1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. All rights reserved. 5 * Copyright (c) 2017, IBM Corporation. All rights reserved. 6 * Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * * Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * * Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * * Neither the name of Intel Corporation nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * NVMe over PCIe transport 37 */ 38 39 #include "spdk/stdinc.h" 40 #include "spdk/env.h" 41 #include "spdk/likely.h" 42 #include "spdk/string.h" 43 #include "nvme_internal.h" 44 #include "nvme_uevent.h" 45 46 /* 47 * Number of completion queue entries to process before ringing the 48 * completion queue doorbell. 49 */ 50 #define NVME_MIN_COMPLETIONS (1) 51 #define NVME_MAX_COMPLETIONS (128) 52 53 /* 54 * NVME_MAX_SGL_DESCRIPTORS defines the maximum number of descriptors in one SGL 55 * segment. 56 */ 57 #define NVME_MAX_SGL_DESCRIPTORS (250) 58 59 #define NVME_MAX_PRP_LIST_ENTRIES (503) 60 61 struct nvme_pcie_enum_ctx { 62 struct spdk_nvme_probe_ctx *probe_ctx; 63 struct spdk_pci_addr pci_addr; 64 bool has_pci_addr; 65 }; 66 67 /* PCIe transport extensions for spdk_nvme_ctrlr */ 68 struct nvme_pcie_ctrlr { 69 struct spdk_nvme_ctrlr ctrlr; 70 71 /** NVMe MMIO register space */ 72 volatile struct spdk_nvme_registers *regs; 73 74 /** NVMe MMIO register size */ 75 uint64_t regs_size; 76 77 struct { 78 /* BAR mapping address which contains controller memory buffer */ 79 void *bar_va; 80 81 /* BAR physical address which contains controller memory buffer */ 82 uint64_t bar_pa; 83 84 /* Controller memory buffer size in Bytes */ 85 uint64_t size; 86 87 /* Current offset of controller memory buffer, relative to start of BAR virt addr */ 88 uint64_t current_offset; 89 90 void *mem_register_addr; 91 size_t mem_register_size; 92 } cmb; 93 94 /** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */ 95 uint32_t doorbell_stride_u32; 96 97 /* Opaque handle to associated PCI device. */ 98 struct spdk_pci_device *devhandle; 99 100 /* Flag to indicate the MMIO register has been remapped */ 101 bool is_remapped; 102 }; 103 104 struct nvme_tracker { 105 TAILQ_ENTRY(nvme_tracker) tq_list; 106 107 struct nvme_request *req; 108 uint16_t cid; 109 110 uint16_t rsvd0; 111 uint32_t rsvd1; 112 113 spdk_nvme_cmd_cb cb_fn; 114 void *cb_arg; 115 116 uint64_t prp_sgl_bus_addr; 117 118 /* Don't move, metadata SGL is always contiguous with Data Block SGL */ 119 struct spdk_nvme_sgl_descriptor meta_sgl; 120 union { 121 uint64_t prp[NVME_MAX_PRP_LIST_ENTRIES]; 122 struct spdk_nvme_sgl_descriptor sgl[NVME_MAX_SGL_DESCRIPTORS]; 123 } u; 124 }; 125 /* 126 * struct nvme_tracker must be exactly 4K so that the prp[] array does not cross a page boundary 127 * and so that there is no padding required to meet alignment requirements. 128 */ 129 SPDK_STATIC_ASSERT(sizeof(struct nvme_tracker) == 4096, "nvme_tracker is not 4K"); 130 SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, u.sgl) & 7) == 0, "SGL must be Qword aligned"); 131 SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, meta_sgl) & 7) == 0, "SGL must be Qword aligned"); 132 133 struct nvme_pcie_poll_group { 134 struct spdk_nvme_transport_poll_group group; 135 }; 136 137 /* PCIe transport extensions for spdk_nvme_qpair */ 138 struct nvme_pcie_qpair { 139 /* Submission queue tail doorbell */ 140 volatile uint32_t *sq_tdbl; 141 142 /* Completion queue head doorbell */ 143 volatile uint32_t *cq_hdbl; 144 145 /* Submission queue */ 146 struct spdk_nvme_cmd *cmd; 147 148 /* Completion queue */ 149 struct spdk_nvme_cpl *cpl; 150 151 TAILQ_HEAD(, nvme_tracker) free_tr; 152 TAILQ_HEAD(nvme_outstanding_tr_head, nvme_tracker) outstanding_tr; 153 154 /* Array of trackers indexed by command ID. */ 155 struct nvme_tracker *tr; 156 157 uint16_t num_entries; 158 159 uint8_t retry_count; 160 161 uint16_t max_completions_cap; 162 163 uint16_t last_sq_tail; 164 uint16_t sq_tail; 165 uint16_t cq_head; 166 uint16_t sq_head; 167 168 struct { 169 uint8_t phase : 1; 170 uint8_t delay_cmd_submit : 1; 171 uint8_t has_shadow_doorbell : 1; 172 } flags; 173 174 /* 175 * Base qpair structure. 176 * This is located after the hot data in this structure so that the important parts of 177 * nvme_pcie_qpair are in the same cache line. 178 */ 179 struct spdk_nvme_qpair qpair; 180 181 struct { 182 /* Submission queue shadow tail doorbell */ 183 volatile uint32_t *sq_tdbl; 184 185 /* Completion queue shadow head doorbell */ 186 volatile uint32_t *cq_hdbl; 187 188 /* Submission queue event index */ 189 volatile uint32_t *sq_eventidx; 190 191 /* Completion queue event index */ 192 volatile uint32_t *cq_eventidx; 193 } shadow_doorbell; 194 195 /* 196 * Fields below this point should not be touched on the normal I/O path. 197 */ 198 199 bool sq_in_cmb; 200 201 uint64_t cmd_bus_addr; 202 uint64_t cpl_bus_addr; 203 204 struct spdk_nvme_cmd *sq_vaddr; 205 struct spdk_nvme_cpl *cq_vaddr; 206 }; 207 208 static int nvme_pcie_ctrlr_attach(struct spdk_nvme_probe_ctx *probe_ctx, 209 struct spdk_pci_addr *pci_addr); 210 static int nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair, 211 const struct spdk_nvme_io_qpair_opts *opts); 212 static int nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair); 213 214 __thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL; 215 static uint16_t g_signal_lock; 216 static bool g_sigset = false; 217 218 static void 219 nvme_sigbus_fault_sighandler(int signum, siginfo_t *info, void *ctx) 220 { 221 void *map_address; 222 uint16_t flag = 0; 223 224 if (!__atomic_compare_exchange_n(&g_signal_lock, &flag, 1, false, __ATOMIC_ACQUIRE, 225 __ATOMIC_RELAXED)) { 226 SPDK_DEBUGLOG(nvme, "request g_signal_lock failed\n"); 227 return; 228 } 229 230 assert(g_thread_mmio_ctrlr != NULL); 231 232 if (!g_thread_mmio_ctrlr->is_remapped) { 233 map_address = mmap((void *)g_thread_mmio_ctrlr->regs, g_thread_mmio_ctrlr->regs_size, 234 PROT_READ | PROT_WRITE, 235 MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0); 236 if (map_address == MAP_FAILED) { 237 SPDK_ERRLOG("mmap failed\n"); 238 __atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE); 239 return; 240 } 241 memset(map_address, 0xFF, sizeof(struct spdk_nvme_registers)); 242 g_thread_mmio_ctrlr->regs = (volatile struct spdk_nvme_registers *)map_address; 243 g_thread_mmio_ctrlr->is_remapped = true; 244 } 245 __atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE); 246 } 247 248 static void 249 nvme_pcie_ctrlr_setup_signal(void) 250 { 251 struct sigaction sa; 252 253 sa.sa_sigaction = nvme_sigbus_fault_sighandler; 254 sigemptyset(&sa.sa_mask); 255 sa.sa_flags = SA_SIGINFO; 256 sigaction(SIGBUS, &sa, NULL); 257 } 258 259 static inline struct nvme_pcie_ctrlr * 260 nvme_pcie_ctrlr(struct spdk_nvme_ctrlr *ctrlr) 261 { 262 assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE); 263 return SPDK_CONTAINEROF(ctrlr, struct nvme_pcie_ctrlr, ctrlr); 264 } 265 266 static int 267 _nvme_pcie_hotplug_monitor(struct spdk_nvme_probe_ctx *probe_ctx) 268 { 269 struct spdk_nvme_ctrlr *ctrlr, *tmp; 270 struct spdk_uevent event; 271 struct spdk_pci_addr pci_addr; 272 273 if (g_spdk_nvme_driver->hotplug_fd < 0) { 274 return 0; 275 } 276 277 while (nvme_get_uevent(g_spdk_nvme_driver->hotplug_fd, &event) > 0) { 278 if (event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_UIO || 279 event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_VFIO) { 280 if (event.action == SPDK_NVME_UEVENT_ADD) { 281 SPDK_DEBUGLOG(nvme, "add nvme address: %s\n", 282 event.traddr); 283 if (spdk_process_is_primary()) { 284 if (!spdk_pci_addr_parse(&pci_addr, event.traddr)) { 285 nvme_pcie_ctrlr_attach(probe_ctx, &pci_addr); 286 } 287 } 288 } else if (event.action == SPDK_NVME_UEVENT_REMOVE) { 289 struct spdk_nvme_transport_id trid; 290 291 memset(&trid, 0, sizeof(trid)); 292 spdk_nvme_trid_populate_transport(&trid, SPDK_NVME_TRANSPORT_PCIE); 293 snprintf(trid.traddr, sizeof(trid.traddr), "%s", event.traddr); 294 295 ctrlr = nvme_get_ctrlr_by_trid_unsafe(&trid); 296 if (ctrlr == NULL) { 297 return 0; 298 } 299 SPDK_DEBUGLOG(nvme, "remove nvme address: %s\n", 300 event.traddr); 301 302 nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); 303 nvme_ctrlr_fail(ctrlr, true); 304 nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); 305 306 /* get the user app to clean up and stop I/O */ 307 if (ctrlr->remove_cb) { 308 nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); 309 ctrlr->remove_cb(ctrlr->cb_ctx, ctrlr); 310 nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); 311 } 312 } 313 } 314 } 315 316 /* Initiate removal of physically hotremoved PCI controllers. Even after 317 * they're hotremoved from the system, SPDK might still report them via RPC. 318 */ 319 TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq, tmp) { 320 bool do_remove = false; 321 struct nvme_pcie_ctrlr *pctrlr; 322 323 if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) { 324 continue; 325 } 326 327 pctrlr = nvme_pcie_ctrlr(ctrlr); 328 if (spdk_pci_device_is_removed(pctrlr->devhandle)) { 329 do_remove = true; 330 } 331 332 if (do_remove) { 333 nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); 334 nvme_ctrlr_fail(ctrlr, true); 335 nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); 336 if (ctrlr->remove_cb) { 337 nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); 338 ctrlr->remove_cb(ctrlr->cb_ctx, ctrlr); 339 nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); 340 } 341 } 342 } 343 return 0; 344 } 345 346 static inline struct nvme_pcie_qpair * 347 nvme_pcie_qpair(struct spdk_nvme_qpair *qpair) 348 { 349 assert(qpair->trtype == SPDK_NVME_TRANSPORT_PCIE); 350 return SPDK_CONTAINEROF(qpair, struct nvme_pcie_qpair, qpair); 351 } 352 353 static volatile void * 354 nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset) 355 { 356 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); 357 358 return (volatile void *)((uintptr_t)pctrlr->regs + offset); 359 } 360 361 static int 362 nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value) 363 { 364 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); 365 366 assert(offset <= sizeof(struct spdk_nvme_registers) - 4); 367 g_thread_mmio_ctrlr = pctrlr; 368 spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value); 369 g_thread_mmio_ctrlr = NULL; 370 return 0; 371 } 372 373 static int 374 nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value) 375 { 376 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); 377 378 assert(offset <= sizeof(struct spdk_nvme_registers) - 8); 379 g_thread_mmio_ctrlr = pctrlr; 380 spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value); 381 g_thread_mmio_ctrlr = NULL; 382 return 0; 383 } 384 385 static int 386 nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value) 387 { 388 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); 389 390 assert(offset <= sizeof(struct spdk_nvme_registers) - 4); 391 assert(value != NULL); 392 g_thread_mmio_ctrlr = pctrlr; 393 *value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset)); 394 g_thread_mmio_ctrlr = NULL; 395 if (~(*value) == 0) { 396 return -1; 397 } 398 399 return 0; 400 } 401 402 static int 403 nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value) 404 { 405 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); 406 407 assert(offset <= sizeof(struct spdk_nvme_registers) - 8); 408 assert(value != NULL); 409 g_thread_mmio_ctrlr = pctrlr; 410 *value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset)); 411 g_thread_mmio_ctrlr = NULL; 412 if (~(*value) == 0) { 413 return -1; 414 } 415 416 return 0; 417 } 418 419 static int 420 nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value) 421 { 422 return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq), 423 value); 424 } 425 426 static int 427 nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value) 428 { 429 return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq), 430 value); 431 } 432 433 static int 434 nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa) 435 { 436 return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw), 437 aqa->raw); 438 } 439 440 static int 441 nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc) 442 { 443 return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw), 444 &cmbloc->raw); 445 } 446 447 static int 448 nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz) 449 { 450 return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw), 451 &cmbsz->raw); 452 } 453 454 static uint32_t 455 nvme_pcie_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr) 456 { 457 /* 458 * For commands requiring more than 2 PRP entries, one PRP will be 459 * embedded in the command (prp1), and the rest of the PRP entries 460 * will be in a list pointed to by the command (prp2). This means 461 * that real max number of PRP entries we support is 506+1, which 462 * results in a max xfer size of 506*ctrlr->page_size. 463 */ 464 return NVME_MAX_PRP_LIST_ENTRIES * ctrlr->page_size; 465 } 466 467 static uint16_t 468 nvme_pcie_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr) 469 { 470 return NVME_MAX_SGL_DESCRIPTORS; 471 } 472 473 static void 474 nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr) 475 { 476 int rc; 477 void *addr = NULL; 478 uint32_t bir; 479 union spdk_nvme_cmbsz_register cmbsz; 480 union spdk_nvme_cmbloc_register cmbloc; 481 uint64_t size, unit_size, offset, bar_size = 0, bar_phys_addr = 0; 482 483 if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) || 484 nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) { 485 SPDK_ERRLOG("get registers failed\n"); 486 goto exit; 487 } 488 489 if (!cmbsz.bits.sz) { 490 goto exit; 491 } 492 493 bir = cmbloc.bits.bir; 494 /* Values 0 2 3 4 5 are valid for BAR */ 495 if (bir > 5 || bir == 1) { 496 goto exit; 497 } 498 499 /* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */ 500 unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu); 501 /* controller memory buffer size in Bytes */ 502 size = unit_size * cmbsz.bits.sz; 503 /* controller memory buffer offset from BAR in Bytes */ 504 offset = unit_size * cmbloc.bits.ofst; 505 506 rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr, 507 &bar_phys_addr, &bar_size); 508 if ((rc != 0) || addr == NULL) { 509 goto exit; 510 } 511 512 if (offset > bar_size) { 513 goto exit; 514 } 515 516 if (size > bar_size - offset) { 517 goto exit; 518 } 519 520 pctrlr->cmb.bar_va = addr; 521 pctrlr->cmb.bar_pa = bar_phys_addr; 522 pctrlr->cmb.size = size; 523 pctrlr->cmb.current_offset = offset; 524 525 if (!cmbsz.bits.sqs) { 526 pctrlr->ctrlr.opts.use_cmb_sqs = false; 527 } 528 529 return; 530 exit: 531 pctrlr->ctrlr.opts.use_cmb_sqs = false; 532 return; 533 } 534 535 static int 536 nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr) 537 { 538 int rc = 0; 539 union spdk_nvme_cmbloc_register cmbloc; 540 void *addr = pctrlr->cmb.bar_va; 541 542 if (addr) { 543 if (pctrlr->cmb.mem_register_addr) { 544 spdk_mem_unregister(pctrlr->cmb.mem_register_addr, pctrlr->cmb.mem_register_size); 545 } 546 547 if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) { 548 SPDK_ERRLOG("get_cmbloc() failed\n"); 549 return -EIO; 550 } 551 rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, cmbloc.bits.bir, addr); 552 } 553 return rc; 554 } 555 556 static int 557 nvme_pcie_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr) 558 { 559 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); 560 561 if (pctrlr->cmb.bar_va == NULL) { 562 SPDK_DEBUGLOG(nvme, "CMB not available\n"); 563 return -ENOTSUP; 564 } 565 566 if (ctrlr->opts.use_cmb_sqs) { 567 SPDK_ERRLOG("CMB is already in use for submission queues.\n"); 568 return -ENOTSUP; 569 } 570 571 return 0; 572 } 573 574 static void * 575 nvme_pcie_ctrlr_map_io_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size) 576 { 577 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); 578 union spdk_nvme_cmbsz_register cmbsz; 579 union spdk_nvme_cmbloc_register cmbloc; 580 uint64_t mem_register_start, mem_register_end; 581 int rc; 582 583 if (pctrlr->cmb.mem_register_addr != NULL) { 584 *size = pctrlr->cmb.mem_register_size; 585 return pctrlr->cmb.mem_register_addr; 586 } 587 588 *size = 0; 589 590 if (pctrlr->cmb.bar_va == NULL) { 591 SPDK_DEBUGLOG(nvme, "CMB not available\n"); 592 return NULL; 593 } 594 595 if (ctrlr->opts.use_cmb_sqs) { 596 SPDK_ERRLOG("CMB is already in use for submission queues.\n"); 597 return NULL; 598 } 599 600 if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) || 601 nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) { 602 SPDK_ERRLOG("get registers failed\n"); 603 return NULL; 604 } 605 606 /* If only SQS is supported */ 607 if (!(cmbsz.bits.wds || cmbsz.bits.rds)) { 608 return NULL; 609 } 610 611 /* If CMB is less than 4MiB in size then abort CMB mapping */ 612 if (pctrlr->cmb.size < (1ULL << 22)) { 613 return NULL; 614 } 615 616 mem_register_start = _2MB_PAGE((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset + 617 VALUE_2MB - 1); 618 mem_register_end = _2MB_PAGE((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset + 619 pctrlr->cmb.size); 620 621 rc = spdk_mem_register((void *)mem_register_start, mem_register_end - mem_register_start); 622 if (rc) { 623 SPDK_ERRLOG("spdk_mem_register() failed\n"); 624 return NULL; 625 } 626 627 pctrlr->cmb.mem_register_addr = (void *)mem_register_start; 628 pctrlr->cmb.mem_register_size = mem_register_end - mem_register_start; 629 630 *size = pctrlr->cmb.mem_register_size; 631 return pctrlr->cmb.mem_register_addr; 632 } 633 634 static int 635 nvme_pcie_ctrlr_unmap_io_cmb(struct spdk_nvme_ctrlr *ctrlr) 636 { 637 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); 638 int rc; 639 640 if (pctrlr->cmb.mem_register_addr == NULL) { 641 return 0; 642 } 643 644 rc = spdk_mem_unregister(pctrlr->cmb.mem_register_addr, pctrlr->cmb.mem_register_size); 645 646 if (rc == 0) { 647 pctrlr->cmb.mem_register_addr = NULL; 648 pctrlr->cmb.mem_register_size = 0; 649 } 650 651 return rc; 652 } 653 654 static int 655 nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr) 656 { 657 int rc; 658 void *addr = NULL; 659 uint64_t phys_addr = 0, size = 0; 660 661 rc = spdk_pci_device_map_bar(pctrlr->devhandle, 0, &addr, 662 &phys_addr, &size); 663 664 if ((addr == NULL) || (rc != 0)) { 665 SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n", 666 rc, addr); 667 return -1; 668 } 669 670 pctrlr->regs = (volatile struct spdk_nvme_registers *)addr; 671 pctrlr->regs_size = size; 672 nvme_pcie_ctrlr_map_cmb(pctrlr); 673 674 return 0; 675 } 676 677 static int 678 nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr) 679 { 680 int rc = 0; 681 void *addr = (void *)pctrlr->regs; 682 683 if (pctrlr->ctrlr.is_removed) { 684 return rc; 685 } 686 687 rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr); 688 if (rc != 0) { 689 SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc); 690 return -1; 691 } 692 693 if (addr) { 694 /* NOTE: addr may have been remapped here. We're relying on DPDK to call 695 * munmap internally. 696 */ 697 rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, 0, addr); 698 } 699 return rc; 700 } 701 702 static int 703 nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t num_entries) 704 { 705 struct nvme_pcie_qpair *pqpair; 706 int rc; 707 708 pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); 709 if (pqpair == NULL) { 710 return -ENOMEM; 711 } 712 713 pqpair->num_entries = num_entries; 714 pqpair->flags.delay_cmd_submit = 0; 715 716 ctrlr->adminq = &pqpair->qpair; 717 718 rc = nvme_qpair_init(ctrlr->adminq, 719 0, /* qpair ID */ 720 ctrlr, 721 SPDK_NVME_QPRIO_URGENT, 722 num_entries); 723 if (rc != 0) { 724 return rc; 725 } 726 727 return nvme_pcie_qpair_construct(ctrlr->adminq, NULL); 728 } 729 730 /* This function must only be called while holding g_spdk_nvme_driver->lock */ 731 static int 732 pcie_nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev) 733 { 734 struct spdk_nvme_transport_id trid = {}; 735 struct nvme_pcie_enum_ctx *enum_ctx = ctx; 736 struct spdk_nvme_ctrlr *ctrlr; 737 struct spdk_pci_addr pci_addr; 738 739 pci_addr = spdk_pci_device_get_addr(pci_dev); 740 741 spdk_nvme_trid_populate_transport(&trid, SPDK_NVME_TRANSPORT_PCIE); 742 spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &pci_addr); 743 744 ctrlr = nvme_get_ctrlr_by_trid_unsafe(&trid); 745 if (!spdk_process_is_primary()) { 746 if (!ctrlr) { 747 SPDK_ERRLOG("Controller must be constructed in the primary process first.\n"); 748 return -1; 749 } 750 751 return nvme_ctrlr_add_process(ctrlr, pci_dev); 752 } 753 754 /* check whether user passes the pci_addr */ 755 if (enum_ctx->has_pci_addr && 756 (spdk_pci_addr_compare(&pci_addr, &enum_ctx->pci_addr) != 0)) { 757 return 1; 758 } 759 760 return nvme_ctrlr_probe(&trid, enum_ctx->probe_ctx, pci_dev); 761 } 762 763 static int 764 nvme_pcie_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx, 765 bool direct_connect) 766 { 767 struct nvme_pcie_enum_ctx enum_ctx = {}; 768 769 enum_ctx.probe_ctx = probe_ctx; 770 771 if (strlen(probe_ctx->trid.traddr) != 0) { 772 if (spdk_pci_addr_parse(&enum_ctx.pci_addr, probe_ctx->trid.traddr)) { 773 return -1; 774 } 775 enum_ctx.has_pci_addr = true; 776 } 777 778 /* Only the primary process can monitor hotplug. */ 779 if (spdk_process_is_primary()) { 780 _nvme_pcie_hotplug_monitor(probe_ctx); 781 } 782 783 if (enum_ctx.has_pci_addr == false) { 784 return spdk_pci_enumerate(spdk_pci_nvme_get_driver(), 785 pcie_nvme_enum_cb, &enum_ctx); 786 } else { 787 return spdk_pci_device_attach(spdk_pci_nvme_get_driver(), 788 pcie_nvme_enum_cb, &enum_ctx, &enum_ctx.pci_addr); 789 } 790 } 791 792 static int 793 nvme_pcie_ctrlr_attach(struct spdk_nvme_probe_ctx *probe_ctx, struct spdk_pci_addr *pci_addr) 794 { 795 struct nvme_pcie_enum_ctx enum_ctx; 796 797 enum_ctx.probe_ctx = probe_ctx; 798 enum_ctx.has_pci_addr = true; 799 enum_ctx.pci_addr = *pci_addr; 800 801 return spdk_pci_enumerate(spdk_pci_nvme_get_driver(), pcie_nvme_enum_cb, &enum_ctx); 802 } 803 804 static struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(const struct spdk_nvme_transport_id *trid, 805 const struct spdk_nvme_ctrlr_opts *opts, 806 void *devhandle) 807 { 808 struct spdk_pci_device *pci_dev = devhandle; 809 struct nvme_pcie_ctrlr *pctrlr; 810 union spdk_nvme_cap_register cap; 811 union spdk_nvme_vs_register vs; 812 uint16_t cmd_reg; 813 int rc; 814 struct spdk_pci_id pci_id; 815 816 rc = spdk_pci_device_claim(pci_dev); 817 if (rc < 0) { 818 SPDK_ERRLOG("could not claim device %s (%s)\n", 819 trid->traddr, spdk_strerror(-rc)); 820 return NULL; 821 } 822 823 pctrlr = spdk_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL, 824 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); 825 if (pctrlr == NULL) { 826 spdk_pci_device_unclaim(pci_dev); 827 SPDK_ERRLOG("could not allocate ctrlr\n"); 828 return NULL; 829 } 830 831 pctrlr->is_remapped = false; 832 pctrlr->ctrlr.is_removed = false; 833 pctrlr->devhandle = devhandle; 834 pctrlr->ctrlr.opts = *opts; 835 pctrlr->ctrlr.trid = *trid; 836 837 rc = nvme_ctrlr_construct(&pctrlr->ctrlr); 838 if (rc != 0) { 839 spdk_pci_device_unclaim(pci_dev); 840 spdk_free(pctrlr); 841 return NULL; 842 } 843 844 rc = nvme_pcie_ctrlr_allocate_bars(pctrlr); 845 if (rc != 0) { 846 spdk_pci_device_unclaim(pci_dev); 847 spdk_free(pctrlr); 848 return NULL; 849 } 850 851 /* Enable PCI busmaster and disable INTx */ 852 spdk_pci_device_cfg_read16(pci_dev, &cmd_reg, 4); 853 cmd_reg |= 0x404; 854 spdk_pci_device_cfg_write16(pci_dev, cmd_reg, 4); 855 856 if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) { 857 SPDK_ERRLOG("get_cap() failed\n"); 858 spdk_pci_device_unclaim(pci_dev); 859 spdk_free(pctrlr); 860 return NULL; 861 } 862 863 if (nvme_ctrlr_get_vs(&pctrlr->ctrlr, &vs)) { 864 SPDK_ERRLOG("get_vs() failed\n"); 865 spdk_pci_device_unclaim(pci_dev); 866 spdk_free(pctrlr); 867 return NULL; 868 } 869 870 nvme_ctrlr_init_cap(&pctrlr->ctrlr, &cap, &vs); 871 872 /* Doorbell stride is 2 ^ (dstrd + 2), 873 * but we want multiples of 4, so drop the + 2 */ 874 pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd; 875 876 pci_id = spdk_pci_device_get_id(pci_dev); 877 pctrlr->ctrlr.quirks = nvme_get_quirks(&pci_id); 878 879 rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr, pctrlr->ctrlr.opts.admin_queue_size); 880 if (rc != 0) { 881 nvme_ctrlr_destruct(&pctrlr->ctrlr); 882 return NULL; 883 } 884 885 /* Construct the primary process properties */ 886 rc = nvme_ctrlr_add_process(&pctrlr->ctrlr, pci_dev); 887 if (rc != 0) { 888 nvme_ctrlr_destruct(&pctrlr->ctrlr); 889 return NULL; 890 } 891 892 if (g_sigset != true) { 893 nvme_pcie_ctrlr_setup_signal(); 894 g_sigset = true; 895 } 896 897 return &pctrlr->ctrlr; 898 } 899 900 static int 901 nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) 902 { 903 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); 904 struct nvme_pcie_qpair *padminq = nvme_pcie_qpair(ctrlr->adminq); 905 union spdk_nvme_aqa_register aqa; 906 907 if (nvme_pcie_ctrlr_set_asq(pctrlr, padminq->cmd_bus_addr)) { 908 SPDK_ERRLOG("set_asq() failed\n"); 909 return -EIO; 910 } 911 912 if (nvme_pcie_ctrlr_set_acq(pctrlr, padminq->cpl_bus_addr)) { 913 SPDK_ERRLOG("set_acq() failed\n"); 914 return -EIO; 915 } 916 917 aqa.raw = 0; 918 /* acqs and asqs are 0-based. */ 919 aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1; 920 aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1; 921 922 if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) { 923 SPDK_ERRLOG("set_aqa() failed\n"); 924 return -EIO; 925 } 926 927 return 0; 928 } 929 930 static int 931 nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) 932 { 933 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); 934 struct spdk_pci_device *devhandle = nvme_ctrlr_proc_get_devhandle(ctrlr); 935 936 if (ctrlr->adminq) { 937 nvme_pcie_qpair_destroy(ctrlr->adminq); 938 } 939 940 nvme_ctrlr_destruct_finish(ctrlr); 941 942 nvme_ctrlr_free_processes(ctrlr); 943 944 nvme_pcie_ctrlr_free_bars(pctrlr); 945 946 if (devhandle) { 947 spdk_pci_device_unclaim(devhandle); 948 spdk_pci_device_detach(devhandle); 949 } 950 951 spdk_free(pctrlr); 952 953 return 0; 954 } 955 956 static void 957 nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr) 958 { 959 tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp); 960 tr->cid = cid; 961 tr->req = NULL; 962 } 963 964 static int 965 nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair) 966 { 967 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 968 uint32_t i; 969 970 /* all head/tail vals are set to 0 */ 971 pqpair->last_sq_tail = pqpair->sq_tail = pqpair->sq_head = pqpair->cq_head = 0; 972 973 /* 974 * First time through the completion queue, HW will set phase 975 * bit on completions to 1. So set this to 1 here, indicating 976 * we're looking for a 1 to know which entries have completed. 977 * we'll toggle the bit each time when the completion queue 978 * rolls over. 979 */ 980 pqpair->flags.phase = 1; 981 for (i = 0; i < pqpair->num_entries; i++) { 982 pqpair->cpl[i].status.p = 0; 983 } 984 985 return 0; 986 } 987 988 static void * 989 nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t size, uint64_t alignment, 990 uint64_t *phys_addr) 991 { 992 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); 993 uintptr_t addr; 994 995 if (pctrlr->cmb.mem_register_addr != NULL) { 996 /* BAR is mapped for data */ 997 return NULL; 998 } 999 1000 addr = (uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset; 1001 addr = (addr + (alignment - 1)) & ~(alignment - 1); 1002 1003 /* CMB may only consume part of the BAR, calculate accordingly */ 1004 if (addr + size > ((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.size)) { 1005 SPDK_ERRLOG("Tried to allocate past valid CMB range!\n"); 1006 return NULL; 1007 } 1008 *phys_addr = pctrlr->cmb.bar_pa + addr - (uintptr_t)pctrlr->cmb.bar_va; 1009 1010 pctrlr->cmb.current_offset = (addr + size) - (uintptr_t)pctrlr->cmb.bar_va; 1011 1012 return (void *)addr; 1013 } 1014 1015 static int 1016 nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair, 1017 const struct spdk_nvme_io_qpair_opts *opts) 1018 { 1019 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 1020 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); 1021 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 1022 struct nvme_tracker *tr; 1023 uint16_t i; 1024 volatile uint32_t *doorbell_base; 1025 uint16_t num_trackers; 1026 size_t page_align = sysconf(_SC_PAGESIZE); 1027 size_t queue_align, queue_len; 1028 uint32_t flags = SPDK_MALLOC_DMA; 1029 uint64_t sq_paddr = 0; 1030 uint64_t cq_paddr = 0; 1031 1032 if (opts) { 1033 pqpair->sq_vaddr = opts->sq.vaddr; 1034 pqpair->cq_vaddr = opts->cq.vaddr; 1035 sq_paddr = opts->sq.paddr; 1036 cq_paddr = opts->cq.paddr; 1037 } 1038 1039 pqpair->retry_count = ctrlr->opts.transport_retry_count; 1040 1041 /* 1042 * Limit the maximum number of completions to return per call to prevent wraparound, 1043 * and calculate how many trackers can be submitted at once without overflowing the 1044 * completion queue. 1045 */ 1046 pqpair->max_completions_cap = pqpair->num_entries / 4; 1047 pqpair->max_completions_cap = spdk_max(pqpair->max_completions_cap, NVME_MIN_COMPLETIONS); 1048 pqpair->max_completions_cap = spdk_min(pqpair->max_completions_cap, NVME_MAX_COMPLETIONS); 1049 num_trackers = pqpair->num_entries - pqpair->max_completions_cap; 1050 1051 SPDK_INFOLOG(nvme, "max_completions_cap = %" PRIu16 " num_trackers = %" PRIu16 "\n", 1052 pqpair->max_completions_cap, num_trackers); 1053 1054 assert(num_trackers != 0); 1055 1056 pqpair->sq_in_cmb = false; 1057 1058 if (nvme_qpair_is_admin_queue(&pqpair->qpair)) { 1059 flags |= SPDK_MALLOC_SHARE; 1060 } 1061 1062 /* cmd and cpl rings must be aligned on page size boundaries. */ 1063 if (ctrlr->opts.use_cmb_sqs) { 1064 pqpair->cmd = nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd), 1065 page_align, &pqpair->cmd_bus_addr); 1066 if (pqpair->cmd != NULL) { 1067 pqpair->sq_in_cmb = true; 1068 } 1069 } 1070 1071 if (pqpair->sq_in_cmb == false) { 1072 if (pqpair->sq_vaddr) { 1073 pqpair->cmd = pqpair->sq_vaddr; 1074 } else { 1075 /* To ensure physical address contiguity we make each ring occupy 1076 * a single hugepage only. See MAX_IO_QUEUE_ENTRIES. 1077 */ 1078 queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cmd); 1079 queue_align = spdk_max(spdk_align32pow2(queue_len), page_align); 1080 pqpair->cmd = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags); 1081 if (pqpair->cmd == NULL) { 1082 SPDK_ERRLOG("alloc qpair_cmd failed\n"); 1083 return -ENOMEM; 1084 } 1085 } 1086 if (sq_paddr) { 1087 assert(pqpair->sq_vaddr != NULL); 1088 pqpair->cmd_bus_addr = sq_paddr; 1089 } else { 1090 pqpair->cmd_bus_addr = spdk_vtophys(pqpair->cmd, NULL); 1091 if (pqpair->cmd_bus_addr == SPDK_VTOPHYS_ERROR) { 1092 SPDK_ERRLOG("spdk_vtophys(pqpair->cmd) failed\n"); 1093 return -EFAULT; 1094 } 1095 } 1096 } 1097 1098 if (pqpair->cq_vaddr) { 1099 pqpair->cpl = pqpair->cq_vaddr; 1100 } else { 1101 queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cpl); 1102 queue_align = spdk_max(spdk_align32pow2(queue_len), page_align); 1103 pqpair->cpl = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags); 1104 if (pqpair->cpl == NULL) { 1105 SPDK_ERRLOG("alloc qpair_cpl failed\n"); 1106 return -ENOMEM; 1107 } 1108 } 1109 if (cq_paddr) { 1110 assert(pqpair->cq_vaddr != NULL); 1111 pqpair->cpl_bus_addr = cq_paddr; 1112 } else { 1113 pqpair->cpl_bus_addr = spdk_vtophys(pqpair->cpl, NULL); 1114 if (pqpair->cpl_bus_addr == SPDK_VTOPHYS_ERROR) { 1115 SPDK_ERRLOG("spdk_vtophys(pqpair->cpl) failed\n"); 1116 return -EFAULT; 1117 } 1118 } 1119 1120 doorbell_base = &pctrlr->regs->doorbell[0].sq_tdbl; 1121 pqpair->sq_tdbl = doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32; 1122 pqpair->cq_hdbl = doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32; 1123 1124 /* 1125 * Reserve space for all of the trackers in a single allocation. 1126 * struct nvme_tracker must be padded so that its size is already a power of 2. 1127 * This ensures the PRP list embedded in the nvme_tracker object will not span a 1128 * 4KB boundary, while allowing access to trackers in tr[] via normal array indexing. 1129 */ 1130 pqpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), NULL, 1131 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); 1132 if (pqpair->tr == NULL) { 1133 SPDK_ERRLOG("nvme_tr failed\n"); 1134 return -ENOMEM; 1135 } 1136 1137 TAILQ_INIT(&pqpair->free_tr); 1138 TAILQ_INIT(&pqpair->outstanding_tr); 1139 1140 for (i = 0; i < num_trackers; i++) { 1141 tr = &pqpair->tr[i]; 1142 nvme_qpair_construct_tracker(tr, i, spdk_vtophys(tr, NULL)); 1143 TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list); 1144 } 1145 1146 nvme_pcie_qpair_reset(qpair); 1147 1148 return 0; 1149 } 1150 1151 /* Used when dst points to MMIO (i.e. CMB) in a virtual machine - in these cases we must 1152 * not use wide instructions because QEMU will not emulate such instructions to MMIO space. 1153 * So this function ensures we only copy 8 bytes at a time. 1154 */ 1155 static inline void 1156 nvme_pcie_copy_command_mmio(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src) 1157 { 1158 uint64_t *dst64 = (uint64_t *)dst; 1159 const uint64_t *src64 = (const uint64_t *)src; 1160 uint32_t i; 1161 1162 for (i = 0; i < sizeof(*dst) / 8; i++) { 1163 dst64[i] = src64[i]; 1164 } 1165 } 1166 1167 static inline void 1168 nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src) 1169 { 1170 /* dst and src are known to be non-overlapping and 64-byte aligned. */ 1171 #if defined(__SSE2__) 1172 __m128i *d128 = (__m128i *)dst; 1173 const __m128i *s128 = (const __m128i *)src; 1174 1175 _mm_stream_si128(&d128[0], _mm_load_si128(&s128[0])); 1176 _mm_stream_si128(&d128[1], _mm_load_si128(&s128[1])); 1177 _mm_stream_si128(&d128[2], _mm_load_si128(&s128[2])); 1178 _mm_stream_si128(&d128[3], _mm_load_si128(&s128[3])); 1179 #else 1180 *dst = *src; 1181 #endif 1182 } 1183 1184 /** 1185 * Note: the ctrlr_lock must be held when calling this function. 1186 */ 1187 static void 1188 nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair, 1189 struct nvme_request *req, struct spdk_nvme_cpl *cpl) 1190 { 1191 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 1192 struct nvme_request *active_req = req; 1193 struct spdk_nvme_ctrlr_process *active_proc; 1194 1195 /* 1196 * The admin request is from another process. Move to the per 1197 * process list for that process to handle it later. 1198 */ 1199 assert(nvme_qpair_is_admin_queue(qpair)); 1200 assert(active_req->pid != getpid()); 1201 1202 active_proc = nvme_ctrlr_get_process(ctrlr, active_req->pid); 1203 if (active_proc) { 1204 /* Save the original completion information */ 1205 memcpy(&active_req->cpl, cpl, sizeof(*cpl)); 1206 STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq); 1207 } else { 1208 SPDK_ERRLOG("The owning process (pid %d) is not found. Dropping the request.\n", 1209 active_req->pid); 1210 1211 nvme_free_request(active_req); 1212 } 1213 } 1214 1215 /** 1216 * Note: the ctrlr_lock must be held when calling this function. 1217 */ 1218 static void 1219 nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair) 1220 { 1221 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 1222 struct nvme_request *req, *tmp_req; 1223 pid_t pid = getpid(); 1224 struct spdk_nvme_ctrlr_process *proc; 1225 1226 /* 1227 * Check whether there is any pending admin request from 1228 * other active processes. 1229 */ 1230 assert(nvme_qpair_is_admin_queue(qpair)); 1231 1232 proc = nvme_ctrlr_get_current_process(ctrlr); 1233 if (!proc) { 1234 SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid); 1235 assert(proc); 1236 return; 1237 } 1238 1239 STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) { 1240 STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq); 1241 1242 assert(req->pid == pid); 1243 1244 nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, &req->cpl); 1245 nvme_free_request(req); 1246 } 1247 } 1248 1249 static inline int 1250 nvme_pcie_qpair_need_event(uint16_t event_idx, uint16_t new_idx, uint16_t old) 1251 { 1252 return (uint16_t)(new_idx - event_idx) <= (uint16_t)(new_idx - old); 1253 } 1254 1255 static bool 1256 nvme_pcie_qpair_update_mmio_required(struct spdk_nvme_qpair *qpair, uint16_t value, 1257 volatile uint32_t *shadow_db, 1258 volatile uint32_t *eventidx) 1259 { 1260 uint16_t old; 1261 1262 if (!shadow_db) { 1263 return true; 1264 } 1265 1266 old = *shadow_db; 1267 *shadow_db = value; 1268 1269 /* 1270 * Ensure that the doorbell is updated before reading the EventIdx from 1271 * memory 1272 */ 1273 spdk_mb(); 1274 1275 if (!nvme_pcie_qpair_need_event(*eventidx, value, old)) { 1276 return false; 1277 } 1278 1279 return true; 1280 } 1281 1282 static inline void 1283 nvme_pcie_qpair_ring_sq_doorbell(struct spdk_nvme_qpair *qpair) 1284 { 1285 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 1286 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr); 1287 bool need_mmio = true; 1288 1289 if (qpair->first_fused_submitted) { 1290 /* This is first cmd of two fused commands - don't ring doorbell */ 1291 qpair->first_fused_submitted = 0; 1292 return; 1293 } 1294 1295 if (spdk_unlikely(pqpair->flags.has_shadow_doorbell)) { 1296 need_mmio = nvme_pcie_qpair_update_mmio_required(qpair, 1297 pqpair->sq_tail, 1298 pqpair->shadow_doorbell.sq_tdbl, 1299 pqpair->shadow_doorbell.sq_eventidx); 1300 } 1301 1302 if (spdk_likely(need_mmio)) { 1303 spdk_wmb(); 1304 g_thread_mmio_ctrlr = pctrlr; 1305 spdk_mmio_write_4(pqpair->sq_tdbl, pqpair->sq_tail); 1306 g_thread_mmio_ctrlr = NULL; 1307 } 1308 } 1309 1310 static inline void 1311 nvme_pcie_qpair_ring_cq_doorbell(struct spdk_nvme_qpair *qpair) 1312 { 1313 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 1314 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr); 1315 bool need_mmio = true; 1316 1317 if (spdk_unlikely(pqpair->flags.has_shadow_doorbell)) { 1318 need_mmio = nvme_pcie_qpair_update_mmio_required(qpair, 1319 pqpair->cq_head, 1320 pqpair->shadow_doorbell.cq_hdbl, 1321 pqpair->shadow_doorbell.cq_eventidx); 1322 } 1323 1324 if (spdk_likely(need_mmio)) { 1325 g_thread_mmio_ctrlr = pctrlr; 1326 spdk_mmio_write_4(pqpair->cq_hdbl, pqpair->cq_head); 1327 g_thread_mmio_ctrlr = NULL; 1328 } 1329 } 1330 1331 static void 1332 nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr) 1333 { 1334 struct nvme_request *req; 1335 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 1336 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 1337 1338 req = tr->req; 1339 assert(req != NULL); 1340 1341 if (req->cmd.fuse == SPDK_NVME_IO_FLAGS_FUSE_FIRST) { 1342 /* This is first cmd of two fused commands - don't ring doorbell */ 1343 qpair->first_fused_submitted = 1; 1344 } 1345 1346 /* Don't use wide instructions to copy NVMe command, this is limited by QEMU 1347 * virtual NVMe controller, the maximum access width is 8 Bytes for one time. 1348 */ 1349 if (spdk_unlikely((ctrlr->quirks & NVME_QUIRK_MAXIMUM_PCI_ACCESS_WIDTH) && pqpair->sq_in_cmb)) { 1350 nvme_pcie_copy_command_mmio(&pqpair->cmd[pqpair->sq_tail], &req->cmd); 1351 } else { 1352 /* Copy the command from the tracker to the submission queue. */ 1353 nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd); 1354 } 1355 1356 if (spdk_unlikely(++pqpair->sq_tail == pqpair->num_entries)) { 1357 pqpair->sq_tail = 0; 1358 } 1359 1360 if (spdk_unlikely(pqpair->sq_tail == pqpair->sq_head)) { 1361 SPDK_ERRLOG("sq_tail is passing sq_head!\n"); 1362 } 1363 1364 if (!pqpair->flags.delay_cmd_submit) { 1365 nvme_pcie_qpair_ring_sq_doorbell(qpair); 1366 } 1367 } 1368 1369 static void 1370 nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr, 1371 struct spdk_nvme_cpl *cpl, bool print_on_error) 1372 { 1373 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 1374 struct nvme_request *req; 1375 bool retry, error; 1376 bool req_from_current_proc = true; 1377 1378 req = tr->req; 1379 1380 assert(req != NULL); 1381 1382 error = spdk_nvme_cpl_is_error(cpl); 1383 retry = error && nvme_completion_is_retry(cpl) && 1384 req->retries < pqpair->retry_count; 1385 1386 if (error && print_on_error && !qpair->ctrlr->opts.disable_error_logging) { 1387 spdk_nvme_qpair_print_command(qpair, &req->cmd); 1388 spdk_nvme_qpair_print_completion(qpair, cpl); 1389 } 1390 1391 assert(cpl->cid == req->cmd.cid); 1392 1393 if (retry) { 1394 req->retries++; 1395 nvme_pcie_qpair_submit_tracker(qpair, tr); 1396 } else { 1397 TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list); 1398 1399 /* Only check admin requests from different processes. */ 1400 if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) { 1401 req_from_current_proc = false; 1402 nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl); 1403 } else { 1404 nvme_complete_request(tr->cb_fn, tr->cb_arg, qpair, req, cpl); 1405 } 1406 1407 if (req_from_current_proc == true) { 1408 nvme_qpair_free_request(qpair, req); 1409 } 1410 1411 tr->req = NULL; 1412 1413 TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list); 1414 } 1415 } 1416 1417 static void 1418 nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair, 1419 struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr, 1420 bool print_on_error) 1421 { 1422 struct spdk_nvme_cpl cpl; 1423 1424 memset(&cpl, 0, sizeof(cpl)); 1425 cpl.sqid = qpair->id; 1426 cpl.cid = tr->cid; 1427 cpl.status.sct = sct; 1428 cpl.status.sc = sc; 1429 cpl.status.dnr = dnr; 1430 nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error); 1431 } 1432 1433 static void 1434 nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr) 1435 { 1436 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 1437 struct nvme_tracker *tr, *temp, *last; 1438 1439 last = TAILQ_LAST(&pqpair->outstanding_tr, nvme_outstanding_tr_head); 1440 1441 /* Abort previously submitted (outstanding) trs */ 1442 TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) { 1443 if (!qpair->ctrlr->opts.disable_error_logging) { 1444 SPDK_ERRLOG("aborting outstanding command\n"); 1445 } 1446 nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC, 1447 SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true); 1448 1449 if (tr == last) { 1450 break; 1451 } 1452 } 1453 } 1454 1455 static int 1456 nvme_pcie_qpair_iterate_requests(struct spdk_nvme_qpair *qpair, 1457 int (*iter_fn)(struct nvme_request *req, void *arg), 1458 void *arg) 1459 { 1460 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 1461 struct nvme_tracker *tr, *tmp; 1462 int rc; 1463 1464 assert(iter_fn != NULL); 1465 1466 TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) { 1467 assert(tr->req != NULL); 1468 1469 rc = iter_fn(tr->req, arg); 1470 if (rc != 0) { 1471 return rc; 1472 } 1473 } 1474 1475 return 0; 1476 } 1477 1478 static void 1479 nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair) 1480 { 1481 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 1482 struct nvme_tracker *tr; 1483 1484 tr = TAILQ_FIRST(&pqpair->outstanding_tr); 1485 while (tr != NULL) { 1486 assert(tr->req != NULL); 1487 if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { 1488 nvme_pcie_qpair_manual_complete_tracker(qpair, tr, 1489 SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0, 1490 false); 1491 tr = TAILQ_FIRST(&pqpair->outstanding_tr); 1492 } else { 1493 tr = TAILQ_NEXT(tr, tq_list); 1494 } 1495 } 1496 } 1497 1498 static void 1499 nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair) 1500 { 1501 nvme_pcie_admin_qpair_abort_aers(qpair); 1502 } 1503 1504 static int 1505 nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair) 1506 { 1507 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 1508 1509 if (nvme_qpair_is_admin_queue(qpair)) { 1510 nvme_pcie_admin_qpair_destroy(qpair); 1511 } 1512 /* 1513 * We check sq_vaddr and cq_vaddr to see if the user specified the memory 1514 * buffers when creating the I/O queue. 1515 * If the user specified them, we cannot free that memory. 1516 * Nor do we free it if it's in the CMB. 1517 */ 1518 if (!pqpair->sq_vaddr && pqpair->cmd && !pqpair->sq_in_cmb) { 1519 spdk_free(pqpair->cmd); 1520 } 1521 if (!pqpair->cq_vaddr && pqpair->cpl) { 1522 spdk_free(pqpair->cpl); 1523 } 1524 if (pqpair->tr) { 1525 spdk_free(pqpair->tr); 1526 } 1527 1528 nvme_qpair_deinit(qpair); 1529 1530 spdk_free(pqpair); 1531 1532 return 0; 1533 } 1534 1535 static void 1536 nvme_pcie_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr) 1537 { 1538 nvme_pcie_qpair_abort_trackers(qpair, dnr); 1539 } 1540 1541 static int 1542 nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr, 1543 struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, 1544 void *cb_arg) 1545 { 1546 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que); 1547 struct nvme_request *req; 1548 struct spdk_nvme_cmd *cmd; 1549 1550 req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg); 1551 if (req == NULL) { 1552 return -ENOMEM; 1553 } 1554 1555 cmd = &req->cmd; 1556 cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ; 1557 1558 cmd->cdw10_bits.create_io_q.qid = io_que->id; 1559 cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1; 1560 1561 cmd->cdw11_bits.create_io_cq.pc = 1; 1562 cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr; 1563 1564 return nvme_ctrlr_submit_admin_request(ctrlr, req); 1565 } 1566 1567 static int 1568 nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr, 1569 struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg) 1570 { 1571 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que); 1572 struct nvme_request *req; 1573 struct spdk_nvme_cmd *cmd; 1574 1575 req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg); 1576 if (req == NULL) { 1577 return -ENOMEM; 1578 } 1579 1580 cmd = &req->cmd; 1581 cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ; 1582 1583 cmd->cdw10_bits.create_io_q.qid = io_que->id; 1584 cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1; 1585 cmd->cdw11_bits.create_io_sq.pc = 1; 1586 cmd->cdw11_bits.create_io_sq.qprio = io_que->qprio; 1587 cmd->cdw11_bits.create_io_sq.cqid = io_que->id; 1588 cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr; 1589 1590 return nvme_ctrlr_submit_admin_request(ctrlr, req); 1591 } 1592 1593 static int 1594 nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, 1595 spdk_nvme_cmd_cb cb_fn, void *cb_arg) 1596 { 1597 struct nvme_request *req; 1598 struct spdk_nvme_cmd *cmd; 1599 1600 req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg); 1601 if (req == NULL) { 1602 return -ENOMEM; 1603 } 1604 1605 cmd = &req->cmd; 1606 cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ; 1607 cmd->cdw10_bits.delete_io_q.qid = qpair->id; 1608 1609 return nvme_ctrlr_submit_admin_request(ctrlr, req); 1610 } 1611 1612 static int 1613 nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, 1614 spdk_nvme_cmd_cb cb_fn, void *cb_arg) 1615 { 1616 struct nvme_request *req; 1617 struct spdk_nvme_cmd *cmd; 1618 1619 req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg); 1620 if (req == NULL) { 1621 return -ENOMEM; 1622 } 1623 1624 cmd = &req->cmd; 1625 cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ; 1626 cmd->cdw10_bits.delete_io_q.qid = qpair->id; 1627 1628 return nvme_ctrlr_submit_admin_request(ctrlr, req); 1629 } 1630 1631 static int 1632 _nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, 1633 uint16_t qid) 1634 { 1635 struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); 1636 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 1637 struct nvme_completion_poll_status *status; 1638 int rc; 1639 1640 status = calloc(1, sizeof(*status)); 1641 if (!status) { 1642 SPDK_ERRLOG("Failed to allocate status tracker\n"); 1643 return -ENOMEM; 1644 } 1645 1646 rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_poll_cb, status); 1647 if (rc != 0) { 1648 free(status); 1649 return rc; 1650 } 1651 1652 if (nvme_wait_for_completion(ctrlr->adminq, status)) { 1653 SPDK_ERRLOG("nvme_create_io_cq failed!\n"); 1654 if (!status->timed_out) { 1655 free(status); 1656 } 1657 return -1; 1658 } 1659 1660 memset(status, 0, sizeof(*status)); 1661 rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, status); 1662 if (rc != 0) { 1663 free(status); 1664 return rc; 1665 } 1666 1667 if (nvme_wait_for_completion(ctrlr->adminq, status)) { 1668 SPDK_ERRLOG("nvme_create_io_sq failed!\n"); 1669 if (status->timed_out) { 1670 /* Request is still queued, the memory will be freed in a completion callback. 1671 allocate a new request */ 1672 status = calloc(1, sizeof(*status)); 1673 if (!status) { 1674 SPDK_ERRLOG("Failed to allocate status tracker\n"); 1675 return -ENOMEM; 1676 } 1677 } 1678 1679 memset(status, 0, sizeof(*status)); 1680 /* Attempt to delete the completion queue */ 1681 rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_poll_cb, status); 1682 if (rc != 0) { 1683 /* The originall or newly allocated status structure can be freed since 1684 * the corresponding request has been completed of failed to submit */ 1685 free(status); 1686 return -1; 1687 } 1688 nvme_wait_for_completion(ctrlr->adminq, status); 1689 if (!status->timed_out) { 1690 /* status can be freed regardless of nvme_wait_for_completion return value */ 1691 free(status); 1692 } 1693 return -1; 1694 } 1695 1696 if (ctrlr->shadow_doorbell) { 1697 pqpair->shadow_doorbell.sq_tdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 0) * 1698 pctrlr->doorbell_stride_u32; 1699 pqpair->shadow_doorbell.cq_hdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 1) * 1700 pctrlr->doorbell_stride_u32; 1701 pqpair->shadow_doorbell.sq_eventidx = ctrlr->eventidx + (2 * qpair->id + 0) * 1702 pctrlr->doorbell_stride_u32; 1703 pqpair->shadow_doorbell.cq_eventidx = ctrlr->eventidx + (2 * qpair->id + 1) * 1704 pctrlr->doorbell_stride_u32; 1705 pqpair->flags.has_shadow_doorbell = 1; 1706 } else { 1707 pqpair->flags.has_shadow_doorbell = 0; 1708 } 1709 nvme_pcie_qpair_reset(qpair); 1710 free(status); 1711 1712 return 0; 1713 } 1714 1715 static struct spdk_nvme_qpair * 1716 nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, 1717 const struct spdk_nvme_io_qpair_opts *opts) 1718 { 1719 struct nvme_pcie_qpair *pqpair; 1720 struct spdk_nvme_qpair *qpair; 1721 int rc; 1722 1723 assert(ctrlr != NULL); 1724 1725 pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, 1726 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); 1727 if (pqpair == NULL) { 1728 return NULL; 1729 } 1730 1731 pqpair->num_entries = opts->io_queue_size; 1732 pqpair->flags.delay_cmd_submit = opts->delay_cmd_submit; 1733 1734 qpair = &pqpair->qpair; 1735 1736 rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests); 1737 if (rc != 0) { 1738 nvme_pcie_qpair_destroy(qpair); 1739 return NULL; 1740 } 1741 1742 rc = nvme_pcie_qpair_construct(qpair, opts); 1743 1744 if (rc != 0) { 1745 nvme_pcie_qpair_destroy(qpair); 1746 return NULL; 1747 } 1748 1749 return qpair; 1750 } 1751 1752 static int 1753 nvme_pcie_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 1754 { 1755 if (nvme_qpair_is_admin_queue(qpair)) { 1756 return 0; 1757 } else { 1758 return _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id); 1759 } 1760 } 1761 1762 static void 1763 nvme_pcie_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 1764 { 1765 } 1766 1767 static int32_t nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, 1768 uint32_t max_completions); 1769 1770 static int 1771 nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 1772 { 1773 struct nvme_completion_poll_status *status; 1774 int rc; 1775 1776 assert(ctrlr != NULL); 1777 1778 if (ctrlr->is_removed) { 1779 goto free; 1780 } 1781 1782 status = calloc(1, sizeof(*status)); 1783 if (!status) { 1784 SPDK_ERRLOG("Failed to allocate status tracker\n"); 1785 return -ENOMEM; 1786 } 1787 1788 /* Delete the I/O submission queue */ 1789 rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, status); 1790 if (rc != 0) { 1791 SPDK_ERRLOG("Failed to send request to delete_io_sq with rc=%d\n", rc); 1792 free(status); 1793 return rc; 1794 } 1795 if (nvme_wait_for_completion(ctrlr->adminq, status)) { 1796 if (!status->timed_out) { 1797 free(status); 1798 } 1799 return -1; 1800 } 1801 1802 /* Now that the submission queue is deleted, the device is supposed to have 1803 * completed any outstanding I/O. Try to complete them. If they don't complete, 1804 * they'll be marked as aborted and completed below. */ 1805 nvme_pcie_qpair_process_completions(qpair, 0); 1806 1807 memset(status, 0, sizeof(*status)); 1808 /* Delete the completion queue */ 1809 rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, status); 1810 if (rc != 0) { 1811 SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc); 1812 free(status); 1813 return rc; 1814 } 1815 if (nvme_wait_for_completion(ctrlr->adminq, status)) { 1816 if (!status->timed_out) { 1817 free(status); 1818 } 1819 return -1; 1820 } 1821 free(status); 1822 1823 free: 1824 if (qpair->no_deletion_notification_needed == 0) { 1825 /* Abort the rest of the I/O */ 1826 nvme_pcie_qpair_abort_trackers(qpair, 1); 1827 } 1828 1829 nvme_pcie_qpair_destroy(qpair); 1830 return 0; 1831 } 1832 1833 static void 1834 nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr) 1835 { 1836 /* 1837 * Bad vtophys translation, so abort this request and return 1838 * immediately. 1839 */ 1840 nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC, 1841 SPDK_NVME_SC_INVALID_FIELD, 1842 1 /* do not retry */, true); 1843 } 1844 1845 /* 1846 * Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes. 1847 * 1848 * *prp_index will be updated to account for the number of PRP entries used. 1849 */ 1850 static inline int 1851 nvme_pcie_prp_list_append(struct nvme_tracker *tr, uint32_t *prp_index, void *virt_addr, size_t len, 1852 uint32_t page_size) 1853 { 1854 struct spdk_nvme_cmd *cmd = &tr->req->cmd; 1855 uintptr_t page_mask = page_size - 1; 1856 uint64_t phys_addr; 1857 uint32_t i; 1858 1859 SPDK_DEBUGLOG(nvme, "prp_index:%u virt_addr:%p len:%u\n", 1860 *prp_index, virt_addr, (uint32_t)len); 1861 1862 if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) { 1863 SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr); 1864 return -EFAULT; 1865 } 1866 1867 i = *prp_index; 1868 while (len) { 1869 uint32_t seg_len; 1870 1871 /* 1872 * prp_index 0 is stored in prp1, and the rest are stored in the prp[] array, 1873 * so prp_index == count is valid. 1874 */ 1875 if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) { 1876 SPDK_ERRLOG("out of PRP entries\n"); 1877 return -EFAULT; 1878 } 1879 1880 phys_addr = spdk_vtophys(virt_addr, NULL); 1881 if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) { 1882 SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr); 1883 return -EFAULT; 1884 } 1885 1886 if (i == 0) { 1887 SPDK_DEBUGLOG(nvme, "prp1 = %p\n", (void *)phys_addr); 1888 cmd->dptr.prp.prp1 = phys_addr; 1889 seg_len = page_size - ((uintptr_t)virt_addr & page_mask); 1890 } else { 1891 if ((phys_addr & page_mask) != 0) { 1892 SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr); 1893 return -EFAULT; 1894 } 1895 1896 SPDK_DEBUGLOG(nvme, "prp[%u] = %p\n", i - 1, (void *)phys_addr); 1897 tr->u.prp[i - 1] = phys_addr; 1898 seg_len = page_size; 1899 } 1900 1901 seg_len = spdk_min(seg_len, len); 1902 virt_addr += seg_len; 1903 len -= seg_len; 1904 i++; 1905 } 1906 1907 cmd->psdt = SPDK_NVME_PSDT_PRP; 1908 if (i <= 1) { 1909 cmd->dptr.prp.prp2 = 0; 1910 } else if (i == 2) { 1911 cmd->dptr.prp.prp2 = tr->u.prp[0]; 1912 SPDK_DEBUGLOG(nvme, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2); 1913 } else { 1914 cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr; 1915 SPDK_DEBUGLOG(nvme, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2); 1916 } 1917 1918 *prp_index = i; 1919 return 0; 1920 } 1921 1922 static int 1923 nvme_pcie_qpair_build_request_invalid(struct spdk_nvme_qpair *qpair, 1924 struct nvme_request *req, struct nvme_tracker *tr, bool dword_aligned) 1925 { 1926 assert(0); 1927 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 1928 return -EINVAL; 1929 } 1930 1931 /** 1932 * Build PRP list describing physically contiguous payload buffer. 1933 */ 1934 static int 1935 nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, 1936 struct nvme_tracker *tr, bool dword_aligned) 1937 { 1938 uint32_t prp_index = 0; 1939 int rc; 1940 1941 rc = nvme_pcie_prp_list_append(tr, &prp_index, req->payload.contig_or_cb_arg + req->payload_offset, 1942 req->payload_size, qpair->ctrlr->page_size); 1943 if (rc) { 1944 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 1945 } 1946 1947 return rc; 1948 } 1949 1950 /** 1951 * Build an SGL describing a physically contiguous payload buffer. 1952 * 1953 * This is more efficient than using PRP because large buffers can be 1954 * described this way. 1955 */ 1956 static int 1957 nvme_pcie_qpair_build_contig_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, 1958 struct nvme_tracker *tr, bool dword_aligned) 1959 { 1960 void *virt_addr; 1961 uint64_t phys_addr, mapping_length; 1962 uint32_t length; 1963 struct spdk_nvme_sgl_descriptor *sgl; 1964 uint32_t nseg = 0; 1965 1966 assert(req->payload_size != 0); 1967 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); 1968 1969 sgl = tr->u.sgl; 1970 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 1971 req->cmd.dptr.sgl1.unkeyed.subtype = 0; 1972 1973 length = req->payload_size; 1974 virt_addr = req->payload.contig_or_cb_arg + req->payload_offset; 1975 mapping_length = length; 1976 1977 while (length > 0) { 1978 if (nseg >= NVME_MAX_SGL_DESCRIPTORS) { 1979 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 1980 return -EFAULT; 1981 } 1982 1983 if (dword_aligned && ((uintptr_t)virt_addr & 3)) { 1984 SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr); 1985 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 1986 return -EFAULT; 1987 } 1988 1989 phys_addr = spdk_vtophys(virt_addr, &mapping_length); 1990 if (phys_addr == SPDK_VTOPHYS_ERROR) { 1991 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 1992 return -EFAULT; 1993 } 1994 1995 mapping_length = spdk_min(length, mapping_length); 1996 1997 length -= mapping_length; 1998 virt_addr += mapping_length; 1999 2000 sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 2001 sgl->unkeyed.length = mapping_length; 2002 sgl->address = phys_addr; 2003 sgl->unkeyed.subtype = 0; 2004 2005 sgl++; 2006 nseg++; 2007 } 2008 2009 if (nseg == 1) { 2010 /* 2011 * The whole transfer can be described by a single SGL descriptor. 2012 * Use the special case described by the spec where SGL1's type is Data Block. 2013 * This means the SGL in the tracker is not used at all, so copy the first (and only) 2014 * SGL element into SGL1. 2015 */ 2016 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 2017 req->cmd.dptr.sgl1.address = tr->u.sgl[0].address; 2018 req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length; 2019 } else { 2020 /* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because 2021 * NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page. 2022 */ 2023 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT; 2024 req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr; 2025 req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor); 2026 } 2027 2028 return 0; 2029 } 2030 2031 /** 2032 * Build SGL list describing scattered payload buffer. 2033 */ 2034 static int 2035 nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, 2036 struct nvme_tracker *tr, bool dword_aligned) 2037 { 2038 int rc; 2039 void *virt_addr; 2040 uint64_t phys_addr, mapping_length; 2041 uint32_t remaining_transfer_len, remaining_user_sge_len, length; 2042 struct spdk_nvme_sgl_descriptor *sgl; 2043 uint32_t nseg = 0; 2044 2045 /* 2046 * Build scattered payloads. 2047 */ 2048 assert(req->payload_size != 0); 2049 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); 2050 assert(req->payload.reset_sgl_fn != NULL); 2051 assert(req->payload.next_sge_fn != NULL); 2052 req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); 2053 2054 sgl = tr->u.sgl; 2055 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; 2056 req->cmd.dptr.sgl1.unkeyed.subtype = 0; 2057 2058 remaining_transfer_len = req->payload_size; 2059 2060 while (remaining_transfer_len > 0) { 2061 rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, 2062 &virt_addr, &remaining_user_sge_len); 2063 if (rc) { 2064 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 2065 return -EFAULT; 2066 } 2067 2068 /* Bit Bucket SGL descriptor */ 2069 if ((uint64_t)virt_addr == UINT64_MAX) { 2070 /* TODO: enable WRITE and COMPARE when necessary */ 2071 if (req->cmd.opc != SPDK_NVME_OPC_READ) { 2072 SPDK_ERRLOG("Only READ command can be supported\n"); 2073 goto exit; 2074 } 2075 if (nseg >= NVME_MAX_SGL_DESCRIPTORS) { 2076 SPDK_ERRLOG("Too many SGL entries\n"); 2077 goto exit; 2078 } 2079 2080 sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_BIT_BUCKET; 2081 /* If the SGL describes a destination data buffer, the length of data 2082 * buffer shall be discarded by controller, and the length is included 2083 * in Number of Logical Blocks (NLB) parameter. Otherwise, the length 2084 * is not included in the NLB parameter. 2085 */ 2086 remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len); 2087 remaining_transfer_len -= remaining_user_sge_len; 2088 2089 sgl->unkeyed.length = remaining_user_sge_len; 2090 sgl->address = 0; 2091 sgl->unkeyed.subtype = 0; 2092 2093 sgl++; 2094 nseg++; 2095 2096 continue; 2097 } 2098 2099 remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len); 2100 remaining_transfer_len -= remaining_user_sge_len; 2101 while (remaining_user_sge_len > 0) { 2102 if (nseg >= NVME_MAX_SGL_DESCRIPTORS) { 2103 SPDK_ERRLOG("Too many SGL entries\n"); 2104 goto exit; 2105 } 2106 2107 if (dword_aligned && ((uintptr_t)virt_addr & 3)) { 2108 SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr); 2109 goto exit; 2110 } 2111 2112 mapping_length = remaining_user_sge_len; 2113 phys_addr = spdk_vtophys(virt_addr, &mapping_length); 2114 if (phys_addr == SPDK_VTOPHYS_ERROR) { 2115 goto exit; 2116 } 2117 2118 length = spdk_min(remaining_user_sge_len, mapping_length); 2119 remaining_user_sge_len -= length; 2120 virt_addr += length; 2121 2122 if (nseg > 0 && phys_addr == 2123 (*(sgl - 1)).address + (*(sgl - 1)).unkeyed.length) { 2124 /* extend previous entry */ 2125 (*(sgl - 1)).unkeyed.length += length; 2126 continue; 2127 } 2128 2129 sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 2130 sgl->unkeyed.length = length; 2131 sgl->address = phys_addr; 2132 sgl->unkeyed.subtype = 0; 2133 2134 sgl++; 2135 nseg++; 2136 } 2137 } 2138 2139 if (nseg == 1) { 2140 /* 2141 * The whole transfer can be described by a single SGL descriptor. 2142 * Use the special case described by the spec where SGL1's type is Data Block. 2143 * This means the SGL in the tracker is not used at all, so copy the first (and only) 2144 * SGL element into SGL1. 2145 */ 2146 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 2147 req->cmd.dptr.sgl1.address = tr->u.sgl[0].address; 2148 req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length; 2149 } else { 2150 /* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because 2151 * NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page. 2152 */ 2153 req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT; 2154 req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr; 2155 req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor); 2156 } 2157 2158 return 0; 2159 2160 exit: 2161 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 2162 return -EFAULT; 2163 } 2164 2165 /** 2166 * Build PRP list describing scattered payload buffer. 2167 */ 2168 static int 2169 nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, 2170 struct nvme_tracker *tr, bool dword_aligned) 2171 { 2172 int rc; 2173 void *virt_addr; 2174 uint32_t remaining_transfer_len, length; 2175 uint32_t prp_index = 0; 2176 uint32_t page_size = qpair->ctrlr->page_size; 2177 2178 /* 2179 * Build scattered payloads. 2180 */ 2181 assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); 2182 assert(req->payload.reset_sgl_fn != NULL); 2183 req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); 2184 2185 remaining_transfer_len = req->payload_size; 2186 while (remaining_transfer_len > 0) { 2187 assert(req->payload.next_sge_fn != NULL); 2188 rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length); 2189 if (rc) { 2190 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 2191 return -EFAULT; 2192 } 2193 2194 length = spdk_min(remaining_transfer_len, length); 2195 2196 /* 2197 * Any incompatible sges should have been handled up in the splitting routine, 2198 * but assert here as an additional check. 2199 * 2200 * All SGEs except last must end on a page boundary. 2201 */ 2202 assert((length == remaining_transfer_len) || 2203 _is_page_aligned((uintptr_t)virt_addr + length, page_size)); 2204 2205 rc = nvme_pcie_prp_list_append(tr, &prp_index, virt_addr, length, page_size); 2206 if (rc) { 2207 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 2208 return rc; 2209 } 2210 2211 remaining_transfer_len -= length; 2212 } 2213 2214 return 0; 2215 } 2216 2217 typedef int(*build_req_fn)(struct spdk_nvme_qpair *, struct nvme_request *, struct nvme_tracker *, 2218 bool); 2219 2220 static build_req_fn const g_nvme_pcie_build_req_table[][2] = { 2221 [NVME_PAYLOAD_TYPE_INVALID] = { 2222 nvme_pcie_qpair_build_request_invalid, /* PRP */ 2223 nvme_pcie_qpair_build_request_invalid /* SGL */ 2224 }, 2225 [NVME_PAYLOAD_TYPE_CONTIG] = { 2226 nvme_pcie_qpair_build_contig_request, /* PRP */ 2227 nvme_pcie_qpair_build_contig_hw_sgl_request /* SGL */ 2228 }, 2229 [NVME_PAYLOAD_TYPE_SGL] = { 2230 nvme_pcie_qpair_build_prps_sgl_request, /* PRP */ 2231 nvme_pcie_qpair_build_hw_sgl_request /* SGL */ 2232 } 2233 }; 2234 2235 static int 2236 nvme_pcie_qpair_build_metadata(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr, 2237 bool sgl_supported, bool dword_aligned) 2238 { 2239 void *md_payload; 2240 struct nvme_request *req = tr->req; 2241 2242 if (req->payload.md) { 2243 md_payload = req->payload.md + req->md_offset; 2244 if (dword_aligned && ((uintptr_t)md_payload & 3)) { 2245 SPDK_ERRLOG("virt_addr %p not dword aligned\n", md_payload); 2246 goto exit; 2247 } 2248 2249 if (sgl_supported && dword_aligned) { 2250 assert(req->cmd.psdt == SPDK_NVME_PSDT_SGL_MPTR_CONTIG); 2251 req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_SGL; 2252 tr->meta_sgl.address = spdk_vtophys(md_payload, NULL); 2253 if (tr->meta_sgl.address == SPDK_VTOPHYS_ERROR) { 2254 goto exit; 2255 } 2256 tr->meta_sgl.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; 2257 tr->meta_sgl.unkeyed.length = req->md_size; 2258 tr->meta_sgl.unkeyed.subtype = 0; 2259 req->cmd.mptr = tr->prp_sgl_bus_addr - sizeof(struct spdk_nvme_sgl_descriptor); 2260 } else { 2261 req->cmd.mptr = spdk_vtophys(md_payload, NULL); 2262 if (req->cmd.mptr == SPDK_VTOPHYS_ERROR) { 2263 goto exit; 2264 } 2265 } 2266 } 2267 2268 return 0; 2269 2270 exit: 2271 nvme_pcie_fail_request_bad_vtophys(qpair, tr); 2272 return -EINVAL; 2273 } 2274 2275 static int 2276 nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req) 2277 { 2278 struct nvme_tracker *tr; 2279 int rc = 0; 2280 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 2281 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 2282 enum nvme_payload_type payload_type; 2283 bool sgl_supported; 2284 bool dword_aligned = true; 2285 2286 if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) { 2287 nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); 2288 } 2289 2290 tr = TAILQ_FIRST(&pqpair->free_tr); 2291 2292 if (tr == NULL) { 2293 /* Inform the upper layer to try again later. */ 2294 rc = -EAGAIN; 2295 goto exit; 2296 } 2297 2298 TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */ 2299 TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list); 2300 tr->req = req; 2301 tr->cb_fn = req->cb_fn; 2302 tr->cb_arg = req->cb_arg; 2303 req->cmd.cid = tr->cid; 2304 2305 if (req->payload_size != 0) { 2306 payload_type = nvme_payload_type(&req->payload); 2307 /* According to the specification, PRPs shall be used for all 2308 * Admin commands for NVMe over PCIe implementations. 2309 */ 2310 sgl_supported = (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) != 0 && 2311 !nvme_qpair_is_admin_queue(qpair); 2312 2313 if (sgl_supported && !(ctrlr->flags & SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT)) { 2314 dword_aligned = false; 2315 } 2316 rc = g_nvme_pcie_build_req_table[payload_type][sgl_supported](qpair, req, tr, dword_aligned); 2317 if (rc < 0) { 2318 goto exit; 2319 } 2320 2321 rc = nvme_pcie_qpair_build_metadata(qpair, tr, sgl_supported, dword_aligned); 2322 if (rc < 0) { 2323 goto exit; 2324 } 2325 } 2326 2327 nvme_pcie_qpair_submit_tracker(qpair, tr); 2328 2329 exit: 2330 if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) { 2331 nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); 2332 } 2333 2334 return rc; 2335 } 2336 2337 static void 2338 nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair) 2339 { 2340 uint64_t t02; 2341 struct nvme_tracker *tr, *tmp; 2342 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 2343 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 2344 struct spdk_nvme_ctrlr_process *active_proc; 2345 2346 /* Don't check timeouts during controller initialization. */ 2347 if (ctrlr->state != NVME_CTRLR_STATE_READY) { 2348 return; 2349 } 2350 2351 if (nvme_qpair_is_admin_queue(qpair)) { 2352 active_proc = nvme_ctrlr_get_current_process(ctrlr); 2353 } else { 2354 active_proc = qpair->active_proc; 2355 } 2356 2357 /* Only check timeouts if the current process has a timeout callback. */ 2358 if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) { 2359 return; 2360 } 2361 2362 t02 = spdk_get_ticks(); 2363 TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) { 2364 assert(tr->req != NULL); 2365 2366 if (nvme_request_check_timeout(tr->req, tr->cid, active_proc, t02)) { 2367 /* 2368 * The requests are in order, so as soon as one has not timed out, 2369 * stop iterating. 2370 */ 2371 break; 2372 } 2373 } 2374 } 2375 2376 static int32_t 2377 nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions) 2378 { 2379 struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); 2380 struct nvme_tracker *tr; 2381 struct spdk_nvme_cpl *cpl, *next_cpl; 2382 uint32_t num_completions = 0; 2383 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 2384 uint16_t next_cq_head; 2385 uint8_t next_phase; 2386 bool next_is_valid = false; 2387 2388 if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) { 2389 nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); 2390 } 2391 2392 if (max_completions == 0 || max_completions > pqpair->max_completions_cap) { 2393 /* 2394 * max_completions == 0 means unlimited, but complete at most 2395 * max_completions_cap batch of I/O at a time so that the completion 2396 * queue doorbells don't wrap around. 2397 */ 2398 max_completions = pqpair->max_completions_cap; 2399 } 2400 2401 while (1) { 2402 cpl = &pqpair->cpl[pqpair->cq_head]; 2403 2404 if (!next_is_valid && cpl->status.p != pqpair->flags.phase) { 2405 break; 2406 } 2407 2408 if (spdk_likely(pqpair->cq_head + 1 != pqpair->num_entries)) { 2409 next_cq_head = pqpair->cq_head + 1; 2410 next_phase = pqpair->flags.phase; 2411 } else { 2412 next_cq_head = 0; 2413 next_phase = !pqpair->flags.phase; 2414 } 2415 next_cpl = &pqpair->cpl[next_cq_head]; 2416 next_is_valid = (next_cpl->status.p == next_phase); 2417 if (next_is_valid) { 2418 __builtin_prefetch(&pqpair->tr[next_cpl->cid]); 2419 } 2420 2421 #ifdef __PPC64__ 2422 /* 2423 * This memory barrier prevents reordering of: 2424 * - load after store from/to tr 2425 * - load after load cpl phase and cpl cid 2426 */ 2427 spdk_mb(); 2428 #elif defined(__aarch64__) 2429 __asm volatile("dmb oshld" ::: "memory"); 2430 #endif 2431 2432 if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) { 2433 pqpair->cq_head = 0; 2434 pqpair->flags.phase = !pqpair->flags.phase; 2435 } 2436 2437 tr = &pqpair->tr[cpl->cid]; 2438 /* Prefetch the req's STAILQ_ENTRY since we'll need to access it 2439 * as part of putting the req back on the qpair's free list. 2440 */ 2441 __builtin_prefetch(&tr->req->stailq); 2442 pqpair->sq_head = cpl->sqhd; 2443 2444 if (tr->req) { 2445 nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true); 2446 } else { 2447 SPDK_ERRLOG("cpl does not map to outstanding cmd\n"); 2448 spdk_nvme_qpair_print_completion(qpair, cpl); 2449 assert(0); 2450 } 2451 2452 if (++num_completions == max_completions) { 2453 break; 2454 } 2455 } 2456 2457 if (num_completions > 0) { 2458 nvme_pcie_qpair_ring_cq_doorbell(qpair); 2459 } 2460 2461 if (pqpair->flags.delay_cmd_submit) { 2462 if (pqpair->last_sq_tail != pqpair->sq_tail) { 2463 nvme_pcie_qpair_ring_sq_doorbell(qpair); 2464 pqpair->last_sq_tail = pqpair->sq_tail; 2465 } 2466 } 2467 2468 if (spdk_unlikely(ctrlr->timeout_enabled)) { 2469 /* 2470 * User registered for timeout callback 2471 */ 2472 nvme_pcie_qpair_check_timeout(qpair); 2473 } 2474 2475 /* Before returning, complete any pending admin request. */ 2476 if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) { 2477 nvme_pcie_qpair_complete_pending_admin_request(qpair); 2478 2479 nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); 2480 } 2481 2482 return num_completions; 2483 } 2484 2485 static struct spdk_nvme_transport_poll_group * 2486 nvme_pcie_poll_group_create(void) 2487 { 2488 struct nvme_pcie_poll_group *group = calloc(1, sizeof(*group)); 2489 2490 if (group == NULL) { 2491 SPDK_ERRLOG("Unable to allocate poll group.\n"); 2492 return NULL; 2493 } 2494 2495 return &group->group; 2496 } 2497 2498 static int 2499 nvme_pcie_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair) 2500 { 2501 return 0; 2502 } 2503 2504 static int 2505 nvme_pcie_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair) 2506 { 2507 return 0; 2508 } 2509 2510 static int 2511 nvme_pcie_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup, 2512 struct spdk_nvme_qpair *qpair) 2513 { 2514 return 0; 2515 } 2516 2517 static int 2518 nvme_pcie_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup, 2519 struct spdk_nvme_qpair *qpair) 2520 { 2521 return 0; 2522 } 2523 2524 static int64_t 2525 nvme_pcie_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup, 2526 uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb) 2527 { 2528 struct spdk_nvme_qpair *qpair, *tmp_qpair; 2529 int32_t local_completions = 0; 2530 int64_t total_completions = 0; 2531 2532 STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) { 2533 disconnected_qpair_cb(qpair, tgroup->group->ctx); 2534 } 2535 2536 STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) { 2537 local_completions = spdk_nvme_qpair_process_completions(qpair, completions_per_qpair); 2538 if (local_completions < 0) { 2539 disconnected_qpair_cb(qpair, tgroup->group->ctx); 2540 local_completions = 0; 2541 } 2542 total_completions += local_completions; 2543 } 2544 2545 return total_completions; 2546 } 2547 2548 static int 2549 nvme_pcie_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup) 2550 { 2551 if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) { 2552 return -EBUSY; 2553 } 2554 2555 free(tgroup); 2556 2557 return 0; 2558 } 2559 2560 static struct spdk_pci_id nvme_pci_driver_id[] = { 2561 { 2562 .class_id = SPDK_PCI_CLASS_NVME, 2563 .vendor_id = SPDK_PCI_ANY_ID, 2564 .device_id = SPDK_PCI_ANY_ID, 2565 .subvendor_id = SPDK_PCI_ANY_ID, 2566 .subdevice_id = SPDK_PCI_ANY_ID, 2567 }, 2568 { .vendor_id = 0, /* sentinel */ }, 2569 }; 2570 2571 SPDK_PCI_DRIVER_REGISTER(nvme, nvme_pci_driver_id, 2572 SPDK_PCI_DRIVER_NEED_MAPPING | SPDK_PCI_DRIVER_WC_ACTIVATE); 2573 2574 const struct spdk_nvme_transport_ops pcie_ops = { 2575 .name = "PCIE", 2576 .type = SPDK_NVME_TRANSPORT_PCIE, 2577 .ctrlr_construct = nvme_pcie_ctrlr_construct, 2578 .ctrlr_scan = nvme_pcie_ctrlr_scan, 2579 .ctrlr_destruct = nvme_pcie_ctrlr_destruct, 2580 .ctrlr_enable = nvme_pcie_ctrlr_enable, 2581 2582 .ctrlr_set_reg_4 = nvme_pcie_ctrlr_set_reg_4, 2583 .ctrlr_set_reg_8 = nvme_pcie_ctrlr_set_reg_8, 2584 .ctrlr_get_reg_4 = nvme_pcie_ctrlr_get_reg_4, 2585 .ctrlr_get_reg_8 = nvme_pcie_ctrlr_get_reg_8, 2586 2587 .ctrlr_get_max_xfer_size = nvme_pcie_ctrlr_get_max_xfer_size, 2588 .ctrlr_get_max_sges = nvme_pcie_ctrlr_get_max_sges, 2589 2590 .ctrlr_reserve_cmb = nvme_pcie_ctrlr_reserve_cmb, 2591 .ctrlr_map_cmb = nvme_pcie_ctrlr_map_io_cmb, 2592 .ctrlr_unmap_cmb = nvme_pcie_ctrlr_unmap_io_cmb, 2593 2594 .ctrlr_create_io_qpair = nvme_pcie_ctrlr_create_io_qpair, 2595 .ctrlr_delete_io_qpair = nvme_pcie_ctrlr_delete_io_qpair, 2596 .ctrlr_connect_qpair = nvme_pcie_ctrlr_connect_qpair, 2597 .ctrlr_disconnect_qpair = nvme_pcie_ctrlr_disconnect_qpair, 2598 2599 .qpair_abort_reqs = nvme_pcie_qpair_abort_reqs, 2600 .qpair_reset = nvme_pcie_qpair_reset, 2601 .qpair_submit_request = nvme_pcie_qpair_submit_request, 2602 .qpair_process_completions = nvme_pcie_qpair_process_completions, 2603 .qpair_iterate_requests = nvme_pcie_qpair_iterate_requests, 2604 .admin_qpair_abort_aers = nvme_pcie_admin_qpair_abort_aers, 2605 2606 .poll_group_create = nvme_pcie_poll_group_create, 2607 .poll_group_connect_qpair = nvme_pcie_poll_group_connect_qpair, 2608 .poll_group_disconnect_qpair = nvme_pcie_poll_group_disconnect_qpair, 2609 .poll_group_add = nvme_pcie_poll_group_add, 2610 .poll_group_remove = nvme_pcie_poll_group_remove, 2611 .poll_group_process_completions = nvme_pcie_poll_group_process_completions, 2612 .poll_group_destroy = nvme_pcie_poll_group_destroy, 2613 }; 2614 2615 SPDK_NVME_TRANSPORT_REGISTER(pcie, &pcie_ops); 2616