xref: /spdk/lib/nvme/nvme_ctrlr.c (revision c6c1234de9e0015e670dd0b51bf6ce39ee0e07bd)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2015 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "nvme_internal.h"
10 #include "nvme_io_msg.h"
11 
12 #include "spdk/env.h"
13 #include "spdk/string.h"
14 #include "spdk/endian.h"
15 
16 struct nvme_active_ns_ctx;
17 
18 static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
19 		struct nvme_async_event_request *aer);
20 static void nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx);
21 static int nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns);
22 static int nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns);
23 static int nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns);
24 static void nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr);
25 static void nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
26 				 uint64_t timeout_in_ms);
27 
28 static int
29 nvme_ns_cmp(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
30 {
31 	if (ns1->id < ns2->id) {
32 		return -1;
33 	} else if (ns1->id > ns2->id) {
34 		return 1;
35 	} else {
36 		return 0;
37 	}
38 }
39 
40 RB_GENERATE_STATIC(nvme_ns_tree, spdk_nvme_ns, node, nvme_ns_cmp);
41 
42 #define CTRLR_STRING(ctrlr) \
43 	((ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP || ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA) ? \
44 	ctrlr->trid.subnqn : ctrlr->trid.traddr)
45 
46 #define NVME_CTRLR_ERRLOG(ctrlr, format, ...) \
47 	SPDK_ERRLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
48 
49 #define NVME_CTRLR_WARNLOG(ctrlr, format, ...) \
50 	SPDK_WARNLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
51 
52 #define NVME_CTRLR_NOTICELOG(ctrlr, format, ...) \
53 	SPDK_NOTICELOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
54 
55 #define NVME_CTRLR_INFOLOG(ctrlr, format, ...) \
56 	SPDK_INFOLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
57 
58 #ifdef DEBUG
59 #define NVME_CTRLR_DEBUGLOG(ctrlr, format, ...) \
60 	SPDK_DEBUGLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
61 #else
62 #define NVME_CTRLR_DEBUGLOG(ctrlr, ...) do { } while (0)
63 #endif
64 
65 #define nvme_ctrlr_get_reg_async(ctrlr, reg, sz, cb_fn, cb_arg) \
66 	nvme_transport_ctrlr_get_reg_ ## sz ## _async(ctrlr, \
67 		offsetof(struct spdk_nvme_registers, reg), cb_fn, cb_arg)
68 
69 #define nvme_ctrlr_set_reg_async(ctrlr, reg, sz, val, cb_fn, cb_arg) \
70 	nvme_transport_ctrlr_set_reg_ ## sz ## _async(ctrlr, \
71 		offsetof(struct spdk_nvme_registers, reg), val, cb_fn, cb_arg)
72 
73 #define nvme_ctrlr_get_cc_async(ctrlr, cb_fn, cb_arg) \
74 	nvme_ctrlr_get_reg_async(ctrlr, cc, 4, cb_fn, cb_arg)
75 
76 #define nvme_ctrlr_get_csts_async(ctrlr, cb_fn, cb_arg) \
77 	nvme_ctrlr_get_reg_async(ctrlr, csts, 4, cb_fn, cb_arg)
78 
79 #define nvme_ctrlr_get_cap_async(ctrlr, cb_fn, cb_arg) \
80 	nvme_ctrlr_get_reg_async(ctrlr, cap, 8, cb_fn, cb_arg)
81 
82 #define nvme_ctrlr_get_vs_async(ctrlr, cb_fn, cb_arg) \
83 	nvme_ctrlr_get_reg_async(ctrlr, vs, 4, cb_fn, cb_arg)
84 
85 #define nvme_ctrlr_set_cc_async(ctrlr, value, cb_fn, cb_arg) \
86 	nvme_ctrlr_set_reg_async(ctrlr, cc, 4, value, cb_fn, cb_arg)
87 
88 static int
89 nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc)
90 {
91 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
92 					      &cc->raw);
93 }
94 
95 static int
96 nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts)
97 {
98 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw),
99 					      &csts->raw);
100 }
101 
102 int
103 nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
104 {
105 	return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw),
106 					      &cap->raw);
107 }
108 
109 int
110 nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
111 {
112 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw),
113 					      &vs->raw);
114 }
115 
116 int
117 nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz)
118 {
119 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
120 					      &cmbsz->raw);
121 }
122 
123 int
124 nvme_ctrlr_get_pmrcap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_pmrcap_register *pmrcap)
125 {
126 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, pmrcap.raw),
127 					      &pmrcap->raw);
128 }
129 
130 int
131 nvme_ctrlr_get_bpinfo(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bpinfo_register *bpinfo)
132 {
133 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bpinfo.raw),
134 					      &bpinfo->raw);
135 }
136 
137 int
138 nvme_ctrlr_set_bprsel(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bprsel_register *bprsel)
139 {
140 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bprsel.raw),
141 					      bprsel->raw);
142 }
143 
144 int
145 nvme_ctrlr_set_bpmbl(struct spdk_nvme_ctrlr *ctrlr, uint64_t bpmbl_value)
146 {
147 	return nvme_transport_ctrlr_set_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, bpmbl),
148 					      bpmbl_value);
149 }
150 
151 static int
152 nvme_ctrlr_set_nssr(struct spdk_nvme_ctrlr *ctrlr, uint32_t nssr_value)
153 {
154 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, nssr),
155 					      nssr_value);
156 }
157 
158 bool
159 nvme_ctrlr_multi_iocs_enabled(struct spdk_nvme_ctrlr *ctrlr)
160 {
161 	return ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS &&
162 	       ctrlr->opts.command_set == SPDK_NVME_CC_CSS_IOCS;
163 }
164 
165 /* When the field in spdk_nvme_ctrlr_opts are changed and you change this function, please
166  * also update the nvme_ctrl_opts_init function in nvme_ctrlr.c
167  */
168 void
169 spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
170 {
171 	assert(opts);
172 
173 	opts->opts_size = opts_size;
174 
175 #define FIELD_OK(field) \
176 	offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size
177 
178 #define SET_FIELD(field, value) \
179 	if (offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size) { \
180 		opts->field = value; \
181 	} \
182 
183 	SET_FIELD(num_io_queues, DEFAULT_MAX_IO_QUEUES);
184 	SET_FIELD(use_cmb_sqs, false);
185 	SET_FIELD(no_shn_notification, false);
186 	SET_FIELD(arb_mechanism, SPDK_NVME_CC_AMS_RR);
187 	SET_FIELD(arbitration_burst, 0);
188 	SET_FIELD(low_priority_weight, 0);
189 	SET_FIELD(medium_priority_weight, 0);
190 	SET_FIELD(high_priority_weight, 0);
191 	SET_FIELD(keep_alive_timeout_ms, MIN_KEEP_ALIVE_TIMEOUT_IN_MS);
192 	SET_FIELD(transport_retry_count, SPDK_NVME_DEFAULT_RETRY_COUNT);
193 	SET_FIELD(io_queue_size, DEFAULT_IO_QUEUE_SIZE);
194 
195 	if (nvme_driver_init() == 0) {
196 		if (FIELD_OK(hostnqn)) {
197 			nvme_get_default_hostnqn(opts->hostnqn, sizeof(opts->hostnqn));
198 		}
199 
200 		if (FIELD_OK(extended_host_id)) {
201 			memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id,
202 			       sizeof(opts->extended_host_id));
203 		}
204 
205 	}
206 
207 	SET_FIELD(io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS);
208 
209 	if (FIELD_OK(src_addr)) {
210 		memset(opts->src_addr, 0, sizeof(opts->src_addr));
211 	}
212 
213 	if (FIELD_OK(src_svcid)) {
214 		memset(opts->src_svcid, 0, sizeof(opts->src_svcid));
215 	}
216 
217 	if (FIELD_OK(host_id)) {
218 		memset(opts->host_id, 0, sizeof(opts->host_id));
219 	}
220 
221 	SET_FIELD(command_set, CHAR_BIT);
222 	SET_FIELD(admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000);
223 	SET_FIELD(header_digest, false);
224 	SET_FIELD(data_digest, false);
225 	SET_FIELD(disable_error_logging, false);
226 	SET_FIELD(transport_ack_timeout, SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT);
227 	SET_FIELD(admin_queue_size, DEFAULT_ADMIN_QUEUE_SIZE);
228 	SET_FIELD(fabrics_connect_timeout_us, NVME_FABRIC_CONNECT_COMMAND_TIMEOUT);
229 	SET_FIELD(disable_read_ana_log_page, false);
230 	SET_FIELD(disable_read_changed_ns_list_log_page, false);
231 	SET_FIELD(tls_psk, NULL);
232 	SET_FIELD(dhchap_key, NULL);
233 	SET_FIELD(dhchap_ctrlr_key, NULL);
234 	SET_FIELD(dhchap_digests,
235 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) |
236 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) |
237 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512));
238 	SET_FIELD(dhchap_dhgroups,
239 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) |
240 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) |
241 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) |
242 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) |
243 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) |
244 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192));
245 
246 	if (FIELD_OK(psk)) {
247 		memset(opts->psk, 0, sizeof(opts->psk));
248 	}
249 
250 #undef FIELD_OK
251 #undef SET_FIELD
252 }
253 
254 const struct spdk_nvme_ctrlr_opts *
255 spdk_nvme_ctrlr_get_opts(struct spdk_nvme_ctrlr *ctrlr)
256 {
257 	return &ctrlr->opts;
258 }
259 
260 /**
261  * This function will be called when the process allocates the IO qpair.
262  * Note: the ctrlr_lock must be held when calling this function.
263  */
264 static void
265 nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair)
266 {
267 	struct spdk_nvme_ctrlr_process	*active_proc;
268 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
269 
270 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
271 	if (active_proc) {
272 		TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq);
273 		qpair->active_proc = active_proc;
274 	}
275 }
276 
277 /**
278  * This function will be called when the process frees the IO qpair.
279  * Note: the ctrlr_lock must be held when calling this function.
280  */
281 static void
282 nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair)
283 {
284 	struct spdk_nvme_ctrlr_process	*active_proc;
285 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
286 	struct spdk_nvme_qpair          *active_qpair, *tmp_qpair;
287 
288 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
289 	if (!active_proc) {
290 		return;
291 	}
292 
293 	TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs,
294 			   per_process_tailq, tmp_qpair) {
295 		if (active_qpair == qpair) {
296 			TAILQ_REMOVE(&active_proc->allocated_io_qpairs,
297 				     active_qpair, per_process_tailq);
298 
299 			break;
300 		}
301 	}
302 }
303 
304 void
305 spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr,
306 		struct spdk_nvme_io_qpair_opts *opts,
307 		size_t opts_size)
308 {
309 	assert(ctrlr);
310 
311 	assert(opts);
312 
313 	memset(opts, 0, opts_size);
314 
315 #define FIELD_OK(field) \
316 	offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size
317 
318 	if (FIELD_OK(qprio)) {
319 		opts->qprio = SPDK_NVME_QPRIO_URGENT;
320 	}
321 
322 	if (FIELD_OK(io_queue_size)) {
323 		opts->io_queue_size = ctrlr->opts.io_queue_size;
324 	}
325 
326 	if (FIELD_OK(io_queue_requests)) {
327 		opts->io_queue_requests = ctrlr->opts.io_queue_requests;
328 	}
329 
330 	if (FIELD_OK(delay_cmd_submit)) {
331 		opts->delay_cmd_submit = false;
332 	}
333 
334 	if (FIELD_OK(sq.vaddr)) {
335 		opts->sq.vaddr = NULL;
336 	}
337 
338 	if (FIELD_OK(sq.paddr)) {
339 		opts->sq.paddr = 0;
340 	}
341 
342 	if (FIELD_OK(sq.buffer_size)) {
343 		opts->sq.buffer_size = 0;
344 	}
345 
346 	if (FIELD_OK(cq.vaddr)) {
347 		opts->cq.vaddr = NULL;
348 	}
349 
350 	if (FIELD_OK(cq.paddr)) {
351 		opts->cq.paddr = 0;
352 	}
353 
354 	if (FIELD_OK(cq.buffer_size)) {
355 		opts->cq.buffer_size = 0;
356 	}
357 
358 	if (FIELD_OK(create_only)) {
359 		opts->create_only = false;
360 	}
361 
362 	if (FIELD_OK(async_mode)) {
363 		opts->async_mode = false;
364 	}
365 
366 #undef FIELD_OK
367 }
368 
369 static struct spdk_nvme_qpair *
370 nvme_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
371 			   const struct spdk_nvme_io_qpair_opts *opts)
372 {
373 	int32_t					qid;
374 	struct spdk_nvme_qpair			*qpair;
375 	union spdk_nvme_cc_register		cc;
376 
377 	if (!ctrlr) {
378 		return NULL;
379 	}
380 
381 	nvme_ctrlr_lock(ctrlr);
382 	cc.raw = ctrlr->process_init_cc.raw;
383 
384 	if (opts->qprio & ~SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK) {
385 		nvme_ctrlr_unlock(ctrlr);
386 		return NULL;
387 	}
388 
389 	/*
390 	 * Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the
391 	 * default round robin arbitration method.
392 	 */
393 	if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts->qprio != SPDK_NVME_QPRIO_URGENT)) {
394 		NVME_CTRLR_ERRLOG(ctrlr, "invalid queue priority for default round robin arbitration method\n");
395 		nvme_ctrlr_unlock(ctrlr);
396 		return NULL;
397 	}
398 
399 	qid = spdk_nvme_ctrlr_alloc_qid(ctrlr);
400 	if (qid < 0) {
401 		nvme_ctrlr_unlock(ctrlr);
402 		return NULL;
403 	}
404 
405 	qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, opts);
406 	if (qpair == NULL) {
407 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_create_io_qpair() failed\n");
408 		spdk_nvme_ctrlr_free_qid(ctrlr, qid);
409 		nvme_ctrlr_unlock(ctrlr);
410 		return NULL;
411 	}
412 
413 	TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq);
414 
415 	nvme_ctrlr_proc_add_io_qpair(qpair);
416 
417 	nvme_ctrlr_unlock(ctrlr);
418 
419 	return qpair;
420 }
421 
422 int
423 spdk_nvme_ctrlr_connect_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
424 {
425 	int rc;
426 
427 	if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) {
428 		return -EISCONN;
429 	}
430 
431 	nvme_ctrlr_lock(ctrlr);
432 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
433 	nvme_ctrlr_unlock(ctrlr);
434 
435 	if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) {
436 		spdk_delay_us(100);
437 	}
438 
439 	return rc;
440 }
441 
442 void
443 spdk_nvme_ctrlr_disconnect_io_qpair(struct spdk_nvme_qpair *qpair)
444 {
445 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
446 
447 	nvme_ctrlr_lock(ctrlr);
448 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
449 	nvme_ctrlr_unlock(ctrlr);
450 }
451 
452 struct spdk_nvme_qpair *
453 spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
454 			       const struct spdk_nvme_io_qpair_opts *user_opts,
455 			       size_t opts_size)
456 {
457 
458 	struct spdk_nvme_qpair		*qpair = NULL;
459 	struct spdk_nvme_io_qpair_opts	opts;
460 	int				rc;
461 
462 	nvme_ctrlr_lock(ctrlr);
463 
464 	if (spdk_unlikely(ctrlr->state != NVME_CTRLR_STATE_READY)) {
465 		/* When controller is resetting or initializing, free_io_qids is deleted or not created yet.
466 		 * We can't create IO qpair in that case */
467 		goto unlock;
468 	}
469 
470 	/*
471 	 * Get the default options, then overwrite them with the user-provided options
472 	 * up to opts_size.
473 	 *
474 	 * This allows for extensions of the opts structure without breaking
475 	 * ABI compatibility.
476 	 */
477 	spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
478 	if (user_opts) {
479 		memcpy(&opts, user_opts, spdk_min(sizeof(opts), opts_size));
480 
481 		/* If user passes buffers, make sure they're big enough for the requested queue size */
482 		if (opts.sq.vaddr) {
483 			if (opts.sq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))) {
484 				NVME_CTRLR_ERRLOG(ctrlr, "sq buffer size %" PRIx64 " is too small for sq size %zx\n",
485 						  opts.sq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cmd)));
486 				goto unlock;
487 			}
488 		}
489 		if (opts.cq.vaddr) {
490 			if (opts.cq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))) {
491 				NVME_CTRLR_ERRLOG(ctrlr, "cq buffer size %" PRIx64 " is too small for cq size %zx\n",
492 						  opts.cq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cpl)));
493 				goto unlock;
494 			}
495 		}
496 	}
497 
498 	qpair = nvme_ctrlr_create_io_qpair(ctrlr, &opts);
499 
500 	if (qpair == NULL || opts.create_only == true) {
501 		goto unlock;
502 	}
503 
504 	rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair);
505 	if (rc != 0) {
506 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_connect_io_qpair() failed\n");
507 		nvme_ctrlr_proc_remove_io_qpair(qpair);
508 		TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
509 		spdk_bit_array_set(ctrlr->free_io_qids, qpair->id);
510 		nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
511 		qpair = NULL;
512 		goto unlock;
513 	}
514 
515 unlock:
516 	nvme_ctrlr_unlock(ctrlr);
517 
518 	return qpair;
519 }
520 
521 int
522 spdk_nvme_ctrlr_reconnect_io_qpair(struct spdk_nvme_qpair *qpair)
523 {
524 	struct spdk_nvme_ctrlr *ctrlr;
525 	enum nvme_qpair_state qpair_state;
526 	int rc;
527 
528 	assert(qpair != NULL);
529 	assert(nvme_qpair_is_admin_queue(qpair) == false);
530 	assert(qpair->ctrlr != NULL);
531 
532 	ctrlr = qpair->ctrlr;
533 	nvme_ctrlr_lock(ctrlr);
534 	qpair_state = nvme_qpair_get_state(qpair);
535 
536 	if (ctrlr->is_removed) {
537 		rc = -ENODEV;
538 		goto out;
539 	}
540 
541 	if (ctrlr->is_resetting || qpair_state == NVME_QPAIR_DISCONNECTING) {
542 		rc = -EAGAIN;
543 		goto out;
544 	}
545 
546 	if (ctrlr->is_failed || qpair_state == NVME_QPAIR_DESTROYING) {
547 		rc = -ENXIO;
548 		goto out;
549 	}
550 
551 	if (qpair_state != NVME_QPAIR_DISCONNECTED) {
552 		rc = 0;
553 		goto out;
554 	}
555 
556 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
557 	if (rc) {
558 		rc = -EAGAIN;
559 		goto out;
560 	}
561 
562 out:
563 	nvme_ctrlr_unlock(ctrlr);
564 	return rc;
565 }
566 
567 spdk_nvme_qp_failure_reason
568 spdk_nvme_ctrlr_get_admin_qp_failure_reason(struct spdk_nvme_ctrlr *ctrlr)
569 {
570 	return ctrlr->adminq->transport_failure_reason;
571 }
572 
573 /*
574  * This internal function will attempt to take the controller
575  * lock before calling disconnect on a controller qpair.
576  * Functions already holding the controller lock should
577  * call nvme_transport_ctrlr_disconnect_qpair directly.
578  */
579 void
580 nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair)
581 {
582 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
583 
584 	assert(ctrlr != NULL);
585 	nvme_ctrlr_lock(ctrlr);
586 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
587 	nvme_ctrlr_unlock(ctrlr);
588 }
589 
590 int
591 spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair)
592 {
593 	struct spdk_nvme_ctrlr *ctrlr;
594 
595 	if (qpair == NULL) {
596 		return 0;
597 	}
598 
599 	ctrlr = qpair->ctrlr;
600 
601 	if (qpair->in_completion_context) {
602 		/*
603 		 * There are many cases where it is convenient to delete an io qpair in the context
604 		 *  of that qpair's completion routine.  To handle this properly, set a flag here
605 		 *  so that the completion routine will perform an actual delete after the context
606 		 *  unwinds.
607 		 */
608 		qpair->delete_after_completion_context = 1;
609 		return 0;
610 	}
611 
612 	qpair->destroy_in_progress = 1;
613 
614 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
615 
616 	if (qpair->poll_group && (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr))) {
617 		spdk_nvme_poll_group_remove(qpair->poll_group->group, qpair);
618 	}
619 
620 	/* Do not retry. */
621 	nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
622 
623 	/* In the multi-process case, a process may call this function on a foreign
624 	 * I/O qpair (i.e. one that this process did not create) when that qpairs process
625 	 * exits unexpectedly.  In that case, we must not try to abort any reqs associated
626 	 * with that qpair, since the callbacks will also be foreign to this process.
627 	 */
628 	if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) {
629 		nvme_qpair_abort_all_queued_reqs(qpair);
630 	}
631 
632 	nvme_ctrlr_lock(ctrlr);
633 
634 	nvme_ctrlr_proc_remove_io_qpair(qpair);
635 
636 	TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
637 	spdk_nvme_ctrlr_free_qid(ctrlr, qpair->id);
638 
639 	nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
640 	nvme_ctrlr_unlock(ctrlr);
641 	return 0;
642 }
643 
644 static void
645 nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr,
646 		struct spdk_nvme_intel_log_page_directory *log_page_directory)
647 {
648 	if (log_page_directory == NULL) {
649 		return;
650 	}
651 
652 	assert(ctrlr->cdata.vid == SPDK_PCI_VID_INTEL);
653 
654 	ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
655 
656 	if (log_page_directory->read_latency_log_len ||
657 	    (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) {
658 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
659 	}
660 	if (log_page_directory->write_latency_log_len ||
661 	    (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) {
662 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
663 	}
664 	if (log_page_directory->temperature_statistics_log_len) {
665 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true;
666 	}
667 	if (log_page_directory->smart_log_len) {
668 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true;
669 	}
670 	if (log_page_directory->marketing_description_log_len) {
671 		ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true;
672 	}
673 }
674 
675 struct intel_log_pages_ctx {
676 	struct spdk_nvme_intel_log_page_directory log_page_directory;
677 	struct spdk_nvme_ctrlr *ctrlr;
678 };
679 
680 static void
681 nvme_ctrlr_set_intel_support_log_pages_done(void *arg, const struct spdk_nvme_cpl *cpl)
682 {
683 	struct intel_log_pages_ctx *ctx = arg;
684 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
685 
686 	if (!spdk_nvme_cpl_is_error(cpl)) {
687 		nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, &ctx->log_page_directory);
688 	}
689 
690 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
691 			     ctrlr->opts.admin_timeout_ms);
692 	free(ctx);
693 }
694 
695 static int
696 nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr)
697 {
698 	int rc = 0;
699 	struct intel_log_pages_ctx *ctx;
700 
701 	ctx = calloc(1, sizeof(*ctx));
702 	if (!ctx) {
703 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
704 				     ctrlr->opts.admin_timeout_ms);
705 		return 0;
706 	}
707 
708 	ctx->ctrlr = ctrlr;
709 
710 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY,
711 					      SPDK_NVME_GLOBAL_NS_TAG, &ctx->log_page_directory,
712 					      sizeof(struct spdk_nvme_intel_log_page_directory),
713 					      0, nvme_ctrlr_set_intel_support_log_pages_done, ctx);
714 	if (rc != 0) {
715 		free(ctx);
716 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
717 				     ctrlr->opts.admin_timeout_ms);
718 		return 0;
719 	}
720 
721 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES,
722 			     ctrlr->opts.admin_timeout_ms);
723 
724 	return 0;
725 }
726 
727 static int
728 nvme_ctrlr_alloc_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
729 {
730 	uint32_t ana_log_page_size;
731 
732 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + ctrlr->cdata.nanagrpid *
733 			    sizeof(struct spdk_nvme_ana_group_descriptor) + ctrlr->active_ns_count *
734 			    sizeof(uint32_t);
735 
736 	/* Number of active namespaces may have changed.
737 	 * Check if ANA log page fits into existing buffer.
738 	 */
739 	if (ana_log_page_size > ctrlr->ana_log_page_size) {
740 		void *new_buffer;
741 
742 		if (ctrlr->ana_log_page) {
743 			new_buffer = realloc(ctrlr->ana_log_page, ana_log_page_size);
744 		} else {
745 			new_buffer = calloc(1, ana_log_page_size);
746 		}
747 
748 		if (!new_buffer) {
749 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate ANA log page buffer, size %u\n",
750 					  ana_log_page_size);
751 			return -ENXIO;
752 		}
753 
754 		ctrlr->ana_log_page = new_buffer;
755 		if (ctrlr->copied_ana_desc) {
756 			new_buffer = realloc(ctrlr->copied_ana_desc, ana_log_page_size);
757 		} else {
758 			new_buffer = calloc(1, ana_log_page_size);
759 		}
760 
761 		if (!new_buffer) {
762 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate a buffer to parse ANA descriptor, size %u\n",
763 					  ana_log_page_size);
764 			return -ENOMEM;
765 		}
766 
767 		ctrlr->copied_ana_desc = new_buffer;
768 		ctrlr->ana_log_page_size = ana_log_page_size;
769 	}
770 
771 	return 0;
772 }
773 
774 static int
775 nvme_ctrlr_update_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
776 {
777 	struct nvme_completion_poll_status *status;
778 	int rc;
779 
780 	rc = nvme_ctrlr_alloc_ana_log_page(ctrlr);
781 	if (rc != 0) {
782 		return rc;
783 	}
784 
785 	status = calloc(1, sizeof(*status));
786 	if (status == NULL) {
787 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
788 		return -ENOMEM;
789 	}
790 
791 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
792 					      SPDK_NVME_GLOBAL_NS_TAG, ctrlr->ana_log_page,
793 					      ctrlr->ana_log_page_size, 0,
794 					      nvme_completion_poll_cb, status);
795 	if (rc != 0) {
796 		free(status);
797 		return rc;
798 	}
799 
800 	if (nvme_wait_for_completion_robust_lock_timeout(ctrlr->adminq, status, &ctrlr->ctrlr_lock,
801 			ctrlr->opts.admin_timeout_ms * 1000)) {
802 		if (!status->timed_out) {
803 			free(status);
804 		}
805 		return -EIO;
806 	}
807 
808 	free(status);
809 	return 0;
810 }
811 
812 static int
813 nvme_ctrlr_update_ns_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
814 				void *cb_arg)
815 {
816 	struct spdk_nvme_ctrlr *ctrlr = cb_arg;
817 	struct spdk_nvme_ns *ns;
818 	uint32_t i, nsid;
819 
820 	for (i = 0; i < desc->num_of_nsid; i++) {
821 		nsid = desc->nsid[i];
822 		if (nsid == 0 || nsid > ctrlr->cdata.nn) {
823 			continue;
824 		}
825 
826 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
827 		assert(ns != NULL);
828 
829 		ns->ana_group_id = desc->ana_group_id;
830 		ns->ana_state = desc->ana_state;
831 	}
832 
833 	return 0;
834 }
835 
836 int
837 nvme_ctrlr_parse_ana_log_page(struct spdk_nvme_ctrlr *ctrlr,
838 			      spdk_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
839 {
840 	struct spdk_nvme_ana_group_descriptor *copied_desc;
841 	uint8_t *orig_desc;
842 	uint32_t i, desc_size, copy_len;
843 	int rc = 0;
844 
845 	if (ctrlr->ana_log_page == NULL) {
846 		return -EINVAL;
847 	}
848 
849 	copied_desc = ctrlr->copied_ana_desc;
850 
851 	orig_desc = (uint8_t *)ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
852 	copy_len = ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
853 
854 	for (i = 0; i < ctrlr->ana_log_page->num_ana_group_desc; i++) {
855 		memcpy(copied_desc, orig_desc, copy_len);
856 
857 		rc = cb_fn(copied_desc, cb_arg);
858 		if (rc != 0) {
859 			break;
860 		}
861 
862 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
863 			    copied_desc->num_of_nsid * sizeof(uint32_t);
864 		orig_desc += desc_size;
865 		copy_len -= desc_size;
866 	}
867 
868 	return rc;
869 }
870 
871 static int
872 nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr)
873 {
874 	int	rc = 0;
875 
876 	memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
877 	/* Mandatory pages */
878 	ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true;
879 	ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true;
880 	ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true;
881 	if (ctrlr->cdata.lpa.celp) {
882 		ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true;
883 	}
884 
885 	if (ctrlr->cdata.cmic.ana_reporting) {
886 		ctrlr->log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] = true;
887 		if (!ctrlr->opts.disable_read_ana_log_page) {
888 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
889 			if (rc == 0) {
890 				nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
891 							      ctrlr);
892 			}
893 		}
894 	}
895 
896 	if (ctrlr->cdata.ctratt.bits.fdps) {
897 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_CONFIGURATIONS] = true;
898 		ctrlr->log_page_supported[SPDK_NVME_LOG_RECLAIM_UNIT_HANDLE_USAGE] = true;
899 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_STATISTICS] = true;
900 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_EVENTS] = true;
901 	}
902 
903 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL &&
904 	    ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE &&
905 	    !(ctrlr->quirks & NVME_INTEL_QUIRK_NO_LOG_PAGES)) {
906 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES,
907 				     ctrlr->opts.admin_timeout_ms);
908 
909 	} else {
910 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
911 				     ctrlr->opts.admin_timeout_ms);
912 
913 	}
914 
915 	return rc;
916 }
917 
918 static void
919 nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr)
920 {
921 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true;
922 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
923 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
924 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
925 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true;
926 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
927 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
928 }
929 
930 static void
931 nvme_ctrlr_set_arbitration_feature(struct spdk_nvme_ctrlr *ctrlr)
932 {
933 	uint32_t cdw11;
934 	struct nvme_completion_poll_status *status;
935 
936 	if (ctrlr->opts.arbitration_burst == 0) {
937 		return;
938 	}
939 
940 	if (ctrlr->opts.arbitration_burst > 7) {
941 		NVME_CTRLR_WARNLOG(ctrlr, "Valid arbitration burst values is from 0-7\n");
942 		return;
943 	}
944 
945 	status = calloc(1, sizeof(*status));
946 	if (!status) {
947 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
948 		return;
949 	}
950 
951 	cdw11 = ctrlr->opts.arbitration_burst;
952 
953 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_WRR_SUPPORTED) {
954 		cdw11 |= (uint32_t)ctrlr->opts.low_priority_weight << 8;
955 		cdw11 |= (uint32_t)ctrlr->opts.medium_priority_weight << 16;
956 		cdw11 |= (uint32_t)ctrlr->opts.high_priority_weight << 24;
957 	}
958 
959 	if (spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION,
960 					    cdw11, 0, NULL, 0,
961 					    nvme_completion_poll_cb, status) < 0) {
962 		NVME_CTRLR_ERRLOG(ctrlr, "Set arbitration feature failed\n");
963 		free(status);
964 		return;
965 	}
966 
967 	if (nvme_wait_for_completion_timeout(ctrlr->adminq, status,
968 					     ctrlr->opts.admin_timeout_ms * 1000)) {
969 		NVME_CTRLR_ERRLOG(ctrlr, "Timeout to set arbitration feature\n");
970 	}
971 
972 	if (!status->timed_out) {
973 		free(status);
974 	}
975 }
976 
977 static void
978 nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr)
979 {
980 	memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
981 	/* Mandatory features */
982 	ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true;
983 	ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true;
984 	ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
985 	ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true;
986 	ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true;
987 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true;
988 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
989 	ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true;
990 	ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
991 	/* Optional features */
992 	if (ctrlr->cdata.vwc.present) {
993 		ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
994 	}
995 	if (ctrlr->cdata.apsta.supported) {
996 		ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
997 	}
998 	if (ctrlr->cdata.hmpre) {
999 		ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true;
1000 	}
1001 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
1002 		nvme_ctrlr_set_intel_supported_features(ctrlr);
1003 	}
1004 
1005 	nvme_ctrlr_set_arbitration_feature(ctrlr);
1006 }
1007 
1008 static void
1009 nvme_ctrlr_set_host_feature_done(void *arg, const struct spdk_nvme_cpl *cpl)
1010 {
1011 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1012 
1013 	spdk_free(ctrlr->tmp_ptr);
1014 	ctrlr->tmp_ptr = NULL;
1015 
1016 	if (spdk_nvme_cpl_is_error(cpl)) {
1017 		NVME_CTRLR_ERRLOG(ctrlr, "Set host behavior support feature failed: SC %x SCT %x\n",
1018 				  cpl->status.sc, cpl->status.sct);
1019 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1020 		return;
1021 	}
1022 
1023 	ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT] = true;
1024 
1025 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
1026 			     ctrlr->opts.admin_timeout_ms);
1027 }
1028 
1029 /* We do not want to do add synchronous operation anymore.
1030  * We set the Host Behavior Support feature asynchronousin in different states.
1031  */
1032 static int
1033 nvme_ctrlr_set_host_feature(struct spdk_nvme_ctrlr *ctrlr)
1034 {
1035 	struct spdk_nvme_host_behavior *host;
1036 	int rc;
1037 
1038 	if (!ctrlr->cdata.ctratt.bits.elbas) {
1039 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
1040 				     ctrlr->opts.admin_timeout_ms);
1041 		return 0;
1042 	}
1043 
1044 	ctrlr->tmp_ptr = spdk_dma_zmalloc(sizeof(struct spdk_nvme_host_behavior), 4096, NULL);
1045 	if (!ctrlr->tmp_ptr) {
1046 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate host behavior support data\n");
1047 		rc = -ENOMEM;
1048 		goto error;
1049 	}
1050 
1051 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE,
1052 			     ctrlr->opts.admin_timeout_ms);
1053 
1054 	host = ctrlr->tmp_ptr;
1055 
1056 	host->lbafee = 1;
1057 
1058 	rc = spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT,
1059 					     0, 0, host, sizeof(struct spdk_nvme_host_behavior),
1060 					     nvme_ctrlr_set_host_feature_done, ctrlr);
1061 	if (rc != 0) {
1062 		NVME_CTRLR_ERRLOG(ctrlr, "Set host behavior support feature failed: %d\n", rc);
1063 		goto error;
1064 	}
1065 
1066 	return 0;
1067 
1068 error:
1069 	spdk_free(ctrlr->tmp_ptr);
1070 	ctrlr->tmp_ptr = NULL;
1071 
1072 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1073 	return rc;
1074 }
1075 
1076 bool
1077 spdk_nvme_ctrlr_is_failed(struct spdk_nvme_ctrlr *ctrlr)
1078 {
1079 	return ctrlr->is_failed;
1080 }
1081 
1082 void
1083 nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
1084 {
1085 	/*
1086 	 * Set the flag here and leave the work failure of qpairs to
1087 	 * spdk_nvme_qpair_process_completions().
1088 	 */
1089 	if (hot_remove) {
1090 		ctrlr->is_removed = true;
1091 	}
1092 
1093 	if (ctrlr->is_failed) {
1094 		NVME_CTRLR_NOTICELOG(ctrlr, "already in failed state\n");
1095 		return;
1096 	}
1097 
1098 	if (ctrlr->is_disconnecting) {
1099 		NVME_CTRLR_DEBUGLOG(ctrlr, "already disconnecting\n");
1100 		return;
1101 	}
1102 
1103 	ctrlr->is_failed = true;
1104 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1105 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1106 	NVME_CTRLR_ERRLOG(ctrlr, "in failed state.\n");
1107 }
1108 
1109 /**
1110  * This public API function will try to take the controller lock.
1111  * Any private functions being called from a thread already holding
1112  * the ctrlr lock should call nvme_ctrlr_fail directly.
1113  */
1114 void
1115 spdk_nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr)
1116 {
1117 	nvme_ctrlr_lock(ctrlr);
1118 	nvme_ctrlr_fail(ctrlr, false);
1119 	nvme_ctrlr_unlock(ctrlr);
1120 }
1121 
1122 static void
1123 nvme_ctrlr_shutdown_set_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1124 {
1125 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1126 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1127 
1128 	if (spdk_nvme_cpl_is_error(cpl)) {
1129 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1130 		ctx->shutdown_complete = true;
1131 		return;
1132 	}
1133 
1134 	if (ctrlr->opts.no_shn_notification) {
1135 		ctx->shutdown_complete = true;
1136 		return;
1137 	}
1138 
1139 	/*
1140 	 * The NVMe specification defines RTD3E to be the time between
1141 	 *  setting SHN = 1 until the controller will set SHST = 10b.
1142 	 * If the device doesn't report RTD3 entry latency, or if it
1143 	 *  reports RTD3 entry latency less than 10 seconds, pick
1144 	 *  10 seconds as a reasonable amount of time to
1145 	 *  wait before proceeding.
1146 	 */
1147 	NVME_CTRLR_DEBUGLOG(ctrlr, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e);
1148 	ctx->shutdown_timeout_ms = SPDK_CEIL_DIV(ctrlr->cdata.rtd3e, 1000);
1149 	ctx->shutdown_timeout_ms = spdk_max(ctx->shutdown_timeout_ms, 10000);
1150 	NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown timeout = %" PRIu32 " ms\n", ctx->shutdown_timeout_ms);
1151 
1152 	ctx->shutdown_start_tsc = spdk_get_ticks();
1153 	ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1154 }
1155 
1156 static void
1157 nvme_ctrlr_shutdown_get_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1158 {
1159 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1160 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1161 	union spdk_nvme_cc_register cc;
1162 	int rc;
1163 
1164 	if (spdk_nvme_cpl_is_error(cpl)) {
1165 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1166 		ctx->shutdown_complete = true;
1167 		return;
1168 	}
1169 
1170 	assert(value <= UINT32_MAX);
1171 	cc.raw = (uint32_t)value;
1172 
1173 	if (ctrlr->opts.no_shn_notification) {
1174 		NVME_CTRLR_INFOLOG(ctrlr, "Disable SSD without shutdown notification\n");
1175 		if (cc.bits.en == 0) {
1176 			ctx->shutdown_complete = true;
1177 			return;
1178 		}
1179 
1180 		cc.bits.en = 0;
1181 	} else {
1182 		cc.bits.shn = SPDK_NVME_SHN_NORMAL;
1183 	}
1184 
1185 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_shutdown_set_cc_done, ctx);
1186 	if (rc != 0) {
1187 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1188 		ctx->shutdown_complete = true;
1189 	}
1190 }
1191 
1192 static void
1193 nvme_ctrlr_shutdown_async(struct spdk_nvme_ctrlr *ctrlr,
1194 			  struct nvme_ctrlr_detach_ctx *ctx)
1195 {
1196 	int rc;
1197 
1198 	if (ctrlr->is_removed) {
1199 		ctx->shutdown_complete = true;
1200 		return;
1201 	}
1202 
1203 	if (ctrlr->adminq == NULL ||
1204 	    ctrlr->adminq->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE) {
1205 		NVME_CTRLR_INFOLOG(ctrlr, "Adminq is not connected.\n");
1206 		ctx->shutdown_complete = true;
1207 		return;
1208 	}
1209 
1210 	ctx->state = NVME_CTRLR_DETACH_SET_CC;
1211 	rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_shutdown_get_cc_done, ctx);
1212 	if (rc != 0) {
1213 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1214 		ctx->shutdown_complete = true;
1215 	}
1216 }
1217 
1218 static void
1219 nvme_ctrlr_shutdown_get_csts_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1220 {
1221 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1222 
1223 	if (spdk_nvme_cpl_is_error(cpl)) {
1224 		NVME_CTRLR_ERRLOG(ctx->ctrlr, "Failed to read the CSTS register\n");
1225 		ctx->shutdown_complete = true;
1226 		return;
1227 	}
1228 
1229 	assert(value <= UINT32_MAX);
1230 	ctx->csts.raw = (uint32_t)value;
1231 	ctx->state = NVME_CTRLR_DETACH_GET_CSTS_DONE;
1232 }
1233 
1234 static int
1235 nvme_ctrlr_shutdown_poll_async(struct spdk_nvme_ctrlr *ctrlr,
1236 			       struct nvme_ctrlr_detach_ctx *ctx)
1237 {
1238 	union spdk_nvme_csts_register	csts;
1239 	uint32_t			ms_waited;
1240 
1241 	switch (ctx->state) {
1242 	case NVME_CTRLR_DETACH_SET_CC:
1243 	case NVME_CTRLR_DETACH_GET_CSTS:
1244 		/* We're still waiting for the register operation to complete */
1245 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
1246 		return -EAGAIN;
1247 
1248 	case NVME_CTRLR_DETACH_CHECK_CSTS:
1249 		ctx->state = NVME_CTRLR_DETACH_GET_CSTS;
1250 		if (nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_shutdown_get_csts_done, ctx)) {
1251 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
1252 			return -EIO;
1253 		}
1254 		return -EAGAIN;
1255 
1256 	case NVME_CTRLR_DETACH_GET_CSTS_DONE:
1257 		ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1258 		break;
1259 
1260 	default:
1261 		assert(0 && "Should never happen");
1262 		return -EINVAL;
1263 	}
1264 
1265 	ms_waited = (spdk_get_ticks() - ctx->shutdown_start_tsc) * 1000 / spdk_get_ticks_hz();
1266 	csts.raw = ctx->csts.raw;
1267 
1268 	if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
1269 		NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown complete in %u milliseconds\n", ms_waited);
1270 		return 0;
1271 	}
1272 
1273 	if (ms_waited < ctx->shutdown_timeout_ms) {
1274 		return -EAGAIN;
1275 	}
1276 
1277 	NVME_CTRLR_ERRLOG(ctrlr, "did not shutdown within %u milliseconds\n",
1278 			  ctx->shutdown_timeout_ms);
1279 	if (ctrlr->quirks & NVME_QUIRK_SHST_COMPLETE) {
1280 		NVME_CTRLR_ERRLOG(ctrlr, "likely due to shutdown handling in the VMWare emulated NVMe SSD\n");
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 static inline uint64_t
1287 nvme_ctrlr_get_ready_timeout(struct spdk_nvme_ctrlr *ctrlr)
1288 {
1289 	return ctrlr->cap.bits.to * 500;
1290 }
1291 
1292 static void
1293 nvme_ctrlr_set_cc_en_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1294 {
1295 	struct spdk_nvme_ctrlr *ctrlr = ctx;
1296 
1297 	if (spdk_nvme_cpl_is_error(cpl)) {
1298 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to set the CC register\n");
1299 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1300 		return;
1301 	}
1302 
1303 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
1304 			     nvme_ctrlr_get_ready_timeout(ctrlr));
1305 }
1306 
1307 static int
1308 nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
1309 {
1310 	union spdk_nvme_cc_register	cc;
1311 	int				rc;
1312 
1313 	rc = nvme_transport_ctrlr_enable(ctrlr);
1314 	if (rc != 0) {
1315 		NVME_CTRLR_ERRLOG(ctrlr, "transport ctrlr_enable failed\n");
1316 		return rc;
1317 	}
1318 
1319 	cc.raw = ctrlr->process_init_cc.raw;
1320 	if (cc.bits.en != 0) {
1321 		NVME_CTRLR_ERRLOG(ctrlr, "called with CC.EN = 1\n");
1322 		return -EINVAL;
1323 	}
1324 
1325 	cc.bits.en = 1;
1326 	cc.bits.css = 0;
1327 	cc.bits.shn = 0;
1328 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
1329 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
1330 
1331 	/* Page size is 2 ^ (12 + mps). */
1332 	cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12;
1333 
1334 	/*
1335 	 * Since NVMe 1.0, a controller should have at least one bit set in CAP.CSS.
1336 	 * A controller that does not have any bit set in CAP.CSS is not spec compliant.
1337 	 * Try to support such a controller regardless.
1338 	 */
1339 	if (ctrlr->cap.bits.css == 0) {
1340 		NVME_CTRLR_INFOLOG(ctrlr, "Drive reports no command sets supported. Assuming NVM is supported.\n");
1341 		ctrlr->cap.bits.css = SPDK_NVME_CAP_CSS_NVM;
1342 	}
1343 
1344 	/*
1345 	 * If the user did not explicitly request a command set, or supplied a value larger than
1346 	 * what can be saved in CC.CSS, use the most reasonable default.
1347 	 */
1348 	if (ctrlr->opts.command_set >= CHAR_BIT) {
1349 		if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS) {
1350 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_IOCS;
1351 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NVM) {
1352 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1353 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NOIO) {
1354 			/* Technically we should respond with CC_CSS_NOIO in
1355 			 * this case, but we use NVM instead to work around
1356 			 * buggy targets and to match Linux driver behavior.
1357 			 */
1358 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1359 		} else {
1360 			/* Invalid supported bits detected, falling back to NVM. */
1361 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1362 		}
1363 	}
1364 
1365 	/* Verify that the selected command set is supported by the controller. */
1366 	if (!(ctrlr->cap.bits.css & (1u << ctrlr->opts.command_set))) {
1367 		NVME_CTRLR_DEBUGLOG(ctrlr, "Requested I/O command set %u but supported mask is 0x%x\n",
1368 				    ctrlr->opts.command_set, ctrlr->cap.bits.css);
1369 		NVME_CTRLR_DEBUGLOG(ctrlr, "Falling back to NVM. Assuming NVM is supported.\n");
1370 		ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1371 	}
1372 
1373 	cc.bits.css = ctrlr->opts.command_set;
1374 
1375 	switch (ctrlr->opts.arb_mechanism) {
1376 	case SPDK_NVME_CC_AMS_RR:
1377 		break;
1378 	case SPDK_NVME_CC_AMS_WRR:
1379 		if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) {
1380 			break;
1381 		}
1382 		return -EINVAL;
1383 	case SPDK_NVME_CC_AMS_VS:
1384 		if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) {
1385 			break;
1386 		}
1387 		return -EINVAL;
1388 	default:
1389 		return -EINVAL;
1390 	}
1391 
1392 	cc.bits.ams = ctrlr->opts.arb_mechanism;
1393 	ctrlr->process_init_cc.raw = cc.raw;
1394 
1395 	if (nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_set_cc_en_done, ctrlr)) {
1396 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
1397 		return -EIO;
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 static const char *
1404 nvme_ctrlr_state_string(enum nvme_ctrlr_state state)
1405 {
1406 	switch (state) {
1407 	case NVME_CTRLR_STATE_INIT_DELAY:
1408 		return "delay init";
1409 	case NVME_CTRLR_STATE_CONNECT_ADMINQ:
1410 		return "connect adminq";
1411 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
1412 		return "wait for connect adminq";
1413 	case NVME_CTRLR_STATE_READ_VS:
1414 		return "read vs";
1415 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
1416 		return "read vs wait for vs";
1417 	case NVME_CTRLR_STATE_READ_CAP:
1418 		return "read cap";
1419 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
1420 		return "read cap wait for cap";
1421 	case NVME_CTRLR_STATE_CHECK_EN:
1422 		return "check en";
1423 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
1424 		return "check en wait for cc";
1425 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
1426 		return "disable and wait for CSTS.RDY = 1";
1427 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1428 		return "disable and wait for CSTS.RDY = 1 reg";
1429 	case NVME_CTRLR_STATE_SET_EN_0:
1430 		return "set CC.EN = 0";
1431 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
1432 		return "set CC.EN = 0 wait for cc";
1433 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
1434 		return "disable and wait for CSTS.RDY = 0";
1435 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
1436 		return "disable and wait for CSTS.RDY = 0 reg";
1437 	case NVME_CTRLR_STATE_DISABLED:
1438 		return "controller is disabled";
1439 	case NVME_CTRLR_STATE_ENABLE:
1440 		return "enable controller by writing CC.EN = 1";
1441 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
1442 		return "enable controller by writing CC.EN = 1 reg";
1443 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
1444 		return "wait for CSTS.RDY = 1";
1445 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1446 		return "wait for CSTS.RDY = 1 reg";
1447 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
1448 		return "reset admin queue";
1449 	case NVME_CTRLR_STATE_IDENTIFY:
1450 		return "identify controller";
1451 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
1452 		return "wait for identify controller";
1453 	case NVME_CTRLR_STATE_CONFIGURE_AER:
1454 		return "configure AER";
1455 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
1456 		return "wait for configure aer";
1457 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
1458 		return "set keep alive timeout";
1459 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
1460 		return "wait for set keep alive timeout";
1461 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
1462 		return "identify controller iocs specific";
1463 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
1464 		return "wait for identify controller iocs specific";
1465 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
1466 		return "get zns cmd and effects log page";
1467 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
1468 		return "wait for get zns cmd and effects log page";
1469 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
1470 		return "set number of queues";
1471 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
1472 		return "wait for set number of queues";
1473 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
1474 		return "identify active ns";
1475 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
1476 		return "wait for identify active ns";
1477 	case NVME_CTRLR_STATE_IDENTIFY_NS:
1478 		return "identify ns";
1479 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
1480 		return "wait for identify ns";
1481 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
1482 		return "identify namespace id descriptors";
1483 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
1484 		return "wait for identify namespace id descriptors";
1485 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
1486 		return "identify ns iocs specific";
1487 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
1488 		return "wait for identify ns iocs specific";
1489 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
1490 		return "set supported log pages";
1491 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
1492 		return "set supported INTEL log pages";
1493 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
1494 		return "wait for supported INTEL log pages";
1495 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
1496 		return "set supported features";
1497 	case NVME_CTRLR_STATE_SET_HOST_FEATURE:
1498 		return "set host behavior support feature";
1499 	case NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE:
1500 		return "wait for set host behavior support feature";
1501 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
1502 		return "set doorbell buffer config";
1503 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
1504 		return "wait for doorbell buffer config";
1505 	case NVME_CTRLR_STATE_SET_HOST_ID:
1506 		return "set host ID";
1507 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
1508 		return "wait for set host ID";
1509 	case NVME_CTRLR_STATE_TRANSPORT_READY:
1510 		return "transport ready";
1511 	case NVME_CTRLR_STATE_READY:
1512 		return "ready";
1513 	case NVME_CTRLR_STATE_ERROR:
1514 		return "error";
1515 	case NVME_CTRLR_STATE_DISCONNECTED:
1516 		return "disconnected";
1517 	}
1518 	return "unknown";
1519 };
1520 
1521 static void
1522 _nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1523 		      uint64_t timeout_in_ms, bool quiet)
1524 {
1525 	uint64_t ticks_per_ms, timeout_in_ticks, now_ticks;
1526 
1527 	ctrlr->state = state;
1528 	if (timeout_in_ms == NVME_TIMEOUT_KEEP_EXISTING) {
1529 		if (!quiet) {
1530 			NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (keeping existing timeout)\n",
1531 					    nvme_ctrlr_state_string(ctrlr->state));
1532 		}
1533 		return;
1534 	}
1535 
1536 	if (timeout_in_ms == NVME_TIMEOUT_INFINITE) {
1537 		goto inf;
1538 	}
1539 
1540 	ticks_per_ms = spdk_get_ticks_hz() / 1000;
1541 	if (timeout_in_ms > UINT64_MAX / ticks_per_ms) {
1542 		NVME_CTRLR_ERRLOG(ctrlr,
1543 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1544 		goto inf;
1545 	}
1546 
1547 	now_ticks = spdk_get_ticks();
1548 	timeout_in_ticks = timeout_in_ms * ticks_per_ms;
1549 	if (timeout_in_ticks > UINT64_MAX - now_ticks) {
1550 		NVME_CTRLR_ERRLOG(ctrlr,
1551 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1552 		goto inf;
1553 	}
1554 
1555 	ctrlr->state_timeout_tsc = timeout_in_ticks + now_ticks;
1556 	if (!quiet) {
1557 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (timeout %" PRIu64 " ms)\n",
1558 				    nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms);
1559 	}
1560 	return;
1561 inf:
1562 	if (!quiet) {
1563 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (no timeout)\n",
1564 				    nvme_ctrlr_state_string(ctrlr->state));
1565 	}
1566 	ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE;
1567 }
1568 
1569 static void
1570 nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1571 		     uint64_t timeout_in_ms)
1572 {
1573 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, false);
1574 }
1575 
1576 static void
1577 nvme_ctrlr_set_state_quiet(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1578 			   uint64_t timeout_in_ms)
1579 {
1580 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, true);
1581 }
1582 
1583 static void
1584 nvme_ctrlr_free_zns_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1585 {
1586 	spdk_free(ctrlr->cdata_zns);
1587 	ctrlr->cdata_zns = NULL;
1588 }
1589 
1590 static void
1591 nvme_ctrlr_free_iocs_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1592 {
1593 	nvme_ctrlr_free_zns_specific_data(ctrlr);
1594 }
1595 
1596 static void
1597 nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr)
1598 {
1599 	if (ctrlr->shadow_doorbell) {
1600 		spdk_free(ctrlr->shadow_doorbell);
1601 		ctrlr->shadow_doorbell = NULL;
1602 	}
1603 
1604 	if (ctrlr->eventidx) {
1605 		spdk_free(ctrlr->eventidx);
1606 		ctrlr->eventidx = NULL;
1607 	}
1608 }
1609 
1610 static void
1611 nvme_ctrlr_set_doorbell_buffer_config_done(void *arg, const struct spdk_nvme_cpl *cpl)
1612 {
1613 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1614 
1615 	if (spdk_nvme_cpl_is_error(cpl)) {
1616 		NVME_CTRLR_WARNLOG(ctrlr, "Doorbell buffer config failed\n");
1617 	} else {
1618 		NVME_CTRLR_INFOLOG(ctrlr, "Doorbell buffer config enabled\n");
1619 	}
1620 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1621 			     ctrlr->opts.admin_timeout_ms);
1622 }
1623 
1624 static int
1625 nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr)
1626 {
1627 	int rc = 0;
1628 	uint64_t prp1, prp2, len;
1629 
1630 	if (!ctrlr->cdata.oacs.doorbell_buffer_config) {
1631 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1632 				     ctrlr->opts.admin_timeout_ms);
1633 		return 0;
1634 	}
1635 
1636 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
1637 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1638 				     ctrlr->opts.admin_timeout_ms);
1639 		return 0;
1640 	}
1641 
1642 	/* only 1 page size for doorbell buffer */
1643 	ctrlr->shadow_doorbell = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1644 					      NULL, SPDK_ENV_LCORE_ID_ANY,
1645 					      SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1646 	if (ctrlr->shadow_doorbell == NULL) {
1647 		rc = -ENOMEM;
1648 		goto error;
1649 	}
1650 
1651 	len = ctrlr->page_size;
1652 	prp1 = spdk_vtophys(ctrlr->shadow_doorbell, &len);
1653 	if (prp1 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1654 		rc = -EFAULT;
1655 		goto error;
1656 	}
1657 
1658 	ctrlr->eventidx = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1659 				       NULL, SPDK_ENV_LCORE_ID_ANY,
1660 				       SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1661 	if (ctrlr->eventidx == NULL) {
1662 		rc = -ENOMEM;
1663 		goto error;
1664 	}
1665 
1666 	len = ctrlr->page_size;
1667 	prp2 = spdk_vtophys(ctrlr->eventidx, &len);
1668 	if (prp2 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1669 		rc = -EFAULT;
1670 		goto error;
1671 	}
1672 
1673 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG,
1674 			     ctrlr->opts.admin_timeout_ms);
1675 
1676 	rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2,
1677 			nvme_ctrlr_set_doorbell_buffer_config_done, ctrlr);
1678 	if (rc != 0) {
1679 		goto error;
1680 	}
1681 
1682 	return 0;
1683 
1684 error:
1685 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1686 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1687 	return rc;
1688 }
1689 
1690 void
1691 nvme_ctrlr_abort_queued_aborts(struct spdk_nvme_ctrlr *ctrlr)
1692 {
1693 	struct nvme_request	*req, *tmp;
1694 	struct spdk_nvme_cpl	cpl = {};
1695 
1696 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
1697 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
1698 
1699 	STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) {
1700 		STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq);
1701 		ctrlr->outstanding_aborts++;
1702 
1703 		nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, &cpl);
1704 	}
1705 }
1706 
1707 static int
1708 nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1709 {
1710 	if (ctrlr->is_resetting || ctrlr->is_removed) {
1711 		/*
1712 		 * Controller is already resetting or has been removed. Return
1713 		 *  immediately since there is no need to kick off another
1714 		 *  reset in these cases.
1715 		 */
1716 		return ctrlr->is_resetting ? -EBUSY : -ENXIO;
1717 	}
1718 
1719 	ctrlr->is_resetting = true;
1720 	ctrlr->is_failed = false;
1721 	ctrlr->is_disconnecting = true;
1722 	ctrlr->prepare_for_reset = true;
1723 
1724 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting controller\n");
1725 
1726 	/* Disable keep-alive, it'll be re-enabled as part of the init process */
1727 	ctrlr->keep_alive_interval_ticks = 0;
1728 
1729 	/* Abort all of the queued abort requests */
1730 	nvme_ctrlr_abort_queued_aborts(ctrlr);
1731 
1732 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
1733 
1734 	ctrlr->adminq->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1735 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1736 
1737 	return 0;
1738 }
1739 
1740 static void
1741 nvme_ctrlr_disconnect_done(struct spdk_nvme_ctrlr *ctrlr)
1742 {
1743 	assert(ctrlr->is_failed == false);
1744 	ctrlr->is_disconnecting = false;
1745 
1746 	/* Doorbell buffer config is invalid during reset */
1747 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1748 
1749 	/* I/O Command Set Specific Identify Controller data is invalidated during reset */
1750 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
1751 
1752 	spdk_bit_array_free(&ctrlr->free_io_qids);
1753 
1754 	/* Set the state back to DISCONNECTED to cause a full hardware reset. */
1755 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISCONNECTED, NVME_TIMEOUT_INFINITE);
1756 }
1757 
1758 int
1759 spdk_nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1760 {
1761 	int rc;
1762 
1763 	nvme_ctrlr_lock(ctrlr);
1764 	rc = nvme_ctrlr_disconnect(ctrlr);
1765 	nvme_ctrlr_unlock(ctrlr);
1766 
1767 	return rc;
1768 }
1769 
1770 void
1771 spdk_nvme_ctrlr_reconnect_async(struct spdk_nvme_ctrlr *ctrlr)
1772 {
1773 	nvme_ctrlr_lock(ctrlr);
1774 
1775 	ctrlr->prepare_for_reset = false;
1776 
1777 	/* Set the state back to INIT to cause a full hardware reset. */
1778 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
1779 
1780 	/* Return without releasing ctrlr_lock. ctrlr_lock will be released when
1781 	 * spdk_nvme_ctrlr_reset_poll_async() returns 0.
1782 	 */
1783 }
1784 
1785 int
1786 nvme_ctrlr_reinitialize_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1787 {
1788 	bool async;
1789 	int rc;
1790 
1791 	if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc ||
1792 	    spdk_nvme_ctrlr_is_fabrics(ctrlr) || nvme_qpair_is_admin_queue(qpair)) {
1793 		assert(false);
1794 		return -EINVAL;
1795 	}
1796 
1797 	/* Force a synchronous connect. */
1798 	async = qpair->async;
1799 	qpair->async = false;
1800 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
1801 	qpair->async = async;
1802 
1803 	if (rc != 0) {
1804 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1805 	}
1806 
1807 	return rc;
1808 }
1809 
1810 /**
1811  * This function will be called when the controller is being reinitialized.
1812  * Note: the ctrlr_lock must be held when calling this function.
1813  */
1814 int
1815 spdk_nvme_ctrlr_reconnect_poll_async(struct spdk_nvme_ctrlr *ctrlr)
1816 {
1817 	struct spdk_nvme_ns *ns, *tmp_ns;
1818 	struct spdk_nvme_qpair	*qpair;
1819 	int rc = 0, rc_tmp = 0;
1820 
1821 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1822 		NVME_CTRLR_ERRLOG(ctrlr, "controller reinitialization failed\n");
1823 		rc = -1;
1824 	}
1825 	if (ctrlr->state != NVME_CTRLR_STATE_READY && rc != -1) {
1826 		return -EAGAIN;
1827 	}
1828 
1829 	/*
1830 	 * For non-fabrics controllers, the memory locations of the transport qpair
1831 	 * don't change when the controller is reset. They simply need to be
1832 	 * re-enabled with admin commands to the controller. For fabric
1833 	 * controllers we need to disconnect and reconnect the qpair on its
1834 	 * own thread outside of the context of the reset.
1835 	 */
1836 	if (rc == 0 && !spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
1837 		/* Reinitialize qpairs */
1838 		TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1839 			/* Always clear the qid bit here, even for a foreign qpair. We need
1840 			 * to make sure another process doesn't get the chance to grab that
1841 			 * qid.
1842 			 */
1843 			assert(spdk_bit_array_get(ctrlr->free_io_qids, qpair->id));
1844 			spdk_bit_array_clear(ctrlr->free_io_qids, qpair->id);
1845 			if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc) {
1846 				/*
1847 				 * We cannot reinitialize a foreign qpair. The qpair's owning
1848 				 * process will take care of it. Set failure reason to FAILURE_RESET
1849 				 * to ensure that happens.
1850 				 */
1851 				qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_RESET;
1852 				continue;
1853 			}
1854 			rc_tmp = nvme_ctrlr_reinitialize_io_qpair(ctrlr, qpair);
1855 			if (rc_tmp != 0) {
1856 				rc = rc_tmp;
1857 			}
1858 		}
1859 	}
1860 
1861 	/*
1862 	 * Take this opportunity to remove inactive namespaces. During a reset namespace
1863 	 * handles can be invalidated.
1864 	 */
1865 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
1866 		if (!ns->active) {
1867 			RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
1868 			spdk_free(ns);
1869 		}
1870 	}
1871 
1872 	if (rc) {
1873 		nvme_ctrlr_fail(ctrlr, false);
1874 	}
1875 	ctrlr->is_resetting = false;
1876 
1877 	nvme_ctrlr_unlock(ctrlr);
1878 
1879 	if (!ctrlr->cdata.oaes.ns_attribute_notices) {
1880 		/*
1881 		 * If controller doesn't support ns_attribute_notices and
1882 		 * namespace attributes change (e.g. number of namespaces)
1883 		 * we need to update system handling device reset.
1884 		 */
1885 		nvme_io_msg_ctrlr_update(ctrlr);
1886 	}
1887 
1888 	return rc;
1889 }
1890 
1891 /*
1892  * For PCIe transport, spdk_nvme_ctrlr_disconnect() will do a Controller Level Reset
1893  * (Change CC.EN from 1 to 0) as a operation to disconnect the admin qpair.
1894  * The following two functions are added to do a Controller Level Reset. They have
1895  * to be called under the nvme controller's lock.
1896  */
1897 void
1898 nvme_ctrlr_disable(struct spdk_nvme_ctrlr *ctrlr)
1899 {
1900 	assert(ctrlr->is_disconnecting == true);
1901 
1902 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
1903 }
1904 
1905 int
1906 nvme_ctrlr_disable_poll(struct spdk_nvme_ctrlr *ctrlr)
1907 {
1908 	int rc = 0;
1909 
1910 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1911 		NVME_CTRLR_ERRLOG(ctrlr, "failed to disable controller\n");
1912 		rc = -1;
1913 	}
1914 
1915 	if (ctrlr->state != NVME_CTRLR_STATE_DISABLED && rc != -1) {
1916 		return -EAGAIN;
1917 	}
1918 
1919 	return rc;
1920 }
1921 
1922 static void
1923 nvme_ctrlr_fail_io_qpairs(struct spdk_nvme_ctrlr *ctrlr)
1924 {
1925 	struct spdk_nvme_qpair	*qpair;
1926 
1927 	TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1928 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1929 	}
1930 }
1931 
1932 int
1933 spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr)
1934 {
1935 	int rc;
1936 
1937 	nvme_ctrlr_lock(ctrlr);
1938 
1939 	rc = nvme_ctrlr_disconnect(ctrlr);
1940 	if (rc == 0) {
1941 		nvme_ctrlr_fail_io_qpairs(ctrlr);
1942 	}
1943 
1944 	nvme_ctrlr_unlock(ctrlr);
1945 
1946 	if (rc != 0) {
1947 		if (rc == -EBUSY) {
1948 			rc = 0;
1949 		}
1950 		return rc;
1951 	}
1952 
1953 	while (1) {
1954 		rc = spdk_nvme_ctrlr_process_admin_completions(ctrlr);
1955 		if (rc == -ENXIO) {
1956 			break;
1957 		}
1958 	}
1959 
1960 	spdk_nvme_ctrlr_reconnect_async(ctrlr);
1961 
1962 	while (true) {
1963 		rc = spdk_nvme_ctrlr_reconnect_poll_async(ctrlr);
1964 		if (rc != -EAGAIN) {
1965 			break;
1966 		}
1967 	}
1968 
1969 	return rc;
1970 }
1971 
1972 int
1973 spdk_nvme_ctrlr_reset_subsystem(struct spdk_nvme_ctrlr *ctrlr)
1974 {
1975 	union spdk_nvme_cap_register cap;
1976 	int rc = 0;
1977 
1978 	cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr);
1979 	if (cap.bits.nssrs == 0) {
1980 		NVME_CTRLR_WARNLOG(ctrlr, "subsystem reset is not supported\n");
1981 		return -ENOTSUP;
1982 	}
1983 
1984 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting subsystem\n");
1985 	nvme_ctrlr_lock(ctrlr);
1986 	ctrlr->is_resetting = true;
1987 	rc = nvme_ctrlr_set_nssr(ctrlr, SPDK_NVME_NSSR_VALUE);
1988 	ctrlr->is_resetting = false;
1989 
1990 	nvme_ctrlr_unlock(ctrlr);
1991 	/*
1992 	 * No more cleanup at this point like in the ctrlr reset. A subsystem reset will cause
1993 	 * a hot remove for PCIe transport. The hot remove handling does all the necessary ctrlr cleanup.
1994 	 */
1995 	return rc;
1996 }
1997 
1998 int
1999 spdk_nvme_ctrlr_set_trid(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_transport_id *trid)
2000 {
2001 	int rc = 0;
2002 
2003 	nvme_ctrlr_lock(ctrlr);
2004 
2005 	if (ctrlr->is_failed == false) {
2006 		rc = -EPERM;
2007 		goto out;
2008 	}
2009 
2010 	if (trid->trtype != ctrlr->trid.trtype) {
2011 		rc = -EINVAL;
2012 		goto out;
2013 	}
2014 
2015 	if (strncmp(trid->subnqn, ctrlr->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
2016 		rc = -EINVAL;
2017 		goto out;
2018 	}
2019 
2020 	ctrlr->trid = *trid;
2021 
2022 out:
2023 	nvme_ctrlr_unlock(ctrlr);
2024 	return rc;
2025 }
2026 
2027 void
2028 spdk_nvme_ctrlr_set_remove_cb(struct spdk_nvme_ctrlr *ctrlr,
2029 			      spdk_nvme_remove_cb remove_cb, void *remove_ctx)
2030 {
2031 	if (!spdk_process_is_primary()) {
2032 		return;
2033 	}
2034 
2035 	nvme_ctrlr_lock(ctrlr);
2036 	ctrlr->remove_cb = remove_cb;
2037 	ctrlr->cb_ctx = remove_ctx;
2038 	nvme_ctrlr_unlock(ctrlr);
2039 }
2040 
2041 static void
2042 nvme_ctrlr_identify_done(void *arg, const struct spdk_nvme_cpl *cpl)
2043 {
2044 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2045 
2046 	if (spdk_nvme_cpl_is_error(cpl)) {
2047 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_identify_controller failed!\n");
2048 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2049 		return;
2050 	}
2051 
2052 	/*
2053 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
2054 	 *  controller supports.
2055 	 */
2056 	ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr);
2057 	NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_xfer_size %u\n", ctrlr->max_xfer_size);
2058 	if (ctrlr->cdata.mdts > 0) {
2059 		ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size,
2060 						ctrlr->min_page_size * (1 << ctrlr->cdata.mdts));
2061 		NVME_CTRLR_DEBUGLOG(ctrlr, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size);
2062 	}
2063 
2064 	NVME_CTRLR_DEBUGLOG(ctrlr, "CNTLID 0x%04" PRIx16 "\n", ctrlr->cdata.cntlid);
2065 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
2066 		ctrlr->cntlid = ctrlr->cdata.cntlid;
2067 	} else {
2068 		/*
2069 		 * Fabrics controllers should already have CNTLID from the Connect command.
2070 		 *
2071 		 * If CNTLID from Connect doesn't match CNTLID in the Identify Controller data,
2072 		 * trust the one from Connect.
2073 		 */
2074 		if (ctrlr->cntlid != ctrlr->cdata.cntlid) {
2075 			NVME_CTRLR_DEBUGLOG(ctrlr, "Identify CNTLID 0x%04" PRIx16 " != Connect CNTLID 0x%04" PRIx16 "\n",
2076 					    ctrlr->cdata.cntlid, ctrlr->cntlid);
2077 		}
2078 	}
2079 
2080 	if (ctrlr->cdata.sgls.supported && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
2081 		assert(ctrlr->cdata.sgls.supported != 0x3);
2082 		ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
2083 		if (ctrlr->cdata.sgls.supported == 0x2) {
2084 			ctrlr->flags |= SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT;
2085 		}
2086 
2087 		ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr);
2088 		NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_sges %u\n", ctrlr->max_sges);
2089 	}
2090 
2091 	if (ctrlr->cdata.sgls.metadata_address && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
2092 		ctrlr->flags |= SPDK_NVME_CTRLR_MPTR_SGL_SUPPORTED;
2093 	}
2094 
2095 	if (ctrlr->cdata.oacs.security && !(ctrlr->quirks & NVME_QUIRK_OACS_SECURITY)) {
2096 		ctrlr->flags |= SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED;
2097 	}
2098 
2099 	if (ctrlr->cdata.oacs.directives) {
2100 		ctrlr->flags |= SPDK_NVME_CTRLR_DIRECTIVES_SUPPORTED;
2101 	}
2102 
2103 	NVME_CTRLR_DEBUGLOG(ctrlr, "fuses compare and write: %d\n",
2104 			    ctrlr->cdata.fuses.compare_and_write);
2105 	if (ctrlr->cdata.fuses.compare_and_write) {
2106 		ctrlr->flags |= SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED;
2107 	}
2108 
2109 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
2110 			     ctrlr->opts.admin_timeout_ms);
2111 }
2112 
2113 static int
2114 nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr)
2115 {
2116 	int	rc;
2117 
2118 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY,
2119 			     ctrlr->opts.admin_timeout_ms);
2120 
2121 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, 0,
2122 				     &ctrlr->cdata, sizeof(ctrlr->cdata),
2123 				     nvme_ctrlr_identify_done, ctrlr);
2124 	if (rc != 0) {
2125 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2126 		return rc;
2127 	}
2128 
2129 	return 0;
2130 }
2131 
2132 static void
2133 nvme_ctrlr_get_zns_cmd_and_effects_log_done(void *arg, const struct spdk_nvme_cpl *cpl)
2134 {
2135 	struct spdk_nvme_cmds_and_effect_log_page *log_page;
2136 	struct spdk_nvme_ctrlr *ctrlr = arg;
2137 
2138 	if (spdk_nvme_cpl_is_error(cpl)) {
2139 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_get_zns_cmd_and_effects_log failed!\n");
2140 		spdk_free(ctrlr->tmp_ptr);
2141 		ctrlr->tmp_ptr = NULL;
2142 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2143 		return;
2144 	}
2145 
2146 	log_page = ctrlr->tmp_ptr;
2147 
2148 	if (log_page->io_cmds_supported[SPDK_NVME_OPC_ZONE_APPEND].csupp) {
2149 		ctrlr->flags |= SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2150 	}
2151 	spdk_free(ctrlr->tmp_ptr);
2152 	ctrlr->tmp_ptr = NULL;
2153 
2154 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES, ctrlr->opts.admin_timeout_ms);
2155 }
2156 
2157 static int
2158 nvme_ctrlr_get_zns_cmd_and_effects_log(struct spdk_nvme_ctrlr *ctrlr)
2159 {
2160 	int rc;
2161 
2162 	assert(!ctrlr->tmp_ptr);
2163 	ctrlr->tmp_ptr = spdk_zmalloc(sizeof(struct spdk_nvme_cmds_and_effect_log_page), 64, NULL,
2164 				      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2165 	if (!ctrlr->tmp_ptr) {
2166 		rc = -ENOMEM;
2167 		goto error;
2168 	}
2169 
2170 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG,
2171 			     ctrlr->opts.admin_timeout_ms);
2172 
2173 	rc = spdk_nvme_ctrlr_cmd_get_log_page_ext(ctrlr, SPDK_NVME_LOG_COMMAND_EFFECTS_LOG,
2174 			0, ctrlr->tmp_ptr, sizeof(struct spdk_nvme_cmds_and_effect_log_page),
2175 			0, 0, 0, SPDK_NVME_CSI_ZNS << 24,
2176 			nvme_ctrlr_get_zns_cmd_and_effects_log_done, ctrlr);
2177 	if (rc != 0) {
2178 		goto error;
2179 	}
2180 
2181 	return 0;
2182 
2183 error:
2184 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2185 	spdk_free(ctrlr->tmp_ptr);
2186 	ctrlr->tmp_ptr = NULL;
2187 	return rc;
2188 }
2189 
2190 static void
2191 nvme_ctrlr_identify_zns_specific_done(void *arg, const struct spdk_nvme_cpl *cpl)
2192 {
2193 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2194 
2195 	if (spdk_nvme_cpl_is_error(cpl)) {
2196 		/* no need to print an error, the controller simply does not support ZNS */
2197 		nvme_ctrlr_free_zns_specific_data(ctrlr);
2198 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2199 				     ctrlr->opts.admin_timeout_ms);
2200 		return;
2201 	}
2202 
2203 	/* A zero zasl value means use mdts */
2204 	if (ctrlr->cdata_zns->zasl) {
2205 		uint32_t max_append = ctrlr->min_page_size * (1 << ctrlr->cdata_zns->zasl);
2206 		ctrlr->max_zone_append_size = spdk_min(ctrlr->max_xfer_size, max_append);
2207 	} else {
2208 		ctrlr->max_zone_append_size = ctrlr->max_xfer_size;
2209 	}
2210 
2211 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG,
2212 			     ctrlr->opts.admin_timeout_ms);
2213 }
2214 
2215 /**
2216  * This function will try to fetch the I/O Command Specific Controller data structure for
2217  * each I/O Command Set supported by SPDK.
2218  *
2219  * If an I/O Command Set is not supported by the controller, "Invalid Field in Command"
2220  * will be returned. Since we are fetching in a exploratively way, getting an error back
2221  * from the controller should not be treated as fatal.
2222  *
2223  * I/O Command Sets not supported by SPDK will be skipped (e.g. Key Value Command Set).
2224  *
2225  * I/O Command Sets without a IOCS specific data structure (i.e. a zero-filled IOCS specific
2226  * data structure) will be skipped (e.g. NVM Command Set, Key Value Command Set).
2227  */
2228 static int
2229 nvme_ctrlr_identify_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2230 {
2231 	int	rc;
2232 
2233 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2234 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2235 				     ctrlr->opts.admin_timeout_ms);
2236 		return 0;
2237 	}
2238 
2239 	/*
2240 	 * Since SPDK currently only needs to fetch a single Command Set, keep the code here,
2241 	 * instead of creating multiple NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC substates,
2242 	 * which would require additional functions and complexity for no good reason.
2243 	 */
2244 	assert(!ctrlr->cdata_zns);
2245 	ctrlr->cdata_zns = spdk_zmalloc(sizeof(*ctrlr->cdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
2246 					SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2247 	if (!ctrlr->cdata_zns) {
2248 		rc = -ENOMEM;
2249 		goto error;
2250 	}
2251 
2252 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC,
2253 			     ctrlr->opts.admin_timeout_ms);
2254 
2255 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR_IOCS, 0, 0, SPDK_NVME_CSI_ZNS,
2256 				     ctrlr->cdata_zns, sizeof(*ctrlr->cdata_zns),
2257 				     nvme_ctrlr_identify_zns_specific_done, ctrlr);
2258 	if (rc != 0) {
2259 		goto error;
2260 	}
2261 
2262 	return 0;
2263 
2264 error:
2265 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2266 	nvme_ctrlr_free_zns_specific_data(ctrlr);
2267 	return rc;
2268 }
2269 
2270 enum nvme_active_ns_state {
2271 	NVME_ACTIVE_NS_STATE_IDLE,
2272 	NVME_ACTIVE_NS_STATE_PROCESSING,
2273 	NVME_ACTIVE_NS_STATE_DONE,
2274 	NVME_ACTIVE_NS_STATE_ERROR
2275 };
2276 
2277 typedef void (*nvme_active_ns_ctx_deleter)(struct nvme_active_ns_ctx *);
2278 
2279 struct nvme_active_ns_ctx {
2280 	struct spdk_nvme_ctrlr *ctrlr;
2281 	uint32_t page_count;
2282 	uint32_t next_nsid;
2283 	uint32_t *new_ns_list;
2284 	nvme_active_ns_ctx_deleter deleter;
2285 
2286 	enum nvme_active_ns_state state;
2287 };
2288 
2289 static struct nvme_active_ns_ctx *
2290 nvme_active_ns_ctx_create(struct spdk_nvme_ctrlr *ctrlr, nvme_active_ns_ctx_deleter deleter)
2291 {
2292 	struct nvme_active_ns_ctx *ctx;
2293 	uint32_t *new_ns_list = NULL;
2294 
2295 	ctx = calloc(1, sizeof(*ctx));
2296 	if (!ctx) {
2297 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate nvme_active_ns_ctx!\n");
2298 		return NULL;
2299 	}
2300 
2301 	new_ns_list = spdk_zmalloc(sizeof(struct spdk_nvme_ns_list), ctrlr->page_size,
2302 				   NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_SHARE);
2303 	if (!new_ns_list) {
2304 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate active_ns_list!\n");
2305 		free(ctx);
2306 		return NULL;
2307 	}
2308 
2309 	ctx->page_count = 1;
2310 	ctx->new_ns_list = new_ns_list;
2311 	ctx->ctrlr = ctrlr;
2312 	ctx->deleter = deleter;
2313 
2314 	return ctx;
2315 }
2316 
2317 static void
2318 nvme_active_ns_ctx_destroy(struct nvme_active_ns_ctx *ctx)
2319 {
2320 	spdk_free(ctx->new_ns_list);
2321 	free(ctx);
2322 }
2323 
2324 static int
2325 nvme_ctrlr_destruct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2326 {
2327 	struct spdk_nvme_ns tmp, *ns;
2328 
2329 	assert(ctrlr != NULL);
2330 
2331 	tmp.id = nsid;
2332 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
2333 	if (ns == NULL) {
2334 		return -EINVAL;
2335 	}
2336 
2337 	nvme_ns_destruct(ns);
2338 	ns->active = false;
2339 
2340 	return 0;
2341 }
2342 
2343 static int
2344 nvme_ctrlr_construct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2345 {
2346 	struct spdk_nvme_ns *ns;
2347 
2348 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
2349 		return -EINVAL;
2350 	}
2351 
2352 	/* Namespaces are constructed on demand, so simply request it. */
2353 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2354 	if (ns == NULL) {
2355 		return -ENOMEM;
2356 	}
2357 
2358 	ns->active = true;
2359 
2360 	return 0;
2361 }
2362 
2363 static void
2364 nvme_ctrlr_identify_active_ns_swap(struct spdk_nvme_ctrlr *ctrlr, uint32_t *new_ns_list,
2365 				   size_t max_entries)
2366 {
2367 	uint32_t active_ns_count = 0;
2368 	size_t i;
2369 	uint32_t nsid;
2370 	struct spdk_nvme_ns *ns, *tmp_ns;
2371 	int rc;
2372 
2373 	/* First, remove namespaces that no longer exist */
2374 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
2375 		nsid = new_ns_list[0];
2376 		active_ns_count = 0;
2377 		while (nsid != 0) {
2378 			if (nsid == ns->id) {
2379 				break;
2380 			}
2381 
2382 			nsid = new_ns_list[active_ns_count++];
2383 		}
2384 
2385 		if (nsid != ns->id) {
2386 			/* Did not find this namespace id in the new list. */
2387 			NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was removed\n", ns->id);
2388 			nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
2389 		}
2390 	}
2391 
2392 	/* Next, add new namespaces */
2393 	active_ns_count = 0;
2394 	for (i = 0; i < max_entries; i++) {
2395 		nsid = new_ns_list[active_ns_count];
2396 
2397 		if (nsid == 0) {
2398 			break;
2399 		}
2400 
2401 		/* If the namespace already exists, this will not construct it a second time. */
2402 		rc = nvme_ctrlr_construct_namespace(ctrlr, nsid);
2403 		if (rc != 0) {
2404 			/* We can't easily handle a failure here. But just move on. */
2405 			assert(false);
2406 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to allocate a namespace object.\n");
2407 			continue;
2408 		}
2409 
2410 		active_ns_count++;
2411 	}
2412 
2413 	ctrlr->active_ns_count = active_ns_count;
2414 }
2415 
2416 static void
2417 nvme_ctrlr_identify_active_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2418 {
2419 	struct nvme_active_ns_ctx *ctx = arg;
2420 	uint32_t *new_ns_list = NULL;
2421 
2422 	if (spdk_nvme_cpl_is_error(cpl)) {
2423 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2424 		goto out;
2425 	}
2426 
2427 	ctx->next_nsid = ctx->new_ns_list[1024 * ctx->page_count - 1];
2428 	if (ctx->next_nsid == 0) {
2429 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2430 		goto out;
2431 	}
2432 
2433 	ctx->page_count++;
2434 	new_ns_list = spdk_realloc(ctx->new_ns_list,
2435 				   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2436 				   ctx->ctrlr->page_size);
2437 	if (!new_ns_list) {
2438 		SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2439 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2440 		goto out;
2441 	}
2442 
2443 	ctx->new_ns_list = new_ns_list;
2444 	nvme_ctrlr_identify_active_ns_async(ctx);
2445 	return;
2446 
2447 out:
2448 	if (ctx->deleter) {
2449 		ctx->deleter(ctx);
2450 	}
2451 }
2452 
2453 static void
2454 nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx)
2455 {
2456 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2457 	uint32_t i;
2458 	int rc;
2459 
2460 	if (ctrlr->cdata.nn == 0) {
2461 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2462 		goto out;
2463 	}
2464 
2465 	assert(ctx->new_ns_list != NULL);
2466 
2467 	/*
2468 	 * If controller doesn't support active ns list CNS 0x02 dummy up
2469 	 * an active ns list, i.e. all namespaces report as active
2470 	 */
2471 	if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 1, 0) || ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS) {
2472 		uint32_t *new_ns_list;
2473 
2474 		/*
2475 		 * Active NS list must always end with zero element.
2476 		 * So, we allocate for cdata.nn+1.
2477 		 */
2478 		ctx->page_count = spdk_divide_round_up(ctrlr->cdata.nn + 1,
2479 						       sizeof(struct spdk_nvme_ns_list) / sizeof(new_ns_list[0]));
2480 		new_ns_list = spdk_realloc(ctx->new_ns_list,
2481 					   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2482 					   ctx->ctrlr->page_size);
2483 		if (!new_ns_list) {
2484 			SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2485 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2486 			goto out;
2487 		}
2488 
2489 		ctx->new_ns_list = new_ns_list;
2490 		ctx->new_ns_list[ctrlr->cdata.nn] = 0;
2491 		for (i = 0; i < ctrlr->cdata.nn; i++) {
2492 			ctx->new_ns_list[i] = i + 1;
2493 		}
2494 
2495 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2496 		goto out;
2497 	}
2498 
2499 	ctx->state = NVME_ACTIVE_NS_STATE_PROCESSING;
2500 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, ctx->next_nsid, 0,
2501 				     &ctx->new_ns_list[1024 * (ctx->page_count - 1)], sizeof(struct spdk_nvme_ns_list),
2502 				     nvme_ctrlr_identify_active_ns_async_done, ctx);
2503 	if (rc != 0) {
2504 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2505 		goto out;
2506 	}
2507 
2508 	return;
2509 
2510 out:
2511 	if (ctx->deleter) {
2512 		ctx->deleter(ctx);
2513 	}
2514 }
2515 
2516 static void
2517 _nvme_active_ns_ctx_deleter(struct nvme_active_ns_ctx *ctx)
2518 {
2519 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2520 	struct spdk_nvme_ns *ns;
2521 
2522 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2523 		nvme_active_ns_ctx_destroy(ctx);
2524 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2525 		return;
2526 	}
2527 
2528 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2529 
2530 	RB_FOREACH(ns, nvme_ns_tree, &ctrlr->ns) {
2531 		nvme_ns_free_iocs_specific_data(ns);
2532 	}
2533 
2534 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2535 	nvme_active_ns_ctx_destroy(ctx);
2536 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS, ctrlr->opts.admin_timeout_ms);
2537 }
2538 
2539 static void
2540 _nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2541 {
2542 	struct nvme_active_ns_ctx *ctx;
2543 
2544 	ctx = nvme_active_ns_ctx_create(ctrlr, _nvme_active_ns_ctx_deleter);
2545 	if (!ctx) {
2546 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2547 		return;
2548 	}
2549 
2550 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS,
2551 			     ctrlr->opts.admin_timeout_ms);
2552 	nvme_ctrlr_identify_active_ns_async(ctx);
2553 }
2554 
2555 int
2556 nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2557 {
2558 	struct nvme_active_ns_ctx *ctx;
2559 	int rc;
2560 
2561 	ctx = nvme_active_ns_ctx_create(ctrlr, NULL);
2562 	if (!ctx) {
2563 		return -ENOMEM;
2564 	}
2565 
2566 	nvme_ctrlr_identify_active_ns_async(ctx);
2567 	while (ctx->state == NVME_ACTIVE_NS_STATE_PROCESSING) {
2568 		rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2569 		if (rc < 0) {
2570 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2571 			break;
2572 		}
2573 	}
2574 
2575 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2576 		nvme_active_ns_ctx_destroy(ctx);
2577 		return -ENXIO;
2578 	}
2579 
2580 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2581 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2582 	nvme_active_ns_ctx_destroy(ctx);
2583 
2584 	return 0;
2585 }
2586 
2587 static void
2588 nvme_ctrlr_identify_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2589 {
2590 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2591 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2592 	uint32_t nsid;
2593 	int rc;
2594 
2595 	if (spdk_nvme_cpl_is_error(cpl)) {
2596 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2597 		return;
2598 	}
2599 
2600 	nvme_ns_set_identify_data(ns);
2601 
2602 	/* move on to the next active NS */
2603 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2604 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2605 	if (ns == NULL) {
2606 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2607 				     ctrlr->opts.admin_timeout_ms);
2608 		return;
2609 	}
2610 	ns->ctrlr = ctrlr;
2611 	ns->id = nsid;
2612 
2613 	rc = nvme_ctrlr_identify_ns_async(ns);
2614 	if (rc) {
2615 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2616 	}
2617 }
2618 
2619 static int
2620 nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns)
2621 {
2622 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2623 	struct spdk_nvme_ns_data *nsdata;
2624 
2625 	nsdata = &ns->nsdata;
2626 
2627 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS,
2628 			     ctrlr->opts.admin_timeout_ms);
2629 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS, 0, ns->id, 0,
2630 				       nsdata, sizeof(*nsdata),
2631 				       nvme_ctrlr_identify_ns_async_done, ns);
2632 }
2633 
2634 static int
2635 nvme_ctrlr_identify_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2636 {
2637 	uint32_t nsid;
2638 	struct spdk_nvme_ns *ns;
2639 	int rc;
2640 
2641 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2642 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2643 	if (ns == NULL) {
2644 		/* No active NS, move on to the next state */
2645 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2646 				     ctrlr->opts.admin_timeout_ms);
2647 		return 0;
2648 	}
2649 
2650 	ns->ctrlr = ctrlr;
2651 	ns->id = nsid;
2652 
2653 	rc = nvme_ctrlr_identify_ns_async(ns);
2654 	if (rc) {
2655 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2656 	}
2657 
2658 	return rc;
2659 }
2660 
2661 static int
2662 nvme_ctrlr_identify_namespaces_iocs_specific_next(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
2663 {
2664 	uint32_t nsid;
2665 	struct spdk_nvme_ns *ns;
2666 	int rc;
2667 
2668 	if (!prev_nsid) {
2669 		nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2670 	} else {
2671 		/* move on to the next active NS */
2672 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, prev_nsid);
2673 	}
2674 
2675 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2676 	if (ns == NULL) {
2677 		/* No first/next active NS, move on to the next state */
2678 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2679 				     ctrlr->opts.admin_timeout_ms);
2680 		return 0;
2681 	}
2682 
2683 	/* loop until we find a ns which has (supported) iocs specific data */
2684 	while (!nvme_ns_has_supported_iocs_specific_data(ns)) {
2685 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2686 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2687 		if (ns == NULL) {
2688 			/* no namespace with (supported) iocs specific data found */
2689 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2690 					     ctrlr->opts.admin_timeout_ms);
2691 			return 0;
2692 		}
2693 	}
2694 
2695 	rc = nvme_ctrlr_identify_ns_iocs_specific_async(ns);
2696 	if (rc) {
2697 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2698 	}
2699 
2700 	return rc;
2701 }
2702 
2703 static void
2704 nvme_ctrlr_identify_ns_zns_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2705 {
2706 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2707 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2708 
2709 	if (spdk_nvme_cpl_is_error(cpl)) {
2710 		nvme_ns_free_zns_specific_data(ns);
2711 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2712 		return;
2713 	}
2714 
2715 	nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2716 }
2717 
2718 static int
2719 nvme_ctrlr_identify_ns_zns_specific_async(struct spdk_nvme_ns *ns)
2720 {
2721 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2722 	int rc;
2723 
2724 	assert(!ns->nsdata_zns);
2725 	ns->nsdata_zns = spdk_zmalloc(sizeof(*ns->nsdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
2726 				      SPDK_MALLOC_SHARE);
2727 	if (!ns->nsdata_zns) {
2728 		return -ENOMEM;
2729 	}
2730 
2731 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2732 			     ctrlr->opts.admin_timeout_ms);
2733 	rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2734 				     ns->nsdata_zns, sizeof(*ns->nsdata_zns),
2735 				     nvme_ctrlr_identify_ns_zns_specific_async_done, ns);
2736 	if (rc) {
2737 		nvme_ns_free_zns_specific_data(ns);
2738 	}
2739 
2740 	return rc;
2741 }
2742 
2743 static void
2744 nvme_ctrlr_identify_ns_nvm_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2745 {
2746 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2747 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2748 
2749 	if (spdk_nvme_cpl_is_error(cpl)) {
2750 		nvme_ns_free_nvm_specific_data(ns);
2751 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2752 		return;
2753 	}
2754 
2755 	nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2756 }
2757 
2758 static int
2759 nvme_ctrlr_identify_ns_nvm_specific_async(struct spdk_nvme_ns *ns)
2760 {
2761 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2762 	int rc;
2763 
2764 	assert(!ns->nsdata_nvm);
2765 	ns->nsdata_nvm = spdk_zmalloc(sizeof(*ns->nsdata_nvm), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
2766 				      SPDK_MALLOC_SHARE);
2767 	if (!ns->nsdata_nvm) {
2768 		return -ENOMEM;
2769 	}
2770 
2771 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2772 			     ctrlr->opts.admin_timeout_ms);
2773 	rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2774 				     ns->nsdata_nvm, sizeof(*ns->nsdata_nvm),
2775 				     nvme_ctrlr_identify_ns_nvm_specific_async_done, ns);
2776 	if (rc) {
2777 		nvme_ns_free_nvm_specific_data(ns);
2778 	}
2779 
2780 	return rc;
2781 }
2782 
2783 static int
2784 nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns)
2785 {
2786 	switch (ns->csi) {
2787 	case SPDK_NVME_CSI_ZNS:
2788 		return nvme_ctrlr_identify_ns_zns_specific_async(ns);
2789 	case SPDK_NVME_CSI_NVM:
2790 		if (ns->ctrlr->cdata.ctratt.bits.elbas) {
2791 			return nvme_ctrlr_identify_ns_nvm_specific_async(ns);
2792 		}
2793 	/* fallthrough */
2794 	default:
2795 		/*
2796 		 * This switch must handle all cases for which
2797 		 * nvme_ns_has_supported_iocs_specific_data() returns true,
2798 		 * other cases should never happen.
2799 		 */
2800 		assert(0);
2801 	}
2802 
2803 	return -EINVAL;
2804 }
2805 
2806 static int
2807 nvme_ctrlr_identify_namespaces_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2808 {
2809 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2810 		/* Multi IOCS not supported/enabled, move on to the next state */
2811 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2812 				     ctrlr->opts.admin_timeout_ms);
2813 		return 0;
2814 	}
2815 
2816 	return nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, 0);
2817 }
2818 
2819 static void
2820 nvme_ctrlr_identify_id_desc_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2821 {
2822 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2823 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2824 	uint32_t nsid;
2825 	int rc;
2826 
2827 	if (spdk_nvme_cpl_is_error(cpl)) {
2828 		/*
2829 		 * Many controllers claim to be compatible with NVMe 1.3, however,
2830 		 * they do not implement NS ID Desc List. Therefore, instead of setting
2831 		 * the state to NVME_CTRLR_STATE_ERROR, silently ignore the completion
2832 		 * error and move on to the next state.
2833 		 *
2834 		 * The proper way is to create a new quirk for controllers that violate
2835 		 * the NVMe 1.3 spec by not supporting NS ID Desc List.
2836 		 * (Re-using the NVME_QUIRK_IDENTIFY_CNS quirk is not possible, since
2837 		 * it is too generic and was added in order to handle controllers that
2838 		 * violate the NVMe 1.1 spec by not supporting ACTIVE LIST).
2839 		 */
2840 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2841 				     ctrlr->opts.admin_timeout_ms);
2842 		return;
2843 	}
2844 
2845 	nvme_ns_set_id_desc_list_data(ns);
2846 
2847 	/* move on to the next active NS */
2848 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2849 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2850 	if (ns == NULL) {
2851 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2852 				     ctrlr->opts.admin_timeout_ms);
2853 		return;
2854 	}
2855 
2856 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2857 	if (rc) {
2858 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2859 	}
2860 }
2861 
2862 static int
2863 nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns)
2864 {
2865 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2866 
2867 	memset(ns->id_desc_list, 0, sizeof(ns->id_desc_list));
2868 
2869 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS,
2870 			     ctrlr->opts.admin_timeout_ms);
2871 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_ID_DESCRIPTOR_LIST,
2872 				       0, ns->id, 0, ns->id_desc_list, sizeof(ns->id_desc_list),
2873 				       nvme_ctrlr_identify_id_desc_async_done, ns);
2874 }
2875 
2876 static int
2877 nvme_ctrlr_identify_id_desc_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2878 {
2879 	uint32_t nsid;
2880 	struct spdk_nvme_ns *ns;
2881 	int rc;
2882 
2883 	if ((ctrlr->vs.raw < SPDK_NVME_VERSION(1, 3, 0) &&
2884 	     !(ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS)) ||
2885 	    (ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2886 		NVME_CTRLR_DEBUGLOG(ctrlr, "Version < 1.3; not attempting to retrieve NS ID Descriptor List\n");
2887 		/* NS ID Desc List not supported, move on to the next state */
2888 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2889 				     ctrlr->opts.admin_timeout_ms);
2890 		return 0;
2891 	}
2892 
2893 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2894 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2895 	if (ns == NULL) {
2896 		/* No active NS, move on to the next state */
2897 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2898 				     ctrlr->opts.admin_timeout_ms);
2899 		return 0;
2900 	}
2901 
2902 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2903 	if (rc) {
2904 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2905 	}
2906 
2907 	return rc;
2908 }
2909 
2910 static void
2911 nvme_ctrlr_update_nvmf_ioccsz(struct spdk_nvme_ctrlr *ctrlr)
2912 {
2913 	if (spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
2914 		if (ctrlr->cdata.nvmf_specific.ioccsz < 4) {
2915 			NVME_CTRLR_ERRLOG(ctrlr, "Incorrect IOCCSZ %u, the minimum value should be 4\n",
2916 					  ctrlr->cdata.nvmf_specific.ioccsz);
2917 			ctrlr->cdata.nvmf_specific.ioccsz = 4;
2918 			assert(0);
2919 		}
2920 		ctrlr->ioccsz_bytes = ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd);
2921 		ctrlr->icdoff = ctrlr->cdata.nvmf_specific.icdoff;
2922 	}
2923 }
2924 
2925 static void
2926 nvme_ctrlr_set_num_queues_done(void *arg, const struct spdk_nvme_cpl *cpl)
2927 {
2928 	uint32_t cq_allocated, sq_allocated, min_allocated, i;
2929 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2930 
2931 	if (spdk_nvme_cpl_is_error(cpl)) {
2932 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Number of Queues failed!\n");
2933 		ctrlr->opts.num_io_queues = 0;
2934 	} else {
2935 		/*
2936 		 * Data in cdw0 is 0-based.
2937 		 * Lower 16-bits indicate number of submission queues allocated.
2938 		 * Upper 16-bits indicate number of completion queues allocated.
2939 		 */
2940 		sq_allocated = (cpl->cdw0 & 0xFFFF) + 1;
2941 		cq_allocated = (cpl->cdw0 >> 16) + 1;
2942 
2943 		/*
2944 		 * For 1:1 queue mapping, set number of allocated queues to be minimum of
2945 		 * submission and completion queues.
2946 		 */
2947 		min_allocated = spdk_min(sq_allocated, cq_allocated);
2948 
2949 		/* Set number of queues to be minimum of requested and actually allocated. */
2950 		ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues);
2951 	}
2952 
2953 	ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1);
2954 	if (ctrlr->free_io_qids == NULL) {
2955 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2956 		return;
2957 	}
2958 
2959 	/* Initialize list of free I/O queue IDs. QID 0 is the admin queue (implicitly allocated). */
2960 	for (i = 1; i <= ctrlr->opts.num_io_queues; i++) {
2961 		spdk_nvme_ctrlr_free_qid(ctrlr, i);
2962 	}
2963 
2964 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS,
2965 			     ctrlr->opts.admin_timeout_ms);
2966 }
2967 
2968 static int
2969 nvme_ctrlr_set_num_queues(struct spdk_nvme_ctrlr *ctrlr)
2970 {
2971 	int rc;
2972 
2973 	if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) {
2974 		NVME_CTRLR_NOTICELOG(ctrlr, "Limiting requested num_io_queues %u to max %d\n",
2975 				     ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES);
2976 		ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES;
2977 	} else if (ctrlr->opts.num_io_queues < 1) {
2978 		NVME_CTRLR_NOTICELOG(ctrlr, "Requested num_io_queues 0, increasing to 1\n");
2979 		ctrlr->opts.num_io_queues = 1;
2980 	}
2981 
2982 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES,
2983 			     ctrlr->opts.admin_timeout_ms);
2984 
2985 	rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues,
2986 					   nvme_ctrlr_set_num_queues_done, ctrlr);
2987 	if (rc != 0) {
2988 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2989 		return rc;
2990 	}
2991 
2992 	return 0;
2993 }
2994 
2995 static void
2996 nvme_ctrlr_set_keep_alive_timeout_done(void *arg, const struct spdk_nvme_cpl *cpl)
2997 {
2998 	uint32_t keep_alive_interval_us;
2999 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
3000 
3001 	if (spdk_nvme_cpl_is_error(cpl)) {
3002 		if ((cpl->status.sct == SPDK_NVME_SCT_GENERIC) &&
3003 		    (cpl->status.sc == SPDK_NVME_SC_INVALID_FIELD)) {
3004 			NVME_CTRLR_DEBUGLOG(ctrlr, "Keep alive timeout Get Feature is not supported\n");
3005 		} else {
3006 			NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: SC %x SCT %x\n",
3007 					  cpl->status.sc, cpl->status.sct);
3008 			ctrlr->opts.keep_alive_timeout_ms = 0;
3009 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3010 			return;
3011 		}
3012 	} else {
3013 		if (ctrlr->opts.keep_alive_timeout_ms != cpl->cdw0) {
3014 			NVME_CTRLR_DEBUGLOG(ctrlr, "Controller adjusted keep alive timeout to %u ms\n",
3015 					    cpl->cdw0);
3016 		}
3017 
3018 		ctrlr->opts.keep_alive_timeout_ms = cpl->cdw0;
3019 	}
3020 
3021 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
3022 		ctrlr->keep_alive_interval_ticks = 0;
3023 	} else {
3024 		keep_alive_interval_us = ctrlr->opts.keep_alive_timeout_ms * 1000 / 2;
3025 
3026 		NVME_CTRLR_DEBUGLOG(ctrlr, "Sending keep alive every %u us\n", keep_alive_interval_us);
3027 
3028 		ctrlr->keep_alive_interval_ticks = (keep_alive_interval_us * spdk_get_ticks_hz()) /
3029 						   UINT64_C(1000000);
3030 
3031 		/* Schedule the first Keep Alive to be sent as soon as possible. */
3032 		ctrlr->next_keep_alive_tick = spdk_get_ticks();
3033 	}
3034 
3035 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3036 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
3037 	} else {
3038 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3039 				     ctrlr->opts.admin_timeout_ms);
3040 	}
3041 }
3042 
3043 static int
3044 nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr)
3045 {
3046 	int rc;
3047 
3048 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
3049 		if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3050 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
3051 		} else {
3052 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3053 					     ctrlr->opts.admin_timeout_ms);
3054 		}
3055 		return 0;
3056 	}
3057 
3058 	/* Note: Discovery controller identify data does not populate KAS according to spec. */
3059 	if (!spdk_nvme_ctrlr_is_discovery(ctrlr) && ctrlr->cdata.kas == 0) {
3060 		NVME_CTRLR_DEBUGLOG(ctrlr, "Controller KAS is 0 - not enabling Keep Alive\n");
3061 		ctrlr->opts.keep_alive_timeout_ms = 0;
3062 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3063 				     ctrlr->opts.admin_timeout_ms);
3064 		return 0;
3065 	}
3066 
3067 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT,
3068 			     ctrlr->opts.admin_timeout_ms);
3069 
3070 	/* Retrieve actual keep alive timeout, since the controller may have adjusted it. */
3071 	rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0,
3072 					     nvme_ctrlr_set_keep_alive_timeout_done, ctrlr);
3073 	if (rc != 0) {
3074 		NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: %d\n", rc);
3075 		ctrlr->opts.keep_alive_timeout_ms = 0;
3076 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3077 		return rc;
3078 	}
3079 
3080 	return 0;
3081 }
3082 
3083 static void
3084 nvme_ctrlr_set_host_id_done(void *arg, const struct spdk_nvme_cpl *cpl)
3085 {
3086 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
3087 
3088 	if (spdk_nvme_cpl_is_error(cpl)) {
3089 		/*
3090 		 * Treat Set Features - Host ID failure as non-fatal, since the Host ID feature
3091 		 * is optional.
3092 		 */
3093 		NVME_CTRLR_WARNLOG(ctrlr, "Set Features - Host ID failed: SC 0x%x SCT 0x%x\n",
3094 				   cpl->status.sc, cpl->status.sct);
3095 	} else {
3096 		NVME_CTRLR_DEBUGLOG(ctrlr, "Set Features - Host ID was successful\n");
3097 	}
3098 
3099 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3100 }
3101 
3102 static int
3103 nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr)
3104 {
3105 	uint8_t *host_id;
3106 	uint32_t host_id_size;
3107 	int rc;
3108 
3109 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
3110 		/*
3111 		 * NVMe-oF sends the host ID during Connect and doesn't allow
3112 		 * Set Features - Host Identifier after Connect, so we don't need to do anything here.
3113 		 */
3114 		NVME_CTRLR_DEBUGLOG(ctrlr, "NVMe-oF transport - not sending Set Features - Host ID\n");
3115 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3116 		return 0;
3117 	}
3118 
3119 	if (ctrlr->cdata.ctratt.bits.host_id_exhid_supported) {
3120 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 128-bit extended host identifier\n");
3121 		host_id = ctrlr->opts.extended_host_id;
3122 		host_id_size = sizeof(ctrlr->opts.extended_host_id);
3123 	} else {
3124 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 64-bit host identifier\n");
3125 		host_id = ctrlr->opts.host_id;
3126 		host_id_size = sizeof(ctrlr->opts.host_id);
3127 	}
3128 
3129 	/* If the user specified an all-zeroes host identifier, don't send the command. */
3130 	if (spdk_mem_all_zero(host_id, host_id_size)) {
3131 		NVME_CTRLR_DEBUGLOG(ctrlr, "User did not specify host ID - not sending Set Features - Host ID\n");
3132 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3133 		return 0;
3134 	}
3135 
3136 	SPDK_LOGDUMP(nvme, "host_id", host_id, host_id_size);
3137 
3138 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_HOST_ID,
3139 			     ctrlr->opts.admin_timeout_ms);
3140 
3141 	rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_ctrlr_set_host_id_done, ctrlr);
3142 	if (rc != 0) {
3143 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Host ID failed: %d\n", rc);
3144 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3145 		return rc;
3146 	}
3147 
3148 	return 0;
3149 }
3150 
3151 void
3152 nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr)
3153 {
3154 	uint32_t nsid;
3155 	struct spdk_nvme_ns *ns;
3156 
3157 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3158 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
3159 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
3160 		nvme_ns_construct(ns, nsid, ctrlr);
3161 	}
3162 }
3163 
3164 static int
3165 nvme_ctrlr_clear_changed_ns_log(struct spdk_nvme_ctrlr *ctrlr)
3166 {
3167 	struct nvme_completion_poll_status	*status;
3168 	int		rc = -ENOMEM;
3169 	char		*buffer = NULL;
3170 	uint32_t	nsid;
3171 	size_t		buf_size = (SPDK_NVME_MAX_CHANGED_NAMESPACES * sizeof(uint32_t));
3172 
3173 	if (ctrlr->opts.disable_read_changed_ns_list_log_page) {
3174 		return 0;
3175 	}
3176 
3177 	buffer = spdk_dma_zmalloc(buf_size, 4096, NULL);
3178 	if (!buffer) {
3179 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate buffer for getting "
3180 				  "changed ns log.\n");
3181 		return rc;
3182 	}
3183 
3184 	status = calloc(1, sizeof(*status));
3185 	if (!status) {
3186 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
3187 		goto free_buffer;
3188 	}
3189 
3190 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
3191 					      SPDK_NVME_LOG_CHANGED_NS_LIST,
3192 					      SPDK_NVME_GLOBAL_NS_TAG,
3193 					      buffer, buf_size, 0,
3194 					      nvme_completion_poll_cb, status);
3195 
3196 	if (rc) {
3197 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_get_log_page() failed: rc=%d\n", rc);
3198 		free(status);
3199 		goto free_buffer;
3200 	}
3201 
3202 	rc = nvme_wait_for_completion_timeout(ctrlr->adminq, status,
3203 					      ctrlr->opts.admin_timeout_ms * 1000);
3204 	if (!status->timed_out) {
3205 		free(status);
3206 	}
3207 
3208 	if (rc) {
3209 		NVME_CTRLR_ERRLOG(ctrlr, "wait for spdk_nvme_ctrlr_cmd_get_log_page failed: rc=%d\n", rc);
3210 		goto free_buffer;
3211 	}
3212 
3213 	/* only check the case of overflow. */
3214 	nsid = from_le32(buffer);
3215 	if (nsid == 0xffffffffu) {
3216 		NVME_CTRLR_WARNLOG(ctrlr, "changed ns log overflowed.\n");
3217 	}
3218 
3219 free_buffer:
3220 	spdk_dma_free(buffer);
3221 	return rc;
3222 }
3223 
3224 static void
3225 nvme_ctrlr_process_async_event(struct spdk_nvme_ctrlr *ctrlr,
3226 			       const struct spdk_nvme_cpl *cpl)
3227 {
3228 	union spdk_nvme_async_event_completion event;
3229 	struct spdk_nvme_ctrlr_process *active_proc;
3230 	int rc;
3231 
3232 	event.raw = cpl->cdw0;
3233 
3234 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3235 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
3236 		nvme_ctrlr_clear_changed_ns_log(ctrlr);
3237 
3238 		rc = nvme_ctrlr_identify_active_ns(ctrlr);
3239 		if (rc) {
3240 			return;
3241 		}
3242 		nvme_ctrlr_update_namespaces(ctrlr);
3243 		nvme_io_msg_ctrlr_update(ctrlr);
3244 	}
3245 
3246 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3247 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
3248 		if (!ctrlr->opts.disable_read_ana_log_page) {
3249 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
3250 			if (rc) {
3251 				return;
3252 			}
3253 			nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
3254 						      ctrlr);
3255 		}
3256 	}
3257 
3258 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3259 	if (active_proc && active_proc->aer_cb_fn) {
3260 		active_proc->aer_cb_fn(active_proc->aer_cb_arg, cpl);
3261 	}
3262 }
3263 
3264 static void
3265 nvme_ctrlr_queue_async_event(struct spdk_nvme_ctrlr *ctrlr,
3266 			     const struct spdk_nvme_cpl *cpl)
3267 {
3268 	struct  spdk_nvme_ctrlr_aer_completion_list *nvme_event;
3269 	struct spdk_nvme_ctrlr_process *proc;
3270 
3271 	/* Add async event to each process objects event list */
3272 	TAILQ_FOREACH(proc, &ctrlr->active_procs, tailq) {
3273 		/* Must be shared memory so other processes can access */
3274 		nvme_event = spdk_zmalloc(sizeof(*nvme_event), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
3275 		if (!nvme_event) {
3276 			NVME_CTRLR_ERRLOG(ctrlr, "Alloc nvme event failed, ignore the event\n");
3277 			return;
3278 		}
3279 		nvme_event->cpl = *cpl;
3280 
3281 		STAILQ_INSERT_TAIL(&proc->async_events, nvme_event, link);
3282 	}
3283 }
3284 
3285 static void
3286 nvme_ctrlr_complete_queued_async_events(struct spdk_nvme_ctrlr *ctrlr)
3287 {
3288 	struct  spdk_nvme_ctrlr_aer_completion_list  *nvme_event, *nvme_event_tmp;
3289 	struct spdk_nvme_ctrlr_process	*active_proc;
3290 
3291 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3292 
3293 	STAILQ_FOREACH_SAFE(nvme_event, &active_proc->async_events, link, nvme_event_tmp) {
3294 		STAILQ_REMOVE(&active_proc->async_events, nvme_event,
3295 			      spdk_nvme_ctrlr_aer_completion_list, link);
3296 		nvme_ctrlr_process_async_event(ctrlr, &nvme_event->cpl);
3297 		spdk_free(nvme_event);
3298 
3299 	}
3300 }
3301 
3302 static void
3303 nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl)
3304 {
3305 	struct nvme_async_event_request	*aer = arg;
3306 	struct spdk_nvme_ctrlr		*ctrlr = aer->ctrlr;
3307 
3308 	if (cpl->status.sct == SPDK_NVME_SCT_GENERIC &&
3309 	    cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) {
3310 		/*
3311 		 *  This is simulated when controller is being shut down, to
3312 		 *  effectively abort outstanding asynchronous event requests
3313 		 *  and make sure all memory is freed.  Do not repost the
3314 		 *  request in this case.
3315 		 */
3316 		return;
3317 	}
3318 
3319 	if (cpl->status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC &&
3320 	    cpl->status.sc == SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED) {
3321 		/*
3322 		 *  SPDK will only send as many AERs as the device says it supports,
3323 		 *  so this status code indicates an out-of-spec device.  Do not repost
3324 		 *  the request in this case.
3325 		 */
3326 		NVME_CTRLR_ERRLOG(ctrlr, "Controller appears out-of-spec for asynchronous event request\n"
3327 				  "handling.  Do not repost this AER.\n");
3328 		return;
3329 	}
3330 
3331 	/* Add the events to the list */
3332 	nvme_ctrlr_queue_async_event(ctrlr, cpl);
3333 
3334 	/* If the ctrlr was removed or in the destruct state, we should not send aer again */
3335 	if (ctrlr->is_removed || ctrlr->is_destructed) {
3336 		return;
3337 	}
3338 
3339 	/*
3340 	 * Repost another asynchronous event request to replace the one
3341 	 *  that just completed.
3342 	 */
3343 	if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
3344 		/*
3345 		 * We can't do anything to recover from a failure here,
3346 		 * so just print a warning message and leave the AER unsubmitted.
3347 		 */
3348 		NVME_CTRLR_ERRLOG(ctrlr, "resubmitting AER failed!\n");
3349 	}
3350 }
3351 
3352 static int
3353 nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
3354 				    struct nvme_async_event_request *aer)
3355 {
3356 	struct nvme_request *req;
3357 
3358 	aer->ctrlr = ctrlr;
3359 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer);
3360 	aer->req = req;
3361 	if (req == NULL) {
3362 		return -1;
3363 	}
3364 
3365 	req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
3366 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
3367 }
3368 
3369 static void
3370 nvme_ctrlr_configure_aer_done(void *arg, const struct spdk_nvme_cpl *cpl)
3371 {
3372 	struct nvme_async_event_request		*aer;
3373 	int					rc;
3374 	uint32_t				i;
3375 	struct spdk_nvme_ctrlr *ctrlr =	(struct spdk_nvme_ctrlr *)arg;
3376 
3377 	if (spdk_nvme_cpl_is_error(cpl)) {
3378 		NVME_CTRLR_NOTICELOG(ctrlr, "nvme_ctrlr_configure_aer failed!\n");
3379 		ctrlr->num_aers = 0;
3380 	} else {
3381 		/* aerl is a zero-based value, so we need to add 1 here. */
3382 		ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
3383 	}
3384 
3385 	for (i = 0; i < ctrlr->num_aers; i++) {
3386 		aer = &ctrlr->aer[i];
3387 		rc = nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
3388 		if (rc) {
3389 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_construct_and_submit_aer failed!\n");
3390 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3391 			return;
3392 		}
3393 	}
3394 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, ctrlr->opts.admin_timeout_ms);
3395 }
3396 
3397 static int
3398 nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr)
3399 {
3400 	union spdk_nvme_feat_async_event_configuration	config;
3401 	int						rc;
3402 
3403 	config.raw = 0;
3404 
3405 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3406 		config.bits.discovery_log_change_notice = 1;
3407 	} else {
3408 		config.bits.crit_warn.bits.available_spare = 1;
3409 		config.bits.crit_warn.bits.temperature = 1;
3410 		config.bits.crit_warn.bits.device_reliability = 1;
3411 		config.bits.crit_warn.bits.read_only = 1;
3412 		config.bits.crit_warn.bits.volatile_memory_backup = 1;
3413 
3414 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 2, 0)) {
3415 			if (ctrlr->cdata.oaes.ns_attribute_notices) {
3416 				config.bits.ns_attr_notice = 1;
3417 			}
3418 			if (ctrlr->cdata.oaes.fw_activation_notices) {
3419 				config.bits.fw_activation_notice = 1;
3420 			}
3421 			if (ctrlr->cdata.oaes.ana_change_notices) {
3422 				config.bits.ana_change_notice = 1;
3423 			}
3424 		}
3425 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 3, 0) && ctrlr->cdata.lpa.telemetry) {
3426 			config.bits.telemetry_log_notice = 1;
3427 		}
3428 	}
3429 
3430 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER,
3431 			     ctrlr->opts.admin_timeout_ms);
3432 
3433 	rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config,
3434 			nvme_ctrlr_configure_aer_done,
3435 			ctrlr);
3436 	if (rc != 0) {
3437 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3438 		return rc;
3439 	}
3440 
3441 	return 0;
3442 }
3443 
3444 struct spdk_nvme_ctrlr_process *
3445 nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid)
3446 {
3447 	struct spdk_nvme_ctrlr_process	*active_proc;
3448 
3449 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3450 		if (active_proc->pid == pid) {
3451 			return active_proc;
3452 		}
3453 	}
3454 
3455 	return NULL;
3456 }
3457 
3458 struct spdk_nvme_ctrlr_process *
3459 nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr)
3460 {
3461 	return nvme_ctrlr_get_process(ctrlr, getpid());
3462 }
3463 
3464 /**
3465  * This function will be called when a process is using the controller.
3466  *  1. For the primary process, it is called when constructing the controller.
3467  *  2. For the secondary process, it is called at probing the controller.
3468  * Note: will check whether the process is already added for the same process.
3469  */
3470 int
3471 nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
3472 {
3473 	struct spdk_nvme_ctrlr_process	*ctrlr_proc;
3474 	pid_t				pid = getpid();
3475 
3476 	/* Check whether the process is already added or not */
3477 	if (nvme_ctrlr_get_process(ctrlr, pid)) {
3478 		return 0;
3479 	}
3480 
3481 	/* Initialize the per process properties for this ctrlr */
3482 	ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process),
3483 				  64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
3484 	if (ctrlr_proc == NULL) {
3485 		NVME_CTRLR_ERRLOG(ctrlr, "failed to allocate memory to track the process props\n");
3486 
3487 		return -1;
3488 	}
3489 
3490 	ctrlr_proc->is_primary = spdk_process_is_primary();
3491 	ctrlr_proc->pid = pid;
3492 	STAILQ_INIT(&ctrlr_proc->active_reqs);
3493 	ctrlr_proc->devhandle = devhandle;
3494 	ctrlr_proc->ref = 0;
3495 	TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs);
3496 	STAILQ_INIT(&ctrlr_proc->async_events);
3497 
3498 	TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq);
3499 
3500 	return 0;
3501 }
3502 
3503 /**
3504  * This function will be called when the process detaches the controller.
3505  * Note: the ctrlr_lock must be held when calling this function.
3506  */
3507 static void
3508 nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr,
3509 			  struct spdk_nvme_ctrlr_process *proc)
3510 {
3511 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3512 
3513 	assert(STAILQ_EMPTY(&proc->active_reqs));
3514 
3515 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3516 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3517 	}
3518 
3519 	TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq);
3520 
3521 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
3522 		spdk_pci_device_detach(proc->devhandle);
3523 	}
3524 
3525 	spdk_free(proc);
3526 }
3527 
3528 /**
3529  * This function will be called when the process exited unexpectedly
3530  *  in order to free any incomplete nvme request, allocated IO qpairs
3531  *  and allocated memory.
3532  * Note: the ctrlr_lock must be held when calling this function.
3533  */
3534 static void
3535 nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc)
3536 {
3537 	struct nvme_request	*req, *tmp_req;
3538 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3539 	struct spdk_nvme_ctrlr_aer_completion_list *event;
3540 
3541 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
3542 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
3543 
3544 		assert(req->pid == proc->pid);
3545 		nvme_cleanup_user_req(req);
3546 		nvme_free_request(req);
3547 	}
3548 
3549 	/* Remove async event from each process objects event list */
3550 	while (!STAILQ_EMPTY(&proc->async_events)) {
3551 		event = STAILQ_FIRST(&proc->async_events);
3552 		STAILQ_REMOVE_HEAD(&proc->async_events, link);
3553 		spdk_free(event);
3554 	}
3555 
3556 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3557 		TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq);
3558 
3559 		/*
3560 		 * The process may have been killed while some qpairs were in their
3561 		 *  completion context.  Clear that flag here to allow these IO
3562 		 *  qpairs to be deleted.
3563 		 */
3564 		qpair->in_completion_context = 0;
3565 
3566 		qpair->no_deletion_notification_needed = 1;
3567 
3568 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3569 	}
3570 
3571 	spdk_free(proc);
3572 }
3573 
3574 /**
3575  * This function will be called when destructing the controller.
3576  *  1. There is no more admin request on this controller.
3577  *  2. Clean up any left resource allocation when its associated process is gone.
3578  */
3579 void
3580 nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
3581 {
3582 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3583 
3584 	/* Free all the processes' properties and make sure no pending admin IOs */
3585 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3586 		TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3587 
3588 		assert(STAILQ_EMPTY(&active_proc->active_reqs));
3589 
3590 		spdk_free(active_proc);
3591 	}
3592 }
3593 
3594 /**
3595  * This function will be called when any other process attaches or
3596  *  detaches the controller in order to cleanup those unexpectedly
3597  *  terminated processes.
3598  * Note: the ctrlr_lock must be held when calling this function.
3599  */
3600 static int
3601 nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr)
3602 {
3603 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3604 	int				active_proc_count = 0;
3605 
3606 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3607 		if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) {
3608 			NVME_CTRLR_ERRLOG(ctrlr, "process %d terminated unexpected\n", active_proc->pid);
3609 
3610 			TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3611 
3612 			nvme_ctrlr_cleanup_process(active_proc);
3613 		} else {
3614 			active_proc_count++;
3615 		}
3616 	}
3617 
3618 	return active_proc_count;
3619 }
3620 
3621 void
3622 nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr)
3623 {
3624 	struct spdk_nvme_ctrlr_process	*active_proc;
3625 
3626 	nvme_ctrlr_lock(ctrlr);
3627 
3628 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3629 
3630 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3631 	if (active_proc) {
3632 		active_proc->ref++;
3633 	}
3634 
3635 	nvme_ctrlr_unlock(ctrlr);
3636 }
3637 
3638 void
3639 nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr)
3640 {
3641 	struct spdk_nvme_ctrlr_process	*active_proc;
3642 	int				proc_count;
3643 
3644 	nvme_ctrlr_lock(ctrlr);
3645 
3646 	proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr);
3647 
3648 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3649 	if (active_proc) {
3650 		active_proc->ref--;
3651 		assert(active_proc->ref >= 0);
3652 
3653 		/*
3654 		 * The last active process will be removed at the end of
3655 		 * the destruction of the controller.
3656 		 */
3657 		if (active_proc->ref == 0 && proc_count != 1) {
3658 			nvme_ctrlr_remove_process(ctrlr, active_proc);
3659 		}
3660 	}
3661 
3662 	nvme_ctrlr_unlock(ctrlr);
3663 }
3664 
3665 int
3666 nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr)
3667 {
3668 	struct spdk_nvme_ctrlr_process	*active_proc;
3669 	int				ref = 0;
3670 
3671 	nvme_ctrlr_lock(ctrlr);
3672 
3673 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3674 
3675 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3676 		ref += active_proc->ref;
3677 	}
3678 
3679 	nvme_ctrlr_unlock(ctrlr);
3680 
3681 	return ref;
3682 }
3683 
3684 /**
3685  *  Get the PCI device handle which is only visible to its associated process.
3686  */
3687 struct spdk_pci_device *
3688 nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr)
3689 {
3690 	struct spdk_nvme_ctrlr_process	*active_proc;
3691 	struct spdk_pci_device		*devhandle = NULL;
3692 
3693 	nvme_ctrlr_lock(ctrlr);
3694 
3695 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3696 	if (active_proc) {
3697 		devhandle = active_proc->devhandle;
3698 	}
3699 
3700 	nvme_ctrlr_unlock(ctrlr);
3701 
3702 	return devhandle;
3703 }
3704 
3705 static void
3706 nvme_ctrlr_process_init_vs_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3707 {
3708 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3709 
3710 	if (spdk_nvme_cpl_is_error(cpl)) {
3711 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the VS register\n");
3712 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3713 		return;
3714 	}
3715 
3716 	assert(value <= UINT32_MAX);
3717 	ctrlr->vs.raw = (uint32_t)value;
3718 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP, NVME_TIMEOUT_INFINITE);
3719 }
3720 
3721 static void
3722 nvme_ctrlr_process_init_cap_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3723 {
3724 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3725 
3726 	if (spdk_nvme_cpl_is_error(cpl)) {
3727 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CAP register\n");
3728 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3729 		return;
3730 	}
3731 
3732 	ctrlr->cap.raw = value;
3733 	nvme_ctrlr_init_cap(ctrlr);
3734 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
3735 }
3736 
3737 static void
3738 nvme_ctrlr_process_init_check_en(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3739 {
3740 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3741 	enum nvme_ctrlr_state state;
3742 
3743 	if (spdk_nvme_cpl_is_error(cpl)) {
3744 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3745 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3746 		return;
3747 	}
3748 
3749 	assert(value <= UINT32_MAX);
3750 	ctrlr->process_init_cc.raw = (uint32_t)value;
3751 
3752 	if (ctrlr->process_init_cc.bits.en) {
3753 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1\n");
3754 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1;
3755 	} else {
3756 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0;
3757 	}
3758 
3759 	nvme_ctrlr_set_state(ctrlr, state, nvme_ctrlr_get_ready_timeout(ctrlr));
3760 }
3761 
3762 static void
3763 nvme_ctrlr_process_init_set_en_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3764 {
3765 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3766 
3767 	if (spdk_nvme_cpl_is_error(cpl)) {
3768 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write the CC register\n");
3769 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3770 		return;
3771 	}
3772 
3773 	/*
3774 	 * Wait 2.5 seconds before accessing PCI registers.
3775 	 * Not using sleep() to avoid blocking other controller's initialization.
3776 	 */
3777 	if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) {
3778 		NVME_CTRLR_DEBUGLOG(ctrlr, "Applying quirk: delay 2.5 seconds before reading registers\n");
3779 		ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2500 * spdk_get_ticks_hz() / 1000);
3780 	}
3781 
3782 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3783 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3784 }
3785 
3786 static void
3787 nvme_ctrlr_process_init_set_en_0_read_cc(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3788 {
3789 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3790 	union spdk_nvme_cc_register cc;
3791 	int rc;
3792 
3793 	if (spdk_nvme_cpl_is_error(cpl)) {
3794 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3795 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3796 		return;
3797 	}
3798 
3799 	assert(value <= UINT32_MAX);
3800 	cc.raw = (uint32_t)value;
3801 	cc.bits.en = 0;
3802 	ctrlr->process_init_cc.raw = cc.raw;
3803 
3804 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC,
3805 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3806 
3807 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_process_init_set_en_0, ctrlr);
3808 	if (rc != 0) {
3809 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
3810 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3811 	}
3812 }
3813 
3814 static void
3815 nvme_ctrlr_process_init_wait_for_ready_1(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3816 {
3817 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3818 	union spdk_nvme_csts_register csts;
3819 
3820 	if (spdk_nvme_cpl_is_error(cpl)) {
3821 		/* While a device is resetting, it may be unable to service MMIO reads
3822 		 * temporarily. Allow for this case.
3823 		 */
3824 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3825 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3826 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3827 					     NVME_TIMEOUT_KEEP_EXISTING);
3828 		} else {
3829 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3830 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3831 		}
3832 
3833 		return;
3834 	}
3835 
3836 	assert(value <= UINT32_MAX);
3837 	csts.raw = (uint32_t)value;
3838 	if (csts.bits.rdy == 1 || csts.bits.cfs == 1) {
3839 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0,
3840 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3841 	} else {
3842 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n");
3843 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3844 					   NVME_TIMEOUT_KEEP_EXISTING);
3845 	}
3846 }
3847 
3848 static void
3849 nvme_ctrlr_process_init_wait_for_ready_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3850 {
3851 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3852 	union spdk_nvme_csts_register csts;
3853 
3854 	if (spdk_nvme_cpl_is_error(cpl)) {
3855 		/* While a device is resetting, it may be unable to service MMIO reads
3856 		 * temporarily. Allow for this case.
3857 		 */
3858 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3859 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3860 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3861 					     NVME_TIMEOUT_KEEP_EXISTING);
3862 		} else {
3863 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3864 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3865 		}
3866 
3867 		return;
3868 	}
3869 
3870 	assert(value <= UINT32_MAX);
3871 	csts.raw = (uint32_t)value;
3872 	if (csts.bits.rdy == 0) {
3873 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 0 && CSTS.RDY = 0\n");
3874 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLED,
3875 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3876 	} else {
3877 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3878 					   NVME_TIMEOUT_KEEP_EXISTING);
3879 	}
3880 }
3881 
3882 static void
3883 nvme_ctrlr_process_init_enable_wait_for_ready_1(void *ctx, uint64_t value,
3884 		const struct spdk_nvme_cpl *cpl)
3885 {
3886 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3887 	union spdk_nvme_csts_register csts;
3888 
3889 	if (spdk_nvme_cpl_is_error(cpl)) {
3890 		/* While a device is resetting, it may be unable to service MMIO reads
3891 		 * temporarily. Allow for this case.
3892 		 */
3893 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3894 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3895 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3896 					     NVME_TIMEOUT_KEEP_EXISTING);
3897 		} else {
3898 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3899 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3900 		}
3901 
3902 		return;
3903 	}
3904 
3905 	assert(value <= UINT32_MAX);
3906 	csts.raw = value;
3907 	if (csts.bits.rdy == 1) {
3908 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n");
3909 		/*
3910 		 * The controller has been enabled.
3911 		 *  Perform the rest of initialization serially.
3912 		 */
3913 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_RESET_ADMIN_QUEUE,
3914 				     ctrlr->opts.admin_timeout_ms);
3915 	} else {
3916 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3917 					   NVME_TIMEOUT_KEEP_EXISTING);
3918 	}
3919 }
3920 
3921 /**
3922  * This function will be called repeatedly during initialization until the controller is ready.
3923  */
3924 int
3925 nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr)
3926 {
3927 	uint32_t ready_timeout_in_ms;
3928 	uint64_t ticks;
3929 	int rc = 0;
3930 
3931 	ticks = spdk_get_ticks();
3932 
3933 	/*
3934 	 * May need to avoid accessing any register on the target controller
3935 	 * for a while. Return early without touching the FSM.
3936 	 * Check sleep_timeout_tsc > 0 for unit test.
3937 	 */
3938 	if ((ctrlr->sleep_timeout_tsc > 0) &&
3939 	    (ticks <= ctrlr->sleep_timeout_tsc)) {
3940 		return 0;
3941 	}
3942 	ctrlr->sleep_timeout_tsc = 0;
3943 
3944 	ready_timeout_in_ms = nvme_ctrlr_get_ready_timeout(ctrlr);
3945 
3946 	/*
3947 	 * Check if the current initialization step is done or has timed out.
3948 	 */
3949 	switch (ctrlr->state) {
3950 	case NVME_CTRLR_STATE_INIT_DELAY:
3951 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, ready_timeout_in_ms);
3952 		if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_INIT) {
3953 			/*
3954 			 * Controller may need some delay before it's enabled.
3955 			 *
3956 			 * This is a workaround for an issue where the PCIe-attached NVMe controller
3957 			 * is not ready after VFIO reset. We delay the initialization rather than the
3958 			 * enabling itself, because this is required only for the very first enabling
3959 			 * - directly after a VFIO reset.
3960 			 */
3961 			NVME_CTRLR_DEBUGLOG(ctrlr, "Adding 2 second delay before initializing the controller\n");
3962 			ctrlr->sleep_timeout_tsc = ticks + (2000 * spdk_get_ticks_hz() / 1000);
3963 		}
3964 		break;
3965 
3966 	case NVME_CTRLR_STATE_DISCONNECTED:
3967 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
3968 		break;
3969 
3970 	case NVME_CTRLR_STATE_CONNECT_ADMINQ: /* synonymous with NVME_CTRLR_STATE_INIT and NVME_CTRLR_STATE_DISCONNECTED */
3971 		rc = nvme_transport_ctrlr_connect_qpair(ctrlr, ctrlr->adminq);
3972 		if (rc == 0) {
3973 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ,
3974 					     NVME_TIMEOUT_INFINITE);
3975 		} else {
3976 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3977 		}
3978 		break;
3979 
3980 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
3981 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3982 
3983 		switch (nvme_qpair_get_state(ctrlr->adminq)) {
3984 		case NVME_QPAIR_CONNECTING:
3985 			break;
3986 		case NVME_QPAIR_CONNECTED:
3987 			nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
3988 		/* Fall through */
3989 		case NVME_QPAIR_ENABLED:
3990 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS,
3991 					     NVME_TIMEOUT_INFINITE);
3992 			/* Abort any queued requests that were sent while the adminq was connecting
3993 			 * to avoid stalling the init process during a reset, as requests don't get
3994 			 * resubmitted while the controller is resetting and subsequent commands
3995 			 * would get queued too.
3996 			 */
3997 			nvme_qpair_abort_queued_reqs(ctrlr->adminq);
3998 			break;
3999 		case NVME_QPAIR_DISCONNECTING:
4000 			assert(ctrlr->adminq->async == true);
4001 			break;
4002 		case NVME_QPAIR_DISCONNECTED:
4003 		/* fallthrough */
4004 		default:
4005 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
4006 			break;
4007 		}
4008 
4009 		break;
4010 
4011 	case NVME_CTRLR_STATE_READ_VS:
4012 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS, NVME_TIMEOUT_INFINITE);
4013 		rc = nvme_ctrlr_get_vs_async(ctrlr, nvme_ctrlr_process_init_vs_done, ctrlr);
4014 		break;
4015 
4016 	case NVME_CTRLR_STATE_READ_CAP:
4017 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP, NVME_TIMEOUT_INFINITE);
4018 		rc = nvme_ctrlr_get_cap_async(ctrlr, nvme_ctrlr_process_init_cap_done, ctrlr);
4019 		break;
4020 
4021 	case NVME_CTRLR_STATE_CHECK_EN:
4022 		/* Begin the hardware initialization by making sure the controller is disabled. */
4023 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC, ready_timeout_in_ms);
4024 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_check_en, ctrlr);
4025 		break;
4026 
4027 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
4028 		/*
4029 		 * Controller is currently enabled. We need to disable it to cause a reset.
4030 		 *
4031 		 * If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready.
4032 		 *  Wait for the ready bit to be 1 before disabling the controller.
4033 		 */
4034 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
4035 					   NVME_TIMEOUT_KEEP_EXISTING);
4036 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_1, ctrlr);
4037 		break;
4038 
4039 	case NVME_CTRLR_STATE_SET_EN_0:
4040 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 0\n");
4041 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC, ready_timeout_in_ms);
4042 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_set_en_0_read_cc, ctrlr);
4043 		break;
4044 
4045 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
4046 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS,
4047 					   NVME_TIMEOUT_KEEP_EXISTING);
4048 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_0, ctrlr);
4049 		break;
4050 
4051 	case NVME_CTRLR_STATE_DISABLED:
4052 		if (ctrlr->is_disconnecting) {
4053 			NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr was disabled.\n");
4054 		} else {
4055 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms);
4056 
4057 			/*
4058 			 * Delay 100us before setting CC.EN = 1.  Some NVMe SSDs miss CC.EN getting
4059 			 *  set to 1 if it is too soon after CSTS.RDY is reported as 0.
4060 			 */
4061 			spdk_delay_us(100);
4062 		}
4063 		break;
4064 
4065 	case NVME_CTRLR_STATE_ENABLE:
4066 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 1\n");
4067 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC, ready_timeout_in_ms);
4068 		rc = nvme_ctrlr_enable(ctrlr);
4069 		if (rc) {
4070 			NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr enable failed with error: %d", rc);
4071 		}
4072 		return rc;
4073 
4074 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
4075 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
4076 					   NVME_TIMEOUT_KEEP_EXISTING);
4077 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_enable_wait_for_ready_1,
4078 					       ctrlr);
4079 		break;
4080 
4081 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
4082 		nvme_transport_qpair_reset(ctrlr->adminq);
4083 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY, NVME_TIMEOUT_INFINITE);
4084 		break;
4085 
4086 	case NVME_CTRLR_STATE_IDENTIFY:
4087 		rc = nvme_ctrlr_identify(ctrlr);
4088 		break;
4089 
4090 	case NVME_CTRLR_STATE_CONFIGURE_AER:
4091 		rc = nvme_ctrlr_configure_aer(ctrlr);
4092 		break;
4093 
4094 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
4095 		rc = nvme_ctrlr_set_keep_alive_timeout(ctrlr);
4096 		break;
4097 
4098 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
4099 		rc = nvme_ctrlr_identify_iocs_specific(ctrlr);
4100 		break;
4101 
4102 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
4103 		rc = nvme_ctrlr_get_zns_cmd_and_effects_log(ctrlr);
4104 		break;
4105 
4106 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
4107 		nvme_ctrlr_update_nvmf_ioccsz(ctrlr);
4108 		rc = nvme_ctrlr_set_num_queues(ctrlr);
4109 		break;
4110 
4111 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
4112 		_nvme_ctrlr_identify_active_ns(ctrlr);
4113 		break;
4114 
4115 	case NVME_CTRLR_STATE_IDENTIFY_NS:
4116 		rc = nvme_ctrlr_identify_namespaces(ctrlr);
4117 		break;
4118 
4119 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
4120 		rc = nvme_ctrlr_identify_id_desc_namespaces(ctrlr);
4121 		break;
4122 
4123 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
4124 		rc = nvme_ctrlr_identify_namespaces_iocs_specific(ctrlr);
4125 		break;
4126 
4127 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
4128 		rc = nvme_ctrlr_set_supported_log_pages(ctrlr);
4129 		break;
4130 
4131 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
4132 		rc = nvme_ctrlr_set_intel_support_log_pages(ctrlr);
4133 		break;
4134 
4135 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
4136 		nvme_ctrlr_set_supported_features(ctrlr);
4137 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_FEATURE,
4138 				     ctrlr->opts.admin_timeout_ms);
4139 		break;
4140 
4141 	case NVME_CTRLR_STATE_SET_HOST_FEATURE:
4142 		rc = nvme_ctrlr_set_host_feature(ctrlr);
4143 		break;
4144 
4145 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
4146 		rc = nvme_ctrlr_set_doorbell_buffer_config(ctrlr);
4147 		break;
4148 
4149 	case NVME_CTRLR_STATE_SET_HOST_ID:
4150 		rc = nvme_ctrlr_set_host_id(ctrlr);
4151 		break;
4152 
4153 	case NVME_CTRLR_STATE_TRANSPORT_READY:
4154 		rc = nvme_transport_ctrlr_ready(ctrlr);
4155 		if (rc) {
4156 			NVME_CTRLR_ERRLOG(ctrlr, "Transport controller ready step failed: rc %d\n", rc);
4157 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
4158 		} else {
4159 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
4160 		}
4161 		break;
4162 
4163 	case NVME_CTRLR_STATE_READY:
4164 		NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr already in ready state\n");
4165 		return 0;
4166 
4167 	case NVME_CTRLR_STATE_ERROR:
4168 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr is in error state\n");
4169 		return -1;
4170 
4171 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
4172 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
4173 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
4174 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
4175 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4176 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
4177 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
4178 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4179 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
4180 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
4181 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
4182 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
4183 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
4184 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
4185 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
4186 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
4187 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
4188 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
4189 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
4190 	case NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE:
4191 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
4192 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
4193 		/*
4194 		 * nvme_ctrlr_process_init() may be called from the completion context
4195 		 * for the admin qpair. Avoid recursive calls for this case.
4196 		 */
4197 		if (!ctrlr->adminq->in_completion_context) {
4198 			spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4199 		}
4200 		break;
4201 
4202 	default:
4203 		assert(0);
4204 		return -1;
4205 	}
4206 
4207 	if (rc) {
4208 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr operation failed with error: %d, ctrlr state: %d (%s)\n",
4209 				  rc, ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4210 	}
4211 
4212 	/* Note: we use the ticks captured when we entered this function.
4213 	 * This covers environments where the SPDK process gets swapped out after
4214 	 * we tried to advance the state but before we check the timeout here.
4215 	 * It is not normal for this to happen, but harmless to handle it in this
4216 	 * way.
4217 	 */
4218 	if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE &&
4219 	    ticks > ctrlr->state_timeout_tsc) {
4220 		NVME_CTRLR_ERRLOG(ctrlr, "Initialization timed out in state %d (%s)\n",
4221 				  ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4222 		return -1;
4223 	}
4224 
4225 	return rc;
4226 }
4227 
4228 int
4229 nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx)
4230 {
4231 	pthread_mutexattr_t attr;
4232 	int rc = 0;
4233 
4234 	if (pthread_mutexattr_init(&attr)) {
4235 		return -1;
4236 	}
4237 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) ||
4238 #ifndef __FreeBSD__
4239 	    pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
4240 	    pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
4241 #endif
4242 	    pthread_mutex_init(mtx, &attr)) {
4243 		rc = -1;
4244 	}
4245 	pthread_mutexattr_destroy(&attr);
4246 	return rc;
4247 }
4248 
4249 int
4250 nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
4251 {
4252 	int rc;
4253 
4254 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4255 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT_DELAY, NVME_TIMEOUT_INFINITE);
4256 	} else {
4257 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
4258 	}
4259 
4260 	if (ctrlr->opts.admin_queue_size > SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES) {
4261 		NVME_CTRLR_ERRLOG(ctrlr, "admin_queue_size %u exceeds max defined by NVMe spec, use max value\n",
4262 				  ctrlr->opts.admin_queue_size);
4263 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES;
4264 	}
4265 
4266 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_ADMIN_QUEUE_SIZE &&
4267 	    (ctrlr->opts.admin_queue_size % SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE) != 0) {
4268 		NVME_CTRLR_ERRLOG(ctrlr,
4269 				  "admin_queue_size %u is invalid for this NVMe device, adjust to next multiple\n",
4270 				  ctrlr->opts.admin_queue_size);
4271 		ctrlr->opts.admin_queue_size = SPDK_ALIGN_CEIL(ctrlr->opts.admin_queue_size,
4272 					       SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE);
4273 	}
4274 
4275 	if (ctrlr->opts.admin_queue_size < SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES) {
4276 		NVME_CTRLR_ERRLOG(ctrlr,
4277 				  "admin_queue_size %u is less than minimum defined by NVMe spec, use min value\n",
4278 				  ctrlr->opts.admin_queue_size);
4279 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES;
4280 	}
4281 
4282 	ctrlr->flags = 0;
4283 	ctrlr->free_io_qids = NULL;
4284 	ctrlr->is_resetting = false;
4285 	ctrlr->is_failed = false;
4286 	ctrlr->is_destructed = false;
4287 
4288 	TAILQ_INIT(&ctrlr->active_io_qpairs);
4289 	STAILQ_INIT(&ctrlr->queued_aborts);
4290 	ctrlr->outstanding_aborts = 0;
4291 
4292 	ctrlr->ana_log_page = NULL;
4293 	ctrlr->ana_log_page_size = 0;
4294 
4295 	rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock);
4296 	if (rc != 0) {
4297 		return rc;
4298 	}
4299 
4300 	TAILQ_INIT(&ctrlr->active_procs);
4301 	STAILQ_INIT(&ctrlr->register_operations);
4302 
4303 	RB_INIT(&ctrlr->ns);
4304 
4305 	return rc;
4306 }
4307 
4308 static void
4309 nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr)
4310 {
4311 	if (ctrlr->cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) {
4312 		ctrlr->flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED;
4313 	}
4314 
4315 	ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin);
4316 
4317 	/* For now, always select page_size == min_page_size. */
4318 	ctrlr->page_size = ctrlr->min_page_size;
4319 
4320 	ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES);
4321 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, MAX_IO_QUEUE_ENTRIES);
4322 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE &&
4323 	    ctrlr->opts.io_queue_size == DEFAULT_IO_QUEUE_SIZE) {
4324 		/* If the user specifically set an IO queue size different than the
4325 		 * default, use that value.  Otherwise overwrite with the quirked value.
4326 		 * This allows this quirk to be overridden when necessary.
4327 		 * However, cap.mqes still needs to be respected.
4328 		 */
4329 		ctrlr->opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK;
4330 	}
4331 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u);
4332 
4333 	ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size);
4334 }
4335 
4336 void
4337 nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr)
4338 {
4339 	int rc;
4340 
4341 	if (ctrlr->lock_depth > 0) {
4342 		SPDK_ERRLOG("lock currently held (depth=%d)!\n", ctrlr->lock_depth);
4343 		assert(false);
4344 	}
4345 
4346 	rc = pthread_mutex_destroy(&ctrlr->ctrlr_lock);
4347 	if (rc) {
4348 		SPDK_ERRLOG("could not destroy ctrlr_lock: %s\n", spdk_strerror(rc));
4349 		assert(false);
4350 	}
4351 
4352 	nvme_ctrlr_free_processes(ctrlr);
4353 }
4354 
4355 void
4356 nvme_ctrlr_destruct_async(struct spdk_nvme_ctrlr *ctrlr,
4357 			  struct nvme_ctrlr_detach_ctx *ctx)
4358 {
4359 	struct spdk_nvme_qpair *qpair, *tmp;
4360 
4361 	NVME_CTRLR_DEBUGLOG(ctrlr, "Prepare to destruct SSD\n");
4362 
4363 	ctrlr->prepare_for_reset = false;
4364 	ctrlr->is_destructed = true;
4365 
4366 	spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4367 
4368 	nvme_ctrlr_abort_queued_aborts(ctrlr);
4369 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
4370 
4371 	TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) {
4372 		spdk_nvme_ctrlr_free_io_qpair(qpair);
4373 	}
4374 
4375 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
4376 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
4377 
4378 	nvme_ctrlr_shutdown_async(ctrlr, ctx);
4379 }
4380 
4381 int
4382 nvme_ctrlr_destruct_poll_async(struct spdk_nvme_ctrlr *ctrlr,
4383 			       struct nvme_ctrlr_detach_ctx *ctx)
4384 {
4385 	struct spdk_nvme_ns *ns, *tmp_ns;
4386 	int rc = 0;
4387 
4388 	if (!ctx->shutdown_complete) {
4389 		rc = nvme_ctrlr_shutdown_poll_async(ctrlr, ctx);
4390 		if (rc == -EAGAIN) {
4391 			return -EAGAIN;
4392 		}
4393 		/* Destruct ctrlr forcefully for any other error. */
4394 	}
4395 
4396 	if (ctx->cb_fn) {
4397 		ctx->cb_fn(ctrlr);
4398 	}
4399 
4400 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
4401 
4402 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
4403 		nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
4404 		RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
4405 		spdk_free(ns);
4406 	}
4407 
4408 	ctrlr->active_ns_count = 0;
4409 
4410 	spdk_bit_array_free(&ctrlr->free_io_qids);
4411 
4412 	free(ctrlr->ana_log_page);
4413 	free(ctrlr->copied_ana_desc);
4414 	ctrlr->ana_log_page = NULL;
4415 	ctrlr->copied_ana_desc = NULL;
4416 	ctrlr->ana_log_page_size = 0;
4417 
4418 	nvme_transport_ctrlr_destruct(ctrlr);
4419 
4420 	return rc;
4421 }
4422 
4423 void
4424 nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
4425 {
4426 	struct nvme_ctrlr_detach_ctx ctx = { .ctrlr = ctrlr };
4427 	int rc;
4428 
4429 	nvme_ctrlr_destruct_async(ctrlr, &ctx);
4430 
4431 	while (1) {
4432 		rc = nvme_ctrlr_destruct_poll_async(ctrlr, &ctx);
4433 		if (rc != -EAGAIN) {
4434 			break;
4435 		}
4436 		nvme_delay(1000);
4437 	}
4438 }
4439 
4440 int
4441 nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
4442 				struct nvme_request *req)
4443 {
4444 	return nvme_qpair_submit_request(ctrlr->adminq, req);
4445 }
4446 
4447 static void
4448 nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl)
4449 {
4450 	/* Do nothing */
4451 }
4452 
4453 /*
4454  * Check if we need to send a Keep Alive command.
4455  * Caller must hold ctrlr->ctrlr_lock.
4456  */
4457 static int
4458 nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr)
4459 {
4460 	uint64_t now;
4461 	struct nvme_request *req;
4462 	struct spdk_nvme_cmd *cmd;
4463 	int rc = 0;
4464 
4465 	now = spdk_get_ticks();
4466 	if (now < ctrlr->next_keep_alive_tick) {
4467 		return rc;
4468 	}
4469 
4470 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL);
4471 	if (req == NULL) {
4472 		return rc;
4473 	}
4474 
4475 	cmd = &req->cmd;
4476 	cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE;
4477 
4478 	rc = nvme_ctrlr_submit_admin_request(ctrlr, req);
4479 	if (rc != 0) {
4480 		NVME_CTRLR_ERRLOG(ctrlr, "Submitting Keep Alive failed\n");
4481 		rc = -ENXIO;
4482 	}
4483 
4484 	ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks;
4485 	return rc;
4486 }
4487 
4488 int32_t
4489 spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr)
4490 {
4491 	int32_t num_completions;
4492 	int32_t rc;
4493 	struct spdk_nvme_ctrlr_process	*active_proc;
4494 
4495 	nvme_ctrlr_lock(ctrlr);
4496 
4497 	if (ctrlr->keep_alive_interval_ticks) {
4498 		rc = nvme_ctrlr_keep_alive(ctrlr);
4499 		if (rc) {
4500 			nvme_ctrlr_unlock(ctrlr);
4501 			return rc;
4502 		}
4503 	}
4504 
4505 	rc = nvme_io_msg_process(ctrlr);
4506 	if (rc < 0) {
4507 		nvme_ctrlr_unlock(ctrlr);
4508 		return rc;
4509 	}
4510 	num_completions = rc;
4511 
4512 	rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4513 
4514 	/* Each process has an async list, complete the ones for this process object */
4515 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4516 	if (active_proc) {
4517 		nvme_ctrlr_complete_queued_async_events(ctrlr);
4518 	}
4519 
4520 	if (rc == -ENXIO && ctrlr->is_disconnecting) {
4521 		nvme_ctrlr_disconnect_done(ctrlr);
4522 	}
4523 
4524 	nvme_ctrlr_unlock(ctrlr);
4525 
4526 	if (rc < 0) {
4527 		num_completions = rc;
4528 	} else {
4529 		num_completions += rc;
4530 	}
4531 
4532 	return num_completions;
4533 }
4534 
4535 const struct spdk_nvme_ctrlr_data *
4536 spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr)
4537 {
4538 	return &ctrlr->cdata;
4539 }
4540 
4541 union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
4542 {
4543 	union spdk_nvme_csts_register csts;
4544 
4545 	if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
4546 		csts.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4547 	}
4548 	return csts;
4549 }
4550 
4551 union spdk_nvme_cc_register spdk_nvme_ctrlr_get_regs_cc(struct spdk_nvme_ctrlr *ctrlr)
4552 {
4553 	union spdk_nvme_cc_register cc;
4554 
4555 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
4556 		cc.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4557 	}
4558 	return cc;
4559 }
4560 
4561 union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr)
4562 {
4563 	return ctrlr->cap;
4564 }
4565 
4566 union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr)
4567 {
4568 	return ctrlr->vs;
4569 }
4570 
4571 union spdk_nvme_cmbsz_register spdk_nvme_ctrlr_get_regs_cmbsz(struct spdk_nvme_ctrlr *ctrlr)
4572 {
4573 	union spdk_nvme_cmbsz_register cmbsz;
4574 
4575 	if (nvme_ctrlr_get_cmbsz(ctrlr, &cmbsz)) {
4576 		cmbsz.raw = 0;
4577 	}
4578 
4579 	return cmbsz;
4580 }
4581 
4582 union spdk_nvme_pmrcap_register spdk_nvme_ctrlr_get_regs_pmrcap(struct spdk_nvme_ctrlr *ctrlr)
4583 {
4584 	union spdk_nvme_pmrcap_register pmrcap;
4585 
4586 	if (nvme_ctrlr_get_pmrcap(ctrlr, &pmrcap)) {
4587 		pmrcap.raw = 0;
4588 	}
4589 
4590 	return pmrcap;
4591 }
4592 
4593 union spdk_nvme_bpinfo_register spdk_nvme_ctrlr_get_regs_bpinfo(struct spdk_nvme_ctrlr *ctrlr)
4594 {
4595 	union spdk_nvme_bpinfo_register bpinfo;
4596 
4597 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
4598 		bpinfo.raw = 0;
4599 	}
4600 
4601 	return bpinfo;
4602 }
4603 
4604 uint64_t
4605 spdk_nvme_ctrlr_get_pmrsz(struct spdk_nvme_ctrlr *ctrlr)
4606 {
4607 	return ctrlr->pmr_size;
4608 }
4609 
4610 uint32_t
4611 spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr)
4612 {
4613 	return ctrlr->cdata.nn;
4614 }
4615 
4616 bool
4617 spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4618 {
4619 	struct spdk_nvme_ns tmp, *ns;
4620 
4621 	tmp.id = nsid;
4622 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4623 
4624 	if (ns != NULL) {
4625 		return ns->active;
4626 	}
4627 
4628 	return false;
4629 }
4630 
4631 uint32_t
4632 spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr)
4633 {
4634 	struct spdk_nvme_ns *ns;
4635 
4636 	ns = RB_MIN(nvme_ns_tree, &ctrlr->ns);
4637 	if (ns == NULL) {
4638 		return 0;
4639 	}
4640 
4641 	while (ns != NULL) {
4642 		if (ns->active) {
4643 			return ns->id;
4644 		}
4645 
4646 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4647 	}
4648 
4649 	return 0;
4650 }
4651 
4652 uint32_t
4653 spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
4654 {
4655 	struct spdk_nvme_ns tmp, *ns;
4656 
4657 	tmp.id = prev_nsid;
4658 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4659 	if (ns == NULL) {
4660 		return 0;
4661 	}
4662 
4663 	ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4664 	while (ns != NULL) {
4665 		if (ns->active) {
4666 			return ns->id;
4667 		}
4668 
4669 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4670 	}
4671 
4672 	return 0;
4673 }
4674 
4675 struct spdk_nvme_ns *
4676 spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4677 {
4678 	struct spdk_nvme_ns tmp;
4679 	struct spdk_nvme_ns *ns;
4680 
4681 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
4682 		return NULL;
4683 	}
4684 
4685 	nvme_ctrlr_lock(ctrlr);
4686 
4687 	tmp.id = nsid;
4688 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4689 
4690 	if (ns == NULL) {
4691 		ns = spdk_zmalloc(sizeof(struct spdk_nvme_ns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
4692 		if (ns == NULL) {
4693 			nvme_ctrlr_unlock(ctrlr);
4694 			return NULL;
4695 		}
4696 
4697 		NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was added\n", nsid);
4698 		ns->id = nsid;
4699 		RB_INSERT(nvme_ns_tree, &ctrlr->ns, ns);
4700 	}
4701 
4702 	nvme_ctrlr_unlock(ctrlr);
4703 
4704 	return ns;
4705 }
4706 
4707 struct spdk_pci_device *
4708 spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr)
4709 {
4710 	if (ctrlr == NULL) {
4711 		return NULL;
4712 	}
4713 
4714 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
4715 		return NULL;
4716 	}
4717 
4718 	return nvme_ctrlr_proc_get_devhandle(ctrlr);
4719 }
4720 
4721 uint32_t
4722 spdk_nvme_ctrlr_get_max_xfer_size(const struct spdk_nvme_ctrlr *ctrlr)
4723 {
4724 	return ctrlr->max_xfer_size;
4725 }
4726 
4727 uint16_t
4728 spdk_nvme_ctrlr_get_max_sges(const struct spdk_nvme_ctrlr *ctrlr)
4729 {
4730 	if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4731 		return ctrlr->max_sges;
4732 	} else {
4733 		return UINT16_MAX;
4734 	}
4735 }
4736 
4737 void
4738 spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr,
4739 				      spdk_nvme_aer_cb aer_cb_fn,
4740 				      void *aer_cb_arg)
4741 {
4742 	struct spdk_nvme_ctrlr_process *active_proc;
4743 
4744 	nvme_ctrlr_lock(ctrlr);
4745 
4746 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4747 	if (active_proc) {
4748 		active_proc->aer_cb_fn = aer_cb_fn;
4749 		active_proc->aer_cb_arg = aer_cb_arg;
4750 	}
4751 
4752 	nvme_ctrlr_unlock(ctrlr);
4753 }
4754 
4755 void
4756 spdk_nvme_ctrlr_disable_read_changed_ns_list_log_page(struct spdk_nvme_ctrlr *ctrlr)
4757 {
4758 	ctrlr->opts.disable_read_changed_ns_list_log_page = true;
4759 }
4760 
4761 void
4762 spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr,
4763 		uint64_t timeout_io_us, uint64_t timeout_admin_us,
4764 		spdk_nvme_timeout_cb cb_fn, void *cb_arg)
4765 {
4766 	struct spdk_nvme_ctrlr_process	*active_proc;
4767 
4768 	nvme_ctrlr_lock(ctrlr);
4769 
4770 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4771 	if (active_proc) {
4772 		active_proc->timeout_io_ticks = timeout_io_us * spdk_get_ticks_hz() / 1000000ULL;
4773 		active_proc->timeout_admin_ticks = timeout_admin_us * spdk_get_ticks_hz() / 1000000ULL;
4774 		active_proc->timeout_cb_fn = cb_fn;
4775 		active_proc->timeout_cb_arg = cb_arg;
4776 	}
4777 
4778 	ctrlr->timeout_enabled = true;
4779 
4780 	nvme_ctrlr_unlock(ctrlr);
4781 }
4782 
4783 bool
4784 spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page)
4785 {
4786 	/* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
4787 	SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
4788 	return ctrlr->log_page_supported[log_page];
4789 }
4790 
4791 bool
4792 spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code)
4793 {
4794 	/* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
4795 	SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
4796 	return ctrlr->feature_supported[feature_code];
4797 }
4798 
4799 int
4800 spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4801 			  struct spdk_nvme_ctrlr_list *payload)
4802 {
4803 	struct nvme_completion_poll_status	*status;
4804 	struct spdk_nvme_ns			*ns;
4805 	int					res;
4806 
4807 	if (nsid == 0) {
4808 		return -EINVAL;
4809 	}
4810 
4811 	status = calloc(1, sizeof(*status));
4812 	if (!status) {
4813 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4814 		return -ENOMEM;
4815 	}
4816 
4817 	res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload,
4818 				       nvme_completion_poll_cb, status);
4819 	if (res) {
4820 		free(status);
4821 		return res;
4822 	}
4823 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4824 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_attach_ns failed!\n");
4825 		if (!status->timed_out) {
4826 			free(status);
4827 		}
4828 		return -ENXIO;
4829 	}
4830 	free(status);
4831 
4832 	res = nvme_ctrlr_identify_active_ns(ctrlr);
4833 	if (res) {
4834 		return res;
4835 	}
4836 
4837 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
4838 	if (ns == NULL) {
4839 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_get_ns failed!\n");
4840 		return -ENXIO;
4841 	}
4842 
4843 	return nvme_ns_construct(ns, nsid, ctrlr);
4844 }
4845 
4846 int
4847 spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4848 			  struct spdk_nvme_ctrlr_list *payload)
4849 {
4850 	struct nvme_completion_poll_status	*status;
4851 	int					res;
4852 
4853 	if (nsid == 0) {
4854 		return -EINVAL;
4855 	}
4856 
4857 	status = calloc(1, sizeof(*status));
4858 	if (!status) {
4859 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4860 		return -ENOMEM;
4861 	}
4862 
4863 	res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload,
4864 				       nvme_completion_poll_cb, status);
4865 	if (res) {
4866 		free(status);
4867 		return res;
4868 	}
4869 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4870 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_detach_ns failed!\n");
4871 		if (!status->timed_out) {
4872 			free(status);
4873 		}
4874 		return -ENXIO;
4875 	}
4876 	free(status);
4877 
4878 	return nvme_ctrlr_identify_active_ns(ctrlr);
4879 }
4880 
4881 uint32_t
4882 spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload)
4883 {
4884 	struct nvme_completion_poll_status	*status;
4885 	int					res;
4886 	uint32_t				nsid;
4887 
4888 	status = calloc(1, sizeof(*status));
4889 	if (!status) {
4890 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4891 		return 0;
4892 	}
4893 
4894 	res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, status);
4895 	if (res) {
4896 		free(status);
4897 		return 0;
4898 	}
4899 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4900 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_create_ns failed!\n");
4901 		if (!status->timed_out) {
4902 			free(status);
4903 		}
4904 		return 0;
4905 	}
4906 
4907 	nsid = status->cpl.cdw0;
4908 	free(status);
4909 
4910 	assert(nsid > 0);
4911 
4912 	/* Return the namespace ID that was created */
4913 	return nsid;
4914 }
4915 
4916 int
4917 spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4918 {
4919 	struct nvme_completion_poll_status	*status;
4920 	int					res;
4921 
4922 	if (nsid == 0) {
4923 		return -EINVAL;
4924 	}
4925 
4926 	status = calloc(1, sizeof(*status));
4927 	if (!status) {
4928 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4929 		return -ENOMEM;
4930 	}
4931 
4932 	res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, status);
4933 	if (res) {
4934 		free(status);
4935 		return res;
4936 	}
4937 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4938 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_delete_ns failed!\n");
4939 		if (!status->timed_out) {
4940 			free(status);
4941 		}
4942 		return -ENXIO;
4943 	}
4944 	free(status);
4945 
4946 	return nvme_ctrlr_identify_active_ns(ctrlr);
4947 }
4948 
4949 int
4950 spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4951 		       struct spdk_nvme_format *format)
4952 {
4953 	struct nvme_completion_poll_status	*status;
4954 	int					res;
4955 
4956 	status = calloc(1, sizeof(*status));
4957 	if (!status) {
4958 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4959 		return -ENOMEM;
4960 	}
4961 
4962 	res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb,
4963 				    status);
4964 	if (res) {
4965 		free(status);
4966 		return res;
4967 	}
4968 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4969 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_format failed!\n");
4970 		if (!status->timed_out) {
4971 			free(status);
4972 		}
4973 		return -ENXIO;
4974 	}
4975 	free(status);
4976 
4977 	return spdk_nvme_ctrlr_reset(ctrlr);
4978 }
4979 
4980 int
4981 spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size,
4982 				int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status)
4983 {
4984 	struct spdk_nvme_fw_commit		fw_commit;
4985 	struct nvme_completion_poll_status	*status;
4986 	int					res;
4987 	unsigned int				size_remaining;
4988 	unsigned int				offset;
4989 	unsigned int				transfer;
4990 	uint8_t					*p;
4991 
4992 	if (!completion_status) {
4993 		return -EINVAL;
4994 	}
4995 	memset(completion_status, 0, sizeof(struct spdk_nvme_status));
4996 	if (size % 4) {
4997 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid size!\n");
4998 		return -1;
4999 	}
5000 
5001 	/* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG
5002 	 * and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG
5003 	 */
5004 	if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) &&
5005 	    (commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) {
5006 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid command!\n");
5007 		return -1;
5008 	}
5009 
5010 	status = calloc(1, sizeof(*status));
5011 	if (!status) {
5012 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5013 		return -ENOMEM;
5014 	}
5015 
5016 	/* Firmware download */
5017 	size_remaining = size;
5018 	offset = 0;
5019 	p = payload;
5020 
5021 	while (size_remaining > 0) {
5022 		transfer = spdk_min(size_remaining, ctrlr->min_page_size);
5023 
5024 		memset(status, 0, sizeof(*status));
5025 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p,
5026 						       nvme_completion_poll_cb,
5027 						       status);
5028 		if (res) {
5029 			free(status);
5030 			return res;
5031 		}
5032 
5033 		if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5034 			NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_fw_image_download failed!\n");
5035 			if (!status->timed_out) {
5036 				free(status);
5037 			}
5038 			return -ENXIO;
5039 		}
5040 		p += transfer;
5041 		offset += transfer;
5042 		size_remaining -= transfer;
5043 	}
5044 
5045 	/* Firmware commit */
5046 	memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5047 	fw_commit.fs = slot;
5048 	fw_commit.ca = commit_action;
5049 
5050 	memset(status, 0, sizeof(*status));
5051 	res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb,
5052 				       status);
5053 	if (res) {
5054 		free(status);
5055 		return res;
5056 	}
5057 
5058 	res = nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock);
5059 
5060 	memcpy(completion_status, &status->cpl.status, sizeof(struct spdk_nvme_status));
5061 
5062 	if (!status->timed_out) {
5063 		free(status);
5064 	}
5065 
5066 	if (res) {
5067 		if (completion_status->sct != SPDK_NVME_SCT_COMMAND_SPECIFIC ||
5068 		    completion_status->sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) {
5069 			if (completion_status->sct == SPDK_NVME_SCT_COMMAND_SPECIFIC  &&
5070 			    completion_status->sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) {
5071 				NVME_CTRLR_NOTICELOG(ctrlr,
5072 						     "firmware activation requires conventional reset to be performed. !\n");
5073 			} else {
5074 				NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5075 			}
5076 			return -ENXIO;
5077 		}
5078 	}
5079 
5080 	return spdk_nvme_ctrlr_reset(ctrlr);
5081 }
5082 
5083 int
5084 spdk_nvme_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
5085 {
5086 	int rc, size;
5087 	union spdk_nvme_cmbsz_register cmbsz;
5088 
5089 	cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr);
5090 
5091 	if (cmbsz.bits.rds == 0 || cmbsz.bits.wds == 0) {
5092 		return -ENOTSUP;
5093 	}
5094 
5095 	size = cmbsz.bits.sz * (0x1000 << (cmbsz.bits.szu * 4));
5096 
5097 	nvme_ctrlr_lock(ctrlr);
5098 	rc = nvme_transport_ctrlr_reserve_cmb(ctrlr);
5099 	nvme_ctrlr_unlock(ctrlr);
5100 
5101 	if (rc < 0) {
5102 		return rc;
5103 	}
5104 
5105 	return size;
5106 }
5107 
5108 void *
5109 spdk_nvme_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
5110 {
5111 	void *buf;
5112 
5113 	nvme_ctrlr_lock(ctrlr);
5114 	buf = nvme_transport_ctrlr_map_cmb(ctrlr, size);
5115 	nvme_ctrlr_unlock(ctrlr);
5116 
5117 	return buf;
5118 }
5119 
5120 void
5121 spdk_nvme_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr)
5122 {
5123 	nvme_ctrlr_lock(ctrlr);
5124 	nvme_transport_ctrlr_unmap_cmb(ctrlr);
5125 	nvme_ctrlr_unlock(ctrlr);
5126 }
5127 
5128 int
5129 spdk_nvme_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr)
5130 {
5131 	int rc;
5132 
5133 	nvme_ctrlr_lock(ctrlr);
5134 	rc = nvme_transport_ctrlr_enable_pmr(ctrlr);
5135 	nvme_ctrlr_unlock(ctrlr);
5136 
5137 	return rc;
5138 }
5139 
5140 int
5141 spdk_nvme_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr)
5142 {
5143 	int rc;
5144 
5145 	nvme_ctrlr_lock(ctrlr);
5146 	rc = nvme_transport_ctrlr_disable_pmr(ctrlr);
5147 	nvme_ctrlr_unlock(ctrlr);
5148 
5149 	return rc;
5150 }
5151 
5152 void *
5153 spdk_nvme_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
5154 {
5155 	void *buf;
5156 
5157 	nvme_ctrlr_lock(ctrlr);
5158 	buf = nvme_transport_ctrlr_map_pmr(ctrlr, size);
5159 	nvme_ctrlr_unlock(ctrlr);
5160 
5161 	return buf;
5162 }
5163 
5164 int
5165 spdk_nvme_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr)
5166 {
5167 	int rc;
5168 
5169 	nvme_ctrlr_lock(ctrlr);
5170 	rc = nvme_transport_ctrlr_unmap_pmr(ctrlr);
5171 	nvme_ctrlr_unlock(ctrlr);
5172 
5173 	return rc;
5174 }
5175 
5176 int
5177 spdk_nvme_ctrlr_read_boot_partition_start(struct spdk_nvme_ctrlr *ctrlr, void *payload,
5178 		uint32_t bprsz, uint32_t bprof, uint32_t bpid)
5179 {
5180 	union spdk_nvme_bprsel_register bprsel;
5181 	union spdk_nvme_bpinfo_register bpinfo;
5182 	uint64_t bpmbl, bpmb_size;
5183 
5184 	if (ctrlr->cap.bits.bps == 0) {
5185 		return -ENOTSUP;
5186 	}
5187 
5188 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5189 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5190 		return -EIO;
5191 	}
5192 
5193 	if (bpinfo.bits.brs == SPDK_NVME_BRS_READ_IN_PROGRESS) {
5194 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read already initiated\n");
5195 		return -EALREADY;
5196 	}
5197 
5198 	nvme_ctrlr_lock(ctrlr);
5199 
5200 	bpmb_size = bprsz * 4096;
5201 	bpmbl = spdk_vtophys(payload, &bpmb_size);
5202 	if (bpmbl == SPDK_VTOPHYS_ERROR) {
5203 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_vtophys of bpmbl failed\n");
5204 		nvme_ctrlr_unlock(ctrlr);
5205 		return -EFAULT;
5206 	}
5207 
5208 	if (bpmb_size != bprsz * 4096) {
5209 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition buffer is not physically contiguous\n");
5210 		nvme_ctrlr_unlock(ctrlr);
5211 		return -EFAULT;
5212 	}
5213 
5214 	if (nvme_ctrlr_set_bpmbl(ctrlr, bpmbl)) {
5215 		NVME_CTRLR_ERRLOG(ctrlr, "set_bpmbl() failed\n");
5216 		nvme_ctrlr_unlock(ctrlr);
5217 		return -EIO;
5218 	}
5219 
5220 	bprsel.bits.bpid = bpid;
5221 	bprsel.bits.bprof = bprof;
5222 	bprsel.bits.bprsz = bprsz;
5223 
5224 	if (nvme_ctrlr_set_bprsel(ctrlr, &bprsel)) {
5225 		NVME_CTRLR_ERRLOG(ctrlr, "set_bprsel() failed\n");
5226 		nvme_ctrlr_unlock(ctrlr);
5227 		return -EIO;
5228 	}
5229 
5230 	nvme_ctrlr_unlock(ctrlr);
5231 	return 0;
5232 }
5233 
5234 int
5235 spdk_nvme_ctrlr_read_boot_partition_poll(struct spdk_nvme_ctrlr *ctrlr)
5236 {
5237 	int rc = 0;
5238 	union spdk_nvme_bpinfo_register bpinfo;
5239 
5240 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5241 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5242 		return -EIO;
5243 	}
5244 
5245 	switch (bpinfo.bits.brs) {
5246 	case SPDK_NVME_BRS_NO_READ:
5247 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read not initiated\n");
5248 		rc = -EINVAL;
5249 		break;
5250 	case SPDK_NVME_BRS_READ_IN_PROGRESS:
5251 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition read in progress\n");
5252 		rc = -EAGAIN;
5253 		break;
5254 	case SPDK_NVME_BRS_READ_ERROR:
5255 		NVME_CTRLR_ERRLOG(ctrlr, "Error completing Boot Partition read\n");
5256 		rc = -EIO;
5257 		break;
5258 	case SPDK_NVME_BRS_READ_SUCCESS:
5259 		NVME_CTRLR_INFOLOG(ctrlr, "Boot Partition read completed successfully\n");
5260 		break;
5261 	default:
5262 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition read status\n");
5263 		rc = -EINVAL;
5264 	}
5265 
5266 	return rc;
5267 }
5268 
5269 static void
5270 nvme_write_boot_partition_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5271 {
5272 	int res;
5273 	struct spdk_nvme_ctrlr *ctrlr = arg;
5274 	struct spdk_nvme_fw_commit fw_commit;
5275 	struct spdk_nvme_cpl err_cpl =
5276 	{.status = {.sct = SPDK_NVME_SCT_GENERIC, .sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR }};
5277 
5278 	if (spdk_nvme_cpl_is_error(cpl)) {
5279 		NVME_CTRLR_ERRLOG(ctrlr, "Write Boot Partition failed\n");
5280 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5281 		return;
5282 	}
5283 
5284 	if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADING) {
5285 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Downloading at Offset %d Success\n", ctrlr->fw_offset);
5286 		ctrlr->fw_payload = (uint8_t *)ctrlr->fw_payload + ctrlr->fw_transfer_size;
5287 		ctrlr->fw_offset += ctrlr->fw_transfer_size;
5288 		ctrlr->fw_size_remaining -= ctrlr->fw_transfer_size;
5289 		ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5290 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5291 						       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5292 		if (res) {
5293 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_image_download failed!\n");
5294 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5295 			return;
5296 		}
5297 
5298 		if (ctrlr->fw_transfer_size < ctrlr->min_page_size) {
5299 			ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADED;
5300 		}
5301 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADED) {
5302 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Download Success\n");
5303 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5304 		fw_commit.bpid = ctrlr->bpid;
5305 		fw_commit.ca = SPDK_NVME_FW_COMMIT_REPLACE_BOOT_PARTITION;
5306 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5307 					       nvme_write_boot_partition_cb, ctrlr);
5308 		if (res) {
5309 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5310 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5311 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5312 			return;
5313 		}
5314 
5315 		ctrlr->bp_ws = SPDK_NVME_BP_WS_REPLACE;
5316 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_REPLACE) {
5317 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Replacement Success\n");
5318 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5319 		fw_commit.bpid = ctrlr->bpid;
5320 		fw_commit.ca = SPDK_NVME_FW_COMMIT_ACTIVATE_BOOT_PARTITION;
5321 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5322 					       nvme_write_boot_partition_cb, ctrlr);
5323 		if (res) {
5324 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5325 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5326 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5327 			return;
5328 		}
5329 
5330 		ctrlr->bp_ws = SPDK_NVME_BP_WS_ACTIVATE;
5331 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_ACTIVATE) {
5332 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Activation Success\n");
5333 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5334 	} else {
5335 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition write state\n");
5336 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5337 		return;
5338 	}
5339 }
5340 
5341 int
5342 spdk_nvme_ctrlr_write_boot_partition(struct spdk_nvme_ctrlr *ctrlr,
5343 				     void *payload, uint32_t size, uint32_t bpid,
5344 				     spdk_nvme_cmd_cb cb_fn, void *cb_arg)
5345 {
5346 	int res;
5347 
5348 	if (ctrlr->cap.bits.bps == 0) {
5349 		return -ENOTSUP;
5350 	}
5351 
5352 	ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADING;
5353 	ctrlr->bpid = bpid;
5354 	ctrlr->bp_write_cb_fn = cb_fn;
5355 	ctrlr->bp_write_cb_arg = cb_arg;
5356 	ctrlr->fw_offset = 0;
5357 	ctrlr->fw_size_remaining = size;
5358 	ctrlr->fw_payload = payload;
5359 	ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5360 
5361 	res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5362 					       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5363 
5364 	return res;
5365 }
5366 
5367 bool
5368 spdk_nvme_ctrlr_is_discovery(struct spdk_nvme_ctrlr *ctrlr)
5369 {
5370 	assert(ctrlr);
5371 
5372 	return !strncmp(ctrlr->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN,
5373 			strlen(SPDK_NVMF_DISCOVERY_NQN));
5374 }
5375 
5376 bool
5377 spdk_nvme_ctrlr_is_fabrics(struct spdk_nvme_ctrlr *ctrlr)
5378 {
5379 	assert(ctrlr);
5380 
5381 	return spdk_nvme_trtype_is_fabrics(ctrlr->trid.trtype);
5382 }
5383 
5384 int
5385 spdk_nvme_ctrlr_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5386 				 uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5387 {
5388 	struct nvme_completion_poll_status	*status;
5389 	int					res;
5390 
5391 	status = calloc(1, sizeof(*status));
5392 	if (!status) {
5393 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5394 		return -ENOMEM;
5395 	}
5396 
5397 	res = spdk_nvme_ctrlr_cmd_security_receive(ctrlr, secp, spsp, nssf, payload, size,
5398 			nvme_completion_poll_cb, status);
5399 	if (res) {
5400 		free(status);
5401 		return res;
5402 	}
5403 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5404 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_receive failed!\n");
5405 		if (!status->timed_out) {
5406 			free(status);
5407 		}
5408 		return -ENXIO;
5409 	}
5410 	free(status);
5411 
5412 	return 0;
5413 }
5414 
5415 int
5416 spdk_nvme_ctrlr_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5417 			      uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5418 {
5419 	struct nvme_completion_poll_status	*status;
5420 	int					res;
5421 
5422 	status = calloc(1, sizeof(*status));
5423 	if (!status) {
5424 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5425 		return -ENOMEM;
5426 	}
5427 
5428 	res = spdk_nvme_ctrlr_cmd_security_send(ctrlr, secp, spsp, nssf, payload, size,
5429 						nvme_completion_poll_cb,
5430 						status);
5431 	if (res) {
5432 		free(status);
5433 		return res;
5434 	}
5435 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5436 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_send failed!\n");
5437 		if (!status->timed_out) {
5438 			free(status);
5439 		}
5440 		return -ENXIO;
5441 	}
5442 
5443 	free(status);
5444 
5445 	return 0;
5446 }
5447 
5448 uint64_t
5449 spdk_nvme_ctrlr_get_flags(struct spdk_nvme_ctrlr *ctrlr)
5450 {
5451 	return ctrlr->flags;
5452 }
5453 
5454 const struct spdk_nvme_transport_id *
5455 spdk_nvme_ctrlr_get_transport_id(struct spdk_nvme_ctrlr *ctrlr)
5456 {
5457 	return &ctrlr->trid;
5458 }
5459 
5460 int32_t
5461 spdk_nvme_ctrlr_alloc_qid(struct spdk_nvme_ctrlr *ctrlr)
5462 {
5463 	uint32_t qid;
5464 
5465 	assert(ctrlr->free_io_qids);
5466 	nvme_ctrlr_lock(ctrlr);
5467 	qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1);
5468 	if (qid > ctrlr->opts.num_io_queues) {
5469 		NVME_CTRLR_ERRLOG(ctrlr, "No free I/O queue IDs\n");
5470 		nvme_ctrlr_unlock(ctrlr);
5471 		return -1;
5472 	}
5473 
5474 	spdk_bit_array_clear(ctrlr->free_io_qids, qid);
5475 	nvme_ctrlr_unlock(ctrlr);
5476 	return qid;
5477 }
5478 
5479 void
5480 spdk_nvme_ctrlr_free_qid(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid)
5481 {
5482 	assert(qid <= ctrlr->opts.num_io_queues);
5483 
5484 	nvme_ctrlr_lock(ctrlr);
5485 
5486 	if (spdk_likely(ctrlr->free_io_qids)) {
5487 		spdk_bit_array_set(ctrlr->free_io_qids, qid);
5488 	}
5489 
5490 	nvme_ctrlr_unlock(ctrlr);
5491 }
5492 
5493 int
5494 spdk_nvme_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
5495 				   struct spdk_memory_domain **domains, int array_size)
5496 {
5497 	return nvme_transport_ctrlr_get_memory_domains(ctrlr, domains, array_size);
5498 }
5499