xref: /spdk/lib/nvme/nvme_pcie_common.c (revision 0ecbe09bc18245c46ebf6a3aae64ce64ea26c067)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2021 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * NVMe over PCIe common library
36  */
37 
38 #include "spdk/stdinc.h"
39 #include "spdk/likely.h"
40 #include "spdk/string.h"
41 #include "nvme_internal.h"
42 #include "nvme_pcie_internal.h"
43 #include "spdk/trace.h"
44 
45 #include "spdk_internal/trace_defs.h"
46 
47 __thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL;
48 
49 static void
50 nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr);
51 
52 static inline uint64_t
53 nvme_pcie_vtophys(struct spdk_nvme_ctrlr *ctrlr, const void *buf, uint64_t *size)
54 {
55 	if (spdk_likely(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE)) {
56 		return spdk_vtophys(buf, size);
57 	} else {
58 		/* vfio-user address translation with IOVA=VA mode */
59 		return (uint64_t)(uintptr_t)buf;
60 	}
61 }
62 
63 int
64 nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair)
65 {
66 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
67 	uint32_t i;
68 
69 	/* all head/tail vals are set to 0 */
70 	pqpair->last_sq_tail = pqpair->sq_tail = pqpair->sq_head = pqpair->cq_head = 0;
71 
72 	/*
73 	 * First time through the completion queue, HW will set phase
74 	 *  bit on completions to 1.  So set this to 1 here, indicating
75 	 *  we're looking for a 1 to know which entries have completed.
76 	 *  we'll toggle the bit each time when the completion queue
77 	 *  rolls over.
78 	 */
79 	pqpair->flags.phase = 1;
80 	for (i = 0; i < pqpair->num_entries; i++) {
81 		pqpair->cpl[i].status.p = 0;
82 	}
83 
84 	return 0;
85 }
86 
87 static void
88 nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr)
89 {
90 	tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp);
91 	tr->cid = cid;
92 	tr->req = NULL;
93 }
94 
95 static void *
96 nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t size, uint64_t alignment,
97 			  uint64_t *phys_addr)
98 {
99 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
100 	uintptr_t addr;
101 
102 	if (pctrlr->cmb.mem_register_addr != NULL) {
103 		/* BAR is mapped for data */
104 		return NULL;
105 	}
106 
107 	addr = (uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset;
108 	addr = (addr + (alignment - 1)) & ~(alignment - 1);
109 
110 	/* CMB may only consume part of the BAR, calculate accordingly */
111 	if (addr + size > ((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.size)) {
112 		SPDK_ERRLOG("Tried to allocate past valid CMB range!\n");
113 		return NULL;
114 	}
115 	*phys_addr = pctrlr->cmb.bar_pa + addr - (uintptr_t)pctrlr->cmb.bar_va;
116 
117 	pctrlr->cmb.current_offset = (addr + size) - (uintptr_t)pctrlr->cmb.bar_va;
118 
119 	return (void *)addr;
120 }
121 
122 int
123 nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair,
124 			  const struct spdk_nvme_io_qpair_opts *opts)
125 {
126 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
127 	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(ctrlr);
128 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
129 	struct nvme_tracker	*tr;
130 	uint16_t		i;
131 	uint16_t		num_trackers;
132 	size_t			page_align = sysconf(_SC_PAGESIZE);
133 	size_t			queue_align, queue_len;
134 	uint32_t                flags = SPDK_MALLOC_DMA;
135 	uint64_t		sq_paddr = 0;
136 	uint64_t		cq_paddr = 0;
137 
138 	if (opts) {
139 		pqpair->sq_vaddr = opts->sq.vaddr;
140 		pqpair->cq_vaddr = opts->cq.vaddr;
141 		sq_paddr = opts->sq.paddr;
142 		cq_paddr = opts->cq.paddr;
143 	}
144 
145 	pqpair->retry_count = ctrlr->opts.transport_retry_count;
146 
147 	/*
148 	 * Limit the maximum number of completions to return per call to prevent wraparound,
149 	 * and calculate how many trackers can be submitted at once without overflowing the
150 	 * completion queue.
151 	 */
152 	pqpair->max_completions_cap = pqpair->num_entries / 4;
153 	pqpair->max_completions_cap = spdk_max(pqpair->max_completions_cap, NVME_MIN_COMPLETIONS);
154 	pqpair->max_completions_cap = spdk_min(pqpair->max_completions_cap, NVME_MAX_COMPLETIONS);
155 	num_trackers = pqpair->num_entries - pqpair->max_completions_cap;
156 
157 	SPDK_INFOLOG(nvme, "max_completions_cap = %" PRIu16 " num_trackers = %" PRIu16 "\n",
158 		     pqpair->max_completions_cap, num_trackers);
159 
160 	assert(num_trackers != 0);
161 
162 	pqpair->sq_in_cmb = false;
163 
164 	if (nvme_qpair_is_admin_queue(&pqpair->qpair)) {
165 		flags |= SPDK_MALLOC_SHARE;
166 	}
167 
168 	/* cmd and cpl rings must be aligned on page size boundaries. */
169 	if (ctrlr->opts.use_cmb_sqs) {
170 		pqpair->cmd = nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
171 							page_align, &pqpair->cmd_bus_addr);
172 		if (pqpair->cmd != NULL) {
173 			pqpair->sq_in_cmb = true;
174 		}
175 	}
176 
177 	if (pqpair->sq_in_cmb == false) {
178 		if (pqpair->sq_vaddr) {
179 			pqpair->cmd = pqpair->sq_vaddr;
180 		} else {
181 			/* To ensure physical address contiguity we make each ring occupy
182 			 * a single hugepage only. See MAX_IO_QUEUE_ENTRIES.
183 			 */
184 			queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cmd);
185 			queue_align = spdk_max(spdk_align32pow2(queue_len), page_align);
186 			pqpair->cmd = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags);
187 			if (pqpair->cmd == NULL) {
188 				SPDK_ERRLOG("alloc qpair_cmd failed\n");
189 				return -ENOMEM;
190 			}
191 		}
192 		if (sq_paddr) {
193 			assert(pqpair->sq_vaddr != NULL);
194 			pqpair->cmd_bus_addr = sq_paddr;
195 		} else {
196 			pqpair->cmd_bus_addr = nvme_pcie_vtophys(ctrlr, pqpair->cmd, NULL);
197 			if (pqpair->cmd_bus_addr == SPDK_VTOPHYS_ERROR) {
198 				SPDK_ERRLOG("spdk_vtophys(pqpair->cmd) failed\n");
199 				return -EFAULT;
200 			}
201 		}
202 	}
203 
204 	if (pqpair->cq_vaddr) {
205 		pqpair->cpl = pqpair->cq_vaddr;
206 	} else {
207 		queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cpl);
208 		queue_align = spdk_max(spdk_align32pow2(queue_len), page_align);
209 		pqpair->cpl = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags);
210 		if (pqpair->cpl == NULL) {
211 			SPDK_ERRLOG("alloc qpair_cpl failed\n");
212 			return -ENOMEM;
213 		}
214 	}
215 	if (cq_paddr) {
216 		assert(pqpair->cq_vaddr != NULL);
217 		pqpair->cpl_bus_addr = cq_paddr;
218 	} else {
219 		pqpair->cpl_bus_addr =  nvme_pcie_vtophys(ctrlr, pqpair->cpl, NULL);
220 		if (pqpair->cpl_bus_addr == SPDK_VTOPHYS_ERROR) {
221 			SPDK_ERRLOG("spdk_vtophys(pqpair->cpl) failed\n");
222 			return -EFAULT;
223 		}
224 	}
225 
226 	pqpair->sq_tdbl = pctrlr->doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
227 	pqpair->cq_hdbl = pctrlr->doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
228 
229 	/*
230 	 * Reserve space for all of the trackers in a single allocation.
231 	 *   struct nvme_tracker must be padded so that its size is already a power of 2.
232 	 *   This ensures the PRP list embedded in the nvme_tracker object will not span a
233 	 *   4KB boundary, while allowing access to trackers in tr[] via normal array indexing.
234 	 */
235 	pqpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), NULL,
236 				  SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
237 	if (pqpair->tr == NULL) {
238 		SPDK_ERRLOG("nvme_tr failed\n");
239 		return -ENOMEM;
240 	}
241 
242 	TAILQ_INIT(&pqpair->free_tr);
243 	TAILQ_INIT(&pqpair->outstanding_tr);
244 
245 	for (i = 0; i < num_trackers; i++) {
246 		tr = &pqpair->tr[i];
247 		nvme_qpair_construct_tracker(tr, i, nvme_pcie_vtophys(ctrlr, tr, NULL));
248 		TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
249 	}
250 
251 	nvme_pcie_qpair_reset(qpair);
252 
253 	return 0;
254 }
255 
256 int
257 nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t num_entries)
258 {
259 	struct nvme_pcie_qpair *pqpair;
260 	int rc;
261 
262 	pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
263 	if (pqpair == NULL) {
264 		return -ENOMEM;
265 	}
266 
267 	pqpair->num_entries = num_entries;
268 	pqpair->flags.delay_cmd_submit = 0;
269 	pqpair->pcie_state = NVME_PCIE_QPAIR_READY;
270 
271 	ctrlr->adminq = &pqpair->qpair;
272 
273 	rc = nvme_qpair_init(ctrlr->adminq,
274 			     0, /* qpair ID */
275 			     ctrlr,
276 			     SPDK_NVME_QPRIO_URGENT,
277 			     num_entries,
278 			     false);
279 	if (rc != 0) {
280 		return rc;
281 	}
282 
283 	pqpair->stat = spdk_zmalloc(sizeof(*pqpair->stat), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
284 				    SPDK_MALLOC_SHARE);
285 	if (!pqpair->stat) {
286 		SPDK_ERRLOG("Failed to allocate admin qpair statistics\n");
287 		return -ENOMEM;
288 	}
289 
290 	return nvme_pcie_qpair_construct(ctrlr->adminq, NULL);
291 }
292 
293 /**
294  * Note: the ctrlr_lock must be held when calling this function.
295  */
296 void
297 nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair,
298 		struct nvme_request *req, struct spdk_nvme_cpl *cpl)
299 {
300 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
301 	struct nvme_request		*active_req = req;
302 	struct spdk_nvme_ctrlr_process	*active_proc;
303 
304 	/*
305 	 * The admin request is from another process. Move to the per
306 	 *  process list for that process to handle it later.
307 	 */
308 	assert(nvme_qpair_is_admin_queue(qpair));
309 	assert(active_req->pid != getpid());
310 
311 	active_proc = nvme_ctrlr_get_process(ctrlr, active_req->pid);
312 	if (active_proc) {
313 		/* Save the original completion information */
314 		memcpy(&active_req->cpl, cpl, sizeof(*cpl));
315 		STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq);
316 	} else {
317 		SPDK_ERRLOG("The owning process (pid %d) is not found. Dropping the request.\n",
318 			    active_req->pid);
319 
320 		nvme_free_request(active_req);
321 	}
322 }
323 
324 /**
325  * Note: the ctrlr_lock must be held when calling this function.
326  */
327 void
328 nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair)
329 {
330 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
331 	struct nvme_request		*req, *tmp_req;
332 	pid_t				pid = getpid();
333 	struct spdk_nvme_ctrlr_process	*proc;
334 
335 	/*
336 	 * Check whether there is any pending admin request from
337 	 * other active processes.
338 	 */
339 	assert(nvme_qpair_is_admin_queue(qpair));
340 
341 	proc = nvme_ctrlr_get_current_process(ctrlr);
342 	if (!proc) {
343 		SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid);
344 		assert(proc);
345 		return;
346 	}
347 
348 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
349 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
350 
351 		assert(req->pid == pid);
352 
353 		nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, &req->cpl);
354 		nvme_free_request(req);
355 	}
356 }
357 
358 int
359 nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr,
360 				 struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn,
361 				 void *cb_arg)
362 {
363 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
364 	struct nvme_request *req;
365 	struct spdk_nvme_cmd *cmd;
366 
367 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
368 	if (req == NULL) {
369 		return -ENOMEM;
370 	}
371 
372 	cmd = &req->cmd;
373 	cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ;
374 
375 	cmd->cdw10_bits.create_io_q.qid = io_que->id;
376 	cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1;
377 
378 	cmd->cdw11_bits.create_io_cq.pc = 1;
379 	cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr;
380 
381 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
382 }
383 
384 int
385 nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr,
386 				 struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
387 {
388 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
389 	struct nvme_request *req;
390 	struct spdk_nvme_cmd *cmd;
391 
392 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
393 	if (req == NULL) {
394 		return -ENOMEM;
395 	}
396 
397 	cmd = &req->cmd;
398 	cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ;
399 
400 	cmd->cdw10_bits.create_io_q.qid = io_que->id;
401 	cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1;
402 	cmd->cdw11_bits.create_io_sq.pc = 1;
403 	cmd->cdw11_bits.create_io_sq.qprio = io_que->qprio;
404 	cmd->cdw11_bits.create_io_sq.cqid = io_que->id;
405 	cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr;
406 
407 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
408 }
409 
410 int
411 nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
412 				 spdk_nvme_cmd_cb cb_fn, void *cb_arg)
413 {
414 	struct nvme_request *req;
415 	struct spdk_nvme_cmd *cmd;
416 
417 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
418 	if (req == NULL) {
419 		return -ENOMEM;
420 	}
421 
422 	cmd = &req->cmd;
423 	cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ;
424 	cmd->cdw10_bits.delete_io_q.qid = qpair->id;
425 
426 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
427 }
428 
429 int
430 nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
431 				 spdk_nvme_cmd_cb cb_fn, void *cb_arg)
432 {
433 	struct nvme_request *req;
434 	struct spdk_nvme_cmd *cmd;
435 
436 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
437 	if (req == NULL) {
438 		return -ENOMEM;
439 	}
440 
441 	cmd = &req->cmd;
442 	cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ;
443 	cmd->cdw10_bits.delete_io_q.qid = qpair->id;
444 
445 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
446 }
447 
448 static void
449 nvme_completion_sq_error_delete_cq_cb(void *arg, const struct spdk_nvme_cpl *cpl)
450 {
451 	struct spdk_nvme_qpair *qpair = arg;
452 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
453 
454 	if (spdk_nvme_cpl_is_error(cpl)) {
455 		SPDK_ERRLOG("delete_io_cq failed!\n");
456 	}
457 
458 	pqpair->pcie_state = NVME_PCIE_QPAIR_FAILED;
459 	nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED);
460 }
461 
462 static void
463 nvme_completion_create_sq_cb(void *arg, const struct spdk_nvme_cpl *cpl)
464 {
465 	struct spdk_nvme_qpair *qpair = arg;
466 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
467 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
468 	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(ctrlr);
469 	int rc;
470 
471 	if (pqpair->flags.defer_destruction) {
472 		/* This qpair was deleted by the application while the
473 		 * connection was still in progress.  We had to wait
474 		 * to free the qpair resources until this outstanding
475 		 * command was completed.  Now that we have the completion
476 		 * free it now.
477 		 */
478 		nvme_pcie_qpair_destroy(qpair);
479 		return;
480 	}
481 
482 	if (spdk_nvme_cpl_is_error(cpl)) {
483 		SPDK_ERRLOG("nvme_create_io_sq failed, deleting cq!\n");
484 		rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_sq_error_delete_cq_cb,
485 						      qpair);
486 		if (rc != 0) {
487 			SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc);
488 			pqpair->pcie_state = NVME_PCIE_QPAIR_FAILED;
489 			nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED);
490 		}
491 		return;
492 	}
493 	pqpair->pcie_state = NVME_PCIE_QPAIR_READY;
494 	nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
495 	if (ctrlr->shadow_doorbell) {
496 		pqpair->shadow_doorbell.sq_tdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 0) *
497 						  pctrlr->doorbell_stride_u32;
498 		pqpair->shadow_doorbell.cq_hdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 1) *
499 						  pctrlr->doorbell_stride_u32;
500 		pqpair->shadow_doorbell.sq_eventidx = ctrlr->eventidx + (2 * qpair->id + 0) *
501 						      pctrlr->doorbell_stride_u32;
502 		pqpair->shadow_doorbell.cq_eventidx = ctrlr->eventidx + (2 * qpair->id + 1) *
503 						      pctrlr->doorbell_stride_u32;
504 		pqpair->flags.has_shadow_doorbell = 1;
505 	} else {
506 		pqpair->flags.has_shadow_doorbell = 0;
507 	}
508 	nvme_pcie_qpair_reset(qpair);
509 
510 }
511 
512 static void
513 nvme_completion_create_cq_cb(void *arg, const struct spdk_nvme_cpl *cpl)
514 {
515 	struct spdk_nvme_qpair *qpair = arg;
516 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
517 	int rc;
518 
519 	if (pqpair->flags.defer_destruction) {
520 		/* This qpair was deleted by the application while the
521 		 * connection was still in progress.  We had to wait
522 		 * to free the qpair resources until this outstanding
523 		 * command was completed.  Now that we have the completion
524 		 * free it now.
525 		 */
526 		nvme_pcie_qpair_destroy(qpair);
527 		return;
528 	}
529 
530 	if (spdk_nvme_cpl_is_error(cpl)) {
531 		pqpair->pcie_state = NVME_PCIE_QPAIR_FAILED;
532 		nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED);
533 		SPDK_ERRLOG("nvme_create_io_cq failed!\n");
534 		return;
535 	}
536 
537 	rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_create_sq_cb, qpair);
538 
539 	if (rc != 0) {
540 		SPDK_ERRLOG("Failed to send request to create_io_sq, deleting cq!\n");
541 		rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_sq_error_delete_cq_cb,
542 						      qpair);
543 		if (rc != 0) {
544 			SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc);
545 			pqpair->pcie_state = NVME_PCIE_QPAIR_FAILED;
546 			nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED);
547 		}
548 		return;
549 	}
550 	pqpair->pcie_state = NVME_PCIE_QPAIR_WAIT_FOR_SQ;
551 }
552 
553 static int
554 _nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
555 				 uint16_t qid)
556 {
557 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
558 	int	rc;
559 
560 	/* Statistics may already be allocated in the case of controller reset */
561 	if (!pqpair->stat) {
562 		if (qpair->poll_group) {
563 			struct nvme_pcie_poll_group *group = SPDK_CONTAINEROF(qpair->poll_group,
564 							     struct nvme_pcie_poll_group, group);
565 
566 			pqpair->stat = &group->stats;
567 			pqpair->shared_stats = true;
568 		} else {
569 			pqpair->stat = calloc(1, sizeof(*pqpair->stat));
570 			if (!pqpair->stat) {
571 				SPDK_ERRLOG("Failed to allocate qpair statistics\n");
572 				nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED);
573 				return -ENOMEM;
574 			}
575 		}
576 	}
577 
578 
579 	rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_create_cq_cb, qpair);
580 
581 	if (rc != 0) {
582 		SPDK_ERRLOG("Failed to send request to create_io_cq\n");
583 		nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED);
584 		return rc;
585 	}
586 	pqpair->pcie_state = NVME_PCIE_QPAIR_WAIT_FOR_CQ;
587 	return 0;
588 }
589 
590 int
591 nvme_pcie_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
592 {
593 	int rc = 0;
594 
595 	if (!nvme_qpair_is_admin_queue(qpair)) {
596 		rc = _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id);
597 	} else {
598 		nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
599 	}
600 
601 	return rc;
602 }
603 
604 void
605 nvme_pcie_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
606 {
607 }
608 
609 /* Used when dst points to MMIO (i.e. CMB) in a virtual machine - in these cases we must
610  * not use wide instructions because QEMU will not emulate such instructions to MMIO space.
611  * So this function ensures we only copy 8 bytes at a time.
612  */
613 static inline void
614 nvme_pcie_copy_command_mmio(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
615 {
616 	uint64_t *dst64 = (uint64_t *)dst;
617 	const uint64_t *src64 = (const uint64_t *)src;
618 	uint32_t i;
619 
620 	for (i = 0; i < sizeof(*dst) / 8; i++) {
621 		dst64[i] = src64[i];
622 	}
623 }
624 
625 static inline void
626 nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
627 {
628 	/* dst and src are known to be non-overlapping and 64-byte aligned. */
629 #if defined(__SSE2__)
630 	__m128i *d128 = (__m128i *)dst;
631 	const __m128i *s128 = (const __m128i *)src;
632 
633 	_mm_stream_si128(&d128[0], _mm_load_si128(&s128[0]));
634 	_mm_stream_si128(&d128[1], _mm_load_si128(&s128[1]));
635 	_mm_stream_si128(&d128[2], _mm_load_si128(&s128[2]));
636 	_mm_stream_si128(&d128[3], _mm_load_si128(&s128[3]));
637 #else
638 	*dst = *src;
639 #endif
640 }
641 
642 void
643 nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
644 {
645 	struct nvme_request	*req;
646 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
647 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
648 
649 	req = tr->req;
650 	assert(req != NULL);
651 
652 	spdk_trace_record(TRACE_NVME_PCIE_SUBMIT, qpair->id, 0, (uintptr_t)req,
653 			  req->cmd.cid, req->cmd.opc, req->cmd.cdw10, req->cmd.cdw11, req->cmd.cdw12);
654 
655 	if (req->cmd.fuse == SPDK_NVME_IO_FLAGS_FUSE_FIRST) {
656 		/* This is first cmd of two fused commands - don't ring doorbell */
657 		qpair->first_fused_submitted = 1;
658 	}
659 
660 	/* Don't use wide instructions to copy NVMe command, this is limited by QEMU
661 	 * virtual NVMe controller, the maximum access width is 8 Bytes for one time.
662 	 */
663 	if (spdk_unlikely((ctrlr->quirks & NVME_QUIRK_MAXIMUM_PCI_ACCESS_WIDTH) && pqpair->sq_in_cmb)) {
664 		nvme_pcie_copy_command_mmio(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
665 	} else {
666 		/* Copy the command from the tracker to the submission queue. */
667 		nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
668 	}
669 
670 	if (spdk_unlikely(++pqpair->sq_tail == pqpair->num_entries)) {
671 		pqpair->sq_tail = 0;
672 	}
673 
674 	if (spdk_unlikely(pqpair->sq_tail == pqpair->sq_head)) {
675 		SPDK_ERRLOG("sq_tail is passing sq_head!\n");
676 	}
677 
678 	if (!pqpair->flags.delay_cmd_submit) {
679 		nvme_pcie_qpair_ring_sq_doorbell(qpair);
680 	}
681 }
682 
683 void
684 nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
685 				 struct spdk_nvme_cpl *cpl, bool print_on_error)
686 {
687 	struct nvme_pcie_qpair		*pqpair = nvme_pcie_qpair(qpair);
688 	struct nvme_request		*req;
689 	bool				retry, error;
690 	bool				req_from_current_proc = true;
691 	bool				print_error;
692 
693 	req = tr->req;
694 
695 	spdk_trace_record(TRACE_NVME_PCIE_COMPLETE, qpair->id, 0, (uintptr_t)req, req->cmd.cid);
696 
697 	assert(req != NULL);
698 
699 	error = spdk_nvme_cpl_is_error(cpl);
700 	retry = error && nvme_completion_is_retry(cpl) &&
701 		req->retries < pqpair->retry_count;
702 	print_error = error && print_on_error && !qpair->ctrlr->opts.disable_error_logging;
703 
704 	if (print_error) {
705 		spdk_nvme_qpair_print_command(qpair, &req->cmd);
706 	}
707 
708 	if (print_error || SPDK_DEBUGLOG_FLAG_ENABLED("nvme")) {
709 		spdk_nvme_qpair_print_completion(qpair, cpl);
710 	}
711 
712 	assert(cpl->cid == req->cmd.cid);
713 
714 	if (retry) {
715 		req->retries++;
716 		nvme_pcie_qpair_submit_tracker(qpair, tr);
717 	} else {
718 		TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list);
719 
720 		/* Only check admin requests from different processes. */
721 		if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) {
722 			req_from_current_proc = false;
723 			nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl);
724 		} else {
725 			nvme_complete_request(tr->cb_fn, tr->cb_arg, qpair, req, cpl);
726 		}
727 
728 		if (req_from_current_proc == true) {
729 			nvme_qpair_free_request(qpair, req);
730 		}
731 
732 		tr->req = NULL;
733 
734 		TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
735 	}
736 }
737 
738 void
739 nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair,
740 					struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
741 					bool print_on_error)
742 {
743 	struct spdk_nvme_cpl	cpl;
744 
745 	memset(&cpl, 0, sizeof(cpl));
746 	cpl.sqid = qpair->id;
747 	cpl.cid = tr->cid;
748 	cpl.status.sct = sct;
749 	cpl.status.sc = sc;
750 	cpl.status.dnr = dnr;
751 	nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
752 }
753 
754 void
755 nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr)
756 {
757 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
758 	struct nvme_tracker *tr, *temp, *last;
759 
760 	last = TAILQ_LAST(&pqpair->outstanding_tr, nvme_outstanding_tr_head);
761 
762 	/* Abort previously submitted (outstanding) trs */
763 	TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) {
764 		if (!qpair->ctrlr->opts.disable_error_logging) {
765 			SPDK_ERRLOG("aborting outstanding command\n");
766 		}
767 		nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
768 							SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true);
769 
770 		if (tr == last) {
771 			break;
772 		}
773 	}
774 }
775 
776 void
777 nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
778 {
779 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
780 	struct nvme_tracker	*tr;
781 
782 	tr = TAILQ_FIRST(&pqpair->outstanding_tr);
783 	while (tr != NULL) {
784 		assert(tr->req != NULL);
785 		if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
786 			nvme_pcie_qpair_manual_complete_tracker(qpair, tr,
787 								SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0,
788 								false);
789 			tr = TAILQ_FIRST(&pqpair->outstanding_tr);
790 		} else {
791 			tr = TAILQ_NEXT(tr, tq_list);
792 		}
793 	}
794 }
795 
796 void
797 nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair)
798 {
799 	nvme_pcie_admin_qpair_abort_aers(qpair);
800 }
801 
802 void
803 nvme_pcie_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
804 {
805 	nvme_pcie_qpair_abort_trackers(qpair, dnr);
806 }
807 
808 static void
809 nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
810 {
811 	uint64_t t02;
812 	struct nvme_tracker *tr, *tmp;
813 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
814 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
815 	struct spdk_nvme_ctrlr_process *active_proc;
816 
817 	/* Don't check timeouts during controller initialization. */
818 	if (ctrlr->state != NVME_CTRLR_STATE_READY) {
819 		return;
820 	}
821 
822 	if (nvme_qpair_is_admin_queue(qpair)) {
823 		active_proc = nvme_ctrlr_get_current_process(ctrlr);
824 	} else {
825 		active_proc = qpair->active_proc;
826 	}
827 
828 	/* Only check timeouts if the current process has a timeout callback. */
829 	if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
830 		return;
831 	}
832 
833 	t02 = spdk_get_ticks();
834 	TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
835 		assert(tr->req != NULL);
836 
837 		if (nvme_request_check_timeout(tr->req, tr->cid, active_proc, t02)) {
838 			/*
839 			 * The requests are in order, so as soon as one has not timed out,
840 			 * stop iterating.
841 			 */
842 			break;
843 		}
844 	}
845 }
846 
847 int32_t
848 nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
849 {
850 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
851 	struct nvme_tracker	*tr;
852 	struct spdk_nvme_cpl	*cpl, *next_cpl;
853 	uint32_t		 num_completions = 0;
854 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
855 	uint16_t		 next_cq_head;
856 	uint8_t			 next_phase;
857 	bool			 next_is_valid = false;
858 	int			 rc;
859 
860 	if (spdk_unlikely(pqpair->pcie_state == NVME_PCIE_QPAIR_FAILED)) {
861 		return -ENXIO;
862 	}
863 
864 	if (spdk_unlikely(pqpair->pcie_state != NVME_PCIE_QPAIR_READY)) {
865 		rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
866 		if (rc < 0) {
867 			return rc;
868 		} else if (pqpair->pcie_state == NVME_PCIE_QPAIR_FAILED) {
869 			return -ENXIO;
870 		}
871 		return 0;
872 	}
873 
874 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
875 		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
876 	}
877 
878 	if (max_completions == 0 || max_completions > pqpair->max_completions_cap) {
879 		/*
880 		 * max_completions == 0 means unlimited, but complete at most
881 		 * max_completions_cap batch of I/O at a time so that the completion
882 		 * queue doorbells don't wrap around.
883 		 */
884 		max_completions = pqpair->max_completions_cap;
885 	}
886 
887 	pqpair->stat->polls++;
888 
889 	while (1) {
890 		cpl = &pqpair->cpl[pqpair->cq_head];
891 
892 		if (!next_is_valid && cpl->status.p != pqpair->flags.phase) {
893 			break;
894 		}
895 
896 		if (spdk_likely(pqpair->cq_head + 1 != pqpair->num_entries)) {
897 			next_cq_head = pqpair->cq_head + 1;
898 			next_phase = pqpair->flags.phase;
899 		} else {
900 			next_cq_head = 0;
901 			next_phase = !pqpair->flags.phase;
902 		}
903 		next_cpl = &pqpair->cpl[next_cq_head];
904 		next_is_valid = (next_cpl->status.p == next_phase);
905 		if (next_is_valid) {
906 			__builtin_prefetch(&pqpair->tr[next_cpl->cid]);
907 		}
908 
909 #ifdef __PPC64__
910 		/*
911 		 * This memory barrier prevents reordering of:
912 		 * - load after store from/to tr
913 		 * - load after load cpl phase and cpl cid
914 		 */
915 		spdk_mb();
916 #elif defined(__aarch64__)
917 		__asm volatile("dmb oshld" ::: "memory");
918 #endif
919 
920 		if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) {
921 			pqpair->cq_head = 0;
922 			pqpair->flags.phase = !pqpair->flags.phase;
923 		}
924 
925 		tr = &pqpair->tr[cpl->cid];
926 		/* Prefetch the req's STAILQ_ENTRY since we'll need to access it
927 		 * as part of putting the req back on the qpair's free list.
928 		 */
929 		__builtin_prefetch(&tr->req->stailq);
930 		pqpair->sq_head = cpl->sqhd;
931 
932 		if (tr->req) {
933 			nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true);
934 		} else {
935 			SPDK_ERRLOG("cpl does not map to outstanding cmd\n");
936 			spdk_nvme_qpair_print_completion(qpair, cpl);
937 			assert(0);
938 		}
939 
940 		if (++num_completions == max_completions) {
941 			break;
942 		}
943 	}
944 
945 	if (num_completions > 0) {
946 		pqpair->stat->completions += num_completions;
947 		nvme_pcie_qpair_ring_cq_doorbell(qpair);
948 	} else {
949 		pqpair->stat->idle_polls++;
950 	}
951 
952 	if (pqpair->flags.delay_cmd_submit) {
953 		if (pqpair->last_sq_tail != pqpair->sq_tail) {
954 			nvme_pcie_qpair_ring_sq_doorbell(qpair);
955 			pqpair->last_sq_tail = pqpair->sq_tail;
956 		}
957 	}
958 
959 	if (spdk_unlikely(ctrlr->timeout_enabled)) {
960 		/*
961 		 * User registered for timeout callback
962 		 */
963 		nvme_pcie_qpair_check_timeout(qpair);
964 	}
965 
966 	/* Before returning, complete any pending admin request. */
967 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
968 		nvme_pcie_qpair_complete_pending_admin_request(qpair);
969 
970 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
971 	}
972 
973 	if (spdk_unlikely(pqpair->flags.has_pending_vtophys_failures)) {
974 		struct nvme_tracker *tr, *tmp;
975 
976 		TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
977 			if (tr->bad_vtophys) {
978 				tr->bad_vtophys = 0;
979 				nvme_pcie_fail_request_bad_vtophys(qpair, tr);
980 			}
981 		}
982 		pqpair->flags.has_pending_vtophys_failures = 0;
983 	}
984 
985 	return num_completions;
986 }
987 
988 int
989 nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair)
990 {
991 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
992 
993 	if (nvme_qpair_is_admin_queue(qpair)) {
994 		nvme_pcie_admin_qpair_destroy(qpair);
995 	}
996 	/*
997 	 * We check sq_vaddr and cq_vaddr to see if the user specified the memory
998 	 * buffers when creating the I/O queue.
999 	 * If the user specified them, we cannot free that memory.
1000 	 * Nor do we free it if it's in the CMB.
1001 	 */
1002 	if (!pqpair->sq_vaddr && pqpair->cmd && !pqpair->sq_in_cmb) {
1003 		spdk_free(pqpair->cmd);
1004 	}
1005 	if (!pqpair->cq_vaddr && pqpair->cpl) {
1006 		spdk_free(pqpair->cpl);
1007 	}
1008 	if (pqpair->tr) {
1009 		spdk_free(pqpair->tr);
1010 	}
1011 
1012 	nvme_qpair_deinit(qpair);
1013 
1014 	if (!pqpair->shared_stats) {
1015 		if (qpair->id) {
1016 			free(pqpair->stat);
1017 		} else {
1018 			/* statistics of admin qpair are allocates from huge pages because
1019 			 * admin qpair is shared for multi-process */
1020 			spdk_free(pqpair->stat);
1021 		}
1022 
1023 	}
1024 
1025 	spdk_free(pqpair);
1026 
1027 	return 0;
1028 }
1029 
1030 struct spdk_nvme_qpair *
1031 nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
1032 				const struct spdk_nvme_io_qpair_opts *opts)
1033 {
1034 	struct nvme_pcie_qpair *pqpair;
1035 	struct spdk_nvme_qpair *qpair;
1036 	int rc;
1037 
1038 	assert(ctrlr != NULL);
1039 
1040 	pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL,
1041 			      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
1042 	if (pqpair == NULL) {
1043 		return NULL;
1044 	}
1045 
1046 	pqpair->num_entries = opts->io_queue_size;
1047 	pqpair->flags.delay_cmd_submit = opts->delay_cmd_submit;
1048 
1049 	qpair = &pqpair->qpair;
1050 
1051 	rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests, opts->async_mode);
1052 	if (rc != 0) {
1053 		nvme_pcie_qpair_destroy(qpair);
1054 		return NULL;
1055 	}
1056 
1057 	rc = nvme_pcie_qpair_construct(qpair, opts);
1058 
1059 	if (rc != 0) {
1060 		nvme_pcie_qpair_destroy(qpair);
1061 		return NULL;
1062 	}
1063 
1064 	return qpair;
1065 }
1066 
1067 int
1068 nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1069 {
1070 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
1071 	struct nvme_completion_poll_status *status;
1072 	int rc;
1073 
1074 	assert(ctrlr != NULL);
1075 
1076 	if (ctrlr->is_removed) {
1077 		goto free;
1078 	}
1079 
1080 	if (ctrlr->prepare_for_reset) {
1081 		if (nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING) {
1082 			pqpair->flags.defer_destruction = true;
1083 		}
1084 		goto clear_shadow_doorbells;
1085 	}
1086 
1087 	/* If attempting to delete a qpair that's still being connected, we have to wait until it's
1088 	 * finished, so that we don't free it while it's waiting for the create cq/sq callbacks.
1089 	 */
1090 	while (nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING) {
1091 		rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
1092 		if (rc < 0) {
1093 			break;
1094 		}
1095 	}
1096 
1097 	status = calloc(1, sizeof(*status));
1098 	if (!status) {
1099 		SPDK_ERRLOG("Failed to allocate status tracker\n");
1100 		goto free;
1101 	}
1102 
1103 	/* Delete the I/O submission queue */
1104 	rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, status);
1105 	if (rc != 0) {
1106 		SPDK_ERRLOG("Failed to send request to delete_io_sq with rc=%d\n", rc);
1107 		free(status);
1108 		goto free;
1109 	}
1110 	if (nvme_wait_for_completion(ctrlr->adminq, status)) {
1111 		if (!status->timed_out) {
1112 			free(status);
1113 		}
1114 		goto free;
1115 	}
1116 
1117 	/* Now that the submission queue is deleted, the device is supposed to have
1118 	 * completed any outstanding I/O. Try to complete them. If they don't complete,
1119 	 * they'll be marked as aborted and completed below. */
1120 	nvme_pcie_qpair_process_completions(qpair, 0);
1121 
1122 	memset(status, 0, sizeof(*status));
1123 	/* Delete the completion queue */
1124 	rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, status);
1125 	if (rc != 0) {
1126 		SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc);
1127 		free(status);
1128 		goto free;
1129 	}
1130 	if (nvme_wait_for_completion(ctrlr->adminq, status)) {
1131 		if (!status->timed_out) {
1132 			free(status);
1133 		}
1134 		goto free;
1135 	}
1136 	free(status);
1137 
1138 clear_shadow_doorbells:
1139 	if (pqpair->flags.has_shadow_doorbell) {
1140 		*pqpair->shadow_doorbell.sq_tdbl = 0;
1141 		*pqpair->shadow_doorbell.cq_hdbl = 0;
1142 		*pqpair->shadow_doorbell.sq_eventidx = 0;
1143 		*pqpair->shadow_doorbell.cq_eventidx = 0;
1144 	}
1145 free:
1146 	if (qpair->no_deletion_notification_needed == 0) {
1147 		/* Abort the rest of the I/O */
1148 		nvme_pcie_qpair_abort_trackers(qpair, 1);
1149 	}
1150 
1151 	if (!pqpair->flags.defer_destruction) {
1152 		nvme_pcie_qpair_destroy(qpair);
1153 	}
1154 	return 0;
1155 }
1156 
1157 static void
1158 nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
1159 {
1160 	if (!qpair->in_completion_context) {
1161 		struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
1162 
1163 		tr->bad_vtophys = 1;
1164 		pqpair->flags.has_pending_vtophys_failures = 1;
1165 		return;
1166 	}
1167 
1168 	/*
1169 	 * Bad vtophys translation, so abort this request and return
1170 	 *  immediately.
1171 	 */
1172 	SPDK_ERRLOG("vtophys or other payload buffer related error\n");
1173 	nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
1174 						SPDK_NVME_SC_INVALID_FIELD,
1175 						1 /* do not retry */, true);
1176 }
1177 
1178 /*
1179  * Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes.
1180  *
1181  * *prp_index will be updated to account for the number of PRP entries used.
1182  */
1183 static inline int
1184 nvme_pcie_prp_list_append(struct spdk_nvme_ctrlr *ctrlr, struct nvme_tracker *tr,
1185 			  uint32_t *prp_index, void *virt_addr, size_t len,
1186 			  uint32_t page_size)
1187 {
1188 	struct spdk_nvme_cmd *cmd = &tr->req->cmd;
1189 	uintptr_t page_mask = page_size - 1;
1190 	uint64_t phys_addr;
1191 	uint32_t i;
1192 
1193 	SPDK_DEBUGLOG(nvme, "prp_index:%u virt_addr:%p len:%u\n",
1194 		      *prp_index, virt_addr, (uint32_t)len);
1195 
1196 	if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) {
1197 		SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
1198 		return -EFAULT;
1199 	}
1200 
1201 	i = *prp_index;
1202 	while (len) {
1203 		uint32_t seg_len;
1204 
1205 		/*
1206 		 * prp_index 0 is stored in prp1, and the rest are stored in the prp[] array,
1207 		 * so prp_index == count is valid.
1208 		 */
1209 		if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) {
1210 			SPDK_ERRLOG("out of PRP entries\n");
1211 			return -EFAULT;
1212 		}
1213 
1214 		phys_addr = nvme_pcie_vtophys(ctrlr, virt_addr, NULL);
1215 		if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) {
1216 			SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr);
1217 			return -EFAULT;
1218 		}
1219 
1220 		if (i == 0) {
1221 			SPDK_DEBUGLOG(nvme, "prp1 = %p\n", (void *)phys_addr);
1222 			cmd->dptr.prp.prp1 = phys_addr;
1223 			seg_len = page_size - ((uintptr_t)virt_addr & page_mask);
1224 		} else {
1225 			if ((phys_addr & page_mask) != 0) {
1226 				SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr);
1227 				return -EFAULT;
1228 			}
1229 
1230 			SPDK_DEBUGLOG(nvme, "prp[%u] = %p\n", i - 1, (void *)phys_addr);
1231 			tr->u.prp[i - 1] = phys_addr;
1232 			seg_len = page_size;
1233 		}
1234 
1235 		seg_len = spdk_min(seg_len, len);
1236 		virt_addr += seg_len;
1237 		len -= seg_len;
1238 		i++;
1239 	}
1240 
1241 	cmd->psdt = SPDK_NVME_PSDT_PRP;
1242 	if (i <= 1) {
1243 		cmd->dptr.prp.prp2 = 0;
1244 	} else if (i == 2) {
1245 		cmd->dptr.prp.prp2 = tr->u.prp[0];
1246 		SPDK_DEBUGLOG(nvme, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2);
1247 	} else {
1248 		cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr;
1249 		SPDK_DEBUGLOG(nvme, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2);
1250 	}
1251 
1252 	*prp_index = i;
1253 	return 0;
1254 }
1255 
1256 static int
1257 nvme_pcie_qpair_build_request_invalid(struct spdk_nvme_qpair *qpair,
1258 				      struct nvme_request *req, struct nvme_tracker *tr, bool dword_aligned)
1259 {
1260 	assert(0);
1261 	nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1262 	return -EINVAL;
1263 }
1264 
1265 /**
1266  * Build PRP list describing physically contiguous payload buffer.
1267  */
1268 static int
1269 nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
1270 				     struct nvme_tracker *tr, bool dword_aligned)
1271 {
1272 	uint32_t prp_index = 0;
1273 	int rc;
1274 
1275 	rc = nvme_pcie_prp_list_append(qpair->ctrlr, tr, &prp_index,
1276 				       req->payload.contig_or_cb_arg + req->payload_offset,
1277 				       req->payload_size, qpair->ctrlr->page_size);
1278 	if (rc) {
1279 		nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1280 	}
1281 
1282 	return rc;
1283 }
1284 
1285 /**
1286  * Build an SGL describing a physically contiguous payload buffer.
1287  *
1288  * This is more efficient than using PRP because large buffers can be
1289  * described this way.
1290  */
1291 static int
1292 nvme_pcie_qpair_build_contig_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
1293 		struct nvme_tracker *tr, bool dword_aligned)
1294 {
1295 	void *virt_addr;
1296 	uint64_t phys_addr, mapping_length;
1297 	uint32_t length;
1298 	struct spdk_nvme_sgl_descriptor *sgl;
1299 	uint32_t nseg = 0;
1300 
1301 	assert(req->payload_size != 0);
1302 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1303 
1304 	sgl = tr->u.sgl;
1305 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1306 	req->cmd.dptr.sgl1.unkeyed.subtype = 0;
1307 
1308 	length = req->payload_size;
1309 	virt_addr = req->payload.contig_or_cb_arg + req->payload_offset;
1310 
1311 	while (length > 0) {
1312 		if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
1313 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1314 			return -EFAULT;
1315 		}
1316 
1317 		if (dword_aligned && ((uintptr_t)virt_addr & 3)) {
1318 			SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
1319 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1320 			return -EFAULT;
1321 		}
1322 
1323 		mapping_length = length;
1324 		phys_addr = nvme_pcie_vtophys(qpair->ctrlr, virt_addr, &mapping_length);
1325 		if (phys_addr == SPDK_VTOPHYS_ERROR) {
1326 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1327 			return -EFAULT;
1328 		}
1329 
1330 		mapping_length = spdk_min(length, mapping_length);
1331 
1332 		length -= mapping_length;
1333 		virt_addr += mapping_length;
1334 
1335 		sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1336 		sgl->unkeyed.length = mapping_length;
1337 		sgl->address = phys_addr;
1338 		sgl->unkeyed.subtype = 0;
1339 
1340 		sgl++;
1341 		nseg++;
1342 	}
1343 
1344 	if (nseg == 1) {
1345 		/*
1346 		 * The whole transfer can be described by a single SGL descriptor.
1347 		 *  Use the special case described by the spec where SGL1's type is Data Block.
1348 		 *  This means the SGL in the tracker is not used at all, so copy the first (and only)
1349 		 *  SGL element into SGL1.
1350 		 */
1351 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1352 		req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
1353 		req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
1354 	} else {
1355 		/* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because
1356 		 *  NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page.
1357 		 */
1358 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1359 		req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
1360 		req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 /**
1367  * Build SGL list describing scattered payload buffer.
1368  */
1369 static int
1370 nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
1371 				     struct nvme_tracker *tr, bool dword_aligned)
1372 {
1373 	int rc;
1374 	void *virt_addr;
1375 	uint64_t phys_addr, mapping_length;
1376 	uint32_t remaining_transfer_len, remaining_user_sge_len, length;
1377 	struct spdk_nvme_sgl_descriptor *sgl;
1378 	uint32_t nseg = 0;
1379 
1380 	/*
1381 	 * Build scattered payloads.
1382 	 */
1383 	assert(req->payload_size != 0);
1384 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1385 	assert(req->payload.reset_sgl_fn != NULL);
1386 	assert(req->payload.next_sge_fn != NULL);
1387 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1388 
1389 	sgl = tr->u.sgl;
1390 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1391 	req->cmd.dptr.sgl1.unkeyed.subtype = 0;
1392 
1393 	remaining_transfer_len = req->payload_size;
1394 
1395 	while (remaining_transfer_len > 0) {
1396 		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg,
1397 					      &virt_addr, &remaining_user_sge_len);
1398 		if (rc) {
1399 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1400 			return -EFAULT;
1401 		}
1402 
1403 		/* Bit Bucket SGL descriptor */
1404 		if ((uint64_t)virt_addr == UINT64_MAX) {
1405 			/* TODO: enable WRITE and COMPARE when necessary */
1406 			if (req->cmd.opc != SPDK_NVME_OPC_READ) {
1407 				SPDK_ERRLOG("Only READ command can be supported\n");
1408 				goto exit;
1409 			}
1410 			if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
1411 				SPDK_ERRLOG("Too many SGL entries\n");
1412 				goto exit;
1413 			}
1414 
1415 			sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_BIT_BUCKET;
1416 			/* If the SGL describes a destination data buffer, the length of data
1417 			 * buffer shall be discarded by controller, and the length is included
1418 			 * in Number of Logical Blocks (NLB) parameter. Otherwise, the length
1419 			 * is not included in the NLB parameter.
1420 			 */
1421 			remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
1422 			remaining_transfer_len -= remaining_user_sge_len;
1423 
1424 			sgl->unkeyed.length = remaining_user_sge_len;
1425 			sgl->address = 0;
1426 			sgl->unkeyed.subtype = 0;
1427 
1428 			sgl++;
1429 			nseg++;
1430 
1431 			continue;
1432 		}
1433 
1434 		remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
1435 		remaining_transfer_len -= remaining_user_sge_len;
1436 		while (remaining_user_sge_len > 0) {
1437 			if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
1438 				SPDK_ERRLOG("Too many SGL entries\n");
1439 				goto exit;
1440 			}
1441 
1442 			if (dword_aligned && ((uintptr_t)virt_addr & 3)) {
1443 				SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
1444 				goto exit;
1445 			}
1446 
1447 			mapping_length = remaining_user_sge_len;
1448 			phys_addr = nvme_pcie_vtophys(qpair->ctrlr, virt_addr, &mapping_length);
1449 			if (phys_addr == SPDK_VTOPHYS_ERROR) {
1450 				goto exit;
1451 			}
1452 
1453 			length = spdk_min(remaining_user_sge_len, mapping_length);
1454 			remaining_user_sge_len -= length;
1455 			virt_addr += length;
1456 
1457 			if (nseg > 0 && phys_addr ==
1458 			    (*(sgl - 1)).address + (*(sgl - 1)).unkeyed.length) {
1459 				/* extend previous entry */
1460 				(*(sgl - 1)).unkeyed.length += length;
1461 				continue;
1462 			}
1463 
1464 			sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1465 			sgl->unkeyed.length = length;
1466 			sgl->address = phys_addr;
1467 			sgl->unkeyed.subtype = 0;
1468 
1469 			sgl++;
1470 			nseg++;
1471 		}
1472 	}
1473 
1474 	if (nseg == 1) {
1475 		/*
1476 		 * The whole transfer can be described by a single SGL descriptor.
1477 		 *  Use the special case described by the spec where SGL1's type is Data Block.
1478 		 *  This means the SGL in the tracker is not used at all, so copy the first (and only)
1479 		 *  SGL element into SGL1.
1480 		 */
1481 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1482 		req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
1483 		req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
1484 	} else {
1485 		/* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because
1486 		 *  NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page.
1487 		 */
1488 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1489 		req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
1490 		req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
1491 	}
1492 
1493 	return 0;
1494 
1495 exit:
1496 	nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1497 	return -EFAULT;
1498 }
1499 
1500 /**
1501  * Build PRP list describing scattered payload buffer.
1502  */
1503 static int
1504 nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
1505 				       struct nvme_tracker *tr, bool dword_aligned)
1506 {
1507 	int rc;
1508 	void *virt_addr;
1509 	uint32_t remaining_transfer_len, length;
1510 	uint32_t prp_index = 0;
1511 	uint32_t page_size = qpair->ctrlr->page_size;
1512 
1513 	/*
1514 	 * Build scattered payloads.
1515 	 */
1516 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1517 	assert(req->payload.reset_sgl_fn != NULL);
1518 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1519 
1520 	remaining_transfer_len = req->payload_size;
1521 	while (remaining_transfer_len > 0) {
1522 		assert(req->payload.next_sge_fn != NULL);
1523 		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
1524 		if (rc) {
1525 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1526 			return -EFAULT;
1527 		}
1528 
1529 		length = spdk_min(remaining_transfer_len, length);
1530 
1531 		/*
1532 		 * Any incompatible sges should have been handled up in the splitting routine,
1533 		 *  but assert here as an additional check.
1534 		 *
1535 		 * All SGEs except last must end on a page boundary.
1536 		 */
1537 		assert((length == remaining_transfer_len) ||
1538 		       _is_page_aligned((uintptr_t)virt_addr + length, page_size));
1539 
1540 		rc = nvme_pcie_prp_list_append(qpair->ctrlr, tr, &prp_index, virt_addr, length, page_size);
1541 		if (rc) {
1542 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1543 			return rc;
1544 		}
1545 
1546 		remaining_transfer_len -= length;
1547 	}
1548 
1549 	return 0;
1550 }
1551 
1552 typedef int(*build_req_fn)(struct spdk_nvme_qpair *, struct nvme_request *, struct nvme_tracker *,
1553 			   bool);
1554 
1555 static build_req_fn const g_nvme_pcie_build_req_table[][2] = {
1556 	[NVME_PAYLOAD_TYPE_INVALID] = {
1557 		nvme_pcie_qpair_build_request_invalid,			/* PRP */
1558 		nvme_pcie_qpair_build_request_invalid			/* SGL */
1559 	},
1560 	[NVME_PAYLOAD_TYPE_CONTIG] = {
1561 		nvme_pcie_qpair_build_contig_request,			/* PRP */
1562 		nvme_pcie_qpair_build_contig_hw_sgl_request		/* SGL */
1563 	},
1564 	[NVME_PAYLOAD_TYPE_SGL] = {
1565 		nvme_pcie_qpair_build_prps_sgl_request,			/* PRP */
1566 		nvme_pcie_qpair_build_hw_sgl_request			/* SGL */
1567 	}
1568 };
1569 
1570 static int
1571 nvme_pcie_qpair_build_metadata(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
1572 			       bool sgl_supported, bool dword_aligned)
1573 {
1574 	void *md_payload;
1575 	struct nvme_request *req = tr->req;
1576 
1577 	if (req->payload.md) {
1578 		md_payload = req->payload.md + req->md_offset;
1579 		if (dword_aligned && ((uintptr_t)md_payload & 3)) {
1580 			SPDK_ERRLOG("virt_addr %p not dword aligned\n", md_payload);
1581 			goto exit;
1582 		}
1583 
1584 		if (sgl_supported && dword_aligned) {
1585 			assert(req->cmd.psdt == SPDK_NVME_PSDT_SGL_MPTR_CONTIG);
1586 			req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_SGL;
1587 			tr->meta_sgl.address = nvme_pcie_vtophys(qpair->ctrlr, md_payload, NULL);
1588 			if (tr->meta_sgl.address == SPDK_VTOPHYS_ERROR) {
1589 				goto exit;
1590 			}
1591 			tr->meta_sgl.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1592 			tr->meta_sgl.unkeyed.length = req->md_size;
1593 			tr->meta_sgl.unkeyed.subtype = 0;
1594 			req->cmd.mptr = tr->prp_sgl_bus_addr - sizeof(struct spdk_nvme_sgl_descriptor);
1595 		} else {
1596 			req->cmd.mptr = nvme_pcie_vtophys(qpair->ctrlr, md_payload, NULL);
1597 			if (req->cmd.mptr == SPDK_VTOPHYS_ERROR) {
1598 				goto exit;
1599 			}
1600 		}
1601 	}
1602 
1603 	return 0;
1604 
1605 exit:
1606 	nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1607 	return -EINVAL;
1608 }
1609 
1610 int
1611 nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
1612 {
1613 	struct nvme_tracker	*tr;
1614 	int			rc = 0;
1615 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
1616 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1617 	enum nvme_payload_type	payload_type;
1618 	bool			sgl_supported;
1619 	bool			dword_aligned = true;
1620 
1621 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
1622 		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1623 	}
1624 
1625 	tr = TAILQ_FIRST(&pqpair->free_tr);
1626 
1627 	if (tr == NULL) {
1628 		pqpair->stat->queued_requests++;
1629 		/* Inform the upper layer to try again later. */
1630 		rc = -EAGAIN;
1631 		goto exit;
1632 	}
1633 
1634 	pqpair->stat->submitted_requests++;
1635 	TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */
1636 	TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list);
1637 	tr->req = req;
1638 	tr->cb_fn = req->cb_fn;
1639 	tr->cb_arg = req->cb_arg;
1640 	req->cmd.cid = tr->cid;
1641 
1642 	if (req->payload_size != 0) {
1643 		payload_type = nvme_payload_type(&req->payload);
1644 		/* According to the specification, PRPs shall be used for all
1645 		 *  Admin commands for NVMe over PCIe implementations.
1646 		 */
1647 		sgl_supported = (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) != 0 &&
1648 				!nvme_qpair_is_admin_queue(qpair);
1649 
1650 		if (sgl_supported) {
1651 			/* Don't use SGL for DSM command */
1652 			if (spdk_unlikely((ctrlr->quirks & NVME_QUIRK_NO_SGL_FOR_DSM) &&
1653 					  (req->cmd.opc == SPDK_NVME_OPC_DATASET_MANAGEMENT))) {
1654 				sgl_supported = false;
1655 			}
1656 		}
1657 
1658 		if (sgl_supported && !(ctrlr->flags & SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT)) {
1659 			dword_aligned = false;
1660 		}
1661 
1662 		/* If we fail to build the request or the metadata, do not return the -EFAULT back up
1663 		 * the stack.  This ensures that we always fail these types of requests via a
1664 		 * completion callback, and never in the context of the submission.
1665 		 */
1666 		rc = g_nvme_pcie_build_req_table[payload_type][sgl_supported](qpair, req, tr, dword_aligned);
1667 		if (rc < 0) {
1668 			assert(rc == -EFAULT);
1669 			rc = 0;
1670 			goto exit;
1671 		}
1672 
1673 		rc = nvme_pcie_qpair_build_metadata(qpair, tr, sgl_supported, dword_aligned);
1674 		if (rc < 0) {
1675 			assert(rc == -EFAULT);
1676 			rc = 0;
1677 			goto exit;
1678 		}
1679 	}
1680 
1681 	nvme_pcie_qpair_submit_tracker(qpair, tr);
1682 
1683 exit:
1684 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
1685 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1686 	}
1687 
1688 	return rc;
1689 }
1690 
1691 struct spdk_nvme_transport_poll_group *
1692 nvme_pcie_poll_group_create(void)
1693 {
1694 	struct nvme_pcie_poll_group *group = calloc(1, sizeof(*group));
1695 
1696 	if (group == NULL) {
1697 		SPDK_ERRLOG("Unable to allocate poll group.\n");
1698 		return NULL;
1699 	}
1700 
1701 	return &group->group;
1702 }
1703 
1704 int
1705 nvme_pcie_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
1706 {
1707 	return 0;
1708 }
1709 
1710 int
1711 nvme_pcie_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
1712 {
1713 	return 0;
1714 }
1715 
1716 int
1717 nvme_pcie_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
1718 			 struct spdk_nvme_qpair *qpair)
1719 {
1720 	return 0;
1721 }
1722 
1723 int
1724 nvme_pcie_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
1725 			    struct spdk_nvme_qpair *qpair)
1726 {
1727 	return 0;
1728 }
1729 
1730 int64_t
1731 nvme_pcie_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
1732 		uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
1733 {
1734 	struct spdk_nvme_qpair *qpair, *tmp_qpair;
1735 	int32_t local_completions = 0;
1736 	int64_t total_completions = 0;
1737 
1738 	STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
1739 		disconnected_qpair_cb(qpair, tgroup->group->ctx);
1740 	}
1741 
1742 	STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
1743 		local_completions = spdk_nvme_qpair_process_completions(qpair, completions_per_qpair);
1744 		if (local_completions < 0) {
1745 			disconnected_qpair_cb(qpair, tgroup->group->ctx);
1746 			local_completions = 0;
1747 		}
1748 		total_completions += local_completions;
1749 	}
1750 
1751 	return total_completions;
1752 }
1753 
1754 int
1755 nvme_pcie_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
1756 {
1757 	if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
1758 		return -EBUSY;
1759 	}
1760 
1761 	free(tgroup);
1762 
1763 	return 0;
1764 }
1765 
1766 SPDK_TRACE_REGISTER_FN(nvme_pcie, "nvme_pcie", TRACE_GROUP_NVME_PCIE)
1767 {
1768 	struct spdk_trace_tpoint_opts opts[] = {
1769 		{
1770 			"NVME_PCIE_SUBMIT", TRACE_NVME_PCIE_SUBMIT,
1771 			OWNER_NVME_PCIE_QP, OBJECT_NVME_PCIE_TR, 1,
1772 			{	{ "cid", SPDK_TRACE_ARG_TYPE_INT, 8 },
1773 				{ "opc", SPDK_TRACE_ARG_TYPE_INT, 8 },
1774 				{ "dw10", SPDK_TRACE_ARG_TYPE_PTR, 8 },
1775 				{ "dw11", SPDK_TRACE_ARG_TYPE_PTR, 8 },
1776 				{ "dw12", SPDK_TRACE_ARG_TYPE_PTR, 8 }
1777 			}
1778 		},
1779 		{
1780 			"NVME_PCIE_COMPLETE", TRACE_NVME_PCIE_COMPLETE,
1781 			OWNER_NVME_PCIE_QP, OBJECT_NVME_PCIE_TR, 0,
1782 			{{ "cid", SPDK_TRACE_ARG_TYPE_INT, 8 }}
1783 		},
1784 	};
1785 
1786 	spdk_trace_register_object(OBJECT_NVME_PCIE_TR, 'p');
1787 	spdk_trace_register_owner(OWNER_NVME_PCIE_QP, 'q');
1788 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
1789 }
1790