *qpair, void *cmd_cb_arg)
585 {
586 	struct nvme_request	*req, *tmp;
587 	uint32_t		aborting = 0;
588 
589 	STAILQ_FOREACH_SAFE(req, &qpair->queued_req, stailq, tmp) {
590 		if (req->cb_arg == cmd_cb_arg) {
591 			STAILQ_REMOVE(&qpair->queued_req, req, nvme_request, stailq);
592 			STAILQ_INSERT_TAIL(&qpair->aborting_queued_req, req, stailq);
593 			if (!qpair->ctrlr->opts.disable_error_logging) {
594 				SPDK_ERRLOG("aborting queued i/o\n");
595 			}
596 			aborting++;
597 		}
598 	}
599 
600 	return aborting;
601 }
602 
603 static inline bool
604 nvme_qpair_check_enabled(struct spdk_nvme_qpair *qpair)
605 {
606 	struct nvme_request *req;
607 
608 	/*
609 	 * Either during initial connect or reset, the qpair should follow the given state machine.
610 	 * QPAIR_DISABLED->QPAIR_CONNECTING->QPAIR_CONNECTED->QPAIR_ENABLING->QPAIR_ENABLED. In the
611 	 * reset case, once the qpair is properly connected, we need to abort any outstanding requests
612 	 * from the old transport connection and encourage the application to retry them. We also need
613 	 * to submit any queued requests that built up while we were in the connected or enabling state.
614 	 */
615 	if (nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTED && !qpair->ctrlr->is_resetting) {
616 		nvme_qpair_set_state(qpair, NVME_QPAIR_ENABLING);
617 		/*
618 		 * PCIe is special, for fabrics transports, we can abort requests before disconnect during reset
619 		 * but we have historically not disconnected pcie qpairs during reset so we have to abort requests
620 		 * here.
621 		 */
622 		if (qpair->ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
623 			nvme_qpair_abort_reqs(qpair, 0);
624 		}
625 		nvme_qpair_set_state(qpair, NVME_QPAIR_ENABLED);
626 		while (!STAILQ_EMPTY(&qpair->queued_req)) {
627 			req = STAILQ_FIRST(&qpair->queued_req);
628 			STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
629 			if (nvme_qpair_resubmit_request(qpair, req)) {
630 				break;
631 			}
632 		}
633 	}
634 
635 	/*
636 	 * When doing a reset, we must disconnect the qpair on the proper core.
637 	 * Note, reset is the only case where we set the failure reason without
638 	 * setting the qpair state since reset is done at the generic layer on the
639 	 * controller thread and we can't disconnect I/O qpairs from the controller
640 	 * thread.
641 	 */
642 	if (qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE &&
643 	    nvme_qpair_get_state(qpair) == NVME_QPAIR_ENABLED) {
644 		/* Don't disconnect PCIe qpairs. They are a special case for reset. */
645 		if (qpair->ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
646 			nvme_ctrlr_disconnect_qpair(qpair);
647 		}
648 		return false;
649 	}
650 
651 	return nvme_qpair_get_state(qpair) == NVME_QPAIR_ENABLED;
652 }
653 
654 void
655 nvme_qpair_resubmit_requests(struct spdk_nvme_qpair *qpair, uint32_t num_requests)
656 {
657 	uint32_t i;
658 	int resubmit_rc;
659 	struct nvme_request *req;
660 
661 	for (i = 0; i < num_requests; i++) {
662 		if (qpair->ctrlr->is_resetting) {
663 			break;
664 		}
665 		if ((req = STAILQ_FIRST(&qpair->queued_req)) == NULL) {
666 			break;
667 		}
668 		STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
669 		resubmit_rc = nvme_qpair_resubmit_request(qpair, req);
670 		if (spdk_unlikely(resubmit_rc != 0)) {
671 			SPDK_DEBUGLOG(nvme, "Unable to resubmit as many requests as we completed.\n");
672 			break;
673 		}
674 	}
675 
676 	_nvme_qpair_complete_abort_queued_reqs(qpair);
677 }
678 
679 int32_t
680 spdk_nvme_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
681 {
682 	int32_t ret;
683 	struct nvme_request *req, *tmp;
684 
685 	if (spdk_unlikely(qpair->ctrlr->is_failed)) {
686 		if (qpair->ctrlr->is_removed) {
687 			nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
688 			nvme_qpair_abort_reqs(qpair, 1 /* Do not retry */);
689 		}
690 		return -ENXIO;
691 	}
692 
693 	if (spdk_unlikely(!nvme_qpair_check_enabled(qpair) &&
694 			  !(nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING))) {
695 		/*
696 		 * qpair is not enabled, likely because a controller reset is
697 		 *  in progress.
698 		 */
699 		return -ENXIO;
700 	}
701 
702 	/* error injection for those queued error requests */
703 	if (spdk_unlikely(!STAILQ_EMPTY(&qpair->err_req_head))) {
704 		STAILQ_FOREACH_SAFE(req, &qpair->err_req_head, stailq, tmp) {
705 			if (spdk_get_ticks() - req->submit_tick > req->timeout_tsc) {
706 				STAILQ_REMOVE(&qpair->err_req_head, req, nvme_request, stailq);
707 				nvme_qpair_manual_complete_request(qpair, req,
708 								   req->cpl.status.sct,
709 								   req->cpl.status.sc, 0, true);
710 			}
711 		}
712 	}
713 
714 	qpair->in_completion_context = 1;
715 	ret = nvme_transport_qpair_process_completions(qpair, max_completions);
716 	if (ret < 0) {
717 		SPDK_ERRLOG("CQ transport error %d on qpair id %hu\n", ret, qpair->id);
718 		if (nvme_qpair_is_admin_queue(qpair)) {
719 			nvme_ctrlr_fail(qpair->ctrlr, false);
720 		}
721 	}
722 	qpair->in_completion_context = 0;
723 	if (qpair->delete_after_completion_context) {
724 		/*
725 		 * A request to delete this qpair was made in the context of this completion
726 		 *  routine - so it is safe to delete it now.
727 		 */
728 		spdk_nvme_ctrlr_free_io_qpair(qpair);
729 		return ret;
730 	}
731 
732 	/*
733 	 * At this point, ret must represent the number of completions we reaped.
734 	 * submit as many queued requests as we completed.
735 	 */
736 	nvme_qpair_resubmit_requests(qpair, ret);
737 
738 	return ret;
739 }
740 
741 spdk_nvme_qp_failure_reason
742 spdk_nvme_qpair_get_failure_reason(struct spdk_nvme_qpair *qpair)
743 {
744 	return qpair->transport_failure_reason;
745 }
746 
747 int
748 nvme_qpair_init(struct spdk_nvme_qpair *qpair, uint16_t id,
749 		struct spdk_nvme_ctrlr *ctrlr,
750 		enum spdk_nvme_qprio qprio,
751 		uint32_t num_requests)
752 {
753 	size_t req_size_padded;
754 	uint32_t i;
755 
756 	qpair->id = id;
757 	qpair->qprio = qprio;
758 
759 	qpair->in_completion_context = 0;
760 	qpair->delete_after_completion_context = 0;
761 	qpair->no_deletion_notification_needed = 0;
762 
763 	qpair->ctrlr = ctrlr;
764 	qpair->trtype = ctrlr->trid.trtype;
765 
766 	STAILQ_INIT(&qpair->free_req);
767 	STAILQ_INIT(&qpair->queued_req);
768 	STAILQ_INIT(&qpair->aborting_queued_req);
769 	TAILQ_INIT(&qpair->err_cmd_head);
770 	STAILQ_INIT(&qpair->err_req_head);
771 
772 	req_size_padded = (sizeof(struct nvme_request) + 63) & ~(size_t)63;
773 
774 	qpair->req_buf = spdk_zmalloc(req_size_padded * num_requests, 64, NULL,
775 				      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
776 	if (qpair->req_buf == NULL) {
777 		SPDK_ERRLOG("no memory to allocate qpair(cntlid:0x%x sqid:%d) req_buf with %d request\n",
778 			    ctrlr->cntlid, qpair->id, num_requests);
779 		return -ENOMEM;
780 	}
781 
782 	for (i = 0; i < num_requests; i++) {
783 		struct nvme_request *req = qpair->req_buf + i * req_size_padded;
784 
785 		req->qpair = qpair;
786 		STAILQ_INSERT_HEAD(&qpair->free_req, req, stailq);
787 	}
788 
789 	return 0;
790 }
791 
792 void
793 nvme_qpair_complete_error_reqs(struct spdk_nvme_qpair *qpair)
794 {
795 	struct nvme_request		*req;
796 
797 	while (!STAILQ_EMPTY(&qpair->err_req_head)) {
798 		req = STAILQ_FIRST(&qpair->err_req_head);
799 		STAILQ_REMOVE_HEAD(&qpair->err_req_head, stailq);
800 		nvme_qpair_manual_complete_request(qpair, req,
801 						   req->cpl.status.sct,
802 						   req->cpl.status.sc, 0, true);
803 	}
804 }
805 
806 void
807 nvme_qpair_deinit(struct spdk_nvme_qpair *qpair)
808 {
809 	struct nvme_error_cmd *cmd, *entry;
810 
811 	_nvme_qpair_abort_queued_reqs(qpair, 1);
812 	_nvme_qpair_complete_abort_queued_reqs(qpair);
813 	nvme_qpair_complete_error_reqs(qpair);
814 
815 	TAILQ_FOREACH_SAFE(cmd, &qpair->err_cmd_head, link, entry) {
816 		TAILQ_REMOVE(&qpair->err_cmd_head, cmd, link);
817 		spdk_free(cmd);
818 	}
819 
820 	spdk_free(qpair->req_buf);
821 }
822 
823 static inline int
824 _nvme_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
825 {
826 	int			rc = 0;
827 	struct nvme_request	*child_req, *tmp;
828 	struct nvme_error_cmd	*cmd;
829 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
830 	bool			child_req_failed = false;
831 
832 	nvme_qpair_check_enabled(qpair);
833 
834 	if (spdk_unlikely(nvme_qpair_get_state(qpair) == NVME_QPAIR_DISCONNECTED ||
835 			  nvme_qpair_get_state(qpair) == NVME_QPAIR_DISCONNECTING ||
836 			  nvme_qpair_get_state(qpair) == NVME_QPAIR_DESTROYING)) {
837 		TAILQ_FOREACH_SAFE(child_req, &req->children, child_tailq, tmp) {
838 			nvme_request_remove_child(req, child_req);
839 			nvme_request_free_children(child_req);
840 			nvme_free_request(child_req);
841 		}
842 		if (req->parent != NULL) {
843 			nvme_request_remove_child(req->parent, req);
844 		}
845 		nvme_free_request(req);
846 		return -ENXIO;
847 	}
848 
849 	if (req->num_children) {
850 		/*
851 		 * This is a split (parent) request. Submit all of the children but not the parent
852 		 * request itself, since the parent is the original unsplit request.
853 		 */
854 		TAILQ_FOREACH_SAFE(child_req, &req->children, child_tailq, tmp) {
855 			if (spdk_likely(!child_req_failed)) {
856 				rc = nvme_qpair_submit_request(qpair, child_req);
857 				if (spdk_unlikely(rc != 0)) {
858 					child_req_failed = true;
859 				}
860 			} else { /* free remaining child_reqs since one child_req fails */
861 				nvme_request_remove_child(req, child_req);
862 				nvme_request_free_children(child_req);
863 				nvme_free_request(child_req);
864 			}
865 		}
866 
867 		if (spdk_unlikely(child_req_failed)) {
868 			/* part of children requests have been submitted,
869 			 * return success since we must wait for those children to complete,
870 			 * but set the parent request to failure.
871 			 */
872 			if (req->num_children) {
873 				req->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
874 				req->cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
875 				return 0;
876 			}
877 			goto error;
878 		}
879 
880 		return rc;
881 	}
882 
883 	/* queue those requests which matches with opcode in err_cmd list */
884 	if (spdk_unlikely(!TAILQ_EMPTY(&qpair->err_cmd_head))) {
885 		TAILQ_FOREACH(cmd, &qpair->err_cmd_head, link) {
886 			if (!cmd->do_not_submit) {
887 				continue;
888 			}
889 
890 			if ((cmd->opc == req->cmd.opc) && cmd->err_count) {
891 				/* add to error request list and set cpl */
892 				req->timeout_tsc = cmd->timeout_tsc;
893 				req->submit_tick = spdk_get_ticks();
894 				req->cpl.status.sct = cmd->status.sct;
895 				req->cpl.status.sc = cmd->status.sc;
896 				STAILQ_INSERT_TAIL(&qpair->err_req_head, req, stailq);
897 				cmd->err_count--;
898 				return 0;
899 			}
900 		}
901 	}
902 
903 	if (spdk_unlikely(ctrlr->is_failed)) {
904 		rc = -ENXIO;
905 		goto error;
906 	}
907 
908 	/* assign submit_tick before submitting req to specific transport */
909 	if (spdk_unlikely(ctrlr->timeout_enabled)) {
910 		if (req->submit_tick == 0) { /* req submitted for the first time */
911 			req->submit_tick = spdk_get_ticks();
912 			req->timed_out = false;
913 		}
914 	} else {
915 		req->submit_tick = 0;
916 	}
917 
918 	/* Allow two cases:
919 	 * 1. NVMe qpair is enabled.
920 	 * 2. Always allow fabrics commands through - these get
921 	 * the controller out of reset state.
922 	 */
923 	if (spdk_likely(nvme_qpair_get_state(qpair) == NVME_QPAIR_ENABLED) ||
924 	    (req->cmd.opc == SPDK_NVME_OPC_FABRIC &&
925 	     nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING)) {
926 		rc = nvme_transport_qpair_submit_request(qpair, req);
927 	} else {
928 		/* The controller is being reset - queue this request and
929 		 *  submit it later when the reset is completed.
930 		 */
931 		return -EAGAIN;
932 	}
933 
934 	if (spdk_likely(rc == 0)) {
935 		req->queued = false;
936 		return 0;
937 	}
938 
939 	if (rc == -EAGAIN) {
940 		return -EAGAIN;
941 	}
942 
943 error:
944 	if (req->parent != NULL) {
945 		nvme_request_remove_child(req->parent, req);
946 	}
947 
948 	/* The request is from queued_req list we should trigger the callback from caller */
949 	if (spdk_unlikely(req->queued)) {
950 		nvme_qpair_manual_complete_request(qpair, req, SPDK_NVME_SCT_GENERIC,
951 						   SPDK_NVME_SC_INTERNAL_DEVICE_ERROR, true, true);
952 		return rc;
953 	}
954 
955 	nvme_free_request(req);
956 
957 	return rc;
958 }
959 
960 int
961 nvme_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
962 {
963 	int rc;
964 
965 	if (spdk_unlikely(!STAILQ_EMPTY(&qpair->queued_req) && req->num_children == 0)) {
966 		/*
967 		 * requests that have no children should be sent to the transport after all
968 		 * currently queued requests. Requests with chilren will be split and go back
969 		 * through this path.
970 		 */
971 		STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
972 		req->queued = true;
973 		return 0;
974 	}
975 
976 	rc = _nvme_qpair_submit_request(qpair, req);
977 	if (rc == -EAGAIN) {
978 		STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
979 		req->queued = true;
980 		rc = 0;
981 	}
982 
983 	return rc;
984 }
985 
986 static int
987 nvme_qpair_resubmit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
988 {
989 	int rc;
990 
991 	/*
992 	 * We should never have a request with children on the queue.
993 	 * This is necessary to preserve the 1:1 relationship between
994 	 * completions and resubmissions.
995 	 */
996 	assert(req->num_children == 0);
997 	assert(req->queued);
998 	rc = _nvme_qpair_submit_request(qpair, req);
999 	if (spdk_unlikely(rc == -EAGAIN)) {
1000 		STAILQ_INSERT_HEAD(&qpair->queued_req, req, stailq);
1001 	}
1002 
1003 	return rc;
1004 }
1005 
1006 void
1007 nvme_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
1008 {
1009 	nvme_qpair_complete_error_reqs(qpair);
1010 	_nvme_qpair_abort_queued_reqs(qpair, dnr);
1011 	_nvme_qpair_complete_abort_queued_reqs(qpair);
1012 	nvme_transport_qpair_abort_reqs(qpair, dnr);
1013 }
1014 
1015 int
1016 spdk_nvme_qpair_add_cmd_error_injection(struct spdk_nvme_ctrlr *ctrlr,
1017 					struct spdk_nvme_qpair *qpair,
1018 					uint8_t opc, bool do_not_submit,
1019 					uint64_t timeout_in_us,
1020 					uint32_t err_count,
1021 					uint8_t sct, uint8_t sc)
1022 {
1023 	struct nvme_error_cmd *entry, *cmd = NULL;
1024 
1025 	if (qpair == NULL) {
1026 		qpair = ctrlr->adminq;
1027 	}
1028 
1029 	TAILQ_FOREACH(entry, &qpair->err_cmd_head, link) {
1030 		if (entry->opc == opc) {
1031 			cmd = entry;
1032 			break;
1033 		}
1034 	}
1035 
1036 	if (cmd == NULL) {
1037 		cmd = spdk_zmalloc(sizeof(*cmd), 64, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
1038 		if (!cmd) {
1039 			return -ENOMEM;
1040 		}
1041 		TAILQ_INSERT_TAIL(&qpair->err_cmd_head, cmd, link);
1042 	}
1043 
1044 	cmd->do_not_submit = do_not_submit;
1045 	cmd->err_count = err_count;
1046 	cmd->timeout_tsc = timeout_in_us * spdk_get_ticks_hz() / 1000000ULL;
1047 	cmd->opc = opc;
1048 	cmd->status.sct = sct;
1049 	cmd->status.sc = sc;
1050 
1051 	return 0;
1052 }
1053 
1054 void
1055 spdk_nvme_qpair_remove_cmd_error_injection(struct spdk_nvme_ctrlr *ctrlr,
1056 		struct spdk_nvme_qpair *qpair,
1057 		uint8_t opc)
1058 {
1059 	struct nvme_error_cmd *cmd, *entry;
1060 
1061 	if (qpair == NULL) {
1062 		qpair = ctrlr->adminq;
1063 	}
1064 
1065 	TAILQ_FOREACH_SAFE(cmd, &qpair->err_cmd_head, link, entry) {
1066 		if (cmd->opc == opc) {
1067 			TAILQ_REMOVE(&qpair->err_cmd_head, cmd, link);
1068 			spdk_free(cmd);
1069 			return;
1070 		}
1071 	}
1072 
1073 	return;
1074 }
1075