1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2021 Intel Corporation. All rights reserved. 3 * Copyright (c) 2021 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 /* 8 * NVMe over PCIe common library 9 */ 10 11 #include "spdk/stdinc.h" 12 #include "spdk/likely.h" 13 #include "spdk/string.h" 14 #include "nvme_internal.h" 15 #include "nvme_pcie_internal.h" 16 #include "spdk/trace.h" 17 18 #include "spdk_internal/trace_defs.h" 19 20 __thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL; 21 22 static struct spdk_nvme_pcie_stat g_dummy_stat = {}; 23 24 static void nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, 25 struct nvme_tracker *tr); 26 27 static inline uint64_t 28 nvme_pcie_vtophys(struct spdk_nvme_ctrlr *ctrlr, const void *buf, uint64_t *size) 29 { 30 if (spdk_likely(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE)) { 31 return spdk_vtophys(buf, size); 32 } else { 33 /* vfio-user address translation with IOVA=VA mode */ 34 return (uint64_t)(uintptr_t)buf; 35 } 36 } 37 38 int 39 nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair) 40 { 41 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 42 uint32_t i; 43 44 /* all head/tail vals are set to 0 */ 45 pqpair->last_sq_tail = pqpair->sq_tail = pqpair->sq_head = pqpair->cq_head = 0; 46 47 /* 48 * First time through the completion queue, HW will set phase 49 * bit on completions to 1. So set this to 1 here, indicating 50 * we're looking for a 1 to know which entries have completed. 51 * we'll toggle the bit each time when the completion queue 52 * rolls over. 53 */ 54 pqpair->flags.phase = 1; 55 for (i = 0; i < pqpair->num_entries; i++) { 56 pqpair->cpl[i].status.p = 0; 57 } 58 59 return 0; 60 } 61 62 static void 63 nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr) 64 { 65 tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp); 66 tr->cid = cid; 67 tr->req = NULL; 68 } 69 70 static void * 71 nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t size, uint64_t alignment, 72 uint64_t *phys_addr) 73 { 74 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); 75 uintptr_t addr; 76 77 if (pctrlr->cmb.mem_register_addr != NULL) { 78 /* BAR is mapped for data */ 79 return NULL; 80 } 81 82 addr = (uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset; 83 addr = (addr + (alignment - 1)) & ~(alignment - 1); 84 85 /* CMB may only consume part of the BAR, calculate accordingly */ 86 if (addr + size > ((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.size)) { 87 SPDK_ERRLOG("Tried to allocate past valid CMB range!\n"); 88 return NULL; 89 } 90 *phys_addr = pctrlr->cmb.bar_pa + addr - (uintptr_t)pctrlr->cmb.bar_va; 91 92 pctrlr->cmb.current_offset = (addr + size) - (uintptr_t)pctrlr->cmb.bar_va; 93 94 return (void *)addr; 95 } 96 97 int 98 nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair, 99 const struct spdk_nvme_io_qpair_opts *opts) 100 { 101 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 102 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); 103 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 104 struct nvme_tracker *tr; 105 uint16_t i; 106 uint16_t num_trackers; 107 size_t page_align = sysconf(_SC_PAGESIZE); 108 size_t queue_align, queue_len; 109 uint32_t flags = SPDK_MALLOC_DMA; 110 uint64_t sq_paddr = 0; 111 uint64_t cq_paddr = 0; 112 113 if (opts) { 114 pqpair->sq_vaddr = opts->sq.vaddr; 115 pqpair->cq_vaddr = opts->cq.vaddr; 116 sq_paddr = opts->sq.paddr; 117 cq_paddr = opts->cq.paddr; 118 } 119 120 pqpair->retry_count = ctrlr->opts.transport_retry_count; 121 122 /* 123 * Limit the maximum number of completions to return per call to prevent wraparound, 124 * and calculate how many trackers can be submitted at once without overflowing the 125 * completion queue. 126 */ 127 pqpair->max_completions_cap = pqpair->num_entries / 4; 128 pqpair->max_completions_cap = spdk_max(pqpair->max_completions_cap, NVME_MIN_COMPLETIONS); 129 pqpair->max_completions_cap = spdk_min(pqpair->max_completions_cap, NVME_MAX_COMPLETIONS); 130 num_trackers = pqpair->num_entries - pqpair->max_completions_cap; 131 132 SPDK_INFOLOG(nvme, "max_completions_cap = %" PRIu16 " num_trackers = %" PRIu16 "\n", 133 pqpair->max_completions_cap, num_trackers); 134 135 assert(num_trackers != 0); 136 137 pqpair->sq_in_cmb = false; 138 139 if (nvme_qpair_is_admin_queue(&pqpair->qpair)) { 140 flags |= SPDK_MALLOC_SHARE; 141 } 142 143 /* cmd and cpl rings must be aligned on page size boundaries. */ 144 if (ctrlr->opts.use_cmb_sqs) { 145 pqpair->cmd = nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd), 146 page_align, &pqpair->cmd_bus_addr); 147 if (pqpair->cmd != NULL) { 148 pqpair->sq_in_cmb = true; 149 } 150 } 151 152 if (pqpair->sq_in_cmb == false) { 153 if (pqpair->sq_vaddr) { 154 pqpair->cmd = pqpair->sq_vaddr; 155 } else { 156 /* To ensure physical address contiguity we make each ring occupy 157 * a single hugepage only. See MAX_IO_QUEUE_ENTRIES. 158 */ 159 queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cmd); 160 queue_align = spdk_max(spdk_align32pow2(queue_len), page_align); 161 pqpair->cmd = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags); 162 if (pqpair->cmd == NULL) { 163 SPDK_ERRLOG("alloc qpair_cmd failed\n"); 164 return -ENOMEM; 165 } 166 } 167 if (sq_paddr) { 168 assert(pqpair->sq_vaddr != NULL); 169 pqpair->cmd_bus_addr = sq_paddr; 170 } else { 171 pqpair->cmd_bus_addr = nvme_pcie_vtophys(ctrlr, pqpair->cmd, NULL); 172 if (pqpair->cmd_bus_addr == SPDK_VTOPHYS_ERROR) { 173 SPDK_ERRLOG("spdk_vtophys(pqpair->cmd) failed\n"); 174 return -EFAULT; 175 } 176 } 177 } 178 179 if (pqpair->cq_vaddr) { 180 pqpair->cpl = pqpair->cq_vaddr; 181 } else { 182 queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cpl); 183 queue_align = spdk_max(spdk_align32pow2(queue_len), page_align); 184 pqpair->cpl = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags); 185 if (pqpair->cpl == NULL) { 186 SPDK_ERRLOG("alloc qpair_cpl failed\n"); 187 return -ENOMEM; 188 } 189 } 190 if (cq_paddr) { 191 assert(pqpair->cq_vaddr != NULL); 192 pqpair->cpl_bus_addr = cq_paddr; 193 } else { 194 pqpair->cpl_bus_addr = nvme_pcie_vtophys(ctrlr, pqpair->cpl, NULL); 195 if (pqpair->cpl_bus_addr == SPDK_VTOPHYS_ERROR) { 196 SPDK_ERRLOG("spdk_vtophys(pqpair->cpl) failed\n"); 197 return -EFAULT; 198 } 199 } 200 201 pqpair->sq_tdbl = pctrlr->doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32; 202 pqpair->cq_hdbl = pctrlr->doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32; 203 204 /* 205 * Reserve space for all of the trackers in a single allocation. 206 * struct nvme_tracker must be padded so that its size is already a power of 2. 207 * This ensures the PRP list embedded in the nvme_tracker object will not span a 208 * 4KB boundary, while allowing access to trackers in tr[] via normal array indexing. 209 */ 210 pqpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), NULL, 211 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); 212 if (pqpair->tr == NULL) { 213 SPDK_ERRLOG("nvme_tr failed\n"); 214 return -ENOMEM; 215 } 216 217 TAILQ_INIT(&pqpair->free_tr); 218 TAILQ_INIT(&pqpair->outstanding_tr); 219 pqpair->qpair.queue_depth = 0; 220 221 for (i = 0; i < num_trackers; i++) { 222 tr = &pqpair->tr[i]; 223 nvme_qpair_construct_tracker(tr, i, nvme_pcie_vtophys(ctrlr, tr, NULL)); 224 TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list); 225 } 226 227 nvme_pcie_qpair_reset(qpair); 228 229 return 0; 230 } 231 232 int 233 nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t num_entries) 234 { 235 struct nvme_pcie_qpair *pqpair; 236 int rc; 237 238 pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); 239 if (pqpair == NULL) { 240 return -ENOMEM; 241 } 242 243 pqpair->num_entries = num_entries; 244 pqpair->flags.delay_cmd_submit = 0; 245 pqpair->pcie_state = NVME_PCIE_QPAIR_READY; 246 247 ctrlr->adminq = &pqpair->qpair; 248 249 rc = nvme_qpair_init(ctrlr->adminq, 250 0, /* qpair ID */ 251 ctrlr, 252 SPDK_NVME_QPRIO_URGENT, 253 num_entries, 254 false); 255 if (rc != 0) { 256 return rc; 257 } 258 259 pqpair->stat = spdk_zmalloc(sizeof(*pqpair->stat), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, 260 SPDK_MALLOC_SHARE); 261 if (!pqpair->stat) { 262 SPDK_ERRLOG("Failed to allocate admin qpair statistics\n"); 263 return -ENOMEM; 264 } 265 266 return nvme_pcie_qpair_construct(ctrlr->adminq, NULL); 267 } 268 269 /** 270 * Note: the ctrlr_lock must be held when calling this function. 271 */ 272 void 273 nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair, 274 struct nvme_request *req, struct spdk_nvme_cpl *cpl) 275 { 276 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 277 struct nvme_request *active_req = req; 278 struct spdk_nvme_ctrlr_process *active_proc; 279 280 /* 281 * The admin request is from another process. Move to the per 282 * process list for that process to handle it later. 283 */ 284 assert(nvme_qpair_is_admin_queue(qpair)); 285 assert(active_req->pid != getpid()); 286 287 active_proc = nvme_ctrlr_get_process(ctrlr, active_req->pid); 288 if (active_proc) { 289 /* Save the original completion information */ 290 memcpy(&active_req->cpl, cpl, sizeof(*cpl)); 291 STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq); 292 } else { 293 SPDK_ERRLOG("The owning process (pid %d) is not found. Dropping the request.\n", 294 active_req->pid); 295 nvme_cleanup_user_req(active_req); 296 nvme_free_request(active_req); 297 } 298 } 299 300 /** 301 * Note: the ctrlr_lock must be held when calling this function. 302 */ 303 void 304 nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair) 305 { 306 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 307 struct nvme_request *req, *tmp_req; 308 pid_t pid = getpid(); 309 struct spdk_nvme_ctrlr_process *proc; 310 311 /* 312 * Check whether there is any pending admin request from 313 * other active processes. 314 */ 315 assert(nvme_qpair_is_admin_queue(qpair)); 316 317 proc = nvme_ctrlr_get_current_process(ctrlr); 318 if (!proc) { 319 SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid); 320 assert(proc); 321 return; 322 } 323 324 STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) { 325 STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq); 326 327 assert(req->pid == pid); 328 329 nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, &req->cpl); 330 } 331 } 332 333 int 334 nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr, 335 struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, 336 void *cb_arg) 337 { 338 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que); 339 struct nvme_request *req; 340 struct spdk_nvme_cmd *cmd; 341 342 req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg); 343 if (req == NULL) { 344 return -ENOMEM; 345 } 346 347 cmd = &req->cmd; 348 cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ; 349 350 cmd->cdw10_bits.create_io_q.qid = io_que->id; 351 cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1; 352 353 cmd->cdw11_bits.create_io_cq.pc = 1; 354 cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr; 355 356 return nvme_ctrlr_submit_admin_request(ctrlr, req); 357 } 358 359 int 360 nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr, 361 struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg) 362 { 363 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que); 364 struct nvme_request *req; 365 struct spdk_nvme_cmd *cmd; 366 367 req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg); 368 if (req == NULL) { 369 return -ENOMEM; 370 } 371 372 cmd = &req->cmd; 373 cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ; 374 375 cmd->cdw10_bits.create_io_q.qid = io_que->id; 376 cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1; 377 cmd->cdw11_bits.create_io_sq.pc = 1; 378 cmd->cdw11_bits.create_io_sq.qprio = io_que->qprio; 379 cmd->cdw11_bits.create_io_sq.cqid = io_que->id; 380 cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr; 381 382 return nvme_ctrlr_submit_admin_request(ctrlr, req); 383 } 384 385 int 386 nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, 387 spdk_nvme_cmd_cb cb_fn, void *cb_arg) 388 { 389 struct nvme_request *req; 390 struct spdk_nvme_cmd *cmd; 391 392 req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg); 393 if (req == NULL) { 394 return -ENOMEM; 395 } 396 397 cmd = &req->cmd; 398 cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ; 399 cmd->cdw10_bits.delete_io_q.qid = qpair->id; 400 401 return nvme_ctrlr_submit_admin_request(ctrlr, req); 402 } 403 404 int 405 nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, 406 spdk_nvme_cmd_cb cb_fn, void *cb_arg) 407 { 408 struct nvme_request *req; 409 struct spdk_nvme_cmd *cmd; 410 411 req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg); 412 if (req == NULL) { 413 return -ENOMEM; 414 } 415 416 cmd = &req->cmd; 417 cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ; 418 cmd->cdw10_bits.delete_io_q.qid = qpair->id; 419 420 return nvme_ctrlr_submit_admin_request(ctrlr, req); 421 } 422 423 static void 424 nvme_completion_sq_error_delete_cq_cb(void *arg, const struct spdk_nvme_cpl *cpl) 425 { 426 struct spdk_nvme_qpair *qpair = arg; 427 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 428 429 if (spdk_nvme_cpl_is_error(cpl)) { 430 SPDK_ERRLOG("delete_io_cq failed!\n"); 431 } 432 433 pqpair->pcie_state = NVME_PCIE_QPAIR_FAILED; 434 } 435 436 static void 437 nvme_completion_create_sq_cb(void *arg, const struct spdk_nvme_cpl *cpl) 438 { 439 struct spdk_nvme_qpair *qpair = arg; 440 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 441 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 442 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); 443 int rc; 444 445 if (pqpair->flags.defer_destruction) { 446 /* This qpair was deleted by the application while the 447 * connection was still in progress. We had to wait 448 * to free the qpair resources until this outstanding 449 * command was completed. Now that we have the completion 450 * free it now. 451 */ 452 nvme_pcie_qpair_destroy(qpair); 453 return; 454 } 455 456 if (spdk_nvme_cpl_is_error(cpl)) { 457 SPDK_ERRLOG("nvme_create_io_sq failed, deleting cq!\n"); 458 rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_sq_error_delete_cq_cb, 459 qpair); 460 if (rc != 0) { 461 SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc); 462 pqpair->pcie_state = NVME_PCIE_QPAIR_FAILED; 463 } 464 return; 465 } 466 pqpair->pcie_state = NVME_PCIE_QPAIR_READY; 467 if (ctrlr->shadow_doorbell) { 468 pqpair->shadow_doorbell.sq_tdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 0) * 469 pctrlr->doorbell_stride_u32; 470 pqpair->shadow_doorbell.cq_hdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 1) * 471 pctrlr->doorbell_stride_u32; 472 pqpair->shadow_doorbell.sq_eventidx = ctrlr->eventidx + (2 * qpair->id + 0) * 473 pctrlr->doorbell_stride_u32; 474 pqpair->shadow_doorbell.cq_eventidx = ctrlr->eventidx + (2 * qpair->id + 1) * 475 pctrlr->doorbell_stride_u32; 476 pqpair->flags.has_shadow_doorbell = 1; 477 } else { 478 pqpair->flags.has_shadow_doorbell = 0; 479 } 480 nvme_pcie_qpair_reset(qpair); 481 482 } 483 484 static void 485 nvme_completion_create_cq_cb(void *arg, const struct spdk_nvme_cpl *cpl) 486 { 487 struct spdk_nvme_qpair *qpair = arg; 488 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 489 int rc; 490 491 if (pqpair->flags.defer_destruction) { 492 /* This qpair was deleted by the application while the 493 * connection was still in progress. We had to wait 494 * to free the qpair resources until this outstanding 495 * command was completed. Now that we have the completion 496 * free it now. 497 */ 498 nvme_pcie_qpair_destroy(qpair); 499 return; 500 } 501 502 if (spdk_nvme_cpl_is_error(cpl)) { 503 pqpair->pcie_state = NVME_PCIE_QPAIR_FAILED; 504 SPDK_ERRLOG("nvme_create_io_cq failed!\n"); 505 return; 506 } 507 508 rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_create_sq_cb, qpair); 509 510 if (rc != 0) { 511 SPDK_ERRLOG("Failed to send request to create_io_sq, deleting cq!\n"); 512 rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_sq_error_delete_cq_cb, 513 qpair); 514 if (rc != 0) { 515 SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc); 516 pqpair->pcie_state = NVME_PCIE_QPAIR_FAILED; 517 } 518 return; 519 } 520 pqpair->pcie_state = NVME_PCIE_QPAIR_WAIT_FOR_SQ; 521 } 522 523 static int 524 _nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, 525 uint16_t qid) 526 { 527 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 528 int rc; 529 530 /* Statistics may already be allocated in the case of controller reset */ 531 if (qpair->poll_group) { 532 struct nvme_pcie_poll_group *group = SPDK_CONTAINEROF(qpair->poll_group, 533 struct nvme_pcie_poll_group, group); 534 535 pqpair->stat = &group->stats; 536 pqpair->shared_stats = true; 537 } else { 538 if (pqpair->stat == NULL) { 539 pqpair->stat = calloc(1, sizeof(*pqpair->stat)); 540 if (!pqpair->stat) { 541 SPDK_ERRLOG("Failed to allocate qpair statistics\n"); 542 nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED); 543 return -ENOMEM; 544 } 545 } 546 } 547 548 rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_create_cq_cb, qpair); 549 550 if (rc != 0) { 551 SPDK_ERRLOG("Failed to send request to create_io_cq\n"); 552 nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED); 553 return rc; 554 } 555 pqpair->pcie_state = NVME_PCIE_QPAIR_WAIT_FOR_CQ; 556 return 0; 557 } 558 559 int 560 nvme_pcie_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 561 { 562 int rc = 0; 563 564 if (!nvme_qpair_is_admin_queue(qpair)) { 565 rc = _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id); 566 } else { 567 nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED); 568 } 569 570 return rc; 571 } 572 573 void 574 nvme_pcie_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 575 { 576 if (!nvme_qpair_is_admin_queue(qpair) || !ctrlr->is_disconnecting) { 577 nvme_transport_ctrlr_disconnect_qpair_done(qpair); 578 } else { 579 /* If this function is called for the admin qpair via spdk_nvme_ctrlr_reset() 580 * or spdk_nvme_ctrlr_disconnect(), initiate a Controller Level Reset. 581 * Then we can abort trackers safely because the Controller Level Reset deletes 582 * all I/O SQ/CQs. 583 */ 584 nvme_ctrlr_disable(ctrlr); 585 } 586 } 587 588 /* Used when dst points to MMIO (i.e. CMB) in a virtual machine - in these cases we must 589 * not use wide instructions because QEMU will not emulate such instructions to MMIO space. 590 * So this function ensures we only copy 8 bytes at a time. 591 */ 592 static inline void 593 nvme_pcie_copy_command_mmio(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src) 594 { 595 uint64_t *dst64 = (uint64_t *)dst; 596 const uint64_t *src64 = (const uint64_t *)src; 597 uint32_t i; 598 599 for (i = 0; i < sizeof(*dst) / 8; i++) { 600 dst64[i] = src64[i]; 601 } 602 } 603 604 static inline void 605 nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src) 606 { 607 /* dst and src are known to be non-overlapping and 64-byte aligned. */ 608 #if defined(__SSE2__) 609 __m128i *d128 = (__m128i *)dst; 610 const __m128i *s128 = (const __m128i *)src; 611 612 _mm_stream_si128(&d128[0], _mm_load_si128(&s128[0])); 613 _mm_stream_si128(&d128[1], _mm_load_si128(&s128[1])); 614 _mm_stream_si128(&d128[2], _mm_load_si128(&s128[2])); 615 _mm_stream_si128(&d128[3], _mm_load_si128(&s128[3])); 616 #else 617 *dst = *src; 618 #endif 619 } 620 621 void 622 nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr) 623 { 624 struct nvme_request *req; 625 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 626 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 627 628 req = tr->req; 629 assert(req != NULL); 630 631 spdk_trace_record(TRACE_NVME_PCIE_SUBMIT, qpair->id, 0, (uintptr_t)req, req->cb_arg, 632 (uint32_t)req->cmd.cid, (uint32_t)req->cmd.opc, 633 req->cmd.cdw10, req->cmd.cdw11, req->cmd.cdw12, 634 pqpair->qpair.queue_depth); 635 636 if (req->cmd.fuse) { 637 /* 638 * Keep track of the fuse operation sequence so that we ring the doorbell only 639 * after the second fuse is submitted. 640 */ 641 qpair->last_fuse = req->cmd.fuse; 642 } 643 644 /* Don't use wide instructions to copy NVMe command, this is limited by QEMU 645 * virtual NVMe controller, the maximum access width is 8 Bytes for one time. 646 */ 647 if (spdk_unlikely((ctrlr->quirks & NVME_QUIRK_MAXIMUM_PCI_ACCESS_WIDTH) && pqpair->sq_in_cmb)) { 648 nvme_pcie_copy_command_mmio(&pqpair->cmd[pqpair->sq_tail], &req->cmd); 649 } else { 650 /* Copy the command from the tracker to the submission queue. */ 651 nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd); 652 } 653 654 if (spdk_unlikely(++pqpair->sq_tail == pqpair->num_entries)) { 655 pqpair->sq_tail = 0; 656 } 657 658 if (spdk_unlikely(pqpair->sq_tail == pqpair->sq_head)) { 659 SPDK_ERRLOG("sq_tail is passing sq_head!\n"); 660 } 661 662 if (!pqpair->flags.delay_cmd_submit) { 663 nvme_pcie_qpair_ring_sq_doorbell(qpair); 664 } 665 } 666 667 void 668 nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr, 669 struct spdk_nvme_cpl *cpl, bool print_on_error) 670 { 671 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 672 struct nvme_request *req; 673 bool retry, error; 674 bool print_error; 675 676 req = tr->req; 677 678 spdk_trace_record(TRACE_NVME_PCIE_COMPLETE, qpair->id, 0, (uintptr_t)req, req->cb_arg, 679 (uint32_t)req->cmd.cid, (uint32_t)cpl->status_raw, pqpair->qpair.queue_depth); 680 681 assert(req != NULL); 682 683 error = spdk_nvme_cpl_is_error(cpl); 684 retry = error && nvme_completion_is_retry(cpl) && 685 req->retries < pqpair->retry_count; 686 print_error = error && print_on_error && !qpair->ctrlr->opts.disable_error_logging; 687 688 if (print_error) { 689 spdk_nvme_qpair_print_command(qpair, &req->cmd); 690 } 691 692 if (print_error || SPDK_DEBUGLOG_FLAG_ENABLED("nvme")) { 693 spdk_nvme_qpair_print_completion(qpair, cpl); 694 } 695 696 assert(cpl->cid == req->cmd.cid); 697 698 if (retry) { 699 req->retries++; 700 nvme_pcie_qpair_submit_tracker(qpair, tr); 701 } else { 702 TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list); 703 pqpair->qpair.queue_depth--; 704 705 /* Only check admin requests from different processes. */ 706 if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) { 707 nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl); 708 } else { 709 nvme_complete_request(tr->cb_fn, tr->cb_arg, qpair, req, cpl); 710 } 711 712 tr->req = NULL; 713 714 TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list); 715 } 716 } 717 718 void 719 nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair, 720 struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr, 721 bool print_on_error) 722 { 723 struct spdk_nvme_cpl cpl; 724 725 memset(&cpl, 0, sizeof(cpl)); 726 cpl.sqid = qpair->id; 727 cpl.cid = tr->cid; 728 cpl.status.sct = sct; 729 cpl.status.sc = sc; 730 cpl.status.dnr = dnr; 731 nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error); 732 } 733 734 void 735 nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr) 736 { 737 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 738 struct nvme_tracker *tr, *temp, *last; 739 740 last = TAILQ_LAST(&pqpair->outstanding_tr, nvme_outstanding_tr_head); 741 742 /* Abort previously submitted (outstanding) trs */ 743 TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) { 744 if (!qpair->ctrlr->opts.disable_error_logging) { 745 SPDK_ERRLOG("aborting outstanding command\n"); 746 } 747 nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC, 748 SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true); 749 750 if (tr == last) { 751 break; 752 } 753 } 754 } 755 756 void 757 nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair) 758 { 759 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 760 struct nvme_tracker *tr; 761 762 tr = TAILQ_FIRST(&pqpair->outstanding_tr); 763 while (tr != NULL) { 764 assert(tr->req != NULL); 765 if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { 766 nvme_pcie_qpair_manual_complete_tracker(qpair, tr, 767 SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0, 768 false); 769 tr = TAILQ_FIRST(&pqpair->outstanding_tr); 770 } else { 771 tr = TAILQ_NEXT(tr, tq_list); 772 } 773 } 774 } 775 776 void 777 nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair) 778 { 779 nvme_pcie_admin_qpair_abort_aers(qpair); 780 } 781 782 void 783 nvme_pcie_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr) 784 { 785 nvme_pcie_qpair_abort_trackers(qpair, dnr); 786 } 787 788 static void 789 nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair) 790 { 791 uint64_t t02; 792 struct nvme_tracker *tr, *tmp; 793 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 794 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 795 struct spdk_nvme_ctrlr_process *active_proc; 796 797 /* Don't check timeouts during controller initialization. */ 798 if (ctrlr->state != NVME_CTRLR_STATE_READY) { 799 return; 800 } 801 802 if (nvme_qpair_is_admin_queue(qpair)) { 803 active_proc = nvme_ctrlr_get_current_process(ctrlr); 804 } else { 805 active_proc = qpair->active_proc; 806 } 807 808 /* Only check timeouts if the current process has a timeout callback. */ 809 if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) { 810 return; 811 } 812 813 t02 = spdk_get_ticks(); 814 TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) { 815 assert(tr->req != NULL); 816 817 if (nvme_request_check_timeout(tr->req, tr->cid, active_proc, t02)) { 818 /* 819 * The requests are in order, so as soon as one has not timed out, 820 * stop iterating. 821 */ 822 break; 823 } 824 } 825 } 826 827 int32_t 828 nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions) 829 { 830 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 831 struct nvme_tracker *tr; 832 struct spdk_nvme_cpl *cpl, *next_cpl; 833 uint32_t num_completions = 0; 834 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 835 uint16_t next_cq_head; 836 uint8_t next_phase; 837 bool next_is_valid = false; 838 int rc; 839 840 if (spdk_unlikely(pqpair->pcie_state == NVME_PCIE_QPAIR_FAILED)) { 841 return -ENXIO; 842 } 843 844 if (spdk_unlikely(nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING)) { 845 if (pqpair->pcie_state == NVME_PCIE_QPAIR_READY) { 846 /* It is possible that another thread set the pcie_state to 847 * QPAIR_READY, if it polled the adminq and processed the SQ 848 * completion for this qpair. So check for that condition 849 * here and then update the qpair's state to CONNECTED, since 850 * we can only set the qpair state from the qpair's thread. 851 * (Note: this fixed issue #2157.) 852 */ 853 nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED); 854 } else if (pqpair->pcie_state == NVME_PCIE_QPAIR_FAILED) { 855 nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED); 856 return -ENXIO; 857 } else { 858 rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); 859 if (rc < 0) { 860 return rc; 861 } else if (pqpair->pcie_state == NVME_PCIE_QPAIR_FAILED) { 862 nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED); 863 return -ENXIO; 864 } 865 } 866 return 0; 867 } 868 869 if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) { 870 nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); 871 } 872 873 if (max_completions == 0 || max_completions > pqpair->max_completions_cap) { 874 /* 875 * max_completions == 0 means unlimited, but complete at most 876 * max_completions_cap batch of I/O at a time so that the completion 877 * queue doorbells don't wrap around. 878 */ 879 max_completions = pqpair->max_completions_cap; 880 } 881 882 pqpair->stat->polls++; 883 884 while (1) { 885 cpl = &pqpair->cpl[pqpair->cq_head]; 886 887 if (!next_is_valid && cpl->status.p != pqpair->flags.phase) { 888 break; 889 } 890 891 if (spdk_likely(pqpair->cq_head + 1 != pqpair->num_entries)) { 892 next_cq_head = pqpair->cq_head + 1; 893 next_phase = pqpair->flags.phase; 894 } else { 895 next_cq_head = 0; 896 next_phase = !pqpair->flags.phase; 897 } 898 next_cpl = &pqpair->cpl[next_cq_head]; 899 next_is_valid = (next_cpl->status.p == next_phase); 900 if (next_is_valid) { 901 __builtin_prefetch(&pqpair->tr[next_cpl->cid]); 902 } 903 904 #if defined(__PPC64__) || defined(__riscv) || defined(__loongarch__) 905 /* 906 * This memory barrier prevents reordering of: 907 * - load after store from/to tr 908 * - load after load cpl phase and cpl cid 909 */ 910 spdk_mb(); 911 #elif defined(__aarch64__) 912 __asm volatile("dmb oshld" ::: "memory"); 913 #endif 914 915 if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) { 916 pqpair->cq_head = 0; 917 pqpair->flags.phase = !pqpair->flags.phase; 918 } 919 920 tr = &pqpair->tr[cpl->cid]; 921 pqpair->sq_head = cpl->sqhd; 922 923 if (tr->req) { 924 /* Prefetch the req's STAILQ_ENTRY since we'll need to access it 925 * as part of putting the req back on the qpair's free list. 926 */ 927 __builtin_prefetch(&tr->req->stailq); 928 nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true); 929 } else { 930 SPDK_ERRLOG("cpl does not map to outstanding cmd\n"); 931 spdk_nvme_qpair_print_completion(qpair, cpl); 932 assert(0); 933 } 934 935 if (++num_completions == max_completions) { 936 break; 937 } 938 } 939 940 if (num_completions > 0) { 941 pqpair->stat->completions += num_completions; 942 nvme_pcie_qpair_ring_cq_doorbell(qpair); 943 } else { 944 pqpair->stat->idle_polls++; 945 } 946 947 if (pqpair->flags.delay_cmd_submit) { 948 if (pqpair->last_sq_tail != pqpair->sq_tail) { 949 nvme_pcie_qpair_ring_sq_doorbell(qpair); 950 pqpair->last_sq_tail = pqpair->sq_tail; 951 } 952 } 953 954 if (spdk_unlikely(ctrlr->timeout_enabled)) { 955 /* 956 * User registered for timeout callback 957 */ 958 nvme_pcie_qpair_check_timeout(qpair); 959 } 960 961 /* Before returning, complete any pending admin request or 962 * process the admin qpair disconnection. 963 */ 964 if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) { 965 nvme_pcie_qpair_complete_pending_admin_request(qpair); 966 967 if (nvme_qpair_get_state(qpair) == NVME_QPAIR_DISCONNECTING) { 968 rc = nvme_ctrlr_disable_poll(qpair->ctrlr); 969 if (rc != -EAGAIN) { 970 nvme_transport_ctrlr_disconnect_qpair_done(qpair); 971 } 972 } 973 974 nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); 975 } 976 977 if (spdk_unlikely(pqpair->flags.has_pending_vtophys_failures)) { 978 struct nvme_tracker *tr, *tmp; 979 980 TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) { 981 if (tr->bad_vtophys) { 982 tr->bad_vtophys = 0; 983 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 984 } 985 } 986 pqpair->flags.has_pending_vtophys_failures = 0; 987 } 988 989 return num_completions; 990 } 991 992 int 993 nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair) 994 { 995 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 996 997 if (nvme_qpair_is_admin_queue(qpair)) { 998 nvme_pcie_admin_qpair_destroy(qpair); 999 } 1000 /* 1001 * We check sq_vaddr and cq_vaddr to see if the user specified the memory 1002 * buffers when creating the I/O queue. 1003 * If the user specified them, we cannot free that memory. 1004 * Nor do we free it if it's in the CMB. 1005 */ 1006 if (!pqpair->sq_vaddr && pqpair->cmd && !pqpair->sq_in_cmb) { 1007 spdk_free(pqpair->cmd); 1008 } 1009 if (!pqpair->cq_vaddr && pqpair->cpl) { 1010 spdk_free(pqpair->cpl); 1011 } 1012 if (pqpair->tr) { 1013 spdk_free(pqpair->tr); 1014 } 1015 1016 nvme_qpair_deinit(qpair); 1017 1018 if (!pqpair->shared_stats && (!qpair->active_proc || 1019 qpair->active_proc == nvme_ctrlr_get_current_process(qpair->ctrlr))) { 1020 if (qpair->id) { 1021 free(pqpair->stat); 1022 } else { 1023 /* statistics of admin qpair are allocates from huge pages because 1024 * admin qpair is shared for multi-process */ 1025 spdk_free(pqpair->stat); 1026 } 1027 1028 } 1029 1030 spdk_free(pqpair); 1031 1032 return 0; 1033 } 1034 1035 struct spdk_nvme_qpair * 1036 nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, 1037 const struct spdk_nvme_io_qpair_opts *opts) 1038 { 1039 struct nvme_pcie_qpair *pqpair; 1040 struct spdk_nvme_qpair *qpair; 1041 int rc; 1042 1043 assert(ctrlr != NULL); 1044 1045 pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, 1046 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); 1047 if (pqpair == NULL) { 1048 return NULL; 1049 } 1050 1051 pqpair->num_entries = opts->io_queue_size; 1052 pqpair->flags.delay_cmd_submit = opts->delay_cmd_submit; 1053 1054 qpair = &pqpair->qpair; 1055 1056 rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests, opts->async_mode); 1057 if (rc != 0) { 1058 nvme_pcie_qpair_destroy(qpair); 1059 return NULL; 1060 } 1061 1062 rc = nvme_pcie_qpair_construct(qpair, opts); 1063 1064 if (rc != 0) { 1065 nvme_pcie_qpair_destroy(qpair); 1066 return NULL; 1067 } 1068 1069 return qpair; 1070 } 1071 1072 int 1073 nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 1074 { 1075 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 1076 struct nvme_completion_poll_status *status; 1077 int rc; 1078 1079 assert(ctrlr != NULL); 1080 1081 if (ctrlr->is_removed) { 1082 goto free; 1083 } 1084 1085 if (ctrlr->prepare_for_reset) { 1086 if (nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING) { 1087 pqpair->flags.defer_destruction = true; 1088 } 1089 goto clear_shadow_doorbells; 1090 } 1091 1092 /* If attempting to delete a qpair that's still being connected, we have to wait until it's 1093 * finished, so that we don't free it while it's waiting for the create cq/sq callbacks. 1094 */ 1095 while (pqpair->pcie_state == NVME_PCIE_QPAIR_WAIT_FOR_CQ || 1096 pqpair->pcie_state == NVME_PCIE_QPAIR_WAIT_FOR_SQ) { 1097 rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); 1098 if (rc < 0) { 1099 break; 1100 } 1101 } 1102 1103 status = calloc(1, sizeof(*status)); 1104 if (!status) { 1105 SPDK_ERRLOG("Failed to allocate status tracker\n"); 1106 goto free; 1107 } 1108 1109 /* Delete the I/O submission queue */ 1110 rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, status); 1111 if (rc != 0) { 1112 SPDK_ERRLOG("Failed to send request to delete_io_sq with rc=%d\n", rc); 1113 free(status); 1114 goto free; 1115 } 1116 if (nvme_wait_for_completion(ctrlr->adminq, status)) { 1117 if (!status->timed_out) { 1118 free(status); 1119 } 1120 goto free; 1121 } 1122 1123 /* Now that the submission queue is deleted, the device is supposed to have 1124 * completed any outstanding I/O. Try to complete them. If they don't complete, 1125 * they'll be marked as aborted and completed below. */ 1126 if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) { 1127 nvme_pcie_qpair_process_completions(qpair, 0); 1128 } 1129 1130 memset(status, 0, sizeof(*status)); 1131 /* Delete the completion queue */ 1132 rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, status); 1133 if (rc != 0) { 1134 SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc); 1135 free(status); 1136 goto free; 1137 } 1138 if (nvme_wait_for_completion(ctrlr->adminq, status)) { 1139 if (!status->timed_out) { 1140 free(status); 1141 } 1142 goto free; 1143 } 1144 free(status); 1145 1146 clear_shadow_doorbells: 1147 if (pqpair->flags.has_shadow_doorbell && ctrlr->shadow_doorbell) { 1148 *pqpair->shadow_doorbell.sq_tdbl = 0; 1149 *pqpair->shadow_doorbell.cq_hdbl = 0; 1150 *pqpair->shadow_doorbell.sq_eventidx = 0; 1151 *pqpair->shadow_doorbell.cq_eventidx = 0; 1152 } 1153 free: 1154 if (qpair->no_deletion_notification_needed == 0) { 1155 /* Abort the rest of the I/O */ 1156 nvme_pcie_qpair_abort_trackers(qpair, 1); 1157 } 1158 1159 if (!pqpair->flags.defer_destruction) { 1160 nvme_pcie_qpair_destroy(qpair); 1161 } 1162 return 0; 1163 } 1164 1165 static void 1166 nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr) 1167 { 1168 if (!qpair->in_completion_context) { 1169 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 1170 1171 tr->bad_vtophys = 1; 1172 pqpair->flags.has_pending_vtophys_failures = 1; 1173 return; 1174 } 1175 1176 /* 1177 * Bad vtophys translation, so abort this request and return 1178 * immediately. 1179 */ 1180 SPDK_ERRLOG("vtophys or other payload buffer related error\n"); 1181 nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC, 1182 SPDK_NVME_SC_INVALID_FIELD, 1183 1 /* do not retry */, true); 1184 } 1185 1186 /* 1187 * Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes. 1188 * 1189 * *prp_index will be updated to account for the number of PRP entries used. 1190 */ 1191 static inline int 1192 nvme_pcie_prp_list_append(struct spdk_nvme_ctrlr *ctrlr, struct nvme_tracker *tr, 1193 uint32_t *prp_index, void *virt_addr, size_t len, 1194 uint32_t page_size) 1195 { 1196 struct spdk_nvme_cmd *cmd = &tr->req->cmd; 1197 uintptr_t page_mask = page_size - 1; 1198 uint64_t phys_addr; 1199 uint32_t i; 1200 1201 SPDK_DEBUGLOG(nvme, "prp_index:%u virt_addr:%p len:%u\n", 1202 *prp_index, virt_addr, (uint32_t)len); 1203 1204 if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) { 1205 SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr); 1206 return -EFAULT; 1207 } 1208 1209 i = *prp_index; 1210 while (len) { 1211 uint32_t seg_len; 1212 1213 /* 1214 * prp_index 0 is stored in prp1, and the rest are stored in the prp[] array, 1215 * so prp_index == count is valid. 1216 */ 1217 if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) { 1218 SPDK_ERRLOG("out of PRP entries\n"); 1219 return -EFAULT; 1220 } 1221 1222 phys_addr = nvme_pcie_vtophys(ctrlr, virt_addr, NULL); 1223 if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) { 1224 SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr); 1225 return -EFAULT; 1226 } 1227 1228 if (i == 0) { 1229 SPDK_DEBUGLOG(nvme, "prp1 = %p\n", (void *)phys_addr); 1230 cmd->dptr.prp.prp1 = phys_addr; 1231 seg_len = page_size - ((uintptr_t)virt_addr & page_mask); 1232 } else { 1233 if ((phys_addr & page_mask) != 0) { 1234 SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr); 1235 return -EFAULT; 1236 } 1237 1238 SPDK_DEBUGLOG(nvme, "prp[%u] = %p\n", i - 1, (void *)phys_addr); 1239 tr->u.prp[i - 1] = phys_addr; 1240 seg_len = page_size; 1241 } 1242 1243 seg_len = spdk_min(seg_len, len); 1244 virt_addr = (uint8_t *)virt_addr + seg_len; 1245 len -= seg_len; 1246 i++; 1247 } 1248 1249 cmd->psdt = SPDK_NVME_PSDT_PRP; 1250 if (i <= 1) { 1251 cmd->dptr.prp.prp2 = 0; 1252 } else if (i == 2) { 1253 cmd->dptr.prp.prp2 = tr->u.prp[0]; 1254 SPDK_DEBUGLOG(nvme, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2); 1255 } else { 1256 cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr; 1257 SPDK_DEBUGLOG(nvme, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2); 1258 } 1259 1260 *prp_index = i; 1261 return 0; 1262 } 1263 1264 static int 1265 nvme_pcie_qpair_build_request_invalid(struct spdk_nvme_qpair *qpair, 1266 struct nvme_request *req, struct nvme_tracker *tr, bool dword_aligned) 1267 { 1268 assert(0); 1269 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 1270 return -EINVAL; 1271 } 1272 1273 /** 1274 * Build PRP list describing physically contiguous payload buffer. 1275 */ 1276 static int 1277 nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, 1278 struct nvme_tracker *tr, bool dword_aligned) 1279 { 1280 uint32_t prp_index = 0; 1281 int rc; 1282 1283 rc = nvme_pcie_prp_list_append(qpair->ctrlr, tr, &prp_index, 1284 (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset, 1285 req->payload_size, qpair->ctrlr->page_size); 1286 if (rc) { 1287 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 1288 } 1289 1290 return rc; 1291 } 1292 1293 /** 1294 * Build an SGL describing a physically contiguous payload buffer. 1295 * 1296 * This is more efficient than using PRP because large buffers can be 1297 * described this way. 1298 */ 1299 static int 1300 nvme_pcie_qpair_build_contig_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, 1301 struct nvme_tracker *tr, bool dword_aligned) 1302 { 1303 uint8_t *virt_addr; 1304 uint64_t phys_addr, mapping_length; 1305 uint32_t length; 1306 struct spdk_nvme_sgl_descriptor *sgl; 1307 uint32_t nseg = 0; 1308 1309 assert(req->payload_size != 0); 1310 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); 1311 1312 sgl = tr->u.sgl; 1313 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1314 req->cmd.dptr.sgl1.unkeyed.subtype = 0; 1315 1316 length = req->payload_size; 1317 /* ubsan complains about applying zero offset to null pointer if contig_or_cb_arg is NULL, 1318 * so just double cast it to make it go away */ 1319 virt_addr = (uint8_t *)((uintptr_t)req->payload.contig_or_cb_arg + req->payload_offset); 1320 1321 while (length > 0) { 1322 if (nseg >= NVME_MAX_SGL_DESCRIPTORS) { 1323 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 1324 return -EFAULT; 1325 } 1326 1327 if (dword_aligned && ((uintptr_t)virt_addr & 3)) { 1328 SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr); 1329 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 1330 return -EFAULT; 1331 } 1332 1333 mapping_length = length; 1334 phys_addr = nvme_pcie_vtophys(qpair->ctrlr, virt_addr, &mapping_length); 1335 if (phys_addr == SPDK_VTOPHYS_ERROR) { 1336 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 1337 return -EFAULT; 1338 } 1339 1340 mapping_length = spdk_min(length, mapping_length); 1341 1342 length -= mapping_length; 1343 virt_addr += mapping_length; 1344 1345 sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 1346 sgl->unkeyed.length = mapping_length; 1347 sgl->address = phys_addr; 1348 sgl->unkeyed.subtype = 0; 1349 1350 sgl++; 1351 nseg++; 1352 } 1353 1354 if (nseg == 1) { 1355 /* 1356 * The whole transfer can be described by a single SGL descriptor. 1357 * Use the special case described by the spec where SGL1's type is Data Block. 1358 * This means the SGL in the tracker is not used at all, so copy the first (and only) 1359 * SGL element into SGL1. 1360 */ 1361 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 1362 req->cmd.dptr.sgl1.address = tr->u.sgl[0].address; 1363 req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length; 1364 } else { 1365 /* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because 1366 * NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page. 1367 */ 1368 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT; 1369 req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr; 1370 req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor); 1371 } 1372 1373 return 0; 1374 } 1375 1376 /** 1377 * Build SGL list describing scattered payload buffer. 1378 */ 1379 static int 1380 nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, 1381 struct nvme_tracker *tr, bool dword_aligned) 1382 { 1383 int rc; 1384 void *virt_addr; 1385 uint64_t phys_addr, mapping_length; 1386 uint32_t remaining_transfer_len, remaining_user_sge_len, length; 1387 struct spdk_nvme_sgl_descriptor *sgl; 1388 uint32_t nseg = 0; 1389 1390 /* 1391 * Build scattered payloads. 1392 */ 1393 assert(req->payload_size != 0); 1394 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); 1395 assert(req->payload.reset_sgl_fn != NULL); 1396 assert(req->payload.next_sge_fn != NULL); 1397 req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); 1398 1399 sgl = tr->u.sgl; 1400 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1401 req->cmd.dptr.sgl1.unkeyed.subtype = 0; 1402 1403 remaining_transfer_len = req->payload_size; 1404 1405 while (remaining_transfer_len > 0) { 1406 rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, 1407 &virt_addr, &remaining_user_sge_len); 1408 if (rc) { 1409 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 1410 return -EFAULT; 1411 } 1412 1413 /* Bit Bucket SGL descriptor */ 1414 if ((uint64_t)virt_addr == UINT64_MAX) { 1415 /* TODO: enable WRITE and COMPARE when necessary */ 1416 if (req->cmd.opc != SPDK_NVME_OPC_READ) { 1417 SPDK_ERRLOG("Only READ command can be supported\n"); 1418 goto exit; 1419 } 1420 if (nseg >= NVME_MAX_SGL_DESCRIPTORS) { 1421 SPDK_ERRLOG("Too many SGL entries\n"); 1422 goto exit; 1423 } 1424 1425 sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_BIT_BUCKET; 1426 /* If the SGL describes a destination data buffer, the length of data 1427 * buffer shall be discarded by controller, and the length is included 1428 * in Number of Logical Blocks (NLB) parameter. Otherwise, the length 1429 * is not included in the NLB parameter. 1430 */ 1431 remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len); 1432 remaining_transfer_len -= remaining_user_sge_len; 1433 1434 sgl->unkeyed.length = remaining_user_sge_len; 1435 sgl->address = 0; 1436 sgl->unkeyed.subtype = 0; 1437 1438 sgl++; 1439 nseg++; 1440 1441 continue; 1442 } 1443 1444 remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len); 1445 remaining_transfer_len -= remaining_user_sge_len; 1446 while (remaining_user_sge_len > 0) { 1447 if (nseg >= NVME_MAX_SGL_DESCRIPTORS) { 1448 SPDK_ERRLOG("Too many SGL entries\n"); 1449 goto exit; 1450 } 1451 1452 if (dword_aligned && ((uintptr_t)virt_addr & 3)) { 1453 SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr); 1454 goto exit; 1455 } 1456 1457 mapping_length = remaining_user_sge_len; 1458 phys_addr = nvme_pcie_vtophys(qpair->ctrlr, virt_addr, &mapping_length); 1459 if (phys_addr == SPDK_VTOPHYS_ERROR) { 1460 goto exit; 1461 } 1462 1463 length = spdk_min(remaining_user_sge_len, mapping_length); 1464 remaining_user_sge_len -= length; 1465 virt_addr = (uint8_t *)virt_addr + length; 1466 1467 if (nseg > 0 && phys_addr == 1468 (*(sgl - 1)).address + (*(sgl - 1)).unkeyed.length) { 1469 /* extend previous entry */ 1470 (*(sgl - 1)).unkeyed.length += length; 1471 continue; 1472 } 1473 1474 sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 1475 sgl->unkeyed.length = length; 1476 sgl->address = phys_addr; 1477 sgl->unkeyed.subtype = 0; 1478 1479 sgl++; 1480 nseg++; 1481 } 1482 } 1483 1484 if (nseg == 1) { 1485 /* 1486 * The whole transfer can be described by a single SGL descriptor. 1487 * Use the special case described by the spec where SGL1's type is Data Block. 1488 * This means the SGL in the tracker is not used at all, so copy the first (and only) 1489 * SGL element into SGL1. 1490 */ 1491 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 1492 req->cmd.dptr.sgl1.address = tr->u.sgl[0].address; 1493 req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length; 1494 } else { 1495 /* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because 1496 * NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page. 1497 */ 1498 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT; 1499 req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr; 1500 req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor); 1501 } 1502 1503 return 0; 1504 1505 exit: 1506 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 1507 return -EFAULT; 1508 } 1509 1510 /** 1511 * Build PRP list describing scattered payload buffer. 1512 */ 1513 static int 1514 nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, 1515 struct nvme_tracker *tr, bool dword_aligned) 1516 { 1517 int rc; 1518 void *virt_addr; 1519 uint32_t remaining_transfer_len, length; 1520 uint32_t prp_index = 0; 1521 uint32_t page_size = qpair->ctrlr->page_size; 1522 1523 /* 1524 * Build scattered payloads. 1525 */ 1526 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); 1527 assert(req->payload.reset_sgl_fn != NULL); 1528 req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); 1529 1530 remaining_transfer_len = req->payload_size; 1531 while (remaining_transfer_len > 0) { 1532 assert(req->payload.next_sge_fn != NULL); 1533 rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length); 1534 if (rc) { 1535 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 1536 return -EFAULT; 1537 } 1538 1539 length = spdk_min(remaining_transfer_len, length); 1540 1541 /* 1542 * Any incompatible sges should have been handled up in the splitting routine, 1543 * but assert here as an additional check. 1544 * 1545 * All SGEs except last must end on a page boundary. 1546 */ 1547 assert((length == remaining_transfer_len) || 1548 _is_page_aligned((uintptr_t)virt_addr + length, page_size)); 1549 1550 rc = nvme_pcie_prp_list_append(qpair->ctrlr, tr, &prp_index, virt_addr, length, page_size); 1551 if (rc) { 1552 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 1553 return rc; 1554 } 1555 1556 remaining_transfer_len -= length; 1557 } 1558 1559 return 0; 1560 } 1561 1562 typedef int(*build_req_fn)(struct spdk_nvme_qpair *, struct nvme_request *, struct nvme_tracker *, 1563 bool); 1564 1565 static build_req_fn const g_nvme_pcie_build_req_table[][2] = { 1566 [NVME_PAYLOAD_TYPE_INVALID] = { 1567 nvme_pcie_qpair_build_request_invalid, /* PRP */ 1568 nvme_pcie_qpair_build_request_invalid /* SGL */ 1569 }, 1570 [NVME_PAYLOAD_TYPE_CONTIG] = { 1571 nvme_pcie_qpair_build_contig_request, /* PRP */ 1572 nvme_pcie_qpair_build_contig_hw_sgl_request /* SGL */ 1573 }, 1574 [NVME_PAYLOAD_TYPE_SGL] = { 1575 nvme_pcie_qpair_build_prps_sgl_request, /* PRP */ 1576 nvme_pcie_qpair_build_hw_sgl_request /* SGL */ 1577 } 1578 }; 1579 1580 static int 1581 nvme_pcie_qpair_build_metadata(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr, 1582 bool sgl_supported, bool mptr_sgl_supported, bool dword_aligned) 1583 { 1584 void *md_payload; 1585 struct nvme_request *req = tr->req; 1586 uint64_t mapping_length; 1587 1588 if (req->payload.md) { 1589 md_payload = (uint8_t *)req->payload.md + req->md_offset; 1590 if (dword_aligned && ((uintptr_t)md_payload & 3)) { 1591 SPDK_ERRLOG("virt_addr %p not dword aligned\n", md_payload); 1592 goto exit; 1593 } 1594 1595 mapping_length = req->md_size; 1596 if (sgl_supported && mptr_sgl_supported && dword_aligned) { 1597 assert(req->cmd.psdt == SPDK_NVME_PSDT_SGL_MPTR_CONTIG); 1598 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_SGL; 1599 1600 tr->meta_sgl.address = nvme_pcie_vtophys(qpair->ctrlr, md_payload, &mapping_length); 1601 if (tr->meta_sgl.address == SPDK_VTOPHYS_ERROR || mapping_length != req->md_size) { 1602 goto exit; 1603 } 1604 tr->meta_sgl.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 1605 tr->meta_sgl.unkeyed.length = req->md_size; 1606 tr->meta_sgl.unkeyed.subtype = 0; 1607 req->cmd.mptr = tr->prp_sgl_bus_addr - sizeof(struct spdk_nvme_sgl_descriptor); 1608 } else { 1609 req->cmd.mptr = nvme_pcie_vtophys(qpair->ctrlr, md_payload, &mapping_length); 1610 if (req->cmd.mptr == SPDK_VTOPHYS_ERROR || mapping_length != req->md_size) { 1611 goto exit; 1612 } 1613 } 1614 } 1615 1616 return 0; 1617 1618 exit: 1619 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 1620 return -EINVAL; 1621 } 1622 1623 int 1624 nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req) 1625 { 1626 struct nvme_tracker *tr; 1627 int rc = 0; 1628 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 1629 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 1630 enum nvme_payload_type payload_type; 1631 bool sgl_supported; 1632 bool mptr_sgl_supported; 1633 bool dword_aligned = true; 1634 1635 if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) { 1636 nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); 1637 } 1638 1639 tr = TAILQ_FIRST(&pqpair->free_tr); 1640 1641 if (tr == NULL) { 1642 pqpair->stat->queued_requests++; 1643 /* Inform the upper layer to try again later. */ 1644 rc = -EAGAIN; 1645 goto exit; 1646 } 1647 1648 pqpair->stat->submitted_requests++; 1649 TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */ 1650 TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list); 1651 pqpair->qpair.queue_depth++; 1652 tr->req = req; 1653 tr->cb_fn = req->cb_fn; 1654 tr->cb_arg = req->cb_arg; 1655 req->cmd.cid = tr->cid; 1656 /* Use PRP by default. This bit will be overridden below if needed. */ 1657 req->cmd.psdt = SPDK_NVME_PSDT_PRP; 1658 1659 if (req->payload_size != 0) { 1660 payload_type = nvme_payload_type(&req->payload); 1661 /* According to the specification, PRPs shall be used for all 1662 * Admin commands for NVMe over PCIe implementations. 1663 */ 1664 sgl_supported = (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) != 0 && 1665 !nvme_qpair_is_admin_queue(qpair); 1666 mptr_sgl_supported = (ctrlr->flags & SPDK_NVME_CTRLR_MPTR_SGL_SUPPORTED) != 0 && 1667 !nvme_qpair_is_admin_queue(qpair); 1668 1669 if (sgl_supported) { 1670 /* Don't use SGL for DSM command */ 1671 if (spdk_unlikely((ctrlr->quirks & NVME_QUIRK_NO_SGL_FOR_DSM) && 1672 (req->cmd.opc == SPDK_NVME_OPC_DATASET_MANAGEMENT))) { 1673 sgl_supported = false; 1674 } 1675 } 1676 1677 if (sgl_supported && !(ctrlr->flags & SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT)) { 1678 dword_aligned = false; 1679 } 1680 1681 /* If we fail to build the request or the metadata, do not return the -EFAULT back up 1682 * the stack. This ensures that we always fail these types of requests via a 1683 * completion callback, and never in the context of the submission. 1684 */ 1685 rc = g_nvme_pcie_build_req_table[payload_type][sgl_supported](qpair, req, tr, dword_aligned); 1686 if (rc < 0) { 1687 assert(rc == -EFAULT); 1688 rc = 0; 1689 goto exit; 1690 } 1691 1692 rc = nvme_pcie_qpair_build_metadata(qpair, tr, sgl_supported, mptr_sgl_supported, dword_aligned); 1693 if (rc < 0) { 1694 assert(rc == -EFAULT); 1695 rc = 0; 1696 goto exit; 1697 } 1698 } 1699 1700 nvme_pcie_qpair_submit_tracker(qpair, tr); 1701 1702 exit: 1703 if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) { 1704 nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); 1705 } 1706 1707 return rc; 1708 } 1709 1710 struct spdk_nvme_transport_poll_group * 1711 nvme_pcie_poll_group_create(void) 1712 { 1713 struct nvme_pcie_poll_group *group = calloc(1, sizeof(*group)); 1714 1715 if (group == NULL) { 1716 SPDK_ERRLOG("Unable to allocate poll group.\n"); 1717 return NULL; 1718 } 1719 1720 return &group->group; 1721 } 1722 1723 int 1724 nvme_pcie_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair) 1725 { 1726 return 0; 1727 } 1728 1729 int 1730 nvme_pcie_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair) 1731 { 1732 return 0; 1733 } 1734 1735 int 1736 nvme_pcie_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup, 1737 struct spdk_nvme_qpair *qpair) 1738 { 1739 return 0; 1740 } 1741 1742 int 1743 nvme_pcie_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup, 1744 struct spdk_nvme_qpair *qpair) 1745 { 1746 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 1747 1748 pqpair->stat = &g_dummy_stat; 1749 return 0; 1750 } 1751 1752 int64_t 1753 nvme_pcie_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup, 1754 uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb) 1755 { 1756 struct spdk_nvme_qpair *qpair, *tmp_qpair; 1757 int32_t local_completions = 0; 1758 int64_t total_completions = 0; 1759 1760 STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) { 1761 disconnected_qpair_cb(qpair, tgroup->group->ctx); 1762 } 1763 1764 STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) { 1765 local_completions = spdk_nvme_qpair_process_completions(qpair, completions_per_qpair); 1766 if (spdk_unlikely(local_completions < 0)) { 1767 disconnected_qpair_cb(qpair, tgroup->group->ctx); 1768 total_completions = -ENXIO; 1769 } else if (spdk_likely(total_completions >= 0)) { 1770 total_completions += local_completions; 1771 } 1772 } 1773 1774 return total_completions; 1775 } 1776 1777 int 1778 nvme_pcie_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup) 1779 { 1780 if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) { 1781 return -EBUSY; 1782 } 1783 1784 free(tgroup); 1785 1786 return 0; 1787 } 1788 1789 int 1790 nvme_pcie_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup, 1791 struct spdk_nvme_transport_poll_group_stat **_stats) 1792 { 1793 struct nvme_pcie_poll_group *group; 1794 struct spdk_nvme_transport_poll_group_stat *stats; 1795 1796 if (tgroup == NULL || _stats == NULL) { 1797 SPDK_ERRLOG("Invalid stats or group pointer\n"); 1798 return -EINVAL; 1799 } 1800 1801 stats = calloc(1, sizeof(*stats)); 1802 if (!stats) { 1803 SPDK_ERRLOG("Can't allocate memory for stats\n"); 1804 return -ENOMEM; 1805 } 1806 stats->trtype = SPDK_NVME_TRANSPORT_PCIE; 1807 group = SPDK_CONTAINEROF(tgroup, struct nvme_pcie_poll_group, group); 1808 memcpy(&stats->pcie, &group->stats, sizeof(group->stats)); 1809 1810 *_stats = stats; 1811 1812 return 0; 1813 } 1814 1815 void 1816 nvme_pcie_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup, 1817 struct spdk_nvme_transport_poll_group_stat *stats) 1818 { 1819 free(stats); 1820 } 1821 1822 SPDK_TRACE_REGISTER_FN(nvme_pcie, "nvme_pcie", TRACE_GROUP_NVME_PCIE) 1823 { 1824 struct spdk_trace_tpoint_opts opts[] = { 1825 { 1826 "NVME_PCIE_SUBMIT", TRACE_NVME_PCIE_SUBMIT, 1827 OWNER_TYPE_NVME_PCIE_QP, OBJECT_NVME_PCIE_REQ, 1, 1828 { { "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }, 1829 { "cid", SPDK_TRACE_ARG_TYPE_INT, 4 }, 1830 { "opc", SPDK_TRACE_ARG_TYPE_INT, 4 }, 1831 { "dw10", SPDK_TRACE_ARG_TYPE_PTR, 4 }, 1832 { "dw11", SPDK_TRACE_ARG_TYPE_PTR, 4 }, 1833 { "dw12", SPDK_TRACE_ARG_TYPE_PTR, 4 }, 1834 { "qd", SPDK_TRACE_ARG_TYPE_INT, 4 } 1835 } 1836 }, 1837 { 1838 "NVME_PCIE_COMPLETE", TRACE_NVME_PCIE_COMPLETE, 1839 OWNER_TYPE_NVME_PCIE_QP, OBJECT_NVME_PCIE_REQ, 0, 1840 { { "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }, 1841 { "cid", SPDK_TRACE_ARG_TYPE_INT, 4 }, 1842 { "cpl", SPDK_TRACE_ARG_TYPE_PTR, 4 }, 1843 { "qd", SPDK_TRACE_ARG_TYPE_INT, 4 } 1844 } 1845 }, 1846 }; 1847 1848 spdk_trace_register_object(OBJECT_NVME_PCIE_REQ, 'p'); 1849 spdk_trace_register_owner_type(OWNER_TYPE_NVME_PCIE_QP, 'q'); 1850 spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts)); 1851 } 1852