xref: /spdk/lib/nvme/nvme_pcie.c (revision 6b6dfea6c704a049e553024aa7e44ae916948e20)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation.
5  *   Copyright (c) 2017, IBM Corporation.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * NVMe over PCIe transport
37  */
38 
39 #include "spdk/stdinc.h"
40 #include "spdk/env.h"
41 #include "spdk/likely.h"
42 #include "spdk/string.h"
43 #include "nvme_internal.h"
44 #include "nvme_uevent.h"
45 
46 /*
47  * Number of completion queue entries to process before ringing the
48  *  completion queue doorbell.
49  */
50 #define NVME_MIN_COMPLETIONS	(1)
51 #define NVME_MAX_COMPLETIONS	(128)
52 
53 #define NVME_ADMIN_ENTRIES	(128)
54 
55 /*
56  * NVME_MAX_SGL_DESCRIPTORS defines the maximum number of descriptors in one SGL
57  *  segment.
58  */
59 #define NVME_MAX_SGL_DESCRIPTORS	(251)
60 
61 #define NVME_MAX_PRP_LIST_ENTRIES	(505)
62 
63 struct nvme_pcie_enum_ctx {
64 	struct spdk_nvme_probe_ctx *probe_ctx;
65 	struct spdk_pci_addr pci_addr;
66 	bool has_pci_addr;
67 };
68 
69 /* PCIe transport extensions for spdk_nvme_ctrlr */
70 struct nvme_pcie_ctrlr {
71 	struct spdk_nvme_ctrlr ctrlr;
72 
73 	/** NVMe MMIO register space */
74 	volatile struct spdk_nvme_registers *regs;
75 
76 	/** NVMe MMIO register size */
77 	uint64_t regs_size;
78 
79 	/* BAR mapping address which contains controller memory buffer */
80 	void *cmb_bar_virt_addr;
81 
82 	/* BAR physical address which contains controller memory buffer */
83 	uint64_t cmb_bar_phys_addr;
84 
85 	/* Controller memory buffer size in Bytes */
86 	uint64_t cmb_size;
87 
88 	/* Current offset of controller memory buffer, relative to start of BAR virt addr */
89 	uint64_t cmb_current_offset;
90 
91 	/* Last valid offset into CMB, this differs if CMB memory registration occurs or not */
92 	uint64_t cmb_max_offset;
93 
94 	void *cmb_mem_register_addr;
95 	size_t cmb_mem_register_size;
96 
97 	bool cmb_io_data_supported;
98 
99 	/** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */
100 	uint32_t doorbell_stride_u32;
101 
102 	/* Opaque handle to associated PCI device. */
103 	struct spdk_pci_device *devhandle;
104 
105 	/* Flag to indicate the MMIO register has been remapped */
106 	bool is_remapped;
107 };
108 
109 struct nvme_tracker {
110 	TAILQ_ENTRY(nvme_tracker)       tq_list;
111 
112 	struct nvme_request		*req;
113 	uint16_t			cid;
114 
115 	uint16_t			rsvd0;
116 	uint32_t			rsvd1;
117 
118 	spdk_nvme_cmd_cb		cb_fn;
119 	void				*cb_arg;
120 
121 	uint64_t			prp_sgl_bus_addr;
122 
123 	union {
124 		uint64_t			prp[NVME_MAX_PRP_LIST_ENTRIES];
125 		struct spdk_nvme_sgl_descriptor	sgl[NVME_MAX_SGL_DESCRIPTORS];
126 	} u;
127 };
128 /*
129  * struct nvme_tracker must be exactly 4K so that the prp[] array does not cross a page boundary
130  * and so that there is no padding required to meet alignment requirements.
131  */
132 SPDK_STATIC_ASSERT(sizeof(struct nvme_tracker) == 4096, "nvme_tracker is not 4K");
133 SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, u.sgl) & 7) == 0, "SGL must be Qword aligned");
134 
135 /* PCIe transport extensions for spdk_nvme_qpair */
136 struct nvme_pcie_qpair {
137 	/* Submission queue tail doorbell */
138 	volatile uint32_t *sq_tdbl;
139 
140 	/* Completion queue head doorbell */
141 	volatile uint32_t *cq_hdbl;
142 
143 	/* Submission queue */
144 	struct spdk_nvme_cmd *cmd;
145 
146 	/* Completion queue */
147 	struct spdk_nvme_cpl *cpl;
148 
149 	TAILQ_HEAD(, nvme_tracker) free_tr;
150 	TAILQ_HEAD(nvme_outstanding_tr_head, nvme_tracker) outstanding_tr;
151 
152 	/* Array of trackers indexed by command ID. */
153 	struct nvme_tracker *tr;
154 
155 	uint16_t num_entries;
156 
157 	uint8_t retry_count;
158 
159 	uint16_t max_completions_cap;
160 
161 	uint16_t last_sq_tail;
162 	uint16_t sq_tail;
163 	uint16_t cq_head;
164 	uint16_t sq_head;
165 
166 	struct {
167 		uint8_t phase			: 1;
168 		uint8_t delay_pcie_doorbell	: 1;
169 		uint8_t has_shadow_doorbell	: 1;
170 	} flags;
171 
172 	/*
173 	 * Base qpair structure.
174 	 * This is located after the hot data in this structure so that the important parts of
175 	 * nvme_pcie_qpair are in the same cache line.
176 	 */
177 	struct spdk_nvme_qpair qpair;
178 
179 	struct {
180 		/* Submission queue shadow tail doorbell */
181 		volatile uint32_t *sq_tdbl;
182 
183 		/* Completion queue shadow head doorbell */
184 		volatile uint32_t *cq_hdbl;
185 
186 		/* Submission queue event index */
187 		volatile uint32_t *sq_eventidx;
188 
189 		/* Completion queue event index */
190 		volatile uint32_t *cq_eventidx;
191 	} shadow_doorbell;
192 
193 	/*
194 	 * Fields below this point should not be touched on the normal I/O path.
195 	 */
196 
197 	bool sq_in_cmb;
198 
199 	uint64_t cmd_bus_addr;
200 	uint64_t cpl_bus_addr;
201 
202 	struct spdk_nvme_cmd *sq_vaddr;
203 	struct spdk_nvme_cpl *cq_vaddr;
204 };
205 
206 static int nvme_pcie_ctrlr_attach(struct spdk_nvme_probe_ctx *probe_ctx,
207 				  struct spdk_pci_addr *pci_addr);
208 static int nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair,
209 				     const struct spdk_nvme_io_qpair_opts *opts);
210 static int nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair);
211 
212 __thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL;
213 static uint16_t g_signal_lock;
214 static bool g_sigset = false;
215 static int hotplug_fd = -1;
216 
217 static void
218 nvme_sigbus_fault_sighandler(int signum, siginfo_t *info, void *ctx)
219 {
220 	void *map_address;
221 	uint16_t flag = 0;
222 
223 	if (!__atomic_compare_exchange_n(&g_signal_lock, &flag, 1, false, __ATOMIC_ACQUIRE,
224 					 __ATOMIC_RELAXED)) {
225 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "request g_signal_lock failed\n");
226 		return;
227 	}
228 
229 	assert(g_thread_mmio_ctrlr != NULL);
230 
231 	if (!g_thread_mmio_ctrlr->is_remapped) {
232 		map_address = mmap((void *)g_thread_mmio_ctrlr->regs, g_thread_mmio_ctrlr->regs_size,
233 				   PROT_READ | PROT_WRITE,
234 				   MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
235 		if (map_address == MAP_FAILED) {
236 			SPDK_ERRLOG("mmap failed\n");
237 			__atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE);
238 			return;
239 		}
240 		memset(map_address, 0xFF, sizeof(struct spdk_nvme_registers));
241 		g_thread_mmio_ctrlr->regs = (volatile struct spdk_nvme_registers *)map_address;
242 		g_thread_mmio_ctrlr->is_remapped = true;
243 	}
244 	__atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE);
245 }
246 
247 static void
248 nvme_pcie_ctrlr_setup_signal(void)
249 {
250 	struct sigaction sa;
251 
252 	sa.sa_sigaction = nvme_sigbus_fault_sighandler;
253 	sigemptyset(&sa.sa_mask);
254 	sa.sa_flags = SA_SIGINFO;
255 	sigaction(SIGBUS, &sa, NULL);
256 }
257 
258 static inline struct nvme_pcie_ctrlr *
259 nvme_pcie_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
260 {
261 	assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE);
262 	return SPDK_CONTAINEROF(ctrlr, struct nvme_pcie_ctrlr, ctrlr);
263 }
264 
265 static int
266 _nvme_pcie_hotplug_monitor(struct spdk_nvme_probe_ctx *probe_ctx)
267 {
268 	struct spdk_nvme_ctrlr *ctrlr, *tmp;
269 	struct spdk_uevent event;
270 	struct spdk_pci_addr pci_addr;
271 	union spdk_nvme_csts_register csts;
272 	struct spdk_nvme_ctrlr_process *proc;
273 
274 	while (spdk_get_uevent(hotplug_fd, &event) > 0) {
275 		if (event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_UIO ||
276 		    event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_VFIO) {
277 			if (event.action == SPDK_NVME_UEVENT_ADD) {
278 				SPDK_DEBUGLOG(SPDK_LOG_NVME, "add nvme address: %s\n",
279 					      event.traddr);
280 				if (spdk_process_is_primary()) {
281 					if (!spdk_pci_addr_parse(&pci_addr, event.traddr)) {
282 						nvme_pcie_ctrlr_attach(probe_ctx, &pci_addr);
283 					}
284 				}
285 			} else if (event.action == SPDK_NVME_UEVENT_REMOVE) {
286 				struct spdk_nvme_transport_id trid;
287 
288 				memset(&trid, 0, sizeof(trid));
289 				trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
290 				snprintf(trid.traddr, sizeof(trid.traddr), "%s", event.traddr);
291 
292 				ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(&trid);
293 				if (ctrlr == NULL) {
294 					return 0;
295 				}
296 				SPDK_DEBUGLOG(SPDK_LOG_NVME, "remove nvme address: %s\n",
297 					      event.traddr);
298 
299 				nvme_ctrlr_fail(ctrlr, true);
300 
301 				/* get the user app to clean up and stop I/O */
302 				if (probe_ctx->remove_cb) {
303 					nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
304 					probe_ctx->remove_cb(probe_ctx->cb_ctx, ctrlr);
305 					nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
306 				}
307 			}
308 		}
309 	}
310 
311 	/* This is a work around for vfio-attached device hot remove detection. */
312 	TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq, tmp) {
313 		bool do_remove = false;
314 
315 		if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
316 			struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
317 
318 			if (spdk_pci_device_is_removed(pctrlr->devhandle)) {
319 				do_remove = true;
320 			}
321 		}
322 
323 		/* NVMe controller BAR must be mapped in the current process before any access. */
324 		proc = spdk_nvme_ctrlr_get_current_process(ctrlr);
325 		if (proc) {
326 			csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
327 			if (csts.raw == 0xffffffffU) {
328 				do_remove = true;
329 			}
330 		}
331 
332 		if (do_remove) {
333 			nvme_ctrlr_fail(ctrlr, true);
334 			if (probe_ctx->remove_cb) {
335 				nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
336 				probe_ctx->remove_cb(probe_ctx->cb_ctx, ctrlr);
337 				nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
338 			}
339 		}
340 	}
341 	return 0;
342 }
343 
344 static inline struct nvme_pcie_qpair *
345 nvme_pcie_qpair(struct spdk_nvme_qpair *qpair)
346 {
347 	assert(qpair->trtype == SPDK_NVME_TRANSPORT_PCIE);
348 	return SPDK_CONTAINEROF(qpair, struct nvme_pcie_qpair, qpair);
349 }
350 
351 static volatile void *
352 nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset)
353 {
354 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
355 
356 	return (volatile void *)((uintptr_t)pctrlr->regs + offset);
357 }
358 
359 int
360 nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
361 {
362 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
363 
364 	assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
365 	g_thread_mmio_ctrlr = pctrlr;
366 	spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value);
367 	g_thread_mmio_ctrlr = NULL;
368 	return 0;
369 }
370 
371 int
372 nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
373 {
374 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
375 
376 	assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
377 	g_thread_mmio_ctrlr = pctrlr;
378 	spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value);
379 	g_thread_mmio_ctrlr = NULL;
380 	return 0;
381 }
382 
383 int
384 nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
385 {
386 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
387 
388 	assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
389 	assert(value != NULL);
390 	g_thread_mmio_ctrlr = pctrlr;
391 	*value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset));
392 	g_thread_mmio_ctrlr = NULL;
393 	if (~(*value) == 0) {
394 		return -1;
395 	}
396 
397 	return 0;
398 }
399 
400 int
401 nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
402 {
403 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
404 
405 	assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
406 	assert(value != NULL);
407 	g_thread_mmio_ctrlr = pctrlr;
408 	*value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset));
409 	g_thread_mmio_ctrlr = NULL;
410 	if (~(*value) == 0) {
411 		return -1;
412 	}
413 
414 	return 0;
415 }
416 
417 static int
418 nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
419 {
420 	return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq),
421 					 value);
422 }
423 
424 static int
425 nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
426 {
427 	return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq),
428 					 value);
429 }
430 
431 static int
432 nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa)
433 {
434 	return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw),
435 					 aqa->raw);
436 }
437 
438 static int
439 nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc)
440 {
441 	return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw),
442 					 &cmbloc->raw);
443 }
444 
445 static int
446 nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz)
447 {
448 	return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
449 					 &cmbsz->raw);
450 }
451 
452 uint32_t
453 nvme_pcie_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
454 {
455 	/*
456 	 * For commands requiring more than 2 PRP entries, one PRP will be
457 	 *  embedded in the command (prp1), and the rest of the PRP entries
458 	 *  will be in a list pointed to by the command (prp2).  This means
459 	 *  that real max number of PRP entries we support is 506+1, which
460 	 *  results in a max xfer size of 506*ctrlr->page_size.
461 	 */
462 	return NVME_MAX_PRP_LIST_ENTRIES * ctrlr->page_size;
463 }
464 
465 uint16_t
466 nvme_pcie_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
467 {
468 	return NVME_MAX_SGL_DESCRIPTORS;
469 }
470 
471 static void
472 nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr)
473 {
474 	int rc;
475 	void *addr;
476 	uint32_t bir;
477 	union spdk_nvme_cmbsz_register cmbsz;
478 	union spdk_nvme_cmbloc_register cmbloc;
479 	uint64_t size, unit_size, offset, bar_size, bar_phys_addr;
480 	uint64_t mem_register_start, mem_register_end;
481 
482 	if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
483 	    nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
484 		SPDK_ERRLOG("get registers failed\n");
485 		goto exit;
486 	}
487 
488 	if (!cmbsz.bits.sz) {
489 		goto exit;
490 	}
491 
492 	bir = cmbloc.bits.bir;
493 	/* Values 0 2 3 4 5 are valid for BAR */
494 	if (bir > 5 || bir == 1) {
495 		goto exit;
496 	}
497 
498 	/* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */
499 	unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu);
500 	/* controller memory buffer size in Bytes */
501 	size = unit_size * cmbsz.bits.sz;
502 	/* controller memory buffer offset from BAR in Bytes */
503 	offset = unit_size * cmbloc.bits.ofst;
504 
505 	rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr,
506 				     &bar_phys_addr, &bar_size);
507 	if ((rc != 0) || addr == NULL) {
508 		goto exit;
509 	}
510 
511 	if (offset > bar_size) {
512 		goto exit;
513 	}
514 
515 	if (size > bar_size - offset) {
516 		goto exit;
517 	}
518 
519 	pctrlr->cmb_bar_virt_addr = addr;
520 	pctrlr->cmb_bar_phys_addr = bar_phys_addr;
521 	pctrlr->cmb_size = size;
522 	pctrlr->cmb_current_offset = offset;
523 	pctrlr->cmb_max_offset = offset + size;
524 
525 	if (!cmbsz.bits.sqs) {
526 		pctrlr->ctrlr.opts.use_cmb_sqs = false;
527 	}
528 
529 	/* If only SQS is supported use legacy mapping */
530 	if (cmbsz.bits.sqs && !(cmbsz.bits.wds || cmbsz.bits.rds)) {
531 		return;
532 	}
533 
534 	/* If CMB is less than 4MiB in size then abort CMB mapping */
535 	if (pctrlr->cmb_size < (1ULL << 22)) {
536 		goto exit;
537 	}
538 
539 	mem_register_start = _2MB_PAGE((uintptr_t)pctrlr->cmb_bar_virt_addr + offset + VALUE_2MB - 1);
540 	mem_register_end = _2MB_PAGE((uintptr_t)pctrlr->cmb_bar_virt_addr + offset + pctrlr->cmb_size);
541 	pctrlr->cmb_mem_register_addr = (void *)mem_register_start;
542 	pctrlr->cmb_mem_register_size = mem_register_end - mem_register_start;
543 
544 	rc = spdk_mem_register(pctrlr->cmb_mem_register_addr, pctrlr->cmb_mem_register_size);
545 	if (rc) {
546 		SPDK_ERRLOG("spdk_mem_register() failed\n");
547 		goto exit;
548 	}
549 	pctrlr->cmb_current_offset = mem_register_start - ((uint64_t)pctrlr->cmb_bar_virt_addr);
550 	pctrlr->cmb_max_offset = mem_register_end - ((uint64_t)pctrlr->cmb_bar_virt_addr);
551 	pctrlr->cmb_io_data_supported = true;
552 
553 	return;
554 exit:
555 	pctrlr->cmb_bar_virt_addr = NULL;
556 	pctrlr->ctrlr.opts.use_cmb_sqs = false;
557 	return;
558 }
559 
560 static int
561 nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr)
562 {
563 	int rc = 0;
564 	union spdk_nvme_cmbloc_register cmbloc;
565 	void *addr = pctrlr->cmb_bar_virt_addr;
566 
567 	if (addr) {
568 		if (pctrlr->cmb_mem_register_addr) {
569 			spdk_mem_unregister(pctrlr->cmb_mem_register_addr, pctrlr->cmb_mem_register_size);
570 		}
571 
572 		if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
573 			SPDK_ERRLOG("get_cmbloc() failed\n");
574 			return -EIO;
575 		}
576 		rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, cmbloc.bits.bir, addr);
577 	}
578 	return rc;
579 }
580 
581 static int
582 nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t length, uint64_t aligned,
583 			  uint64_t *offset)
584 {
585 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
586 	uint64_t round_offset;
587 
588 	round_offset = pctrlr->cmb_current_offset;
589 	round_offset = (round_offset + (aligned - 1)) & ~(aligned - 1);
590 
591 	/* CMB may only consume part of the BAR, calculate accordingly */
592 	if (round_offset + length > pctrlr->cmb_max_offset) {
593 		SPDK_ERRLOG("Tried to allocate past valid CMB range!\n");
594 		return -1;
595 	}
596 
597 	*offset = round_offset;
598 	pctrlr->cmb_current_offset = round_offset + length;
599 
600 	return 0;
601 }
602 
603 volatile struct spdk_nvme_registers *
604 nvme_pcie_ctrlr_get_registers(struct spdk_nvme_ctrlr *ctrlr)
605 {
606 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
607 
608 	return pctrlr->regs;
609 }
610 
611 void *
612 nvme_pcie_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size)
613 {
614 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
615 	uint64_t offset;
616 
617 	if (pctrlr->cmb_bar_virt_addr == NULL) {
618 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB not available\n");
619 		return NULL;
620 	}
621 
622 	if (!pctrlr->cmb_io_data_supported) {
623 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB doesn't support I/O data\n");
624 		return NULL;
625 	}
626 
627 	if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, size, 4, &offset) != 0) {
628 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "%zu-byte CMB allocation failed\n", size);
629 		return NULL;
630 	}
631 
632 	return pctrlr->cmb_bar_virt_addr + offset;
633 }
634 
635 int
636 nvme_pcie_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size)
637 {
638 	/*
639 	 * Do nothing for now.
640 	 * TODO: Track free space so buffers may be reused.
641 	 */
642 	SPDK_ERRLOG("%s: no deallocation for CMB buffers yet!\n",
643 		    __func__);
644 	return 0;
645 }
646 
647 static int
648 nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr)
649 {
650 	int rc;
651 	void *addr;
652 	uint64_t phys_addr, size;
653 
654 	rc = spdk_pci_device_map_bar(pctrlr->devhandle, 0, &addr,
655 				     &phys_addr, &size);
656 	pctrlr->regs = (volatile struct spdk_nvme_registers *)addr;
657 	if ((pctrlr->regs == NULL) || (rc != 0)) {
658 		SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n",
659 			    rc, pctrlr->regs);
660 		return -1;
661 	}
662 
663 	pctrlr->regs_size = size;
664 	nvme_pcie_ctrlr_map_cmb(pctrlr);
665 
666 	return 0;
667 }
668 
669 static int
670 nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr)
671 {
672 	int rc = 0;
673 	void *addr = (void *)pctrlr->regs;
674 
675 	if (pctrlr->ctrlr.is_removed) {
676 		return rc;
677 	}
678 
679 	rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr);
680 	if (rc != 0) {
681 		SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc);
682 		return -1;
683 	}
684 
685 	if (addr) {
686 		/* NOTE: addr may have been remapped here. We're relying on DPDK to call
687 		 * munmap internally.
688 		 */
689 		rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, 0, addr);
690 	}
691 	return rc;
692 }
693 
694 static int
695 nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr)
696 {
697 	struct nvme_pcie_qpair *pqpair;
698 	int rc;
699 
700 	pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
701 	if (pqpair == NULL) {
702 		return -ENOMEM;
703 	}
704 
705 	pqpair->num_entries = NVME_ADMIN_ENTRIES;
706 	pqpair->flags.delay_pcie_doorbell = 0;
707 
708 	ctrlr->adminq = &pqpair->qpair;
709 
710 	rc = nvme_qpair_init(ctrlr->adminq,
711 			     0, /* qpair ID */
712 			     ctrlr,
713 			     SPDK_NVME_QPRIO_URGENT,
714 			     NVME_ADMIN_ENTRIES);
715 	if (rc != 0) {
716 		return rc;
717 	}
718 
719 	return nvme_pcie_qpair_construct(ctrlr->adminq, NULL);
720 }
721 
722 /* This function must only be called while holding g_spdk_nvme_driver->lock */
723 static int
724 pcie_nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
725 {
726 	struct spdk_nvme_transport_id trid = {};
727 	struct nvme_pcie_enum_ctx *enum_ctx = ctx;
728 	struct spdk_nvme_ctrlr *ctrlr;
729 	struct spdk_pci_addr pci_addr;
730 
731 	pci_addr = spdk_pci_device_get_addr(pci_dev);
732 
733 	trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
734 	spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &pci_addr);
735 
736 	ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(&trid);
737 	if (!spdk_process_is_primary()) {
738 		if (!ctrlr) {
739 			SPDK_ERRLOG("Controller must be constructed in the primary process first.\n");
740 			return -1;
741 		}
742 
743 		return nvme_ctrlr_add_process(ctrlr, pci_dev);
744 	}
745 
746 	/* check whether user passes the pci_addr */
747 	if (enum_ctx->has_pci_addr &&
748 	    (spdk_pci_addr_compare(&pci_addr, &enum_ctx->pci_addr) != 0)) {
749 		return 1;
750 	}
751 
752 	return nvme_ctrlr_probe(&trid, enum_ctx->probe_ctx, pci_dev);
753 }
754 
755 int
756 nvme_pcie_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx,
757 		     bool direct_connect)
758 {
759 	struct nvme_pcie_enum_ctx enum_ctx = {};
760 
761 	enum_ctx.probe_ctx = probe_ctx;
762 
763 	if (strlen(probe_ctx->trid.traddr) != 0) {
764 		if (spdk_pci_addr_parse(&enum_ctx.pci_addr, probe_ctx->trid.traddr)) {
765 			return -1;
766 		}
767 		enum_ctx.has_pci_addr = true;
768 	}
769 
770 	if (hotplug_fd < 0) {
771 		hotplug_fd = spdk_uevent_connect();
772 		if (hotplug_fd < 0) {
773 			SPDK_DEBUGLOG(SPDK_LOG_NVME, "Failed to open uevent netlink socket\n");
774 		}
775 	} else {
776 		_nvme_pcie_hotplug_monitor(probe_ctx);
777 	}
778 
779 	if (enum_ctx.has_pci_addr == false) {
780 		return spdk_pci_enumerate(spdk_pci_nvme_get_driver(),
781 					  pcie_nvme_enum_cb, &enum_ctx);
782 	} else {
783 		return spdk_pci_device_attach(spdk_pci_nvme_get_driver(),
784 					      pcie_nvme_enum_cb, &enum_ctx, &enum_ctx.pci_addr);
785 	}
786 }
787 
788 static int
789 nvme_pcie_ctrlr_attach(struct spdk_nvme_probe_ctx *probe_ctx, struct spdk_pci_addr *pci_addr)
790 {
791 	struct nvme_pcie_enum_ctx enum_ctx;
792 
793 	enum_ctx.probe_ctx = probe_ctx;
794 	enum_ctx.has_pci_addr = true;
795 	enum_ctx.pci_addr = *pci_addr;
796 
797 	return spdk_pci_enumerate(spdk_pci_nvme_get_driver(), pcie_nvme_enum_cb, &enum_ctx);
798 }
799 
800 struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
801 		const struct spdk_nvme_ctrlr_opts *opts,
802 		void *devhandle)
803 {
804 	struct spdk_pci_device *pci_dev = devhandle;
805 	struct nvme_pcie_ctrlr *pctrlr;
806 	union spdk_nvme_cap_register cap;
807 	union spdk_nvme_vs_register vs;
808 	uint32_t cmd_reg;
809 	int rc;
810 	struct spdk_pci_id pci_id;
811 
812 	rc = spdk_pci_device_claim(pci_dev);
813 	if (rc < 0) {
814 		SPDK_ERRLOG("could not claim device %s (%s)\n",
815 			    trid->traddr, spdk_strerror(-rc));
816 		return NULL;
817 	}
818 
819 	pctrlr = spdk_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL,
820 			      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
821 	if (pctrlr == NULL) {
822 		spdk_pci_device_unclaim(pci_dev);
823 		SPDK_ERRLOG("could not allocate ctrlr\n");
824 		return NULL;
825 	}
826 
827 	pctrlr->is_remapped = false;
828 	pctrlr->ctrlr.is_removed = false;
829 	pctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
830 	pctrlr->devhandle = devhandle;
831 	pctrlr->ctrlr.opts = *opts;
832 	memcpy(&pctrlr->ctrlr.trid, trid, sizeof(pctrlr->ctrlr.trid));
833 
834 	rc = nvme_ctrlr_construct(&pctrlr->ctrlr);
835 	if (rc != 0) {
836 		spdk_pci_device_unclaim(pci_dev);
837 		spdk_free(pctrlr);
838 		return NULL;
839 	}
840 
841 	rc = nvme_pcie_ctrlr_allocate_bars(pctrlr);
842 	if (rc != 0) {
843 		spdk_pci_device_unclaim(pci_dev);
844 		spdk_free(pctrlr);
845 		return NULL;
846 	}
847 
848 	/* Enable PCI busmaster and disable INTx */
849 	spdk_pci_device_cfg_read32(pci_dev, &cmd_reg, 4);
850 	cmd_reg |= 0x404;
851 	spdk_pci_device_cfg_write32(pci_dev, cmd_reg, 4);
852 
853 	if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) {
854 		SPDK_ERRLOG("get_cap() failed\n");
855 		spdk_pci_device_unclaim(pci_dev);
856 		spdk_free(pctrlr);
857 		return NULL;
858 	}
859 
860 	if (nvme_ctrlr_get_vs(&pctrlr->ctrlr, &vs)) {
861 		SPDK_ERRLOG("get_vs() failed\n");
862 		spdk_pci_device_unclaim(pci_dev);
863 		spdk_free(pctrlr);
864 		return NULL;
865 	}
866 
867 	nvme_ctrlr_init_cap(&pctrlr->ctrlr, &cap, &vs);
868 
869 	/* Doorbell stride is 2 ^ (dstrd + 2),
870 	 * but we want multiples of 4, so drop the + 2 */
871 	pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd;
872 
873 	pci_id = spdk_pci_device_get_id(pci_dev);
874 	pctrlr->ctrlr.quirks = nvme_get_quirks(&pci_id);
875 
876 	rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr);
877 	if (rc != 0) {
878 		nvme_ctrlr_destruct(&pctrlr->ctrlr);
879 		return NULL;
880 	}
881 
882 	/* Construct the primary process properties */
883 	rc = nvme_ctrlr_add_process(&pctrlr->ctrlr, pci_dev);
884 	if (rc != 0) {
885 		nvme_ctrlr_destruct(&pctrlr->ctrlr);
886 		return NULL;
887 	}
888 
889 	if (g_sigset != true) {
890 		nvme_pcie_ctrlr_setup_signal();
891 		g_sigset = true;
892 	}
893 
894 	return &pctrlr->ctrlr;
895 }
896 
897 int
898 nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
899 {
900 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
901 	struct nvme_pcie_qpair *padminq = nvme_pcie_qpair(ctrlr->adminq);
902 	union spdk_nvme_aqa_register aqa;
903 
904 	if (nvme_pcie_ctrlr_set_asq(pctrlr, padminq->cmd_bus_addr)) {
905 		SPDK_ERRLOG("set_asq() failed\n");
906 		return -EIO;
907 	}
908 
909 	if (nvme_pcie_ctrlr_set_acq(pctrlr, padminq->cpl_bus_addr)) {
910 		SPDK_ERRLOG("set_acq() failed\n");
911 		return -EIO;
912 	}
913 
914 	aqa.raw = 0;
915 	/* acqs and asqs are 0-based. */
916 	aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
917 	aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
918 
919 	if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) {
920 		SPDK_ERRLOG("set_aqa() failed\n");
921 		return -EIO;
922 	}
923 
924 	return 0;
925 }
926 
927 int
928 nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
929 {
930 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
931 	struct spdk_pci_device *devhandle = nvme_ctrlr_proc_get_devhandle(ctrlr);
932 
933 	if (ctrlr->adminq) {
934 		nvme_pcie_qpair_destroy(ctrlr->adminq);
935 	}
936 
937 	nvme_ctrlr_destruct_finish(ctrlr);
938 
939 	nvme_ctrlr_free_processes(ctrlr);
940 
941 	nvme_pcie_ctrlr_free_bars(pctrlr);
942 
943 	if (devhandle) {
944 		spdk_pci_device_unclaim(devhandle);
945 		spdk_pci_device_detach(devhandle);
946 	}
947 
948 	spdk_free(pctrlr);
949 
950 	return 0;
951 }
952 
953 static void
954 nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr)
955 {
956 	tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp);
957 	tr->cid = cid;
958 	tr->req = NULL;
959 }
960 
961 int
962 nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair)
963 {
964 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
965 
966 	/* all head/tail vals are set to 0 */
967 	pqpair->last_sq_tail = pqpair->sq_tail = pqpair->sq_head = pqpair->cq_head = 0;
968 
969 	/*
970 	 * First time through the completion queue, HW will set phase
971 	 *  bit on completions to 1.  So set this to 1 here, indicating
972 	 *  we're looking for a 1 to know which entries have completed.
973 	 *  we'll toggle the bit each time when the completion queue
974 	 *  rolls over.
975 	 */
976 	pqpair->flags.phase = 1;
977 
978 	memset(pqpair->cmd, 0,
979 	       pqpair->num_entries * sizeof(struct spdk_nvme_cmd));
980 	memset(pqpair->cpl, 0,
981 	       pqpair->num_entries * sizeof(struct spdk_nvme_cpl));
982 
983 	return 0;
984 }
985 
986 static int
987 nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair,
988 			  const struct spdk_nvme_io_qpair_opts *opts)
989 {
990 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
991 	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(ctrlr);
992 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
993 	struct nvme_tracker	*tr;
994 	uint16_t		i;
995 	volatile uint32_t	*doorbell_base;
996 	uint64_t		offset;
997 	uint16_t		num_trackers;
998 	size_t			page_align = VALUE_2MB;
999 	uint32_t                flags = SPDK_MALLOC_DMA;
1000 	uint64_t		sq_paddr = 0;
1001 	uint64_t		cq_paddr = 0;
1002 
1003 	if (opts) {
1004 		pqpair->sq_vaddr = opts->sq.vaddr;
1005 		pqpair->cq_vaddr = opts->cq.vaddr;
1006 		sq_paddr = opts->sq.paddr;
1007 		cq_paddr = opts->cq.paddr;
1008 	}
1009 
1010 	pqpair->retry_count = ctrlr->opts.transport_retry_count;
1011 
1012 	/*
1013 	 * Limit the maximum number of completions to return per call to prevent wraparound,
1014 	 * and calculate how many trackers can be submitted at once without overflowing the
1015 	 * completion queue.
1016 	 */
1017 	pqpair->max_completions_cap = pqpair->num_entries / 4;
1018 	pqpair->max_completions_cap = spdk_max(pqpair->max_completions_cap, NVME_MIN_COMPLETIONS);
1019 	pqpair->max_completions_cap = spdk_min(pqpair->max_completions_cap, NVME_MAX_COMPLETIONS);
1020 	num_trackers = pqpair->num_entries - pqpair->max_completions_cap;
1021 
1022 	SPDK_INFOLOG(SPDK_LOG_NVME, "max_completions_cap = %" PRIu16 " num_trackers = %" PRIu16 "\n",
1023 		     pqpair->max_completions_cap, num_trackers);
1024 
1025 	assert(num_trackers != 0);
1026 
1027 	pqpair->sq_in_cmb = false;
1028 
1029 	if (nvme_qpair_is_admin_queue(&pqpair->qpair)) {
1030 		flags |= SPDK_MALLOC_SHARE;
1031 	}
1032 
1033 	/* cmd and cpl rings must be aligned on page size boundaries. */
1034 	if (ctrlr->opts.use_cmb_sqs) {
1035 		if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
1036 					      sysconf(_SC_PAGESIZE), &offset) == 0) {
1037 			pqpair->cmd = pctrlr->cmb_bar_virt_addr + offset;
1038 			pqpair->cmd_bus_addr = pctrlr->cmb_bar_phys_addr + offset;
1039 			pqpair->sq_in_cmb = true;
1040 		}
1041 	}
1042 
1043 	if (pqpair->sq_in_cmb == false) {
1044 		if (pqpair->sq_vaddr) {
1045 			pqpair->cmd = pqpair->sq_vaddr;
1046 		} else {
1047 			/* To ensure physical address contiguity we make each ring occupy
1048 			 * a single hugepage only. See MAX_IO_QUEUE_ENTRIES.
1049 			 */
1050 			pqpair->cmd = spdk_zmalloc(pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
1051 						   page_align, NULL,
1052 						   SPDK_ENV_SOCKET_ID_ANY, flags);
1053 			if (pqpair->cmd == NULL) {
1054 				SPDK_ERRLOG("alloc qpair_cmd failed\n");
1055 				return -ENOMEM;
1056 			}
1057 		}
1058 		if (sq_paddr) {
1059 			assert(pqpair->sq_vaddr != NULL);
1060 			pqpair->cmd_bus_addr = sq_paddr;
1061 		} else {
1062 			pqpair->cmd_bus_addr = spdk_vtophys(pqpair->cmd, NULL);
1063 			if (pqpair->cmd_bus_addr == SPDK_VTOPHYS_ERROR) {
1064 				SPDK_ERRLOG("spdk_vtophys(pqpair->cmd) failed\n");
1065 				return -EFAULT;
1066 			}
1067 		}
1068 	}
1069 
1070 	if (pqpair->cq_vaddr) {
1071 		pqpair->cpl = pqpair->cq_vaddr;
1072 	} else {
1073 		pqpair->cpl = spdk_zmalloc(pqpair->num_entries * sizeof(struct spdk_nvme_cpl),
1074 					   page_align, NULL,
1075 					   SPDK_ENV_SOCKET_ID_ANY, flags);
1076 		if (pqpair->cpl == NULL) {
1077 			SPDK_ERRLOG("alloc qpair_cpl failed\n");
1078 			return -ENOMEM;
1079 		}
1080 	}
1081 	if (cq_paddr) {
1082 		assert(pqpair->cq_vaddr != NULL);
1083 		pqpair->cpl_bus_addr = cq_paddr;
1084 	} else {
1085 		pqpair->cpl_bus_addr = spdk_vtophys(pqpair->cpl, NULL);
1086 		if (pqpair->cpl_bus_addr == SPDK_VTOPHYS_ERROR) {
1087 			SPDK_ERRLOG("spdk_vtophys(pqpair->cpl) failed\n");
1088 			return -EFAULT;
1089 		}
1090 	}
1091 
1092 	doorbell_base = &pctrlr->regs->doorbell[0].sq_tdbl;
1093 	pqpair->sq_tdbl = doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
1094 	pqpair->cq_hdbl = doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
1095 
1096 	/*
1097 	 * Reserve space for all of the trackers in a single allocation.
1098 	 *   struct nvme_tracker must be padded so that its size is already a power of 2.
1099 	 *   This ensures the PRP list embedded in the nvme_tracker object will not span a
1100 	 *   4KB boundary, while allowing access to trackers in tr[] via normal array indexing.
1101 	 */
1102 	pqpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), NULL,
1103 				  SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
1104 	if (pqpair->tr == NULL) {
1105 		SPDK_ERRLOG("nvme_tr failed\n");
1106 		return -ENOMEM;
1107 	}
1108 
1109 	TAILQ_INIT(&pqpair->free_tr);
1110 	TAILQ_INIT(&pqpair->outstanding_tr);
1111 
1112 	for (i = 0; i < num_trackers; i++) {
1113 		tr = &pqpair->tr[i];
1114 		nvme_qpair_construct_tracker(tr, i, spdk_vtophys(tr, NULL));
1115 		TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
1116 	}
1117 
1118 	nvme_pcie_qpair_reset(qpair);
1119 
1120 	return 0;
1121 }
1122 
1123 static inline void
1124 nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
1125 {
1126 	/* dst and src are known to be non-overlapping and 64-byte aligned. */
1127 #if defined(__SSE2__)
1128 	__m128i *d128 = (__m128i *)dst;
1129 	const __m128i *s128 = (const __m128i *)src;
1130 
1131 	_mm_stream_si128(&d128[0], _mm_load_si128(&s128[0]));
1132 	_mm_stream_si128(&d128[1], _mm_load_si128(&s128[1]));
1133 	_mm_stream_si128(&d128[2], _mm_load_si128(&s128[2]));
1134 	_mm_stream_si128(&d128[3], _mm_load_si128(&s128[3]));
1135 #else
1136 	*dst = *src;
1137 #endif
1138 }
1139 
1140 /**
1141  * Note: the ctrlr_lock must be held when calling this function.
1142  */
1143 static void
1144 nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair,
1145 		struct nvme_request *req, struct spdk_nvme_cpl *cpl)
1146 {
1147 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
1148 	struct nvme_request		*active_req = req;
1149 	struct spdk_nvme_ctrlr_process	*active_proc;
1150 
1151 	/*
1152 	 * The admin request is from another process. Move to the per
1153 	 *  process list for that process to handle it later.
1154 	 */
1155 	assert(nvme_qpair_is_admin_queue(qpair));
1156 	assert(active_req->pid != getpid());
1157 
1158 	active_proc = spdk_nvme_ctrlr_get_process(ctrlr, active_req->pid);
1159 	if (active_proc) {
1160 		/* Save the original completion information */
1161 		memcpy(&active_req->cpl, cpl, sizeof(*cpl));
1162 		STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq);
1163 	} else {
1164 		SPDK_ERRLOG("The owning process (pid %d) is not found. Dropping the request.\n",
1165 			    active_req->pid);
1166 
1167 		nvme_free_request(active_req);
1168 	}
1169 }
1170 
1171 /**
1172  * Note: the ctrlr_lock must be held when calling this function.
1173  */
1174 static void
1175 nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair)
1176 {
1177 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
1178 	struct nvme_request		*req, *tmp_req;
1179 	pid_t				pid = getpid();
1180 	struct spdk_nvme_ctrlr_process	*proc;
1181 
1182 	/*
1183 	 * Check whether there is any pending admin request from
1184 	 * other active processes.
1185 	 */
1186 	assert(nvme_qpair_is_admin_queue(qpair));
1187 
1188 	proc = spdk_nvme_ctrlr_get_current_process(ctrlr);
1189 	if (!proc) {
1190 		SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid);
1191 		assert(proc);
1192 		return;
1193 	}
1194 
1195 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
1196 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
1197 
1198 		assert(req->pid == pid);
1199 
1200 		nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, &req->cpl);
1201 		nvme_free_request(req);
1202 	}
1203 }
1204 
1205 static inline int
1206 nvme_pcie_qpair_need_event(uint16_t event_idx, uint16_t new_idx, uint16_t old)
1207 {
1208 	return (uint16_t)(new_idx - event_idx) <= (uint16_t)(new_idx - old);
1209 }
1210 
1211 static bool
1212 nvme_pcie_qpair_update_mmio_required(struct spdk_nvme_qpair *qpair, uint16_t value,
1213 				     volatile uint32_t *shadow_db,
1214 				     volatile uint32_t *eventidx)
1215 {
1216 	uint16_t old;
1217 
1218 	if (!shadow_db) {
1219 		return true;
1220 	}
1221 
1222 	old = *shadow_db;
1223 	*shadow_db = value;
1224 
1225 	/*
1226 	 * Ensure that the doorbell is updated before reading the EventIdx from
1227 	 * memory
1228 	 */
1229 	spdk_mb();
1230 
1231 	if (!nvme_pcie_qpair_need_event(*eventidx, value, old)) {
1232 		return false;
1233 	}
1234 
1235 	return true;
1236 }
1237 
1238 static inline void
1239 nvme_pcie_qpair_ring_sq_doorbell(struct spdk_nvme_qpair *qpair)
1240 {
1241 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1242 	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
1243 	bool need_mmio = true;
1244 
1245 	if (spdk_unlikely(pqpair->flags.has_shadow_doorbell)) {
1246 		need_mmio = nvme_pcie_qpair_update_mmio_required(qpair,
1247 				pqpair->sq_tail,
1248 				pqpair->shadow_doorbell.sq_tdbl,
1249 				pqpair->shadow_doorbell.sq_eventidx);
1250 	}
1251 
1252 	if (spdk_likely(need_mmio)) {
1253 		spdk_wmb();
1254 		g_thread_mmio_ctrlr = pctrlr;
1255 		spdk_mmio_write_4(pqpair->sq_tdbl, pqpair->sq_tail);
1256 		g_thread_mmio_ctrlr = NULL;
1257 	}
1258 }
1259 
1260 static inline void
1261 nvme_pcie_qpair_ring_cq_doorbell(struct spdk_nvme_qpair *qpair)
1262 {
1263 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1264 	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
1265 	bool need_mmio = true;
1266 
1267 	if (spdk_unlikely(pqpair->flags.has_shadow_doorbell)) {
1268 		need_mmio = nvme_pcie_qpair_update_mmio_required(qpair,
1269 				pqpair->cq_head,
1270 				pqpair->shadow_doorbell.cq_hdbl,
1271 				pqpair->shadow_doorbell.cq_eventidx);
1272 	}
1273 
1274 	if (spdk_likely(need_mmio)) {
1275 		g_thread_mmio_ctrlr = pctrlr;
1276 		spdk_mmio_write_4(pqpair->cq_hdbl, pqpair->cq_head);
1277 		g_thread_mmio_ctrlr = NULL;
1278 	}
1279 }
1280 
1281 static void
1282 nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
1283 {
1284 	struct nvme_request	*req;
1285 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1286 
1287 	req = tr->req;
1288 	assert(req != NULL);
1289 
1290 	/* Copy the command from the tracker to the submission queue. */
1291 	nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
1292 
1293 	if (spdk_unlikely(++pqpair->sq_tail == pqpair->num_entries)) {
1294 		pqpair->sq_tail = 0;
1295 	}
1296 
1297 	if (spdk_unlikely(pqpair->sq_tail == pqpair->sq_head)) {
1298 		SPDK_ERRLOG("sq_tail is passing sq_head!\n");
1299 	}
1300 
1301 	if (!pqpair->flags.delay_pcie_doorbell) {
1302 		nvme_pcie_qpair_ring_sq_doorbell(qpair);
1303 	}
1304 }
1305 
1306 static void
1307 nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
1308 				 struct spdk_nvme_cpl *cpl, bool print_on_error)
1309 {
1310 	struct nvme_pcie_qpair		*pqpair = nvme_pcie_qpair(qpair);
1311 	struct nvme_request		*req;
1312 	bool				retry, error;
1313 	bool				req_from_current_proc = true;
1314 
1315 	req = tr->req;
1316 
1317 	assert(req != NULL);
1318 
1319 	error = spdk_nvme_cpl_is_error(cpl);
1320 	retry = error && nvme_completion_is_retry(cpl) &&
1321 		req->retries < pqpair->retry_count;
1322 
1323 	if (error && print_on_error && !qpair->ctrlr->opts.disable_error_logging) {
1324 		spdk_nvme_qpair_print_command(qpair, &req->cmd);
1325 		spdk_nvme_qpair_print_completion(qpair, cpl);
1326 	}
1327 
1328 	assert(cpl->cid == req->cmd.cid);
1329 
1330 	if (retry) {
1331 		req->retries++;
1332 		nvme_pcie_qpair_submit_tracker(qpair, tr);
1333 	} else {
1334 		/* Only check admin requests from different processes. */
1335 		if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) {
1336 			req_from_current_proc = false;
1337 			nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl);
1338 		} else {
1339 			nvme_complete_request(tr->cb_fn, tr->cb_arg, qpair, req, cpl);
1340 		}
1341 
1342 		if (req_from_current_proc == true) {
1343 			nvme_qpair_free_request(qpair, req);
1344 		}
1345 
1346 		tr->req = NULL;
1347 
1348 		TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list);
1349 		TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
1350 
1351 		/*
1352 		 * If the controller is in the middle of resetting, don't
1353 		 *  try to submit queued requests here - let the reset logic
1354 		 *  handle that instead.
1355 		 */
1356 		if (!STAILQ_EMPTY(&qpair->queued_req) &&
1357 		    !qpair->ctrlr->is_resetting) {
1358 			req = STAILQ_FIRST(&qpair->queued_req);
1359 			STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1360 			nvme_qpair_submit_request(qpair, req);
1361 		}
1362 	}
1363 }
1364 
1365 static void
1366 nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair,
1367 					struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
1368 					bool print_on_error)
1369 {
1370 	struct spdk_nvme_cpl	cpl;
1371 
1372 	memset(&cpl, 0, sizeof(cpl));
1373 	cpl.sqid = qpair->id;
1374 	cpl.cid = tr->cid;
1375 	cpl.status.sct = sct;
1376 	cpl.status.sc = sc;
1377 	cpl.status.dnr = dnr;
1378 	nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
1379 }
1380 
1381 static void
1382 nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr)
1383 {
1384 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
1385 	struct nvme_tracker *tr, *temp, *last;
1386 
1387 	last = TAILQ_LAST(&pqpair->outstanding_tr, nvme_outstanding_tr_head);
1388 
1389 	/* Abort previously submitted (outstanding) trs */
1390 	TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) {
1391 		if (!qpair->ctrlr->opts.disable_error_logging) {
1392 			SPDK_ERRLOG("aborting outstanding command\n");
1393 		}
1394 		nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
1395 							SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true);
1396 
1397 		if (tr == last) {
1398 			break;
1399 		}
1400 	}
1401 }
1402 
1403 void
1404 nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
1405 {
1406 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1407 	struct nvme_tracker	*tr;
1408 
1409 	tr = TAILQ_FIRST(&pqpair->outstanding_tr);
1410 	while (tr != NULL) {
1411 		assert(tr->req != NULL);
1412 		if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
1413 			nvme_pcie_qpair_manual_complete_tracker(qpair, tr,
1414 								SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0,
1415 								false);
1416 			tr = TAILQ_FIRST(&pqpair->outstanding_tr);
1417 		} else {
1418 			tr = TAILQ_NEXT(tr, tq_list);
1419 		}
1420 	}
1421 }
1422 
1423 static void
1424 nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair)
1425 {
1426 	nvme_pcie_admin_qpair_abort_aers(qpair);
1427 }
1428 
1429 static int
1430 nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair)
1431 {
1432 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
1433 
1434 	if (nvme_qpair_is_admin_queue(qpair)) {
1435 		nvme_pcie_admin_qpair_destroy(qpair);
1436 	}
1437 	/*
1438 	 * We check sq_vaddr and cq_vaddr to see if the user specified the memory
1439 	 * buffers when creating the I/O queue.
1440 	 * If the user specified them, we cannot free that memory.
1441 	 * Nor do we free it if it's in the CMB.
1442 	 */
1443 	if (!pqpair->sq_vaddr && pqpair->cmd && !pqpair->sq_in_cmb) {
1444 		spdk_free(pqpair->cmd);
1445 	}
1446 	if (!pqpair->cq_vaddr && pqpair->cpl) {
1447 		spdk_free(pqpair->cpl);
1448 	}
1449 	if (pqpair->tr) {
1450 		spdk_free(pqpair->tr);
1451 	}
1452 
1453 	nvme_qpair_deinit(qpair);
1454 
1455 	spdk_free(pqpair);
1456 
1457 	return 0;
1458 }
1459 
1460 void
1461 nvme_pcie_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
1462 {
1463 	nvme_pcie_qpair_abort_trackers(qpair, dnr);
1464 }
1465 
1466 static int
1467 nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr,
1468 				 struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn,
1469 				 void *cb_arg)
1470 {
1471 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
1472 	struct nvme_request *req;
1473 	struct spdk_nvme_cmd *cmd;
1474 
1475 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
1476 	if (req == NULL) {
1477 		return -ENOMEM;
1478 	}
1479 
1480 	cmd = &req->cmd;
1481 	cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ;
1482 
1483 	/*
1484 	 * TODO: create a create io completion queue command data
1485 	 *  structure.
1486 	 */
1487 	cmd->cdw10 = ((pqpair->num_entries - 1) << 16) | io_que->id;
1488 	/*
1489 	 * 0x2 = interrupts enabled
1490 	 * 0x1 = physically contiguous
1491 	 */
1492 	cmd->cdw11 = 0x1;
1493 	cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr;
1494 
1495 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
1496 }
1497 
1498 static int
1499 nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr,
1500 				 struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
1501 {
1502 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
1503 	struct nvme_request *req;
1504 	struct spdk_nvme_cmd *cmd;
1505 
1506 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
1507 	if (req == NULL) {
1508 		return -ENOMEM;
1509 	}
1510 
1511 	cmd = &req->cmd;
1512 	cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ;
1513 
1514 	/*
1515 	 * TODO: create a create io submission queue command data
1516 	 *  structure.
1517 	 */
1518 	cmd->cdw10 = ((pqpair->num_entries - 1) << 16) | io_que->id;
1519 	/* 0x1 = physically contiguous */
1520 	cmd->cdw11 = (io_que->id << 16) | (io_que->qprio << 1) | 0x1;
1521 	cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr;
1522 
1523 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
1524 }
1525 
1526 static int
1527 nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
1528 				 spdk_nvme_cmd_cb cb_fn, void *cb_arg)
1529 {
1530 	struct nvme_request *req;
1531 	struct spdk_nvme_cmd *cmd;
1532 
1533 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
1534 	if (req == NULL) {
1535 		return -ENOMEM;
1536 	}
1537 
1538 	cmd = &req->cmd;
1539 	cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ;
1540 	cmd->cdw10 = qpair->id;
1541 
1542 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
1543 }
1544 
1545 static int
1546 nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
1547 				 spdk_nvme_cmd_cb cb_fn, void *cb_arg)
1548 {
1549 	struct nvme_request *req;
1550 	struct spdk_nvme_cmd *cmd;
1551 
1552 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
1553 	if (req == NULL) {
1554 		return -ENOMEM;
1555 	}
1556 
1557 	cmd = &req->cmd;
1558 	cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ;
1559 	cmd->cdw10 = qpair->id;
1560 
1561 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
1562 }
1563 
1564 static int
1565 _nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
1566 				 uint16_t qid)
1567 {
1568 	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(ctrlr);
1569 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1570 	struct nvme_completion_poll_status	status;
1571 	int					rc;
1572 
1573 	rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status);
1574 	if (rc != 0) {
1575 		return rc;
1576 	}
1577 
1578 	if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) {
1579 		SPDK_ERRLOG("nvme_create_io_cq failed!\n");
1580 		return -1;
1581 	}
1582 
1583 	rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status);
1584 	if (rc != 0) {
1585 		return rc;
1586 	}
1587 
1588 	if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) {
1589 		SPDK_ERRLOG("nvme_create_io_sq failed!\n");
1590 		/* Attempt to delete the completion queue */
1591 		rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status);
1592 		if (rc != 0) {
1593 			return -1;
1594 		}
1595 		spdk_nvme_wait_for_completion(ctrlr->adminq, &status);
1596 		return -1;
1597 	}
1598 
1599 	if (ctrlr->shadow_doorbell) {
1600 		pqpair->shadow_doorbell.sq_tdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 0) *
1601 						  pctrlr->doorbell_stride_u32;
1602 		pqpair->shadow_doorbell.cq_hdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 1) *
1603 						  pctrlr->doorbell_stride_u32;
1604 		pqpair->shadow_doorbell.sq_eventidx = ctrlr->eventidx + (2 * qpair->id + 0) *
1605 						      pctrlr->doorbell_stride_u32;
1606 		pqpair->shadow_doorbell.cq_eventidx = ctrlr->eventidx + (2 * qpair->id + 1) *
1607 						      pctrlr->doorbell_stride_u32;
1608 		pqpair->flags.has_shadow_doorbell = 1;
1609 	} else {
1610 		pqpair->flags.has_shadow_doorbell = 0;
1611 	}
1612 	nvme_pcie_qpair_reset(qpair);
1613 
1614 	return 0;
1615 }
1616 
1617 struct spdk_nvme_qpair *
1618 nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
1619 				const struct spdk_nvme_io_qpair_opts *opts)
1620 {
1621 	struct nvme_pcie_qpair *pqpair;
1622 	struct spdk_nvme_qpair *qpair;
1623 	int rc;
1624 
1625 	assert(ctrlr != NULL);
1626 
1627 	pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL,
1628 			      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
1629 	if (pqpair == NULL) {
1630 		return NULL;
1631 	}
1632 
1633 	pqpair->num_entries = opts->io_queue_size;
1634 	pqpair->flags.delay_pcie_doorbell = opts->delay_pcie_doorbell;
1635 
1636 	qpair = &pqpair->qpair;
1637 
1638 	rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests);
1639 	if (rc != 0) {
1640 		nvme_pcie_qpair_destroy(qpair);
1641 		return NULL;
1642 	}
1643 
1644 	rc = nvme_pcie_qpair_construct(qpair, opts);
1645 
1646 	if (rc != 0) {
1647 		nvme_pcie_qpair_destroy(qpair);
1648 		return NULL;
1649 	}
1650 
1651 	rc = _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qid);
1652 
1653 	if (rc != 0) {
1654 		SPDK_ERRLOG("I/O queue creation failed\n");
1655 		nvme_pcie_qpair_destroy(qpair);
1656 		return NULL;
1657 	}
1658 
1659 	return qpair;
1660 }
1661 
1662 int
1663 nvme_pcie_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1664 {
1665 	if (nvme_qpair_is_admin_queue(qpair)) {
1666 		return 0;
1667 	} else {
1668 		return _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id);
1669 	}
1670 }
1671 
1672 void
1673 nvme_pcie_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1674 {
1675 }
1676 
1677 int
1678 nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1679 {
1680 	struct nvme_completion_poll_status status;
1681 	int rc;
1682 
1683 	assert(ctrlr != NULL);
1684 
1685 	if (ctrlr->is_removed) {
1686 		goto free;
1687 	}
1688 
1689 	/* Delete the I/O submission queue */
1690 	rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, &status);
1691 	if (rc != 0) {
1692 		SPDK_ERRLOG("Failed to send request to delete_io_sq with rc=%d\n", rc);
1693 		return rc;
1694 	}
1695 	if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) {
1696 		return -1;
1697 	}
1698 
1699 	/* Delete the completion queue */
1700 	rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status);
1701 	if (rc != 0) {
1702 		SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc);
1703 		return rc;
1704 	}
1705 	if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) {
1706 		return -1;
1707 	}
1708 
1709 free:
1710 	if (qpair->no_deletion_notification_needed == 0) {
1711 		/* Abort the rest of the I/O */
1712 		nvme_pcie_qpair_abort_trackers(qpair, 1);
1713 	}
1714 
1715 	nvme_pcie_qpair_destroy(qpair);
1716 	return 0;
1717 }
1718 
1719 static void
1720 nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
1721 {
1722 	/*
1723 	 * Bad vtophys translation, so abort this request and return
1724 	 *  immediately.
1725 	 */
1726 	nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
1727 						SPDK_NVME_SC_INVALID_FIELD,
1728 						1 /* do not retry */, true);
1729 }
1730 
1731 /*
1732  * Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes.
1733  *
1734  * *prp_index will be updated to account for the number of PRP entries used.
1735  */
1736 static inline int
1737 nvme_pcie_prp_list_append(struct nvme_tracker *tr, uint32_t *prp_index, void *virt_addr, size_t len,
1738 			  uint32_t page_size)
1739 {
1740 	struct spdk_nvme_cmd *cmd = &tr->req->cmd;
1741 	uintptr_t page_mask = page_size - 1;
1742 	uint64_t phys_addr;
1743 	uint32_t i;
1744 
1745 	SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp_index:%u virt_addr:%p len:%u\n",
1746 		      *prp_index, virt_addr, (uint32_t)len);
1747 
1748 	if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) {
1749 		SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
1750 		return -EINVAL;
1751 	}
1752 
1753 	i = *prp_index;
1754 	while (len) {
1755 		uint32_t seg_len;
1756 
1757 		/*
1758 		 * prp_index 0 is stored in prp1, and the rest are stored in the prp[] array,
1759 		 * so prp_index == count is valid.
1760 		 */
1761 		if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) {
1762 			SPDK_ERRLOG("out of PRP entries\n");
1763 			return -EINVAL;
1764 		}
1765 
1766 		phys_addr = spdk_vtophys(virt_addr, NULL);
1767 		if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) {
1768 			SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr);
1769 			return -EINVAL;
1770 		}
1771 
1772 		if (i == 0) {
1773 			SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp1 = %p\n", (void *)phys_addr);
1774 			cmd->dptr.prp.prp1 = phys_addr;
1775 			seg_len = page_size - ((uintptr_t)virt_addr & page_mask);
1776 		} else {
1777 			if ((phys_addr & page_mask) != 0) {
1778 				SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr);
1779 				return -EINVAL;
1780 			}
1781 
1782 			SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp[%u] = %p\n", i - 1, (void *)phys_addr);
1783 			tr->u.prp[i - 1] = phys_addr;
1784 			seg_len = page_size;
1785 		}
1786 
1787 		seg_len = spdk_min(seg_len, len);
1788 		virt_addr += seg_len;
1789 		len -= seg_len;
1790 		i++;
1791 	}
1792 
1793 	cmd->psdt = SPDK_NVME_PSDT_PRP;
1794 	if (i <= 1) {
1795 		cmd->dptr.prp.prp2 = 0;
1796 	} else if (i == 2) {
1797 		cmd->dptr.prp.prp2 = tr->u.prp[0];
1798 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2);
1799 	} else {
1800 		cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr;
1801 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2);
1802 	}
1803 
1804 	*prp_index = i;
1805 	return 0;
1806 }
1807 
1808 /**
1809  * Build PRP list describing physically contiguous payload buffer.
1810  */
1811 static int
1812 nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
1813 				     struct nvme_tracker *tr)
1814 {
1815 	uint32_t prp_index = 0;
1816 	int rc;
1817 
1818 	rc = nvme_pcie_prp_list_append(tr, &prp_index, req->payload.contig_or_cb_arg + req->payload_offset,
1819 				       req->payload_size, qpair->ctrlr->page_size);
1820 	if (rc) {
1821 		nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1822 		return rc;
1823 	}
1824 
1825 	return 0;
1826 }
1827 
1828 /**
1829  * Build SGL list describing scattered payload buffer.
1830  */
1831 static int
1832 nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
1833 				     struct nvme_tracker *tr)
1834 {
1835 	int rc;
1836 	void *virt_addr;
1837 	uint64_t phys_addr;
1838 	uint32_t remaining_transfer_len, remaining_user_sge_len, length;
1839 	struct spdk_nvme_sgl_descriptor *sgl;
1840 	uint32_t nseg = 0;
1841 
1842 	/*
1843 	 * Build scattered payloads.
1844 	 */
1845 	assert(req->payload_size != 0);
1846 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1847 	assert(req->payload.reset_sgl_fn != NULL);
1848 	assert(req->payload.next_sge_fn != NULL);
1849 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1850 
1851 	sgl = tr->u.sgl;
1852 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1853 	req->cmd.dptr.sgl1.unkeyed.subtype = 0;
1854 
1855 	remaining_transfer_len = req->payload_size;
1856 
1857 	while (remaining_transfer_len > 0) {
1858 		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg,
1859 					      &virt_addr, &remaining_user_sge_len);
1860 		if (rc) {
1861 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1862 			return -1;
1863 		}
1864 
1865 		remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
1866 		remaining_transfer_len -= remaining_user_sge_len;
1867 		while (remaining_user_sge_len > 0) {
1868 			if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
1869 				nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1870 				return -1;
1871 			}
1872 
1873 			phys_addr = spdk_vtophys(virt_addr, NULL);
1874 			if (phys_addr == SPDK_VTOPHYS_ERROR) {
1875 				nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1876 				return -1;
1877 			}
1878 
1879 			length = spdk_min(remaining_user_sge_len, VALUE_2MB - _2MB_OFFSET(virt_addr));
1880 			remaining_user_sge_len -= length;
1881 			virt_addr += length;
1882 
1883 			if (nseg > 0 && phys_addr ==
1884 			    (*(sgl - 1)).address + (*(sgl - 1)).unkeyed.length) {
1885 				/* extend previous entry */
1886 				(*(sgl - 1)).unkeyed.length += length;
1887 				continue;
1888 			}
1889 
1890 			sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1891 			sgl->unkeyed.length = length;
1892 			sgl->address = phys_addr;
1893 			sgl->unkeyed.subtype = 0;
1894 
1895 			sgl++;
1896 			nseg++;
1897 		}
1898 	}
1899 
1900 	if (nseg == 1) {
1901 		/*
1902 		 * The whole transfer can be described by a single SGL descriptor.
1903 		 *  Use the special case described by the spec where SGL1's type is Data Block.
1904 		 *  This means the SGL in the tracker is not used at all, so copy the first (and only)
1905 		 *  SGL element into SGL1.
1906 		 */
1907 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1908 		req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
1909 		req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
1910 	} else {
1911 		/* For now we can only support 1 SGL segment in NVMe controller */
1912 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1913 		req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
1914 		req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
1915 	}
1916 
1917 	return 0;
1918 }
1919 
1920 /**
1921  * Build PRP list describing scattered payload buffer.
1922  */
1923 static int
1924 nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
1925 				       struct nvme_tracker *tr)
1926 {
1927 	int rc;
1928 	void *virt_addr;
1929 	uint32_t remaining_transfer_len, length;
1930 	uint32_t prp_index = 0;
1931 	uint32_t page_size = qpair->ctrlr->page_size;
1932 
1933 	/*
1934 	 * Build scattered payloads.
1935 	 */
1936 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1937 	assert(req->payload.reset_sgl_fn != NULL);
1938 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1939 
1940 	remaining_transfer_len = req->payload_size;
1941 	while (remaining_transfer_len > 0) {
1942 		assert(req->payload.next_sge_fn != NULL);
1943 		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
1944 		if (rc) {
1945 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1946 			return -1;
1947 		}
1948 
1949 		length = spdk_min(remaining_transfer_len, length);
1950 
1951 		/*
1952 		 * Any incompatible sges should have been handled up in the splitting routine,
1953 		 *  but assert here as an additional check.
1954 		 *
1955 		 * All SGEs except last must end on a page boundary.
1956 		 */
1957 		assert((length == remaining_transfer_len) ||
1958 		       _is_page_aligned((uintptr_t)virt_addr + length, page_size));
1959 
1960 		rc = nvme_pcie_prp_list_append(tr, &prp_index, virt_addr, length, page_size);
1961 		if (rc) {
1962 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1963 			return rc;
1964 		}
1965 
1966 		remaining_transfer_len -= length;
1967 	}
1968 
1969 	return 0;
1970 }
1971 
1972 int
1973 nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
1974 {
1975 	struct nvme_tracker	*tr;
1976 	int			rc = 0;
1977 	void			*md_payload;
1978 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
1979 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1980 
1981 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
1982 		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1983 	}
1984 
1985 	tr = TAILQ_FIRST(&pqpair->free_tr);
1986 
1987 	if (tr == NULL) {
1988 		/*
1989 		 * Put the request on the qpair's request queue to be
1990 		 *  processed when a tracker frees up via a command
1991 		 *  completion.
1992 		 */
1993 		STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
1994 		goto exit;
1995 	}
1996 
1997 	TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */
1998 	TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list);
1999 	tr->req = req;
2000 	tr->cb_fn = req->cb_fn;
2001 	tr->cb_arg = req->cb_arg;
2002 	req->cmd.cid = tr->cid;
2003 
2004 	if (req->payload_size && req->payload.md) {
2005 		md_payload = req->payload.md + req->md_offset;
2006 		tr->req->cmd.mptr = spdk_vtophys(md_payload, NULL);
2007 		if (tr->req->cmd.mptr == SPDK_VTOPHYS_ERROR) {
2008 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
2009 			rc = -EINVAL;
2010 			goto exit;
2011 		}
2012 	}
2013 
2014 	if (req->payload_size == 0) {
2015 		/* Null payload - leave PRP fields untouched */
2016 		rc = 0;
2017 	} else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG) {
2018 		rc = nvme_pcie_qpair_build_contig_request(qpair, req, tr);
2019 	} else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL) {
2020 		if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
2021 			rc = nvme_pcie_qpair_build_hw_sgl_request(qpair, req, tr);
2022 		} else {
2023 			rc = nvme_pcie_qpair_build_prps_sgl_request(qpair, req, tr);
2024 		}
2025 	} else {
2026 		assert(0);
2027 		nvme_pcie_fail_request_bad_vtophys(qpair, tr);
2028 		rc = -EINVAL;
2029 	}
2030 
2031 	if (rc < 0) {
2032 		goto exit;
2033 	}
2034 
2035 	nvme_pcie_qpair_submit_tracker(qpair, tr);
2036 
2037 exit:
2038 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
2039 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2040 	}
2041 
2042 	return rc;
2043 }
2044 
2045 static void
2046 nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
2047 {
2048 	uint64_t t02;
2049 	struct nvme_tracker *tr, *tmp;
2050 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
2051 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
2052 	struct spdk_nvme_ctrlr_process *active_proc;
2053 
2054 	/* Don't check timeouts during controller initialization. */
2055 	if (ctrlr->state != NVME_CTRLR_STATE_READY) {
2056 		return;
2057 	}
2058 
2059 	if (nvme_qpair_is_admin_queue(qpair)) {
2060 		active_proc = spdk_nvme_ctrlr_get_current_process(ctrlr);
2061 	} else {
2062 		active_proc = qpair->active_proc;
2063 	}
2064 
2065 	/* Only check timeouts if the current process has a timeout callback. */
2066 	if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
2067 		return;
2068 	}
2069 
2070 	t02 = spdk_get_ticks();
2071 	TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
2072 		assert(tr->req != NULL);
2073 
2074 		if (nvme_request_check_timeout(tr->req, tr->cid, active_proc, t02)) {
2075 			/*
2076 			 * The requests are in order, so as soon as one has not timed out,
2077 			 * stop iterating.
2078 			 */
2079 			break;
2080 		}
2081 	}
2082 }
2083 
2084 int32_t
2085 nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
2086 {
2087 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
2088 	struct nvme_tracker	*tr;
2089 	struct spdk_nvme_cpl	*cpl, *next_cpl;
2090 	uint32_t		 num_completions = 0;
2091 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
2092 	uint16_t		 next_cq_head;
2093 	uint8_t			 next_phase;
2094 	bool			 next_is_valid = false;
2095 
2096 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
2097 		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
2098 	}
2099 
2100 	if (max_completions == 0 || max_completions > pqpair->max_completions_cap) {
2101 		/*
2102 		 * max_completions == 0 means unlimited, but complete at most
2103 		 * max_completions_cap batch of I/O at a time so that the completion
2104 		 * queue doorbells don't wrap around.
2105 		 */
2106 		max_completions = pqpair->max_completions_cap;
2107 	}
2108 
2109 	while (1) {
2110 		cpl = &pqpair->cpl[pqpair->cq_head];
2111 
2112 		if (!next_is_valid && cpl->status.p != pqpair->flags.phase) {
2113 			break;
2114 		}
2115 
2116 		if (spdk_likely(pqpair->cq_head + 1 != pqpair->num_entries)) {
2117 			next_cq_head = pqpair->cq_head + 1;
2118 			next_phase = pqpair->flags.phase;
2119 		} else {
2120 			next_cq_head = 0;
2121 			next_phase = !pqpair->flags.phase;
2122 		}
2123 		next_cpl = &pqpair->cpl[next_cq_head];
2124 		next_is_valid = (next_cpl->status.p == next_phase);
2125 		if (next_is_valid) {
2126 			__builtin_prefetch(&pqpair->tr[next_cpl->cid]);
2127 		}
2128 
2129 #ifdef __PPC64__
2130 		/*
2131 		 * This memory barrier prevents reordering of:
2132 		 * - load after store from/to tr
2133 		 * - load after load cpl phase and cpl cid
2134 		 */
2135 		spdk_mb();
2136 #elif defined(__aarch64__)
2137 		__asm volatile("dmb oshld" ::: "memory");
2138 #endif
2139 
2140 		if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) {
2141 			pqpair->cq_head = 0;
2142 			pqpair->flags.phase = !pqpair->flags.phase;
2143 		}
2144 
2145 		tr = &pqpair->tr[cpl->cid];
2146 		/* Prefetch the req's STAILQ_ENTRY since we'll need to access it
2147 		 * as part of putting the req back on the qpair's free list.
2148 		 */
2149 		__builtin_prefetch(&tr->req->stailq);
2150 		pqpair->sq_head = cpl->sqhd;
2151 
2152 		if (tr->req) {
2153 			nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true);
2154 		} else {
2155 			SPDK_ERRLOG("cpl does not map to outstanding cmd\n");
2156 			spdk_nvme_qpair_print_completion(qpair, cpl);
2157 			assert(0);
2158 		}
2159 
2160 		if (++num_completions == max_completions) {
2161 			break;
2162 		}
2163 	}
2164 
2165 	if (num_completions > 0) {
2166 		nvme_pcie_qpair_ring_cq_doorbell(qpair);
2167 	}
2168 
2169 	if (pqpair->flags.delay_pcie_doorbell) {
2170 		if (pqpair->last_sq_tail != pqpair->sq_tail) {
2171 			nvme_pcie_qpair_ring_sq_doorbell(qpair);
2172 			pqpair->last_sq_tail = pqpair->sq_tail;
2173 		}
2174 	}
2175 
2176 	if (spdk_unlikely(ctrlr->timeout_enabled)) {
2177 		/*
2178 		 * User registered for timeout callback
2179 		 */
2180 		nvme_pcie_qpair_check_timeout(qpair);
2181 	}
2182 
2183 	/* Before returning, complete any pending admin request. */
2184 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
2185 		nvme_pcie_qpair_complete_pending_admin_request(qpair);
2186 
2187 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2188 	}
2189 
2190 	return num_completions;
2191 }
2192