xref: /spdk/lib/nvme/nvme_pcie_common.c (revision fba209c7324a11b9230533144c02e7a66bc738ea)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2021 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 /*
8  * NVMe over PCIe common library
9  */
10 
11 #include "spdk/stdinc.h"
12 #include "spdk/likely.h"
13 #include "spdk/string.h"
14 #include "nvme_internal.h"
15 #include "nvme_pcie_internal.h"
16 #include "spdk/trace.h"
17 
18 #include "spdk_internal/trace_defs.h"
19 
20 __thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL;
21 
22 static struct spdk_nvme_pcie_stat g_dummy_stat = {};
23 
24 static void nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair,
25 		struct nvme_tracker *tr);
26 
27 static inline uint64_t
28 nvme_pcie_vtophys(struct spdk_nvme_ctrlr *ctrlr, const void *buf, uint64_t *size)
29 {
30 	if (spdk_likely(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE)) {
31 		return spdk_vtophys(buf, size);
32 	} else {
33 		/* vfio-user address translation with IOVA=VA mode */
34 		return (uint64_t)(uintptr_t)buf;
35 	}
36 }
37 
38 int
39 nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair)
40 {
41 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
42 	uint32_t i;
43 
44 	/* all head/tail vals are set to 0 */
45 	pqpair->last_sq_tail = pqpair->sq_tail = pqpair->sq_head = pqpair->cq_head = 0;
46 
47 	/*
48 	 * First time through the completion queue, HW will set phase
49 	 *  bit on completions to 1.  So set this to 1 here, indicating
50 	 *  we're looking for a 1 to know which entries have completed.
51 	 *  we'll toggle the bit each time when the completion queue
52 	 *  rolls over.
53 	 */
54 	pqpair->flags.phase = 1;
55 	for (i = 0; i < pqpair->num_entries; i++) {
56 		pqpair->cpl[i].status.p = 0;
57 	}
58 
59 	return 0;
60 }
61 
62 static void
63 nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr)
64 {
65 	tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp);
66 	tr->cid = cid;
67 	tr->req = NULL;
68 }
69 
70 static void *
71 nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t size, uint64_t alignment,
72 			  uint64_t *phys_addr)
73 {
74 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
75 	uintptr_t addr;
76 
77 	if (pctrlr->cmb.mem_register_addr != NULL) {
78 		/* BAR is mapped for data */
79 		return NULL;
80 	}
81 
82 	addr = (uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset;
83 	addr = (addr + (alignment - 1)) & ~(alignment - 1);
84 
85 	/* CMB may only consume part of the BAR, calculate accordingly */
86 	if (addr + size > ((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.size)) {
87 		SPDK_ERRLOG("Tried to allocate past valid CMB range!\n");
88 		return NULL;
89 	}
90 	*phys_addr = pctrlr->cmb.bar_pa + addr - (uintptr_t)pctrlr->cmb.bar_va;
91 
92 	pctrlr->cmb.current_offset = (addr + size) - (uintptr_t)pctrlr->cmb.bar_va;
93 
94 	return (void *)addr;
95 }
96 
97 int
98 nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair,
99 			  const struct spdk_nvme_io_qpair_opts *opts)
100 {
101 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
102 	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(ctrlr);
103 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
104 	struct nvme_tracker	*tr;
105 	uint16_t		i;
106 	uint16_t		num_trackers;
107 	size_t			page_align = sysconf(_SC_PAGESIZE);
108 	size_t			queue_align, queue_len;
109 	uint32_t                flags = SPDK_MALLOC_DMA;
110 	uint64_t		sq_paddr = 0;
111 	uint64_t		cq_paddr = 0;
112 
113 	if (opts) {
114 		pqpair->sq_vaddr = opts->sq.vaddr;
115 		pqpair->cq_vaddr = opts->cq.vaddr;
116 		sq_paddr = opts->sq.paddr;
117 		cq_paddr = opts->cq.paddr;
118 	}
119 
120 	pqpair->retry_count = ctrlr->opts.transport_retry_count;
121 
122 	/*
123 	 * Limit the maximum number of completions to return per call to prevent wraparound,
124 	 * and calculate how many trackers can be submitted at once without overflowing the
125 	 * completion queue.
126 	 */
127 	pqpair->max_completions_cap = pqpair->num_entries / 4;
128 	pqpair->max_completions_cap = spdk_max(pqpair->max_completions_cap, NVME_MIN_COMPLETIONS);
129 	pqpair->max_completions_cap = spdk_min(pqpair->max_completions_cap, NVME_MAX_COMPLETIONS);
130 	num_trackers = pqpair->num_entries - pqpair->max_completions_cap;
131 
132 	SPDK_INFOLOG(nvme, "max_completions_cap = %" PRIu16 " num_trackers = %" PRIu16 "\n",
133 		     pqpair->max_completions_cap, num_trackers);
134 
135 	assert(num_trackers != 0);
136 
137 	pqpair->sq_in_cmb = false;
138 
139 	if (nvme_qpair_is_admin_queue(&pqpair->qpair)) {
140 		flags |= SPDK_MALLOC_SHARE;
141 	}
142 
143 	/* cmd and cpl rings must be aligned on page size boundaries. */
144 	if (ctrlr->opts.use_cmb_sqs) {
145 		pqpair->cmd = nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
146 							page_align, &pqpair->cmd_bus_addr);
147 		if (pqpair->cmd != NULL) {
148 			pqpair->sq_in_cmb = true;
149 		}
150 	}
151 
152 	if (pqpair->sq_in_cmb == false) {
153 		if (pqpair->sq_vaddr) {
154 			pqpair->cmd = pqpair->sq_vaddr;
155 		} else {
156 			/* To ensure physical address contiguity we make each ring occupy
157 			 * a single hugepage only. See MAX_IO_QUEUE_ENTRIES.
158 			 */
159 			queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cmd);
160 			queue_align = spdk_max(spdk_align32pow2(queue_len), page_align);
161 			pqpair->cmd = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags);
162 			if (pqpair->cmd == NULL) {
163 				SPDK_ERRLOG("alloc qpair_cmd failed\n");
164 				return -ENOMEM;
165 			}
166 		}
167 		if (sq_paddr) {
168 			assert(pqpair->sq_vaddr != NULL);
169 			pqpair->cmd_bus_addr = sq_paddr;
170 		} else {
171 			pqpair->cmd_bus_addr = nvme_pcie_vtophys(ctrlr, pqpair->cmd, NULL);
172 			if (pqpair->cmd_bus_addr == SPDK_VTOPHYS_ERROR) {
173 				SPDK_ERRLOG("spdk_vtophys(pqpair->cmd) failed\n");
174 				return -EFAULT;
175 			}
176 		}
177 	}
178 
179 	if (pqpair->cq_vaddr) {
180 		pqpair->cpl = pqpair->cq_vaddr;
181 	} else {
182 		queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cpl);
183 		queue_align = spdk_max(spdk_align32pow2(queue_len), page_align);
184 		pqpair->cpl = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags);
185 		if (pqpair->cpl == NULL) {
186 			SPDK_ERRLOG("alloc qpair_cpl failed\n");
187 			return -ENOMEM;
188 		}
189 	}
190 	if (cq_paddr) {
191 		assert(pqpair->cq_vaddr != NULL);
192 		pqpair->cpl_bus_addr = cq_paddr;
193 	} else {
194 		pqpair->cpl_bus_addr =  nvme_pcie_vtophys(ctrlr, pqpair->cpl, NULL);
195 		if (pqpair->cpl_bus_addr == SPDK_VTOPHYS_ERROR) {
196 			SPDK_ERRLOG("spdk_vtophys(pqpair->cpl) failed\n");
197 			return -EFAULT;
198 		}
199 	}
200 
201 	pqpair->sq_tdbl = pctrlr->doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
202 	pqpair->cq_hdbl = pctrlr->doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
203 
204 	/*
205 	 * Reserve space for all of the trackers in a single allocation.
206 	 *   struct nvme_tracker must be padded so that its size is already a power of 2.
207 	 *   This ensures the PRP list embedded in the nvme_tracker object will not span a
208 	 *   4KB boundary, while allowing access to trackers in tr[] via normal array indexing.
209 	 */
210 	pqpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), NULL,
211 				  SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
212 	if (pqpair->tr == NULL) {
213 		SPDK_ERRLOG("nvme_tr failed\n");
214 		return -ENOMEM;
215 	}
216 
217 	TAILQ_INIT(&pqpair->free_tr);
218 	TAILQ_INIT(&pqpair->outstanding_tr);
219 
220 	for (i = 0; i < num_trackers; i++) {
221 		tr = &pqpair->tr[i];
222 		nvme_qpair_construct_tracker(tr, i, nvme_pcie_vtophys(ctrlr, tr, NULL));
223 		TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
224 	}
225 
226 	nvme_pcie_qpair_reset(qpair);
227 
228 	return 0;
229 }
230 
231 int
232 nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t num_entries)
233 {
234 	struct nvme_pcie_qpair *pqpair;
235 	int rc;
236 
237 	pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
238 	if (pqpair == NULL) {
239 		return -ENOMEM;
240 	}
241 
242 	pqpair->num_entries = num_entries;
243 	pqpair->flags.delay_cmd_submit = 0;
244 	pqpair->pcie_state = NVME_PCIE_QPAIR_READY;
245 
246 	ctrlr->adminq = &pqpair->qpair;
247 
248 	rc = nvme_qpair_init(ctrlr->adminq,
249 			     0, /* qpair ID */
250 			     ctrlr,
251 			     SPDK_NVME_QPRIO_URGENT,
252 			     num_entries,
253 			     false);
254 	if (rc != 0) {
255 		return rc;
256 	}
257 
258 	pqpair->stat = spdk_zmalloc(sizeof(*pqpair->stat), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
259 				    SPDK_MALLOC_SHARE);
260 	if (!pqpair->stat) {
261 		SPDK_ERRLOG("Failed to allocate admin qpair statistics\n");
262 		return -ENOMEM;
263 	}
264 
265 	return nvme_pcie_qpair_construct(ctrlr->adminq, NULL);
266 }
267 
268 /**
269  * Note: the ctrlr_lock must be held when calling this function.
270  */
271 void
272 nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair,
273 		struct nvme_request *req, struct spdk_nvme_cpl *cpl)
274 {
275 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
276 	struct nvme_request		*active_req = req;
277 	struct spdk_nvme_ctrlr_process	*active_proc;
278 
279 	/*
280 	 * The admin request is from another process. Move to the per
281 	 *  process list for that process to handle it later.
282 	 */
283 	assert(nvme_qpair_is_admin_queue(qpair));
284 	assert(active_req->pid != getpid());
285 
286 	active_proc = nvme_ctrlr_get_process(ctrlr, active_req->pid);
287 	if (active_proc) {
288 		/* Save the original completion information */
289 		memcpy(&active_req->cpl, cpl, sizeof(*cpl));
290 		STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq);
291 	} else {
292 		SPDK_ERRLOG("The owning process (pid %d) is not found. Dropping the request.\n",
293 			    active_req->pid);
294 		nvme_cleanup_user_req(active_req);
295 		nvme_free_request(active_req);
296 	}
297 }
298 
299 /**
300  * Note: the ctrlr_lock must be held when calling this function.
301  */
302 void
303 nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair)
304 {
305 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
306 	struct nvme_request		*req, *tmp_req;
307 	pid_t				pid = getpid();
308 	struct spdk_nvme_ctrlr_process	*proc;
309 
310 	/*
311 	 * Check whether there is any pending admin request from
312 	 * other active processes.
313 	 */
314 	assert(nvme_qpair_is_admin_queue(qpair));
315 
316 	proc = nvme_ctrlr_get_current_process(ctrlr);
317 	if (!proc) {
318 		SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid);
319 		assert(proc);
320 		return;
321 	}
322 
323 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
324 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
325 
326 		assert(req->pid == pid);
327 
328 		nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, &req->cpl);
329 	}
330 }
331 
332 int
333 nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr,
334 				 struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn,
335 				 void *cb_arg)
336 {
337 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
338 	struct nvme_request *req;
339 	struct spdk_nvme_cmd *cmd;
340 
341 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
342 	if (req == NULL) {
343 		return -ENOMEM;
344 	}
345 
346 	cmd = &req->cmd;
347 	cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ;
348 
349 	cmd->cdw10_bits.create_io_q.qid = io_que->id;
350 	cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1;
351 
352 	cmd->cdw11_bits.create_io_cq.pc = 1;
353 	cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr;
354 
355 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
356 }
357 
358 int
359 nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr,
360 				 struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
361 {
362 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
363 	struct nvme_request *req;
364 	struct spdk_nvme_cmd *cmd;
365 
366 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
367 	if (req == NULL) {
368 		return -ENOMEM;
369 	}
370 
371 	cmd = &req->cmd;
372 	cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ;
373 
374 	cmd->cdw10_bits.create_io_q.qid = io_que->id;
375 	cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1;
376 	cmd->cdw11_bits.create_io_sq.pc = 1;
377 	cmd->cdw11_bits.create_io_sq.qprio = io_que->qprio;
378 	cmd->cdw11_bits.create_io_sq.cqid = io_que->id;
379 	cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr;
380 
381 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
382 }
383 
384 int
385 nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
386 				 spdk_nvme_cmd_cb cb_fn, void *cb_arg)
387 {
388 	struct nvme_request *req;
389 	struct spdk_nvme_cmd *cmd;
390 
391 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
392 	if (req == NULL) {
393 		return -ENOMEM;
394 	}
395 
396 	cmd = &req->cmd;
397 	cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ;
398 	cmd->cdw10_bits.delete_io_q.qid = qpair->id;
399 
400 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
401 }
402 
403 int
404 nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
405 				 spdk_nvme_cmd_cb cb_fn, void *cb_arg)
406 {
407 	struct nvme_request *req;
408 	struct spdk_nvme_cmd *cmd;
409 
410 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
411 	if (req == NULL) {
412 		return -ENOMEM;
413 	}
414 
415 	cmd = &req->cmd;
416 	cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ;
417 	cmd->cdw10_bits.delete_io_q.qid = qpair->id;
418 
419 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
420 }
421 
422 static void
423 nvme_completion_sq_error_delete_cq_cb(void *arg, const struct spdk_nvme_cpl *cpl)
424 {
425 	struct spdk_nvme_qpair *qpair = arg;
426 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
427 
428 	if (spdk_nvme_cpl_is_error(cpl)) {
429 		SPDK_ERRLOG("delete_io_cq failed!\n");
430 	}
431 
432 	pqpair->pcie_state = NVME_PCIE_QPAIR_FAILED;
433 }
434 
435 static void
436 nvme_completion_create_sq_cb(void *arg, const struct spdk_nvme_cpl *cpl)
437 {
438 	struct spdk_nvme_qpair *qpair = arg;
439 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
440 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
441 	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(ctrlr);
442 	int rc;
443 
444 	if (pqpair->flags.defer_destruction) {
445 		/* This qpair was deleted by the application while the
446 		 * connection was still in progress.  We had to wait
447 		 * to free the qpair resources until this outstanding
448 		 * command was completed.  Now that we have the completion
449 		 * free it now.
450 		 */
451 		nvme_pcie_qpair_destroy(qpair);
452 		return;
453 	}
454 
455 	if (spdk_nvme_cpl_is_error(cpl)) {
456 		SPDK_ERRLOG("nvme_create_io_sq failed, deleting cq!\n");
457 		rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_sq_error_delete_cq_cb,
458 						      qpair);
459 		if (rc != 0) {
460 			SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc);
461 			pqpair->pcie_state = NVME_PCIE_QPAIR_FAILED;
462 		}
463 		return;
464 	}
465 	pqpair->pcie_state = NVME_PCIE_QPAIR_READY;
466 	if (ctrlr->shadow_doorbell) {
467 		pqpair->shadow_doorbell.sq_tdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 0) *
468 						  pctrlr->doorbell_stride_u32;
469 		pqpair->shadow_doorbell.cq_hdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 1) *
470 						  pctrlr->doorbell_stride_u32;
471 		pqpair->shadow_doorbell.sq_eventidx = ctrlr->eventidx + (2 * qpair->id + 0) *
472 						      pctrlr->doorbell_stride_u32;
473 		pqpair->shadow_doorbell.cq_eventidx = ctrlr->eventidx + (2 * qpair->id + 1) *
474 						      pctrlr->doorbell_stride_u32;
475 		pqpair->flags.has_shadow_doorbell = 1;
476 	} else {
477 		pqpair->flags.has_shadow_doorbell = 0;
478 	}
479 	nvme_pcie_qpair_reset(qpair);
480 
481 }
482 
483 static void
484 nvme_completion_create_cq_cb(void *arg, const struct spdk_nvme_cpl *cpl)
485 {
486 	struct spdk_nvme_qpair *qpair = arg;
487 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
488 	int rc;
489 
490 	if (pqpair->flags.defer_destruction) {
491 		/* This qpair was deleted by the application while the
492 		 * connection was still in progress.  We had to wait
493 		 * to free the qpair resources until this outstanding
494 		 * command was completed.  Now that we have the completion
495 		 * free it now.
496 		 */
497 		nvme_pcie_qpair_destroy(qpair);
498 		return;
499 	}
500 
501 	if (spdk_nvme_cpl_is_error(cpl)) {
502 		pqpair->pcie_state = NVME_PCIE_QPAIR_FAILED;
503 		SPDK_ERRLOG("nvme_create_io_cq failed!\n");
504 		return;
505 	}
506 
507 	rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_create_sq_cb, qpair);
508 
509 	if (rc != 0) {
510 		SPDK_ERRLOG("Failed to send request to create_io_sq, deleting cq!\n");
511 		rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_sq_error_delete_cq_cb,
512 						      qpair);
513 		if (rc != 0) {
514 			SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc);
515 			pqpair->pcie_state = NVME_PCIE_QPAIR_FAILED;
516 		}
517 		return;
518 	}
519 	pqpair->pcie_state = NVME_PCIE_QPAIR_WAIT_FOR_SQ;
520 }
521 
522 static int
523 _nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
524 				 uint16_t qid)
525 {
526 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
527 	int	rc;
528 
529 	/* Statistics may already be allocated in the case of controller reset */
530 	if (qpair->poll_group) {
531 		struct nvme_pcie_poll_group *group = SPDK_CONTAINEROF(qpair->poll_group,
532 						     struct nvme_pcie_poll_group, group);
533 
534 		pqpair->stat = &group->stats;
535 		pqpair->shared_stats = true;
536 	} else {
537 		if (pqpair->stat == NULL) {
538 			pqpair->stat = calloc(1, sizeof(*pqpair->stat));
539 			if (!pqpair->stat) {
540 				SPDK_ERRLOG("Failed to allocate qpair statistics\n");
541 				nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED);
542 				return -ENOMEM;
543 			}
544 		}
545 	}
546 
547 	rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_create_cq_cb, qpair);
548 
549 	if (rc != 0) {
550 		SPDK_ERRLOG("Failed to send request to create_io_cq\n");
551 		nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED);
552 		return rc;
553 	}
554 	pqpair->pcie_state = NVME_PCIE_QPAIR_WAIT_FOR_CQ;
555 	return 0;
556 }
557 
558 int
559 nvme_pcie_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
560 {
561 	int rc = 0;
562 
563 	if (!nvme_qpair_is_admin_queue(qpair)) {
564 		rc = _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id);
565 	} else {
566 		nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
567 	}
568 
569 	return rc;
570 }
571 
572 void
573 nvme_pcie_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
574 {
575 	if (!nvme_qpair_is_admin_queue(qpair) || !ctrlr->is_disconnecting) {
576 		nvme_transport_ctrlr_disconnect_qpair_done(qpair);
577 	} else {
578 		/* If this function is called for the admin qpair via spdk_nvme_ctrlr_reset()
579 		 * or spdk_nvme_ctrlr_disconnect(), initiate a Controller Level Reset.
580 		 * Then we can abort trackers safely because the Controller Level Reset deletes
581 		 * all I/O SQ/CQs.
582 		 */
583 		nvme_ctrlr_disable(ctrlr);
584 	}
585 }
586 
587 /* Used when dst points to MMIO (i.e. CMB) in a virtual machine - in these cases we must
588  * not use wide instructions because QEMU will not emulate such instructions to MMIO space.
589  * So this function ensures we only copy 8 bytes at a time.
590  */
591 static inline void
592 nvme_pcie_copy_command_mmio(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
593 {
594 	uint64_t *dst64 = (uint64_t *)dst;
595 	const uint64_t *src64 = (const uint64_t *)src;
596 	uint32_t i;
597 
598 	for (i = 0; i < sizeof(*dst) / 8; i++) {
599 		dst64[i] = src64[i];
600 	}
601 }
602 
603 static inline void
604 nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
605 {
606 	/* dst and src are known to be non-overlapping and 64-byte aligned. */
607 #if defined(__SSE2__)
608 	__m128i *d128 = (__m128i *)dst;
609 	const __m128i *s128 = (const __m128i *)src;
610 
611 	_mm_stream_si128(&d128[0], _mm_load_si128(&s128[0]));
612 	_mm_stream_si128(&d128[1], _mm_load_si128(&s128[1]));
613 	_mm_stream_si128(&d128[2], _mm_load_si128(&s128[2]));
614 	_mm_stream_si128(&d128[3], _mm_load_si128(&s128[3]));
615 #else
616 	*dst = *src;
617 #endif
618 }
619 
620 void
621 nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
622 {
623 	struct nvme_request	*req;
624 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
625 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
626 
627 	req = tr->req;
628 	assert(req != NULL);
629 
630 	spdk_trace_record(TRACE_NVME_PCIE_SUBMIT, qpair->id, 0, (uintptr_t)req, req->cb_arg,
631 			  (uint32_t)req->cmd.cid, (uint32_t)req->cmd.opc,
632 			  req->cmd.cdw10, req->cmd.cdw11, req->cmd.cdw12);
633 
634 	if (req->cmd.fuse) {
635 		/*
636 		 * Keep track of the fuse operation sequence so that we ring the doorbell only
637 		 * after the second fuse is submitted.
638 		 */
639 		qpair->last_fuse = req->cmd.fuse;
640 	}
641 
642 	/* Don't use wide instructions to copy NVMe command, this is limited by QEMU
643 	 * virtual NVMe controller, the maximum access width is 8 Bytes for one time.
644 	 */
645 	if (spdk_unlikely((ctrlr->quirks & NVME_QUIRK_MAXIMUM_PCI_ACCESS_WIDTH) && pqpair->sq_in_cmb)) {
646 		nvme_pcie_copy_command_mmio(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
647 	} else {
648 		/* Copy the command from the tracker to the submission queue. */
649 		nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
650 	}
651 
652 	if (spdk_unlikely(++pqpair->sq_tail == pqpair->num_entries)) {
653 		pqpair->sq_tail = 0;
654 	}
655 
656 	if (spdk_unlikely(pqpair->sq_tail == pqpair->sq_head)) {
657 		SPDK_ERRLOG("sq_tail is passing sq_head!\n");
658 	}
659 
660 	if (!pqpair->flags.delay_cmd_submit) {
661 		nvme_pcie_qpair_ring_sq_doorbell(qpair);
662 	}
663 }
664 
665 void
666 nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
667 				 struct spdk_nvme_cpl *cpl, bool print_on_error)
668 {
669 	struct nvme_pcie_qpair		*pqpair = nvme_pcie_qpair(qpair);
670 	struct nvme_request		*req;
671 	bool				retry, error;
672 	bool				print_error;
673 
674 	req = tr->req;
675 
676 	spdk_trace_record(TRACE_NVME_PCIE_COMPLETE, qpair->id, 0, (uintptr_t)req, req->cb_arg,
677 			  (uint32_t)req->cmd.cid, (uint32_t)cpl->status_raw);
678 
679 	assert(req != NULL);
680 
681 	error = spdk_nvme_cpl_is_error(cpl);
682 	retry = error && nvme_completion_is_retry(cpl) &&
683 		req->retries < pqpair->retry_count;
684 	print_error = error && print_on_error && !qpair->ctrlr->opts.disable_error_logging;
685 
686 	if (print_error) {
687 		spdk_nvme_qpair_print_command(qpair, &req->cmd);
688 	}
689 
690 	if (print_error || SPDK_DEBUGLOG_FLAG_ENABLED("nvme")) {
691 		spdk_nvme_qpair_print_completion(qpair, cpl);
692 	}
693 
694 	assert(cpl->cid == req->cmd.cid);
695 
696 	if (retry) {
697 		req->retries++;
698 		nvme_pcie_qpair_submit_tracker(qpair, tr);
699 	} else {
700 		TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list);
701 
702 		/* Only check admin requests from different processes. */
703 		if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) {
704 			nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl);
705 		} else {
706 			nvme_complete_request(tr->cb_fn, tr->cb_arg, qpair, req, cpl);
707 		}
708 
709 		tr->req = NULL;
710 
711 		TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
712 	}
713 }
714 
715 void
716 nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair,
717 					struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
718 					bool print_on_error)
719 {
720 	struct spdk_nvme_cpl	cpl;
721 
722 	memset(&cpl, 0, sizeof(cpl));
723 	cpl.sqid = qpair->id;
724 	cpl.cid = tr->cid;
725 	cpl.status.sct = sct;
726 	cpl.status.sc = sc;
727 	cpl.status.dnr = dnr;
728 	nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
729 }
730 
731 void
732 nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr)
733 {
734 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
735 	struct nvme_tracker *tr, *temp, *last;
736 
737 	last = TAILQ_LAST(&pqpair->outstanding_tr, nvme_outstanding_tr_head);
738 
739 	/* Abort previously submitted (outstanding) trs */
740 	TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) {
741 		if (!qpair->ctrlr->opts.disable_error_logging) {
742 			SPDK_ERRLOG("aborting outstanding command\n");
743 		}
744 		nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
745 							SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true);
746 
747 		if (tr == last) {
748 			break;
749 		}
750 	}
751 }
752 
753 void
754 nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
755 {
756 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
757 	struct nvme_tracker	*tr;
758 
759 	tr = TAILQ_FIRST(&pqpair->outstanding_tr);
760 	while (tr != NULL) {
761 		assert(tr->req != NULL);
762 		if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
763 			nvme_pcie_qpair_manual_complete_tracker(qpair, tr,
764 								SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0,
765 								false);
766 			tr = TAILQ_FIRST(&pqpair->outstanding_tr);
767 		} else {
768 			tr = TAILQ_NEXT(tr, tq_list);
769 		}
770 	}
771 }
772 
773 void
774 nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair)
775 {
776 	nvme_pcie_admin_qpair_abort_aers(qpair);
777 }
778 
779 void
780 nvme_pcie_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
781 {
782 	nvme_pcie_qpair_abort_trackers(qpair, dnr);
783 }
784 
785 static void
786 nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
787 {
788 	uint64_t t02;
789 	struct nvme_tracker *tr, *tmp;
790 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
791 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
792 	struct spdk_nvme_ctrlr_process *active_proc;
793 
794 	/* Don't check timeouts during controller initialization. */
795 	if (ctrlr->state != NVME_CTRLR_STATE_READY) {
796 		return;
797 	}
798 
799 	if (nvme_qpair_is_admin_queue(qpair)) {
800 		active_proc = nvme_ctrlr_get_current_process(ctrlr);
801 	} else {
802 		active_proc = qpair->active_proc;
803 	}
804 
805 	/* Only check timeouts if the current process has a timeout callback. */
806 	if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
807 		return;
808 	}
809 
810 	t02 = spdk_get_ticks();
811 	TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
812 		assert(tr->req != NULL);
813 
814 		if (nvme_request_check_timeout(tr->req, tr->cid, active_proc, t02)) {
815 			/*
816 			 * The requests are in order, so as soon as one has not timed out,
817 			 * stop iterating.
818 			 */
819 			break;
820 		}
821 	}
822 }
823 
824 int32_t
825 nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
826 {
827 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
828 	struct nvme_tracker	*tr;
829 	struct spdk_nvme_cpl	*cpl, *next_cpl;
830 	uint32_t		 num_completions = 0;
831 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
832 	uint16_t		 next_cq_head;
833 	uint8_t			 next_phase;
834 	bool			 next_is_valid = false;
835 	int			 rc;
836 
837 	if (spdk_unlikely(pqpair->pcie_state == NVME_PCIE_QPAIR_FAILED)) {
838 		return -ENXIO;
839 	}
840 
841 	if (spdk_unlikely(nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING)) {
842 		if (pqpair->pcie_state == NVME_PCIE_QPAIR_READY) {
843 			/* It is possible that another thread set the pcie_state to
844 			 * QPAIR_READY, if it polled the adminq and processed the SQ
845 			 * completion for this qpair.  So check for that condition
846 			 * here and then update the qpair's state to CONNECTED, since
847 			 * we can only set the qpair state from the qpair's thread.
848 			 * (Note: this fixed issue #2157.)
849 			 */
850 			nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
851 		} else if (pqpair->pcie_state == NVME_PCIE_QPAIR_FAILED) {
852 			nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED);
853 			return -ENXIO;
854 		} else {
855 			rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
856 			if (rc < 0) {
857 				return rc;
858 			} else if (pqpair->pcie_state == NVME_PCIE_QPAIR_FAILED) {
859 				nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED);
860 				return -ENXIO;
861 			}
862 		}
863 		return 0;
864 	}
865 
866 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
867 		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
868 	}
869 
870 	if (max_completions == 0 || max_completions > pqpair->max_completions_cap) {
871 		/*
872 		 * max_completions == 0 means unlimited, but complete at most
873 		 * max_completions_cap batch of I/O at a time so that the completion
874 		 * queue doorbells don't wrap around.
875 		 */
876 		max_completions = pqpair->max_completions_cap;
877 	}
878 
879 	pqpair->stat->polls++;
880 
881 	while (1) {
882 		cpl = &pqpair->cpl[pqpair->cq_head];
883 
884 		if (!next_is_valid && cpl->status.p != pqpair->flags.phase) {
885 			break;
886 		}
887 
888 		if (spdk_likely(pqpair->cq_head + 1 != pqpair->num_entries)) {
889 			next_cq_head = pqpair->cq_head + 1;
890 			next_phase = pqpair->flags.phase;
891 		} else {
892 			next_cq_head = 0;
893 			next_phase = !pqpair->flags.phase;
894 		}
895 		next_cpl = &pqpair->cpl[next_cq_head];
896 		next_is_valid = (next_cpl->status.p == next_phase);
897 		if (next_is_valid) {
898 			__builtin_prefetch(&pqpair->tr[next_cpl->cid]);
899 		}
900 
901 #if defined(__PPC64__) || defined(__riscv) || defined(__loongarch__)
902 		/*
903 		 * This memory barrier prevents reordering of:
904 		 * - load after store from/to tr
905 		 * - load after load cpl phase and cpl cid
906 		 */
907 		spdk_mb();
908 #elif defined(__aarch64__)
909 		__asm volatile("dmb oshld" ::: "memory");
910 #endif
911 
912 		if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) {
913 			pqpair->cq_head = 0;
914 			pqpair->flags.phase = !pqpair->flags.phase;
915 		}
916 
917 		tr = &pqpair->tr[cpl->cid];
918 		pqpair->sq_head = cpl->sqhd;
919 
920 		if (tr->req) {
921 			/* Prefetch the req's STAILQ_ENTRY since we'll need to access it
922 			 * as part of putting the req back on the qpair's free list.
923 			 */
924 			__builtin_prefetch(&tr->req->stailq);
925 			nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true);
926 		} else {
927 			SPDK_ERRLOG("cpl does not map to outstanding cmd\n");
928 			spdk_nvme_qpair_print_completion(qpair, cpl);
929 			assert(0);
930 		}
931 
932 		if (++num_completions == max_completions) {
933 			break;
934 		}
935 	}
936 
937 	if (num_completions > 0) {
938 		pqpair->stat->completions += num_completions;
939 		nvme_pcie_qpair_ring_cq_doorbell(qpair);
940 	} else {
941 		pqpair->stat->idle_polls++;
942 	}
943 
944 	if (pqpair->flags.delay_cmd_submit) {
945 		if (pqpair->last_sq_tail != pqpair->sq_tail) {
946 			nvme_pcie_qpair_ring_sq_doorbell(qpair);
947 			pqpair->last_sq_tail = pqpair->sq_tail;
948 		}
949 	}
950 
951 	if (spdk_unlikely(ctrlr->timeout_enabled)) {
952 		/*
953 		 * User registered for timeout callback
954 		 */
955 		nvme_pcie_qpair_check_timeout(qpair);
956 	}
957 
958 	/* Before returning, complete any pending admin request or
959 	 * process the admin qpair disconnection.
960 	 */
961 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
962 		nvme_pcie_qpair_complete_pending_admin_request(qpair);
963 
964 		if (nvme_qpair_get_state(qpair) == NVME_QPAIR_DISCONNECTING) {
965 			rc = nvme_ctrlr_disable_poll(qpair->ctrlr);
966 			if (rc != -EAGAIN) {
967 				nvme_transport_ctrlr_disconnect_qpair_done(qpair);
968 			}
969 		}
970 
971 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
972 	}
973 
974 	if (spdk_unlikely(pqpair->flags.has_pending_vtophys_failures)) {
975 		struct nvme_tracker *tr, *tmp;
976 
977 		TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
978 			if (tr->bad_vtophys) {
979 				tr->bad_vtophys = 0;
980 				nvme_pcie_fail_request_bad_vtophys(qpair, tr);
981 			}
982 		}
983 		pqpair->flags.has_pending_vtophys_failures = 0;
984 	}
985 
986 	return num_completions;
987 }
988 
989 int
990 nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair)
991 {
992 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
993 
994 	if (nvme_qpair_is_admin_queue(qpair)) {
995 		nvme_pcie_admin_qpair_destroy(qpair);
996 	}
997 	/*
998 	 * We check sq_vaddr and cq_vaddr to see if the user specified the memory
999 	 * buffers when creating the I/O queue.
1000 	 * If the user specified them, we cannot free that memory.
1001 	 * Nor do we free it if it's in the CMB.
1002 	 */
1003 	if (!pqpair->sq_vaddr && pqpair->cmd && !pqpair->sq_in_cmb) {
1004 		spdk_free(pqpair->cmd);
1005 	}
1006 	if (!pqpair->cq_vaddr && pqpair->cpl) {
1007 		spdk_free(pqpair->cpl);
1008 	}
1009 	if (pqpair->tr) {
1010 		spdk_free(pqpair->tr);
1011 	}
1012 
1013 	nvme_qpair_deinit(qpair);
1014 
1015 	if (!pqpair->shared_stats && (!qpair->active_proc ||
1016 				      qpair->active_proc == nvme_ctrlr_get_current_process(qpair->ctrlr))) {
1017 		if (qpair->id) {
1018 			free(pqpair->stat);
1019 		} else {
1020 			/* statistics of admin qpair are allocates from huge pages because
1021 			 * admin qpair is shared for multi-process */
1022 			spdk_free(pqpair->stat);
1023 		}
1024 
1025 	}
1026 
1027 	spdk_free(pqpair);
1028 
1029 	return 0;
1030 }
1031 
1032 struct spdk_nvme_qpair *
1033 nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
1034 				const struct spdk_nvme_io_qpair_opts *opts)
1035 {
1036 	struct nvme_pcie_qpair *pqpair;
1037 	struct spdk_nvme_qpair *qpair;
1038 	int rc;
1039 
1040 	assert(ctrlr != NULL);
1041 
1042 	pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL,
1043 			      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
1044 	if (pqpair == NULL) {
1045 		return NULL;
1046 	}
1047 
1048 	pqpair->num_entries = opts->io_queue_size;
1049 	pqpair->flags.delay_cmd_submit = opts->delay_cmd_submit;
1050 
1051 	qpair = &pqpair->qpair;
1052 
1053 	rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests, opts->async_mode);
1054 	if (rc != 0) {
1055 		nvme_pcie_qpair_destroy(qpair);
1056 		return NULL;
1057 	}
1058 
1059 	rc = nvme_pcie_qpair_construct(qpair, opts);
1060 
1061 	if (rc != 0) {
1062 		nvme_pcie_qpair_destroy(qpair);
1063 		return NULL;
1064 	}
1065 
1066 	return qpair;
1067 }
1068 
1069 int
1070 nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1071 {
1072 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
1073 	struct nvme_completion_poll_status *status;
1074 	int rc;
1075 
1076 	assert(ctrlr != NULL);
1077 
1078 	if (ctrlr->is_removed) {
1079 		goto free;
1080 	}
1081 
1082 	if (ctrlr->prepare_for_reset) {
1083 		if (nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING) {
1084 			pqpair->flags.defer_destruction = true;
1085 		}
1086 		goto clear_shadow_doorbells;
1087 	}
1088 
1089 	/* If attempting to delete a qpair that's still being connected, we have to wait until it's
1090 	 * finished, so that we don't free it while it's waiting for the create cq/sq callbacks.
1091 	 */
1092 	while (pqpair->pcie_state == NVME_PCIE_QPAIR_WAIT_FOR_CQ ||
1093 	       pqpair->pcie_state == NVME_PCIE_QPAIR_WAIT_FOR_SQ) {
1094 		rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
1095 		if (rc < 0) {
1096 			break;
1097 		}
1098 	}
1099 
1100 	status = calloc(1, sizeof(*status));
1101 	if (!status) {
1102 		SPDK_ERRLOG("Failed to allocate status tracker\n");
1103 		goto free;
1104 	}
1105 
1106 	/* Delete the I/O submission queue */
1107 	rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, status);
1108 	if (rc != 0) {
1109 		SPDK_ERRLOG("Failed to send request to delete_io_sq with rc=%d\n", rc);
1110 		free(status);
1111 		goto free;
1112 	}
1113 	if (nvme_wait_for_completion(ctrlr->adminq, status)) {
1114 		if (!status->timed_out) {
1115 			free(status);
1116 		}
1117 		goto free;
1118 	}
1119 
1120 	/* Now that the submission queue is deleted, the device is supposed to have
1121 	 * completed any outstanding I/O. Try to complete them. If they don't complete,
1122 	 * they'll be marked as aborted and completed below. */
1123 	if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) {
1124 		nvme_pcie_qpair_process_completions(qpair, 0);
1125 	}
1126 
1127 	memset(status, 0, sizeof(*status));
1128 	/* Delete the completion queue */
1129 	rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, status);
1130 	if (rc != 0) {
1131 		SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc);
1132 		free(status);
1133 		goto free;
1134 	}
1135 	if (nvme_wait_for_completion(ctrlr->adminq, status)) {
1136 		if (!status->timed_out) {
1137 			free(status);
1138 		}
1139 		goto free;
1140 	}
1141 	free(status);
1142 
1143 clear_shadow_doorbells:
1144 	if (pqpair->flags.has_shadow_doorbell && ctrlr->shadow_doorbell) {
1145 		*pqpair->shadow_doorbell.sq_tdbl = 0;
1146 		*pqpair->shadow_doorbell.cq_hdbl = 0;
1147 		*pqpair->shadow_doorbell.sq_eventidx = 0;
1148 		*pqpair->shadow_doorbell.cq_eventidx = 0;
1149 	}
1150 free:
1151 	if (qpair->no_deletion_notification_needed == 0) {
1152 		/* Abort the rest of the I/O */
1153 		nvme_pcie_qpair_abort_trackers(qpair, 1);
1154 	}
1155 
1156 	if (!pqpair->flags.defer_destruction) {
1157 		nvme_pcie_qpair_destroy(qpair);
1158 	}
1159 	return 0;
1160 }
1161 
1162 static void
1163 nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
1164 {
1165 	if (!qpair->in_completion_context) {
1166 		struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
1167 
1168 		tr->bad_vtophys = 1;
1169 		pqpair->flags.has_pending_vtophys_failures = 1;
1170 		return;
1171 	}
1172 
1173 	/*
1174 	 * Bad vtophys translation, so abort this request and return
1175 	 *  immediately.
1176 	 */
1177 	SPDK_ERRLOG("vtophys or other payload buffer related error\n");
1178 	nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
1179 						SPDK_NVME_SC_INVALID_FIELD,
1180 						1 /* do not retry */, true);
1181 }
1182 
1183 /*
1184  * Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes.
1185  *
1186  * *prp_index will be updated to account for the number of PRP entries used.
1187  */
1188 static inline int
1189 nvme_pcie_prp_list_append(struct spdk_nvme_ctrlr *ctrlr, struct nvme_tracker *tr,
1190 			  uint32_t *prp_index, void *virt_addr, size_t len,
1191 			  uint32_t page_size)
1192 {
1193 	struct spdk_nvme_cmd *cmd = &tr->req->cmd;
1194 	uintptr_t page_mask = page_size - 1;
1195 	uint64_t phys_addr;
1196 	uint32_t i;
1197 
1198 	SPDK_DEBUGLOG(nvme, "prp_index:%u virt_addr:%p len:%u\n",
1199 		      *prp_index, virt_addr, (uint32_t)len);
1200 
1201 	if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) {
1202 		SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
1203 		return -EFAULT;
1204 	}
1205 
1206 	i = *prp_index;
1207 	while (len) {
1208 		uint32_t seg_len;
1209 
1210 		/*
1211 		 * prp_index 0 is stored in prp1, and the rest are stored in the prp[] array,
1212 		 * so prp_index == count is valid.
1213 		 */
1214 		if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) {
1215 			SPDK_ERRLOG("out of PRP entries\n");
1216 			return -EFAULT;
1217 		}
1218 
1219 		phys_addr = nvme_pcie_vtophys(ctrlr, virt_addr, NULL);
1220 		if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) {
1221 			SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr);
1222 			return -EFAULT;
1223 		}
1224 
1225 		if (i == 0) {
1226 			SPDK_DEBUGLOG(nvme, "prp1 = %p\n", (void *)phys_addr);
1227 			cmd->dptr.prp.prp1 = phys_addr;
1228 			seg_len = page_size - ((uintptr_t)virt_addr & page_mask);
1229 		} else {
1230 			if ((phys_addr & page_mask) != 0) {
1231 				SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr);
1232 				return -EFAULT;
1233 			}
1234 
1235 			SPDK_DEBUGLOG(nvme, "prp[%u] = %p\n", i - 1, (void *)phys_addr);
1236 			tr->u.prp[i - 1] = phys_addr;
1237 			seg_len = page_size;
1238 		}
1239 
1240 		seg_len = spdk_min(seg_len, len);
1241 		virt_addr = (uint8_t *)virt_addr + seg_len;
1242 		len -= seg_len;
1243 		i++;
1244 	}
1245 
1246 	cmd->psdt = SPDK_NVME_PSDT_PRP;
1247 	if (i <= 1) {
1248 		cmd->dptr.prp.prp2 = 0;
1249 	} else if (i == 2) {
1250 		cmd->dptr.prp.prp2 = tr->u.prp[0];
1251 		SPDK_DEBUGLOG(nvme, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2);
1252 	} else {
1253 		cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr;
1254 		SPDK_DEBUGLOG(nvme, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2);
1255 	}
1256 
1257 	*prp_index = i;
1258 	return 0;
1259 }
1260 
1261 static int
1262 nvme_pcie_qpair_build_request_invalid(struct spdk_nvme_qpair *qpair,
1263 				      struct nvme_request *req, struct nvme_tracker *tr, bool dword_aligned)
1264 {
1265 	assert(0);
1266 	nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1267 	return -EINVAL;
1268 }
1269 
1270 /**
1271  * Build PRP list describing physically contiguous payload buffer.
1272  */
1273 static int
1274 nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
1275 				     struct nvme_tracker *tr, bool dword_aligned)
1276 {
1277 	uint32_t prp_index = 0;
1278 	int rc;
1279 
1280 	rc = nvme_pcie_prp_list_append(qpair->ctrlr, tr, &prp_index,
1281 				       (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset,
1282 				       req->payload_size, qpair->ctrlr->page_size);
1283 	if (rc) {
1284 		nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1285 	}
1286 
1287 	return rc;
1288 }
1289 
1290 /**
1291  * Build an SGL describing a physically contiguous payload buffer.
1292  *
1293  * This is more efficient than using PRP because large buffers can be
1294  * described this way.
1295  */
1296 static int
1297 nvme_pcie_qpair_build_contig_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
1298 		struct nvme_tracker *tr, bool dword_aligned)
1299 {
1300 	uint8_t *virt_addr;
1301 	uint64_t phys_addr, mapping_length;
1302 	uint32_t length;
1303 	struct spdk_nvme_sgl_descriptor *sgl;
1304 	uint32_t nseg = 0;
1305 
1306 	assert(req->payload_size != 0);
1307 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1308 
1309 	sgl = tr->u.sgl;
1310 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1311 	req->cmd.dptr.sgl1.unkeyed.subtype = 0;
1312 
1313 	length = req->payload_size;
1314 	/* ubsan complains about applying zero offset to null pointer if contig_or_cb_arg is NULL,
1315 	 * so just double cast it to make it go away */
1316 	virt_addr = (uint8_t *)((uintptr_t)req->payload.contig_or_cb_arg + req->payload_offset);
1317 
1318 	while (length > 0) {
1319 		if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
1320 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1321 			return -EFAULT;
1322 		}
1323 
1324 		if (dword_aligned && ((uintptr_t)virt_addr & 3)) {
1325 			SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
1326 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1327 			return -EFAULT;
1328 		}
1329 
1330 		mapping_length = length;
1331 		phys_addr = nvme_pcie_vtophys(qpair->ctrlr, virt_addr, &mapping_length);
1332 		if (phys_addr == SPDK_VTOPHYS_ERROR) {
1333 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1334 			return -EFAULT;
1335 		}
1336 
1337 		mapping_length = spdk_min(length, mapping_length);
1338 
1339 		length -= mapping_length;
1340 		virt_addr += mapping_length;
1341 
1342 		sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1343 		sgl->unkeyed.length = mapping_length;
1344 		sgl->address = phys_addr;
1345 		sgl->unkeyed.subtype = 0;
1346 
1347 		sgl++;
1348 		nseg++;
1349 	}
1350 
1351 	if (nseg == 1) {
1352 		/*
1353 		 * The whole transfer can be described by a single SGL descriptor.
1354 		 *  Use the special case described by the spec where SGL1's type is Data Block.
1355 		 *  This means the SGL in the tracker is not used at all, so copy the first (and only)
1356 		 *  SGL element into SGL1.
1357 		 */
1358 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1359 		req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
1360 		req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
1361 	} else {
1362 		/* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because
1363 		 *  NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page.
1364 		 */
1365 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1366 		req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
1367 		req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
1368 	}
1369 
1370 	return 0;
1371 }
1372 
1373 /**
1374  * Build SGL list describing scattered payload buffer.
1375  */
1376 static int
1377 nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
1378 				     struct nvme_tracker *tr, bool dword_aligned)
1379 {
1380 	int rc;
1381 	void *virt_addr;
1382 	uint64_t phys_addr, mapping_length;
1383 	uint32_t remaining_transfer_len, remaining_user_sge_len, length;
1384 	struct spdk_nvme_sgl_descriptor *sgl;
1385 	uint32_t nseg = 0;
1386 
1387 	/*
1388 	 * Build scattered payloads.
1389 	 */
1390 	assert(req->payload_size != 0);
1391 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1392 	assert(req->payload.reset_sgl_fn != NULL);
1393 	assert(req->payload.next_sge_fn != NULL);
1394 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1395 
1396 	sgl = tr->u.sgl;
1397 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1398 	req->cmd.dptr.sgl1.unkeyed.subtype = 0;
1399 
1400 	remaining_transfer_len = req->payload_size;
1401 
1402 	while (remaining_transfer_len > 0) {
1403 		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg,
1404 					      &virt_addr, &remaining_user_sge_len);
1405 		if (rc) {
1406 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1407 			return -EFAULT;
1408 		}
1409 
1410 		/* Bit Bucket SGL descriptor */
1411 		if ((uint64_t)virt_addr == UINT64_MAX) {
1412 			/* TODO: enable WRITE and COMPARE when necessary */
1413 			if (req->cmd.opc != SPDK_NVME_OPC_READ) {
1414 				SPDK_ERRLOG("Only READ command can be supported\n");
1415 				goto exit;
1416 			}
1417 			if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
1418 				SPDK_ERRLOG("Too many SGL entries\n");
1419 				goto exit;
1420 			}
1421 
1422 			sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_BIT_BUCKET;
1423 			/* If the SGL describes a destination data buffer, the length of data
1424 			 * buffer shall be discarded by controller, and the length is included
1425 			 * in Number of Logical Blocks (NLB) parameter. Otherwise, the length
1426 			 * is not included in the NLB parameter.
1427 			 */
1428 			remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
1429 			remaining_transfer_len -= remaining_user_sge_len;
1430 
1431 			sgl->unkeyed.length = remaining_user_sge_len;
1432 			sgl->address = 0;
1433 			sgl->unkeyed.subtype = 0;
1434 
1435 			sgl++;
1436 			nseg++;
1437 
1438 			continue;
1439 		}
1440 
1441 		remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
1442 		remaining_transfer_len -= remaining_user_sge_len;
1443 		while (remaining_user_sge_len > 0) {
1444 			if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
1445 				SPDK_ERRLOG("Too many SGL entries\n");
1446 				goto exit;
1447 			}
1448 
1449 			if (dword_aligned && ((uintptr_t)virt_addr & 3)) {
1450 				SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
1451 				goto exit;
1452 			}
1453 
1454 			mapping_length = remaining_user_sge_len;
1455 			phys_addr = nvme_pcie_vtophys(qpair->ctrlr, virt_addr, &mapping_length);
1456 			if (phys_addr == SPDK_VTOPHYS_ERROR) {
1457 				goto exit;
1458 			}
1459 
1460 			length = spdk_min(remaining_user_sge_len, mapping_length);
1461 			remaining_user_sge_len -= length;
1462 			virt_addr = (uint8_t *)virt_addr + length;
1463 
1464 			if (nseg > 0 && phys_addr ==
1465 			    (*(sgl - 1)).address + (*(sgl - 1)).unkeyed.length) {
1466 				/* extend previous entry */
1467 				(*(sgl - 1)).unkeyed.length += length;
1468 				continue;
1469 			}
1470 
1471 			sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1472 			sgl->unkeyed.length = length;
1473 			sgl->address = phys_addr;
1474 			sgl->unkeyed.subtype = 0;
1475 
1476 			sgl++;
1477 			nseg++;
1478 		}
1479 	}
1480 
1481 	if (nseg == 1) {
1482 		/*
1483 		 * The whole transfer can be described by a single SGL descriptor.
1484 		 *  Use the special case described by the spec where SGL1's type is Data Block.
1485 		 *  This means the SGL in the tracker is not used at all, so copy the first (and only)
1486 		 *  SGL element into SGL1.
1487 		 */
1488 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1489 		req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
1490 		req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
1491 	} else {
1492 		/* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because
1493 		 *  NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page.
1494 		 */
1495 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1496 		req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
1497 		req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
1498 	}
1499 
1500 	return 0;
1501 
1502 exit:
1503 	nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1504 	return -EFAULT;
1505 }
1506 
1507 /**
1508  * Build PRP list describing scattered payload buffer.
1509  */
1510 static int
1511 nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
1512 				       struct nvme_tracker *tr, bool dword_aligned)
1513 {
1514 	int rc;
1515 	void *virt_addr;
1516 	uint32_t remaining_transfer_len, length;
1517 	uint32_t prp_index = 0;
1518 	uint32_t page_size = qpair->ctrlr->page_size;
1519 
1520 	/*
1521 	 * Build scattered payloads.
1522 	 */
1523 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1524 	assert(req->payload.reset_sgl_fn != NULL);
1525 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1526 
1527 	remaining_transfer_len = req->payload_size;
1528 	while (remaining_transfer_len > 0) {
1529 		assert(req->payload.next_sge_fn != NULL);
1530 		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
1531 		if (rc) {
1532 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1533 			return -EFAULT;
1534 		}
1535 
1536 		length = spdk_min(remaining_transfer_len, length);
1537 
1538 		/*
1539 		 * Any incompatible sges should have been handled up in the splitting routine,
1540 		 *  but assert here as an additional check.
1541 		 *
1542 		 * All SGEs except last must end on a page boundary.
1543 		 */
1544 		assert((length == remaining_transfer_len) ||
1545 		       _is_page_aligned((uintptr_t)virt_addr + length, page_size));
1546 
1547 		rc = nvme_pcie_prp_list_append(qpair->ctrlr, tr, &prp_index, virt_addr, length, page_size);
1548 		if (rc) {
1549 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1550 			return rc;
1551 		}
1552 
1553 		remaining_transfer_len -= length;
1554 	}
1555 
1556 	return 0;
1557 }
1558 
1559 typedef int(*build_req_fn)(struct spdk_nvme_qpair *, struct nvme_request *, struct nvme_tracker *,
1560 			   bool);
1561 
1562 static build_req_fn const g_nvme_pcie_build_req_table[][2] = {
1563 	[NVME_PAYLOAD_TYPE_INVALID] = {
1564 		nvme_pcie_qpair_build_request_invalid,			/* PRP */
1565 		nvme_pcie_qpair_build_request_invalid			/* SGL */
1566 	},
1567 	[NVME_PAYLOAD_TYPE_CONTIG] = {
1568 		nvme_pcie_qpair_build_contig_request,			/* PRP */
1569 		nvme_pcie_qpair_build_contig_hw_sgl_request		/* SGL */
1570 	},
1571 	[NVME_PAYLOAD_TYPE_SGL] = {
1572 		nvme_pcie_qpair_build_prps_sgl_request,			/* PRP */
1573 		nvme_pcie_qpair_build_hw_sgl_request			/* SGL */
1574 	}
1575 };
1576 
1577 static int
1578 nvme_pcie_qpair_build_metadata(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
1579 			       bool sgl_supported, bool mptr_sgl_supported, bool dword_aligned)
1580 {
1581 	void *md_payload;
1582 	struct nvme_request *req = tr->req;
1583 	uint64_t mapping_length;
1584 
1585 	if (req->payload.md) {
1586 		md_payload = (uint8_t *)req->payload.md + req->md_offset;
1587 		if (dword_aligned && ((uintptr_t)md_payload & 3)) {
1588 			SPDK_ERRLOG("virt_addr %p not dword aligned\n", md_payload);
1589 			goto exit;
1590 		}
1591 
1592 		mapping_length = req->md_size;
1593 		if (sgl_supported && mptr_sgl_supported && dword_aligned) {
1594 			assert(req->cmd.psdt == SPDK_NVME_PSDT_SGL_MPTR_CONTIG);
1595 			req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_SGL;
1596 
1597 			tr->meta_sgl.address = nvme_pcie_vtophys(qpair->ctrlr, md_payload, &mapping_length);
1598 			if (tr->meta_sgl.address == SPDK_VTOPHYS_ERROR || mapping_length != req->md_size) {
1599 				goto exit;
1600 			}
1601 			tr->meta_sgl.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1602 			tr->meta_sgl.unkeyed.length = req->md_size;
1603 			tr->meta_sgl.unkeyed.subtype = 0;
1604 			req->cmd.mptr = tr->prp_sgl_bus_addr - sizeof(struct spdk_nvme_sgl_descriptor);
1605 		} else {
1606 			req->cmd.mptr = nvme_pcie_vtophys(qpair->ctrlr, md_payload, &mapping_length);
1607 			if (req->cmd.mptr == SPDK_VTOPHYS_ERROR || mapping_length != req->md_size) {
1608 				goto exit;
1609 			}
1610 		}
1611 	}
1612 
1613 	return 0;
1614 
1615 exit:
1616 	nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1617 	return -EINVAL;
1618 }
1619 
1620 int
1621 nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
1622 {
1623 	struct nvme_tracker	*tr;
1624 	int			rc = 0;
1625 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
1626 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1627 	enum nvme_payload_type	payload_type;
1628 	bool			sgl_supported;
1629 	bool			mptr_sgl_supported;
1630 	bool			dword_aligned = true;
1631 
1632 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
1633 		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1634 	}
1635 
1636 	tr = TAILQ_FIRST(&pqpair->free_tr);
1637 
1638 	if (tr == NULL) {
1639 		pqpair->stat->queued_requests++;
1640 		/* Inform the upper layer to try again later. */
1641 		rc = -EAGAIN;
1642 		goto exit;
1643 	}
1644 
1645 	pqpair->stat->submitted_requests++;
1646 	TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */
1647 	TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list);
1648 	tr->req = req;
1649 	tr->cb_fn = req->cb_fn;
1650 	tr->cb_arg = req->cb_arg;
1651 	req->cmd.cid = tr->cid;
1652 
1653 	if (req->payload_size != 0) {
1654 		payload_type = nvme_payload_type(&req->payload);
1655 		/* According to the specification, PRPs shall be used for all
1656 		 *  Admin commands for NVMe over PCIe implementations.
1657 		 */
1658 		sgl_supported = (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) != 0 &&
1659 				!nvme_qpair_is_admin_queue(qpair);
1660 		mptr_sgl_supported = (ctrlr->flags & SPDK_NVME_CTRLR_MPTR_SGL_SUPPORTED) != 0 &&
1661 				     !nvme_qpair_is_admin_queue(qpair);
1662 
1663 		if (sgl_supported) {
1664 			/* Don't use SGL for DSM command */
1665 			if (spdk_unlikely((ctrlr->quirks & NVME_QUIRK_NO_SGL_FOR_DSM) &&
1666 					  (req->cmd.opc == SPDK_NVME_OPC_DATASET_MANAGEMENT))) {
1667 				sgl_supported = false;
1668 			}
1669 		}
1670 
1671 		if (sgl_supported && !(ctrlr->flags & SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT)) {
1672 			dword_aligned = false;
1673 		}
1674 
1675 		/* If we fail to build the request or the metadata, do not return the -EFAULT back up
1676 		 * the stack.  This ensures that we always fail these types of requests via a
1677 		 * completion callback, and never in the context of the submission.
1678 		 */
1679 		rc = g_nvme_pcie_build_req_table[payload_type][sgl_supported](qpair, req, tr, dword_aligned);
1680 		if (rc < 0) {
1681 			assert(rc == -EFAULT);
1682 			rc = 0;
1683 			goto exit;
1684 		}
1685 
1686 		rc = nvme_pcie_qpair_build_metadata(qpair, tr, sgl_supported, mptr_sgl_supported, dword_aligned);
1687 		if (rc < 0) {
1688 			assert(rc == -EFAULT);
1689 			rc = 0;
1690 			goto exit;
1691 		}
1692 	}
1693 
1694 	nvme_pcie_qpair_submit_tracker(qpair, tr);
1695 
1696 exit:
1697 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
1698 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1699 	}
1700 
1701 	return rc;
1702 }
1703 
1704 struct spdk_nvme_transport_poll_group *
1705 nvme_pcie_poll_group_create(void)
1706 {
1707 	struct nvme_pcie_poll_group *group = calloc(1, sizeof(*group));
1708 
1709 	if (group == NULL) {
1710 		SPDK_ERRLOG("Unable to allocate poll group.\n");
1711 		return NULL;
1712 	}
1713 
1714 	return &group->group;
1715 }
1716 
1717 int
1718 nvme_pcie_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
1719 {
1720 	return 0;
1721 }
1722 
1723 int
1724 nvme_pcie_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
1725 {
1726 	return 0;
1727 }
1728 
1729 int
1730 nvme_pcie_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
1731 			 struct spdk_nvme_qpair *qpair)
1732 {
1733 	return 0;
1734 }
1735 
1736 int
1737 nvme_pcie_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
1738 			    struct spdk_nvme_qpair *qpair)
1739 {
1740 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
1741 
1742 	pqpair->stat = &g_dummy_stat;
1743 	return 0;
1744 }
1745 
1746 int64_t
1747 nvme_pcie_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
1748 		uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
1749 {
1750 	struct spdk_nvme_qpair *qpair, *tmp_qpair;
1751 	int32_t local_completions = 0;
1752 	int64_t total_completions = 0;
1753 
1754 	STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
1755 		disconnected_qpair_cb(qpair, tgroup->group->ctx);
1756 	}
1757 
1758 	STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
1759 		local_completions = spdk_nvme_qpair_process_completions(qpair, completions_per_qpair);
1760 		if (spdk_unlikely(local_completions < 0)) {
1761 			disconnected_qpair_cb(qpair, tgroup->group->ctx);
1762 			total_completions = -ENXIO;
1763 		} else if (spdk_likely(total_completions >= 0)) {
1764 			total_completions += local_completions;
1765 		}
1766 	}
1767 
1768 	return total_completions;
1769 }
1770 
1771 int
1772 nvme_pcie_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
1773 {
1774 	if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
1775 		return -EBUSY;
1776 	}
1777 
1778 	free(tgroup);
1779 
1780 	return 0;
1781 }
1782 
1783 int
1784 nvme_pcie_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup,
1785 			       struct spdk_nvme_transport_poll_group_stat **_stats)
1786 {
1787 	struct nvme_pcie_poll_group *group;
1788 	struct spdk_nvme_transport_poll_group_stat *stats;
1789 
1790 	if (tgroup == NULL || _stats == NULL) {
1791 		SPDK_ERRLOG("Invalid stats or group pointer\n");
1792 		return -EINVAL;
1793 	}
1794 
1795 	stats = calloc(1, sizeof(*stats));
1796 	if (!stats) {
1797 		SPDK_ERRLOG("Can't allocate memory for stats\n");
1798 		return -ENOMEM;
1799 	}
1800 	stats->trtype = SPDK_NVME_TRANSPORT_PCIE;
1801 	group = SPDK_CONTAINEROF(tgroup, struct nvme_pcie_poll_group, group);
1802 	memcpy(&stats->pcie, &group->stats, sizeof(group->stats));
1803 
1804 	*_stats = stats;
1805 
1806 	return 0;
1807 }
1808 
1809 void
1810 nvme_pcie_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup,
1811 				struct spdk_nvme_transport_poll_group_stat *stats)
1812 {
1813 	free(stats);
1814 }
1815 
1816 SPDK_TRACE_REGISTER_FN(nvme_pcie, "nvme_pcie", TRACE_GROUP_NVME_PCIE)
1817 {
1818 	struct spdk_trace_tpoint_opts opts[] = {
1819 		{
1820 			"NVME_PCIE_SUBMIT", TRACE_NVME_PCIE_SUBMIT,
1821 			OWNER_NVME_PCIE_QP, OBJECT_NVME_PCIE_REQ, 1,
1822 			{	{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 },
1823 				{ "cid", SPDK_TRACE_ARG_TYPE_INT, 4 },
1824 				{ "opc", SPDK_TRACE_ARG_TYPE_INT, 4 },
1825 				{ "dw10", SPDK_TRACE_ARG_TYPE_PTR, 4 },
1826 				{ "dw11", SPDK_TRACE_ARG_TYPE_PTR, 4 },
1827 				{ "dw12", SPDK_TRACE_ARG_TYPE_PTR, 4 }
1828 			}
1829 		},
1830 		{
1831 			"NVME_PCIE_COMPLETE", TRACE_NVME_PCIE_COMPLETE,
1832 			OWNER_NVME_PCIE_QP, OBJECT_NVME_PCIE_REQ, 0,
1833 			{	{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 },
1834 				{ "cid", SPDK_TRACE_ARG_TYPE_INT, 4 },
1835 				{ "cpl", SPDK_TRACE_ARG_TYPE_PTR, 4 }
1836 			}
1837 		},
1838 	};
1839 
1840 	spdk_trace_register_object(OBJECT_NVME_PCIE_REQ, 'p');
1841 	spdk_trace_register_owner(OWNER_NVME_PCIE_QP, 'q');
1842 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
1843 }
1844