xref: /spdk/lib/nvme/nvme_ctrlr.c (revision b4ba6cdf0ad14da86fe0ca1b53f6a3f7b09560de)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2015 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "nvme_internal.h"
10 #include "nvme_io_msg.h"
11 
12 #include "spdk/env.h"
13 #include "spdk/string.h"
14 #include "spdk/endian.h"
15 
16 struct nvme_active_ns_ctx;
17 
18 static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
19 		struct nvme_async_event_request *aer);
20 static void nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx);
21 static int nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns);
22 static int nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns);
23 static int nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns);
24 static void nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr);
25 static void nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
26 				 uint64_t timeout_in_ms);
27 
28 static int
29 nvme_ns_cmp(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
30 {
31 	if (ns1->id < ns2->id) {
32 		return -1;
33 	} else if (ns1->id > ns2->id) {
34 		return 1;
35 	} else {
36 		return 0;
37 	}
38 }
39 
40 RB_GENERATE_STATIC(nvme_ns_tree, spdk_nvme_ns, node, nvme_ns_cmp);
41 
42 #define CTRLR_STRING(ctrlr) \
43 	((ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP || ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA) ? \
44 	ctrlr->trid.subnqn : ctrlr->trid.traddr)
45 
46 #define NVME_CTRLR_ERRLOG(ctrlr, format, ...) \
47 	SPDK_ERRLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
48 
49 #define NVME_CTRLR_WARNLOG(ctrlr, format, ...) \
50 	SPDK_WARNLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
51 
52 #define NVME_CTRLR_NOTICELOG(ctrlr, format, ...) \
53 	SPDK_NOTICELOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
54 
55 #define NVME_CTRLR_INFOLOG(ctrlr, format, ...) \
56 	SPDK_INFOLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
57 
58 #ifdef DEBUG
59 #define NVME_CTRLR_DEBUGLOG(ctrlr, format, ...) \
60 	SPDK_DEBUGLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
61 #else
62 #define NVME_CTRLR_DEBUGLOG(ctrlr, ...) do { } while (0)
63 #endif
64 
65 #define nvme_ctrlr_get_reg_async(ctrlr, reg, sz, cb_fn, cb_arg) \
66 	nvme_transport_ctrlr_get_reg_ ## sz ## _async(ctrlr, \
67 		offsetof(struct spdk_nvme_registers, reg), cb_fn, cb_arg)
68 
69 #define nvme_ctrlr_set_reg_async(ctrlr, reg, sz, val, cb_fn, cb_arg) \
70 	nvme_transport_ctrlr_set_reg_ ## sz ## _async(ctrlr, \
71 		offsetof(struct spdk_nvme_registers, reg), val, cb_fn, cb_arg)
72 
73 #define nvme_ctrlr_get_cc_async(ctrlr, cb_fn, cb_arg) \
74 	nvme_ctrlr_get_reg_async(ctrlr, cc, 4, cb_fn, cb_arg)
75 
76 #define nvme_ctrlr_get_csts_async(ctrlr, cb_fn, cb_arg) \
77 	nvme_ctrlr_get_reg_async(ctrlr, csts, 4, cb_fn, cb_arg)
78 
79 #define nvme_ctrlr_get_cap_async(ctrlr, cb_fn, cb_arg) \
80 	nvme_ctrlr_get_reg_async(ctrlr, cap, 8, cb_fn, cb_arg)
81 
82 #define nvme_ctrlr_get_vs_async(ctrlr, cb_fn, cb_arg) \
83 	nvme_ctrlr_get_reg_async(ctrlr, vs, 4, cb_fn, cb_arg)
84 
85 #define nvme_ctrlr_set_cc_async(ctrlr, value, cb_fn, cb_arg) \
86 	nvme_ctrlr_set_reg_async(ctrlr, cc, 4, value, cb_fn, cb_arg)
87 
88 static int
89 nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc)
90 {
91 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
92 					      &cc->raw);
93 }
94 
95 static int
96 nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts)
97 {
98 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw),
99 					      &csts->raw);
100 }
101 
102 int
103 nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
104 {
105 	return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw),
106 					      &cap->raw);
107 }
108 
109 int
110 nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
111 {
112 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw),
113 					      &vs->raw);
114 }
115 
116 int
117 nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz)
118 {
119 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
120 					      &cmbsz->raw);
121 }
122 
123 int
124 nvme_ctrlr_get_pmrcap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_pmrcap_register *pmrcap)
125 {
126 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, pmrcap.raw),
127 					      &pmrcap->raw);
128 }
129 
130 int
131 nvme_ctrlr_get_bpinfo(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bpinfo_register *bpinfo)
132 {
133 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bpinfo.raw),
134 					      &bpinfo->raw);
135 }
136 
137 int
138 nvme_ctrlr_set_bprsel(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bprsel_register *bprsel)
139 {
140 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bprsel.raw),
141 					      bprsel->raw);
142 }
143 
144 int
145 nvme_ctrlr_set_bpmbl(struct spdk_nvme_ctrlr *ctrlr, uint64_t bpmbl_value)
146 {
147 	return nvme_transport_ctrlr_set_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, bpmbl),
148 					      bpmbl_value);
149 }
150 
151 static int
152 nvme_ctrlr_set_nssr(struct spdk_nvme_ctrlr *ctrlr, uint32_t nssr_value)
153 {
154 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, nssr),
155 					      nssr_value);
156 }
157 
158 bool
159 nvme_ctrlr_multi_iocs_enabled(struct spdk_nvme_ctrlr *ctrlr)
160 {
161 	return ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS &&
162 	       ctrlr->opts.command_set == SPDK_NVME_CC_CSS_IOCS;
163 }
164 
165 /* When the field in spdk_nvme_ctrlr_opts are changed and you change this function, please
166  * also update the nvme_ctrl_opts_init function in nvme_ctrlr.c
167  */
168 void
169 spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
170 {
171 	char host_id_str[SPDK_UUID_STRING_LEN];
172 
173 	assert(opts);
174 
175 	opts->opts_size = opts_size;
176 
177 #define FIELD_OK(field) \
178 	offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size
179 
180 #define SET_FIELD(field, value) \
181 	if (offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size) { \
182 		opts->field = value; \
183 	} \
184 
185 	SET_FIELD(num_io_queues, DEFAULT_MAX_IO_QUEUES);
186 	SET_FIELD(use_cmb_sqs, false);
187 	SET_FIELD(no_shn_notification, false);
188 	SET_FIELD(arb_mechanism, SPDK_NVME_CC_AMS_RR);
189 	SET_FIELD(arbitration_burst, 0);
190 	SET_FIELD(low_priority_weight, 0);
191 	SET_FIELD(medium_priority_weight, 0);
192 	SET_FIELD(high_priority_weight, 0);
193 	SET_FIELD(keep_alive_timeout_ms, MIN_KEEP_ALIVE_TIMEOUT_IN_MS);
194 	SET_FIELD(transport_retry_count, SPDK_NVME_DEFAULT_RETRY_COUNT);
195 	SET_FIELD(io_queue_size, DEFAULT_IO_QUEUE_SIZE);
196 
197 	if (nvme_driver_init() == 0) {
198 		if (FIELD_OK(hostnqn)) {
199 			spdk_uuid_fmt_lower(host_id_str, sizeof(host_id_str),
200 					    &g_spdk_nvme_driver->default_extended_host_id);
201 			snprintf(opts->hostnqn, sizeof(opts->hostnqn),
202 				 "nqn.2014-08.org.nvmexpress:uuid:%s", host_id_str);
203 		}
204 
205 		if (FIELD_OK(extended_host_id)) {
206 			memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id,
207 			       sizeof(opts->extended_host_id));
208 		}
209 
210 	}
211 
212 	SET_FIELD(io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS);
213 
214 	if (FIELD_OK(src_addr)) {
215 		memset(opts->src_addr, 0, sizeof(opts->src_addr));
216 	}
217 
218 	if (FIELD_OK(src_svcid)) {
219 		memset(opts->src_svcid, 0, sizeof(opts->src_svcid));
220 	}
221 
222 	if (FIELD_OK(host_id)) {
223 		memset(opts->host_id, 0, sizeof(opts->host_id));
224 	}
225 
226 	SET_FIELD(command_set, CHAR_BIT);
227 	SET_FIELD(admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000);
228 	SET_FIELD(header_digest, false);
229 	SET_FIELD(data_digest, false);
230 	SET_FIELD(disable_error_logging, false);
231 	SET_FIELD(transport_ack_timeout, SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT);
232 	SET_FIELD(admin_queue_size, DEFAULT_ADMIN_QUEUE_SIZE);
233 	SET_FIELD(fabrics_connect_timeout_us, NVME_FABRIC_CONNECT_COMMAND_TIMEOUT);
234 	SET_FIELD(disable_read_ana_log_page, false);
235 	SET_FIELD(disable_read_changed_ns_list_log_page, false);
236 	SET_FIELD(tls_psk, NULL);
237 
238 	if (FIELD_OK(psk)) {
239 		memset(opts->psk, 0, sizeof(opts->psk));
240 	}
241 
242 #undef FIELD_OK
243 #undef SET_FIELD
244 }
245 
246 const struct spdk_nvme_ctrlr_opts *
247 spdk_nvme_ctrlr_get_opts(struct spdk_nvme_ctrlr *ctrlr)
248 {
249 	return &ctrlr->opts;
250 }
251 
252 /**
253  * This function will be called when the process allocates the IO qpair.
254  * Note: the ctrlr_lock must be held when calling this function.
255  */
256 static void
257 nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair)
258 {
259 	struct spdk_nvme_ctrlr_process	*active_proc;
260 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
261 
262 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
263 	if (active_proc) {
264 		TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq);
265 		qpair->active_proc = active_proc;
266 	}
267 }
268 
269 /**
270  * This function will be called when the process frees the IO qpair.
271  * Note: the ctrlr_lock must be held when calling this function.
272  */
273 static void
274 nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair)
275 {
276 	struct spdk_nvme_ctrlr_process	*active_proc;
277 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
278 	struct spdk_nvme_qpair          *active_qpair, *tmp_qpair;
279 
280 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
281 	if (!active_proc) {
282 		return;
283 	}
284 
285 	TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs,
286 			   per_process_tailq, tmp_qpair) {
287 		if (active_qpair == qpair) {
288 			TAILQ_REMOVE(&active_proc->allocated_io_qpairs,
289 				     active_qpair, per_process_tailq);
290 
291 			break;
292 		}
293 	}
294 }
295 
296 void
297 spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr,
298 		struct spdk_nvme_io_qpair_opts *opts,
299 		size_t opts_size)
300 {
301 	assert(ctrlr);
302 
303 	assert(opts);
304 
305 	memset(opts, 0, opts_size);
306 
307 #define FIELD_OK(field) \
308 	offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size
309 
310 	if (FIELD_OK(qprio)) {
311 		opts->qprio = SPDK_NVME_QPRIO_URGENT;
312 	}
313 
314 	if (FIELD_OK(io_queue_size)) {
315 		opts->io_queue_size = ctrlr->opts.io_queue_size;
316 	}
317 
318 	if (FIELD_OK(io_queue_requests)) {
319 		opts->io_queue_requests = ctrlr->opts.io_queue_requests;
320 	}
321 
322 	if (FIELD_OK(delay_cmd_submit)) {
323 		opts->delay_cmd_submit = false;
324 	}
325 
326 	if (FIELD_OK(sq.vaddr)) {
327 		opts->sq.vaddr = NULL;
328 	}
329 
330 	if (FIELD_OK(sq.paddr)) {
331 		opts->sq.paddr = 0;
332 	}
333 
334 	if (FIELD_OK(sq.buffer_size)) {
335 		opts->sq.buffer_size = 0;
336 	}
337 
338 	if (FIELD_OK(cq.vaddr)) {
339 		opts->cq.vaddr = NULL;
340 	}
341 
342 	if (FIELD_OK(cq.paddr)) {
343 		opts->cq.paddr = 0;
344 	}
345 
346 	if (FIELD_OK(cq.buffer_size)) {
347 		opts->cq.buffer_size = 0;
348 	}
349 
350 	if (FIELD_OK(create_only)) {
351 		opts->create_only = false;
352 	}
353 
354 	if (FIELD_OK(async_mode)) {
355 		opts->async_mode = false;
356 	}
357 
358 #undef FIELD_OK
359 }
360 
361 static struct spdk_nvme_qpair *
362 nvme_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
363 			   const struct spdk_nvme_io_qpair_opts *opts)
364 {
365 	int32_t					qid;
366 	struct spdk_nvme_qpair			*qpair;
367 	union spdk_nvme_cc_register		cc;
368 
369 	if (!ctrlr) {
370 		return NULL;
371 	}
372 
373 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
374 	cc.raw = ctrlr->process_init_cc.raw;
375 
376 	if (opts->qprio & ~SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK) {
377 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
378 		return NULL;
379 	}
380 
381 	/*
382 	 * Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the
383 	 * default round robin arbitration method.
384 	 */
385 	if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts->qprio != SPDK_NVME_QPRIO_URGENT)) {
386 		NVME_CTRLR_ERRLOG(ctrlr, "invalid queue priority for default round robin arbitration method\n");
387 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
388 		return NULL;
389 	}
390 
391 	qid = spdk_nvme_ctrlr_alloc_qid(ctrlr);
392 	if (qid < 0) {
393 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
394 		return NULL;
395 	}
396 
397 	qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, opts);
398 	if (qpair == NULL) {
399 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_create_io_qpair() failed\n");
400 		spdk_nvme_ctrlr_free_qid(ctrlr, qid);
401 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
402 		return NULL;
403 	}
404 
405 	TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq);
406 
407 	nvme_ctrlr_proc_add_io_qpair(qpair);
408 
409 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
410 
411 	return qpair;
412 }
413 
414 int
415 spdk_nvme_ctrlr_connect_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
416 {
417 	int rc;
418 
419 	if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) {
420 		return -EISCONN;
421 	}
422 
423 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
424 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
425 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
426 
427 	if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) {
428 		spdk_delay_us(100);
429 	}
430 
431 	return rc;
432 }
433 
434 void
435 spdk_nvme_ctrlr_disconnect_io_qpair(struct spdk_nvme_qpair *qpair)
436 {
437 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
438 
439 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
440 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
441 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
442 }
443 
444 struct spdk_nvme_qpair *
445 spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
446 			       const struct spdk_nvme_io_qpair_opts *user_opts,
447 			       size_t opts_size)
448 {
449 
450 	struct spdk_nvme_qpair		*qpair = NULL;
451 	struct spdk_nvme_io_qpair_opts	opts;
452 	int				rc;
453 
454 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
455 
456 	if (spdk_unlikely(ctrlr->state != NVME_CTRLR_STATE_READY)) {
457 		/* When controller is resetting or initializing, free_io_qids is deleted or not created yet.
458 		 * We can't create IO qpair in that case */
459 		goto unlock;
460 	}
461 
462 	/*
463 	 * Get the default options, then overwrite them with the user-provided options
464 	 * up to opts_size.
465 	 *
466 	 * This allows for extensions of the opts structure without breaking
467 	 * ABI compatibility.
468 	 */
469 	spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
470 	if (user_opts) {
471 		memcpy(&opts, user_opts, spdk_min(sizeof(opts), opts_size));
472 
473 		/* If user passes buffers, make sure they're big enough for the requested queue size */
474 		if (opts.sq.vaddr) {
475 			if (opts.sq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))) {
476 				NVME_CTRLR_ERRLOG(ctrlr, "sq buffer size %" PRIx64 " is too small for sq size %zx\n",
477 						  opts.sq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cmd)));
478 				goto unlock;
479 			}
480 		}
481 		if (opts.cq.vaddr) {
482 			if (opts.cq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))) {
483 				NVME_CTRLR_ERRLOG(ctrlr, "cq buffer size %" PRIx64 " is too small for cq size %zx\n",
484 						  opts.cq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cpl)));
485 				goto unlock;
486 			}
487 		}
488 	}
489 
490 	qpair = nvme_ctrlr_create_io_qpair(ctrlr, &opts);
491 
492 	if (qpair == NULL || opts.create_only == true) {
493 		goto unlock;
494 	}
495 
496 	rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair);
497 	if (rc != 0) {
498 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_connect_io_qpair() failed\n");
499 		nvme_ctrlr_proc_remove_io_qpair(qpair);
500 		TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
501 		spdk_bit_array_set(ctrlr->free_io_qids, qpair->id);
502 		nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
503 		qpair = NULL;
504 		goto unlock;
505 	}
506 
507 unlock:
508 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
509 
510 	return qpair;
511 }
512 
513 int
514 spdk_nvme_ctrlr_reconnect_io_qpair(struct spdk_nvme_qpair *qpair)
515 {
516 	struct spdk_nvme_ctrlr *ctrlr;
517 	enum nvme_qpair_state qpair_state;
518 	int rc;
519 
520 	assert(qpair != NULL);
521 	assert(nvme_qpair_is_admin_queue(qpair) == false);
522 	assert(qpair->ctrlr != NULL);
523 
524 	ctrlr = qpair->ctrlr;
525 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
526 	qpair_state = nvme_qpair_get_state(qpair);
527 
528 	if (ctrlr->is_removed) {
529 		rc = -ENODEV;
530 		goto out;
531 	}
532 
533 	if (ctrlr->is_resetting || qpair_state == NVME_QPAIR_DISCONNECTING) {
534 		rc = -EAGAIN;
535 		goto out;
536 	}
537 
538 	if (ctrlr->is_failed || qpair_state == NVME_QPAIR_DESTROYING) {
539 		rc = -ENXIO;
540 		goto out;
541 	}
542 
543 	if (qpair_state != NVME_QPAIR_DISCONNECTED) {
544 		rc = 0;
545 		goto out;
546 	}
547 
548 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
549 	if (rc) {
550 		rc = -EAGAIN;
551 		goto out;
552 	}
553 
554 out:
555 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
556 	return rc;
557 }
558 
559 spdk_nvme_qp_failure_reason
560 spdk_nvme_ctrlr_get_admin_qp_failure_reason(struct spdk_nvme_ctrlr *ctrlr)
561 {
562 	return ctrlr->adminq->transport_failure_reason;
563 }
564 
565 /*
566  * This internal function will attempt to take the controller
567  * lock before calling disconnect on a controller qpair.
568  * Functions already holding the controller lock should
569  * call nvme_transport_ctrlr_disconnect_qpair directly.
570  */
571 void
572 nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair)
573 {
574 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
575 
576 	assert(ctrlr != NULL);
577 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
578 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
579 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
580 }
581 
582 int
583 spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair)
584 {
585 	struct spdk_nvme_ctrlr *ctrlr;
586 
587 	if (qpair == NULL) {
588 		return 0;
589 	}
590 
591 	ctrlr = qpair->ctrlr;
592 
593 	if (qpair->in_completion_context) {
594 		/*
595 		 * There are many cases where it is convenient to delete an io qpair in the context
596 		 *  of that qpair's completion routine.  To handle this properly, set a flag here
597 		 *  so that the completion routine will perform an actual delete after the context
598 		 *  unwinds.
599 		 */
600 		qpair->delete_after_completion_context = 1;
601 		return 0;
602 	}
603 
604 	qpair->destroy_in_progress = 1;
605 
606 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
607 
608 	if (qpair->poll_group && (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr))) {
609 		spdk_nvme_poll_group_remove(qpair->poll_group->group, qpair);
610 	}
611 
612 	/* Do not retry. */
613 	nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
614 
615 	/* In the multi-process case, a process may call this function on a foreign
616 	 * I/O qpair (i.e. one that this process did not create) when that qpairs process
617 	 * exits unexpectedly.  In that case, we must not try to abort any reqs associated
618 	 * with that qpair, since the callbacks will also be foreign to this process.
619 	 */
620 	if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) {
621 		nvme_qpair_abort_all_queued_reqs(qpair);
622 	}
623 
624 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
625 
626 	nvme_ctrlr_proc_remove_io_qpair(qpair);
627 
628 	TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
629 	spdk_nvme_ctrlr_free_qid(ctrlr, qpair->id);
630 
631 	nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
632 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
633 	return 0;
634 }
635 
636 static void
637 nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr,
638 		struct spdk_nvme_intel_log_page_directory *log_page_directory)
639 {
640 	if (log_page_directory == NULL) {
641 		return;
642 	}
643 
644 	assert(ctrlr->cdata.vid == SPDK_PCI_VID_INTEL);
645 
646 	ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
647 
648 	if (log_page_directory->read_latency_log_len ||
649 	    (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) {
650 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
651 	}
652 	if (log_page_directory->write_latency_log_len ||
653 	    (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) {
654 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
655 	}
656 	if (log_page_directory->temperature_statistics_log_len) {
657 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true;
658 	}
659 	if (log_page_directory->smart_log_len) {
660 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true;
661 	}
662 	if (log_page_directory->marketing_description_log_len) {
663 		ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true;
664 	}
665 }
666 
667 struct intel_log_pages_ctx {
668 	struct spdk_nvme_intel_log_page_directory log_page_directory;
669 	struct spdk_nvme_ctrlr *ctrlr;
670 };
671 
672 static void
673 nvme_ctrlr_set_intel_support_log_pages_done(void *arg, const struct spdk_nvme_cpl *cpl)
674 {
675 	struct intel_log_pages_ctx *ctx = arg;
676 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
677 
678 	if (!spdk_nvme_cpl_is_error(cpl)) {
679 		nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, &ctx->log_page_directory);
680 	}
681 
682 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
683 			     ctrlr->opts.admin_timeout_ms);
684 	free(ctx);
685 }
686 
687 static int
688 nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr)
689 {
690 	int rc = 0;
691 	struct intel_log_pages_ctx *ctx;
692 
693 	ctx = calloc(1, sizeof(*ctx));
694 	if (!ctx) {
695 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
696 				     ctrlr->opts.admin_timeout_ms);
697 		return 0;
698 	}
699 
700 	ctx->ctrlr = ctrlr;
701 
702 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY,
703 					      SPDK_NVME_GLOBAL_NS_TAG, &ctx->log_page_directory,
704 					      sizeof(struct spdk_nvme_intel_log_page_directory),
705 					      0, nvme_ctrlr_set_intel_support_log_pages_done, ctx);
706 	if (rc != 0) {
707 		free(ctx);
708 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
709 				     ctrlr->opts.admin_timeout_ms);
710 		return 0;
711 	}
712 
713 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES,
714 			     ctrlr->opts.admin_timeout_ms);
715 
716 	return 0;
717 }
718 
719 static int
720 nvme_ctrlr_alloc_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
721 {
722 	uint32_t ana_log_page_size;
723 
724 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + ctrlr->cdata.nanagrpid *
725 			    sizeof(struct spdk_nvme_ana_group_descriptor) + ctrlr->active_ns_count *
726 			    sizeof(uint32_t);
727 
728 	/* Number of active namespaces may have changed.
729 	 * Check if ANA log page fits into existing buffer.
730 	 */
731 	if (ana_log_page_size > ctrlr->ana_log_page_size) {
732 		void *new_buffer;
733 
734 		if (ctrlr->ana_log_page) {
735 			new_buffer = realloc(ctrlr->ana_log_page, ana_log_page_size);
736 		} else {
737 			new_buffer = calloc(1, ana_log_page_size);
738 		}
739 
740 		if (!new_buffer) {
741 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate ANA log page buffer, size %u\n",
742 					  ana_log_page_size);
743 			return -ENXIO;
744 		}
745 
746 		ctrlr->ana_log_page = new_buffer;
747 		if (ctrlr->copied_ana_desc) {
748 			new_buffer = realloc(ctrlr->copied_ana_desc, ana_log_page_size);
749 		} else {
750 			new_buffer = calloc(1, ana_log_page_size);
751 		}
752 
753 		if (!new_buffer) {
754 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate a buffer to parse ANA descriptor, size %u\n",
755 					  ana_log_page_size);
756 			return -ENOMEM;
757 		}
758 
759 		ctrlr->copied_ana_desc = new_buffer;
760 		ctrlr->ana_log_page_size = ana_log_page_size;
761 	}
762 
763 	return 0;
764 }
765 
766 static int
767 nvme_ctrlr_update_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
768 {
769 	struct nvme_completion_poll_status *status;
770 	int rc;
771 
772 	rc = nvme_ctrlr_alloc_ana_log_page(ctrlr);
773 	if (rc != 0) {
774 		return rc;
775 	}
776 
777 	status = calloc(1, sizeof(*status));
778 	if (status == NULL) {
779 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
780 		return -ENOMEM;
781 	}
782 
783 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
784 					      SPDK_NVME_GLOBAL_NS_TAG, ctrlr->ana_log_page,
785 					      ctrlr->ana_log_page_size, 0,
786 					      nvme_completion_poll_cb, status);
787 	if (rc != 0) {
788 		free(status);
789 		return rc;
790 	}
791 
792 	if (nvme_wait_for_completion_robust_lock_timeout(ctrlr->adminq, status, &ctrlr->ctrlr_lock,
793 			ctrlr->opts.admin_timeout_ms * 1000)) {
794 		if (!status->timed_out) {
795 			free(status);
796 		}
797 		return -EIO;
798 	}
799 
800 	free(status);
801 	return 0;
802 }
803 
804 static int
805 nvme_ctrlr_update_ns_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
806 				void *cb_arg)
807 {
808 	struct spdk_nvme_ctrlr *ctrlr = cb_arg;
809 	struct spdk_nvme_ns *ns;
810 	uint32_t i, nsid;
811 
812 	for (i = 0; i < desc->num_of_nsid; i++) {
813 		nsid = desc->nsid[i];
814 		if (nsid == 0 || nsid > ctrlr->cdata.nn) {
815 			continue;
816 		}
817 
818 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
819 		assert(ns != NULL);
820 
821 		ns->ana_group_id = desc->ana_group_id;
822 		ns->ana_state = desc->ana_state;
823 	}
824 
825 	return 0;
826 }
827 
828 int
829 nvme_ctrlr_parse_ana_log_page(struct spdk_nvme_ctrlr *ctrlr,
830 			      spdk_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
831 {
832 	struct spdk_nvme_ana_group_descriptor *copied_desc;
833 	uint8_t *orig_desc;
834 	uint32_t i, desc_size, copy_len;
835 	int rc = 0;
836 
837 	if (ctrlr->ana_log_page == NULL) {
838 		return -EINVAL;
839 	}
840 
841 	copied_desc = ctrlr->copied_ana_desc;
842 
843 	orig_desc = (uint8_t *)ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
844 	copy_len = ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
845 
846 	for (i = 0; i < ctrlr->ana_log_page->num_ana_group_desc; i++) {
847 		memcpy(copied_desc, orig_desc, copy_len);
848 
849 		rc = cb_fn(copied_desc, cb_arg);
850 		if (rc != 0) {
851 			break;
852 		}
853 
854 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
855 			    copied_desc->num_of_nsid * sizeof(uint32_t);
856 		orig_desc += desc_size;
857 		copy_len -= desc_size;
858 	}
859 
860 	return rc;
861 }
862 
863 static int
864 nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr)
865 {
866 	int	rc = 0;
867 
868 	memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
869 	/* Mandatory pages */
870 	ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true;
871 	ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true;
872 	ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true;
873 	if (ctrlr->cdata.lpa.celp) {
874 		ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true;
875 	}
876 
877 	if (ctrlr->cdata.cmic.ana_reporting) {
878 		ctrlr->log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] = true;
879 		if (!ctrlr->opts.disable_read_ana_log_page) {
880 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
881 			if (rc == 0) {
882 				nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
883 							      ctrlr);
884 			}
885 		}
886 	}
887 
888 	if (ctrlr->cdata.ctratt.fdps) {
889 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_CONFIGURATIONS] = true;
890 		ctrlr->log_page_supported[SPDK_NVME_LOG_RECLAIM_UNIT_HANDLE_USAGE] = true;
891 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_STATISTICS] = true;
892 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_EVENTS] = true;
893 	}
894 
895 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL &&
896 	    ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE &&
897 	    !(ctrlr->quirks & NVME_INTEL_QUIRK_NO_LOG_PAGES)) {
898 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES,
899 				     ctrlr->opts.admin_timeout_ms);
900 
901 	} else {
902 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
903 				     ctrlr->opts.admin_timeout_ms);
904 
905 	}
906 
907 	return rc;
908 }
909 
910 static void
911 nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr)
912 {
913 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true;
914 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
915 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
916 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
917 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true;
918 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
919 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
920 }
921 
922 static void
923 nvme_ctrlr_set_arbitration_feature(struct spdk_nvme_ctrlr *ctrlr)
924 {
925 	uint32_t cdw11;
926 	struct nvme_completion_poll_status *status;
927 
928 	if (ctrlr->opts.arbitration_burst == 0) {
929 		return;
930 	}
931 
932 	if (ctrlr->opts.arbitration_burst > 7) {
933 		NVME_CTRLR_WARNLOG(ctrlr, "Valid arbitration burst values is from 0-7\n");
934 		return;
935 	}
936 
937 	status = calloc(1, sizeof(*status));
938 	if (!status) {
939 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
940 		return;
941 	}
942 
943 	cdw11 = ctrlr->opts.arbitration_burst;
944 
945 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_WRR_SUPPORTED) {
946 		cdw11 |= (uint32_t)ctrlr->opts.low_priority_weight << 8;
947 		cdw11 |= (uint32_t)ctrlr->opts.medium_priority_weight << 16;
948 		cdw11 |= (uint32_t)ctrlr->opts.high_priority_weight << 24;
949 	}
950 
951 	if (spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION,
952 					    cdw11, 0, NULL, 0,
953 					    nvme_completion_poll_cb, status) < 0) {
954 		NVME_CTRLR_ERRLOG(ctrlr, "Set arbitration feature failed\n");
955 		free(status);
956 		return;
957 	}
958 
959 	if (nvme_wait_for_completion_timeout(ctrlr->adminq, status,
960 					     ctrlr->opts.admin_timeout_ms * 1000)) {
961 		NVME_CTRLR_ERRLOG(ctrlr, "Timeout to set arbitration feature\n");
962 	}
963 
964 	if (!status->timed_out) {
965 		free(status);
966 	}
967 }
968 
969 static void
970 nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr)
971 {
972 	memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
973 	/* Mandatory features */
974 	ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true;
975 	ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true;
976 	ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
977 	ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true;
978 	ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true;
979 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true;
980 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
981 	ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true;
982 	ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
983 	/* Optional features */
984 	if (ctrlr->cdata.vwc.present) {
985 		ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
986 	}
987 	if (ctrlr->cdata.apsta.supported) {
988 		ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
989 	}
990 	if (ctrlr->cdata.hmpre) {
991 		ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true;
992 	}
993 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
994 		nvme_ctrlr_set_intel_supported_features(ctrlr);
995 	}
996 
997 	nvme_ctrlr_set_arbitration_feature(ctrlr);
998 }
999 
1000 bool
1001 spdk_nvme_ctrlr_is_failed(struct spdk_nvme_ctrlr *ctrlr)
1002 {
1003 	return ctrlr->is_failed;
1004 }
1005 
1006 void
1007 nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
1008 {
1009 	/*
1010 	 * Set the flag here and leave the work failure of qpairs to
1011 	 * spdk_nvme_qpair_process_completions().
1012 	 */
1013 	if (hot_remove) {
1014 		ctrlr->is_removed = true;
1015 	}
1016 
1017 	if (ctrlr->is_failed) {
1018 		NVME_CTRLR_NOTICELOG(ctrlr, "already in failed state\n");
1019 		return;
1020 	}
1021 
1022 	if (ctrlr->is_disconnecting) {
1023 		NVME_CTRLR_DEBUGLOG(ctrlr, "already disconnecting\n");
1024 		return;
1025 	}
1026 
1027 	ctrlr->is_failed = true;
1028 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1029 	NVME_CTRLR_ERRLOG(ctrlr, "in failed state.\n");
1030 }
1031 
1032 /**
1033  * This public API function will try to take the controller lock.
1034  * Any private functions being called from a thread already holding
1035  * the ctrlr lock should call nvme_ctrlr_fail directly.
1036  */
1037 void
1038 spdk_nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr)
1039 {
1040 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1041 	nvme_ctrlr_fail(ctrlr, false);
1042 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1043 }
1044 
1045 static void
1046 nvme_ctrlr_shutdown_set_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1047 {
1048 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1049 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1050 
1051 	if (spdk_nvme_cpl_is_error(cpl)) {
1052 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1053 		ctx->shutdown_complete = true;
1054 		return;
1055 	}
1056 
1057 	if (ctrlr->opts.no_shn_notification) {
1058 		ctx->shutdown_complete = true;
1059 		return;
1060 	}
1061 
1062 	/*
1063 	 * The NVMe specification defines RTD3E to be the time between
1064 	 *  setting SHN = 1 until the controller will set SHST = 10b.
1065 	 * If the device doesn't report RTD3 entry latency, or if it
1066 	 *  reports RTD3 entry latency less than 10 seconds, pick
1067 	 *  10 seconds as a reasonable amount of time to
1068 	 *  wait before proceeding.
1069 	 */
1070 	NVME_CTRLR_DEBUGLOG(ctrlr, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e);
1071 	ctx->shutdown_timeout_ms = SPDK_CEIL_DIV(ctrlr->cdata.rtd3e, 1000);
1072 	ctx->shutdown_timeout_ms = spdk_max(ctx->shutdown_timeout_ms, 10000);
1073 	NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown timeout = %" PRIu32 " ms\n", ctx->shutdown_timeout_ms);
1074 
1075 	ctx->shutdown_start_tsc = spdk_get_ticks();
1076 	ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1077 }
1078 
1079 static void
1080 nvme_ctrlr_shutdown_get_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1081 {
1082 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1083 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1084 	union spdk_nvme_cc_register cc;
1085 	int rc;
1086 
1087 	if (spdk_nvme_cpl_is_error(cpl)) {
1088 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1089 		ctx->shutdown_complete = true;
1090 		return;
1091 	}
1092 
1093 	assert(value <= UINT32_MAX);
1094 	cc.raw = (uint32_t)value;
1095 
1096 	if (ctrlr->opts.no_shn_notification) {
1097 		NVME_CTRLR_INFOLOG(ctrlr, "Disable SSD without shutdown notification\n");
1098 		if (cc.bits.en == 0) {
1099 			ctx->shutdown_complete = true;
1100 			return;
1101 		}
1102 
1103 		cc.bits.en = 0;
1104 	} else {
1105 		cc.bits.shn = SPDK_NVME_SHN_NORMAL;
1106 	}
1107 
1108 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_shutdown_set_cc_done, ctx);
1109 	if (rc != 0) {
1110 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1111 		ctx->shutdown_complete = true;
1112 	}
1113 }
1114 
1115 static void
1116 nvme_ctrlr_shutdown_async(struct spdk_nvme_ctrlr *ctrlr,
1117 			  struct nvme_ctrlr_detach_ctx *ctx)
1118 {
1119 	int rc;
1120 
1121 	if (ctrlr->is_removed) {
1122 		ctx->shutdown_complete = true;
1123 		return;
1124 	}
1125 
1126 	if (ctrlr->adminq == NULL ||
1127 	    ctrlr->adminq->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE) {
1128 		NVME_CTRLR_INFOLOG(ctrlr, "Adminq is not connected.\n");
1129 		ctx->shutdown_complete = true;
1130 		return;
1131 	}
1132 
1133 	ctx->state = NVME_CTRLR_DETACH_SET_CC;
1134 	rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_shutdown_get_cc_done, ctx);
1135 	if (rc != 0) {
1136 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1137 		ctx->shutdown_complete = true;
1138 	}
1139 }
1140 
1141 static void
1142 nvme_ctrlr_shutdown_get_csts_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1143 {
1144 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1145 
1146 	if (spdk_nvme_cpl_is_error(cpl)) {
1147 		NVME_CTRLR_ERRLOG(ctx->ctrlr, "Failed to read the CSTS register\n");
1148 		ctx->shutdown_complete = true;
1149 		return;
1150 	}
1151 
1152 	assert(value <= UINT32_MAX);
1153 	ctx->csts.raw = (uint32_t)value;
1154 	ctx->state = NVME_CTRLR_DETACH_GET_CSTS_DONE;
1155 }
1156 
1157 static int
1158 nvme_ctrlr_shutdown_poll_async(struct spdk_nvme_ctrlr *ctrlr,
1159 			       struct nvme_ctrlr_detach_ctx *ctx)
1160 {
1161 	union spdk_nvme_csts_register	csts;
1162 	uint32_t			ms_waited;
1163 
1164 	switch (ctx->state) {
1165 	case NVME_CTRLR_DETACH_SET_CC:
1166 	case NVME_CTRLR_DETACH_GET_CSTS:
1167 		/* We're still waiting for the register operation to complete */
1168 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
1169 		return -EAGAIN;
1170 
1171 	case NVME_CTRLR_DETACH_CHECK_CSTS:
1172 		ctx->state = NVME_CTRLR_DETACH_GET_CSTS;
1173 		if (nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_shutdown_get_csts_done, ctx)) {
1174 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
1175 			return -EIO;
1176 		}
1177 		return -EAGAIN;
1178 
1179 	case NVME_CTRLR_DETACH_GET_CSTS_DONE:
1180 		ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1181 		break;
1182 
1183 	default:
1184 		assert(0 && "Should never happen");
1185 		return -EINVAL;
1186 	}
1187 
1188 	ms_waited = (spdk_get_ticks() - ctx->shutdown_start_tsc) * 1000 / spdk_get_ticks_hz();
1189 	csts.raw = ctx->csts.raw;
1190 
1191 	if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
1192 		NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown complete in %u milliseconds\n", ms_waited);
1193 		return 0;
1194 	}
1195 
1196 	if (ms_waited < ctx->shutdown_timeout_ms) {
1197 		return -EAGAIN;
1198 	}
1199 
1200 	NVME_CTRLR_ERRLOG(ctrlr, "did not shutdown within %u milliseconds\n",
1201 			  ctx->shutdown_timeout_ms);
1202 	if (ctrlr->quirks & NVME_QUIRK_SHST_COMPLETE) {
1203 		NVME_CTRLR_ERRLOG(ctrlr, "likely due to shutdown handling in the VMWare emulated NVMe SSD\n");
1204 	}
1205 
1206 	return 0;
1207 }
1208 
1209 static inline uint64_t
1210 nvme_ctrlr_get_ready_timeout(struct spdk_nvme_ctrlr *ctrlr)
1211 {
1212 	return ctrlr->cap.bits.to * 500;
1213 }
1214 
1215 static void
1216 nvme_ctrlr_set_cc_en_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1217 {
1218 	struct spdk_nvme_ctrlr *ctrlr = ctx;
1219 
1220 	if (spdk_nvme_cpl_is_error(cpl)) {
1221 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to set the CC register\n");
1222 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1223 		return;
1224 	}
1225 
1226 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
1227 			     nvme_ctrlr_get_ready_timeout(ctrlr));
1228 }
1229 
1230 static int
1231 nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
1232 {
1233 	union spdk_nvme_cc_register	cc;
1234 	int				rc;
1235 
1236 	rc = nvme_transport_ctrlr_enable(ctrlr);
1237 	if (rc != 0) {
1238 		NVME_CTRLR_ERRLOG(ctrlr, "transport ctrlr_enable failed\n");
1239 		return rc;
1240 	}
1241 
1242 	cc.raw = ctrlr->process_init_cc.raw;
1243 	if (cc.bits.en != 0) {
1244 		NVME_CTRLR_ERRLOG(ctrlr, "called with CC.EN = 1\n");
1245 		return -EINVAL;
1246 	}
1247 
1248 	cc.bits.en = 1;
1249 	cc.bits.css = 0;
1250 	cc.bits.shn = 0;
1251 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
1252 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
1253 
1254 	/* Page size is 2 ^ (12 + mps). */
1255 	cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12;
1256 
1257 	/*
1258 	 * Since NVMe 1.0, a controller should have at least one bit set in CAP.CSS.
1259 	 * A controller that does not have any bit set in CAP.CSS is not spec compliant.
1260 	 * Try to support such a controller regardless.
1261 	 */
1262 	if (ctrlr->cap.bits.css == 0) {
1263 		NVME_CTRLR_INFOLOG(ctrlr, "Drive reports no command sets supported. Assuming NVM is supported.\n");
1264 		ctrlr->cap.bits.css = SPDK_NVME_CAP_CSS_NVM;
1265 	}
1266 
1267 	/*
1268 	 * If the user did not explicitly request a command set, or supplied a value larger than
1269 	 * what can be saved in CC.CSS, use the most reasonable default.
1270 	 */
1271 	if (ctrlr->opts.command_set >= CHAR_BIT) {
1272 		if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS) {
1273 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_IOCS;
1274 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NVM) {
1275 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1276 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NOIO) {
1277 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NOIO;
1278 		} else {
1279 			/* Invalid supported bits detected, falling back to NVM. */
1280 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1281 		}
1282 	}
1283 
1284 	/* Verify that the selected command set is supported by the controller. */
1285 	if (!(ctrlr->cap.bits.css & (1u << ctrlr->opts.command_set))) {
1286 		NVME_CTRLR_DEBUGLOG(ctrlr, "Requested I/O command set %u but supported mask is 0x%x\n",
1287 				    ctrlr->opts.command_set, ctrlr->cap.bits.css);
1288 		NVME_CTRLR_DEBUGLOG(ctrlr, "Falling back to NVM. Assuming NVM is supported.\n");
1289 		ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1290 	}
1291 
1292 	cc.bits.css = ctrlr->opts.command_set;
1293 
1294 	switch (ctrlr->opts.arb_mechanism) {
1295 	case SPDK_NVME_CC_AMS_RR:
1296 		break;
1297 	case SPDK_NVME_CC_AMS_WRR:
1298 		if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) {
1299 			break;
1300 		}
1301 		return -EINVAL;
1302 	case SPDK_NVME_CC_AMS_VS:
1303 		if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) {
1304 			break;
1305 		}
1306 		return -EINVAL;
1307 	default:
1308 		return -EINVAL;
1309 	}
1310 
1311 	cc.bits.ams = ctrlr->opts.arb_mechanism;
1312 	ctrlr->process_init_cc.raw = cc.raw;
1313 
1314 	if (nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_set_cc_en_done, ctrlr)) {
1315 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
1316 		return -EIO;
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 static const char *
1323 nvme_ctrlr_state_string(enum nvme_ctrlr_state state)
1324 {
1325 	switch (state) {
1326 	case NVME_CTRLR_STATE_INIT_DELAY:
1327 		return "delay init";
1328 	case NVME_CTRLR_STATE_CONNECT_ADMINQ:
1329 		return "connect adminq";
1330 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
1331 		return "wait for connect adminq";
1332 	case NVME_CTRLR_STATE_READ_VS:
1333 		return "read vs";
1334 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
1335 		return "read vs wait for vs";
1336 	case NVME_CTRLR_STATE_READ_CAP:
1337 		return "read cap";
1338 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
1339 		return "read cap wait for cap";
1340 	case NVME_CTRLR_STATE_CHECK_EN:
1341 		return "check en";
1342 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
1343 		return "check en wait for cc";
1344 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
1345 		return "disable and wait for CSTS.RDY = 1";
1346 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1347 		return "disable and wait for CSTS.RDY = 1 reg";
1348 	case NVME_CTRLR_STATE_SET_EN_0:
1349 		return "set CC.EN = 0";
1350 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
1351 		return "set CC.EN = 0 wait for cc";
1352 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
1353 		return "disable and wait for CSTS.RDY = 0";
1354 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
1355 		return "disable and wait for CSTS.RDY = 0 reg";
1356 	case NVME_CTRLR_STATE_DISABLED:
1357 		return "controller is disabled";
1358 	case NVME_CTRLR_STATE_ENABLE:
1359 		return "enable controller by writing CC.EN = 1";
1360 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
1361 		return "enable controller by writing CC.EN = 1 reg";
1362 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
1363 		return "wait for CSTS.RDY = 1";
1364 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1365 		return "wait for CSTS.RDY = 1 reg";
1366 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
1367 		return "reset admin queue";
1368 	case NVME_CTRLR_STATE_IDENTIFY:
1369 		return "identify controller";
1370 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
1371 		return "wait for identify controller";
1372 	case NVME_CTRLR_STATE_CONFIGURE_AER:
1373 		return "configure AER";
1374 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
1375 		return "wait for configure aer";
1376 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
1377 		return "set keep alive timeout";
1378 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
1379 		return "wait for set keep alive timeout";
1380 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
1381 		return "identify controller iocs specific";
1382 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
1383 		return "wait for identify controller iocs specific";
1384 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
1385 		return "get zns cmd and effects log page";
1386 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
1387 		return "wait for get zns cmd and effects log page";
1388 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
1389 		return "set number of queues";
1390 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
1391 		return "wait for set number of queues";
1392 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
1393 		return "identify active ns";
1394 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
1395 		return "wait for identify active ns";
1396 	case NVME_CTRLR_STATE_IDENTIFY_NS:
1397 		return "identify ns";
1398 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
1399 		return "wait for identify ns";
1400 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
1401 		return "identify namespace id descriptors";
1402 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
1403 		return "wait for identify namespace id descriptors";
1404 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
1405 		return "identify ns iocs specific";
1406 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
1407 		return "wait for identify ns iocs specific";
1408 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
1409 		return "set supported log pages";
1410 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
1411 		return "set supported INTEL log pages";
1412 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
1413 		return "wait for supported INTEL log pages";
1414 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
1415 		return "set supported features";
1416 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
1417 		return "set doorbell buffer config";
1418 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
1419 		return "wait for doorbell buffer config";
1420 	case NVME_CTRLR_STATE_SET_HOST_ID:
1421 		return "set host ID";
1422 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
1423 		return "wait for set host ID";
1424 	case NVME_CTRLR_STATE_TRANSPORT_READY:
1425 		return "transport ready";
1426 	case NVME_CTRLR_STATE_READY:
1427 		return "ready";
1428 	case NVME_CTRLR_STATE_ERROR:
1429 		return "error";
1430 	case NVME_CTRLR_STATE_DISCONNECTED:
1431 		return "disconnected";
1432 	}
1433 	return "unknown";
1434 };
1435 
1436 static void
1437 _nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1438 		      uint64_t timeout_in_ms, bool quiet)
1439 {
1440 	uint64_t ticks_per_ms, timeout_in_ticks, now_ticks;
1441 
1442 	ctrlr->state = state;
1443 	if (timeout_in_ms == NVME_TIMEOUT_KEEP_EXISTING) {
1444 		if (!quiet) {
1445 			NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (keeping existing timeout)\n",
1446 					    nvme_ctrlr_state_string(ctrlr->state));
1447 		}
1448 		return;
1449 	}
1450 
1451 	if (timeout_in_ms == NVME_TIMEOUT_INFINITE) {
1452 		goto inf;
1453 	}
1454 
1455 	ticks_per_ms = spdk_get_ticks_hz() / 1000;
1456 	if (timeout_in_ms > UINT64_MAX / ticks_per_ms) {
1457 		NVME_CTRLR_ERRLOG(ctrlr,
1458 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1459 		goto inf;
1460 	}
1461 
1462 	now_ticks = spdk_get_ticks();
1463 	timeout_in_ticks = timeout_in_ms * ticks_per_ms;
1464 	if (timeout_in_ticks > UINT64_MAX - now_ticks) {
1465 		NVME_CTRLR_ERRLOG(ctrlr,
1466 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1467 		goto inf;
1468 	}
1469 
1470 	ctrlr->state_timeout_tsc = timeout_in_ticks + now_ticks;
1471 	if (!quiet) {
1472 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (timeout %" PRIu64 " ms)\n",
1473 				    nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms);
1474 	}
1475 	return;
1476 inf:
1477 	if (!quiet) {
1478 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (no timeout)\n",
1479 				    nvme_ctrlr_state_string(ctrlr->state));
1480 	}
1481 	ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE;
1482 }
1483 
1484 static void
1485 nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1486 		     uint64_t timeout_in_ms)
1487 {
1488 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, false);
1489 }
1490 
1491 static void
1492 nvme_ctrlr_set_state_quiet(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1493 			   uint64_t timeout_in_ms)
1494 {
1495 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, true);
1496 }
1497 
1498 static void
1499 nvme_ctrlr_free_zns_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1500 {
1501 	spdk_free(ctrlr->cdata_zns);
1502 	ctrlr->cdata_zns = NULL;
1503 }
1504 
1505 static void
1506 nvme_ctrlr_free_iocs_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1507 {
1508 	nvme_ctrlr_free_zns_specific_data(ctrlr);
1509 }
1510 
1511 static void
1512 nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr)
1513 {
1514 	if (ctrlr->shadow_doorbell) {
1515 		spdk_free(ctrlr->shadow_doorbell);
1516 		ctrlr->shadow_doorbell = NULL;
1517 	}
1518 
1519 	if (ctrlr->eventidx) {
1520 		spdk_free(ctrlr->eventidx);
1521 		ctrlr->eventidx = NULL;
1522 	}
1523 }
1524 
1525 static void
1526 nvme_ctrlr_set_doorbell_buffer_config_done(void *arg, const struct spdk_nvme_cpl *cpl)
1527 {
1528 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1529 
1530 	if (spdk_nvme_cpl_is_error(cpl)) {
1531 		NVME_CTRLR_WARNLOG(ctrlr, "Doorbell buffer config failed\n");
1532 	} else {
1533 		NVME_CTRLR_INFOLOG(ctrlr, "Doorbell buffer config enabled\n");
1534 	}
1535 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1536 			     ctrlr->opts.admin_timeout_ms);
1537 }
1538 
1539 static int
1540 nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr)
1541 {
1542 	int rc = 0;
1543 	uint64_t prp1, prp2, len;
1544 
1545 	if (!ctrlr->cdata.oacs.doorbell_buffer_config) {
1546 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1547 				     ctrlr->opts.admin_timeout_ms);
1548 		return 0;
1549 	}
1550 
1551 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
1552 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1553 				     ctrlr->opts.admin_timeout_ms);
1554 		return 0;
1555 	}
1556 
1557 	/* only 1 page size for doorbell buffer */
1558 	ctrlr->shadow_doorbell = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1559 					      NULL, SPDK_ENV_LCORE_ID_ANY,
1560 					      SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1561 	if (ctrlr->shadow_doorbell == NULL) {
1562 		rc = -ENOMEM;
1563 		goto error;
1564 	}
1565 
1566 	len = ctrlr->page_size;
1567 	prp1 = spdk_vtophys(ctrlr->shadow_doorbell, &len);
1568 	if (prp1 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1569 		rc = -EFAULT;
1570 		goto error;
1571 	}
1572 
1573 	ctrlr->eventidx = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1574 				       NULL, SPDK_ENV_LCORE_ID_ANY,
1575 				       SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1576 	if (ctrlr->eventidx == NULL) {
1577 		rc = -ENOMEM;
1578 		goto error;
1579 	}
1580 
1581 	len = ctrlr->page_size;
1582 	prp2 = spdk_vtophys(ctrlr->eventidx, &len);
1583 	if (prp2 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1584 		rc = -EFAULT;
1585 		goto error;
1586 	}
1587 
1588 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG,
1589 			     ctrlr->opts.admin_timeout_ms);
1590 
1591 	rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2,
1592 			nvme_ctrlr_set_doorbell_buffer_config_done, ctrlr);
1593 	if (rc != 0) {
1594 		goto error;
1595 	}
1596 
1597 	return 0;
1598 
1599 error:
1600 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1601 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1602 	return rc;
1603 }
1604 
1605 void
1606 nvme_ctrlr_abort_queued_aborts(struct spdk_nvme_ctrlr *ctrlr)
1607 {
1608 	struct nvme_request	*req, *tmp;
1609 	struct spdk_nvme_cpl	cpl = {};
1610 
1611 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
1612 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
1613 
1614 	STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) {
1615 		STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq);
1616 		ctrlr->outstanding_aborts++;
1617 
1618 		nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, &cpl);
1619 	}
1620 }
1621 
1622 static int
1623 nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1624 {
1625 	if (ctrlr->is_resetting || ctrlr->is_removed) {
1626 		/*
1627 		 * Controller is already resetting or has been removed. Return
1628 		 *  immediately since there is no need to kick off another
1629 		 *  reset in these cases.
1630 		 */
1631 		return ctrlr->is_resetting ? -EBUSY : -ENXIO;
1632 	}
1633 
1634 	ctrlr->is_resetting = true;
1635 	ctrlr->is_failed = false;
1636 	ctrlr->is_disconnecting = true;
1637 	ctrlr->prepare_for_reset = true;
1638 
1639 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting controller\n");
1640 
1641 	/* Disable keep-alive, it'll be re-enabled as part of the init process */
1642 	ctrlr->keep_alive_interval_ticks = 0;
1643 
1644 	/* Abort all of the queued abort requests */
1645 	nvme_ctrlr_abort_queued_aborts(ctrlr);
1646 
1647 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
1648 
1649 	ctrlr->adminq->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1650 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1651 
1652 	return 0;
1653 }
1654 
1655 static void
1656 nvme_ctrlr_disconnect_done(struct spdk_nvme_ctrlr *ctrlr)
1657 {
1658 	assert(ctrlr->is_failed == false);
1659 	ctrlr->is_disconnecting = false;
1660 
1661 	/* Doorbell buffer config is invalid during reset */
1662 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1663 
1664 	/* I/O Command Set Specific Identify Controller data is invalidated during reset */
1665 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
1666 
1667 	spdk_bit_array_free(&ctrlr->free_io_qids);
1668 
1669 	/* Set the state back to DISCONNECTED to cause a full hardware reset. */
1670 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISCONNECTED, NVME_TIMEOUT_INFINITE);
1671 }
1672 
1673 int
1674 spdk_nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1675 {
1676 	int rc;
1677 
1678 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1679 	rc = nvme_ctrlr_disconnect(ctrlr);
1680 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1681 
1682 	return rc;
1683 }
1684 
1685 void
1686 spdk_nvme_ctrlr_reconnect_async(struct spdk_nvme_ctrlr *ctrlr)
1687 {
1688 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1689 
1690 	ctrlr->prepare_for_reset = false;
1691 
1692 	/* Set the state back to INIT to cause a full hardware reset. */
1693 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
1694 
1695 	/* Return without releasing ctrlr_lock. ctrlr_lock will be released when
1696 	 * spdk_nvme_ctrlr_reset_poll_async() returns 0.
1697 	 */
1698 }
1699 
1700 int
1701 nvme_ctrlr_reinitialize_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1702 {
1703 	bool async;
1704 	int rc;
1705 
1706 	if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc ||
1707 	    spdk_nvme_ctrlr_is_fabrics(ctrlr) || nvme_qpair_is_admin_queue(qpair)) {
1708 		assert(false);
1709 		return -EINVAL;
1710 	}
1711 
1712 	/* Force a synchronous connect. */
1713 	async = qpair->async;
1714 	qpair->async = false;
1715 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
1716 	qpair->async = async;
1717 
1718 	if (rc != 0) {
1719 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1720 	}
1721 
1722 	return rc;
1723 }
1724 
1725 /**
1726  * This function will be called when the controller is being reinitialized.
1727  * Note: the ctrlr_lock must be held when calling this function.
1728  */
1729 int
1730 spdk_nvme_ctrlr_reconnect_poll_async(struct spdk_nvme_ctrlr *ctrlr)
1731 {
1732 	struct spdk_nvme_ns *ns, *tmp_ns;
1733 	struct spdk_nvme_qpair	*qpair;
1734 	int rc = 0, rc_tmp = 0;
1735 
1736 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1737 		NVME_CTRLR_ERRLOG(ctrlr, "controller reinitialization failed\n");
1738 		rc = -1;
1739 	}
1740 	if (ctrlr->state != NVME_CTRLR_STATE_READY && rc != -1) {
1741 		return -EAGAIN;
1742 	}
1743 
1744 	/*
1745 	 * For non-fabrics controllers, the memory locations of the transport qpair
1746 	 * don't change when the controller is reset. They simply need to be
1747 	 * re-enabled with admin commands to the controller. For fabric
1748 	 * controllers we need to disconnect and reconnect the qpair on its
1749 	 * own thread outside of the context of the reset.
1750 	 */
1751 	if (rc == 0 && !spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
1752 		/* Reinitialize qpairs */
1753 		TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1754 			/* Always clear the qid bit here, even for a foreign qpair. We need
1755 			 * to make sure another process doesn't get the chance to grab that
1756 			 * qid.
1757 			 */
1758 			assert(spdk_bit_array_get(ctrlr->free_io_qids, qpair->id));
1759 			spdk_bit_array_clear(ctrlr->free_io_qids, qpair->id);
1760 			if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc) {
1761 				/*
1762 				 * We cannot reinitialize a foreign qpair. The qpair's owning
1763 				 * process will take care of it. Set failure reason to FAILURE_RESET
1764 				 * to ensure that happens.
1765 				 */
1766 				qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_RESET;
1767 				continue;
1768 			}
1769 			rc_tmp = nvme_ctrlr_reinitialize_io_qpair(ctrlr, qpair);
1770 			if (rc_tmp != 0) {
1771 				rc = rc_tmp;
1772 			}
1773 		}
1774 	}
1775 
1776 	/*
1777 	 * Take this opportunity to remove inactive namespaces. During a reset namespace
1778 	 * handles can be invalidated.
1779 	 */
1780 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
1781 		if (!ns->active) {
1782 			RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
1783 			spdk_free(ns);
1784 		}
1785 	}
1786 
1787 	if (rc) {
1788 		nvme_ctrlr_fail(ctrlr, false);
1789 	}
1790 	ctrlr->is_resetting = false;
1791 
1792 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1793 
1794 	if (!ctrlr->cdata.oaes.ns_attribute_notices) {
1795 		/*
1796 		 * If controller doesn't support ns_attribute_notices and
1797 		 * namespace attributes change (e.g. number of namespaces)
1798 		 * we need to update system handling device reset.
1799 		 */
1800 		nvme_io_msg_ctrlr_update(ctrlr);
1801 	}
1802 
1803 	return rc;
1804 }
1805 
1806 /*
1807  * For PCIe transport, spdk_nvme_ctrlr_disconnect() will do a Controller Level Reset
1808  * (Change CC.EN from 1 to 0) as a operation to disconnect the admin qpair.
1809  * The following two functions are added to do a Controller Level Reset. They have
1810  * to be called under the nvme controller's lock.
1811  */
1812 void
1813 nvme_ctrlr_disable(struct spdk_nvme_ctrlr *ctrlr)
1814 {
1815 	assert(ctrlr->is_disconnecting == true);
1816 
1817 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
1818 }
1819 
1820 int
1821 nvme_ctrlr_disable_poll(struct spdk_nvme_ctrlr *ctrlr)
1822 {
1823 	int rc = 0;
1824 
1825 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1826 		NVME_CTRLR_ERRLOG(ctrlr, "failed to disable controller\n");
1827 		rc = -1;
1828 	}
1829 
1830 	if (ctrlr->state != NVME_CTRLR_STATE_DISABLED && rc != -1) {
1831 		return -EAGAIN;
1832 	}
1833 
1834 	return rc;
1835 }
1836 
1837 static void
1838 nvme_ctrlr_fail_io_qpairs(struct spdk_nvme_ctrlr *ctrlr)
1839 {
1840 	struct spdk_nvme_qpair	*qpair;
1841 
1842 	TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1843 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1844 	}
1845 }
1846 
1847 int
1848 spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr)
1849 {
1850 	int rc;
1851 
1852 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1853 
1854 	rc = nvme_ctrlr_disconnect(ctrlr);
1855 	if (rc == 0) {
1856 		nvme_ctrlr_fail_io_qpairs(ctrlr);
1857 	}
1858 
1859 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1860 
1861 	if (rc != 0) {
1862 		if (rc == -EBUSY) {
1863 			rc = 0;
1864 		}
1865 		return rc;
1866 	}
1867 
1868 	while (1) {
1869 		rc = spdk_nvme_ctrlr_process_admin_completions(ctrlr);
1870 		if (rc == -ENXIO) {
1871 			break;
1872 		}
1873 	}
1874 
1875 	spdk_nvme_ctrlr_reconnect_async(ctrlr);
1876 
1877 	while (true) {
1878 		rc = spdk_nvme_ctrlr_reconnect_poll_async(ctrlr);
1879 		if (rc != -EAGAIN) {
1880 			break;
1881 		}
1882 	}
1883 
1884 	return rc;
1885 }
1886 
1887 int
1888 spdk_nvme_ctrlr_reset_subsystem(struct spdk_nvme_ctrlr *ctrlr)
1889 {
1890 	union spdk_nvme_cap_register cap;
1891 	int rc = 0;
1892 
1893 	cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr);
1894 	if (cap.bits.nssrs == 0) {
1895 		NVME_CTRLR_WARNLOG(ctrlr, "subsystem reset is not supported\n");
1896 		return -ENOTSUP;
1897 	}
1898 
1899 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting subsystem\n");
1900 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1901 	ctrlr->is_resetting = true;
1902 	rc = nvme_ctrlr_set_nssr(ctrlr, SPDK_NVME_NSSR_VALUE);
1903 	ctrlr->is_resetting = false;
1904 
1905 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1906 	/*
1907 	 * No more cleanup at this point like in the ctrlr reset. A subsystem reset will cause
1908 	 * a hot remove for PCIe transport. The hot remove handling does all the necessary ctrlr cleanup.
1909 	 */
1910 	return rc;
1911 }
1912 
1913 int
1914 spdk_nvme_ctrlr_set_trid(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_transport_id *trid)
1915 {
1916 	int rc = 0;
1917 
1918 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1919 
1920 	if (ctrlr->is_failed == false) {
1921 		rc = -EPERM;
1922 		goto out;
1923 	}
1924 
1925 	if (trid->trtype != ctrlr->trid.trtype) {
1926 		rc = -EINVAL;
1927 		goto out;
1928 	}
1929 
1930 	if (strncmp(trid->subnqn, ctrlr->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
1931 		rc = -EINVAL;
1932 		goto out;
1933 	}
1934 
1935 	ctrlr->trid = *trid;
1936 
1937 out:
1938 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1939 	return rc;
1940 }
1941 
1942 void
1943 spdk_nvme_ctrlr_set_remove_cb(struct spdk_nvme_ctrlr *ctrlr,
1944 			      spdk_nvme_remove_cb remove_cb, void *remove_ctx)
1945 {
1946 	if (!spdk_process_is_primary()) {
1947 		return;
1948 	}
1949 
1950 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1951 	ctrlr->remove_cb = remove_cb;
1952 	ctrlr->cb_ctx = remove_ctx;
1953 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1954 }
1955 
1956 static void
1957 nvme_ctrlr_identify_done(void *arg, const struct spdk_nvme_cpl *cpl)
1958 {
1959 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1960 
1961 	if (spdk_nvme_cpl_is_error(cpl)) {
1962 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_identify_controller failed!\n");
1963 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1964 		return;
1965 	}
1966 
1967 	/*
1968 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
1969 	 *  controller supports.
1970 	 */
1971 	ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr);
1972 	NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_xfer_size %u\n", ctrlr->max_xfer_size);
1973 	if (ctrlr->cdata.mdts > 0) {
1974 		ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size,
1975 						ctrlr->min_page_size * (1 << ctrlr->cdata.mdts));
1976 		NVME_CTRLR_DEBUGLOG(ctrlr, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size);
1977 	}
1978 
1979 	NVME_CTRLR_DEBUGLOG(ctrlr, "CNTLID 0x%04" PRIx16 "\n", ctrlr->cdata.cntlid);
1980 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
1981 		ctrlr->cntlid = ctrlr->cdata.cntlid;
1982 	} else {
1983 		/*
1984 		 * Fabrics controllers should already have CNTLID from the Connect command.
1985 		 *
1986 		 * If CNTLID from Connect doesn't match CNTLID in the Identify Controller data,
1987 		 * trust the one from Connect.
1988 		 */
1989 		if (ctrlr->cntlid != ctrlr->cdata.cntlid) {
1990 			NVME_CTRLR_DEBUGLOG(ctrlr, "Identify CNTLID 0x%04" PRIx16 " != Connect CNTLID 0x%04" PRIx16 "\n",
1991 					    ctrlr->cdata.cntlid, ctrlr->cntlid);
1992 		}
1993 	}
1994 
1995 	if (ctrlr->cdata.sgls.supported && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
1996 		assert(ctrlr->cdata.sgls.supported != 0x3);
1997 		ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
1998 		if (ctrlr->cdata.sgls.supported == 0x2) {
1999 			ctrlr->flags |= SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT;
2000 		}
2001 
2002 		ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr);
2003 		NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_sges %u\n", ctrlr->max_sges);
2004 	}
2005 
2006 	if (ctrlr->cdata.sgls.metadata_address && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
2007 		ctrlr->flags |= SPDK_NVME_CTRLR_MPTR_SGL_SUPPORTED;
2008 	}
2009 
2010 	if (ctrlr->cdata.oacs.security && !(ctrlr->quirks & NVME_QUIRK_OACS_SECURITY)) {
2011 		ctrlr->flags |= SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED;
2012 	}
2013 
2014 	if (ctrlr->cdata.oacs.directives) {
2015 		ctrlr->flags |= SPDK_NVME_CTRLR_DIRECTIVES_SUPPORTED;
2016 	}
2017 
2018 	NVME_CTRLR_DEBUGLOG(ctrlr, "fuses compare and write: %d\n",
2019 			    ctrlr->cdata.fuses.compare_and_write);
2020 	if (ctrlr->cdata.fuses.compare_and_write) {
2021 		ctrlr->flags |= SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED;
2022 	}
2023 
2024 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
2025 			     ctrlr->opts.admin_timeout_ms);
2026 }
2027 
2028 static int
2029 nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr)
2030 {
2031 	int	rc;
2032 
2033 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY,
2034 			     ctrlr->opts.admin_timeout_ms);
2035 
2036 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, 0,
2037 				     &ctrlr->cdata, sizeof(ctrlr->cdata),
2038 				     nvme_ctrlr_identify_done, ctrlr);
2039 	if (rc != 0) {
2040 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2041 		return rc;
2042 	}
2043 
2044 	return 0;
2045 }
2046 
2047 static void
2048 nvme_ctrlr_get_zns_cmd_and_effects_log_done(void *arg, const struct spdk_nvme_cpl *cpl)
2049 {
2050 	struct spdk_nvme_cmds_and_effect_log_page *log_page;
2051 	struct spdk_nvme_ctrlr *ctrlr = arg;
2052 
2053 	if (spdk_nvme_cpl_is_error(cpl)) {
2054 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_get_zns_cmd_and_effects_log failed!\n");
2055 		spdk_free(ctrlr->tmp_ptr);
2056 		ctrlr->tmp_ptr = NULL;
2057 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2058 		return;
2059 	}
2060 
2061 	log_page = ctrlr->tmp_ptr;
2062 
2063 	if (log_page->io_cmds_supported[SPDK_NVME_OPC_ZONE_APPEND].csupp) {
2064 		ctrlr->flags |= SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2065 	}
2066 	spdk_free(ctrlr->tmp_ptr);
2067 	ctrlr->tmp_ptr = NULL;
2068 
2069 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES, ctrlr->opts.admin_timeout_ms);
2070 }
2071 
2072 static int
2073 nvme_ctrlr_get_zns_cmd_and_effects_log(struct spdk_nvme_ctrlr *ctrlr)
2074 {
2075 	int rc;
2076 
2077 	assert(!ctrlr->tmp_ptr);
2078 	ctrlr->tmp_ptr = spdk_zmalloc(sizeof(struct spdk_nvme_cmds_and_effect_log_page), 64, NULL,
2079 				      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2080 	if (!ctrlr->tmp_ptr) {
2081 		rc = -ENOMEM;
2082 		goto error;
2083 	}
2084 
2085 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG,
2086 			     ctrlr->opts.admin_timeout_ms);
2087 
2088 	rc = spdk_nvme_ctrlr_cmd_get_log_page_ext(ctrlr, SPDK_NVME_LOG_COMMAND_EFFECTS_LOG,
2089 			0, ctrlr->tmp_ptr, sizeof(struct spdk_nvme_cmds_and_effect_log_page),
2090 			0, 0, 0, SPDK_NVME_CSI_ZNS << 24,
2091 			nvme_ctrlr_get_zns_cmd_and_effects_log_done, ctrlr);
2092 	if (rc != 0) {
2093 		goto error;
2094 	}
2095 
2096 	return 0;
2097 
2098 error:
2099 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2100 	spdk_free(ctrlr->tmp_ptr);
2101 	ctrlr->tmp_ptr = NULL;
2102 	return rc;
2103 }
2104 
2105 static void
2106 nvme_ctrlr_identify_zns_specific_done(void *arg, const struct spdk_nvme_cpl *cpl)
2107 {
2108 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2109 
2110 	if (spdk_nvme_cpl_is_error(cpl)) {
2111 		/* no need to print an error, the controller simply does not support ZNS */
2112 		nvme_ctrlr_free_zns_specific_data(ctrlr);
2113 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2114 				     ctrlr->opts.admin_timeout_ms);
2115 		return;
2116 	}
2117 
2118 	/* A zero zasl value means use mdts */
2119 	if (ctrlr->cdata_zns->zasl) {
2120 		uint32_t max_append = ctrlr->min_page_size * (1 << ctrlr->cdata_zns->zasl);
2121 		ctrlr->max_zone_append_size = spdk_min(ctrlr->max_xfer_size, max_append);
2122 	} else {
2123 		ctrlr->max_zone_append_size = ctrlr->max_xfer_size;
2124 	}
2125 
2126 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG,
2127 			     ctrlr->opts.admin_timeout_ms);
2128 }
2129 
2130 /**
2131  * This function will try to fetch the I/O Command Specific Controller data structure for
2132  * each I/O Command Set supported by SPDK.
2133  *
2134  * If an I/O Command Set is not supported by the controller, "Invalid Field in Command"
2135  * will be returned. Since we are fetching in a exploratively way, getting an error back
2136  * from the controller should not be treated as fatal.
2137  *
2138  * I/O Command Sets not supported by SPDK will be skipped (e.g. Key Value Command Set).
2139  *
2140  * I/O Command Sets without a IOCS specific data structure (i.e. a zero-filled IOCS specific
2141  * data structure) will be skipped (e.g. NVM Command Set, Key Value Command Set).
2142  */
2143 static int
2144 nvme_ctrlr_identify_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2145 {
2146 	int	rc;
2147 
2148 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2149 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2150 				     ctrlr->opts.admin_timeout_ms);
2151 		return 0;
2152 	}
2153 
2154 	/*
2155 	 * Since SPDK currently only needs to fetch a single Command Set, keep the code here,
2156 	 * instead of creating multiple NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC substates,
2157 	 * which would require additional functions and complexity for no good reason.
2158 	 */
2159 	assert(!ctrlr->cdata_zns);
2160 	ctrlr->cdata_zns = spdk_zmalloc(sizeof(*ctrlr->cdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
2161 					SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2162 	if (!ctrlr->cdata_zns) {
2163 		rc = -ENOMEM;
2164 		goto error;
2165 	}
2166 
2167 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC,
2168 			     ctrlr->opts.admin_timeout_ms);
2169 
2170 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR_IOCS, 0, 0, SPDK_NVME_CSI_ZNS,
2171 				     ctrlr->cdata_zns, sizeof(*ctrlr->cdata_zns),
2172 				     nvme_ctrlr_identify_zns_specific_done, ctrlr);
2173 	if (rc != 0) {
2174 		goto error;
2175 	}
2176 
2177 	return 0;
2178 
2179 error:
2180 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2181 	nvme_ctrlr_free_zns_specific_data(ctrlr);
2182 	return rc;
2183 }
2184 
2185 enum nvme_active_ns_state {
2186 	NVME_ACTIVE_NS_STATE_IDLE,
2187 	NVME_ACTIVE_NS_STATE_PROCESSING,
2188 	NVME_ACTIVE_NS_STATE_DONE,
2189 	NVME_ACTIVE_NS_STATE_ERROR
2190 };
2191 
2192 typedef void (*nvme_active_ns_ctx_deleter)(struct nvme_active_ns_ctx *);
2193 
2194 struct nvme_active_ns_ctx {
2195 	struct spdk_nvme_ctrlr *ctrlr;
2196 	uint32_t page_count;
2197 	uint32_t next_nsid;
2198 	uint32_t *new_ns_list;
2199 	nvme_active_ns_ctx_deleter deleter;
2200 
2201 	enum nvme_active_ns_state state;
2202 };
2203 
2204 static struct nvme_active_ns_ctx *
2205 nvme_active_ns_ctx_create(struct spdk_nvme_ctrlr *ctrlr, nvme_active_ns_ctx_deleter deleter)
2206 {
2207 	struct nvme_active_ns_ctx *ctx;
2208 	uint32_t *new_ns_list = NULL;
2209 
2210 	ctx = calloc(1, sizeof(*ctx));
2211 	if (!ctx) {
2212 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate nvme_active_ns_ctx!\n");
2213 		return NULL;
2214 	}
2215 
2216 	new_ns_list = spdk_zmalloc(sizeof(struct spdk_nvme_ns_list), ctrlr->page_size,
2217 				   NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_SHARE);
2218 	if (!new_ns_list) {
2219 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate active_ns_list!\n");
2220 		free(ctx);
2221 		return NULL;
2222 	}
2223 
2224 	ctx->page_count = 1;
2225 	ctx->new_ns_list = new_ns_list;
2226 	ctx->ctrlr = ctrlr;
2227 	ctx->deleter = deleter;
2228 
2229 	return ctx;
2230 }
2231 
2232 static void
2233 nvme_active_ns_ctx_destroy(struct nvme_active_ns_ctx *ctx)
2234 {
2235 	spdk_free(ctx->new_ns_list);
2236 	free(ctx);
2237 }
2238 
2239 static int
2240 nvme_ctrlr_destruct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2241 {
2242 	struct spdk_nvme_ns tmp, *ns;
2243 
2244 	assert(ctrlr != NULL);
2245 
2246 	tmp.id = nsid;
2247 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
2248 	if (ns == NULL) {
2249 		return -EINVAL;
2250 	}
2251 
2252 	nvme_ns_destruct(ns);
2253 	ns->active = false;
2254 
2255 	return 0;
2256 }
2257 
2258 static int
2259 nvme_ctrlr_construct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2260 {
2261 	struct spdk_nvme_ns *ns;
2262 
2263 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
2264 		return -EINVAL;
2265 	}
2266 
2267 	/* Namespaces are constructed on demand, so simply request it. */
2268 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2269 	if (ns == NULL) {
2270 		return -ENOMEM;
2271 	}
2272 
2273 	ns->active = true;
2274 
2275 	return 0;
2276 }
2277 
2278 static void
2279 nvme_ctrlr_identify_active_ns_swap(struct spdk_nvme_ctrlr *ctrlr, uint32_t *new_ns_list,
2280 				   size_t max_entries)
2281 {
2282 	uint32_t active_ns_count = 0;
2283 	size_t i;
2284 	uint32_t nsid;
2285 	struct spdk_nvme_ns *ns, *tmp_ns;
2286 	int rc;
2287 
2288 	/* First, remove namespaces that no longer exist */
2289 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
2290 		nsid = new_ns_list[0];
2291 		active_ns_count = 0;
2292 		while (nsid != 0) {
2293 			if (nsid == ns->id) {
2294 				break;
2295 			}
2296 
2297 			nsid = new_ns_list[active_ns_count++];
2298 		}
2299 
2300 		if (nsid != ns->id) {
2301 			/* Did not find this namespace id in the new list. */
2302 			NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was removed\n", ns->id);
2303 			nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
2304 		}
2305 	}
2306 
2307 	/* Next, add new namespaces */
2308 	active_ns_count = 0;
2309 	for (i = 0; i < max_entries; i++) {
2310 		nsid = new_ns_list[active_ns_count];
2311 
2312 		if (nsid == 0) {
2313 			break;
2314 		}
2315 
2316 		/* If the namespace already exists, this will not construct it a second time. */
2317 		rc = nvme_ctrlr_construct_namespace(ctrlr, nsid);
2318 		if (rc != 0) {
2319 			/* We can't easily handle a failure here. But just move on. */
2320 			assert(false);
2321 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to allocate a namespace object.\n");
2322 			continue;
2323 		}
2324 
2325 		active_ns_count++;
2326 	}
2327 
2328 	ctrlr->active_ns_count = active_ns_count;
2329 }
2330 
2331 static void
2332 nvme_ctrlr_identify_active_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2333 {
2334 	struct nvme_active_ns_ctx *ctx = arg;
2335 	uint32_t *new_ns_list = NULL;
2336 
2337 	if (spdk_nvme_cpl_is_error(cpl)) {
2338 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2339 		goto out;
2340 	}
2341 
2342 	ctx->next_nsid = ctx->new_ns_list[1024 * ctx->page_count - 1];
2343 	if (ctx->next_nsid == 0) {
2344 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2345 		goto out;
2346 	}
2347 
2348 	ctx->page_count++;
2349 	new_ns_list = spdk_realloc(ctx->new_ns_list,
2350 				   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2351 				   ctx->ctrlr->page_size);
2352 	if (!new_ns_list) {
2353 		SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2354 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2355 		goto out;
2356 	}
2357 
2358 	ctx->new_ns_list = new_ns_list;
2359 	nvme_ctrlr_identify_active_ns_async(ctx);
2360 	return;
2361 
2362 out:
2363 	if (ctx->deleter) {
2364 		ctx->deleter(ctx);
2365 	}
2366 }
2367 
2368 static void
2369 nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx)
2370 {
2371 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2372 	uint32_t i;
2373 	int rc;
2374 
2375 	if (ctrlr->cdata.nn == 0) {
2376 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2377 		goto out;
2378 	}
2379 
2380 	assert(ctx->new_ns_list != NULL);
2381 
2382 	/*
2383 	 * If controller doesn't support active ns list CNS 0x02 dummy up
2384 	 * an active ns list, i.e. all namespaces report as active
2385 	 */
2386 	if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 1, 0) || ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS) {
2387 		uint32_t *new_ns_list;
2388 
2389 		/*
2390 		 * Active NS list must always end with zero element.
2391 		 * So, we allocate for cdata.nn+1.
2392 		 */
2393 		ctx->page_count = spdk_divide_round_up(ctrlr->cdata.nn + 1,
2394 						       sizeof(struct spdk_nvme_ns_list) / sizeof(new_ns_list[0]));
2395 		new_ns_list = spdk_realloc(ctx->new_ns_list,
2396 					   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2397 					   ctx->ctrlr->page_size);
2398 		if (!new_ns_list) {
2399 			SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2400 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2401 			goto out;
2402 		}
2403 
2404 		ctx->new_ns_list = new_ns_list;
2405 		ctx->new_ns_list[ctrlr->cdata.nn] = 0;
2406 		for (i = 0; i < ctrlr->cdata.nn; i++) {
2407 			ctx->new_ns_list[i] = i + 1;
2408 		}
2409 
2410 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2411 		goto out;
2412 	}
2413 
2414 	ctx->state = NVME_ACTIVE_NS_STATE_PROCESSING;
2415 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, ctx->next_nsid, 0,
2416 				     &ctx->new_ns_list[1024 * (ctx->page_count - 1)], sizeof(struct spdk_nvme_ns_list),
2417 				     nvme_ctrlr_identify_active_ns_async_done, ctx);
2418 	if (rc != 0) {
2419 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2420 		goto out;
2421 	}
2422 
2423 	return;
2424 
2425 out:
2426 	if (ctx->deleter) {
2427 		ctx->deleter(ctx);
2428 	}
2429 }
2430 
2431 static void
2432 _nvme_active_ns_ctx_deleter(struct nvme_active_ns_ctx *ctx)
2433 {
2434 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2435 	struct spdk_nvme_ns *ns;
2436 
2437 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2438 		nvme_active_ns_ctx_destroy(ctx);
2439 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2440 		return;
2441 	}
2442 
2443 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2444 
2445 	RB_FOREACH(ns, nvme_ns_tree, &ctrlr->ns) {
2446 		nvme_ns_free_iocs_specific_data(ns);
2447 	}
2448 
2449 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2450 	nvme_active_ns_ctx_destroy(ctx);
2451 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS, ctrlr->opts.admin_timeout_ms);
2452 }
2453 
2454 static void
2455 _nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2456 {
2457 	struct nvme_active_ns_ctx *ctx;
2458 
2459 	ctx = nvme_active_ns_ctx_create(ctrlr, _nvme_active_ns_ctx_deleter);
2460 	if (!ctx) {
2461 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2462 		return;
2463 	}
2464 
2465 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS,
2466 			     ctrlr->opts.admin_timeout_ms);
2467 	nvme_ctrlr_identify_active_ns_async(ctx);
2468 }
2469 
2470 int
2471 nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2472 {
2473 	struct nvme_active_ns_ctx *ctx;
2474 	int rc;
2475 
2476 	ctx = nvme_active_ns_ctx_create(ctrlr, NULL);
2477 	if (!ctx) {
2478 		return -ENOMEM;
2479 	}
2480 
2481 	nvme_ctrlr_identify_active_ns_async(ctx);
2482 	while (ctx->state == NVME_ACTIVE_NS_STATE_PROCESSING) {
2483 		rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2484 		if (rc < 0) {
2485 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2486 			break;
2487 		}
2488 	}
2489 
2490 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2491 		nvme_active_ns_ctx_destroy(ctx);
2492 		return -ENXIO;
2493 	}
2494 
2495 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2496 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2497 	nvme_active_ns_ctx_destroy(ctx);
2498 
2499 	return 0;
2500 }
2501 
2502 static void
2503 nvme_ctrlr_identify_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2504 {
2505 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2506 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2507 	uint32_t nsid;
2508 	int rc;
2509 
2510 	if (spdk_nvme_cpl_is_error(cpl)) {
2511 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2512 		return;
2513 	}
2514 
2515 	nvme_ns_set_identify_data(ns);
2516 
2517 	/* move on to the next active NS */
2518 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2519 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2520 	if (ns == NULL) {
2521 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2522 				     ctrlr->opts.admin_timeout_ms);
2523 		return;
2524 	}
2525 	ns->ctrlr = ctrlr;
2526 	ns->id = nsid;
2527 
2528 	rc = nvme_ctrlr_identify_ns_async(ns);
2529 	if (rc) {
2530 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2531 	}
2532 }
2533 
2534 static int
2535 nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns)
2536 {
2537 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2538 	struct spdk_nvme_ns_data *nsdata;
2539 
2540 	nsdata = &ns->nsdata;
2541 
2542 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS,
2543 			     ctrlr->opts.admin_timeout_ms);
2544 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS, 0, ns->id, 0,
2545 				       nsdata, sizeof(*nsdata),
2546 				       nvme_ctrlr_identify_ns_async_done, ns);
2547 }
2548 
2549 static int
2550 nvme_ctrlr_identify_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2551 {
2552 	uint32_t nsid;
2553 	struct spdk_nvme_ns *ns;
2554 	int rc;
2555 
2556 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2557 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2558 	if (ns == NULL) {
2559 		/* No active NS, move on to the next state */
2560 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2561 				     ctrlr->opts.admin_timeout_ms);
2562 		return 0;
2563 	}
2564 
2565 	ns->ctrlr = ctrlr;
2566 	ns->id = nsid;
2567 
2568 	rc = nvme_ctrlr_identify_ns_async(ns);
2569 	if (rc) {
2570 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2571 	}
2572 
2573 	return rc;
2574 }
2575 
2576 static int
2577 nvme_ctrlr_identify_namespaces_iocs_specific_next(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
2578 {
2579 	uint32_t nsid;
2580 	struct spdk_nvme_ns *ns;
2581 	int rc;
2582 
2583 	if (!prev_nsid) {
2584 		nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2585 	} else {
2586 		/* move on to the next active NS */
2587 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, prev_nsid);
2588 	}
2589 
2590 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2591 	if (ns == NULL) {
2592 		/* No first/next active NS, move on to the next state */
2593 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2594 				     ctrlr->opts.admin_timeout_ms);
2595 		return 0;
2596 	}
2597 
2598 	/* loop until we find a ns which has (supported) iocs specific data */
2599 	while (!nvme_ns_has_supported_iocs_specific_data(ns)) {
2600 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2601 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2602 		if (ns == NULL) {
2603 			/* no namespace with (supported) iocs specific data found */
2604 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2605 					     ctrlr->opts.admin_timeout_ms);
2606 			return 0;
2607 		}
2608 	}
2609 
2610 	rc = nvme_ctrlr_identify_ns_iocs_specific_async(ns);
2611 	if (rc) {
2612 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2613 	}
2614 
2615 	return rc;
2616 }
2617 
2618 static void
2619 nvme_ctrlr_identify_ns_zns_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2620 {
2621 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2622 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2623 
2624 	if (spdk_nvme_cpl_is_error(cpl)) {
2625 		nvme_ns_free_zns_specific_data(ns);
2626 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2627 		return;
2628 	}
2629 
2630 	nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2631 }
2632 
2633 static int
2634 nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns)
2635 {
2636 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2637 	int rc;
2638 
2639 	switch (ns->csi) {
2640 	case SPDK_NVME_CSI_ZNS:
2641 		break;
2642 	default:
2643 		/*
2644 		 * This switch must handle all cases for which
2645 		 * nvme_ns_has_supported_iocs_specific_data() returns true,
2646 		 * other cases should never happen.
2647 		 */
2648 		assert(0);
2649 	}
2650 
2651 	assert(!ns->nsdata_zns);
2652 	ns->nsdata_zns = spdk_zmalloc(sizeof(*ns->nsdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
2653 				      SPDK_MALLOC_SHARE);
2654 	if (!ns->nsdata_zns) {
2655 		return -ENOMEM;
2656 	}
2657 
2658 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2659 			     ctrlr->opts.admin_timeout_ms);
2660 	rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2661 				     ns->nsdata_zns, sizeof(*ns->nsdata_zns),
2662 				     nvme_ctrlr_identify_ns_zns_specific_async_done, ns);
2663 	if (rc) {
2664 		nvme_ns_free_zns_specific_data(ns);
2665 	}
2666 
2667 	return rc;
2668 }
2669 
2670 static int
2671 nvme_ctrlr_identify_namespaces_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2672 {
2673 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2674 		/* Multi IOCS not supported/enabled, move on to the next state */
2675 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2676 				     ctrlr->opts.admin_timeout_ms);
2677 		return 0;
2678 	}
2679 
2680 	return nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, 0);
2681 }
2682 
2683 static void
2684 nvme_ctrlr_identify_id_desc_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2685 {
2686 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2687 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2688 	uint32_t nsid;
2689 	int rc;
2690 
2691 	if (spdk_nvme_cpl_is_error(cpl)) {
2692 		/*
2693 		 * Many controllers claim to be compatible with NVMe 1.3, however,
2694 		 * they do not implement NS ID Desc List. Therefore, instead of setting
2695 		 * the state to NVME_CTRLR_STATE_ERROR, silently ignore the completion
2696 		 * error and move on to the next state.
2697 		 *
2698 		 * The proper way is to create a new quirk for controllers that violate
2699 		 * the NVMe 1.3 spec by not supporting NS ID Desc List.
2700 		 * (Re-using the NVME_QUIRK_IDENTIFY_CNS quirk is not possible, since
2701 		 * it is too generic and was added in order to handle controllers that
2702 		 * violate the NVMe 1.1 spec by not supporting ACTIVE LIST).
2703 		 */
2704 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2705 				     ctrlr->opts.admin_timeout_ms);
2706 		return;
2707 	}
2708 
2709 	nvme_ns_set_id_desc_list_data(ns);
2710 
2711 	/* move on to the next active NS */
2712 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2713 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2714 	if (ns == NULL) {
2715 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2716 				     ctrlr->opts.admin_timeout_ms);
2717 		return;
2718 	}
2719 
2720 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2721 	if (rc) {
2722 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2723 	}
2724 }
2725 
2726 static int
2727 nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns)
2728 {
2729 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2730 
2731 	memset(ns->id_desc_list, 0, sizeof(ns->id_desc_list));
2732 
2733 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS,
2734 			     ctrlr->opts.admin_timeout_ms);
2735 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_ID_DESCRIPTOR_LIST,
2736 				       0, ns->id, 0, ns->id_desc_list, sizeof(ns->id_desc_list),
2737 				       nvme_ctrlr_identify_id_desc_async_done, ns);
2738 }
2739 
2740 static int
2741 nvme_ctrlr_identify_id_desc_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2742 {
2743 	uint32_t nsid;
2744 	struct spdk_nvme_ns *ns;
2745 	int rc;
2746 
2747 	if ((ctrlr->vs.raw < SPDK_NVME_VERSION(1, 3, 0) &&
2748 	     !(ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS)) ||
2749 	    (ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2750 		NVME_CTRLR_DEBUGLOG(ctrlr, "Version < 1.3; not attempting to retrieve NS ID Descriptor List\n");
2751 		/* NS ID Desc List not supported, move on to the next state */
2752 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2753 				     ctrlr->opts.admin_timeout_ms);
2754 		return 0;
2755 	}
2756 
2757 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2758 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2759 	if (ns == NULL) {
2760 		/* No active NS, move on to the next state */
2761 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2762 				     ctrlr->opts.admin_timeout_ms);
2763 		return 0;
2764 	}
2765 
2766 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2767 	if (rc) {
2768 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2769 	}
2770 
2771 	return rc;
2772 }
2773 
2774 static void
2775 nvme_ctrlr_update_nvmf_ioccsz(struct spdk_nvme_ctrlr *ctrlr)
2776 {
2777 	if (spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
2778 		if (ctrlr->cdata.nvmf_specific.ioccsz < 4) {
2779 			NVME_CTRLR_ERRLOG(ctrlr, "Incorrect IOCCSZ %u, the minimum value should be 4\n",
2780 					  ctrlr->cdata.nvmf_specific.ioccsz);
2781 			ctrlr->cdata.nvmf_specific.ioccsz = 4;
2782 			assert(0);
2783 		}
2784 		ctrlr->ioccsz_bytes = ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd);
2785 		ctrlr->icdoff = ctrlr->cdata.nvmf_specific.icdoff;
2786 	}
2787 }
2788 
2789 static void
2790 nvme_ctrlr_set_num_queues_done(void *arg, const struct spdk_nvme_cpl *cpl)
2791 {
2792 	uint32_t cq_allocated, sq_allocated, min_allocated, i;
2793 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2794 
2795 	if (spdk_nvme_cpl_is_error(cpl)) {
2796 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Number of Queues failed!\n");
2797 		ctrlr->opts.num_io_queues = 0;
2798 	} else {
2799 		/*
2800 		 * Data in cdw0 is 0-based.
2801 		 * Lower 16-bits indicate number of submission queues allocated.
2802 		 * Upper 16-bits indicate number of completion queues allocated.
2803 		 */
2804 		sq_allocated = (cpl->cdw0 & 0xFFFF) + 1;
2805 		cq_allocated = (cpl->cdw0 >> 16) + 1;
2806 
2807 		/*
2808 		 * For 1:1 queue mapping, set number of allocated queues to be minimum of
2809 		 * submission and completion queues.
2810 		 */
2811 		min_allocated = spdk_min(sq_allocated, cq_allocated);
2812 
2813 		/* Set number of queues to be minimum of requested and actually allocated. */
2814 		ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues);
2815 	}
2816 
2817 	ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1);
2818 	if (ctrlr->free_io_qids == NULL) {
2819 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2820 		return;
2821 	}
2822 
2823 	/* Initialize list of free I/O queue IDs. QID 0 is the admin queue (implicitly allocated). */
2824 	for (i = 1; i <= ctrlr->opts.num_io_queues; i++) {
2825 		spdk_nvme_ctrlr_free_qid(ctrlr, i);
2826 	}
2827 
2828 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS,
2829 			     ctrlr->opts.admin_timeout_ms);
2830 }
2831 
2832 static int
2833 nvme_ctrlr_set_num_queues(struct spdk_nvme_ctrlr *ctrlr)
2834 {
2835 	int rc;
2836 
2837 	if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) {
2838 		NVME_CTRLR_NOTICELOG(ctrlr, "Limiting requested num_io_queues %u to max %d\n",
2839 				     ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES);
2840 		ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES;
2841 	} else if (ctrlr->opts.num_io_queues < 1) {
2842 		NVME_CTRLR_NOTICELOG(ctrlr, "Requested num_io_queues 0, increasing to 1\n");
2843 		ctrlr->opts.num_io_queues = 1;
2844 	}
2845 
2846 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES,
2847 			     ctrlr->opts.admin_timeout_ms);
2848 
2849 	rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues,
2850 					   nvme_ctrlr_set_num_queues_done, ctrlr);
2851 	if (rc != 0) {
2852 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2853 		return rc;
2854 	}
2855 
2856 	return 0;
2857 }
2858 
2859 static void
2860 nvme_ctrlr_set_keep_alive_timeout_done(void *arg, const struct spdk_nvme_cpl *cpl)
2861 {
2862 	uint32_t keep_alive_interval_us;
2863 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2864 
2865 	if (spdk_nvme_cpl_is_error(cpl)) {
2866 		if ((cpl->status.sct == SPDK_NVME_SCT_GENERIC) &&
2867 		    (cpl->status.sc == SPDK_NVME_SC_INVALID_FIELD)) {
2868 			NVME_CTRLR_DEBUGLOG(ctrlr, "Keep alive timeout Get Feature is not supported\n");
2869 		} else {
2870 			NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: SC %x SCT %x\n",
2871 					  cpl->status.sc, cpl->status.sct);
2872 			ctrlr->opts.keep_alive_timeout_ms = 0;
2873 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2874 			return;
2875 		}
2876 	} else {
2877 		if (ctrlr->opts.keep_alive_timeout_ms != cpl->cdw0) {
2878 			NVME_CTRLR_DEBUGLOG(ctrlr, "Controller adjusted keep alive timeout to %u ms\n",
2879 					    cpl->cdw0);
2880 		}
2881 
2882 		ctrlr->opts.keep_alive_timeout_ms = cpl->cdw0;
2883 	}
2884 
2885 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
2886 		ctrlr->keep_alive_interval_ticks = 0;
2887 	} else {
2888 		keep_alive_interval_us = ctrlr->opts.keep_alive_timeout_ms * 1000 / 2;
2889 
2890 		NVME_CTRLR_DEBUGLOG(ctrlr, "Sending keep alive every %u us\n", keep_alive_interval_us);
2891 
2892 		ctrlr->keep_alive_interval_ticks = (keep_alive_interval_us * spdk_get_ticks_hz()) /
2893 						   UINT64_C(1000000);
2894 
2895 		/* Schedule the first Keep Alive to be sent as soon as possible. */
2896 		ctrlr->next_keep_alive_tick = spdk_get_ticks();
2897 	}
2898 
2899 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
2900 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
2901 	} else {
2902 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
2903 				     ctrlr->opts.admin_timeout_ms);
2904 	}
2905 }
2906 
2907 static int
2908 nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr)
2909 {
2910 	int rc;
2911 
2912 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
2913 		if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
2914 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
2915 		} else {
2916 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
2917 					     ctrlr->opts.admin_timeout_ms);
2918 		}
2919 		return 0;
2920 	}
2921 
2922 	/* Note: Discovery controller identify data does not populate KAS according to spec. */
2923 	if (!spdk_nvme_ctrlr_is_discovery(ctrlr) && ctrlr->cdata.kas == 0) {
2924 		NVME_CTRLR_DEBUGLOG(ctrlr, "Controller KAS is 0 - not enabling Keep Alive\n");
2925 		ctrlr->opts.keep_alive_timeout_ms = 0;
2926 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
2927 				     ctrlr->opts.admin_timeout_ms);
2928 		return 0;
2929 	}
2930 
2931 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT,
2932 			     ctrlr->opts.admin_timeout_ms);
2933 
2934 	/* Retrieve actual keep alive timeout, since the controller may have adjusted it. */
2935 	rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0,
2936 					     nvme_ctrlr_set_keep_alive_timeout_done, ctrlr);
2937 	if (rc != 0) {
2938 		NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: %d\n", rc);
2939 		ctrlr->opts.keep_alive_timeout_ms = 0;
2940 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2941 		return rc;
2942 	}
2943 
2944 	return 0;
2945 }
2946 
2947 static void
2948 nvme_ctrlr_set_host_id_done(void *arg, const struct spdk_nvme_cpl *cpl)
2949 {
2950 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2951 
2952 	if (spdk_nvme_cpl_is_error(cpl)) {
2953 		/*
2954 		 * Treat Set Features - Host ID failure as non-fatal, since the Host ID feature
2955 		 * is optional.
2956 		 */
2957 		NVME_CTRLR_WARNLOG(ctrlr, "Set Features - Host ID failed: SC 0x%x SCT 0x%x\n",
2958 				   cpl->status.sc, cpl->status.sct);
2959 	} else {
2960 		NVME_CTRLR_DEBUGLOG(ctrlr, "Set Features - Host ID was successful\n");
2961 	}
2962 
2963 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
2964 }
2965 
2966 static int
2967 nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr)
2968 {
2969 	uint8_t *host_id;
2970 	uint32_t host_id_size;
2971 	int rc;
2972 
2973 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
2974 		/*
2975 		 * NVMe-oF sends the host ID during Connect and doesn't allow
2976 		 * Set Features - Host Identifier after Connect, so we don't need to do anything here.
2977 		 */
2978 		NVME_CTRLR_DEBUGLOG(ctrlr, "NVMe-oF transport - not sending Set Features - Host ID\n");
2979 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
2980 		return 0;
2981 	}
2982 
2983 	if (ctrlr->cdata.ctratt.host_id_exhid_supported) {
2984 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 128-bit extended host identifier\n");
2985 		host_id = ctrlr->opts.extended_host_id;
2986 		host_id_size = sizeof(ctrlr->opts.extended_host_id);
2987 	} else {
2988 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 64-bit host identifier\n");
2989 		host_id = ctrlr->opts.host_id;
2990 		host_id_size = sizeof(ctrlr->opts.host_id);
2991 	}
2992 
2993 	/* If the user specified an all-zeroes host identifier, don't send the command. */
2994 	if (spdk_mem_all_zero(host_id, host_id_size)) {
2995 		NVME_CTRLR_DEBUGLOG(ctrlr, "User did not specify host ID - not sending Set Features - Host ID\n");
2996 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
2997 		return 0;
2998 	}
2999 
3000 	SPDK_LOGDUMP(nvme, "host_id", host_id, host_id_size);
3001 
3002 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_HOST_ID,
3003 			     ctrlr->opts.admin_timeout_ms);
3004 
3005 	rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_ctrlr_set_host_id_done, ctrlr);
3006 	if (rc != 0) {
3007 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Host ID failed: %d\n", rc);
3008 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3009 		return rc;
3010 	}
3011 
3012 	return 0;
3013 }
3014 
3015 void
3016 nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr)
3017 {
3018 	uint32_t nsid;
3019 	struct spdk_nvme_ns *ns;
3020 
3021 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3022 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
3023 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
3024 		nvme_ns_construct(ns, nsid, ctrlr);
3025 	}
3026 }
3027 
3028 static int
3029 nvme_ctrlr_clear_changed_ns_log(struct spdk_nvme_ctrlr *ctrlr)
3030 {
3031 	struct nvme_completion_poll_status	*status;
3032 	int		rc = -ENOMEM;
3033 	char		*buffer = NULL;
3034 	uint32_t	nsid;
3035 	size_t		buf_size = (SPDK_NVME_MAX_CHANGED_NAMESPACES * sizeof(uint32_t));
3036 
3037 	if (ctrlr->opts.disable_read_changed_ns_list_log_page) {
3038 		return 0;
3039 	}
3040 
3041 	buffer = spdk_dma_zmalloc(buf_size, 4096, NULL);
3042 	if (!buffer) {
3043 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate buffer for getting "
3044 				  "changed ns log.\n");
3045 		return rc;
3046 	}
3047 
3048 	status = calloc(1, sizeof(*status));
3049 	if (!status) {
3050 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
3051 		goto free_buffer;
3052 	}
3053 
3054 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
3055 					      SPDK_NVME_LOG_CHANGED_NS_LIST,
3056 					      SPDK_NVME_GLOBAL_NS_TAG,
3057 					      buffer, buf_size, 0,
3058 					      nvme_completion_poll_cb, status);
3059 
3060 	if (rc) {
3061 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_get_log_page() failed: rc=%d\n", rc);
3062 		free(status);
3063 		goto free_buffer;
3064 	}
3065 
3066 	rc = nvme_wait_for_completion_timeout(ctrlr->adminq, status,
3067 					      ctrlr->opts.admin_timeout_ms * 1000);
3068 	if (!status->timed_out) {
3069 		free(status);
3070 	}
3071 
3072 	if (rc) {
3073 		NVME_CTRLR_ERRLOG(ctrlr, "wait for spdk_nvme_ctrlr_cmd_get_log_page failed: rc=%d\n", rc);
3074 		goto free_buffer;
3075 	}
3076 
3077 	/* only check the case of overflow. */
3078 	nsid = from_le32(buffer);
3079 	if (nsid == 0xffffffffu) {
3080 		NVME_CTRLR_WARNLOG(ctrlr, "changed ns log overflowed.\n");
3081 	}
3082 
3083 free_buffer:
3084 	spdk_dma_free(buffer);
3085 	return rc;
3086 }
3087 
3088 void
3089 nvme_ctrlr_process_async_event(struct spdk_nvme_ctrlr *ctrlr,
3090 			       const struct spdk_nvme_cpl *cpl)
3091 {
3092 	union spdk_nvme_async_event_completion event;
3093 	struct spdk_nvme_ctrlr_process *active_proc;
3094 	int rc;
3095 
3096 	event.raw = cpl->cdw0;
3097 
3098 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3099 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
3100 		nvme_ctrlr_clear_changed_ns_log(ctrlr);
3101 
3102 		rc = nvme_ctrlr_identify_active_ns(ctrlr);
3103 		if (rc) {
3104 			return;
3105 		}
3106 		nvme_ctrlr_update_namespaces(ctrlr);
3107 		nvme_io_msg_ctrlr_update(ctrlr);
3108 	}
3109 
3110 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3111 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
3112 		if (!ctrlr->opts.disable_read_ana_log_page) {
3113 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
3114 			if (rc) {
3115 				return;
3116 			}
3117 			nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
3118 						      ctrlr);
3119 		}
3120 	}
3121 
3122 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3123 	if (active_proc && active_proc->aer_cb_fn) {
3124 		active_proc->aer_cb_fn(active_proc->aer_cb_arg, cpl);
3125 	}
3126 }
3127 
3128 static void
3129 nvme_ctrlr_queue_async_event(struct spdk_nvme_ctrlr *ctrlr,
3130 			     const struct spdk_nvme_cpl *cpl)
3131 {
3132 	struct  spdk_nvme_ctrlr_aer_completion_list *nvme_event;
3133 	struct spdk_nvme_ctrlr_process *proc;
3134 
3135 	/* Add async event to each process objects event list */
3136 	TAILQ_FOREACH(proc, &ctrlr->active_procs, tailq) {
3137 		/* Must be shared memory so other processes can access */
3138 		nvme_event = spdk_zmalloc(sizeof(*nvme_event), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
3139 		if (!nvme_event) {
3140 			NVME_CTRLR_ERRLOG(ctrlr, "Alloc nvme event failed, ignore the event\n");
3141 			return;
3142 		}
3143 		nvme_event->cpl = *cpl;
3144 
3145 		STAILQ_INSERT_TAIL(&proc->async_events, nvme_event, link);
3146 	}
3147 }
3148 
3149 void
3150 nvme_ctrlr_complete_queued_async_events(struct spdk_nvme_ctrlr *ctrlr)
3151 {
3152 	struct  spdk_nvme_ctrlr_aer_completion_list  *nvme_event, *nvme_event_tmp;
3153 	struct spdk_nvme_ctrlr_process	*active_proc;
3154 
3155 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3156 
3157 	STAILQ_FOREACH_SAFE(nvme_event, &active_proc->async_events, link, nvme_event_tmp) {
3158 		STAILQ_REMOVE(&active_proc->async_events, nvme_event,
3159 			      spdk_nvme_ctrlr_aer_completion_list, link);
3160 		nvme_ctrlr_process_async_event(ctrlr, &nvme_event->cpl);
3161 		spdk_free(nvme_event);
3162 
3163 	}
3164 }
3165 
3166 static void
3167 nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl)
3168 {
3169 	struct nvme_async_event_request	*aer = arg;
3170 	struct spdk_nvme_ctrlr		*ctrlr = aer->ctrlr;
3171 
3172 	if (cpl->status.sct == SPDK_NVME_SCT_GENERIC &&
3173 	    cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) {
3174 		/*
3175 		 *  This is simulated when controller is being shut down, to
3176 		 *  effectively abort outstanding asynchronous event requests
3177 		 *  and make sure all memory is freed.  Do not repost the
3178 		 *  request in this case.
3179 		 */
3180 		return;
3181 	}
3182 
3183 	if (cpl->status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC &&
3184 	    cpl->status.sc == SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED) {
3185 		/*
3186 		 *  SPDK will only send as many AERs as the device says it supports,
3187 		 *  so this status code indicates an out-of-spec device.  Do not repost
3188 		 *  the request in this case.
3189 		 */
3190 		NVME_CTRLR_ERRLOG(ctrlr, "Controller appears out-of-spec for asynchronous event request\n"
3191 				  "handling.  Do not repost this AER.\n");
3192 		return;
3193 	}
3194 
3195 	/* Add the events to the list */
3196 	nvme_ctrlr_queue_async_event(ctrlr, cpl);
3197 
3198 	/* If the ctrlr was removed or in the destruct state, we should not send aer again */
3199 	if (ctrlr->is_removed || ctrlr->is_destructed) {
3200 		return;
3201 	}
3202 
3203 	/*
3204 	 * Repost another asynchronous event request to replace the one
3205 	 *  that just completed.
3206 	 */
3207 	if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
3208 		/*
3209 		 * We can't do anything to recover from a failure here,
3210 		 * so just print a warning message and leave the AER unsubmitted.
3211 		 */
3212 		NVME_CTRLR_ERRLOG(ctrlr, "resubmitting AER failed!\n");
3213 	}
3214 }
3215 
3216 static int
3217 nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
3218 				    struct nvme_async_event_request *aer)
3219 {
3220 	struct nvme_request *req;
3221 
3222 	aer->ctrlr = ctrlr;
3223 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer);
3224 	aer->req = req;
3225 	if (req == NULL) {
3226 		return -1;
3227 	}
3228 
3229 	req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
3230 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
3231 }
3232 
3233 static void
3234 nvme_ctrlr_configure_aer_done(void *arg, const struct spdk_nvme_cpl *cpl)
3235 {
3236 	struct nvme_async_event_request		*aer;
3237 	int					rc;
3238 	uint32_t				i;
3239 	struct spdk_nvme_ctrlr *ctrlr =	(struct spdk_nvme_ctrlr *)arg;
3240 
3241 	if (spdk_nvme_cpl_is_error(cpl)) {
3242 		NVME_CTRLR_NOTICELOG(ctrlr, "nvme_ctrlr_configure_aer failed!\n");
3243 		ctrlr->num_aers = 0;
3244 	} else {
3245 		/* aerl is a zero-based value, so we need to add 1 here. */
3246 		ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
3247 	}
3248 
3249 	for (i = 0; i < ctrlr->num_aers; i++) {
3250 		aer = &ctrlr->aer[i];
3251 		rc = nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
3252 		if (rc) {
3253 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_construct_and_submit_aer failed!\n");
3254 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3255 			return;
3256 		}
3257 	}
3258 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, ctrlr->opts.admin_timeout_ms);
3259 }
3260 
3261 static int
3262 nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr)
3263 {
3264 	union spdk_nvme_feat_async_event_configuration	config;
3265 	int						rc;
3266 
3267 	config.raw = 0;
3268 
3269 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3270 		config.bits.discovery_log_change_notice = 1;
3271 	} else {
3272 		config.bits.crit_warn.bits.available_spare = 1;
3273 		config.bits.crit_warn.bits.temperature = 1;
3274 		config.bits.crit_warn.bits.device_reliability = 1;
3275 		config.bits.crit_warn.bits.read_only = 1;
3276 		config.bits.crit_warn.bits.volatile_memory_backup = 1;
3277 
3278 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 2, 0)) {
3279 			if (ctrlr->cdata.oaes.ns_attribute_notices) {
3280 				config.bits.ns_attr_notice = 1;
3281 			}
3282 			if (ctrlr->cdata.oaes.fw_activation_notices) {
3283 				config.bits.fw_activation_notice = 1;
3284 			}
3285 			if (ctrlr->cdata.oaes.ana_change_notices) {
3286 				config.bits.ana_change_notice = 1;
3287 			}
3288 		}
3289 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 3, 0) && ctrlr->cdata.lpa.telemetry) {
3290 			config.bits.telemetry_log_notice = 1;
3291 		}
3292 	}
3293 
3294 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER,
3295 			     ctrlr->opts.admin_timeout_ms);
3296 
3297 	rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config,
3298 			nvme_ctrlr_configure_aer_done,
3299 			ctrlr);
3300 	if (rc != 0) {
3301 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3302 		return rc;
3303 	}
3304 
3305 	return 0;
3306 }
3307 
3308 struct spdk_nvme_ctrlr_process *
3309 nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid)
3310 {
3311 	struct spdk_nvme_ctrlr_process	*active_proc;
3312 
3313 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3314 		if (active_proc->pid == pid) {
3315 			return active_proc;
3316 		}
3317 	}
3318 
3319 	return NULL;
3320 }
3321 
3322 struct spdk_nvme_ctrlr_process *
3323 nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr)
3324 {
3325 	return nvme_ctrlr_get_process(ctrlr, getpid());
3326 }
3327 
3328 /**
3329  * This function will be called when a process is using the controller.
3330  *  1. For the primary process, it is called when constructing the controller.
3331  *  2. For the secondary process, it is called at probing the controller.
3332  * Note: will check whether the process is already added for the same process.
3333  */
3334 int
3335 nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
3336 {
3337 	struct spdk_nvme_ctrlr_process	*ctrlr_proc;
3338 	pid_t				pid = getpid();
3339 
3340 	/* Check whether the process is already added or not */
3341 	if (nvme_ctrlr_get_process(ctrlr, pid)) {
3342 		return 0;
3343 	}
3344 
3345 	/* Initialize the per process properties for this ctrlr */
3346 	ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process),
3347 				  64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
3348 	if (ctrlr_proc == NULL) {
3349 		NVME_CTRLR_ERRLOG(ctrlr, "failed to allocate memory to track the process props\n");
3350 
3351 		return -1;
3352 	}
3353 
3354 	ctrlr_proc->is_primary = spdk_process_is_primary();
3355 	ctrlr_proc->pid = pid;
3356 	STAILQ_INIT(&ctrlr_proc->active_reqs);
3357 	ctrlr_proc->devhandle = devhandle;
3358 	ctrlr_proc->ref = 0;
3359 	TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs);
3360 	STAILQ_INIT(&ctrlr_proc->async_events);
3361 
3362 	TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq);
3363 
3364 	return 0;
3365 }
3366 
3367 /**
3368  * This function will be called when the process detaches the controller.
3369  * Note: the ctrlr_lock must be held when calling this function.
3370  */
3371 static void
3372 nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr,
3373 			  struct spdk_nvme_ctrlr_process *proc)
3374 {
3375 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3376 
3377 	assert(STAILQ_EMPTY(&proc->active_reqs));
3378 
3379 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3380 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3381 	}
3382 
3383 	TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq);
3384 
3385 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
3386 		spdk_pci_device_detach(proc->devhandle);
3387 	}
3388 
3389 	spdk_free(proc);
3390 }
3391 
3392 /**
3393  * This function will be called when the process exited unexpectedly
3394  *  in order to free any incomplete nvme request, allocated IO qpairs
3395  *  and allocated memory.
3396  * Note: the ctrlr_lock must be held when calling this function.
3397  */
3398 static void
3399 nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc)
3400 {
3401 	struct nvme_request	*req, *tmp_req;
3402 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3403 	struct spdk_nvme_ctrlr_aer_completion_list *event;
3404 
3405 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
3406 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
3407 
3408 		assert(req->pid == proc->pid);
3409 		nvme_cleanup_user_req(req);
3410 		nvme_free_request(req);
3411 	}
3412 
3413 	/* Remove async event from each process objects event list */
3414 	while (!STAILQ_EMPTY(&proc->async_events)) {
3415 		event = STAILQ_FIRST(&proc->async_events);
3416 		STAILQ_REMOVE_HEAD(&proc->async_events, link);
3417 		spdk_free(event);
3418 	}
3419 
3420 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3421 		TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq);
3422 
3423 		/*
3424 		 * The process may have been killed while some qpairs were in their
3425 		 *  completion context.  Clear that flag here to allow these IO
3426 		 *  qpairs to be deleted.
3427 		 */
3428 		qpair->in_completion_context = 0;
3429 
3430 		qpair->no_deletion_notification_needed = 1;
3431 
3432 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3433 	}
3434 
3435 	spdk_free(proc);
3436 }
3437 
3438 /**
3439  * This function will be called when destructing the controller.
3440  *  1. There is no more admin request on this controller.
3441  *  2. Clean up any left resource allocation when its associated process is gone.
3442  */
3443 void
3444 nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
3445 {
3446 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3447 
3448 	/* Free all the processes' properties and make sure no pending admin IOs */
3449 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3450 		TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3451 
3452 		assert(STAILQ_EMPTY(&active_proc->active_reqs));
3453 
3454 		spdk_free(active_proc);
3455 	}
3456 }
3457 
3458 /**
3459  * This function will be called when any other process attaches or
3460  *  detaches the controller in order to cleanup those unexpectedly
3461  *  terminated processes.
3462  * Note: the ctrlr_lock must be held when calling this function.
3463  */
3464 static int
3465 nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr)
3466 {
3467 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3468 	int				active_proc_count = 0;
3469 
3470 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3471 		if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) {
3472 			NVME_CTRLR_ERRLOG(ctrlr, "process %d terminated unexpected\n", active_proc->pid);
3473 
3474 			TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3475 
3476 			nvme_ctrlr_cleanup_process(active_proc);
3477 		} else {
3478 			active_proc_count++;
3479 		}
3480 	}
3481 
3482 	return active_proc_count;
3483 }
3484 
3485 void
3486 nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr)
3487 {
3488 	struct spdk_nvme_ctrlr_process	*active_proc;
3489 
3490 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3491 
3492 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3493 
3494 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3495 	if (active_proc) {
3496 		active_proc->ref++;
3497 	}
3498 
3499 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3500 }
3501 
3502 void
3503 nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr)
3504 {
3505 	struct spdk_nvme_ctrlr_process	*active_proc;
3506 	int				proc_count;
3507 
3508 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3509 
3510 	proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr);
3511 
3512 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3513 	if (active_proc) {
3514 		active_proc->ref--;
3515 		assert(active_proc->ref >= 0);
3516 
3517 		/*
3518 		 * The last active process will be removed at the end of
3519 		 * the destruction of the controller.
3520 		 */
3521 		if (active_proc->ref == 0 && proc_count != 1) {
3522 			nvme_ctrlr_remove_process(ctrlr, active_proc);
3523 		}
3524 	}
3525 
3526 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3527 }
3528 
3529 int
3530 nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr)
3531 {
3532 	struct spdk_nvme_ctrlr_process	*active_proc;
3533 	int				ref = 0;
3534 
3535 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3536 
3537 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3538 
3539 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3540 		ref += active_proc->ref;
3541 	}
3542 
3543 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3544 
3545 	return ref;
3546 }
3547 
3548 /**
3549  *  Get the PCI device handle which is only visible to its associated process.
3550  */
3551 struct spdk_pci_device *
3552 nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr)
3553 {
3554 	struct spdk_nvme_ctrlr_process	*active_proc;
3555 	struct spdk_pci_device		*devhandle = NULL;
3556 
3557 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3558 
3559 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3560 	if (active_proc) {
3561 		devhandle = active_proc->devhandle;
3562 	}
3563 
3564 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3565 
3566 	return devhandle;
3567 }
3568 
3569 static void
3570 nvme_ctrlr_process_init_vs_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3571 {
3572 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3573 
3574 	if (spdk_nvme_cpl_is_error(cpl)) {
3575 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the VS register\n");
3576 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3577 		return;
3578 	}
3579 
3580 	assert(value <= UINT32_MAX);
3581 	ctrlr->vs.raw = (uint32_t)value;
3582 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP, NVME_TIMEOUT_INFINITE);
3583 }
3584 
3585 static void
3586 nvme_ctrlr_process_init_cap_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3587 {
3588 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3589 
3590 	if (spdk_nvme_cpl_is_error(cpl)) {
3591 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CAP register\n");
3592 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3593 		return;
3594 	}
3595 
3596 	ctrlr->cap.raw = value;
3597 	nvme_ctrlr_init_cap(ctrlr);
3598 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
3599 }
3600 
3601 static void
3602 nvme_ctrlr_process_init_check_en(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3603 {
3604 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3605 	enum nvme_ctrlr_state state;
3606 
3607 	if (spdk_nvme_cpl_is_error(cpl)) {
3608 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3609 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3610 		return;
3611 	}
3612 
3613 	assert(value <= UINT32_MAX);
3614 	ctrlr->process_init_cc.raw = (uint32_t)value;
3615 
3616 	if (ctrlr->process_init_cc.bits.en) {
3617 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1\n");
3618 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1;
3619 	} else {
3620 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0;
3621 	}
3622 
3623 	nvme_ctrlr_set_state(ctrlr, state, nvme_ctrlr_get_ready_timeout(ctrlr));
3624 }
3625 
3626 static void
3627 nvme_ctrlr_process_init_set_en_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3628 {
3629 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3630 
3631 	if (spdk_nvme_cpl_is_error(cpl)) {
3632 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write the CC register\n");
3633 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3634 		return;
3635 	}
3636 
3637 	/*
3638 	 * Wait 2.5 seconds before accessing PCI registers.
3639 	 * Not using sleep() to avoid blocking other controller's initialization.
3640 	 */
3641 	if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) {
3642 		NVME_CTRLR_DEBUGLOG(ctrlr, "Applying quirk: delay 2.5 seconds before reading registers\n");
3643 		ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2500 * spdk_get_ticks_hz() / 1000);
3644 	}
3645 
3646 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3647 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3648 }
3649 
3650 static void
3651 nvme_ctrlr_process_init_set_en_0_read_cc(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3652 {
3653 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3654 	union spdk_nvme_cc_register cc;
3655 	int rc;
3656 
3657 	if (spdk_nvme_cpl_is_error(cpl)) {
3658 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3659 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3660 		return;
3661 	}
3662 
3663 	assert(value <= UINT32_MAX);
3664 	cc.raw = (uint32_t)value;
3665 	cc.bits.en = 0;
3666 	ctrlr->process_init_cc.raw = cc.raw;
3667 
3668 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC,
3669 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3670 
3671 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_process_init_set_en_0, ctrlr);
3672 	if (rc != 0) {
3673 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
3674 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3675 	}
3676 }
3677 
3678 static void
3679 nvme_ctrlr_process_init_wait_for_ready_1(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3680 {
3681 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3682 	union spdk_nvme_csts_register csts;
3683 
3684 	if (spdk_nvme_cpl_is_error(cpl)) {
3685 		/* While a device is resetting, it may be unable to service MMIO reads
3686 		 * temporarily. Allow for this case.
3687 		 */
3688 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3689 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3690 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3691 					     NVME_TIMEOUT_KEEP_EXISTING);
3692 		} else {
3693 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3694 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3695 		}
3696 
3697 		return;
3698 	}
3699 
3700 	assert(value <= UINT32_MAX);
3701 	csts.raw = (uint32_t)value;
3702 	if (csts.bits.rdy == 1 || csts.bits.cfs == 1) {
3703 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0,
3704 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3705 	} else {
3706 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n");
3707 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3708 					   NVME_TIMEOUT_KEEP_EXISTING);
3709 	}
3710 }
3711 
3712 static void
3713 nvme_ctrlr_process_init_wait_for_ready_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3714 {
3715 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3716 	union spdk_nvme_csts_register csts;
3717 
3718 	if (spdk_nvme_cpl_is_error(cpl)) {
3719 		/* While a device is resetting, it may be unable to service MMIO reads
3720 		 * temporarily. Allow for this case.
3721 		 */
3722 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3723 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3724 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3725 					     NVME_TIMEOUT_KEEP_EXISTING);
3726 		} else {
3727 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3728 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3729 		}
3730 
3731 		return;
3732 	}
3733 
3734 	assert(value <= UINT32_MAX);
3735 	csts.raw = (uint32_t)value;
3736 	if (csts.bits.rdy == 0) {
3737 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 0 && CSTS.RDY = 0\n");
3738 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLED,
3739 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3740 	} else {
3741 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3742 					   NVME_TIMEOUT_KEEP_EXISTING);
3743 	}
3744 }
3745 
3746 static void
3747 nvme_ctrlr_process_init_enable_wait_for_ready_1(void *ctx, uint64_t value,
3748 		const struct spdk_nvme_cpl *cpl)
3749 {
3750 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3751 	union spdk_nvme_csts_register csts;
3752 
3753 	if (spdk_nvme_cpl_is_error(cpl)) {
3754 		/* While a device is resetting, it may be unable to service MMIO reads
3755 		 * temporarily. Allow for this case.
3756 		 */
3757 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3758 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3759 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3760 					     NVME_TIMEOUT_KEEP_EXISTING);
3761 		} else {
3762 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3763 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3764 		}
3765 
3766 		return;
3767 	}
3768 
3769 	assert(value <= UINT32_MAX);
3770 	csts.raw = value;
3771 	if (csts.bits.rdy == 1) {
3772 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n");
3773 		/*
3774 		 * The controller has been enabled.
3775 		 *  Perform the rest of initialization serially.
3776 		 */
3777 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_RESET_ADMIN_QUEUE,
3778 				     ctrlr->opts.admin_timeout_ms);
3779 	} else {
3780 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3781 					   NVME_TIMEOUT_KEEP_EXISTING);
3782 	}
3783 }
3784 
3785 /**
3786  * This function will be called repeatedly during initialization until the controller is ready.
3787  */
3788 int
3789 nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr)
3790 {
3791 	uint32_t ready_timeout_in_ms;
3792 	uint64_t ticks;
3793 	int rc = 0;
3794 
3795 	ticks = spdk_get_ticks();
3796 
3797 	/*
3798 	 * May need to avoid accessing any register on the target controller
3799 	 * for a while. Return early without touching the FSM.
3800 	 * Check sleep_timeout_tsc > 0 for unit test.
3801 	 */
3802 	if ((ctrlr->sleep_timeout_tsc > 0) &&
3803 	    (ticks <= ctrlr->sleep_timeout_tsc)) {
3804 		return 0;
3805 	}
3806 	ctrlr->sleep_timeout_tsc = 0;
3807 
3808 	ready_timeout_in_ms = nvme_ctrlr_get_ready_timeout(ctrlr);
3809 
3810 	/*
3811 	 * Check if the current initialization step is done or has timed out.
3812 	 */
3813 	switch (ctrlr->state) {
3814 	case NVME_CTRLR_STATE_INIT_DELAY:
3815 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, ready_timeout_in_ms);
3816 		if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_INIT) {
3817 			/*
3818 			 * Controller may need some delay before it's enabled.
3819 			 *
3820 			 * This is a workaround for an issue where the PCIe-attached NVMe controller
3821 			 * is not ready after VFIO reset. We delay the initialization rather than the
3822 			 * enabling itself, because this is required only for the very first enabling
3823 			 * - directly after a VFIO reset.
3824 			 */
3825 			NVME_CTRLR_DEBUGLOG(ctrlr, "Adding 2 second delay before initializing the controller\n");
3826 			ctrlr->sleep_timeout_tsc = ticks + (2000 * spdk_get_ticks_hz() / 1000);
3827 		}
3828 		break;
3829 
3830 	case NVME_CTRLR_STATE_DISCONNECTED:
3831 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
3832 		break;
3833 
3834 	case NVME_CTRLR_STATE_CONNECT_ADMINQ: /* synonymous with NVME_CTRLR_STATE_INIT and NVME_CTRLR_STATE_DISCONNECTED */
3835 		rc = nvme_transport_ctrlr_connect_qpair(ctrlr, ctrlr->adminq);
3836 		if (rc == 0) {
3837 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ,
3838 					     NVME_TIMEOUT_INFINITE);
3839 		} else {
3840 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3841 		}
3842 		break;
3843 
3844 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
3845 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3846 
3847 		switch (nvme_qpair_get_state(ctrlr->adminq)) {
3848 		case NVME_QPAIR_CONNECTING:
3849 			break;
3850 		case NVME_QPAIR_CONNECTED:
3851 			nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
3852 		/* Fall through */
3853 		case NVME_QPAIR_ENABLED:
3854 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS,
3855 					     NVME_TIMEOUT_INFINITE);
3856 			/* Abort any queued requests that were sent while the adminq was connecting
3857 			 * to avoid stalling the init process during a reset, as requests don't get
3858 			 * resubmitted while the controller is resetting and subsequent commands
3859 			 * would get queued too.
3860 			 */
3861 			nvme_qpair_abort_queued_reqs(ctrlr->adminq);
3862 			break;
3863 		case NVME_QPAIR_DISCONNECTING:
3864 			assert(ctrlr->adminq->async == true);
3865 			break;
3866 		case NVME_QPAIR_DISCONNECTED:
3867 		/* fallthrough */
3868 		default:
3869 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3870 			break;
3871 		}
3872 
3873 		break;
3874 
3875 	case NVME_CTRLR_STATE_READ_VS:
3876 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS, NVME_TIMEOUT_INFINITE);
3877 		rc = nvme_ctrlr_get_vs_async(ctrlr, nvme_ctrlr_process_init_vs_done, ctrlr);
3878 		break;
3879 
3880 	case NVME_CTRLR_STATE_READ_CAP:
3881 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP, NVME_TIMEOUT_INFINITE);
3882 		rc = nvme_ctrlr_get_cap_async(ctrlr, nvme_ctrlr_process_init_cap_done, ctrlr);
3883 		break;
3884 
3885 	case NVME_CTRLR_STATE_CHECK_EN:
3886 		/* Begin the hardware initialization by making sure the controller is disabled. */
3887 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC, ready_timeout_in_ms);
3888 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_check_en, ctrlr);
3889 		break;
3890 
3891 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
3892 		/*
3893 		 * Controller is currently enabled. We need to disable it to cause a reset.
3894 		 *
3895 		 * If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready.
3896 		 *  Wait for the ready bit to be 1 before disabling the controller.
3897 		 */
3898 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
3899 					   NVME_TIMEOUT_KEEP_EXISTING);
3900 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_1, ctrlr);
3901 		break;
3902 
3903 	case NVME_CTRLR_STATE_SET_EN_0:
3904 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 0\n");
3905 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC, ready_timeout_in_ms);
3906 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_set_en_0_read_cc, ctrlr);
3907 		break;
3908 
3909 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
3910 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS,
3911 					   NVME_TIMEOUT_KEEP_EXISTING);
3912 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_0, ctrlr);
3913 		break;
3914 
3915 	case NVME_CTRLR_STATE_DISABLED:
3916 		if (ctrlr->is_disconnecting) {
3917 			NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr was disabled.\n");
3918 		} else {
3919 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms);
3920 
3921 			/*
3922 			 * Delay 100us before setting CC.EN = 1.  Some NVMe SSDs miss CC.EN getting
3923 			 *  set to 1 if it is too soon after CSTS.RDY is reported as 0.
3924 			 */
3925 			spdk_delay_us(100);
3926 		}
3927 		break;
3928 
3929 	case NVME_CTRLR_STATE_ENABLE:
3930 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 1\n");
3931 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC, ready_timeout_in_ms);
3932 		rc = nvme_ctrlr_enable(ctrlr);
3933 		if (rc) {
3934 			NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr enable failed with error: %d", rc);
3935 		}
3936 		return rc;
3937 
3938 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
3939 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
3940 					   NVME_TIMEOUT_KEEP_EXISTING);
3941 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_enable_wait_for_ready_1,
3942 					       ctrlr);
3943 		break;
3944 
3945 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
3946 		nvme_transport_qpair_reset(ctrlr->adminq);
3947 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY, NVME_TIMEOUT_INFINITE);
3948 		break;
3949 
3950 	case NVME_CTRLR_STATE_IDENTIFY:
3951 		rc = nvme_ctrlr_identify(ctrlr);
3952 		break;
3953 
3954 	case NVME_CTRLR_STATE_CONFIGURE_AER:
3955 		rc = nvme_ctrlr_configure_aer(ctrlr);
3956 		break;
3957 
3958 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
3959 		rc = nvme_ctrlr_set_keep_alive_timeout(ctrlr);
3960 		break;
3961 
3962 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
3963 		rc = nvme_ctrlr_identify_iocs_specific(ctrlr);
3964 		break;
3965 
3966 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
3967 		rc = nvme_ctrlr_get_zns_cmd_and_effects_log(ctrlr);
3968 		break;
3969 
3970 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
3971 		nvme_ctrlr_update_nvmf_ioccsz(ctrlr);
3972 		rc = nvme_ctrlr_set_num_queues(ctrlr);
3973 		break;
3974 
3975 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
3976 		_nvme_ctrlr_identify_active_ns(ctrlr);
3977 		break;
3978 
3979 	case NVME_CTRLR_STATE_IDENTIFY_NS:
3980 		rc = nvme_ctrlr_identify_namespaces(ctrlr);
3981 		break;
3982 
3983 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
3984 		rc = nvme_ctrlr_identify_id_desc_namespaces(ctrlr);
3985 		break;
3986 
3987 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
3988 		rc = nvme_ctrlr_identify_namespaces_iocs_specific(ctrlr);
3989 		break;
3990 
3991 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
3992 		rc = nvme_ctrlr_set_supported_log_pages(ctrlr);
3993 		break;
3994 
3995 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
3996 		rc = nvme_ctrlr_set_intel_support_log_pages(ctrlr);
3997 		break;
3998 
3999 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
4000 		nvme_ctrlr_set_supported_features(ctrlr);
4001 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
4002 				     ctrlr->opts.admin_timeout_ms);
4003 		break;
4004 
4005 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
4006 		rc = nvme_ctrlr_set_doorbell_buffer_config(ctrlr);
4007 		break;
4008 
4009 	case NVME_CTRLR_STATE_SET_HOST_ID:
4010 		rc = nvme_ctrlr_set_host_id(ctrlr);
4011 		break;
4012 
4013 	case NVME_CTRLR_STATE_TRANSPORT_READY:
4014 		rc = nvme_transport_ctrlr_ready(ctrlr);
4015 		if (rc) {
4016 			NVME_CTRLR_ERRLOG(ctrlr, "Transport controller ready step failed: rc %d\n", rc);
4017 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
4018 		} else {
4019 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
4020 		}
4021 		break;
4022 
4023 	case NVME_CTRLR_STATE_READY:
4024 		NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr already in ready state\n");
4025 		return 0;
4026 
4027 	case NVME_CTRLR_STATE_ERROR:
4028 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr is in error state\n");
4029 		return -1;
4030 
4031 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
4032 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
4033 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
4034 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
4035 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4036 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
4037 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
4038 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4039 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
4040 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
4041 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
4042 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
4043 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
4044 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
4045 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
4046 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
4047 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
4048 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
4049 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
4050 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
4051 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
4052 		/*
4053 		 * nvme_ctrlr_process_init() may be called from the completion context
4054 		 * for the admin qpair. Avoid recursive calls for this case.
4055 		 */
4056 		if (!ctrlr->adminq->in_completion_context) {
4057 			spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4058 		}
4059 		break;
4060 
4061 	default:
4062 		assert(0);
4063 		return -1;
4064 	}
4065 
4066 	if (rc) {
4067 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr operation failed with error: %d, ctrlr state: %d (%s)\n",
4068 				  rc, ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4069 	}
4070 
4071 	/* Note: we use the ticks captured when we entered this function.
4072 	 * This covers environments where the SPDK process gets swapped out after
4073 	 * we tried to advance the state but before we check the timeout here.
4074 	 * It is not normal for this to happen, but harmless to handle it in this
4075 	 * way.
4076 	 */
4077 	if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE &&
4078 	    ticks > ctrlr->state_timeout_tsc) {
4079 		NVME_CTRLR_ERRLOG(ctrlr, "Initialization timed out in state %d (%s)\n",
4080 				  ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4081 		return -1;
4082 	}
4083 
4084 	return rc;
4085 }
4086 
4087 int
4088 nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx)
4089 {
4090 	pthread_mutexattr_t attr;
4091 	int rc = 0;
4092 
4093 	if (pthread_mutexattr_init(&attr)) {
4094 		return -1;
4095 	}
4096 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) ||
4097 #ifndef __FreeBSD__
4098 	    pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
4099 	    pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
4100 #endif
4101 	    pthread_mutex_init(mtx, &attr)) {
4102 		rc = -1;
4103 	}
4104 	pthread_mutexattr_destroy(&attr);
4105 	return rc;
4106 }
4107 
4108 int
4109 nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
4110 {
4111 	int rc;
4112 
4113 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4114 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT_DELAY, NVME_TIMEOUT_INFINITE);
4115 	} else {
4116 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
4117 	}
4118 
4119 	if (ctrlr->opts.admin_queue_size > SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES) {
4120 		NVME_CTRLR_ERRLOG(ctrlr, "admin_queue_size %u exceeds max defined by NVMe spec, use max value\n",
4121 				  ctrlr->opts.admin_queue_size);
4122 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES;
4123 	}
4124 
4125 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_ADMIN_QUEUE_SIZE &&
4126 	    (ctrlr->opts.admin_queue_size % SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE) != 0) {
4127 		NVME_CTRLR_ERRLOG(ctrlr,
4128 				  "admin_queue_size %u is invalid for this NVMe device, adjust to next multiple\n",
4129 				  ctrlr->opts.admin_queue_size);
4130 		ctrlr->opts.admin_queue_size = SPDK_ALIGN_CEIL(ctrlr->opts.admin_queue_size,
4131 					       SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE);
4132 	}
4133 
4134 	if (ctrlr->opts.admin_queue_size < SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES) {
4135 		NVME_CTRLR_ERRLOG(ctrlr,
4136 				  "admin_queue_size %u is less than minimum defined by NVMe spec, use min value\n",
4137 				  ctrlr->opts.admin_queue_size);
4138 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES;
4139 	}
4140 
4141 	ctrlr->flags = 0;
4142 	ctrlr->free_io_qids = NULL;
4143 	ctrlr->is_resetting = false;
4144 	ctrlr->is_failed = false;
4145 	ctrlr->is_destructed = false;
4146 
4147 	TAILQ_INIT(&ctrlr->active_io_qpairs);
4148 	STAILQ_INIT(&ctrlr->queued_aborts);
4149 	ctrlr->outstanding_aborts = 0;
4150 
4151 	ctrlr->ana_log_page = NULL;
4152 	ctrlr->ana_log_page_size = 0;
4153 
4154 	rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock);
4155 	if (rc != 0) {
4156 		return rc;
4157 	}
4158 
4159 	TAILQ_INIT(&ctrlr->active_procs);
4160 	STAILQ_INIT(&ctrlr->register_operations);
4161 
4162 	RB_INIT(&ctrlr->ns);
4163 
4164 	return rc;
4165 }
4166 
4167 static void
4168 nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr)
4169 {
4170 	if (ctrlr->cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) {
4171 		ctrlr->flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED;
4172 	}
4173 
4174 	ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin);
4175 
4176 	/* For now, always select page_size == min_page_size. */
4177 	ctrlr->page_size = ctrlr->min_page_size;
4178 
4179 	ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES);
4180 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, MAX_IO_QUEUE_ENTRIES);
4181 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE &&
4182 	    ctrlr->opts.io_queue_size == DEFAULT_IO_QUEUE_SIZE) {
4183 		/* If the user specifically set an IO queue size different than the
4184 		 * default, use that value.  Otherwise overwrite with the quirked value.
4185 		 * This allows this quirk to be overridden when necessary.
4186 		 * However, cap.mqes still needs to be respected.
4187 		 */
4188 		ctrlr->opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK;
4189 	}
4190 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u);
4191 
4192 	ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size);
4193 }
4194 
4195 void
4196 nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr)
4197 {
4198 	pthread_mutex_destroy(&ctrlr->ctrlr_lock);
4199 
4200 	nvme_ctrlr_free_processes(ctrlr);
4201 }
4202 
4203 void
4204 nvme_ctrlr_destruct_async(struct spdk_nvme_ctrlr *ctrlr,
4205 			  struct nvme_ctrlr_detach_ctx *ctx)
4206 {
4207 	struct spdk_nvme_qpair *qpair, *tmp;
4208 
4209 	NVME_CTRLR_DEBUGLOG(ctrlr, "Prepare to destruct SSD\n");
4210 
4211 	ctrlr->prepare_for_reset = false;
4212 	ctrlr->is_destructed = true;
4213 
4214 	spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4215 
4216 	nvme_ctrlr_abort_queued_aborts(ctrlr);
4217 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
4218 
4219 	TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) {
4220 		spdk_nvme_ctrlr_free_io_qpair(qpair);
4221 	}
4222 
4223 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
4224 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
4225 
4226 	nvme_ctrlr_shutdown_async(ctrlr, ctx);
4227 }
4228 
4229 int
4230 nvme_ctrlr_destruct_poll_async(struct spdk_nvme_ctrlr *ctrlr,
4231 			       struct nvme_ctrlr_detach_ctx *ctx)
4232 {
4233 	struct spdk_nvme_ns *ns, *tmp_ns;
4234 	int rc = 0;
4235 
4236 	if (!ctx->shutdown_complete) {
4237 		rc = nvme_ctrlr_shutdown_poll_async(ctrlr, ctx);
4238 		if (rc == -EAGAIN) {
4239 			return -EAGAIN;
4240 		}
4241 		/* Destruct ctrlr forcefully for any other error. */
4242 	}
4243 
4244 	if (ctx->cb_fn) {
4245 		ctx->cb_fn(ctrlr);
4246 	}
4247 
4248 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
4249 
4250 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
4251 		nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
4252 		RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
4253 		spdk_free(ns);
4254 	}
4255 
4256 	ctrlr->active_ns_count = 0;
4257 
4258 	spdk_bit_array_free(&ctrlr->free_io_qids);
4259 
4260 	free(ctrlr->ana_log_page);
4261 	free(ctrlr->copied_ana_desc);
4262 	ctrlr->ana_log_page = NULL;
4263 	ctrlr->copied_ana_desc = NULL;
4264 	ctrlr->ana_log_page_size = 0;
4265 
4266 	nvme_transport_ctrlr_destruct(ctrlr);
4267 
4268 	return rc;
4269 }
4270 
4271 void
4272 nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
4273 {
4274 	struct nvme_ctrlr_detach_ctx ctx = { .ctrlr = ctrlr };
4275 	int rc;
4276 
4277 	nvme_ctrlr_destruct_async(ctrlr, &ctx);
4278 
4279 	while (1) {
4280 		rc = nvme_ctrlr_destruct_poll_async(ctrlr, &ctx);
4281 		if (rc != -EAGAIN) {
4282 			break;
4283 		}
4284 		nvme_delay(1000);
4285 	}
4286 }
4287 
4288 int
4289 nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
4290 				struct nvme_request *req)
4291 {
4292 	return nvme_qpair_submit_request(ctrlr->adminq, req);
4293 }
4294 
4295 static void
4296 nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl)
4297 {
4298 	/* Do nothing */
4299 }
4300 
4301 /*
4302  * Check if we need to send a Keep Alive command.
4303  * Caller must hold ctrlr->ctrlr_lock.
4304  */
4305 static int
4306 nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr)
4307 {
4308 	uint64_t now;
4309 	struct nvme_request *req;
4310 	struct spdk_nvme_cmd *cmd;
4311 	int rc = 0;
4312 
4313 	now = spdk_get_ticks();
4314 	if (now < ctrlr->next_keep_alive_tick) {
4315 		return rc;
4316 	}
4317 
4318 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL);
4319 	if (req == NULL) {
4320 		return rc;
4321 	}
4322 
4323 	cmd = &req->cmd;
4324 	cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE;
4325 
4326 	rc = nvme_ctrlr_submit_admin_request(ctrlr, req);
4327 	if (rc != 0) {
4328 		NVME_CTRLR_ERRLOG(ctrlr, "Submitting Keep Alive failed\n");
4329 		rc = -ENXIO;
4330 	}
4331 
4332 	ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks;
4333 	return rc;
4334 }
4335 
4336 int32_t
4337 spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr)
4338 {
4339 	int32_t num_completions;
4340 	int32_t rc;
4341 	struct spdk_nvme_ctrlr_process	*active_proc;
4342 
4343 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4344 
4345 	if (ctrlr->keep_alive_interval_ticks) {
4346 		rc = nvme_ctrlr_keep_alive(ctrlr);
4347 		if (rc) {
4348 			nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4349 			return rc;
4350 		}
4351 	}
4352 
4353 	rc = nvme_io_msg_process(ctrlr);
4354 	if (rc < 0) {
4355 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4356 		return rc;
4357 	}
4358 	num_completions = rc;
4359 
4360 	rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4361 
4362 	/* Each process has an async list, complete the ones for this process object */
4363 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4364 	if (active_proc) {
4365 		nvme_ctrlr_complete_queued_async_events(ctrlr);
4366 	}
4367 
4368 	if (rc == -ENXIO && ctrlr->is_disconnecting) {
4369 		nvme_ctrlr_disconnect_done(ctrlr);
4370 	}
4371 
4372 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4373 
4374 	if (rc < 0) {
4375 		num_completions = rc;
4376 	} else {
4377 		num_completions += rc;
4378 	}
4379 
4380 	return num_completions;
4381 }
4382 
4383 const struct spdk_nvme_ctrlr_data *
4384 spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr)
4385 {
4386 	return &ctrlr->cdata;
4387 }
4388 
4389 union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
4390 {
4391 	union spdk_nvme_csts_register csts;
4392 
4393 	if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
4394 		csts.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4395 	}
4396 	return csts;
4397 }
4398 
4399 union spdk_nvme_cc_register spdk_nvme_ctrlr_get_regs_cc(struct spdk_nvme_ctrlr *ctrlr)
4400 {
4401 	union spdk_nvme_cc_register cc;
4402 
4403 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
4404 		cc.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4405 	}
4406 	return cc;
4407 }
4408 
4409 union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr)
4410 {
4411 	return ctrlr->cap;
4412 }
4413 
4414 union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr)
4415 {
4416 	return ctrlr->vs;
4417 }
4418 
4419 union spdk_nvme_cmbsz_register spdk_nvme_ctrlr_get_regs_cmbsz(struct spdk_nvme_ctrlr *ctrlr)
4420 {
4421 	union spdk_nvme_cmbsz_register cmbsz;
4422 
4423 	if (nvme_ctrlr_get_cmbsz(ctrlr, &cmbsz)) {
4424 		cmbsz.raw = 0;
4425 	}
4426 
4427 	return cmbsz;
4428 }
4429 
4430 union spdk_nvme_pmrcap_register spdk_nvme_ctrlr_get_regs_pmrcap(struct spdk_nvme_ctrlr *ctrlr)
4431 {
4432 	union spdk_nvme_pmrcap_register pmrcap;
4433 
4434 	if (nvme_ctrlr_get_pmrcap(ctrlr, &pmrcap)) {
4435 		pmrcap.raw = 0;
4436 	}
4437 
4438 	return pmrcap;
4439 }
4440 
4441 union spdk_nvme_bpinfo_register spdk_nvme_ctrlr_get_regs_bpinfo(struct spdk_nvme_ctrlr *ctrlr)
4442 {
4443 	union spdk_nvme_bpinfo_register bpinfo;
4444 
4445 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
4446 		bpinfo.raw = 0;
4447 	}
4448 
4449 	return bpinfo;
4450 }
4451 
4452 uint64_t
4453 spdk_nvme_ctrlr_get_pmrsz(struct spdk_nvme_ctrlr *ctrlr)
4454 {
4455 	return ctrlr->pmr_size;
4456 }
4457 
4458 uint32_t
4459 spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr)
4460 {
4461 	return ctrlr->cdata.nn;
4462 }
4463 
4464 bool
4465 spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4466 {
4467 	struct spdk_nvme_ns tmp, *ns;
4468 
4469 	tmp.id = nsid;
4470 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4471 
4472 	if (ns != NULL) {
4473 		return ns->active;
4474 	}
4475 
4476 	return false;
4477 }
4478 
4479 uint32_t
4480 spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr)
4481 {
4482 	struct spdk_nvme_ns *ns;
4483 
4484 	ns = RB_MIN(nvme_ns_tree, &ctrlr->ns);
4485 	if (ns == NULL) {
4486 		return 0;
4487 	}
4488 
4489 	while (ns != NULL) {
4490 		if (ns->active) {
4491 			return ns->id;
4492 		}
4493 
4494 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4495 	}
4496 
4497 	return 0;
4498 }
4499 
4500 uint32_t
4501 spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
4502 {
4503 	struct spdk_nvme_ns tmp, *ns;
4504 
4505 	tmp.id = prev_nsid;
4506 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4507 	if (ns == NULL) {
4508 		return 0;
4509 	}
4510 
4511 	ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4512 	while (ns != NULL) {
4513 		if (ns->active) {
4514 			return ns->id;
4515 		}
4516 
4517 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4518 	}
4519 
4520 	return 0;
4521 }
4522 
4523 struct spdk_nvme_ns *
4524 spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4525 {
4526 	struct spdk_nvme_ns tmp;
4527 	struct spdk_nvme_ns *ns;
4528 
4529 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
4530 		return NULL;
4531 	}
4532 
4533 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4534 
4535 	tmp.id = nsid;
4536 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4537 
4538 	if (ns == NULL) {
4539 		ns = spdk_zmalloc(sizeof(struct spdk_nvme_ns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
4540 		if (ns == NULL) {
4541 			nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4542 			return NULL;
4543 		}
4544 
4545 		NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was added\n", nsid);
4546 		ns->id = nsid;
4547 		RB_INSERT(nvme_ns_tree, &ctrlr->ns, ns);
4548 	}
4549 
4550 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4551 
4552 	return ns;
4553 }
4554 
4555 struct spdk_pci_device *
4556 spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr)
4557 {
4558 	if (ctrlr == NULL) {
4559 		return NULL;
4560 	}
4561 
4562 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
4563 		return NULL;
4564 	}
4565 
4566 	return nvme_ctrlr_proc_get_devhandle(ctrlr);
4567 }
4568 
4569 uint32_t
4570 spdk_nvme_ctrlr_get_max_xfer_size(const struct spdk_nvme_ctrlr *ctrlr)
4571 {
4572 	return ctrlr->max_xfer_size;
4573 }
4574 
4575 uint16_t
4576 spdk_nvme_ctrlr_get_max_sges(const struct spdk_nvme_ctrlr *ctrlr)
4577 {
4578 	if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4579 		return ctrlr->max_sges;
4580 	} else {
4581 		return UINT16_MAX;
4582 	}
4583 }
4584 
4585 void
4586 spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr,
4587 				      spdk_nvme_aer_cb aer_cb_fn,
4588 				      void *aer_cb_arg)
4589 {
4590 	struct spdk_nvme_ctrlr_process *active_proc;
4591 
4592 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4593 
4594 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4595 	if (active_proc) {
4596 		active_proc->aer_cb_fn = aer_cb_fn;
4597 		active_proc->aer_cb_arg = aer_cb_arg;
4598 	}
4599 
4600 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4601 }
4602 
4603 void
4604 spdk_nvme_ctrlr_disable_read_changed_ns_list_log_page(struct spdk_nvme_ctrlr *ctrlr)
4605 {
4606 	ctrlr->opts.disable_read_changed_ns_list_log_page = true;
4607 }
4608 
4609 void
4610 spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr,
4611 		uint64_t timeout_io_us, uint64_t timeout_admin_us,
4612 		spdk_nvme_timeout_cb cb_fn, void *cb_arg)
4613 {
4614 	struct spdk_nvme_ctrlr_process	*active_proc;
4615 
4616 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4617 
4618 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4619 	if (active_proc) {
4620 		active_proc->timeout_io_ticks = timeout_io_us * spdk_get_ticks_hz() / 1000000ULL;
4621 		active_proc->timeout_admin_ticks = timeout_admin_us * spdk_get_ticks_hz() / 1000000ULL;
4622 		active_proc->timeout_cb_fn = cb_fn;
4623 		active_proc->timeout_cb_arg = cb_arg;
4624 	}
4625 
4626 	ctrlr->timeout_enabled = true;
4627 
4628 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4629 }
4630 
4631 bool
4632 spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page)
4633 {
4634 	/* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
4635 	SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
4636 	return ctrlr->log_page_supported[log_page];
4637 }
4638 
4639 bool
4640 spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code)
4641 {
4642 	/* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
4643 	SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
4644 	return ctrlr->feature_supported[feature_code];
4645 }
4646 
4647 int
4648 spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4649 			  struct spdk_nvme_ctrlr_list *payload)
4650 {
4651 	struct nvme_completion_poll_status	*status;
4652 	struct spdk_nvme_ns			*ns;
4653 	int					res;
4654 
4655 	if (nsid == 0) {
4656 		return -EINVAL;
4657 	}
4658 
4659 	status = calloc(1, sizeof(*status));
4660 	if (!status) {
4661 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4662 		return -ENOMEM;
4663 	}
4664 
4665 	res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload,
4666 				       nvme_completion_poll_cb, status);
4667 	if (res) {
4668 		free(status);
4669 		return res;
4670 	}
4671 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4672 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_attach_ns failed!\n");
4673 		if (!status->timed_out) {
4674 			free(status);
4675 		}
4676 		return -ENXIO;
4677 	}
4678 	free(status);
4679 
4680 	res = nvme_ctrlr_identify_active_ns(ctrlr);
4681 	if (res) {
4682 		return res;
4683 	}
4684 
4685 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
4686 	if (ns == NULL) {
4687 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_get_ns failed!\n");
4688 		return -ENXIO;
4689 	}
4690 
4691 	return nvme_ns_construct(ns, nsid, ctrlr);
4692 }
4693 
4694 int
4695 spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4696 			  struct spdk_nvme_ctrlr_list *payload)
4697 {
4698 	struct nvme_completion_poll_status	*status;
4699 	int					res;
4700 
4701 	if (nsid == 0) {
4702 		return -EINVAL;
4703 	}
4704 
4705 	status = calloc(1, sizeof(*status));
4706 	if (!status) {
4707 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4708 		return -ENOMEM;
4709 	}
4710 
4711 	res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload,
4712 				       nvme_completion_poll_cb, status);
4713 	if (res) {
4714 		free(status);
4715 		return res;
4716 	}
4717 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4718 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_detach_ns failed!\n");
4719 		if (!status->timed_out) {
4720 			free(status);
4721 		}
4722 		return -ENXIO;
4723 	}
4724 	free(status);
4725 
4726 	return nvme_ctrlr_identify_active_ns(ctrlr);
4727 }
4728 
4729 uint32_t
4730 spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload)
4731 {
4732 	struct nvme_completion_poll_status	*status;
4733 	int					res;
4734 	uint32_t				nsid;
4735 
4736 	status = calloc(1, sizeof(*status));
4737 	if (!status) {
4738 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4739 		return 0;
4740 	}
4741 
4742 	res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, status);
4743 	if (res) {
4744 		free(status);
4745 		return 0;
4746 	}
4747 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4748 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_create_ns failed!\n");
4749 		if (!status->timed_out) {
4750 			free(status);
4751 		}
4752 		return 0;
4753 	}
4754 
4755 	nsid = status->cpl.cdw0;
4756 	free(status);
4757 
4758 	assert(nsid > 0);
4759 
4760 	/* Return the namespace ID that was created */
4761 	return nsid;
4762 }
4763 
4764 int
4765 spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4766 {
4767 	struct nvme_completion_poll_status	*status;
4768 	int					res;
4769 
4770 	if (nsid == 0) {
4771 		return -EINVAL;
4772 	}
4773 
4774 	status = calloc(1, sizeof(*status));
4775 	if (!status) {
4776 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4777 		return -ENOMEM;
4778 	}
4779 
4780 	res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, status);
4781 	if (res) {
4782 		free(status);
4783 		return res;
4784 	}
4785 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4786 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_delete_ns failed!\n");
4787 		if (!status->timed_out) {
4788 			free(status);
4789 		}
4790 		return -ENXIO;
4791 	}
4792 	free(status);
4793 
4794 	return nvme_ctrlr_identify_active_ns(ctrlr);
4795 }
4796 
4797 int
4798 spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4799 		       struct spdk_nvme_format *format)
4800 {
4801 	struct nvme_completion_poll_status	*status;
4802 	int					res;
4803 
4804 	status = calloc(1, sizeof(*status));
4805 	if (!status) {
4806 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4807 		return -ENOMEM;
4808 	}
4809 
4810 	res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb,
4811 				    status);
4812 	if (res) {
4813 		free(status);
4814 		return res;
4815 	}
4816 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4817 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_format failed!\n");
4818 		if (!status->timed_out) {
4819 			free(status);
4820 		}
4821 		return -ENXIO;
4822 	}
4823 	free(status);
4824 
4825 	return spdk_nvme_ctrlr_reset(ctrlr);
4826 }
4827 
4828 int
4829 spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size,
4830 				int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status)
4831 {
4832 	struct spdk_nvme_fw_commit		fw_commit;
4833 	struct nvme_completion_poll_status	*status;
4834 	int					res;
4835 	unsigned int				size_remaining;
4836 	unsigned int				offset;
4837 	unsigned int				transfer;
4838 	uint8_t					*p;
4839 
4840 	if (!completion_status) {
4841 		return -EINVAL;
4842 	}
4843 	memset(completion_status, 0, sizeof(struct spdk_nvme_status));
4844 	if (size % 4) {
4845 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid size!\n");
4846 		return -1;
4847 	}
4848 
4849 	/* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG
4850 	 * and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG
4851 	 */
4852 	if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) &&
4853 	    (commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) {
4854 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid command!\n");
4855 		return -1;
4856 	}
4857 
4858 	status = calloc(1, sizeof(*status));
4859 	if (!status) {
4860 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4861 		return -ENOMEM;
4862 	}
4863 
4864 	/* Firmware download */
4865 	size_remaining = size;
4866 	offset = 0;
4867 	p = payload;
4868 
4869 	while (size_remaining > 0) {
4870 		transfer = spdk_min(size_remaining, ctrlr->min_page_size);
4871 
4872 		memset(status, 0, sizeof(*status));
4873 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p,
4874 						       nvme_completion_poll_cb,
4875 						       status);
4876 		if (res) {
4877 			free(status);
4878 			return res;
4879 		}
4880 
4881 		if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4882 			NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_fw_image_download failed!\n");
4883 			if (!status->timed_out) {
4884 				free(status);
4885 			}
4886 			return -ENXIO;
4887 		}
4888 		p += transfer;
4889 		offset += transfer;
4890 		size_remaining -= transfer;
4891 	}
4892 
4893 	/* Firmware commit */
4894 	memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
4895 	fw_commit.fs = slot;
4896 	fw_commit.ca = commit_action;
4897 
4898 	memset(status, 0, sizeof(*status));
4899 	res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb,
4900 				       status);
4901 	if (res) {
4902 		free(status);
4903 		return res;
4904 	}
4905 
4906 	res = nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock);
4907 
4908 	memcpy(completion_status, &status->cpl.status, sizeof(struct spdk_nvme_status));
4909 
4910 	if (!status->timed_out) {
4911 		free(status);
4912 	}
4913 
4914 	if (res) {
4915 		if (completion_status->sct != SPDK_NVME_SCT_COMMAND_SPECIFIC ||
4916 		    completion_status->sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) {
4917 			if (completion_status->sct == SPDK_NVME_SCT_COMMAND_SPECIFIC  &&
4918 			    completion_status->sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) {
4919 				NVME_CTRLR_NOTICELOG(ctrlr,
4920 						     "firmware activation requires conventional reset to be performed. !\n");
4921 			} else {
4922 				NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
4923 			}
4924 			return -ENXIO;
4925 		}
4926 	}
4927 
4928 	return spdk_nvme_ctrlr_reset(ctrlr);
4929 }
4930 
4931 int
4932 spdk_nvme_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
4933 {
4934 	int rc, size;
4935 	union spdk_nvme_cmbsz_register cmbsz;
4936 
4937 	cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr);
4938 
4939 	if (cmbsz.bits.rds == 0 || cmbsz.bits.wds == 0) {
4940 		return -ENOTSUP;
4941 	}
4942 
4943 	size = cmbsz.bits.sz * (0x1000 << (cmbsz.bits.szu * 4));
4944 
4945 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4946 	rc = nvme_transport_ctrlr_reserve_cmb(ctrlr);
4947 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4948 
4949 	if (rc < 0) {
4950 		return rc;
4951 	}
4952 
4953 	return size;
4954 }
4955 
4956 void *
4957 spdk_nvme_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
4958 {
4959 	void *buf;
4960 
4961 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4962 	buf = nvme_transport_ctrlr_map_cmb(ctrlr, size);
4963 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4964 
4965 	return buf;
4966 }
4967 
4968 void
4969 spdk_nvme_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr)
4970 {
4971 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4972 	nvme_transport_ctrlr_unmap_cmb(ctrlr);
4973 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4974 }
4975 
4976 int
4977 spdk_nvme_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr)
4978 {
4979 	int rc;
4980 
4981 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4982 	rc = nvme_transport_ctrlr_enable_pmr(ctrlr);
4983 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4984 
4985 	return rc;
4986 }
4987 
4988 int
4989 spdk_nvme_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr)
4990 {
4991 	int rc;
4992 
4993 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4994 	rc = nvme_transport_ctrlr_disable_pmr(ctrlr);
4995 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4996 
4997 	return rc;
4998 }
4999 
5000 void *
5001 spdk_nvme_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
5002 {
5003 	void *buf;
5004 
5005 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5006 	buf = nvme_transport_ctrlr_map_pmr(ctrlr, size);
5007 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5008 
5009 	return buf;
5010 }
5011 
5012 int
5013 spdk_nvme_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr)
5014 {
5015 	int rc;
5016 
5017 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5018 	rc = nvme_transport_ctrlr_unmap_pmr(ctrlr);
5019 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5020 
5021 	return rc;
5022 }
5023 
5024 int
5025 spdk_nvme_ctrlr_read_boot_partition_start(struct spdk_nvme_ctrlr *ctrlr, void *payload,
5026 		uint32_t bprsz, uint32_t bprof, uint32_t bpid)
5027 {
5028 	union spdk_nvme_bprsel_register bprsel;
5029 	union spdk_nvme_bpinfo_register bpinfo;
5030 	uint64_t bpmbl, bpmb_size;
5031 
5032 	if (ctrlr->cap.bits.bps == 0) {
5033 		return -ENOTSUP;
5034 	}
5035 
5036 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5037 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5038 		return -EIO;
5039 	}
5040 
5041 	if (bpinfo.bits.brs == SPDK_NVME_BRS_READ_IN_PROGRESS) {
5042 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read already initiated\n");
5043 		return -EALREADY;
5044 	}
5045 
5046 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5047 
5048 	bpmb_size = bprsz * 4096;
5049 	bpmbl = spdk_vtophys(payload, &bpmb_size);
5050 	if (bpmbl == SPDK_VTOPHYS_ERROR) {
5051 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_vtophys of bpmbl failed\n");
5052 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5053 		return -EFAULT;
5054 	}
5055 
5056 	if (bpmb_size != bprsz * 4096) {
5057 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition buffer is not physically contiguous\n");
5058 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5059 		return -EFAULT;
5060 	}
5061 
5062 	if (nvme_ctrlr_set_bpmbl(ctrlr, bpmbl)) {
5063 		NVME_CTRLR_ERRLOG(ctrlr, "set_bpmbl() failed\n");
5064 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5065 		return -EIO;
5066 	}
5067 
5068 	bprsel.bits.bpid = bpid;
5069 	bprsel.bits.bprof = bprof;
5070 	bprsel.bits.bprsz = bprsz;
5071 
5072 	if (nvme_ctrlr_set_bprsel(ctrlr, &bprsel)) {
5073 		NVME_CTRLR_ERRLOG(ctrlr, "set_bprsel() failed\n");
5074 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5075 		return -EIO;
5076 	}
5077 
5078 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5079 	return 0;
5080 }
5081 
5082 int
5083 spdk_nvme_ctrlr_read_boot_partition_poll(struct spdk_nvme_ctrlr *ctrlr)
5084 {
5085 	int rc = 0;
5086 	union spdk_nvme_bpinfo_register bpinfo;
5087 
5088 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5089 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5090 		return -EIO;
5091 	}
5092 
5093 	switch (bpinfo.bits.brs) {
5094 	case SPDK_NVME_BRS_NO_READ:
5095 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read not initiated\n");
5096 		rc = -EINVAL;
5097 		break;
5098 	case SPDK_NVME_BRS_READ_IN_PROGRESS:
5099 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition read in progress\n");
5100 		rc = -EAGAIN;
5101 		break;
5102 	case SPDK_NVME_BRS_READ_ERROR:
5103 		NVME_CTRLR_ERRLOG(ctrlr, "Error completing Boot Partition read\n");
5104 		rc = -EIO;
5105 		break;
5106 	case SPDK_NVME_BRS_READ_SUCCESS:
5107 		NVME_CTRLR_INFOLOG(ctrlr, "Boot Partition read completed successfully\n");
5108 		break;
5109 	default:
5110 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition read status\n");
5111 		rc = -EINVAL;
5112 	}
5113 
5114 	return rc;
5115 }
5116 
5117 static void
5118 nvme_write_boot_partition_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5119 {
5120 	int res;
5121 	struct spdk_nvme_ctrlr *ctrlr = arg;
5122 	struct spdk_nvme_fw_commit fw_commit;
5123 	struct spdk_nvme_cpl err_cpl =
5124 	{.status = {.sct = SPDK_NVME_SCT_GENERIC, .sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR }};
5125 
5126 	if (spdk_nvme_cpl_is_error(cpl)) {
5127 		NVME_CTRLR_ERRLOG(ctrlr, "Write Boot Partition failed\n");
5128 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5129 		return;
5130 	}
5131 
5132 	if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADING) {
5133 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Downloading at Offset %d Success\n", ctrlr->fw_offset);
5134 		ctrlr->fw_payload = (uint8_t *)ctrlr->fw_payload + ctrlr->fw_transfer_size;
5135 		ctrlr->fw_offset += ctrlr->fw_transfer_size;
5136 		ctrlr->fw_size_remaining -= ctrlr->fw_transfer_size;
5137 		ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5138 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5139 						       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5140 		if (res) {
5141 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_image_download failed!\n");
5142 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5143 			return;
5144 		}
5145 
5146 		if (ctrlr->fw_transfer_size < ctrlr->min_page_size) {
5147 			ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADED;
5148 		}
5149 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADED) {
5150 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Download Success\n");
5151 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5152 		fw_commit.bpid = ctrlr->bpid;
5153 		fw_commit.ca = SPDK_NVME_FW_COMMIT_REPLACE_BOOT_PARTITION;
5154 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5155 					       nvme_write_boot_partition_cb, ctrlr);
5156 		if (res) {
5157 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5158 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5159 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5160 			return;
5161 		}
5162 
5163 		ctrlr->bp_ws = SPDK_NVME_BP_WS_REPLACE;
5164 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_REPLACE) {
5165 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Replacement Success\n");
5166 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5167 		fw_commit.bpid = ctrlr->bpid;
5168 		fw_commit.ca = SPDK_NVME_FW_COMMIT_ACTIVATE_BOOT_PARTITION;
5169 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5170 					       nvme_write_boot_partition_cb, ctrlr);
5171 		if (res) {
5172 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5173 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5174 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5175 			return;
5176 		}
5177 
5178 		ctrlr->bp_ws = SPDK_NVME_BP_WS_ACTIVATE;
5179 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_ACTIVATE) {
5180 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Activation Success\n");
5181 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5182 	} else {
5183 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition write state\n");
5184 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5185 		return;
5186 	}
5187 }
5188 
5189 int
5190 spdk_nvme_ctrlr_write_boot_partition(struct spdk_nvme_ctrlr *ctrlr,
5191 				     void *payload, uint32_t size, uint32_t bpid,
5192 				     spdk_nvme_cmd_cb cb_fn, void *cb_arg)
5193 {
5194 	int res;
5195 
5196 	if (ctrlr->cap.bits.bps == 0) {
5197 		return -ENOTSUP;
5198 	}
5199 
5200 	ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADING;
5201 	ctrlr->bpid = bpid;
5202 	ctrlr->bp_write_cb_fn = cb_fn;
5203 	ctrlr->bp_write_cb_arg = cb_arg;
5204 	ctrlr->fw_offset = 0;
5205 	ctrlr->fw_size_remaining = size;
5206 	ctrlr->fw_payload = payload;
5207 	ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5208 
5209 	res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5210 					       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5211 
5212 	return res;
5213 }
5214 
5215 bool
5216 spdk_nvme_ctrlr_is_discovery(struct spdk_nvme_ctrlr *ctrlr)
5217 {
5218 	assert(ctrlr);
5219 
5220 	return !strncmp(ctrlr->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN,
5221 			strlen(SPDK_NVMF_DISCOVERY_NQN));
5222 }
5223 
5224 bool
5225 spdk_nvme_ctrlr_is_fabrics(struct spdk_nvme_ctrlr *ctrlr)
5226 {
5227 	assert(ctrlr);
5228 
5229 	return spdk_nvme_trtype_is_fabrics(ctrlr->trid.trtype);
5230 }
5231 
5232 int
5233 spdk_nvme_ctrlr_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5234 				 uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5235 {
5236 	struct nvme_completion_poll_status	*status;
5237 	int					res;
5238 
5239 	status = calloc(1, sizeof(*status));
5240 	if (!status) {
5241 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5242 		return -ENOMEM;
5243 	}
5244 
5245 	res = spdk_nvme_ctrlr_cmd_security_receive(ctrlr, secp, spsp, nssf, payload, size,
5246 			nvme_completion_poll_cb, status);
5247 	if (res) {
5248 		free(status);
5249 		return res;
5250 	}
5251 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5252 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_receive failed!\n");
5253 		if (!status->timed_out) {
5254 			free(status);
5255 		}
5256 		return -ENXIO;
5257 	}
5258 	free(status);
5259 
5260 	return 0;
5261 }
5262 
5263 int
5264 spdk_nvme_ctrlr_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5265 			      uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5266 {
5267 	struct nvme_completion_poll_status	*status;
5268 	int					res;
5269 
5270 	status = calloc(1, sizeof(*status));
5271 	if (!status) {
5272 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5273 		return -ENOMEM;
5274 	}
5275 
5276 	res = spdk_nvme_ctrlr_cmd_security_send(ctrlr, secp, spsp, nssf, payload, size,
5277 						nvme_completion_poll_cb,
5278 						status);
5279 	if (res) {
5280 		free(status);
5281 		return res;
5282 	}
5283 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5284 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_send failed!\n");
5285 		if (!status->timed_out) {
5286 			free(status);
5287 		}
5288 		return -ENXIO;
5289 	}
5290 
5291 	free(status);
5292 
5293 	return 0;
5294 }
5295 
5296 uint64_t
5297 spdk_nvme_ctrlr_get_flags(struct spdk_nvme_ctrlr *ctrlr)
5298 {
5299 	return ctrlr->flags;
5300 }
5301 
5302 const struct spdk_nvme_transport_id *
5303 spdk_nvme_ctrlr_get_transport_id(struct spdk_nvme_ctrlr *ctrlr)
5304 {
5305 	return &ctrlr->trid;
5306 }
5307 
5308 int32_t
5309 spdk_nvme_ctrlr_alloc_qid(struct spdk_nvme_ctrlr *ctrlr)
5310 {
5311 	uint32_t qid;
5312 
5313 	assert(ctrlr->free_io_qids);
5314 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5315 	qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1);
5316 	if (qid > ctrlr->opts.num_io_queues) {
5317 		NVME_CTRLR_ERRLOG(ctrlr, "No free I/O queue IDs\n");
5318 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5319 		return -1;
5320 	}
5321 
5322 	spdk_bit_array_clear(ctrlr->free_io_qids, qid);
5323 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5324 	return qid;
5325 }
5326 
5327 void
5328 spdk_nvme_ctrlr_free_qid(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid)
5329 {
5330 	assert(qid <= ctrlr->opts.num_io_queues);
5331 
5332 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5333 
5334 	if (spdk_likely(ctrlr->free_io_qids)) {
5335 		spdk_bit_array_set(ctrlr->free_io_qids, qid);
5336 	}
5337 
5338 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5339 }
5340 
5341 int
5342 spdk_nvme_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
5343 				   struct spdk_memory_domain **domains, int array_size)
5344 {
5345 	return nvme_transport_ctrlr_get_memory_domains(ctrlr, domains, array_size);
5346 }
5347