1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2015 Intel Corporation. All rights reserved. 3 * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk/stdinc.h" 8 9 #include "nvme_internal.h" 10 #include "nvme_io_msg.h" 11 12 #include "spdk/env.h" 13 #include "spdk/string.h" 14 #include "spdk/endian.h" 15 16 struct nvme_active_ns_ctx; 17 18 static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr, 19 struct nvme_async_event_request *aer); 20 static void nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx); 21 static int nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns); 22 static int nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns); 23 static int nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns); 24 static void nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr); 25 static void nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state, 26 uint64_t timeout_in_ms); 27 28 static int 29 nvme_ns_cmp(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2) 30 { 31 if (ns1->id < ns2->id) { 32 return -1; 33 } else if (ns1->id > ns2->id) { 34 return 1; 35 } else { 36 return 0; 37 } 38 } 39 40 RB_GENERATE_STATIC(nvme_ns_tree, spdk_nvme_ns, node, nvme_ns_cmp); 41 42 #define CTRLR_STRING(ctrlr) \ 43 ((ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP || ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA) ? \ 44 ctrlr->trid.subnqn : ctrlr->trid.traddr) 45 46 #define NVME_CTRLR_ERRLOG(ctrlr, format, ...) \ 47 SPDK_ERRLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__); 48 49 #define NVME_CTRLR_WARNLOG(ctrlr, format, ...) \ 50 SPDK_WARNLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__); 51 52 #define NVME_CTRLR_NOTICELOG(ctrlr, format, ...) \ 53 SPDK_NOTICELOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__); 54 55 #define NVME_CTRLR_INFOLOG(ctrlr, format, ...) \ 56 SPDK_INFOLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__); 57 58 #ifdef DEBUG 59 #define NVME_CTRLR_DEBUGLOG(ctrlr, format, ...) \ 60 SPDK_DEBUGLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__); 61 #else 62 #define NVME_CTRLR_DEBUGLOG(ctrlr, ...) do { } while (0) 63 #endif 64 65 #define nvme_ctrlr_get_reg_async(ctrlr, reg, sz, cb_fn, cb_arg) \ 66 nvme_transport_ctrlr_get_reg_ ## sz ## _async(ctrlr, \ 67 offsetof(struct spdk_nvme_registers, reg), cb_fn, cb_arg) 68 69 #define nvme_ctrlr_set_reg_async(ctrlr, reg, sz, val, cb_fn, cb_arg) \ 70 nvme_transport_ctrlr_set_reg_ ## sz ## _async(ctrlr, \ 71 offsetof(struct spdk_nvme_registers, reg), val, cb_fn, cb_arg) 72 73 #define nvme_ctrlr_get_cc_async(ctrlr, cb_fn, cb_arg) \ 74 nvme_ctrlr_get_reg_async(ctrlr, cc, 4, cb_fn, cb_arg) 75 76 #define nvme_ctrlr_get_csts_async(ctrlr, cb_fn, cb_arg) \ 77 nvme_ctrlr_get_reg_async(ctrlr, csts, 4, cb_fn, cb_arg) 78 79 #define nvme_ctrlr_get_cap_async(ctrlr, cb_fn, cb_arg) \ 80 nvme_ctrlr_get_reg_async(ctrlr, cap, 8, cb_fn, cb_arg) 81 82 #define nvme_ctrlr_get_vs_async(ctrlr, cb_fn, cb_arg) \ 83 nvme_ctrlr_get_reg_async(ctrlr, vs, 4, cb_fn, cb_arg) 84 85 #define nvme_ctrlr_set_cc_async(ctrlr, value, cb_fn, cb_arg) \ 86 nvme_ctrlr_set_reg_async(ctrlr, cc, 4, value, cb_fn, cb_arg) 87 88 static int 89 nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc) 90 { 91 return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw), 92 &cc->raw); 93 } 94 95 static int 96 nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts) 97 { 98 return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw), 99 &csts->raw); 100 } 101 102 int 103 nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap) 104 { 105 return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw), 106 &cap->raw); 107 } 108 109 int 110 nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs) 111 { 112 return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw), 113 &vs->raw); 114 } 115 116 int 117 nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz) 118 { 119 return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw), 120 &cmbsz->raw); 121 } 122 123 int 124 nvme_ctrlr_get_pmrcap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_pmrcap_register *pmrcap) 125 { 126 return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, pmrcap.raw), 127 &pmrcap->raw); 128 } 129 130 int 131 nvme_ctrlr_get_bpinfo(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bpinfo_register *bpinfo) 132 { 133 return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bpinfo.raw), 134 &bpinfo->raw); 135 } 136 137 int 138 nvme_ctrlr_set_bprsel(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bprsel_register *bprsel) 139 { 140 return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bprsel.raw), 141 bprsel->raw); 142 } 143 144 int 145 nvme_ctrlr_set_bpmbl(struct spdk_nvme_ctrlr *ctrlr, uint64_t bpmbl_value) 146 { 147 return nvme_transport_ctrlr_set_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, bpmbl), 148 bpmbl_value); 149 } 150 151 static int 152 nvme_ctrlr_set_nssr(struct spdk_nvme_ctrlr *ctrlr, uint32_t nssr_value) 153 { 154 return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, nssr), 155 nssr_value); 156 } 157 158 bool 159 nvme_ctrlr_multi_iocs_enabled(struct spdk_nvme_ctrlr *ctrlr) 160 { 161 return ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS && 162 ctrlr->opts.command_set == SPDK_NVME_CC_CSS_IOCS; 163 } 164 165 /* When the field in spdk_nvme_ctrlr_opts are changed and you change this function, please 166 * also update the nvme_ctrl_opts_init function in nvme_ctrlr.c 167 */ 168 void 169 spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size) 170 { 171 assert(opts); 172 173 opts->opts_size = opts_size; 174 175 #define FIELD_OK(field) \ 176 offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size 177 178 #define SET_FIELD(field, value) \ 179 if (offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size) { \ 180 opts->field = value; \ 181 } \ 182 183 SET_FIELD(num_io_queues, DEFAULT_MAX_IO_QUEUES); 184 SET_FIELD(use_cmb_sqs, false); 185 SET_FIELD(no_shn_notification, false); 186 SET_FIELD(arb_mechanism, SPDK_NVME_CC_AMS_RR); 187 SET_FIELD(arbitration_burst, 0); 188 SET_FIELD(low_priority_weight, 0); 189 SET_FIELD(medium_priority_weight, 0); 190 SET_FIELD(high_priority_weight, 0); 191 SET_FIELD(keep_alive_timeout_ms, MIN_KEEP_ALIVE_TIMEOUT_IN_MS); 192 SET_FIELD(transport_retry_count, SPDK_NVME_DEFAULT_RETRY_COUNT); 193 SET_FIELD(io_queue_size, DEFAULT_IO_QUEUE_SIZE); 194 195 if (nvme_driver_init() == 0) { 196 if (FIELD_OK(hostnqn)) { 197 nvme_get_default_hostnqn(opts->hostnqn, sizeof(opts->hostnqn)); 198 } 199 200 if (FIELD_OK(extended_host_id)) { 201 memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id, 202 sizeof(opts->extended_host_id)); 203 } 204 205 } 206 207 SET_FIELD(io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS); 208 209 if (FIELD_OK(src_addr)) { 210 memset(opts->src_addr, 0, sizeof(opts->src_addr)); 211 } 212 213 if (FIELD_OK(src_svcid)) { 214 memset(opts->src_svcid, 0, sizeof(opts->src_svcid)); 215 } 216 217 if (FIELD_OK(host_id)) { 218 memset(opts->host_id, 0, sizeof(opts->host_id)); 219 } 220 221 SET_FIELD(command_set, CHAR_BIT); 222 SET_FIELD(admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000); 223 SET_FIELD(header_digest, false); 224 SET_FIELD(data_digest, false); 225 SET_FIELD(disable_error_logging, false); 226 SET_FIELD(transport_ack_timeout, SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT); 227 SET_FIELD(admin_queue_size, DEFAULT_ADMIN_QUEUE_SIZE); 228 SET_FIELD(fabrics_connect_timeout_us, NVME_FABRIC_CONNECT_COMMAND_TIMEOUT); 229 SET_FIELD(disable_read_ana_log_page, false); 230 SET_FIELD(disable_read_changed_ns_list_log_page, false); 231 SET_FIELD(tls_psk, NULL); 232 SET_FIELD(dhchap_key, NULL); 233 SET_FIELD(dhchap_ctrlr_key, NULL); 234 SET_FIELD(dhchap_digests, 235 SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | 236 SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | 237 SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512)); 238 SET_FIELD(dhchap_dhgroups, 239 SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | 240 SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | 241 SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | 242 SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | 243 SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | 244 SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192)); 245 246 if (FIELD_OK(psk)) { 247 memset(opts->psk, 0, sizeof(opts->psk)); 248 } 249 250 #undef FIELD_OK 251 #undef SET_FIELD 252 } 253 254 const struct spdk_nvme_ctrlr_opts * 255 spdk_nvme_ctrlr_get_opts(struct spdk_nvme_ctrlr *ctrlr) 256 { 257 return &ctrlr->opts; 258 } 259 260 /** 261 * This function will be called when the process allocates the IO qpair. 262 * Note: the ctrlr_lock must be held when calling this function. 263 */ 264 static void 265 nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair) 266 { 267 struct spdk_nvme_ctrlr_process *active_proc; 268 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 269 270 active_proc = nvme_ctrlr_get_current_process(ctrlr); 271 if (active_proc) { 272 TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq); 273 qpair->active_proc = active_proc; 274 } 275 } 276 277 /** 278 * This function will be called when the process frees the IO qpair. 279 * Note: the ctrlr_lock must be held when calling this function. 280 */ 281 static void 282 nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair) 283 { 284 struct spdk_nvme_ctrlr_process *active_proc; 285 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 286 struct spdk_nvme_qpair *active_qpair, *tmp_qpair; 287 288 active_proc = nvme_ctrlr_get_current_process(ctrlr); 289 if (!active_proc) { 290 return; 291 } 292 293 TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs, 294 per_process_tailq, tmp_qpair) { 295 if (active_qpair == qpair) { 296 TAILQ_REMOVE(&active_proc->allocated_io_qpairs, 297 active_qpair, per_process_tailq); 298 299 break; 300 } 301 } 302 } 303 304 void 305 spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr, 306 struct spdk_nvme_io_qpair_opts *opts, 307 size_t opts_size) 308 { 309 assert(ctrlr); 310 311 assert(opts); 312 313 memset(opts, 0, opts_size); 314 315 #define FIELD_OK(field) \ 316 offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size 317 318 if (FIELD_OK(qprio)) { 319 opts->qprio = SPDK_NVME_QPRIO_URGENT; 320 } 321 322 if (FIELD_OK(io_queue_size)) { 323 opts->io_queue_size = ctrlr->opts.io_queue_size; 324 } 325 326 if (FIELD_OK(io_queue_requests)) { 327 opts->io_queue_requests = ctrlr->opts.io_queue_requests; 328 } 329 330 if (FIELD_OK(delay_cmd_submit)) { 331 opts->delay_cmd_submit = false; 332 } 333 334 if (FIELD_OK(sq.vaddr)) { 335 opts->sq.vaddr = NULL; 336 } 337 338 if (FIELD_OK(sq.paddr)) { 339 opts->sq.paddr = 0; 340 } 341 342 if (FIELD_OK(sq.buffer_size)) { 343 opts->sq.buffer_size = 0; 344 } 345 346 if (FIELD_OK(cq.vaddr)) { 347 opts->cq.vaddr = NULL; 348 } 349 350 if (FIELD_OK(cq.paddr)) { 351 opts->cq.paddr = 0; 352 } 353 354 if (FIELD_OK(cq.buffer_size)) { 355 opts->cq.buffer_size = 0; 356 } 357 358 if (FIELD_OK(create_only)) { 359 opts->create_only = false; 360 } 361 362 if (FIELD_OK(async_mode)) { 363 opts->async_mode = false; 364 } 365 366 #undef FIELD_OK 367 } 368 369 static struct spdk_nvme_qpair * 370 nvme_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, 371 const struct spdk_nvme_io_qpair_opts *opts) 372 { 373 int32_t qid; 374 struct spdk_nvme_qpair *qpair; 375 union spdk_nvme_cc_register cc; 376 377 if (!ctrlr) { 378 return NULL; 379 } 380 381 nvme_ctrlr_lock(ctrlr); 382 cc.raw = ctrlr->process_init_cc.raw; 383 384 if (opts->qprio & ~SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK) { 385 nvme_ctrlr_unlock(ctrlr); 386 return NULL; 387 } 388 389 /* 390 * Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the 391 * default round robin arbitration method. 392 */ 393 if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts->qprio != SPDK_NVME_QPRIO_URGENT)) { 394 NVME_CTRLR_ERRLOG(ctrlr, "invalid queue priority for default round robin arbitration method\n"); 395 nvme_ctrlr_unlock(ctrlr); 396 return NULL; 397 } 398 399 qid = spdk_nvme_ctrlr_alloc_qid(ctrlr); 400 if (qid < 0) { 401 nvme_ctrlr_unlock(ctrlr); 402 return NULL; 403 } 404 405 qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, opts); 406 if (qpair == NULL) { 407 NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_create_io_qpair() failed\n"); 408 spdk_nvme_ctrlr_free_qid(ctrlr, qid); 409 nvme_ctrlr_unlock(ctrlr); 410 return NULL; 411 } 412 413 TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq); 414 415 nvme_ctrlr_proc_add_io_qpair(qpair); 416 417 nvme_ctrlr_unlock(ctrlr); 418 419 return qpair; 420 } 421 422 int 423 spdk_nvme_ctrlr_connect_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 424 { 425 int rc; 426 427 if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) { 428 return -EISCONN; 429 } 430 431 nvme_ctrlr_lock(ctrlr); 432 rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair); 433 nvme_ctrlr_unlock(ctrlr); 434 435 if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) { 436 spdk_delay_us(100); 437 } 438 439 return rc; 440 } 441 442 void 443 spdk_nvme_ctrlr_disconnect_io_qpair(struct spdk_nvme_qpair *qpair) 444 { 445 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 446 447 nvme_ctrlr_lock(ctrlr); 448 nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair); 449 nvme_ctrlr_unlock(ctrlr); 450 } 451 452 struct spdk_nvme_qpair * 453 spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr, 454 const struct spdk_nvme_io_qpair_opts *user_opts, 455 size_t opts_size) 456 { 457 458 struct spdk_nvme_qpair *qpair = NULL; 459 struct spdk_nvme_io_qpair_opts opts; 460 int rc; 461 462 nvme_ctrlr_lock(ctrlr); 463 464 if (spdk_unlikely(ctrlr->state != NVME_CTRLR_STATE_READY)) { 465 /* When controller is resetting or initializing, free_io_qids is deleted or not created yet. 466 * We can't create IO qpair in that case */ 467 goto unlock; 468 } 469 470 /* 471 * Get the default options, then overwrite them with the user-provided options 472 * up to opts_size. 473 * 474 * This allows for extensions of the opts structure without breaking 475 * ABI compatibility. 476 */ 477 spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts)); 478 if (user_opts) { 479 memcpy(&opts, user_opts, spdk_min(sizeof(opts), opts_size)); 480 481 /* If user passes buffers, make sure they're big enough for the requested queue size */ 482 if (opts.sq.vaddr) { 483 if (opts.sq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))) { 484 NVME_CTRLR_ERRLOG(ctrlr, "sq buffer size %" PRIx64 " is too small for sq size %zx\n", 485 opts.sq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))); 486 goto unlock; 487 } 488 } 489 if (opts.cq.vaddr) { 490 if (opts.cq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))) { 491 NVME_CTRLR_ERRLOG(ctrlr, "cq buffer size %" PRIx64 " is too small for cq size %zx\n", 492 opts.cq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))); 493 goto unlock; 494 } 495 } 496 } 497 498 qpair = nvme_ctrlr_create_io_qpair(ctrlr, &opts); 499 500 if (qpair == NULL || opts.create_only == true) { 501 goto unlock; 502 } 503 504 rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair); 505 if (rc != 0) { 506 NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_connect_io_qpair() failed\n"); 507 nvme_ctrlr_proc_remove_io_qpair(qpair); 508 TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq); 509 spdk_bit_array_set(ctrlr->free_io_qids, qpair->id); 510 nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair); 511 qpair = NULL; 512 goto unlock; 513 } 514 515 unlock: 516 nvme_ctrlr_unlock(ctrlr); 517 518 return qpair; 519 } 520 521 int 522 spdk_nvme_ctrlr_reconnect_io_qpair(struct spdk_nvme_qpair *qpair) 523 { 524 struct spdk_nvme_ctrlr *ctrlr; 525 enum nvme_qpair_state qpair_state; 526 int rc; 527 528 assert(qpair != NULL); 529 assert(nvme_qpair_is_admin_queue(qpair) == false); 530 assert(qpair->ctrlr != NULL); 531 532 ctrlr = qpair->ctrlr; 533 nvme_ctrlr_lock(ctrlr); 534 qpair_state = nvme_qpair_get_state(qpair); 535 536 if (ctrlr->is_removed) { 537 rc = -ENODEV; 538 goto out; 539 } 540 541 if (ctrlr->is_resetting || qpair_state == NVME_QPAIR_DISCONNECTING) { 542 rc = -EAGAIN; 543 goto out; 544 } 545 546 if (ctrlr->is_failed || qpair_state == NVME_QPAIR_DESTROYING) { 547 rc = -ENXIO; 548 goto out; 549 } 550 551 if (qpair_state != NVME_QPAIR_DISCONNECTED) { 552 rc = 0; 553 goto out; 554 } 555 556 rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair); 557 if (rc) { 558 rc = -EAGAIN; 559 goto out; 560 } 561 562 out: 563 nvme_ctrlr_unlock(ctrlr); 564 return rc; 565 } 566 567 spdk_nvme_qp_failure_reason 568 spdk_nvme_ctrlr_get_admin_qp_failure_reason(struct spdk_nvme_ctrlr *ctrlr) 569 { 570 return ctrlr->adminq->transport_failure_reason; 571 } 572 573 /* 574 * This internal function will attempt to take the controller 575 * lock before calling disconnect on a controller qpair. 576 * Functions already holding the controller lock should 577 * call nvme_transport_ctrlr_disconnect_qpair directly. 578 */ 579 void 580 nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair) 581 { 582 struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; 583 584 assert(ctrlr != NULL); 585 nvme_ctrlr_lock(ctrlr); 586 nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair); 587 nvme_ctrlr_unlock(ctrlr); 588 } 589 590 int 591 spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair) 592 { 593 struct spdk_nvme_ctrlr *ctrlr; 594 595 if (qpair == NULL) { 596 return 0; 597 } 598 599 ctrlr = qpair->ctrlr; 600 601 if (qpair->in_completion_context) { 602 /* 603 * There are many cases where it is convenient to delete an io qpair in the context 604 * of that qpair's completion routine. To handle this properly, set a flag here 605 * so that the completion routine will perform an actual delete after the context 606 * unwinds. 607 */ 608 qpair->delete_after_completion_context = 1; 609 return 0; 610 } 611 612 qpair->destroy_in_progress = 1; 613 614 nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair); 615 616 if (qpair->poll_group && (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr))) { 617 spdk_nvme_poll_group_remove(qpair->poll_group->group, qpair); 618 } 619 620 /* Do not retry. */ 621 nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING); 622 623 /* In the multi-process case, a process may call this function on a foreign 624 * I/O qpair (i.e. one that this process did not create) when that qpairs process 625 * exits unexpectedly. In that case, we must not try to abort any reqs associated 626 * with that qpair, since the callbacks will also be foreign to this process. 627 */ 628 if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) { 629 nvme_qpair_abort_all_queued_reqs(qpair); 630 } 631 632 nvme_ctrlr_lock(ctrlr); 633 634 nvme_ctrlr_proc_remove_io_qpair(qpair); 635 636 TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq); 637 spdk_nvme_ctrlr_free_qid(ctrlr, qpair->id); 638 639 nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair); 640 nvme_ctrlr_unlock(ctrlr); 641 return 0; 642 } 643 644 static void 645 nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr, 646 struct spdk_nvme_intel_log_page_directory *log_page_directory) 647 { 648 if (log_page_directory == NULL) { 649 return; 650 } 651 652 assert(ctrlr->cdata.vid == SPDK_PCI_VID_INTEL); 653 654 ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true; 655 656 if (log_page_directory->read_latency_log_len || 657 (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) { 658 ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true; 659 } 660 if (log_page_directory->write_latency_log_len || 661 (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) { 662 ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true; 663 } 664 if (log_page_directory->temperature_statistics_log_len) { 665 ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true; 666 } 667 if (log_page_directory->smart_log_len) { 668 ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true; 669 } 670 if (log_page_directory->marketing_description_log_len) { 671 ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true; 672 } 673 } 674 675 struct intel_log_pages_ctx { 676 struct spdk_nvme_intel_log_page_directory log_page_directory; 677 struct spdk_nvme_ctrlr *ctrlr; 678 }; 679 680 static void 681 nvme_ctrlr_set_intel_support_log_pages_done(void *arg, const struct spdk_nvme_cpl *cpl) 682 { 683 struct intel_log_pages_ctx *ctx = arg; 684 struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr; 685 686 if (!spdk_nvme_cpl_is_error(cpl)) { 687 nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, &ctx->log_page_directory); 688 } 689 690 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES, 691 ctrlr->opts.admin_timeout_ms); 692 free(ctx); 693 } 694 695 static int 696 nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr) 697 { 698 int rc = 0; 699 struct intel_log_pages_ctx *ctx; 700 701 ctx = calloc(1, sizeof(*ctx)); 702 if (!ctx) { 703 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES, 704 ctrlr->opts.admin_timeout_ms); 705 return 0; 706 } 707 708 ctx->ctrlr = ctrlr; 709 710 rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY, 711 SPDK_NVME_GLOBAL_NS_TAG, &ctx->log_page_directory, 712 sizeof(struct spdk_nvme_intel_log_page_directory), 713 0, nvme_ctrlr_set_intel_support_log_pages_done, ctx); 714 if (rc != 0) { 715 free(ctx); 716 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES, 717 ctrlr->opts.admin_timeout_ms); 718 return 0; 719 } 720 721 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES, 722 ctrlr->opts.admin_timeout_ms); 723 724 return 0; 725 } 726 727 static int 728 nvme_ctrlr_alloc_ana_log_page(struct spdk_nvme_ctrlr *ctrlr) 729 { 730 uint32_t ana_log_page_size; 731 732 ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + ctrlr->cdata.nanagrpid * 733 sizeof(struct spdk_nvme_ana_group_descriptor) + ctrlr->active_ns_count * 734 sizeof(uint32_t); 735 736 /* Number of active namespaces may have changed. 737 * Check if ANA log page fits into existing buffer. 738 */ 739 if (ana_log_page_size > ctrlr->ana_log_page_size) { 740 void *new_buffer; 741 742 if (ctrlr->ana_log_page) { 743 new_buffer = realloc(ctrlr->ana_log_page, ana_log_page_size); 744 } else { 745 new_buffer = calloc(1, ana_log_page_size); 746 } 747 748 if (!new_buffer) { 749 NVME_CTRLR_ERRLOG(ctrlr, "could not allocate ANA log page buffer, size %u\n", 750 ana_log_page_size); 751 return -ENXIO; 752 } 753 754 ctrlr->ana_log_page = new_buffer; 755 if (ctrlr->copied_ana_desc) { 756 new_buffer = realloc(ctrlr->copied_ana_desc, ana_log_page_size); 757 } else { 758 new_buffer = calloc(1, ana_log_page_size); 759 } 760 761 if (!new_buffer) { 762 NVME_CTRLR_ERRLOG(ctrlr, "could not allocate a buffer to parse ANA descriptor, size %u\n", 763 ana_log_page_size); 764 return -ENOMEM; 765 } 766 767 ctrlr->copied_ana_desc = new_buffer; 768 ctrlr->ana_log_page_size = ana_log_page_size; 769 } 770 771 return 0; 772 } 773 774 static int 775 nvme_ctrlr_update_ana_log_page(struct spdk_nvme_ctrlr *ctrlr) 776 { 777 struct nvme_completion_poll_status *status; 778 int rc; 779 780 rc = nvme_ctrlr_alloc_ana_log_page(ctrlr); 781 if (rc != 0) { 782 return rc; 783 } 784 785 status = calloc(1, sizeof(*status)); 786 if (status == NULL) { 787 NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n"); 788 return -ENOMEM; 789 } 790 791 rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS, 792 SPDK_NVME_GLOBAL_NS_TAG, ctrlr->ana_log_page, 793 ctrlr->ana_log_page_size, 0, 794 nvme_completion_poll_cb, status); 795 if (rc != 0) { 796 free(status); 797 return rc; 798 } 799 800 if (nvme_wait_for_completion_robust_lock_timeout(ctrlr->adminq, status, &ctrlr->ctrlr_lock, 801 ctrlr->opts.admin_timeout_ms * 1000)) { 802 if (!status->timed_out) { 803 free(status); 804 } 805 return -EIO; 806 } 807 808 free(status); 809 return 0; 810 } 811 812 static int 813 nvme_ctrlr_update_ns_ana_states(const struct spdk_nvme_ana_group_descriptor *desc, 814 void *cb_arg) 815 { 816 struct spdk_nvme_ctrlr *ctrlr = cb_arg; 817 struct spdk_nvme_ns *ns; 818 uint32_t i, nsid; 819 820 for (i = 0; i < desc->num_of_nsid; i++) { 821 nsid = desc->nsid[i]; 822 if (nsid == 0 || nsid > ctrlr->cdata.nn) { 823 continue; 824 } 825 826 ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); 827 assert(ns != NULL); 828 829 ns->ana_group_id = desc->ana_group_id; 830 ns->ana_state = desc->ana_state; 831 } 832 833 return 0; 834 } 835 836 int 837 nvme_ctrlr_parse_ana_log_page(struct spdk_nvme_ctrlr *ctrlr, 838 spdk_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg) 839 { 840 struct spdk_nvme_ana_group_descriptor *copied_desc; 841 uint8_t *orig_desc; 842 uint32_t i, desc_size, copy_len; 843 int rc = 0; 844 845 if (ctrlr->ana_log_page == NULL) { 846 return -EINVAL; 847 } 848 849 copied_desc = ctrlr->copied_ana_desc; 850 851 orig_desc = (uint8_t *)ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page); 852 copy_len = ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page); 853 854 for (i = 0; i < ctrlr->ana_log_page->num_ana_group_desc; i++) { 855 memcpy(copied_desc, orig_desc, copy_len); 856 857 rc = cb_fn(copied_desc, cb_arg); 858 if (rc != 0) { 859 break; 860 } 861 862 desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) + 863 copied_desc->num_of_nsid * sizeof(uint32_t); 864 orig_desc += desc_size; 865 copy_len -= desc_size; 866 } 867 868 return rc; 869 } 870 871 static int 872 nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr) 873 { 874 int rc = 0; 875 876 memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported)); 877 /* Mandatory pages */ 878 ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true; 879 ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true; 880 ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true; 881 if (ctrlr->cdata.lpa.celp) { 882 ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true; 883 } 884 885 if (ctrlr->cdata.cmic.ana_reporting) { 886 ctrlr->log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] = true; 887 if (!ctrlr->opts.disable_read_ana_log_page) { 888 rc = nvme_ctrlr_update_ana_log_page(ctrlr); 889 if (rc == 0) { 890 nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states, 891 ctrlr); 892 } 893 } 894 } 895 896 if (ctrlr->cdata.ctratt.bits.fdps) { 897 ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_CONFIGURATIONS] = true; 898 ctrlr->log_page_supported[SPDK_NVME_LOG_RECLAIM_UNIT_HANDLE_USAGE] = true; 899 ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_STATISTICS] = true; 900 ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_EVENTS] = true; 901 } 902 903 if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL && 904 ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE && 905 !(ctrlr->quirks & NVME_INTEL_QUIRK_NO_LOG_PAGES)) { 906 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES, 907 ctrlr->opts.admin_timeout_ms); 908 909 } else { 910 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES, 911 ctrlr->opts.admin_timeout_ms); 912 913 } 914 915 return rc; 916 } 917 918 static void 919 nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr) 920 { 921 ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true; 922 ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true; 923 ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true; 924 ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true; 925 ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true; 926 ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true; 927 ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true; 928 } 929 930 static void 931 nvme_ctrlr_set_arbitration_feature(struct spdk_nvme_ctrlr *ctrlr) 932 { 933 uint32_t cdw11; 934 struct nvme_completion_poll_status *status; 935 936 if (ctrlr->opts.arbitration_burst == 0) { 937 return; 938 } 939 940 if (ctrlr->opts.arbitration_burst > 7) { 941 NVME_CTRLR_WARNLOG(ctrlr, "Valid arbitration burst values is from 0-7\n"); 942 return; 943 } 944 945 status = calloc(1, sizeof(*status)); 946 if (!status) { 947 NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n"); 948 return; 949 } 950 951 cdw11 = ctrlr->opts.arbitration_burst; 952 953 if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_WRR_SUPPORTED) { 954 cdw11 |= (uint32_t)ctrlr->opts.low_priority_weight << 8; 955 cdw11 |= (uint32_t)ctrlr->opts.medium_priority_weight << 16; 956 cdw11 |= (uint32_t)ctrlr->opts.high_priority_weight << 24; 957 } 958 959 if (spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION, 960 cdw11, 0, NULL, 0, 961 nvme_completion_poll_cb, status) < 0) { 962 NVME_CTRLR_ERRLOG(ctrlr, "Set arbitration feature failed\n"); 963 free(status); 964 return; 965 } 966 967 if (nvme_wait_for_completion_timeout(ctrlr->adminq, status, 968 ctrlr->opts.admin_timeout_ms * 1000)) { 969 NVME_CTRLR_ERRLOG(ctrlr, "Timeout to set arbitration feature\n"); 970 } 971 972 if (!status->timed_out) { 973 free(status); 974 } 975 } 976 977 static void 978 nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr) 979 { 980 memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported)); 981 /* Mandatory features */ 982 ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true; 983 ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true; 984 ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true; 985 ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true; 986 ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true; 987 ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true; 988 ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true; 989 ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true; 990 ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true; 991 /* Optional features */ 992 if (ctrlr->cdata.vwc.present) { 993 ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true; 994 } 995 if (ctrlr->cdata.apsta.supported) { 996 ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true; 997 } 998 if (ctrlr->cdata.hmpre) { 999 ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true; 1000 } 1001 if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) { 1002 nvme_ctrlr_set_intel_supported_features(ctrlr); 1003 } 1004 1005 nvme_ctrlr_set_arbitration_feature(ctrlr); 1006 } 1007 1008 static void 1009 nvme_ctrlr_set_host_feature_done(void *arg, const struct spdk_nvme_cpl *cpl) 1010 { 1011 struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg; 1012 1013 spdk_free(ctrlr->tmp_ptr); 1014 ctrlr->tmp_ptr = NULL; 1015 1016 if (spdk_nvme_cpl_is_error(cpl)) { 1017 NVME_CTRLR_ERRLOG(ctrlr, "Set host behavior support feature failed: SC %x SCT %x\n", 1018 cpl->status.sc, cpl->status.sct); 1019 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 1020 return; 1021 } 1022 1023 ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT] = true; 1024 1025 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG, 1026 ctrlr->opts.admin_timeout_ms); 1027 } 1028 1029 /* We do not want to do add synchronous operation anymore. 1030 * We set the Host Behavior Support feature asynchronousin in different states. 1031 */ 1032 static int 1033 nvme_ctrlr_set_host_feature(struct spdk_nvme_ctrlr *ctrlr) 1034 { 1035 struct spdk_nvme_host_behavior *host; 1036 int rc; 1037 1038 if (!ctrlr->cdata.ctratt.bits.elbas) { 1039 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG, 1040 ctrlr->opts.admin_timeout_ms); 1041 return 0; 1042 } 1043 1044 ctrlr->tmp_ptr = spdk_dma_zmalloc(sizeof(struct spdk_nvme_host_behavior), 4096, NULL); 1045 if (!ctrlr->tmp_ptr) { 1046 NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate host behavior support data\n"); 1047 rc = -ENOMEM; 1048 goto error; 1049 } 1050 1051 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE, 1052 ctrlr->opts.admin_timeout_ms); 1053 1054 host = ctrlr->tmp_ptr; 1055 1056 host->lbafee = 1; 1057 1058 rc = spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT, 1059 0, 0, host, sizeof(struct spdk_nvme_host_behavior), 1060 nvme_ctrlr_set_host_feature_done, ctrlr); 1061 if (rc != 0) { 1062 NVME_CTRLR_ERRLOG(ctrlr, "Set host behavior support feature failed: %d\n", rc); 1063 goto error; 1064 } 1065 1066 return 0; 1067 1068 error: 1069 spdk_free(ctrlr->tmp_ptr); 1070 ctrlr->tmp_ptr = NULL; 1071 1072 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 1073 return rc; 1074 } 1075 1076 bool 1077 spdk_nvme_ctrlr_is_failed(struct spdk_nvme_ctrlr *ctrlr) 1078 { 1079 return ctrlr->is_failed; 1080 } 1081 1082 void 1083 nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove) 1084 { 1085 /* 1086 * Set the flag here and leave the work failure of qpairs to 1087 * spdk_nvme_qpair_process_completions(). 1088 */ 1089 if (hot_remove) { 1090 ctrlr->is_removed = true; 1091 } 1092 1093 if (ctrlr->is_failed) { 1094 NVME_CTRLR_NOTICELOG(ctrlr, "already in failed state\n"); 1095 return; 1096 } 1097 1098 if (ctrlr->is_disconnecting) { 1099 NVME_CTRLR_DEBUGLOG(ctrlr, "already disconnecting\n"); 1100 return; 1101 } 1102 1103 ctrlr->is_failed = true; 1104 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 1105 nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq); 1106 NVME_CTRLR_ERRLOG(ctrlr, "in failed state.\n"); 1107 } 1108 1109 /** 1110 * This public API function will try to take the controller lock. 1111 * Any private functions being called from a thread already holding 1112 * the ctrlr lock should call nvme_ctrlr_fail directly. 1113 */ 1114 void 1115 spdk_nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr) 1116 { 1117 nvme_ctrlr_lock(ctrlr); 1118 nvme_ctrlr_fail(ctrlr, false); 1119 nvme_ctrlr_unlock(ctrlr); 1120 } 1121 1122 static void 1123 nvme_ctrlr_shutdown_set_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl) 1124 { 1125 struct nvme_ctrlr_detach_ctx *ctx = _ctx; 1126 struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr; 1127 1128 if (spdk_nvme_cpl_is_error(cpl)) { 1129 NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n"); 1130 ctx->shutdown_complete = true; 1131 return; 1132 } 1133 1134 if (ctrlr->opts.no_shn_notification) { 1135 ctx->shutdown_complete = true; 1136 return; 1137 } 1138 1139 /* 1140 * The NVMe specification defines RTD3E to be the time between 1141 * setting SHN = 1 until the controller will set SHST = 10b. 1142 * If the device doesn't report RTD3 entry latency, or if it 1143 * reports RTD3 entry latency less than 10 seconds, pick 1144 * 10 seconds as a reasonable amount of time to 1145 * wait before proceeding. 1146 */ 1147 NVME_CTRLR_DEBUGLOG(ctrlr, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e); 1148 ctx->shutdown_timeout_ms = SPDK_CEIL_DIV(ctrlr->cdata.rtd3e, 1000); 1149 ctx->shutdown_timeout_ms = spdk_max(ctx->shutdown_timeout_ms, 10000); 1150 NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown timeout = %" PRIu32 " ms\n", ctx->shutdown_timeout_ms); 1151 1152 ctx->shutdown_start_tsc = spdk_get_ticks(); 1153 ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS; 1154 } 1155 1156 static void 1157 nvme_ctrlr_shutdown_get_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl) 1158 { 1159 struct nvme_ctrlr_detach_ctx *ctx = _ctx; 1160 struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr; 1161 union spdk_nvme_cc_register cc; 1162 int rc; 1163 1164 if (spdk_nvme_cpl_is_error(cpl)) { 1165 NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n"); 1166 ctx->shutdown_complete = true; 1167 return; 1168 } 1169 1170 assert(value <= UINT32_MAX); 1171 cc.raw = (uint32_t)value; 1172 1173 if (ctrlr->opts.no_shn_notification) { 1174 NVME_CTRLR_INFOLOG(ctrlr, "Disable SSD without shutdown notification\n"); 1175 if (cc.bits.en == 0) { 1176 ctx->shutdown_complete = true; 1177 return; 1178 } 1179 1180 cc.bits.en = 0; 1181 } else { 1182 cc.bits.shn = SPDK_NVME_SHN_NORMAL; 1183 } 1184 1185 rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_shutdown_set_cc_done, ctx); 1186 if (rc != 0) { 1187 NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n"); 1188 ctx->shutdown_complete = true; 1189 } 1190 } 1191 1192 static void 1193 nvme_ctrlr_shutdown_async(struct spdk_nvme_ctrlr *ctrlr, 1194 struct nvme_ctrlr_detach_ctx *ctx) 1195 { 1196 int rc; 1197 1198 if (ctrlr->is_removed) { 1199 ctx->shutdown_complete = true; 1200 return; 1201 } 1202 1203 if (ctrlr->adminq == NULL || 1204 ctrlr->adminq->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE) { 1205 NVME_CTRLR_INFOLOG(ctrlr, "Adminq is not connected.\n"); 1206 ctx->shutdown_complete = true; 1207 return; 1208 } 1209 1210 ctx->state = NVME_CTRLR_DETACH_SET_CC; 1211 rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_shutdown_get_cc_done, ctx); 1212 if (rc != 0) { 1213 NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n"); 1214 ctx->shutdown_complete = true; 1215 } 1216 } 1217 1218 static void 1219 nvme_ctrlr_shutdown_get_csts_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl) 1220 { 1221 struct nvme_ctrlr_detach_ctx *ctx = _ctx; 1222 1223 if (spdk_nvme_cpl_is_error(cpl)) { 1224 NVME_CTRLR_ERRLOG(ctx->ctrlr, "Failed to read the CSTS register\n"); 1225 ctx->shutdown_complete = true; 1226 return; 1227 } 1228 1229 assert(value <= UINT32_MAX); 1230 ctx->csts.raw = (uint32_t)value; 1231 ctx->state = NVME_CTRLR_DETACH_GET_CSTS_DONE; 1232 } 1233 1234 static int 1235 nvme_ctrlr_shutdown_poll_async(struct spdk_nvme_ctrlr *ctrlr, 1236 struct nvme_ctrlr_detach_ctx *ctx) 1237 { 1238 union spdk_nvme_csts_register csts; 1239 uint32_t ms_waited; 1240 1241 switch (ctx->state) { 1242 case NVME_CTRLR_DETACH_SET_CC: 1243 case NVME_CTRLR_DETACH_GET_CSTS: 1244 /* We're still waiting for the register operation to complete */ 1245 spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); 1246 return -EAGAIN; 1247 1248 case NVME_CTRLR_DETACH_CHECK_CSTS: 1249 ctx->state = NVME_CTRLR_DETACH_GET_CSTS; 1250 if (nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_shutdown_get_csts_done, ctx)) { 1251 NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n"); 1252 return -EIO; 1253 } 1254 return -EAGAIN; 1255 1256 case NVME_CTRLR_DETACH_GET_CSTS_DONE: 1257 ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS; 1258 break; 1259 1260 default: 1261 assert(0 && "Should never happen"); 1262 return -EINVAL; 1263 } 1264 1265 ms_waited = (spdk_get_ticks() - ctx->shutdown_start_tsc) * 1000 / spdk_get_ticks_hz(); 1266 csts.raw = ctx->csts.raw; 1267 1268 if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) { 1269 NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown complete in %u milliseconds\n", ms_waited); 1270 return 0; 1271 } 1272 1273 if (ms_waited < ctx->shutdown_timeout_ms) { 1274 return -EAGAIN; 1275 } 1276 1277 NVME_CTRLR_ERRLOG(ctrlr, "did not shutdown within %u milliseconds\n", 1278 ctx->shutdown_timeout_ms); 1279 if (ctrlr->quirks & NVME_QUIRK_SHST_COMPLETE) { 1280 NVME_CTRLR_ERRLOG(ctrlr, "likely due to shutdown handling in the VMWare emulated NVMe SSD\n"); 1281 } 1282 1283 return 0; 1284 } 1285 1286 static inline uint64_t 1287 nvme_ctrlr_get_ready_timeout(struct spdk_nvme_ctrlr *ctrlr) 1288 { 1289 return ctrlr->cap.bits.to * 500; 1290 } 1291 1292 static void 1293 nvme_ctrlr_set_cc_en_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl) 1294 { 1295 struct spdk_nvme_ctrlr *ctrlr = ctx; 1296 1297 if (spdk_nvme_cpl_is_error(cpl)) { 1298 NVME_CTRLR_ERRLOG(ctrlr, "Failed to set the CC register\n"); 1299 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 1300 return; 1301 } 1302 1303 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1, 1304 nvme_ctrlr_get_ready_timeout(ctrlr)); 1305 } 1306 1307 static int 1308 nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) 1309 { 1310 union spdk_nvme_cc_register cc; 1311 int rc; 1312 1313 rc = nvme_transport_ctrlr_enable(ctrlr); 1314 if (rc != 0) { 1315 NVME_CTRLR_ERRLOG(ctrlr, "transport ctrlr_enable failed\n"); 1316 return rc; 1317 } 1318 1319 cc.raw = ctrlr->process_init_cc.raw; 1320 if (cc.bits.en != 0) { 1321 NVME_CTRLR_ERRLOG(ctrlr, "called with CC.EN = 1\n"); 1322 return -EINVAL; 1323 } 1324 1325 cc.bits.en = 1; 1326 cc.bits.css = 0; 1327 cc.bits.shn = 0; 1328 cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */ 1329 cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */ 1330 1331 /* Page size is 2 ^ (12 + mps). */ 1332 cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12; 1333 1334 /* 1335 * Since NVMe 1.0, a controller should have at least one bit set in CAP.CSS. 1336 * A controller that does not have any bit set in CAP.CSS is not spec compliant. 1337 * Try to support such a controller regardless. 1338 */ 1339 if (ctrlr->cap.bits.css == 0) { 1340 NVME_CTRLR_INFOLOG(ctrlr, "Drive reports no command sets supported. Assuming NVM is supported.\n"); 1341 ctrlr->cap.bits.css = SPDK_NVME_CAP_CSS_NVM; 1342 } 1343 1344 /* 1345 * If the user did not explicitly request a command set, or supplied a value larger than 1346 * what can be saved in CC.CSS, use the most reasonable default. 1347 */ 1348 if (ctrlr->opts.command_set >= CHAR_BIT) { 1349 if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS) { 1350 ctrlr->opts.command_set = SPDK_NVME_CC_CSS_IOCS; 1351 } else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NVM) { 1352 ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM; 1353 } else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NOIO) { 1354 /* Technically we should respond with CC_CSS_NOIO in 1355 * this case, but we use NVM instead to work around 1356 * buggy targets and to match Linux driver behavior. 1357 */ 1358 ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM; 1359 } else { 1360 /* Invalid supported bits detected, falling back to NVM. */ 1361 ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM; 1362 } 1363 } 1364 1365 /* Verify that the selected command set is supported by the controller. */ 1366 if (!(ctrlr->cap.bits.css & (1u << ctrlr->opts.command_set))) { 1367 NVME_CTRLR_DEBUGLOG(ctrlr, "Requested I/O command set %u but supported mask is 0x%x\n", 1368 ctrlr->opts.command_set, ctrlr->cap.bits.css); 1369 NVME_CTRLR_DEBUGLOG(ctrlr, "Falling back to NVM. Assuming NVM is supported.\n"); 1370 ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM; 1371 } 1372 1373 cc.bits.css = ctrlr->opts.command_set; 1374 1375 switch (ctrlr->opts.arb_mechanism) { 1376 case SPDK_NVME_CC_AMS_RR: 1377 break; 1378 case SPDK_NVME_CC_AMS_WRR: 1379 if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) { 1380 break; 1381 } 1382 return -EINVAL; 1383 case SPDK_NVME_CC_AMS_VS: 1384 if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) { 1385 break; 1386 } 1387 return -EINVAL; 1388 default: 1389 return -EINVAL; 1390 } 1391 1392 cc.bits.ams = ctrlr->opts.arb_mechanism; 1393 ctrlr->process_init_cc.raw = cc.raw; 1394 1395 if (nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_set_cc_en_done, ctrlr)) { 1396 NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n"); 1397 return -EIO; 1398 } 1399 1400 return 0; 1401 } 1402 1403 static const char * 1404 nvme_ctrlr_state_string(enum nvme_ctrlr_state state) 1405 { 1406 switch (state) { 1407 case NVME_CTRLR_STATE_INIT_DELAY: 1408 return "delay init"; 1409 case NVME_CTRLR_STATE_CONNECT_ADMINQ: 1410 return "connect adminq"; 1411 case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ: 1412 return "wait for connect adminq"; 1413 case NVME_CTRLR_STATE_READ_VS: 1414 return "read vs"; 1415 case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS: 1416 return "read vs wait for vs"; 1417 case NVME_CTRLR_STATE_READ_CAP: 1418 return "read cap"; 1419 case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP: 1420 return "read cap wait for cap"; 1421 case NVME_CTRLR_STATE_CHECK_EN: 1422 return "check en"; 1423 case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC: 1424 return "check en wait for cc"; 1425 case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1: 1426 return "disable and wait for CSTS.RDY = 1"; 1427 case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS: 1428 return "disable and wait for CSTS.RDY = 1 reg"; 1429 case NVME_CTRLR_STATE_SET_EN_0: 1430 return "set CC.EN = 0"; 1431 case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC: 1432 return "set CC.EN = 0 wait for cc"; 1433 case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0: 1434 return "disable and wait for CSTS.RDY = 0"; 1435 case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS: 1436 return "disable and wait for CSTS.RDY = 0 reg"; 1437 case NVME_CTRLR_STATE_DISABLED: 1438 return "controller is disabled"; 1439 case NVME_CTRLR_STATE_ENABLE: 1440 return "enable controller by writing CC.EN = 1"; 1441 case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC: 1442 return "enable controller by writing CC.EN = 1 reg"; 1443 case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1: 1444 return "wait for CSTS.RDY = 1"; 1445 case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS: 1446 return "wait for CSTS.RDY = 1 reg"; 1447 case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE: 1448 return "reset admin queue"; 1449 case NVME_CTRLR_STATE_IDENTIFY: 1450 return "identify controller"; 1451 case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY: 1452 return "wait for identify controller"; 1453 case NVME_CTRLR_STATE_CONFIGURE_AER: 1454 return "configure AER"; 1455 case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER: 1456 return "wait for configure aer"; 1457 case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT: 1458 return "set keep alive timeout"; 1459 case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT: 1460 return "wait for set keep alive timeout"; 1461 case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC: 1462 return "identify controller iocs specific"; 1463 case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC: 1464 return "wait for identify controller iocs specific"; 1465 case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG: 1466 return "get zns cmd and effects log page"; 1467 case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG: 1468 return "wait for get zns cmd and effects log page"; 1469 case NVME_CTRLR_STATE_SET_NUM_QUEUES: 1470 return "set number of queues"; 1471 case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES: 1472 return "wait for set number of queues"; 1473 case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS: 1474 return "identify active ns"; 1475 case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS: 1476 return "wait for identify active ns"; 1477 case NVME_CTRLR_STATE_IDENTIFY_NS: 1478 return "identify ns"; 1479 case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS: 1480 return "wait for identify ns"; 1481 case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS: 1482 return "identify namespace id descriptors"; 1483 case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS: 1484 return "wait for identify namespace id descriptors"; 1485 case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC: 1486 return "identify ns iocs specific"; 1487 case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC: 1488 return "wait for identify ns iocs specific"; 1489 case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES: 1490 return "set supported log pages"; 1491 case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES: 1492 return "set supported INTEL log pages"; 1493 case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES: 1494 return "wait for supported INTEL log pages"; 1495 case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES: 1496 return "set supported features"; 1497 case NVME_CTRLR_STATE_SET_HOST_FEATURE: 1498 return "set host behavior support feature"; 1499 case NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE: 1500 return "wait for set host behavior support feature"; 1501 case NVME_CTRLR_STATE_SET_DB_BUF_CFG: 1502 return "set doorbell buffer config"; 1503 case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG: 1504 return "wait for doorbell buffer config"; 1505 case NVME_CTRLR_STATE_SET_HOST_ID: 1506 return "set host ID"; 1507 case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID: 1508 return "wait for set host ID"; 1509 case NVME_CTRLR_STATE_TRANSPORT_READY: 1510 return "transport ready"; 1511 case NVME_CTRLR_STATE_READY: 1512 return "ready"; 1513 case NVME_CTRLR_STATE_ERROR: 1514 return "error"; 1515 case NVME_CTRLR_STATE_DISCONNECTED: 1516 return "disconnected"; 1517 } 1518 return "unknown"; 1519 }; 1520 1521 static void 1522 _nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state, 1523 uint64_t timeout_in_ms, bool quiet) 1524 { 1525 uint64_t ticks_per_ms, timeout_in_ticks, now_ticks; 1526 1527 ctrlr->state = state; 1528 if (timeout_in_ms == NVME_TIMEOUT_KEEP_EXISTING) { 1529 if (!quiet) { 1530 NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (keeping existing timeout)\n", 1531 nvme_ctrlr_state_string(ctrlr->state)); 1532 } 1533 return; 1534 } 1535 1536 if (timeout_in_ms == NVME_TIMEOUT_INFINITE) { 1537 goto inf; 1538 } 1539 1540 ticks_per_ms = spdk_get_ticks_hz() / 1000; 1541 if (timeout_in_ms > UINT64_MAX / ticks_per_ms) { 1542 NVME_CTRLR_ERRLOG(ctrlr, 1543 "Specified timeout would cause integer overflow. Defaulting to no timeout.\n"); 1544 goto inf; 1545 } 1546 1547 now_ticks = spdk_get_ticks(); 1548 timeout_in_ticks = timeout_in_ms * ticks_per_ms; 1549 if (timeout_in_ticks > UINT64_MAX - now_ticks) { 1550 NVME_CTRLR_ERRLOG(ctrlr, 1551 "Specified timeout would cause integer overflow. Defaulting to no timeout.\n"); 1552 goto inf; 1553 } 1554 1555 ctrlr->state_timeout_tsc = timeout_in_ticks + now_ticks; 1556 if (!quiet) { 1557 NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (timeout %" PRIu64 " ms)\n", 1558 nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms); 1559 } 1560 return; 1561 inf: 1562 if (!quiet) { 1563 NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (no timeout)\n", 1564 nvme_ctrlr_state_string(ctrlr->state)); 1565 } 1566 ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE; 1567 } 1568 1569 static void 1570 nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state, 1571 uint64_t timeout_in_ms) 1572 { 1573 _nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, false); 1574 } 1575 1576 static void 1577 nvme_ctrlr_set_state_quiet(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state, 1578 uint64_t timeout_in_ms) 1579 { 1580 _nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, true); 1581 } 1582 1583 static void 1584 nvme_ctrlr_free_zns_specific_data(struct spdk_nvme_ctrlr *ctrlr) 1585 { 1586 spdk_free(ctrlr->cdata_zns); 1587 ctrlr->cdata_zns = NULL; 1588 } 1589 1590 static void 1591 nvme_ctrlr_free_iocs_specific_data(struct spdk_nvme_ctrlr *ctrlr) 1592 { 1593 nvme_ctrlr_free_zns_specific_data(ctrlr); 1594 } 1595 1596 static void 1597 nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr) 1598 { 1599 if (ctrlr->shadow_doorbell) { 1600 spdk_free(ctrlr->shadow_doorbell); 1601 ctrlr->shadow_doorbell = NULL; 1602 } 1603 1604 if (ctrlr->eventidx) { 1605 spdk_free(ctrlr->eventidx); 1606 ctrlr->eventidx = NULL; 1607 } 1608 } 1609 1610 static void 1611 nvme_ctrlr_set_doorbell_buffer_config_done(void *arg, const struct spdk_nvme_cpl *cpl) 1612 { 1613 struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg; 1614 1615 if (spdk_nvme_cpl_is_error(cpl)) { 1616 NVME_CTRLR_WARNLOG(ctrlr, "Doorbell buffer config failed\n"); 1617 } else { 1618 NVME_CTRLR_INFOLOG(ctrlr, "Doorbell buffer config enabled\n"); 1619 } 1620 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID, 1621 ctrlr->opts.admin_timeout_ms); 1622 } 1623 1624 static int 1625 nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr) 1626 { 1627 int rc = 0; 1628 uint64_t prp1, prp2, len; 1629 1630 if (!ctrlr->cdata.oacs.doorbell_buffer_config) { 1631 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID, 1632 ctrlr->opts.admin_timeout_ms); 1633 return 0; 1634 } 1635 1636 if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) { 1637 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID, 1638 ctrlr->opts.admin_timeout_ms); 1639 return 0; 1640 } 1641 1642 /* only 1 page size for doorbell buffer */ 1643 ctrlr->shadow_doorbell = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size, 1644 NULL, SPDK_ENV_LCORE_ID_ANY, 1645 SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE); 1646 if (ctrlr->shadow_doorbell == NULL) { 1647 rc = -ENOMEM; 1648 goto error; 1649 } 1650 1651 len = ctrlr->page_size; 1652 prp1 = spdk_vtophys(ctrlr->shadow_doorbell, &len); 1653 if (prp1 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) { 1654 rc = -EFAULT; 1655 goto error; 1656 } 1657 1658 ctrlr->eventidx = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size, 1659 NULL, SPDK_ENV_LCORE_ID_ANY, 1660 SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE); 1661 if (ctrlr->eventidx == NULL) { 1662 rc = -ENOMEM; 1663 goto error; 1664 } 1665 1666 len = ctrlr->page_size; 1667 prp2 = spdk_vtophys(ctrlr->eventidx, &len); 1668 if (prp2 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) { 1669 rc = -EFAULT; 1670 goto error; 1671 } 1672 1673 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG, 1674 ctrlr->opts.admin_timeout_ms); 1675 1676 rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2, 1677 nvme_ctrlr_set_doorbell_buffer_config_done, ctrlr); 1678 if (rc != 0) { 1679 goto error; 1680 } 1681 1682 return 0; 1683 1684 error: 1685 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 1686 nvme_ctrlr_free_doorbell_buffer(ctrlr); 1687 return rc; 1688 } 1689 1690 void 1691 nvme_ctrlr_abort_queued_aborts(struct spdk_nvme_ctrlr *ctrlr) 1692 { 1693 struct nvme_request *req, *tmp; 1694 struct spdk_nvme_cpl cpl = {}; 1695 1696 cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; 1697 cpl.status.sct = SPDK_NVME_SCT_GENERIC; 1698 1699 STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) { 1700 STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq); 1701 ctrlr->outstanding_aborts++; 1702 1703 nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, &cpl); 1704 } 1705 } 1706 1707 static int 1708 nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr) 1709 { 1710 if (ctrlr->is_resetting || ctrlr->is_removed) { 1711 /* 1712 * Controller is already resetting or has been removed. Return 1713 * immediately since there is no need to kick off another 1714 * reset in these cases. 1715 */ 1716 return ctrlr->is_resetting ? -EBUSY : -ENXIO; 1717 } 1718 1719 ctrlr->is_resetting = true; 1720 ctrlr->is_failed = false; 1721 ctrlr->is_disconnecting = true; 1722 ctrlr->prepare_for_reset = true; 1723 1724 NVME_CTRLR_NOTICELOG(ctrlr, "resetting controller\n"); 1725 1726 /* Disable keep-alive, it'll be re-enabled as part of the init process */ 1727 ctrlr->keep_alive_interval_ticks = 0; 1728 1729 /* Abort all of the queued abort requests */ 1730 nvme_ctrlr_abort_queued_aborts(ctrlr); 1731 1732 nvme_transport_admin_qpair_abort_aers(ctrlr->adminq); 1733 1734 ctrlr->adminq->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; 1735 nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq); 1736 1737 return 0; 1738 } 1739 1740 static void 1741 nvme_ctrlr_disconnect_done(struct spdk_nvme_ctrlr *ctrlr) 1742 { 1743 assert(ctrlr->is_failed == false); 1744 ctrlr->is_disconnecting = false; 1745 1746 /* Doorbell buffer config is invalid during reset */ 1747 nvme_ctrlr_free_doorbell_buffer(ctrlr); 1748 1749 /* I/O Command Set Specific Identify Controller data is invalidated during reset */ 1750 nvme_ctrlr_free_iocs_specific_data(ctrlr); 1751 1752 spdk_bit_array_free(&ctrlr->free_io_qids); 1753 1754 /* Set the state back to DISCONNECTED to cause a full hardware reset. */ 1755 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISCONNECTED, NVME_TIMEOUT_INFINITE); 1756 } 1757 1758 int 1759 spdk_nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr) 1760 { 1761 int rc; 1762 1763 nvme_ctrlr_lock(ctrlr); 1764 rc = nvme_ctrlr_disconnect(ctrlr); 1765 nvme_ctrlr_unlock(ctrlr); 1766 1767 return rc; 1768 } 1769 1770 void 1771 spdk_nvme_ctrlr_reconnect_async(struct spdk_nvme_ctrlr *ctrlr) 1772 { 1773 nvme_ctrlr_lock(ctrlr); 1774 1775 ctrlr->prepare_for_reset = false; 1776 1777 /* Set the state back to INIT to cause a full hardware reset. */ 1778 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE); 1779 1780 /* Return without releasing ctrlr_lock. ctrlr_lock will be released when 1781 * spdk_nvme_ctrlr_reset_poll_async() returns 0. 1782 */ 1783 } 1784 1785 int 1786 nvme_ctrlr_reinitialize_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) 1787 { 1788 bool async; 1789 int rc; 1790 1791 if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc || 1792 spdk_nvme_ctrlr_is_fabrics(ctrlr) || nvme_qpair_is_admin_queue(qpair)) { 1793 assert(false); 1794 return -EINVAL; 1795 } 1796 1797 /* Force a synchronous connect. */ 1798 async = qpair->async; 1799 qpair->async = false; 1800 rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair); 1801 qpair->async = async; 1802 1803 if (rc != 0) { 1804 qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; 1805 } 1806 1807 return rc; 1808 } 1809 1810 /** 1811 * This function will be called when the controller is being reinitialized. 1812 * Note: the ctrlr_lock must be held when calling this function. 1813 */ 1814 int 1815 spdk_nvme_ctrlr_reconnect_poll_async(struct spdk_nvme_ctrlr *ctrlr) 1816 { 1817 struct spdk_nvme_ns *ns, *tmp_ns; 1818 struct spdk_nvme_qpair *qpair; 1819 int rc = 0, rc_tmp = 0; 1820 1821 if (nvme_ctrlr_process_init(ctrlr) != 0) { 1822 NVME_CTRLR_ERRLOG(ctrlr, "controller reinitialization failed\n"); 1823 rc = -1; 1824 } 1825 if (ctrlr->state != NVME_CTRLR_STATE_READY && rc != -1) { 1826 return -EAGAIN; 1827 } 1828 1829 /* 1830 * For non-fabrics controllers, the memory locations of the transport qpair 1831 * don't change when the controller is reset. They simply need to be 1832 * re-enabled with admin commands to the controller. For fabric 1833 * controllers we need to disconnect and reconnect the qpair on its 1834 * own thread outside of the context of the reset. 1835 */ 1836 if (rc == 0 && !spdk_nvme_ctrlr_is_fabrics(ctrlr)) { 1837 /* Reinitialize qpairs */ 1838 TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) { 1839 /* Always clear the qid bit here, even for a foreign qpair. We need 1840 * to make sure another process doesn't get the chance to grab that 1841 * qid. 1842 */ 1843 assert(spdk_bit_array_get(ctrlr->free_io_qids, qpair->id)); 1844 spdk_bit_array_clear(ctrlr->free_io_qids, qpair->id); 1845 if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc) { 1846 /* 1847 * We cannot reinitialize a foreign qpair. The qpair's owning 1848 * process will take care of it. Set failure reason to FAILURE_RESET 1849 * to ensure that happens. 1850 */ 1851 qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_RESET; 1852 continue; 1853 } 1854 rc_tmp = nvme_ctrlr_reinitialize_io_qpair(ctrlr, qpair); 1855 if (rc_tmp != 0) { 1856 rc = rc_tmp; 1857 } 1858 } 1859 } 1860 1861 /* 1862 * Take this opportunity to remove inactive namespaces. During a reset namespace 1863 * handles can be invalidated. 1864 */ 1865 RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) { 1866 if (!ns->active) { 1867 RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns); 1868 spdk_free(ns); 1869 } 1870 } 1871 1872 if (rc) { 1873 nvme_ctrlr_fail(ctrlr, false); 1874 } 1875 ctrlr->is_resetting = false; 1876 1877 nvme_ctrlr_unlock(ctrlr); 1878 1879 if (!ctrlr->cdata.oaes.ns_attribute_notices) { 1880 /* 1881 * If controller doesn't support ns_attribute_notices and 1882 * namespace attributes change (e.g. number of namespaces) 1883 * we need to update system handling device reset. 1884 */ 1885 nvme_io_msg_ctrlr_update(ctrlr); 1886 } 1887 1888 return rc; 1889 } 1890 1891 /* 1892 * For PCIe transport, spdk_nvme_ctrlr_disconnect() will do a Controller Level Reset 1893 * (Change CC.EN from 1 to 0) as a operation to disconnect the admin qpair. 1894 * The following two functions are added to do a Controller Level Reset. They have 1895 * to be called under the nvme controller's lock. 1896 */ 1897 void 1898 nvme_ctrlr_disable(struct spdk_nvme_ctrlr *ctrlr) 1899 { 1900 assert(ctrlr->is_disconnecting == true); 1901 1902 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE); 1903 } 1904 1905 int 1906 nvme_ctrlr_disable_poll(struct spdk_nvme_ctrlr *ctrlr) 1907 { 1908 int rc = 0; 1909 1910 if (nvme_ctrlr_process_init(ctrlr) != 0) { 1911 NVME_CTRLR_ERRLOG(ctrlr, "failed to disable controller\n"); 1912 rc = -1; 1913 } 1914 1915 if (ctrlr->state != NVME_CTRLR_STATE_DISABLED && rc != -1) { 1916 return -EAGAIN; 1917 } 1918 1919 return rc; 1920 } 1921 1922 static void 1923 nvme_ctrlr_fail_io_qpairs(struct spdk_nvme_ctrlr *ctrlr) 1924 { 1925 struct spdk_nvme_qpair *qpair; 1926 1927 TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) { 1928 qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; 1929 } 1930 } 1931 1932 int 1933 spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr) 1934 { 1935 int rc; 1936 1937 nvme_ctrlr_lock(ctrlr); 1938 1939 rc = nvme_ctrlr_disconnect(ctrlr); 1940 if (rc == 0) { 1941 nvme_ctrlr_fail_io_qpairs(ctrlr); 1942 } 1943 1944 nvme_ctrlr_unlock(ctrlr); 1945 1946 if (rc != 0) { 1947 if (rc == -EBUSY) { 1948 rc = 0; 1949 } 1950 return rc; 1951 } 1952 1953 while (1) { 1954 rc = spdk_nvme_ctrlr_process_admin_completions(ctrlr); 1955 if (rc == -ENXIO) { 1956 break; 1957 } 1958 } 1959 1960 spdk_nvme_ctrlr_reconnect_async(ctrlr); 1961 1962 while (true) { 1963 rc = spdk_nvme_ctrlr_reconnect_poll_async(ctrlr); 1964 if (rc != -EAGAIN) { 1965 break; 1966 } 1967 } 1968 1969 return rc; 1970 } 1971 1972 int 1973 spdk_nvme_ctrlr_reset_subsystem(struct spdk_nvme_ctrlr *ctrlr) 1974 { 1975 union spdk_nvme_cap_register cap; 1976 int rc = 0; 1977 1978 cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr); 1979 if (cap.bits.nssrs == 0) { 1980 NVME_CTRLR_WARNLOG(ctrlr, "subsystem reset is not supported\n"); 1981 return -ENOTSUP; 1982 } 1983 1984 NVME_CTRLR_NOTICELOG(ctrlr, "resetting subsystem\n"); 1985 nvme_ctrlr_lock(ctrlr); 1986 ctrlr->is_resetting = true; 1987 rc = nvme_ctrlr_set_nssr(ctrlr, SPDK_NVME_NSSR_VALUE); 1988 ctrlr->is_resetting = false; 1989 1990 nvme_ctrlr_unlock(ctrlr); 1991 /* 1992 * No more cleanup at this point like in the ctrlr reset. A subsystem reset will cause 1993 * a hot remove for PCIe transport. The hot remove handling does all the necessary ctrlr cleanup. 1994 */ 1995 return rc; 1996 } 1997 1998 int 1999 spdk_nvme_ctrlr_set_trid(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_transport_id *trid) 2000 { 2001 int rc = 0; 2002 2003 nvme_ctrlr_lock(ctrlr); 2004 2005 if (ctrlr->is_failed == false) { 2006 rc = -EPERM; 2007 goto out; 2008 } 2009 2010 if (trid->trtype != ctrlr->trid.trtype) { 2011 rc = -EINVAL; 2012 goto out; 2013 } 2014 2015 if (strncmp(trid->subnqn, ctrlr->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) { 2016 rc = -EINVAL; 2017 goto out; 2018 } 2019 2020 ctrlr->trid = *trid; 2021 2022 out: 2023 nvme_ctrlr_unlock(ctrlr); 2024 return rc; 2025 } 2026 2027 void 2028 spdk_nvme_ctrlr_set_remove_cb(struct spdk_nvme_ctrlr *ctrlr, 2029 spdk_nvme_remove_cb remove_cb, void *remove_ctx) 2030 { 2031 if (!spdk_process_is_primary()) { 2032 return; 2033 } 2034 2035 nvme_ctrlr_lock(ctrlr); 2036 ctrlr->remove_cb = remove_cb; 2037 ctrlr->cb_ctx = remove_ctx; 2038 nvme_ctrlr_unlock(ctrlr); 2039 } 2040 2041 static void 2042 nvme_ctrlr_identify_done(void *arg, const struct spdk_nvme_cpl *cpl) 2043 { 2044 struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg; 2045 2046 if (spdk_nvme_cpl_is_error(cpl)) { 2047 NVME_CTRLR_ERRLOG(ctrlr, "nvme_identify_controller failed!\n"); 2048 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2049 return; 2050 } 2051 2052 /* 2053 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 2054 * controller supports. 2055 */ 2056 ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr); 2057 NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_xfer_size %u\n", ctrlr->max_xfer_size); 2058 if (ctrlr->cdata.mdts > 0) { 2059 ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size, 2060 ctrlr->min_page_size * (1 << ctrlr->cdata.mdts)); 2061 NVME_CTRLR_DEBUGLOG(ctrlr, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size); 2062 } 2063 2064 NVME_CTRLR_DEBUGLOG(ctrlr, "CNTLID 0x%04" PRIx16 "\n", ctrlr->cdata.cntlid); 2065 if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { 2066 ctrlr->cntlid = ctrlr->cdata.cntlid; 2067 } else { 2068 /* 2069 * Fabrics controllers should already have CNTLID from the Connect command. 2070 * 2071 * If CNTLID from Connect doesn't match CNTLID in the Identify Controller data, 2072 * trust the one from Connect. 2073 */ 2074 if (ctrlr->cntlid != ctrlr->cdata.cntlid) { 2075 NVME_CTRLR_DEBUGLOG(ctrlr, "Identify CNTLID 0x%04" PRIx16 " != Connect CNTLID 0x%04" PRIx16 "\n", 2076 ctrlr->cdata.cntlid, ctrlr->cntlid); 2077 } 2078 } 2079 2080 if (ctrlr->cdata.sgls.supported && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) { 2081 assert(ctrlr->cdata.sgls.supported != 0x3); 2082 ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED; 2083 if (ctrlr->cdata.sgls.supported == 0x2) { 2084 ctrlr->flags |= SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT; 2085 } 2086 2087 ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr); 2088 NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_sges %u\n", ctrlr->max_sges); 2089 } 2090 2091 if (ctrlr->cdata.sgls.metadata_address && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) { 2092 ctrlr->flags |= SPDK_NVME_CTRLR_MPTR_SGL_SUPPORTED; 2093 } 2094 2095 if (ctrlr->cdata.oacs.security && !(ctrlr->quirks & NVME_QUIRK_OACS_SECURITY)) { 2096 ctrlr->flags |= SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED; 2097 } 2098 2099 if (ctrlr->cdata.oacs.directives) { 2100 ctrlr->flags |= SPDK_NVME_CTRLR_DIRECTIVES_SUPPORTED; 2101 } 2102 2103 NVME_CTRLR_DEBUGLOG(ctrlr, "fuses compare and write: %d\n", 2104 ctrlr->cdata.fuses.compare_and_write); 2105 if (ctrlr->cdata.fuses.compare_and_write) { 2106 ctrlr->flags |= SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED; 2107 } 2108 2109 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER, 2110 ctrlr->opts.admin_timeout_ms); 2111 } 2112 2113 static int 2114 nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr) 2115 { 2116 int rc; 2117 2118 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY, 2119 ctrlr->opts.admin_timeout_ms); 2120 2121 rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, 0, 2122 &ctrlr->cdata, sizeof(ctrlr->cdata), 2123 nvme_ctrlr_identify_done, ctrlr); 2124 if (rc != 0) { 2125 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2126 return rc; 2127 } 2128 2129 return 0; 2130 } 2131 2132 static void 2133 nvme_ctrlr_get_zns_cmd_and_effects_log_done(void *arg, const struct spdk_nvme_cpl *cpl) 2134 { 2135 struct spdk_nvme_cmds_and_effect_log_page *log_page; 2136 struct spdk_nvme_ctrlr *ctrlr = arg; 2137 2138 if (spdk_nvme_cpl_is_error(cpl)) { 2139 NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_get_zns_cmd_and_effects_log failed!\n"); 2140 spdk_free(ctrlr->tmp_ptr); 2141 ctrlr->tmp_ptr = NULL; 2142 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2143 return; 2144 } 2145 2146 log_page = ctrlr->tmp_ptr; 2147 2148 if (log_page->io_cmds_supported[SPDK_NVME_OPC_ZONE_APPEND].csupp) { 2149 ctrlr->flags |= SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED; 2150 } 2151 spdk_free(ctrlr->tmp_ptr); 2152 ctrlr->tmp_ptr = NULL; 2153 2154 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES, ctrlr->opts.admin_timeout_ms); 2155 } 2156 2157 static int 2158 nvme_ctrlr_get_zns_cmd_and_effects_log(struct spdk_nvme_ctrlr *ctrlr) 2159 { 2160 int rc; 2161 2162 assert(!ctrlr->tmp_ptr); 2163 ctrlr->tmp_ptr = spdk_zmalloc(sizeof(struct spdk_nvme_cmds_and_effect_log_page), 64, NULL, 2164 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA); 2165 if (!ctrlr->tmp_ptr) { 2166 rc = -ENOMEM; 2167 goto error; 2168 } 2169 2170 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG, 2171 ctrlr->opts.admin_timeout_ms); 2172 2173 rc = spdk_nvme_ctrlr_cmd_get_log_page_ext(ctrlr, SPDK_NVME_LOG_COMMAND_EFFECTS_LOG, 2174 0, ctrlr->tmp_ptr, sizeof(struct spdk_nvme_cmds_and_effect_log_page), 2175 0, 0, 0, SPDK_NVME_CSI_ZNS << 24, 2176 nvme_ctrlr_get_zns_cmd_and_effects_log_done, ctrlr); 2177 if (rc != 0) { 2178 goto error; 2179 } 2180 2181 return 0; 2182 2183 error: 2184 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2185 spdk_free(ctrlr->tmp_ptr); 2186 ctrlr->tmp_ptr = NULL; 2187 return rc; 2188 } 2189 2190 static void 2191 nvme_ctrlr_identify_zns_specific_done(void *arg, const struct spdk_nvme_cpl *cpl) 2192 { 2193 struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg; 2194 2195 if (spdk_nvme_cpl_is_error(cpl)) { 2196 /* no need to print an error, the controller simply does not support ZNS */ 2197 nvme_ctrlr_free_zns_specific_data(ctrlr); 2198 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES, 2199 ctrlr->opts.admin_timeout_ms); 2200 return; 2201 } 2202 2203 /* A zero zasl value means use mdts */ 2204 if (ctrlr->cdata_zns->zasl) { 2205 uint32_t max_append = ctrlr->min_page_size * (1 << ctrlr->cdata_zns->zasl); 2206 ctrlr->max_zone_append_size = spdk_min(ctrlr->max_xfer_size, max_append); 2207 } else { 2208 ctrlr->max_zone_append_size = ctrlr->max_xfer_size; 2209 } 2210 2211 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG, 2212 ctrlr->opts.admin_timeout_ms); 2213 } 2214 2215 /** 2216 * This function will try to fetch the I/O Command Specific Controller data structure for 2217 * each I/O Command Set supported by SPDK. 2218 * 2219 * If an I/O Command Set is not supported by the controller, "Invalid Field in Command" 2220 * will be returned. Since we are fetching in a exploratively way, getting an error back 2221 * from the controller should not be treated as fatal. 2222 * 2223 * I/O Command Sets not supported by SPDK will be skipped (e.g. Key Value Command Set). 2224 * 2225 * I/O Command Sets without a IOCS specific data structure (i.e. a zero-filled IOCS specific 2226 * data structure) will be skipped (e.g. NVM Command Set, Key Value Command Set). 2227 */ 2228 static int 2229 nvme_ctrlr_identify_iocs_specific(struct spdk_nvme_ctrlr *ctrlr) 2230 { 2231 int rc; 2232 2233 if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) { 2234 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES, 2235 ctrlr->opts.admin_timeout_ms); 2236 return 0; 2237 } 2238 2239 /* 2240 * Since SPDK currently only needs to fetch a single Command Set, keep the code here, 2241 * instead of creating multiple NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC substates, 2242 * which would require additional functions and complexity for no good reason. 2243 */ 2244 assert(!ctrlr->cdata_zns); 2245 ctrlr->cdata_zns = spdk_zmalloc(sizeof(*ctrlr->cdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, 2246 SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA); 2247 if (!ctrlr->cdata_zns) { 2248 rc = -ENOMEM; 2249 goto error; 2250 } 2251 2252 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC, 2253 ctrlr->opts.admin_timeout_ms); 2254 2255 rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR_IOCS, 0, 0, SPDK_NVME_CSI_ZNS, 2256 ctrlr->cdata_zns, sizeof(*ctrlr->cdata_zns), 2257 nvme_ctrlr_identify_zns_specific_done, ctrlr); 2258 if (rc != 0) { 2259 goto error; 2260 } 2261 2262 return 0; 2263 2264 error: 2265 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2266 nvme_ctrlr_free_zns_specific_data(ctrlr); 2267 return rc; 2268 } 2269 2270 enum nvme_active_ns_state { 2271 NVME_ACTIVE_NS_STATE_IDLE, 2272 NVME_ACTIVE_NS_STATE_PROCESSING, 2273 NVME_ACTIVE_NS_STATE_DONE, 2274 NVME_ACTIVE_NS_STATE_ERROR 2275 }; 2276 2277 typedef void (*nvme_active_ns_ctx_deleter)(struct nvme_active_ns_ctx *); 2278 2279 struct nvme_active_ns_ctx { 2280 struct spdk_nvme_ctrlr *ctrlr; 2281 uint32_t page_count; 2282 uint32_t next_nsid; 2283 uint32_t *new_ns_list; 2284 nvme_active_ns_ctx_deleter deleter; 2285 2286 enum nvme_active_ns_state state; 2287 }; 2288 2289 static struct nvme_active_ns_ctx * 2290 nvme_active_ns_ctx_create(struct spdk_nvme_ctrlr *ctrlr, nvme_active_ns_ctx_deleter deleter) 2291 { 2292 struct nvme_active_ns_ctx *ctx; 2293 uint32_t *new_ns_list = NULL; 2294 2295 ctx = calloc(1, sizeof(*ctx)); 2296 if (!ctx) { 2297 NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate nvme_active_ns_ctx!\n"); 2298 return NULL; 2299 } 2300 2301 new_ns_list = spdk_zmalloc(sizeof(struct spdk_nvme_ns_list), ctrlr->page_size, 2302 NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_SHARE); 2303 if (!new_ns_list) { 2304 NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate active_ns_list!\n"); 2305 free(ctx); 2306 return NULL; 2307 } 2308 2309 ctx->page_count = 1; 2310 ctx->new_ns_list = new_ns_list; 2311 ctx->ctrlr = ctrlr; 2312 ctx->deleter = deleter; 2313 2314 return ctx; 2315 } 2316 2317 static void 2318 nvme_active_ns_ctx_destroy(struct nvme_active_ns_ctx *ctx) 2319 { 2320 spdk_free(ctx->new_ns_list); 2321 free(ctx); 2322 } 2323 2324 static int 2325 nvme_ctrlr_destruct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) 2326 { 2327 struct spdk_nvme_ns tmp, *ns; 2328 2329 assert(ctrlr != NULL); 2330 2331 tmp.id = nsid; 2332 ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp); 2333 if (ns == NULL) { 2334 return -EINVAL; 2335 } 2336 2337 nvme_ns_destruct(ns); 2338 ns->active = false; 2339 2340 return 0; 2341 } 2342 2343 static int 2344 nvme_ctrlr_construct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) 2345 { 2346 struct spdk_nvme_ns *ns; 2347 2348 if (nsid < 1 || nsid > ctrlr->cdata.nn) { 2349 return -EINVAL; 2350 } 2351 2352 /* Namespaces are constructed on demand, so simply request it. */ 2353 ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); 2354 if (ns == NULL) { 2355 return -ENOMEM; 2356 } 2357 2358 ns->active = true; 2359 2360 return 0; 2361 } 2362 2363 static void 2364 nvme_ctrlr_identify_active_ns_swap(struct spdk_nvme_ctrlr *ctrlr, uint32_t *new_ns_list, 2365 size_t max_entries) 2366 { 2367 uint32_t active_ns_count = 0; 2368 size_t i; 2369 uint32_t nsid; 2370 struct spdk_nvme_ns *ns, *tmp_ns; 2371 int rc; 2372 2373 /* First, remove namespaces that no longer exist */ 2374 RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) { 2375 nsid = new_ns_list[0]; 2376 active_ns_count = 0; 2377 while (nsid != 0) { 2378 if (nsid == ns->id) { 2379 break; 2380 } 2381 2382 nsid = new_ns_list[active_ns_count++]; 2383 } 2384 2385 if (nsid != ns->id) { 2386 /* Did not find this namespace id in the new list. */ 2387 NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was removed\n", ns->id); 2388 nvme_ctrlr_destruct_namespace(ctrlr, ns->id); 2389 } 2390 } 2391 2392 /* Next, add new namespaces */ 2393 active_ns_count = 0; 2394 for (i = 0; i < max_entries; i++) { 2395 nsid = new_ns_list[active_ns_count]; 2396 2397 if (nsid == 0) { 2398 break; 2399 } 2400 2401 /* If the namespace already exists, this will not construct it a second time. */ 2402 rc = nvme_ctrlr_construct_namespace(ctrlr, nsid); 2403 if (rc != 0) { 2404 /* We can't easily handle a failure here. But just move on. */ 2405 assert(false); 2406 NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to allocate a namespace object.\n"); 2407 continue; 2408 } 2409 2410 active_ns_count++; 2411 } 2412 2413 ctrlr->active_ns_count = active_ns_count; 2414 } 2415 2416 static void 2417 nvme_ctrlr_identify_active_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl) 2418 { 2419 struct nvme_active_ns_ctx *ctx = arg; 2420 uint32_t *new_ns_list = NULL; 2421 2422 if (spdk_nvme_cpl_is_error(cpl)) { 2423 ctx->state = NVME_ACTIVE_NS_STATE_ERROR; 2424 goto out; 2425 } 2426 2427 ctx->next_nsid = ctx->new_ns_list[1024 * ctx->page_count - 1]; 2428 if (ctx->next_nsid == 0) { 2429 ctx->state = NVME_ACTIVE_NS_STATE_DONE; 2430 goto out; 2431 } 2432 2433 ctx->page_count++; 2434 new_ns_list = spdk_realloc(ctx->new_ns_list, 2435 ctx->page_count * sizeof(struct spdk_nvme_ns_list), 2436 ctx->ctrlr->page_size); 2437 if (!new_ns_list) { 2438 SPDK_ERRLOG("Failed to reallocate active_ns_list!\n"); 2439 ctx->state = NVME_ACTIVE_NS_STATE_ERROR; 2440 goto out; 2441 } 2442 2443 ctx->new_ns_list = new_ns_list; 2444 nvme_ctrlr_identify_active_ns_async(ctx); 2445 return; 2446 2447 out: 2448 if (ctx->deleter) { 2449 ctx->deleter(ctx); 2450 } 2451 } 2452 2453 static void 2454 nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx) 2455 { 2456 struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr; 2457 uint32_t i; 2458 int rc; 2459 2460 if (ctrlr->cdata.nn == 0) { 2461 ctx->state = NVME_ACTIVE_NS_STATE_DONE; 2462 goto out; 2463 } 2464 2465 assert(ctx->new_ns_list != NULL); 2466 2467 /* 2468 * If controller doesn't support active ns list CNS 0x02 dummy up 2469 * an active ns list, i.e. all namespaces report as active 2470 */ 2471 if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 1, 0) || ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS) { 2472 uint32_t *new_ns_list; 2473 2474 /* 2475 * Active NS list must always end with zero element. 2476 * So, we allocate for cdata.nn+1. 2477 */ 2478 ctx->page_count = spdk_divide_round_up(ctrlr->cdata.nn + 1, 2479 sizeof(struct spdk_nvme_ns_list) / sizeof(new_ns_list[0])); 2480 new_ns_list = spdk_realloc(ctx->new_ns_list, 2481 ctx->page_count * sizeof(struct spdk_nvme_ns_list), 2482 ctx->ctrlr->page_size); 2483 if (!new_ns_list) { 2484 SPDK_ERRLOG("Failed to reallocate active_ns_list!\n"); 2485 ctx->state = NVME_ACTIVE_NS_STATE_ERROR; 2486 goto out; 2487 } 2488 2489 ctx->new_ns_list = new_ns_list; 2490 ctx->new_ns_list[ctrlr->cdata.nn] = 0; 2491 for (i = 0; i < ctrlr->cdata.nn; i++) { 2492 ctx->new_ns_list[i] = i + 1; 2493 } 2494 2495 ctx->state = NVME_ACTIVE_NS_STATE_DONE; 2496 goto out; 2497 } 2498 2499 ctx->state = NVME_ACTIVE_NS_STATE_PROCESSING; 2500 rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, ctx->next_nsid, 0, 2501 &ctx->new_ns_list[1024 * (ctx->page_count - 1)], sizeof(struct spdk_nvme_ns_list), 2502 nvme_ctrlr_identify_active_ns_async_done, ctx); 2503 if (rc != 0) { 2504 ctx->state = NVME_ACTIVE_NS_STATE_ERROR; 2505 goto out; 2506 } 2507 2508 return; 2509 2510 out: 2511 if (ctx->deleter) { 2512 ctx->deleter(ctx); 2513 } 2514 } 2515 2516 static void 2517 _nvme_active_ns_ctx_deleter(struct nvme_active_ns_ctx *ctx) 2518 { 2519 struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr; 2520 struct spdk_nvme_ns *ns; 2521 2522 if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) { 2523 nvme_active_ns_ctx_destroy(ctx); 2524 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2525 return; 2526 } 2527 2528 assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE); 2529 2530 RB_FOREACH(ns, nvme_ns_tree, &ctrlr->ns) { 2531 nvme_ns_free_iocs_specific_data(ns); 2532 } 2533 2534 nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024); 2535 nvme_active_ns_ctx_destroy(ctx); 2536 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS, ctrlr->opts.admin_timeout_ms); 2537 } 2538 2539 static void 2540 _nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr) 2541 { 2542 struct nvme_active_ns_ctx *ctx; 2543 2544 ctx = nvme_active_ns_ctx_create(ctrlr, _nvme_active_ns_ctx_deleter); 2545 if (!ctx) { 2546 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2547 return; 2548 } 2549 2550 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS, 2551 ctrlr->opts.admin_timeout_ms); 2552 nvme_ctrlr_identify_active_ns_async(ctx); 2553 } 2554 2555 int 2556 nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr) 2557 { 2558 struct nvme_active_ns_ctx *ctx; 2559 int rc; 2560 2561 ctx = nvme_active_ns_ctx_create(ctrlr, NULL); 2562 if (!ctx) { 2563 return -ENOMEM; 2564 } 2565 2566 nvme_ctrlr_identify_active_ns_async(ctx); 2567 while (ctx->state == NVME_ACTIVE_NS_STATE_PROCESSING) { 2568 rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); 2569 if (rc < 0) { 2570 ctx->state = NVME_ACTIVE_NS_STATE_ERROR; 2571 break; 2572 } 2573 } 2574 2575 if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) { 2576 nvme_active_ns_ctx_destroy(ctx); 2577 return -ENXIO; 2578 } 2579 2580 assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE); 2581 nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024); 2582 nvme_active_ns_ctx_destroy(ctx); 2583 2584 return 0; 2585 } 2586 2587 static void 2588 nvme_ctrlr_identify_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl) 2589 { 2590 struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg; 2591 struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr; 2592 uint32_t nsid; 2593 int rc; 2594 2595 if (spdk_nvme_cpl_is_error(cpl)) { 2596 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2597 return; 2598 } 2599 2600 nvme_ns_set_identify_data(ns); 2601 2602 /* move on to the next active NS */ 2603 nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id); 2604 ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); 2605 if (ns == NULL) { 2606 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS, 2607 ctrlr->opts.admin_timeout_ms); 2608 return; 2609 } 2610 ns->ctrlr = ctrlr; 2611 ns->id = nsid; 2612 2613 rc = nvme_ctrlr_identify_ns_async(ns); 2614 if (rc) { 2615 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2616 } 2617 } 2618 2619 static int 2620 nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns) 2621 { 2622 struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr; 2623 struct spdk_nvme_ns_data *nsdata; 2624 2625 nsdata = &ns->nsdata; 2626 2627 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS, 2628 ctrlr->opts.admin_timeout_ms); 2629 return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS, 0, ns->id, 0, 2630 nsdata, sizeof(*nsdata), 2631 nvme_ctrlr_identify_ns_async_done, ns); 2632 } 2633 2634 static int 2635 nvme_ctrlr_identify_namespaces(struct spdk_nvme_ctrlr *ctrlr) 2636 { 2637 uint32_t nsid; 2638 struct spdk_nvme_ns *ns; 2639 int rc; 2640 2641 nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); 2642 ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); 2643 if (ns == NULL) { 2644 /* No active NS, move on to the next state */ 2645 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS, 2646 ctrlr->opts.admin_timeout_ms); 2647 return 0; 2648 } 2649 2650 ns->ctrlr = ctrlr; 2651 ns->id = nsid; 2652 2653 rc = nvme_ctrlr_identify_ns_async(ns); 2654 if (rc) { 2655 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2656 } 2657 2658 return rc; 2659 } 2660 2661 static int 2662 nvme_ctrlr_identify_namespaces_iocs_specific_next(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid) 2663 { 2664 uint32_t nsid; 2665 struct spdk_nvme_ns *ns; 2666 int rc; 2667 2668 if (!prev_nsid) { 2669 nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); 2670 } else { 2671 /* move on to the next active NS */ 2672 nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, prev_nsid); 2673 } 2674 2675 ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); 2676 if (ns == NULL) { 2677 /* No first/next active NS, move on to the next state */ 2678 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES, 2679 ctrlr->opts.admin_timeout_ms); 2680 return 0; 2681 } 2682 2683 /* loop until we find a ns which has (supported) iocs specific data */ 2684 while (!nvme_ns_has_supported_iocs_specific_data(ns)) { 2685 nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id); 2686 ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); 2687 if (ns == NULL) { 2688 /* no namespace with (supported) iocs specific data found */ 2689 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES, 2690 ctrlr->opts.admin_timeout_ms); 2691 return 0; 2692 } 2693 } 2694 2695 rc = nvme_ctrlr_identify_ns_iocs_specific_async(ns); 2696 if (rc) { 2697 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2698 } 2699 2700 return rc; 2701 } 2702 2703 static void 2704 nvme_ctrlr_identify_ns_zns_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl) 2705 { 2706 struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg; 2707 struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr; 2708 2709 if (spdk_nvme_cpl_is_error(cpl)) { 2710 nvme_ns_free_zns_specific_data(ns); 2711 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2712 return; 2713 } 2714 2715 nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id); 2716 } 2717 2718 static int 2719 nvme_ctrlr_identify_ns_zns_specific_async(struct spdk_nvme_ns *ns) 2720 { 2721 struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr; 2722 int rc; 2723 2724 assert(!ns->nsdata_zns); 2725 ns->nsdata_zns = spdk_zmalloc(sizeof(*ns->nsdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, 2726 SPDK_MALLOC_SHARE); 2727 if (!ns->nsdata_zns) { 2728 return -ENOMEM; 2729 } 2730 2731 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC, 2732 ctrlr->opts.admin_timeout_ms); 2733 rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi, 2734 ns->nsdata_zns, sizeof(*ns->nsdata_zns), 2735 nvme_ctrlr_identify_ns_zns_specific_async_done, ns); 2736 if (rc) { 2737 nvme_ns_free_zns_specific_data(ns); 2738 } 2739 2740 return rc; 2741 } 2742 2743 static void 2744 nvme_ctrlr_identify_ns_nvm_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl) 2745 { 2746 struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg; 2747 struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr; 2748 2749 if (spdk_nvme_cpl_is_error(cpl)) { 2750 nvme_ns_free_nvm_specific_data(ns); 2751 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2752 return; 2753 } 2754 2755 nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id); 2756 } 2757 2758 static int 2759 nvme_ctrlr_identify_ns_nvm_specific_async(struct spdk_nvme_ns *ns) 2760 { 2761 struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr; 2762 int rc; 2763 2764 assert(!ns->nsdata_nvm); 2765 ns->nsdata_nvm = spdk_zmalloc(sizeof(*ns->nsdata_nvm), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, 2766 SPDK_MALLOC_SHARE); 2767 if (!ns->nsdata_nvm) { 2768 return -ENOMEM; 2769 } 2770 2771 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC, 2772 ctrlr->opts.admin_timeout_ms); 2773 rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi, 2774 ns->nsdata_nvm, sizeof(*ns->nsdata_nvm), 2775 nvme_ctrlr_identify_ns_nvm_specific_async_done, ns); 2776 if (rc) { 2777 nvme_ns_free_nvm_specific_data(ns); 2778 } 2779 2780 return rc; 2781 } 2782 2783 static int 2784 nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns) 2785 { 2786 switch (ns->csi) { 2787 case SPDK_NVME_CSI_ZNS: 2788 return nvme_ctrlr_identify_ns_zns_specific_async(ns); 2789 case SPDK_NVME_CSI_NVM: 2790 if (ns->ctrlr->cdata.ctratt.bits.elbas) { 2791 return nvme_ctrlr_identify_ns_nvm_specific_async(ns); 2792 } 2793 /* fallthrough */ 2794 default: 2795 /* 2796 * This switch must handle all cases for which 2797 * nvme_ns_has_supported_iocs_specific_data() returns true, 2798 * other cases should never happen. 2799 */ 2800 assert(0); 2801 } 2802 2803 return -EINVAL; 2804 } 2805 2806 static int 2807 nvme_ctrlr_identify_namespaces_iocs_specific(struct spdk_nvme_ctrlr *ctrlr) 2808 { 2809 if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) { 2810 /* Multi IOCS not supported/enabled, move on to the next state */ 2811 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES, 2812 ctrlr->opts.admin_timeout_ms); 2813 return 0; 2814 } 2815 2816 return nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, 0); 2817 } 2818 2819 static void 2820 nvme_ctrlr_identify_id_desc_async_done(void *arg, const struct spdk_nvme_cpl *cpl) 2821 { 2822 struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg; 2823 struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr; 2824 uint32_t nsid; 2825 int rc; 2826 2827 if (spdk_nvme_cpl_is_error(cpl)) { 2828 /* 2829 * Many controllers claim to be compatible with NVMe 1.3, however, 2830 * they do not implement NS ID Desc List. Therefore, instead of setting 2831 * the state to NVME_CTRLR_STATE_ERROR, silently ignore the completion 2832 * error and move on to the next state. 2833 * 2834 * The proper way is to create a new quirk for controllers that violate 2835 * the NVMe 1.3 spec by not supporting NS ID Desc List. 2836 * (Re-using the NVME_QUIRK_IDENTIFY_CNS quirk is not possible, since 2837 * it is too generic and was added in order to handle controllers that 2838 * violate the NVMe 1.1 spec by not supporting ACTIVE LIST). 2839 */ 2840 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC, 2841 ctrlr->opts.admin_timeout_ms); 2842 return; 2843 } 2844 2845 nvme_ns_set_id_desc_list_data(ns); 2846 2847 /* move on to the next active NS */ 2848 nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id); 2849 ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); 2850 if (ns == NULL) { 2851 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC, 2852 ctrlr->opts.admin_timeout_ms); 2853 return; 2854 } 2855 2856 rc = nvme_ctrlr_identify_id_desc_async(ns); 2857 if (rc) { 2858 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2859 } 2860 } 2861 2862 static int 2863 nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns) 2864 { 2865 struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr; 2866 2867 memset(ns->id_desc_list, 0, sizeof(ns->id_desc_list)); 2868 2869 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS, 2870 ctrlr->opts.admin_timeout_ms); 2871 return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_ID_DESCRIPTOR_LIST, 2872 0, ns->id, 0, ns->id_desc_list, sizeof(ns->id_desc_list), 2873 nvme_ctrlr_identify_id_desc_async_done, ns); 2874 } 2875 2876 static int 2877 nvme_ctrlr_identify_id_desc_namespaces(struct spdk_nvme_ctrlr *ctrlr) 2878 { 2879 uint32_t nsid; 2880 struct spdk_nvme_ns *ns; 2881 int rc; 2882 2883 if ((ctrlr->vs.raw < SPDK_NVME_VERSION(1, 3, 0) && 2884 !(ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS)) || 2885 (ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 2886 NVME_CTRLR_DEBUGLOG(ctrlr, "Version < 1.3; not attempting to retrieve NS ID Descriptor List\n"); 2887 /* NS ID Desc List not supported, move on to the next state */ 2888 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC, 2889 ctrlr->opts.admin_timeout_ms); 2890 return 0; 2891 } 2892 2893 nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); 2894 ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); 2895 if (ns == NULL) { 2896 /* No active NS, move on to the next state */ 2897 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC, 2898 ctrlr->opts.admin_timeout_ms); 2899 return 0; 2900 } 2901 2902 rc = nvme_ctrlr_identify_id_desc_async(ns); 2903 if (rc) { 2904 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2905 } 2906 2907 return rc; 2908 } 2909 2910 static void 2911 nvme_ctrlr_update_nvmf_ioccsz(struct spdk_nvme_ctrlr *ctrlr) 2912 { 2913 if (spdk_nvme_ctrlr_is_fabrics(ctrlr)) { 2914 if (ctrlr->cdata.nvmf_specific.ioccsz < 4) { 2915 NVME_CTRLR_ERRLOG(ctrlr, "Incorrect IOCCSZ %u, the minimum value should be 4\n", 2916 ctrlr->cdata.nvmf_specific.ioccsz); 2917 ctrlr->cdata.nvmf_specific.ioccsz = 4; 2918 assert(0); 2919 } 2920 ctrlr->ioccsz_bytes = ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd); 2921 ctrlr->icdoff = ctrlr->cdata.nvmf_specific.icdoff; 2922 } 2923 } 2924 2925 static void 2926 nvme_ctrlr_set_num_queues_done(void *arg, const struct spdk_nvme_cpl *cpl) 2927 { 2928 uint32_t cq_allocated, sq_allocated, min_allocated, i; 2929 struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg; 2930 2931 if (spdk_nvme_cpl_is_error(cpl)) { 2932 NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Number of Queues failed!\n"); 2933 ctrlr->opts.num_io_queues = 0; 2934 } else { 2935 /* 2936 * Data in cdw0 is 0-based. 2937 * Lower 16-bits indicate number of submission queues allocated. 2938 * Upper 16-bits indicate number of completion queues allocated. 2939 */ 2940 sq_allocated = (cpl->cdw0 & 0xFFFF) + 1; 2941 cq_allocated = (cpl->cdw0 >> 16) + 1; 2942 2943 /* 2944 * For 1:1 queue mapping, set number of allocated queues to be minimum of 2945 * submission and completion queues. 2946 */ 2947 min_allocated = spdk_min(sq_allocated, cq_allocated); 2948 2949 /* Set number of queues to be minimum of requested and actually allocated. */ 2950 ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues); 2951 } 2952 2953 ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1); 2954 if (ctrlr->free_io_qids == NULL) { 2955 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2956 return; 2957 } 2958 2959 /* Initialize list of free I/O queue IDs. QID 0 is the admin queue (implicitly allocated). */ 2960 for (i = 1; i <= ctrlr->opts.num_io_queues; i++) { 2961 spdk_nvme_ctrlr_free_qid(ctrlr, i); 2962 } 2963 2964 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS, 2965 ctrlr->opts.admin_timeout_ms); 2966 } 2967 2968 static int 2969 nvme_ctrlr_set_num_queues(struct spdk_nvme_ctrlr *ctrlr) 2970 { 2971 int rc; 2972 2973 if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) { 2974 NVME_CTRLR_NOTICELOG(ctrlr, "Limiting requested num_io_queues %u to max %d\n", 2975 ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES); 2976 ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES; 2977 } else if (ctrlr->opts.num_io_queues < 1) { 2978 NVME_CTRLR_NOTICELOG(ctrlr, "Requested num_io_queues 0, increasing to 1\n"); 2979 ctrlr->opts.num_io_queues = 1; 2980 } 2981 2982 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES, 2983 ctrlr->opts.admin_timeout_ms); 2984 2985 rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues, 2986 nvme_ctrlr_set_num_queues_done, ctrlr); 2987 if (rc != 0) { 2988 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 2989 return rc; 2990 } 2991 2992 return 0; 2993 } 2994 2995 static void 2996 nvme_ctrlr_set_keep_alive_timeout_done(void *arg, const struct spdk_nvme_cpl *cpl) 2997 { 2998 uint32_t keep_alive_interval_us; 2999 struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg; 3000 3001 if (spdk_nvme_cpl_is_error(cpl)) { 3002 if ((cpl->status.sct == SPDK_NVME_SCT_GENERIC) && 3003 (cpl->status.sc == SPDK_NVME_SC_INVALID_FIELD)) { 3004 NVME_CTRLR_DEBUGLOG(ctrlr, "Keep alive timeout Get Feature is not supported\n"); 3005 } else { 3006 NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: SC %x SCT %x\n", 3007 cpl->status.sc, cpl->status.sct); 3008 ctrlr->opts.keep_alive_timeout_ms = 0; 3009 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 3010 return; 3011 } 3012 } else { 3013 if (ctrlr->opts.keep_alive_timeout_ms != cpl->cdw0) { 3014 NVME_CTRLR_DEBUGLOG(ctrlr, "Controller adjusted keep alive timeout to %u ms\n", 3015 cpl->cdw0); 3016 } 3017 3018 ctrlr->opts.keep_alive_timeout_ms = cpl->cdw0; 3019 } 3020 3021 if (ctrlr->opts.keep_alive_timeout_ms == 0) { 3022 ctrlr->keep_alive_interval_ticks = 0; 3023 } else { 3024 keep_alive_interval_us = ctrlr->opts.keep_alive_timeout_ms * 1000 / 2; 3025 3026 NVME_CTRLR_DEBUGLOG(ctrlr, "Sending keep alive every %u us\n", keep_alive_interval_us); 3027 3028 ctrlr->keep_alive_interval_ticks = (keep_alive_interval_us * spdk_get_ticks_hz()) / 3029 UINT64_C(1000000); 3030 3031 /* Schedule the first Keep Alive to be sent as soon as possible. */ 3032 ctrlr->next_keep_alive_tick = spdk_get_ticks(); 3033 } 3034 3035 if (spdk_nvme_ctrlr_is_discovery(ctrlr)) { 3036 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE); 3037 } else { 3038 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC, 3039 ctrlr->opts.admin_timeout_ms); 3040 } 3041 } 3042 3043 static int 3044 nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr) 3045 { 3046 int rc; 3047 3048 if (ctrlr->opts.keep_alive_timeout_ms == 0) { 3049 if (spdk_nvme_ctrlr_is_discovery(ctrlr)) { 3050 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE); 3051 } else { 3052 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC, 3053 ctrlr->opts.admin_timeout_ms); 3054 } 3055 return 0; 3056 } 3057 3058 /* Note: Discovery controller identify data does not populate KAS according to spec. */ 3059 if (!spdk_nvme_ctrlr_is_discovery(ctrlr) && ctrlr->cdata.kas == 0) { 3060 NVME_CTRLR_DEBUGLOG(ctrlr, "Controller KAS is 0 - not enabling Keep Alive\n"); 3061 ctrlr->opts.keep_alive_timeout_ms = 0; 3062 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC, 3063 ctrlr->opts.admin_timeout_ms); 3064 return 0; 3065 } 3066 3067 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT, 3068 ctrlr->opts.admin_timeout_ms); 3069 3070 /* Retrieve actual keep alive timeout, since the controller may have adjusted it. */ 3071 rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0, 3072 nvme_ctrlr_set_keep_alive_timeout_done, ctrlr); 3073 if (rc != 0) { 3074 NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: %d\n", rc); 3075 ctrlr->opts.keep_alive_timeout_ms = 0; 3076 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 3077 return rc; 3078 } 3079 3080 return 0; 3081 } 3082 3083 static void 3084 nvme_ctrlr_set_host_id_done(void *arg, const struct spdk_nvme_cpl *cpl) 3085 { 3086 struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg; 3087 3088 if (spdk_nvme_cpl_is_error(cpl)) { 3089 /* 3090 * Treat Set Features - Host ID failure as non-fatal, since the Host ID feature 3091 * is optional. 3092 */ 3093 NVME_CTRLR_WARNLOG(ctrlr, "Set Features - Host ID failed: SC 0x%x SCT 0x%x\n", 3094 cpl->status.sc, cpl->status.sct); 3095 } else { 3096 NVME_CTRLR_DEBUGLOG(ctrlr, "Set Features - Host ID was successful\n"); 3097 } 3098 3099 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms); 3100 } 3101 3102 static int 3103 nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr) 3104 { 3105 uint8_t *host_id; 3106 uint32_t host_id_size; 3107 int rc; 3108 3109 if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) { 3110 /* 3111 * NVMe-oF sends the host ID during Connect and doesn't allow 3112 * Set Features - Host Identifier after Connect, so we don't need to do anything here. 3113 */ 3114 NVME_CTRLR_DEBUGLOG(ctrlr, "NVMe-oF transport - not sending Set Features - Host ID\n"); 3115 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms); 3116 return 0; 3117 } 3118 3119 if (ctrlr->cdata.ctratt.bits.host_id_exhid_supported) { 3120 NVME_CTRLR_DEBUGLOG(ctrlr, "Using 128-bit extended host identifier\n"); 3121 host_id = ctrlr->opts.extended_host_id; 3122 host_id_size = sizeof(ctrlr->opts.extended_host_id); 3123 } else { 3124 NVME_CTRLR_DEBUGLOG(ctrlr, "Using 64-bit host identifier\n"); 3125 host_id = ctrlr->opts.host_id; 3126 host_id_size = sizeof(ctrlr->opts.host_id); 3127 } 3128 3129 /* If the user specified an all-zeroes host identifier, don't send the command. */ 3130 if (spdk_mem_all_zero(host_id, host_id_size)) { 3131 NVME_CTRLR_DEBUGLOG(ctrlr, "User did not specify host ID - not sending Set Features - Host ID\n"); 3132 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms); 3133 return 0; 3134 } 3135 3136 SPDK_LOGDUMP(nvme, "host_id", host_id, host_id_size); 3137 3138 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_HOST_ID, 3139 ctrlr->opts.admin_timeout_ms); 3140 3141 rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_ctrlr_set_host_id_done, ctrlr); 3142 if (rc != 0) { 3143 NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Host ID failed: %d\n", rc); 3144 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 3145 return rc; 3146 } 3147 3148 return 0; 3149 } 3150 3151 void 3152 nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr) 3153 { 3154 uint32_t nsid; 3155 struct spdk_nvme_ns *ns; 3156 3157 for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); 3158 nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) { 3159 ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); 3160 nvme_ns_construct(ns, nsid, ctrlr); 3161 } 3162 } 3163 3164 static int 3165 nvme_ctrlr_clear_changed_ns_log(struct spdk_nvme_ctrlr *ctrlr) 3166 { 3167 struct nvme_completion_poll_status *status; 3168 int rc = -ENOMEM; 3169 char *buffer = NULL; 3170 uint32_t nsid; 3171 size_t buf_size = (SPDK_NVME_MAX_CHANGED_NAMESPACES * sizeof(uint32_t)); 3172 3173 if (ctrlr->opts.disable_read_changed_ns_list_log_page) { 3174 return 0; 3175 } 3176 3177 buffer = spdk_dma_zmalloc(buf_size, 4096, NULL); 3178 if (!buffer) { 3179 NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate buffer for getting " 3180 "changed ns log.\n"); 3181 return rc; 3182 } 3183 3184 status = calloc(1, sizeof(*status)); 3185 if (!status) { 3186 NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n"); 3187 goto free_buffer; 3188 } 3189 3190 rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, 3191 SPDK_NVME_LOG_CHANGED_NS_LIST, 3192 SPDK_NVME_GLOBAL_NS_TAG, 3193 buffer, buf_size, 0, 3194 nvme_completion_poll_cb, status); 3195 3196 if (rc) { 3197 NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_get_log_page() failed: rc=%d\n", rc); 3198 free(status); 3199 goto free_buffer; 3200 } 3201 3202 rc = nvme_wait_for_completion_timeout(ctrlr->adminq, status, 3203 ctrlr->opts.admin_timeout_ms * 1000); 3204 if (!status->timed_out) { 3205 free(status); 3206 } 3207 3208 if (rc) { 3209 NVME_CTRLR_ERRLOG(ctrlr, "wait for spdk_nvme_ctrlr_cmd_get_log_page failed: rc=%d\n", rc); 3210 goto free_buffer; 3211 } 3212 3213 /* only check the case of overflow. */ 3214 nsid = from_le32(buffer); 3215 if (nsid == 0xffffffffu) { 3216 NVME_CTRLR_WARNLOG(ctrlr, "changed ns log overflowed.\n"); 3217 } 3218 3219 free_buffer: 3220 spdk_dma_free(buffer); 3221 return rc; 3222 } 3223 3224 static void 3225 nvme_ctrlr_process_async_event(struct spdk_nvme_ctrlr *ctrlr, 3226 const struct spdk_nvme_cpl *cpl) 3227 { 3228 union spdk_nvme_async_event_completion event; 3229 struct spdk_nvme_ctrlr_process *active_proc; 3230 int rc; 3231 3232 event.raw = cpl->cdw0; 3233 3234 if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) && 3235 (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) { 3236 nvme_ctrlr_clear_changed_ns_log(ctrlr); 3237 3238 rc = nvme_ctrlr_identify_active_ns(ctrlr); 3239 if (rc) { 3240 return; 3241 } 3242 nvme_ctrlr_update_namespaces(ctrlr); 3243 nvme_io_msg_ctrlr_update(ctrlr); 3244 } 3245 3246 if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) && 3247 (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) { 3248 if (!ctrlr->opts.disable_read_ana_log_page) { 3249 rc = nvme_ctrlr_update_ana_log_page(ctrlr); 3250 if (rc) { 3251 return; 3252 } 3253 nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states, 3254 ctrlr); 3255 } 3256 } 3257 3258 active_proc = nvme_ctrlr_get_current_process(ctrlr); 3259 if (active_proc && active_proc->aer_cb_fn) { 3260 active_proc->aer_cb_fn(active_proc->aer_cb_arg, cpl); 3261 } 3262 } 3263 3264 static void 3265 nvme_ctrlr_queue_async_event(struct spdk_nvme_ctrlr *ctrlr, 3266 const struct spdk_nvme_cpl *cpl) 3267 { 3268 struct spdk_nvme_ctrlr_aer_completion_list *nvme_event; 3269 struct spdk_nvme_ctrlr_process *proc; 3270 3271 /* Add async event to each process objects event list */ 3272 TAILQ_FOREACH(proc, &ctrlr->active_procs, tailq) { 3273 /* Must be shared memory so other processes can access */ 3274 nvme_event = spdk_zmalloc(sizeof(*nvme_event), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); 3275 if (!nvme_event) { 3276 NVME_CTRLR_ERRLOG(ctrlr, "Alloc nvme event failed, ignore the event\n"); 3277 return; 3278 } 3279 nvme_event->cpl = *cpl; 3280 3281 STAILQ_INSERT_TAIL(&proc->async_events, nvme_event, link); 3282 } 3283 } 3284 3285 static void 3286 nvme_ctrlr_complete_queued_async_events(struct spdk_nvme_ctrlr *ctrlr) 3287 { 3288 struct spdk_nvme_ctrlr_aer_completion_list *nvme_event, *nvme_event_tmp; 3289 struct spdk_nvme_ctrlr_process *active_proc; 3290 3291 active_proc = nvme_ctrlr_get_current_process(ctrlr); 3292 3293 STAILQ_FOREACH_SAFE(nvme_event, &active_proc->async_events, link, nvme_event_tmp) { 3294 STAILQ_REMOVE(&active_proc->async_events, nvme_event, 3295 spdk_nvme_ctrlr_aer_completion_list, link); 3296 nvme_ctrlr_process_async_event(ctrlr, &nvme_event->cpl); 3297 spdk_free(nvme_event); 3298 3299 } 3300 } 3301 3302 static void 3303 nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl) 3304 { 3305 struct nvme_async_event_request *aer = arg; 3306 struct spdk_nvme_ctrlr *ctrlr = aer->ctrlr; 3307 3308 if (cpl->status.sct == SPDK_NVME_SCT_GENERIC && 3309 cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) { 3310 /* 3311 * This is simulated when controller is being shut down, to 3312 * effectively abort outstanding asynchronous event requests 3313 * and make sure all memory is freed. Do not repost the 3314 * request in this case. 3315 */ 3316 return; 3317 } 3318 3319 if (cpl->status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC && 3320 cpl->status.sc == SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED) { 3321 /* 3322 * SPDK will only send as many AERs as the device says it supports, 3323 * so this status code indicates an out-of-spec device. Do not repost 3324 * the request in this case. 3325 */ 3326 NVME_CTRLR_ERRLOG(ctrlr, "Controller appears out-of-spec for asynchronous event request\n" 3327 "handling. Do not repost this AER.\n"); 3328 return; 3329 } 3330 3331 /* Add the events to the list */ 3332 nvme_ctrlr_queue_async_event(ctrlr, cpl); 3333 3334 /* If the ctrlr was removed or in the destruct state, we should not send aer again */ 3335 if (ctrlr->is_removed || ctrlr->is_destructed) { 3336 return; 3337 } 3338 3339 /* 3340 * Repost another asynchronous event request to replace the one 3341 * that just completed. 3342 */ 3343 if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) { 3344 /* 3345 * We can't do anything to recover from a failure here, 3346 * so just print a warning message and leave the AER unsubmitted. 3347 */ 3348 NVME_CTRLR_ERRLOG(ctrlr, "resubmitting AER failed!\n"); 3349 } 3350 } 3351 3352 static int 3353 nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr, 3354 struct nvme_async_event_request *aer) 3355 { 3356 struct nvme_request *req; 3357 3358 aer->ctrlr = ctrlr; 3359 req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer); 3360 aer->req = req; 3361 if (req == NULL) { 3362 return -1; 3363 } 3364 3365 req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST; 3366 return nvme_ctrlr_submit_admin_request(ctrlr, req); 3367 } 3368 3369 static void 3370 nvme_ctrlr_configure_aer_done(void *arg, const struct spdk_nvme_cpl *cpl) 3371 { 3372 struct nvme_async_event_request *aer; 3373 int rc; 3374 uint32_t i; 3375 struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg; 3376 3377 if (spdk_nvme_cpl_is_error(cpl)) { 3378 NVME_CTRLR_NOTICELOG(ctrlr, "nvme_ctrlr_configure_aer failed!\n"); 3379 ctrlr->num_aers = 0; 3380 } else { 3381 /* aerl is a zero-based value, so we need to add 1 here. */ 3382 ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1)); 3383 } 3384 3385 for (i = 0; i < ctrlr->num_aers; i++) { 3386 aer = &ctrlr->aer[i]; 3387 rc = nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 3388 if (rc) { 3389 NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_construct_and_submit_aer failed!\n"); 3390 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 3391 return; 3392 } 3393 } 3394 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, ctrlr->opts.admin_timeout_ms); 3395 } 3396 3397 static int 3398 nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr) 3399 { 3400 union spdk_nvme_feat_async_event_configuration config; 3401 int rc; 3402 3403 config.raw = 0; 3404 3405 if (spdk_nvme_ctrlr_is_discovery(ctrlr)) { 3406 config.bits.discovery_log_change_notice = 1; 3407 } else { 3408 config.bits.crit_warn.bits.available_spare = 1; 3409 config.bits.crit_warn.bits.temperature = 1; 3410 config.bits.crit_warn.bits.device_reliability = 1; 3411 config.bits.crit_warn.bits.read_only = 1; 3412 config.bits.crit_warn.bits.volatile_memory_backup = 1; 3413 3414 if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 2, 0)) { 3415 if (ctrlr->cdata.oaes.ns_attribute_notices) { 3416 config.bits.ns_attr_notice = 1; 3417 } 3418 if (ctrlr->cdata.oaes.fw_activation_notices) { 3419 config.bits.fw_activation_notice = 1; 3420 } 3421 if (ctrlr->cdata.oaes.ana_change_notices) { 3422 config.bits.ana_change_notice = 1; 3423 } 3424 } 3425 if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 3, 0) && ctrlr->cdata.lpa.telemetry) { 3426 config.bits.telemetry_log_notice = 1; 3427 } 3428 } 3429 3430 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER, 3431 ctrlr->opts.admin_timeout_ms); 3432 3433 rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config, 3434 nvme_ctrlr_configure_aer_done, 3435 ctrlr); 3436 if (rc != 0) { 3437 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 3438 return rc; 3439 } 3440 3441 return 0; 3442 } 3443 3444 struct spdk_nvme_ctrlr_process * 3445 nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid) 3446 { 3447 struct spdk_nvme_ctrlr_process *active_proc; 3448 3449 TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) { 3450 if (active_proc->pid == pid) { 3451 return active_proc; 3452 } 3453 } 3454 3455 return NULL; 3456 } 3457 3458 struct spdk_nvme_ctrlr_process * 3459 nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr) 3460 { 3461 return nvme_ctrlr_get_process(ctrlr, getpid()); 3462 } 3463 3464 /** 3465 * This function will be called when a process is using the controller. 3466 * 1. For the primary process, it is called when constructing the controller. 3467 * 2. For the secondary process, it is called at probing the controller. 3468 * Note: will check whether the process is already added for the same process. 3469 */ 3470 int 3471 nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle) 3472 { 3473 struct spdk_nvme_ctrlr_process *ctrlr_proc; 3474 pid_t pid = getpid(); 3475 3476 /* Check whether the process is already added or not */ 3477 if (nvme_ctrlr_get_process(ctrlr, pid)) { 3478 return 0; 3479 } 3480 3481 /* Initialize the per process properties for this ctrlr */ 3482 ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process), 3483 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); 3484 if (ctrlr_proc == NULL) { 3485 NVME_CTRLR_ERRLOG(ctrlr, "failed to allocate memory to track the process props\n"); 3486 3487 return -1; 3488 } 3489 3490 ctrlr_proc->is_primary = spdk_process_is_primary(); 3491 ctrlr_proc->pid = pid; 3492 STAILQ_INIT(&ctrlr_proc->active_reqs); 3493 ctrlr_proc->devhandle = devhandle; 3494 ctrlr_proc->ref = 0; 3495 TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs); 3496 STAILQ_INIT(&ctrlr_proc->async_events); 3497 3498 TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq); 3499 3500 return 0; 3501 } 3502 3503 /** 3504 * This function will be called when the process detaches the controller. 3505 * Note: the ctrlr_lock must be held when calling this function. 3506 */ 3507 static void 3508 nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr, 3509 struct spdk_nvme_ctrlr_process *proc) 3510 { 3511 struct spdk_nvme_qpair *qpair, *tmp_qpair; 3512 3513 assert(STAILQ_EMPTY(&proc->active_reqs)); 3514 3515 TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) { 3516 spdk_nvme_ctrlr_free_io_qpair(qpair); 3517 } 3518 3519 TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq); 3520 3521 if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { 3522 spdk_pci_device_detach(proc->devhandle); 3523 } 3524 3525 spdk_free(proc); 3526 } 3527 3528 /** 3529 * This function will be called when the process exited unexpectedly 3530 * in order to free any incomplete nvme request, allocated IO qpairs 3531 * and allocated memory. 3532 * Note: the ctrlr_lock must be held when calling this function. 3533 */ 3534 static void 3535 nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc) 3536 { 3537 struct nvme_request *req, *tmp_req; 3538 struct spdk_nvme_qpair *qpair, *tmp_qpair; 3539 struct spdk_nvme_ctrlr_aer_completion_list *event; 3540 3541 STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) { 3542 STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq); 3543 3544 assert(req->pid == proc->pid); 3545 nvme_cleanup_user_req(req); 3546 nvme_free_request(req); 3547 } 3548 3549 /* Remove async event from each process objects event list */ 3550 while (!STAILQ_EMPTY(&proc->async_events)) { 3551 event = STAILQ_FIRST(&proc->async_events); 3552 STAILQ_REMOVE_HEAD(&proc->async_events, link); 3553 spdk_free(event); 3554 } 3555 3556 TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) { 3557 TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq); 3558 3559 /* 3560 * The process may have been killed while some qpairs were in their 3561 * completion context. Clear that flag here to allow these IO 3562 * qpairs to be deleted. 3563 */ 3564 qpair->in_completion_context = 0; 3565 3566 qpair->no_deletion_notification_needed = 1; 3567 3568 spdk_nvme_ctrlr_free_io_qpair(qpair); 3569 } 3570 3571 spdk_free(proc); 3572 } 3573 3574 /** 3575 * This function will be called when destructing the controller. 3576 * 1. There is no more admin request on this controller. 3577 * 2. Clean up any left resource allocation when its associated process is gone. 3578 */ 3579 void 3580 nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr) 3581 { 3582 struct spdk_nvme_ctrlr_process *active_proc, *tmp; 3583 3584 /* Free all the processes' properties and make sure no pending admin IOs */ 3585 TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) { 3586 TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq); 3587 3588 assert(STAILQ_EMPTY(&active_proc->active_reqs)); 3589 3590 spdk_free(active_proc); 3591 } 3592 } 3593 3594 /** 3595 * This function will be called when any other process attaches or 3596 * detaches the controller in order to cleanup those unexpectedly 3597 * terminated processes. 3598 * Note: the ctrlr_lock must be held when calling this function. 3599 */ 3600 static int 3601 nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr) 3602 { 3603 struct spdk_nvme_ctrlr_process *active_proc, *tmp; 3604 int active_proc_count = 0; 3605 3606 TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) { 3607 if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) { 3608 NVME_CTRLR_ERRLOG(ctrlr, "process %d terminated unexpected\n", active_proc->pid); 3609 3610 TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq); 3611 3612 nvme_ctrlr_cleanup_process(active_proc); 3613 } else { 3614 active_proc_count++; 3615 } 3616 } 3617 3618 return active_proc_count; 3619 } 3620 3621 void 3622 nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr) 3623 { 3624 struct spdk_nvme_ctrlr_process *active_proc; 3625 3626 nvme_ctrlr_lock(ctrlr); 3627 3628 nvme_ctrlr_remove_inactive_proc(ctrlr); 3629 3630 active_proc = nvme_ctrlr_get_current_process(ctrlr); 3631 if (active_proc) { 3632 active_proc->ref++; 3633 } 3634 3635 nvme_ctrlr_unlock(ctrlr); 3636 } 3637 3638 void 3639 nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr) 3640 { 3641 struct spdk_nvme_ctrlr_process *active_proc; 3642 int proc_count; 3643 3644 nvme_ctrlr_lock(ctrlr); 3645 3646 proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr); 3647 3648 active_proc = nvme_ctrlr_get_current_process(ctrlr); 3649 if (active_proc) { 3650 active_proc->ref--; 3651 assert(active_proc->ref >= 0); 3652 3653 /* 3654 * The last active process will be removed at the end of 3655 * the destruction of the controller. 3656 */ 3657 if (active_proc->ref == 0 && proc_count != 1) { 3658 nvme_ctrlr_remove_process(ctrlr, active_proc); 3659 } 3660 } 3661 3662 nvme_ctrlr_unlock(ctrlr); 3663 } 3664 3665 int 3666 nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr) 3667 { 3668 struct spdk_nvme_ctrlr_process *active_proc; 3669 int ref = 0; 3670 3671 nvme_ctrlr_lock(ctrlr); 3672 3673 nvme_ctrlr_remove_inactive_proc(ctrlr); 3674 3675 TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) { 3676 ref += active_proc->ref; 3677 } 3678 3679 nvme_ctrlr_unlock(ctrlr); 3680 3681 return ref; 3682 } 3683 3684 /** 3685 * Get the PCI device handle which is only visible to its associated process. 3686 */ 3687 struct spdk_pci_device * 3688 nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr) 3689 { 3690 struct spdk_nvme_ctrlr_process *active_proc; 3691 struct spdk_pci_device *devhandle = NULL; 3692 3693 nvme_ctrlr_lock(ctrlr); 3694 3695 active_proc = nvme_ctrlr_get_current_process(ctrlr); 3696 if (active_proc) { 3697 devhandle = active_proc->devhandle; 3698 } 3699 3700 nvme_ctrlr_unlock(ctrlr); 3701 3702 return devhandle; 3703 } 3704 3705 static void 3706 nvme_ctrlr_process_init_vs_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl) 3707 { 3708 struct spdk_nvme_ctrlr *ctrlr = ctx; 3709 3710 if (spdk_nvme_cpl_is_error(cpl)) { 3711 NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the VS register\n"); 3712 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 3713 return; 3714 } 3715 3716 assert(value <= UINT32_MAX); 3717 ctrlr->vs.raw = (uint32_t)value; 3718 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP, NVME_TIMEOUT_INFINITE); 3719 } 3720 3721 static void 3722 nvme_ctrlr_process_init_cap_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl) 3723 { 3724 struct spdk_nvme_ctrlr *ctrlr = ctx; 3725 3726 if (spdk_nvme_cpl_is_error(cpl)) { 3727 NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CAP register\n"); 3728 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 3729 return; 3730 } 3731 3732 ctrlr->cap.raw = value; 3733 nvme_ctrlr_init_cap(ctrlr); 3734 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE); 3735 } 3736 3737 static void 3738 nvme_ctrlr_process_init_check_en(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl) 3739 { 3740 struct spdk_nvme_ctrlr *ctrlr = ctx; 3741 enum nvme_ctrlr_state state; 3742 3743 if (spdk_nvme_cpl_is_error(cpl)) { 3744 NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n"); 3745 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 3746 return; 3747 } 3748 3749 assert(value <= UINT32_MAX); 3750 ctrlr->process_init_cc.raw = (uint32_t)value; 3751 3752 if (ctrlr->process_init_cc.bits.en) { 3753 NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1\n"); 3754 state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1; 3755 } else { 3756 state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0; 3757 } 3758 3759 nvme_ctrlr_set_state(ctrlr, state, nvme_ctrlr_get_ready_timeout(ctrlr)); 3760 } 3761 3762 static void 3763 nvme_ctrlr_process_init_set_en_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl) 3764 { 3765 struct spdk_nvme_ctrlr *ctrlr = ctx; 3766 3767 if (spdk_nvme_cpl_is_error(cpl)) { 3768 NVME_CTRLR_ERRLOG(ctrlr, "Failed to write the CC register\n"); 3769 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 3770 return; 3771 } 3772 3773 /* 3774 * Wait 2.5 seconds before accessing PCI registers. 3775 * Not using sleep() to avoid blocking other controller's initialization. 3776 */ 3777 if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) { 3778 NVME_CTRLR_DEBUGLOG(ctrlr, "Applying quirk: delay 2.5 seconds before reading registers\n"); 3779 ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2500 * spdk_get_ticks_hz() / 1000); 3780 } 3781 3782 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, 3783 nvme_ctrlr_get_ready_timeout(ctrlr)); 3784 } 3785 3786 static void 3787 nvme_ctrlr_process_init_set_en_0_read_cc(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl) 3788 { 3789 struct spdk_nvme_ctrlr *ctrlr = ctx; 3790 union spdk_nvme_cc_register cc; 3791 int rc; 3792 3793 if (spdk_nvme_cpl_is_error(cpl)) { 3794 NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n"); 3795 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 3796 return; 3797 } 3798 3799 assert(value <= UINT32_MAX); 3800 cc.raw = (uint32_t)value; 3801 cc.bits.en = 0; 3802 ctrlr->process_init_cc.raw = cc.raw; 3803 3804 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC, 3805 nvme_ctrlr_get_ready_timeout(ctrlr)); 3806 3807 rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_process_init_set_en_0, ctrlr); 3808 if (rc != 0) { 3809 NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n"); 3810 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 3811 } 3812 } 3813 3814 static void 3815 nvme_ctrlr_process_init_wait_for_ready_1(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl) 3816 { 3817 struct spdk_nvme_ctrlr *ctrlr = ctx; 3818 union spdk_nvme_csts_register csts; 3819 3820 if (spdk_nvme_cpl_is_error(cpl)) { 3821 /* While a device is resetting, it may be unable to service MMIO reads 3822 * temporarily. Allow for this case. 3823 */ 3824 if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) { 3825 NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n"); 3826 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1, 3827 NVME_TIMEOUT_KEEP_EXISTING); 3828 } else { 3829 NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n"); 3830 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 3831 } 3832 3833 return; 3834 } 3835 3836 assert(value <= UINT32_MAX); 3837 csts.raw = (uint32_t)value; 3838 if (csts.bits.rdy == 1 || csts.bits.cfs == 1) { 3839 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0, 3840 nvme_ctrlr_get_ready_timeout(ctrlr)); 3841 } else { 3842 NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n"); 3843 nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1, 3844 NVME_TIMEOUT_KEEP_EXISTING); 3845 } 3846 } 3847 3848 static void 3849 nvme_ctrlr_process_init_wait_for_ready_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl) 3850 { 3851 struct spdk_nvme_ctrlr *ctrlr = ctx; 3852 union spdk_nvme_csts_register csts; 3853 3854 if (spdk_nvme_cpl_is_error(cpl)) { 3855 /* While a device is resetting, it may be unable to service MMIO reads 3856 * temporarily. Allow for this case. 3857 */ 3858 if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) { 3859 NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n"); 3860 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, 3861 NVME_TIMEOUT_KEEP_EXISTING); 3862 } else { 3863 NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n"); 3864 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 3865 } 3866 3867 return; 3868 } 3869 3870 assert(value <= UINT32_MAX); 3871 csts.raw = (uint32_t)value; 3872 if (csts.bits.rdy == 0) { 3873 NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 0 && CSTS.RDY = 0\n"); 3874 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLED, 3875 nvme_ctrlr_get_ready_timeout(ctrlr)); 3876 } else { 3877 nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, 3878 NVME_TIMEOUT_KEEP_EXISTING); 3879 } 3880 } 3881 3882 static void 3883 nvme_ctrlr_process_init_enable_wait_for_ready_1(void *ctx, uint64_t value, 3884 const struct spdk_nvme_cpl *cpl) 3885 { 3886 struct spdk_nvme_ctrlr *ctrlr = ctx; 3887 union spdk_nvme_csts_register csts; 3888 3889 if (spdk_nvme_cpl_is_error(cpl)) { 3890 /* While a device is resetting, it may be unable to service MMIO reads 3891 * temporarily. Allow for this case. 3892 */ 3893 if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) { 3894 NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n"); 3895 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1, 3896 NVME_TIMEOUT_KEEP_EXISTING); 3897 } else { 3898 NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n"); 3899 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 3900 } 3901 3902 return; 3903 } 3904 3905 assert(value <= UINT32_MAX); 3906 csts.raw = value; 3907 if (csts.bits.rdy == 1) { 3908 NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n"); 3909 /* 3910 * The controller has been enabled. 3911 * Perform the rest of initialization serially. 3912 */ 3913 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_RESET_ADMIN_QUEUE, 3914 ctrlr->opts.admin_timeout_ms); 3915 } else { 3916 nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1, 3917 NVME_TIMEOUT_KEEP_EXISTING); 3918 } 3919 } 3920 3921 /** 3922 * This function will be called repeatedly during initialization until the controller is ready. 3923 */ 3924 int 3925 nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr) 3926 { 3927 uint32_t ready_timeout_in_ms; 3928 uint64_t ticks; 3929 int rc = 0; 3930 3931 ticks = spdk_get_ticks(); 3932 3933 /* 3934 * May need to avoid accessing any register on the target controller 3935 * for a while. Return early without touching the FSM. 3936 * Check sleep_timeout_tsc > 0 for unit test. 3937 */ 3938 if ((ctrlr->sleep_timeout_tsc > 0) && 3939 (ticks <= ctrlr->sleep_timeout_tsc)) { 3940 return 0; 3941 } 3942 ctrlr->sleep_timeout_tsc = 0; 3943 3944 ready_timeout_in_ms = nvme_ctrlr_get_ready_timeout(ctrlr); 3945 3946 /* 3947 * Check if the current initialization step is done or has timed out. 3948 */ 3949 switch (ctrlr->state) { 3950 case NVME_CTRLR_STATE_INIT_DELAY: 3951 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, ready_timeout_in_ms); 3952 if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_INIT) { 3953 /* 3954 * Controller may need some delay before it's enabled. 3955 * 3956 * This is a workaround for an issue where the PCIe-attached NVMe controller 3957 * is not ready after VFIO reset. We delay the initialization rather than the 3958 * enabling itself, because this is required only for the very first enabling 3959 * - directly after a VFIO reset. 3960 */ 3961 NVME_CTRLR_DEBUGLOG(ctrlr, "Adding 2 second delay before initializing the controller\n"); 3962 ctrlr->sleep_timeout_tsc = ticks + (2000 * spdk_get_ticks_hz() / 1000); 3963 } 3964 break; 3965 3966 case NVME_CTRLR_STATE_DISCONNECTED: 3967 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE); 3968 break; 3969 3970 case NVME_CTRLR_STATE_CONNECT_ADMINQ: /* synonymous with NVME_CTRLR_STATE_INIT and NVME_CTRLR_STATE_DISCONNECTED */ 3971 rc = nvme_transport_ctrlr_connect_qpair(ctrlr, ctrlr->adminq); 3972 if (rc == 0) { 3973 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ, 3974 NVME_TIMEOUT_INFINITE); 3975 } else { 3976 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 3977 } 3978 break; 3979 3980 case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ: 3981 spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); 3982 3983 switch (nvme_qpair_get_state(ctrlr->adminq)) { 3984 case NVME_QPAIR_CONNECTING: 3985 break; 3986 case NVME_QPAIR_CONNECTED: 3987 nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED); 3988 /* Fall through */ 3989 case NVME_QPAIR_ENABLED: 3990 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS, 3991 NVME_TIMEOUT_INFINITE); 3992 /* Abort any queued requests that were sent while the adminq was connecting 3993 * to avoid stalling the init process during a reset, as requests don't get 3994 * resubmitted while the controller is resetting and subsequent commands 3995 * would get queued too. 3996 */ 3997 nvme_qpair_abort_queued_reqs(ctrlr->adminq); 3998 break; 3999 case NVME_QPAIR_DISCONNECTING: 4000 assert(ctrlr->adminq->async == true); 4001 break; 4002 case NVME_QPAIR_DISCONNECTED: 4003 /* fallthrough */ 4004 default: 4005 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 4006 break; 4007 } 4008 4009 break; 4010 4011 case NVME_CTRLR_STATE_READ_VS: 4012 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS, NVME_TIMEOUT_INFINITE); 4013 rc = nvme_ctrlr_get_vs_async(ctrlr, nvme_ctrlr_process_init_vs_done, ctrlr); 4014 break; 4015 4016 case NVME_CTRLR_STATE_READ_CAP: 4017 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP, NVME_TIMEOUT_INFINITE); 4018 rc = nvme_ctrlr_get_cap_async(ctrlr, nvme_ctrlr_process_init_cap_done, ctrlr); 4019 break; 4020 4021 case NVME_CTRLR_STATE_CHECK_EN: 4022 /* Begin the hardware initialization by making sure the controller is disabled. */ 4023 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC, ready_timeout_in_ms); 4024 rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_check_en, ctrlr); 4025 break; 4026 4027 case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1: 4028 /* 4029 * Controller is currently enabled. We need to disable it to cause a reset. 4030 * 4031 * If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready. 4032 * Wait for the ready bit to be 1 before disabling the controller. 4033 */ 4034 nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS, 4035 NVME_TIMEOUT_KEEP_EXISTING); 4036 rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_1, ctrlr); 4037 break; 4038 4039 case NVME_CTRLR_STATE_SET_EN_0: 4040 NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 0\n"); 4041 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC, ready_timeout_in_ms); 4042 rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_set_en_0_read_cc, ctrlr); 4043 break; 4044 4045 case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0: 4046 nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS, 4047 NVME_TIMEOUT_KEEP_EXISTING); 4048 rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_0, ctrlr); 4049 break; 4050 4051 case NVME_CTRLR_STATE_DISABLED: 4052 if (ctrlr->is_disconnecting) { 4053 NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr was disabled.\n"); 4054 } else { 4055 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms); 4056 4057 /* 4058 * Delay 100us before setting CC.EN = 1. Some NVMe SSDs miss CC.EN getting 4059 * set to 1 if it is too soon after CSTS.RDY is reported as 0. 4060 */ 4061 spdk_delay_us(100); 4062 } 4063 break; 4064 4065 case NVME_CTRLR_STATE_ENABLE: 4066 NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 1\n"); 4067 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC, ready_timeout_in_ms); 4068 rc = nvme_ctrlr_enable(ctrlr); 4069 if (rc) { 4070 NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr enable failed with error: %d", rc); 4071 } 4072 return rc; 4073 4074 case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1: 4075 nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS, 4076 NVME_TIMEOUT_KEEP_EXISTING); 4077 rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_enable_wait_for_ready_1, 4078 ctrlr); 4079 break; 4080 4081 case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE: 4082 nvme_transport_qpair_reset(ctrlr->adminq); 4083 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY, NVME_TIMEOUT_INFINITE); 4084 break; 4085 4086 case NVME_CTRLR_STATE_IDENTIFY: 4087 rc = nvme_ctrlr_identify(ctrlr); 4088 break; 4089 4090 case NVME_CTRLR_STATE_CONFIGURE_AER: 4091 rc = nvme_ctrlr_configure_aer(ctrlr); 4092 break; 4093 4094 case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT: 4095 rc = nvme_ctrlr_set_keep_alive_timeout(ctrlr); 4096 break; 4097 4098 case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC: 4099 rc = nvme_ctrlr_identify_iocs_specific(ctrlr); 4100 break; 4101 4102 case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG: 4103 rc = nvme_ctrlr_get_zns_cmd_and_effects_log(ctrlr); 4104 break; 4105 4106 case NVME_CTRLR_STATE_SET_NUM_QUEUES: 4107 nvme_ctrlr_update_nvmf_ioccsz(ctrlr); 4108 rc = nvme_ctrlr_set_num_queues(ctrlr); 4109 break; 4110 4111 case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS: 4112 _nvme_ctrlr_identify_active_ns(ctrlr); 4113 break; 4114 4115 case NVME_CTRLR_STATE_IDENTIFY_NS: 4116 rc = nvme_ctrlr_identify_namespaces(ctrlr); 4117 break; 4118 4119 case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS: 4120 rc = nvme_ctrlr_identify_id_desc_namespaces(ctrlr); 4121 break; 4122 4123 case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC: 4124 rc = nvme_ctrlr_identify_namespaces_iocs_specific(ctrlr); 4125 break; 4126 4127 case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES: 4128 rc = nvme_ctrlr_set_supported_log_pages(ctrlr); 4129 break; 4130 4131 case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES: 4132 rc = nvme_ctrlr_set_intel_support_log_pages(ctrlr); 4133 break; 4134 4135 case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES: 4136 nvme_ctrlr_set_supported_features(ctrlr); 4137 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_FEATURE, 4138 ctrlr->opts.admin_timeout_ms); 4139 break; 4140 4141 case NVME_CTRLR_STATE_SET_HOST_FEATURE: 4142 rc = nvme_ctrlr_set_host_feature(ctrlr); 4143 break; 4144 4145 case NVME_CTRLR_STATE_SET_DB_BUF_CFG: 4146 rc = nvme_ctrlr_set_doorbell_buffer_config(ctrlr); 4147 break; 4148 4149 case NVME_CTRLR_STATE_SET_HOST_ID: 4150 rc = nvme_ctrlr_set_host_id(ctrlr); 4151 break; 4152 4153 case NVME_CTRLR_STATE_TRANSPORT_READY: 4154 rc = nvme_transport_ctrlr_ready(ctrlr); 4155 if (rc) { 4156 NVME_CTRLR_ERRLOG(ctrlr, "Transport controller ready step failed: rc %d\n", rc); 4157 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); 4158 } else { 4159 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE); 4160 } 4161 break; 4162 4163 case NVME_CTRLR_STATE_READY: 4164 NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr already in ready state\n"); 4165 return 0; 4166 4167 case NVME_CTRLR_STATE_ERROR: 4168 NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr is in error state\n"); 4169 return -1; 4170 4171 case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS: 4172 case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP: 4173 case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC: 4174 case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC: 4175 case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS: 4176 case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS: 4177 case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC: 4178 case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS: 4179 case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY: 4180 case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER: 4181 case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT: 4182 case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC: 4183 case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG: 4184 case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES: 4185 case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS: 4186 case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS: 4187 case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS: 4188 case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC: 4189 case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES: 4190 case NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE: 4191 case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG: 4192 case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID: 4193 /* 4194 * nvme_ctrlr_process_init() may be called from the completion context 4195 * for the admin qpair. Avoid recursive calls for this case. 4196 */ 4197 if (!ctrlr->adminq->in_completion_context) { 4198 spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); 4199 } 4200 break; 4201 4202 default: 4203 assert(0); 4204 return -1; 4205 } 4206 4207 if (rc) { 4208 NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr operation failed with error: %d, ctrlr state: %d (%s)\n", 4209 rc, ctrlr->state, nvme_ctrlr_state_string(ctrlr->state)); 4210 } 4211 4212 /* Note: we use the ticks captured when we entered this function. 4213 * This covers environments where the SPDK process gets swapped out after 4214 * we tried to advance the state but before we check the timeout here. 4215 * It is not normal for this to happen, but harmless to handle it in this 4216 * way. 4217 */ 4218 if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE && 4219 ticks > ctrlr->state_timeout_tsc) { 4220 NVME_CTRLR_ERRLOG(ctrlr, "Initialization timed out in state %d (%s)\n", 4221 ctrlr->state, nvme_ctrlr_state_string(ctrlr->state)); 4222 return -1; 4223 } 4224 4225 return rc; 4226 } 4227 4228 int 4229 nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx) 4230 { 4231 pthread_mutexattr_t attr; 4232 int rc = 0; 4233 4234 if (pthread_mutexattr_init(&attr)) { 4235 return -1; 4236 } 4237 if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) || 4238 #ifndef __FreeBSD__ 4239 pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) || 4240 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) || 4241 #endif 4242 pthread_mutex_init(mtx, &attr)) { 4243 rc = -1; 4244 } 4245 pthread_mutexattr_destroy(&attr); 4246 return rc; 4247 } 4248 4249 int 4250 nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr) 4251 { 4252 int rc; 4253 4254 if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { 4255 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT_DELAY, NVME_TIMEOUT_INFINITE); 4256 } else { 4257 nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE); 4258 } 4259 4260 if (ctrlr->opts.admin_queue_size > SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES) { 4261 NVME_CTRLR_ERRLOG(ctrlr, "admin_queue_size %u exceeds max defined by NVMe spec, use max value\n", 4262 ctrlr->opts.admin_queue_size); 4263 ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES; 4264 } 4265 4266 if (ctrlr->quirks & NVME_QUIRK_MINIMUM_ADMIN_QUEUE_SIZE && 4267 (ctrlr->opts.admin_queue_size % SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE) != 0) { 4268 NVME_CTRLR_ERRLOG(ctrlr, 4269 "admin_queue_size %u is invalid for this NVMe device, adjust to next multiple\n", 4270 ctrlr->opts.admin_queue_size); 4271 ctrlr->opts.admin_queue_size = SPDK_ALIGN_CEIL(ctrlr->opts.admin_queue_size, 4272 SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE); 4273 } 4274 4275 if (ctrlr->opts.admin_queue_size < SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES) { 4276 NVME_CTRLR_ERRLOG(ctrlr, 4277 "admin_queue_size %u is less than minimum defined by NVMe spec, use min value\n", 4278 ctrlr->opts.admin_queue_size); 4279 ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES; 4280 } 4281 4282 ctrlr->flags = 0; 4283 ctrlr->free_io_qids = NULL; 4284 ctrlr->is_resetting = false; 4285 ctrlr->is_failed = false; 4286 ctrlr->is_destructed = false; 4287 4288 TAILQ_INIT(&ctrlr->active_io_qpairs); 4289 STAILQ_INIT(&ctrlr->queued_aborts); 4290 ctrlr->outstanding_aborts = 0; 4291 4292 ctrlr->ana_log_page = NULL; 4293 ctrlr->ana_log_page_size = 0; 4294 4295 rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock); 4296 if (rc != 0) { 4297 return rc; 4298 } 4299 4300 TAILQ_INIT(&ctrlr->active_procs); 4301 STAILQ_INIT(&ctrlr->register_operations); 4302 4303 RB_INIT(&ctrlr->ns); 4304 4305 return rc; 4306 } 4307 4308 static void 4309 nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr) 4310 { 4311 if (ctrlr->cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) { 4312 ctrlr->flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED; 4313 } 4314 4315 ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin); 4316 4317 /* For now, always select page_size == min_page_size. */ 4318 ctrlr->page_size = ctrlr->min_page_size; 4319 4320 ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES); 4321 ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, MAX_IO_QUEUE_ENTRIES); 4322 if (ctrlr->quirks & NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE && 4323 ctrlr->opts.io_queue_size == DEFAULT_IO_QUEUE_SIZE) { 4324 /* If the user specifically set an IO queue size different than the 4325 * default, use that value. Otherwise overwrite with the quirked value. 4326 * This allows this quirk to be overridden when necessary. 4327 * However, cap.mqes still needs to be respected. 4328 */ 4329 ctrlr->opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK; 4330 } 4331 ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u); 4332 4333 ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size); 4334 } 4335 4336 void 4337 nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr) 4338 { 4339 int rc; 4340 4341 if (ctrlr->lock_depth > 0) { 4342 SPDK_ERRLOG("lock currently held (depth=%d)!\n", ctrlr->lock_depth); 4343 assert(false); 4344 } 4345 4346 rc = pthread_mutex_destroy(&ctrlr->ctrlr_lock); 4347 if (rc) { 4348 SPDK_ERRLOG("could not destroy ctrlr_lock: %s\n", spdk_strerror(rc)); 4349 assert(false); 4350 } 4351 4352 nvme_ctrlr_free_processes(ctrlr); 4353 } 4354 4355 void 4356 nvme_ctrlr_destruct_async(struct spdk_nvme_ctrlr *ctrlr, 4357 struct nvme_ctrlr_detach_ctx *ctx) 4358 { 4359 struct spdk_nvme_qpair *qpair, *tmp; 4360 4361 NVME_CTRLR_DEBUGLOG(ctrlr, "Prepare to destruct SSD\n"); 4362 4363 ctrlr->prepare_for_reset = false; 4364 ctrlr->is_destructed = true; 4365 4366 spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); 4367 4368 nvme_ctrlr_abort_queued_aborts(ctrlr); 4369 nvme_transport_admin_qpair_abort_aers(ctrlr->adminq); 4370 4371 TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) { 4372 spdk_nvme_ctrlr_free_io_qpair(qpair); 4373 } 4374 4375 nvme_ctrlr_free_doorbell_buffer(ctrlr); 4376 nvme_ctrlr_free_iocs_specific_data(ctrlr); 4377 4378 nvme_ctrlr_shutdown_async(ctrlr, ctx); 4379 } 4380 4381 int 4382 nvme_ctrlr_destruct_poll_async(struct spdk_nvme_ctrlr *ctrlr, 4383 struct nvme_ctrlr_detach_ctx *ctx) 4384 { 4385 struct spdk_nvme_ns *ns, *tmp_ns; 4386 int rc = 0; 4387 4388 if (!ctx->shutdown_complete) { 4389 rc = nvme_ctrlr_shutdown_poll_async(ctrlr, ctx); 4390 if (rc == -EAGAIN) { 4391 return -EAGAIN; 4392 } 4393 /* Destruct ctrlr forcefully for any other error. */ 4394 } 4395 4396 if (ctx->cb_fn) { 4397 ctx->cb_fn(ctrlr); 4398 } 4399 4400 nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq); 4401 4402 RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) { 4403 nvme_ctrlr_destruct_namespace(ctrlr, ns->id); 4404 RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns); 4405 spdk_free(ns); 4406 } 4407 4408 ctrlr->active_ns_count = 0; 4409 4410 spdk_bit_array_free(&ctrlr->free_io_qids); 4411 4412 free(ctrlr->ana_log_page); 4413 free(ctrlr->copied_ana_desc); 4414 ctrlr->ana_log_page = NULL; 4415 ctrlr->copied_ana_desc = NULL; 4416 ctrlr->ana_log_page_size = 0; 4417 4418 nvme_transport_ctrlr_destruct(ctrlr); 4419 4420 return rc; 4421 } 4422 4423 void 4424 nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) 4425 { 4426 struct nvme_ctrlr_detach_ctx ctx = { .ctrlr = ctrlr }; 4427 int rc; 4428 4429 nvme_ctrlr_destruct_async(ctrlr, &ctx); 4430 4431 while (1) { 4432 rc = nvme_ctrlr_destruct_poll_async(ctrlr, &ctx); 4433 if (rc != -EAGAIN) { 4434 break; 4435 } 4436 nvme_delay(1000); 4437 } 4438 } 4439 4440 int 4441 nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr, 4442 struct nvme_request *req) 4443 { 4444 return nvme_qpair_submit_request(ctrlr->adminq, req); 4445 } 4446 4447 static void 4448 nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl) 4449 { 4450 /* Do nothing */ 4451 } 4452 4453 /* 4454 * Check if we need to send a Keep Alive command. 4455 * Caller must hold ctrlr->ctrlr_lock. 4456 */ 4457 static int 4458 nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr) 4459 { 4460 uint64_t now; 4461 struct nvme_request *req; 4462 struct spdk_nvme_cmd *cmd; 4463 int rc = 0; 4464 4465 now = spdk_get_ticks(); 4466 if (now < ctrlr->next_keep_alive_tick) { 4467 return rc; 4468 } 4469 4470 req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL); 4471 if (req == NULL) { 4472 return rc; 4473 } 4474 4475 cmd = &req->cmd; 4476 cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE; 4477 4478 rc = nvme_ctrlr_submit_admin_request(ctrlr, req); 4479 if (rc != 0) { 4480 NVME_CTRLR_ERRLOG(ctrlr, "Submitting Keep Alive failed\n"); 4481 rc = -ENXIO; 4482 } 4483 4484 ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks; 4485 return rc; 4486 } 4487 4488 int32_t 4489 spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr) 4490 { 4491 int32_t num_completions; 4492 int32_t rc; 4493 struct spdk_nvme_ctrlr_process *active_proc; 4494 4495 nvme_ctrlr_lock(ctrlr); 4496 4497 if (ctrlr->keep_alive_interval_ticks) { 4498 rc = nvme_ctrlr_keep_alive(ctrlr); 4499 if (rc) { 4500 nvme_ctrlr_unlock(ctrlr); 4501 return rc; 4502 } 4503 } 4504 4505 rc = nvme_io_msg_process(ctrlr); 4506 if (rc < 0) { 4507 nvme_ctrlr_unlock(ctrlr); 4508 return rc; 4509 } 4510 num_completions = rc; 4511 4512 rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); 4513 4514 /* Each process has an async list, complete the ones for this process object */ 4515 active_proc = nvme_ctrlr_get_current_process(ctrlr); 4516 if (active_proc) { 4517 nvme_ctrlr_complete_queued_async_events(ctrlr); 4518 } 4519 4520 if (rc == -ENXIO && ctrlr->is_disconnecting) { 4521 nvme_ctrlr_disconnect_done(ctrlr); 4522 } 4523 4524 nvme_ctrlr_unlock(ctrlr); 4525 4526 if (rc < 0) { 4527 num_completions = rc; 4528 } else { 4529 num_completions += rc; 4530 } 4531 4532 return num_completions; 4533 } 4534 4535 const struct spdk_nvme_ctrlr_data * 4536 spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr) 4537 { 4538 return &ctrlr->cdata; 4539 } 4540 4541 union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr) 4542 { 4543 union spdk_nvme_csts_register csts; 4544 4545 if (nvme_ctrlr_get_csts(ctrlr, &csts)) { 4546 csts.raw = SPDK_NVME_INVALID_REGISTER_VALUE; 4547 } 4548 return csts; 4549 } 4550 4551 union spdk_nvme_cc_register spdk_nvme_ctrlr_get_regs_cc(struct spdk_nvme_ctrlr *ctrlr) 4552 { 4553 union spdk_nvme_cc_register cc; 4554 4555 if (nvme_ctrlr_get_cc(ctrlr, &cc)) { 4556 cc.raw = SPDK_NVME_INVALID_REGISTER_VALUE; 4557 } 4558 return cc; 4559 } 4560 4561 union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr) 4562 { 4563 return ctrlr->cap; 4564 } 4565 4566 union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr) 4567 { 4568 return ctrlr->vs; 4569 } 4570 4571 union spdk_nvme_cmbsz_register spdk_nvme_ctrlr_get_regs_cmbsz(struct spdk_nvme_ctrlr *ctrlr) 4572 { 4573 union spdk_nvme_cmbsz_register cmbsz; 4574 4575 if (nvme_ctrlr_get_cmbsz(ctrlr, &cmbsz)) { 4576 cmbsz.raw = 0; 4577 } 4578 4579 return cmbsz; 4580 } 4581 4582 union spdk_nvme_pmrcap_register spdk_nvme_ctrlr_get_regs_pmrcap(struct spdk_nvme_ctrlr *ctrlr) 4583 { 4584 union spdk_nvme_pmrcap_register pmrcap; 4585 4586 if (nvme_ctrlr_get_pmrcap(ctrlr, &pmrcap)) { 4587 pmrcap.raw = 0; 4588 } 4589 4590 return pmrcap; 4591 } 4592 4593 union spdk_nvme_bpinfo_register spdk_nvme_ctrlr_get_regs_bpinfo(struct spdk_nvme_ctrlr *ctrlr) 4594 { 4595 union spdk_nvme_bpinfo_register bpinfo; 4596 4597 if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) { 4598 bpinfo.raw = 0; 4599 } 4600 4601 return bpinfo; 4602 } 4603 4604 uint64_t 4605 spdk_nvme_ctrlr_get_pmrsz(struct spdk_nvme_ctrlr *ctrlr) 4606 { 4607 return ctrlr->pmr_size; 4608 } 4609 4610 uint32_t 4611 spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr) 4612 { 4613 return ctrlr->cdata.nn; 4614 } 4615 4616 bool 4617 spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) 4618 { 4619 struct spdk_nvme_ns tmp, *ns; 4620 4621 tmp.id = nsid; 4622 ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp); 4623 4624 if (ns != NULL) { 4625 return ns->active; 4626 } 4627 4628 return false; 4629 } 4630 4631 uint32_t 4632 spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr) 4633 { 4634 struct spdk_nvme_ns *ns; 4635 4636 ns = RB_MIN(nvme_ns_tree, &ctrlr->ns); 4637 if (ns == NULL) { 4638 return 0; 4639 } 4640 4641 while (ns != NULL) { 4642 if (ns->active) { 4643 return ns->id; 4644 } 4645 4646 ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns); 4647 } 4648 4649 return 0; 4650 } 4651 4652 uint32_t 4653 spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid) 4654 { 4655 struct spdk_nvme_ns tmp, *ns; 4656 4657 tmp.id = prev_nsid; 4658 ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp); 4659 if (ns == NULL) { 4660 return 0; 4661 } 4662 4663 ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns); 4664 while (ns != NULL) { 4665 if (ns->active) { 4666 return ns->id; 4667 } 4668 4669 ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns); 4670 } 4671 4672 return 0; 4673 } 4674 4675 struct spdk_nvme_ns * 4676 spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) 4677 { 4678 struct spdk_nvme_ns tmp; 4679 struct spdk_nvme_ns *ns; 4680 4681 if (nsid < 1 || nsid > ctrlr->cdata.nn) { 4682 return NULL; 4683 } 4684 4685 nvme_ctrlr_lock(ctrlr); 4686 4687 tmp.id = nsid; 4688 ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp); 4689 4690 if (ns == NULL) { 4691 ns = spdk_zmalloc(sizeof(struct spdk_nvme_ns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); 4692 if (ns == NULL) { 4693 nvme_ctrlr_unlock(ctrlr); 4694 return NULL; 4695 } 4696 4697 NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was added\n", nsid); 4698 ns->id = nsid; 4699 RB_INSERT(nvme_ns_tree, &ctrlr->ns, ns); 4700 } 4701 4702 nvme_ctrlr_unlock(ctrlr); 4703 4704 return ns; 4705 } 4706 4707 struct spdk_pci_device * 4708 spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr) 4709 { 4710 if (ctrlr == NULL) { 4711 return NULL; 4712 } 4713 4714 if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) { 4715 return NULL; 4716 } 4717 4718 return nvme_ctrlr_proc_get_devhandle(ctrlr); 4719 } 4720 4721 uint32_t 4722 spdk_nvme_ctrlr_get_max_xfer_size(const struct spdk_nvme_ctrlr *ctrlr) 4723 { 4724 return ctrlr->max_xfer_size; 4725 } 4726 4727 uint16_t 4728 spdk_nvme_ctrlr_get_max_sges(const struct spdk_nvme_ctrlr *ctrlr) 4729 { 4730 if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) { 4731 return ctrlr->max_sges; 4732 } else { 4733 return UINT16_MAX; 4734 } 4735 } 4736 4737 void 4738 spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr, 4739 spdk_nvme_aer_cb aer_cb_fn, 4740 void *aer_cb_arg) 4741 { 4742 struct spdk_nvme_ctrlr_process *active_proc; 4743 4744 nvme_ctrlr_lock(ctrlr); 4745 4746 active_proc = nvme_ctrlr_get_current_process(ctrlr); 4747 if (active_proc) { 4748 active_proc->aer_cb_fn = aer_cb_fn; 4749 active_proc->aer_cb_arg = aer_cb_arg; 4750 } 4751 4752 nvme_ctrlr_unlock(ctrlr); 4753 } 4754 4755 void 4756 spdk_nvme_ctrlr_disable_read_changed_ns_list_log_page(struct spdk_nvme_ctrlr *ctrlr) 4757 { 4758 ctrlr->opts.disable_read_changed_ns_list_log_page = true; 4759 } 4760 4761 void 4762 spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr, 4763 uint64_t timeout_io_us, uint64_t timeout_admin_us, 4764 spdk_nvme_timeout_cb cb_fn, void *cb_arg) 4765 { 4766 struct spdk_nvme_ctrlr_process *active_proc; 4767 4768 nvme_ctrlr_lock(ctrlr); 4769 4770 active_proc = nvme_ctrlr_get_current_process(ctrlr); 4771 if (active_proc) { 4772 active_proc->timeout_io_ticks = timeout_io_us * spdk_get_ticks_hz() / 1000000ULL; 4773 active_proc->timeout_admin_ticks = timeout_admin_us * spdk_get_ticks_hz() / 1000000ULL; 4774 active_proc->timeout_cb_fn = cb_fn; 4775 active_proc->timeout_cb_arg = cb_arg; 4776 } 4777 4778 ctrlr->timeout_enabled = true; 4779 4780 nvme_ctrlr_unlock(ctrlr); 4781 } 4782 4783 bool 4784 spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page) 4785 { 4786 /* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */ 4787 SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch"); 4788 return ctrlr->log_page_supported[log_page]; 4789 } 4790 4791 bool 4792 spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code) 4793 { 4794 /* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */ 4795 SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch"); 4796 return ctrlr->feature_supported[feature_code]; 4797 } 4798 4799 int 4800 spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, 4801 struct spdk_nvme_ctrlr_list *payload) 4802 { 4803 struct nvme_completion_poll_status *status; 4804 struct spdk_nvme_ns *ns; 4805 int res; 4806 4807 if (nsid == 0) { 4808 return -EINVAL; 4809 } 4810 4811 status = calloc(1, sizeof(*status)); 4812 if (!status) { 4813 NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n"); 4814 return -ENOMEM; 4815 } 4816 4817 res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload, 4818 nvme_completion_poll_cb, status); 4819 if (res) { 4820 free(status); 4821 return res; 4822 } 4823 if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) { 4824 NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_attach_ns failed!\n"); 4825 if (!status->timed_out) { 4826 free(status); 4827 } 4828 return -ENXIO; 4829 } 4830 free(status); 4831 4832 res = nvme_ctrlr_identify_active_ns(ctrlr); 4833 if (res) { 4834 return res; 4835 } 4836 4837 ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); 4838 if (ns == NULL) { 4839 NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_get_ns failed!\n"); 4840 return -ENXIO; 4841 } 4842 4843 return nvme_ns_construct(ns, nsid, ctrlr); 4844 } 4845 4846 int 4847 spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, 4848 struct spdk_nvme_ctrlr_list *payload) 4849 { 4850 struct nvme_completion_poll_status *status; 4851 int res; 4852 4853 if (nsid == 0) { 4854 return -EINVAL; 4855 } 4856 4857 status = calloc(1, sizeof(*status)); 4858 if (!status) { 4859 NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n"); 4860 return -ENOMEM; 4861 } 4862 4863 res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload, 4864 nvme_completion_poll_cb, status); 4865 if (res) { 4866 free(status); 4867 return res; 4868 } 4869 if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) { 4870 NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_detach_ns failed!\n"); 4871 if (!status->timed_out) { 4872 free(status); 4873 } 4874 return -ENXIO; 4875 } 4876 free(status); 4877 4878 return nvme_ctrlr_identify_active_ns(ctrlr); 4879 } 4880 4881 uint32_t 4882 spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload) 4883 { 4884 struct nvme_completion_poll_status *status; 4885 int res; 4886 uint32_t nsid; 4887 4888 status = calloc(1, sizeof(*status)); 4889 if (!status) { 4890 NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n"); 4891 return 0; 4892 } 4893 4894 res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, status); 4895 if (res) { 4896 free(status); 4897 return 0; 4898 } 4899 if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) { 4900 NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_create_ns failed!\n"); 4901 if (!status->timed_out) { 4902 free(status); 4903 } 4904 return 0; 4905 } 4906 4907 nsid = status->cpl.cdw0; 4908 free(status); 4909 4910 assert(nsid > 0); 4911 4912 /* Return the namespace ID that was created */ 4913 return nsid; 4914 } 4915 4916 int 4917 spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) 4918 { 4919 struct nvme_completion_poll_status *status; 4920 int res; 4921 4922 if (nsid == 0) { 4923 return -EINVAL; 4924 } 4925 4926 status = calloc(1, sizeof(*status)); 4927 if (!status) { 4928 NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n"); 4929 return -ENOMEM; 4930 } 4931 4932 res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, status); 4933 if (res) { 4934 free(status); 4935 return res; 4936 } 4937 if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) { 4938 NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_delete_ns failed!\n"); 4939 if (!status->timed_out) { 4940 free(status); 4941 } 4942 return -ENXIO; 4943 } 4944 free(status); 4945 4946 return nvme_ctrlr_identify_active_ns(ctrlr); 4947 } 4948 4949 int 4950 spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, 4951 struct spdk_nvme_format *format) 4952 { 4953 struct nvme_completion_poll_status *status; 4954 int res; 4955 4956 status = calloc(1, sizeof(*status)); 4957 if (!status) { 4958 NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n"); 4959 return -ENOMEM; 4960 } 4961 4962 res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb, 4963 status); 4964 if (res) { 4965 free(status); 4966 return res; 4967 } 4968 if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) { 4969 NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_format failed!\n"); 4970 if (!status->timed_out) { 4971 free(status); 4972 } 4973 return -ENXIO; 4974 } 4975 free(status); 4976 4977 return spdk_nvme_ctrlr_reset(ctrlr); 4978 } 4979 4980 int 4981 spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size, 4982 int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status) 4983 { 4984 struct spdk_nvme_fw_commit fw_commit; 4985 struct nvme_completion_poll_status *status; 4986 int res; 4987 unsigned int size_remaining; 4988 unsigned int offset; 4989 unsigned int transfer; 4990 uint8_t *p; 4991 4992 if (!completion_status) { 4993 return -EINVAL; 4994 } 4995 memset(completion_status, 0, sizeof(struct spdk_nvme_status)); 4996 if (size % 4) { 4997 NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid size!\n"); 4998 return -1; 4999 } 5000 5001 /* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG 5002 * and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG 5003 */ 5004 if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) && 5005 (commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) { 5006 NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid command!\n"); 5007 return -1; 5008 } 5009 5010 status = calloc(1, sizeof(*status)); 5011 if (!status) { 5012 NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n"); 5013 return -ENOMEM; 5014 } 5015 5016 /* Firmware download */ 5017 size_remaining = size; 5018 offset = 0; 5019 p = payload; 5020 5021 while (size_remaining > 0) { 5022 transfer = spdk_min(size_remaining, ctrlr->min_page_size); 5023 5024 memset(status, 0, sizeof(*status)); 5025 res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p, 5026 nvme_completion_poll_cb, 5027 status); 5028 if (res) { 5029 free(status); 5030 return res; 5031 } 5032 5033 if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) { 5034 NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_fw_image_download failed!\n"); 5035 if (!status->timed_out) { 5036 free(status); 5037 } 5038 return -ENXIO; 5039 } 5040 p += transfer; 5041 offset += transfer; 5042 size_remaining -= transfer; 5043 } 5044 5045 /* Firmware commit */ 5046 memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit)); 5047 fw_commit.fs = slot; 5048 fw_commit.ca = commit_action; 5049 5050 memset(status, 0, sizeof(*status)); 5051 res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb, 5052 status); 5053 if (res) { 5054 free(status); 5055 return res; 5056 } 5057 5058 res = nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock); 5059 5060 memcpy(completion_status, &status->cpl.status, sizeof(struct spdk_nvme_status)); 5061 5062 if (!status->timed_out) { 5063 free(status); 5064 } 5065 5066 if (res) { 5067 if (completion_status->sct != SPDK_NVME_SCT_COMMAND_SPECIFIC || 5068 completion_status->sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) { 5069 if (completion_status->sct == SPDK_NVME_SCT_COMMAND_SPECIFIC && 5070 completion_status->sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) { 5071 NVME_CTRLR_NOTICELOG(ctrlr, 5072 "firmware activation requires conventional reset to be performed. !\n"); 5073 } else { 5074 NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n"); 5075 } 5076 return -ENXIO; 5077 } 5078 } 5079 5080 return spdk_nvme_ctrlr_reset(ctrlr); 5081 } 5082 5083 int 5084 spdk_nvme_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr) 5085 { 5086 int rc, size; 5087 union spdk_nvme_cmbsz_register cmbsz; 5088 5089 cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr); 5090 5091 if (cmbsz.bits.rds == 0 || cmbsz.bits.wds == 0) { 5092 return -ENOTSUP; 5093 } 5094 5095 size = cmbsz.bits.sz * (0x1000 << (cmbsz.bits.szu * 4)); 5096 5097 nvme_ctrlr_lock(ctrlr); 5098 rc = nvme_transport_ctrlr_reserve_cmb(ctrlr); 5099 nvme_ctrlr_unlock(ctrlr); 5100 5101 if (rc < 0) { 5102 return rc; 5103 } 5104 5105 return size; 5106 } 5107 5108 void * 5109 spdk_nvme_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size) 5110 { 5111 void *buf; 5112 5113 nvme_ctrlr_lock(ctrlr); 5114 buf = nvme_transport_ctrlr_map_cmb(ctrlr, size); 5115 nvme_ctrlr_unlock(ctrlr); 5116 5117 return buf; 5118 } 5119 5120 void 5121 spdk_nvme_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr) 5122 { 5123 nvme_ctrlr_lock(ctrlr); 5124 nvme_transport_ctrlr_unmap_cmb(ctrlr); 5125 nvme_ctrlr_unlock(ctrlr); 5126 } 5127 5128 int 5129 spdk_nvme_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr) 5130 { 5131 int rc; 5132 5133 nvme_ctrlr_lock(ctrlr); 5134 rc = nvme_transport_ctrlr_enable_pmr(ctrlr); 5135 nvme_ctrlr_unlock(ctrlr); 5136 5137 return rc; 5138 } 5139 5140 int 5141 spdk_nvme_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr) 5142 { 5143 int rc; 5144 5145 nvme_ctrlr_lock(ctrlr); 5146 rc = nvme_transport_ctrlr_disable_pmr(ctrlr); 5147 nvme_ctrlr_unlock(ctrlr); 5148 5149 return rc; 5150 } 5151 5152 void * 5153 spdk_nvme_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size) 5154 { 5155 void *buf; 5156 5157 nvme_ctrlr_lock(ctrlr); 5158 buf = nvme_transport_ctrlr_map_pmr(ctrlr, size); 5159 nvme_ctrlr_unlock(ctrlr); 5160 5161 return buf; 5162 } 5163 5164 int 5165 spdk_nvme_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr) 5166 { 5167 int rc; 5168 5169 nvme_ctrlr_lock(ctrlr); 5170 rc = nvme_transport_ctrlr_unmap_pmr(ctrlr); 5171 nvme_ctrlr_unlock(ctrlr); 5172 5173 return rc; 5174 } 5175 5176 int 5177 spdk_nvme_ctrlr_read_boot_partition_start(struct spdk_nvme_ctrlr *ctrlr, void *payload, 5178 uint32_t bprsz, uint32_t bprof, uint32_t bpid) 5179 { 5180 union spdk_nvme_bprsel_register bprsel; 5181 union spdk_nvme_bpinfo_register bpinfo; 5182 uint64_t bpmbl, bpmb_size; 5183 5184 if (ctrlr->cap.bits.bps == 0) { 5185 return -ENOTSUP; 5186 } 5187 5188 if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) { 5189 NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n"); 5190 return -EIO; 5191 } 5192 5193 if (bpinfo.bits.brs == SPDK_NVME_BRS_READ_IN_PROGRESS) { 5194 NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read already initiated\n"); 5195 return -EALREADY; 5196 } 5197 5198 nvme_ctrlr_lock(ctrlr); 5199 5200 bpmb_size = bprsz * 4096; 5201 bpmbl = spdk_vtophys(payload, &bpmb_size); 5202 if (bpmbl == SPDK_VTOPHYS_ERROR) { 5203 NVME_CTRLR_ERRLOG(ctrlr, "spdk_vtophys of bpmbl failed\n"); 5204 nvme_ctrlr_unlock(ctrlr); 5205 return -EFAULT; 5206 } 5207 5208 if (bpmb_size != bprsz * 4096) { 5209 NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition buffer is not physically contiguous\n"); 5210 nvme_ctrlr_unlock(ctrlr); 5211 return -EFAULT; 5212 } 5213 5214 if (nvme_ctrlr_set_bpmbl(ctrlr, bpmbl)) { 5215 NVME_CTRLR_ERRLOG(ctrlr, "set_bpmbl() failed\n"); 5216 nvme_ctrlr_unlock(ctrlr); 5217 return -EIO; 5218 } 5219 5220 bprsel.bits.bpid = bpid; 5221 bprsel.bits.bprof = bprof; 5222 bprsel.bits.bprsz = bprsz; 5223 5224 if (nvme_ctrlr_set_bprsel(ctrlr, &bprsel)) { 5225 NVME_CTRLR_ERRLOG(ctrlr, "set_bprsel() failed\n"); 5226 nvme_ctrlr_unlock(ctrlr); 5227 return -EIO; 5228 } 5229 5230 nvme_ctrlr_unlock(ctrlr); 5231 return 0; 5232 } 5233 5234 int 5235 spdk_nvme_ctrlr_read_boot_partition_poll(struct spdk_nvme_ctrlr *ctrlr) 5236 { 5237 int rc = 0; 5238 union spdk_nvme_bpinfo_register bpinfo; 5239 5240 if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) { 5241 NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n"); 5242 return -EIO; 5243 } 5244 5245 switch (bpinfo.bits.brs) { 5246 case SPDK_NVME_BRS_NO_READ: 5247 NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read not initiated\n"); 5248 rc = -EINVAL; 5249 break; 5250 case SPDK_NVME_BRS_READ_IN_PROGRESS: 5251 NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition read in progress\n"); 5252 rc = -EAGAIN; 5253 break; 5254 case SPDK_NVME_BRS_READ_ERROR: 5255 NVME_CTRLR_ERRLOG(ctrlr, "Error completing Boot Partition read\n"); 5256 rc = -EIO; 5257 break; 5258 case SPDK_NVME_BRS_READ_SUCCESS: 5259 NVME_CTRLR_INFOLOG(ctrlr, "Boot Partition read completed successfully\n"); 5260 break; 5261 default: 5262 NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition read status\n"); 5263 rc = -EINVAL; 5264 } 5265 5266 return rc; 5267 } 5268 5269 static void 5270 nvme_write_boot_partition_cb(void *arg, const struct spdk_nvme_cpl *cpl) 5271 { 5272 int res; 5273 struct spdk_nvme_ctrlr *ctrlr = arg; 5274 struct spdk_nvme_fw_commit fw_commit; 5275 struct spdk_nvme_cpl err_cpl = 5276 {.status = {.sct = SPDK_NVME_SCT_GENERIC, .sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR }}; 5277 5278 if (spdk_nvme_cpl_is_error(cpl)) { 5279 NVME_CTRLR_ERRLOG(ctrlr, "Write Boot Partition failed\n"); 5280 ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl); 5281 return; 5282 } 5283 5284 if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADING) { 5285 NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Downloading at Offset %d Success\n", ctrlr->fw_offset); 5286 ctrlr->fw_payload = (uint8_t *)ctrlr->fw_payload + ctrlr->fw_transfer_size; 5287 ctrlr->fw_offset += ctrlr->fw_transfer_size; 5288 ctrlr->fw_size_remaining -= ctrlr->fw_transfer_size; 5289 ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size); 5290 res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset, 5291 ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr); 5292 if (res) { 5293 NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_image_download failed!\n"); 5294 ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl); 5295 return; 5296 } 5297 5298 if (ctrlr->fw_transfer_size < ctrlr->min_page_size) { 5299 ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADED; 5300 } 5301 } else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADED) { 5302 NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Download Success\n"); 5303 memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit)); 5304 fw_commit.bpid = ctrlr->bpid; 5305 fw_commit.ca = SPDK_NVME_FW_COMMIT_REPLACE_BOOT_PARTITION; 5306 res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, 5307 nvme_write_boot_partition_cb, ctrlr); 5308 if (res) { 5309 NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n"); 5310 NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca); 5311 ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl); 5312 return; 5313 } 5314 5315 ctrlr->bp_ws = SPDK_NVME_BP_WS_REPLACE; 5316 } else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_REPLACE) { 5317 NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Replacement Success\n"); 5318 memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit)); 5319 fw_commit.bpid = ctrlr->bpid; 5320 fw_commit.ca = SPDK_NVME_FW_COMMIT_ACTIVATE_BOOT_PARTITION; 5321 res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, 5322 nvme_write_boot_partition_cb, ctrlr); 5323 if (res) { 5324 NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n"); 5325 NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca); 5326 ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl); 5327 return; 5328 } 5329 5330 ctrlr->bp_ws = SPDK_NVME_BP_WS_ACTIVATE; 5331 } else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_ACTIVATE) { 5332 NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Activation Success\n"); 5333 ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl); 5334 } else { 5335 NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition write state\n"); 5336 ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl); 5337 return; 5338 } 5339 } 5340 5341 int 5342 spdk_nvme_ctrlr_write_boot_partition(struct spdk_nvme_ctrlr *ctrlr, 5343 void *payload, uint32_t size, uint32_t bpid, 5344 spdk_nvme_cmd_cb cb_fn, void *cb_arg) 5345 { 5346 int res; 5347 5348 if (ctrlr->cap.bits.bps == 0) { 5349 return -ENOTSUP; 5350 } 5351 5352 ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADING; 5353 ctrlr->bpid = bpid; 5354 ctrlr->bp_write_cb_fn = cb_fn; 5355 ctrlr->bp_write_cb_arg = cb_arg; 5356 ctrlr->fw_offset = 0; 5357 ctrlr->fw_size_remaining = size; 5358 ctrlr->fw_payload = payload; 5359 ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size); 5360 5361 res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset, 5362 ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr); 5363 5364 return res; 5365 } 5366 5367 bool 5368 spdk_nvme_ctrlr_is_discovery(struct spdk_nvme_ctrlr *ctrlr) 5369 { 5370 assert(ctrlr); 5371 5372 return !strncmp(ctrlr->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN, 5373 strlen(SPDK_NVMF_DISCOVERY_NQN)); 5374 } 5375 5376 bool 5377 spdk_nvme_ctrlr_is_fabrics(struct spdk_nvme_ctrlr *ctrlr) 5378 { 5379 assert(ctrlr); 5380 5381 return spdk_nvme_trtype_is_fabrics(ctrlr->trid.trtype); 5382 } 5383 5384 int 5385 spdk_nvme_ctrlr_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp, 5386 uint16_t spsp, uint8_t nssf, void *payload, size_t size) 5387 { 5388 struct nvme_completion_poll_status *status; 5389 int res; 5390 5391 status = calloc(1, sizeof(*status)); 5392 if (!status) { 5393 NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n"); 5394 return -ENOMEM; 5395 } 5396 5397 res = spdk_nvme_ctrlr_cmd_security_receive(ctrlr, secp, spsp, nssf, payload, size, 5398 nvme_completion_poll_cb, status); 5399 if (res) { 5400 free(status); 5401 return res; 5402 } 5403 if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) { 5404 NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_receive failed!\n"); 5405 if (!status->timed_out) { 5406 free(status); 5407 } 5408 return -ENXIO; 5409 } 5410 free(status); 5411 5412 return 0; 5413 } 5414 5415 int 5416 spdk_nvme_ctrlr_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp, 5417 uint16_t spsp, uint8_t nssf, void *payload, size_t size) 5418 { 5419 struct nvme_completion_poll_status *status; 5420 int res; 5421 5422 status = calloc(1, sizeof(*status)); 5423 if (!status) { 5424 NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n"); 5425 return -ENOMEM; 5426 } 5427 5428 res = spdk_nvme_ctrlr_cmd_security_send(ctrlr, secp, spsp, nssf, payload, size, 5429 nvme_completion_poll_cb, 5430 status); 5431 if (res) { 5432 free(status); 5433 return res; 5434 } 5435 if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) { 5436 NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_send failed!\n"); 5437 if (!status->timed_out) { 5438 free(status); 5439 } 5440 return -ENXIO; 5441 } 5442 5443 free(status); 5444 5445 return 0; 5446 } 5447 5448 uint64_t 5449 spdk_nvme_ctrlr_get_flags(struct spdk_nvme_ctrlr *ctrlr) 5450 { 5451 return ctrlr->flags; 5452 } 5453 5454 const struct spdk_nvme_transport_id * 5455 spdk_nvme_ctrlr_get_transport_id(struct spdk_nvme_ctrlr *ctrlr) 5456 { 5457 return &ctrlr->trid; 5458 } 5459 5460 int32_t 5461 spdk_nvme_ctrlr_alloc_qid(struct spdk_nvme_ctrlr *ctrlr) 5462 { 5463 uint32_t qid; 5464 5465 assert(ctrlr->free_io_qids); 5466 nvme_ctrlr_lock(ctrlr); 5467 qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1); 5468 if (qid > ctrlr->opts.num_io_queues) { 5469 NVME_CTRLR_ERRLOG(ctrlr, "No free I/O queue IDs\n"); 5470 nvme_ctrlr_unlock(ctrlr); 5471 return -1; 5472 } 5473 5474 spdk_bit_array_clear(ctrlr->free_io_qids, qid); 5475 nvme_ctrlr_unlock(ctrlr); 5476 return qid; 5477 } 5478 5479 void 5480 spdk_nvme_ctrlr_free_qid(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid) 5481 { 5482 assert(qid <= ctrlr->opts.num_io_queues); 5483 5484 nvme_ctrlr_lock(ctrlr); 5485 5486 if (spdk_likely(ctrlr->free_io_qids)) { 5487 spdk_bit_array_set(ctrlr->free_io_qids, qid); 5488 } 5489 5490 nvme_ctrlr_unlock(ctrlr); 5491 } 5492 5493 int 5494 spdk_nvme_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr, 5495 struct spdk_memory_domain **domains, int array_size) 5496 { 5497 return nvme_transport_ctrlr_get_memory_domains(ctrlr, domains, array_size); 5498 } 5499