xref: /spdk/lib/nvme/nvme_ctrlr.c (revision d4d015a572e1af7b2818e44218c1e661a61545ec)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2015 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "nvme_internal.h"
10 #include "nvme_io_msg.h"
11 
12 #include "spdk/env.h"
13 #include "spdk/string.h"
14 #include "spdk/endian.h"
15 
16 struct nvme_active_ns_ctx;
17 
18 static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
19 		struct nvme_async_event_request *aer);
20 static void nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx);
21 static int nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns);
22 static int nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns);
23 static int nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns);
24 static void nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr);
25 static void nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
26 				 uint64_t timeout_in_ms);
27 
28 static int
29 nvme_ns_cmp(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
30 {
31 	if (ns1->id < ns2->id) {
32 		return -1;
33 	} else if (ns1->id > ns2->id) {
34 		return 1;
35 	} else {
36 		return 0;
37 	}
38 }
39 
40 RB_GENERATE_STATIC(nvme_ns_tree, spdk_nvme_ns, node, nvme_ns_cmp);
41 
42 #define CTRLR_STRING(ctrlr) \
43 	((ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP || ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA) ? \
44 	ctrlr->trid.subnqn : ctrlr->trid.traddr)
45 
46 #define NVME_CTRLR_ERRLOG(ctrlr, format, ...) \
47 	SPDK_ERRLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
48 
49 #define NVME_CTRLR_WARNLOG(ctrlr, format, ...) \
50 	SPDK_WARNLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
51 
52 #define NVME_CTRLR_NOTICELOG(ctrlr, format, ...) \
53 	SPDK_NOTICELOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
54 
55 #define NVME_CTRLR_INFOLOG(ctrlr, format, ...) \
56 	SPDK_INFOLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
57 
58 #ifdef DEBUG
59 #define NVME_CTRLR_DEBUGLOG(ctrlr, format, ...) \
60 	SPDK_DEBUGLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
61 #else
62 #define NVME_CTRLR_DEBUGLOG(ctrlr, ...) do { } while (0)
63 #endif
64 
65 #define nvme_ctrlr_get_reg_async(ctrlr, reg, sz, cb_fn, cb_arg) \
66 	nvme_transport_ctrlr_get_reg_ ## sz ## _async(ctrlr, \
67 		offsetof(struct spdk_nvme_registers, reg), cb_fn, cb_arg)
68 
69 #define nvme_ctrlr_set_reg_async(ctrlr, reg, sz, val, cb_fn, cb_arg) \
70 	nvme_transport_ctrlr_set_reg_ ## sz ## _async(ctrlr, \
71 		offsetof(struct spdk_nvme_registers, reg), val, cb_fn, cb_arg)
72 
73 #define nvme_ctrlr_get_cc_async(ctrlr, cb_fn, cb_arg) \
74 	nvme_ctrlr_get_reg_async(ctrlr, cc, 4, cb_fn, cb_arg)
75 
76 #define nvme_ctrlr_get_csts_async(ctrlr, cb_fn, cb_arg) \
77 	nvme_ctrlr_get_reg_async(ctrlr, csts, 4, cb_fn, cb_arg)
78 
79 #define nvme_ctrlr_get_cap_async(ctrlr, cb_fn, cb_arg) \
80 	nvme_ctrlr_get_reg_async(ctrlr, cap, 8, cb_fn, cb_arg)
81 
82 #define nvme_ctrlr_get_vs_async(ctrlr, cb_fn, cb_arg) \
83 	nvme_ctrlr_get_reg_async(ctrlr, vs, 4, cb_fn, cb_arg)
84 
85 #define nvme_ctrlr_set_cc_async(ctrlr, value, cb_fn, cb_arg) \
86 	nvme_ctrlr_set_reg_async(ctrlr, cc, 4, value, cb_fn, cb_arg)
87 
88 static int
89 nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc)
90 {
91 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
92 					      &cc->raw);
93 }
94 
95 static int
96 nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts)
97 {
98 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw),
99 					      &csts->raw);
100 }
101 
102 int
103 nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
104 {
105 	return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw),
106 					      &cap->raw);
107 }
108 
109 int
110 nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
111 {
112 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw),
113 					      &vs->raw);
114 }
115 
116 int
117 nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz)
118 {
119 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
120 					      &cmbsz->raw);
121 }
122 
123 int
124 nvme_ctrlr_get_pmrcap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_pmrcap_register *pmrcap)
125 {
126 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, pmrcap.raw),
127 					      &pmrcap->raw);
128 }
129 
130 int
131 nvme_ctrlr_get_bpinfo(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bpinfo_register *bpinfo)
132 {
133 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bpinfo.raw),
134 					      &bpinfo->raw);
135 }
136 
137 int
138 nvme_ctrlr_set_bprsel(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bprsel_register *bprsel)
139 {
140 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bprsel.raw),
141 					      bprsel->raw);
142 }
143 
144 int
145 nvme_ctrlr_set_bpmbl(struct spdk_nvme_ctrlr *ctrlr, uint64_t bpmbl_value)
146 {
147 	return nvme_transport_ctrlr_set_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, bpmbl),
148 					      bpmbl_value);
149 }
150 
151 static int
152 nvme_ctrlr_set_nssr(struct spdk_nvme_ctrlr *ctrlr, uint32_t nssr_value)
153 {
154 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, nssr),
155 					      nssr_value);
156 }
157 
158 bool
159 nvme_ctrlr_multi_iocs_enabled(struct spdk_nvme_ctrlr *ctrlr)
160 {
161 	return ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS &&
162 	       ctrlr->opts.command_set == SPDK_NVME_CC_CSS_IOCS;
163 }
164 
165 /* When the field in spdk_nvme_ctrlr_opts are changed and you change this function, please
166  * also update the nvme_ctrl_opts_init function in nvme_ctrlr.c
167  */
168 void
169 spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
170 {
171 	assert(opts);
172 
173 	opts->opts_size = opts_size;
174 
175 #define FIELD_OK(field) \
176 	offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size
177 
178 #define SET_FIELD(field, value) \
179 	if (offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size) { \
180 		opts->field = value; \
181 	} \
182 
183 	SET_FIELD(num_io_queues, DEFAULT_MAX_IO_QUEUES);
184 	SET_FIELD(use_cmb_sqs, false);
185 	SET_FIELD(no_shn_notification, false);
186 	SET_FIELD(arb_mechanism, SPDK_NVME_CC_AMS_RR);
187 	SET_FIELD(arbitration_burst, 0);
188 	SET_FIELD(low_priority_weight, 0);
189 	SET_FIELD(medium_priority_weight, 0);
190 	SET_FIELD(high_priority_weight, 0);
191 	SET_FIELD(keep_alive_timeout_ms, MIN_KEEP_ALIVE_TIMEOUT_IN_MS);
192 	SET_FIELD(transport_retry_count, SPDK_NVME_DEFAULT_RETRY_COUNT);
193 	SET_FIELD(io_queue_size, DEFAULT_IO_QUEUE_SIZE);
194 
195 	if (nvme_driver_init() == 0) {
196 		if (FIELD_OK(hostnqn)) {
197 			nvme_get_default_hostnqn(opts->hostnqn, sizeof(opts->hostnqn));
198 		}
199 
200 		if (FIELD_OK(extended_host_id)) {
201 			memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id,
202 			       sizeof(opts->extended_host_id));
203 		}
204 
205 	}
206 
207 	SET_FIELD(io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS);
208 
209 	if (FIELD_OK(src_addr)) {
210 		memset(opts->src_addr, 0, sizeof(opts->src_addr));
211 	}
212 
213 	if (FIELD_OK(src_svcid)) {
214 		memset(opts->src_svcid, 0, sizeof(opts->src_svcid));
215 	}
216 
217 	if (FIELD_OK(host_id)) {
218 		memset(opts->host_id, 0, sizeof(opts->host_id));
219 	}
220 
221 	SET_FIELD(command_set, CHAR_BIT);
222 	SET_FIELD(admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000);
223 	SET_FIELD(header_digest, false);
224 	SET_FIELD(data_digest, false);
225 	SET_FIELD(disable_error_logging, false);
226 	SET_FIELD(transport_ack_timeout, SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT);
227 	SET_FIELD(admin_queue_size, DEFAULT_ADMIN_QUEUE_SIZE);
228 	SET_FIELD(fabrics_connect_timeout_us, NVME_FABRIC_CONNECT_COMMAND_TIMEOUT);
229 	SET_FIELD(disable_read_ana_log_page, false);
230 	SET_FIELD(disable_read_changed_ns_list_log_page, false);
231 	SET_FIELD(tls_psk, NULL);
232 	SET_FIELD(dhchap_key, NULL);
233 	SET_FIELD(dhchap_ctrlr_key, NULL);
234 	SET_FIELD(dhchap_digests,
235 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) |
236 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) |
237 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512));
238 	SET_FIELD(dhchap_dhgroups,
239 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) |
240 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) |
241 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) |
242 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) |
243 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) |
244 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192));
245 #undef FIELD_OK
246 #undef SET_FIELD
247 }
248 
249 const struct spdk_nvme_ctrlr_opts *
250 spdk_nvme_ctrlr_get_opts(struct spdk_nvme_ctrlr *ctrlr)
251 {
252 	return &ctrlr->opts;
253 }
254 
255 /**
256  * This function will be called when the process allocates the IO qpair.
257  * Note: the ctrlr_lock must be held when calling this function.
258  */
259 static void
260 nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair)
261 {
262 	struct spdk_nvme_ctrlr_process	*active_proc;
263 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
264 
265 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
266 	if (active_proc) {
267 		TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq);
268 		qpair->active_proc = active_proc;
269 	}
270 }
271 
272 /**
273  * This function will be called when the process frees the IO qpair.
274  * Note: the ctrlr_lock must be held when calling this function.
275  */
276 static void
277 nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair)
278 {
279 	struct spdk_nvme_ctrlr_process	*active_proc;
280 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
281 	struct spdk_nvme_qpair          *active_qpair, *tmp_qpair;
282 
283 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
284 	if (!active_proc) {
285 		return;
286 	}
287 
288 	TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs,
289 			   per_process_tailq, tmp_qpair) {
290 		if (active_qpair == qpair) {
291 			TAILQ_REMOVE(&active_proc->allocated_io_qpairs,
292 				     active_qpair, per_process_tailq);
293 
294 			break;
295 		}
296 	}
297 }
298 
299 void
300 spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr,
301 		struct spdk_nvme_io_qpair_opts *opts,
302 		size_t opts_size)
303 {
304 	assert(ctrlr);
305 
306 	assert(opts);
307 
308 	memset(opts, 0, opts_size);
309 
310 #define FIELD_OK(field) \
311 	offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size
312 
313 	if (FIELD_OK(qprio)) {
314 		opts->qprio = SPDK_NVME_QPRIO_URGENT;
315 	}
316 
317 	if (FIELD_OK(io_queue_size)) {
318 		opts->io_queue_size = ctrlr->opts.io_queue_size;
319 	}
320 
321 	if (FIELD_OK(io_queue_requests)) {
322 		opts->io_queue_requests = ctrlr->opts.io_queue_requests;
323 	}
324 
325 	if (FIELD_OK(delay_cmd_submit)) {
326 		opts->delay_cmd_submit = false;
327 	}
328 
329 	if (FIELD_OK(sq.vaddr)) {
330 		opts->sq.vaddr = NULL;
331 	}
332 
333 	if (FIELD_OK(sq.paddr)) {
334 		opts->sq.paddr = 0;
335 	}
336 
337 	if (FIELD_OK(sq.buffer_size)) {
338 		opts->sq.buffer_size = 0;
339 	}
340 
341 	if (FIELD_OK(cq.vaddr)) {
342 		opts->cq.vaddr = NULL;
343 	}
344 
345 	if (FIELD_OK(cq.paddr)) {
346 		opts->cq.paddr = 0;
347 	}
348 
349 	if (FIELD_OK(cq.buffer_size)) {
350 		opts->cq.buffer_size = 0;
351 	}
352 
353 	if (FIELD_OK(create_only)) {
354 		opts->create_only = false;
355 	}
356 
357 	if (FIELD_OK(async_mode)) {
358 		opts->async_mode = false;
359 	}
360 
361 #undef FIELD_OK
362 }
363 
364 static struct spdk_nvme_qpair *
365 nvme_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
366 			   const struct spdk_nvme_io_qpair_opts *opts)
367 {
368 	int32_t					qid;
369 	struct spdk_nvme_qpair			*qpair;
370 	union spdk_nvme_cc_register		cc;
371 
372 	if (!ctrlr) {
373 		return NULL;
374 	}
375 
376 	nvme_ctrlr_lock(ctrlr);
377 	cc.raw = ctrlr->process_init_cc.raw;
378 
379 	if (opts->qprio & ~SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK) {
380 		nvme_ctrlr_unlock(ctrlr);
381 		return NULL;
382 	}
383 
384 	/*
385 	 * Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the
386 	 * default round robin arbitration method.
387 	 */
388 	if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts->qprio != SPDK_NVME_QPRIO_URGENT)) {
389 		NVME_CTRLR_ERRLOG(ctrlr, "invalid queue priority for default round robin arbitration method\n");
390 		nvme_ctrlr_unlock(ctrlr);
391 		return NULL;
392 	}
393 
394 	qid = spdk_nvme_ctrlr_alloc_qid(ctrlr);
395 	if (qid < 0) {
396 		nvme_ctrlr_unlock(ctrlr);
397 		return NULL;
398 	}
399 
400 	qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, opts);
401 	if (qpair == NULL) {
402 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_create_io_qpair() failed\n");
403 		spdk_nvme_ctrlr_free_qid(ctrlr, qid);
404 		nvme_ctrlr_unlock(ctrlr);
405 		return NULL;
406 	}
407 
408 	TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq);
409 
410 	nvme_ctrlr_proc_add_io_qpair(qpair);
411 
412 	nvme_ctrlr_unlock(ctrlr);
413 
414 	return qpair;
415 }
416 
417 int
418 spdk_nvme_ctrlr_connect_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
419 {
420 	int rc;
421 
422 	if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) {
423 		return -EISCONN;
424 	}
425 
426 	nvme_ctrlr_lock(ctrlr);
427 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
428 	nvme_ctrlr_unlock(ctrlr);
429 
430 	if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) {
431 		spdk_delay_us(100);
432 	}
433 
434 	return rc;
435 }
436 
437 void
438 spdk_nvme_ctrlr_disconnect_io_qpair(struct spdk_nvme_qpair *qpair)
439 {
440 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
441 
442 	nvme_ctrlr_lock(ctrlr);
443 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
444 	nvme_ctrlr_unlock(ctrlr);
445 }
446 
447 struct spdk_nvme_qpair *
448 spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
449 			       const struct spdk_nvme_io_qpair_opts *user_opts,
450 			       size_t opts_size)
451 {
452 
453 	struct spdk_nvme_qpair		*qpair = NULL;
454 	struct spdk_nvme_io_qpair_opts	opts;
455 	int				rc;
456 
457 	nvme_ctrlr_lock(ctrlr);
458 
459 	if (spdk_unlikely(ctrlr->state != NVME_CTRLR_STATE_READY)) {
460 		/* When controller is resetting or initializing, free_io_qids is deleted or not created yet.
461 		 * We can't create IO qpair in that case */
462 		goto unlock;
463 	}
464 
465 	/*
466 	 * Get the default options, then overwrite them with the user-provided options
467 	 * up to opts_size.
468 	 *
469 	 * This allows for extensions of the opts structure without breaking
470 	 * ABI compatibility.
471 	 */
472 	spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
473 	if (user_opts) {
474 		memcpy(&opts, user_opts, spdk_min(sizeof(opts), opts_size));
475 
476 		/* If user passes buffers, make sure they're big enough for the requested queue size */
477 		if (opts.sq.vaddr) {
478 			if (opts.sq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))) {
479 				NVME_CTRLR_ERRLOG(ctrlr, "sq buffer size %" PRIx64 " is too small for sq size %zx\n",
480 						  opts.sq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cmd)));
481 				goto unlock;
482 			}
483 		}
484 		if (opts.cq.vaddr) {
485 			if (opts.cq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))) {
486 				NVME_CTRLR_ERRLOG(ctrlr, "cq buffer size %" PRIx64 " is too small for cq size %zx\n",
487 						  opts.cq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cpl)));
488 				goto unlock;
489 			}
490 		}
491 	}
492 
493 	qpair = nvme_ctrlr_create_io_qpair(ctrlr, &opts);
494 
495 	if (qpair == NULL || opts.create_only == true) {
496 		goto unlock;
497 	}
498 
499 	rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair);
500 	if (rc != 0) {
501 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_connect_io_qpair() failed\n");
502 		nvme_ctrlr_proc_remove_io_qpair(qpair);
503 		TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
504 		spdk_bit_array_set(ctrlr->free_io_qids, qpair->id);
505 		nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
506 		qpair = NULL;
507 		goto unlock;
508 	}
509 
510 unlock:
511 	nvme_ctrlr_unlock(ctrlr);
512 
513 	return qpair;
514 }
515 
516 int
517 spdk_nvme_ctrlr_reconnect_io_qpair(struct spdk_nvme_qpair *qpair)
518 {
519 	struct spdk_nvme_ctrlr *ctrlr;
520 	enum nvme_qpair_state qpair_state;
521 	int rc;
522 
523 	assert(qpair != NULL);
524 	assert(nvme_qpair_is_admin_queue(qpair) == false);
525 	assert(qpair->ctrlr != NULL);
526 
527 	ctrlr = qpair->ctrlr;
528 	nvme_ctrlr_lock(ctrlr);
529 	qpair_state = nvme_qpair_get_state(qpair);
530 
531 	if (ctrlr->is_removed) {
532 		rc = -ENODEV;
533 		goto out;
534 	}
535 
536 	if (ctrlr->is_resetting || qpair_state == NVME_QPAIR_DISCONNECTING) {
537 		rc = -EAGAIN;
538 		goto out;
539 	}
540 
541 	if (ctrlr->is_failed || qpair_state == NVME_QPAIR_DESTROYING) {
542 		rc = -ENXIO;
543 		goto out;
544 	}
545 
546 	if (qpair_state != NVME_QPAIR_DISCONNECTED) {
547 		rc = 0;
548 		goto out;
549 	}
550 
551 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
552 	if (rc) {
553 		rc = -EAGAIN;
554 		goto out;
555 	}
556 
557 out:
558 	nvme_ctrlr_unlock(ctrlr);
559 	return rc;
560 }
561 
562 spdk_nvme_qp_failure_reason
563 spdk_nvme_ctrlr_get_admin_qp_failure_reason(struct spdk_nvme_ctrlr *ctrlr)
564 {
565 	return ctrlr->adminq->transport_failure_reason;
566 }
567 
568 /*
569  * This internal function will attempt to take the controller
570  * lock before calling disconnect on a controller qpair.
571  * Functions already holding the controller lock should
572  * call nvme_transport_ctrlr_disconnect_qpair directly.
573  */
574 void
575 nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair)
576 {
577 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
578 
579 	assert(ctrlr != NULL);
580 	nvme_ctrlr_lock(ctrlr);
581 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
582 	nvme_ctrlr_unlock(ctrlr);
583 }
584 
585 int
586 spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair)
587 {
588 	struct spdk_nvme_ctrlr *ctrlr;
589 
590 	if (qpair == NULL) {
591 		return 0;
592 	}
593 
594 	ctrlr = qpair->ctrlr;
595 
596 	if (qpair->in_completion_context) {
597 		/*
598 		 * There are many cases where it is convenient to delete an io qpair in the context
599 		 *  of that qpair's completion routine.  To handle this properly, set a flag here
600 		 *  so that the completion routine will perform an actual delete after the context
601 		 *  unwinds.
602 		 */
603 		qpair->delete_after_completion_context = 1;
604 		return 0;
605 	}
606 
607 	if (qpair->auth.cb_fn != NULL) {
608 		qpair->auth.cb_fn(qpair->auth.cb_ctx, -ECANCELED);
609 		qpair->auth.cb_fn = NULL;
610 	}
611 
612 	qpair->destroy_in_progress = 1;
613 
614 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
615 
616 	if (qpair->poll_group && (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr))) {
617 		spdk_nvme_poll_group_remove(qpair->poll_group->group, qpair);
618 	}
619 
620 	/* Do not retry. */
621 	nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
622 
623 	/* In the multi-process case, a process may call this function on a foreign
624 	 * I/O qpair (i.e. one that this process did not create) when that qpairs process
625 	 * exits unexpectedly.  In that case, we must not try to abort any reqs associated
626 	 * with that qpair, since the callbacks will also be foreign to this process.
627 	 */
628 	if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) {
629 		nvme_qpair_abort_all_queued_reqs(qpair);
630 	}
631 
632 	nvme_ctrlr_lock(ctrlr);
633 
634 	nvme_ctrlr_proc_remove_io_qpair(qpair);
635 
636 	TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
637 	spdk_nvme_ctrlr_free_qid(ctrlr, qpair->id);
638 
639 	nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
640 	nvme_ctrlr_unlock(ctrlr);
641 	return 0;
642 }
643 
644 static void
645 nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr,
646 		struct spdk_nvme_intel_log_page_directory *log_page_directory)
647 {
648 	if (log_page_directory == NULL) {
649 		return;
650 	}
651 
652 	assert(ctrlr->cdata.vid == SPDK_PCI_VID_INTEL);
653 
654 	ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
655 
656 	if (log_page_directory->read_latency_log_len ||
657 	    (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) {
658 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
659 	}
660 	if (log_page_directory->write_latency_log_len ||
661 	    (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) {
662 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
663 	}
664 	if (log_page_directory->temperature_statistics_log_len) {
665 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true;
666 	}
667 	if (log_page_directory->smart_log_len) {
668 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true;
669 	}
670 	if (log_page_directory->marketing_description_log_len) {
671 		ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true;
672 	}
673 }
674 
675 struct intel_log_pages_ctx {
676 	struct spdk_nvme_intel_log_page_directory log_page_directory;
677 	struct spdk_nvme_ctrlr *ctrlr;
678 };
679 
680 static void
681 nvme_ctrlr_set_intel_support_log_pages_done(void *arg, const struct spdk_nvme_cpl *cpl)
682 {
683 	struct intel_log_pages_ctx *ctx = arg;
684 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
685 
686 	if (!spdk_nvme_cpl_is_error(cpl)) {
687 		nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, &ctx->log_page_directory);
688 	}
689 
690 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
691 			     ctrlr->opts.admin_timeout_ms);
692 	free(ctx);
693 }
694 
695 static int
696 nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr)
697 {
698 	int rc = 0;
699 	struct intel_log_pages_ctx *ctx;
700 
701 	ctx = calloc(1, sizeof(*ctx));
702 	if (!ctx) {
703 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
704 				     ctrlr->opts.admin_timeout_ms);
705 		return 0;
706 	}
707 
708 	ctx->ctrlr = ctrlr;
709 
710 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY,
711 					      SPDK_NVME_GLOBAL_NS_TAG, &ctx->log_page_directory,
712 					      sizeof(struct spdk_nvme_intel_log_page_directory),
713 					      0, nvme_ctrlr_set_intel_support_log_pages_done, ctx);
714 	if (rc != 0) {
715 		free(ctx);
716 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
717 				     ctrlr->opts.admin_timeout_ms);
718 		return 0;
719 	}
720 
721 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES,
722 			     ctrlr->opts.admin_timeout_ms);
723 
724 	return 0;
725 }
726 
727 static int
728 nvme_ctrlr_alloc_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
729 {
730 	uint32_t ana_log_page_size;
731 
732 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + ctrlr->cdata.nanagrpid *
733 			    sizeof(struct spdk_nvme_ana_group_descriptor) + ctrlr->active_ns_count *
734 			    sizeof(uint32_t);
735 
736 	/* Number of active namespaces may have changed.
737 	 * Check if ANA log page fits into existing buffer.
738 	 */
739 	if (ana_log_page_size > ctrlr->ana_log_page_size) {
740 		void *new_buffer;
741 
742 		if (ctrlr->ana_log_page) {
743 			new_buffer = realloc(ctrlr->ana_log_page, ana_log_page_size);
744 		} else {
745 			new_buffer = calloc(1, ana_log_page_size);
746 		}
747 
748 		if (!new_buffer) {
749 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate ANA log page buffer, size %u\n",
750 					  ana_log_page_size);
751 			return -ENXIO;
752 		}
753 
754 		ctrlr->ana_log_page = new_buffer;
755 		if (ctrlr->copied_ana_desc) {
756 			new_buffer = realloc(ctrlr->copied_ana_desc, ana_log_page_size);
757 		} else {
758 			new_buffer = calloc(1, ana_log_page_size);
759 		}
760 
761 		if (!new_buffer) {
762 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate a buffer to parse ANA descriptor, size %u\n",
763 					  ana_log_page_size);
764 			return -ENOMEM;
765 		}
766 
767 		ctrlr->copied_ana_desc = new_buffer;
768 		ctrlr->ana_log_page_size = ana_log_page_size;
769 	}
770 
771 	return 0;
772 }
773 
774 static int
775 nvme_ctrlr_update_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
776 {
777 	struct nvme_completion_poll_status *status;
778 	int rc;
779 
780 	rc = nvme_ctrlr_alloc_ana_log_page(ctrlr);
781 	if (rc != 0) {
782 		return rc;
783 	}
784 
785 	status = calloc(1, sizeof(*status));
786 	if (status == NULL) {
787 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
788 		return -ENOMEM;
789 	}
790 
791 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
792 					      SPDK_NVME_GLOBAL_NS_TAG, ctrlr->ana_log_page,
793 					      ctrlr->ana_log_page_size, 0,
794 					      nvme_completion_poll_cb, status);
795 	if (rc != 0) {
796 		free(status);
797 		return rc;
798 	}
799 
800 	if (nvme_wait_for_completion_robust_lock_timeout(ctrlr->adminq, status, &ctrlr->ctrlr_lock,
801 			ctrlr->opts.admin_timeout_ms * 1000)) {
802 		if (!status->timed_out) {
803 			free(status);
804 		}
805 		return -EIO;
806 	}
807 
808 	free(status);
809 	return 0;
810 }
811 
812 static int
813 nvme_ctrlr_update_ns_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
814 				void *cb_arg)
815 {
816 	struct spdk_nvme_ctrlr *ctrlr = cb_arg;
817 	struct spdk_nvme_ns *ns;
818 	uint32_t i, nsid;
819 
820 	for (i = 0; i < desc->num_of_nsid; i++) {
821 		nsid = desc->nsid[i];
822 		if (nsid == 0 || nsid > ctrlr->cdata.nn) {
823 			continue;
824 		}
825 
826 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
827 		assert(ns != NULL);
828 
829 		ns->ana_group_id = desc->ana_group_id;
830 		ns->ana_state = desc->ana_state;
831 	}
832 
833 	return 0;
834 }
835 
836 int
837 nvme_ctrlr_parse_ana_log_page(struct spdk_nvme_ctrlr *ctrlr,
838 			      spdk_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
839 {
840 	struct spdk_nvme_ana_group_descriptor *copied_desc;
841 	uint8_t *orig_desc;
842 	uint32_t i, desc_size, copy_len;
843 	int rc = 0;
844 
845 	if (ctrlr->ana_log_page == NULL) {
846 		return -EINVAL;
847 	}
848 
849 	copied_desc = ctrlr->copied_ana_desc;
850 
851 	orig_desc = (uint8_t *)ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
852 	copy_len = ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
853 
854 	for (i = 0; i < ctrlr->ana_log_page->num_ana_group_desc; i++) {
855 		memcpy(copied_desc, orig_desc, copy_len);
856 
857 		rc = cb_fn(copied_desc, cb_arg);
858 		if (rc != 0) {
859 			break;
860 		}
861 
862 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
863 			    copied_desc->num_of_nsid * sizeof(uint32_t);
864 		orig_desc += desc_size;
865 		copy_len -= desc_size;
866 	}
867 
868 	return rc;
869 }
870 
871 static int
872 nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr)
873 {
874 	int	rc = 0;
875 
876 	memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
877 	/* Mandatory pages */
878 	ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true;
879 	ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true;
880 	ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true;
881 	if (ctrlr->cdata.lpa.celp) {
882 		ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true;
883 	}
884 
885 	if (ctrlr->cdata.cmic.ana_reporting) {
886 		ctrlr->log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] = true;
887 		if (!ctrlr->opts.disable_read_ana_log_page) {
888 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
889 			if (rc == 0) {
890 				nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
891 							      ctrlr);
892 			}
893 		}
894 	}
895 
896 	if (ctrlr->cdata.ctratt.bits.fdps) {
897 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_CONFIGURATIONS] = true;
898 		ctrlr->log_page_supported[SPDK_NVME_LOG_RECLAIM_UNIT_HANDLE_USAGE] = true;
899 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_STATISTICS] = true;
900 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_EVENTS] = true;
901 	}
902 
903 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL &&
904 	    ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE &&
905 	    !(ctrlr->quirks & NVME_INTEL_QUIRK_NO_LOG_PAGES)) {
906 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES,
907 				     ctrlr->opts.admin_timeout_ms);
908 
909 	} else {
910 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
911 				     ctrlr->opts.admin_timeout_ms);
912 
913 	}
914 
915 	return rc;
916 }
917 
918 static void
919 nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr)
920 {
921 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true;
922 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
923 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
924 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
925 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true;
926 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
927 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
928 }
929 
930 static void
931 nvme_ctrlr_set_arbitration_feature(struct spdk_nvme_ctrlr *ctrlr)
932 {
933 	uint32_t cdw11;
934 	struct nvme_completion_poll_status *status;
935 
936 	if (ctrlr->opts.arbitration_burst == 0) {
937 		return;
938 	}
939 
940 	if (ctrlr->opts.arbitration_burst > 7) {
941 		NVME_CTRLR_WARNLOG(ctrlr, "Valid arbitration burst values is from 0-7\n");
942 		return;
943 	}
944 
945 	status = calloc(1, sizeof(*status));
946 	if (!status) {
947 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
948 		return;
949 	}
950 
951 	cdw11 = ctrlr->opts.arbitration_burst;
952 
953 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_WRR_SUPPORTED) {
954 		cdw11 |= (uint32_t)ctrlr->opts.low_priority_weight << 8;
955 		cdw11 |= (uint32_t)ctrlr->opts.medium_priority_weight << 16;
956 		cdw11 |= (uint32_t)ctrlr->opts.high_priority_weight << 24;
957 	}
958 
959 	if (spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION,
960 					    cdw11, 0, NULL, 0,
961 					    nvme_completion_poll_cb, status) < 0) {
962 		NVME_CTRLR_ERRLOG(ctrlr, "Set arbitration feature failed\n");
963 		free(status);
964 		return;
965 	}
966 
967 	if (nvme_wait_for_completion_timeout(ctrlr->adminq, status,
968 					     ctrlr->opts.admin_timeout_ms * 1000)) {
969 		NVME_CTRLR_ERRLOG(ctrlr, "Timeout to set arbitration feature\n");
970 	}
971 
972 	if (!status->timed_out) {
973 		free(status);
974 	}
975 }
976 
977 static void
978 nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr)
979 {
980 	memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
981 	/* Mandatory features */
982 	ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true;
983 	ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true;
984 	ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
985 	ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true;
986 	ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true;
987 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true;
988 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
989 	ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true;
990 	ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
991 	/* Optional features */
992 	if (ctrlr->cdata.vwc.present) {
993 		ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
994 	}
995 	if (ctrlr->cdata.apsta.supported) {
996 		ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
997 	}
998 	if (ctrlr->cdata.hmpre) {
999 		ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true;
1000 	}
1001 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
1002 		nvme_ctrlr_set_intel_supported_features(ctrlr);
1003 	}
1004 
1005 	nvme_ctrlr_set_arbitration_feature(ctrlr);
1006 }
1007 
1008 static void
1009 nvme_ctrlr_set_host_feature_done(void *arg, const struct spdk_nvme_cpl *cpl)
1010 {
1011 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1012 
1013 	spdk_free(ctrlr->tmp_ptr);
1014 	ctrlr->tmp_ptr = NULL;
1015 
1016 	if (spdk_nvme_cpl_is_error(cpl)) {
1017 		NVME_CTRLR_ERRLOG(ctrlr, "Set host behavior support feature failed: SC %x SCT %x\n",
1018 				  cpl->status.sc, cpl->status.sct);
1019 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1020 		return;
1021 	}
1022 
1023 	ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT] = true;
1024 
1025 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
1026 			     ctrlr->opts.admin_timeout_ms);
1027 }
1028 
1029 /* We do not want to do add synchronous operation anymore.
1030  * We set the Host Behavior Support feature asynchronousin in different states.
1031  */
1032 static int
1033 nvme_ctrlr_set_host_feature(struct spdk_nvme_ctrlr *ctrlr)
1034 {
1035 	struct spdk_nvme_host_behavior *host;
1036 	int rc;
1037 
1038 	if (!ctrlr->cdata.ctratt.bits.elbas) {
1039 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
1040 				     ctrlr->opts.admin_timeout_ms);
1041 		return 0;
1042 	}
1043 
1044 	ctrlr->tmp_ptr = spdk_dma_zmalloc(sizeof(struct spdk_nvme_host_behavior), 4096, NULL);
1045 	if (!ctrlr->tmp_ptr) {
1046 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate host behavior support data\n");
1047 		rc = -ENOMEM;
1048 		goto error;
1049 	}
1050 
1051 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE,
1052 			     ctrlr->opts.admin_timeout_ms);
1053 
1054 	host = ctrlr->tmp_ptr;
1055 
1056 	host->lbafee = 1;
1057 
1058 	rc = spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT,
1059 					     0, 0, host, sizeof(struct spdk_nvme_host_behavior),
1060 					     nvme_ctrlr_set_host_feature_done, ctrlr);
1061 	if (rc != 0) {
1062 		NVME_CTRLR_ERRLOG(ctrlr, "Set host behavior support feature failed: %d\n", rc);
1063 		goto error;
1064 	}
1065 
1066 	return 0;
1067 
1068 error:
1069 	spdk_free(ctrlr->tmp_ptr);
1070 	ctrlr->tmp_ptr = NULL;
1071 
1072 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1073 	return rc;
1074 }
1075 
1076 bool
1077 spdk_nvme_ctrlr_is_failed(struct spdk_nvme_ctrlr *ctrlr)
1078 {
1079 	return ctrlr->is_failed;
1080 }
1081 
1082 void
1083 nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
1084 {
1085 	/*
1086 	 * Set the flag here and leave the work failure of qpairs to
1087 	 * spdk_nvme_qpair_process_completions().
1088 	 */
1089 	if (hot_remove) {
1090 		ctrlr->is_removed = true;
1091 	}
1092 
1093 	if (ctrlr->is_failed) {
1094 		NVME_CTRLR_NOTICELOG(ctrlr, "already in failed state\n");
1095 		return;
1096 	}
1097 
1098 	if (ctrlr->is_disconnecting) {
1099 		NVME_CTRLR_DEBUGLOG(ctrlr, "already disconnecting\n");
1100 		return;
1101 	}
1102 
1103 	ctrlr->is_failed = true;
1104 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1105 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1106 	NVME_CTRLR_ERRLOG(ctrlr, "in failed state.\n");
1107 }
1108 
1109 /**
1110  * This public API function will try to take the controller lock.
1111  * Any private functions being called from a thread already holding
1112  * the ctrlr lock should call nvme_ctrlr_fail directly.
1113  */
1114 void
1115 spdk_nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr)
1116 {
1117 	nvme_ctrlr_lock(ctrlr);
1118 	nvme_ctrlr_fail(ctrlr, false);
1119 	nvme_ctrlr_unlock(ctrlr);
1120 }
1121 
1122 static void
1123 nvme_ctrlr_shutdown_set_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1124 {
1125 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1126 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1127 
1128 	if (spdk_nvme_cpl_is_error(cpl)) {
1129 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1130 		ctx->shutdown_complete = true;
1131 		return;
1132 	}
1133 
1134 	if (ctrlr->opts.no_shn_notification) {
1135 		ctx->shutdown_complete = true;
1136 		return;
1137 	}
1138 
1139 	/*
1140 	 * The NVMe specification defines RTD3E to be the time between
1141 	 *  setting SHN = 1 until the controller will set SHST = 10b.
1142 	 * If the device doesn't report RTD3 entry latency, or if it
1143 	 *  reports RTD3 entry latency less than 10 seconds, pick
1144 	 *  10 seconds as a reasonable amount of time to
1145 	 *  wait before proceeding.
1146 	 */
1147 	NVME_CTRLR_DEBUGLOG(ctrlr, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e);
1148 	ctx->shutdown_timeout_ms = SPDK_CEIL_DIV(ctrlr->cdata.rtd3e, 1000);
1149 	ctx->shutdown_timeout_ms = spdk_max(ctx->shutdown_timeout_ms, 10000);
1150 	NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown timeout = %" PRIu32 " ms\n", ctx->shutdown_timeout_ms);
1151 
1152 	ctx->shutdown_start_tsc = spdk_get_ticks();
1153 	ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1154 }
1155 
1156 static void
1157 nvme_ctrlr_shutdown_get_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1158 {
1159 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1160 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1161 	union spdk_nvme_cc_register cc;
1162 	int rc;
1163 
1164 	if (spdk_nvme_cpl_is_error(cpl)) {
1165 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1166 		ctx->shutdown_complete = true;
1167 		return;
1168 	}
1169 
1170 	assert(value <= UINT32_MAX);
1171 	cc.raw = (uint32_t)value;
1172 
1173 	if (ctrlr->opts.no_shn_notification) {
1174 		NVME_CTRLR_INFOLOG(ctrlr, "Disable SSD without shutdown notification\n");
1175 		if (cc.bits.en == 0) {
1176 			ctx->shutdown_complete = true;
1177 			return;
1178 		}
1179 
1180 		cc.bits.en = 0;
1181 	} else {
1182 		cc.bits.shn = SPDK_NVME_SHN_NORMAL;
1183 	}
1184 
1185 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_shutdown_set_cc_done, ctx);
1186 	if (rc != 0) {
1187 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1188 		ctx->shutdown_complete = true;
1189 	}
1190 }
1191 
1192 static void
1193 nvme_ctrlr_shutdown_async(struct spdk_nvme_ctrlr *ctrlr,
1194 			  struct nvme_ctrlr_detach_ctx *ctx)
1195 {
1196 	int rc;
1197 
1198 	if (ctrlr->is_removed) {
1199 		ctx->shutdown_complete = true;
1200 		return;
1201 	}
1202 
1203 	if (ctrlr->adminq == NULL ||
1204 	    ctrlr->adminq->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE) {
1205 		NVME_CTRLR_INFOLOG(ctrlr, "Adminq is not connected.\n");
1206 		ctx->shutdown_complete = true;
1207 		return;
1208 	}
1209 
1210 	ctx->state = NVME_CTRLR_DETACH_SET_CC;
1211 	rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_shutdown_get_cc_done, ctx);
1212 	if (rc != 0) {
1213 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1214 		ctx->shutdown_complete = true;
1215 	}
1216 }
1217 
1218 static void
1219 nvme_ctrlr_shutdown_get_csts_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1220 {
1221 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1222 
1223 	if (spdk_nvme_cpl_is_error(cpl)) {
1224 		NVME_CTRLR_ERRLOG(ctx->ctrlr, "Failed to read the CSTS register\n");
1225 		ctx->shutdown_complete = true;
1226 		return;
1227 	}
1228 
1229 	assert(value <= UINT32_MAX);
1230 	ctx->csts.raw = (uint32_t)value;
1231 	ctx->state = NVME_CTRLR_DETACH_GET_CSTS_DONE;
1232 }
1233 
1234 static int
1235 nvme_ctrlr_shutdown_poll_async(struct spdk_nvme_ctrlr *ctrlr,
1236 			       struct nvme_ctrlr_detach_ctx *ctx)
1237 {
1238 	union spdk_nvme_csts_register	csts;
1239 	uint32_t			ms_waited;
1240 
1241 	switch (ctx->state) {
1242 	case NVME_CTRLR_DETACH_SET_CC:
1243 	case NVME_CTRLR_DETACH_GET_CSTS:
1244 		/* We're still waiting for the register operation to complete */
1245 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
1246 		return -EAGAIN;
1247 
1248 	case NVME_CTRLR_DETACH_CHECK_CSTS:
1249 		ctx->state = NVME_CTRLR_DETACH_GET_CSTS;
1250 		if (nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_shutdown_get_csts_done, ctx)) {
1251 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
1252 			return -EIO;
1253 		}
1254 		return -EAGAIN;
1255 
1256 	case NVME_CTRLR_DETACH_GET_CSTS_DONE:
1257 		ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1258 		break;
1259 
1260 	default:
1261 		assert(0 && "Should never happen");
1262 		return -EINVAL;
1263 	}
1264 
1265 	ms_waited = (spdk_get_ticks() - ctx->shutdown_start_tsc) * 1000 / spdk_get_ticks_hz();
1266 	csts.raw = ctx->csts.raw;
1267 
1268 	if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
1269 		NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown complete in %u milliseconds\n", ms_waited);
1270 		return 0;
1271 	}
1272 
1273 	if (ms_waited < ctx->shutdown_timeout_ms) {
1274 		return -EAGAIN;
1275 	}
1276 
1277 	NVME_CTRLR_ERRLOG(ctrlr, "did not shutdown within %u milliseconds\n",
1278 			  ctx->shutdown_timeout_ms);
1279 	if (ctrlr->quirks & NVME_QUIRK_SHST_COMPLETE) {
1280 		NVME_CTRLR_ERRLOG(ctrlr, "likely due to shutdown handling in the VMWare emulated NVMe SSD\n");
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 static inline uint64_t
1287 nvme_ctrlr_get_ready_timeout(struct spdk_nvme_ctrlr *ctrlr)
1288 {
1289 	return ctrlr->cap.bits.to * 500;
1290 }
1291 
1292 static void
1293 nvme_ctrlr_set_cc_en_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1294 {
1295 	struct spdk_nvme_ctrlr *ctrlr = ctx;
1296 
1297 	if (spdk_nvme_cpl_is_error(cpl)) {
1298 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to set the CC register\n");
1299 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1300 		return;
1301 	}
1302 
1303 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
1304 			     nvme_ctrlr_get_ready_timeout(ctrlr));
1305 }
1306 
1307 static int
1308 nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
1309 {
1310 	union spdk_nvme_cc_register	cc;
1311 	int				rc;
1312 
1313 	rc = nvme_transport_ctrlr_enable(ctrlr);
1314 	if (rc != 0) {
1315 		NVME_CTRLR_ERRLOG(ctrlr, "transport ctrlr_enable failed\n");
1316 		return rc;
1317 	}
1318 
1319 	cc.raw = ctrlr->process_init_cc.raw;
1320 	if (cc.bits.en != 0) {
1321 		NVME_CTRLR_ERRLOG(ctrlr, "called with CC.EN = 1\n");
1322 		return -EINVAL;
1323 	}
1324 
1325 	cc.bits.en = 1;
1326 	cc.bits.css = 0;
1327 	cc.bits.shn = 0;
1328 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
1329 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
1330 
1331 	/* Page size is 2 ^ (12 + mps). */
1332 	cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12;
1333 
1334 	/*
1335 	 * Since NVMe 1.0, a controller should have at least one bit set in CAP.CSS.
1336 	 * A controller that does not have any bit set in CAP.CSS is not spec compliant.
1337 	 * Try to support such a controller regardless.
1338 	 */
1339 	if (ctrlr->cap.bits.css == 0) {
1340 		NVME_CTRLR_INFOLOG(ctrlr, "Drive reports no command sets supported. Assuming NVM is supported.\n");
1341 		ctrlr->cap.bits.css = SPDK_NVME_CAP_CSS_NVM;
1342 	}
1343 
1344 	/*
1345 	 * If the user did not explicitly request a command set, or supplied a value larger than
1346 	 * what can be saved in CC.CSS, use the most reasonable default.
1347 	 */
1348 	if (ctrlr->opts.command_set >= CHAR_BIT) {
1349 		if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS) {
1350 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_IOCS;
1351 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NVM) {
1352 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1353 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NOIO) {
1354 			/* Technically we should respond with CC_CSS_NOIO in
1355 			 * this case, but we use NVM instead to work around
1356 			 * buggy targets and to match Linux driver behavior.
1357 			 */
1358 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1359 		} else {
1360 			/* Invalid supported bits detected, falling back to NVM. */
1361 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1362 		}
1363 	}
1364 
1365 	/* Verify that the selected command set is supported by the controller. */
1366 	if (!(ctrlr->cap.bits.css & (1u << ctrlr->opts.command_set))) {
1367 		NVME_CTRLR_DEBUGLOG(ctrlr, "Requested I/O command set %u but supported mask is 0x%x\n",
1368 				    ctrlr->opts.command_set, ctrlr->cap.bits.css);
1369 		NVME_CTRLR_DEBUGLOG(ctrlr, "Falling back to NVM. Assuming NVM is supported.\n");
1370 		ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1371 	}
1372 
1373 	cc.bits.css = ctrlr->opts.command_set;
1374 
1375 	switch (ctrlr->opts.arb_mechanism) {
1376 	case SPDK_NVME_CC_AMS_RR:
1377 		break;
1378 	case SPDK_NVME_CC_AMS_WRR:
1379 		if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) {
1380 			break;
1381 		}
1382 		return -EINVAL;
1383 	case SPDK_NVME_CC_AMS_VS:
1384 		if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) {
1385 			break;
1386 		}
1387 		return -EINVAL;
1388 	default:
1389 		return -EINVAL;
1390 	}
1391 
1392 	cc.bits.ams = ctrlr->opts.arb_mechanism;
1393 	ctrlr->process_init_cc.raw = cc.raw;
1394 
1395 	if (nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_set_cc_en_done, ctrlr)) {
1396 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
1397 		return -EIO;
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 static const char *
1404 nvme_ctrlr_state_string(enum nvme_ctrlr_state state)
1405 {
1406 	switch (state) {
1407 	case NVME_CTRLR_STATE_INIT_DELAY:
1408 		return "delay init";
1409 	case NVME_CTRLR_STATE_CONNECT_ADMINQ:
1410 		return "connect adminq";
1411 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
1412 		return "wait for connect adminq";
1413 	case NVME_CTRLR_STATE_READ_VS:
1414 		return "read vs";
1415 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
1416 		return "read vs wait for vs";
1417 	case NVME_CTRLR_STATE_READ_CAP:
1418 		return "read cap";
1419 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
1420 		return "read cap wait for cap";
1421 	case NVME_CTRLR_STATE_CHECK_EN:
1422 		return "check en";
1423 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
1424 		return "check en wait for cc";
1425 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
1426 		return "disable and wait for CSTS.RDY = 1";
1427 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1428 		return "disable and wait for CSTS.RDY = 1 reg";
1429 	case NVME_CTRLR_STATE_SET_EN_0:
1430 		return "set CC.EN = 0";
1431 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
1432 		return "set CC.EN = 0 wait for cc";
1433 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
1434 		return "disable and wait for CSTS.RDY = 0";
1435 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
1436 		return "disable and wait for CSTS.RDY = 0 reg";
1437 	case NVME_CTRLR_STATE_DISABLED:
1438 		return "controller is disabled";
1439 	case NVME_CTRLR_STATE_ENABLE:
1440 		return "enable controller by writing CC.EN = 1";
1441 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
1442 		return "enable controller by writing CC.EN = 1 reg";
1443 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
1444 		return "wait for CSTS.RDY = 1";
1445 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1446 		return "wait for CSTS.RDY = 1 reg";
1447 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
1448 		return "reset admin queue";
1449 	case NVME_CTRLR_STATE_IDENTIFY:
1450 		return "identify controller";
1451 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
1452 		return "wait for identify controller";
1453 	case NVME_CTRLR_STATE_CONFIGURE_AER:
1454 		return "configure AER";
1455 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
1456 		return "wait for configure aer";
1457 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
1458 		return "set keep alive timeout";
1459 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
1460 		return "wait for set keep alive timeout";
1461 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
1462 		return "identify controller iocs specific";
1463 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
1464 		return "wait for identify controller iocs specific";
1465 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
1466 		return "get zns cmd and effects log page";
1467 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
1468 		return "wait for get zns cmd and effects log page";
1469 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
1470 		return "set number of queues";
1471 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
1472 		return "wait for set number of queues";
1473 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
1474 		return "identify active ns";
1475 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
1476 		return "wait for identify active ns";
1477 	case NVME_CTRLR_STATE_IDENTIFY_NS:
1478 		return "identify ns";
1479 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
1480 		return "wait for identify ns";
1481 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
1482 		return "identify namespace id descriptors";
1483 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
1484 		return "wait for identify namespace id descriptors";
1485 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
1486 		return "identify ns iocs specific";
1487 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
1488 		return "wait for identify ns iocs specific";
1489 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
1490 		return "set supported log pages";
1491 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
1492 		return "set supported INTEL log pages";
1493 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
1494 		return "wait for supported INTEL log pages";
1495 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
1496 		return "set supported features";
1497 	case NVME_CTRLR_STATE_SET_HOST_FEATURE:
1498 		return "set host behavior support feature";
1499 	case NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE:
1500 		return "wait for set host behavior support feature";
1501 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
1502 		return "set doorbell buffer config";
1503 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
1504 		return "wait for doorbell buffer config";
1505 	case NVME_CTRLR_STATE_SET_HOST_ID:
1506 		return "set host ID";
1507 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
1508 		return "wait for set host ID";
1509 	case NVME_CTRLR_STATE_TRANSPORT_READY:
1510 		return "transport ready";
1511 	case NVME_CTRLR_STATE_READY:
1512 		return "ready";
1513 	case NVME_CTRLR_STATE_ERROR:
1514 		return "error";
1515 	case NVME_CTRLR_STATE_DISCONNECTED:
1516 		return "disconnected";
1517 	}
1518 	return "unknown";
1519 };
1520 
1521 static void
1522 _nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1523 		      uint64_t timeout_in_ms, bool quiet)
1524 {
1525 	uint64_t ticks_per_ms, timeout_in_ticks, now_ticks;
1526 
1527 	ctrlr->state = state;
1528 	if (timeout_in_ms == NVME_TIMEOUT_KEEP_EXISTING) {
1529 		if (!quiet) {
1530 			NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (keeping existing timeout)\n",
1531 					    nvme_ctrlr_state_string(ctrlr->state));
1532 		}
1533 		return;
1534 	}
1535 
1536 	if (timeout_in_ms == NVME_TIMEOUT_INFINITE) {
1537 		goto inf;
1538 	}
1539 
1540 	ticks_per_ms = spdk_get_ticks_hz() / 1000;
1541 	if (timeout_in_ms > UINT64_MAX / ticks_per_ms) {
1542 		NVME_CTRLR_ERRLOG(ctrlr,
1543 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1544 		goto inf;
1545 	}
1546 
1547 	now_ticks = spdk_get_ticks();
1548 	timeout_in_ticks = timeout_in_ms * ticks_per_ms;
1549 	if (timeout_in_ticks > UINT64_MAX - now_ticks) {
1550 		NVME_CTRLR_ERRLOG(ctrlr,
1551 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1552 		goto inf;
1553 	}
1554 
1555 	ctrlr->state_timeout_tsc = timeout_in_ticks + now_ticks;
1556 	if (!quiet) {
1557 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (timeout %" PRIu64 " ms)\n",
1558 				    nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms);
1559 	}
1560 	return;
1561 inf:
1562 	if (!quiet) {
1563 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (no timeout)\n",
1564 				    nvme_ctrlr_state_string(ctrlr->state));
1565 	}
1566 	ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE;
1567 }
1568 
1569 static void
1570 nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1571 		     uint64_t timeout_in_ms)
1572 {
1573 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, false);
1574 }
1575 
1576 static void
1577 nvme_ctrlr_set_state_quiet(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1578 			   uint64_t timeout_in_ms)
1579 {
1580 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, true);
1581 }
1582 
1583 static void
1584 nvme_ctrlr_free_zns_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1585 {
1586 	spdk_free(ctrlr->cdata_zns);
1587 	ctrlr->cdata_zns = NULL;
1588 }
1589 
1590 static void
1591 nvme_ctrlr_free_iocs_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1592 {
1593 	nvme_ctrlr_free_zns_specific_data(ctrlr);
1594 }
1595 
1596 static void
1597 nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr)
1598 {
1599 	if (ctrlr->shadow_doorbell) {
1600 		spdk_free(ctrlr->shadow_doorbell);
1601 		ctrlr->shadow_doorbell = NULL;
1602 	}
1603 
1604 	if (ctrlr->eventidx) {
1605 		spdk_free(ctrlr->eventidx);
1606 		ctrlr->eventidx = NULL;
1607 	}
1608 }
1609 
1610 static void
1611 nvme_ctrlr_set_doorbell_buffer_config_done(void *arg, const struct spdk_nvme_cpl *cpl)
1612 {
1613 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1614 
1615 	if (spdk_nvme_cpl_is_error(cpl)) {
1616 		NVME_CTRLR_WARNLOG(ctrlr, "Doorbell buffer config failed\n");
1617 	} else {
1618 		NVME_CTRLR_INFOLOG(ctrlr, "Doorbell buffer config enabled\n");
1619 	}
1620 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1621 			     ctrlr->opts.admin_timeout_ms);
1622 }
1623 
1624 static int
1625 nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr)
1626 {
1627 	int rc = 0;
1628 	uint64_t prp1, prp2, len;
1629 
1630 	if (!ctrlr->cdata.oacs.doorbell_buffer_config) {
1631 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1632 				     ctrlr->opts.admin_timeout_ms);
1633 		return 0;
1634 	}
1635 
1636 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
1637 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1638 				     ctrlr->opts.admin_timeout_ms);
1639 		return 0;
1640 	}
1641 
1642 	/* only 1 page size for doorbell buffer */
1643 	ctrlr->shadow_doorbell = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1644 					      NULL, SPDK_ENV_LCORE_ID_ANY,
1645 					      SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1646 	if (ctrlr->shadow_doorbell == NULL) {
1647 		rc = -ENOMEM;
1648 		goto error;
1649 	}
1650 
1651 	len = ctrlr->page_size;
1652 	prp1 = spdk_vtophys(ctrlr->shadow_doorbell, &len);
1653 	if (prp1 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1654 		rc = -EFAULT;
1655 		goto error;
1656 	}
1657 
1658 	ctrlr->eventidx = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1659 				       NULL, SPDK_ENV_LCORE_ID_ANY,
1660 				       SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1661 	if (ctrlr->eventidx == NULL) {
1662 		rc = -ENOMEM;
1663 		goto error;
1664 	}
1665 
1666 	len = ctrlr->page_size;
1667 	prp2 = spdk_vtophys(ctrlr->eventidx, &len);
1668 	if (prp2 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1669 		rc = -EFAULT;
1670 		goto error;
1671 	}
1672 
1673 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG,
1674 			     ctrlr->opts.admin_timeout_ms);
1675 
1676 	rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2,
1677 			nvme_ctrlr_set_doorbell_buffer_config_done, ctrlr);
1678 	if (rc != 0) {
1679 		goto error;
1680 	}
1681 
1682 	return 0;
1683 
1684 error:
1685 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1686 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1687 	return rc;
1688 }
1689 
1690 void
1691 nvme_ctrlr_abort_queued_aborts(struct spdk_nvme_ctrlr *ctrlr)
1692 {
1693 	struct nvme_request	*req, *tmp;
1694 	struct spdk_nvme_cpl	cpl = {};
1695 
1696 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
1697 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
1698 
1699 	STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) {
1700 		STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq);
1701 		ctrlr->outstanding_aborts++;
1702 
1703 		nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, &cpl);
1704 	}
1705 }
1706 
1707 static int
1708 nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1709 {
1710 	if (ctrlr->is_resetting || ctrlr->is_removed) {
1711 		/*
1712 		 * Controller is already resetting or has been removed. Return
1713 		 *  immediately since there is no need to kick off another
1714 		 *  reset in these cases.
1715 		 */
1716 		return ctrlr->is_resetting ? -EBUSY : -ENXIO;
1717 	}
1718 
1719 	ctrlr->is_resetting = true;
1720 	ctrlr->is_failed = false;
1721 	ctrlr->is_disconnecting = true;
1722 	ctrlr->prepare_for_reset = true;
1723 
1724 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting controller\n");
1725 
1726 	/* Disable keep-alive, it'll be re-enabled as part of the init process */
1727 	ctrlr->keep_alive_interval_ticks = 0;
1728 
1729 	/* Abort all of the queued abort requests */
1730 	nvme_ctrlr_abort_queued_aborts(ctrlr);
1731 
1732 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
1733 
1734 	ctrlr->adminq->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1735 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1736 
1737 	return 0;
1738 }
1739 
1740 static void
1741 nvme_ctrlr_disconnect_done(struct spdk_nvme_ctrlr *ctrlr)
1742 {
1743 	assert(ctrlr->is_failed == false);
1744 	ctrlr->is_disconnecting = false;
1745 
1746 	/* Doorbell buffer config is invalid during reset */
1747 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1748 
1749 	/* I/O Command Set Specific Identify Controller data is invalidated during reset */
1750 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
1751 
1752 	spdk_bit_array_free(&ctrlr->free_io_qids);
1753 
1754 	/* Set the state back to DISCONNECTED to cause a full hardware reset. */
1755 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISCONNECTED, NVME_TIMEOUT_INFINITE);
1756 }
1757 
1758 int
1759 spdk_nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1760 {
1761 	int rc;
1762 
1763 	nvme_ctrlr_lock(ctrlr);
1764 	rc = nvme_ctrlr_disconnect(ctrlr);
1765 	nvme_ctrlr_unlock(ctrlr);
1766 
1767 	return rc;
1768 }
1769 
1770 void
1771 spdk_nvme_ctrlr_reconnect_async(struct spdk_nvme_ctrlr *ctrlr)
1772 {
1773 	nvme_ctrlr_lock(ctrlr);
1774 
1775 	ctrlr->prepare_for_reset = false;
1776 
1777 	/* Set the state back to INIT to cause a full hardware reset. */
1778 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
1779 
1780 	/* Return without releasing ctrlr_lock. ctrlr_lock will be released when
1781 	 * spdk_nvme_ctrlr_reset_poll_async() returns 0.
1782 	 */
1783 }
1784 
1785 int
1786 nvme_ctrlr_reinitialize_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1787 {
1788 	bool async;
1789 	int rc;
1790 
1791 	if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc ||
1792 	    spdk_nvme_ctrlr_is_fabrics(ctrlr) || nvme_qpair_is_admin_queue(qpair)) {
1793 		assert(false);
1794 		return -EINVAL;
1795 	}
1796 
1797 	/* Force a synchronous connect. */
1798 	async = qpair->async;
1799 	qpair->async = false;
1800 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
1801 	qpair->async = async;
1802 
1803 	if (rc != 0) {
1804 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1805 	}
1806 
1807 	return rc;
1808 }
1809 
1810 /**
1811  * This function will be called when the controller is being reinitialized.
1812  * Note: the ctrlr_lock must be held when calling this function.
1813  */
1814 int
1815 spdk_nvme_ctrlr_reconnect_poll_async(struct spdk_nvme_ctrlr *ctrlr)
1816 {
1817 	struct spdk_nvme_ns *ns, *tmp_ns;
1818 	struct spdk_nvme_qpair	*qpair;
1819 	int rc = 0, rc_tmp = 0;
1820 
1821 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1822 		NVME_CTRLR_ERRLOG(ctrlr, "controller reinitialization failed\n");
1823 		rc = -1;
1824 	}
1825 	if (ctrlr->state != NVME_CTRLR_STATE_READY && rc != -1) {
1826 		return -EAGAIN;
1827 	}
1828 
1829 	/*
1830 	 * For non-fabrics controllers, the memory locations of the transport qpair
1831 	 * don't change when the controller is reset. They simply need to be
1832 	 * re-enabled with admin commands to the controller. For fabric
1833 	 * controllers we need to disconnect and reconnect the qpair on its
1834 	 * own thread outside of the context of the reset.
1835 	 */
1836 	if (rc == 0 && !spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
1837 		/* Reinitialize qpairs */
1838 		TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1839 			/* Always clear the qid bit here, even for a foreign qpair. We need
1840 			 * to make sure another process doesn't get the chance to grab that
1841 			 * qid.
1842 			 */
1843 			assert(spdk_bit_array_get(ctrlr->free_io_qids, qpair->id));
1844 			spdk_bit_array_clear(ctrlr->free_io_qids, qpair->id);
1845 			if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc) {
1846 				/*
1847 				 * We cannot reinitialize a foreign qpair. The qpair's owning
1848 				 * process will take care of it. Set failure reason to FAILURE_RESET
1849 				 * to ensure that happens.
1850 				 */
1851 				qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_RESET;
1852 				continue;
1853 			}
1854 			rc_tmp = nvme_ctrlr_reinitialize_io_qpair(ctrlr, qpair);
1855 			if (rc_tmp != 0) {
1856 				rc = rc_tmp;
1857 			}
1858 		}
1859 	}
1860 
1861 	/*
1862 	 * Take this opportunity to remove inactive namespaces. During a reset namespace
1863 	 * handles can be invalidated.
1864 	 */
1865 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
1866 		if (!ns->active) {
1867 			RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
1868 			spdk_free(ns);
1869 		}
1870 	}
1871 
1872 	if (rc) {
1873 		nvme_ctrlr_fail(ctrlr, false);
1874 	}
1875 	ctrlr->is_resetting = false;
1876 
1877 	nvme_ctrlr_unlock(ctrlr);
1878 
1879 	if (!ctrlr->cdata.oaes.ns_attribute_notices) {
1880 		/*
1881 		 * If controller doesn't support ns_attribute_notices and
1882 		 * namespace attributes change (e.g. number of namespaces)
1883 		 * we need to update system handling device reset.
1884 		 */
1885 		nvme_io_msg_ctrlr_update(ctrlr);
1886 	}
1887 
1888 	return rc;
1889 }
1890 
1891 /*
1892  * For PCIe transport, spdk_nvme_ctrlr_disconnect() will do a Controller Level Reset
1893  * (Change CC.EN from 1 to 0) as a operation to disconnect the admin qpair.
1894  * The following two functions are added to do a Controller Level Reset. They have
1895  * to be called under the nvme controller's lock.
1896  */
1897 void
1898 nvme_ctrlr_disable(struct spdk_nvme_ctrlr *ctrlr)
1899 {
1900 	assert(ctrlr->is_disconnecting == true);
1901 
1902 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
1903 }
1904 
1905 int
1906 nvme_ctrlr_disable_poll(struct spdk_nvme_ctrlr *ctrlr)
1907 {
1908 	int rc = 0;
1909 
1910 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1911 		NVME_CTRLR_ERRLOG(ctrlr, "failed to disable controller\n");
1912 		rc = -1;
1913 	}
1914 
1915 	if (ctrlr->state != NVME_CTRLR_STATE_DISABLED && rc != -1) {
1916 		return -EAGAIN;
1917 	}
1918 
1919 	return rc;
1920 }
1921 
1922 static void
1923 nvme_ctrlr_fail_io_qpairs(struct spdk_nvme_ctrlr *ctrlr)
1924 {
1925 	struct spdk_nvme_qpair	*qpair;
1926 
1927 	TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1928 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1929 	}
1930 }
1931 
1932 int
1933 spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr)
1934 {
1935 	int rc;
1936 
1937 	nvme_ctrlr_lock(ctrlr);
1938 
1939 	rc = nvme_ctrlr_disconnect(ctrlr);
1940 	if (rc == 0) {
1941 		nvme_ctrlr_fail_io_qpairs(ctrlr);
1942 	}
1943 
1944 	nvme_ctrlr_unlock(ctrlr);
1945 
1946 	if (rc != 0) {
1947 		if (rc == -EBUSY) {
1948 			rc = 0;
1949 		}
1950 		return rc;
1951 	}
1952 
1953 	while (1) {
1954 		rc = spdk_nvme_ctrlr_process_admin_completions(ctrlr);
1955 		if (rc == -ENXIO) {
1956 			break;
1957 		}
1958 	}
1959 
1960 	spdk_nvme_ctrlr_reconnect_async(ctrlr);
1961 
1962 	while (true) {
1963 		rc = spdk_nvme_ctrlr_reconnect_poll_async(ctrlr);
1964 		if (rc != -EAGAIN) {
1965 			break;
1966 		}
1967 	}
1968 
1969 	return rc;
1970 }
1971 
1972 int
1973 spdk_nvme_ctrlr_reset_subsystem(struct spdk_nvme_ctrlr *ctrlr)
1974 {
1975 	union spdk_nvme_cap_register cap;
1976 	int rc = 0;
1977 
1978 	cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr);
1979 	if (cap.bits.nssrs == 0) {
1980 		NVME_CTRLR_WARNLOG(ctrlr, "subsystem reset is not supported\n");
1981 		return -ENOTSUP;
1982 	}
1983 
1984 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting subsystem\n");
1985 	nvme_ctrlr_lock(ctrlr);
1986 	ctrlr->is_resetting = true;
1987 	rc = nvme_ctrlr_set_nssr(ctrlr, SPDK_NVME_NSSR_VALUE);
1988 	ctrlr->is_resetting = false;
1989 
1990 	nvme_ctrlr_unlock(ctrlr);
1991 	/*
1992 	 * No more cleanup at this point like in the ctrlr reset. A subsystem reset will cause
1993 	 * a hot remove for PCIe transport. The hot remove handling does all the necessary ctrlr cleanup.
1994 	 */
1995 	return rc;
1996 }
1997 
1998 int
1999 spdk_nvme_ctrlr_set_trid(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_transport_id *trid)
2000 {
2001 	int rc = 0;
2002 
2003 	nvme_ctrlr_lock(ctrlr);
2004 
2005 	if (ctrlr->is_failed == false) {
2006 		rc = -EPERM;
2007 		goto out;
2008 	}
2009 
2010 	if (trid->trtype != ctrlr->trid.trtype) {
2011 		rc = -EINVAL;
2012 		goto out;
2013 	}
2014 
2015 	if (strncmp(trid->subnqn, ctrlr->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
2016 		rc = -EINVAL;
2017 		goto out;
2018 	}
2019 
2020 	ctrlr->trid = *trid;
2021 
2022 out:
2023 	nvme_ctrlr_unlock(ctrlr);
2024 	return rc;
2025 }
2026 
2027 void
2028 spdk_nvme_ctrlr_set_remove_cb(struct spdk_nvme_ctrlr *ctrlr,
2029 			      spdk_nvme_remove_cb remove_cb, void *remove_ctx)
2030 {
2031 	if (!spdk_process_is_primary()) {
2032 		return;
2033 	}
2034 
2035 	nvme_ctrlr_lock(ctrlr);
2036 	ctrlr->remove_cb = remove_cb;
2037 	ctrlr->cb_ctx = remove_ctx;
2038 	nvme_ctrlr_unlock(ctrlr);
2039 }
2040 
2041 int
2042 spdk_nvme_ctrlr_set_keys(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ctrlr_key_opts *opts)
2043 {
2044 	nvme_ctrlr_lock(ctrlr);
2045 	if (SPDK_GET_FIELD(opts, dhchap_key, ctrlr->opts.dhchap_key) == NULL &&
2046 	    SPDK_GET_FIELD(opts, dhchap_ctrlr_key, ctrlr->opts.dhchap_ctrlr_key) != NULL) {
2047 		NVME_CTRLR_ERRLOG(ctrlr, "DH-HMAC-CHAP controller key requires host key to be set\n");
2048 		nvme_ctrlr_unlock(ctrlr);
2049 		return -EINVAL;
2050 	}
2051 
2052 	ctrlr->opts.dhchap_key =
2053 		SPDK_GET_FIELD(opts, dhchap_key, ctrlr->opts.dhchap_key);
2054 	ctrlr->opts.dhchap_ctrlr_key =
2055 		SPDK_GET_FIELD(opts, dhchap_ctrlr_key, ctrlr->opts.dhchap_ctrlr_key);
2056 	nvme_ctrlr_unlock(ctrlr);
2057 
2058 	return 0;
2059 }
2060 
2061 static void
2062 nvme_ctrlr_identify_done(void *arg, const struct spdk_nvme_cpl *cpl)
2063 {
2064 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2065 
2066 	if (spdk_nvme_cpl_is_error(cpl)) {
2067 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_identify_controller failed!\n");
2068 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2069 		return;
2070 	}
2071 
2072 	/*
2073 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
2074 	 *  controller supports.
2075 	 */
2076 	ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr);
2077 	NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_xfer_size %u\n", ctrlr->max_xfer_size);
2078 	if (ctrlr->cdata.mdts > 0) {
2079 		ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size,
2080 						ctrlr->min_page_size * (1 << ctrlr->cdata.mdts));
2081 		NVME_CTRLR_DEBUGLOG(ctrlr, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size);
2082 	}
2083 
2084 	NVME_CTRLR_DEBUGLOG(ctrlr, "CNTLID 0x%04" PRIx16 "\n", ctrlr->cdata.cntlid);
2085 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
2086 		ctrlr->cntlid = ctrlr->cdata.cntlid;
2087 	} else {
2088 		/*
2089 		 * Fabrics controllers should already have CNTLID from the Connect command.
2090 		 *
2091 		 * If CNTLID from Connect doesn't match CNTLID in the Identify Controller data,
2092 		 * trust the one from Connect.
2093 		 */
2094 		if (ctrlr->cntlid != ctrlr->cdata.cntlid) {
2095 			NVME_CTRLR_DEBUGLOG(ctrlr, "Identify CNTLID 0x%04" PRIx16 " != Connect CNTLID 0x%04" PRIx16 "\n",
2096 					    ctrlr->cdata.cntlid, ctrlr->cntlid);
2097 		}
2098 	}
2099 
2100 	if (ctrlr->cdata.sgls.supported && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
2101 		assert(ctrlr->cdata.sgls.supported != 0x3);
2102 		ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
2103 		if (ctrlr->cdata.sgls.supported == 0x2) {
2104 			ctrlr->flags |= SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT;
2105 		}
2106 
2107 		ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr);
2108 		NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_sges %u\n", ctrlr->max_sges);
2109 	}
2110 
2111 	if (ctrlr->cdata.sgls.metadata_address && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
2112 		ctrlr->flags |= SPDK_NVME_CTRLR_MPTR_SGL_SUPPORTED;
2113 	}
2114 
2115 	if (ctrlr->cdata.oacs.security && !(ctrlr->quirks & NVME_QUIRK_OACS_SECURITY)) {
2116 		ctrlr->flags |= SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED;
2117 	}
2118 
2119 	if (ctrlr->cdata.oacs.directives) {
2120 		ctrlr->flags |= SPDK_NVME_CTRLR_DIRECTIVES_SUPPORTED;
2121 	}
2122 
2123 	NVME_CTRLR_DEBUGLOG(ctrlr, "fuses compare and write: %d\n",
2124 			    ctrlr->cdata.fuses.compare_and_write);
2125 	if (ctrlr->cdata.fuses.compare_and_write) {
2126 		ctrlr->flags |= SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED;
2127 	}
2128 
2129 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
2130 			     ctrlr->opts.admin_timeout_ms);
2131 }
2132 
2133 static int
2134 nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr)
2135 {
2136 	int	rc;
2137 
2138 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY,
2139 			     ctrlr->opts.admin_timeout_ms);
2140 
2141 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, 0,
2142 				     &ctrlr->cdata, sizeof(ctrlr->cdata),
2143 				     nvme_ctrlr_identify_done, ctrlr);
2144 	if (rc != 0) {
2145 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2146 		return rc;
2147 	}
2148 
2149 	return 0;
2150 }
2151 
2152 static void
2153 nvme_ctrlr_get_zns_cmd_and_effects_log_done(void *arg, const struct spdk_nvme_cpl *cpl)
2154 {
2155 	struct spdk_nvme_cmds_and_effect_log_page *log_page;
2156 	struct spdk_nvme_ctrlr *ctrlr = arg;
2157 
2158 	if (spdk_nvme_cpl_is_error(cpl)) {
2159 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_get_zns_cmd_and_effects_log failed!\n");
2160 		spdk_free(ctrlr->tmp_ptr);
2161 		ctrlr->tmp_ptr = NULL;
2162 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2163 		return;
2164 	}
2165 
2166 	log_page = ctrlr->tmp_ptr;
2167 
2168 	if (log_page->io_cmds_supported[SPDK_NVME_OPC_ZONE_APPEND].csupp) {
2169 		ctrlr->flags |= SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2170 	}
2171 	spdk_free(ctrlr->tmp_ptr);
2172 	ctrlr->tmp_ptr = NULL;
2173 
2174 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES, ctrlr->opts.admin_timeout_ms);
2175 }
2176 
2177 static int
2178 nvme_ctrlr_get_zns_cmd_and_effects_log(struct spdk_nvme_ctrlr *ctrlr)
2179 {
2180 	int rc;
2181 
2182 	assert(!ctrlr->tmp_ptr);
2183 	ctrlr->tmp_ptr = spdk_zmalloc(sizeof(struct spdk_nvme_cmds_and_effect_log_page), 64, NULL,
2184 				      SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2185 	if (!ctrlr->tmp_ptr) {
2186 		rc = -ENOMEM;
2187 		goto error;
2188 	}
2189 
2190 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG,
2191 			     ctrlr->opts.admin_timeout_ms);
2192 
2193 	rc = spdk_nvme_ctrlr_cmd_get_log_page_ext(ctrlr, SPDK_NVME_LOG_COMMAND_EFFECTS_LOG,
2194 			0, ctrlr->tmp_ptr, sizeof(struct spdk_nvme_cmds_and_effect_log_page),
2195 			0, 0, 0, SPDK_NVME_CSI_ZNS << 24,
2196 			nvme_ctrlr_get_zns_cmd_and_effects_log_done, ctrlr);
2197 	if (rc != 0) {
2198 		goto error;
2199 	}
2200 
2201 	return 0;
2202 
2203 error:
2204 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2205 	spdk_free(ctrlr->tmp_ptr);
2206 	ctrlr->tmp_ptr = NULL;
2207 	return rc;
2208 }
2209 
2210 static void
2211 nvme_ctrlr_identify_zns_specific_done(void *arg, const struct spdk_nvme_cpl *cpl)
2212 {
2213 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2214 
2215 	if (spdk_nvme_cpl_is_error(cpl)) {
2216 		/* no need to print an error, the controller simply does not support ZNS */
2217 		nvme_ctrlr_free_zns_specific_data(ctrlr);
2218 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2219 				     ctrlr->opts.admin_timeout_ms);
2220 		return;
2221 	}
2222 
2223 	/* A zero zasl value means use mdts */
2224 	if (ctrlr->cdata_zns->zasl) {
2225 		uint32_t max_append = ctrlr->min_page_size * (1 << ctrlr->cdata_zns->zasl);
2226 		ctrlr->max_zone_append_size = spdk_min(ctrlr->max_xfer_size, max_append);
2227 	} else {
2228 		ctrlr->max_zone_append_size = ctrlr->max_xfer_size;
2229 	}
2230 
2231 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG,
2232 			     ctrlr->opts.admin_timeout_ms);
2233 }
2234 
2235 /**
2236  * This function will try to fetch the I/O Command Specific Controller data structure for
2237  * each I/O Command Set supported by SPDK.
2238  *
2239  * If an I/O Command Set is not supported by the controller, "Invalid Field in Command"
2240  * will be returned. Since we are fetching in a exploratively way, getting an error back
2241  * from the controller should not be treated as fatal.
2242  *
2243  * I/O Command Sets not supported by SPDK will be skipped (e.g. Key Value Command Set).
2244  *
2245  * I/O Command Sets without a IOCS specific data structure (i.e. a zero-filled IOCS specific
2246  * data structure) will be skipped (e.g. NVM Command Set, Key Value Command Set).
2247  */
2248 static int
2249 nvme_ctrlr_identify_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2250 {
2251 	int	rc;
2252 
2253 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2254 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2255 				     ctrlr->opts.admin_timeout_ms);
2256 		return 0;
2257 	}
2258 
2259 	/*
2260 	 * Since SPDK currently only needs to fetch a single Command Set, keep the code here,
2261 	 * instead of creating multiple NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC substates,
2262 	 * which would require additional functions and complexity for no good reason.
2263 	 */
2264 	assert(!ctrlr->cdata_zns);
2265 	ctrlr->cdata_zns = spdk_zmalloc(sizeof(*ctrlr->cdata_zns), 64, NULL, SPDK_ENV_NUMA_ID_ANY,
2266 					SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2267 	if (!ctrlr->cdata_zns) {
2268 		rc = -ENOMEM;
2269 		goto error;
2270 	}
2271 
2272 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC,
2273 			     ctrlr->opts.admin_timeout_ms);
2274 
2275 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR_IOCS, 0, 0, SPDK_NVME_CSI_ZNS,
2276 				     ctrlr->cdata_zns, sizeof(*ctrlr->cdata_zns),
2277 				     nvme_ctrlr_identify_zns_specific_done, ctrlr);
2278 	if (rc != 0) {
2279 		goto error;
2280 	}
2281 
2282 	return 0;
2283 
2284 error:
2285 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2286 	nvme_ctrlr_free_zns_specific_data(ctrlr);
2287 	return rc;
2288 }
2289 
2290 enum nvme_active_ns_state {
2291 	NVME_ACTIVE_NS_STATE_IDLE,
2292 	NVME_ACTIVE_NS_STATE_PROCESSING,
2293 	NVME_ACTIVE_NS_STATE_DONE,
2294 	NVME_ACTIVE_NS_STATE_ERROR
2295 };
2296 
2297 typedef void (*nvme_active_ns_ctx_deleter)(struct nvme_active_ns_ctx *);
2298 
2299 struct nvme_active_ns_ctx {
2300 	struct spdk_nvme_ctrlr *ctrlr;
2301 	uint32_t page_count;
2302 	uint32_t next_nsid;
2303 	uint32_t *new_ns_list;
2304 	nvme_active_ns_ctx_deleter deleter;
2305 
2306 	enum nvme_active_ns_state state;
2307 };
2308 
2309 static struct nvme_active_ns_ctx *
2310 nvme_active_ns_ctx_create(struct spdk_nvme_ctrlr *ctrlr, nvme_active_ns_ctx_deleter deleter)
2311 {
2312 	struct nvme_active_ns_ctx *ctx;
2313 	uint32_t *new_ns_list = NULL;
2314 
2315 	ctx = calloc(1, sizeof(*ctx));
2316 	if (!ctx) {
2317 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate nvme_active_ns_ctx!\n");
2318 		return NULL;
2319 	}
2320 
2321 	new_ns_list = spdk_zmalloc(sizeof(struct spdk_nvme_ns_list), ctrlr->page_size,
2322 				   NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_SHARE);
2323 	if (!new_ns_list) {
2324 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate active_ns_list!\n");
2325 		free(ctx);
2326 		return NULL;
2327 	}
2328 
2329 	ctx->page_count = 1;
2330 	ctx->new_ns_list = new_ns_list;
2331 	ctx->ctrlr = ctrlr;
2332 	ctx->deleter = deleter;
2333 
2334 	return ctx;
2335 }
2336 
2337 static void
2338 nvme_active_ns_ctx_destroy(struct nvme_active_ns_ctx *ctx)
2339 {
2340 	spdk_free(ctx->new_ns_list);
2341 	free(ctx);
2342 }
2343 
2344 static int
2345 nvme_ctrlr_destruct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2346 {
2347 	struct spdk_nvme_ns tmp, *ns;
2348 
2349 	assert(ctrlr != NULL);
2350 
2351 	tmp.id = nsid;
2352 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
2353 	if (ns == NULL) {
2354 		return -EINVAL;
2355 	}
2356 
2357 	nvme_ns_destruct(ns);
2358 	ns->active = false;
2359 
2360 	return 0;
2361 }
2362 
2363 static int
2364 nvme_ctrlr_construct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2365 {
2366 	struct spdk_nvme_ns *ns;
2367 
2368 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
2369 		return -EINVAL;
2370 	}
2371 
2372 	/* Namespaces are constructed on demand, so simply request it. */
2373 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2374 	if (ns == NULL) {
2375 		return -ENOMEM;
2376 	}
2377 
2378 	ns->active = true;
2379 
2380 	return 0;
2381 }
2382 
2383 static void
2384 nvme_ctrlr_identify_active_ns_swap(struct spdk_nvme_ctrlr *ctrlr, uint32_t *new_ns_list,
2385 				   size_t max_entries)
2386 {
2387 	uint32_t active_ns_count = 0;
2388 	size_t i;
2389 	uint32_t nsid;
2390 	struct spdk_nvme_ns *ns, *tmp_ns;
2391 	int rc;
2392 
2393 	/* First, remove namespaces that no longer exist */
2394 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
2395 		nsid = new_ns_list[0];
2396 		active_ns_count = 0;
2397 		while (nsid != 0) {
2398 			if (nsid == ns->id) {
2399 				break;
2400 			}
2401 
2402 			nsid = new_ns_list[active_ns_count++];
2403 		}
2404 
2405 		if (nsid != ns->id) {
2406 			/* Did not find this namespace id in the new list. */
2407 			NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was removed\n", ns->id);
2408 			nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
2409 		}
2410 	}
2411 
2412 	/* Next, add new namespaces */
2413 	active_ns_count = 0;
2414 	for (i = 0; i < max_entries; i++) {
2415 		nsid = new_ns_list[active_ns_count];
2416 
2417 		if (nsid == 0) {
2418 			break;
2419 		}
2420 
2421 		/* If the namespace already exists, this will not construct it a second time. */
2422 		rc = nvme_ctrlr_construct_namespace(ctrlr, nsid);
2423 		if (rc != 0) {
2424 			/* We can't easily handle a failure here. But just move on. */
2425 			assert(false);
2426 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to allocate a namespace object.\n");
2427 			continue;
2428 		}
2429 
2430 		active_ns_count++;
2431 	}
2432 
2433 	ctrlr->active_ns_count = active_ns_count;
2434 }
2435 
2436 static void
2437 nvme_ctrlr_identify_active_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2438 {
2439 	struct nvme_active_ns_ctx *ctx = arg;
2440 	uint32_t *new_ns_list = NULL;
2441 
2442 	if (spdk_nvme_cpl_is_error(cpl)) {
2443 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2444 		goto out;
2445 	}
2446 
2447 	ctx->next_nsid = ctx->new_ns_list[1024 * ctx->page_count - 1];
2448 	if (ctx->next_nsid == 0) {
2449 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2450 		goto out;
2451 	}
2452 
2453 	ctx->page_count++;
2454 	new_ns_list = spdk_realloc(ctx->new_ns_list,
2455 				   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2456 				   ctx->ctrlr->page_size);
2457 	if (!new_ns_list) {
2458 		SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2459 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2460 		goto out;
2461 	}
2462 
2463 	ctx->new_ns_list = new_ns_list;
2464 	nvme_ctrlr_identify_active_ns_async(ctx);
2465 	return;
2466 
2467 out:
2468 	if (ctx->deleter) {
2469 		ctx->deleter(ctx);
2470 	}
2471 }
2472 
2473 static void
2474 nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx)
2475 {
2476 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2477 	uint32_t i;
2478 	int rc;
2479 
2480 	if (ctrlr->cdata.nn == 0) {
2481 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2482 		goto out;
2483 	}
2484 
2485 	assert(ctx->new_ns_list != NULL);
2486 
2487 	/*
2488 	 * If controller doesn't support active ns list CNS 0x02 dummy up
2489 	 * an active ns list, i.e. all namespaces report as active
2490 	 */
2491 	if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 1, 0) || ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS) {
2492 		uint32_t *new_ns_list;
2493 
2494 		/*
2495 		 * Active NS list must always end with zero element.
2496 		 * So, we allocate for cdata.nn+1.
2497 		 */
2498 		ctx->page_count = spdk_divide_round_up(ctrlr->cdata.nn + 1,
2499 						       sizeof(struct spdk_nvme_ns_list) / sizeof(new_ns_list[0]));
2500 		new_ns_list = spdk_realloc(ctx->new_ns_list,
2501 					   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2502 					   ctx->ctrlr->page_size);
2503 		if (!new_ns_list) {
2504 			SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2505 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2506 			goto out;
2507 		}
2508 
2509 		ctx->new_ns_list = new_ns_list;
2510 		ctx->new_ns_list[ctrlr->cdata.nn] = 0;
2511 		for (i = 0; i < ctrlr->cdata.nn; i++) {
2512 			ctx->new_ns_list[i] = i + 1;
2513 		}
2514 
2515 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2516 		goto out;
2517 	}
2518 
2519 	ctx->state = NVME_ACTIVE_NS_STATE_PROCESSING;
2520 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, ctx->next_nsid, 0,
2521 				     &ctx->new_ns_list[1024 * (ctx->page_count - 1)], sizeof(struct spdk_nvme_ns_list),
2522 				     nvme_ctrlr_identify_active_ns_async_done, ctx);
2523 	if (rc != 0) {
2524 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2525 		goto out;
2526 	}
2527 
2528 	return;
2529 
2530 out:
2531 	if (ctx->deleter) {
2532 		ctx->deleter(ctx);
2533 	}
2534 }
2535 
2536 static void
2537 _nvme_active_ns_ctx_deleter(struct nvme_active_ns_ctx *ctx)
2538 {
2539 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2540 	struct spdk_nvme_ns *ns;
2541 
2542 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2543 		nvme_active_ns_ctx_destroy(ctx);
2544 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2545 		return;
2546 	}
2547 
2548 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2549 
2550 	RB_FOREACH(ns, nvme_ns_tree, &ctrlr->ns) {
2551 		nvme_ns_free_iocs_specific_data(ns);
2552 	}
2553 
2554 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2555 	nvme_active_ns_ctx_destroy(ctx);
2556 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS, ctrlr->opts.admin_timeout_ms);
2557 }
2558 
2559 static void
2560 _nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2561 {
2562 	struct nvme_active_ns_ctx *ctx;
2563 
2564 	ctx = nvme_active_ns_ctx_create(ctrlr, _nvme_active_ns_ctx_deleter);
2565 	if (!ctx) {
2566 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2567 		return;
2568 	}
2569 
2570 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS,
2571 			     ctrlr->opts.admin_timeout_ms);
2572 	nvme_ctrlr_identify_active_ns_async(ctx);
2573 }
2574 
2575 int
2576 nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2577 {
2578 	struct nvme_active_ns_ctx *ctx;
2579 	int rc;
2580 
2581 	ctx = nvme_active_ns_ctx_create(ctrlr, NULL);
2582 	if (!ctx) {
2583 		return -ENOMEM;
2584 	}
2585 
2586 	nvme_ctrlr_identify_active_ns_async(ctx);
2587 	while (ctx->state == NVME_ACTIVE_NS_STATE_PROCESSING) {
2588 		rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2589 		if (rc < 0) {
2590 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2591 			break;
2592 		}
2593 	}
2594 
2595 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2596 		nvme_active_ns_ctx_destroy(ctx);
2597 		return -ENXIO;
2598 	}
2599 
2600 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2601 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2602 	nvme_active_ns_ctx_destroy(ctx);
2603 
2604 	return 0;
2605 }
2606 
2607 static void
2608 nvme_ctrlr_identify_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2609 {
2610 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2611 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2612 	uint32_t nsid;
2613 	int rc;
2614 
2615 	if (spdk_nvme_cpl_is_error(cpl)) {
2616 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2617 		return;
2618 	}
2619 
2620 	nvme_ns_set_identify_data(ns);
2621 
2622 	/* move on to the next active NS */
2623 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2624 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2625 	if (ns == NULL) {
2626 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2627 				     ctrlr->opts.admin_timeout_ms);
2628 		return;
2629 	}
2630 	ns->ctrlr = ctrlr;
2631 	ns->id = nsid;
2632 
2633 	rc = nvme_ctrlr_identify_ns_async(ns);
2634 	if (rc) {
2635 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2636 	}
2637 }
2638 
2639 static int
2640 nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns)
2641 {
2642 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2643 	struct spdk_nvme_ns_data *nsdata;
2644 
2645 	nsdata = &ns->nsdata;
2646 
2647 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS,
2648 			     ctrlr->opts.admin_timeout_ms);
2649 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS, 0, ns->id, 0,
2650 				       nsdata, sizeof(*nsdata),
2651 				       nvme_ctrlr_identify_ns_async_done, ns);
2652 }
2653 
2654 static int
2655 nvme_ctrlr_identify_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2656 {
2657 	uint32_t nsid;
2658 	struct spdk_nvme_ns *ns;
2659 	int rc;
2660 
2661 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2662 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2663 	if (ns == NULL) {
2664 		/* No active NS, move on to the next state */
2665 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2666 				     ctrlr->opts.admin_timeout_ms);
2667 		return 0;
2668 	}
2669 
2670 	ns->ctrlr = ctrlr;
2671 	ns->id = nsid;
2672 
2673 	rc = nvme_ctrlr_identify_ns_async(ns);
2674 	if (rc) {
2675 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2676 	}
2677 
2678 	return rc;
2679 }
2680 
2681 static int
2682 nvme_ctrlr_identify_namespaces_iocs_specific_next(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
2683 {
2684 	uint32_t nsid;
2685 	struct spdk_nvme_ns *ns;
2686 	int rc;
2687 
2688 	if (!prev_nsid) {
2689 		nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2690 	} else {
2691 		/* move on to the next active NS */
2692 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, prev_nsid);
2693 	}
2694 
2695 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2696 	if (ns == NULL) {
2697 		/* No first/next active NS, move on to the next state */
2698 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2699 				     ctrlr->opts.admin_timeout_ms);
2700 		return 0;
2701 	}
2702 
2703 	/* loop until we find a ns which has (supported) iocs specific data */
2704 	while (!nvme_ns_has_supported_iocs_specific_data(ns)) {
2705 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2706 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2707 		if (ns == NULL) {
2708 			/* no namespace with (supported) iocs specific data found */
2709 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2710 					     ctrlr->opts.admin_timeout_ms);
2711 			return 0;
2712 		}
2713 	}
2714 
2715 	rc = nvme_ctrlr_identify_ns_iocs_specific_async(ns);
2716 	if (rc) {
2717 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2718 	}
2719 
2720 	return rc;
2721 }
2722 
2723 static void
2724 nvme_ctrlr_identify_ns_zns_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2725 {
2726 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2727 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2728 
2729 	if (spdk_nvme_cpl_is_error(cpl)) {
2730 		nvme_ns_free_zns_specific_data(ns);
2731 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2732 		return;
2733 	}
2734 
2735 	nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2736 }
2737 
2738 static int
2739 nvme_ctrlr_identify_ns_zns_specific_async(struct spdk_nvme_ns *ns)
2740 {
2741 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2742 	int rc;
2743 
2744 	assert(!ns->nsdata_zns);
2745 	ns->nsdata_zns = spdk_zmalloc(sizeof(*ns->nsdata_zns), 64, NULL, SPDK_ENV_NUMA_ID_ANY,
2746 				      SPDK_MALLOC_SHARE);
2747 	if (!ns->nsdata_zns) {
2748 		return -ENOMEM;
2749 	}
2750 
2751 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2752 			     ctrlr->opts.admin_timeout_ms);
2753 	rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2754 				     ns->nsdata_zns, sizeof(*ns->nsdata_zns),
2755 				     nvme_ctrlr_identify_ns_zns_specific_async_done, ns);
2756 	if (rc) {
2757 		nvme_ns_free_zns_specific_data(ns);
2758 	}
2759 
2760 	return rc;
2761 }
2762 
2763 static void
2764 nvme_ctrlr_identify_ns_nvm_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2765 {
2766 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2767 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2768 
2769 	if (spdk_nvme_cpl_is_error(cpl)) {
2770 		nvme_ns_free_nvm_specific_data(ns);
2771 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2772 		return;
2773 	}
2774 
2775 	nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2776 }
2777 
2778 static int
2779 nvme_ctrlr_identify_ns_nvm_specific_async(struct spdk_nvme_ns *ns)
2780 {
2781 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2782 	int rc;
2783 
2784 	assert(!ns->nsdata_nvm);
2785 	ns->nsdata_nvm = spdk_zmalloc(sizeof(*ns->nsdata_nvm), 64, NULL, SPDK_ENV_NUMA_ID_ANY,
2786 				      SPDK_MALLOC_SHARE);
2787 	if (!ns->nsdata_nvm) {
2788 		return -ENOMEM;
2789 	}
2790 
2791 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2792 			     ctrlr->opts.admin_timeout_ms);
2793 	rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2794 				     ns->nsdata_nvm, sizeof(*ns->nsdata_nvm),
2795 				     nvme_ctrlr_identify_ns_nvm_specific_async_done, ns);
2796 	if (rc) {
2797 		nvme_ns_free_nvm_specific_data(ns);
2798 	}
2799 
2800 	return rc;
2801 }
2802 
2803 static int
2804 nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns)
2805 {
2806 	switch (ns->csi) {
2807 	case SPDK_NVME_CSI_ZNS:
2808 		return nvme_ctrlr_identify_ns_zns_specific_async(ns);
2809 	case SPDK_NVME_CSI_NVM:
2810 		if (ns->ctrlr->cdata.ctratt.bits.elbas) {
2811 			return nvme_ctrlr_identify_ns_nvm_specific_async(ns);
2812 		}
2813 	/* fallthrough */
2814 	default:
2815 		/*
2816 		 * This switch must handle all cases for which
2817 		 * nvme_ns_has_supported_iocs_specific_data() returns true,
2818 		 * other cases should never happen.
2819 		 */
2820 		assert(0);
2821 	}
2822 
2823 	return -EINVAL;
2824 }
2825 
2826 static int
2827 nvme_ctrlr_identify_namespaces_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2828 {
2829 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2830 		/* Multi IOCS not supported/enabled, move on to the next state */
2831 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2832 				     ctrlr->opts.admin_timeout_ms);
2833 		return 0;
2834 	}
2835 
2836 	return nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, 0);
2837 }
2838 
2839 static void
2840 nvme_ctrlr_identify_id_desc_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2841 {
2842 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2843 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2844 	uint32_t nsid;
2845 	int rc;
2846 
2847 	if (spdk_nvme_cpl_is_error(cpl)) {
2848 		/*
2849 		 * Many controllers claim to be compatible with NVMe 1.3, however,
2850 		 * they do not implement NS ID Desc List. Therefore, instead of setting
2851 		 * the state to NVME_CTRLR_STATE_ERROR, silently ignore the completion
2852 		 * error and move on to the next state.
2853 		 *
2854 		 * The proper way is to create a new quirk for controllers that violate
2855 		 * the NVMe 1.3 spec by not supporting NS ID Desc List.
2856 		 * (Re-using the NVME_QUIRK_IDENTIFY_CNS quirk is not possible, since
2857 		 * it is too generic and was added in order to handle controllers that
2858 		 * violate the NVMe 1.1 spec by not supporting ACTIVE LIST).
2859 		 */
2860 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2861 				     ctrlr->opts.admin_timeout_ms);
2862 		return;
2863 	}
2864 
2865 	nvme_ns_set_id_desc_list_data(ns);
2866 
2867 	/* move on to the next active NS */
2868 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2869 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2870 	if (ns == NULL) {
2871 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2872 				     ctrlr->opts.admin_timeout_ms);
2873 		return;
2874 	}
2875 
2876 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2877 	if (rc) {
2878 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2879 	}
2880 }
2881 
2882 static int
2883 nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns)
2884 {
2885 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2886 
2887 	memset(ns->id_desc_list, 0, sizeof(ns->id_desc_list));
2888 
2889 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS,
2890 			     ctrlr->opts.admin_timeout_ms);
2891 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_ID_DESCRIPTOR_LIST,
2892 				       0, ns->id, 0, ns->id_desc_list, sizeof(ns->id_desc_list),
2893 				       nvme_ctrlr_identify_id_desc_async_done, ns);
2894 }
2895 
2896 static int
2897 nvme_ctrlr_identify_id_desc_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2898 {
2899 	uint32_t nsid;
2900 	struct spdk_nvme_ns *ns;
2901 	int rc;
2902 
2903 	if ((ctrlr->vs.raw < SPDK_NVME_VERSION(1, 3, 0) &&
2904 	     !(ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS)) ||
2905 	    (ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2906 		NVME_CTRLR_DEBUGLOG(ctrlr, "Version < 1.3; not attempting to retrieve NS ID Descriptor List\n");
2907 		/* NS ID Desc List not supported, move on to the next state */
2908 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2909 				     ctrlr->opts.admin_timeout_ms);
2910 		return 0;
2911 	}
2912 
2913 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2914 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2915 	if (ns == NULL) {
2916 		/* No active NS, move on to the next state */
2917 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2918 				     ctrlr->opts.admin_timeout_ms);
2919 		return 0;
2920 	}
2921 
2922 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2923 	if (rc) {
2924 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2925 	}
2926 
2927 	return rc;
2928 }
2929 
2930 static void
2931 nvme_ctrlr_update_nvmf_ioccsz(struct spdk_nvme_ctrlr *ctrlr)
2932 {
2933 	if (spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
2934 		if (ctrlr->cdata.nvmf_specific.ioccsz < 4) {
2935 			NVME_CTRLR_ERRLOG(ctrlr, "Incorrect IOCCSZ %u, the minimum value should be 4\n",
2936 					  ctrlr->cdata.nvmf_specific.ioccsz);
2937 			ctrlr->cdata.nvmf_specific.ioccsz = 4;
2938 			assert(0);
2939 		}
2940 		ctrlr->ioccsz_bytes = ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd);
2941 		ctrlr->icdoff = ctrlr->cdata.nvmf_specific.icdoff;
2942 	}
2943 }
2944 
2945 static void
2946 nvme_ctrlr_set_num_queues_done(void *arg, const struct spdk_nvme_cpl *cpl)
2947 {
2948 	uint32_t cq_allocated, sq_allocated, min_allocated, i;
2949 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2950 
2951 	if (spdk_nvme_cpl_is_error(cpl)) {
2952 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Number of Queues failed!\n");
2953 		ctrlr->opts.num_io_queues = 0;
2954 	} else {
2955 		/*
2956 		 * Data in cdw0 is 0-based.
2957 		 * Lower 16-bits indicate number of submission queues allocated.
2958 		 * Upper 16-bits indicate number of completion queues allocated.
2959 		 */
2960 		sq_allocated = (cpl->cdw0 & 0xFFFF) + 1;
2961 		cq_allocated = (cpl->cdw0 >> 16) + 1;
2962 
2963 		/*
2964 		 * For 1:1 queue mapping, set number of allocated queues to be minimum of
2965 		 * submission and completion queues.
2966 		 */
2967 		min_allocated = spdk_min(sq_allocated, cq_allocated);
2968 
2969 		/* Set number of queues to be minimum of requested and actually allocated. */
2970 		ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues);
2971 	}
2972 
2973 	ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1);
2974 	if (ctrlr->free_io_qids == NULL) {
2975 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2976 		return;
2977 	}
2978 
2979 	/* Initialize list of free I/O queue IDs. QID 0 is the admin queue (implicitly allocated). */
2980 	for (i = 1; i <= ctrlr->opts.num_io_queues; i++) {
2981 		spdk_nvme_ctrlr_free_qid(ctrlr, i);
2982 	}
2983 
2984 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS,
2985 			     ctrlr->opts.admin_timeout_ms);
2986 }
2987 
2988 static int
2989 nvme_ctrlr_set_num_queues(struct spdk_nvme_ctrlr *ctrlr)
2990 {
2991 	int rc;
2992 
2993 	if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) {
2994 		NVME_CTRLR_NOTICELOG(ctrlr, "Limiting requested num_io_queues %u to max %d\n",
2995 				     ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES);
2996 		ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES;
2997 	} else if (ctrlr->opts.num_io_queues < 1) {
2998 		NVME_CTRLR_NOTICELOG(ctrlr, "Requested num_io_queues 0, increasing to 1\n");
2999 		ctrlr->opts.num_io_queues = 1;
3000 	}
3001 
3002 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES,
3003 			     ctrlr->opts.admin_timeout_ms);
3004 
3005 	rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues,
3006 					   nvme_ctrlr_set_num_queues_done, ctrlr);
3007 	if (rc != 0) {
3008 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3009 		return rc;
3010 	}
3011 
3012 	return 0;
3013 }
3014 
3015 static void
3016 nvme_ctrlr_set_keep_alive_timeout_done(void *arg, const struct spdk_nvme_cpl *cpl)
3017 {
3018 	uint32_t keep_alive_interval_us;
3019 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
3020 
3021 	if (spdk_nvme_cpl_is_error(cpl)) {
3022 		if ((cpl->status.sct == SPDK_NVME_SCT_GENERIC) &&
3023 		    (cpl->status.sc == SPDK_NVME_SC_INVALID_FIELD)) {
3024 			NVME_CTRLR_DEBUGLOG(ctrlr, "Keep alive timeout Get Feature is not supported\n");
3025 		} else {
3026 			NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: SC %x SCT %x\n",
3027 					  cpl->status.sc, cpl->status.sct);
3028 			ctrlr->opts.keep_alive_timeout_ms = 0;
3029 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3030 			return;
3031 		}
3032 	} else {
3033 		if (ctrlr->opts.keep_alive_timeout_ms != cpl->cdw0) {
3034 			NVME_CTRLR_DEBUGLOG(ctrlr, "Controller adjusted keep alive timeout to %u ms\n",
3035 					    cpl->cdw0);
3036 		}
3037 
3038 		ctrlr->opts.keep_alive_timeout_ms = cpl->cdw0;
3039 	}
3040 
3041 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
3042 		ctrlr->keep_alive_interval_ticks = 0;
3043 	} else {
3044 		keep_alive_interval_us = ctrlr->opts.keep_alive_timeout_ms * 1000 / 2;
3045 
3046 		NVME_CTRLR_DEBUGLOG(ctrlr, "Sending keep alive every %u us\n", keep_alive_interval_us);
3047 
3048 		ctrlr->keep_alive_interval_ticks = (keep_alive_interval_us * spdk_get_ticks_hz()) /
3049 						   UINT64_C(1000000);
3050 
3051 		/* Schedule the first Keep Alive to be sent as soon as possible. */
3052 		ctrlr->next_keep_alive_tick = spdk_get_ticks();
3053 	}
3054 
3055 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3056 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
3057 	} else {
3058 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3059 				     ctrlr->opts.admin_timeout_ms);
3060 	}
3061 }
3062 
3063 static int
3064 nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr)
3065 {
3066 	int rc;
3067 
3068 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
3069 		if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3070 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
3071 		} else {
3072 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3073 					     ctrlr->opts.admin_timeout_ms);
3074 		}
3075 		return 0;
3076 	}
3077 
3078 	/* Note: Discovery controller identify data does not populate KAS according to spec. */
3079 	if (!spdk_nvme_ctrlr_is_discovery(ctrlr) && ctrlr->cdata.kas == 0) {
3080 		NVME_CTRLR_DEBUGLOG(ctrlr, "Controller KAS is 0 - not enabling Keep Alive\n");
3081 		ctrlr->opts.keep_alive_timeout_ms = 0;
3082 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3083 				     ctrlr->opts.admin_timeout_ms);
3084 		return 0;
3085 	}
3086 
3087 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT,
3088 			     ctrlr->opts.admin_timeout_ms);
3089 
3090 	/* Retrieve actual keep alive timeout, since the controller may have adjusted it. */
3091 	rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0,
3092 					     nvme_ctrlr_set_keep_alive_timeout_done, ctrlr);
3093 	if (rc != 0) {
3094 		NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: %d\n", rc);
3095 		ctrlr->opts.keep_alive_timeout_ms = 0;
3096 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3097 		return rc;
3098 	}
3099 
3100 	return 0;
3101 }
3102 
3103 static void
3104 nvme_ctrlr_set_host_id_done(void *arg, const struct spdk_nvme_cpl *cpl)
3105 {
3106 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
3107 
3108 	if (spdk_nvme_cpl_is_error(cpl)) {
3109 		/*
3110 		 * Treat Set Features - Host ID failure as non-fatal, since the Host ID feature
3111 		 * is optional.
3112 		 */
3113 		NVME_CTRLR_WARNLOG(ctrlr, "Set Features - Host ID failed: SC 0x%x SCT 0x%x\n",
3114 				   cpl->status.sc, cpl->status.sct);
3115 	} else {
3116 		NVME_CTRLR_DEBUGLOG(ctrlr, "Set Features - Host ID was successful\n");
3117 	}
3118 
3119 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3120 }
3121 
3122 static int
3123 nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr)
3124 {
3125 	uint8_t *host_id;
3126 	uint32_t host_id_size;
3127 	int rc;
3128 
3129 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
3130 		/*
3131 		 * NVMe-oF sends the host ID during Connect and doesn't allow
3132 		 * Set Features - Host Identifier after Connect, so we don't need to do anything here.
3133 		 */
3134 		NVME_CTRLR_DEBUGLOG(ctrlr, "NVMe-oF transport - not sending Set Features - Host ID\n");
3135 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3136 		return 0;
3137 	}
3138 
3139 	if (ctrlr->cdata.ctratt.bits.host_id_exhid_supported) {
3140 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 128-bit extended host identifier\n");
3141 		host_id = ctrlr->opts.extended_host_id;
3142 		host_id_size = sizeof(ctrlr->opts.extended_host_id);
3143 	} else {
3144 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 64-bit host identifier\n");
3145 		host_id = ctrlr->opts.host_id;
3146 		host_id_size = sizeof(ctrlr->opts.host_id);
3147 	}
3148 
3149 	/* If the user specified an all-zeroes host identifier, don't send the command. */
3150 	if (spdk_mem_all_zero(host_id, host_id_size)) {
3151 		NVME_CTRLR_DEBUGLOG(ctrlr, "User did not specify host ID - not sending Set Features - Host ID\n");
3152 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3153 		return 0;
3154 	}
3155 
3156 	SPDK_LOGDUMP(nvme, "host_id", host_id, host_id_size);
3157 
3158 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_HOST_ID,
3159 			     ctrlr->opts.admin_timeout_ms);
3160 
3161 	rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_ctrlr_set_host_id_done, ctrlr);
3162 	if (rc != 0) {
3163 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Host ID failed: %d\n", rc);
3164 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3165 		return rc;
3166 	}
3167 
3168 	return 0;
3169 }
3170 
3171 void
3172 nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr)
3173 {
3174 	uint32_t nsid;
3175 	struct spdk_nvme_ns *ns;
3176 
3177 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3178 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
3179 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
3180 		nvme_ns_construct(ns, nsid, ctrlr);
3181 	}
3182 }
3183 
3184 static int
3185 nvme_ctrlr_clear_changed_ns_log(struct spdk_nvme_ctrlr *ctrlr)
3186 {
3187 	struct nvme_completion_poll_status	*status;
3188 	int		rc = -ENOMEM;
3189 	char		*buffer = NULL;
3190 	uint32_t	nsid;
3191 	size_t		buf_size = (SPDK_NVME_MAX_CHANGED_NAMESPACES * sizeof(uint32_t));
3192 
3193 	if (ctrlr->opts.disable_read_changed_ns_list_log_page) {
3194 		return 0;
3195 	}
3196 
3197 	buffer = spdk_dma_zmalloc(buf_size, 4096, NULL);
3198 	if (!buffer) {
3199 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate buffer for getting "
3200 				  "changed ns log.\n");
3201 		return rc;
3202 	}
3203 
3204 	status = calloc(1, sizeof(*status));
3205 	if (!status) {
3206 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
3207 		goto free_buffer;
3208 	}
3209 
3210 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
3211 					      SPDK_NVME_LOG_CHANGED_NS_LIST,
3212 					      SPDK_NVME_GLOBAL_NS_TAG,
3213 					      buffer, buf_size, 0,
3214 					      nvme_completion_poll_cb, status);
3215 
3216 	if (rc) {
3217 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_get_log_page() failed: rc=%d\n", rc);
3218 		free(status);
3219 		goto free_buffer;
3220 	}
3221 
3222 	rc = nvme_wait_for_completion_timeout(ctrlr->adminq, status,
3223 					      ctrlr->opts.admin_timeout_ms * 1000);
3224 	if (!status->timed_out) {
3225 		free(status);
3226 	}
3227 
3228 	if (rc) {
3229 		NVME_CTRLR_ERRLOG(ctrlr, "wait for spdk_nvme_ctrlr_cmd_get_log_page failed: rc=%d\n", rc);
3230 		goto free_buffer;
3231 	}
3232 
3233 	/* only check the case of overflow. */
3234 	nsid = from_le32(buffer);
3235 	if (nsid == 0xffffffffu) {
3236 		NVME_CTRLR_WARNLOG(ctrlr, "changed ns log overflowed.\n");
3237 	}
3238 
3239 free_buffer:
3240 	spdk_dma_free(buffer);
3241 	return rc;
3242 }
3243 
3244 static void
3245 nvme_ctrlr_process_async_event(struct spdk_nvme_ctrlr *ctrlr,
3246 			       const struct spdk_nvme_cpl *cpl)
3247 {
3248 	union spdk_nvme_async_event_completion event;
3249 	struct spdk_nvme_ctrlr_process *active_proc;
3250 	int rc;
3251 
3252 	event.raw = cpl->cdw0;
3253 
3254 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3255 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
3256 		nvme_ctrlr_clear_changed_ns_log(ctrlr);
3257 
3258 		rc = nvme_ctrlr_identify_active_ns(ctrlr);
3259 		if (rc) {
3260 			return;
3261 		}
3262 		nvme_ctrlr_update_namespaces(ctrlr);
3263 		nvme_io_msg_ctrlr_update(ctrlr);
3264 	}
3265 
3266 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3267 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
3268 		if (!ctrlr->opts.disable_read_ana_log_page) {
3269 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
3270 			if (rc) {
3271 				return;
3272 			}
3273 			nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
3274 						      ctrlr);
3275 		}
3276 	}
3277 
3278 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3279 	if (active_proc && active_proc->aer_cb_fn) {
3280 		active_proc->aer_cb_fn(active_proc->aer_cb_arg, cpl);
3281 	}
3282 }
3283 
3284 static void
3285 nvme_ctrlr_queue_async_event(struct spdk_nvme_ctrlr *ctrlr,
3286 			     const struct spdk_nvme_cpl *cpl)
3287 {
3288 	struct  spdk_nvme_ctrlr_aer_completion_list *nvme_event;
3289 	struct spdk_nvme_ctrlr_process *proc;
3290 
3291 	/* Add async event to each process objects event list */
3292 	TAILQ_FOREACH(proc, &ctrlr->active_procs, tailq) {
3293 		/* Must be shared memory so other processes can access */
3294 		nvme_event = spdk_zmalloc(sizeof(*nvme_event), 0, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_SHARE);
3295 		if (!nvme_event) {
3296 			NVME_CTRLR_ERRLOG(ctrlr, "Alloc nvme event failed, ignore the event\n");
3297 			return;
3298 		}
3299 		nvme_event->cpl = *cpl;
3300 
3301 		STAILQ_INSERT_TAIL(&proc->async_events, nvme_event, link);
3302 	}
3303 }
3304 
3305 static void
3306 nvme_ctrlr_complete_queued_async_events(struct spdk_nvme_ctrlr *ctrlr)
3307 {
3308 	struct  spdk_nvme_ctrlr_aer_completion_list  *nvme_event, *nvme_event_tmp;
3309 	struct spdk_nvme_ctrlr_process	*active_proc;
3310 
3311 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3312 
3313 	STAILQ_FOREACH_SAFE(nvme_event, &active_proc->async_events, link, nvme_event_tmp) {
3314 		STAILQ_REMOVE(&active_proc->async_events, nvme_event,
3315 			      spdk_nvme_ctrlr_aer_completion_list, link);
3316 		nvme_ctrlr_process_async_event(ctrlr, &nvme_event->cpl);
3317 		spdk_free(nvme_event);
3318 
3319 	}
3320 }
3321 
3322 static void
3323 nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl)
3324 {
3325 	struct nvme_async_event_request	*aer = arg;
3326 	struct spdk_nvme_ctrlr		*ctrlr = aer->ctrlr;
3327 
3328 	if (cpl->status.sct == SPDK_NVME_SCT_GENERIC &&
3329 	    cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) {
3330 		/*
3331 		 *  This is simulated when controller is being shut down, to
3332 		 *  effectively abort outstanding asynchronous event requests
3333 		 *  and make sure all memory is freed.  Do not repost the
3334 		 *  request in this case.
3335 		 */
3336 		return;
3337 	}
3338 
3339 	if (cpl->status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC &&
3340 	    cpl->status.sc == SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED) {
3341 		/*
3342 		 *  SPDK will only send as many AERs as the device says it supports,
3343 		 *  so this status code indicates an out-of-spec device.  Do not repost
3344 		 *  the request in this case.
3345 		 */
3346 		NVME_CTRLR_ERRLOG(ctrlr, "Controller appears out-of-spec for asynchronous event request\n"
3347 				  "handling.  Do not repost this AER.\n");
3348 		return;
3349 	}
3350 
3351 	/* Add the events to the list */
3352 	nvme_ctrlr_queue_async_event(ctrlr, cpl);
3353 
3354 	/* If the ctrlr was removed or in the destruct state, we should not send aer again */
3355 	if (ctrlr->is_removed || ctrlr->is_destructed) {
3356 		return;
3357 	}
3358 
3359 	/*
3360 	 * Repost another asynchronous event request to replace the one
3361 	 *  that just completed.
3362 	 */
3363 	if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
3364 		/*
3365 		 * We can't do anything to recover from a failure here,
3366 		 * so just print a warning message and leave the AER unsubmitted.
3367 		 */
3368 		NVME_CTRLR_ERRLOG(ctrlr, "resubmitting AER failed!\n");
3369 	}
3370 }
3371 
3372 static int
3373 nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
3374 				    struct nvme_async_event_request *aer)
3375 {
3376 	struct nvme_request *req;
3377 
3378 	aer->ctrlr = ctrlr;
3379 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer);
3380 	aer->req = req;
3381 	if (req == NULL) {
3382 		return -1;
3383 	}
3384 
3385 	req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
3386 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
3387 }
3388 
3389 static void
3390 nvme_ctrlr_configure_aer_done(void *arg, const struct spdk_nvme_cpl *cpl)
3391 {
3392 	struct nvme_async_event_request		*aer;
3393 	int					rc;
3394 	uint32_t				i;
3395 	struct spdk_nvme_ctrlr *ctrlr =	(struct spdk_nvme_ctrlr *)arg;
3396 
3397 	if (spdk_nvme_cpl_is_error(cpl)) {
3398 		NVME_CTRLR_NOTICELOG(ctrlr, "nvme_ctrlr_configure_aer failed!\n");
3399 		ctrlr->num_aers = 0;
3400 	} else {
3401 		/* aerl is a zero-based value, so we need to add 1 here. */
3402 		ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
3403 	}
3404 
3405 	for (i = 0; i < ctrlr->num_aers; i++) {
3406 		aer = &ctrlr->aer[i];
3407 		rc = nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
3408 		if (rc) {
3409 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_construct_and_submit_aer failed!\n");
3410 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3411 			return;
3412 		}
3413 	}
3414 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, ctrlr->opts.admin_timeout_ms);
3415 }
3416 
3417 static int
3418 nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr)
3419 {
3420 	union spdk_nvme_feat_async_event_configuration	config;
3421 	int						rc;
3422 
3423 	config.raw = 0;
3424 
3425 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3426 		config.bits.discovery_log_change_notice = 1;
3427 	} else {
3428 		config.bits.crit_warn.bits.available_spare = 1;
3429 		config.bits.crit_warn.bits.temperature = 1;
3430 		config.bits.crit_warn.bits.device_reliability = 1;
3431 		config.bits.crit_warn.bits.read_only = 1;
3432 		config.bits.crit_warn.bits.volatile_memory_backup = 1;
3433 
3434 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 2, 0)) {
3435 			if (ctrlr->cdata.oaes.ns_attribute_notices) {
3436 				config.bits.ns_attr_notice = 1;
3437 			}
3438 			if (ctrlr->cdata.oaes.fw_activation_notices) {
3439 				config.bits.fw_activation_notice = 1;
3440 			}
3441 			if (ctrlr->cdata.oaes.ana_change_notices) {
3442 				config.bits.ana_change_notice = 1;
3443 			}
3444 		}
3445 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 3, 0) && ctrlr->cdata.lpa.telemetry) {
3446 			config.bits.telemetry_log_notice = 1;
3447 		}
3448 	}
3449 
3450 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER,
3451 			     ctrlr->opts.admin_timeout_ms);
3452 
3453 	rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config,
3454 			nvme_ctrlr_configure_aer_done,
3455 			ctrlr);
3456 	if (rc != 0) {
3457 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3458 		return rc;
3459 	}
3460 
3461 	return 0;
3462 }
3463 
3464 struct spdk_nvme_ctrlr_process *
3465 nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid)
3466 {
3467 	struct spdk_nvme_ctrlr_process	*active_proc;
3468 
3469 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3470 		if (active_proc->pid == pid) {
3471 			return active_proc;
3472 		}
3473 	}
3474 
3475 	return NULL;
3476 }
3477 
3478 struct spdk_nvme_ctrlr_process *
3479 nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr)
3480 {
3481 	return nvme_ctrlr_get_process(ctrlr, getpid());
3482 }
3483 
3484 /**
3485  * This function will be called when a process is using the controller.
3486  *  1. For the primary process, it is called when constructing the controller.
3487  *  2. For the secondary process, it is called at probing the controller.
3488  * Note: will check whether the process is already added for the same process.
3489  */
3490 int
3491 nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
3492 {
3493 	struct spdk_nvme_ctrlr_process	*ctrlr_proc;
3494 	pid_t				pid = getpid();
3495 
3496 	/* Check whether the process is already added or not */
3497 	if (nvme_ctrlr_get_process(ctrlr, pid)) {
3498 		return 0;
3499 	}
3500 
3501 	/* Initialize the per process properties for this ctrlr */
3502 	ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process),
3503 				  64, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_SHARE);
3504 	if (ctrlr_proc == NULL) {
3505 		NVME_CTRLR_ERRLOG(ctrlr, "failed to allocate memory to track the process props\n");
3506 
3507 		return -1;
3508 	}
3509 
3510 	ctrlr_proc->is_primary = spdk_process_is_primary();
3511 	ctrlr_proc->pid = pid;
3512 	STAILQ_INIT(&ctrlr_proc->active_reqs);
3513 	ctrlr_proc->devhandle = devhandle;
3514 	ctrlr_proc->ref = 0;
3515 	TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs);
3516 	STAILQ_INIT(&ctrlr_proc->async_events);
3517 
3518 	TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq);
3519 
3520 	return 0;
3521 }
3522 
3523 /**
3524  * This function will be called when the process detaches the controller.
3525  * Note: the ctrlr_lock must be held when calling this function.
3526  */
3527 static void
3528 nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr,
3529 			  struct spdk_nvme_ctrlr_process *proc)
3530 {
3531 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3532 
3533 	assert(STAILQ_EMPTY(&proc->active_reqs));
3534 
3535 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3536 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3537 	}
3538 
3539 	TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq);
3540 
3541 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
3542 		spdk_pci_device_detach(proc->devhandle);
3543 	}
3544 
3545 	spdk_free(proc);
3546 }
3547 
3548 /**
3549  * This function will be called when the process exited unexpectedly
3550  *  in order to free any incomplete nvme request, allocated IO qpairs
3551  *  and allocated memory.
3552  * Note: the ctrlr_lock must be held when calling this function.
3553  */
3554 static void
3555 nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc)
3556 {
3557 	struct nvme_request	*req, *tmp_req;
3558 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3559 	struct spdk_nvme_ctrlr_aer_completion_list *event;
3560 
3561 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
3562 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
3563 
3564 		assert(req->pid == proc->pid);
3565 		nvme_cleanup_user_req(req);
3566 		nvme_free_request(req);
3567 	}
3568 
3569 	/* Remove async event from each process objects event list */
3570 	while (!STAILQ_EMPTY(&proc->async_events)) {
3571 		event = STAILQ_FIRST(&proc->async_events);
3572 		STAILQ_REMOVE_HEAD(&proc->async_events, link);
3573 		spdk_free(event);
3574 	}
3575 
3576 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3577 		TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq);
3578 
3579 		/*
3580 		 * The process may have been killed while some qpairs were in their
3581 		 *  completion context.  Clear that flag here to allow these IO
3582 		 *  qpairs to be deleted.
3583 		 */
3584 		qpair->in_completion_context = 0;
3585 
3586 		qpair->no_deletion_notification_needed = 1;
3587 
3588 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3589 	}
3590 
3591 	spdk_free(proc);
3592 }
3593 
3594 /**
3595  * This function will be called when destructing the controller.
3596  *  1. There is no more admin request on this controller.
3597  *  2. Clean up any left resource allocation when its associated process is gone.
3598  */
3599 void
3600 nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
3601 {
3602 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3603 
3604 	/* Free all the processes' properties and make sure no pending admin IOs */
3605 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3606 		TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3607 
3608 		assert(STAILQ_EMPTY(&active_proc->active_reqs));
3609 
3610 		spdk_free(active_proc);
3611 	}
3612 }
3613 
3614 /**
3615  * This function will be called when any other process attaches or
3616  *  detaches the controller in order to cleanup those unexpectedly
3617  *  terminated processes.
3618  * Note: the ctrlr_lock must be held when calling this function.
3619  */
3620 static int
3621 nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr)
3622 {
3623 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3624 	int				active_proc_count = 0;
3625 
3626 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3627 		if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) {
3628 			NVME_CTRLR_ERRLOG(ctrlr, "process %d terminated unexpected\n", active_proc->pid);
3629 
3630 			TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3631 
3632 			nvme_ctrlr_cleanup_process(active_proc);
3633 		} else {
3634 			active_proc_count++;
3635 		}
3636 	}
3637 
3638 	return active_proc_count;
3639 }
3640 
3641 void
3642 nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr)
3643 {
3644 	struct spdk_nvme_ctrlr_process	*active_proc;
3645 
3646 	nvme_ctrlr_lock(ctrlr);
3647 
3648 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3649 
3650 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3651 	if (active_proc) {
3652 		active_proc->ref++;
3653 	}
3654 
3655 	nvme_ctrlr_unlock(ctrlr);
3656 }
3657 
3658 void
3659 nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr)
3660 {
3661 	struct spdk_nvme_ctrlr_process	*active_proc;
3662 	int				proc_count;
3663 
3664 	nvme_ctrlr_lock(ctrlr);
3665 
3666 	proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr);
3667 
3668 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3669 	if (active_proc) {
3670 		active_proc->ref--;
3671 		assert(active_proc->ref >= 0);
3672 
3673 		/*
3674 		 * The last active process will be removed at the end of
3675 		 * the destruction of the controller.
3676 		 */
3677 		if (active_proc->ref == 0 && proc_count != 1) {
3678 			nvme_ctrlr_remove_process(ctrlr, active_proc);
3679 		}
3680 	}
3681 
3682 	nvme_ctrlr_unlock(ctrlr);
3683 }
3684 
3685 int
3686 nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr)
3687 {
3688 	struct spdk_nvme_ctrlr_process	*active_proc;
3689 	int				ref = 0;
3690 
3691 	nvme_ctrlr_lock(ctrlr);
3692 
3693 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3694 
3695 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3696 		ref += active_proc->ref;
3697 	}
3698 
3699 	nvme_ctrlr_unlock(ctrlr);
3700 
3701 	return ref;
3702 }
3703 
3704 /**
3705  *  Get the PCI device handle which is only visible to its associated process.
3706  */
3707 struct spdk_pci_device *
3708 nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr)
3709 {
3710 	struct spdk_nvme_ctrlr_process	*active_proc;
3711 	struct spdk_pci_device		*devhandle = NULL;
3712 
3713 	nvme_ctrlr_lock(ctrlr);
3714 
3715 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3716 	if (active_proc) {
3717 		devhandle = active_proc->devhandle;
3718 	}
3719 
3720 	nvme_ctrlr_unlock(ctrlr);
3721 
3722 	return devhandle;
3723 }
3724 
3725 static void
3726 nvme_ctrlr_process_init_vs_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3727 {
3728 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3729 
3730 	if (spdk_nvme_cpl_is_error(cpl)) {
3731 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the VS register\n");
3732 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3733 		return;
3734 	}
3735 
3736 	assert(value <= UINT32_MAX);
3737 	ctrlr->vs.raw = (uint32_t)value;
3738 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP, NVME_TIMEOUT_INFINITE);
3739 }
3740 
3741 static void
3742 nvme_ctrlr_process_init_cap_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3743 {
3744 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3745 
3746 	if (spdk_nvme_cpl_is_error(cpl)) {
3747 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CAP register\n");
3748 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3749 		return;
3750 	}
3751 
3752 	ctrlr->cap.raw = value;
3753 	nvme_ctrlr_init_cap(ctrlr);
3754 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
3755 }
3756 
3757 static void
3758 nvme_ctrlr_process_init_check_en(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3759 {
3760 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3761 	enum nvme_ctrlr_state state;
3762 
3763 	if (spdk_nvme_cpl_is_error(cpl)) {
3764 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3765 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3766 		return;
3767 	}
3768 
3769 	assert(value <= UINT32_MAX);
3770 	ctrlr->process_init_cc.raw = (uint32_t)value;
3771 
3772 	if (ctrlr->process_init_cc.bits.en) {
3773 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1\n");
3774 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1;
3775 	} else {
3776 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0;
3777 	}
3778 
3779 	nvme_ctrlr_set_state(ctrlr, state, nvme_ctrlr_get_ready_timeout(ctrlr));
3780 }
3781 
3782 static void
3783 nvme_ctrlr_process_init_set_en_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3784 {
3785 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3786 
3787 	if (spdk_nvme_cpl_is_error(cpl)) {
3788 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write the CC register\n");
3789 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3790 		return;
3791 	}
3792 
3793 	/*
3794 	 * Wait 2.5 seconds before accessing PCI registers.
3795 	 * Not using sleep() to avoid blocking other controller's initialization.
3796 	 */
3797 	if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) {
3798 		NVME_CTRLR_DEBUGLOG(ctrlr, "Applying quirk: delay 2.5 seconds before reading registers\n");
3799 		ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2500 * spdk_get_ticks_hz() / 1000);
3800 	}
3801 
3802 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3803 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3804 }
3805 
3806 static void
3807 nvme_ctrlr_process_init_set_en_0_read_cc(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3808 {
3809 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3810 	union spdk_nvme_cc_register cc;
3811 	int rc;
3812 
3813 	if (spdk_nvme_cpl_is_error(cpl)) {
3814 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3815 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3816 		return;
3817 	}
3818 
3819 	assert(value <= UINT32_MAX);
3820 	cc.raw = (uint32_t)value;
3821 	cc.bits.en = 0;
3822 	ctrlr->process_init_cc.raw = cc.raw;
3823 
3824 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC,
3825 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3826 
3827 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_process_init_set_en_0, ctrlr);
3828 	if (rc != 0) {
3829 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
3830 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3831 	}
3832 }
3833 
3834 static void
3835 nvme_ctrlr_process_init_wait_for_ready_1(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3836 {
3837 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3838 	union spdk_nvme_csts_register csts;
3839 
3840 	if (spdk_nvme_cpl_is_error(cpl)) {
3841 		/* While a device is resetting, it may be unable to service MMIO reads
3842 		 * temporarily. Allow for this case.
3843 		 */
3844 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3845 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3846 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3847 					     NVME_TIMEOUT_KEEP_EXISTING);
3848 		} else {
3849 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3850 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3851 		}
3852 
3853 		return;
3854 	}
3855 
3856 	assert(value <= UINT32_MAX);
3857 	csts.raw = (uint32_t)value;
3858 	if (csts.bits.rdy == 1 || csts.bits.cfs == 1) {
3859 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0,
3860 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3861 	} else {
3862 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n");
3863 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3864 					   NVME_TIMEOUT_KEEP_EXISTING);
3865 	}
3866 }
3867 
3868 static void
3869 nvme_ctrlr_process_init_wait_for_ready_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3870 {
3871 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3872 	union spdk_nvme_csts_register csts;
3873 
3874 	if (spdk_nvme_cpl_is_error(cpl)) {
3875 		/* While a device is resetting, it may be unable to service MMIO reads
3876 		 * temporarily. Allow for this case.
3877 		 */
3878 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3879 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3880 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3881 					     NVME_TIMEOUT_KEEP_EXISTING);
3882 		} else {
3883 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3884 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3885 		}
3886 
3887 		return;
3888 	}
3889 
3890 	assert(value <= UINT32_MAX);
3891 	csts.raw = (uint32_t)value;
3892 	if (csts.bits.rdy == 0) {
3893 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 0 && CSTS.RDY = 0\n");
3894 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLED,
3895 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3896 	} else {
3897 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3898 					   NVME_TIMEOUT_KEEP_EXISTING);
3899 	}
3900 }
3901 
3902 static void
3903 nvme_ctrlr_process_init_enable_wait_for_ready_1(void *ctx, uint64_t value,
3904 		const struct spdk_nvme_cpl *cpl)
3905 {
3906 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3907 	union spdk_nvme_csts_register csts;
3908 
3909 	if (spdk_nvme_cpl_is_error(cpl)) {
3910 		/* While a device is resetting, it may be unable to service MMIO reads
3911 		 * temporarily. Allow for this case.
3912 		 */
3913 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3914 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3915 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3916 					     NVME_TIMEOUT_KEEP_EXISTING);
3917 		} else {
3918 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3919 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3920 		}
3921 
3922 		return;
3923 	}
3924 
3925 	assert(value <= UINT32_MAX);
3926 	csts.raw = value;
3927 	if (csts.bits.rdy == 1) {
3928 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n");
3929 		/*
3930 		 * The controller has been enabled.
3931 		 *  Perform the rest of initialization serially.
3932 		 */
3933 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_RESET_ADMIN_QUEUE,
3934 				     ctrlr->opts.admin_timeout_ms);
3935 	} else {
3936 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3937 					   NVME_TIMEOUT_KEEP_EXISTING);
3938 	}
3939 }
3940 
3941 /**
3942  * This function will be called repeatedly during initialization until the controller is ready.
3943  */
3944 int
3945 nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr)
3946 {
3947 	uint32_t ready_timeout_in_ms;
3948 	uint64_t ticks;
3949 	int rc = 0;
3950 
3951 	ticks = spdk_get_ticks();
3952 
3953 	/*
3954 	 * May need to avoid accessing any register on the target controller
3955 	 * for a while. Return early without touching the FSM.
3956 	 * Check sleep_timeout_tsc > 0 for unit test.
3957 	 */
3958 	if ((ctrlr->sleep_timeout_tsc > 0) &&
3959 	    (ticks <= ctrlr->sleep_timeout_tsc)) {
3960 		return 0;
3961 	}
3962 	ctrlr->sleep_timeout_tsc = 0;
3963 
3964 	ready_timeout_in_ms = nvme_ctrlr_get_ready_timeout(ctrlr);
3965 
3966 	/*
3967 	 * Check if the current initialization step is done or has timed out.
3968 	 */
3969 	switch (ctrlr->state) {
3970 	case NVME_CTRLR_STATE_INIT_DELAY:
3971 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, ready_timeout_in_ms);
3972 		if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_INIT) {
3973 			/*
3974 			 * Controller may need some delay before it's enabled.
3975 			 *
3976 			 * This is a workaround for an issue where the PCIe-attached NVMe controller
3977 			 * is not ready after VFIO reset. We delay the initialization rather than the
3978 			 * enabling itself, because this is required only for the very first enabling
3979 			 * - directly after a VFIO reset.
3980 			 */
3981 			NVME_CTRLR_DEBUGLOG(ctrlr, "Adding 2 second delay before initializing the controller\n");
3982 			ctrlr->sleep_timeout_tsc = ticks + (2000 * spdk_get_ticks_hz() / 1000);
3983 		}
3984 		break;
3985 
3986 	case NVME_CTRLR_STATE_DISCONNECTED:
3987 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
3988 		break;
3989 
3990 	case NVME_CTRLR_STATE_CONNECT_ADMINQ: /* synonymous with NVME_CTRLR_STATE_INIT and NVME_CTRLR_STATE_DISCONNECTED */
3991 		rc = nvme_transport_ctrlr_connect_qpair(ctrlr, ctrlr->adminq);
3992 		if (rc == 0) {
3993 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ,
3994 					     NVME_TIMEOUT_INFINITE);
3995 		} else {
3996 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3997 		}
3998 		break;
3999 
4000 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
4001 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4002 
4003 		switch (nvme_qpair_get_state(ctrlr->adminq)) {
4004 		case NVME_QPAIR_CONNECTING:
4005 			if (ctrlr->is_failed) {
4006 				nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
4007 				break;
4008 			}
4009 
4010 			break;
4011 		case NVME_QPAIR_CONNECTED:
4012 			nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
4013 		/* Fall through */
4014 		case NVME_QPAIR_ENABLED:
4015 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS,
4016 					     NVME_TIMEOUT_INFINITE);
4017 			/* Abort any queued requests that were sent while the adminq was connecting
4018 			 * to avoid stalling the init process during a reset, as requests don't get
4019 			 * resubmitted while the controller is resetting and subsequent commands
4020 			 * would get queued too.
4021 			 */
4022 			nvme_qpair_abort_queued_reqs(ctrlr->adminq);
4023 			break;
4024 		case NVME_QPAIR_DISCONNECTING:
4025 			assert(ctrlr->adminq->async == true);
4026 			break;
4027 		case NVME_QPAIR_DISCONNECTED:
4028 		/* fallthrough */
4029 		default:
4030 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
4031 			break;
4032 		}
4033 
4034 		break;
4035 
4036 	case NVME_CTRLR_STATE_READ_VS:
4037 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS, NVME_TIMEOUT_INFINITE);
4038 		rc = nvme_ctrlr_get_vs_async(ctrlr, nvme_ctrlr_process_init_vs_done, ctrlr);
4039 		break;
4040 
4041 	case NVME_CTRLR_STATE_READ_CAP:
4042 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP, NVME_TIMEOUT_INFINITE);
4043 		rc = nvme_ctrlr_get_cap_async(ctrlr, nvme_ctrlr_process_init_cap_done, ctrlr);
4044 		break;
4045 
4046 	case NVME_CTRLR_STATE_CHECK_EN:
4047 		/* Begin the hardware initialization by making sure the controller is disabled. */
4048 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC, ready_timeout_in_ms);
4049 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_check_en, ctrlr);
4050 		break;
4051 
4052 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
4053 		/*
4054 		 * Controller is currently enabled. We need to disable it to cause a reset.
4055 		 *
4056 		 * If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready.
4057 		 *  Wait for the ready bit to be 1 before disabling the controller.
4058 		 */
4059 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
4060 					   NVME_TIMEOUT_KEEP_EXISTING);
4061 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_1, ctrlr);
4062 		break;
4063 
4064 	case NVME_CTRLR_STATE_SET_EN_0:
4065 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 0\n");
4066 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC, ready_timeout_in_ms);
4067 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_set_en_0_read_cc, ctrlr);
4068 		break;
4069 
4070 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
4071 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS,
4072 					   NVME_TIMEOUT_KEEP_EXISTING);
4073 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_0, ctrlr);
4074 		break;
4075 
4076 	case NVME_CTRLR_STATE_DISABLED:
4077 		if (ctrlr->is_disconnecting) {
4078 			NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr was disabled.\n");
4079 		} else {
4080 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms);
4081 
4082 			/*
4083 			 * Delay 100us before setting CC.EN = 1.  Some NVMe SSDs miss CC.EN getting
4084 			 *  set to 1 if it is too soon after CSTS.RDY is reported as 0.
4085 			 */
4086 			spdk_delay_us(100);
4087 		}
4088 		break;
4089 
4090 	case NVME_CTRLR_STATE_ENABLE:
4091 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 1\n");
4092 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC, ready_timeout_in_ms);
4093 		rc = nvme_ctrlr_enable(ctrlr);
4094 		if (rc) {
4095 			NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr enable failed with error: %d", rc);
4096 		}
4097 		return rc;
4098 
4099 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
4100 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
4101 					   NVME_TIMEOUT_KEEP_EXISTING);
4102 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_enable_wait_for_ready_1,
4103 					       ctrlr);
4104 		break;
4105 
4106 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
4107 		nvme_transport_qpair_reset(ctrlr->adminq);
4108 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY, NVME_TIMEOUT_INFINITE);
4109 		break;
4110 
4111 	case NVME_CTRLR_STATE_IDENTIFY:
4112 		rc = nvme_ctrlr_identify(ctrlr);
4113 		break;
4114 
4115 	case NVME_CTRLR_STATE_CONFIGURE_AER:
4116 		rc = nvme_ctrlr_configure_aer(ctrlr);
4117 		break;
4118 
4119 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
4120 		rc = nvme_ctrlr_set_keep_alive_timeout(ctrlr);
4121 		break;
4122 
4123 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
4124 		rc = nvme_ctrlr_identify_iocs_specific(ctrlr);
4125 		break;
4126 
4127 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
4128 		rc = nvme_ctrlr_get_zns_cmd_and_effects_log(ctrlr);
4129 		break;
4130 
4131 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
4132 		nvme_ctrlr_update_nvmf_ioccsz(ctrlr);
4133 		rc = nvme_ctrlr_set_num_queues(ctrlr);
4134 		break;
4135 
4136 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
4137 		_nvme_ctrlr_identify_active_ns(ctrlr);
4138 		break;
4139 
4140 	case NVME_CTRLR_STATE_IDENTIFY_NS:
4141 		rc = nvme_ctrlr_identify_namespaces(ctrlr);
4142 		break;
4143 
4144 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
4145 		rc = nvme_ctrlr_identify_id_desc_namespaces(ctrlr);
4146 		break;
4147 
4148 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
4149 		rc = nvme_ctrlr_identify_namespaces_iocs_specific(ctrlr);
4150 		break;
4151 
4152 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
4153 		rc = nvme_ctrlr_set_supported_log_pages(ctrlr);
4154 		break;
4155 
4156 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
4157 		rc = nvme_ctrlr_set_intel_support_log_pages(ctrlr);
4158 		break;
4159 
4160 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
4161 		nvme_ctrlr_set_supported_features(ctrlr);
4162 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_FEATURE,
4163 				     ctrlr->opts.admin_timeout_ms);
4164 		break;
4165 
4166 	case NVME_CTRLR_STATE_SET_HOST_FEATURE:
4167 		rc = nvme_ctrlr_set_host_feature(ctrlr);
4168 		break;
4169 
4170 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
4171 		rc = nvme_ctrlr_set_doorbell_buffer_config(ctrlr);
4172 		break;
4173 
4174 	case NVME_CTRLR_STATE_SET_HOST_ID:
4175 		rc = nvme_ctrlr_set_host_id(ctrlr);
4176 		break;
4177 
4178 	case NVME_CTRLR_STATE_TRANSPORT_READY:
4179 		rc = nvme_transport_ctrlr_ready(ctrlr);
4180 		if (rc) {
4181 			NVME_CTRLR_ERRLOG(ctrlr, "Transport controller ready step failed: rc %d\n", rc);
4182 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
4183 		} else {
4184 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
4185 		}
4186 		break;
4187 
4188 	case NVME_CTRLR_STATE_READY:
4189 		NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr already in ready state\n");
4190 		return 0;
4191 
4192 	case NVME_CTRLR_STATE_ERROR:
4193 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr is in error state\n");
4194 		return -1;
4195 
4196 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
4197 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
4198 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
4199 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
4200 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4201 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
4202 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
4203 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4204 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
4205 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
4206 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
4207 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
4208 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
4209 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
4210 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
4211 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
4212 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
4213 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
4214 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
4215 	case NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE:
4216 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
4217 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
4218 		/*
4219 		 * nvme_ctrlr_process_init() may be called from the completion context
4220 		 * for the admin qpair. Avoid recursive calls for this case.
4221 		 */
4222 		if (!ctrlr->adminq->in_completion_context) {
4223 			spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4224 		}
4225 		break;
4226 
4227 	default:
4228 		assert(0);
4229 		return -1;
4230 	}
4231 
4232 	if (rc) {
4233 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr operation failed with error: %d, ctrlr state: %d (%s)\n",
4234 				  rc, ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4235 	}
4236 
4237 	/* Note: we use the ticks captured when we entered this function.
4238 	 * This covers environments where the SPDK process gets swapped out after
4239 	 * we tried to advance the state but before we check the timeout here.
4240 	 * It is not normal for this to happen, but harmless to handle it in this
4241 	 * way.
4242 	 */
4243 	if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE &&
4244 	    ticks > ctrlr->state_timeout_tsc) {
4245 		NVME_CTRLR_ERRLOG(ctrlr, "Initialization timed out in state %d (%s)\n",
4246 				  ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4247 		return -1;
4248 	}
4249 
4250 	return rc;
4251 }
4252 
4253 int
4254 nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx)
4255 {
4256 	pthread_mutexattr_t attr;
4257 	int rc = 0;
4258 
4259 	if (pthread_mutexattr_init(&attr)) {
4260 		return -1;
4261 	}
4262 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) ||
4263 #ifndef __FreeBSD__
4264 	    pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
4265 	    pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
4266 #endif
4267 	    pthread_mutex_init(mtx, &attr)) {
4268 		rc = -1;
4269 	}
4270 	pthread_mutexattr_destroy(&attr);
4271 	return rc;
4272 }
4273 
4274 int
4275 nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
4276 {
4277 	int rc;
4278 
4279 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4280 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT_DELAY, NVME_TIMEOUT_INFINITE);
4281 	} else {
4282 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
4283 	}
4284 
4285 	if (ctrlr->opts.admin_queue_size > SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES) {
4286 		NVME_CTRLR_ERRLOG(ctrlr, "admin_queue_size %u exceeds max defined by NVMe spec, use max value\n",
4287 				  ctrlr->opts.admin_queue_size);
4288 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES;
4289 	}
4290 
4291 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_ADMIN_QUEUE_SIZE &&
4292 	    (ctrlr->opts.admin_queue_size % SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE) != 0) {
4293 		NVME_CTRLR_ERRLOG(ctrlr,
4294 				  "admin_queue_size %u is invalid for this NVMe device, adjust to next multiple\n",
4295 				  ctrlr->opts.admin_queue_size);
4296 		ctrlr->opts.admin_queue_size = SPDK_ALIGN_CEIL(ctrlr->opts.admin_queue_size,
4297 					       SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE);
4298 	}
4299 
4300 	if (ctrlr->opts.admin_queue_size < SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES) {
4301 		NVME_CTRLR_ERRLOG(ctrlr,
4302 				  "admin_queue_size %u is less than minimum defined by NVMe spec, use min value\n",
4303 				  ctrlr->opts.admin_queue_size);
4304 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES;
4305 	}
4306 
4307 	ctrlr->flags = 0;
4308 	ctrlr->free_io_qids = NULL;
4309 	ctrlr->is_resetting = false;
4310 	ctrlr->is_failed = false;
4311 	ctrlr->is_destructed = false;
4312 
4313 	TAILQ_INIT(&ctrlr->active_io_qpairs);
4314 	STAILQ_INIT(&ctrlr->queued_aborts);
4315 	ctrlr->outstanding_aborts = 0;
4316 
4317 	ctrlr->ana_log_page = NULL;
4318 	ctrlr->ana_log_page_size = 0;
4319 
4320 	rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock);
4321 	if (rc != 0) {
4322 		return rc;
4323 	}
4324 
4325 	TAILQ_INIT(&ctrlr->active_procs);
4326 	STAILQ_INIT(&ctrlr->register_operations);
4327 
4328 	RB_INIT(&ctrlr->ns);
4329 
4330 	return rc;
4331 }
4332 
4333 static void
4334 nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr)
4335 {
4336 	if (ctrlr->cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) {
4337 		ctrlr->flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED;
4338 	}
4339 
4340 	ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin);
4341 
4342 	/* For now, always select page_size == min_page_size. */
4343 	ctrlr->page_size = ctrlr->min_page_size;
4344 
4345 	ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES);
4346 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, MAX_IO_QUEUE_ENTRIES);
4347 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE &&
4348 	    ctrlr->opts.io_queue_size == DEFAULT_IO_QUEUE_SIZE) {
4349 		/* If the user specifically set an IO queue size different than the
4350 		 * default, use that value.  Otherwise overwrite with the quirked value.
4351 		 * This allows this quirk to be overridden when necessary.
4352 		 * However, cap.mqes still needs to be respected.
4353 		 */
4354 		ctrlr->opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK;
4355 	}
4356 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u);
4357 
4358 	ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size);
4359 }
4360 
4361 void
4362 nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr)
4363 {
4364 	int rc;
4365 
4366 	if (ctrlr->lock_depth > 0) {
4367 		SPDK_ERRLOG("lock currently held (depth=%d)!\n", ctrlr->lock_depth);
4368 		assert(false);
4369 	}
4370 
4371 	rc = pthread_mutex_destroy(&ctrlr->ctrlr_lock);
4372 	if (rc) {
4373 		SPDK_ERRLOG("could not destroy ctrlr_lock: %s\n", spdk_strerror(rc));
4374 		assert(false);
4375 	}
4376 
4377 	nvme_ctrlr_free_processes(ctrlr);
4378 }
4379 
4380 void
4381 nvme_ctrlr_destruct_async(struct spdk_nvme_ctrlr *ctrlr,
4382 			  struct nvme_ctrlr_detach_ctx *ctx)
4383 {
4384 	struct spdk_nvme_qpair *qpair, *tmp;
4385 
4386 	NVME_CTRLR_DEBUGLOG(ctrlr, "Prepare to destruct SSD\n");
4387 
4388 	ctrlr->prepare_for_reset = false;
4389 	ctrlr->is_destructed = true;
4390 
4391 	spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4392 
4393 	nvme_ctrlr_abort_queued_aborts(ctrlr);
4394 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
4395 
4396 	TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) {
4397 		spdk_nvme_ctrlr_free_io_qpair(qpair);
4398 	}
4399 
4400 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
4401 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
4402 
4403 	nvme_ctrlr_shutdown_async(ctrlr, ctx);
4404 }
4405 
4406 int
4407 nvme_ctrlr_destruct_poll_async(struct spdk_nvme_ctrlr *ctrlr,
4408 			       struct nvme_ctrlr_detach_ctx *ctx)
4409 {
4410 	struct spdk_nvme_ns *ns, *tmp_ns;
4411 	int rc = 0;
4412 
4413 	if (!ctx->shutdown_complete) {
4414 		rc = nvme_ctrlr_shutdown_poll_async(ctrlr, ctx);
4415 		if (rc == -EAGAIN) {
4416 			return -EAGAIN;
4417 		}
4418 		/* Destruct ctrlr forcefully for any other error. */
4419 	}
4420 
4421 	if (ctx->cb_fn) {
4422 		ctx->cb_fn(ctrlr);
4423 	}
4424 
4425 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
4426 
4427 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
4428 		nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
4429 		RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
4430 		spdk_free(ns);
4431 	}
4432 
4433 	ctrlr->active_ns_count = 0;
4434 
4435 	spdk_bit_array_free(&ctrlr->free_io_qids);
4436 
4437 	free(ctrlr->ana_log_page);
4438 	free(ctrlr->copied_ana_desc);
4439 	ctrlr->ana_log_page = NULL;
4440 	ctrlr->copied_ana_desc = NULL;
4441 	ctrlr->ana_log_page_size = 0;
4442 
4443 	nvme_transport_ctrlr_destruct(ctrlr);
4444 
4445 	return rc;
4446 }
4447 
4448 void
4449 nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
4450 {
4451 	struct nvme_ctrlr_detach_ctx ctx = { .ctrlr = ctrlr };
4452 	int rc;
4453 
4454 	nvme_ctrlr_destruct_async(ctrlr, &ctx);
4455 
4456 	while (1) {
4457 		rc = nvme_ctrlr_destruct_poll_async(ctrlr, &ctx);
4458 		if (rc != -EAGAIN) {
4459 			break;
4460 		}
4461 		nvme_delay(1000);
4462 	}
4463 }
4464 
4465 int
4466 nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
4467 				struct nvme_request *req)
4468 {
4469 	return nvme_qpair_submit_request(ctrlr->adminq, req);
4470 }
4471 
4472 static void
4473 nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl)
4474 {
4475 	/* Do nothing */
4476 }
4477 
4478 /*
4479  * Check if we need to send a Keep Alive command.
4480  * Caller must hold ctrlr->ctrlr_lock.
4481  */
4482 static int
4483 nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr)
4484 {
4485 	uint64_t now;
4486 	struct nvme_request *req;
4487 	struct spdk_nvme_cmd *cmd;
4488 	int rc = 0;
4489 
4490 	now = spdk_get_ticks();
4491 	if (now < ctrlr->next_keep_alive_tick) {
4492 		return rc;
4493 	}
4494 
4495 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL);
4496 	if (req == NULL) {
4497 		return rc;
4498 	}
4499 
4500 	cmd = &req->cmd;
4501 	cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE;
4502 
4503 	rc = nvme_ctrlr_submit_admin_request(ctrlr, req);
4504 	if (rc != 0) {
4505 		NVME_CTRLR_ERRLOG(ctrlr, "Submitting Keep Alive failed\n");
4506 		rc = -ENXIO;
4507 	}
4508 
4509 	ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks;
4510 	return rc;
4511 }
4512 
4513 int32_t
4514 spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr)
4515 {
4516 	int32_t num_completions;
4517 	int32_t rc;
4518 	struct spdk_nvme_ctrlr_process	*active_proc;
4519 
4520 	nvme_ctrlr_lock(ctrlr);
4521 
4522 	if (ctrlr->keep_alive_interval_ticks) {
4523 		rc = nvme_ctrlr_keep_alive(ctrlr);
4524 		if (rc) {
4525 			nvme_ctrlr_unlock(ctrlr);
4526 			return rc;
4527 		}
4528 	}
4529 
4530 	rc = nvme_io_msg_process(ctrlr);
4531 	if (rc < 0) {
4532 		nvme_ctrlr_unlock(ctrlr);
4533 		return rc;
4534 	}
4535 	num_completions = rc;
4536 
4537 	rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4538 
4539 	/* Each process has an async list, complete the ones for this process object */
4540 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4541 	if (active_proc) {
4542 		nvme_ctrlr_complete_queued_async_events(ctrlr);
4543 	}
4544 
4545 	if (rc == -ENXIO && ctrlr->is_disconnecting) {
4546 		nvme_ctrlr_disconnect_done(ctrlr);
4547 	}
4548 
4549 	nvme_ctrlr_unlock(ctrlr);
4550 
4551 	if (rc < 0) {
4552 		num_completions = rc;
4553 	} else {
4554 		num_completions += rc;
4555 	}
4556 
4557 	return num_completions;
4558 }
4559 
4560 const struct spdk_nvme_ctrlr_data *
4561 spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr)
4562 {
4563 	return &ctrlr->cdata;
4564 }
4565 
4566 union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
4567 {
4568 	union spdk_nvme_csts_register csts;
4569 
4570 	if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
4571 		csts.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4572 	}
4573 	return csts;
4574 }
4575 
4576 union spdk_nvme_cc_register spdk_nvme_ctrlr_get_regs_cc(struct spdk_nvme_ctrlr *ctrlr)
4577 {
4578 	union spdk_nvme_cc_register cc;
4579 
4580 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
4581 		cc.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4582 	}
4583 	return cc;
4584 }
4585 
4586 union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr)
4587 {
4588 	return ctrlr->cap;
4589 }
4590 
4591 union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr)
4592 {
4593 	return ctrlr->vs;
4594 }
4595 
4596 union spdk_nvme_cmbsz_register spdk_nvme_ctrlr_get_regs_cmbsz(struct spdk_nvme_ctrlr *ctrlr)
4597 {
4598 	union spdk_nvme_cmbsz_register cmbsz;
4599 
4600 	if (nvme_ctrlr_get_cmbsz(ctrlr, &cmbsz)) {
4601 		cmbsz.raw = 0;
4602 	}
4603 
4604 	return cmbsz;
4605 }
4606 
4607 union spdk_nvme_pmrcap_register spdk_nvme_ctrlr_get_regs_pmrcap(struct spdk_nvme_ctrlr *ctrlr)
4608 {
4609 	union spdk_nvme_pmrcap_register pmrcap;
4610 
4611 	if (nvme_ctrlr_get_pmrcap(ctrlr, &pmrcap)) {
4612 		pmrcap.raw = 0;
4613 	}
4614 
4615 	return pmrcap;
4616 }
4617 
4618 union spdk_nvme_bpinfo_register spdk_nvme_ctrlr_get_regs_bpinfo(struct spdk_nvme_ctrlr *ctrlr)
4619 {
4620 	union spdk_nvme_bpinfo_register bpinfo;
4621 
4622 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
4623 		bpinfo.raw = 0;
4624 	}
4625 
4626 	return bpinfo;
4627 }
4628 
4629 uint64_t
4630 spdk_nvme_ctrlr_get_pmrsz(struct spdk_nvme_ctrlr *ctrlr)
4631 {
4632 	return ctrlr->pmr_size;
4633 }
4634 
4635 uint32_t
4636 spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr)
4637 {
4638 	return ctrlr->cdata.nn;
4639 }
4640 
4641 bool
4642 spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4643 {
4644 	struct spdk_nvme_ns tmp, *ns;
4645 
4646 	tmp.id = nsid;
4647 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4648 
4649 	if (ns != NULL) {
4650 		return ns->active;
4651 	}
4652 
4653 	return false;
4654 }
4655 
4656 uint32_t
4657 spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr)
4658 {
4659 	struct spdk_nvme_ns *ns;
4660 
4661 	ns = RB_MIN(nvme_ns_tree, &ctrlr->ns);
4662 	if (ns == NULL) {
4663 		return 0;
4664 	}
4665 
4666 	while (ns != NULL) {
4667 		if (ns->active) {
4668 			return ns->id;
4669 		}
4670 
4671 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4672 	}
4673 
4674 	return 0;
4675 }
4676 
4677 uint32_t
4678 spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
4679 {
4680 	struct spdk_nvme_ns tmp, *ns;
4681 
4682 	tmp.id = prev_nsid;
4683 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4684 	if (ns == NULL) {
4685 		return 0;
4686 	}
4687 
4688 	ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4689 	while (ns != NULL) {
4690 		if (ns->active) {
4691 			return ns->id;
4692 		}
4693 
4694 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4695 	}
4696 
4697 	return 0;
4698 }
4699 
4700 struct spdk_nvme_ns *
4701 spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4702 {
4703 	struct spdk_nvme_ns tmp;
4704 	struct spdk_nvme_ns *ns;
4705 
4706 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
4707 		return NULL;
4708 	}
4709 
4710 	nvme_ctrlr_lock(ctrlr);
4711 
4712 	tmp.id = nsid;
4713 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4714 
4715 	if (ns == NULL) {
4716 		ns = spdk_zmalloc(sizeof(struct spdk_nvme_ns), 64, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_SHARE);
4717 		if (ns == NULL) {
4718 			nvme_ctrlr_unlock(ctrlr);
4719 			return NULL;
4720 		}
4721 
4722 		NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was added\n", nsid);
4723 		ns->id = nsid;
4724 		RB_INSERT(nvme_ns_tree, &ctrlr->ns, ns);
4725 	}
4726 
4727 	nvme_ctrlr_unlock(ctrlr);
4728 
4729 	return ns;
4730 }
4731 
4732 struct spdk_pci_device *
4733 spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr)
4734 {
4735 	if (ctrlr == NULL) {
4736 		return NULL;
4737 	}
4738 
4739 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
4740 		return NULL;
4741 	}
4742 
4743 	return nvme_ctrlr_proc_get_devhandle(ctrlr);
4744 }
4745 
4746 int32_t
4747 spdk_nvme_ctrlr_get_numa_id(struct spdk_nvme_ctrlr *ctrlr)
4748 {
4749 	if (ctrlr->numa.id_valid) {
4750 		return ctrlr->numa.id;
4751 	} else {
4752 		return SPDK_ENV_NUMA_ID_ANY;
4753 	}
4754 }
4755 
4756 uint32_t
4757 spdk_nvme_ctrlr_get_max_xfer_size(const struct spdk_nvme_ctrlr *ctrlr)
4758 {
4759 	return ctrlr->max_xfer_size;
4760 }
4761 
4762 uint16_t
4763 spdk_nvme_ctrlr_get_max_sges(const struct spdk_nvme_ctrlr *ctrlr)
4764 {
4765 	if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4766 		return ctrlr->max_sges;
4767 	} else {
4768 		return UINT16_MAX;
4769 	}
4770 }
4771 
4772 void
4773 spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr,
4774 				      spdk_nvme_aer_cb aer_cb_fn,
4775 				      void *aer_cb_arg)
4776 {
4777 	struct spdk_nvme_ctrlr_process *active_proc;
4778 
4779 	nvme_ctrlr_lock(ctrlr);
4780 
4781 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4782 	if (active_proc) {
4783 		active_proc->aer_cb_fn = aer_cb_fn;
4784 		active_proc->aer_cb_arg = aer_cb_arg;
4785 	}
4786 
4787 	nvme_ctrlr_unlock(ctrlr);
4788 }
4789 
4790 void
4791 spdk_nvme_ctrlr_disable_read_changed_ns_list_log_page(struct spdk_nvme_ctrlr *ctrlr)
4792 {
4793 	ctrlr->opts.disable_read_changed_ns_list_log_page = true;
4794 }
4795 
4796 void
4797 spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr,
4798 		uint64_t timeout_io_us, uint64_t timeout_admin_us,
4799 		spdk_nvme_timeout_cb cb_fn, void *cb_arg)
4800 {
4801 	struct spdk_nvme_ctrlr_process	*active_proc;
4802 
4803 	nvme_ctrlr_lock(ctrlr);
4804 
4805 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4806 	if (active_proc) {
4807 		active_proc->timeout_io_ticks = timeout_io_us * spdk_get_ticks_hz() / 1000000ULL;
4808 		active_proc->timeout_admin_ticks = timeout_admin_us * spdk_get_ticks_hz() / 1000000ULL;
4809 		active_proc->timeout_cb_fn = cb_fn;
4810 		active_proc->timeout_cb_arg = cb_arg;
4811 	}
4812 
4813 	ctrlr->timeout_enabled = true;
4814 
4815 	nvme_ctrlr_unlock(ctrlr);
4816 }
4817 
4818 bool
4819 spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page)
4820 {
4821 	/* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
4822 	SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
4823 	return ctrlr->log_page_supported[log_page];
4824 }
4825 
4826 bool
4827 spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code)
4828 {
4829 	/* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
4830 	SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
4831 	return ctrlr->feature_supported[feature_code];
4832 }
4833 
4834 int
4835 spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4836 			  struct spdk_nvme_ctrlr_list *payload)
4837 {
4838 	struct nvme_completion_poll_status	*status;
4839 	struct spdk_nvme_ns			*ns;
4840 	int					res;
4841 
4842 	if (nsid == 0) {
4843 		return -EINVAL;
4844 	}
4845 
4846 	status = calloc(1, sizeof(*status));
4847 	if (!status) {
4848 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4849 		return -ENOMEM;
4850 	}
4851 
4852 	res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload,
4853 				       nvme_completion_poll_cb, status);
4854 	if (res) {
4855 		free(status);
4856 		return res;
4857 	}
4858 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4859 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_attach_ns failed!\n");
4860 		if (!status->timed_out) {
4861 			free(status);
4862 		}
4863 		return -ENXIO;
4864 	}
4865 	free(status);
4866 
4867 	res = nvme_ctrlr_identify_active_ns(ctrlr);
4868 	if (res) {
4869 		return res;
4870 	}
4871 
4872 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
4873 	if (ns == NULL) {
4874 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_get_ns failed!\n");
4875 		return -ENXIO;
4876 	}
4877 
4878 	return nvme_ns_construct(ns, nsid, ctrlr);
4879 }
4880 
4881 int
4882 spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4883 			  struct spdk_nvme_ctrlr_list *payload)
4884 {
4885 	struct nvme_completion_poll_status	*status;
4886 	int					res;
4887 
4888 	if (nsid == 0) {
4889 		return -EINVAL;
4890 	}
4891 
4892 	status = calloc(1, sizeof(*status));
4893 	if (!status) {
4894 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4895 		return -ENOMEM;
4896 	}
4897 
4898 	res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload,
4899 				       nvme_completion_poll_cb, status);
4900 	if (res) {
4901 		free(status);
4902 		return res;
4903 	}
4904 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4905 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_detach_ns failed!\n");
4906 		if (!status->timed_out) {
4907 			free(status);
4908 		}
4909 		return -ENXIO;
4910 	}
4911 	free(status);
4912 
4913 	return nvme_ctrlr_identify_active_ns(ctrlr);
4914 }
4915 
4916 uint32_t
4917 spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload)
4918 {
4919 	struct nvme_completion_poll_status	*status;
4920 	int					res;
4921 	uint32_t				nsid;
4922 
4923 	status = calloc(1, sizeof(*status));
4924 	if (!status) {
4925 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4926 		return 0;
4927 	}
4928 
4929 	res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, status);
4930 	if (res) {
4931 		free(status);
4932 		return 0;
4933 	}
4934 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4935 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_create_ns failed!\n");
4936 		if (!status->timed_out) {
4937 			free(status);
4938 		}
4939 		return 0;
4940 	}
4941 
4942 	nsid = status->cpl.cdw0;
4943 	free(status);
4944 
4945 	assert(nsid > 0);
4946 
4947 	/* Return the namespace ID that was created */
4948 	return nsid;
4949 }
4950 
4951 int
4952 spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4953 {
4954 	struct nvme_completion_poll_status	*status;
4955 	int					res;
4956 
4957 	if (nsid == 0) {
4958 		return -EINVAL;
4959 	}
4960 
4961 	status = calloc(1, sizeof(*status));
4962 	if (!status) {
4963 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4964 		return -ENOMEM;
4965 	}
4966 
4967 	res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, status);
4968 	if (res) {
4969 		free(status);
4970 		return res;
4971 	}
4972 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4973 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_delete_ns failed!\n");
4974 		if (!status->timed_out) {
4975 			free(status);
4976 		}
4977 		return -ENXIO;
4978 	}
4979 	free(status);
4980 
4981 	return nvme_ctrlr_identify_active_ns(ctrlr);
4982 }
4983 
4984 int
4985 spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4986 		       struct spdk_nvme_format *format)
4987 {
4988 	struct nvme_completion_poll_status	*status;
4989 	int					res;
4990 
4991 	status = calloc(1, sizeof(*status));
4992 	if (!status) {
4993 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4994 		return -ENOMEM;
4995 	}
4996 
4997 	res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb,
4998 				    status);
4999 	if (res) {
5000 		free(status);
5001 		return res;
5002 	}
5003 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5004 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_format failed!\n");
5005 		if (!status->timed_out) {
5006 			free(status);
5007 		}
5008 		return -ENXIO;
5009 	}
5010 	free(status);
5011 
5012 	return spdk_nvme_ctrlr_reset(ctrlr);
5013 }
5014 
5015 int
5016 spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size,
5017 				int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status)
5018 {
5019 	struct spdk_nvme_fw_commit		fw_commit;
5020 	struct nvme_completion_poll_status	*status;
5021 	int					res;
5022 	unsigned int				size_remaining;
5023 	unsigned int				offset;
5024 	unsigned int				transfer;
5025 	uint8_t					*p;
5026 
5027 	if (!completion_status) {
5028 		return -EINVAL;
5029 	}
5030 	memset(completion_status, 0, sizeof(struct spdk_nvme_status));
5031 	if (size % 4) {
5032 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid size!\n");
5033 		return -1;
5034 	}
5035 
5036 	/* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG
5037 	 * and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG
5038 	 */
5039 	if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) &&
5040 	    (commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) {
5041 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid command!\n");
5042 		return -1;
5043 	}
5044 
5045 	status = calloc(1, sizeof(*status));
5046 	if (!status) {
5047 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5048 		return -ENOMEM;
5049 	}
5050 
5051 	/* Firmware download */
5052 	size_remaining = size;
5053 	offset = 0;
5054 	p = payload;
5055 
5056 	while (size_remaining > 0) {
5057 		transfer = spdk_min(size_remaining, ctrlr->min_page_size);
5058 
5059 		memset(status, 0, sizeof(*status));
5060 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p,
5061 						       nvme_completion_poll_cb,
5062 						       status);
5063 		if (res) {
5064 			free(status);
5065 			return res;
5066 		}
5067 
5068 		if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5069 			NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_fw_image_download failed!\n");
5070 			if (!status->timed_out) {
5071 				free(status);
5072 			}
5073 			return -ENXIO;
5074 		}
5075 		p += transfer;
5076 		offset += transfer;
5077 		size_remaining -= transfer;
5078 	}
5079 
5080 	/* Firmware commit */
5081 	memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5082 	fw_commit.fs = slot;
5083 	fw_commit.ca = commit_action;
5084 
5085 	memset(status, 0, sizeof(*status));
5086 	res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb,
5087 				       status);
5088 	if (res) {
5089 		free(status);
5090 		return res;
5091 	}
5092 
5093 	res = nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock);
5094 
5095 	memcpy(completion_status, &status->cpl.status, sizeof(struct spdk_nvme_status));
5096 
5097 	if (!status->timed_out) {
5098 		free(status);
5099 	}
5100 
5101 	if (res) {
5102 		if (completion_status->sct != SPDK_NVME_SCT_COMMAND_SPECIFIC ||
5103 		    completion_status->sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) {
5104 			if (completion_status->sct == SPDK_NVME_SCT_COMMAND_SPECIFIC  &&
5105 			    completion_status->sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) {
5106 				NVME_CTRLR_NOTICELOG(ctrlr,
5107 						     "firmware activation requires conventional reset to be performed. !\n");
5108 			} else {
5109 				NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5110 			}
5111 			return -ENXIO;
5112 		}
5113 	}
5114 
5115 	return spdk_nvme_ctrlr_reset(ctrlr);
5116 }
5117 
5118 int
5119 spdk_nvme_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
5120 {
5121 	int rc, size;
5122 	union spdk_nvme_cmbsz_register cmbsz;
5123 
5124 	cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr);
5125 
5126 	if (cmbsz.bits.rds == 0 || cmbsz.bits.wds == 0) {
5127 		return -ENOTSUP;
5128 	}
5129 
5130 	size = cmbsz.bits.sz * (0x1000 << (cmbsz.bits.szu * 4));
5131 
5132 	nvme_ctrlr_lock(ctrlr);
5133 	rc = nvme_transport_ctrlr_reserve_cmb(ctrlr);
5134 	nvme_ctrlr_unlock(ctrlr);
5135 
5136 	if (rc < 0) {
5137 		return rc;
5138 	}
5139 
5140 	return size;
5141 }
5142 
5143 void *
5144 spdk_nvme_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
5145 {
5146 	void *buf;
5147 
5148 	nvme_ctrlr_lock(ctrlr);
5149 	buf = nvme_transport_ctrlr_map_cmb(ctrlr, size);
5150 	nvme_ctrlr_unlock(ctrlr);
5151 
5152 	return buf;
5153 }
5154 
5155 void
5156 spdk_nvme_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr)
5157 {
5158 	nvme_ctrlr_lock(ctrlr);
5159 	nvme_transport_ctrlr_unmap_cmb(ctrlr);
5160 	nvme_ctrlr_unlock(ctrlr);
5161 }
5162 
5163 int
5164 spdk_nvme_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr)
5165 {
5166 	int rc;
5167 
5168 	nvme_ctrlr_lock(ctrlr);
5169 	rc = nvme_transport_ctrlr_enable_pmr(ctrlr);
5170 	nvme_ctrlr_unlock(ctrlr);
5171 
5172 	return rc;
5173 }
5174 
5175 int
5176 spdk_nvme_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr)
5177 {
5178 	int rc;
5179 
5180 	nvme_ctrlr_lock(ctrlr);
5181 	rc = nvme_transport_ctrlr_disable_pmr(ctrlr);
5182 	nvme_ctrlr_unlock(ctrlr);
5183 
5184 	return rc;
5185 }
5186 
5187 void *
5188 spdk_nvme_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
5189 {
5190 	void *buf;
5191 
5192 	nvme_ctrlr_lock(ctrlr);
5193 	buf = nvme_transport_ctrlr_map_pmr(ctrlr, size);
5194 	nvme_ctrlr_unlock(ctrlr);
5195 
5196 	return buf;
5197 }
5198 
5199 int
5200 spdk_nvme_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr)
5201 {
5202 	int rc;
5203 
5204 	nvme_ctrlr_lock(ctrlr);
5205 	rc = nvme_transport_ctrlr_unmap_pmr(ctrlr);
5206 	nvme_ctrlr_unlock(ctrlr);
5207 
5208 	return rc;
5209 }
5210 
5211 int
5212 spdk_nvme_ctrlr_read_boot_partition_start(struct spdk_nvme_ctrlr *ctrlr, void *payload,
5213 		uint32_t bprsz, uint32_t bprof, uint32_t bpid)
5214 {
5215 	union spdk_nvme_bprsel_register bprsel;
5216 	union spdk_nvme_bpinfo_register bpinfo;
5217 	uint64_t bpmbl, bpmb_size;
5218 
5219 	if (ctrlr->cap.bits.bps == 0) {
5220 		return -ENOTSUP;
5221 	}
5222 
5223 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5224 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5225 		return -EIO;
5226 	}
5227 
5228 	if (bpinfo.bits.brs == SPDK_NVME_BRS_READ_IN_PROGRESS) {
5229 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read already initiated\n");
5230 		return -EALREADY;
5231 	}
5232 
5233 	nvme_ctrlr_lock(ctrlr);
5234 
5235 	bpmb_size = bprsz * 4096;
5236 	bpmbl = spdk_vtophys(payload, &bpmb_size);
5237 	if (bpmbl == SPDK_VTOPHYS_ERROR) {
5238 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_vtophys of bpmbl failed\n");
5239 		nvme_ctrlr_unlock(ctrlr);
5240 		return -EFAULT;
5241 	}
5242 
5243 	if (bpmb_size != bprsz * 4096) {
5244 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition buffer is not physically contiguous\n");
5245 		nvme_ctrlr_unlock(ctrlr);
5246 		return -EFAULT;
5247 	}
5248 
5249 	if (nvme_ctrlr_set_bpmbl(ctrlr, bpmbl)) {
5250 		NVME_CTRLR_ERRLOG(ctrlr, "set_bpmbl() failed\n");
5251 		nvme_ctrlr_unlock(ctrlr);
5252 		return -EIO;
5253 	}
5254 
5255 	bprsel.bits.bpid = bpid;
5256 	bprsel.bits.bprof = bprof;
5257 	bprsel.bits.bprsz = bprsz;
5258 
5259 	if (nvme_ctrlr_set_bprsel(ctrlr, &bprsel)) {
5260 		NVME_CTRLR_ERRLOG(ctrlr, "set_bprsel() failed\n");
5261 		nvme_ctrlr_unlock(ctrlr);
5262 		return -EIO;
5263 	}
5264 
5265 	nvme_ctrlr_unlock(ctrlr);
5266 	return 0;
5267 }
5268 
5269 int
5270 spdk_nvme_ctrlr_read_boot_partition_poll(struct spdk_nvme_ctrlr *ctrlr)
5271 {
5272 	int rc = 0;
5273 	union spdk_nvme_bpinfo_register bpinfo;
5274 
5275 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5276 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5277 		return -EIO;
5278 	}
5279 
5280 	switch (bpinfo.bits.brs) {
5281 	case SPDK_NVME_BRS_NO_READ:
5282 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read not initiated\n");
5283 		rc = -EINVAL;
5284 		break;
5285 	case SPDK_NVME_BRS_READ_IN_PROGRESS:
5286 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition read in progress\n");
5287 		rc = -EAGAIN;
5288 		break;
5289 	case SPDK_NVME_BRS_READ_ERROR:
5290 		NVME_CTRLR_ERRLOG(ctrlr, "Error completing Boot Partition read\n");
5291 		rc = -EIO;
5292 		break;
5293 	case SPDK_NVME_BRS_READ_SUCCESS:
5294 		NVME_CTRLR_INFOLOG(ctrlr, "Boot Partition read completed successfully\n");
5295 		break;
5296 	default:
5297 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition read status\n");
5298 		rc = -EINVAL;
5299 	}
5300 
5301 	return rc;
5302 }
5303 
5304 static void
5305 nvme_write_boot_partition_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5306 {
5307 	int res;
5308 	struct spdk_nvme_ctrlr *ctrlr = arg;
5309 	struct spdk_nvme_fw_commit fw_commit;
5310 	struct spdk_nvme_cpl err_cpl =
5311 	{.status = {.sct = SPDK_NVME_SCT_GENERIC, .sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR }};
5312 
5313 	if (spdk_nvme_cpl_is_error(cpl)) {
5314 		NVME_CTRLR_ERRLOG(ctrlr, "Write Boot Partition failed\n");
5315 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5316 		return;
5317 	}
5318 
5319 	if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADING) {
5320 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Downloading at Offset %d Success\n", ctrlr->fw_offset);
5321 		ctrlr->fw_payload = (uint8_t *)ctrlr->fw_payload + ctrlr->fw_transfer_size;
5322 		ctrlr->fw_offset += ctrlr->fw_transfer_size;
5323 		ctrlr->fw_size_remaining -= ctrlr->fw_transfer_size;
5324 		ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5325 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5326 						       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5327 		if (res) {
5328 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_image_download failed!\n");
5329 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5330 			return;
5331 		}
5332 
5333 		if (ctrlr->fw_transfer_size < ctrlr->min_page_size) {
5334 			ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADED;
5335 		}
5336 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADED) {
5337 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Download Success\n");
5338 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5339 		fw_commit.bpid = ctrlr->bpid;
5340 		fw_commit.ca = SPDK_NVME_FW_COMMIT_REPLACE_BOOT_PARTITION;
5341 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5342 					       nvme_write_boot_partition_cb, ctrlr);
5343 		if (res) {
5344 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5345 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5346 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5347 			return;
5348 		}
5349 
5350 		ctrlr->bp_ws = SPDK_NVME_BP_WS_REPLACE;
5351 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_REPLACE) {
5352 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Replacement Success\n");
5353 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5354 		fw_commit.bpid = ctrlr->bpid;
5355 		fw_commit.ca = SPDK_NVME_FW_COMMIT_ACTIVATE_BOOT_PARTITION;
5356 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5357 					       nvme_write_boot_partition_cb, ctrlr);
5358 		if (res) {
5359 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5360 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5361 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5362 			return;
5363 		}
5364 
5365 		ctrlr->bp_ws = SPDK_NVME_BP_WS_ACTIVATE;
5366 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_ACTIVATE) {
5367 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Activation Success\n");
5368 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5369 	} else {
5370 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition write state\n");
5371 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5372 		return;
5373 	}
5374 }
5375 
5376 int
5377 spdk_nvme_ctrlr_write_boot_partition(struct spdk_nvme_ctrlr *ctrlr,
5378 				     void *payload, uint32_t size, uint32_t bpid,
5379 				     spdk_nvme_cmd_cb cb_fn, void *cb_arg)
5380 {
5381 	int res;
5382 
5383 	if (ctrlr->cap.bits.bps == 0) {
5384 		return -ENOTSUP;
5385 	}
5386 
5387 	ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADING;
5388 	ctrlr->bpid = bpid;
5389 	ctrlr->bp_write_cb_fn = cb_fn;
5390 	ctrlr->bp_write_cb_arg = cb_arg;
5391 	ctrlr->fw_offset = 0;
5392 	ctrlr->fw_size_remaining = size;
5393 	ctrlr->fw_payload = payload;
5394 	ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5395 
5396 	res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5397 					       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5398 
5399 	return res;
5400 }
5401 
5402 bool
5403 spdk_nvme_ctrlr_is_discovery(struct spdk_nvme_ctrlr *ctrlr)
5404 {
5405 	assert(ctrlr);
5406 
5407 	return !strncmp(ctrlr->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN,
5408 			strlen(SPDK_NVMF_DISCOVERY_NQN));
5409 }
5410 
5411 bool
5412 spdk_nvme_ctrlr_is_fabrics(struct spdk_nvme_ctrlr *ctrlr)
5413 {
5414 	assert(ctrlr);
5415 
5416 	return spdk_nvme_trtype_is_fabrics(ctrlr->trid.trtype);
5417 }
5418 
5419 int
5420 spdk_nvme_ctrlr_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5421 				 uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5422 {
5423 	struct nvme_completion_poll_status	*status;
5424 	int					res;
5425 
5426 	status = calloc(1, sizeof(*status));
5427 	if (!status) {
5428 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5429 		return -ENOMEM;
5430 	}
5431 
5432 	res = spdk_nvme_ctrlr_cmd_security_receive(ctrlr, secp, spsp, nssf, payload, size,
5433 			nvme_completion_poll_cb, status);
5434 	if (res) {
5435 		free(status);
5436 		return res;
5437 	}
5438 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5439 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_receive failed!\n");
5440 		if (!status->timed_out) {
5441 			free(status);
5442 		}
5443 		return -ENXIO;
5444 	}
5445 	free(status);
5446 
5447 	return 0;
5448 }
5449 
5450 int
5451 spdk_nvme_ctrlr_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5452 			      uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5453 {
5454 	struct nvme_completion_poll_status	*status;
5455 	int					res;
5456 
5457 	status = calloc(1, sizeof(*status));
5458 	if (!status) {
5459 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5460 		return -ENOMEM;
5461 	}
5462 
5463 	res = spdk_nvme_ctrlr_cmd_security_send(ctrlr, secp, spsp, nssf, payload, size,
5464 						nvme_completion_poll_cb,
5465 						status);
5466 	if (res) {
5467 		free(status);
5468 		return res;
5469 	}
5470 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5471 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_send failed!\n");
5472 		if (!status->timed_out) {
5473 			free(status);
5474 		}
5475 		return -ENXIO;
5476 	}
5477 
5478 	free(status);
5479 
5480 	return 0;
5481 }
5482 
5483 uint64_t
5484 spdk_nvme_ctrlr_get_flags(struct spdk_nvme_ctrlr *ctrlr)
5485 {
5486 	return ctrlr->flags;
5487 }
5488 
5489 const struct spdk_nvme_transport_id *
5490 spdk_nvme_ctrlr_get_transport_id(struct spdk_nvme_ctrlr *ctrlr)
5491 {
5492 	return &ctrlr->trid;
5493 }
5494 
5495 int32_t
5496 spdk_nvme_ctrlr_alloc_qid(struct spdk_nvme_ctrlr *ctrlr)
5497 {
5498 	uint32_t qid;
5499 
5500 	assert(ctrlr->free_io_qids);
5501 	nvme_ctrlr_lock(ctrlr);
5502 	qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1);
5503 	if (qid > ctrlr->opts.num_io_queues) {
5504 		NVME_CTRLR_ERRLOG(ctrlr, "No free I/O queue IDs\n");
5505 		nvme_ctrlr_unlock(ctrlr);
5506 		return -1;
5507 	}
5508 
5509 	spdk_bit_array_clear(ctrlr->free_io_qids, qid);
5510 	nvme_ctrlr_unlock(ctrlr);
5511 	return qid;
5512 }
5513 
5514 void
5515 spdk_nvme_ctrlr_free_qid(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid)
5516 {
5517 	assert(qid <= ctrlr->opts.num_io_queues);
5518 
5519 	nvme_ctrlr_lock(ctrlr);
5520 
5521 	if (spdk_likely(ctrlr->free_io_qids)) {
5522 		spdk_bit_array_set(ctrlr->free_io_qids, qid);
5523 	}
5524 
5525 	nvme_ctrlr_unlock(ctrlr);
5526 }
5527 
5528 int
5529 spdk_nvme_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
5530 				   struct spdk_memory_domain **domains, int array_size)
5531 {
5532 	return nvme_transport_ctrlr_get_memory_domains(ctrlr, domains, array_size);
5533 }
5534 
5535 int
5536 spdk_nvme_ctrlr_authenticate(struct spdk_nvme_ctrlr *ctrlr,
5537 			     spdk_nvme_authenticate_cb cb_fn, void *cb_ctx)
5538 {
5539 	return spdk_nvme_qpair_authenticate(ctrlr->adminq, cb_fn, cb_ctx);
5540 }
5541