xref: /spdk/lib/nvme/nvme_pcie.c (revision 407e88fd2ab020d753e33014cf759353a9901b51)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation.
5  *   Copyright (c) 2017, IBM Corporation.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * NVMe over PCIe transport
37  */
38 
39 #include "spdk/stdinc.h"
40 #include "spdk/env.h"
41 #include "spdk/likely.h"
42 #include "nvme_internal.h"
43 #include "nvme_uevent.h"
44 
45 /*
46  * Number of completion queue entries to process before ringing the
47  *  completion queue doorbell.
48  */
49 #define NVME_MIN_COMPLETIONS	(1)
50 #define NVME_MAX_COMPLETIONS	(128)
51 
52 #define NVME_ADMIN_ENTRIES	(128)
53 
54 /*
55  * NVME_MAX_SGL_DESCRIPTORS defines the maximum number of descriptors in one SGL
56  *  segment.
57  */
58 #define NVME_MAX_SGL_DESCRIPTORS	(251)
59 
60 #define NVME_MAX_PRP_LIST_ENTRIES	(505)
61 
62 struct nvme_pcie_enum_ctx {
63 	struct spdk_nvme_probe_ctx *probe_ctx;
64 	struct spdk_pci_addr pci_addr;
65 	bool has_pci_addr;
66 };
67 
68 /* PCIe transport extensions for spdk_nvme_ctrlr */
69 struct nvme_pcie_ctrlr {
70 	struct spdk_nvme_ctrlr ctrlr;
71 
72 	/** NVMe MMIO register space */
73 	volatile struct spdk_nvme_registers *regs;
74 
75 	/** NVMe MMIO register size */
76 	uint64_t regs_size;
77 
78 	/* BAR mapping address which contains controller memory buffer */
79 	void *cmb_bar_virt_addr;
80 
81 	/* BAR physical address which contains controller memory buffer */
82 	uint64_t cmb_bar_phys_addr;
83 
84 	/* Controller memory buffer size in Bytes */
85 	uint64_t cmb_size;
86 
87 	/* Current offset of controller memory buffer, relative to start of BAR virt addr */
88 	uint64_t cmb_current_offset;
89 
90 	/* Last valid offset into CMB, this differs if CMB memory registration occurs or not */
91 	uint64_t cmb_max_offset;
92 
93 	void *cmb_mem_register_addr;
94 	size_t cmb_mem_register_size;
95 
96 	bool cmb_io_data_supported;
97 
98 	/** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */
99 	uint32_t doorbell_stride_u32;
100 
101 	/* Opaque handle to associated PCI device. */
102 	struct spdk_pci_device *devhandle;
103 
104 	/* File descriptor returned from spdk_pci_device_claim().  Closed when ctrlr is detached. */
105 	int claim_fd;
106 
107 	/* Flag to indicate the MMIO register has been remapped */
108 	bool is_remapped;
109 };
110 
111 struct nvme_tracker {
112 	TAILQ_ENTRY(nvme_tracker)       tq_list;
113 
114 	struct nvme_request		*req;
115 	uint16_t			cid;
116 
117 	uint16_t			rsvd0;
118 	uint32_t			rsvd1;
119 
120 	spdk_nvme_cmd_cb		cb_fn;
121 	void				*cb_arg;
122 
123 	uint64_t			prp_sgl_bus_addr;
124 
125 	union {
126 		uint64_t			prp[NVME_MAX_PRP_LIST_ENTRIES];
127 		struct spdk_nvme_sgl_descriptor	sgl[NVME_MAX_SGL_DESCRIPTORS];
128 	} u;
129 };
130 /*
131  * struct nvme_tracker must be exactly 4K so that the prp[] array does not cross a page boundary
132  * and so that there is no padding required to meet alignment requirements.
133  */
134 SPDK_STATIC_ASSERT(sizeof(struct nvme_tracker) == 4096, "nvme_tracker is not 4K");
135 SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, u.sgl) & 7) == 0, "SGL must be Qword aligned");
136 
137 /* PCIe transport extensions for spdk_nvme_qpair */
138 struct nvme_pcie_qpair {
139 	/* Submission queue tail doorbell */
140 	volatile uint32_t *sq_tdbl;
141 
142 	/* Completion queue head doorbell */
143 	volatile uint32_t *cq_hdbl;
144 
145 	/* Submission queue */
146 	struct spdk_nvme_cmd *cmd;
147 
148 	/* Completion queue */
149 	struct spdk_nvme_cpl *cpl;
150 
151 	TAILQ_HEAD(, nvme_tracker) free_tr;
152 	TAILQ_HEAD(nvme_outstanding_tr_head, nvme_tracker) outstanding_tr;
153 
154 	/* Array of trackers indexed by command ID. */
155 	struct nvme_tracker *tr;
156 
157 	uint16_t num_entries;
158 
159 	uint8_t retry_count;
160 
161 	uint16_t max_completions_cap;
162 
163 	uint16_t last_sq_tail;
164 	uint16_t sq_tail;
165 	uint16_t cq_head;
166 	uint16_t sq_head;
167 
168 	struct {
169 		uint8_t phase			: 1;
170 		uint8_t delay_pcie_doorbell	: 1;
171 		uint8_t has_shadow_doorbell	: 1;
172 	} flags;
173 
174 	/*
175 	 * Base qpair structure.
176 	 * This is located after the hot data in this structure so that the important parts of
177 	 * nvme_pcie_qpair are in the same cache line.
178 	 */
179 	struct spdk_nvme_qpair qpair;
180 
181 	struct {
182 		/* Submission queue shadow tail doorbell */
183 		volatile uint32_t *sq_tdbl;
184 
185 		/* Completion queue shadow head doorbell */
186 		volatile uint32_t *cq_hdbl;
187 
188 		/* Submission queue event index */
189 		volatile uint32_t *sq_eventidx;
190 
191 		/* Completion queue event index */
192 		volatile uint32_t *cq_eventidx;
193 	} shadow_doorbell;
194 
195 	/*
196 	 * Fields below this point should not be touched on the normal I/O path.
197 	 */
198 
199 	bool sq_in_cmb;
200 
201 	uint64_t cmd_bus_addr;
202 	uint64_t cpl_bus_addr;
203 
204 	struct spdk_nvme_cmd *sq_vaddr;
205 	struct spdk_nvme_cpl *cq_vaddr;
206 };
207 
208 static int nvme_pcie_ctrlr_attach(struct spdk_nvme_probe_ctx *probe_ctx,
209 				  struct spdk_pci_addr *pci_addr);
210 static int nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair,
211 				     const struct spdk_nvme_io_qpair_opts *opts);
212 static int nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair);
213 
214 __thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL;
215 static uint16_t g_signal_lock;
216 static bool g_sigset = false;
217 static int hotplug_fd = -1;
218 
219 static void
220 nvme_sigbus_fault_sighandler(int signum, siginfo_t *info, void *ctx)
221 {
222 	void *map_address;
223 	uint16_t flag = 0;
224 
225 	if (!__atomic_compare_exchange_n(&g_signal_lock, &flag, 1, false, __ATOMIC_ACQUIRE,
226 					 __ATOMIC_RELAXED)) {
227 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "request g_signal_lock failed\n");
228 		return;
229 	}
230 
231 	assert(g_thread_mmio_ctrlr != NULL);
232 
233 	if (!g_thread_mmio_ctrlr->is_remapped) {
234 		map_address = mmap((void *)g_thread_mmio_ctrlr->regs, g_thread_mmio_ctrlr->regs_size,
235 				   PROT_READ | PROT_WRITE,
236 				   MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
237 		if (map_address == MAP_FAILED) {
238 			SPDK_ERRLOG("mmap failed\n");
239 			__atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE);
240 			return;
241 		}
242 		memset(map_address, 0xFF, sizeof(struct spdk_nvme_registers));
243 		g_thread_mmio_ctrlr->regs = (volatile struct spdk_nvme_registers *)map_address;
244 		g_thread_mmio_ctrlr->is_remapped = true;
245 	}
246 	__atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE);
247 }
248 
249 static void
250 nvme_pcie_ctrlr_setup_signal(void)
251 {
252 	struct sigaction sa;
253 
254 	sa.sa_sigaction = nvme_sigbus_fault_sighandler;
255 	sigemptyset(&sa.sa_mask);
256 	sa.sa_flags = SA_SIGINFO;
257 	sigaction(SIGBUS, &sa, NULL);
258 }
259 
260 static inline struct nvme_pcie_ctrlr *
261 nvme_pcie_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
262 {
263 	assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE);
264 	return SPDK_CONTAINEROF(ctrlr, struct nvme_pcie_ctrlr, ctrlr);
265 }
266 
267 static int
268 _nvme_pcie_hotplug_monitor(struct spdk_nvme_probe_ctx *probe_ctx)
269 {
270 	struct spdk_nvme_ctrlr *ctrlr, *tmp;
271 	struct spdk_uevent event;
272 	struct spdk_pci_addr pci_addr;
273 	union spdk_nvme_csts_register csts;
274 	struct spdk_nvme_ctrlr_process *proc;
275 
276 	while (spdk_get_uevent(hotplug_fd, &event) > 0) {
277 		if (event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_UIO ||
278 		    event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_VFIO) {
279 			if (event.action == SPDK_NVME_UEVENT_ADD) {
280 				SPDK_DEBUGLOG(SPDK_LOG_NVME, "add nvme address: %s\n",
281 					      event.traddr);
282 				if (spdk_process_is_primary()) {
283 					if (!spdk_pci_addr_parse(&pci_addr, event.traddr)) {
284 						nvme_pcie_ctrlr_attach(probe_ctx, &pci_addr);
285 					}
286 				}
287 			} else if (event.action == SPDK_NVME_UEVENT_REMOVE) {
288 				struct spdk_nvme_transport_id trid;
289 
290 				memset(&trid, 0, sizeof(trid));
291 				trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
292 				snprintf(trid.traddr, sizeof(trid.traddr), "%s", event.traddr);
293 
294 				ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(&trid);
295 				if (ctrlr == NULL) {
296 					return 0;
297 				}
298 				SPDK_DEBUGLOG(SPDK_LOG_NVME, "remove nvme address: %s\n",
299 					      event.traddr);
300 
301 				nvme_ctrlr_fail(ctrlr, true);
302 
303 				/* get the user app to clean up and stop I/O */
304 				if (probe_ctx->remove_cb) {
305 					nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
306 					probe_ctx->remove_cb(probe_ctx->cb_ctx, ctrlr);
307 					nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
308 				}
309 			}
310 		}
311 	}
312 
313 	/* This is a work around for vfio-attached device hot remove detection. */
314 	TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq, tmp) {
315 		bool do_remove = false;
316 
317 		if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
318 			struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
319 
320 			if (spdk_pci_device_is_removed(pctrlr->devhandle)) {
321 				do_remove = true;
322 			}
323 		}
324 
325 		/* NVMe controller BAR must be mapped in the current process before any access. */
326 		proc = spdk_nvme_ctrlr_get_current_process(ctrlr);
327 		if (proc) {
328 			csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
329 			if (csts.raw == 0xffffffffU) {
330 				do_remove = true;
331 			}
332 		}
333 
334 		if (do_remove) {
335 			nvme_ctrlr_fail(ctrlr, true);
336 			if (probe_ctx->remove_cb) {
337 				nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
338 				probe_ctx->remove_cb(probe_ctx->cb_ctx, ctrlr);
339 				nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
340 			}
341 		}
342 	}
343 	return 0;
344 }
345 
346 static inline struct nvme_pcie_qpair *
347 nvme_pcie_qpair(struct spdk_nvme_qpair *qpair)
348 {
349 	assert(qpair->trtype == SPDK_NVME_TRANSPORT_PCIE);
350 	return SPDK_CONTAINEROF(qpair, struct nvme_pcie_qpair, qpair);
351 }
352 
353 static volatile void *
354 nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset)
355 {
356 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
357 
358 	return (volatile void *)((uintptr_t)pctrlr->regs + offset);
359 }
360 
361 int
362 nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
363 {
364 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
365 
366 	assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
367 	g_thread_mmio_ctrlr = pctrlr;
368 	spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value);
369 	g_thread_mmio_ctrlr = NULL;
370 	return 0;
371 }
372 
373 int
374 nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
375 {
376 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
377 
378 	assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
379 	g_thread_mmio_ctrlr = pctrlr;
380 	spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value);
381 	g_thread_mmio_ctrlr = NULL;
382 	return 0;
383 }
384 
385 int
386 nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
387 {
388 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
389 
390 	assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
391 	assert(value != NULL);
392 	g_thread_mmio_ctrlr = pctrlr;
393 	*value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset));
394 	g_thread_mmio_ctrlr = NULL;
395 	if (~(*value) == 0) {
396 		return -1;
397 	}
398 
399 	return 0;
400 }
401 
402 int
403 nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
404 {
405 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
406 
407 	assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
408 	assert(value != NULL);
409 	g_thread_mmio_ctrlr = pctrlr;
410 	*value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset));
411 	g_thread_mmio_ctrlr = NULL;
412 	if (~(*value) == 0) {
413 		return -1;
414 	}
415 
416 	return 0;
417 }
418 
419 static int
420 nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
421 {
422 	return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq),
423 					 value);
424 }
425 
426 static int
427 nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
428 {
429 	return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq),
430 					 value);
431 }
432 
433 static int
434 nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa)
435 {
436 	return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw),
437 					 aqa->raw);
438 }
439 
440 static int
441 nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc)
442 {
443 	return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw),
444 					 &cmbloc->raw);
445 }
446 
447 static int
448 nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz)
449 {
450 	return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
451 					 &cmbsz->raw);
452 }
453 
454 uint32_t
455 nvme_pcie_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
456 {
457 	/*
458 	 * For commands requiring more than 2 PRP entries, one PRP will be
459 	 *  embedded in the command (prp1), and the rest of the PRP entries
460 	 *  will be in a list pointed to by the command (prp2).  This means
461 	 *  that real max number of PRP entries we support is 506+1, which
462 	 *  results in a max xfer size of 506*ctrlr->page_size.
463 	 */
464 	return NVME_MAX_PRP_LIST_ENTRIES * ctrlr->page_size;
465 }
466 
467 uint16_t
468 nvme_pcie_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
469 {
470 	return NVME_MAX_SGL_DESCRIPTORS;
471 }
472 
473 static void
474 nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr)
475 {
476 	int rc;
477 	void *addr;
478 	uint32_t bir;
479 	union spdk_nvme_cmbsz_register cmbsz;
480 	union spdk_nvme_cmbloc_register cmbloc;
481 	uint64_t size, unit_size, offset, bar_size, bar_phys_addr;
482 	uint64_t mem_register_start, mem_register_end;
483 
484 	if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
485 	    nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
486 		SPDK_ERRLOG("get registers failed\n");
487 		goto exit;
488 	}
489 
490 	if (!cmbsz.bits.sz) {
491 		goto exit;
492 	}
493 
494 	bir = cmbloc.bits.bir;
495 	/* Values 0 2 3 4 5 are valid for BAR */
496 	if (bir > 5 || bir == 1) {
497 		goto exit;
498 	}
499 
500 	/* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */
501 	unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu);
502 	/* controller memory buffer size in Bytes */
503 	size = unit_size * cmbsz.bits.sz;
504 	/* controller memory buffer offset from BAR in Bytes */
505 	offset = unit_size * cmbloc.bits.ofst;
506 
507 	rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr,
508 				     &bar_phys_addr, &bar_size);
509 	if ((rc != 0) || addr == NULL) {
510 		goto exit;
511 	}
512 
513 	if (offset > bar_size) {
514 		goto exit;
515 	}
516 
517 	if (size > bar_size - offset) {
518 		goto exit;
519 	}
520 
521 	pctrlr->cmb_bar_virt_addr = addr;
522 	pctrlr->cmb_bar_phys_addr = bar_phys_addr;
523 	pctrlr->cmb_size = size;
524 	pctrlr->cmb_current_offset = offset;
525 	pctrlr->cmb_max_offset = offset + size;
526 
527 	if (!cmbsz.bits.sqs) {
528 		pctrlr->ctrlr.opts.use_cmb_sqs = false;
529 	}
530 
531 	/* If only SQS is supported use legacy mapping */
532 	if (cmbsz.bits.sqs && !(cmbsz.bits.wds || cmbsz.bits.rds)) {
533 		return;
534 	}
535 
536 	/* If CMB is less than 4MiB in size then abort CMB mapping */
537 	if (pctrlr->cmb_size < (1ULL << 22)) {
538 		goto exit;
539 	}
540 
541 	mem_register_start = _2MB_PAGE((uintptr_t)pctrlr->cmb_bar_virt_addr + offset + VALUE_2MB - 1);
542 	mem_register_end = _2MB_PAGE((uintptr_t)pctrlr->cmb_bar_virt_addr + offset + pctrlr->cmb_size);
543 	pctrlr->cmb_mem_register_addr = (void *)mem_register_start;
544 	pctrlr->cmb_mem_register_size = mem_register_end - mem_register_start;
545 
546 	rc = spdk_mem_register(pctrlr->cmb_mem_register_addr, pctrlr->cmb_mem_register_size);
547 	if (rc) {
548 		SPDK_ERRLOG("spdk_mem_register() failed\n");
549 		goto exit;
550 	}
551 	pctrlr->cmb_current_offset = mem_register_start - ((uint64_t)pctrlr->cmb_bar_virt_addr);
552 	pctrlr->cmb_max_offset = mem_register_end - ((uint64_t)pctrlr->cmb_bar_virt_addr);
553 	pctrlr->cmb_io_data_supported = true;
554 
555 	return;
556 exit:
557 	pctrlr->cmb_bar_virt_addr = NULL;
558 	pctrlr->ctrlr.opts.use_cmb_sqs = false;
559 	return;
560 }
561 
562 static int
563 nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr)
564 {
565 	int rc = 0;
566 	union spdk_nvme_cmbloc_register cmbloc;
567 	void *addr = pctrlr->cmb_bar_virt_addr;
568 
569 	if (addr) {
570 		if (pctrlr->cmb_mem_register_addr) {
571 			spdk_mem_unregister(pctrlr->cmb_mem_register_addr, pctrlr->cmb_mem_register_size);
572 		}
573 
574 		if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
575 			SPDK_ERRLOG("get_cmbloc() failed\n");
576 			return -EIO;
577 		}
578 		rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, cmbloc.bits.bir, addr);
579 	}
580 	return rc;
581 }
582 
583 static int
584 nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t length, uint64_t aligned,
585 			  uint64_t *offset)
586 {
587 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
588 	uint64_t round_offset;
589 
590 	round_offset = pctrlr->cmb_current_offset;
591 	round_offset = (round_offset + (aligned - 1)) & ~(aligned - 1);
592 
593 	/* CMB may only consume part of the BAR, calculate accordingly */
594 	if (round_offset + length > pctrlr->cmb_max_offset) {
595 		SPDK_ERRLOG("Tried to allocate past valid CMB range!\n");
596 		return -1;
597 	}
598 
599 	*offset = round_offset;
600 	pctrlr->cmb_current_offset = round_offset + length;
601 
602 	return 0;
603 }
604 
605 volatile struct spdk_nvme_registers *
606 nvme_pcie_ctrlr_get_registers(struct spdk_nvme_ctrlr *ctrlr)
607 {
608 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
609 
610 	return pctrlr->regs;
611 }
612 
613 void *
614 nvme_pcie_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size)
615 {
616 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
617 	uint64_t offset;
618 
619 	if (pctrlr->cmb_bar_virt_addr == NULL) {
620 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB not available\n");
621 		return NULL;
622 	}
623 
624 	if (!pctrlr->cmb_io_data_supported) {
625 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB doesn't support I/O data\n");
626 		return NULL;
627 	}
628 
629 	if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, size, 4, &offset) != 0) {
630 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "%zu-byte CMB allocation failed\n", size);
631 		return NULL;
632 	}
633 
634 	return pctrlr->cmb_bar_virt_addr + offset;
635 }
636 
637 int
638 nvme_pcie_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size)
639 {
640 	/*
641 	 * Do nothing for now.
642 	 * TODO: Track free space so buffers may be reused.
643 	 */
644 	SPDK_ERRLOG("%s: no deallocation for CMB buffers yet!\n",
645 		    __func__);
646 	return 0;
647 }
648 
649 static int
650 nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr)
651 {
652 	int rc;
653 	void *addr;
654 	uint64_t phys_addr, size;
655 
656 	rc = spdk_pci_device_map_bar(pctrlr->devhandle, 0, &addr,
657 				     &phys_addr, &size);
658 	pctrlr->regs = (volatile struct spdk_nvme_registers *)addr;
659 	if ((pctrlr->regs == NULL) || (rc != 0)) {
660 		SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n",
661 			    rc, pctrlr->regs);
662 		return -1;
663 	}
664 
665 	pctrlr->regs_size = size;
666 	nvme_pcie_ctrlr_map_cmb(pctrlr);
667 
668 	return 0;
669 }
670 
671 static int
672 nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr)
673 {
674 	int rc = 0;
675 	void *addr = (void *)pctrlr->regs;
676 
677 	if (pctrlr->ctrlr.is_removed) {
678 		return rc;
679 	}
680 
681 	rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr);
682 	if (rc != 0) {
683 		SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc);
684 		return -1;
685 	}
686 
687 	if (addr) {
688 		/* NOTE: addr may have been remapped here. We're relying on DPDK to call
689 		 * munmap internally.
690 		 */
691 		rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, 0, addr);
692 	}
693 	return rc;
694 }
695 
696 static int
697 nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr)
698 {
699 	struct nvme_pcie_qpair *pqpair;
700 	int rc;
701 
702 	pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
703 	if (pqpair == NULL) {
704 		return -ENOMEM;
705 	}
706 
707 	pqpair->num_entries = NVME_ADMIN_ENTRIES;
708 	pqpair->flags.delay_pcie_doorbell = 0;
709 
710 	ctrlr->adminq = &pqpair->qpair;
711 
712 	rc = nvme_qpair_init(ctrlr->adminq,
713 			     0, /* qpair ID */
714 			     ctrlr,
715 			     SPDK_NVME_QPRIO_URGENT,
716 			     NVME_ADMIN_ENTRIES);
717 	if (rc != 0) {
718 		return rc;
719 	}
720 
721 	return nvme_pcie_qpair_construct(ctrlr->adminq, NULL);
722 }
723 
724 /* This function must only be called while holding g_spdk_nvme_driver->lock */
725 static int
726 pcie_nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
727 {
728 	struct spdk_nvme_transport_id trid = {};
729 	struct nvme_pcie_enum_ctx *enum_ctx = ctx;
730 	struct spdk_nvme_ctrlr *ctrlr;
731 	struct spdk_pci_addr pci_addr;
732 
733 	pci_addr = spdk_pci_device_get_addr(pci_dev);
734 
735 	trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
736 	spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &pci_addr);
737 
738 	ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(&trid);
739 	if (!spdk_process_is_primary()) {
740 		if (!ctrlr) {
741 			SPDK_ERRLOG("Controller must be constructed in the primary process first.\n");
742 			return -1;
743 		}
744 
745 		return nvme_ctrlr_add_process(ctrlr, pci_dev);
746 	}
747 
748 	/* check whether user passes the pci_addr */
749 	if (enum_ctx->has_pci_addr &&
750 	    (spdk_pci_addr_compare(&pci_addr, &enum_ctx->pci_addr) != 0)) {
751 		return 1;
752 	}
753 
754 	return nvme_ctrlr_probe(&trid, enum_ctx->probe_ctx, pci_dev);
755 }
756 
757 int
758 nvme_pcie_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx,
759 		     bool direct_connect)
760 {
761 	struct nvme_pcie_enum_ctx enum_ctx = {};
762 
763 	enum_ctx.probe_ctx = probe_ctx;
764 
765 	if (strlen(probe_ctx->trid.traddr) != 0) {
766 		if (spdk_pci_addr_parse(&enum_ctx.pci_addr, probe_ctx->trid.traddr)) {
767 			return -1;
768 		}
769 		enum_ctx.has_pci_addr = true;
770 	}
771 
772 	if (hotplug_fd < 0) {
773 		hotplug_fd = spdk_uevent_connect();
774 		if (hotplug_fd < 0) {
775 			SPDK_DEBUGLOG(SPDK_LOG_NVME, "Failed to open uevent netlink socket\n");
776 		}
777 	} else {
778 		_nvme_pcie_hotplug_monitor(probe_ctx);
779 	}
780 
781 	if (enum_ctx.has_pci_addr == false) {
782 		return spdk_pci_enumerate(spdk_pci_nvme_get_driver(),
783 					  pcie_nvme_enum_cb, &enum_ctx);
784 	} else {
785 		return spdk_pci_device_attach(spdk_pci_nvme_get_driver(),
786 					      pcie_nvme_enum_cb, &enum_ctx, &enum_ctx.pci_addr);
787 	}
788 }
789 
790 static int
791 nvme_pcie_ctrlr_attach(struct spdk_nvme_probe_ctx *probe_ctx, struct spdk_pci_addr *pci_addr)
792 {
793 	struct nvme_pcie_enum_ctx enum_ctx;
794 
795 	enum_ctx.probe_ctx = probe_ctx;
796 	enum_ctx.has_pci_addr = true;
797 	enum_ctx.pci_addr = *pci_addr;
798 
799 	return spdk_pci_enumerate(spdk_pci_nvme_get_driver(), pcie_nvme_enum_cb, &enum_ctx);
800 }
801 
802 struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
803 		const struct spdk_nvme_ctrlr_opts *opts,
804 		void *devhandle)
805 {
806 	struct spdk_pci_device *pci_dev = devhandle;
807 	struct nvme_pcie_ctrlr *pctrlr;
808 	union spdk_nvme_cap_register cap;
809 	union spdk_nvme_vs_register vs;
810 	uint32_t cmd_reg;
811 	int rc, claim_fd;
812 	struct spdk_pci_id pci_id;
813 	struct spdk_pci_addr pci_addr;
814 
815 	if (spdk_pci_addr_parse(&pci_addr, trid->traddr)) {
816 		SPDK_ERRLOG("could not parse pci address\n");
817 		return NULL;
818 	}
819 
820 	claim_fd = spdk_pci_device_claim(&pci_addr);
821 	if (claim_fd < 0) {
822 		SPDK_ERRLOG("could not claim device %s\n", trid->traddr);
823 		return NULL;
824 	}
825 
826 	pctrlr = spdk_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL,
827 			      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
828 	if (pctrlr == NULL) {
829 		close(claim_fd);
830 		SPDK_ERRLOG("could not allocate ctrlr\n");
831 		return NULL;
832 	}
833 
834 	pctrlr->is_remapped = false;
835 	pctrlr->ctrlr.is_removed = false;
836 	pctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
837 	pctrlr->devhandle = devhandle;
838 	pctrlr->ctrlr.opts = *opts;
839 	pctrlr->claim_fd = claim_fd;
840 	memcpy(&pctrlr->ctrlr.trid, trid, sizeof(pctrlr->ctrlr.trid));
841 
842 	rc = nvme_pcie_ctrlr_allocate_bars(pctrlr);
843 	if (rc != 0) {
844 		close(claim_fd);
845 		spdk_free(pctrlr);
846 		return NULL;
847 	}
848 
849 	/* Enable PCI busmaster and disable INTx */
850 	spdk_pci_device_cfg_read32(pci_dev, &cmd_reg, 4);
851 	cmd_reg |= 0x404;
852 	spdk_pci_device_cfg_write32(pci_dev, cmd_reg, 4);
853 
854 	if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) {
855 		SPDK_ERRLOG("get_cap() failed\n");
856 		close(claim_fd);
857 		spdk_free(pctrlr);
858 		return NULL;
859 	}
860 
861 	if (nvme_ctrlr_get_vs(&pctrlr->ctrlr, &vs)) {
862 		SPDK_ERRLOG("get_vs() failed\n");
863 		close(claim_fd);
864 		spdk_free(pctrlr);
865 		return NULL;
866 	}
867 
868 	nvme_ctrlr_init_cap(&pctrlr->ctrlr, &cap, &vs);
869 
870 	/* Doorbell stride is 2 ^ (dstrd + 2),
871 	 * but we want multiples of 4, so drop the + 2 */
872 	pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd;
873 
874 	rc = nvme_ctrlr_construct(&pctrlr->ctrlr);
875 	if (rc != 0) {
876 		nvme_ctrlr_destruct(&pctrlr->ctrlr);
877 		return NULL;
878 	}
879 
880 	pci_id = spdk_pci_device_get_id(pci_dev);
881 	pctrlr->ctrlr.quirks = nvme_get_quirks(&pci_id);
882 
883 	rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr);
884 	if (rc != 0) {
885 		nvme_ctrlr_destruct(&pctrlr->ctrlr);
886 		return NULL;
887 	}
888 
889 	/* Construct the primary process properties */
890 	rc = nvme_ctrlr_add_process(&pctrlr->ctrlr, pci_dev);
891 	if (rc != 0) {
892 		nvme_ctrlr_destruct(&pctrlr->ctrlr);
893 		return NULL;
894 	}
895 
896 	if (g_sigset != true) {
897 		nvme_pcie_ctrlr_setup_signal();
898 		g_sigset = true;
899 	}
900 
901 	return &pctrlr->ctrlr;
902 }
903 
904 int
905 nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
906 {
907 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
908 	struct nvme_pcie_qpair *padminq = nvme_pcie_qpair(ctrlr->adminq);
909 	union spdk_nvme_aqa_register aqa;
910 
911 	if (nvme_pcie_ctrlr_set_asq(pctrlr, padminq->cmd_bus_addr)) {
912 		SPDK_ERRLOG("set_asq() failed\n");
913 		return -EIO;
914 	}
915 
916 	if (nvme_pcie_ctrlr_set_acq(pctrlr, padminq->cpl_bus_addr)) {
917 		SPDK_ERRLOG("set_acq() failed\n");
918 		return -EIO;
919 	}
920 
921 	aqa.raw = 0;
922 	/* acqs and asqs are 0-based. */
923 	aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
924 	aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
925 
926 	if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) {
927 		SPDK_ERRLOG("set_aqa() failed\n");
928 		return -EIO;
929 	}
930 
931 	return 0;
932 }
933 
934 int
935 nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
936 {
937 	struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
938 	struct spdk_pci_device *devhandle = nvme_ctrlr_proc_get_devhandle(ctrlr);
939 
940 	close(pctrlr->claim_fd);
941 
942 	if (ctrlr->adminq) {
943 		nvme_pcie_qpair_destroy(ctrlr->adminq);
944 	}
945 
946 	nvme_ctrlr_destruct_finish(ctrlr);
947 
948 	nvme_ctrlr_free_processes(ctrlr);
949 
950 	nvme_pcie_ctrlr_free_bars(pctrlr);
951 
952 	if (devhandle) {
953 		spdk_pci_device_detach(devhandle);
954 	}
955 
956 	spdk_free(pctrlr);
957 
958 	return 0;
959 }
960 
961 static void
962 nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr)
963 {
964 	tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp);
965 	tr->cid = cid;
966 	tr->req = NULL;
967 }
968 
969 int
970 nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair)
971 {
972 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
973 
974 	/* all head/tail vals are set to 0 */
975 	pqpair->last_sq_tail = pqpair->sq_tail = pqpair->sq_head = pqpair->cq_head = 0;
976 
977 	/*
978 	 * First time through the completion queue, HW will set phase
979 	 *  bit on completions to 1.  So set this to 1 here, indicating
980 	 *  we're looking for a 1 to know which entries have completed.
981 	 *  we'll toggle the bit each time when the completion queue
982 	 *  rolls over.
983 	 */
984 	pqpair->flags.phase = 1;
985 
986 	memset(pqpair->cmd, 0,
987 	       pqpair->num_entries * sizeof(struct spdk_nvme_cmd));
988 	memset(pqpair->cpl, 0,
989 	       pqpair->num_entries * sizeof(struct spdk_nvme_cpl));
990 
991 	return 0;
992 }
993 
994 static int
995 nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair,
996 			  const struct spdk_nvme_io_qpair_opts *opts)
997 {
998 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
999 	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(ctrlr);
1000 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1001 	struct nvme_tracker	*tr;
1002 	uint16_t		i;
1003 	volatile uint32_t	*doorbell_base;
1004 	uint64_t		offset;
1005 	uint16_t		num_trackers;
1006 	size_t			page_align = VALUE_2MB;
1007 	uint32_t                flags = SPDK_MALLOC_DMA;
1008 	uint64_t		sq_paddr = 0;
1009 	uint64_t		cq_paddr = 0;
1010 
1011 	if (opts) {
1012 		pqpair->sq_vaddr = opts->sq.vaddr;
1013 		pqpair->cq_vaddr = opts->cq.vaddr;
1014 		sq_paddr = opts->sq.paddr;
1015 		cq_paddr = opts->cq.paddr;
1016 	}
1017 
1018 	pqpair->retry_count = ctrlr->opts.transport_retry_count;
1019 
1020 	/*
1021 	 * Limit the maximum number of completions to return per call to prevent wraparound,
1022 	 * and calculate how many trackers can be submitted at once without overflowing the
1023 	 * completion queue.
1024 	 */
1025 	pqpair->max_completions_cap = pqpair->num_entries / 4;
1026 	pqpair->max_completions_cap = spdk_max(pqpair->max_completions_cap, NVME_MIN_COMPLETIONS);
1027 	pqpair->max_completions_cap = spdk_min(pqpair->max_completions_cap, NVME_MAX_COMPLETIONS);
1028 	num_trackers = pqpair->num_entries - pqpair->max_completions_cap;
1029 
1030 	SPDK_INFOLOG(SPDK_LOG_NVME, "max_completions_cap = %" PRIu16 " num_trackers = %" PRIu16 "\n",
1031 		     pqpair->max_completions_cap, num_trackers);
1032 
1033 	assert(num_trackers != 0);
1034 
1035 	pqpair->sq_in_cmb = false;
1036 
1037 	if (nvme_qpair_is_admin_queue(&pqpair->qpair)) {
1038 		flags |= SPDK_MALLOC_SHARE;
1039 	}
1040 
1041 	/* cmd and cpl rings must be aligned on page size boundaries. */
1042 	if (ctrlr->opts.use_cmb_sqs) {
1043 		if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
1044 					      sysconf(_SC_PAGESIZE), &offset) == 0) {
1045 			pqpair->cmd = pctrlr->cmb_bar_virt_addr + offset;
1046 			pqpair->cmd_bus_addr = pctrlr->cmb_bar_phys_addr + offset;
1047 			pqpair->sq_in_cmb = true;
1048 		}
1049 	}
1050 
1051 	if (pqpair->sq_in_cmb == false) {
1052 		if (pqpair->sq_vaddr) {
1053 			pqpair->cmd = pqpair->sq_vaddr;
1054 		} else {
1055 			/* To ensure physical address contiguity we make each ring occupy
1056 			 * a single hugepage only. See MAX_IO_QUEUE_ENTRIES.
1057 			 */
1058 			pqpair->cmd = spdk_zmalloc(pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
1059 						   page_align, NULL,
1060 						   SPDK_ENV_SOCKET_ID_ANY, flags);
1061 			if (pqpair->cmd == NULL) {
1062 				SPDK_ERRLOG("alloc qpair_cmd failed\n");
1063 				return -ENOMEM;
1064 			}
1065 		}
1066 		if (sq_paddr) {
1067 			assert(pqpair->sq_vaddr != NULL);
1068 			pqpair->cmd_bus_addr = sq_paddr;
1069 		} else {
1070 			pqpair->cmd_bus_addr = spdk_vtophys(pqpair->cmd, NULL);
1071 			if (pqpair->cmd_bus_addr == SPDK_VTOPHYS_ERROR) {
1072 				SPDK_ERRLOG("spdk_vtophys(pqpair->cmd) failed\n");
1073 				return -EFAULT;
1074 			}
1075 		}
1076 	}
1077 
1078 	if (pqpair->cq_vaddr) {
1079 		pqpair->cpl = pqpair->cq_vaddr;
1080 	} else {
1081 		pqpair->cpl = spdk_zmalloc(pqpair->num_entries * sizeof(struct spdk_nvme_cpl),
1082 					   page_align, NULL,
1083 					   SPDK_ENV_SOCKET_ID_ANY, flags);
1084 		if (pqpair->cpl == NULL) {
1085 			SPDK_ERRLOG("alloc qpair_cpl failed\n");
1086 			return -ENOMEM;
1087 		}
1088 	}
1089 	if (cq_paddr) {
1090 		assert(pqpair->cq_vaddr != NULL);
1091 		pqpair->cpl_bus_addr = cq_paddr;
1092 	} else {
1093 		pqpair->cpl_bus_addr = spdk_vtophys(pqpair->cpl, NULL);
1094 		if (pqpair->cpl_bus_addr == SPDK_VTOPHYS_ERROR) {
1095 			SPDK_ERRLOG("spdk_vtophys(pqpair->cpl) failed\n");
1096 			return -EFAULT;
1097 		}
1098 	}
1099 
1100 	doorbell_base = &pctrlr->regs->doorbell[0].sq_tdbl;
1101 	pqpair->sq_tdbl = doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
1102 	pqpair->cq_hdbl = doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
1103 
1104 	/*
1105 	 * Reserve space for all of the trackers in a single allocation.
1106 	 *   struct nvme_tracker must be padded so that its size is already a power of 2.
1107 	 *   This ensures the PRP list embedded in the nvme_tracker object will not span a
1108 	 *   4KB boundary, while allowing access to trackers in tr[] via normal array indexing.
1109 	 */
1110 	pqpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), NULL,
1111 				  SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
1112 	if (pqpair->tr == NULL) {
1113 		SPDK_ERRLOG("nvme_tr failed\n");
1114 		return -ENOMEM;
1115 	}
1116 
1117 	TAILQ_INIT(&pqpair->free_tr);
1118 	TAILQ_INIT(&pqpair->outstanding_tr);
1119 
1120 	for (i = 0; i < num_trackers; i++) {
1121 		tr = &pqpair->tr[i];
1122 		nvme_qpair_construct_tracker(tr, i, spdk_vtophys(tr, NULL));
1123 		TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
1124 	}
1125 
1126 	nvme_pcie_qpair_reset(qpair);
1127 
1128 	return 0;
1129 }
1130 
1131 static inline void
1132 nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
1133 {
1134 	/* dst and src are known to be non-overlapping and 64-byte aligned. */
1135 #if defined(__SSE2__)
1136 	__m128i *d128 = (__m128i *)dst;
1137 	const __m128i *s128 = (const __m128i *)src;
1138 
1139 	_mm_stream_si128(&d128[0], _mm_load_si128(&s128[0]));
1140 	_mm_stream_si128(&d128[1], _mm_load_si128(&s128[1]));
1141 	_mm_stream_si128(&d128[2], _mm_load_si128(&s128[2]));
1142 	_mm_stream_si128(&d128[3], _mm_load_si128(&s128[3]));
1143 #else
1144 	*dst = *src;
1145 #endif
1146 }
1147 
1148 /**
1149  * Note: the ctrlr_lock must be held when calling this function.
1150  */
1151 static void
1152 nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair,
1153 		struct nvme_request *req, struct spdk_nvme_cpl *cpl)
1154 {
1155 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
1156 	struct nvme_request		*active_req = req;
1157 	struct spdk_nvme_ctrlr_process	*active_proc;
1158 
1159 	/*
1160 	 * The admin request is from another process. Move to the per
1161 	 *  process list for that process to handle it later.
1162 	 */
1163 	assert(nvme_qpair_is_admin_queue(qpair));
1164 	assert(active_req->pid != getpid());
1165 
1166 	active_proc = spdk_nvme_ctrlr_get_process(ctrlr, active_req->pid);
1167 	if (active_proc) {
1168 		/* Save the original completion information */
1169 		memcpy(&active_req->cpl, cpl, sizeof(*cpl));
1170 		STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq);
1171 	} else {
1172 		SPDK_ERRLOG("The owning process (pid %d) is not found. Dropping the request.\n",
1173 			    active_req->pid);
1174 
1175 		nvme_free_request(active_req);
1176 	}
1177 }
1178 
1179 /**
1180  * Note: the ctrlr_lock must be held when calling this function.
1181  */
1182 static void
1183 nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair)
1184 {
1185 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
1186 	struct nvme_request		*req, *tmp_req;
1187 	pid_t				pid = getpid();
1188 	struct spdk_nvme_ctrlr_process	*proc;
1189 
1190 	/*
1191 	 * Check whether there is any pending admin request from
1192 	 * other active processes.
1193 	 */
1194 	assert(nvme_qpair_is_admin_queue(qpair));
1195 
1196 	proc = spdk_nvme_ctrlr_get_current_process(ctrlr);
1197 	if (!proc) {
1198 		SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid);
1199 		assert(proc);
1200 		return;
1201 	}
1202 
1203 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
1204 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
1205 
1206 		assert(req->pid == pid);
1207 
1208 		nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, &req->cpl);
1209 		nvme_free_request(req);
1210 	}
1211 }
1212 
1213 static inline int
1214 nvme_pcie_qpair_need_event(uint16_t event_idx, uint16_t new_idx, uint16_t old)
1215 {
1216 	return (uint16_t)(new_idx - event_idx) <= (uint16_t)(new_idx - old);
1217 }
1218 
1219 static bool
1220 nvme_pcie_qpair_update_mmio_required(struct spdk_nvme_qpair *qpair, uint16_t value,
1221 				     volatile uint32_t *shadow_db,
1222 				     volatile uint32_t *eventidx)
1223 {
1224 	uint16_t old;
1225 
1226 	if (!shadow_db) {
1227 		return true;
1228 	}
1229 
1230 	old = *shadow_db;
1231 	*shadow_db = value;
1232 
1233 	if (!nvme_pcie_qpair_need_event(*eventidx, value, old)) {
1234 		return false;
1235 	}
1236 
1237 	return true;
1238 }
1239 
1240 static inline void
1241 nvme_pcie_qpair_ring_sq_doorbell(struct spdk_nvme_qpair *qpair)
1242 {
1243 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1244 	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
1245 	bool need_mmio = true;
1246 
1247 	if (spdk_unlikely(pqpair->flags.has_shadow_doorbell)) {
1248 		need_mmio = nvme_pcie_qpair_update_mmio_required(qpair,
1249 				pqpair->sq_tail,
1250 				pqpair->shadow_doorbell.sq_tdbl,
1251 				pqpair->shadow_doorbell.sq_eventidx);
1252 	}
1253 
1254 	if (spdk_likely(need_mmio)) {
1255 		spdk_wmb();
1256 		g_thread_mmio_ctrlr = pctrlr;
1257 		spdk_mmio_write_4(pqpair->sq_tdbl, pqpair->sq_tail);
1258 		g_thread_mmio_ctrlr = NULL;
1259 	}
1260 }
1261 
1262 static inline void
1263 nvme_pcie_qpair_ring_cq_doorbell(struct spdk_nvme_qpair *qpair)
1264 {
1265 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1266 	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
1267 	bool need_mmio = true;
1268 
1269 	if (spdk_unlikely(pqpair->flags.has_shadow_doorbell)) {
1270 		need_mmio = nvme_pcie_qpair_update_mmio_required(qpair,
1271 				pqpair->cq_head,
1272 				pqpair->shadow_doorbell.cq_hdbl,
1273 				pqpair->shadow_doorbell.cq_eventidx);
1274 	}
1275 
1276 	if (spdk_likely(need_mmio)) {
1277 		g_thread_mmio_ctrlr = pctrlr;
1278 		spdk_mmio_write_4(pqpair->cq_hdbl, pqpair->cq_head);
1279 		g_thread_mmio_ctrlr = NULL;
1280 	}
1281 }
1282 
1283 static void
1284 nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
1285 {
1286 	struct nvme_request	*req;
1287 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1288 
1289 	req = tr->req;
1290 	assert(req != NULL);
1291 
1292 	/* Copy the command from the tracker to the submission queue. */
1293 	nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
1294 
1295 	if (spdk_unlikely(++pqpair->sq_tail == pqpair->num_entries)) {
1296 		pqpair->sq_tail = 0;
1297 	}
1298 
1299 	if (spdk_unlikely(pqpair->sq_tail == pqpair->sq_head)) {
1300 		SPDK_ERRLOG("sq_tail is passing sq_head!\n");
1301 	}
1302 
1303 	if (!pqpair->flags.delay_pcie_doorbell) {
1304 		nvme_pcie_qpair_ring_sq_doorbell(qpair);
1305 	}
1306 }
1307 
1308 static void
1309 nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
1310 				 struct spdk_nvme_cpl *cpl, bool print_on_error)
1311 {
1312 	struct nvme_pcie_qpair		*pqpair = nvme_pcie_qpair(qpair);
1313 	struct nvme_request		*req;
1314 	bool				retry, error;
1315 	bool				req_from_current_proc = true;
1316 
1317 	req = tr->req;
1318 
1319 	assert(req != NULL);
1320 
1321 	error = spdk_nvme_cpl_is_error(cpl);
1322 	retry = error && nvme_completion_is_retry(cpl) &&
1323 		req->retries < pqpair->retry_count;
1324 
1325 	if (error && print_on_error && !qpair->ctrlr->opts.disable_error_logging) {
1326 		spdk_nvme_qpair_print_command(qpair, &req->cmd);
1327 		spdk_nvme_qpair_print_completion(qpair, cpl);
1328 	}
1329 
1330 	assert(cpl->cid == req->cmd.cid);
1331 
1332 	if (retry) {
1333 		req->retries++;
1334 		nvme_pcie_qpair_submit_tracker(qpair, tr);
1335 	} else {
1336 		/* Only check admin requests from different processes. */
1337 		if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) {
1338 			req_from_current_proc = false;
1339 			nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl);
1340 		} else {
1341 			nvme_complete_request(tr->cb_fn, tr->cb_arg, qpair, req, cpl);
1342 		}
1343 
1344 		if (req_from_current_proc == true) {
1345 			nvme_qpair_free_request(qpair, req);
1346 		}
1347 
1348 		tr->req = NULL;
1349 
1350 		TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list);
1351 		TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
1352 
1353 		/*
1354 		 * If the controller is in the middle of resetting, don't
1355 		 *  try to submit queued requests here - let the reset logic
1356 		 *  handle that instead.
1357 		 */
1358 		if (!STAILQ_EMPTY(&qpair->queued_req) &&
1359 		    !qpair->ctrlr->is_resetting) {
1360 			req = STAILQ_FIRST(&qpair->queued_req);
1361 			STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1362 			nvme_qpair_submit_request(qpair, req);
1363 		}
1364 	}
1365 }
1366 
1367 static void
1368 nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair,
1369 					struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
1370 					bool print_on_error)
1371 {
1372 	struct spdk_nvme_cpl	cpl;
1373 
1374 	memset(&cpl, 0, sizeof(cpl));
1375 	cpl.sqid = qpair->id;
1376 	cpl.cid = tr->cid;
1377 	cpl.status.sct = sct;
1378 	cpl.status.sc = sc;
1379 	cpl.status.dnr = dnr;
1380 	nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
1381 }
1382 
1383 static void
1384 nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr)
1385 {
1386 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
1387 	struct nvme_tracker *tr, *temp, *last;
1388 
1389 	last = TAILQ_LAST(&pqpair->outstanding_tr, nvme_outstanding_tr_head);
1390 
1391 	/* Abort previously submitted (outstanding) trs */
1392 	TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) {
1393 		if (!qpair->ctrlr->opts.disable_error_logging) {
1394 			SPDK_ERRLOG("aborting outstanding command\n");
1395 		}
1396 		nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
1397 							SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true);
1398 
1399 		if (tr == last) {
1400 			break;
1401 		}
1402 	}
1403 }
1404 
1405 void
1406 nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
1407 {
1408 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1409 	struct nvme_tracker	*tr;
1410 
1411 	tr = TAILQ_FIRST(&pqpair->outstanding_tr);
1412 	while (tr != NULL) {
1413 		assert(tr->req != NULL);
1414 		if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
1415 			nvme_pcie_qpair_manual_complete_tracker(qpair, tr,
1416 								SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0,
1417 								false);
1418 			tr = TAILQ_FIRST(&pqpair->outstanding_tr);
1419 		} else {
1420 			tr = TAILQ_NEXT(tr, tq_list);
1421 		}
1422 	}
1423 }
1424 
1425 static void
1426 nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair)
1427 {
1428 	nvme_pcie_admin_qpair_abort_aers(qpair);
1429 }
1430 
1431 static int
1432 nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair)
1433 {
1434 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
1435 
1436 	if (nvme_qpair_is_admin_queue(qpair)) {
1437 		nvme_pcie_admin_qpair_destroy(qpair);
1438 	}
1439 	/*
1440 	 * We check sq_vaddr and cq_vaddr to see if the user specified the memory
1441 	 * buffers when creating the I/O queue.
1442 	 * If the user specified them, we cannot free that memory.
1443 	 * Nor do we free it if it's in the CMB.
1444 	 */
1445 	if (!pqpair->sq_vaddr && pqpair->cmd && !pqpair->sq_in_cmb) {
1446 		spdk_free(pqpair->cmd);
1447 	}
1448 	if (!pqpair->cq_vaddr && pqpair->cpl) {
1449 		spdk_free(pqpair->cpl);
1450 	}
1451 	if (pqpair->tr) {
1452 		spdk_free(pqpair->tr);
1453 	}
1454 
1455 	nvme_qpair_deinit(qpair);
1456 
1457 	spdk_free(pqpair);
1458 
1459 	return 0;
1460 }
1461 
1462 void
1463 nvme_pcie_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
1464 {
1465 	nvme_pcie_qpair_abort_trackers(qpair, dnr);
1466 }
1467 
1468 static int
1469 nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr,
1470 				 struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn,
1471 				 void *cb_arg)
1472 {
1473 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
1474 	struct nvme_request *req;
1475 	struct spdk_nvme_cmd *cmd;
1476 
1477 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
1478 	if (req == NULL) {
1479 		return -ENOMEM;
1480 	}
1481 
1482 	cmd = &req->cmd;
1483 	cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ;
1484 
1485 	/*
1486 	 * TODO: create a create io completion queue command data
1487 	 *  structure.
1488 	 */
1489 	cmd->cdw10 = ((pqpair->num_entries - 1) << 16) | io_que->id;
1490 	/*
1491 	 * 0x2 = interrupts enabled
1492 	 * 0x1 = physically contiguous
1493 	 */
1494 	cmd->cdw11 = 0x1;
1495 	cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr;
1496 
1497 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
1498 }
1499 
1500 static int
1501 nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr,
1502 				 struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
1503 {
1504 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
1505 	struct nvme_request *req;
1506 	struct spdk_nvme_cmd *cmd;
1507 
1508 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
1509 	if (req == NULL) {
1510 		return -ENOMEM;
1511 	}
1512 
1513 	cmd = &req->cmd;
1514 	cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ;
1515 
1516 	/*
1517 	 * TODO: create a create io submission queue command data
1518 	 *  structure.
1519 	 */
1520 	cmd->cdw10 = ((pqpair->num_entries - 1) << 16) | io_que->id;
1521 	/* 0x1 = physically contiguous */
1522 	cmd->cdw11 = (io_que->id << 16) | (io_que->qprio << 1) | 0x1;
1523 	cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr;
1524 
1525 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
1526 }
1527 
1528 static int
1529 nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
1530 				 spdk_nvme_cmd_cb cb_fn, void *cb_arg)
1531 {
1532 	struct nvme_request *req;
1533 	struct spdk_nvme_cmd *cmd;
1534 
1535 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
1536 	if (req == NULL) {
1537 		return -ENOMEM;
1538 	}
1539 
1540 	cmd = &req->cmd;
1541 	cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ;
1542 	cmd->cdw10 = qpair->id;
1543 
1544 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
1545 }
1546 
1547 static int
1548 nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
1549 				 spdk_nvme_cmd_cb cb_fn, void *cb_arg)
1550 {
1551 	struct nvme_request *req;
1552 	struct spdk_nvme_cmd *cmd;
1553 
1554 	req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
1555 	if (req == NULL) {
1556 		return -ENOMEM;
1557 	}
1558 
1559 	cmd = &req->cmd;
1560 	cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ;
1561 	cmd->cdw10 = qpair->id;
1562 
1563 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
1564 }
1565 
1566 static int
1567 _nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
1568 				 uint16_t qid)
1569 {
1570 	struct nvme_pcie_ctrlr	*pctrlr = nvme_pcie_ctrlr(ctrlr);
1571 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1572 	struct nvme_completion_poll_status	status;
1573 	int					rc;
1574 
1575 	rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status);
1576 	if (rc != 0) {
1577 		return rc;
1578 	}
1579 
1580 	if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) {
1581 		SPDK_ERRLOG("nvme_create_io_cq failed!\n");
1582 		return -1;
1583 	}
1584 
1585 	rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status);
1586 	if (rc != 0) {
1587 		return rc;
1588 	}
1589 
1590 	if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) {
1591 		SPDK_ERRLOG("nvme_create_io_sq failed!\n");
1592 		/* Attempt to delete the completion queue */
1593 		rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status);
1594 		if (rc != 0) {
1595 			return -1;
1596 		}
1597 		spdk_nvme_wait_for_completion(ctrlr->adminq, &status);
1598 		return -1;
1599 	}
1600 
1601 	if (ctrlr->shadow_doorbell) {
1602 		pqpair->shadow_doorbell.sq_tdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 0) *
1603 						  pctrlr->doorbell_stride_u32;
1604 		pqpair->shadow_doorbell.cq_hdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 1) *
1605 						  pctrlr->doorbell_stride_u32;
1606 		pqpair->shadow_doorbell.sq_eventidx = ctrlr->eventidx + (2 * qpair->id + 0) *
1607 						      pctrlr->doorbell_stride_u32;
1608 		pqpair->shadow_doorbell.cq_eventidx = ctrlr->eventidx + (2 * qpair->id + 1) *
1609 						      pctrlr->doorbell_stride_u32;
1610 		pqpair->flags.has_shadow_doorbell = 1;
1611 	} else {
1612 		pqpair->flags.has_shadow_doorbell = 0;
1613 	}
1614 	nvme_pcie_qpair_reset(qpair);
1615 
1616 	return 0;
1617 }
1618 
1619 struct spdk_nvme_qpair *
1620 nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
1621 				const struct spdk_nvme_io_qpair_opts *opts)
1622 {
1623 	struct nvme_pcie_qpair *pqpair;
1624 	struct spdk_nvme_qpair *qpair;
1625 	int rc;
1626 
1627 	assert(ctrlr != NULL);
1628 
1629 	pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL,
1630 			      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
1631 	if (pqpair == NULL) {
1632 		return NULL;
1633 	}
1634 
1635 	pqpair->num_entries = opts->io_queue_size;
1636 	pqpair->flags.delay_pcie_doorbell = opts->delay_pcie_doorbell;
1637 
1638 	qpair = &pqpair->qpair;
1639 
1640 	rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests);
1641 	if (rc != 0) {
1642 		nvme_pcie_qpair_destroy(qpair);
1643 		return NULL;
1644 	}
1645 
1646 	rc = nvme_pcie_qpair_construct(qpair, opts);
1647 
1648 	if (rc != 0) {
1649 		nvme_pcie_qpair_destroy(qpair);
1650 		return NULL;
1651 	}
1652 
1653 	rc = _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qid);
1654 
1655 	if (rc != 0) {
1656 		SPDK_ERRLOG("I/O queue creation failed\n");
1657 		nvme_pcie_qpair_destroy(qpair);
1658 		return NULL;
1659 	}
1660 
1661 	return qpair;
1662 }
1663 
1664 int
1665 nvme_pcie_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1666 {
1667 	if (nvme_qpair_is_admin_queue(qpair)) {
1668 		return 0;
1669 	} else {
1670 		return _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id);
1671 	}
1672 }
1673 
1674 void
1675 nvme_pcie_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1676 {
1677 }
1678 
1679 int
1680 nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1681 {
1682 	struct nvme_completion_poll_status status;
1683 	int rc;
1684 
1685 	assert(ctrlr != NULL);
1686 
1687 	if (ctrlr->is_removed) {
1688 		goto free;
1689 	}
1690 
1691 	/* Delete the I/O submission queue */
1692 	rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, &status);
1693 	if (rc != 0) {
1694 		SPDK_ERRLOG("Failed to send request to delete_io_sq with rc=%d\n", rc);
1695 		return rc;
1696 	}
1697 	if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) {
1698 		return -1;
1699 	}
1700 
1701 	/* Delete the completion queue */
1702 	rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status);
1703 	if (rc != 0) {
1704 		SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc);
1705 		return rc;
1706 	}
1707 	if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) {
1708 		return -1;
1709 	}
1710 
1711 free:
1712 	if (qpair->no_deletion_notification_needed == 0) {
1713 		/* Abort the rest of the I/O */
1714 		nvme_pcie_qpair_abort_trackers(qpair, 1);
1715 	}
1716 
1717 	nvme_pcie_qpair_destroy(qpair);
1718 	return 0;
1719 }
1720 
1721 static void
1722 nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
1723 {
1724 	/*
1725 	 * Bad vtophys translation, so abort this request and return
1726 	 *  immediately.
1727 	 */
1728 	nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
1729 						SPDK_NVME_SC_INVALID_FIELD,
1730 						1 /* do not retry */, true);
1731 }
1732 
1733 /*
1734  * Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes.
1735  *
1736  * *prp_index will be updated to account for the number of PRP entries used.
1737  */
1738 static inline int
1739 nvme_pcie_prp_list_append(struct nvme_tracker *tr, uint32_t *prp_index, void *virt_addr, size_t len,
1740 			  uint32_t page_size)
1741 {
1742 	struct spdk_nvme_cmd *cmd = &tr->req->cmd;
1743 	uintptr_t page_mask = page_size - 1;
1744 	uint64_t phys_addr;
1745 	uint32_t i;
1746 
1747 	SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp_index:%u virt_addr:%p len:%u\n",
1748 		      *prp_index, virt_addr, (uint32_t)len);
1749 
1750 	if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) {
1751 		SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
1752 		return -EINVAL;
1753 	}
1754 
1755 	i = *prp_index;
1756 	while (len) {
1757 		uint32_t seg_len;
1758 
1759 		/*
1760 		 * prp_index 0 is stored in prp1, and the rest are stored in the prp[] array,
1761 		 * so prp_index == count is valid.
1762 		 */
1763 		if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) {
1764 			SPDK_ERRLOG("out of PRP entries\n");
1765 			return -EINVAL;
1766 		}
1767 
1768 		phys_addr = spdk_vtophys(virt_addr, NULL);
1769 		if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) {
1770 			SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr);
1771 			return -EINVAL;
1772 		}
1773 
1774 		if (i == 0) {
1775 			SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp1 = %p\n", (void *)phys_addr);
1776 			cmd->dptr.prp.prp1 = phys_addr;
1777 			seg_len = page_size - ((uintptr_t)virt_addr & page_mask);
1778 		} else {
1779 			if ((phys_addr & page_mask) != 0) {
1780 				SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr);
1781 				return -EINVAL;
1782 			}
1783 
1784 			SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp[%u] = %p\n", i - 1, (void *)phys_addr);
1785 			tr->u.prp[i - 1] = phys_addr;
1786 			seg_len = page_size;
1787 		}
1788 
1789 		seg_len = spdk_min(seg_len, len);
1790 		virt_addr += seg_len;
1791 		len -= seg_len;
1792 		i++;
1793 	}
1794 
1795 	cmd->psdt = SPDK_NVME_PSDT_PRP;
1796 	if (i <= 1) {
1797 		cmd->dptr.prp.prp2 = 0;
1798 	} else if (i == 2) {
1799 		cmd->dptr.prp.prp2 = tr->u.prp[0];
1800 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2);
1801 	} else {
1802 		cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr;
1803 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2);
1804 	}
1805 
1806 	*prp_index = i;
1807 	return 0;
1808 }
1809 
1810 /**
1811  * Build PRP list describing physically contiguous payload buffer.
1812  */
1813 static int
1814 nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
1815 				     struct nvme_tracker *tr)
1816 {
1817 	uint32_t prp_index = 0;
1818 	int rc;
1819 
1820 	rc = nvme_pcie_prp_list_append(tr, &prp_index, req->payload.contig_or_cb_arg + req->payload_offset,
1821 				       req->payload_size, qpair->ctrlr->page_size);
1822 	if (rc) {
1823 		nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1824 		return rc;
1825 	}
1826 
1827 	return 0;
1828 }
1829 
1830 /**
1831  * Build SGL list describing scattered payload buffer.
1832  */
1833 static int
1834 nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
1835 				     struct nvme_tracker *tr)
1836 {
1837 	int rc;
1838 	void *virt_addr;
1839 	uint64_t phys_addr;
1840 	uint32_t remaining_transfer_len, remaining_user_sge_len, length;
1841 	struct spdk_nvme_sgl_descriptor *sgl;
1842 	uint32_t nseg = 0;
1843 
1844 	/*
1845 	 * Build scattered payloads.
1846 	 */
1847 	assert(req->payload_size != 0);
1848 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1849 	assert(req->payload.reset_sgl_fn != NULL);
1850 	assert(req->payload.next_sge_fn != NULL);
1851 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1852 
1853 	sgl = tr->u.sgl;
1854 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1855 	req->cmd.dptr.sgl1.unkeyed.subtype = 0;
1856 
1857 	remaining_transfer_len = req->payload_size;
1858 
1859 	while (remaining_transfer_len > 0) {
1860 		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg,
1861 					      &virt_addr, &remaining_user_sge_len);
1862 		if (rc) {
1863 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1864 			return -1;
1865 		}
1866 
1867 		remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
1868 		remaining_transfer_len -= remaining_user_sge_len;
1869 		while (remaining_user_sge_len > 0) {
1870 			if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
1871 				nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1872 				return -1;
1873 			}
1874 
1875 			phys_addr = spdk_vtophys(virt_addr, NULL);
1876 			if (phys_addr == SPDK_VTOPHYS_ERROR) {
1877 				nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1878 				return -1;
1879 			}
1880 
1881 			length = spdk_min(remaining_user_sge_len, VALUE_2MB - _2MB_OFFSET(virt_addr));
1882 			remaining_user_sge_len -= length;
1883 			virt_addr += length;
1884 
1885 			if (nseg > 0 && phys_addr ==
1886 			    (*(sgl - 1)).address + (*(sgl - 1)).unkeyed.length) {
1887 				/* extend previous entry */
1888 				(*(sgl - 1)).unkeyed.length += length;
1889 				continue;
1890 			}
1891 
1892 			sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1893 			sgl->unkeyed.length = length;
1894 			sgl->address = phys_addr;
1895 			sgl->unkeyed.subtype = 0;
1896 
1897 			sgl++;
1898 			nseg++;
1899 		}
1900 	}
1901 
1902 	if (nseg == 1) {
1903 		/*
1904 		 * The whole transfer can be described by a single SGL descriptor.
1905 		 *  Use the special case described by the spec where SGL1's type is Data Block.
1906 		 *  This means the SGL in the tracker is not used at all, so copy the first (and only)
1907 		 *  SGL element into SGL1.
1908 		 */
1909 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1910 		req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
1911 		req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
1912 	} else {
1913 		/* For now we can only support 1 SGL segment in NVMe controller */
1914 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1915 		req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
1916 		req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
1917 	}
1918 
1919 	return 0;
1920 }
1921 
1922 /**
1923  * Build PRP list describing scattered payload buffer.
1924  */
1925 static int
1926 nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
1927 				       struct nvme_tracker *tr)
1928 {
1929 	int rc;
1930 	void *virt_addr;
1931 	uint32_t remaining_transfer_len, length;
1932 	uint32_t prp_index = 0;
1933 	uint32_t page_size = qpair->ctrlr->page_size;
1934 
1935 	/*
1936 	 * Build scattered payloads.
1937 	 */
1938 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1939 	assert(req->payload.reset_sgl_fn != NULL);
1940 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1941 
1942 	remaining_transfer_len = req->payload_size;
1943 	while (remaining_transfer_len > 0) {
1944 		assert(req->payload.next_sge_fn != NULL);
1945 		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
1946 		if (rc) {
1947 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1948 			return -1;
1949 		}
1950 
1951 		length = spdk_min(remaining_transfer_len, length);
1952 
1953 		/*
1954 		 * Any incompatible sges should have been handled up in the splitting routine,
1955 		 *  but assert here as an additional check.
1956 		 *
1957 		 * All SGEs except last must end on a page boundary.
1958 		 */
1959 		assert((length == remaining_transfer_len) ||
1960 		       _is_page_aligned((uintptr_t)virt_addr + length, page_size));
1961 
1962 		rc = nvme_pcie_prp_list_append(tr, &prp_index, virt_addr, length, page_size);
1963 		if (rc) {
1964 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
1965 			return rc;
1966 		}
1967 
1968 		remaining_transfer_len -= length;
1969 	}
1970 
1971 	return 0;
1972 }
1973 
1974 int
1975 nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
1976 {
1977 	struct nvme_tracker	*tr;
1978 	int			rc = 0;
1979 	void			*md_payload;
1980 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
1981 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
1982 
1983 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
1984 		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1985 	}
1986 
1987 	tr = TAILQ_FIRST(&pqpair->free_tr);
1988 
1989 	if (tr == NULL) {
1990 		/*
1991 		 * Put the request on the qpair's request queue to be
1992 		 *  processed when a tracker frees up via a command
1993 		 *  completion.
1994 		 */
1995 		STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
1996 		goto exit;
1997 	}
1998 
1999 	TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */
2000 	TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list);
2001 	tr->req = req;
2002 	tr->cb_fn = req->cb_fn;
2003 	tr->cb_arg = req->cb_arg;
2004 	req->cmd.cid = tr->cid;
2005 
2006 	if (req->payload_size && req->payload.md) {
2007 		md_payload = req->payload.md + req->md_offset;
2008 		tr->req->cmd.mptr = spdk_vtophys(md_payload, NULL);
2009 		if (tr->req->cmd.mptr == SPDK_VTOPHYS_ERROR) {
2010 			nvme_pcie_fail_request_bad_vtophys(qpair, tr);
2011 			rc = -EINVAL;
2012 			goto exit;
2013 		}
2014 	}
2015 
2016 	if (req->payload_size == 0) {
2017 		/* Null payload - leave PRP fields untouched */
2018 		rc = 0;
2019 	} else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG) {
2020 		rc = nvme_pcie_qpair_build_contig_request(qpair, req, tr);
2021 	} else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL) {
2022 		if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
2023 			rc = nvme_pcie_qpair_build_hw_sgl_request(qpair, req, tr);
2024 		} else {
2025 			rc = nvme_pcie_qpair_build_prps_sgl_request(qpair, req, tr);
2026 		}
2027 	} else {
2028 		assert(0);
2029 		nvme_pcie_fail_request_bad_vtophys(qpair, tr);
2030 		rc = -EINVAL;
2031 	}
2032 
2033 	if (rc < 0) {
2034 		goto exit;
2035 	}
2036 
2037 	nvme_pcie_qpair_submit_tracker(qpair, tr);
2038 
2039 exit:
2040 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
2041 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2042 	}
2043 
2044 	return rc;
2045 }
2046 
2047 static void
2048 nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
2049 {
2050 	uint64_t t02;
2051 	struct nvme_tracker *tr, *tmp;
2052 	struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
2053 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
2054 	struct spdk_nvme_ctrlr_process *active_proc;
2055 
2056 	/* Don't check timeouts during controller initialization. */
2057 	if (ctrlr->state != NVME_CTRLR_STATE_READY) {
2058 		return;
2059 	}
2060 
2061 	if (nvme_qpair_is_admin_queue(qpair)) {
2062 		active_proc = spdk_nvme_ctrlr_get_current_process(ctrlr);
2063 	} else {
2064 		active_proc = qpair->active_proc;
2065 	}
2066 
2067 	/* Only check timeouts if the current process has a timeout callback. */
2068 	if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
2069 		return;
2070 	}
2071 
2072 	t02 = spdk_get_ticks();
2073 	TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
2074 		assert(tr->req != NULL);
2075 
2076 		if (nvme_request_check_timeout(tr->req, tr->cid, active_proc, t02)) {
2077 			/*
2078 			 * The requests are in order, so as soon as one has not timed out,
2079 			 * stop iterating.
2080 			 */
2081 			break;
2082 		}
2083 	}
2084 }
2085 
2086 int32_t
2087 nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
2088 {
2089 	struct nvme_pcie_qpair	*pqpair = nvme_pcie_qpair(qpair);
2090 	struct nvme_tracker	*tr;
2091 	struct spdk_nvme_cpl	*cpl, *next_cpl;
2092 	uint32_t		 num_completions = 0;
2093 	struct spdk_nvme_ctrlr	*ctrlr = qpair->ctrlr;
2094 	uint16_t		 next_cq_head;
2095 	uint8_t			 next_phase;
2096 	bool			 next_is_valid = false;
2097 
2098 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
2099 		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
2100 	}
2101 
2102 	if (max_completions == 0 || max_completions > pqpair->max_completions_cap) {
2103 		/*
2104 		 * max_completions == 0 means unlimited, but complete at most
2105 		 * max_completions_cap batch of I/O at a time so that the completion
2106 		 * queue doorbells don't wrap around.
2107 		 */
2108 		max_completions = pqpair->max_completions_cap;
2109 	}
2110 
2111 	while (1) {
2112 		cpl = &pqpair->cpl[pqpair->cq_head];
2113 
2114 		if (!next_is_valid && cpl->status.p != pqpair->flags.phase) {
2115 			break;
2116 		}
2117 
2118 		if (spdk_likely(pqpair->cq_head + 1 != pqpair->num_entries)) {
2119 			next_cq_head = pqpair->cq_head + 1;
2120 			next_phase = pqpair->flags.phase;
2121 		} else {
2122 			next_cq_head = 0;
2123 			next_phase = !pqpair->flags.phase;
2124 		}
2125 		next_cpl = &pqpair->cpl[next_cq_head];
2126 		next_is_valid = (next_cpl->status.p == next_phase);
2127 		if (next_is_valid) {
2128 			__builtin_prefetch(&pqpair->tr[next_cpl->cid]);
2129 		}
2130 
2131 #ifdef __PPC64__
2132 		/*
2133 		 * This memory barrier prevents reordering of:
2134 		 * - load after store from/to tr
2135 		 * - load after load cpl phase and cpl cid
2136 		 */
2137 		spdk_mb();
2138 #elif defined(__aarch64__)
2139 		__asm volatile("dmb oshld" ::: "memory");
2140 #endif
2141 
2142 		if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) {
2143 			pqpair->cq_head = 0;
2144 			pqpair->flags.phase = !pqpair->flags.phase;
2145 		}
2146 
2147 		tr = &pqpair->tr[cpl->cid];
2148 		/* Prefetch the req's STAILQ_ENTRY since we'll need to access it
2149 		 * as part of putting the req back on the qpair's free list.
2150 		 */
2151 		__builtin_prefetch(&tr->req->stailq);
2152 		pqpair->sq_head = cpl->sqhd;
2153 
2154 		if (tr->req) {
2155 			nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true);
2156 		} else {
2157 			SPDK_ERRLOG("cpl does not map to outstanding cmd\n");
2158 			spdk_nvme_qpair_print_completion(qpair, cpl);
2159 			assert(0);
2160 		}
2161 
2162 		if (++num_completions == max_completions) {
2163 			break;
2164 		}
2165 	}
2166 
2167 	if (num_completions > 0) {
2168 		nvme_pcie_qpair_ring_cq_doorbell(qpair);
2169 	}
2170 
2171 	if (pqpair->flags.delay_pcie_doorbell) {
2172 		if (pqpair->last_sq_tail != pqpair->sq_tail) {
2173 			nvme_pcie_qpair_ring_sq_doorbell(qpair);
2174 			pqpair->last_sq_tail = pqpair->sq_tail;
2175 		}
2176 	}
2177 
2178 	if (spdk_unlikely(ctrlr->timeout_enabled)) {
2179 		/*
2180 		 * User registered for timeout callback
2181 		 */
2182 		nvme_pcie_qpair_check_timeout(qpair);
2183 	}
2184 
2185 	/* Before returning, complete any pending admin request. */
2186 	if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
2187 		nvme_pcie_qpair_complete_pending_admin_request(qpair);
2188 
2189 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2190 	}
2191 
2192 	return num_completions;
2193 }
2194