xref: /spdk/lib/nvme/nvme_pcie.c (revision b30d57cdad6d2bc75cc1e4e2ebbcebcb0d98dcfa)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2017, IBM Corporation. All rights reserved.
6  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * NVMe over PCIe transport
37  */
38 
39 #include "spdk/stdinc.h"
40 #include "spdk/env.h"
41 #include "spdk/likely.h"
42 #include "spdk/string.h"
43 #include "nvme_internal.h"
44 #include "nvme_uevent.h"
45 
46 /*
47  * Number of completion queue entries to process before ringing the
48  *  completion queue doorbell.
49  */
50 #define NVME_MIN_COMPLETIONS	(1)
51 #define NVME_MAX_COMPLETIONS	(128)
52 
53 /*
54  * NVME_MAX_SGL_DESCRIPTORS defines the maximum number of descriptors in one SGL
55  *  segment.
56  */
57 #define NVME_MAX_SGL_DESCRIPTORS	(250)
58 
59 #define NVME_MAX_PRP_LIST_ENTRIES	(503)
60 
61 struct nvme_pcie_enum_ctx {
62 	struct spdk_nvme_probe_ctx *probe_ctx;
63 	struct spdk_pci_addr pci_addr;
64 	bool has_pci_addr;
65 };
66 
67 /* PCIe transport extensions for spdk_nvme_ctrlr */
68 struct nvme_pcie_ctrlr {
69 	struct spdk_nvme_ctrlr ctrlr;
70 
71 	/** NVMe MMIO register space */
72 	volatile struct spdk_nvme_registers *regs;
73 
74 	/** NVMe MMIO register size */
75 	uint64_t regs_size;
76 
77 	struct {
78 		/* BAR mapping address which contains controller memory buffer */
79 		void *bar_va;
80 
81 		/* BAR physical address which contains controller memory buffer */
82 		uint64_t bar_pa;
83 
84 		/* Controller memory buffer size in Bytes */
85 		uint64_t size;
86 
87 		/* Current offset of controller memory buffer, relative to start of BAR virt addr */
88 		uint64_t current_offset;
89 
90 		void *mem_register_addr;
91 		size_t mem_register_size;
92 	} cmb;
93 
94 	/** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */
95 	uint32_t doorbell_stride_u32;
96 
97 	/* Opaque handle to associated PCI device. */
98 	struct spdk_pci_device *devhandle;
99 
100 	/* Flag to indicate the MMIO register has been remapped */
101 	bool is_remapped;
102 };
103 
104 struct nvme_tracker {
105 	TAILQ_ENTRY(nvme_tracker)       tq_list;
106 
107 	struct nvme_request		*req;
108 	uint16_t			cid;
109 
110 	uint16_t			rsvd0;
111 	uint32_t			rsvd1;
112 
113 	spdk_nvme_cmd_cb		cb_fn;
114 	void				*cb_arg;
115 
116 	uint64_t			prp_sgl_bus_addr;
117 
118 	/* Don't move, metadata SGL is always contiguous with Data Block SGL */
119 	struct spdk_nvme_sgl_descriptor		meta_sgl;
120 	union {
121 		uint64_t			prp[NVME_MAX_PRP_LIST_ENTRIES];
122 		struct spdk_nvme_sgl_descriptor	sgl[NVME_MAX_SGL_DESCRIPTORS];
123 	} u;
124 };
125 /*
126  * struct nvme_tracker must be exactly 4K so that the prp[] array does not cross a page boundary
127  * and so that there is no padding required to meet alignment requirements.
128  */
129 SPDK_STATIC_ASSERT(sizeof(struct nvme_tracker) == 4096, "nvme_tracker is not 4K");
130 SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, u.sgl) & 7) == 0, "SGL must be Qword aligned");
131 SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, meta_sgl) & 7) == 0, "SGL must be Qword aligned");
132 
133 struct nvme_pcie_poll_group {
134 	struct spdk_nvme_transport_poll_group group;
135 };
136 
137 /* PCIe transport extensions for spdk_nvme_qpair */
138 struct nvme_pcie_qpair {
139 	/* Submission queue tail doorbell */
140 	volatile uint32_t *sq_tdbl;
141 
142 	/* Completion queue head doorbell */
143 	volatile uint32_t *cq_hdbl;
144 
145 	/* Submission queue */
146 	struct spdk_nvme_cmd *cmd;
147 
148 	/* Completion queue */
149 	struct spdk_nvme_cpl *cpl;
150 
151 	TAILQ_HEAD(, nvme_tracker) free_tr;
152 	TAILQ_HEAD(nvme_outstanding_tr_head, nvme_tracker) outstanding_tr;
153 
154 	/* Array of trackers indexed by command ID. */
155 	struct nvme_tracker *tr;
156 
157 	uint16_t num_entries;
158 
159 	uint8_t retry_count;
160 
161 	uint16_t max_completions_cap;
162 
163 	uint16_t last_sq_tail;
164 	uint16_t sq_tail;
165 	uint16_t cq_head;
166 	uint16_t sq_head;
167 
168 	struct {
169 		uint8_t phase			: 1;
170 		uint8_t delay_cmd_submit	: 1;
171 		uint8_t has_shadow_doorbell	: 1;
172 	} flags;
173 
174 	/*
175 	 * Base qpair structure.
176 	 * This is located after the hot data in this structure so that the important parts of
177 	 * nvme_pcie_qpair are in the same cache line.
178 	 */
179 	struct spdk_nvme_qpair qpair;
180 
181 	struct {
182 		/* Submission queue shadow tail doorbell */
183 		volatile uint32_t *sq_tdbl;
184 
185 		/* Completion queue shadow head doorbell */
186 		volatile uint32_t *cq_hdbl;
187 
188 		/* Submission queue event index */
189 		volatile uint32_t *sq_eventidx;
190 
191 		/* Completion queue event index */
192 		volatile uint32_t *cq_eventidx;
193 	} shadow_doorbell;
194 
195 	/*
196 	 * Fields below this point should not be touched on the normal I/O path.
197 	 */
198 
199 	bool sq_in_cmb;
200 
201 	uint64_t cmd_bus_addr;
202 	uint64_t cpl_bus_addr;
203 
204 	struct spdk_nvme_cmd *sq_vaddr;
205 	struct spdk_nvme_cpl *cq_vaddr;
206 };
207 
208 static int nvme_pcie_ctrlr_attach(struct spdk_nvme_probe_ctx *probe_ctx,
209 				  struct spdk_pci_addr *pci_addr);
210 static int nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair,
211 				     const struct spdk_nvme_io_qpair_opts *opts);
212 static int nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair);
213 
214 __thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL;
215 static uint16_t g_signal_lock;
216 static bool g_sigset = false;
217 
218 static void
219 nvme_sigbus_fault_sighandler(int signum, siginfo_t *info, void *ctx)
220 {
221 	void *map_address;
222 	uint16_t flag = 0;
223 
224 	if (!__atomic_compare_exchange_n(&g_signal_lock, &flag, 1, false, __ATOMIC_ACQUIRE,
225 					 __ATOMIC_RELAXED)) {
226 		SPDK_DEBUGLOG(nvme, "request g_signal_lock failed\n");
227 		return;
228 	}
229 
230 	assert(g_thread_mmio_ctrlr != NULL);
231 
232 	if (!g_thread_mmio_ctrlr->is_remapped) {
233 		map_address = mmap((void *)g_thread_mmio_ctrlr->regs, g_thread_mmio_ctrlr->regs_size,
234 				   PROT_READ | PROT_WRITE,
235 				   MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
236 		if (map_address == MAP_FAILED) {
237 			SPDK_ERRLOG("mmap failed\n");
238 			__atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE);
239 			return;
240 		}
241 		memset(map_address, 0xFF, sizeof(struct spdk_nvme_registers));
242 		g_thread_mmio_ctrlr->regs = (volatile struct spdk_nvme_registers *)map_address;
243 		g_thread_mmio_ctrlr->is_remapped = true;
244 	}
245 	__atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE);
246 }
247 
248 static void
249 nvme_pcie_ctrlr_setup_signal(void)
250 {
251 	struct sigaction sa;
252 
253 	sa.sa_sigaction = nvme_sigbus_fault_sighandler;
254 	sigemptyset(&sa.sa_mask);
255 	sa.sa_flags = SA_SIGINFO;
256 	sigaction(SIGBUS, &sa, NULL);
257 }
258 
259 static inline struct nvme_pcie_ctrlr *
260 nvme_pcie_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
261 {
262 	assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE);
263 	return SPDK_CONTAINEROF(ctrlr, struct nvme_pcie_ctrlr, ctrlr);
264 }
265 
266 static int
267 _nvme_pcie_hotplug_monitor(struct spdk_nvme_probe_ctx *probe_ctx)
268 {
269 	struct spdk_nvme_ctrlr *ctrlr, *tmp;
270 	struct spdk_uevent event;
271 	struct spdk_pci_addr pci_addr;
272 
273 	if (g_spdk_nvme_driver->hotplug_fd < 0) {
274 		return 0;
275 	}
276 
277 	while (nvme_get_uevent(g_spdk_nvme_driver->hotplug_fd, &event) > 0) {
278 		if (event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_UIO ||
279 		    event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_VFIO) {
280 			if (event.action == SPDK_NVME_UEVENT_ADD) {
281 				SPDK_DEBUGLOG(nvme, "add nvme address: %s\n",
282 					      event.traddr);
283 				if (spdk_process_is_primary()) {
284 					if (!spdk_pci_addr_parse(&pci_addr, event.traddr)) {
285 						nvme_pcie_ctrlr_attach(probe_ctx, &pci_addr);
286 					}
287 				}
288 			} else if (event.action == SPDK_NVME_UEVENT_REMOVE) {
289 				struct spdk_nvme_transport_id trid;
290 
291 				memset(&trid, 0, sizeof(trid));
292 				spdk_nvme_trid_populate_transport(&trid, SPDK_NVME_TRANSPORT_PCIE);
293 				snprintf(trid.traddr, sizeof(trid.traddr), "%s", event.traddr);
294 
295 				ctrlr = nvme_get_ctrlr_by_trid_unsafe(&trid);
296 				if (ctrlr == NULL) {
297 					return 0;
298 				}
299 				SPDK_DEBUGLOG(nvme, "remove nvme address: %s\n",
300 					      event.traddr);
301 
302 				nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
303 				nvme_ctrlr_fail(ctrlr, true);
304 				nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
305 
306 				/* get the user app to clean up and stop I/O */
307 				if (ctrlr->remove_cb) {
308 					nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
309 					ctrlr->remove_cb(ctrlr->cb_ctx, ctrlr);
310 					nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
311 				}
312 			}
313 		}
314 	}
315 
316 	/* Initiate removal of physically hotremoved PCI controllers. Even after
317 	 * they're hotremoved from the system, SPDK might still report them via RPC.
318 	 */
319 	TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq, tmp) {
320 		bool do_remove = false;
321 		struct nvme_pcie_ctrlr *pctrlr;
322 
323 		if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
324 			continue;
325 		}
326 
327 		pctrlr = nvme_pcie_ctrlr(ctrlr);
328 		if (spdk_pci_device_is_removed(pctrlr->devhandle)) {
329 			do_remove = true;
330 		}
331 
332 		if (do_remove) {
333 			nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
334 			nvme_ctrlr_fail(ctrlr, true);
335 			nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
336 			if (ctrlr->remove_cb) {
337 				nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
338 				ctrlr->remove_cb(ctrlr->cb_ctx, ctrlr);
339 				nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
340 			}
341 		}
342 	}
343 	return 0;
344 }
345 
346 static inline struct nvme_pcie_qpair *
347 nvme_pcie_qpair(struct spdk_nvme_qpair *qpair)
348 {
349 	assert(qpair->trtype == SPDK_NVME_TRANSPORT_PCIE);
350 	return SPDK_CONTAINEROF(qpair, struct nvme_pcie_qpair, qpair);
351 }
352 
353 static volatile void *
354 nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset)
355 {
356 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
357 
358 	return (volatile void *)((uintptr_t)pctrlr->regs + offset);
359 }
360 
361 static int
362 nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
363 {
364 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
365 
366 	assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
367 	g_thread_mmio_ctrlr = pctrlr;
368 	spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value);
369 	g_thread_mmio_ctrlr = NULL;
370 	return 0;
371 }
372 
373 static int
374 nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
375 {
376 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
377 
378 	assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
379 	g_thread_mmio_ctrlr = pctrlr;
380 	spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value);
381 	g_thread_mmio_ctrlr = NULL;
382 	return 0;
383 }
384 
385 static int
386 nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
387 {
388 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
389 
390 	assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
391 	assert(value != NULL);
392 	g_thread_mmio_ctrlr = pctrlr;
393 	*value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset));
394 	g_thread_mmio_ctrlr = NULL;
395 	if (~(*value) == 0) {
396 		return -1;
397 	}
398 
399 	return 0;
400 }
401 
402 static int
403 nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
404 {
405 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
406 
407 	assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
408 	assert(value != NULL);
409 	g_thread_mmio_ctrlr = pctrlr;
410 	*value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset));
411 	g_thread_mmio_ctrlr = NULL;
412 	if (~(*value) == 0) {
413 		return -1;
414 	}
415 
416 	return 0;
417 }
418 
419 static int
420 nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
421 {
422 	return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq),
423 					 value);
424 }
425 
426 static int
427 nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
428 {
429 	return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq),
430 					 value);
431 }
432 
433 static int
434 nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa)
435 {
436 	return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw),
437 					 aqa->raw);
438 }
439 
440 static int
441 nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc)
442 {
443 	return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw),
444 					 &cmbloc->raw);
445 }
446 
447 static int
448 nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz)
449 {
450 	return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
451 					 &cmbsz->raw);
452 }
453 
454 static  uint32_t
455 nvme_pcie_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
456 {
457 	/*
458 	 * For commands requiring more than 2 PRP entries, one PRP will be
459 	 *  embedded in the command (prp1), and the rest of the PRP entries
460 	 *  will be in a list pointed to by the command (prp2).  This means
461 	 *  that real max number of PRP entries we support is 506+1, which
462 	 *  results in a max xfer size of 506*ctrlr->page_size.
463 	 */
464 	return NVME_MAX_PRP_LIST_ENTRIES * ctrlr->page_size;
465 }
466 
467 static uint16_t
468 nvme_pcie_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
469 {
470 	return NVME_MAX_SGL_DESCRIPTORS;
471 }
472 
473 static void
474 nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr)
475 {
476 	int rc;
477 	void *addr = NULL;
478 	uint32_t bir;
479 	union spdk_nvme_cmbsz_register cmbsz;
480 	union spdk_nvme_cmbloc_register cmbloc;
481 	uint64_t size, unit_size, offset, bar_size = 0, bar_phys_addr = 0;
482 
483 	if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
484 	    nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
485 		SPDK_ERRLOG("get registers failed\n");
486 		goto exit;
487 	}
488 
489 	if (!cmbsz.bits.sz) {
490 		goto exit;
491 	}
492 
493 	bir = cmbloc.bits.bir;
494 	/* Values 0 2 3 4 5 are valid for BAR */
495 	if (bir > 5 || bir == 1) {
496 		goto exit;
497 	}
498 
499 	/* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */
500 	unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu);
501 	/* controller memory buffer size in Bytes */
502 	size = unit_size * cmbsz.bits.sz;
503 	/* controller memory buffer offset from BAR in Bytes */
504 	offset = unit_size * cmbloc.bits.ofst;
505 
506 	rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr,
507 				     &bar_phys_addr, &bar_size);
508 	if ((rc != 0) || addr == NULL) {
509 		goto exit;
510 	}
511 
512 	if (offset > bar_size) {
513 		goto exit;
514 	}
515 
516 	if (size > bar_size - offset) {
517 		goto exit;
518 	}
519 
520 	pctrlr->cmb.bar_va = addr;
521 	pctrlr->cmb.bar_pa = bar_phys_addr;
522 	pctrlr->cmb.size = size;
523 	pctrlr->cmb.current_offset = offset;
524 
525 	if (!cmbsz.bits.sqs) {
526 		pctrlr->ctrlr.opts.use_cmb_sqs = false;
527 	}
528 
529 	return;
530 exit:
531 	pctrlr->ctrlr.opts.use_cmb_sqs = false;
532 	return;
533 }
534 
535 static int
536 nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr)
537 {
538 	int rc = 0;
539 	union spdk_nvme_cmbloc_register cmbloc;
540 	void *addr = pctrlr->cmb.bar_va;
541 
542 	if (addr) {
543 		if (pctrlr->cmb.mem_register_addr) {
544 			spdk_mem_unregister(pctrlr->cmb.mem_register_addr, pctrlr->cmb.mem_register_size);
545 		}
546 
547 		if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
548 			SPDK_ERRLOG("get_cmbloc() failed\n");
549 			return -EIO;
550 		}
551 		rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, cmbloc.bits.bir, addr);
552 	}
553 	return rc;
554 }
555 
556 static int
557 nvme_pcie_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
558 {
559 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
560 
561 	if (pctrlr->cmb.bar_va == NULL) {
562 		SPDK_DEBUGLOG(nvme, "CMB not available\n");
563 		return -ENOTSUP;
564 	}
565 
566 	if (ctrlr->opts.use_cmb_sqs) {
567 		SPDK_ERRLOG("CMB is already in use for submission queues.\n");
568 		return -ENOTSUP;
569 	}
570 
571 	return 0;
572 }
573 
574 static void *
575 nvme_pcie_ctrlr_map_io_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
576 {
577 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
578 	union spdk_nvme_cmbsz_register cmbsz;
579 	union spdk_nvme_cmbloc_register cmbloc;
580 	uint64_t mem_register_start, mem_register_end;
581 	int rc;
582 
583 	if (pctrlr->cmb.mem_register_addr != NULL) {
584 		*size = pctrlr->cmb.mem_register_size;
585 		return pctrlr->cmb.mem_register_addr;
586 	}
587 
588 	*size = 0;
589 
590 	if (pctrlr->cmb.bar_va == NULL) {
591 		SPDK_DEBUGLOG(nvme, "CMB not available\n");
592 		return NULL;
593 	}
594 
595 	if (ctrlr->opts.use_cmb_sqs) {
596 		SPDK_ERRLOG("CMB is already in use for submission queues.\n");
597 		return NULL;
598 	}
599 
600 	if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
601 	    nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
602 		SPDK_ERRLOG("get registers failed\n");
603 		return NULL;
604 	}
605 
606 	/* If only SQS is supported */
607 	if (!(cmbsz.bits.wds || cmbsz.bits.rds)) {
608 		return NULL;
609 	}
610 
611 	/* If CMB is less than 4MiB in size then abort CMB mapping */
612 	if (pctrlr->cmb.size < (1ULL << 22)) {
613 		return NULL;
614 	}
615 
616 	mem_register_start = _2MB_PAGE((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset +
617 				       VALUE_2MB - 1);
618 	mem_register_end = _2MB_PAGE((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset +
619 				     pctrlr->cmb.size);
620 
621 	rc = spdk_mem_register((void *)mem_register_start, mem_register_end - mem_register_start);
622 	if (rc) {
623 		SPDK_ERRLOG("spdk_mem_register() failed\n");
624 		return NULL;
625 	}
626 
627 	pctrlr->cmb.mem_register_addr = (void *)mem_register_start;
628 	pctrlr->cmb.mem_register_size = mem_register_end - mem_register_start;
629 
630 	*size = pctrlr->cmb.mem_register_size;
631 	return pctrlr->cmb.mem_register_addr;
632 }
633 
634 static int
635 nvme_pcie_ctrlr_unmap_io_cmb(struct spdk_nvme_ctrlr *ctrlr)
636 {
637 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
638 	int rc;
639 
640 	if (pctrlr->cmb.mem_register_addr == NULL) {
641 		return 0;
642 	}
643 
644 	rc = spdk_mem_unregister(pctrlr->cmb.mem_register_addr, pctrlr->cmb.mem_register_size);
645 
646 	if (rc == 0) {
647 		pctrlr->cmb.mem_register_addr = NULL;
648 		pctrlr->cmb.mem_register_size = 0;
649 	}
650 
651 	return rc;
652 }
653 
654 static int
655 nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr)
656 {
657 	int rc;
658 	void *addr = NULL;
659 	uint64_t phys_addr = 0, size = 0;
660 
661 	rc = spdk_pci_device_map_bar(pctrlr->devhandle, 0, &addr,
662 				     &phys_addr, &size);
663 
664 	if ((addr == NULL) || (rc != 0)) {
665 		SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n",
666 			    rc, addr);
667 		return -1;
668 	}
669 
670 	pctrlr->regs = (volatile struct spdk_nvme_registers *)addr;
671 	pctrlr->regs_size = size;
672 	nvme_pcie_ctrlr_map_cmb(pctrlr);
673 
674 	return 0;
675 }
676 
677 static int
678 nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr)
679 {
680 	int rc = 0;
681 	void *addr = (void *)pctrlr->regs;
682 
683 	if (pctrlr->ctrlr.is_removed) {
684 		return rc;
685 	}
686 
687 	rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr);
688 	if (rc != 0) {
689 		SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc);
690 		return -1;
691 	}
692 
693 	if (addr) {
694 		/* NOTE: addr may have been remapped here. We're relying on DPDK to call
695 		 * munmap internally.
696 		 */
697 		rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, 0, addr);
698 	}
699 	return rc;
700 }
701 
702 static int
703 nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t num_entries)
704 {
705 	struct nvme_pcie_qpair *pqpair;
706 	int rc;
707 
708 	pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
709 	if (pqpair == NULL) {
710 		return -ENOMEM;
711 	}
712 
713 	pqpair->num_entries = num_entries;
714 	pqpair->flags.delay_cmd_submit = 0;
715 
716 	ctrlr->adminq = &pqpair->qpair;
717 
718 	rc = nvme_qpair_init(ctrlr->adminq,
719 			     0, /* qpair ID */
720 			     ctrlr,
721 			     SPDK_NVME_QPRIO_URGENT,
722 			     num_entries);
723 	if (rc != 0) {
724 		return rc;
725 	}
726 
727 	return nvme_pcie_qpair_construct(ctrlr->adminq, NULL);
728 }
729 
730 /* This function must only be called while holding g_spdk_nvme_driver->lock */
731 static int
732 pcie_nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
733 {
734 	struct spdk_nvme_transport_id trid = {};
735 	struct nvme_pcie_enum_ctx *enum_ctx = ctx;
736 	struct spdk_nvme_ctrlr *ctrlr;
737 	struct spdk_pci_addr pci_addr;
738 
739 	pci_addr = spdk_pci_device_get_addr(pci_dev);
740 
741 	spdk_nvme_trid_populate_transport(&trid, SPDK_NVME_TRANSPORT_PCIE);
742 	spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &pci_addr);
743 
744 	ctrlr = nvme_get_ctrlr_by_trid_unsafe(&trid);
745 	if (!spdk_process_is_primary()) {
746 		if (!ctrlr) {
747 			SPDK_ERRLOG("Controller must be constructed in the primary process first.\n");
748 			return -1;
749 		}
750 
751 		return nvme_ctrlr_add_process(ctrlr, pci_dev);
752 	}
753 
754 	/* check whether user passes the pci_addr */
755 	if (enum_ctx->has_pci_addr &&
756 	    (spdk_pci_addr_compare(&pci_addr, &enum_ctx->pci_addr) != 0)) {
757 		return 1;
758 	}
759 
760 	return nvme_ctrlr_probe(&trid, enum_ctx->probe_ctx, pci_dev);
761 }
762 
763 static int
764 nvme_pcie_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx,
765 		     bool direct_connect)
766 {
767 	struct nvme_pcie_enum_ctx enum_ctx = {};
768 
769 	enum_ctx.probe_ctx = probe_ctx;
770 
771 	if (strlen(probe_ctx->trid.traddr) != 0) {
772 		if (spdk_pci_addr_parse(&enum_ctx.pci_addr, probe_ctx->trid.traddr)) {
773 			return -1;
774 		}
775 		enum_ctx.has_pci_addr = true;
776 	}
777 
778 	/* Only the primary process can monitor hotplug. */
779 	if (spdk_process_is_primary()) {
780 		_nvme_pcie_hotplug_monitor(probe_ctx);
781 	}
782 
783 	if (enum_ctx.has_pci_addr == false) {
784 		return spdk_pci_enumerate(spdk_pci_nvme_get_driver(),
785 					  pcie_nvme_enum_cb, &enum_ctx);
786 	} else {
787 		return spdk_pci_device_attach(spdk_pci_nvme_get_driver(),
788 					      pcie_nvme_enum_cb, &enum_ctx, &enum_ctx.pci_addr);
789 	}
790 }
791 
792 static int
793 nvme_pcie_ctrlr_attach(struct spdk_nvme_probe_ctx *probe_ctx, struct spdk_pci_addr *pci_addr)
794 {
795 	struct nvme_pcie_enum_ctx enum_ctx;
796 
797 	enum_ctx.probe_ctx = probe_ctx;
798 	enum_ctx.has_pci_addr = true;
799 	enum_ctx.pci_addr = *pci_addr;
800 
801 	return spdk_pci_enumerate(spdk_pci_nvme_get_driver(), pcie_nvme_enum_cb, &enum_ctx);
802 }
803 
804 static struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
805 		const struct spdk_nvme_ctrlr_opts *opts,
806 		void *devhandle)
807 {
808 	struct spdk_pci_device *pci_dev = devhandle;
809 	struct nvme_pcie_ctrlr *pctrlr;
810 	union spdk_nvme_cap_register cap;
811 	union spdk_nvme_vs_register vs;
812 	uint16_t cmd_reg;
813 	int rc;
814 	struct spdk_pci_id pci_id;
815 
816 	rc = spdk_pci_device_claim(pci_dev);
817 	if (rc < 0) {
818 		SPDK_ERRLOG("could not claim device %s (%s)\n",
819 			    trid->traddr, spdk_strerror(-rc));
820 		return NULL;
821 	}
822 
823 	pctrlr = spdk_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL,
824 			      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
825 	if (pctrlr == NULL) {
826 		spdk_pci_device_unclaim(pci_dev);
827 		SPDK_ERRLOG("could not allocate ctrlr\n");
828 		return NULL;
829 	}
830 
831 	pctrlr->is_remapped = false;
832 	pctrlr->ctrlr.is_removed = false;
833 	pctrlr->devhandle = devhandle;
834 	pctrlr->ctrlr.opts = *opts;
835 	pctrlr->ctrlr.trid = *trid;
836 
837 	rc = nvme_ctrlr_construct(&pctrlr->ctrlr);
838 	if (rc != 0) {
839 		spdk_pci_device_unclaim(pci_dev);
840 		spdk_free(pctrlr);
841 		return NULL;
842 	}
843 
844 	rc = nvme_pcie_ctrlr_allocate_bars(pctrlr);
845 	if (rc != 0) {
846 		spdk_pci_device_unclaim(pci_dev);
847 		spdk_free(pctrlr);
848 		return NULL;
849 	}
850 
851 	/* Enable PCI busmaster and disable INTx */
852 	spdk_pci_device_cfg_read16(pci_dev, &cmd_reg, 4);
853 	cmd_reg |= 0x404;
854 	spdk_pci_device_cfg_write16(pci_dev, cmd_reg, 4);
855 
856 	if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) {
857 		SPDK_ERRLOG("get_cap() failed\n");
858 		spdk_pci_device_unclaim(pci_dev);
859 		spdk_free(pctrlr);
860 		return NULL;
861 	}
862 
863 	if (nvme_ctrlr_get_vs(&pctrlr->ctrlr, &vs)) {
864 		SPDK_ERRLOG("get_vs() failed\n");
865 		spdk_pci_device_unclaim(pci_dev);
866 		spdk_free(pctrlr);
867 		return NULL;
868 	}
869 
870 	nvme_ctrlr_init_cap(&pctrlr->ctrlr, &cap, &vs);
871 
872 	/* Doorbell stride is 2 ^ (dstrd + 2),
873 	 * but we want multiples of 4, so drop the + 2 */
874 	pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd;
875 
876 	pci_id = spdk_pci_device_get_id(pci_dev);
877 	pctrlr->ctrlr.quirks = nvme_get_quirks(&pci_id);
878 
879 	rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr, pctrlr->ctrlr.opts.admin_queue_size);
880 	if (rc != 0) {
881 		nvme_ctrlr_destruct(&pctrlr->ctrlr);
882 		return NULL;
883 	}
884 
885 	/* Construct the primary process properties */
886 	rc = nvme_ctrlr_add_process(&pctrlr->ctrlr, pci_dev);
887 	if (rc != 0) {
888 		nvme_ctrlr_destruct(&pctrlr->ctrlr);
889 		return NULL;
890 	}
891 
892 	if (g_sigset != true) {
893 		nvme_pcie_ctrlr_setup_signal();
894 		g_sigset = true;
895 	}
896 
897 	return &pctrlr->ctrlr;
898 }
899 
900 static int
901 nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
902 {
903 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
904 	struct nvme_pcie_qpair *padminq = nvme_pcie_qpair(ctrlr->adminq);
905 	union spdk_nvme_aqa_register aqa;
906 
907 	if (nvme_pcie_ctrlr_set_asq(pctrlr, padminq->cmd_bus_addr)) {
908 		SPDK_ERRLOG("set_asq() failed\n");
909 		return -EIO;
910 	}
911 
912 	if (nvme_pcie_ctrlr_set_acq(pctrlr, padminq->cpl_bus_addr)) {
913 		SPDK_ERRLOG("set_acq() failed\n");
914 		return -EIO;
915 	}
916 
917 	aqa.raw = 0;
918 	/* acqs and asqs are 0-based. */
919 	aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
920 	aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
921 
922 	if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) {
923 		SPDK_ERRLOG("set_aqa() failed\n");
924 		return -EIO;
925 	}
926 
927 	return 0;
928 }
929 
930 static int
931 nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
932 {
933 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
934 	struct spdk_pci_device *devhandle = nvme_ctrlr_proc_get_devhandle(ctrlr);
935 
936 	if (ctrlr->adminq) {
937 		nvme_pcie_qpair_destroy(ctrlr->adminq);
938 	}
939 
940 	nvme_ctrlr_destruct_finish(ctrlr);
941 
942 	nvme_ctrlr_free_processes(ctrlr);
943 
944 	nvme_pcie_ctrlr_free_bars(pctrlr);
945 
946 	if (devhandle) {
947 		spdk_pci_device_unclaim(devhandle);
948 		spdk_pci_device_detach(devhandle);
949 	}
950 
951 	spdk_free(pctrlr);
952 
953 	return 0;
954 }
955 
956 static void
957 nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr)
958 {
959 	tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp);
960 	tr->cid = cid;
961 	tr->req = NULL;
962 }
963 
964 static int
965 nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair)
966 {
967 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
968 	uint32_t i;
969 
970 	/* all head/tail vals are set to 0 */
971 	pqpair->last_sq_tail = pqpair->sq_tail = pqpair->sq_head = pqpair->cq_head = 0;
972 
973 	/*
974 	 * First time through the completion queue, HW will set phase
975 	 *  bit on completions to 1.  So set this to 1 here, indicating
976 	 *  we're looking for a 1 to know which entries have completed.
977 	 *  we'll toggle the bit each time when the completion queue
978 	 *  rolls over.
979 	 */
980 	pqpair->flags.phase = 1;
981 	for (i = 0; i < pqpair->num_entries; i++) {
982 		pqpair->cpl[i].status.p = 0;
983 	}
984 
985 	return 0;
986 }
987 
988 static void *
989 nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t size, uint64_t alignment,
990 			  uint64_t *phys_addr)
991 {
992 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
993 	uintptr_t addr;
994 
995 	if (pctrlr->cmb.mem_register_addr != NULL) {
996 		/* BAR is mapped for data */
997 		return NULL;
998 	}
999 
1000 	addr = (uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset;
1001 	addr = (addr + (alignment - 1)) & ~(alignment - 1);
1002 
1003 	/* CMB may only consume part of the BAR, calculate accordingly */
1004 	if (addr + size > ((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.size)) {
1005 		SPDK_ERRLOG("Tried to allocate past valid CMB range!\n");
1006 		return NULL;
1007 	}
1008 	*phys_addr = pctrlr->cmb.bar_pa + addr - (uintptr_t)pctrlr->cmb.bar_va;
1009 
1010 	pctrlr->cmb.current_offset = (addr + size) - (uintptr_t)pctrlr->cmb.bar_va;
1011 
1012 	return (void *)addr;
1013 }
1014 
1015 static int
1016 nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair,
1017 			  const struct spdk_nvme_io_qpair_opts *opts)
1018 {
1019 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
1020 	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(ctrlr);
1021 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1022 	struct nvme_tracker	*tr;
1023 	uint16_t		i;
1024 	volatile uint32_t	*doorbell_base;
1025 	uint16_t		num_trackers;
1026 	size_t			page_align = sysconf(_SC_PAGESIZE);
1027 	size_t			queue_align, queue_len;
1028 	uint32_t                flags = SPDK_MALLOC_DMA;
1029 	uint64_t		sq_paddr = 0;
1030 	uint64_t		cq_paddr = 0;
1031 
1032 	if (opts) {
1033 		pqpair->sq_vaddr = opts->sq.vaddr;
1034 		pqpair->cq_vaddr = opts->cq.vaddr;
1035 		sq_paddr = opts->sq.paddr;
1036 		cq_paddr = opts->cq.paddr;
1037 	}
1038 
1039 	pqpair->retry_count = ctrlr->opts.transport_retry_count;
1040 
1041 	/*
1042 	 * Limit the maximum number of completions to return per call to prevent wraparound,
1043 	 * and calculate how many trackers can be submitted at once without overflowing the
1044 	 * completion queue.
1045 	 */
1046 	pqpair->max_completions_cap = pqpair->num_entries / 4;
1047 	pqpair->max_completions_cap = spdk_max(pqpair->max_completions_cap, NVME_MIN_COMPLETIONS);
1048 	pqpair->max_completions_cap = spdk_min(pqpair->max_completions_cap, NVME_MAX_COMPLETIONS);
1049 	num_trackers = pqpair->num_entries - pqpair->max_completions_cap;
1050 
1051 	SPDK_INFOLOG(nvme, "max_completions_cap = %" PRIu16 " num_trackers = %" PRIu16 "\n",
1052 		     pqpair->max_completions_cap, num_trackers);
1053 
1054 	assert(num_trackers != 0);
1055 
1056 	pqpair->sq_in_cmb = false;
1057 
1058 	if (nvme_qpair_is_admin_queue(&pqpair->qpair)) {
1059 		flags |= SPDK_MALLOC_SHARE;
1060 	}
1061 
1062 	/* cmd and cpl rings must be aligned on page size boundaries. */
1063 	if (ctrlr->opts.use_cmb_sqs) {
1064 		pqpair->cmd = nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
1065 							page_align, &pqpair->cmd_bus_addr);
1066 		if (pqpair->cmd != NULL) {
1067 			pqpair->sq_in_cmb = true;
1068 		}
1069 	}
1070 
1071 	if (pqpair->sq_in_cmb == false) {
1072 		if (pqpair->sq_vaddr) {
1073 			pqpair->cmd = pqpair->sq_vaddr;
1074 		} else {
1075 			/* To ensure physical address contiguity we make each ring occupy
1076 			 * a single hugepage only. See MAX_IO_QUEUE_ENTRIES.
1077 			 */
1078 			queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cmd);
1079 			queue_align = spdk_max(spdk_align32pow2(queue_len), page_align);
1080 			pqpair->cmd = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags);
1081 			if (pqpair->cmd == NULL) {
1082 				SPDK_ERRLOG("alloc qpair_cmd failed\n");
1083 				return -ENOMEM;
1084 			}
1085 		}
1086 		if (sq_paddr) {
1087 			assert(pqpair->sq_vaddr != NULL);
1088 			pqpair->cmd_bus_addr = sq_paddr;
1089 		} else {
1090 			pqpair->cmd_bus_addr = spdk_vtophys(pqpair->cmd, NULL);
1091 			if (pqpair->cmd_bus_addr == SPDK_VTOPHYS_ERROR) {
1092 				SPDK_ERRLOG("spdk_vtophys(pqpair->cmd) failed\n");
1093 				return -EFAULT;
1094 			}
1095 		}
1096 	}
1097 
1098 	if (pqpair->cq_vaddr) {
1099 		pqpair->cpl = pqpair->cq_vaddr;
1100 	} else {
1101 		queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cpl);
1102 		queue_align = spdk_max(spdk_align32pow2(queue_len), page_align);
1103 		pqpair->cpl = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags);
1104 		if (pqpair->cpl == NULL) {
1105 			SPDK_ERRLOG("alloc qpair_cpl failed\n");
1106 			return -ENOMEM;
1107 		}
1108 	}
1109 	if (cq_paddr) {
1110 		assert(pqpair->cq_vaddr != NULL);
1111 		pqpair->cpl_bus_addr = cq_paddr;
1112 	} else {
1113 		pqpair->cpl_bus_addr = spdk_vtophys(pqpair->cpl, NULL);
1114 		if (pqpair->cpl_bus_addr == SPDK_VTOPHYS_ERROR) {
1115 			SPDK_ERRLOG("spdk_vtophys(pqpair->cpl) failed\n");
1116 			return -EFAULT;
1117 		}
1118 	}
1119 
1120 	doorbell_base = &pctrlr->regs->doorbell[0].sq_tdbl;
1121 	pqpair->sq_tdbl = doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
1122 	pqpair->cq_hdbl = doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
1123 
1124 	/*
1125 	 * Reserve space for all of the trackers in a single allocation.
1126 	 *   struct nvme_tracker must be padded so that its size is already a power of 2.
1127 	 *   This ensures the PRP list embedded in the nvme_tracker object will not span a
1128 	 *   4KB boundary, while allowing access to trackers in tr[] via normal array indexing.
1129 	 */
1130 	pqpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), NULL,
1131 				  SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
1132 	if (pqpair->tr == NULL) {
1133 		SPDK_ERRLOG("nvme_tr failed\n");
1134 		return -ENOMEM;
1135 	}
1136 
1137 	TAILQ_INIT(&pqpair->free_tr);
1138 	TAILQ_INIT(&pqpair->outstanding_tr);
1139 
1140 	for (i = 0; i < num_trackers; i++) {
1141 		tr = &pqpair->tr[i];
1142 		nvme_qpair_construct_tracker(tr, i, spdk_vtophys(tr, NULL));
1143 		TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
1144 	}
1145 
1146 	nvme_pcie_qpair_reset(qpair);
1147 
1148 	return 0;
1149 }
1150 
1151 /* Used when dst points to MMIO (i.e. CMB) in a virtual machine - in these cases we must
1152  * not use wide instructions because QEMU will not emulate such instructions to MMIO space.
1153  * So this function ensures we only copy 8 bytes at a time.
1154  */
1155 static inline void
1156 nvme_pcie_copy_command_mmio(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
1157 {
1158 	uint64_t *dst64 = (uint64_t *)dst;
1159 	const uint64_t *src64 = (const uint64_t *)src;
1160 	uint32_t i;
1161 
1162 	for (i = 0; i < sizeof(*dst) / 8; i++) {
1163 		dst64[i] = src64[i];
1164 	}
1165 }
1166 
1167 static inline void
1168 nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
1169 {
1170 	/* dst and src are known to be non-overlapping and 64-byte aligned. */
1171 #if defined(__SSE2__)
1172 	__m128i *d128 = (__m128i *)dst;
1173 	const __m128i *s128 = (const __m128i *)src;
1174 
1175 	_mm_stream_si128(&d128[0], _mm_load_si128(&s128[0]));
1176 	_mm_stream_si128(&d128[1], _mm_load_si128(&s128[1]));
1177 	_mm_stream_si128(&d128[2], _mm_load_si128(&s128[2]));
1178 	_mm_stream_si128(&d128[3], _mm_load_si128(&s128[3]));
1179 #else
1180 	*dst = *src;
1181 #endif
1182 }
1183 
1184 /**
1185  * Note: the ctrlr_lock must be held when calling this function.
1186  */
1187 static void
1188 nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair,
1189 		struct nvme_request *req, struct spdk_nvme_cpl *cpl)
1190 {
1191 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
1192 	struct nvme_request		*active_req = req;
1193 	struct spdk_nvme_ctrlr_process	*active_proc;
1194 
1195 	/*
1196 	 * The admin request is from another process. Move to the per
1197 	 *  process list for that process to handle it later.
1198 	 */
1199 	assert(nvme_qpair_is_admin_queue(qpair));
1200 	assert(active_req->pid != getpid());
1201 
1202 	active_proc = nvme_ctrlr_get_process(ctrlr, active_req->pid);
1203 	if (active_proc) {
1204 		/* Save the original completion information */
1205 		memcpy(&active_req->cpl, cpl, sizeof(*cpl));
1206 		STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq);
1207 	} else {
1208 		SPDK_ERRLOG("The owning process (pid %d) is not found. Dropping the request.\n",
1209 			    active_req->pid);
1210 
1211 		nvme_free_request(active_req);
1212 	}
1213 }
1214 
1215 /**
1216  * Note: the ctrlr_lock must be held when calling this function.
1217  */
1218 static void
1219 nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair)
1220 {
1221 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
1222 	struct nvme_request		*req, *tmp_req;
1223 	pid_t				pid = getpid();
1224 	struct spdk_nvme_ctrlr_process	*proc;
1225 
1226 	/*
1227 	 * Check whether there is any pending admin request from
1228 	 * other active processes.
1229 	 */
1230 	assert(nvme_qpair_is_admin_queue(qpair));
1231 
1232 	proc = nvme_ctrlr_get_current_process(ctrlr);
1233 	if (!proc) {
1234 		SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid);
1235 		assert(proc);
1236 		return;
1237 	}
1238 
1239 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
1240 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
1241 
1242 		assert(req->pid == pid);
1243 
1244 		nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, &req->cpl);
1245 		nvme_free_request(req);
1246 	}
1247 }
1248 
1249 static inline int
1250 nvme_pcie_qpair_need_event(uint16_t event_idx, uint16_t new_idx, uint16_t old)
1251 {
1252 	return (uint16_t)(new_idx - event_idx) <= (uint16_t)(new_idx - old);
1253 }
1254 
1255 static bool
1256 nvme_pcie_qpair_update_mmio_required(struct spdk_nvme_qpair *qpair, uint16_t value,
1257 				     volatile uint32_t *shadow_db,
1258 				     volatile uint32_t *eventidx)
1259 {
1260 	uint16_t old;
1261 
1262 	if (!shadow_db) {
1263 		return true;
1264 	}
1265 
1266 	old = *shadow_db;
1267 	*shadow_db = value;
1268 
1269 	/*
1270 	 * Ensure that the doorbell is updated before reading the EventIdx from
1271 	 * memory
1272 	 */
1273 	spdk_mb();
1274 
1275 	if (!nvme_pcie_qpair_need_event(*eventidx, value, old)) {
1276 		return false;
1277 	}
1278 
1279 	return true;
1280 }
1281 
1282 static inline void
1283 nvme_pcie_qpair_ring_sq_doorbell(struct spdk_nvme_qpair *qpair)
1284 {
1285 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1286 	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
1287 	bool need_mmio = true;
1288 
1289 	if (qpair->first_fused_submitted) {
1290 		/* This is first cmd of two fused commands - don't ring doorbell */
1291 		qpair->first_fused_submitted = 0;
1292 		return;
1293 	}
1294 
1295 	if (spdk_unlikely(pqpair->flags.has_shadow_doorbell)) {
1296 		need_mmio = nvme_pcie_qpair_update_mmio_required(qpair,
1297 				pqpair->sq_tail,
1298 				pqpair->shadow_doorbell.sq_tdbl,
1299 				pqpair->shadow_doorbell.sq_eventidx);
1300 	}
1301 
1302 	if (spdk_likely(need_mmio)) {
1303 		spdk_wmb();
1304 		g_thread_mmio_ctrlr = pctrlr;
1305 		spdk_mmio_write_4(pqpair->sq_tdbl, pqpair->sq_tail);
1306 		g_thread_mmio_ctrlr = NULL;
1307 	}
1308 }
1309 
1310 static inline void
1311 nvme_pcie_qpair_ring_cq_doorbell(struct spdk_nvme_qpair *qpair)
1312 {
1313 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1314 	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
1315 	bool need_mmio = true;
1316 
1317 	if (spdk_unlikely(pqpair->flags.has_shadow_doorbell)) {
1318 		need_mmio = nvme_pcie_qpair_update_mmio_required(qpair,
1319 				pqpair->cq_head,
1320 				pqpair->shadow_doorbell.cq_hdbl,
1321 				pqpair->shadow_doorbell.cq_eventidx);
1322 	}
1323 
1324 	if (spdk_likely(need_mmio)) {
1325 		g_thread_mmio_ctrlr = pctrlr;
1326 		spdk_mmio_write_4(pqpair->cq_hdbl, pqpair->cq_head);
1327 		g_thread_mmio_ctrlr = NULL;
1328 	}
1329 }
1330 
1331 static void
1332 nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
1333 {
1334 	struct nvme_request	*req;
1335 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1336 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
1337 
1338 	req = tr->req;
1339 	assert(req != NULL);
1340 
1341 	if (req->cmd.fuse == SPDK_NVME_IO_FLAGS_FUSE_FIRST) {
1342 		/* This is first cmd of two fused commands - don't ring doorbell */
1343 		qpair->first_fused_submitted = 1;
1344 	}
1345 
1346 	/* Don't use wide instructions to copy NVMe command, this is limited by QEMU
1347 	 * virtual NVMe controller, the maximum access width is 8 Bytes for one time.
1348 	 */
1349 	if (spdk_unlikely((ctrlr->quirks & NVME_QUIRK_MAXIMUM_PCI_ACCESS_WIDTH) && pqpair->sq_in_cmb)) {
1350 		nvme_pcie_copy_command_mmio(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
1351 	} else {
1352 		/* Copy the command from the tracker to the submission queue. */
1353 		nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
1354 	}
1355 
1356 	if (spdk_unlikely(++pqpair->sq_tail == pqpair->num_entries)) {
1357 		pqpair->sq_tail = 0;
1358 	}
1359 
1360 	if (spdk_unlikely(pqpair->sq_tail == pqpair->sq_head)) {
1361 		SPDK_ERRLOG("sq_tail is passing sq_head!\n");
1362 	}
1363 
1364 	if (!pqpair->flags.delay_cmd_submit) {
1365 		nvme_pcie_qpair_ring_sq_doorbell(qpair);
1366 	}
1367 }
1368 
1369 static void
1370 nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
1371 				 struct spdk_nvme_cpl *cpl, bool print_on_error)
1372 {
1373 	struct nvme_pcie_qpair		*pqpair = nvme_pcie_qpair(qpair);
1374 	struct nvme_request		*req;
1375 	bool				retry, error;
1376 	bool				req_from_current_proc = true;
1377 
1378 	req = tr->req;
1379 
1380 	assert(req != NULL);
1381 
1382 	error = spdk_nvme_cpl_is_error(cpl);
1383 	retry = error && nvme_completion_is_retry(cpl) &&
1384 		req->retries < pqpair->retry_count;
1385 
1386 	if (error && print_on_error && !qpair->ctrlr->opts.disable_error_logging) {
1387 		spdk_nvme_qpair_print_command(qpair, &req->cmd);
1388 		spdk_nvme_qpair_print_completion(qpair, cpl);
1389 	}
1390 
1391 	assert(cpl->cid == req->cmd.cid);
1392 
1393 	if (retry) {
1394 		req->retries++;
1395 		nvme_pcie_qpair_submit_tracker(qpair, tr);
1396 	} else {
1397 		TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list);
1398 
1399 		/* Only check admin requests from different processes. */
1400 		if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) {
1401 			req_from_current_proc = false;
1402 			nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl);
1403 		} else {
1404 			nvme_complete_request(tr->cb_fn, tr->cb_arg, qpair, req, cpl);
1405 		}
1406 
1407 		if (req_from_current_proc == true) {
1408 			nvme_qpair_free_request(qpair, req);
1409 		}
1410 
1411 		tr->req = NULL;
1412 
1413 		TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
1414 	}
1415 }
1416 
1417 static void
1418 nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair,
1419 					struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
1420 					bool print_on_error)
1421 {
1422 	struct spdk_nvme_cpl	cpl;
1423 
1424 	memset(&cpl, 0, sizeof(cpl));
1425 	cpl.sqid = qpair->id;
1426 	cpl.cid = tr->cid;
1427 	cpl.status.sct = sct;
1428 	cpl.status.sc = sc;
1429 	cpl.status.dnr = dnr;
1430 	nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
1431 }
1432 
1433 static void
1434 nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr)
1435 {
1436 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
1437 	struct nvme_tracker *tr, *temp, *last;
1438 
1439 	last = TAILQ_LAST(&pqpair->outstanding_tr, nvme_outstanding_tr_head);
1440 
1441 	/* Abort previously submitted (outstanding) trs */
1442 	TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) {
1443 		if (!qpair->ctrlr->opts.disable_error_logging) {
1444 			SPDK_ERRLOG("aborting outstanding command\n");
1445 		}
1446 		nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
1447 							SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true);
1448 
1449 		if (tr == last) {
1450 			break;
1451 		}
1452 	}
1453 }
1454 
1455 static int
1456 nvme_pcie_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
1457 				 int (*iter_fn)(struct nvme_request *req, void *arg),
1458 				 void *arg)
1459 {
1460 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
1461 	struct nvme_tracker *tr, *tmp;
1462 	int rc;
1463 
1464 	assert(iter_fn != NULL);
1465 
1466 	TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
1467 		assert(tr->req != NULL);
1468 
1469 		rc = iter_fn(tr->req, arg);
1470 		if (rc != 0) {
1471 			return rc;
1472 		}
1473 	}
1474 
1475 	return 0;
1476 }
1477 
1478 static void
1479 nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
1480 {
1481 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1482 	struct nvme_tracker	*tr;
1483 
1484 	tr = TAILQ_FIRST(&pqpair->outstanding_tr);
1485 	while (tr != NULL) {
1486 		assert(tr->req != NULL);
1487 		if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
1488 			nvme_pcie_qpair_manual_complete_tracker(qpair, tr,
1489 								SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0,
1490 								false);
1491 			tr = TAILQ_FIRST(&pqpair->outstanding_tr);
1492 		} else {
1493 			tr = TAILQ_NEXT(tr, tq_list);
1494 		}
1495 	}
1496 }
1497 
1498 static void
1499 nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair)
1500 {
1501 	nvme_pcie_admin_qpair_abort_aers(qpair);
1502 }
1503 
1504 static int
1505 nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair)
1506 {
1507 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
1508 
1509 	if (nvme_qpair_is_admin_queue(qpair)) {
1510 		nvme_pcie_admin_qpair_destroy(qpair);
1511 	}
1512 	/*
1513 	 * We check sq_vaddr and cq_vaddr to see if the user specified the memory
1514 	 * buffers when creating the I/O queue.
1515 	 * If the user specified them, we cannot free that memory.
1516 	 * Nor do we free it if it's in the CMB.
1517 	 */
1518 	if (!pqpair->sq_vaddr && pqpair->cmd && !pqpair->sq_in_cmb) {
1519 		spdk_free(pqpair->cmd);
1520 	}
1521 	if (!pqpair->cq_vaddr && pqpair->cpl) {
1522 		spdk_free(pqpair->cpl);
1523 	}
1524 	if (pqpair->tr) {
1525 		spdk_free(pqpair->tr);
1526 	}
1527 
1528 	nvme_qpair_deinit(qpair);
1529 
1530 	spdk_free(pqpair);
1531 
1532 	return 0;
1533 }
1534 
1535 static void
1536 nvme_pcie_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
1537 {
1538 	nvme_pcie_qpair_abort_trackers(qpair, dnr);
1539 }
1540 
1541 static int
1542 nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr,
1543 				 struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn,
1544 				 void *cb_arg)
1545 {
1546 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
1547 	struct nvme_request *req;
1548 	struct spdk_nvme_cmd *cmd;
1549 
1550 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
1551 	if (req == NULL) {
1552 		return -ENOMEM;
1553 	}
1554 
1555 	cmd = &req->cmd;
1556 	cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ;
1557 
1558 	cmd->cdw10_bits.create_io_q.qid = io_que->id;
1559 	cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1;
1560 
1561 	cmd->cdw11_bits.create_io_cq.pc = 1;
1562 	cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr;
1563 
1564 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
1565 }
1566 
1567 static int
1568 nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr,
1569 				 struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
1570 {
1571 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
1572 	struct nvme_request *req;
1573 	struct spdk_nvme_cmd *cmd;
1574 
1575 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
1576 	if (req == NULL) {
1577 		return -ENOMEM;
1578 	}
1579 
1580 	cmd = &req->cmd;
1581 	cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ;
1582 
1583 	cmd->cdw10_bits.create_io_q.qid = io_que->id;
1584 	cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1;
1585 	cmd->cdw11_bits.create_io_sq.pc = 1;
1586 	cmd->cdw11_bits.create_io_sq.qprio = io_que->qprio;
1587 	cmd->cdw11_bits.create_io_sq.cqid = io_que->id;
1588 	cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr;
1589 
1590 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
1591 }
1592 
1593 static int
1594 nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
1595 				 spdk_nvme_cmd_cb cb_fn, void *cb_arg)
1596 {
1597 	struct nvme_request *req;
1598 	struct spdk_nvme_cmd *cmd;
1599 
1600 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
1601 	if (req == NULL) {
1602 		return -ENOMEM;
1603 	}
1604 
1605 	cmd = &req->cmd;
1606 	cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ;
1607 	cmd->cdw10_bits.delete_io_q.qid = qpair->id;
1608 
1609 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
1610 }
1611 
1612 static int
1613 nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
1614 				 spdk_nvme_cmd_cb cb_fn, void *cb_arg)
1615 {
1616 	struct nvme_request *req;
1617 	struct spdk_nvme_cmd *cmd;
1618 
1619 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
1620 	if (req == NULL) {
1621 		return -ENOMEM;
1622 	}
1623 
1624 	cmd = &req->cmd;
1625 	cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ;
1626 	cmd->cdw10_bits.delete_io_q.qid = qpair->id;
1627 
1628 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
1629 }
1630 
1631 static int
1632 _nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
1633 				 uint16_t qid)
1634 {
1635 	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(ctrlr);
1636 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1637 	struct nvme_completion_poll_status	*status;
1638 	int					rc;
1639 
1640 	status = calloc(1, sizeof(*status));
1641 	if (!status) {
1642 		SPDK_ERRLOG("Failed to allocate status tracker\n");
1643 		return -ENOMEM;
1644 	}
1645 
1646 	rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_poll_cb, status);
1647 	if (rc != 0) {
1648 		free(status);
1649 		return rc;
1650 	}
1651 
1652 	if (nvme_wait_for_completion(ctrlr->adminq, status)) {
1653 		SPDK_ERRLOG("nvme_create_io_cq failed!\n");
1654 		if (!status->timed_out) {
1655 			free(status);
1656 		}
1657 		return -1;
1658 	}
1659 
1660 	memset(status, 0, sizeof(*status));
1661 	rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, status);
1662 	if (rc != 0) {
1663 		free(status);
1664 		return rc;
1665 	}
1666 
1667 	if (nvme_wait_for_completion(ctrlr->adminq, status)) {
1668 		SPDK_ERRLOG("nvme_create_io_sq failed!\n");
1669 		if (status->timed_out) {
1670 			/* Request is still queued, the memory will be freed in a completion callback.
1671 			   allocate a new request */
1672 			status = calloc(1, sizeof(*status));
1673 			if (!status) {
1674 				SPDK_ERRLOG("Failed to allocate status tracker\n");
1675 				return -ENOMEM;
1676 			}
1677 		}
1678 
1679 		memset(status, 0, sizeof(*status));
1680 		/* Attempt to delete the completion queue */
1681 		rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_poll_cb, status);
1682 		if (rc != 0) {
1683 			/* The originall or newly allocated status structure can be freed since
1684 			 * the corresponding request has been completed of failed to submit */
1685 			free(status);
1686 			return -1;
1687 		}
1688 		nvme_wait_for_completion(ctrlr->adminq, status);
1689 		if (!status->timed_out) {
1690 			/* status can be freed regardless of nvme_wait_for_completion return value */
1691 			free(status);
1692 		}
1693 		return -1;
1694 	}
1695 
1696 	if (ctrlr->shadow_doorbell) {
1697 		pqpair->shadow_doorbell.sq_tdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 0) *
1698 						  pctrlr->doorbell_stride_u32;
1699 		pqpair->shadow_doorbell.cq_hdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 1) *
1700 						  pctrlr->doorbell_stride_u32;
1701 		pqpair->shadow_doorbell.sq_eventidx = ctrlr->eventidx + (2 * qpair->id + 0) *
1702 						      pctrlr->doorbell_stride_u32;
1703 		pqpair->shadow_doorbell.cq_eventidx = ctrlr->eventidx + (2 * qpair->id + 1) *
1704 						      pctrlr->doorbell_stride_u32;
1705 		pqpair->flags.has_shadow_doorbell = 1;
1706 	} else {
1707 		pqpair->flags.has_shadow_doorbell = 0;
1708 	}
1709 	nvme_pcie_qpair_reset(qpair);
1710 	free(status);
1711 
1712 	return 0;
1713 }
1714 
1715 static struct spdk_nvme_qpair *
1716 nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
1717 				const struct spdk_nvme_io_qpair_opts *opts)
1718 {
1719 	struct nvme_pcie_qpair *pqpair;
1720 	struct spdk_nvme_qpair *qpair;
1721 	int rc;
1722 
1723 	assert(ctrlr != NULL);
1724 
1725 	pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL,
1726 			      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
1727 	if (pqpair == NULL) {
1728 		return NULL;
1729 	}
1730 
1731 	pqpair->num_entries = opts->io_queue_size;
1732 	pqpair->flags.delay_cmd_submit = opts->delay_cmd_submit;
1733 
1734 	qpair = &pqpair->qpair;
1735 
1736 	rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests);
1737 	if (rc != 0) {
1738 		nvme_pcie_qpair_destroy(qpair);
1739 		return NULL;
1740 	}
1741 
1742 	rc = nvme_pcie_qpair_construct(qpair, opts);
1743 
1744 	if (rc != 0) {
1745 		nvme_pcie_qpair_destroy(qpair);
1746 		return NULL;
1747 	}
1748 
1749 	return qpair;
1750 }
1751 
1752 static int
1753 nvme_pcie_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1754 {
1755 	if (nvme_qpair_is_admin_queue(qpair)) {
1756 		return 0;
1757 	} else {
1758 		return _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id);
1759 	}
1760 }
1761 
1762 static void
1763 nvme_pcie_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1764 {
1765 }
1766 
1767 static int32_t nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair,
1768 		uint32_t max_completions);
1769 
1770 static int
1771 nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1772 {
1773 	struct nvme_completion_poll_status *status;
1774 	int rc;
1775 
1776 	assert(ctrlr != NULL);
1777 
1778 	if (ctrlr->is_removed) {
1779 		goto free;
1780 	}
1781 
1782 	status = calloc(1, sizeof(*status));
1783 	if (!status) {
1784 		SPDK_ERRLOG("Failed to allocate status tracker\n");
1785 		return -ENOMEM;
1786 	}
1787 
1788 	/* Delete the I/O submission queue */
1789 	rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, status);
1790 	if (rc != 0) {
1791 		SPDK_ERRLOG("Failed to send request to delete_io_sq with rc=%d\n", rc);
1792 		free(status);
1793 		return rc;
1794 	}
1795 	if (nvme_wait_for_completion(ctrlr->adminq, status)) {
1796 		if (!status->timed_out) {
1797 			free(status);
1798 		}
1799 		return -1;
1800 	}
1801 
1802 	/* Now that the submission queue is deleted, the device is supposed to have
1803 	 * completed any outstanding I/O. Try to complete them. If they don't complete,
1804 	 * they'll be marked as aborted and completed below. */
1805 	nvme_pcie_qpair_process_completions(qpair, 0);
1806 
1807 	memset(status, 0, sizeof(*status));
1808 	/* Delete the completion queue */
1809 	rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, status);
1810 	if (rc != 0) {
1811 		SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc);
1812 		free(status);
1813 		return rc;
1814 	}
1815 	if (nvme_wait_for_completion(ctrlr->adminq, status)) {
1816 		if (!status->timed_out) {
1817 			free(status);
1818 		}
1819 		return -1;
1820 	}
1821 	free(status);
1822 
1823 free:
1824 	if (qpair->no_deletion_notification_needed == 0) {
1825 		/* Abort the rest of the I/O */
1826 		nvme_pcie_qpair_abort_trackers(qpair, 1);
1827 	}
1828 
1829 	nvme_pcie_qpair_destroy(qpair);
1830 	return 0;
1831 }
1832 
1833 static void
1834 nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
1835 {
1836 	/*
1837 	 * Bad vtophys translation, so abort this request and return
1838 	 *  immediately.
1839 	 */
1840 	nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
1841 						SPDK_NVME_SC_INVALID_FIELD,
1842 						1 /* do not retry */, true);
1843 }
1844 
1845 /*
1846  * Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes.
1847  *
1848  * *prp_index will be updated to account for the number of PRP entries used.
1849  */
1850 static inline int
1851 nvme_pcie_prp_list_append(struct nvme_tracker *tr, uint32_t *prp_index, void *virt_addr, size_t len,
1852 			  uint32_t page_size)
1853 {
1854 	struct spdk_nvme_cmd *cmd = &tr->req->cmd;
1855 	uintptr_t page_mask = page_size - 1;
1856 	uint64_t phys_addr;
1857 	uint32_t i;
1858 
1859 	SPDK_DEBUGLOG(nvme, "prp_index:%u virt_addr:%p len:%u\n",
1860 		      *prp_index, virt_addr, (uint32_t)len);
1861 
1862 	if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) {
1863 		SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
1864 		return -EFAULT;
1865 	}
1866 
1867 	i = *prp_index;
1868 	while (len) {
1869 		uint32_t seg_len;
1870 
1871 		/*
1872 		 * prp_index 0 is stored in prp1, and the rest are stored in the prp[] array,
1873 		 * so prp_index == count is valid.
1874 		 */
1875 		if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) {
1876 			SPDK_ERRLOG("out of PRP entries\n");
1877 			return -EFAULT;
1878 		}
1879 
1880 		phys_addr = spdk_vtophys(virt_addr, NULL);
1881 		if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) {
1882 			SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr);
1883 			return -EFAULT;
1884 		}
1885 
1886 		if (i == 0) {
1887 			SPDK_DEBUGLOG(nvme, "prp1 = %p\n", (void *)phys_addr);
1888 			cmd->dptr.prp.prp1 = phys_addr;
1889 			seg_len = page_size - ((uintptr_t)virt_addr & page_mask);
1890 		} else {
1891 			if ((phys_addr & page_mask) != 0) {
1892 				SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr);
1893 				return -EFAULT;
1894 			}
1895 
1896 			SPDK_DEBUGLOG(nvme, "prp[%u] = %p\n", i - 1, (void *)phys_addr);
1897 			tr->u.prp[i - 1] = phys_addr;
1898 			seg_len = page_size;
1899 		}
1900 
1901 		seg_len = spdk_min(seg_len, len);
1902 		virt_addr += seg_len;
1903 		len -= seg_len;
1904 		i++;
1905 	}
1906 
1907 	cmd->psdt = SPDK_NVME_PSDT_PRP;
1908 	if (i <= 1) {
1909 		cmd->dptr.prp.prp2 = 0;
1910 	} else if (i == 2) {
1911 		cmd->dptr.prp.prp2 = tr->u.prp[0];
1912 		SPDK_DEBUGLOG(nvme, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2);
1913 	} else {
1914 		cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr;
1915 		SPDK_DEBUGLOG(nvme, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2);
1916 	}
1917 
1918 	*prp_index = i;
1919 	return 0;
1920 }
1921 
1922 static int
1923 nvme_pcie_qpair_build_request_invalid(struct spdk_nvme_qpair *qpair,
1924 				      struct nvme_request *req, struct nvme_tracker *tr, bool dword_aligned)
1925 {
1926 	assert(0);
1927 	nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1928 	return -EINVAL;
1929 }
1930 
1931 /**
1932  * Build PRP list describing physically contiguous payload buffer.
1933  */
1934 static int
1935 nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
1936 				     struct nvme_tracker *tr, bool dword_aligned)
1937 {
1938 	uint32_t prp_index = 0;
1939 	int rc;
1940 
1941 	rc = nvme_pcie_prp_list_append(tr, &prp_index, req->payload.contig_or_cb_arg + req->payload_offset,
1942 				       req->payload_size, qpair->ctrlr->page_size);
1943 	if (rc) {
1944 		nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1945 	}
1946 
1947 	return rc;
1948 }
1949 
1950 /**
1951  * Build an SGL describing a physically contiguous payload buffer.
1952  *
1953  * This is more efficient than using PRP because large buffers can be
1954  * described this way.
1955  */
1956 static int
1957 nvme_pcie_qpair_build_contig_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
1958 		struct nvme_tracker *tr, bool dword_aligned)
1959 {
1960 	void *virt_addr;
1961 	uint64_t phys_addr, mapping_length;
1962 	uint32_t length;
1963 	struct spdk_nvme_sgl_descriptor *sgl;
1964 	uint32_t nseg = 0;
1965 
1966 	assert(req->payload_size != 0);
1967 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1968 
1969 	sgl = tr->u.sgl;
1970 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1971 	req->cmd.dptr.sgl1.unkeyed.subtype = 0;
1972 
1973 	length = req->payload_size;
1974 	virt_addr = req->payload.contig_or_cb_arg + req->payload_offset;
1975 	mapping_length = length;
1976 
1977 	while (length > 0) {
1978 		if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
1979 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1980 			return -EFAULT;
1981 		}
1982 
1983 		if (dword_aligned && ((uintptr_t)virt_addr & 3)) {
1984 			SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
1985 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1986 			return -EFAULT;
1987 		}
1988 
1989 		phys_addr = spdk_vtophys(virt_addr, &mapping_length);
1990 		if (phys_addr == SPDK_VTOPHYS_ERROR) {
1991 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1992 			return -EFAULT;
1993 		}
1994 
1995 		mapping_length = spdk_min(length, mapping_length);
1996 
1997 		length -= mapping_length;
1998 		virt_addr += mapping_length;
1999 
2000 		sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
2001 		sgl->unkeyed.length = mapping_length;
2002 		sgl->address = phys_addr;
2003 		sgl->unkeyed.subtype = 0;
2004 
2005 		sgl++;
2006 		nseg++;
2007 	}
2008 
2009 	if (nseg == 1) {
2010 		/*
2011 		 * The whole transfer can be described by a single SGL descriptor.
2012 		 *  Use the special case described by the spec where SGL1's type is Data Block.
2013 		 *  This means the SGL in the tracker is not used at all, so copy the first (and only)
2014 		 *  SGL element into SGL1.
2015 		 */
2016 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
2017 		req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
2018 		req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
2019 	} else {
2020 		/* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because
2021 		 *  NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page.
2022 		 */
2023 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
2024 		req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
2025 		req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
2026 	}
2027 
2028 	return 0;
2029 }
2030 
2031 /**
2032  * Build SGL list describing scattered payload buffer.
2033  */
2034 static int
2035 nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
2036 				     struct nvme_tracker *tr, bool dword_aligned)
2037 {
2038 	int rc;
2039 	void *virt_addr;
2040 	uint64_t phys_addr, mapping_length;
2041 	uint32_t remaining_transfer_len, remaining_user_sge_len, length;
2042 	struct spdk_nvme_sgl_descriptor *sgl;
2043 	uint32_t nseg = 0;
2044 
2045 	/*
2046 	 * Build scattered payloads.
2047 	 */
2048 	assert(req->payload_size != 0);
2049 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
2050 	assert(req->payload.reset_sgl_fn != NULL);
2051 	assert(req->payload.next_sge_fn != NULL);
2052 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
2053 
2054 	sgl = tr->u.sgl;
2055 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
2056 	req->cmd.dptr.sgl1.unkeyed.subtype = 0;
2057 
2058 	remaining_transfer_len = req->payload_size;
2059 
2060 	while (remaining_transfer_len > 0) {
2061 		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg,
2062 					      &virt_addr, &remaining_user_sge_len);
2063 		if (rc) {
2064 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
2065 			return -EFAULT;
2066 		}
2067 
2068 		/* Bit Bucket SGL descriptor */
2069 		if ((uint64_t)virt_addr == UINT64_MAX) {
2070 			/* TODO: enable WRITE and COMPARE when necessary */
2071 			if (req->cmd.opc != SPDK_NVME_OPC_READ) {
2072 				SPDK_ERRLOG("Only READ command can be supported\n");
2073 				goto exit;
2074 			}
2075 			if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
2076 				SPDK_ERRLOG("Too many SGL entries\n");
2077 				goto exit;
2078 			}
2079 
2080 			sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_BIT_BUCKET;
2081 			/* If the SGL describes a destination data buffer, the length of data
2082 			 * buffer shall be discarded by controller, and the length is included
2083 			 * in Number of Logical Blocks (NLB) parameter. Otherwise, the length
2084 			 * is not included in the NLB parameter.
2085 			 */
2086 			remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
2087 			remaining_transfer_len -= remaining_user_sge_len;
2088 
2089 			sgl->unkeyed.length = remaining_user_sge_len;
2090 			sgl->address = 0;
2091 			sgl->unkeyed.subtype = 0;
2092 
2093 			sgl++;
2094 			nseg++;
2095 
2096 			continue;
2097 		}
2098 
2099 		remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
2100 		remaining_transfer_len -= remaining_user_sge_len;
2101 		while (remaining_user_sge_len > 0) {
2102 			if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
2103 				SPDK_ERRLOG("Too many SGL entries\n");
2104 				goto exit;
2105 			}
2106 
2107 			if (dword_aligned && ((uintptr_t)virt_addr & 3)) {
2108 				SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
2109 				goto exit;
2110 			}
2111 
2112 			mapping_length = remaining_user_sge_len;
2113 			phys_addr = spdk_vtophys(virt_addr, &mapping_length);
2114 			if (phys_addr == SPDK_VTOPHYS_ERROR) {
2115 				goto exit;
2116 			}
2117 
2118 			length = spdk_min(remaining_user_sge_len, mapping_length);
2119 			remaining_user_sge_len -= length;
2120 			virt_addr += length;
2121 
2122 			if (nseg > 0 && phys_addr ==
2123 			    (*(sgl - 1)).address + (*(sgl - 1)).unkeyed.length) {
2124 				/* extend previous entry */
2125 				(*(sgl - 1)).unkeyed.length += length;
2126 				continue;
2127 			}
2128 
2129 			sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
2130 			sgl->unkeyed.length = length;
2131 			sgl->address = phys_addr;
2132 			sgl->unkeyed.subtype = 0;
2133 
2134 			sgl++;
2135 			nseg++;
2136 		}
2137 	}
2138 
2139 	if (nseg == 1) {
2140 		/*
2141 		 * The whole transfer can be described by a single SGL descriptor.
2142 		 *  Use the special case described by the spec where SGL1's type is Data Block.
2143 		 *  This means the SGL in the tracker is not used at all, so copy the first (and only)
2144 		 *  SGL element into SGL1.
2145 		 */
2146 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
2147 		req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
2148 		req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
2149 	} else {
2150 		/* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because
2151 		 *  NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page.
2152 		 */
2153 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
2154 		req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
2155 		req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
2156 	}
2157 
2158 	return 0;
2159 
2160 exit:
2161 	nvme_pcie_fail_request_bad_vtophys(qpair, tr);
2162 	return -EFAULT;
2163 }
2164 
2165 /**
2166  * Build PRP list describing scattered payload buffer.
2167  */
2168 static int
2169 nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
2170 				       struct nvme_tracker *tr, bool dword_aligned)
2171 {
2172 	int rc;
2173 	void *virt_addr;
2174 	uint32_t remaining_transfer_len, length;
2175 	uint32_t prp_index = 0;
2176 	uint32_t page_size = qpair->ctrlr->page_size;
2177 
2178 	/*
2179 	 * Build scattered payloads.
2180 	 */
2181 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
2182 	assert(req->payload.reset_sgl_fn != NULL);
2183 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
2184 
2185 	remaining_transfer_len = req->payload_size;
2186 	while (remaining_transfer_len > 0) {
2187 		assert(req->payload.next_sge_fn != NULL);
2188 		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
2189 		if (rc) {
2190 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
2191 			return -EFAULT;
2192 		}
2193 
2194 		length = spdk_min(remaining_transfer_len, length);
2195 
2196 		/*
2197 		 * Any incompatible sges should have been handled up in the splitting routine,
2198 		 *  but assert here as an additional check.
2199 		 *
2200 		 * All SGEs except last must end on a page boundary.
2201 		 */
2202 		assert((length == remaining_transfer_len) ||
2203 		       _is_page_aligned((uintptr_t)virt_addr + length, page_size));
2204 
2205 		rc = nvme_pcie_prp_list_append(tr, &prp_index, virt_addr, length, page_size);
2206 		if (rc) {
2207 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
2208 			return rc;
2209 		}
2210 
2211 		remaining_transfer_len -= length;
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 typedef int(*build_req_fn)(struct spdk_nvme_qpair *, struct nvme_request *, struct nvme_tracker *,
2218 			   bool);
2219 
2220 static build_req_fn const g_nvme_pcie_build_req_table[][2] = {
2221 	[NVME_PAYLOAD_TYPE_INVALID] = {
2222 		nvme_pcie_qpair_build_request_invalid,			/* PRP */
2223 		nvme_pcie_qpair_build_request_invalid			/* SGL */
2224 	},
2225 	[NVME_PAYLOAD_TYPE_CONTIG] = {
2226 		nvme_pcie_qpair_build_contig_request,			/* PRP */
2227 		nvme_pcie_qpair_build_contig_hw_sgl_request		/* SGL */
2228 	},
2229 	[NVME_PAYLOAD_TYPE_SGL] = {
2230 		nvme_pcie_qpair_build_prps_sgl_request,			/* PRP */
2231 		nvme_pcie_qpair_build_hw_sgl_request			/* SGL */
2232 	}
2233 };
2234 
2235 static int
2236 nvme_pcie_qpair_build_metadata(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
2237 			       bool sgl_supported, bool dword_aligned)
2238 {
2239 	void *md_payload;
2240 	struct nvme_request *req = tr->req;
2241 
2242 	if (req->payload.md) {
2243 		md_payload = req->payload.md + req->md_offset;
2244 		if (dword_aligned && ((uintptr_t)md_payload & 3)) {
2245 			SPDK_ERRLOG("virt_addr %p not dword aligned\n", md_payload);
2246 			goto exit;
2247 		}
2248 
2249 		if (sgl_supported && dword_aligned) {
2250 			assert(req->cmd.psdt == SPDK_NVME_PSDT_SGL_MPTR_CONTIG);
2251 			req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_SGL;
2252 			tr->meta_sgl.address = spdk_vtophys(md_payload, NULL);
2253 			if (tr->meta_sgl.address == SPDK_VTOPHYS_ERROR) {
2254 				goto exit;
2255 			}
2256 			tr->meta_sgl.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
2257 			tr->meta_sgl.unkeyed.length = req->md_size;
2258 			tr->meta_sgl.unkeyed.subtype = 0;
2259 			req->cmd.mptr = tr->prp_sgl_bus_addr - sizeof(struct spdk_nvme_sgl_descriptor);
2260 		} else {
2261 			req->cmd.mptr = spdk_vtophys(md_payload, NULL);
2262 			if (req->cmd.mptr == SPDK_VTOPHYS_ERROR) {
2263 				goto exit;
2264 			}
2265 		}
2266 	}
2267 
2268 	return 0;
2269 
2270 exit:
2271 	nvme_pcie_fail_request_bad_vtophys(qpair, tr);
2272 	return -EINVAL;
2273 }
2274 
2275 static int
2276 nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
2277 {
2278 	struct nvme_tracker	*tr;
2279 	int			rc = 0;
2280 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
2281 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
2282 	enum nvme_payload_type	payload_type;
2283 	bool			sgl_supported;
2284 	bool			dword_aligned = true;
2285 
2286 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
2287 		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
2288 	}
2289 
2290 	tr = TAILQ_FIRST(&pqpair->free_tr);
2291 
2292 	if (tr == NULL) {
2293 		/* Inform the upper layer to try again later. */
2294 		rc = -EAGAIN;
2295 		goto exit;
2296 	}
2297 
2298 	TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */
2299 	TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list);
2300 	tr->req = req;
2301 	tr->cb_fn = req->cb_fn;
2302 	tr->cb_arg = req->cb_arg;
2303 	req->cmd.cid = tr->cid;
2304 
2305 	if (req->payload_size != 0) {
2306 		payload_type = nvme_payload_type(&req->payload);
2307 		/* According to the specification, PRPs shall be used for all
2308 		 *  Admin commands for NVMe over PCIe implementations.
2309 		 */
2310 		sgl_supported = (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) != 0 &&
2311 				!nvme_qpair_is_admin_queue(qpair);
2312 
2313 		if (sgl_supported && !(ctrlr->flags & SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT)) {
2314 			dword_aligned = false;
2315 		}
2316 		rc = g_nvme_pcie_build_req_table[payload_type][sgl_supported](qpair, req, tr, dword_aligned);
2317 		if (rc < 0) {
2318 			goto exit;
2319 		}
2320 
2321 		rc = nvme_pcie_qpair_build_metadata(qpair, tr, sgl_supported, dword_aligned);
2322 		if (rc < 0) {
2323 			goto exit;
2324 		}
2325 	}
2326 
2327 	nvme_pcie_qpair_submit_tracker(qpair, tr);
2328 
2329 exit:
2330 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
2331 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2332 	}
2333 
2334 	return rc;
2335 }
2336 
2337 static void
2338 nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
2339 {
2340 	uint64_t t02;
2341 	struct nvme_tracker *tr, *tmp;
2342 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
2343 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
2344 	struct spdk_nvme_ctrlr_process *active_proc;
2345 
2346 	/* Don't check timeouts during controller initialization. */
2347 	if (ctrlr->state != NVME_CTRLR_STATE_READY) {
2348 		return;
2349 	}
2350 
2351 	if (nvme_qpair_is_admin_queue(qpair)) {
2352 		active_proc = nvme_ctrlr_get_current_process(ctrlr);
2353 	} else {
2354 		active_proc = qpair->active_proc;
2355 	}
2356 
2357 	/* Only check timeouts if the current process has a timeout callback. */
2358 	if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
2359 		return;
2360 	}
2361 
2362 	t02 = spdk_get_ticks();
2363 	TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
2364 		assert(tr->req != NULL);
2365 
2366 		if (nvme_request_check_timeout(tr->req, tr->cid, active_proc, t02)) {
2367 			/*
2368 			 * The requests are in order, so as soon as one has not timed out,
2369 			 * stop iterating.
2370 			 */
2371 			break;
2372 		}
2373 	}
2374 }
2375 
2376 static int32_t
2377 nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
2378 {
2379 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
2380 	struct nvme_tracker	*tr;
2381 	struct spdk_nvme_cpl	*cpl, *next_cpl;
2382 	uint32_t		 num_completions = 0;
2383 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
2384 	uint16_t		 next_cq_head;
2385 	uint8_t			 next_phase;
2386 	bool			 next_is_valid = false;
2387 
2388 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
2389 		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
2390 	}
2391 
2392 	if (max_completions == 0 || max_completions > pqpair->max_completions_cap) {
2393 		/*
2394 		 * max_completions == 0 means unlimited, but complete at most
2395 		 * max_completions_cap batch of I/O at a time so that the completion
2396 		 * queue doorbells don't wrap around.
2397 		 */
2398 		max_completions = pqpair->max_completions_cap;
2399 	}
2400 
2401 	while (1) {
2402 		cpl = &pqpair->cpl[pqpair->cq_head];
2403 
2404 		if (!next_is_valid && cpl->status.p != pqpair->flags.phase) {
2405 			break;
2406 		}
2407 
2408 		if (spdk_likely(pqpair->cq_head + 1 != pqpair->num_entries)) {
2409 			next_cq_head = pqpair->cq_head + 1;
2410 			next_phase = pqpair->flags.phase;
2411 		} else {
2412 			next_cq_head = 0;
2413 			next_phase = !pqpair->flags.phase;
2414 		}
2415 		next_cpl = &pqpair->cpl[next_cq_head];
2416 		next_is_valid = (next_cpl->status.p == next_phase);
2417 		if (next_is_valid) {
2418 			__builtin_prefetch(&pqpair->tr[next_cpl->cid]);
2419 		}
2420 
2421 #ifdef __PPC64__
2422 		/*
2423 		 * This memory barrier prevents reordering of:
2424 		 * - load after store from/to tr
2425 		 * - load after load cpl phase and cpl cid
2426 		 */
2427 		spdk_mb();
2428 #elif defined(__aarch64__)
2429 		__asm volatile("dmb oshld" ::: "memory");
2430 #endif
2431 
2432 		if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) {
2433 			pqpair->cq_head = 0;
2434 			pqpair->flags.phase = !pqpair->flags.phase;
2435 		}
2436 
2437 		tr = &pqpair->tr[cpl->cid];
2438 		/* Prefetch the req's STAILQ_ENTRY since we'll need to access it
2439 		 * as part of putting the req back on the qpair's free list.
2440 		 */
2441 		__builtin_prefetch(&tr->req->stailq);
2442 		pqpair->sq_head = cpl->sqhd;
2443 
2444 		if (tr->req) {
2445 			nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true);
2446 		} else {
2447 			SPDK_ERRLOG("cpl does not map to outstanding cmd\n");
2448 			spdk_nvme_qpair_print_completion(qpair, cpl);
2449 			assert(0);
2450 		}
2451 
2452 		if (++num_completions == max_completions) {
2453 			break;
2454 		}
2455 	}
2456 
2457 	if (num_completions > 0) {
2458 		nvme_pcie_qpair_ring_cq_doorbell(qpair);
2459 	}
2460 
2461 	if (pqpair->flags.delay_cmd_submit) {
2462 		if (pqpair->last_sq_tail != pqpair->sq_tail) {
2463 			nvme_pcie_qpair_ring_sq_doorbell(qpair);
2464 			pqpair->last_sq_tail = pqpair->sq_tail;
2465 		}
2466 	}
2467 
2468 	if (spdk_unlikely(ctrlr->timeout_enabled)) {
2469 		/*
2470 		 * User registered for timeout callback
2471 		 */
2472 		nvme_pcie_qpair_check_timeout(qpair);
2473 	}
2474 
2475 	/* Before returning, complete any pending admin request. */
2476 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
2477 		nvme_pcie_qpair_complete_pending_admin_request(qpair);
2478 
2479 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2480 	}
2481 
2482 	return num_completions;
2483 }
2484 
2485 static struct spdk_nvme_transport_poll_group *
2486 nvme_pcie_poll_group_create(void)
2487 {
2488 	struct nvme_pcie_poll_group *group = calloc(1, sizeof(*group));
2489 
2490 	if (group == NULL) {
2491 		SPDK_ERRLOG("Unable to allocate poll group.\n");
2492 		return NULL;
2493 	}
2494 
2495 	return &group->group;
2496 }
2497 
2498 static int
2499 nvme_pcie_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
2500 {
2501 	return 0;
2502 }
2503 
2504 static int
2505 nvme_pcie_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
2506 {
2507 	return 0;
2508 }
2509 
2510 static int
2511 nvme_pcie_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
2512 			 struct spdk_nvme_qpair *qpair)
2513 {
2514 	return 0;
2515 }
2516 
2517 static int
2518 nvme_pcie_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
2519 			    struct spdk_nvme_qpair *qpair)
2520 {
2521 	return 0;
2522 }
2523 
2524 static int64_t
2525 nvme_pcie_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
2526 		uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
2527 {
2528 	struct spdk_nvme_qpair *qpair, *tmp_qpair;
2529 	int32_t local_completions = 0;
2530 	int64_t total_completions = 0;
2531 
2532 	STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
2533 		disconnected_qpair_cb(qpair, tgroup->group->ctx);
2534 	}
2535 
2536 	STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
2537 		local_completions = spdk_nvme_qpair_process_completions(qpair, completions_per_qpair);
2538 		if (local_completions < 0) {
2539 			disconnected_qpair_cb(qpair, tgroup->group->ctx);
2540 			local_completions = 0;
2541 		}
2542 		total_completions += local_completions;
2543 	}
2544 
2545 	return total_completions;
2546 }
2547 
2548 static int
2549 nvme_pcie_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
2550 {
2551 	if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
2552 		return -EBUSY;
2553 	}
2554 
2555 	free(tgroup);
2556 
2557 	return 0;
2558 }
2559 
2560 static struct spdk_pci_id nvme_pci_driver_id[] = {
2561 	{
2562 		.class_id = SPDK_PCI_CLASS_NVME,
2563 		.vendor_id = SPDK_PCI_ANY_ID,
2564 		.device_id = SPDK_PCI_ANY_ID,
2565 		.subvendor_id = SPDK_PCI_ANY_ID,
2566 		.subdevice_id = SPDK_PCI_ANY_ID,
2567 	},
2568 	{ .vendor_id = 0, /* sentinel */ },
2569 };
2570 
2571 SPDK_PCI_DRIVER_REGISTER(nvme, nvme_pci_driver_id,
2572 			 SPDK_PCI_DRIVER_NEED_MAPPING | SPDK_PCI_DRIVER_WC_ACTIVATE);
2573 
2574 const struct spdk_nvme_transport_ops pcie_ops = {
2575 	.name = "PCIE",
2576 	.type = SPDK_NVME_TRANSPORT_PCIE,
2577 	.ctrlr_construct = nvme_pcie_ctrlr_construct,
2578 	.ctrlr_scan = nvme_pcie_ctrlr_scan,
2579 	.ctrlr_destruct = nvme_pcie_ctrlr_destruct,
2580 	.ctrlr_enable = nvme_pcie_ctrlr_enable,
2581 
2582 	.ctrlr_set_reg_4 = nvme_pcie_ctrlr_set_reg_4,
2583 	.ctrlr_set_reg_8 = nvme_pcie_ctrlr_set_reg_8,
2584 	.ctrlr_get_reg_4 = nvme_pcie_ctrlr_get_reg_4,
2585 	.ctrlr_get_reg_8 = nvme_pcie_ctrlr_get_reg_8,
2586 
2587 	.ctrlr_get_max_xfer_size = nvme_pcie_ctrlr_get_max_xfer_size,
2588 	.ctrlr_get_max_sges = nvme_pcie_ctrlr_get_max_sges,
2589 
2590 	.ctrlr_reserve_cmb = nvme_pcie_ctrlr_reserve_cmb,
2591 	.ctrlr_map_cmb = nvme_pcie_ctrlr_map_io_cmb,
2592 	.ctrlr_unmap_cmb = nvme_pcie_ctrlr_unmap_io_cmb,
2593 
2594 	.ctrlr_create_io_qpair = nvme_pcie_ctrlr_create_io_qpair,
2595 	.ctrlr_delete_io_qpair = nvme_pcie_ctrlr_delete_io_qpair,
2596 	.ctrlr_connect_qpair = nvme_pcie_ctrlr_connect_qpair,
2597 	.ctrlr_disconnect_qpair = nvme_pcie_ctrlr_disconnect_qpair,
2598 
2599 	.qpair_abort_reqs = nvme_pcie_qpair_abort_reqs,
2600 	.qpair_reset = nvme_pcie_qpair_reset,
2601 	.qpair_submit_request = nvme_pcie_qpair_submit_request,
2602 	.qpair_process_completions = nvme_pcie_qpair_process_completions,
2603 	.qpair_iterate_requests = nvme_pcie_qpair_iterate_requests,
2604 	.admin_qpair_abort_aers = nvme_pcie_admin_qpair_abort_aers,
2605 
2606 	.poll_group_create = nvme_pcie_poll_group_create,
2607 	.poll_group_connect_qpair = nvme_pcie_poll_group_connect_qpair,
2608 	.poll_group_disconnect_qpair = nvme_pcie_poll_group_disconnect_qpair,
2609 	.poll_group_add = nvme_pcie_poll_group_add,
2610 	.poll_group_remove = nvme_pcie_poll_group_remove,
2611 	.poll_group_process_completions = nvme_pcie_poll_group_process_completions,
2612 	.poll_group_destroy = nvme_pcie_poll_group_destroy,
2613 };
2614 
2615 SPDK_NVME_TRANSPORT_REGISTER(pcie, &pcie_ops);
2616