xref: /spdk/lib/nvme/nvme_ctrlr.c (revision ee8167e3e1671162f2e832d6b8798fb04ee76f3c)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "nvme_internal.h"
10 #include "nvme_io_msg.h"
11 
12 #include "spdk/env.h"
13 #include "spdk/string.h"
14 #include "spdk/endian.h"
15 
16 struct nvme_active_ns_ctx;
17 
18 static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
19 		struct nvme_async_event_request *aer);
20 static void nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx);
21 static int nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns);
22 static int nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns);
23 static int nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns);
24 static void nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr);
25 static void nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
26 				 uint64_t timeout_in_ms);
27 
28 static int
29 nvme_ns_cmp(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
30 {
31 	if (ns1->id < ns2->id) {
32 		return -1;
33 	} else if (ns1->id > ns2->id) {
34 		return 1;
35 	} else {
36 		return 0;
37 	}
38 }
39 
40 RB_GENERATE_STATIC(nvme_ns_tree, spdk_nvme_ns, node, nvme_ns_cmp);
41 
42 #define CTRLR_STRING(ctrlr) \
43 	((ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP || ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA) ? \
44 	ctrlr->trid.subnqn : ctrlr->trid.traddr)
45 
46 #define NVME_CTRLR_ERRLOG(ctrlr, format, ...) \
47 	SPDK_ERRLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
48 
49 #define NVME_CTRLR_WARNLOG(ctrlr, format, ...) \
50 	SPDK_WARNLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
51 
52 #define NVME_CTRLR_NOTICELOG(ctrlr, format, ...) \
53 	SPDK_NOTICELOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
54 
55 #define NVME_CTRLR_INFOLOG(ctrlr, format, ...) \
56 	SPDK_INFOLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
57 
58 #ifdef DEBUG
59 #define NVME_CTRLR_DEBUGLOG(ctrlr, format, ...) \
60 	SPDK_DEBUGLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
61 #else
62 #define NVME_CTRLR_DEBUGLOG(ctrlr, ...) do { } while (0)
63 #endif
64 
65 #define nvme_ctrlr_get_reg_async(ctrlr, reg, sz, cb_fn, cb_arg) \
66 	nvme_transport_ctrlr_get_reg_ ## sz ## _async(ctrlr, \
67 		offsetof(struct spdk_nvme_registers, reg), cb_fn, cb_arg)
68 
69 #define nvme_ctrlr_set_reg_async(ctrlr, reg, sz, val, cb_fn, cb_arg) \
70 	nvme_transport_ctrlr_set_reg_ ## sz ## _async(ctrlr, \
71 		offsetof(struct spdk_nvme_registers, reg), val, cb_fn, cb_arg)
72 
73 #define nvme_ctrlr_get_cc_async(ctrlr, cb_fn, cb_arg) \
74 	nvme_ctrlr_get_reg_async(ctrlr, cc, 4, cb_fn, cb_arg)
75 
76 #define nvme_ctrlr_get_csts_async(ctrlr, cb_fn, cb_arg) \
77 	nvme_ctrlr_get_reg_async(ctrlr, csts, 4, cb_fn, cb_arg)
78 
79 #define nvme_ctrlr_get_cap_async(ctrlr, cb_fn, cb_arg) \
80 	nvme_ctrlr_get_reg_async(ctrlr, cap, 8, cb_fn, cb_arg)
81 
82 #define nvme_ctrlr_get_vs_async(ctrlr, cb_fn, cb_arg) \
83 	nvme_ctrlr_get_reg_async(ctrlr, vs, 4, cb_fn, cb_arg)
84 
85 #define nvme_ctrlr_set_cc_async(ctrlr, value, cb_fn, cb_arg) \
86 	nvme_ctrlr_set_reg_async(ctrlr, cc, 4, value, cb_fn, cb_arg)
87 
88 static int
89 nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc)
90 {
91 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
92 					      &cc->raw);
93 }
94 
95 static int
96 nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts)
97 {
98 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw),
99 					      &csts->raw);
100 }
101 
102 int
103 nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
104 {
105 	return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw),
106 					      &cap->raw);
107 }
108 
109 int
110 nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
111 {
112 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw),
113 					      &vs->raw);
114 }
115 
116 int
117 nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz)
118 {
119 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
120 					      &cmbsz->raw);
121 }
122 
123 int
124 nvme_ctrlr_get_pmrcap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_pmrcap_register *pmrcap)
125 {
126 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, pmrcap.raw),
127 					      &pmrcap->raw);
128 }
129 
130 int
131 nvme_ctrlr_get_bpinfo(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bpinfo_register *bpinfo)
132 {
133 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bpinfo.raw),
134 					      &bpinfo->raw);
135 }
136 
137 int
138 nvme_ctrlr_set_bprsel(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bprsel_register *bprsel)
139 {
140 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bprsel.raw),
141 					      bprsel->raw);
142 }
143 
144 int
145 nvme_ctrlr_set_bpmbl(struct spdk_nvme_ctrlr *ctrlr, uint64_t bpmbl_value)
146 {
147 	return nvme_transport_ctrlr_set_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, bpmbl),
148 					      bpmbl_value);
149 }
150 
151 static int
152 nvme_ctrlr_set_nssr(struct spdk_nvme_ctrlr *ctrlr, uint32_t nssr_value)
153 {
154 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, nssr),
155 					      nssr_value);
156 }
157 
158 bool
159 nvme_ctrlr_multi_iocs_enabled(struct spdk_nvme_ctrlr *ctrlr)
160 {
161 	return ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS &&
162 	       ctrlr->opts.command_set == SPDK_NVME_CC_CSS_IOCS;
163 }
164 
165 /* When the field in spdk_nvme_ctrlr_opts are changed and you change this function, please
166  * also update the nvme_ctrl_opts_init function in nvme_ctrlr.c
167  */
168 void
169 spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
170 {
171 	char host_id_str[SPDK_UUID_STRING_LEN];
172 
173 	assert(opts);
174 
175 	opts->opts_size = opts_size;
176 
177 #define FIELD_OK(field) \
178 	offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size
179 
180 #define SET_FIELD(field, value) \
181 	if (offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size) { \
182 		opts->field = value; \
183 	} \
184 
185 	SET_FIELD(num_io_queues, DEFAULT_MAX_IO_QUEUES);
186 	SET_FIELD(use_cmb_sqs, false);
187 	SET_FIELD(no_shn_notification, false);
188 	SET_FIELD(arb_mechanism, SPDK_NVME_CC_AMS_RR);
189 	SET_FIELD(arbitration_burst, 0);
190 	SET_FIELD(low_priority_weight, 0);
191 	SET_FIELD(medium_priority_weight, 0);
192 	SET_FIELD(high_priority_weight, 0);
193 	SET_FIELD(keep_alive_timeout_ms, MIN_KEEP_ALIVE_TIMEOUT_IN_MS);
194 	SET_FIELD(transport_retry_count, SPDK_NVME_DEFAULT_RETRY_COUNT);
195 	SET_FIELD(io_queue_size, DEFAULT_IO_QUEUE_SIZE);
196 
197 	if (nvme_driver_init() == 0) {
198 		if (FIELD_OK(hostnqn)) {
199 			spdk_uuid_fmt_lower(host_id_str, sizeof(host_id_str),
200 					    &g_spdk_nvme_driver->default_extended_host_id);
201 			snprintf(opts->hostnqn, sizeof(opts->hostnqn),
202 				 "nqn.2014-08.org.nvmexpress:uuid:%s", host_id_str);
203 		}
204 
205 		if (FIELD_OK(extended_host_id)) {
206 			memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id,
207 			       sizeof(opts->extended_host_id));
208 		}
209 
210 	}
211 
212 	SET_FIELD(io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS);
213 
214 	if (FIELD_OK(src_addr)) {
215 		memset(opts->src_addr, 0, sizeof(opts->src_addr));
216 	}
217 
218 	if (FIELD_OK(src_svcid)) {
219 		memset(opts->src_svcid, 0, sizeof(opts->src_svcid));
220 	}
221 
222 	if (FIELD_OK(host_id)) {
223 		memset(opts->host_id, 0, sizeof(opts->host_id));
224 	}
225 
226 	SET_FIELD(command_set, CHAR_BIT);
227 	SET_FIELD(admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000);
228 	SET_FIELD(header_digest, false);
229 	SET_FIELD(data_digest, false);
230 	SET_FIELD(disable_error_logging, false);
231 	SET_FIELD(transport_ack_timeout, SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT);
232 	SET_FIELD(admin_queue_size, DEFAULT_ADMIN_QUEUE_SIZE);
233 	SET_FIELD(fabrics_connect_timeout_us, NVME_FABRIC_CONNECT_COMMAND_TIMEOUT);
234 	SET_FIELD(disable_read_ana_log_page, false);
235 
236 #undef FIELD_OK
237 #undef SET_FIELD
238 }
239 
240 const struct spdk_nvme_ctrlr_opts *
241 spdk_nvme_ctrlr_get_opts(struct spdk_nvme_ctrlr *ctrlr)
242 {
243 	return &ctrlr->opts;
244 }
245 
246 /**
247  * This function will be called when the process allocates the IO qpair.
248  * Note: the ctrlr_lock must be held when calling this function.
249  */
250 static void
251 nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair)
252 {
253 	struct spdk_nvme_ctrlr_process	*active_proc;
254 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
255 
256 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
257 	if (active_proc) {
258 		TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq);
259 		qpair->active_proc = active_proc;
260 	}
261 }
262 
263 /**
264  * This function will be called when the process frees the IO qpair.
265  * Note: the ctrlr_lock must be held when calling this function.
266  */
267 static void
268 nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair)
269 {
270 	struct spdk_nvme_ctrlr_process	*active_proc;
271 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
272 	struct spdk_nvme_qpair          *active_qpair, *tmp_qpair;
273 
274 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
275 	if (!active_proc) {
276 		return;
277 	}
278 
279 	TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs,
280 			   per_process_tailq, tmp_qpair) {
281 		if (active_qpair == qpair) {
282 			TAILQ_REMOVE(&active_proc->allocated_io_qpairs,
283 				     active_qpair, per_process_tailq);
284 
285 			break;
286 		}
287 	}
288 }
289 
290 void
291 spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr,
292 		struct spdk_nvme_io_qpair_opts *opts,
293 		size_t opts_size)
294 {
295 	assert(ctrlr);
296 
297 	assert(opts);
298 
299 	memset(opts, 0, opts_size);
300 
301 #define FIELD_OK(field) \
302 	offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size
303 
304 	if (FIELD_OK(qprio)) {
305 		opts->qprio = SPDK_NVME_QPRIO_URGENT;
306 	}
307 
308 	if (FIELD_OK(io_queue_size)) {
309 		opts->io_queue_size = ctrlr->opts.io_queue_size;
310 	}
311 
312 	if (FIELD_OK(io_queue_requests)) {
313 		opts->io_queue_requests = ctrlr->opts.io_queue_requests;
314 	}
315 
316 	if (FIELD_OK(delay_cmd_submit)) {
317 		opts->delay_cmd_submit = false;
318 	}
319 
320 	if (FIELD_OK(sq.vaddr)) {
321 		opts->sq.vaddr = NULL;
322 	}
323 
324 	if (FIELD_OK(sq.paddr)) {
325 		opts->sq.paddr = 0;
326 	}
327 
328 	if (FIELD_OK(sq.buffer_size)) {
329 		opts->sq.buffer_size = 0;
330 	}
331 
332 	if (FIELD_OK(cq.vaddr)) {
333 		opts->cq.vaddr = NULL;
334 	}
335 
336 	if (FIELD_OK(cq.paddr)) {
337 		opts->cq.paddr = 0;
338 	}
339 
340 	if (FIELD_OK(cq.buffer_size)) {
341 		opts->cq.buffer_size = 0;
342 	}
343 
344 	if (FIELD_OK(create_only)) {
345 		opts->create_only = false;
346 	}
347 
348 	if (FIELD_OK(async_mode)) {
349 		opts->async_mode = false;
350 	}
351 
352 #undef FIELD_OK
353 }
354 
355 static struct spdk_nvme_qpair *
356 nvme_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
357 			   const struct spdk_nvme_io_qpair_opts *opts)
358 {
359 	int32_t					qid;
360 	struct spdk_nvme_qpair			*qpair;
361 	union spdk_nvme_cc_register		cc;
362 
363 	if (!ctrlr) {
364 		return NULL;
365 	}
366 
367 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
368 	cc.raw = ctrlr->process_init_cc.raw;
369 
370 	if (opts->qprio & ~SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK) {
371 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
372 		return NULL;
373 	}
374 
375 	/*
376 	 * Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the
377 	 * default round robin arbitration method.
378 	 */
379 	if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts->qprio != SPDK_NVME_QPRIO_URGENT)) {
380 		NVME_CTRLR_ERRLOG(ctrlr, "invalid queue priority for default round robin arbitration method\n");
381 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
382 		return NULL;
383 	}
384 
385 	qid = spdk_nvme_ctrlr_alloc_qid(ctrlr);
386 	if (qid < 0) {
387 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
388 		return NULL;
389 	}
390 
391 	qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, opts);
392 	if (qpair == NULL) {
393 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_create_io_qpair() failed\n");
394 		spdk_nvme_ctrlr_free_qid(ctrlr, qid);
395 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
396 		return NULL;
397 	}
398 
399 	TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq);
400 
401 	nvme_ctrlr_proc_add_io_qpair(qpair);
402 
403 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
404 
405 	return qpair;
406 }
407 
408 int
409 spdk_nvme_ctrlr_connect_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
410 {
411 	int rc;
412 
413 	if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) {
414 		return -EISCONN;
415 	}
416 
417 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
418 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
419 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
420 
421 	if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) {
422 		spdk_delay_us(100);
423 	}
424 
425 	return rc;
426 }
427 
428 void
429 spdk_nvme_ctrlr_disconnect_io_qpair(struct spdk_nvme_qpair *qpair)
430 {
431 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
432 
433 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
434 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
435 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
436 }
437 
438 struct spdk_nvme_qpair *
439 spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
440 			       const struct spdk_nvme_io_qpair_opts *user_opts,
441 			       size_t opts_size)
442 {
443 
444 	struct spdk_nvme_qpair		*qpair;
445 	struct spdk_nvme_io_qpair_opts	opts;
446 	int				rc;
447 
448 	if (spdk_unlikely(ctrlr->state != NVME_CTRLR_STATE_READY)) {
449 		/* When controller is resetting or initializing, free_io_qids is deleted or not created yet.
450 		 * We can't create IO qpair in that case */
451 		return NULL;
452 	}
453 
454 	/*
455 	 * Get the default options, then overwrite them with the user-provided options
456 	 * up to opts_size.
457 	 *
458 	 * This allows for extensions of the opts structure without breaking
459 	 * ABI compatibility.
460 	 */
461 	spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
462 	if (user_opts) {
463 		memcpy(&opts, user_opts, spdk_min(sizeof(opts), opts_size));
464 
465 		/* If user passes buffers, make sure they're big enough for the requested queue size */
466 		if (opts.sq.vaddr) {
467 			if (opts.sq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))) {
468 				NVME_CTRLR_ERRLOG(ctrlr, "sq buffer size %" PRIx64 " is too small for sq size %zx\n",
469 						  opts.sq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cmd)));
470 				return NULL;
471 			}
472 		}
473 		if (opts.cq.vaddr) {
474 			if (opts.cq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))) {
475 				NVME_CTRLR_ERRLOG(ctrlr, "cq buffer size %" PRIx64 " is too small for cq size %zx\n",
476 						  opts.cq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cpl)));
477 				return NULL;
478 			}
479 		}
480 	}
481 
482 	qpair = nvme_ctrlr_create_io_qpair(ctrlr, &opts);
483 
484 	if (qpair == NULL || opts.create_only == true) {
485 		return qpair;
486 	}
487 
488 	rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair);
489 	if (rc != 0) {
490 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_connect_io_qpair() failed\n");
491 		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
492 		nvme_ctrlr_proc_remove_io_qpair(qpair);
493 		TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
494 		spdk_bit_array_set(ctrlr->free_io_qids, qpair->id);
495 		nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
496 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
497 		return NULL;
498 	}
499 
500 	return qpair;
501 }
502 
503 int
504 spdk_nvme_ctrlr_reconnect_io_qpair(struct spdk_nvme_qpair *qpair)
505 {
506 	struct spdk_nvme_ctrlr *ctrlr;
507 	enum nvme_qpair_state qpair_state;
508 	int rc;
509 
510 	assert(qpair != NULL);
511 	assert(nvme_qpair_is_admin_queue(qpair) == false);
512 	assert(qpair->ctrlr != NULL);
513 
514 	ctrlr = qpair->ctrlr;
515 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
516 	qpair_state = nvme_qpair_get_state(qpair);
517 
518 	if (ctrlr->is_removed) {
519 		rc = -ENODEV;
520 		goto out;
521 	}
522 
523 	if (ctrlr->is_resetting || qpair_state == NVME_QPAIR_DISCONNECTING) {
524 		rc = -EAGAIN;
525 		goto out;
526 	}
527 
528 	if (ctrlr->is_failed || qpair_state == NVME_QPAIR_DESTROYING) {
529 		rc = -ENXIO;
530 		goto out;
531 	}
532 
533 	if (qpair_state != NVME_QPAIR_DISCONNECTED) {
534 		rc = 0;
535 		goto out;
536 	}
537 
538 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
539 	if (rc) {
540 		rc = -EAGAIN;
541 		goto out;
542 	}
543 
544 out:
545 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
546 	return rc;
547 }
548 
549 spdk_nvme_qp_failure_reason
550 spdk_nvme_ctrlr_get_admin_qp_failure_reason(struct spdk_nvme_ctrlr *ctrlr)
551 {
552 	return ctrlr->adminq->transport_failure_reason;
553 }
554 
555 /*
556  * This internal function will attempt to take the controller
557  * lock before calling disconnect on a controller qpair.
558  * Functions already holding the controller lock should
559  * call nvme_transport_ctrlr_disconnect_qpair directly.
560  */
561 void
562 nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair)
563 {
564 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
565 
566 	assert(ctrlr != NULL);
567 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
568 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
569 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
570 }
571 
572 int
573 spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair)
574 {
575 	struct spdk_nvme_ctrlr *ctrlr;
576 
577 	if (qpair == NULL) {
578 		return 0;
579 	}
580 
581 	ctrlr = qpair->ctrlr;
582 
583 	if (qpair->in_completion_context) {
584 		/*
585 		 * There are many cases where it is convenient to delete an io qpair in the context
586 		 *  of that qpair's completion routine.  To handle this properly, set a flag here
587 		 *  so that the completion routine will perform an actual delete after the context
588 		 *  unwinds.
589 		 */
590 		qpair->delete_after_completion_context = 1;
591 		return 0;
592 	}
593 
594 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
595 
596 	if (qpair->poll_group && (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr))) {
597 		spdk_nvme_poll_group_remove(qpair->poll_group->group, qpair);
598 	}
599 
600 	/* Do not retry. */
601 	nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
602 
603 	/* In the multi-process case, a process may call this function on a foreign
604 	 * I/O qpair (i.e. one that this process did not create) when that qpairs process
605 	 * exits unexpectedly.  In that case, we must not try to abort any reqs associated
606 	 * with that qpair, since the callbacks will also be foreign to this process.
607 	 */
608 	if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) {
609 		nvme_qpair_abort_all_queued_reqs(qpair, 0);
610 	}
611 
612 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
613 
614 	nvme_ctrlr_proc_remove_io_qpair(qpair);
615 
616 	TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
617 	spdk_nvme_ctrlr_free_qid(ctrlr, qpair->id);
618 
619 	nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
620 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
621 	return 0;
622 }
623 
624 static void
625 nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr,
626 		struct spdk_nvme_intel_log_page_directory *log_page_directory)
627 {
628 	if (log_page_directory == NULL) {
629 		return;
630 	}
631 
632 	assert(ctrlr->cdata.vid == SPDK_PCI_VID_INTEL);
633 
634 	ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
635 
636 	if (log_page_directory->read_latency_log_len ||
637 	    (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) {
638 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
639 	}
640 	if (log_page_directory->write_latency_log_len ||
641 	    (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) {
642 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
643 	}
644 	if (log_page_directory->temperature_statistics_log_len) {
645 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true;
646 	}
647 	if (log_page_directory->smart_log_len) {
648 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true;
649 	}
650 	if (log_page_directory->marketing_description_log_len) {
651 		ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true;
652 	}
653 }
654 
655 struct intel_log_pages_ctx {
656 	struct spdk_nvme_intel_log_page_directory log_page_directory;
657 	struct spdk_nvme_ctrlr *ctrlr;
658 };
659 
660 static void
661 nvme_ctrlr_set_intel_support_log_pages_done(void *arg, const struct spdk_nvme_cpl *cpl)
662 {
663 	struct intel_log_pages_ctx *ctx = arg;
664 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
665 
666 	if (!spdk_nvme_cpl_is_error(cpl)) {
667 		nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, &ctx->log_page_directory);
668 	}
669 
670 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
671 			     ctrlr->opts.admin_timeout_ms);
672 	free(ctx);
673 }
674 
675 static int
676 nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr)
677 {
678 	int rc = 0;
679 	struct intel_log_pages_ctx *ctx;
680 
681 	ctx = calloc(1, sizeof(*ctx));
682 	if (!ctx) {
683 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
684 				     ctrlr->opts.admin_timeout_ms);
685 		return 0;
686 	}
687 
688 	ctx->ctrlr = ctrlr;
689 
690 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY,
691 					      SPDK_NVME_GLOBAL_NS_TAG, &ctx->log_page_directory,
692 					      sizeof(struct spdk_nvme_intel_log_page_directory),
693 					      0, nvme_ctrlr_set_intel_support_log_pages_done, ctx);
694 	if (rc != 0) {
695 		free(ctx);
696 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
697 				     ctrlr->opts.admin_timeout_ms);
698 		return 0;
699 	}
700 
701 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES,
702 			     ctrlr->opts.admin_timeout_ms);
703 
704 	return 0;
705 }
706 
707 static int
708 nvme_ctrlr_alloc_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
709 {
710 	uint32_t ana_log_page_size;
711 
712 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + ctrlr->cdata.nanagrpid *
713 			    sizeof(struct spdk_nvme_ana_group_descriptor) + ctrlr->active_ns_count *
714 			    sizeof(uint32_t);
715 
716 	/* Number of active namespaces may have changed.
717 	 * Check if ANA log page fits into existing buffer.
718 	 */
719 	if (ana_log_page_size > ctrlr->ana_log_page_size) {
720 		void *new_buffer;
721 
722 		if (ctrlr->ana_log_page) {
723 			new_buffer = realloc(ctrlr->ana_log_page, ana_log_page_size);
724 		} else {
725 			new_buffer = calloc(1, ana_log_page_size);
726 		}
727 
728 		if (!new_buffer) {
729 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate ANA log page buffer, size %u\n",
730 					  ana_log_page_size);
731 			return -ENXIO;
732 		}
733 
734 		ctrlr->ana_log_page = new_buffer;
735 		if (ctrlr->copied_ana_desc) {
736 			new_buffer = realloc(ctrlr->copied_ana_desc, ana_log_page_size);
737 		} else {
738 			new_buffer = calloc(1, ana_log_page_size);
739 		}
740 
741 		if (!new_buffer) {
742 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate a buffer to parse ANA descriptor, size %u\n",
743 					  ana_log_page_size);
744 			return -ENOMEM;
745 		}
746 
747 		ctrlr->copied_ana_desc = new_buffer;
748 		ctrlr->ana_log_page_size = ana_log_page_size;
749 	}
750 
751 	return 0;
752 }
753 
754 static int
755 nvme_ctrlr_update_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
756 {
757 	struct nvme_completion_poll_status *status;
758 	int rc;
759 
760 	rc = nvme_ctrlr_alloc_ana_log_page(ctrlr);
761 	if (rc != 0) {
762 		return rc;
763 	}
764 
765 	status = calloc(1, sizeof(*status));
766 	if (status == NULL) {
767 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
768 		return -ENOMEM;
769 	}
770 
771 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
772 					      SPDK_NVME_GLOBAL_NS_TAG, ctrlr->ana_log_page,
773 					      ctrlr->ana_log_page_size, 0,
774 					      nvme_completion_poll_cb, status);
775 	if (rc != 0) {
776 		free(status);
777 		return rc;
778 	}
779 
780 	if (nvme_wait_for_completion_robust_lock_timeout(ctrlr->adminq, status, &ctrlr->ctrlr_lock,
781 			ctrlr->opts.admin_timeout_ms * 1000)) {
782 		if (!status->timed_out) {
783 			free(status);
784 		}
785 		return -EIO;
786 	}
787 
788 	free(status);
789 	return 0;
790 }
791 
792 static int
793 nvme_ctrlr_init_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
794 {
795 	int rc;
796 
797 	rc = nvme_ctrlr_alloc_ana_log_page(ctrlr);
798 	if (rc) {
799 		return rc;
800 	}
801 
802 	return nvme_ctrlr_update_ana_log_page(ctrlr);
803 }
804 
805 static int
806 nvme_ctrlr_update_ns_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
807 				void *cb_arg)
808 {
809 	struct spdk_nvme_ctrlr *ctrlr = cb_arg;
810 	struct spdk_nvme_ns *ns;
811 	uint32_t i, nsid;
812 
813 	for (i = 0; i < desc->num_of_nsid; i++) {
814 		nsid = desc->nsid[i];
815 		if (nsid == 0 || nsid > ctrlr->cdata.nn) {
816 			continue;
817 		}
818 
819 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
820 		assert(ns != NULL);
821 
822 		ns->ana_group_id = desc->ana_group_id;
823 		ns->ana_state = desc->ana_state;
824 	}
825 
826 	return 0;
827 }
828 
829 int
830 nvme_ctrlr_parse_ana_log_page(struct spdk_nvme_ctrlr *ctrlr,
831 			      spdk_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
832 {
833 	struct spdk_nvme_ana_group_descriptor *copied_desc;
834 	uint8_t *orig_desc;
835 	uint32_t i, desc_size, copy_len;
836 	int rc = 0;
837 
838 	if (ctrlr->ana_log_page == NULL) {
839 		return -EINVAL;
840 	}
841 
842 	copied_desc = ctrlr->copied_ana_desc;
843 
844 	orig_desc = (uint8_t *)ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
845 	copy_len = ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
846 
847 	for (i = 0; i < ctrlr->ana_log_page->num_ana_group_desc; i++) {
848 		memcpy(copied_desc, orig_desc, copy_len);
849 
850 		rc = cb_fn(copied_desc, cb_arg);
851 		if (rc != 0) {
852 			break;
853 		}
854 
855 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
856 			    copied_desc->num_of_nsid * sizeof(uint32_t);
857 		orig_desc += desc_size;
858 		copy_len -= desc_size;
859 	}
860 
861 	return rc;
862 }
863 
864 static int
865 nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr)
866 {
867 	int	rc = 0;
868 
869 	memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
870 	/* Mandatory pages */
871 	ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true;
872 	ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true;
873 	ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true;
874 	if (ctrlr->cdata.lpa.celp) {
875 		ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true;
876 	}
877 
878 	if (ctrlr->cdata.cmic.ana_reporting) {
879 		ctrlr->log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] = true;
880 		if (!ctrlr->opts.disable_read_ana_log_page) {
881 			rc = nvme_ctrlr_init_ana_log_page(ctrlr);
882 			if (rc == 0) {
883 				nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
884 							      ctrlr);
885 			}
886 		}
887 	}
888 
889 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL &&
890 	    ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE &&
891 	    !(ctrlr->quirks & NVME_INTEL_QUIRK_NO_LOG_PAGES)) {
892 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES,
893 				     ctrlr->opts.admin_timeout_ms);
894 
895 	} else {
896 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
897 				     ctrlr->opts.admin_timeout_ms);
898 
899 	}
900 
901 	return rc;
902 }
903 
904 static void
905 nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr)
906 {
907 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true;
908 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
909 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
910 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
911 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true;
912 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
913 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
914 }
915 
916 static void
917 nvme_ctrlr_set_arbitration_feature(struct spdk_nvme_ctrlr *ctrlr)
918 {
919 	uint32_t cdw11;
920 	struct nvme_completion_poll_status *status;
921 
922 	if (ctrlr->opts.arbitration_burst == 0) {
923 		return;
924 	}
925 
926 	if (ctrlr->opts.arbitration_burst > 7) {
927 		NVME_CTRLR_WARNLOG(ctrlr, "Valid arbitration burst values is from 0-7\n");
928 		return;
929 	}
930 
931 	status = calloc(1, sizeof(*status));
932 	if (!status) {
933 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
934 		return;
935 	}
936 
937 	cdw11 = ctrlr->opts.arbitration_burst;
938 
939 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_WRR_SUPPORTED) {
940 		cdw11 |= (uint32_t)ctrlr->opts.low_priority_weight << 8;
941 		cdw11 |= (uint32_t)ctrlr->opts.medium_priority_weight << 16;
942 		cdw11 |= (uint32_t)ctrlr->opts.high_priority_weight << 24;
943 	}
944 
945 	if (spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION,
946 					    cdw11, 0, NULL, 0,
947 					    nvme_completion_poll_cb, status) < 0) {
948 		NVME_CTRLR_ERRLOG(ctrlr, "Set arbitration feature failed\n");
949 		free(status);
950 		return;
951 	}
952 
953 	if (nvme_wait_for_completion_timeout(ctrlr->adminq, status,
954 					     ctrlr->opts.admin_timeout_ms * 1000)) {
955 		NVME_CTRLR_ERRLOG(ctrlr, "Timeout to set arbitration feature\n");
956 	}
957 
958 	if (!status->timed_out) {
959 		free(status);
960 	}
961 }
962 
963 static void
964 nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr)
965 {
966 	memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
967 	/* Mandatory features */
968 	ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true;
969 	ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true;
970 	ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
971 	ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true;
972 	ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true;
973 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true;
974 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
975 	ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true;
976 	ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
977 	/* Optional features */
978 	if (ctrlr->cdata.vwc.present) {
979 		ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
980 	}
981 	if (ctrlr->cdata.apsta.supported) {
982 		ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
983 	}
984 	if (ctrlr->cdata.hmpre) {
985 		ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true;
986 	}
987 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
988 		nvme_ctrlr_set_intel_supported_features(ctrlr);
989 	}
990 
991 	nvme_ctrlr_set_arbitration_feature(ctrlr);
992 }
993 
994 bool
995 spdk_nvme_ctrlr_is_failed(struct spdk_nvme_ctrlr *ctrlr)
996 {
997 	return ctrlr->is_failed;
998 }
999 
1000 void
1001 nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
1002 {
1003 	/*
1004 	 * Set the flag here and leave the work failure of qpairs to
1005 	 * spdk_nvme_qpair_process_completions().
1006 	 */
1007 	if (hot_remove) {
1008 		ctrlr->is_removed = true;
1009 	}
1010 
1011 	if (ctrlr->is_failed) {
1012 		NVME_CTRLR_NOTICELOG(ctrlr, "already in failed state\n");
1013 		return;
1014 	}
1015 
1016 	if (ctrlr->is_disconnecting) {
1017 		NVME_CTRLR_DEBUGLOG(ctrlr, "already disconnecting\n");
1018 		return;
1019 	}
1020 
1021 	ctrlr->is_failed = true;
1022 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1023 	NVME_CTRLR_ERRLOG(ctrlr, "in failed state.\n");
1024 }
1025 
1026 /**
1027  * This public API function will try to take the controller lock.
1028  * Any private functions being called from a thread already holding
1029  * the ctrlr lock should call nvme_ctrlr_fail directly.
1030  */
1031 void
1032 spdk_nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr)
1033 {
1034 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1035 	nvme_ctrlr_fail(ctrlr, false);
1036 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1037 }
1038 
1039 static void
1040 nvme_ctrlr_shutdown_set_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1041 {
1042 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1043 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1044 
1045 	if (spdk_nvme_cpl_is_error(cpl)) {
1046 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1047 		ctx->shutdown_complete = true;
1048 		return;
1049 	}
1050 
1051 	if (ctrlr->opts.no_shn_notification) {
1052 		ctx->shutdown_complete = true;
1053 		return;
1054 	}
1055 
1056 	/*
1057 	 * The NVMe specification defines RTD3E to be the time between
1058 	 *  setting SHN = 1 until the controller will set SHST = 10b.
1059 	 * If the device doesn't report RTD3 entry latency, or if it
1060 	 *  reports RTD3 entry latency less than 10 seconds, pick
1061 	 *  10 seconds as a reasonable amount of time to
1062 	 *  wait before proceeding.
1063 	 */
1064 	NVME_CTRLR_DEBUGLOG(ctrlr, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e);
1065 	ctx->shutdown_timeout_ms = SPDK_CEIL_DIV(ctrlr->cdata.rtd3e, 1000);
1066 	ctx->shutdown_timeout_ms = spdk_max(ctx->shutdown_timeout_ms, 10000);
1067 	NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown timeout = %" PRIu32 " ms\n", ctx->shutdown_timeout_ms);
1068 
1069 	ctx->shutdown_start_tsc = spdk_get_ticks();
1070 	ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1071 }
1072 
1073 static void
1074 nvme_ctrlr_shutdown_get_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1075 {
1076 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1077 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1078 	union spdk_nvme_cc_register cc;
1079 	int rc;
1080 
1081 	if (spdk_nvme_cpl_is_error(cpl)) {
1082 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1083 		ctx->shutdown_complete = true;
1084 		return;
1085 	}
1086 
1087 	assert(value <= UINT32_MAX);
1088 	cc.raw = (uint32_t)value;
1089 
1090 	if (ctrlr->opts.no_shn_notification) {
1091 		NVME_CTRLR_INFOLOG(ctrlr, "Disable SSD without shutdown notification\n");
1092 		if (cc.bits.en == 0) {
1093 			ctx->shutdown_complete = true;
1094 			return;
1095 		}
1096 
1097 		cc.bits.en = 0;
1098 	} else {
1099 		cc.bits.shn = SPDK_NVME_SHN_NORMAL;
1100 	}
1101 
1102 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_shutdown_set_cc_done, ctx);
1103 	if (rc != 0) {
1104 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1105 		ctx->shutdown_complete = true;
1106 	}
1107 }
1108 
1109 static void
1110 nvme_ctrlr_shutdown_async(struct spdk_nvme_ctrlr *ctrlr,
1111 			  struct nvme_ctrlr_detach_ctx *ctx)
1112 {
1113 	int rc;
1114 
1115 	if (ctrlr->is_removed) {
1116 		ctx->shutdown_complete = true;
1117 		return;
1118 	}
1119 
1120 	ctx->state = NVME_CTRLR_DETACH_SET_CC;
1121 	rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_shutdown_get_cc_done, ctx);
1122 	if (rc != 0) {
1123 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1124 		ctx->shutdown_complete = true;
1125 	}
1126 }
1127 
1128 static void
1129 nvme_ctrlr_shutdown_get_csts_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1130 {
1131 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1132 
1133 	if (spdk_nvme_cpl_is_error(cpl)) {
1134 		NVME_CTRLR_ERRLOG(ctx->ctrlr, "Failed to read the CSTS register\n");
1135 		ctx->shutdown_complete = true;
1136 		return;
1137 	}
1138 
1139 	assert(value <= UINT32_MAX);
1140 	ctx->csts.raw = (uint32_t)value;
1141 	ctx->state = NVME_CTRLR_DETACH_GET_CSTS_DONE;
1142 }
1143 
1144 static int
1145 nvme_ctrlr_shutdown_poll_async(struct spdk_nvme_ctrlr *ctrlr,
1146 			       struct nvme_ctrlr_detach_ctx *ctx)
1147 {
1148 	union spdk_nvme_csts_register	csts;
1149 	uint32_t			ms_waited;
1150 
1151 	switch (ctx->state) {
1152 	case NVME_CTRLR_DETACH_SET_CC:
1153 	case NVME_CTRLR_DETACH_GET_CSTS:
1154 		/* We're still waiting for the register operation to complete */
1155 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
1156 		return -EAGAIN;
1157 
1158 	case NVME_CTRLR_DETACH_CHECK_CSTS:
1159 		ctx->state = NVME_CTRLR_DETACH_GET_CSTS;
1160 		if (nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_shutdown_get_csts_done, ctx)) {
1161 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
1162 			return -EIO;
1163 		}
1164 		return -EAGAIN;
1165 
1166 	case NVME_CTRLR_DETACH_GET_CSTS_DONE:
1167 		ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1168 		break;
1169 
1170 	default:
1171 		assert(0 && "Should never happen");
1172 		return -EINVAL;
1173 	}
1174 
1175 	ms_waited = (spdk_get_ticks() - ctx->shutdown_start_tsc) * 1000 / spdk_get_ticks_hz();
1176 	csts.raw = ctx->csts.raw;
1177 
1178 	if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
1179 		NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown complete in %u milliseconds\n", ms_waited);
1180 		return 0;
1181 	}
1182 
1183 	if (ms_waited < ctx->shutdown_timeout_ms) {
1184 		return -EAGAIN;
1185 	}
1186 
1187 	NVME_CTRLR_ERRLOG(ctrlr, "did not shutdown within %u milliseconds\n",
1188 			  ctx->shutdown_timeout_ms);
1189 	if (ctrlr->quirks & NVME_QUIRK_SHST_COMPLETE) {
1190 		NVME_CTRLR_ERRLOG(ctrlr, "likely due to shutdown handling in the VMWare emulated NVMe SSD\n");
1191 	}
1192 
1193 	return 0;
1194 }
1195 
1196 static inline uint64_t
1197 nvme_ctrlr_get_ready_timeout(struct spdk_nvme_ctrlr *ctrlr)
1198 {
1199 	return ctrlr->cap.bits.to * 500;
1200 }
1201 
1202 static void
1203 nvme_ctrlr_set_cc_en_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1204 {
1205 	struct spdk_nvme_ctrlr *ctrlr = ctx;
1206 
1207 	if (spdk_nvme_cpl_is_error(cpl)) {
1208 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to set the CC register\n");
1209 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1210 		return;
1211 	}
1212 
1213 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
1214 			     nvme_ctrlr_get_ready_timeout(ctrlr));
1215 }
1216 
1217 static int
1218 nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
1219 {
1220 	union spdk_nvme_cc_register	cc;
1221 	int				rc;
1222 
1223 	rc = nvme_transport_ctrlr_enable(ctrlr);
1224 	if (rc != 0) {
1225 		NVME_CTRLR_ERRLOG(ctrlr, "transport ctrlr_enable failed\n");
1226 		return rc;
1227 	}
1228 
1229 	cc.raw = ctrlr->process_init_cc.raw;
1230 	if (cc.bits.en != 0) {
1231 		NVME_CTRLR_ERRLOG(ctrlr, "called with CC.EN = 1\n");
1232 		return -EINVAL;
1233 	}
1234 
1235 	cc.bits.en = 1;
1236 	cc.bits.css = 0;
1237 	cc.bits.shn = 0;
1238 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
1239 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
1240 
1241 	/* Page size is 2 ^ (12 + mps). */
1242 	cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12;
1243 
1244 	/*
1245 	 * Since NVMe 1.0, a controller should have at least one bit set in CAP.CSS.
1246 	 * A controller that does not have any bit set in CAP.CSS is not spec compliant.
1247 	 * Try to support such a controller regardless.
1248 	 */
1249 	if (ctrlr->cap.bits.css == 0) {
1250 		NVME_CTRLR_INFOLOG(ctrlr, "Drive reports no command sets supported. Assuming NVM is supported.\n");
1251 		ctrlr->cap.bits.css = SPDK_NVME_CAP_CSS_NVM;
1252 	}
1253 
1254 	/*
1255 	 * If the user did not explicitly request a command set, or supplied a value larger than
1256 	 * what can be saved in CC.CSS, use the most reasonable default.
1257 	 */
1258 	if (ctrlr->opts.command_set >= CHAR_BIT) {
1259 		if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS) {
1260 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_IOCS;
1261 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NVM) {
1262 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1263 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NOIO) {
1264 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NOIO;
1265 		} else {
1266 			/* Invalid supported bits detected, falling back to NVM. */
1267 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1268 		}
1269 	}
1270 
1271 	/* Verify that the selected command set is supported by the controller. */
1272 	if (!(ctrlr->cap.bits.css & (1u << ctrlr->opts.command_set))) {
1273 		NVME_CTRLR_DEBUGLOG(ctrlr, "Requested I/O command set %u but supported mask is 0x%x\n",
1274 				    ctrlr->opts.command_set, ctrlr->cap.bits.css);
1275 		NVME_CTRLR_DEBUGLOG(ctrlr, "Falling back to NVM. Assuming NVM is supported.\n");
1276 		ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1277 	}
1278 
1279 	cc.bits.css = ctrlr->opts.command_set;
1280 
1281 	switch (ctrlr->opts.arb_mechanism) {
1282 	case SPDK_NVME_CC_AMS_RR:
1283 		break;
1284 	case SPDK_NVME_CC_AMS_WRR:
1285 		if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) {
1286 			break;
1287 		}
1288 		return -EINVAL;
1289 	case SPDK_NVME_CC_AMS_VS:
1290 		if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) {
1291 			break;
1292 		}
1293 		return -EINVAL;
1294 	default:
1295 		return -EINVAL;
1296 	}
1297 
1298 	cc.bits.ams = ctrlr->opts.arb_mechanism;
1299 	ctrlr->process_init_cc.raw = cc.raw;
1300 
1301 	if (nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_set_cc_en_done, ctrlr)) {
1302 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
1303 		return -EIO;
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 static const char *
1310 nvme_ctrlr_state_string(enum nvme_ctrlr_state state)
1311 {
1312 	switch (state) {
1313 	case NVME_CTRLR_STATE_INIT_DELAY:
1314 		return "delay init";
1315 	case NVME_CTRLR_STATE_CONNECT_ADMINQ:
1316 		return "connect adminq";
1317 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
1318 		return "wait for connect adminq";
1319 	case NVME_CTRLR_STATE_READ_VS:
1320 		return "read vs";
1321 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
1322 		return "read vs wait for vs";
1323 	case NVME_CTRLR_STATE_READ_CAP:
1324 		return "read cap";
1325 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
1326 		return "read cap wait for cap";
1327 	case NVME_CTRLR_STATE_CHECK_EN:
1328 		return "check en";
1329 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
1330 		return "check en wait for cc";
1331 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
1332 		return "disable and wait for CSTS.RDY = 1";
1333 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1334 		return "disable and wait for CSTS.RDY = 1 reg";
1335 	case NVME_CTRLR_STATE_SET_EN_0:
1336 		return "set CC.EN = 0";
1337 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
1338 		return "set CC.EN = 0 wait for cc";
1339 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
1340 		return "disable and wait for CSTS.RDY = 0";
1341 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
1342 		return "disable and wait for CSTS.RDY = 0 reg";
1343 	case NVME_CTRLR_STATE_DISABLED:
1344 		return "controller is disabled";
1345 	case NVME_CTRLR_STATE_ENABLE:
1346 		return "enable controller by writing CC.EN = 1";
1347 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
1348 		return "enable controller by writing CC.EN = 1 reg";
1349 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
1350 		return "wait for CSTS.RDY = 1";
1351 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1352 		return "wait for CSTS.RDY = 1 reg";
1353 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
1354 		return "reset admin queue";
1355 	case NVME_CTRLR_STATE_IDENTIFY:
1356 		return "identify controller";
1357 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
1358 		return "wait for identify controller";
1359 	case NVME_CTRLR_STATE_CONFIGURE_AER:
1360 		return "configure AER";
1361 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
1362 		return "wait for configure aer";
1363 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
1364 		return "set keep alive timeout";
1365 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
1366 		return "wait for set keep alive timeout";
1367 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
1368 		return "identify controller iocs specific";
1369 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
1370 		return "wait for identify controller iocs specific";
1371 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
1372 		return "get zns cmd and effects log page";
1373 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
1374 		return "wait for get zns cmd and effects log page";
1375 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
1376 		return "set number of queues";
1377 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
1378 		return "wait for set number of queues";
1379 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
1380 		return "identify active ns";
1381 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
1382 		return "wait for identify active ns";
1383 	case NVME_CTRLR_STATE_IDENTIFY_NS:
1384 		return "identify ns";
1385 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
1386 		return "wait for identify ns";
1387 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
1388 		return "identify namespace id descriptors";
1389 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
1390 		return "wait for identify namespace id descriptors";
1391 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
1392 		return "identify ns iocs specific";
1393 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
1394 		return "wait for identify ns iocs specific";
1395 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
1396 		return "set supported log pages";
1397 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
1398 		return "set supported INTEL log pages";
1399 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
1400 		return "wait for supported INTEL log pages";
1401 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
1402 		return "set supported features";
1403 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
1404 		return "set doorbell buffer config";
1405 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
1406 		return "wait for doorbell buffer config";
1407 	case NVME_CTRLR_STATE_SET_HOST_ID:
1408 		return "set host ID";
1409 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
1410 		return "wait for set host ID";
1411 	case NVME_CTRLR_STATE_READY:
1412 		return "ready";
1413 	case NVME_CTRLR_STATE_ERROR:
1414 		return "error";
1415 	}
1416 	return "unknown";
1417 };
1418 
1419 static void
1420 _nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1421 		      uint64_t timeout_in_ms, bool quiet)
1422 {
1423 	uint64_t ticks_per_ms, timeout_in_ticks, now_ticks;
1424 
1425 	ctrlr->state = state;
1426 	if (timeout_in_ms == NVME_TIMEOUT_KEEP_EXISTING) {
1427 		if (!quiet) {
1428 			NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (keeping existing timeout)\n",
1429 					    nvme_ctrlr_state_string(ctrlr->state));
1430 		}
1431 		return;
1432 	}
1433 
1434 	if (timeout_in_ms == NVME_TIMEOUT_INFINITE) {
1435 		goto inf;
1436 	}
1437 
1438 	ticks_per_ms = spdk_get_ticks_hz() / 1000;
1439 	if (timeout_in_ms > UINT64_MAX / ticks_per_ms) {
1440 		NVME_CTRLR_ERRLOG(ctrlr,
1441 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1442 		goto inf;
1443 	}
1444 
1445 	now_ticks = spdk_get_ticks();
1446 	timeout_in_ticks = timeout_in_ms * ticks_per_ms;
1447 	if (timeout_in_ticks > UINT64_MAX - now_ticks) {
1448 		NVME_CTRLR_ERRLOG(ctrlr,
1449 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1450 		goto inf;
1451 	}
1452 
1453 	ctrlr->state_timeout_tsc = timeout_in_ticks + now_ticks;
1454 	if (!quiet) {
1455 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (timeout %" PRIu64 " ms)\n",
1456 				    nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms);
1457 	}
1458 	return;
1459 inf:
1460 	if (!quiet) {
1461 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (no timeout)\n",
1462 				    nvme_ctrlr_state_string(ctrlr->state));
1463 	}
1464 	ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE;
1465 }
1466 
1467 static void
1468 nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1469 		     uint64_t timeout_in_ms)
1470 {
1471 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, false);
1472 }
1473 
1474 static void
1475 nvme_ctrlr_set_state_quiet(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1476 			   uint64_t timeout_in_ms)
1477 {
1478 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, true);
1479 }
1480 
1481 static void
1482 nvme_ctrlr_free_zns_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1483 {
1484 	spdk_free(ctrlr->cdata_zns);
1485 	ctrlr->cdata_zns = NULL;
1486 }
1487 
1488 static void
1489 nvme_ctrlr_free_iocs_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1490 {
1491 	nvme_ctrlr_free_zns_specific_data(ctrlr);
1492 }
1493 
1494 static void
1495 nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr)
1496 {
1497 	if (ctrlr->shadow_doorbell) {
1498 		spdk_free(ctrlr->shadow_doorbell);
1499 		ctrlr->shadow_doorbell = NULL;
1500 	}
1501 
1502 	if (ctrlr->eventidx) {
1503 		spdk_free(ctrlr->eventidx);
1504 		ctrlr->eventidx = NULL;
1505 	}
1506 }
1507 
1508 static void
1509 nvme_ctrlr_set_doorbell_buffer_config_done(void *arg, const struct spdk_nvme_cpl *cpl)
1510 {
1511 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1512 
1513 	if (spdk_nvme_cpl_is_error(cpl)) {
1514 		NVME_CTRLR_WARNLOG(ctrlr, "Doorbell buffer config failed\n");
1515 	} else {
1516 		NVME_CTRLR_INFOLOG(ctrlr, "Doorbell buffer config enabled\n");
1517 	}
1518 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1519 			     ctrlr->opts.admin_timeout_ms);
1520 }
1521 
1522 static int
1523 nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr)
1524 {
1525 	int rc = 0;
1526 	uint64_t prp1, prp2, len;
1527 
1528 	if (!ctrlr->cdata.oacs.doorbell_buffer_config) {
1529 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1530 				     ctrlr->opts.admin_timeout_ms);
1531 		return 0;
1532 	}
1533 
1534 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
1535 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1536 				     ctrlr->opts.admin_timeout_ms);
1537 		return 0;
1538 	}
1539 
1540 	/* only 1 page size for doorbell buffer */
1541 	ctrlr->shadow_doorbell = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1542 					      NULL, SPDK_ENV_LCORE_ID_ANY,
1543 					      SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1544 	if (ctrlr->shadow_doorbell == NULL) {
1545 		rc = -ENOMEM;
1546 		goto error;
1547 	}
1548 
1549 	len = ctrlr->page_size;
1550 	prp1 = spdk_vtophys(ctrlr->shadow_doorbell, &len);
1551 	if (prp1 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1552 		rc = -EFAULT;
1553 		goto error;
1554 	}
1555 
1556 	ctrlr->eventidx = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1557 				       NULL, SPDK_ENV_LCORE_ID_ANY,
1558 				       SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1559 	if (ctrlr->eventidx == NULL) {
1560 		rc = -ENOMEM;
1561 		goto error;
1562 	}
1563 
1564 	len = ctrlr->page_size;
1565 	prp2 = spdk_vtophys(ctrlr->eventidx, &len);
1566 	if (prp2 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1567 		rc = -EFAULT;
1568 		goto error;
1569 	}
1570 
1571 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG,
1572 			     ctrlr->opts.admin_timeout_ms);
1573 
1574 	rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2,
1575 			nvme_ctrlr_set_doorbell_buffer_config_done, ctrlr);
1576 	if (rc != 0) {
1577 		goto error;
1578 	}
1579 
1580 	return 0;
1581 
1582 error:
1583 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1584 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1585 	return rc;
1586 }
1587 
1588 void
1589 nvme_ctrlr_abort_queued_aborts(struct spdk_nvme_ctrlr *ctrlr)
1590 {
1591 	struct nvme_request	*req, *tmp;
1592 	struct spdk_nvme_cpl	cpl = {};
1593 
1594 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
1595 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
1596 
1597 	STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) {
1598 		STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq);
1599 		ctrlr->outstanding_aborts++;
1600 
1601 		nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, &cpl);
1602 		nvme_free_request(req);
1603 	}
1604 }
1605 
1606 static int
1607 nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1608 {
1609 	if (ctrlr->is_resetting || ctrlr->is_removed) {
1610 		/*
1611 		 * Controller is already resetting or has been removed. Return
1612 		 *  immediately since there is no need to kick off another
1613 		 *  reset in these cases.
1614 		 */
1615 		return ctrlr->is_resetting ? -EBUSY : -ENXIO;
1616 	}
1617 
1618 	ctrlr->is_resetting = true;
1619 	ctrlr->is_failed = false;
1620 	ctrlr->is_disconnecting = true;
1621 	ctrlr->prepare_for_reset = true;
1622 
1623 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting controller\n");
1624 
1625 	/* Disable keep-alive, it'll be re-enabled as part of the init process */
1626 	ctrlr->keep_alive_interval_ticks = 0;
1627 
1628 	/* Abort all of the queued abort requests */
1629 	nvme_ctrlr_abort_queued_aborts(ctrlr);
1630 
1631 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
1632 
1633 	ctrlr->adminq->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1634 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1635 
1636 	return 0;
1637 }
1638 
1639 static void
1640 nvme_ctrlr_disconnect_done(struct spdk_nvme_ctrlr *ctrlr)
1641 {
1642 	assert(ctrlr->is_failed == false);
1643 	ctrlr->is_disconnecting = false;
1644 
1645 	/* Doorbell buffer config is invalid during reset */
1646 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1647 
1648 	/* I/O Command Set Specific Identify Controller data is invalidated during reset */
1649 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
1650 
1651 	spdk_bit_array_free(&ctrlr->free_io_qids);
1652 }
1653 
1654 int
1655 spdk_nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1656 {
1657 	int rc;
1658 
1659 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1660 	rc = nvme_ctrlr_disconnect(ctrlr);
1661 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1662 
1663 	return rc;
1664 }
1665 
1666 void
1667 spdk_nvme_ctrlr_reconnect_async(struct spdk_nvme_ctrlr *ctrlr)
1668 {
1669 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1670 
1671 	ctrlr->prepare_for_reset = false;
1672 
1673 	/* Set the state back to INIT to cause a full hardware reset. */
1674 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
1675 
1676 	/* Return without releasing ctrlr_lock. ctrlr_lock will be released when
1677 	 * spdk_nvme_ctrlr_reset_poll_async() returns 0.
1678 	 */
1679 }
1680 
1681 /**
1682  * This function will be called when the controller is being reinitialized.
1683  * Note: the ctrlr_lock must be held when calling this function.
1684  */
1685 int
1686 spdk_nvme_ctrlr_reconnect_poll_async(struct spdk_nvme_ctrlr *ctrlr)
1687 {
1688 	struct spdk_nvme_ns *ns, *tmp_ns;
1689 	struct spdk_nvme_qpair	*qpair;
1690 	int rc = 0, rc_tmp = 0;
1691 	bool async;
1692 
1693 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1694 		NVME_CTRLR_ERRLOG(ctrlr, "controller reinitialization failed\n");
1695 		rc = -1;
1696 	}
1697 	if (ctrlr->state != NVME_CTRLR_STATE_READY && rc != -1) {
1698 		return -EAGAIN;
1699 	}
1700 
1701 	/*
1702 	 * For non-fabrics controllers, the memory locations of the transport qpair
1703 	 * don't change when the controller is reset. They simply need to be
1704 	 * re-enabled with admin commands to the controller. For fabric
1705 	 * controllers we need to disconnect and reconnect the qpair on its
1706 	 * own thread outside of the context of the reset.
1707 	 */
1708 	if (rc == 0 && !spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
1709 		/* Reinitialize qpairs */
1710 		TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1711 			assert(spdk_bit_array_get(ctrlr->free_io_qids, qpair->id));
1712 			spdk_bit_array_clear(ctrlr->free_io_qids, qpair->id);
1713 
1714 			/* Force a synchronous connect. We can't currently handle an asynchronous
1715 			 * operation here. */
1716 			async = qpair->async;
1717 			qpair->async = false;
1718 			rc_tmp = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
1719 			qpair->async = async;
1720 
1721 			if (rc_tmp != 0) {
1722 				rc = rc_tmp;
1723 				qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1724 				continue;
1725 			}
1726 		}
1727 	}
1728 
1729 	/*
1730 	 * Take this opportunity to remove inactive namespaces. During a reset namespace
1731 	 * handles can be invalidated.
1732 	 */
1733 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
1734 		if (!ns->active) {
1735 			RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
1736 			spdk_free(ns);
1737 		}
1738 	}
1739 
1740 	if (rc) {
1741 		nvme_ctrlr_fail(ctrlr, false);
1742 	}
1743 	ctrlr->is_resetting = false;
1744 
1745 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1746 
1747 	if (!ctrlr->cdata.oaes.ns_attribute_notices) {
1748 		/*
1749 		 * If controller doesn't support ns_attribute_notices and
1750 		 * namespace attributes change (e.g. number of namespaces)
1751 		 * we need to update system handling device reset.
1752 		 */
1753 		nvme_io_msg_ctrlr_update(ctrlr);
1754 	}
1755 
1756 	return rc;
1757 }
1758 
1759 /*
1760  * For PCIe transport, spdk_nvme_ctrlr_disconnect() will do a Controller Level Reset
1761  * (Change CC.EN from 1 to 0) as a operation to disconnect the admin qpair.
1762  * The following two functions are added to do a Controller Level Reset. They have
1763  * to be called under the nvme controller's lock.
1764  */
1765 void
1766 nvme_ctrlr_disable(struct spdk_nvme_ctrlr *ctrlr)
1767 {
1768 	assert(ctrlr->is_disconnecting == true);
1769 
1770 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
1771 }
1772 
1773 int
1774 nvme_ctrlr_disable_poll(struct spdk_nvme_ctrlr *ctrlr)
1775 {
1776 	int rc = 0;
1777 
1778 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1779 		NVME_CTRLR_ERRLOG(ctrlr, "failed to disable controller\n");
1780 		rc = -1;
1781 	}
1782 
1783 	if (ctrlr->state != NVME_CTRLR_STATE_DISABLED && rc != -1) {
1784 		return -EAGAIN;
1785 	}
1786 
1787 	return rc;
1788 }
1789 
1790 static void
1791 nvme_ctrlr_fail_io_qpairs(struct spdk_nvme_ctrlr *ctrlr)
1792 {
1793 	struct spdk_nvme_qpair	*qpair;
1794 
1795 	TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1796 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1797 	}
1798 }
1799 
1800 int
1801 spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr)
1802 {
1803 	int rc;
1804 
1805 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1806 
1807 	rc = nvme_ctrlr_disconnect(ctrlr);
1808 	if (rc == 0) {
1809 		nvme_ctrlr_fail_io_qpairs(ctrlr);
1810 	}
1811 
1812 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1813 
1814 	if (rc != 0) {
1815 		if (rc == -EBUSY) {
1816 			rc = 0;
1817 		}
1818 		return rc;
1819 	}
1820 
1821 	while (1) {
1822 		rc = spdk_nvme_ctrlr_process_admin_completions(ctrlr);
1823 		if (rc == -ENXIO) {
1824 			break;
1825 		}
1826 	}
1827 
1828 	spdk_nvme_ctrlr_reconnect_async(ctrlr);
1829 
1830 	while (true) {
1831 		rc = spdk_nvme_ctrlr_reconnect_poll_async(ctrlr);
1832 		if (rc != -EAGAIN) {
1833 			break;
1834 		}
1835 	}
1836 
1837 	return rc;
1838 }
1839 
1840 void
1841 spdk_nvme_ctrlr_prepare_for_reset(struct spdk_nvme_ctrlr *ctrlr)
1842 {
1843 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1844 	ctrlr->prepare_for_reset = true;
1845 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1846 }
1847 
1848 int
1849 spdk_nvme_ctrlr_reset_subsystem(struct spdk_nvme_ctrlr *ctrlr)
1850 {
1851 	union spdk_nvme_cap_register cap;
1852 	int rc = 0;
1853 
1854 	cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr);
1855 	if (cap.bits.nssrs == 0) {
1856 		NVME_CTRLR_WARNLOG(ctrlr, "subsystem reset is not supported\n");
1857 		return -ENOTSUP;
1858 	}
1859 
1860 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting subsystem\n");
1861 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1862 	ctrlr->is_resetting = true;
1863 	rc = nvme_ctrlr_set_nssr(ctrlr, SPDK_NVME_NSSR_VALUE);
1864 	ctrlr->is_resetting = false;
1865 
1866 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1867 	/*
1868 	 * No more cleanup at this point like in the ctrlr reset. A subsystem reset will cause
1869 	 * a hot remove for PCIe transport. The hot remove handling does all the necessary ctrlr cleanup.
1870 	 */
1871 	return rc;
1872 }
1873 
1874 int
1875 spdk_nvme_ctrlr_set_trid(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_transport_id *trid)
1876 {
1877 	int rc = 0;
1878 
1879 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1880 
1881 	if (ctrlr->is_failed == false) {
1882 		rc = -EPERM;
1883 		goto out;
1884 	}
1885 
1886 	if (trid->trtype != ctrlr->trid.trtype) {
1887 		rc = -EINVAL;
1888 		goto out;
1889 	}
1890 
1891 	if (strncmp(trid->subnqn, ctrlr->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
1892 		rc = -EINVAL;
1893 		goto out;
1894 	}
1895 
1896 	ctrlr->trid = *trid;
1897 
1898 out:
1899 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1900 	return rc;
1901 }
1902 
1903 void
1904 spdk_nvme_ctrlr_set_remove_cb(struct spdk_nvme_ctrlr *ctrlr,
1905 			      spdk_nvme_remove_cb remove_cb, void *remove_ctx)
1906 {
1907 	if (!spdk_process_is_primary()) {
1908 		return;
1909 	}
1910 
1911 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1912 	ctrlr->remove_cb = remove_cb;
1913 	ctrlr->cb_ctx = remove_ctx;
1914 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1915 }
1916 
1917 static void
1918 nvme_ctrlr_identify_done(void *arg, const struct spdk_nvme_cpl *cpl)
1919 {
1920 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1921 
1922 	if (spdk_nvme_cpl_is_error(cpl)) {
1923 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_identify_controller failed!\n");
1924 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1925 		return;
1926 	}
1927 
1928 	/*
1929 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
1930 	 *  controller supports.
1931 	 */
1932 	ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr);
1933 	NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_xfer_size %u\n", ctrlr->max_xfer_size);
1934 	if (ctrlr->cdata.mdts > 0) {
1935 		ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size,
1936 						ctrlr->min_page_size * (1 << ctrlr->cdata.mdts));
1937 		NVME_CTRLR_DEBUGLOG(ctrlr, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size);
1938 	}
1939 
1940 	NVME_CTRLR_DEBUGLOG(ctrlr, "CNTLID 0x%04" PRIx16 "\n", ctrlr->cdata.cntlid);
1941 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
1942 		ctrlr->cntlid = ctrlr->cdata.cntlid;
1943 	} else {
1944 		/*
1945 		 * Fabrics controllers should already have CNTLID from the Connect command.
1946 		 *
1947 		 * If CNTLID from Connect doesn't match CNTLID in the Identify Controller data,
1948 		 * trust the one from Connect.
1949 		 */
1950 		if (ctrlr->cntlid != ctrlr->cdata.cntlid) {
1951 			NVME_CTRLR_DEBUGLOG(ctrlr, "Identify CNTLID 0x%04" PRIx16 " != Connect CNTLID 0x%04" PRIx16 "\n",
1952 					    ctrlr->cdata.cntlid, ctrlr->cntlid);
1953 		}
1954 	}
1955 
1956 	if (ctrlr->cdata.sgls.supported && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
1957 		assert(ctrlr->cdata.sgls.supported != 0x3);
1958 		ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
1959 		if (ctrlr->cdata.sgls.supported == 0x2) {
1960 			ctrlr->flags |= SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT;
1961 		}
1962 
1963 		ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr);
1964 		NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_sges %u\n", ctrlr->max_sges);
1965 	}
1966 
1967 	if (ctrlr->cdata.oacs.security && !(ctrlr->quirks & NVME_QUIRK_OACS_SECURITY)) {
1968 		ctrlr->flags |= SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED;
1969 	}
1970 
1971 	if (ctrlr->cdata.oacs.directives) {
1972 		ctrlr->flags |= SPDK_NVME_CTRLR_DIRECTIVES_SUPPORTED;
1973 	}
1974 
1975 	NVME_CTRLR_DEBUGLOG(ctrlr, "fuses compare and write: %d\n",
1976 			    ctrlr->cdata.fuses.compare_and_write);
1977 	if (ctrlr->cdata.fuses.compare_and_write) {
1978 		ctrlr->flags |= SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED;
1979 	}
1980 
1981 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
1982 			     ctrlr->opts.admin_timeout_ms);
1983 }
1984 
1985 static int
1986 nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr)
1987 {
1988 	int	rc;
1989 
1990 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY,
1991 			     ctrlr->opts.admin_timeout_ms);
1992 
1993 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, 0,
1994 				     &ctrlr->cdata, sizeof(ctrlr->cdata),
1995 				     nvme_ctrlr_identify_done, ctrlr);
1996 	if (rc != 0) {
1997 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1998 		return rc;
1999 	}
2000 
2001 	return 0;
2002 }
2003 
2004 static void
2005 nvme_ctrlr_get_zns_cmd_and_effects_log_done(void *arg, const struct spdk_nvme_cpl *cpl)
2006 {
2007 	struct spdk_nvme_cmds_and_effect_log_page *log_page;
2008 	struct spdk_nvme_ctrlr *ctrlr = arg;
2009 
2010 	if (spdk_nvme_cpl_is_error(cpl)) {
2011 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_get_zns_cmd_and_effects_log failed!\n");
2012 		spdk_free(ctrlr->tmp_ptr);
2013 		ctrlr->tmp_ptr = NULL;
2014 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2015 		return;
2016 	}
2017 
2018 	log_page = ctrlr->tmp_ptr;
2019 
2020 	if (log_page->io_cmds_supported[SPDK_NVME_OPC_ZONE_APPEND].csupp) {
2021 		ctrlr->flags |= SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2022 	}
2023 	spdk_free(ctrlr->tmp_ptr);
2024 	ctrlr->tmp_ptr = NULL;
2025 
2026 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES, ctrlr->opts.admin_timeout_ms);
2027 }
2028 
2029 static int
2030 nvme_ctrlr_get_zns_cmd_and_effects_log(struct spdk_nvme_ctrlr *ctrlr)
2031 {
2032 	int rc;
2033 
2034 	assert(!ctrlr->tmp_ptr);
2035 	ctrlr->tmp_ptr = spdk_zmalloc(sizeof(struct spdk_nvme_cmds_and_effect_log_page), 64, NULL,
2036 				      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2037 	if (!ctrlr->tmp_ptr) {
2038 		rc = -ENOMEM;
2039 		goto error;
2040 	}
2041 
2042 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG,
2043 			     ctrlr->opts.admin_timeout_ms);
2044 
2045 	rc = spdk_nvme_ctrlr_cmd_get_log_page_ext(ctrlr, SPDK_NVME_LOG_COMMAND_EFFECTS_LOG,
2046 			0, ctrlr->tmp_ptr, sizeof(struct spdk_nvme_cmds_and_effect_log_page),
2047 			0, 0, 0, SPDK_NVME_CSI_ZNS << 24,
2048 			nvme_ctrlr_get_zns_cmd_and_effects_log_done, ctrlr);
2049 	if (rc != 0) {
2050 		goto error;
2051 	}
2052 
2053 	return 0;
2054 
2055 error:
2056 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2057 	spdk_free(ctrlr->tmp_ptr);
2058 	ctrlr->tmp_ptr = NULL;
2059 	return rc;
2060 }
2061 
2062 static void
2063 nvme_ctrlr_identify_zns_specific_done(void *arg, const struct spdk_nvme_cpl *cpl)
2064 {
2065 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2066 
2067 	if (spdk_nvme_cpl_is_error(cpl)) {
2068 		/* no need to print an error, the controller simply does not support ZNS */
2069 		nvme_ctrlr_free_zns_specific_data(ctrlr);
2070 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2071 				     ctrlr->opts.admin_timeout_ms);
2072 		return;
2073 	}
2074 
2075 	/* A zero zasl value means use mdts */
2076 	if (ctrlr->cdata_zns->zasl) {
2077 		uint32_t max_append = ctrlr->min_page_size * (1 << ctrlr->cdata_zns->zasl);
2078 		ctrlr->max_zone_append_size = spdk_min(ctrlr->max_xfer_size, max_append);
2079 	} else {
2080 		ctrlr->max_zone_append_size = ctrlr->max_xfer_size;
2081 	}
2082 
2083 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG,
2084 			     ctrlr->opts.admin_timeout_ms);
2085 }
2086 
2087 /**
2088  * This function will try to fetch the I/O Command Specific Controller data structure for
2089  * each I/O Command Set supported by SPDK.
2090  *
2091  * If an I/O Command Set is not supported by the controller, "Invalid Field in Command"
2092  * will be returned. Since we are fetching in a exploratively way, getting an error back
2093  * from the controller should not be treated as fatal.
2094  *
2095  * I/O Command Sets not supported by SPDK will be skipped (e.g. Key Value Command Set).
2096  *
2097  * I/O Command Sets without a IOCS specific data structure (i.e. a zero-filled IOCS specific
2098  * data structure) will be skipped (e.g. NVM Command Set, Key Value Command Set).
2099  */
2100 static int
2101 nvme_ctrlr_identify_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2102 {
2103 	int	rc;
2104 
2105 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2106 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2107 				     ctrlr->opts.admin_timeout_ms);
2108 		return 0;
2109 	}
2110 
2111 	/*
2112 	 * Since SPDK currently only needs to fetch a single Command Set, keep the code here,
2113 	 * instead of creating multiple NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC substates,
2114 	 * which would require additional functions and complexity for no good reason.
2115 	 */
2116 	assert(!ctrlr->cdata_zns);
2117 	ctrlr->cdata_zns = spdk_zmalloc(sizeof(*ctrlr->cdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
2118 					SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2119 	if (!ctrlr->cdata_zns) {
2120 		rc = -ENOMEM;
2121 		goto error;
2122 	}
2123 
2124 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC,
2125 			     ctrlr->opts.admin_timeout_ms);
2126 
2127 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR_IOCS, 0, 0, SPDK_NVME_CSI_ZNS,
2128 				     ctrlr->cdata_zns, sizeof(*ctrlr->cdata_zns),
2129 				     nvme_ctrlr_identify_zns_specific_done, ctrlr);
2130 	if (rc != 0) {
2131 		goto error;
2132 	}
2133 
2134 	return 0;
2135 
2136 error:
2137 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2138 	nvme_ctrlr_free_zns_specific_data(ctrlr);
2139 	return rc;
2140 }
2141 
2142 enum nvme_active_ns_state {
2143 	NVME_ACTIVE_NS_STATE_IDLE,
2144 	NVME_ACTIVE_NS_STATE_PROCESSING,
2145 	NVME_ACTIVE_NS_STATE_DONE,
2146 	NVME_ACTIVE_NS_STATE_ERROR
2147 };
2148 
2149 typedef void (*nvme_active_ns_ctx_deleter)(struct nvme_active_ns_ctx *);
2150 
2151 struct nvme_active_ns_ctx {
2152 	struct spdk_nvme_ctrlr *ctrlr;
2153 	uint32_t page_count;
2154 	uint32_t next_nsid;
2155 	uint32_t *new_ns_list;
2156 	nvme_active_ns_ctx_deleter deleter;
2157 
2158 	enum nvme_active_ns_state state;
2159 };
2160 
2161 static struct nvme_active_ns_ctx *
2162 nvme_active_ns_ctx_create(struct spdk_nvme_ctrlr *ctrlr, nvme_active_ns_ctx_deleter deleter)
2163 {
2164 	struct nvme_active_ns_ctx *ctx;
2165 	uint32_t *new_ns_list = NULL;
2166 
2167 	ctx = calloc(1, sizeof(*ctx));
2168 	if (!ctx) {
2169 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate nvme_active_ns_ctx!\n");
2170 		return NULL;
2171 	}
2172 
2173 	new_ns_list = spdk_zmalloc(sizeof(struct spdk_nvme_ns_list), ctrlr->page_size,
2174 				   NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_SHARE);
2175 	if (!new_ns_list) {
2176 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate active_ns_list!\n");
2177 		free(ctx);
2178 		return NULL;
2179 	}
2180 
2181 	ctx->page_count = 1;
2182 	ctx->new_ns_list = new_ns_list;
2183 	ctx->ctrlr = ctrlr;
2184 	ctx->deleter = deleter;
2185 
2186 	return ctx;
2187 }
2188 
2189 static void
2190 nvme_active_ns_ctx_destroy(struct nvme_active_ns_ctx *ctx)
2191 {
2192 	spdk_free(ctx->new_ns_list);
2193 	free(ctx);
2194 }
2195 
2196 static int
2197 nvme_ctrlr_destruct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2198 {
2199 	struct spdk_nvme_ns tmp, *ns;
2200 
2201 	assert(ctrlr != NULL);
2202 
2203 	tmp.id = nsid;
2204 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
2205 	if (ns == NULL) {
2206 		return -EINVAL;
2207 	}
2208 
2209 	nvme_ns_destruct(ns);
2210 	ns->active = false;
2211 
2212 	return 0;
2213 }
2214 
2215 static int
2216 nvme_ctrlr_construct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2217 {
2218 	struct spdk_nvme_ns *ns;
2219 
2220 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
2221 		return -EINVAL;
2222 	}
2223 
2224 	/* Namespaces are constructed on demand, so simply request it. */
2225 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2226 	if (ns == NULL) {
2227 		return -ENOMEM;
2228 	}
2229 
2230 	ns->active = true;
2231 
2232 	return 0;
2233 }
2234 
2235 static void
2236 nvme_ctrlr_identify_active_ns_swap(struct spdk_nvme_ctrlr *ctrlr, uint32_t *new_ns_list,
2237 				   size_t max_entries)
2238 {
2239 	uint32_t active_ns_count = 0;
2240 	size_t i;
2241 	uint32_t nsid;
2242 	struct spdk_nvme_ns *ns, *tmp_ns;
2243 	int rc;
2244 
2245 	/* First, remove namespaces that no longer exist */
2246 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
2247 		nsid = new_ns_list[0];
2248 		active_ns_count = 0;
2249 		while (nsid != 0) {
2250 			if (nsid == ns->id) {
2251 				break;
2252 			}
2253 
2254 			nsid = new_ns_list[active_ns_count++];
2255 		}
2256 
2257 		if (nsid != ns->id) {
2258 			/* Did not find this namespace id in the new list. */
2259 			NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was removed\n", ns->id);
2260 			nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
2261 		}
2262 	}
2263 
2264 	/* Next, add new namespaces */
2265 	active_ns_count = 0;
2266 	for (i = 0; i < max_entries; i++) {
2267 		nsid = new_ns_list[active_ns_count];
2268 
2269 		if (nsid == 0) {
2270 			break;
2271 		}
2272 
2273 		/* If the namespace already exists, this will not construct it a second time. */
2274 		rc = nvme_ctrlr_construct_namespace(ctrlr, nsid);
2275 		if (rc != 0) {
2276 			/* We can't easily handle a failure here. But just move on. */
2277 			assert(false);
2278 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to allocate a namespace object.\n");
2279 			continue;
2280 		}
2281 
2282 		active_ns_count++;
2283 	}
2284 
2285 	ctrlr->active_ns_count = active_ns_count;
2286 }
2287 
2288 static void
2289 nvme_ctrlr_identify_active_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2290 {
2291 	struct nvme_active_ns_ctx *ctx = arg;
2292 	uint32_t *new_ns_list = NULL;
2293 
2294 	if (spdk_nvme_cpl_is_error(cpl)) {
2295 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2296 		goto out;
2297 	}
2298 
2299 	ctx->next_nsid = ctx->new_ns_list[1024 * ctx->page_count - 1];
2300 	if (ctx->next_nsid == 0) {
2301 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2302 		goto out;
2303 	}
2304 
2305 	ctx->page_count++;
2306 	new_ns_list = spdk_realloc(ctx->new_ns_list,
2307 				   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2308 				   ctx->ctrlr->page_size);
2309 	if (!new_ns_list) {
2310 		SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2311 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2312 		goto out;
2313 	}
2314 
2315 	ctx->new_ns_list = new_ns_list;
2316 	nvme_ctrlr_identify_active_ns_async(ctx);
2317 	return;
2318 
2319 out:
2320 	if (ctx->deleter) {
2321 		ctx->deleter(ctx);
2322 	}
2323 }
2324 
2325 static void
2326 nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx)
2327 {
2328 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2329 	uint32_t i;
2330 	int rc;
2331 
2332 	if (ctrlr->cdata.nn == 0) {
2333 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2334 		goto out;
2335 	}
2336 
2337 	assert(ctx->new_ns_list != NULL);
2338 
2339 	/*
2340 	 * If controller doesn't support active ns list CNS 0x02 dummy up
2341 	 * an active ns list, i.e. all namespaces report as active
2342 	 */
2343 	if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 1, 0) || ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS) {
2344 		uint32_t *new_ns_list;
2345 
2346 		/*
2347 		 * Active NS list must always end with zero element.
2348 		 * So, we allocate for cdata.nn+1.
2349 		 */
2350 		ctx->page_count = spdk_divide_round_up(ctrlr->cdata.nn + 1,
2351 						       sizeof(struct spdk_nvme_ns_list) / sizeof(new_ns_list[0]));
2352 		new_ns_list = spdk_realloc(ctx->new_ns_list,
2353 					   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2354 					   ctx->ctrlr->page_size);
2355 		if (!new_ns_list) {
2356 			SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2357 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2358 			goto out;
2359 		}
2360 
2361 		ctx->new_ns_list = new_ns_list;
2362 		ctx->new_ns_list[ctrlr->cdata.nn] = 0;
2363 		for (i = 0; i < ctrlr->cdata.nn; i++) {
2364 			ctx->new_ns_list[i] = i + 1;
2365 		}
2366 
2367 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2368 		goto out;
2369 	}
2370 
2371 	ctx->state = NVME_ACTIVE_NS_STATE_PROCESSING;
2372 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, ctx->next_nsid, 0,
2373 				     &ctx->new_ns_list[1024 * (ctx->page_count - 1)], sizeof(struct spdk_nvme_ns_list),
2374 				     nvme_ctrlr_identify_active_ns_async_done, ctx);
2375 	if (rc != 0) {
2376 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2377 		goto out;
2378 	}
2379 
2380 	return;
2381 
2382 out:
2383 	if (ctx->deleter) {
2384 		ctx->deleter(ctx);
2385 	}
2386 }
2387 
2388 static void
2389 _nvme_active_ns_ctx_deleter(struct nvme_active_ns_ctx *ctx)
2390 {
2391 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2392 	struct spdk_nvme_ns *ns;
2393 
2394 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2395 		nvme_active_ns_ctx_destroy(ctx);
2396 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2397 		return;
2398 	}
2399 
2400 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2401 
2402 	RB_FOREACH(ns, nvme_ns_tree, &ctrlr->ns) {
2403 		nvme_ns_free_iocs_specific_data(ns);
2404 	}
2405 
2406 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2407 	nvme_active_ns_ctx_destroy(ctx);
2408 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS, ctrlr->opts.admin_timeout_ms);
2409 }
2410 
2411 static void
2412 _nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2413 {
2414 	struct nvme_active_ns_ctx *ctx;
2415 
2416 	ctx = nvme_active_ns_ctx_create(ctrlr, _nvme_active_ns_ctx_deleter);
2417 	if (!ctx) {
2418 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2419 		return;
2420 	}
2421 
2422 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS,
2423 			     ctrlr->opts.admin_timeout_ms);
2424 	nvme_ctrlr_identify_active_ns_async(ctx);
2425 }
2426 
2427 int
2428 nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2429 {
2430 	struct nvme_active_ns_ctx *ctx;
2431 	int rc;
2432 
2433 	ctx = nvme_active_ns_ctx_create(ctrlr, NULL);
2434 	if (!ctx) {
2435 		return -ENOMEM;
2436 	}
2437 
2438 	nvme_ctrlr_identify_active_ns_async(ctx);
2439 	while (ctx->state == NVME_ACTIVE_NS_STATE_PROCESSING) {
2440 		rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2441 		if (rc < 0) {
2442 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2443 			break;
2444 		}
2445 	}
2446 
2447 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2448 		nvme_active_ns_ctx_destroy(ctx);
2449 		return -ENXIO;
2450 	}
2451 
2452 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2453 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2454 	nvme_active_ns_ctx_destroy(ctx);
2455 
2456 	return 0;
2457 }
2458 
2459 static void
2460 nvme_ctrlr_identify_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2461 {
2462 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2463 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2464 	uint32_t nsid;
2465 	int rc;
2466 
2467 	if (spdk_nvme_cpl_is_error(cpl)) {
2468 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2469 		return;
2470 	}
2471 
2472 	nvme_ns_set_identify_data(ns);
2473 
2474 	/* move on to the next active NS */
2475 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2476 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2477 	if (ns == NULL) {
2478 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2479 				     ctrlr->opts.admin_timeout_ms);
2480 		return;
2481 	}
2482 	ns->ctrlr = ctrlr;
2483 	ns->id = nsid;
2484 
2485 	rc = nvme_ctrlr_identify_ns_async(ns);
2486 	if (rc) {
2487 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2488 	}
2489 }
2490 
2491 static int
2492 nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns)
2493 {
2494 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2495 	struct spdk_nvme_ns_data *nsdata;
2496 
2497 	nsdata = &ns->nsdata;
2498 
2499 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS,
2500 			     ctrlr->opts.admin_timeout_ms);
2501 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS, 0, ns->id, 0,
2502 				       nsdata, sizeof(*nsdata),
2503 				       nvme_ctrlr_identify_ns_async_done, ns);
2504 }
2505 
2506 static int
2507 nvme_ctrlr_identify_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2508 {
2509 	uint32_t nsid;
2510 	struct spdk_nvme_ns *ns;
2511 	int rc;
2512 
2513 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2514 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2515 	if (ns == NULL) {
2516 		/* No active NS, move on to the next state */
2517 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2518 				     ctrlr->opts.admin_timeout_ms);
2519 		return 0;
2520 	}
2521 
2522 	ns->ctrlr = ctrlr;
2523 	ns->id = nsid;
2524 
2525 	rc = nvme_ctrlr_identify_ns_async(ns);
2526 	if (rc) {
2527 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2528 	}
2529 
2530 	return rc;
2531 }
2532 
2533 static int
2534 nvme_ctrlr_identify_namespaces_iocs_specific_next(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
2535 {
2536 	uint32_t nsid;
2537 	struct spdk_nvme_ns *ns;
2538 	int rc;
2539 
2540 	if (!prev_nsid) {
2541 		nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2542 	} else {
2543 		/* move on to the next active NS */
2544 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, prev_nsid);
2545 	}
2546 
2547 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2548 	if (ns == NULL) {
2549 		/* No first/next active NS, move on to the next state */
2550 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2551 				     ctrlr->opts.admin_timeout_ms);
2552 		return 0;
2553 	}
2554 
2555 	/* loop until we find a ns which has (supported) iocs specific data */
2556 	while (!nvme_ns_has_supported_iocs_specific_data(ns)) {
2557 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2558 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2559 		if (ns == NULL) {
2560 			/* no namespace with (supported) iocs specific data found */
2561 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2562 					     ctrlr->opts.admin_timeout_ms);
2563 			return 0;
2564 		}
2565 	}
2566 
2567 	rc = nvme_ctrlr_identify_ns_iocs_specific_async(ns);
2568 	if (rc) {
2569 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2570 	}
2571 
2572 	return rc;
2573 }
2574 
2575 static void
2576 nvme_ctrlr_identify_ns_zns_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2577 {
2578 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2579 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2580 
2581 	if (spdk_nvme_cpl_is_error(cpl)) {
2582 		nvme_ns_free_zns_specific_data(ns);
2583 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2584 		return;
2585 	}
2586 
2587 	nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2588 }
2589 
2590 static int
2591 nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns)
2592 {
2593 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2594 	int rc;
2595 
2596 	switch (ns->csi) {
2597 	case SPDK_NVME_CSI_ZNS:
2598 		break;
2599 	default:
2600 		/*
2601 		 * This switch must handle all cases for which
2602 		 * nvme_ns_has_supported_iocs_specific_data() returns true,
2603 		 * other cases should never happen.
2604 		 */
2605 		assert(0);
2606 	}
2607 
2608 	assert(!ns->nsdata_zns);
2609 	ns->nsdata_zns = spdk_zmalloc(sizeof(*ns->nsdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
2610 				      SPDK_MALLOC_SHARE);
2611 	if (!ns->nsdata_zns) {
2612 		return -ENOMEM;
2613 	}
2614 
2615 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2616 			     ctrlr->opts.admin_timeout_ms);
2617 	rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2618 				     ns->nsdata_zns, sizeof(*ns->nsdata_zns),
2619 				     nvme_ctrlr_identify_ns_zns_specific_async_done, ns);
2620 	if (rc) {
2621 		nvme_ns_free_zns_specific_data(ns);
2622 	}
2623 
2624 	return rc;
2625 }
2626 
2627 static int
2628 nvme_ctrlr_identify_namespaces_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2629 {
2630 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2631 		/* Multi IOCS not supported/enabled, move on to the next state */
2632 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2633 				     ctrlr->opts.admin_timeout_ms);
2634 		return 0;
2635 	}
2636 
2637 	return nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, 0);
2638 }
2639 
2640 static void
2641 nvme_ctrlr_identify_id_desc_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2642 {
2643 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2644 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2645 	uint32_t nsid;
2646 	int rc;
2647 
2648 	if (spdk_nvme_cpl_is_error(cpl)) {
2649 		/*
2650 		 * Many controllers claim to be compatible with NVMe 1.3, however,
2651 		 * they do not implement NS ID Desc List. Therefore, instead of setting
2652 		 * the state to NVME_CTRLR_STATE_ERROR, silently ignore the completion
2653 		 * error and move on to the next state.
2654 		 *
2655 		 * The proper way is to create a new quirk for controllers that violate
2656 		 * the NVMe 1.3 spec by not supporting NS ID Desc List.
2657 		 * (Re-using the NVME_QUIRK_IDENTIFY_CNS quirk is not possible, since
2658 		 * it is too generic and was added in order to handle controllers that
2659 		 * violate the NVMe 1.1 spec by not supporting ACTIVE LIST).
2660 		 */
2661 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2662 				     ctrlr->opts.admin_timeout_ms);
2663 		return;
2664 	}
2665 
2666 	nvme_ns_set_id_desc_list_data(ns);
2667 
2668 	/* move on to the next active NS */
2669 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2670 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2671 	if (ns == NULL) {
2672 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2673 				     ctrlr->opts.admin_timeout_ms);
2674 		return;
2675 	}
2676 
2677 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2678 	if (rc) {
2679 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2680 	}
2681 }
2682 
2683 static int
2684 nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns)
2685 {
2686 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2687 
2688 	memset(ns->id_desc_list, 0, sizeof(ns->id_desc_list));
2689 
2690 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS,
2691 			     ctrlr->opts.admin_timeout_ms);
2692 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_ID_DESCRIPTOR_LIST,
2693 				       0, ns->id, 0, ns->id_desc_list, sizeof(ns->id_desc_list),
2694 				       nvme_ctrlr_identify_id_desc_async_done, ns);
2695 }
2696 
2697 static int
2698 nvme_ctrlr_identify_id_desc_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2699 {
2700 	uint32_t nsid;
2701 	struct spdk_nvme_ns *ns;
2702 	int rc;
2703 
2704 	if ((ctrlr->vs.raw < SPDK_NVME_VERSION(1, 3, 0) &&
2705 	     !(ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS)) ||
2706 	    (ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2707 		NVME_CTRLR_DEBUGLOG(ctrlr, "Version < 1.3; not attempting to retrieve NS ID Descriptor List\n");
2708 		/* NS ID Desc List not supported, move on to the next state */
2709 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2710 				     ctrlr->opts.admin_timeout_ms);
2711 		return 0;
2712 	}
2713 
2714 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2715 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2716 	if (ns == NULL) {
2717 		/* No active NS, move on to the next state */
2718 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2719 				     ctrlr->opts.admin_timeout_ms);
2720 		return 0;
2721 	}
2722 
2723 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2724 	if (rc) {
2725 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2726 	}
2727 
2728 	return rc;
2729 }
2730 
2731 static void
2732 nvme_ctrlr_update_nvmf_ioccsz(struct spdk_nvme_ctrlr *ctrlr)
2733 {
2734 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA ||
2735 	    ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP ||
2736 	    ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_FC) {
2737 		if (ctrlr->cdata.nvmf_specific.ioccsz < 4) {
2738 			NVME_CTRLR_ERRLOG(ctrlr, "Incorrect IOCCSZ %u, the minimum value should be 4\n",
2739 					  ctrlr->cdata.nvmf_specific.ioccsz);
2740 			ctrlr->cdata.nvmf_specific.ioccsz = 4;
2741 			assert(0);
2742 		}
2743 		ctrlr->ioccsz_bytes = ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd);
2744 		ctrlr->icdoff = ctrlr->cdata.nvmf_specific.icdoff;
2745 	}
2746 }
2747 
2748 static void
2749 nvme_ctrlr_set_num_queues_done(void *arg, const struct spdk_nvme_cpl *cpl)
2750 {
2751 	uint32_t cq_allocated, sq_allocated, min_allocated, i;
2752 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2753 
2754 	if (spdk_nvme_cpl_is_error(cpl)) {
2755 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Number of Queues failed!\n");
2756 		ctrlr->opts.num_io_queues = 0;
2757 	} else {
2758 		/*
2759 		 * Data in cdw0 is 0-based.
2760 		 * Lower 16-bits indicate number of submission queues allocated.
2761 		 * Upper 16-bits indicate number of completion queues allocated.
2762 		 */
2763 		sq_allocated = (cpl->cdw0 & 0xFFFF) + 1;
2764 		cq_allocated = (cpl->cdw0 >> 16) + 1;
2765 
2766 		/*
2767 		 * For 1:1 queue mapping, set number of allocated queues to be minimum of
2768 		 * submission and completion queues.
2769 		 */
2770 		min_allocated = spdk_min(sq_allocated, cq_allocated);
2771 
2772 		/* Set number of queues to be minimum of requested and actually allocated. */
2773 		ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues);
2774 	}
2775 
2776 	ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1);
2777 	if (ctrlr->free_io_qids == NULL) {
2778 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2779 		return;
2780 	}
2781 
2782 	/* Initialize list of free I/O queue IDs. QID 0 is the admin queue (implicitly allocated). */
2783 	for (i = 1; i <= ctrlr->opts.num_io_queues; i++) {
2784 		spdk_nvme_ctrlr_free_qid(ctrlr, i);
2785 	}
2786 
2787 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS,
2788 			     ctrlr->opts.admin_timeout_ms);
2789 }
2790 
2791 static int
2792 nvme_ctrlr_set_num_queues(struct spdk_nvme_ctrlr *ctrlr)
2793 {
2794 	int rc;
2795 
2796 	if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) {
2797 		NVME_CTRLR_NOTICELOG(ctrlr, "Limiting requested num_io_queues %u to max %d\n",
2798 				     ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES);
2799 		ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES;
2800 	} else if (ctrlr->opts.num_io_queues < 1) {
2801 		NVME_CTRLR_NOTICELOG(ctrlr, "Requested num_io_queues 0, increasing to 1\n");
2802 		ctrlr->opts.num_io_queues = 1;
2803 	}
2804 
2805 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES,
2806 			     ctrlr->opts.admin_timeout_ms);
2807 
2808 	rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues,
2809 					   nvme_ctrlr_set_num_queues_done, ctrlr);
2810 	if (rc != 0) {
2811 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2812 		return rc;
2813 	}
2814 
2815 	return 0;
2816 }
2817 
2818 static void
2819 nvme_ctrlr_set_keep_alive_timeout_done(void *arg, const struct spdk_nvme_cpl *cpl)
2820 {
2821 	uint32_t keep_alive_interval_us;
2822 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2823 
2824 	if (spdk_nvme_cpl_is_error(cpl)) {
2825 		if ((cpl->status.sct == SPDK_NVME_SCT_GENERIC) &&
2826 		    (cpl->status.sc == SPDK_NVME_SC_INVALID_FIELD)) {
2827 			NVME_CTRLR_DEBUGLOG(ctrlr, "Keep alive timeout Get Feature is not supported\n");
2828 		} else {
2829 			NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: SC %x SCT %x\n",
2830 					  cpl->status.sc, cpl->status.sct);
2831 			ctrlr->opts.keep_alive_timeout_ms = 0;
2832 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2833 			return;
2834 		}
2835 	} else {
2836 		if (ctrlr->opts.keep_alive_timeout_ms != cpl->cdw0) {
2837 			NVME_CTRLR_DEBUGLOG(ctrlr, "Controller adjusted keep alive timeout to %u ms\n",
2838 					    cpl->cdw0);
2839 		}
2840 
2841 		ctrlr->opts.keep_alive_timeout_ms = cpl->cdw0;
2842 	}
2843 
2844 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
2845 		ctrlr->keep_alive_interval_ticks = 0;
2846 	} else {
2847 		keep_alive_interval_us = ctrlr->opts.keep_alive_timeout_ms * 1000 / 2;
2848 
2849 		NVME_CTRLR_DEBUGLOG(ctrlr, "Sending keep alive every %u us\n", keep_alive_interval_us);
2850 
2851 		ctrlr->keep_alive_interval_ticks = (keep_alive_interval_us * spdk_get_ticks_hz()) /
2852 						   UINT64_C(1000000);
2853 
2854 		/* Schedule the first Keep Alive to be sent as soon as possible. */
2855 		ctrlr->next_keep_alive_tick = spdk_get_ticks();
2856 	}
2857 
2858 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
2859 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
2860 	} else {
2861 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
2862 				     ctrlr->opts.admin_timeout_ms);
2863 	}
2864 }
2865 
2866 static int
2867 nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr)
2868 {
2869 	int rc;
2870 
2871 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
2872 		if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
2873 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
2874 		} else {
2875 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
2876 					     ctrlr->opts.admin_timeout_ms);
2877 		}
2878 		return 0;
2879 	}
2880 
2881 	/* Note: Discovery controller identify data does not populate KAS according to spec. */
2882 	if (!spdk_nvme_ctrlr_is_discovery(ctrlr) && ctrlr->cdata.kas == 0) {
2883 		NVME_CTRLR_DEBUGLOG(ctrlr, "Controller KAS is 0 - not enabling Keep Alive\n");
2884 		ctrlr->opts.keep_alive_timeout_ms = 0;
2885 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
2886 				     ctrlr->opts.admin_timeout_ms);
2887 		return 0;
2888 	}
2889 
2890 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT,
2891 			     ctrlr->opts.admin_timeout_ms);
2892 
2893 	/* Retrieve actual keep alive timeout, since the controller may have adjusted it. */
2894 	rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0,
2895 					     nvme_ctrlr_set_keep_alive_timeout_done, ctrlr);
2896 	if (rc != 0) {
2897 		NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: %d\n", rc);
2898 		ctrlr->opts.keep_alive_timeout_ms = 0;
2899 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2900 		return rc;
2901 	}
2902 
2903 	return 0;
2904 }
2905 
2906 static void
2907 nvme_ctrlr_set_host_id_done(void *arg, const struct spdk_nvme_cpl *cpl)
2908 {
2909 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2910 
2911 	if (spdk_nvme_cpl_is_error(cpl)) {
2912 		/*
2913 		 * Treat Set Features - Host ID failure as non-fatal, since the Host ID feature
2914 		 * is optional.
2915 		 */
2916 		NVME_CTRLR_WARNLOG(ctrlr, "Set Features - Host ID failed: SC 0x%x SCT 0x%x\n",
2917 				   cpl->status.sc, cpl->status.sct);
2918 	} else {
2919 		NVME_CTRLR_DEBUGLOG(ctrlr, "Set Features - Host ID was successful\n");
2920 	}
2921 
2922 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
2923 }
2924 
2925 static int
2926 nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr)
2927 {
2928 	uint8_t *host_id;
2929 	uint32_t host_id_size;
2930 	int rc;
2931 
2932 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
2933 		/*
2934 		 * NVMe-oF sends the host ID during Connect and doesn't allow
2935 		 * Set Features - Host Identifier after Connect, so we don't need to do anything here.
2936 		 */
2937 		NVME_CTRLR_DEBUGLOG(ctrlr, "NVMe-oF transport - not sending Set Features - Host ID\n");
2938 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
2939 		return 0;
2940 	}
2941 
2942 	if (ctrlr->cdata.ctratt.host_id_exhid_supported) {
2943 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 128-bit extended host identifier\n");
2944 		host_id = ctrlr->opts.extended_host_id;
2945 		host_id_size = sizeof(ctrlr->opts.extended_host_id);
2946 	} else {
2947 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 64-bit host identifier\n");
2948 		host_id = ctrlr->opts.host_id;
2949 		host_id_size = sizeof(ctrlr->opts.host_id);
2950 	}
2951 
2952 	/* If the user specified an all-zeroes host identifier, don't send the command. */
2953 	if (spdk_mem_all_zero(host_id, host_id_size)) {
2954 		NVME_CTRLR_DEBUGLOG(ctrlr, "User did not specify host ID - not sending Set Features - Host ID\n");
2955 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
2956 		return 0;
2957 	}
2958 
2959 	SPDK_LOGDUMP(nvme, "host_id", host_id, host_id_size);
2960 
2961 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_HOST_ID,
2962 			     ctrlr->opts.admin_timeout_ms);
2963 
2964 	rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_ctrlr_set_host_id_done, ctrlr);
2965 	if (rc != 0) {
2966 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Host ID failed: %d\n", rc);
2967 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2968 		return rc;
2969 	}
2970 
2971 	return 0;
2972 }
2973 
2974 void
2975 nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2976 {
2977 	uint32_t nsid;
2978 	struct spdk_nvme_ns *ns;
2979 
2980 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2981 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
2982 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2983 		nvme_ns_construct(ns, nsid, ctrlr);
2984 	}
2985 }
2986 
2987 static int
2988 nvme_ctrlr_clear_changed_ns_log(struct spdk_nvme_ctrlr *ctrlr)
2989 {
2990 	struct nvme_completion_poll_status	*status;
2991 	int		rc = -ENOMEM;
2992 	char		*buffer = NULL;
2993 	uint32_t	nsid;
2994 	size_t		buf_size = (SPDK_NVME_MAX_CHANGED_NAMESPACES * sizeof(uint32_t));
2995 
2996 	buffer = spdk_dma_zmalloc(buf_size, 4096, NULL);
2997 	if (!buffer) {
2998 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate buffer for getting "
2999 				  "changed ns log.\n");
3000 		return rc;
3001 	}
3002 
3003 	status = calloc(1, sizeof(*status));
3004 	if (!status) {
3005 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
3006 		goto free_buffer;
3007 	}
3008 
3009 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
3010 					      SPDK_NVME_LOG_CHANGED_NS_LIST,
3011 					      SPDK_NVME_GLOBAL_NS_TAG,
3012 					      buffer, buf_size, 0,
3013 					      nvme_completion_poll_cb, status);
3014 
3015 	if (rc) {
3016 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_get_log_page() failed: rc=%d\n", rc);
3017 		free(status);
3018 		goto free_buffer;
3019 	}
3020 
3021 	rc = nvme_wait_for_completion_timeout(ctrlr->adminq, status,
3022 					      ctrlr->opts.admin_timeout_ms * 1000);
3023 	if (!status->timed_out) {
3024 		free(status);
3025 	}
3026 
3027 	if (rc) {
3028 		NVME_CTRLR_ERRLOG(ctrlr, "wait for spdk_nvme_ctrlr_cmd_get_log_page failed: rc=%d\n", rc);
3029 		goto free_buffer;
3030 	}
3031 
3032 	/* only check the case of overflow. */
3033 	nsid = from_le32(buffer);
3034 	if (nsid == 0xffffffffu) {
3035 		NVME_CTRLR_WARNLOG(ctrlr, "changed ns log overflowed.\n");
3036 	}
3037 
3038 free_buffer:
3039 	spdk_dma_free(buffer);
3040 	return rc;
3041 }
3042 
3043 void
3044 nvme_ctrlr_process_async_event(struct spdk_nvme_ctrlr *ctrlr,
3045 			       const struct spdk_nvme_cpl *cpl)
3046 {
3047 	union spdk_nvme_async_event_completion event;
3048 	struct spdk_nvme_ctrlr_process *active_proc;
3049 	int rc;
3050 
3051 	event.raw = cpl->cdw0;
3052 
3053 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3054 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
3055 		nvme_ctrlr_clear_changed_ns_log(ctrlr);
3056 
3057 		rc = nvme_ctrlr_identify_active_ns(ctrlr);
3058 		if (rc) {
3059 			return;
3060 		}
3061 		nvme_ctrlr_update_namespaces(ctrlr);
3062 		nvme_io_msg_ctrlr_update(ctrlr);
3063 	}
3064 
3065 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3066 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
3067 		if (!ctrlr->opts.disable_read_ana_log_page) {
3068 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
3069 			if (rc) {
3070 				return;
3071 			}
3072 			nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
3073 						      ctrlr);
3074 		}
3075 	}
3076 
3077 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3078 	if (active_proc && active_proc->aer_cb_fn) {
3079 		active_proc->aer_cb_fn(active_proc->aer_cb_arg, cpl);
3080 	}
3081 }
3082 
3083 static void
3084 nvme_ctrlr_queue_async_event(struct spdk_nvme_ctrlr *ctrlr,
3085 			     const struct spdk_nvme_cpl *cpl)
3086 {
3087 	struct  spdk_nvme_ctrlr_aer_completion_list *nvme_event;
3088 	struct spdk_nvme_ctrlr_process *proc;
3089 
3090 	/* Add async event to each process objects event list */
3091 	TAILQ_FOREACH(proc, &ctrlr->active_procs, tailq) {
3092 		/* Must be shared memory so other processes can access */
3093 		nvme_event = spdk_zmalloc(sizeof(*nvme_event), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
3094 		if (!nvme_event) {
3095 			NVME_CTRLR_ERRLOG(ctrlr, "Alloc nvme event failed, ignore the event\n");
3096 			return;
3097 		}
3098 		nvme_event->cpl = *cpl;
3099 
3100 		STAILQ_INSERT_TAIL(&proc->async_events, nvme_event, link);
3101 	}
3102 }
3103 
3104 void
3105 nvme_ctrlr_complete_queued_async_events(struct spdk_nvme_ctrlr *ctrlr)
3106 {
3107 	struct  spdk_nvme_ctrlr_aer_completion_list  *nvme_event, *nvme_event_tmp;
3108 	struct spdk_nvme_ctrlr_process	*active_proc;
3109 
3110 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3111 
3112 	STAILQ_FOREACH_SAFE(nvme_event, &active_proc->async_events, link, nvme_event_tmp) {
3113 		STAILQ_REMOVE(&active_proc->async_events, nvme_event,
3114 			      spdk_nvme_ctrlr_aer_completion_list, link);
3115 		nvme_ctrlr_process_async_event(ctrlr, &nvme_event->cpl);
3116 		spdk_free(nvme_event);
3117 
3118 	}
3119 }
3120 
3121 static void
3122 nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl)
3123 {
3124 	struct nvme_async_event_request	*aer = arg;
3125 	struct spdk_nvme_ctrlr		*ctrlr = aer->ctrlr;
3126 
3127 	if (cpl->status.sct == SPDK_NVME_SCT_GENERIC &&
3128 	    cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) {
3129 		/*
3130 		 *  This is simulated when controller is being shut down, to
3131 		 *  effectively abort outstanding asynchronous event requests
3132 		 *  and make sure all memory is freed.  Do not repost the
3133 		 *  request in this case.
3134 		 */
3135 		return;
3136 	}
3137 
3138 	if (cpl->status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC &&
3139 	    cpl->status.sc == SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED) {
3140 		/*
3141 		 *  SPDK will only send as many AERs as the device says it supports,
3142 		 *  so this status code indicates an out-of-spec device.  Do not repost
3143 		 *  the request in this case.
3144 		 */
3145 		NVME_CTRLR_ERRLOG(ctrlr, "Controller appears out-of-spec for asynchronous event request\n"
3146 				  "handling.  Do not repost this AER.\n");
3147 		return;
3148 	}
3149 
3150 	/* Add the events to the list */
3151 	nvme_ctrlr_queue_async_event(ctrlr, cpl);
3152 
3153 	/* If the ctrlr was removed or in the destruct state, we should not send aer again */
3154 	if (ctrlr->is_removed || ctrlr->is_destructed) {
3155 		return;
3156 	}
3157 
3158 	/*
3159 	 * Repost another asynchronous event request to replace the one
3160 	 *  that just completed.
3161 	 */
3162 	if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
3163 		/*
3164 		 * We can't do anything to recover from a failure here,
3165 		 * so just print a warning message and leave the AER unsubmitted.
3166 		 */
3167 		NVME_CTRLR_ERRLOG(ctrlr, "resubmitting AER failed!\n");
3168 	}
3169 }
3170 
3171 static int
3172 nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
3173 				    struct nvme_async_event_request *aer)
3174 {
3175 	struct nvme_request *req;
3176 
3177 	aer->ctrlr = ctrlr;
3178 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer);
3179 	aer->req = req;
3180 	if (req == NULL) {
3181 		return -1;
3182 	}
3183 
3184 	req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
3185 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
3186 }
3187 
3188 static void
3189 nvme_ctrlr_configure_aer_done(void *arg, const struct spdk_nvme_cpl *cpl)
3190 {
3191 	struct nvme_async_event_request		*aer;
3192 	int					rc;
3193 	uint32_t				i;
3194 	struct spdk_nvme_ctrlr *ctrlr =	(struct spdk_nvme_ctrlr *)arg;
3195 
3196 	if (spdk_nvme_cpl_is_error(cpl)) {
3197 		NVME_CTRLR_NOTICELOG(ctrlr, "nvme_ctrlr_configure_aer failed!\n");
3198 		ctrlr->num_aers = 0;
3199 	} else {
3200 		/* aerl is a zero-based value, so we need to add 1 here. */
3201 		ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
3202 	}
3203 
3204 	for (i = 0; i < ctrlr->num_aers; i++) {
3205 		aer = &ctrlr->aer[i];
3206 		rc = nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
3207 		if (rc) {
3208 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_construct_and_submit_aer failed!\n");
3209 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3210 			return;
3211 		}
3212 	}
3213 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, ctrlr->opts.admin_timeout_ms);
3214 }
3215 
3216 static int
3217 nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr)
3218 {
3219 	union spdk_nvme_feat_async_event_configuration	config;
3220 	int						rc;
3221 
3222 	config.raw = 0;
3223 
3224 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3225 		config.bits.discovery_log_change_notice = 1;
3226 	} else {
3227 		config.bits.crit_warn.bits.available_spare = 1;
3228 		config.bits.crit_warn.bits.temperature = 1;
3229 		config.bits.crit_warn.bits.device_reliability = 1;
3230 		config.bits.crit_warn.bits.read_only = 1;
3231 		config.bits.crit_warn.bits.volatile_memory_backup = 1;
3232 
3233 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 2, 0)) {
3234 			if (ctrlr->cdata.oaes.ns_attribute_notices) {
3235 				config.bits.ns_attr_notice = 1;
3236 			}
3237 			if (ctrlr->cdata.oaes.fw_activation_notices) {
3238 				config.bits.fw_activation_notice = 1;
3239 			}
3240 			if (ctrlr->cdata.oaes.ana_change_notices) {
3241 				config.bits.ana_change_notice = 1;
3242 			}
3243 		}
3244 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 3, 0) && ctrlr->cdata.lpa.telemetry) {
3245 			config.bits.telemetry_log_notice = 1;
3246 		}
3247 	}
3248 
3249 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER,
3250 			     ctrlr->opts.admin_timeout_ms);
3251 
3252 	rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config,
3253 			nvme_ctrlr_configure_aer_done,
3254 			ctrlr);
3255 	if (rc != 0) {
3256 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3257 		return rc;
3258 	}
3259 
3260 	return 0;
3261 }
3262 
3263 struct spdk_nvme_ctrlr_process *
3264 nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid)
3265 {
3266 	struct spdk_nvme_ctrlr_process	*active_proc;
3267 
3268 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3269 		if (active_proc->pid == pid) {
3270 			return active_proc;
3271 		}
3272 	}
3273 
3274 	return NULL;
3275 }
3276 
3277 struct spdk_nvme_ctrlr_process *
3278 nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr)
3279 {
3280 	return nvme_ctrlr_get_process(ctrlr, getpid());
3281 }
3282 
3283 /**
3284  * This function will be called when a process is using the controller.
3285  *  1. For the primary process, it is called when constructing the controller.
3286  *  2. For the secondary process, it is called at probing the controller.
3287  * Note: will check whether the process is already added for the same process.
3288  */
3289 int
3290 nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
3291 {
3292 	struct spdk_nvme_ctrlr_process	*ctrlr_proc;
3293 	pid_t				pid = getpid();
3294 
3295 	/* Check whether the process is already added or not */
3296 	if (nvme_ctrlr_get_process(ctrlr, pid)) {
3297 		return 0;
3298 	}
3299 
3300 	/* Initialize the per process properties for this ctrlr */
3301 	ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process),
3302 				  64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
3303 	if (ctrlr_proc == NULL) {
3304 		NVME_CTRLR_ERRLOG(ctrlr, "failed to allocate memory to track the process props\n");
3305 
3306 		return -1;
3307 	}
3308 
3309 	ctrlr_proc->is_primary = spdk_process_is_primary();
3310 	ctrlr_proc->pid = pid;
3311 	STAILQ_INIT(&ctrlr_proc->active_reqs);
3312 	ctrlr_proc->devhandle = devhandle;
3313 	ctrlr_proc->ref = 0;
3314 	TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs);
3315 	STAILQ_INIT(&ctrlr_proc->async_events);
3316 
3317 	TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq);
3318 
3319 	return 0;
3320 }
3321 
3322 /**
3323  * This function will be called when the process detaches the controller.
3324  * Note: the ctrlr_lock must be held when calling this function.
3325  */
3326 static void
3327 nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr,
3328 			  struct spdk_nvme_ctrlr_process *proc)
3329 {
3330 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3331 
3332 	assert(STAILQ_EMPTY(&proc->active_reqs));
3333 
3334 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3335 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3336 	}
3337 
3338 	TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq);
3339 
3340 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
3341 		spdk_pci_device_detach(proc->devhandle);
3342 	}
3343 
3344 	spdk_free(proc);
3345 }
3346 
3347 /**
3348  * This function will be called when the process exited unexpectedly
3349  *  in order to free any incomplete nvme request, allocated IO qpairs
3350  *  and allocated memory.
3351  * Note: the ctrlr_lock must be held when calling this function.
3352  */
3353 static void
3354 nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc)
3355 {
3356 	struct nvme_request	*req, *tmp_req;
3357 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3358 	struct spdk_nvme_ctrlr_aer_completion_list *event;
3359 
3360 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
3361 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
3362 
3363 		assert(req->pid == proc->pid);
3364 
3365 		nvme_free_request(req);
3366 	}
3367 
3368 	/* Remove async event from each process objects event list */
3369 	while (!STAILQ_EMPTY(&proc->async_events)) {
3370 		event = STAILQ_FIRST(&proc->async_events);
3371 		STAILQ_REMOVE_HEAD(&proc->async_events, link);
3372 		spdk_free(event);
3373 	}
3374 
3375 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3376 		TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq);
3377 
3378 		/*
3379 		 * The process may have been killed while some qpairs were in their
3380 		 *  completion context.  Clear that flag here to allow these IO
3381 		 *  qpairs to be deleted.
3382 		 */
3383 		qpair->in_completion_context = 0;
3384 
3385 		qpair->no_deletion_notification_needed = 1;
3386 
3387 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3388 	}
3389 
3390 	spdk_free(proc);
3391 }
3392 
3393 /**
3394  * This function will be called when destructing the controller.
3395  *  1. There is no more admin request on this controller.
3396  *  2. Clean up any left resource allocation when its associated process is gone.
3397  */
3398 void
3399 nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
3400 {
3401 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3402 
3403 	/* Free all the processes' properties and make sure no pending admin IOs */
3404 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3405 		TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3406 
3407 		assert(STAILQ_EMPTY(&active_proc->active_reqs));
3408 
3409 		spdk_free(active_proc);
3410 	}
3411 }
3412 
3413 /**
3414  * This function will be called when any other process attaches or
3415  *  detaches the controller in order to cleanup those unexpectedly
3416  *  terminated processes.
3417  * Note: the ctrlr_lock must be held when calling this function.
3418  */
3419 static int
3420 nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr)
3421 {
3422 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3423 	int				active_proc_count = 0;
3424 
3425 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3426 		if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) {
3427 			NVME_CTRLR_ERRLOG(ctrlr, "process %d terminated unexpected\n", active_proc->pid);
3428 
3429 			TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3430 
3431 			nvme_ctrlr_cleanup_process(active_proc);
3432 		} else {
3433 			active_proc_count++;
3434 		}
3435 	}
3436 
3437 	return active_proc_count;
3438 }
3439 
3440 void
3441 nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr)
3442 {
3443 	struct spdk_nvme_ctrlr_process	*active_proc;
3444 
3445 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3446 
3447 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3448 
3449 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3450 	if (active_proc) {
3451 		active_proc->ref++;
3452 	}
3453 
3454 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3455 }
3456 
3457 void
3458 nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr)
3459 {
3460 	struct spdk_nvme_ctrlr_process	*active_proc;
3461 	int				proc_count;
3462 
3463 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3464 
3465 	proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr);
3466 
3467 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3468 	if (active_proc) {
3469 		active_proc->ref--;
3470 		assert(active_proc->ref >= 0);
3471 
3472 		/*
3473 		 * The last active process will be removed at the end of
3474 		 * the destruction of the controller.
3475 		 */
3476 		if (active_proc->ref == 0 && proc_count != 1) {
3477 			nvme_ctrlr_remove_process(ctrlr, active_proc);
3478 		}
3479 	}
3480 
3481 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3482 }
3483 
3484 int
3485 nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr)
3486 {
3487 	struct spdk_nvme_ctrlr_process	*active_proc;
3488 	int				ref = 0;
3489 
3490 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3491 
3492 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3493 
3494 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3495 		ref += active_proc->ref;
3496 	}
3497 
3498 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3499 
3500 	return ref;
3501 }
3502 
3503 /**
3504  *  Get the PCI device handle which is only visible to its associated process.
3505  */
3506 struct spdk_pci_device *
3507 nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr)
3508 {
3509 	struct spdk_nvme_ctrlr_process	*active_proc;
3510 	struct spdk_pci_device		*devhandle = NULL;
3511 
3512 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3513 
3514 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3515 	if (active_proc) {
3516 		devhandle = active_proc->devhandle;
3517 	}
3518 
3519 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3520 
3521 	return devhandle;
3522 }
3523 
3524 static void
3525 nvme_ctrlr_process_init_vs_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3526 {
3527 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3528 
3529 	if (spdk_nvme_cpl_is_error(cpl)) {
3530 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the VS register\n");
3531 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3532 		return;
3533 	}
3534 
3535 	assert(value <= UINT32_MAX);
3536 	ctrlr->vs.raw = (uint32_t)value;
3537 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP, NVME_TIMEOUT_INFINITE);
3538 }
3539 
3540 static void
3541 nvme_ctrlr_process_init_cap_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3542 {
3543 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3544 
3545 	if (spdk_nvme_cpl_is_error(cpl)) {
3546 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CAP register\n");
3547 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3548 		return;
3549 	}
3550 
3551 	ctrlr->cap.raw = value;
3552 	nvme_ctrlr_init_cap(ctrlr);
3553 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
3554 }
3555 
3556 static void
3557 nvme_ctrlr_process_init_check_en(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3558 {
3559 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3560 	enum nvme_ctrlr_state state;
3561 
3562 	if (spdk_nvme_cpl_is_error(cpl)) {
3563 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3564 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3565 		return;
3566 	}
3567 
3568 	assert(value <= UINT32_MAX);
3569 	ctrlr->process_init_cc.raw = (uint32_t)value;
3570 
3571 	if (ctrlr->process_init_cc.bits.en) {
3572 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1\n");
3573 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1;
3574 	} else {
3575 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0;
3576 	}
3577 
3578 	nvme_ctrlr_set_state(ctrlr, state, nvme_ctrlr_get_ready_timeout(ctrlr));
3579 }
3580 
3581 static void
3582 nvme_ctrlr_process_init_set_en_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3583 {
3584 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3585 
3586 	if (spdk_nvme_cpl_is_error(cpl)) {
3587 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write the CC register\n");
3588 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3589 		return;
3590 	}
3591 
3592 	/*
3593 	 * Wait 2.5 seconds before accessing PCI registers.
3594 	 * Not using sleep() to avoid blocking other controller's initialization.
3595 	 */
3596 	if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) {
3597 		NVME_CTRLR_DEBUGLOG(ctrlr, "Applying quirk: delay 2.5 seconds before reading registers\n");
3598 		ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2500 * spdk_get_ticks_hz() / 1000);
3599 	}
3600 
3601 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3602 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3603 }
3604 
3605 static void
3606 nvme_ctrlr_process_init_set_en_0_read_cc(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3607 {
3608 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3609 	union spdk_nvme_cc_register cc;
3610 	int rc;
3611 
3612 	if (spdk_nvme_cpl_is_error(cpl)) {
3613 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3614 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3615 		return;
3616 	}
3617 
3618 	assert(value <= UINT32_MAX);
3619 	cc.raw = (uint32_t)value;
3620 	cc.bits.en = 0;
3621 	ctrlr->process_init_cc.raw = cc.raw;
3622 
3623 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC,
3624 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3625 
3626 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_process_init_set_en_0, ctrlr);
3627 	if (rc != 0) {
3628 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
3629 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3630 	}
3631 }
3632 
3633 static void
3634 nvme_ctrlr_process_init_wait_for_ready_1(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3635 {
3636 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3637 	union spdk_nvme_csts_register csts;
3638 
3639 	if (spdk_nvme_cpl_is_error(cpl)) {
3640 		/* While a device is resetting, it may be unable to service MMIO reads
3641 		 * temporarily. Allow for this case.
3642 		 */
3643 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3644 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3645 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3646 					     NVME_TIMEOUT_KEEP_EXISTING);
3647 		} else {
3648 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3649 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3650 		}
3651 
3652 		return;
3653 	}
3654 
3655 	assert(value <= UINT32_MAX);
3656 	csts.raw = (uint32_t)value;
3657 	if (csts.bits.rdy == 1) {
3658 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0,
3659 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3660 	} else {
3661 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n");
3662 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3663 					   NVME_TIMEOUT_KEEP_EXISTING);
3664 	}
3665 }
3666 
3667 static void
3668 nvme_ctrlr_process_init_wait_for_ready_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3669 {
3670 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3671 	union spdk_nvme_csts_register csts;
3672 
3673 	if (spdk_nvme_cpl_is_error(cpl)) {
3674 		/* While a device is resetting, it may be unable to service MMIO reads
3675 		 * temporarily. Allow for this case.
3676 		 */
3677 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3678 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3679 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3680 					     NVME_TIMEOUT_KEEP_EXISTING);
3681 		} else {
3682 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3683 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3684 		}
3685 
3686 		return;
3687 	}
3688 
3689 	assert(value <= UINT32_MAX);
3690 	csts.raw = (uint32_t)value;
3691 	if (csts.bits.rdy == 0) {
3692 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 0 && CSTS.RDY = 0\n");
3693 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLED,
3694 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3695 	} else {
3696 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3697 					   NVME_TIMEOUT_KEEP_EXISTING);
3698 	}
3699 }
3700 
3701 static void
3702 nvme_ctrlr_process_init_enable_wait_for_ready_1(void *ctx, uint64_t value,
3703 		const struct spdk_nvme_cpl *cpl)
3704 {
3705 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3706 	union spdk_nvme_csts_register csts;
3707 
3708 	if (spdk_nvme_cpl_is_error(cpl)) {
3709 		/* While a device is resetting, it may be unable to service MMIO reads
3710 		 * temporarily. Allow for this case.
3711 		 */
3712 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3713 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3714 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3715 					     NVME_TIMEOUT_KEEP_EXISTING);
3716 		} else {
3717 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3718 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3719 		}
3720 
3721 		return;
3722 	}
3723 
3724 	assert(value <= UINT32_MAX);
3725 	csts.raw = value;
3726 	if (csts.bits.rdy == 1) {
3727 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n");
3728 		/*
3729 		 * The controller has been enabled.
3730 		 *  Perform the rest of initialization serially.
3731 		 */
3732 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_RESET_ADMIN_QUEUE,
3733 				     ctrlr->opts.admin_timeout_ms);
3734 	} else {
3735 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3736 					   NVME_TIMEOUT_KEEP_EXISTING);
3737 	}
3738 }
3739 
3740 /**
3741  * This function will be called repeatedly during initialization until the controller is ready.
3742  */
3743 int
3744 nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr)
3745 {
3746 	uint32_t ready_timeout_in_ms;
3747 	uint64_t ticks;
3748 	int rc = 0;
3749 
3750 	ticks = spdk_get_ticks();
3751 
3752 	/*
3753 	 * May need to avoid accessing any register on the target controller
3754 	 * for a while. Return early without touching the FSM.
3755 	 * Check sleep_timeout_tsc > 0 for unit test.
3756 	 */
3757 	if ((ctrlr->sleep_timeout_tsc > 0) &&
3758 	    (ticks <= ctrlr->sleep_timeout_tsc)) {
3759 		return 0;
3760 	}
3761 	ctrlr->sleep_timeout_tsc = 0;
3762 
3763 	ready_timeout_in_ms = nvme_ctrlr_get_ready_timeout(ctrlr);
3764 
3765 	/*
3766 	 * Check if the current initialization step is done or has timed out.
3767 	 */
3768 	switch (ctrlr->state) {
3769 	case NVME_CTRLR_STATE_INIT_DELAY:
3770 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, ready_timeout_in_ms);
3771 		if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_INIT) {
3772 			/*
3773 			 * Controller may need some delay before it's enabled.
3774 			 *
3775 			 * This is a workaround for an issue where the PCIe-attached NVMe controller
3776 			 * is not ready after VFIO reset. We delay the initialization rather than the
3777 			 * enabling itself, because this is required only for the very first enabling
3778 			 * - directly after a VFIO reset.
3779 			 */
3780 			NVME_CTRLR_DEBUGLOG(ctrlr, "Adding 2 second delay before initializing the controller\n");
3781 			ctrlr->sleep_timeout_tsc = ticks + (2000 * spdk_get_ticks_hz() / 1000);
3782 		}
3783 		break;
3784 
3785 	case NVME_CTRLR_STATE_CONNECT_ADMINQ: /* synonymous with NVME_CTRLR_STATE_INIT */
3786 		rc = nvme_transport_ctrlr_connect_qpair(ctrlr, ctrlr->adminq);
3787 		if (rc == 0) {
3788 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ,
3789 					     NVME_TIMEOUT_INFINITE);
3790 		} else {
3791 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3792 		}
3793 		break;
3794 
3795 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
3796 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3797 
3798 		switch (nvme_qpair_get_state(ctrlr->adminq)) {
3799 		case NVME_QPAIR_CONNECTING:
3800 			break;
3801 		case NVME_QPAIR_CONNECTED:
3802 			nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
3803 		/* Fall through */
3804 		case NVME_QPAIR_ENABLED:
3805 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS,
3806 					     NVME_TIMEOUT_INFINITE);
3807 			/* Abort any queued requests that were sent while the adminq was connecting
3808 			 * to avoid stalling the init process during a reset, as requests don't get
3809 			 * resubmitted while the controller is resetting and subsequent commands
3810 			 * would get queued too.
3811 			 */
3812 			nvme_qpair_abort_queued_reqs(ctrlr->adminq, 0);
3813 			break;
3814 		case NVME_QPAIR_DISCONNECTING:
3815 			assert(ctrlr->adminq->async == true);
3816 			break;
3817 		case NVME_QPAIR_DISCONNECTED:
3818 		/* fallthrough */
3819 		default:
3820 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3821 			break;
3822 		}
3823 
3824 		break;
3825 
3826 	case NVME_CTRLR_STATE_READ_VS:
3827 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS, NVME_TIMEOUT_INFINITE);
3828 		rc = nvme_ctrlr_get_vs_async(ctrlr, nvme_ctrlr_process_init_vs_done, ctrlr);
3829 		break;
3830 
3831 	case NVME_CTRLR_STATE_READ_CAP:
3832 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP, NVME_TIMEOUT_INFINITE);
3833 		rc = nvme_ctrlr_get_cap_async(ctrlr, nvme_ctrlr_process_init_cap_done, ctrlr);
3834 		break;
3835 
3836 	case NVME_CTRLR_STATE_CHECK_EN:
3837 		/* Begin the hardware initialization by making sure the controller is disabled. */
3838 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC, ready_timeout_in_ms);
3839 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_check_en, ctrlr);
3840 		break;
3841 
3842 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
3843 		/*
3844 		 * Controller is currently enabled. We need to disable it to cause a reset.
3845 		 *
3846 		 * If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready.
3847 		 *  Wait for the ready bit to be 1 before disabling the controller.
3848 		 */
3849 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
3850 					   NVME_TIMEOUT_KEEP_EXISTING);
3851 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_1, ctrlr);
3852 		break;
3853 
3854 	case NVME_CTRLR_STATE_SET_EN_0:
3855 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 0\n");
3856 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC, ready_timeout_in_ms);
3857 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_set_en_0_read_cc, ctrlr);
3858 		break;
3859 
3860 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
3861 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS,
3862 					   NVME_TIMEOUT_KEEP_EXISTING);
3863 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_0, ctrlr);
3864 		break;
3865 
3866 	case NVME_CTRLR_STATE_DISABLED:
3867 		if (ctrlr->is_disconnecting) {
3868 			NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr was disabled.\n");
3869 		} else {
3870 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms);
3871 
3872 			/*
3873 			 * Delay 100us before setting CC.EN = 1.  Some NVMe SSDs miss CC.EN getting
3874 			 *  set to 1 if it is too soon after CSTS.RDY is reported as 0.
3875 			 */
3876 			spdk_delay_us(100);
3877 		}
3878 		break;
3879 
3880 	case NVME_CTRLR_STATE_ENABLE:
3881 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 1\n");
3882 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC, ready_timeout_in_ms);
3883 		rc = nvme_ctrlr_enable(ctrlr);
3884 		if (rc) {
3885 			NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr enable failed with error: %d", rc);
3886 		}
3887 		return rc;
3888 
3889 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
3890 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
3891 					   NVME_TIMEOUT_KEEP_EXISTING);
3892 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_enable_wait_for_ready_1,
3893 					       ctrlr);
3894 		break;
3895 
3896 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
3897 		nvme_transport_qpair_reset(ctrlr->adminq);
3898 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY, NVME_TIMEOUT_INFINITE);
3899 		break;
3900 
3901 	case NVME_CTRLR_STATE_IDENTIFY:
3902 		rc = nvme_ctrlr_identify(ctrlr);
3903 		break;
3904 
3905 	case NVME_CTRLR_STATE_CONFIGURE_AER:
3906 		rc = nvme_ctrlr_configure_aer(ctrlr);
3907 		break;
3908 
3909 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
3910 		rc = nvme_ctrlr_set_keep_alive_timeout(ctrlr);
3911 		break;
3912 
3913 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
3914 		rc = nvme_ctrlr_identify_iocs_specific(ctrlr);
3915 		break;
3916 
3917 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
3918 		rc = nvme_ctrlr_get_zns_cmd_and_effects_log(ctrlr);
3919 		break;
3920 
3921 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
3922 		nvme_ctrlr_update_nvmf_ioccsz(ctrlr);
3923 		rc = nvme_ctrlr_set_num_queues(ctrlr);
3924 		break;
3925 
3926 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
3927 		_nvme_ctrlr_identify_active_ns(ctrlr);
3928 		break;
3929 
3930 	case NVME_CTRLR_STATE_IDENTIFY_NS:
3931 		rc = nvme_ctrlr_identify_namespaces(ctrlr);
3932 		break;
3933 
3934 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
3935 		rc = nvme_ctrlr_identify_id_desc_namespaces(ctrlr);
3936 		break;
3937 
3938 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
3939 		rc = nvme_ctrlr_identify_namespaces_iocs_specific(ctrlr);
3940 		break;
3941 
3942 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
3943 		rc = nvme_ctrlr_set_supported_log_pages(ctrlr);
3944 		break;
3945 
3946 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
3947 		rc = nvme_ctrlr_set_intel_support_log_pages(ctrlr);
3948 		break;
3949 
3950 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
3951 		nvme_ctrlr_set_supported_features(ctrlr);
3952 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
3953 				     ctrlr->opts.admin_timeout_ms);
3954 		break;
3955 
3956 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
3957 		rc = nvme_ctrlr_set_doorbell_buffer_config(ctrlr);
3958 		break;
3959 
3960 	case NVME_CTRLR_STATE_SET_HOST_ID:
3961 		rc = nvme_ctrlr_set_host_id(ctrlr);
3962 		break;
3963 
3964 	case NVME_CTRLR_STATE_READY:
3965 		NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr already in ready state\n");
3966 		return 0;
3967 
3968 	case NVME_CTRLR_STATE_ERROR:
3969 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr is in error state\n");
3970 		return -1;
3971 
3972 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
3973 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
3974 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
3975 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
3976 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
3977 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
3978 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
3979 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
3980 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
3981 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
3982 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
3983 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
3984 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
3985 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
3986 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
3987 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
3988 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
3989 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
3990 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
3991 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
3992 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
3993 		/*
3994 		 * nvme_ctrlr_process_init() may be called from the completion context
3995 		 * for the admin qpair. Avoid recursive calls for this case.
3996 		 */
3997 		if (!ctrlr->adminq->in_completion_context) {
3998 			spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3999 		}
4000 		break;
4001 
4002 	default:
4003 		assert(0);
4004 		return -1;
4005 	}
4006 
4007 	if (rc) {
4008 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr operation failed with error: %d, ctrlr state: %d",
4009 				  rc, ctrlr->state);
4010 	}
4011 
4012 	/* Note: we use the ticks captured when we entered this function.
4013 	 * This covers environments where the SPDK process gets swapped out after
4014 	 * we tried to advance the state but before we check the timeout here.
4015 	 * It is not normal for this to happen, but harmless to handle it in this
4016 	 * way.
4017 	 */
4018 	if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE &&
4019 	    ticks > ctrlr->state_timeout_tsc) {
4020 		NVME_CTRLR_ERRLOG(ctrlr, "Initialization timed out in state %d (%s)\n",
4021 				  ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4022 		return -1;
4023 	}
4024 
4025 	return rc;
4026 }
4027 
4028 int
4029 nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx)
4030 {
4031 	pthread_mutexattr_t attr;
4032 	int rc = 0;
4033 
4034 	if (pthread_mutexattr_init(&attr)) {
4035 		return -1;
4036 	}
4037 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) ||
4038 #ifndef __FreeBSD__
4039 	    pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
4040 	    pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
4041 #endif
4042 	    pthread_mutex_init(mtx, &attr)) {
4043 		rc = -1;
4044 	}
4045 	pthread_mutexattr_destroy(&attr);
4046 	return rc;
4047 }
4048 
4049 int
4050 nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
4051 {
4052 	int rc;
4053 
4054 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4055 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT_DELAY, NVME_TIMEOUT_INFINITE);
4056 	} else {
4057 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
4058 	}
4059 
4060 	if (ctrlr->opts.admin_queue_size > SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES) {
4061 		NVME_CTRLR_ERRLOG(ctrlr, "admin_queue_size %u exceeds max defined by NVMe spec, use max value\n",
4062 				  ctrlr->opts.admin_queue_size);
4063 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES;
4064 	}
4065 
4066 	if (ctrlr->opts.admin_queue_size < SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES) {
4067 		NVME_CTRLR_ERRLOG(ctrlr,
4068 				  "admin_queue_size %u is less than minimum defined by NVMe spec, use min value\n",
4069 				  ctrlr->opts.admin_queue_size);
4070 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES;
4071 	}
4072 
4073 	ctrlr->flags = 0;
4074 	ctrlr->free_io_qids = NULL;
4075 	ctrlr->is_resetting = false;
4076 	ctrlr->is_failed = false;
4077 	ctrlr->is_destructed = false;
4078 
4079 	TAILQ_INIT(&ctrlr->active_io_qpairs);
4080 	STAILQ_INIT(&ctrlr->queued_aborts);
4081 	ctrlr->outstanding_aborts = 0;
4082 
4083 	ctrlr->ana_log_page = NULL;
4084 	ctrlr->ana_log_page_size = 0;
4085 
4086 	rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock);
4087 	if (rc != 0) {
4088 		return rc;
4089 	}
4090 
4091 	TAILQ_INIT(&ctrlr->active_procs);
4092 	STAILQ_INIT(&ctrlr->register_operations);
4093 
4094 	RB_INIT(&ctrlr->ns);
4095 
4096 	return rc;
4097 }
4098 
4099 static void
4100 nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr)
4101 {
4102 	if (ctrlr->cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) {
4103 		ctrlr->flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED;
4104 	}
4105 
4106 	ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin);
4107 
4108 	/* For now, always select page_size == min_page_size. */
4109 	ctrlr->page_size = ctrlr->min_page_size;
4110 
4111 	ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES);
4112 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, MAX_IO_QUEUE_ENTRIES);
4113 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE &&
4114 	    ctrlr->opts.io_queue_size == DEFAULT_IO_QUEUE_SIZE) {
4115 		/* If the user specifically set an IO queue size different than the
4116 		 * default, use that value.  Otherwise overwrite with the quirked value.
4117 		 * This allows this quirk to be overridden when necessary.
4118 		 * However, cap.mqes still needs to be respected.
4119 		 */
4120 		ctrlr->opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK;
4121 	}
4122 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u);
4123 
4124 	ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size);
4125 }
4126 
4127 void
4128 nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr)
4129 {
4130 	pthread_mutex_destroy(&ctrlr->ctrlr_lock);
4131 }
4132 
4133 void
4134 nvme_ctrlr_destruct_async(struct spdk_nvme_ctrlr *ctrlr,
4135 			  struct nvme_ctrlr_detach_ctx *ctx)
4136 {
4137 	struct spdk_nvme_qpair *qpair, *tmp;
4138 
4139 	NVME_CTRLR_DEBUGLOG(ctrlr, "Prepare to destruct SSD\n");
4140 
4141 	ctrlr->prepare_for_reset = false;
4142 	ctrlr->is_destructed = true;
4143 
4144 	spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4145 
4146 	nvme_ctrlr_abort_queued_aborts(ctrlr);
4147 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
4148 
4149 	TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) {
4150 		spdk_nvme_ctrlr_free_io_qpair(qpair);
4151 	}
4152 
4153 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
4154 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
4155 
4156 	nvme_ctrlr_shutdown_async(ctrlr, ctx);
4157 }
4158 
4159 int
4160 nvme_ctrlr_destruct_poll_async(struct spdk_nvme_ctrlr *ctrlr,
4161 			       struct nvme_ctrlr_detach_ctx *ctx)
4162 {
4163 	struct spdk_nvme_ns *ns, *tmp_ns;
4164 	int rc = 0;
4165 
4166 	if (!ctx->shutdown_complete) {
4167 		rc = nvme_ctrlr_shutdown_poll_async(ctrlr, ctx);
4168 		if (rc == -EAGAIN) {
4169 			return -EAGAIN;
4170 		}
4171 		/* Destruct ctrlr forcefully for any other error. */
4172 	}
4173 
4174 	if (ctx->cb_fn) {
4175 		ctx->cb_fn(ctrlr);
4176 	}
4177 
4178 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
4179 
4180 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
4181 		nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
4182 		RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
4183 		spdk_free(ns);
4184 	}
4185 
4186 	ctrlr->active_ns_count = 0;
4187 
4188 	spdk_bit_array_free(&ctrlr->free_io_qids);
4189 
4190 	free(ctrlr->ana_log_page);
4191 	free(ctrlr->copied_ana_desc);
4192 	ctrlr->ana_log_page = NULL;
4193 	ctrlr->copied_ana_desc = NULL;
4194 	ctrlr->ana_log_page_size = 0;
4195 
4196 	nvme_transport_ctrlr_destruct(ctrlr);
4197 
4198 	return rc;
4199 }
4200 
4201 void
4202 nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
4203 {
4204 	struct nvme_ctrlr_detach_ctx ctx = { .ctrlr = ctrlr };
4205 	int rc;
4206 
4207 	nvme_ctrlr_destruct_async(ctrlr, &ctx);
4208 
4209 	while (1) {
4210 		rc = nvme_ctrlr_destruct_poll_async(ctrlr, &ctx);
4211 		if (rc != -EAGAIN) {
4212 			break;
4213 		}
4214 		nvme_delay(1000);
4215 	}
4216 }
4217 
4218 int
4219 nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
4220 				struct nvme_request *req)
4221 {
4222 	return nvme_qpair_submit_request(ctrlr->adminq, req);
4223 }
4224 
4225 static void
4226 nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl)
4227 {
4228 	/* Do nothing */
4229 }
4230 
4231 /*
4232  * Check if we need to send a Keep Alive command.
4233  * Caller must hold ctrlr->ctrlr_lock.
4234  */
4235 static int
4236 nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr)
4237 {
4238 	uint64_t now;
4239 	struct nvme_request *req;
4240 	struct spdk_nvme_cmd *cmd;
4241 	int rc = 0;
4242 
4243 	now = spdk_get_ticks();
4244 	if (now < ctrlr->next_keep_alive_tick) {
4245 		return rc;
4246 	}
4247 
4248 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL);
4249 	if (req == NULL) {
4250 		return rc;
4251 	}
4252 
4253 	cmd = &req->cmd;
4254 	cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE;
4255 
4256 	rc = nvme_ctrlr_submit_admin_request(ctrlr, req);
4257 	if (rc != 0) {
4258 		NVME_CTRLR_ERRLOG(ctrlr, "Submitting Keep Alive failed\n");
4259 		rc = -ENXIO;
4260 	}
4261 
4262 	ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks;
4263 	return rc;
4264 }
4265 
4266 int32_t
4267 spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr)
4268 {
4269 	int32_t num_completions;
4270 	int32_t rc;
4271 	struct spdk_nvme_ctrlr_process	*active_proc;
4272 
4273 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4274 
4275 	if (ctrlr->keep_alive_interval_ticks) {
4276 		rc = nvme_ctrlr_keep_alive(ctrlr);
4277 		if (rc) {
4278 			nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4279 			return rc;
4280 		}
4281 	}
4282 
4283 	rc = nvme_io_msg_process(ctrlr);
4284 	if (rc < 0) {
4285 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4286 		return rc;
4287 	}
4288 	num_completions = rc;
4289 
4290 	rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4291 
4292 	/* Each process has an async list, complete the ones for this process object */
4293 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4294 	if (active_proc) {
4295 		nvme_ctrlr_complete_queued_async_events(ctrlr);
4296 	}
4297 
4298 	if (rc == -ENXIO && ctrlr->is_disconnecting) {
4299 		nvme_ctrlr_disconnect_done(ctrlr);
4300 	}
4301 
4302 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4303 
4304 	if (rc < 0) {
4305 		num_completions = rc;
4306 	} else {
4307 		num_completions += rc;
4308 	}
4309 
4310 	return num_completions;
4311 }
4312 
4313 const struct spdk_nvme_ctrlr_data *
4314 spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr)
4315 {
4316 	return &ctrlr->cdata;
4317 }
4318 
4319 union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
4320 {
4321 	union spdk_nvme_csts_register csts;
4322 
4323 	if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
4324 		csts.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4325 	}
4326 	return csts;
4327 }
4328 
4329 union spdk_nvme_cc_register spdk_nvme_ctrlr_get_regs_cc(struct spdk_nvme_ctrlr *ctrlr)
4330 {
4331 	union spdk_nvme_cc_register cc;
4332 
4333 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
4334 		cc.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4335 	}
4336 	return cc;
4337 }
4338 
4339 union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr)
4340 {
4341 	return ctrlr->cap;
4342 }
4343 
4344 union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr)
4345 {
4346 	return ctrlr->vs;
4347 }
4348 
4349 union spdk_nvme_cmbsz_register spdk_nvme_ctrlr_get_regs_cmbsz(struct spdk_nvme_ctrlr *ctrlr)
4350 {
4351 	union spdk_nvme_cmbsz_register cmbsz;
4352 
4353 	if (nvme_ctrlr_get_cmbsz(ctrlr, &cmbsz)) {
4354 		cmbsz.raw = 0;
4355 	}
4356 
4357 	return cmbsz;
4358 }
4359 
4360 union spdk_nvme_pmrcap_register spdk_nvme_ctrlr_get_regs_pmrcap(struct spdk_nvme_ctrlr *ctrlr)
4361 {
4362 	union spdk_nvme_pmrcap_register pmrcap;
4363 
4364 	if (nvme_ctrlr_get_pmrcap(ctrlr, &pmrcap)) {
4365 		pmrcap.raw = 0;
4366 	}
4367 
4368 	return pmrcap;
4369 }
4370 
4371 union spdk_nvme_bpinfo_register spdk_nvme_ctrlr_get_regs_bpinfo(struct spdk_nvme_ctrlr *ctrlr)
4372 {
4373 	union spdk_nvme_bpinfo_register bpinfo;
4374 
4375 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
4376 		bpinfo.raw = 0;
4377 	}
4378 
4379 	return bpinfo;
4380 }
4381 
4382 uint64_t
4383 spdk_nvme_ctrlr_get_pmrsz(struct spdk_nvme_ctrlr *ctrlr)
4384 {
4385 	return ctrlr->pmr_size;
4386 }
4387 
4388 uint32_t
4389 spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr)
4390 {
4391 	return ctrlr->cdata.nn;
4392 }
4393 
4394 bool
4395 spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4396 {
4397 	struct spdk_nvme_ns tmp, *ns;
4398 
4399 	tmp.id = nsid;
4400 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4401 
4402 	if (ns != NULL) {
4403 		return ns->active;
4404 	}
4405 
4406 	return false;
4407 }
4408 
4409 uint32_t
4410 spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr)
4411 {
4412 	struct spdk_nvme_ns *ns;
4413 
4414 	ns = RB_MIN(nvme_ns_tree, &ctrlr->ns);
4415 	if (ns == NULL) {
4416 		return 0;
4417 	}
4418 
4419 	while (ns != NULL) {
4420 		if (ns->active) {
4421 			return ns->id;
4422 		}
4423 
4424 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4425 	}
4426 
4427 	return 0;
4428 }
4429 
4430 uint32_t
4431 spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
4432 {
4433 	struct spdk_nvme_ns tmp, *ns;
4434 
4435 	tmp.id = prev_nsid;
4436 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4437 	if (ns == NULL) {
4438 		return 0;
4439 	}
4440 
4441 	ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4442 	while (ns != NULL) {
4443 		if (ns->active) {
4444 			return ns->id;
4445 		}
4446 
4447 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4448 	}
4449 
4450 	return 0;
4451 }
4452 
4453 struct spdk_nvme_ns *
4454 spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4455 {
4456 	struct spdk_nvme_ns tmp;
4457 	struct spdk_nvme_ns *ns;
4458 
4459 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
4460 		return NULL;
4461 	}
4462 
4463 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4464 
4465 	tmp.id = nsid;
4466 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4467 
4468 	if (ns == NULL) {
4469 		ns = spdk_zmalloc(sizeof(struct spdk_nvme_ns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
4470 		if (ns == NULL) {
4471 			nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4472 			return NULL;
4473 		}
4474 
4475 		NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was added\n", nsid);
4476 		ns->id = nsid;
4477 		RB_INSERT(nvme_ns_tree, &ctrlr->ns, ns);
4478 	}
4479 
4480 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4481 
4482 	return ns;
4483 }
4484 
4485 struct spdk_pci_device *
4486 spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr)
4487 {
4488 	if (ctrlr == NULL) {
4489 		return NULL;
4490 	}
4491 
4492 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
4493 		return NULL;
4494 	}
4495 
4496 	return nvme_ctrlr_proc_get_devhandle(ctrlr);
4497 }
4498 
4499 uint32_t
4500 spdk_nvme_ctrlr_get_max_xfer_size(const struct spdk_nvme_ctrlr *ctrlr)
4501 {
4502 	return ctrlr->max_xfer_size;
4503 }
4504 
4505 void
4506 spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr,
4507 				      spdk_nvme_aer_cb aer_cb_fn,
4508 				      void *aer_cb_arg)
4509 {
4510 	struct spdk_nvme_ctrlr_process *active_proc;
4511 
4512 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4513 
4514 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4515 	if (active_proc) {
4516 		active_proc->aer_cb_fn = aer_cb_fn;
4517 		active_proc->aer_cb_arg = aer_cb_arg;
4518 	}
4519 
4520 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4521 }
4522 
4523 void
4524 spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr,
4525 		uint64_t timeout_io_us, uint64_t timeout_admin_us,
4526 		spdk_nvme_timeout_cb cb_fn, void *cb_arg)
4527 {
4528 	struct spdk_nvme_ctrlr_process	*active_proc;
4529 
4530 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4531 
4532 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4533 	if (active_proc) {
4534 		active_proc->timeout_io_ticks = timeout_io_us * spdk_get_ticks_hz() / 1000000ULL;
4535 		active_proc->timeout_admin_ticks = timeout_admin_us * spdk_get_ticks_hz() / 1000000ULL;
4536 		active_proc->timeout_cb_fn = cb_fn;
4537 		active_proc->timeout_cb_arg = cb_arg;
4538 	}
4539 
4540 	ctrlr->timeout_enabled = true;
4541 
4542 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4543 }
4544 
4545 bool
4546 spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page)
4547 {
4548 	/* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
4549 	SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
4550 	return ctrlr->log_page_supported[log_page];
4551 }
4552 
4553 bool
4554 spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code)
4555 {
4556 	/* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
4557 	SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
4558 	return ctrlr->feature_supported[feature_code];
4559 }
4560 
4561 int
4562 spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4563 			  struct spdk_nvme_ctrlr_list *payload)
4564 {
4565 	struct nvme_completion_poll_status	*status;
4566 	struct spdk_nvme_ns			*ns;
4567 	int					res;
4568 
4569 	if (nsid == 0) {
4570 		return -EINVAL;
4571 	}
4572 
4573 	status = calloc(1, sizeof(*status));
4574 	if (!status) {
4575 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4576 		return -ENOMEM;
4577 	}
4578 
4579 	res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload,
4580 				       nvme_completion_poll_cb, status);
4581 	if (res) {
4582 		free(status);
4583 		return res;
4584 	}
4585 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4586 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_attach_ns failed!\n");
4587 		if (!status->timed_out) {
4588 			free(status);
4589 		}
4590 		return -ENXIO;
4591 	}
4592 	free(status);
4593 
4594 	res = nvme_ctrlr_identify_active_ns(ctrlr);
4595 	if (res) {
4596 		return res;
4597 	}
4598 
4599 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
4600 	return nvme_ns_construct(ns, nsid, ctrlr);
4601 }
4602 
4603 int
4604 spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4605 			  struct spdk_nvme_ctrlr_list *payload)
4606 {
4607 	struct nvme_completion_poll_status	*status;
4608 	int					res;
4609 
4610 	if (nsid == 0) {
4611 		return -EINVAL;
4612 	}
4613 
4614 	status = calloc(1, sizeof(*status));
4615 	if (!status) {
4616 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4617 		return -ENOMEM;
4618 	}
4619 
4620 	res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload,
4621 				       nvme_completion_poll_cb, status);
4622 	if (res) {
4623 		free(status);
4624 		return res;
4625 	}
4626 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4627 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_detach_ns failed!\n");
4628 		if (!status->timed_out) {
4629 			free(status);
4630 		}
4631 		return -ENXIO;
4632 	}
4633 	free(status);
4634 
4635 	return nvme_ctrlr_identify_active_ns(ctrlr);
4636 }
4637 
4638 uint32_t
4639 spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload)
4640 {
4641 	struct nvme_completion_poll_status	*status;
4642 	int					res;
4643 	uint32_t				nsid;
4644 
4645 	status = calloc(1, sizeof(*status));
4646 	if (!status) {
4647 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4648 		return 0;
4649 	}
4650 
4651 	res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, status);
4652 	if (res) {
4653 		free(status);
4654 		return 0;
4655 	}
4656 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4657 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_create_ns failed!\n");
4658 		if (!status->timed_out) {
4659 			free(status);
4660 		}
4661 		return 0;
4662 	}
4663 
4664 	nsid = status->cpl.cdw0;
4665 	free(status);
4666 
4667 	assert(nsid > 0);
4668 
4669 	/* Return the namespace ID that was created */
4670 	return nsid;
4671 }
4672 
4673 int
4674 spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4675 {
4676 	struct nvme_completion_poll_status	*status;
4677 	int					res;
4678 
4679 	if (nsid == 0) {
4680 		return -EINVAL;
4681 	}
4682 
4683 	status = calloc(1, sizeof(*status));
4684 	if (!status) {
4685 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4686 		return -ENOMEM;
4687 	}
4688 
4689 	res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, status);
4690 	if (res) {
4691 		free(status);
4692 		return res;
4693 	}
4694 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4695 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_delete_ns failed!\n");
4696 		if (!status->timed_out) {
4697 			free(status);
4698 		}
4699 		return -ENXIO;
4700 	}
4701 	free(status);
4702 
4703 	return nvme_ctrlr_identify_active_ns(ctrlr);
4704 }
4705 
4706 int
4707 spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4708 		       struct spdk_nvme_format *format)
4709 {
4710 	struct nvme_completion_poll_status	*status;
4711 	int					res;
4712 
4713 	status = calloc(1, sizeof(*status));
4714 	if (!status) {
4715 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4716 		return -ENOMEM;
4717 	}
4718 
4719 	res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb,
4720 				    status);
4721 	if (res) {
4722 		free(status);
4723 		return res;
4724 	}
4725 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4726 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_format failed!\n");
4727 		if (!status->timed_out) {
4728 			free(status);
4729 		}
4730 		return -ENXIO;
4731 	}
4732 	free(status);
4733 
4734 	return spdk_nvme_ctrlr_reset(ctrlr);
4735 }
4736 
4737 int
4738 spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size,
4739 				int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status)
4740 {
4741 	struct spdk_nvme_fw_commit		fw_commit;
4742 	struct nvme_completion_poll_status	*status;
4743 	int					res;
4744 	unsigned int				size_remaining;
4745 	unsigned int				offset;
4746 	unsigned int				transfer;
4747 	void					*p;
4748 
4749 	if (!completion_status) {
4750 		return -EINVAL;
4751 	}
4752 	memset(completion_status, 0, sizeof(struct spdk_nvme_status));
4753 	if (size % 4) {
4754 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid size!\n");
4755 		return -1;
4756 	}
4757 
4758 	/* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG
4759 	 * and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG
4760 	 */
4761 	if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) &&
4762 	    (commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) {
4763 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid command!\n");
4764 		return -1;
4765 	}
4766 
4767 	status = calloc(1, sizeof(*status));
4768 	if (!status) {
4769 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4770 		return -ENOMEM;
4771 	}
4772 
4773 	/* Firmware download */
4774 	size_remaining = size;
4775 	offset = 0;
4776 	p = payload;
4777 
4778 	while (size_remaining > 0) {
4779 		transfer = spdk_min(size_remaining, ctrlr->min_page_size);
4780 
4781 		memset(status, 0, sizeof(*status));
4782 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p,
4783 						       nvme_completion_poll_cb,
4784 						       status);
4785 		if (res) {
4786 			free(status);
4787 			return res;
4788 		}
4789 
4790 		if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4791 			NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_fw_image_download failed!\n");
4792 			if (!status->timed_out) {
4793 				free(status);
4794 			}
4795 			return -ENXIO;
4796 		}
4797 		p += transfer;
4798 		offset += transfer;
4799 		size_remaining -= transfer;
4800 	}
4801 
4802 	/* Firmware commit */
4803 	memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
4804 	fw_commit.fs = slot;
4805 	fw_commit.ca = commit_action;
4806 
4807 	memset(status, 0, sizeof(*status));
4808 	res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb,
4809 				       status);
4810 	if (res) {
4811 		free(status);
4812 		return res;
4813 	}
4814 
4815 	res = nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock);
4816 
4817 	memcpy(completion_status, &status->cpl.status, sizeof(struct spdk_nvme_status));
4818 
4819 	if (!status->timed_out) {
4820 		free(status);
4821 	}
4822 
4823 	if (res) {
4824 		if (completion_status->sct != SPDK_NVME_SCT_COMMAND_SPECIFIC ||
4825 		    completion_status->sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) {
4826 			if (completion_status->sct == SPDK_NVME_SCT_COMMAND_SPECIFIC  &&
4827 			    completion_status->sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) {
4828 				NVME_CTRLR_NOTICELOG(ctrlr,
4829 						     "firmware activation requires conventional reset to be performed. !\n");
4830 			} else {
4831 				NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
4832 			}
4833 			return -ENXIO;
4834 		}
4835 	}
4836 
4837 	return spdk_nvme_ctrlr_reset(ctrlr);
4838 }
4839 
4840 int
4841 spdk_nvme_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
4842 {
4843 	int rc, size;
4844 	union spdk_nvme_cmbsz_register cmbsz;
4845 
4846 	cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr);
4847 
4848 	if (cmbsz.bits.rds == 0 || cmbsz.bits.wds == 0) {
4849 		return -ENOTSUP;
4850 	}
4851 
4852 	size = cmbsz.bits.sz * (0x1000 << (cmbsz.bits.szu * 4));
4853 
4854 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4855 	rc = nvme_transport_ctrlr_reserve_cmb(ctrlr);
4856 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4857 
4858 	if (rc < 0) {
4859 		return rc;
4860 	}
4861 
4862 	return size;
4863 }
4864 
4865 void *
4866 spdk_nvme_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
4867 {
4868 	void *buf;
4869 
4870 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4871 	buf = nvme_transport_ctrlr_map_cmb(ctrlr, size);
4872 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4873 
4874 	return buf;
4875 }
4876 
4877 void
4878 spdk_nvme_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr)
4879 {
4880 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4881 	nvme_transport_ctrlr_unmap_cmb(ctrlr);
4882 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4883 }
4884 
4885 int
4886 spdk_nvme_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr)
4887 {
4888 	int rc;
4889 
4890 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4891 	rc = nvme_transport_ctrlr_enable_pmr(ctrlr);
4892 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4893 
4894 	return rc;
4895 }
4896 
4897 int
4898 spdk_nvme_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr)
4899 {
4900 	int rc;
4901 
4902 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4903 	rc = nvme_transport_ctrlr_disable_pmr(ctrlr);
4904 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4905 
4906 	return rc;
4907 }
4908 
4909 void *
4910 spdk_nvme_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
4911 {
4912 	void *buf;
4913 
4914 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4915 	buf = nvme_transport_ctrlr_map_pmr(ctrlr, size);
4916 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4917 
4918 	return buf;
4919 }
4920 
4921 int
4922 spdk_nvme_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr)
4923 {
4924 	int rc;
4925 
4926 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4927 	rc = nvme_transport_ctrlr_unmap_pmr(ctrlr);
4928 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4929 
4930 	return rc;
4931 }
4932 
4933 int
4934 spdk_nvme_ctrlr_read_boot_partition_start(struct spdk_nvme_ctrlr *ctrlr, void *payload,
4935 		uint32_t bprsz, uint32_t bprof, uint32_t bpid)
4936 {
4937 	union spdk_nvme_bprsel_register bprsel;
4938 	union spdk_nvme_bpinfo_register bpinfo;
4939 	uint64_t bpmbl, bpmb_size;
4940 
4941 	if (ctrlr->cap.bits.bps == 0) {
4942 		return -ENOTSUP;
4943 	}
4944 
4945 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
4946 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
4947 		return -EIO;
4948 	}
4949 
4950 	if (bpinfo.bits.brs == SPDK_NVME_BRS_READ_IN_PROGRESS) {
4951 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read already initiated\n");
4952 		return -EALREADY;
4953 	}
4954 
4955 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4956 
4957 	bpmb_size = bprsz * 4096;
4958 	bpmbl = spdk_vtophys(payload, &bpmb_size);
4959 	if (bpmbl == SPDK_VTOPHYS_ERROR) {
4960 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_vtophys of bpmbl failed\n");
4961 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4962 		return -EFAULT;
4963 	}
4964 
4965 	if (bpmb_size != bprsz * 4096) {
4966 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition buffer is not physically contiguous\n");
4967 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4968 		return -EFAULT;
4969 	}
4970 
4971 	if (nvme_ctrlr_set_bpmbl(ctrlr, bpmbl)) {
4972 		NVME_CTRLR_ERRLOG(ctrlr, "set_bpmbl() failed\n");
4973 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4974 		return -EIO;
4975 	}
4976 
4977 	bprsel.bits.bpid = bpid;
4978 	bprsel.bits.bprof = bprof;
4979 	bprsel.bits.bprsz = bprsz;
4980 
4981 	if (nvme_ctrlr_set_bprsel(ctrlr, &bprsel)) {
4982 		NVME_CTRLR_ERRLOG(ctrlr, "set_bprsel() failed\n");
4983 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4984 		return -EIO;
4985 	}
4986 
4987 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4988 	return 0;
4989 }
4990 
4991 int
4992 spdk_nvme_ctrlr_read_boot_partition_poll(struct spdk_nvme_ctrlr *ctrlr)
4993 {
4994 	int rc = 0;
4995 	union spdk_nvme_bpinfo_register bpinfo;
4996 
4997 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
4998 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
4999 		return -EIO;
5000 	}
5001 
5002 	switch (bpinfo.bits.brs) {
5003 	case SPDK_NVME_BRS_NO_READ:
5004 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read not initiated\n");
5005 		rc = -EINVAL;
5006 		break;
5007 	case SPDK_NVME_BRS_READ_IN_PROGRESS:
5008 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition read in progress\n");
5009 		rc = -EAGAIN;
5010 		break;
5011 	case SPDK_NVME_BRS_READ_ERROR:
5012 		NVME_CTRLR_ERRLOG(ctrlr, "Error completing Boot Partition read\n");
5013 		rc = -EIO;
5014 		break;
5015 	case SPDK_NVME_BRS_READ_SUCCESS:
5016 		NVME_CTRLR_INFOLOG(ctrlr, "Boot Partition read completed successfully\n");
5017 		break;
5018 	default:
5019 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition read status\n");
5020 		rc = -EINVAL;
5021 	}
5022 
5023 	return rc;
5024 }
5025 
5026 static void
5027 nvme_write_boot_partition_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5028 {
5029 	int res;
5030 	struct spdk_nvme_ctrlr *ctrlr = arg;
5031 	struct spdk_nvme_fw_commit fw_commit;
5032 	struct spdk_nvme_cpl err_cpl =
5033 	{.status = {.sct = SPDK_NVME_SCT_GENERIC, .sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR }};
5034 
5035 	if (spdk_nvme_cpl_is_error(cpl)) {
5036 		NVME_CTRLR_ERRLOG(ctrlr, "Write Boot Partition failed\n");
5037 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5038 		return;
5039 	}
5040 
5041 	if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADING) {
5042 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Downloading at Offset %d Success\n", ctrlr->fw_offset);
5043 		ctrlr->fw_payload += ctrlr->fw_transfer_size;
5044 		ctrlr->fw_offset += ctrlr->fw_transfer_size;
5045 		ctrlr->fw_size_remaining -= ctrlr->fw_transfer_size;
5046 		ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5047 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5048 						       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5049 		if (res) {
5050 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_image_download failed!\n");
5051 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5052 			return;
5053 		}
5054 
5055 		if (ctrlr->fw_transfer_size < ctrlr->min_page_size) {
5056 			ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADED;
5057 		}
5058 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADED) {
5059 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Download Success\n");
5060 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5061 		fw_commit.bpid = ctrlr->bpid;
5062 		fw_commit.ca = SPDK_NVME_FW_COMMIT_REPLACE_BOOT_PARTITION;
5063 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5064 					       nvme_write_boot_partition_cb, ctrlr);
5065 		if (res) {
5066 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5067 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5068 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5069 			return;
5070 		}
5071 
5072 		ctrlr->bp_ws = SPDK_NVME_BP_WS_REPLACE;
5073 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_REPLACE) {
5074 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Replacement Success\n");
5075 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5076 		fw_commit.bpid = ctrlr->bpid;
5077 		fw_commit.ca = SPDK_NVME_FW_COMMIT_ACTIVATE_BOOT_PARTITION;
5078 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5079 					       nvme_write_boot_partition_cb, ctrlr);
5080 		if (res) {
5081 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5082 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5083 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5084 			return;
5085 		}
5086 
5087 		ctrlr->bp_ws = SPDK_NVME_BP_WS_ACTIVATE;
5088 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_ACTIVATE) {
5089 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Activation Success\n");
5090 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5091 	} else {
5092 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition write state\n");
5093 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5094 		return;
5095 	}
5096 }
5097 
5098 int
5099 spdk_nvme_ctrlr_write_boot_partition(struct spdk_nvme_ctrlr *ctrlr,
5100 				     void *payload, uint32_t size, uint32_t bpid,
5101 				     spdk_nvme_cmd_cb cb_fn, void *cb_arg)
5102 {
5103 	int res;
5104 
5105 	if (ctrlr->cap.bits.bps == 0) {
5106 		return -ENOTSUP;
5107 	}
5108 
5109 	ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADING;
5110 	ctrlr->bpid = bpid;
5111 	ctrlr->bp_write_cb_fn = cb_fn;
5112 	ctrlr->bp_write_cb_arg = cb_arg;
5113 	ctrlr->fw_offset = 0;
5114 	ctrlr->fw_size_remaining = size;
5115 	ctrlr->fw_payload = payload;
5116 	ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5117 
5118 	res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5119 					       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5120 
5121 	return res;
5122 }
5123 
5124 bool
5125 spdk_nvme_ctrlr_is_discovery(struct spdk_nvme_ctrlr *ctrlr)
5126 {
5127 	assert(ctrlr);
5128 
5129 	return !strncmp(ctrlr->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN,
5130 			strlen(SPDK_NVMF_DISCOVERY_NQN));
5131 }
5132 
5133 bool
5134 spdk_nvme_ctrlr_is_fabrics(struct spdk_nvme_ctrlr *ctrlr)
5135 {
5136 	assert(ctrlr);
5137 
5138 	return spdk_nvme_trtype_is_fabrics(ctrlr->trid.trtype);
5139 }
5140 
5141 int
5142 spdk_nvme_ctrlr_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5143 				 uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5144 {
5145 	struct nvme_completion_poll_status	*status;
5146 	int					res;
5147 
5148 	status = calloc(1, sizeof(*status));
5149 	if (!status) {
5150 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5151 		return -ENOMEM;
5152 	}
5153 
5154 	res = spdk_nvme_ctrlr_cmd_security_receive(ctrlr, secp, spsp, nssf, payload, size,
5155 			nvme_completion_poll_cb, status);
5156 	if (res) {
5157 		free(status);
5158 		return res;
5159 	}
5160 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5161 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_receive failed!\n");
5162 		if (!status->timed_out) {
5163 			free(status);
5164 		}
5165 		return -ENXIO;
5166 	}
5167 	free(status);
5168 
5169 	return 0;
5170 }
5171 
5172 int
5173 spdk_nvme_ctrlr_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5174 			      uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5175 {
5176 	struct nvme_completion_poll_status	*status;
5177 	int					res;
5178 
5179 	status = calloc(1, sizeof(*status));
5180 	if (!status) {
5181 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5182 		return -ENOMEM;
5183 	}
5184 
5185 	res = spdk_nvme_ctrlr_cmd_security_send(ctrlr, secp, spsp, nssf, payload, size,
5186 						nvme_completion_poll_cb,
5187 						status);
5188 	if (res) {
5189 		free(status);
5190 		return res;
5191 	}
5192 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5193 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_send failed!\n");
5194 		if (!status->timed_out) {
5195 			free(status);
5196 		}
5197 		return -ENXIO;
5198 	}
5199 
5200 	free(status);
5201 
5202 	return 0;
5203 }
5204 
5205 uint64_t
5206 spdk_nvme_ctrlr_get_flags(struct spdk_nvme_ctrlr *ctrlr)
5207 {
5208 	return ctrlr->flags;
5209 }
5210 
5211 const struct spdk_nvme_transport_id *
5212 spdk_nvme_ctrlr_get_transport_id(struct spdk_nvme_ctrlr *ctrlr)
5213 {
5214 	return &ctrlr->trid;
5215 }
5216 
5217 int32_t
5218 spdk_nvme_ctrlr_alloc_qid(struct spdk_nvme_ctrlr *ctrlr)
5219 {
5220 	uint32_t qid;
5221 
5222 	assert(ctrlr->free_io_qids);
5223 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5224 	qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1);
5225 	if (qid > ctrlr->opts.num_io_queues) {
5226 		NVME_CTRLR_ERRLOG(ctrlr, "No free I/O queue IDs\n");
5227 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5228 		return -1;
5229 	}
5230 
5231 	spdk_bit_array_clear(ctrlr->free_io_qids, qid);
5232 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5233 	return qid;
5234 }
5235 
5236 void
5237 spdk_nvme_ctrlr_free_qid(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid)
5238 {
5239 	assert(qid <= ctrlr->opts.num_io_queues);
5240 
5241 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5242 
5243 	if (spdk_likely(ctrlr->free_io_qids)) {
5244 		spdk_bit_array_set(ctrlr->free_io_qids, qid);
5245 	}
5246 
5247 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5248 }
5249 
5250 int
5251 spdk_nvme_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
5252 				   struct spdk_memory_domain **domains, int array_size)
5253 {
5254 	return nvme_transport_ctrlr_get_memory_domains(ctrlr, domains, array_size);
5255 }
5256