xref: /spdk/lib/nvme/nvme_ctrlr.c (revision ad2dc6c532f1cbddd79d3915b74d28e0a3f99b71)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2015 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "nvme_internal.h"
10 #include "nvme_io_msg.h"
11 
12 #include "spdk/env.h"
13 #include "spdk/string.h"
14 #include "spdk/endian.h"
15 
16 struct nvme_active_ns_ctx;
17 
18 static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
19 		struct nvme_async_event_request *aer);
20 static void nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx);
21 static int nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns);
22 static int nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns);
23 static int nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns);
24 static void nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr);
25 static void nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
26 				 uint64_t timeout_in_ms);
27 
28 static int
29 nvme_ns_cmp(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
30 {
31 	if (ns1->id < ns2->id) {
32 		return -1;
33 	} else if (ns1->id > ns2->id) {
34 		return 1;
35 	} else {
36 		return 0;
37 	}
38 }
39 
40 RB_GENERATE_STATIC(nvme_ns_tree, spdk_nvme_ns, node, nvme_ns_cmp);
41 
42 #define CTRLR_STRING(ctrlr) \
43 	((ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP || ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA) ? \
44 	ctrlr->trid.subnqn : ctrlr->trid.traddr)
45 
46 #define NVME_CTRLR_ERRLOG(ctrlr, format, ...) \
47 	SPDK_ERRLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
48 
49 #define NVME_CTRLR_WARNLOG(ctrlr, format, ...) \
50 	SPDK_WARNLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
51 
52 #define NVME_CTRLR_NOTICELOG(ctrlr, format, ...) \
53 	SPDK_NOTICELOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
54 
55 #define NVME_CTRLR_INFOLOG(ctrlr, format, ...) \
56 	SPDK_INFOLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
57 
58 #ifdef DEBUG
59 #define NVME_CTRLR_DEBUGLOG(ctrlr, format, ...) \
60 	SPDK_DEBUGLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
61 #else
62 #define NVME_CTRLR_DEBUGLOG(ctrlr, ...) do { } while (0)
63 #endif
64 
65 #define nvme_ctrlr_get_reg_async(ctrlr, reg, sz, cb_fn, cb_arg) \
66 	nvme_transport_ctrlr_get_reg_ ## sz ## _async(ctrlr, \
67 		offsetof(struct spdk_nvme_registers, reg), cb_fn, cb_arg)
68 
69 #define nvme_ctrlr_set_reg_async(ctrlr, reg, sz, val, cb_fn, cb_arg) \
70 	nvme_transport_ctrlr_set_reg_ ## sz ## _async(ctrlr, \
71 		offsetof(struct spdk_nvme_registers, reg), val, cb_fn, cb_arg)
72 
73 #define nvme_ctrlr_get_cc_async(ctrlr, cb_fn, cb_arg) \
74 	nvme_ctrlr_get_reg_async(ctrlr, cc, 4, cb_fn, cb_arg)
75 
76 #define nvme_ctrlr_get_csts_async(ctrlr, cb_fn, cb_arg) \
77 	nvme_ctrlr_get_reg_async(ctrlr, csts, 4, cb_fn, cb_arg)
78 
79 #define nvme_ctrlr_get_cap_async(ctrlr, cb_fn, cb_arg) \
80 	nvme_ctrlr_get_reg_async(ctrlr, cap, 8, cb_fn, cb_arg)
81 
82 #define nvme_ctrlr_get_vs_async(ctrlr, cb_fn, cb_arg) \
83 	nvme_ctrlr_get_reg_async(ctrlr, vs, 4, cb_fn, cb_arg)
84 
85 #define nvme_ctrlr_set_cc_async(ctrlr, value, cb_fn, cb_arg) \
86 	nvme_ctrlr_set_reg_async(ctrlr, cc, 4, value, cb_fn, cb_arg)
87 
88 static int
89 nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc)
90 {
91 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
92 					      &cc->raw);
93 }
94 
95 static int
96 nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts)
97 {
98 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw),
99 					      &csts->raw);
100 }
101 
102 int
103 nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
104 {
105 	return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw),
106 					      &cap->raw);
107 }
108 
109 int
110 nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
111 {
112 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw),
113 					      &vs->raw);
114 }
115 
116 int
117 nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz)
118 {
119 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
120 					      &cmbsz->raw);
121 }
122 
123 int
124 nvme_ctrlr_get_pmrcap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_pmrcap_register *pmrcap)
125 {
126 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, pmrcap.raw),
127 					      &pmrcap->raw);
128 }
129 
130 int
131 nvme_ctrlr_get_bpinfo(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bpinfo_register *bpinfo)
132 {
133 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bpinfo.raw),
134 					      &bpinfo->raw);
135 }
136 
137 int
138 nvme_ctrlr_set_bprsel(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bprsel_register *bprsel)
139 {
140 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bprsel.raw),
141 					      bprsel->raw);
142 }
143 
144 int
145 nvme_ctrlr_set_bpmbl(struct spdk_nvme_ctrlr *ctrlr, uint64_t bpmbl_value)
146 {
147 	return nvme_transport_ctrlr_set_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, bpmbl),
148 					      bpmbl_value);
149 }
150 
151 static int
152 nvme_ctrlr_set_nssr(struct spdk_nvme_ctrlr *ctrlr, uint32_t nssr_value)
153 {
154 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, nssr),
155 					      nssr_value);
156 }
157 
158 bool
159 nvme_ctrlr_multi_iocs_enabled(struct spdk_nvme_ctrlr *ctrlr)
160 {
161 	return ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS &&
162 	       ctrlr->opts.command_set == SPDK_NVME_CC_CSS_IOCS;
163 }
164 
165 /* When the field in spdk_nvme_ctrlr_opts are changed and you change this function, please
166  * also update the nvme_ctrl_opts_init function in nvme_ctrlr.c
167  */
168 void
169 spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
170 {
171 	char host_id_str[SPDK_UUID_STRING_LEN];
172 
173 	assert(opts);
174 
175 	opts->opts_size = opts_size;
176 
177 #define FIELD_OK(field) \
178 	offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size
179 
180 #define SET_FIELD(field, value) \
181 	if (offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size) { \
182 		opts->field = value; \
183 	} \
184 
185 	SET_FIELD(num_io_queues, DEFAULT_MAX_IO_QUEUES);
186 	SET_FIELD(use_cmb_sqs, false);
187 	SET_FIELD(no_shn_notification, false);
188 	SET_FIELD(arb_mechanism, SPDK_NVME_CC_AMS_RR);
189 	SET_FIELD(arbitration_burst, 0);
190 	SET_FIELD(low_priority_weight, 0);
191 	SET_FIELD(medium_priority_weight, 0);
192 	SET_FIELD(high_priority_weight, 0);
193 	SET_FIELD(keep_alive_timeout_ms, MIN_KEEP_ALIVE_TIMEOUT_IN_MS);
194 	SET_FIELD(transport_retry_count, SPDK_NVME_DEFAULT_RETRY_COUNT);
195 	SET_FIELD(io_queue_size, DEFAULT_IO_QUEUE_SIZE);
196 
197 	if (nvme_driver_init() == 0) {
198 		if (FIELD_OK(hostnqn)) {
199 			spdk_uuid_fmt_lower(host_id_str, sizeof(host_id_str),
200 					    &g_spdk_nvme_driver->default_extended_host_id);
201 			snprintf(opts->hostnqn, sizeof(opts->hostnqn),
202 				 "nqn.2014-08.org.nvmexpress:uuid:%s", host_id_str);
203 		}
204 
205 		if (FIELD_OK(extended_host_id)) {
206 			memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id,
207 			       sizeof(opts->extended_host_id));
208 		}
209 
210 	}
211 
212 	SET_FIELD(io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS);
213 
214 	if (FIELD_OK(src_addr)) {
215 		memset(opts->src_addr, 0, sizeof(opts->src_addr));
216 	}
217 
218 	if (FIELD_OK(src_svcid)) {
219 		memset(opts->src_svcid, 0, sizeof(opts->src_svcid));
220 	}
221 
222 	if (FIELD_OK(host_id)) {
223 		memset(opts->host_id, 0, sizeof(opts->host_id));
224 	}
225 
226 	SET_FIELD(command_set, CHAR_BIT);
227 	SET_FIELD(admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000);
228 	SET_FIELD(header_digest, false);
229 	SET_FIELD(data_digest, false);
230 	SET_FIELD(disable_error_logging, false);
231 	SET_FIELD(transport_ack_timeout, SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT);
232 	SET_FIELD(admin_queue_size, DEFAULT_ADMIN_QUEUE_SIZE);
233 	SET_FIELD(fabrics_connect_timeout_us, NVME_FABRIC_CONNECT_COMMAND_TIMEOUT);
234 	SET_FIELD(disable_read_ana_log_page, false);
235 	SET_FIELD(disable_read_changed_ns_list_log_page, false);
236 
237 	if (FIELD_OK(psk)) {
238 		memset(opts->psk, 0, sizeof(opts->psk));
239 	}
240 
241 #undef FIELD_OK
242 #undef SET_FIELD
243 }
244 
245 const struct spdk_nvme_ctrlr_opts *
246 spdk_nvme_ctrlr_get_opts(struct spdk_nvme_ctrlr *ctrlr)
247 {
248 	return &ctrlr->opts;
249 }
250 
251 /**
252  * This function will be called when the process allocates the IO qpair.
253  * Note: the ctrlr_lock must be held when calling this function.
254  */
255 static void
256 nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair)
257 {
258 	struct spdk_nvme_ctrlr_process	*active_proc;
259 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
260 
261 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
262 	if (active_proc) {
263 		TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq);
264 		qpair->active_proc = active_proc;
265 	}
266 }
267 
268 /**
269  * This function will be called when the process frees the IO qpair.
270  * Note: the ctrlr_lock must be held when calling this function.
271  */
272 static void
273 nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair)
274 {
275 	struct spdk_nvme_ctrlr_process	*active_proc;
276 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
277 	struct spdk_nvme_qpair          *active_qpair, *tmp_qpair;
278 
279 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
280 	if (!active_proc) {
281 		return;
282 	}
283 
284 	TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs,
285 			   per_process_tailq, tmp_qpair) {
286 		if (active_qpair == qpair) {
287 			TAILQ_REMOVE(&active_proc->allocated_io_qpairs,
288 				     active_qpair, per_process_tailq);
289 
290 			break;
291 		}
292 	}
293 }
294 
295 void
296 spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr,
297 		struct spdk_nvme_io_qpair_opts *opts,
298 		size_t opts_size)
299 {
300 	assert(ctrlr);
301 
302 	assert(opts);
303 
304 	memset(opts, 0, opts_size);
305 
306 #define FIELD_OK(field) \
307 	offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size
308 
309 	if (FIELD_OK(qprio)) {
310 		opts->qprio = SPDK_NVME_QPRIO_URGENT;
311 	}
312 
313 	if (FIELD_OK(io_queue_size)) {
314 		opts->io_queue_size = ctrlr->opts.io_queue_size;
315 	}
316 
317 	if (FIELD_OK(io_queue_requests)) {
318 		opts->io_queue_requests = ctrlr->opts.io_queue_requests;
319 	}
320 
321 	if (FIELD_OK(delay_cmd_submit)) {
322 		opts->delay_cmd_submit = false;
323 	}
324 
325 	if (FIELD_OK(sq.vaddr)) {
326 		opts->sq.vaddr = NULL;
327 	}
328 
329 	if (FIELD_OK(sq.paddr)) {
330 		opts->sq.paddr = 0;
331 	}
332 
333 	if (FIELD_OK(sq.buffer_size)) {
334 		opts->sq.buffer_size = 0;
335 	}
336 
337 	if (FIELD_OK(cq.vaddr)) {
338 		opts->cq.vaddr = NULL;
339 	}
340 
341 	if (FIELD_OK(cq.paddr)) {
342 		opts->cq.paddr = 0;
343 	}
344 
345 	if (FIELD_OK(cq.buffer_size)) {
346 		opts->cq.buffer_size = 0;
347 	}
348 
349 	if (FIELD_OK(create_only)) {
350 		opts->create_only = false;
351 	}
352 
353 	if (FIELD_OK(async_mode)) {
354 		opts->async_mode = false;
355 	}
356 
357 #undef FIELD_OK
358 }
359 
360 static struct spdk_nvme_qpair *
361 nvme_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
362 			   const struct spdk_nvme_io_qpair_opts *opts)
363 {
364 	int32_t					qid;
365 	struct spdk_nvme_qpair			*qpair;
366 	union spdk_nvme_cc_register		cc;
367 
368 	if (!ctrlr) {
369 		return NULL;
370 	}
371 
372 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
373 	cc.raw = ctrlr->process_init_cc.raw;
374 
375 	if (opts->qprio & ~SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK) {
376 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
377 		return NULL;
378 	}
379 
380 	/*
381 	 * Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the
382 	 * default round robin arbitration method.
383 	 */
384 	if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts->qprio != SPDK_NVME_QPRIO_URGENT)) {
385 		NVME_CTRLR_ERRLOG(ctrlr, "invalid queue priority for default round robin arbitration method\n");
386 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
387 		return NULL;
388 	}
389 
390 	qid = spdk_nvme_ctrlr_alloc_qid(ctrlr);
391 	if (qid < 0) {
392 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
393 		return NULL;
394 	}
395 
396 	qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, opts);
397 	if (qpair == NULL) {
398 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_create_io_qpair() failed\n");
399 		spdk_nvme_ctrlr_free_qid(ctrlr, qid);
400 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
401 		return NULL;
402 	}
403 
404 	TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq);
405 
406 	nvme_ctrlr_proc_add_io_qpair(qpair);
407 
408 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
409 
410 	return qpair;
411 }
412 
413 int
414 spdk_nvme_ctrlr_connect_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
415 {
416 	int rc;
417 
418 	if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) {
419 		return -EISCONN;
420 	}
421 
422 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
423 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
424 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
425 
426 	if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) {
427 		spdk_delay_us(100);
428 	}
429 
430 	return rc;
431 }
432 
433 void
434 spdk_nvme_ctrlr_disconnect_io_qpair(struct spdk_nvme_qpair *qpair)
435 {
436 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
437 
438 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
439 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
440 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
441 }
442 
443 struct spdk_nvme_qpair *
444 spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
445 			       const struct spdk_nvme_io_qpair_opts *user_opts,
446 			       size_t opts_size)
447 {
448 
449 	struct spdk_nvme_qpair		*qpair = NULL;
450 	struct spdk_nvme_io_qpair_opts	opts;
451 	int				rc;
452 
453 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
454 
455 	if (spdk_unlikely(ctrlr->state != NVME_CTRLR_STATE_READY)) {
456 		/* When controller is resetting or initializing, free_io_qids is deleted or not created yet.
457 		 * We can't create IO qpair in that case */
458 		goto unlock;
459 	}
460 
461 	/*
462 	 * Get the default options, then overwrite them with the user-provided options
463 	 * up to opts_size.
464 	 *
465 	 * This allows for extensions of the opts structure without breaking
466 	 * ABI compatibility.
467 	 */
468 	spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
469 	if (user_opts) {
470 		memcpy(&opts, user_opts, spdk_min(sizeof(opts), opts_size));
471 
472 		/* If user passes buffers, make sure they're big enough for the requested queue size */
473 		if (opts.sq.vaddr) {
474 			if (opts.sq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))) {
475 				NVME_CTRLR_ERRLOG(ctrlr, "sq buffer size %" PRIx64 " is too small for sq size %zx\n",
476 						  opts.sq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cmd)));
477 				goto unlock;
478 			}
479 		}
480 		if (opts.cq.vaddr) {
481 			if (opts.cq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))) {
482 				NVME_CTRLR_ERRLOG(ctrlr, "cq buffer size %" PRIx64 " is too small for cq size %zx\n",
483 						  opts.cq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cpl)));
484 				goto unlock;
485 			}
486 		}
487 	}
488 
489 	qpair = nvme_ctrlr_create_io_qpair(ctrlr, &opts);
490 
491 	if (qpair == NULL || opts.create_only == true) {
492 		goto unlock;
493 	}
494 
495 	rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair);
496 	if (rc != 0) {
497 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_connect_io_qpair() failed\n");
498 		nvme_ctrlr_proc_remove_io_qpair(qpair);
499 		TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
500 		spdk_bit_array_set(ctrlr->free_io_qids, qpair->id);
501 		nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
502 		qpair = NULL;
503 		goto unlock;
504 	}
505 
506 unlock:
507 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
508 
509 	return qpair;
510 }
511 
512 int
513 spdk_nvme_ctrlr_reconnect_io_qpair(struct spdk_nvme_qpair *qpair)
514 {
515 	struct spdk_nvme_ctrlr *ctrlr;
516 	enum nvme_qpair_state qpair_state;
517 	int rc;
518 
519 	assert(qpair != NULL);
520 	assert(nvme_qpair_is_admin_queue(qpair) == false);
521 	assert(qpair->ctrlr != NULL);
522 
523 	ctrlr = qpair->ctrlr;
524 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
525 	qpair_state = nvme_qpair_get_state(qpair);
526 
527 	if (ctrlr->is_removed) {
528 		rc = -ENODEV;
529 		goto out;
530 	}
531 
532 	if (ctrlr->is_resetting || qpair_state == NVME_QPAIR_DISCONNECTING) {
533 		rc = -EAGAIN;
534 		goto out;
535 	}
536 
537 	if (ctrlr->is_failed || qpair_state == NVME_QPAIR_DESTROYING) {
538 		rc = -ENXIO;
539 		goto out;
540 	}
541 
542 	if (qpair_state != NVME_QPAIR_DISCONNECTED) {
543 		rc = 0;
544 		goto out;
545 	}
546 
547 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
548 	if (rc) {
549 		rc = -EAGAIN;
550 		goto out;
551 	}
552 
553 out:
554 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
555 	return rc;
556 }
557 
558 spdk_nvme_qp_failure_reason
559 spdk_nvme_ctrlr_get_admin_qp_failure_reason(struct spdk_nvme_ctrlr *ctrlr)
560 {
561 	return ctrlr->adminq->transport_failure_reason;
562 }
563 
564 /*
565  * This internal function will attempt to take the controller
566  * lock before calling disconnect on a controller qpair.
567  * Functions already holding the controller lock should
568  * call nvme_transport_ctrlr_disconnect_qpair directly.
569  */
570 void
571 nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair)
572 {
573 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
574 
575 	assert(ctrlr != NULL);
576 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
577 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
578 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
579 }
580 
581 int
582 spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair)
583 {
584 	struct spdk_nvme_ctrlr *ctrlr;
585 
586 	if (qpair == NULL) {
587 		return 0;
588 	}
589 
590 	ctrlr = qpair->ctrlr;
591 
592 	if (qpair->in_completion_context) {
593 		/*
594 		 * There are many cases where it is convenient to delete an io qpair in the context
595 		 *  of that qpair's completion routine.  To handle this properly, set a flag here
596 		 *  so that the completion routine will perform an actual delete after the context
597 		 *  unwinds.
598 		 */
599 		qpair->delete_after_completion_context = 1;
600 		return 0;
601 	}
602 
603 	qpair->destroy_in_progress = 1;
604 
605 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
606 
607 	if (qpair->poll_group && (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr))) {
608 		spdk_nvme_poll_group_remove(qpair->poll_group->group, qpair);
609 	}
610 
611 	/* Do not retry. */
612 	nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
613 
614 	/* In the multi-process case, a process may call this function on a foreign
615 	 * I/O qpair (i.e. one that this process did not create) when that qpairs process
616 	 * exits unexpectedly.  In that case, we must not try to abort any reqs associated
617 	 * with that qpair, since the callbacks will also be foreign to this process.
618 	 */
619 	if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) {
620 		nvme_qpair_abort_all_queued_reqs(qpair);
621 	}
622 
623 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
624 
625 	nvme_ctrlr_proc_remove_io_qpair(qpair);
626 
627 	TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
628 	spdk_nvme_ctrlr_free_qid(ctrlr, qpair->id);
629 
630 	nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
631 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
632 	return 0;
633 }
634 
635 static void
636 nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr,
637 		struct spdk_nvme_intel_log_page_directory *log_page_directory)
638 {
639 	if (log_page_directory == NULL) {
640 		return;
641 	}
642 
643 	assert(ctrlr->cdata.vid == SPDK_PCI_VID_INTEL);
644 
645 	ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
646 
647 	if (log_page_directory->read_latency_log_len ||
648 	    (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) {
649 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
650 	}
651 	if (log_page_directory->write_latency_log_len ||
652 	    (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) {
653 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
654 	}
655 	if (log_page_directory->temperature_statistics_log_len) {
656 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true;
657 	}
658 	if (log_page_directory->smart_log_len) {
659 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true;
660 	}
661 	if (log_page_directory->marketing_description_log_len) {
662 		ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true;
663 	}
664 }
665 
666 struct intel_log_pages_ctx {
667 	struct spdk_nvme_intel_log_page_directory log_page_directory;
668 	struct spdk_nvme_ctrlr *ctrlr;
669 };
670 
671 static void
672 nvme_ctrlr_set_intel_support_log_pages_done(void *arg, const struct spdk_nvme_cpl *cpl)
673 {
674 	struct intel_log_pages_ctx *ctx = arg;
675 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
676 
677 	if (!spdk_nvme_cpl_is_error(cpl)) {
678 		nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, &ctx->log_page_directory);
679 	}
680 
681 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
682 			     ctrlr->opts.admin_timeout_ms);
683 	free(ctx);
684 }
685 
686 static int
687 nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr)
688 {
689 	int rc = 0;
690 	struct intel_log_pages_ctx *ctx;
691 
692 	ctx = calloc(1, sizeof(*ctx));
693 	if (!ctx) {
694 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
695 				     ctrlr->opts.admin_timeout_ms);
696 		return 0;
697 	}
698 
699 	ctx->ctrlr = ctrlr;
700 
701 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY,
702 					      SPDK_NVME_GLOBAL_NS_TAG, &ctx->log_page_directory,
703 					      sizeof(struct spdk_nvme_intel_log_page_directory),
704 					      0, nvme_ctrlr_set_intel_support_log_pages_done, ctx);
705 	if (rc != 0) {
706 		free(ctx);
707 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
708 				     ctrlr->opts.admin_timeout_ms);
709 		return 0;
710 	}
711 
712 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES,
713 			     ctrlr->opts.admin_timeout_ms);
714 
715 	return 0;
716 }
717 
718 static int
719 nvme_ctrlr_alloc_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
720 {
721 	uint32_t ana_log_page_size;
722 
723 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + ctrlr->cdata.nanagrpid *
724 			    sizeof(struct spdk_nvme_ana_group_descriptor) + ctrlr->active_ns_count *
725 			    sizeof(uint32_t);
726 
727 	/* Number of active namespaces may have changed.
728 	 * Check if ANA log page fits into existing buffer.
729 	 */
730 	if (ana_log_page_size > ctrlr->ana_log_page_size) {
731 		void *new_buffer;
732 
733 		if (ctrlr->ana_log_page) {
734 			new_buffer = realloc(ctrlr->ana_log_page, ana_log_page_size);
735 		} else {
736 			new_buffer = calloc(1, ana_log_page_size);
737 		}
738 
739 		if (!new_buffer) {
740 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate ANA log page buffer, size %u\n",
741 					  ana_log_page_size);
742 			return -ENXIO;
743 		}
744 
745 		ctrlr->ana_log_page = new_buffer;
746 		if (ctrlr->copied_ana_desc) {
747 			new_buffer = realloc(ctrlr->copied_ana_desc, ana_log_page_size);
748 		} else {
749 			new_buffer = calloc(1, ana_log_page_size);
750 		}
751 
752 		if (!new_buffer) {
753 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate a buffer to parse ANA descriptor, size %u\n",
754 					  ana_log_page_size);
755 			return -ENOMEM;
756 		}
757 
758 		ctrlr->copied_ana_desc = new_buffer;
759 		ctrlr->ana_log_page_size = ana_log_page_size;
760 	}
761 
762 	return 0;
763 }
764 
765 static int
766 nvme_ctrlr_update_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
767 {
768 	struct nvme_completion_poll_status *status;
769 	int rc;
770 
771 	rc = nvme_ctrlr_alloc_ana_log_page(ctrlr);
772 	if (rc != 0) {
773 		return rc;
774 	}
775 
776 	status = calloc(1, sizeof(*status));
777 	if (status == NULL) {
778 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
779 		return -ENOMEM;
780 	}
781 
782 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
783 					      SPDK_NVME_GLOBAL_NS_TAG, ctrlr->ana_log_page,
784 					      ctrlr->ana_log_page_size, 0,
785 					      nvme_completion_poll_cb, status);
786 	if (rc != 0) {
787 		free(status);
788 		return rc;
789 	}
790 
791 	if (nvme_wait_for_completion_robust_lock_timeout(ctrlr->adminq, status, &ctrlr->ctrlr_lock,
792 			ctrlr->opts.admin_timeout_ms * 1000)) {
793 		if (!status->timed_out) {
794 			free(status);
795 		}
796 		return -EIO;
797 	}
798 
799 	free(status);
800 	return 0;
801 }
802 
803 static int
804 nvme_ctrlr_update_ns_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
805 				void *cb_arg)
806 {
807 	struct spdk_nvme_ctrlr *ctrlr = cb_arg;
808 	struct spdk_nvme_ns *ns;
809 	uint32_t i, nsid;
810 
811 	for (i = 0; i < desc->num_of_nsid; i++) {
812 		nsid = desc->nsid[i];
813 		if (nsid == 0 || nsid > ctrlr->cdata.nn) {
814 			continue;
815 		}
816 
817 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
818 		assert(ns != NULL);
819 
820 		ns->ana_group_id = desc->ana_group_id;
821 		ns->ana_state = desc->ana_state;
822 	}
823 
824 	return 0;
825 }
826 
827 int
828 nvme_ctrlr_parse_ana_log_page(struct spdk_nvme_ctrlr *ctrlr,
829 			      spdk_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
830 {
831 	struct spdk_nvme_ana_group_descriptor *copied_desc;
832 	uint8_t *orig_desc;
833 	uint32_t i, desc_size, copy_len;
834 	int rc = 0;
835 
836 	if (ctrlr->ana_log_page == NULL) {
837 		return -EINVAL;
838 	}
839 
840 	copied_desc = ctrlr->copied_ana_desc;
841 
842 	orig_desc = (uint8_t *)ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
843 	copy_len = ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
844 
845 	for (i = 0; i < ctrlr->ana_log_page->num_ana_group_desc; i++) {
846 		memcpy(copied_desc, orig_desc, copy_len);
847 
848 		rc = cb_fn(copied_desc, cb_arg);
849 		if (rc != 0) {
850 			break;
851 		}
852 
853 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
854 			    copied_desc->num_of_nsid * sizeof(uint32_t);
855 		orig_desc += desc_size;
856 		copy_len -= desc_size;
857 	}
858 
859 	return rc;
860 }
861 
862 static int
863 nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr)
864 {
865 	int	rc = 0;
866 
867 	memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
868 	/* Mandatory pages */
869 	ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true;
870 	ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true;
871 	ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true;
872 	if (ctrlr->cdata.lpa.celp) {
873 		ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true;
874 	}
875 
876 	if (ctrlr->cdata.cmic.ana_reporting) {
877 		ctrlr->log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] = true;
878 		if (!ctrlr->opts.disable_read_ana_log_page) {
879 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
880 			if (rc == 0) {
881 				nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
882 							      ctrlr);
883 			}
884 		}
885 	}
886 
887 	if (ctrlr->cdata.ctratt.fdps) {
888 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_CONFIGURATIONS] = true;
889 		ctrlr->log_page_supported[SPDK_NVME_LOG_RECLAIM_UNIT_HANDLE_USAGE] = true;
890 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_STATISTICS] = true;
891 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_EVENTS] = true;
892 	}
893 
894 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL &&
895 	    ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE &&
896 	    !(ctrlr->quirks & NVME_INTEL_QUIRK_NO_LOG_PAGES)) {
897 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES,
898 				     ctrlr->opts.admin_timeout_ms);
899 
900 	} else {
901 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
902 				     ctrlr->opts.admin_timeout_ms);
903 
904 	}
905 
906 	return rc;
907 }
908 
909 static void
910 nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr)
911 {
912 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true;
913 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
914 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
915 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
916 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true;
917 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
918 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
919 }
920 
921 static void
922 nvme_ctrlr_set_arbitration_feature(struct spdk_nvme_ctrlr *ctrlr)
923 {
924 	uint32_t cdw11;
925 	struct nvme_completion_poll_status *status;
926 
927 	if (ctrlr->opts.arbitration_burst == 0) {
928 		return;
929 	}
930 
931 	if (ctrlr->opts.arbitration_burst > 7) {
932 		NVME_CTRLR_WARNLOG(ctrlr, "Valid arbitration burst values is from 0-7\n");
933 		return;
934 	}
935 
936 	status = calloc(1, sizeof(*status));
937 	if (!status) {
938 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
939 		return;
940 	}
941 
942 	cdw11 = ctrlr->opts.arbitration_burst;
943 
944 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_WRR_SUPPORTED) {
945 		cdw11 |= (uint32_t)ctrlr->opts.low_priority_weight << 8;
946 		cdw11 |= (uint32_t)ctrlr->opts.medium_priority_weight << 16;
947 		cdw11 |= (uint32_t)ctrlr->opts.high_priority_weight << 24;
948 	}
949 
950 	if (spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION,
951 					    cdw11, 0, NULL, 0,
952 					    nvme_completion_poll_cb, status) < 0) {
953 		NVME_CTRLR_ERRLOG(ctrlr, "Set arbitration feature failed\n");
954 		free(status);
955 		return;
956 	}
957 
958 	if (nvme_wait_for_completion_timeout(ctrlr->adminq, status,
959 					     ctrlr->opts.admin_timeout_ms * 1000)) {
960 		NVME_CTRLR_ERRLOG(ctrlr, "Timeout to set arbitration feature\n");
961 	}
962 
963 	if (!status->timed_out) {
964 		free(status);
965 	}
966 }
967 
968 static void
969 nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr)
970 {
971 	memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
972 	/* Mandatory features */
973 	ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true;
974 	ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true;
975 	ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
976 	ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true;
977 	ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true;
978 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true;
979 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
980 	ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true;
981 	ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
982 	/* Optional features */
983 	if (ctrlr->cdata.vwc.present) {
984 		ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
985 	}
986 	if (ctrlr->cdata.apsta.supported) {
987 		ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
988 	}
989 	if (ctrlr->cdata.hmpre) {
990 		ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true;
991 	}
992 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
993 		nvme_ctrlr_set_intel_supported_features(ctrlr);
994 	}
995 
996 	nvme_ctrlr_set_arbitration_feature(ctrlr);
997 }
998 
999 bool
1000 spdk_nvme_ctrlr_is_failed(struct spdk_nvme_ctrlr *ctrlr)
1001 {
1002 	return ctrlr->is_failed;
1003 }
1004 
1005 void
1006 nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
1007 {
1008 	/*
1009 	 * Set the flag here and leave the work failure of qpairs to
1010 	 * spdk_nvme_qpair_process_completions().
1011 	 */
1012 	if (hot_remove) {
1013 		ctrlr->is_removed = true;
1014 	}
1015 
1016 	if (ctrlr->is_failed) {
1017 		NVME_CTRLR_NOTICELOG(ctrlr, "already in failed state\n");
1018 		return;
1019 	}
1020 
1021 	if (ctrlr->is_disconnecting) {
1022 		NVME_CTRLR_DEBUGLOG(ctrlr, "already disconnecting\n");
1023 		return;
1024 	}
1025 
1026 	ctrlr->is_failed = true;
1027 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1028 	NVME_CTRLR_ERRLOG(ctrlr, "in failed state.\n");
1029 }
1030 
1031 /**
1032  * This public API function will try to take the controller lock.
1033  * Any private functions being called from a thread already holding
1034  * the ctrlr lock should call nvme_ctrlr_fail directly.
1035  */
1036 void
1037 spdk_nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr)
1038 {
1039 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1040 	nvme_ctrlr_fail(ctrlr, false);
1041 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1042 }
1043 
1044 static void
1045 nvme_ctrlr_shutdown_set_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1046 {
1047 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1048 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1049 
1050 	if (spdk_nvme_cpl_is_error(cpl)) {
1051 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1052 		ctx->shutdown_complete = true;
1053 		return;
1054 	}
1055 
1056 	if (ctrlr->opts.no_shn_notification) {
1057 		ctx->shutdown_complete = true;
1058 		return;
1059 	}
1060 
1061 	/*
1062 	 * The NVMe specification defines RTD3E to be the time between
1063 	 *  setting SHN = 1 until the controller will set SHST = 10b.
1064 	 * If the device doesn't report RTD3 entry latency, or if it
1065 	 *  reports RTD3 entry latency less than 10 seconds, pick
1066 	 *  10 seconds as a reasonable amount of time to
1067 	 *  wait before proceeding.
1068 	 */
1069 	NVME_CTRLR_DEBUGLOG(ctrlr, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e);
1070 	ctx->shutdown_timeout_ms = SPDK_CEIL_DIV(ctrlr->cdata.rtd3e, 1000);
1071 	ctx->shutdown_timeout_ms = spdk_max(ctx->shutdown_timeout_ms, 10000);
1072 	NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown timeout = %" PRIu32 " ms\n", ctx->shutdown_timeout_ms);
1073 
1074 	ctx->shutdown_start_tsc = spdk_get_ticks();
1075 	ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1076 }
1077 
1078 static void
1079 nvme_ctrlr_shutdown_get_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1080 {
1081 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1082 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1083 	union spdk_nvme_cc_register cc;
1084 	int rc;
1085 
1086 	if (spdk_nvme_cpl_is_error(cpl)) {
1087 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1088 		ctx->shutdown_complete = true;
1089 		return;
1090 	}
1091 
1092 	assert(value <= UINT32_MAX);
1093 	cc.raw = (uint32_t)value;
1094 
1095 	if (ctrlr->opts.no_shn_notification) {
1096 		NVME_CTRLR_INFOLOG(ctrlr, "Disable SSD without shutdown notification\n");
1097 		if (cc.bits.en == 0) {
1098 			ctx->shutdown_complete = true;
1099 			return;
1100 		}
1101 
1102 		cc.bits.en = 0;
1103 	} else {
1104 		cc.bits.shn = SPDK_NVME_SHN_NORMAL;
1105 	}
1106 
1107 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_shutdown_set_cc_done, ctx);
1108 	if (rc != 0) {
1109 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1110 		ctx->shutdown_complete = true;
1111 	}
1112 }
1113 
1114 static void
1115 nvme_ctrlr_shutdown_async(struct spdk_nvme_ctrlr *ctrlr,
1116 			  struct nvme_ctrlr_detach_ctx *ctx)
1117 {
1118 	int rc;
1119 
1120 	if (ctrlr->is_removed) {
1121 		ctx->shutdown_complete = true;
1122 		return;
1123 	}
1124 
1125 	if (ctrlr->adminq == NULL ||
1126 	    ctrlr->adminq->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE) {
1127 		NVME_CTRLR_INFOLOG(ctrlr, "Adminq is not connected.\n");
1128 		ctx->shutdown_complete = true;
1129 		return;
1130 	}
1131 
1132 	ctx->state = NVME_CTRLR_DETACH_SET_CC;
1133 	rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_shutdown_get_cc_done, ctx);
1134 	if (rc != 0) {
1135 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1136 		ctx->shutdown_complete = true;
1137 	}
1138 }
1139 
1140 static void
1141 nvme_ctrlr_shutdown_get_csts_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1142 {
1143 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1144 
1145 	if (spdk_nvme_cpl_is_error(cpl)) {
1146 		NVME_CTRLR_ERRLOG(ctx->ctrlr, "Failed to read the CSTS register\n");
1147 		ctx->shutdown_complete = true;
1148 		return;
1149 	}
1150 
1151 	assert(value <= UINT32_MAX);
1152 	ctx->csts.raw = (uint32_t)value;
1153 	ctx->state = NVME_CTRLR_DETACH_GET_CSTS_DONE;
1154 }
1155 
1156 static int
1157 nvme_ctrlr_shutdown_poll_async(struct spdk_nvme_ctrlr *ctrlr,
1158 			       struct nvme_ctrlr_detach_ctx *ctx)
1159 {
1160 	union spdk_nvme_csts_register	csts;
1161 	uint32_t			ms_waited;
1162 
1163 	switch (ctx->state) {
1164 	case NVME_CTRLR_DETACH_SET_CC:
1165 	case NVME_CTRLR_DETACH_GET_CSTS:
1166 		/* We're still waiting for the register operation to complete */
1167 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
1168 		return -EAGAIN;
1169 
1170 	case NVME_CTRLR_DETACH_CHECK_CSTS:
1171 		ctx->state = NVME_CTRLR_DETACH_GET_CSTS;
1172 		if (nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_shutdown_get_csts_done, ctx)) {
1173 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
1174 			return -EIO;
1175 		}
1176 		return -EAGAIN;
1177 
1178 	case NVME_CTRLR_DETACH_GET_CSTS_DONE:
1179 		ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1180 		break;
1181 
1182 	default:
1183 		assert(0 && "Should never happen");
1184 		return -EINVAL;
1185 	}
1186 
1187 	ms_waited = (spdk_get_ticks() - ctx->shutdown_start_tsc) * 1000 / spdk_get_ticks_hz();
1188 	csts.raw = ctx->csts.raw;
1189 
1190 	if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
1191 		NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown complete in %u milliseconds\n", ms_waited);
1192 		return 0;
1193 	}
1194 
1195 	if (ms_waited < ctx->shutdown_timeout_ms) {
1196 		return -EAGAIN;
1197 	}
1198 
1199 	NVME_CTRLR_ERRLOG(ctrlr, "did not shutdown within %u milliseconds\n",
1200 			  ctx->shutdown_timeout_ms);
1201 	if (ctrlr->quirks & NVME_QUIRK_SHST_COMPLETE) {
1202 		NVME_CTRLR_ERRLOG(ctrlr, "likely due to shutdown handling in the VMWare emulated NVMe SSD\n");
1203 	}
1204 
1205 	return 0;
1206 }
1207 
1208 static inline uint64_t
1209 nvme_ctrlr_get_ready_timeout(struct spdk_nvme_ctrlr *ctrlr)
1210 {
1211 	return ctrlr->cap.bits.to * 500;
1212 }
1213 
1214 static void
1215 nvme_ctrlr_set_cc_en_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1216 {
1217 	struct spdk_nvme_ctrlr *ctrlr = ctx;
1218 
1219 	if (spdk_nvme_cpl_is_error(cpl)) {
1220 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to set the CC register\n");
1221 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1222 		return;
1223 	}
1224 
1225 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
1226 			     nvme_ctrlr_get_ready_timeout(ctrlr));
1227 }
1228 
1229 static int
1230 nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
1231 {
1232 	union spdk_nvme_cc_register	cc;
1233 	int				rc;
1234 
1235 	rc = nvme_transport_ctrlr_enable(ctrlr);
1236 	if (rc != 0) {
1237 		NVME_CTRLR_ERRLOG(ctrlr, "transport ctrlr_enable failed\n");
1238 		return rc;
1239 	}
1240 
1241 	cc.raw = ctrlr->process_init_cc.raw;
1242 	if (cc.bits.en != 0) {
1243 		NVME_CTRLR_ERRLOG(ctrlr, "called with CC.EN = 1\n");
1244 		return -EINVAL;
1245 	}
1246 
1247 	cc.bits.en = 1;
1248 	cc.bits.css = 0;
1249 	cc.bits.shn = 0;
1250 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
1251 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
1252 
1253 	/* Page size is 2 ^ (12 + mps). */
1254 	cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12;
1255 
1256 	/*
1257 	 * Since NVMe 1.0, a controller should have at least one bit set in CAP.CSS.
1258 	 * A controller that does not have any bit set in CAP.CSS is not spec compliant.
1259 	 * Try to support such a controller regardless.
1260 	 */
1261 	if (ctrlr->cap.bits.css == 0) {
1262 		NVME_CTRLR_INFOLOG(ctrlr, "Drive reports no command sets supported. Assuming NVM is supported.\n");
1263 		ctrlr->cap.bits.css = SPDK_NVME_CAP_CSS_NVM;
1264 	}
1265 
1266 	/*
1267 	 * If the user did not explicitly request a command set, or supplied a value larger than
1268 	 * what can be saved in CC.CSS, use the most reasonable default.
1269 	 */
1270 	if (ctrlr->opts.command_set >= CHAR_BIT) {
1271 		if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS) {
1272 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_IOCS;
1273 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NVM) {
1274 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1275 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NOIO) {
1276 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NOIO;
1277 		} else {
1278 			/* Invalid supported bits detected, falling back to NVM. */
1279 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1280 		}
1281 	}
1282 
1283 	/* Verify that the selected command set is supported by the controller. */
1284 	if (!(ctrlr->cap.bits.css & (1u << ctrlr->opts.command_set))) {
1285 		NVME_CTRLR_DEBUGLOG(ctrlr, "Requested I/O command set %u but supported mask is 0x%x\n",
1286 				    ctrlr->opts.command_set, ctrlr->cap.bits.css);
1287 		NVME_CTRLR_DEBUGLOG(ctrlr, "Falling back to NVM. Assuming NVM is supported.\n");
1288 		ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1289 	}
1290 
1291 	cc.bits.css = ctrlr->opts.command_set;
1292 
1293 	switch (ctrlr->opts.arb_mechanism) {
1294 	case SPDK_NVME_CC_AMS_RR:
1295 		break;
1296 	case SPDK_NVME_CC_AMS_WRR:
1297 		if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) {
1298 			break;
1299 		}
1300 		return -EINVAL;
1301 	case SPDK_NVME_CC_AMS_VS:
1302 		if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) {
1303 			break;
1304 		}
1305 		return -EINVAL;
1306 	default:
1307 		return -EINVAL;
1308 	}
1309 
1310 	cc.bits.ams = ctrlr->opts.arb_mechanism;
1311 	ctrlr->process_init_cc.raw = cc.raw;
1312 
1313 	if (nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_set_cc_en_done, ctrlr)) {
1314 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
1315 		return -EIO;
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 static const char *
1322 nvme_ctrlr_state_string(enum nvme_ctrlr_state state)
1323 {
1324 	switch (state) {
1325 	case NVME_CTRLR_STATE_INIT_DELAY:
1326 		return "delay init";
1327 	case NVME_CTRLR_STATE_CONNECT_ADMINQ:
1328 		return "connect adminq";
1329 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
1330 		return "wait for connect adminq";
1331 	case NVME_CTRLR_STATE_READ_VS:
1332 		return "read vs";
1333 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
1334 		return "read vs wait for vs";
1335 	case NVME_CTRLR_STATE_READ_CAP:
1336 		return "read cap";
1337 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
1338 		return "read cap wait for cap";
1339 	case NVME_CTRLR_STATE_CHECK_EN:
1340 		return "check en";
1341 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
1342 		return "check en wait for cc";
1343 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
1344 		return "disable and wait for CSTS.RDY = 1";
1345 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1346 		return "disable and wait for CSTS.RDY = 1 reg";
1347 	case NVME_CTRLR_STATE_SET_EN_0:
1348 		return "set CC.EN = 0";
1349 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
1350 		return "set CC.EN = 0 wait for cc";
1351 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
1352 		return "disable and wait for CSTS.RDY = 0";
1353 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
1354 		return "disable and wait for CSTS.RDY = 0 reg";
1355 	case NVME_CTRLR_STATE_DISABLED:
1356 		return "controller is disabled";
1357 	case NVME_CTRLR_STATE_ENABLE:
1358 		return "enable controller by writing CC.EN = 1";
1359 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
1360 		return "enable controller by writing CC.EN = 1 reg";
1361 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
1362 		return "wait for CSTS.RDY = 1";
1363 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1364 		return "wait for CSTS.RDY = 1 reg";
1365 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
1366 		return "reset admin queue";
1367 	case NVME_CTRLR_STATE_IDENTIFY:
1368 		return "identify controller";
1369 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
1370 		return "wait for identify controller";
1371 	case NVME_CTRLR_STATE_CONFIGURE_AER:
1372 		return "configure AER";
1373 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
1374 		return "wait for configure aer";
1375 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
1376 		return "set keep alive timeout";
1377 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
1378 		return "wait for set keep alive timeout";
1379 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
1380 		return "identify controller iocs specific";
1381 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
1382 		return "wait for identify controller iocs specific";
1383 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
1384 		return "get zns cmd and effects log page";
1385 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
1386 		return "wait for get zns cmd and effects log page";
1387 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
1388 		return "set number of queues";
1389 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
1390 		return "wait for set number of queues";
1391 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
1392 		return "identify active ns";
1393 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
1394 		return "wait for identify active ns";
1395 	case NVME_CTRLR_STATE_IDENTIFY_NS:
1396 		return "identify ns";
1397 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
1398 		return "wait for identify ns";
1399 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
1400 		return "identify namespace id descriptors";
1401 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
1402 		return "wait for identify namespace id descriptors";
1403 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
1404 		return "identify ns iocs specific";
1405 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
1406 		return "wait for identify ns iocs specific";
1407 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
1408 		return "set supported log pages";
1409 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
1410 		return "set supported INTEL log pages";
1411 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
1412 		return "wait for supported INTEL log pages";
1413 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
1414 		return "set supported features";
1415 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
1416 		return "set doorbell buffer config";
1417 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
1418 		return "wait for doorbell buffer config";
1419 	case NVME_CTRLR_STATE_SET_HOST_ID:
1420 		return "set host ID";
1421 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
1422 		return "wait for set host ID";
1423 	case NVME_CTRLR_STATE_TRANSPORT_READY:
1424 		return "transport ready";
1425 	case NVME_CTRLR_STATE_READY:
1426 		return "ready";
1427 	case NVME_CTRLR_STATE_ERROR:
1428 		return "error";
1429 	case NVME_CTRLR_STATE_DISCONNECTED:
1430 		return "disconnected";
1431 	}
1432 	return "unknown";
1433 };
1434 
1435 static void
1436 _nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1437 		      uint64_t timeout_in_ms, bool quiet)
1438 {
1439 	uint64_t ticks_per_ms, timeout_in_ticks, now_ticks;
1440 
1441 	ctrlr->state = state;
1442 	if (timeout_in_ms == NVME_TIMEOUT_KEEP_EXISTING) {
1443 		if (!quiet) {
1444 			NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (keeping existing timeout)\n",
1445 					    nvme_ctrlr_state_string(ctrlr->state));
1446 		}
1447 		return;
1448 	}
1449 
1450 	if (timeout_in_ms == NVME_TIMEOUT_INFINITE) {
1451 		goto inf;
1452 	}
1453 
1454 	ticks_per_ms = spdk_get_ticks_hz() / 1000;
1455 	if (timeout_in_ms > UINT64_MAX / ticks_per_ms) {
1456 		NVME_CTRLR_ERRLOG(ctrlr,
1457 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1458 		goto inf;
1459 	}
1460 
1461 	now_ticks = spdk_get_ticks();
1462 	timeout_in_ticks = timeout_in_ms * ticks_per_ms;
1463 	if (timeout_in_ticks > UINT64_MAX - now_ticks) {
1464 		NVME_CTRLR_ERRLOG(ctrlr,
1465 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1466 		goto inf;
1467 	}
1468 
1469 	ctrlr->state_timeout_tsc = timeout_in_ticks + now_ticks;
1470 	if (!quiet) {
1471 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (timeout %" PRIu64 " ms)\n",
1472 				    nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms);
1473 	}
1474 	return;
1475 inf:
1476 	if (!quiet) {
1477 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (no timeout)\n",
1478 				    nvme_ctrlr_state_string(ctrlr->state));
1479 	}
1480 	ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE;
1481 }
1482 
1483 static void
1484 nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1485 		     uint64_t timeout_in_ms)
1486 {
1487 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, false);
1488 }
1489 
1490 static void
1491 nvme_ctrlr_set_state_quiet(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1492 			   uint64_t timeout_in_ms)
1493 {
1494 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, true);
1495 }
1496 
1497 static void
1498 nvme_ctrlr_free_zns_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1499 {
1500 	spdk_free(ctrlr->cdata_zns);
1501 	ctrlr->cdata_zns = NULL;
1502 }
1503 
1504 static void
1505 nvme_ctrlr_free_iocs_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1506 {
1507 	nvme_ctrlr_free_zns_specific_data(ctrlr);
1508 }
1509 
1510 static void
1511 nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr)
1512 {
1513 	if (ctrlr->shadow_doorbell) {
1514 		spdk_free(ctrlr->shadow_doorbell);
1515 		ctrlr->shadow_doorbell = NULL;
1516 	}
1517 
1518 	if (ctrlr->eventidx) {
1519 		spdk_free(ctrlr->eventidx);
1520 		ctrlr->eventidx = NULL;
1521 	}
1522 }
1523 
1524 static void
1525 nvme_ctrlr_set_doorbell_buffer_config_done(void *arg, const struct spdk_nvme_cpl *cpl)
1526 {
1527 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1528 
1529 	if (spdk_nvme_cpl_is_error(cpl)) {
1530 		NVME_CTRLR_WARNLOG(ctrlr, "Doorbell buffer config failed\n");
1531 	} else {
1532 		NVME_CTRLR_INFOLOG(ctrlr, "Doorbell buffer config enabled\n");
1533 	}
1534 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1535 			     ctrlr->opts.admin_timeout_ms);
1536 }
1537 
1538 static int
1539 nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr)
1540 {
1541 	int rc = 0;
1542 	uint64_t prp1, prp2, len;
1543 
1544 	if (!ctrlr->cdata.oacs.doorbell_buffer_config) {
1545 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1546 				     ctrlr->opts.admin_timeout_ms);
1547 		return 0;
1548 	}
1549 
1550 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
1551 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1552 				     ctrlr->opts.admin_timeout_ms);
1553 		return 0;
1554 	}
1555 
1556 	/* only 1 page size for doorbell buffer */
1557 	ctrlr->shadow_doorbell = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1558 					      NULL, SPDK_ENV_LCORE_ID_ANY,
1559 					      SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1560 	if (ctrlr->shadow_doorbell == NULL) {
1561 		rc = -ENOMEM;
1562 		goto error;
1563 	}
1564 
1565 	len = ctrlr->page_size;
1566 	prp1 = spdk_vtophys(ctrlr->shadow_doorbell, &len);
1567 	if (prp1 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1568 		rc = -EFAULT;
1569 		goto error;
1570 	}
1571 
1572 	ctrlr->eventidx = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1573 				       NULL, SPDK_ENV_LCORE_ID_ANY,
1574 				       SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1575 	if (ctrlr->eventidx == NULL) {
1576 		rc = -ENOMEM;
1577 		goto error;
1578 	}
1579 
1580 	len = ctrlr->page_size;
1581 	prp2 = spdk_vtophys(ctrlr->eventidx, &len);
1582 	if (prp2 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1583 		rc = -EFAULT;
1584 		goto error;
1585 	}
1586 
1587 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG,
1588 			     ctrlr->opts.admin_timeout_ms);
1589 
1590 	rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2,
1591 			nvme_ctrlr_set_doorbell_buffer_config_done, ctrlr);
1592 	if (rc != 0) {
1593 		goto error;
1594 	}
1595 
1596 	return 0;
1597 
1598 error:
1599 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1600 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1601 	return rc;
1602 }
1603 
1604 void
1605 nvme_ctrlr_abort_queued_aborts(struct spdk_nvme_ctrlr *ctrlr)
1606 {
1607 	struct nvme_request	*req, *tmp;
1608 	struct spdk_nvme_cpl	cpl = {};
1609 
1610 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
1611 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
1612 
1613 	STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) {
1614 		STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq);
1615 		ctrlr->outstanding_aborts++;
1616 
1617 		nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, &cpl);
1618 		nvme_free_request(req);
1619 	}
1620 }
1621 
1622 static int
1623 nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1624 {
1625 	if (ctrlr->is_resetting || ctrlr->is_removed) {
1626 		/*
1627 		 * Controller is already resetting or has been removed. Return
1628 		 *  immediately since there is no need to kick off another
1629 		 *  reset in these cases.
1630 		 */
1631 		return ctrlr->is_resetting ? -EBUSY : -ENXIO;
1632 	}
1633 
1634 	ctrlr->is_resetting = true;
1635 	ctrlr->is_failed = false;
1636 	ctrlr->is_disconnecting = true;
1637 	ctrlr->prepare_for_reset = true;
1638 
1639 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting controller\n");
1640 
1641 	/* Disable keep-alive, it'll be re-enabled as part of the init process */
1642 	ctrlr->keep_alive_interval_ticks = 0;
1643 
1644 	/* Abort all of the queued abort requests */
1645 	nvme_ctrlr_abort_queued_aborts(ctrlr);
1646 
1647 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
1648 
1649 	ctrlr->adminq->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1650 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1651 
1652 	return 0;
1653 }
1654 
1655 static void
1656 nvme_ctrlr_disconnect_done(struct spdk_nvme_ctrlr *ctrlr)
1657 {
1658 	assert(ctrlr->is_failed == false);
1659 	ctrlr->is_disconnecting = false;
1660 
1661 	/* Doorbell buffer config is invalid during reset */
1662 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1663 
1664 	/* I/O Command Set Specific Identify Controller data is invalidated during reset */
1665 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
1666 
1667 	spdk_bit_array_free(&ctrlr->free_io_qids);
1668 
1669 	/* Set the state back to DISCONNECTED to cause a full hardware reset. */
1670 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISCONNECTED, NVME_TIMEOUT_INFINITE);
1671 }
1672 
1673 int
1674 spdk_nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1675 {
1676 	int rc;
1677 
1678 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1679 	rc = nvme_ctrlr_disconnect(ctrlr);
1680 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1681 
1682 	return rc;
1683 }
1684 
1685 void
1686 spdk_nvme_ctrlr_reconnect_async(struct spdk_nvme_ctrlr *ctrlr)
1687 {
1688 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1689 
1690 	ctrlr->prepare_for_reset = false;
1691 
1692 	/* Set the state back to INIT to cause a full hardware reset. */
1693 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
1694 
1695 	/* Return without releasing ctrlr_lock. ctrlr_lock will be released when
1696 	 * spdk_nvme_ctrlr_reset_poll_async() returns 0.
1697 	 */
1698 }
1699 
1700 /**
1701  * This function will be called when the controller is being reinitialized.
1702  * Note: the ctrlr_lock must be held when calling this function.
1703  */
1704 int
1705 spdk_nvme_ctrlr_reconnect_poll_async(struct spdk_nvme_ctrlr *ctrlr)
1706 {
1707 	struct spdk_nvme_ns *ns, *tmp_ns;
1708 	struct spdk_nvme_qpair	*qpair;
1709 	int rc = 0, rc_tmp = 0;
1710 	bool async;
1711 
1712 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1713 		NVME_CTRLR_ERRLOG(ctrlr, "controller reinitialization failed\n");
1714 		rc = -1;
1715 	}
1716 	if (ctrlr->state != NVME_CTRLR_STATE_READY && rc != -1) {
1717 		return -EAGAIN;
1718 	}
1719 
1720 	/*
1721 	 * For non-fabrics controllers, the memory locations of the transport qpair
1722 	 * don't change when the controller is reset. They simply need to be
1723 	 * re-enabled with admin commands to the controller. For fabric
1724 	 * controllers we need to disconnect and reconnect the qpair on its
1725 	 * own thread outside of the context of the reset.
1726 	 */
1727 	if (rc == 0 && !spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
1728 		/* Reinitialize qpairs */
1729 		TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1730 			assert(spdk_bit_array_get(ctrlr->free_io_qids, qpair->id));
1731 			spdk_bit_array_clear(ctrlr->free_io_qids, qpair->id);
1732 
1733 			/* Force a synchronous connect. We can't currently handle an asynchronous
1734 			 * operation here. */
1735 			async = qpair->async;
1736 			qpair->async = false;
1737 			rc_tmp = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
1738 			qpair->async = async;
1739 
1740 			if (rc_tmp != 0) {
1741 				rc = rc_tmp;
1742 				qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1743 				continue;
1744 			}
1745 		}
1746 	}
1747 
1748 	/*
1749 	 * Take this opportunity to remove inactive namespaces. During a reset namespace
1750 	 * handles can be invalidated.
1751 	 */
1752 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
1753 		if (!ns->active) {
1754 			RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
1755 			spdk_free(ns);
1756 		}
1757 	}
1758 
1759 	if (rc) {
1760 		nvme_ctrlr_fail(ctrlr, false);
1761 	}
1762 	ctrlr->is_resetting = false;
1763 
1764 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1765 
1766 	if (!ctrlr->cdata.oaes.ns_attribute_notices) {
1767 		/*
1768 		 * If controller doesn't support ns_attribute_notices and
1769 		 * namespace attributes change (e.g. number of namespaces)
1770 		 * we need to update system handling device reset.
1771 		 */
1772 		nvme_io_msg_ctrlr_update(ctrlr);
1773 	}
1774 
1775 	return rc;
1776 }
1777 
1778 /*
1779  * For PCIe transport, spdk_nvme_ctrlr_disconnect() will do a Controller Level Reset
1780  * (Change CC.EN from 1 to 0) as a operation to disconnect the admin qpair.
1781  * The following two functions are added to do a Controller Level Reset. They have
1782  * to be called under the nvme controller's lock.
1783  */
1784 void
1785 nvme_ctrlr_disable(struct spdk_nvme_ctrlr *ctrlr)
1786 {
1787 	assert(ctrlr->is_disconnecting == true);
1788 
1789 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
1790 }
1791 
1792 int
1793 nvme_ctrlr_disable_poll(struct spdk_nvme_ctrlr *ctrlr)
1794 {
1795 	int rc = 0;
1796 
1797 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1798 		NVME_CTRLR_ERRLOG(ctrlr, "failed to disable controller\n");
1799 		rc = -1;
1800 	}
1801 
1802 	if (ctrlr->state != NVME_CTRLR_STATE_DISABLED && rc != -1) {
1803 		return -EAGAIN;
1804 	}
1805 
1806 	return rc;
1807 }
1808 
1809 static void
1810 nvme_ctrlr_fail_io_qpairs(struct spdk_nvme_ctrlr *ctrlr)
1811 {
1812 	struct spdk_nvme_qpair	*qpair;
1813 
1814 	TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1815 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1816 	}
1817 }
1818 
1819 int
1820 spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr)
1821 {
1822 	int rc;
1823 
1824 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1825 
1826 	rc = nvme_ctrlr_disconnect(ctrlr);
1827 	if (rc == 0) {
1828 		nvme_ctrlr_fail_io_qpairs(ctrlr);
1829 	}
1830 
1831 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1832 
1833 	if (rc != 0) {
1834 		if (rc == -EBUSY) {
1835 			rc = 0;
1836 		}
1837 		return rc;
1838 	}
1839 
1840 	while (1) {
1841 		rc = spdk_nvme_ctrlr_process_admin_completions(ctrlr);
1842 		if (rc == -ENXIO) {
1843 			break;
1844 		}
1845 	}
1846 
1847 	spdk_nvme_ctrlr_reconnect_async(ctrlr);
1848 
1849 	while (true) {
1850 		rc = spdk_nvme_ctrlr_reconnect_poll_async(ctrlr);
1851 		if (rc != -EAGAIN) {
1852 			break;
1853 		}
1854 	}
1855 
1856 	return rc;
1857 }
1858 
1859 int
1860 spdk_nvme_ctrlr_reset_subsystem(struct spdk_nvme_ctrlr *ctrlr)
1861 {
1862 	union spdk_nvme_cap_register cap;
1863 	int rc = 0;
1864 
1865 	cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr);
1866 	if (cap.bits.nssrs == 0) {
1867 		NVME_CTRLR_WARNLOG(ctrlr, "subsystem reset is not supported\n");
1868 		return -ENOTSUP;
1869 	}
1870 
1871 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting subsystem\n");
1872 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1873 	ctrlr->is_resetting = true;
1874 	rc = nvme_ctrlr_set_nssr(ctrlr, SPDK_NVME_NSSR_VALUE);
1875 	ctrlr->is_resetting = false;
1876 
1877 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1878 	/*
1879 	 * No more cleanup at this point like in the ctrlr reset. A subsystem reset will cause
1880 	 * a hot remove for PCIe transport. The hot remove handling does all the necessary ctrlr cleanup.
1881 	 */
1882 	return rc;
1883 }
1884 
1885 int
1886 spdk_nvme_ctrlr_set_trid(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_transport_id *trid)
1887 {
1888 	int rc = 0;
1889 
1890 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1891 
1892 	if (ctrlr->is_failed == false) {
1893 		rc = -EPERM;
1894 		goto out;
1895 	}
1896 
1897 	if (trid->trtype != ctrlr->trid.trtype) {
1898 		rc = -EINVAL;
1899 		goto out;
1900 	}
1901 
1902 	if (strncmp(trid->subnqn, ctrlr->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
1903 		rc = -EINVAL;
1904 		goto out;
1905 	}
1906 
1907 	ctrlr->trid = *trid;
1908 
1909 out:
1910 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1911 	return rc;
1912 }
1913 
1914 void
1915 spdk_nvme_ctrlr_set_remove_cb(struct spdk_nvme_ctrlr *ctrlr,
1916 			      spdk_nvme_remove_cb remove_cb, void *remove_ctx)
1917 {
1918 	if (!spdk_process_is_primary()) {
1919 		return;
1920 	}
1921 
1922 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1923 	ctrlr->remove_cb = remove_cb;
1924 	ctrlr->cb_ctx = remove_ctx;
1925 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1926 }
1927 
1928 static void
1929 nvme_ctrlr_identify_done(void *arg, const struct spdk_nvme_cpl *cpl)
1930 {
1931 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1932 
1933 	if (spdk_nvme_cpl_is_error(cpl)) {
1934 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_identify_controller failed!\n");
1935 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1936 		return;
1937 	}
1938 
1939 	/*
1940 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
1941 	 *  controller supports.
1942 	 */
1943 	ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr);
1944 	NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_xfer_size %u\n", ctrlr->max_xfer_size);
1945 	if (ctrlr->cdata.mdts > 0) {
1946 		ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size,
1947 						ctrlr->min_page_size * (1 << ctrlr->cdata.mdts));
1948 		NVME_CTRLR_DEBUGLOG(ctrlr, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size);
1949 	}
1950 
1951 	NVME_CTRLR_DEBUGLOG(ctrlr, "CNTLID 0x%04" PRIx16 "\n", ctrlr->cdata.cntlid);
1952 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
1953 		ctrlr->cntlid = ctrlr->cdata.cntlid;
1954 	} else {
1955 		/*
1956 		 * Fabrics controllers should already have CNTLID from the Connect command.
1957 		 *
1958 		 * If CNTLID from Connect doesn't match CNTLID in the Identify Controller data,
1959 		 * trust the one from Connect.
1960 		 */
1961 		if (ctrlr->cntlid != ctrlr->cdata.cntlid) {
1962 			NVME_CTRLR_DEBUGLOG(ctrlr, "Identify CNTLID 0x%04" PRIx16 " != Connect CNTLID 0x%04" PRIx16 "\n",
1963 					    ctrlr->cdata.cntlid, ctrlr->cntlid);
1964 		}
1965 	}
1966 
1967 	if (ctrlr->cdata.sgls.supported && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
1968 		assert(ctrlr->cdata.sgls.supported != 0x3);
1969 		ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
1970 		if (ctrlr->cdata.sgls.supported == 0x2) {
1971 			ctrlr->flags |= SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT;
1972 		}
1973 
1974 		ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr);
1975 		NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_sges %u\n", ctrlr->max_sges);
1976 	}
1977 
1978 	if (ctrlr->cdata.sgls.metadata_address && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
1979 		ctrlr->flags |= SPDK_NVME_CTRLR_MPTR_SGL_SUPPORTED;
1980 	}
1981 
1982 	if (ctrlr->cdata.oacs.security && !(ctrlr->quirks & NVME_QUIRK_OACS_SECURITY)) {
1983 		ctrlr->flags |= SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED;
1984 	}
1985 
1986 	if (ctrlr->cdata.oacs.directives) {
1987 		ctrlr->flags |= SPDK_NVME_CTRLR_DIRECTIVES_SUPPORTED;
1988 	}
1989 
1990 	NVME_CTRLR_DEBUGLOG(ctrlr, "fuses compare and write: %d\n",
1991 			    ctrlr->cdata.fuses.compare_and_write);
1992 	if (ctrlr->cdata.fuses.compare_and_write) {
1993 		ctrlr->flags |= SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED;
1994 	}
1995 
1996 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
1997 			     ctrlr->opts.admin_timeout_ms);
1998 }
1999 
2000 static int
2001 nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr)
2002 {
2003 	int	rc;
2004 
2005 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY,
2006 			     ctrlr->opts.admin_timeout_ms);
2007 
2008 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, 0,
2009 				     &ctrlr->cdata, sizeof(ctrlr->cdata),
2010 				     nvme_ctrlr_identify_done, ctrlr);
2011 	if (rc != 0) {
2012 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2013 		return rc;
2014 	}
2015 
2016 	return 0;
2017 }
2018 
2019 static void
2020 nvme_ctrlr_get_zns_cmd_and_effects_log_done(void *arg, const struct spdk_nvme_cpl *cpl)
2021 {
2022 	struct spdk_nvme_cmds_and_effect_log_page *log_page;
2023 	struct spdk_nvme_ctrlr *ctrlr = arg;
2024 
2025 	if (spdk_nvme_cpl_is_error(cpl)) {
2026 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_get_zns_cmd_and_effects_log failed!\n");
2027 		spdk_free(ctrlr->tmp_ptr);
2028 		ctrlr->tmp_ptr = NULL;
2029 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2030 		return;
2031 	}
2032 
2033 	log_page = ctrlr->tmp_ptr;
2034 
2035 	if (log_page->io_cmds_supported[SPDK_NVME_OPC_ZONE_APPEND].csupp) {
2036 		ctrlr->flags |= SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2037 	}
2038 	spdk_free(ctrlr->tmp_ptr);
2039 	ctrlr->tmp_ptr = NULL;
2040 
2041 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES, ctrlr->opts.admin_timeout_ms);
2042 }
2043 
2044 static int
2045 nvme_ctrlr_get_zns_cmd_and_effects_log(struct spdk_nvme_ctrlr *ctrlr)
2046 {
2047 	int rc;
2048 
2049 	assert(!ctrlr->tmp_ptr);
2050 	ctrlr->tmp_ptr = spdk_zmalloc(sizeof(struct spdk_nvme_cmds_and_effect_log_page), 64, NULL,
2051 				      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2052 	if (!ctrlr->tmp_ptr) {
2053 		rc = -ENOMEM;
2054 		goto error;
2055 	}
2056 
2057 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG,
2058 			     ctrlr->opts.admin_timeout_ms);
2059 
2060 	rc = spdk_nvme_ctrlr_cmd_get_log_page_ext(ctrlr, SPDK_NVME_LOG_COMMAND_EFFECTS_LOG,
2061 			0, ctrlr->tmp_ptr, sizeof(struct spdk_nvme_cmds_and_effect_log_page),
2062 			0, 0, 0, SPDK_NVME_CSI_ZNS << 24,
2063 			nvme_ctrlr_get_zns_cmd_and_effects_log_done, ctrlr);
2064 	if (rc != 0) {
2065 		goto error;
2066 	}
2067 
2068 	return 0;
2069 
2070 error:
2071 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2072 	spdk_free(ctrlr->tmp_ptr);
2073 	ctrlr->tmp_ptr = NULL;
2074 	return rc;
2075 }
2076 
2077 static void
2078 nvme_ctrlr_identify_zns_specific_done(void *arg, const struct spdk_nvme_cpl *cpl)
2079 {
2080 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2081 
2082 	if (spdk_nvme_cpl_is_error(cpl)) {
2083 		/* no need to print an error, the controller simply does not support ZNS */
2084 		nvme_ctrlr_free_zns_specific_data(ctrlr);
2085 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2086 				     ctrlr->opts.admin_timeout_ms);
2087 		return;
2088 	}
2089 
2090 	/* A zero zasl value means use mdts */
2091 	if (ctrlr->cdata_zns->zasl) {
2092 		uint32_t max_append = ctrlr->min_page_size * (1 << ctrlr->cdata_zns->zasl);
2093 		ctrlr->max_zone_append_size = spdk_min(ctrlr->max_xfer_size, max_append);
2094 	} else {
2095 		ctrlr->max_zone_append_size = ctrlr->max_xfer_size;
2096 	}
2097 
2098 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG,
2099 			     ctrlr->opts.admin_timeout_ms);
2100 }
2101 
2102 /**
2103  * This function will try to fetch the I/O Command Specific Controller data structure for
2104  * each I/O Command Set supported by SPDK.
2105  *
2106  * If an I/O Command Set is not supported by the controller, "Invalid Field in Command"
2107  * will be returned. Since we are fetching in a exploratively way, getting an error back
2108  * from the controller should not be treated as fatal.
2109  *
2110  * I/O Command Sets not supported by SPDK will be skipped (e.g. Key Value Command Set).
2111  *
2112  * I/O Command Sets without a IOCS specific data structure (i.e. a zero-filled IOCS specific
2113  * data structure) will be skipped (e.g. NVM Command Set, Key Value Command Set).
2114  */
2115 static int
2116 nvme_ctrlr_identify_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2117 {
2118 	int	rc;
2119 
2120 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2121 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2122 				     ctrlr->opts.admin_timeout_ms);
2123 		return 0;
2124 	}
2125 
2126 	/*
2127 	 * Since SPDK currently only needs to fetch a single Command Set, keep the code here,
2128 	 * instead of creating multiple NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC substates,
2129 	 * which would require additional functions and complexity for no good reason.
2130 	 */
2131 	assert(!ctrlr->cdata_zns);
2132 	ctrlr->cdata_zns = spdk_zmalloc(sizeof(*ctrlr->cdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
2133 					SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2134 	if (!ctrlr->cdata_zns) {
2135 		rc = -ENOMEM;
2136 		goto error;
2137 	}
2138 
2139 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC,
2140 			     ctrlr->opts.admin_timeout_ms);
2141 
2142 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR_IOCS, 0, 0, SPDK_NVME_CSI_ZNS,
2143 				     ctrlr->cdata_zns, sizeof(*ctrlr->cdata_zns),
2144 				     nvme_ctrlr_identify_zns_specific_done, ctrlr);
2145 	if (rc != 0) {
2146 		goto error;
2147 	}
2148 
2149 	return 0;
2150 
2151 error:
2152 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2153 	nvme_ctrlr_free_zns_specific_data(ctrlr);
2154 	return rc;
2155 }
2156 
2157 enum nvme_active_ns_state {
2158 	NVME_ACTIVE_NS_STATE_IDLE,
2159 	NVME_ACTIVE_NS_STATE_PROCESSING,
2160 	NVME_ACTIVE_NS_STATE_DONE,
2161 	NVME_ACTIVE_NS_STATE_ERROR
2162 };
2163 
2164 typedef void (*nvme_active_ns_ctx_deleter)(struct nvme_active_ns_ctx *);
2165 
2166 struct nvme_active_ns_ctx {
2167 	struct spdk_nvme_ctrlr *ctrlr;
2168 	uint32_t page_count;
2169 	uint32_t next_nsid;
2170 	uint32_t *new_ns_list;
2171 	nvme_active_ns_ctx_deleter deleter;
2172 
2173 	enum nvme_active_ns_state state;
2174 };
2175 
2176 static struct nvme_active_ns_ctx *
2177 nvme_active_ns_ctx_create(struct spdk_nvme_ctrlr *ctrlr, nvme_active_ns_ctx_deleter deleter)
2178 {
2179 	struct nvme_active_ns_ctx *ctx;
2180 	uint32_t *new_ns_list = NULL;
2181 
2182 	ctx = calloc(1, sizeof(*ctx));
2183 	if (!ctx) {
2184 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate nvme_active_ns_ctx!\n");
2185 		return NULL;
2186 	}
2187 
2188 	new_ns_list = spdk_zmalloc(sizeof(struct spdk_nvme_ns_list), ctrlr->page_size,
2189 				   NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_SHARE);
2190 	if (!new_ns_list) {
2191 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate active_ns_list!\n");
2192 		free(ctx);
2193 		return NULL;
2194 	}
2195 
2196 	ctx->page_count = 1;
2197 	ctx->new_ns_list = new_ns_list;
2198 	ctx->ctrlr = ctrlr;
2199 	ctx->deleter = deleter;
2200 
2201 	return ctx;
2202 }
2203 
2204 static void
2205 nvme_active_ns_ctx_destroy(struct nvme_active_ns_ctx *ctx)
2206 {
2207 	spdk_free(ctx->new_ns_list);
2208 	free(ctx);
2209 }
2210 
2211 static int
2212 nvme_ctrlr_destruct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2213 {
2214 	struct spdk_nvme_ns tmp, *ns;
2215 
2216 	assert(ctrlr != NULL);
2217 
2218 	tmp.id = nsid;
2219 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
2220 	if (ns == NULL) {
2221 		return -EINVAL;
2222 	}
2223 
2224 	nvme_ns_destruct(ns);
2225 	ns->active = false;
2226 
2227 	return 0;
2228 }
2229 
2230 static int
2231 nvme_ctrlr_construct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2232 {
2233 	struct spdk_nvme_ns *ns;
2234 
2235 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
2236 		return -EINVAL;
2237 	}
2238 
2239 	/* Namespaces are constructed on demand, so simply request it. */
2240 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2241 	if (ns == NULL) {
2242 		return -ENOMEM;
2243 	}
2244 
2245 	ns->active = true;
2246 
2247 	return 0;
2248 }
2249 
2250 static void
2251 nvme_ctrlr_identify_active_ns_swap(struct spdk_nvme_ctrlr *ctrlr, uint32_t *new_ns_list,
2252 				   size_t max_entries)
2253 {
2254 	uint32_t active_ns_count = 0;
2255 	size_t i;
2256 	uint32_t nsid;
2257 	struct spdk_nvme_ns *ns, *tmp_ns;
2258 	int rc;
2259 
2260 	/* First, remove namespaces that no longer exist */
2261 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
2262 		nsid = new_ns_list[0];
2263 		active_ns_count = 0;
2264 		while (nsid != 0) {
2265 			if (nsid == ns->id) {
2266 				break;
2267 			}
2268 
2269 			nsid = new_ns_list[active_ns_count++];
2270 		}
2271 
2272 		if (nsid != ns->id) {
2273 			/* Did not find this namespace id in the new list. */
2274 			NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was removed\n", ns->id);
2275 			nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
2276 		}
2277 	}
2278 
2279 	/* Next, add new namespaces */
2280 	active_ns_count = 0;
2281 	for (i = 0; i < max_entries; i++) {
2282 		nsid = new_ns_list[active_ns_count];
2283 
2284 		if (nsid == 0) {
2285 			break;
2286 		}
2287 
2288 		/* If the namespace already exists, this will not construct it a second time. */
2289 		rc = nvme_ctrlr_construct_namespace(ctrlr, nsid);
2290 		if (rc != 0) {
2291 			/* We can't easily handle a failure here. But just move on. */
2292 			assert(false);
2293 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to allocate a namespace object.\n");
2294 			continue;
2295 		}
2296 
2297 		active_ns_count++;
2298 	}
2299 
2300 	ctrlr->active_ns_count = active_ns_count;
2301 }
2302 
2303 static void
2304 nvme_ctrlr_identify_active_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2305 {
2306 	struct nvme_active_ns_ctx *ctx = arg;
2307 	uint32_t *new_ns_list = NULL;
2308 
2309 	if (spdk_nvme_cpl_is_error(cpl)) {
2310 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2311 		goto out;
2312 	}
2313 
2314 	ctx->next_nsid = ctx->new_ns_list[1024 * ctx->page_count - 1];
2315 	if (ctx->next_nsid == 0) {
2316 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2317 		goto out;
2318 	}
2319 
2320 	ctx->page_count++;
2321 	new_ns_list = spdk_realloc(ctx->new_ns_list,
2322 				   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2323 				   ctx->ctrlr->page_size);
2324 	if (!new_ns_list) {
2325 		SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2326 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2327 		goto out;
2328 	}
2329 
2330 	ctx->new_ns_list = new_ns_list;
2331 	nvme_ctrlr_identify_active_ns_async(ctx);
2332 	return;
2333 
2334 out:
2335 	if (ctx->deleter) {
2336 		ctx->deleter(ctx);
2337 	}
2338 }
2339 
2340 static void
2341 nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx)
2342 {
2343 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2344 	uint32_t i;
2345 	int rc;
2346 
2347 	if (ctrlr->cdata.nn == 0) {
2348 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2349 		goto out;
2350 	}
2351 
2352 	assert(ctx->new_ns_list != NULL);
2353 
2354 	/*
2355 	 * If controller doesn't support active ns list CNS 0x02 dummy up
2356 	 * an active ns list, i.e. all namespaces report as active
2357 	 */
2358 	if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 1, 0) || ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS) {
2359 		uint32_t *new_ns_list;
2360 
2361 		/*
2362 		 * Active NS list must always end with zero element.
2363 		 * So, we allocate for cdata.nn+1.
2364 		 */
2365 		ctx->page_count = spdk_divide_round_up(ctrlr->cdata.nn + 1,
2366 						       sizeof(struct spdk_nvme_ns_list) / sizeof(new_ns_list[0]));
2367 		new_ns_list = spdk_realloc(ctx->new_ns_list,
2368 					   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2369 					   ctx->ctrlr->page_size);
2370 		if (!new_ns_list) {
2371 			SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2372 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2373 			goto out;
2374 		}
2375 
2376 		ctx->new_ns_list = new_ns_list;
2377 		ctx->new_ns_list[ctrlr->cdata.nn] = 0;
2378 		for (i = 0; i < ctrlr->cdata.nn; i++) {
2379 			ctx->new_ns_list[i] = i + 1;
2380 		}
2381 
2382 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2383 		goto out;
2384 	}
2385 
2386 	ctx->state = NVME_ACTIVE_NS_STATE_PROCESSING;
2387 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, ctx->next_nsid, 0,
2388 				     &ctx->new_ns_list[1024 * (ctx->page_count - 1)], sizeof(struct spdk_nvme_ns_list),
2389 				     nvme_ctrlr_identify_active_ns_async_done, ctx);
2390 	if (rc != 0) {
2391 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2392 		goto out;
2393 	}
2394 
2395 	return;
2396 
2397 out:
2398 	if (ctx->deleter) {
2399 		ctx->deleter(ctx);
2400 	}
2401 }
2402 
2403 static void
2404 _nvme_active_ns_ctx_deleter(struct nvme_active_ns_ctx *ctx)
2405 {
2406 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2407 	struct spdk_nvme_ns *ns;
2408 
2409 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2410 		nvme_active_ns_ctx_destroy(ctx);
2411 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2412 		return;
2413 	}
2414 
2415 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2416 
2417 	RB_FOREACH(ns, nvme_ns_tree, &ctrlr->ns) {
2418 		nvme_ns_free_iocs_specific_data(ns);
2419 	}
2420 
2421 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2422 	nvme_active_ns_ctx_destroy(ctx);
2423 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS, ctrlr->opts.admin_timeout_ms);
2424 }
2425 
2426 static void
2427 _nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2428 {
2429 	struct nvme_active_ns_ctx *ctx;
2430 
2431 	ctx = nvme_active_ns_ctx_create(ctrlr, _nvme_active_ns_ctx_deleter);
2432 	if (!ctx) {
2433 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2434 		return;
2435 	}
2436 
2437 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS,
2438 			     ctrlr->opts.admin_timeout_ms);
2439 	nvme_ctrlr_identify_active_ns_async(ctx);
2440 }
2441 
2442 int
2443 nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2444 {
2445 	struct nvme_active_ns_ctx *ctx;
2446 	int rc;
2447 
2448 	ctx = nvme_active_ns_ctx_create(ctrlr, NULL);
2449 	if (!ctx) {
2450 		return -ENOMEM;
2451 	}
2452 
2453 	nvme_ctrlr_identify_active_ns_async(ctx);
2454 	while (ctx->state == NVME_ACTIVE_NS_STATE_PROCESSING) {
2455 		rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2456 		if (rc < 0) {
2457 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2458 			break;
2459 		}
2460 	}
2461 
2462 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2463 		nvme_active_ns_ctx_destroy(ctx);
2464 		return -ENXIO;
2465 	}
2466 
2467 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2468 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2469 	nvme_active_ns_ctx_destroy(ctx);
2470 
2471 	return 0;
2472 }
2473 
2474 static void
2475 nvme_ctrlr_identify_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2476 {
2477 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2478 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2479 	uint32_t nsid;
2480 	int rc;
2481 
2482 	if (spdk_nvme_cpl_is_error(cpl)) {
2483 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2484 		return;
2485 	}
2486 
2487 	nvme_ns_set_identify_data(ns);
2488 
2489 	/* move on to the next active NS */
2490 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2491 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2492 	if (ns == NULL) {
2493 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2494 				     ctrlr->opts.admin_timeout_ms);
2495 		return;
2496 	}
2497 	ns->ctrlr = ctrlr;
2498 	ns->id = nsid;
2499 
2500 	rc = nvme_ctrlr_identify_ns_async(ns);
2501 	if (rc) {
2502 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2503 	}
2504 }
2505 
2506 static int
2507 nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns)
2508 {
2509 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2510 	struct spdk_nvme_ns_data *nsdata;
2511 
2512 	nsdata = &ns->nsdata;
2513 
2514 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS,
2515 			     ctrlr->opts.admin_timeout_ms);
2516 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS, 0, ns->id, 0,
2517 				       nsdata, sizeof(*nsdata),
2518 				       nvme_ctrlr_identify_ns_async_done, ns);
2519 }
2520 
2521 static int
2522 nvme_ctrlr_identify_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2523 {
2524 	uint32_t nsid;
2525 	struct spdk_nvme_ns *ns;
2526 	int rc;
2527 
2528 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2529 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2530 	if (ns == NULL) {
2531 		/* No active NS, move on to the next state */
2532 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2533 				     ctrlr->opts.admin_timeout_ms);
2534 		return 0;
2535 	}
2536 
2537 	ns->ctrlr = ctrlr;
2538 	ns->id = nsid;
2539 
2540 	rc = nvme_ctrlr_identify_ns_async(ns);
2541 	if (rc) {
2542 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2543 	}
2544 
2545 	return rc;
2546 }
2547 
2548 static int
2549 nvme_ctrlr_identify_namespaces_iocs_specific_next(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
2550 {
2551 	uint32_t nsid;
2552 	struct spdk_nvme_ns *ns;
2553 	int rc;
2554 
2555 	if (!prev_nsid) {
2556 		nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2557 	} else {
2558 		/* move on to the next active NS */
2559 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, prev_nsid);
2560 	}
2561 
2562 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2563 	if (ns == NULL) {
2564 		/* No first/next active NS, move on to the next state */
2565 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2566 				     ctrlr->opts.admin_timeout_ms);
2567 		return 0;
2568 	}
2569 
2570 	/* loop until we find a ns which has (supported) iocs specific data */
2571 	while (!nvme_ns_has_supported_iocs_specific_data(ns)) {
2572 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2573 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2574 		if (ns == NULL) {
2575 			/* no namespace with (supported) iocs specific data found */
2576 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2577 					     ctrlr->opts.admin_timeout_ms);
2578 			return 0;
2579 		}
2580 	}
2581 
2582 	rc = nvme_ctrlr_identify_ns_iocs_specific_async(ns);
2583 	if (rc) {
2584 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2585 	}
2586 
2587 	return rc;
2588 }
2589 
2590 static void
2591 nvme_ctrlr_identify_ns_zns_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2592 {
2593 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2594 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2595 
2596 	if (spdk_nvme_cpl_is_error(cpl)) {
2597 		nvme_ns_free_zns_specific_data(ns);
2598 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2599 		return;
2600 	}
2601 
2602 	nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2603 }
2604 
2605 static int
2606 nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns)
2607 {
2608 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2609 	int rc;
2610 
2611 	switch (ns->csi) {
2612 	case SPDK_NVME_CSI_ZNS:
2613 		break;
2614 	default:
2615 		/*
2616 		 * This switch must handle all cases for which
2617 		 * nvme_ns_has_supported_iocs_specific_data() returns true,
2618 		 * other cases should never happen.
2619 		 */
2620 		assert(0);
2621 	}
2622 
2623 	assert(!ns->nsdata_zns);
2624 	ns->nsdata_zns = spdk_zmalloc(sizeof(*ns->nsdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
2625 				      SPDK_MALLOC_SHARE);
2626 	if (!ns->nsdata_zns) {
2627 		return -ENOMEM;
2628 	}
2629 
2630 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2631 			     ctrlr->opts.admin_timeout_ms);
2632 	rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2633 				     ns->nsdata_zns, sizeof(*ns->nsdata_zns),
2634 				     nvme_ctrlr_identify_ns_zns_specific_async_done, ns);
2635 	if (rc) {
2636 		nvme_ns_free_zns_specific_data(ns);
2637 	}
2638 
2639 	return rc;
2640 }
2641 
2642 static int
2643 nvme_ctrlr_identify_namespaces_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2644 {
2645 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2646 		/* Multi IOCS not supported/enabled, move on to the next state */
2647 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2648 				     ctrlr->opts.admin_timeout_ms);
2649 		return 0;
2650 	}
2651 
2652 	return nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, 0);
2653 }
2654 
2655 static void
2656 nvme_ctrlr_identify_id_desc_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2657 {
2658 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2659 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2660 	uint32_t nsid;
2661 	int rc;
2662 
2663 	if (spdk_nvme_cpl_is_error(cpl)) {
2664 		/*
2665 		 * Many controllers claim to be compatible with NVMe 1.3, however,
2666 		 * they do not implement NS ID Desc List. Therefore, instead of setting
2667 		 * the state to NVME_CTRLR_STATE_ERROR, silently ignore the completion
2668 		 * error and move on to the next state.
2669 		 *
2670 		 * The proper way is to create a new quirk for controllers that violate
2671 		 * the NVMe 1.3 spec by not supporting NS ID Desc List.
2672 		 * (Re-using the NVME_QUIRK_IDENTIFY_CNS quirk is not possible, since
2673 		 * it is too generic and was added in order to handle controllers that
2674 		 * violate the NVMe 1.1 spec by not supporting ACTIVE LIST).
2675 		 */
2676 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2677 				     ctrlr->opts.admin_timeout_ms);
2678 		return;
2679 	}
2680 
2681 	nvme_ns_set_id_desc_list_data(ns);
2682 
2683 	/* move on to the next active NS */
2684 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2685 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2686 	if (ns == NULL) {
2687 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2688 				     ctrlr->opts.admin_timeout_ms);
2689 		return;
2690 	}
2691 
2692 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2693 	if (rc) {
2694 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2695 	}
2696 }
2697 
2698 static int
2699 nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns)
2700 {
2701 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2702 
2703 	memset(ns->id_desc_list, 0, sizeof(ns->id_desc_list));
2704 
2705 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS,
2706 			     ctrlr->opts.admin_timeout_ms);
2707 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_ID_DESCRIPTOR_LIST,
2708 				       0, ns->id, 0, ns->id_desc_list, sizeof(ns->id_desc_list),
2709 				       nvme_ctrlr_identify_id_desc_async_done, ns);
2710 }
2711 
2712 static int
2713 nvme_ctrlr_identify_id_desc_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2714 {
2715 	uint32_t nsid;
2716 	struct spdk_nvme_ns *ns;
2717 	int rc;
2718 
2719 	if ((ctrlr->vs.raw < SPDK_NVME_VERSION(1, 3, 0) &&
2720 	     !(ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS)) ||
2721 	    (ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2722 		NVME_CTRLR_DEBUGLOG(ctrlr, "Version < 1.3; not attempting to retrieve NS ID Descriptor List\n");
2723 		/* NS ID Desc List not supported, move on to the next state */
2724 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2725 				     ctrlr->opts.admin_timeout_ms);
2726 		return 0;
2727 	}
2728 
2729 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2730 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2731 	if (ns == NULL) {
2732 		/* No active NS, move on to the next state */
2733 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2734 				     ctrlr->opts.admin_timeout_ms);
2735 		return 0;
2736 	}
2737 
2738 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2739 	if (rc) {
2740 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2741 	}
2742 
2743 	return rc;
2744 }
2745 
2746 static void
2747 nvme_ctrlr_update_nvmf_ioccsz(struct spdk_nvme_ctrlr *ctrlr)
2748 {
2749 	if (spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
2750 		if (ctrlr->cdata.nvmf_specific.ioccsz < 4) {
2751 			NVME_CTRLR_ERRLOG(ctrlr, "Incorrect IOCCSZ %u, the minimum value should be 4\n",
2752 					  ctrlr->cdata.nvmf_specific.ioccsz);
2753 			ctrlr->cdata.nvmf_specific.ioccsz = 4;
2754 			assert(0);
2755 		}
2756 		ctrlr->ioccsz_bytes = ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd);
2757 		ctrlr->icdoff = ctrlr->cdata.nvmf_specific.icdoff;
2758 	}
2759 }
2760 
2761 static void
2762 nvme_ctrlr_set_num_queues_done(void *arg, const struct spdk_nvme_cpl *cpl)
2763 {
2764 	uint32_t cq_allocated, sq_allocated, min_allocated, i;
2765 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2766 
2767 	if (spdk_nvme_cpl_is_error(cpl)) {
2768 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Number of Queues failed!\n");
2769 		ctrlr->opts.num_io_queues = 0;
2770 	} else {
2771 		/*
2772 		 * Data in cdw0 is 0-based.
2773 		 * Lower 16-bits indicate number of submission queues allocated.
2774 		 * Upper 16-bits indicate number of completion queues allocated.
2775 		 */
2776 		sq_allocated = (cpl->cdw0 & 0xFFFF) + 1;
2777 		cq_allocated = (cpl->cdw0 >> 16) + 1;
2778 
2779 		/*
2780 		 * For 1:1 queue mapping, set number of allocated queues to be minimum of
2781 		 * submission and completion queues.
2782 		 */
2783 		min_allocated = spdk_min(sq_allocated, cq_allocated);
2784 
2785 		/* Set number of queues to be minimum of requested and actually allocated. */
2786 		ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues);
2787 	}
2788 
2789 	ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1);
2790 	if (ctrlr->free_io_qids == NULL) {
2791 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2792 		return;
2793 	}
2794 
2795 	/* Initialize list of free I/O queue IDs. QID 0 is the admin queue (implicitly allocated). */
2796 	for (i = 1; i <= ctrlr->opts.num_io_queues; i++) {
2797 		spdk_nvme_ctrlr_free_qid(ctrlr, i);
2798 	}
2799 
2800 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS,
2801 			     ctrlr->opts.admin_timeout_ms);
2802 }
2803 
2804 static int
2805 nvme_ctrlr_set_num_queues(struct spdk_nvme_ctrlr *ctrlr)
2806 {
2807 	int rc;
2808 
2809 	if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) {
2810 		NVME_CTRLR_NOTICELOG(ctrlr, "Limiting requested num_io_queues %u to max %d\n",
2811 				     ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES);
2812 		ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES;
2813 	} else if (ctrlr->opts.num_io_queues < 1) {
2814 		NVME_CTRLR_NOTICELOG(ctrlr, "Requested num_io_queues 0, increasing to 1\n");
2815 		ctrlr->opts.num_io_queues = 1;
2816 	}
2817 
2818 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES,
2819 			     ctrlr->opts.admin_timeout_ms);
2820 
2821 	rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues,
2822 					   nvme_ctrlr_set_num_queues_done, ctrlr);
2823 	if (rc != 0) {
2824 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2825 		return rc;
2826 	}
2827 
2828 	return 0;
2829 }
2830 
2831 static void
2832 nvme_ctrlr_set_keep_alive_timeout_done(void *arg, const struct spdk_nvme_cpl *cpl)
2833 {
2834 	uint32_t keep_alive_interval_us;
2835 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2836 
2837 	if (spdk_nvme_cpl_is_error(cpl)) {
2838 		if ((cpl->status.sct == SPDK_NVME_SCT_GENERIC) &&
2839 		    (cpl->status.sc == SPDK_NVME_SC_INVALID_FIELD)) {
2840 			NVME_CTRLR_DEBUGLOG(ctrlr, "Keep alive timeout Get Feature is not supported\n");
2841 		} else {
2842 			NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: SC %x SCT %x\n",
2843 					  cpl->status.sc, cpl->status.sct);
2844 			ctrlr->opts.keep_alive_timeout_ms = 0;
2845 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2846 			return;
2847 		}
2848 	} else {
2849 		if (ctrlr->opts.keep_alive_timeout_ms != cpl->cdw0) {
2850 			NVME_CTRLR_DEBUGLOG(ctrlr, "Controller adjusted keep alive timeout to %u ms\n",
2851 					    cpl->cdw0);
2852 		}
2853 
2854 		ctrlr->opts.keep_alive_timeout_ms = cpl->cdw0;
2855 	}
2856 
2857 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
2858 		ctrlr->keep_alive_interval_ticks = 0;
2859 	} else {
2860 		keep_alive_interval_us = ctrlr->opts.keep_alive_timeout_ms * 1000 / 2;
2861 
2862 		NVME_CTRLR_DEBUGLOG(ctrlr, "Sending keep alive every %u us\n", keep_alive_interval_us);
2863 
2864 		ctrlr->keep_alive_interval_ticks = (keep_alive_interval_us * spdk_get_ticks_hz()) /
2865 						   UINT64_C(1000000);
2866 
2867 		/* Schedule the first Keep Alive to be sent as soon as possible. */
2868 		ctrlr->next_keep_alive_tick = spdk_get_ticks();
2869 	}
2870 
2871 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
2872 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
2873 	} else {
2874 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
2875 				     ctrlr->opts.admin_timeout_ms);
2876 	}
2877 }
2878 
2879 static int
2880 nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr)
2881 {
2882 	int rc;
2883 
2884 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
2885 		if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
2886 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
2887 		} else {
2888 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
2889 					     ctrlr->opts.admin_timeout_ms);
2890 		}
2891 		return 0;
2892 	}
2893 
2894 	/* Note: Discovery controller identify data does not populate KAS according to spec. */
2895 	if (!spdk_nvme_ctrlr_is_discovery(ctrlr) && ctrlr->cdata.kas == 0) {
2896 		NVME_CTRLR_DEBUGLOG(ctrlr, "Controller KAS is 0 - not enabling Keep Alive\n");
2897 		ctrlr->opts.keep_alive_timeout_ms = 0;
2898 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
2899 				     ctrlr->opts.admin_timeout_ms);
2900 		return 0;
2901 	}
2902 
2903 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT,
2904 			     ctrlr->opts.admin_timeout_ms);
2905 
2906 	/* Retrieve actual keep alive timeout, since the controller may have adjusted it. */
2907 	rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0,
2908 					     nvme_ctrlr_set_keep_alive_timeout_done, ctrlr);
2909 	if (rc != 0) {
2910 		NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: %d\n", rc);
2911 		ctrlr->opts.keep_alive_timeout_ms = 0;
2912 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2913 		return rc;
2914 	}
2915 
2916 	return 0;
2917 }
2918 
2919 static void
2920 nvme_ctrlr_set_host_id_done(void *arg, const struct spdk_nvme_cpl *cpl)
2921 {
2922 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2923 
2924 	if (spdk_nvme_cpl_is_error(cpl)) {
2925 		/*
2926 		 * Treat Set Features - Host ID failure as non-fatal, since the Host ID feature
2927 		 * is optional.
2928 		 */
2929 		NVME_CTRLR_WARNLOG(ctrlr, "Set Features - Host ID failed: SC 0x%x SCT 0x%x\n",
2930 				   cpl->status.sc, cpl->status.sct);
2931 	} else {
2932 		NVME_CTRLR_DEBUGLOG(ctrlr, "Set Features - Host ID was successful\n");
2933 	}
2934 
2935 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
2936 }
2937 
2938 static int
2939 nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr)
2940 {
2941 	uint8_t *host_id;
2942 	uint32_t host_id_size;
2943 	int rc;
2944 
2945 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
2946 		/*
2947 		 * NVMe-oF sends the host ID during Connect and doesn't allow
2948 		 * Set Features - Host Identifier after Connect, so we don't need to do anything here.
2949 		 */
2950 		NVME_CTRLR_DEBUGLOG(ctrlr, "NVMe-oF transport - not sending Set Features - Host ID\n");
2951 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
2952 		return 0;
2953 	}
2954 
2955 	if (ctrlr->cdata.ctratt.host_id_exhid_supported) {
2956 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 128-bit extended host identifier\n");
2957 		host_id = ctrlr->opts.extended_host_id;
2958 		host_id_size = sizeof(ctrlr->opts.extended_host_id);
2959 	} else {
2960 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 64-bit host identifier\n");
2961 		host_id = ctrlr->opts.host_id;
2962 		host_id_size = sizeof(ctrlr->opts.host_id);
2963 	}
2964 
2965 	/* If the user specified an all-zeroes host identifier, don't send the command. */
2966 	if (spdk_mem_all_zero(host_id, host_id_size)) {
2967 		NVME_CTRLR_DEBUGLOG(ctrlr, "User did not specify host ID - not sending Set Features - Host ID\n");
2968 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
2969 		return 0;
2970 	}
2971 
2972 	SPDK_LOGDUMP(nvme, "host_id", host_id, host_id_size);
2973 
2974 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_HOST_ID,
2975 			     ctrlr->opts.admin_timeout_ms);
2976 
2977 	rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_ctrlr_set_host_id_done, ctrlr);
2978 	if (rc != 0) {
2979 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Host ID failed: %d\n", rc);
2980 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2981 		return rc;
2982 	}
2983 
2984 	return 0;
2985 }
2986 
2987 void
2988 nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2989 {
2990 	uint32_t nsid;
2991 	struct spdk_nvme_ns *ns;
2992 
2993 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2994 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
2995 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2996 		nvme_ns_destruct(ns);
2997 		nvme_ns_construct(ns, nsid, ctrlr);
2998 	}
2999 }
3000 
3001 static int
3002 nvme_ctrlr_clear_changed_ns_log(struct spdk_nvme_ctrlr *ctrlr)
3003 {
3004 	struct nvme_completion_poll_status	*status;
3005 	int		rc = -ENOMEM;
3006 	char		*buffer = NULL;
3007 	uint32_t	nsid;
3008 	size_t		buf_size = (SPDK_NVME_MAX_CHANGED_NAMESPACES * sizeof(uint32_t));
3009 
3010 	if (ctrlr->opts.disable_read_changed_ns_list_log_page) {
3011 		return 0;
3012 	}
3013 
3014 	buffer = spdk_dma_zmalloc(buf_size, 4096, NULL);
3015 	if (!buffer) {
3016 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate buffer for getting "
3017 				  "changed ns log.\n");
3018 		return rc;
3019 	}
3020 
3021 	status = calloc(1, sizeof(*status));
3022 	if (!status) {
3023 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
3024 		goto free_buffer;
3025 	}
3026 
3027 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
3028 					      SPDK_NVME_LOG_CHANGED_NS_LIST,
3029 					      SPDK_NVME_GLOBAL_NS_TAG,
3030 					      buffer, buf_size, 0,
3031 					      nvme_completion_poll_cb, status);
3032 
3033 	if (rc) {
3034 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_get_log_page() failed: rc=%d\n", rc);
3035 		free(status);
3036 		goto free_buffer;
3037 	}
3038 
3039 	rc = nvme_wait_for_completion_timeout(ctrlr->adminq, status,
3040 					      ctrlr->opts.admin_timeout_ms * 1000);
3041 	if (!status->timed_out) {
3042 		free(status);
3043 	}
3044 
3045 	if (rc) {
3046 		NVME_CTRLR_ERRLOG(ctrlr, "wait for spdk_nvme_ctrlr_cmd_get_log_page failed: rc=%d\n", rc);
3047 		goto free_buffer;
3048 	}
3049 
3050 	/* only check the case of overflow. */
3051 	nsid = from_le32(buffer);
3052 	if (nsid == 0xffffffffu) {
3053 		NVME_CTRLR_WARNLOG(ctrlr, "changed ns log overflowed.\n");
3054 	}
3055 
3056 free_buffer:
3057 	spdk_dma_free(buffer);
3058 	return rc;
3059 }
3060 
3061 void
3062 nvme_ctrlr_process_async_event(struct spdk_nvme_ctrlr *ctrlr,
3063 			       const struct spdk_nvme_cpl *cpl)
3064 {
3065 	union spdk_nvme_async_event_completion event;
3066 	struct spdk_nvme_ctrlr_process *active_proc;
3067 	int rc;
3068 
3069 	event.raw = cpl->cdw0;
3070 
3071 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3072 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
3073 		nvme_ctrlr_clear_changed_ns_log(ctrlr);
3074 
3075 		rc = nvme_ctrlr_identify_active_ns(ctrlr);
3076 		if (rc) {
3077 			return;
3078 		}
3079 		nvme_ctrlr_update_namespaces(ctrlr);
3080 		nvme_io_msg_ctrlr_update(ctrlr);
3081 	}
3082 
3083 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3084 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
3085 		if (!ctrlr->opts.disable_read_ana_log_page) {
3086 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
3087 			if (rc) {
3088 				return;
3089 			}
3090 			nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
3091 						      ctrlr);
3092 		}
3093 	}
3094 
3095 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3096 	if (active_proc && active_proc->aer_cb_fn) {
3097 		active_proc->aer_cb_fn(active_proc->aer_cb_arg, cpl);
3098 	}
3099 }
3100 
3101 static void
3102 nvme_ctrlr_queue_async_event(struct spdk_nvme_ctrlr *ctrlr,
3103 			     const struct spdk_nvme_cpl *cpl)
3104 {
3105 	struct  spdk_nvme_ctrlr_aer_completion_list *nvme_event;
3106 	struct spdk_nvme_ctrlr_process *proc;
3107 
3108 	/* Add async event to each process objects event list */
3109 	TAILQ_FOREACH(proc, &ctrlr->active_procs, tailq) {
3110 		/* Must be shared memory so other processes can access */
3111 		nvme_event = spdk_zmalloc(sizeof(*nvme_event), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
3112 		if (!nvme_event) {
3113 			NVME_CTRLR_ERRLOG(ctrlr, "Alloc nvme event failed, ignore the event\n");
3114 			return;
3115 		}
3116 		nvme_event->cpl = *cpl;
3117 
3118 		STAILQ_INSERT_TAIL(&proc->async_events, nvme_event, link);
3119 	}
3120 }
3121 
3122 void
3123 nvme_ctrlr_complete_queued_async_events(struct spdk_nvme_ctrlr *ctrlr)
3124 {
3125 	struct  spdk_nvme_ctrlr_aer_completion_list  *nvme_event, *nvme_event_tmp;
3126 	struct spdk_nvme_ctrlr_process	*active_proc;
3127 
3128 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3129 
3130 	STAILQ_FOREACH_SAFE(nvme_event, &active_proc->async_events, link, nvme_event_tmp) {
3131 		STAILQ_REMOVE(&active_proc->async_events, nvme_event,
3132 			      spdk_nvme_ctrlr_aer_completion_list, link);
3133 		nvme_ctrlr_process_async_event(ctrlr, &nvme_event->cpl);
3134 		spdk_free(nvme_event);
3135 
3136 	}
3137 }
3138 
3139 static void
3140 nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl)
3141 {
3142 	struct nvme_async_event_request	*aer = arg;
3143 	struct spdk_nvme_ctrlr		*ctrlr = aer->ctrlr;
3144 
3145 	if (cpl->status.sct == SPDK_NVME_SCT_GENERIC &&
3146 	    cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) {
3147 		/*
3148 		 *  This is simulated when controller is being shut down, to
3149 		 *  effectively abort outstanding asynchronous event requests
3150 		 *  and make sure all memory is freed.  Do not repost the
3151 		 *  request in this case.
3152 		 */
3153 		return;
3154 	}
3155 
3156 	if (cpl->status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC &&
3157 	    cpl->status.sc == SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED) {
3158 		/*
3159 		 *  SPDK will only send as many AERs as the device says it supports,
3160 		 *  so this status code indicates an out-of-spec device.  Do not repost
3161 		 *  the request in this case.
3162 		 */
3163 		NVME_CTRLR_ERRLOG(ctrlr, "Controller appears out-of-spec for asynchronous event request\n"
3164 				  "handling.  Do not repost this AER.\n");
3165 		return;
3166 	}
3167 
3168 	/* Add the events to the list */
3169 	nvme_ctrlr_queue_async_event(ctrlr, cpl);
3170 
3171 	/* If the ctrlr was removed or in the destruct state, we should not send aer again */
3172 	if (ctrlr->is_removed || ctrlr->is_destructed) {
3173 		return;
3174 	}
3175 
3176 	/*
3177 	 * Repost another asynchronous event request to replace the one
3178 	 *  that just completed.
3179 	 */
3180 	if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
3181 		/*
3182 		 * We can't do anything to recover from a failure here,
3183 		 * so just print a warning message and leave the AER unsubmitted.
3184 		 */
3185 		NVME_CTRLR_ERRLOG(ctrlr, "resubmitting AER failed!\n");
3186 	}
3187 }
3188 
3189 static int
3190 nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
3191 				    struct nvme_async_event_request *aer)
3192 {
3193 	struct nvme_request *req;
3194 
3195 	aer->ctrlr = ctrlr;
3196 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer);
3197 	aer->req = req;
3198 	if (req == NULL) {
3199 		return -1;
3200 	}
3201 
3202 	req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
3203 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
3204 }
3205 
3206 static void
3207 nvme_ctrlr_configure_aer_done(void *arg, const struct spdk_nvme_cpl *cpl)
3208 {
3209 	struct nvme_async_event_request		*aer;
3210 	int					rc;
3211 	uint32_t				i;
3212 	struct spdk_nvme_ctrlr *ctrlr =	(struct spdk_nvme_ctrlr *)arg;
3213 
3214 	if (spdk_nvme_cpl_is_error(cpl)) {
3215 		NVME_CTRLR_NOTICELOG(ctrlr, "nvme_ctrlr_configure_aer failed!\n");
3216 		ctrlr->num_aers = 0;
3217 	} else {
3218 		/* aerl is a zero-based value, so we need to add 1 here. */
3219 		ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
3220 	}
3221 
3222 	for (i = 0; i < ctrlr->num_aers; i++) {
3223 		aer = &ctrlr->aer[i];
3224 		rc = nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
3225 		if (rc) {
3226 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_construct_and_submit_aer failed!\n");
3227 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3228 			return;
3229 		}
3230 	}
3231 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, ctrlr->opts.admin_timeout_ms);
3232 }
3233 
3234 static int
3235 nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr)
3236 {
3237 	union spdk_nvme_feat_async_event_configuration	config;
3238 	int						rc;
3239 
3240 	config.raw = 0;
3241 
3242 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3243 		config.bits.discovery_log_change_notice = 1;
3244 	} else {
3245 		config.bits.crit_warn.bits.available_spare = 1;
3246 		config.bits.crit_warn.bits.temperature = 1;
3247 		config.bits.crit_warn.bits.device_reliability = 1;
3248 		config.bits.crit_warn.bits.read_only = 1;
3249 		config.bits.crit_warn.bits.volatile_memory_backup = 1;
3250 
3251 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 2, 0)) {
3252 			if (ctrlr->cdata.oaes.ns_attribute_notices) {
3253 				config.bits.ns_attr_notice = 1;
3254 			}
3255 			if (ctrlr->cdata.oaes.fw_activation_notices) {
3256 				config.bits.fw_activation_notice = 1;
3257 			}
3258 			if (ctrlr->cdata.oaes.ana_change_notices) {
3259 				config.bits.ana_change_notice = 1;
3260 			}
3261 		}
3262 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 3, 0) && ctrlr->cdata.lpa.telemetry) {
3263 			config.bits.telemetry_log_notice = 1;
3264 		}
3265 	}
3266 
3267 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER,
3268 			     ctrlr->opts.admin_timeout_ms);
3269 
3270 	rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config,
3271 			nvme_ctrlr_configure_aer_done,
3272 			ctrlr);
3273 	if (rc != 0) {
3274 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3275 		return rc;
3276 	}
3277 
3278 	return 0;
3279 }
3280 
3281 struct spdk_nvme_ctrlr_process *
3282 nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid)
3283 {
3284 	struct spdk_nvme_ctrlr_process	*active_proc;
3285 
3286 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3287 		if (active_proc->pid == pid) {
3288 			return active_proc;
3289 		}
3290 	}
3291 
3292 	return NULL;
3293 }
3294 
3295 struct spdk_nvme_ctrlr_process *
3296 nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr)
3297 {
3298 	return nvme_ctrlr_get_process(ctrlr, getpid());
3299 }
3300 
3301 /**
3302  * This function will be called when a process is using the controller.
3303  *  1. For the primary process, it is called when constructing the controller.
3304  *  2. For the secondary process, it is called at probing the controller.
3305  * Note: will check whether the process is already added for the same process.
3306  */
3307 int
3308 nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
3309 {
3310 	struct spdk_nvme_ctrlr_process	*ctrlr_proc;
3311 	pid_t				pid = getpid();
3312 
3313 	/* Check whether the process is already added or not */
3314 	if (nvme_ctrlr_get_process(ctrlr, pid)) {
3315 		return 0;
3316 	}
3317 
3318 	/* Initialize the per process properties for this ctrlr */
3319 	ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process),
3320 				  64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
3321 	if (ctrlr_proc == NULL) {
3322 		NVME_CTRLR_ERRLOG(ctrlr, "failed to allocate memory to track the process props\n");
3323 
3324 		return -1;
3325 	}
3326 
3327 	ctrlr_proc->is_primary = spdk_process_is_primary();
3328 	ctrlr_proc->pid = pid;
3329 	STAILQ_INIT(&ctrlr_proc->active_reqs);
3330 	ctrlr_proc->devhandle = devhandle;
3331 	ctrlr_proc->ref = 0;
3332 	TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs);
3333 	STAILQ_INIT(&ctrlr_proc->async_events);
3334 
3335 	TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq);
3336 
3337 	return 0;
3338 }
3339 
3340 /**
3341  * This function will be called when the process detaches the controller.
3342  * Note: the ctrlr_lock must be held when calling this function.
3343  */
3344 static void
3345 nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr,
3346 			  struct spdk_nvme_ctrlr_process *proc)
3347 {
3348 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3349 
3350 	assert(STAILQ_EMPTY(&proc->active_reqs));
3351 
3352 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3353 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3354 	}
3355 
3356 	TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq);
3357 
3358 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
3359 		spdk_pci_device_detach(proc->devhandle);
3360 	}
3361 
3362 	spdk_free(proc);
3363 }
3364 
3365 /**
3366  * This function will be called when the process exited unexpectedly
3367  *  in order to free any incomplete nvme request, allocated IO qpairs
3368  *  and allocated memory.
3369  * Note: the ctrlr_lock must be held when calling this function.
3370  */
3371 static void
3372 nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc)
3373 {
3374 	struct nvme_request	*req, *tmp_req;
3375 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3376 	struct spdk_nvme_ctrlr_aer_completion_list *event;
3377 
3378 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
3379 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
3380 
3381 		assert(req->pid == proc->pid);
3382 		if (req->user_buffer && req->payload_size) {
3383 			spdk_free(req->payload.contig_or_cb_arg);
3384 		}
3385 		nvme_free_request(req);
3386 	}
3387 
3388 	/* Remove async event from each process objects event list */
3389 	while (!STAILQ_EMPTY(&proc->async_events)) {
3390 		event = STAILQ_FIRST(&proc->async_events);
3391 		STAILQ_REMOVE_HEAD(&proc->async_events, link);
3392 		spdk_free(event);
3393 	}
3394 
3395 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3396 		TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq);
3397 
3398 		/*
3399 		 * The process may have been killed while some qpairs were in their
3400 		 *  completion context.  Clear that flag here to allow these IO
3401 		 *  qpairs to be deleted.
3402 		 */
3403 		qpair->in_completion_context = 0;
3404 
3405 		qpair->no_deletion_notification_needed = 1;
3406 
3407 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3408 	}
3409 
3410 	spdk_free(proc);
3411 }
3412 
3413 /**
3414  * This function will be called when destructing the controller.
3415  *  1. There is no more admin request on this controller.
3416  *  2. Clean up any left resource allocation when its associated process is gone.
3417  */
3418 void
3419 nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
3420 {
3421 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3422 
3423 	/* Free all the processes' properties and make sure no pending admin IOs */
3424 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3425 		TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3426 
3427 		assert(STAILQ_EMPTY(&active_proc->active_reqs));
3428 
3429 		spdk_free(active_proc);
3430 	}
3431 }
3432 
3433 /**
3434  * This function will be called when any other process attaches or
3435  *  detaches the controller in order to cleanup those unexpectedly
3436  *  terminated processes.
3437  * Note: the ctrlr_lock must be held when calling this function.
3438  */
3439 static int
3440 nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr)
3441 {
3442 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3443 	int				active_proc_count = 0;
3444 
3445 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3446 		if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) {
3447 			NVME_CTRLR_ERRLOG(ctrlr, "process %d terminated unexpected\n", active_proc->pid);
3448 
3449 			TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3450 
3451 			nvme_ctrlr_cleanup_process(active_proc);
3452 		} else {
3453 			active_proc_count++;
3454 		}
3455 	}
3456 
3457 	return active_proc_count;
3458 }
3459 
3460 void
3461 nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr)
3462 {
3463 	struct spdk_nvme_ctrlr_process	*active_proc;
3464 
3465 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3466 
3467 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3468 
3469 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3470 	if (active_proc) {
3471 		active_proc->ref++;
3472 	}
3473 
3474 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3475 }
3476 
3477 void
3478 nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr)
3479 {
3480 	struct spdk_nvme_ctrlr_process	*active_proc;
3481 	int				proc_count;
3482 
3483 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3484 
3485 	proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr);
3486 
3487 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3488 	if (active_proc) {
3489 		active_proc->ref--;
3490 		assert(active_proc->ref >= 0);
3491 
3492 		/*
3493 		 * The last active process will be removed at the end of
3494 		 * the destruction of the controller.
3495 		 */
3496 		if (active_proc->ref == 0 && proc_count != 1) {
3497 			nvme_ctrlr_remove_process(ctrlr, active_proc);
3498 		}
3499 	}
3500 
3501 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3502 }
3503 
3504 int
3505 nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr)
3506 {
3507 	struct spdk_nvme_ctrlr_process	*active_proc;
3508 	int				ref = 0;
3509 
3510 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3511 
3512 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3513 
3514 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3515 		ref += active_proc->ref;
3516 	}
3517 
3518 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3519 
3520 	return ref;
3521 }
3522 
3523 /**
3524  *  Get the PCI device handle which is only visible to its associated process.
3525  */
3526 struct spdk_pci_device *
3527 nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr)
3528 {
3529 	struct spdk_nvme_ctrlr_process	*active_proc;
3530 	struct spdk_pci_device		*devhandle = NULL;
3531 
3532 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3533 
3534 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3535 	if (active_proc) {
3536 		devhandle = active_proc->devhandle;
3537 	}
3538 
3539 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3540 
3541 	return devhandle;
3542 }
3543 
3544 static void
3545 nvme_ctrlr_process_init_vs_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3546 {
3547 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3548 
3549 	if (spdk_nvme_cpl_is_error(cpl)) {
3550 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the VS register\n");
3551 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3552 		return;
3553 	}
3554 
3555 	assert(value <= UINT32_MAX);
3556 	ctrlr->vs.raw = (uint32_t)value;
3557 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP, NVME_TIMEOUT_INFINITE);
3558 }
3559 
3560 static void
3561 nvme_ctrlr_process_init_cap_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3562 {
3563 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3564 
3565 	if (spdk_nvme_cpl_is_error(cpl)) {
3566 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CAP register\n");
3567 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3568 		return;
3569 	}
3570 
3571 	ctrlr->cap.raw = value;
3572 	nvme_ctrlr_init_cap(ctrlr);
3573 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
3574 }
3575 
3576 static void
3577 nvme_ctrlr_process_init_check_en(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3578 {
3579 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3580 	enum nvme_ctrlr_state state;
3581 
3582 	if (spdk_nvme_cpl_is_error(cpl)) {
3583 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3584 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3585 		return;
3586 	}
3587 
3588 	assert(value <= UINT32_MAX);
3589 	ctrlr->process_init_cc.raw = (uint32_t)value;
3590 
3591 	if (ctrlr->process_init_cc.bits.en) {
3592 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1\n");
3593 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1;
3594 	} else {
3595 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0;
3596 	}
3597 
3598 	nvme_ctrlr_set_state(ctrlr, state, nvme_ctrlr_get_ready_timeout(ctrlr));
3599 }
3600 
3601 static void
3602 nvme_ctrlr_process_init_set_en_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3603 {
3604 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3605 
3606 	if (spdk_nvme_cpl_is_error(cpl)) {
3607 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write the CC register\n");
3608 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3609 		return;
3610 	}
3611 
3612 	/*
3613 	 * Wait 2.5 seconds before accessing PCI registers.
3614 	 * Not using sleep() to avoid blocking other controller's initialization.
3615 	 */
3616 	if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) {
3617 		NVME_CTRLR_DEBUGLOG(ctrlr, "Applying quirk: delay 2.5 seconds before reading registers\n");
3618 		ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2500 * spdk_get_ticks_hz() / 1000);
3619 	}
3620 
3621 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3622 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3623 }
3624 
3625 static void
3626 nvme_ctrlr_process_init_set_en_0_read_cc(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3627 {
3628 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3629 	union spdk_nvme_cc_register cc;
3630 	int rc;
3631 
3632 	if (spdk_nvme_cpl_is_error(cpl)) {
3633 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3634 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3635 		return;
3636 	}
3637 
3638 	assert(value <= UINT32_MAX);
3639 	cc.raw = (uint32_t)value;
3640 	cc.bits.en = 0;
3641 	ctrlr->process_init_cc.raw = cc.raw;
3642 
3643 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC,
3644 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3645 
3646 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_process_init_set_en_0, ctrlr);
3647 	if (rc != 0) {
3648 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
3649 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3650 	}
3651 }
3652 
3653 static void
3654 nvme_ctrlr_process_init_wait_for_ready_1(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3655 {
3656 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3657 	union spdk_nvme_csts_register csts;
3658 
3659 	if (spdk_nvme_cpl_is_error(cpl)) {
3660 		/* While a device is resetting, it may be unable to service MMIO reads
3661 		 * temporarily. Allow for this case.
3662 		 */
3663 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3664 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3665 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3666 					     NVME_TIMEOUT_KEEP_EXISTING);
3667 		} else {
3668 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3669 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3670 		}
3671 
3672 		return;
3673 	}
3674 
3675 	assert(value <= UINT32_MAX);
3676 	csts.raw = (uint32_t)value;
3677 	if (csts.bits.rdy == 1 || csts.bits.cfs == 1) {
3678 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0,
3679 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3680 	} else {
3681 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n");
3682 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3683 					   NVME_TIMEOUT_KEEP_EXISTING);
3684 	}
3685 }
3686 
3687 static void
3688 nvme_ctrlr_process_init_wait_for_ready_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3689 {
3690 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3691 	union spdk_nvme_csts_register csts;
3692 
3693 	if (spdk_nvme_cpl_is_error(cpl)) {
3694 		/* While a device is resetting, it may be unable to service MMIO reads
3695 		 * temporarily. Allow for this case.
3696 		 */
3697 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3698 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3699 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3700 					     NVME_TIMEOUT_KEEP_EXISTING);
3701 		} else {
3702 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3703 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3704 		}
3705 
3706 		return;
3707 	}
3708 
3709 	assert(value <= UINT32_MAX);
3710 	csts.raw = (uint32_t)value;
3711 	if (csts.bits.rdy == 0) {
3712 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 0 && CSTS.RDY = 0\n");
3713 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLED,
3714 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3715 	} else {
3716 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3717 					   NVME_TIMEOUT_KEEP_EXISTING);
3718 	}
3719 }
3720 
3721 static void
3722 nvme_ctrlr_process_init_enable_wait_for_ready_1(void *ctx, uint64_t value,
3723 		const struct spdk_nvme_cpl *cpl)
3724 {
3725 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3726 	union spdk_nvme_csts_register csts;
3727 
3728 	if (spdk_nvme_cpl_is_error(cpl)) {
3729 		/* While a device is resetting, it may be unable to service MMIO reads
3730 		 * temporarily. Allow for this case.
3731 		 */
3732 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3733 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3734 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3735 					     NVME_TIMEOUT_KEEP_EXISTING);
3736 		} else {
3737 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3738 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3739 		}
3740 
3741 		return;
3742 	}
3743 
3744 	assert(value <= UINT32_MAX);
3745 	csts.raw = value;
3746 	if (csts.bits.rdy == 1) {
3747 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n");
3748 		/*
3749 		 * The controller has been enabled.
3750 		 *  Perform the rest of initialization serially.
3751 		 */
3752 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_RESET_ADMIN_QUEUE,
3753 				     ctrlr->opts.admin_timeout_ms);
3754 	} else {
3755 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3756 					   NVME_TIMEOUT_KEEP_EXISTING);
3757 	}
3758 }
3759 
3760 /**
3761  * This function will be called repeatedly during initialization until the controller is ready.
3762  */
3763 int
3764 nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr)
3765 {
3766 	uint32_t ready_timeout_in_ms;
3767 	uint64_t ticks;
3768 	int rc = 0;
3769 
3770 	ticks = spdk_get_ticks();
3771 
3772 	/*
3773 	 * May need to avoid accessing any register on the target controller
3774 	 * for a while. Return early without touching the FSM.
3775 	 * Check sleep_timeout_tsc > 0 for unit test.
3776 	 */
3777 	if ((ctrlr->sleep_timeout_tsc > 0) &&
3778 	    (ticks <= ctrlr->sleep_timeout_tsc)) {
3779 		return 0;
3780 	}
3781 	ctrlr->sleep_timeout_tsc = 0;
3782 
3783 	ready_timeout_in_ms = nvme_ctrlr_get_ready_timeout(ctrlr);
3784 
3785 	/*
3786 	 * Check if the current initialization step is done or has timed out.
3787 	 */
3788 	switch (ctrlr->state) {
3789 	case NVME_CTRLR_STATE_INIT_DELAY:
3790 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, ready_timeout_in_ms);
3791 		if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_INIT) {
3792 			/*
3793 			 * Controller may need some delay before it's enabled.
3794 			 *
3795 			 * This is a workaround for an issue where the PCIe-attached NVMe controller
3796 			 * is not ready after VFIO reset. We delay the initialization rather than the
3797 			 * enabling itself, because this is required only for the very first enabling
3798 			 * - directly after a VFIO reset.
3799 			 */
3800 			NVME_CTRLR_DEBUGLOG(ctrlr, "Adding 2 second delay before initializing the controller\n");
3801 			ctrlr->sleep_timeout_tsc = ticks + (2000 * spdk_get_ticks_hz() / 1000);
3802 		}
3803 		break;
3804 
3805 	case NVME_CTRLR_STATE_DISCONNECTED:
3806 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
3807 		break;
3808 
3809 	case NVME_CTRLR_STATE_CONNECT_ADMINQ: /* synonymous with NVME_CTRLR_STATE_INIT and NVME_CTRLR_STATE_DISCONNECTED */
3810 		rc = nvme_transport_ctrlr_connect_qpair(ctrlr, ctrlr->adminq);
3811 		if (rc == 0) {
3812 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ,
3813 					     NVME_TIMEOUT_INFINITE);
3814 		} else {
3815 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3816 		}
3817 		break;
3818 
3819 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
3820 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3821 
3822 		switch (nvme_qpair_get_state(ctrlr->adminq)) {
3823 		case NVME_QPAIR_CONNECTING:
3824 			break;
3825 		case NVME_QPAIR_CONNECTED:
3826 			nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
3827 		/* Fall through */
3828 		case NVME_QPAIR_ENABLED:
3829 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS,
3830 					     NVME_TIMEOUT_INFINITE);
3831 			/* Abort any queued requests that were sent while the adminq was connecting
3832 			 * to avoid stalling the init process during a reset, as requests don't get
3833 			 * resubmitted while the controller is resetting and subsequent commands
3834 			 * would get queued too.
3835 			 */
3836 			nvme_qpair_abort_queued_reqs(ctrlr->adminq);
3837 			break;
3838 		case NVME_QPAIR_DISCONNECTING:
3839 			assert(ctrlr->adminq->async == true);
3840 			break;
3841 		case NVME_QPAIR_DISCONNECTED:
3842 		/* fallthrough */
3843 		default:
3844 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3845 			break;
3846 		}
3847 
3848 		break;
3849 
3850 	case NVME_CTRLR_STATE_READ_VS:
3851 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS, NVME_TIMEOUT_INFINITE);
3852 		rc = nvme_ctrlr_get_vs_async(ctrlr, nvme_ctrlr_process_init_vs_done, ctrlr);
3853 		break;
3854 
3855 	case NVME_CTRLR_STATE_READ_CAP:
3856 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP, NVME_TIMEOUT_INFINITE);
3857 		rc = nvme_ctrlr_get_cap_async(ctrlr, nvme_ctrlr_process_init_cap_done, ctrlr);
3858 		break;
3859 
3860 	case NVME_CTRLR_STATE_CHECK_EN:
3861 		/* Begin the hardware initialization by making sure the controller is disabled. */
3862 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC, ready_timeout_in_ms);
3863 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_check_en, ctrlr);
3864 		break;
3865 
3866 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
3867 		/*
3868 		 * Controller is currently enabled. We need to disable it to cause a reset.
3869 		 *
3870 		 * If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready.
3871 		 *  Wait for the ready bit to be 1 before disabling the controller.
3872 		 */
3873 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
3874 					   NVME_TIMEOUT_KEEP_EXISTING);
3875 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_1, ctrlr);
3876 		break;
3877 
3878 	case NVME_CTRLR_STATE_SET_EN_0:
3879 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 0\n");
3880 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC, ready_timeout_in_ms);
3881 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_set_en_0_read_cc, ctrlr);
3882 		break;
3883 
3884 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
3885 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS,
3886 					   NVME_TIMEOUT_KEEP_EXISTING);
3887 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_0, ctrlr);
3888 		break;
3889 
3890 	case NVME_CTRLR_STATE_DISABLED:
3891 		if (ctrlr->is_disconnecting) {
3892 			NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr was disabled.\n");
3893 		} else {
3894 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms);
3895 
3896 			/*
3897 			 * Delay 100us before setting CC.EN = 1.  Some NVMe SSDs miss CC.EN getting
3898 			 *  set to 1 if it is too soon after CSTS.RDY is reported as 0.
3899 			 */
3900 			spdk_delay_us(100);
3901 		}
3902 		break;
3903 
3904 	case NVME_CTRLR_STATE_ENABLE:
3905 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 1\n");
3906 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC, ready_timeout_in_ms);
3907 		rc = nvme_ctrlr_enable(ctrlr);
3908 		if (rc) {
3909 			NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr enable failed with error: %d", rc);
3910 		}
3911 		return rc;
3912 
3913 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
3914 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
3915 					   NVME_TIMEOUT_KEEP_EXISTING);
3916 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_enable_wait_for_ready_1,
3917 					       ctrlr);
3918 		break;
3919 
3920 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
3921 		nvme_transport_qpair_reset(ctrlr->adminq);
3922 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY, NVME_TIMEOUT_INFINITE);
3923 		break;
3924 
3925 	case NVME_CTRLR_STATE_IDENTIFY:
3926 		rc = nvme_ctrlr_identify(ctrlr);
3927 		break;
3928 
3929 	case NVME_CTRLR_STATE_CONFIGURE_AER:
3930 		rc = nvme_ctrlr_configure_aer(ctrlr);
3931 		break;
3932 
3933 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
3934 		rc = nvme_ctrlr_set_keep_alive_timeout(ctrlr);
3935 		break;
3936 
3937 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
3938 		rc = nvme_ctrlr_identify_iocs_specific(ctrlr);
3939 		break;
3940 
3941 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
3942 		rc = nvme_ctrlr_get_zns_cmd_and_effects_log(ctrlr);
3943 		break;
3944 
3945 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
3946 		nvme_ctrlr_update_nvmf_ioccsz(ctrlr);
3947 		rc = nvme_ctrlr_set_num_queues(ctrlr);
3948 		break;
3949 
3950 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
3951 		_nvme_ctrlr_identify_active_ns(ctrlr);
3952 		break;
3953 
3954 	case NVME_CTRLR_STATE_IDENTIFY_NS:
3955 		rc = nvme_ctrlr_identify_namespaces(ctrlr);
3956 		break;
3957 
3958 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
3959 		rc = nvme_ctrlr_identify_id_desc_namespaces(ctrlr);
3960 		break;
3961 
3962 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
3963 		rc = nvme_ctrlr_identify_namespaces_iocs_specific(ctrlr);
3964 		break;
3965 
3966 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
3967 		rc = nvme_ctrlr_set_supported_log_pages(ctrlr);
3968 		break;
3969 
3970 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
3971 		rc = nvme_ctrlr_set_intel_support_log_pages(ctrlr);
3972 		break;
3973 
3974 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
3975 		nvme_ctrlr_set_supported_features(ctrlr);
3976 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
3977 				     ctrlr->opts.admin_timeout_ms);
3978 		break;
3979 
3980 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
3981 		rc = nvme_ctrlr_set_doorbell_buffer_config(ctrlr);
3982 		break;
3983 
3984 	case NVME_CTRLR_STATE_SET_HOST_ID:
3985 		rc = nvme_ctrlr_set_host_id(ctrlr);
3986 		break;
3987 
3988 	case NVME_CTRLR_STATE_TRANSPORT_READY:
3989 		rc = nvme_transport_ctrlr_ready(ctrlr);
3990 		if (rc) {
3991 			NVME_CTRLR_ERRLOG(ctrlr, "Transport controller ready step failed: rc %d\n", rc);
3992 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3993 		} else {
3994 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
3995 		}
3996 		break;
3997 
3998 	case NVME_CTRLR_STATE_READY:
3999 		NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr already in ready state\n");
4000 		return 0;
4001 
4002 	case NVME_CTRLR_STATE_ERROR:
4003 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr is in error state\n");
4004 		return -1;
4005 
4006 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
4007 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
4008 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
4009 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
4010 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4011 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
4012 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
4013 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4014 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
4015 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
4016 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
4017 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
4018 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
4019 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
4020 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
4021 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
4022 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
4023 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
4024 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
4025 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
4026 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
4027 		/*
4028 		 * nvme_ctrlr_process_init() may be called from the completion context
4029 		 * for the admin qpair. Avoid recursive calls for this case.
4030 		 */
4031 		if (!ctrlr->adminq->in_completion_context) {
4032 			spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4033 		}
4034 		break;
4035 
4036 	default:
4037 		assert(0);
4038 		return -1;
4039 	}
4040 
4041 	if (rc) {
4042 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr operation failed with error: %d, ctrlr state: %d (%s)\n",
4043 				  rc, ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4044 	}
4045 
4046 	/* Note: we use the ticks captured when we entered this function.
4047 	 * This covers environments where the SPDK process gets swapped out after
4048 	 * we tried to advance the state but before we check the timeout here.
4049 	 * It is not normal for this to happen, but harmless to handle it in this
4050 	 * way.
4051 	 */
4052 	if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE &&
4053 	    ticks > ctrlr->state_timeout_tsc) {
4054 		NVME_CTRLR_ERRLOG(ctrlr, "Initialization timed out in state %d (%s)\n",
4055 				  ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4056 		return -1;
4057 	}
4058 
4059 	return rc;
4060 }
4061 
4062 int
4063 nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx)
4064 {
4065 	pthread_mutexattr_t attr;
4066 	int rc = 0;
4067 
4068 	if (pthread_mutexattr_init(&attr)) {
4069 		return -1;
4070 	}
4071 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) ||
4072 #ifndef __FreeBSD__
4073 	    pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
4074 	    pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
4075 #endif
4076 	    pthread_mutex_init(mtx, &attr)) {
4077 		rc = -1;
4078 	}
4079 	pthread_mutexattr_destroy(&attr);
4080 	return rc;
4081 }
4082 
4083 int
4084 nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
4085 {
4086 	int rc;
4087 
4088 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4089 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT_DELAY, NVME_TIMEOUT_INFINITE);
4090 	} else {
4091 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
4092 	}
4093 
4094 	if (ctrlr->opts.admin_queue_size > SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES) {
4095 		NVME_CTRLR_ERRLOG(ctrlr, "admin_queue_size %u exceeds max defined by NVMe spec, use max value\n",
4096 				  ctrlr->opts.admin_queue_size);
4097 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES;
4098 	}
4099 
4100 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_ADMIN_QUEUE_SIZE &&
4101 	    (ctrlr->opts.admin_queue_size % SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE) != 0) {
4102 		NVME_CTRLR_ERRLOG(ctrlr,
4103 				  "admin_queue_size %u is invalid for this NVMe device, adjust to next multiple\n",
4104 				  ctrlr->opts.admin_queue_size);
4105 		ctrlr->opts.admin_queue_size = SPDK_ALIGN_CEIL(ctrlr->opts.admin_queue_size,
4106 					       SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE);
4107 	}
4108 
4109 	if (ctrlr->opts.admin_queue_size < SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES) {
4110 		NVME_CTRLR_ERRLOG(ctrlr,
4111 				  "admin_queue_size %u is less than minimum defined by NVMe spec, use min value\n",
4112 				  ctrlr->opts.admin_queue_size);
4113 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES;
4114 	}
4115 
4116 	ctrlr->flags = 0;
4117 	ctrlr->free_io_qids = NULL;
4118 	ctrlr->is_resetting = false;
4119 	ctrlr->is_failed = false;
4120 	ctrlr->is_destructed = false;
4121 
4122 	TAILQ_INIT(&ctrlr->active_io_qpairs);
4123 	STAILQ_INIT(&ctrlr->queued_aborts);
4124 	ctrlr->outstanding_aborts = 0;
4125 
4126 	ctrlr->ana_log_page = NULL;
4127 	ctrlr->ana_log_page_size = 0;
4128 
4129 	rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock);
4130 	if (rc != 0) {
4131 		return rc;
4132 	}
4133 
4134 	TAILQ_INIT(&ctrlr->active_procs);
4135 	STAILQ_INIT(&ctrlr->register_operations);
4136 
4137 	RB_INIT(&ctrlr->ns);
4138 
4139 	return rc;
4140 }
4141 
4142 static void
4143 nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr)
4144 {
4145 	if (ctrlr->cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) {
4146 		ctrlr->flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED;
4147 	}
4148 
4149 	ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin);
4150 
4151 	/* For now, always select page_size == min_page_size. */
4152 	ctrlr->page_size = ctrlr->min_page_size;
4153 
4154 	ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES);
4155 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, MAX_IO_QUEUE_ENTRIES);
4156 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE &&
4157 	    ctrlr->opts.io_queue_size == DEFAULT_IO_QUEUE_SIZE) {
4158 		/* If the user specifically set an IO queue size different than the
4159 		 * default, use that value.  Otherwise overwrite with the quirked value.
4160 		 * This allows this quirk to be overridden when necessary.
4161 		 * However, cap.mqes still needs to be respected.
4162 		 */
4163 		ctrlr->opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK;
4164 	}
4165 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u);
4166 
4167 	ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size);
4168 }
4169 
4170 void
4171 nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr)
4172 {
4173 	pthread_mutex_destroy(&ctrlr->ctrlr_lock);
4174 }
4175 
4176 void
4177 nvme_ctrlr_destruct_async(struct spdk_nvme_ctrlr *ctrlr,
4178 			  struct nvme_ctrlr_detach_ctx *ctx)
4179 {
4180 	struct spdk_nvme_qpair *qpair, *tmp;
4181 
4182 	NVME_CTRLR_DEBUGLOG(ctrlr, "Prepare to destruct SSD\n");
4183 
4184 	ctrlr->prepare_for_reset = false;
4185 	ctrlr->is_destructed = true;
4186 
4187 	spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4188 
4189 	nvme_ctrlr_abort_queued_aborts(ctrlr);
4190 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
4191 
4192 	TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) {
4193 		spdk_nvme_ctrlr_free_io_qpair(qpair);
4194 	}
4195 
4196 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
4197 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
4198 
4199 	nvme_ctrlr_shutdown_async(ctrlr, ctx);
4200 }
4201 
4202 int
4203 nvme_ctrlr_destruct_poll_async(struct spdk_nvme_ctrlr *ctrlr,
4204 			       struct nvme_ctrlr_detach_ctx *ctx)
4205 {
4206 	struct spdk_nvme_ns *ns, *tmp_ns;
4207 	int rc = 0;
4208 
4209 	if (!ctx->shutdown_complete) {
4210 		rc = nvme_ctrlr_shutdown_poll_async(ctrlr, ctx);
4211 		if (rc == -EAGAIN) {
4212 			return -EAGAIN;
4213 		}
4214 		/* Destruct ctrlr forcefully for any other error. */
4215 	}
4216 
4217 	if (ctx->cb_fn) {
4218 		ctx->cb_fn(ctrlr);
4219 	}
4220 
4221 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
4222 
4223 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
4224 		nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
4225 		RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
4226 		spdk_free(ns);
4227 	}
4228 
4229 	ctrlr->active_ns_count = 0;
4230 
4231 	spdk_bit_array_free(&ctrlr->free_io_qids);
4232 
4233 	free(ctrlr->ana_log_page);
4234 	free(ctrlr->copied_ana_desc);
4235 	ctrlr->ana_log_page = NULL;
4236 	ctrlr->copied_ana_desc = NULL;
4237 	ctrlr->ana_log_page_size = 0;
4238 
4239 	nvme_transport_ctrlr_destruct(ctrlr);
4240 
4241 	return rc;
4242 }
4243 
4244 void
4245 nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
4246 {
4247 	struct nvme_ctrlr_detach_ctx ctx = { .ctrlr = ctrlr };
4248 	int rc;
4249 
4250 	nvme_ctrlr_destruct_async(ctrlr, &ctx);
4251 
4252 	while (1) {
4253 		rc = nvme_ctrlr_destruct_poll_async(ctrlr, &ctx);
4254 		if (rc != -EAGAIN) {
4255 			break;
4256 		}
4257 		nvme_delay(1000);
4258 	}
4259 }
4260 
4261 int
4262 nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
4263 				struct nvme_request *req)
4264 {
4265 	return nvme_qpair_submit_request(ctrlr->adminq, req);
4266 }
4267 
4268 static void
4269 nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl)
4270 {
4271 	/* Do nothing */
4272 }
4273 
4274 /*
4275  * Check if we need to send a Keep Alive command.
4276  * Caller must hold ctrlr->ctrlr_lock.
4277  */
4278 static int
4279 nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr)
4280 {
4281 	uint64_t now;
4282 	struct nvme_request *req;
4283 	struct spdk_nvme_cmd *cmd;
4284 	int rc = 0;
4285 
4286 	now = spdk_get_ticks();
4287 	if (now < ctrlr->next_keep_alive_tick) {
4288 		return rc;
4289 	}
4290 
4291 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL);
4292 	if (req == NULL) {
4293 		return rc;
4294 	}
4295 
4296 	cmd = &req->cmd;
4297 	cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE;
4298 
4299 	rc = nvme_ctrlr_submit_admin_request(ctrlr, req);
4300 	if (rc != 0) {
4301 		NVME_CTRLR_ERRLOG(ctrlr, "Submitting Keep Alive failed\n");
4302 		rc = -ENXIO;
4303 	}
4304 
4305 	ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks;
4306 	return rc;
4307 }
4308 
4309 int32_t
4310 spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr)
4311 {
4312 	int32_t num_completions;
4313 	int32_t rc;
4314 	struct spdk_nvme_ctrlr_process	*active_proc;
4315 
4316 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4317 
4318 	if (ctrlr->keep_alive_interval_ticks) {
4319 		rc = nvme_ctrlr_keep_alive(ctrlr);
4320 		if (rc) {
4321 			nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4322 			return rc;
4323 		}
4324 	}
4325 
4326 	rc = nvme_io_msg_process(ctrlr);
4327 	if (rc < 0) {
4328 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4329 		return rc;
4330 	}
4331 	num_completions = rc;
4332 
4333 	rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4334 
4335 	/* Each process has an async list, complete the ones for this process object */
4336 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4337 	if (active_proc) {
4338 		nvme_ctrlr_complete_queued_async_events(ctrlr);
4339 	}
4340 
4341 	if (rc == -ENXIO && ctrlr->is_disconnecting) {
4342 		nvme_ctrlr_disconnect_done(ctrlr);
4343 	}
4344 
4345 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4346 
4347 	if (rc < 0) {
4348 		num_completions = rc;
4349 	} else {
4350 		num_completions += rc;
4351 	}
4352 
4353 	return num_completions;
4354 }
4355 
4356 const struct spdk_nvme_ctrlr_data *
4357 spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr)
4358 {
4359 	return &ctrlr->cdata;
4360 }
4361 
4362 union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
4363 {
4364 	union spdk_nvme_csts_register csts;
4365 
4366 	if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
4367 		csts.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4368 	}
4369 	return csts;
4370 }
4371 
4372 union spdk_nvme_cc_register spdk_nvme_ctrlr_get_regs_cc(struct spdk_nvme_ctrlr *ctrlr)
4373 {
4374 	union spdk_nvme_cc_register cc;
4375 
4376 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
4377 		cc.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4378 	}
4379 	return cc;
4380 }
4381 
4382 union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr)
4383 {
4384 	return ctrlr->cap;
4385 }
4386 
4387 union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr)
4388 {
4389 	return ctrlr->vs;
4390 }
4391 
4392 union spdk_nvme_cmbsz_register spdk_nvme_ctrlr_get_regs_cmbsz(struct spdk_nvme_ctrlr *ctrlr)
4393 {
4394 	union spdk_nvme_cmbsz_register cmbsz;
4395 
4396 	if (nvme_ctrlr_get_cmbsz(ctrlr, &cmbsz)) {
4397 		cmbsz.raw = 0;
4398 	}
4399 
4400 	return cmbsz;
4401 }
4402 
4403 union spdk_nvme_pmrcap_register spdk_nvme_ctrlr_get_regs_pmrcap(struct spdk_nvme_ctrlr *ctrlr)
4404 {
4405 	union spdk_nvme_pmrcap_register pmrcap;
4406 
4407 	if (nvme_ctrlr_get_pmrcap(ctrlr, &pmrcap)) {
4408 		pmrcap.raw = 0;
4409 	}
4410 
4411 	return pmrcap;
4412 }
4413 
4414 union spdk_nvme_bpinfo_register spdk_nvme_ctrlr_get_regs_bpinfo(struct spdk_nvme_ctrlr *ctrlr)
4415 {
4416 	union spdk_nvme_bpinfo_register bpinfo;
4417 
4418 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
4419 		bpinfo.raw = 0;
4420 	}
4421 
4422 	return bpinfo;
4423 }
4424 
4425 uint64_t
4426 spdk_nvme_ctrlr_get_pmrsz(struct spdk_nvme_ctrlr *ctrlr)
4427 {
4428 	return ctrlr->pmr_size;
4429 }
4430 
4431 uint32_t
4432 spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr)
4433 {
4434 	return ctrlr->cdata.nn;
4435 }
4436 
4437 bool
4438 spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4439 {
4440 	struct spdk_nvme_ns tmp, *ns;
4441 
4442 	tmp.id = nsid;
4443 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4444 
4445 	if (ns != NULL) {
4446 		return ns->active;
4447 	}
4448 
4449 	return false;
4450 }
4451 
4452 uint32_t
4453 spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr)
4454 {
4455 	struct spdk_nvme_ns *ns;
4456 
4457 	ns = RB_MIN(nvme_ns_tree, &ctrlr->ns);
4458 	if (ns == NULL) {
4459 		return 0;
4460 	}
4461 
4462 	while (ns != NULL) {
4463 		if (ns->active) {
4464 			return ns->id;
4465 		}
4466 
4467 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4468 	}
4469 
4470 	return 0;
4471 }
4472 
4473 uint32_t
4474 spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
4475 {
4476 	struct spdk_nvme_ns tmp, *ns;
4477 
4478 	tmp.id = prev_nsid;
4479 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4480 	if (ns == NULL) {
4481 		return 0;
4482 	}
4483 
4484 	ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4485 	while (ns != NULL) {
4486 		if (ns->active) {
4487 			return ns->id;
4488 		}
4489 
4490 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4491 	}
4492 
4493 	return 0;
4494 }
4495 
4496 struct spdk_nvme_ns *
4497 spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4498 {
4499 	struct spdk_nvme_ns tmp;
4500 	struct spdk_nvme_ns *ns;
4501 
4502 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
4503 		return NULL;
4504 	}
4505 
4506 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4507 
4508 	tmp.id = nsid;
4509 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4510 
4511 	if (ns == NULL) {
4512 		ns = spdk_zmalloc(sizeof(struct spdk_nvme_ns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
4513 		if (ns == NULL) {
4514 			nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4515 			return NULL;
4516 		}
4517 
4518 		NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was added\n", nsid);
4519 		ns->id = nsid;
4520 		RB_INSERT(nvme_ns_tree, &ctrlr->ns, ns);
4521 	}
4522 
4523 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4524 
4525 	return ns;
4526 }
4527 
4528 struct spdk_pci_device *
4529 spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr)
4530 {
4531 	if (ctrlr == NULL) {
4532 		return NULL;
4533 	}
4534 
4535 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
4536 		return NULL;
4537 	}
4538 
4539 	return nvme_ctrlr_proc_get_devhandle(ctrlr);
4540 }
4541 
4542 uint32_t
4543 spdk_nvme_ctrlr_get_max_xfer_size(const struct spdk_nvme_ctrlr *ctrlr)
4544 {
4545 	return ctrlr->max_xfer_size;
4546 }
4547 
4548 void
4549 spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr,
4550 				      spdk_nvme_aer_cb aer_cb_fn,
4551 				      void *aer_cb_arg)
4552 {
4553 	struct spdk_nvme_ctrlr_process *active_proc;
4554 
4555 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4556 
4557 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4558 	if (active_proc) {
4559 		active_proc->aer_cb_fn = aer_cb_fn;
4560 		active_proc->aer_cb_arg = aer_cb_arg;
4561 	}
4562 
4563 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4564 }
4565 
4566 void
4567 spdk_nvme_ctrlr_disable_read_changed_ns_list_log_page(struct spdk_nvme_ctrlr *ctrlr)
4568 {
4569 	ctrlr->opts.disable_read_changed_ns_list_log_page = true;
4570 }
4571 
4572 void
4573 spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr,
4574 		uint64_t timeout_io_us, uint64_t timeout_admin_us,
4575 		spdk_nvme_timeout_cb cb_fn, void *cb_arg)
4576 {
4577 	struct spdk_nvme_ctrlr_process	*active_proc;
4578 
4579 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4580 
4581 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4582 	if (active_proc) {
4583 		active_proc->timeout_io_ticks = timeout_io_us * spdk_get_ticks_hz() / 1000000ULL;
4584 		active_proc->timeout_admin_ticks = timeout_admin_us * spdk_get_ticks_hz() / 1000000ULL;
4585 		active_proc->timeout_cb_fn = cb_fn;
4586 		active_proc->timeout_cb_arg = cb_arg;
4587 	}
4588 
4589 	ctrlr->timeout_enabled = true;
4590 
4591 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4592 }
4593 
4594 bool
4595 spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page)
4596 {
4597 	/* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
4598 	SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
4599 	return ctrlr->log_page_supported[log_page];
4600 }
4601 
4602 bool
4603 spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code)
4604 {
4605 	/* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
4606 	SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
4607 	return ctrlr->feature_supported[feature_code];
4608 }
4609 
4610 int
4611 spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4612 			  struct spdk_nvme_ctrlr_list *payload)
4613 {
4614 	struct nvme_completion_poll_status	*status;
4615 	struct spdk_nvme_ns			*ns;
4616 	int					res;
4617 
4618 	if (nsid == 0) {
4619 		return -EINVAL;
4620 	}
4621 
4622 	status = calloc(1, sizeof(*status));
4623 	if (!status) {
4624 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4625 		return -ENOMEM;
4626 	}
4627 
4628 	res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload,
4629 				       nvme_completion_poll_cb, status);
4630 	if (res) {
4631 		free(status);
4632 		return res;
4633 	}
4634 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4635 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_attach_ns failed!\n");
4636 		if (!status->timed_out) {
4637 			free(status);
4638 		}
4639 		return -ENXIO;
4640 	}
4641 	free(status);
4642 
4643 	res = nvme_ctrlr_identify_active_ns(ctrlr);
4644 	if (res) {
4645 		return res;
4646 	}
4647 
4648 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
4649 	if (ns == NULL) {
4650 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_get_ns failed!\n");
4651 		return -ENXIO;
4652 	}
4653 
4654 	return nvme_ns_construct(ns, nsid, ctrlr);
4655 }
4656 
4657 int
4658 spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4659 			  struct spdk_nvme_ctrlr_list *payload)
4660 {
4661 	struct nvme_completion_poll_status	*status;
4662 	int					res;
4663 
4664 	if (nsid == 0) {
4665 		return -EINVAL;
4666 	}
4667 
4668 	status = calloc(1, sizeof(*status));
4669 	if (!status) {
4670 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4671 		return -ENOMEM;
4672 	}
4673 
4674 	res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload,
4675 				       nvme_completion_poll_cb, status);
4676 	if (res) {
4677 		free(status);
4678 		return res;
4679 	}
4680 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4681 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_detach_ns failed!\n");
4682 		if (!status->timed_out) {
4683 			free(status);
4684 		}
4685 		return -ENXIO;
4686 	}
4687 	free(status);
4688 
4689 	return nvme_ctrlr_identify_active_ns(ctrlr);
4690 }
4691 
4692 uint32_t
4693 spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload)
4694 {
4695 	struct nvme_completion_poll_status	*status;
4696 	int					res;
4697 	uint32_t				nsid;
4698 
4699 	status = calloc(1, sizeof(*status));
4700 	if (!status) {
4701 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4702 		return 0;
4703 	}
4704 
4705 	res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, status);
4706 	if (res) {
4707 		free(status);
4708 		return 0;
4709 	}
4710 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4711 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_create_ns failed!\n");
4712 		if (!status->timed_out) {
4713 			free(status);
4714 		}
4715 		return 0;
4716 	}
4717 
4718 	nsid = status->cpl.cdw0;
4719 	free(status);
4720 
4721 	assert(nsid > 0);
4722 
4723 	/* Return the namespace ID that was created */
4724 	return nsid;
4725 }
4726 
4727 int
4728 spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4729 {
4730 	struct nvme_completion_poll_status	*status;
4731 	int					res;
4732 
4733 	if (nsid == 0) {
4734 		return -EINVAL;
4735 	}
4736 
4737 	status = calloc(1, sizeof(*status));
4738 	if (!status) {
4739 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4740 		return -ENOMEM;
4741 	}
4742 
4743 	res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, status);
4744 	if (res) {
4745 		free(status);
4746 		return res;
4747 	}
4748 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4749 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_delete_ns failed!\n");
4750 		if (!status->timed_out) {
4751 			free(status);
4752 		}
4753 		return -ENXIO;
4754 	}
4755 	free(status);
4756 
4757 	return nvme_ctrlr_identify_active_ns(ctrlr);
4758 }
4759 
4760 int
4761 spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4762 		       struct spdk_nvme_format *format)
4763 {
4764 	struct nvme_completion_poll_status	*status;
4765 	int					res;
4766 
4767 	status = calloc(1, sizeof(*status));
4768 	if (!status) {
4769 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4770 		return -ENOMEM;
4771 	}
4772 
4773 	res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb,
4774 				    status);
4775 	if (res) {
4776 		free(status);
4777 		return res;
4778 	}
4779 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4780 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_format failed!\n");
4781 		if (!status->timed_out) {
4782 			free(status);
4783 		}
4784 		return -ENXIO;
4785 	}
4786 	free(status);
4787 
4788 	return spdk_nvme_ctrlr_reset(ctrlr);
4789 }
4790 
4791 int
4792 spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size,
4793 				int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status)
4794 {
4795 	struct spdk_nvme_fw_commit		fw_commit;
4796 	struct nvme_completion_poll_status	*status;
4797 	int					res;
4798 	unsigned int				size_remaining;
4799 	unsigned int				offset;
4800 	unsigned int				transfer;
4801 	uint8_t					*p;
4802 
4803 	if (!completion_status) {
4804 		return -EINVAL;
4805 	}
4806 	memset(completion_status, 0, sizeof(struct spdk_nvme_status));
4807 	if (size % 4) {
4808 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid size!\n");
4809 		return -1;
4810 	}
4811 
4812 	/* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG
4813 	 * and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG
4814 	 */
4815 	if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) &&
4816 	    (commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) {
4817 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid command!\n");
4818 		return -1;
4819 	}
4820 
4821 	status = calloc(1, sizeof(*status));
4822 	if (!status) {
4823 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4824 		return -ENOMEM;
4825 	}
4826 
4827 	/* Firmware download */
4828 	size_remaining = size;
4829 	offset = 0;
4830 	p = payload;
4831 
4832 	while (size_remaining > 0) {
4833 		transfer = spdk_min(size_remaining, ctrlr->min_page_size);
4834 
4835 		memset(status, 0, sizeof(*status));
4836 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p,
4837 						       nvme_completion_poll_cb,
4838 						       status);
4839 		if (res) {
4840 			free(status);
4841 			return res;
4842 		}
4843 
4844 		if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4845 			NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_fw_image_download failed!\n");
4846 			if (!status->timed_out) {
4847 				free(status);
4848 			}
4849 			return -ENXIO;
4850 		}
4851 		p += transfer;
4852 		offset += transfer;
4853 		size_remaining -= transfer;
4854 	}
4855 
4856 	/* Firmware commit */
4857 	memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
4858 	fw_commit.fs = slot;
4859 	fw_commit.ca = commit_action;
4860 
4861 	memset(status, 0, sizeof(*status));
4862 	res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb,
4863 				       status);
4864 	if (res) {
4865 		free(status);
4866 		return res;
4867 	}
4868 
4869 	res = nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock);
4870 
4871 	memcpy(completion_status, &status->cpl.status, sizeof(struct spdk_nvme_status));
4872 
4873 	if (!status->timed_out) {
4874 		free(status);
4875 	}
4876 
4877 	if (res) {
4878 		if (completion_status->sct != SPDK_NVME_SCT_COMMAND_SPECIFIC ||
4879 		    completion_status->sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) {
4880 			if (completion_status->sct == SPDK_NVME_SCT_COMMAND_SPECIFIC  &&
4881 			    completion_status->sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) {
4882 				NVME_CTRLR_NOTICELOG(ctrlr,
4883 						     "firmware activation requires conventional reset to be performed. !\n");
4884 			} else {
4885 				NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
4886 			}
4887 			return -ENXIO;
4888 		}
4889 	}
4890 
4891 	return spdk_nvme_ctrlr_reset(ctrlr);
4892 }
4893 
4894 int
4895 spdk_nvme_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
4896 {
4897 	int rc, size;
4898 	union spdk_nvme_cmbsz_register cmbsz;
4899 
4900 	cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr);
4901 
4902 	if (cmbsz.bits.rds == 0 || cmbsz.bits.wds == 0) {
4903 		return -ENOTSUP;
4904 	}
4905 
4906 	size = cmbsz.bits.sz * (0x1000 << (cmbsz.bits.szu * 4));
4907 
4908 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4909 	rc = nvme_transport_ctrlr_reserve_cmb(ctrlr);
4910 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4911 
4912 	if (rc < 0) {
4913 		return rc;
4914 	}
4915 
4916 	return size;
4917 }
4918 
4919 void *
4920 spdk_nvme_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
4921 {
4922 	void *buf;
4923 
4924 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4925 	buf = nvme_transport_ctrlr_map_cmb(ctrlr, size);
4926 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4927 
4928 	return buf;
4929 }
4930 
4931 void
4932 spdk_nvme_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr)
4933 {
4934 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4935 	nvme_transport_ctrlr_unmap_cmb(ctrlr);
4936 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4937 }
4938 
4939 int
4940 spdk_nvme_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr)
4941 {
4942 	int rc;
4943 
4944 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4945 	rc = nvme_transport_ctrlr_enable_pmr(ctrlr);
4946 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4947 
4948 	return rc;
4949 }
4950 
4951 int
4952 spdk_nvme_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr)
4953 {
4954 	int rc;
4955 
4956 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4957 	rc = nvme_transport_ctrlr_disable_pmr(ctrlr);
4958 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4959 
4960 	return rc;
4961 }
4962 
4963 void *
4964 spdk_nvme_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
4965 {
4966 	void *buf;
4967 
4968 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4969 	buf = nvme_transport_ctrlr_map_pmr(ctrlr, size);
4970 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4971 
4972 	return buf;
4973 }
4974 
4975 int
4976 spdk_nvme_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr)
4977 {
4978 	int rc;
4979 
4980 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4981 	rc = nvme_transport_ctrlr_unmap_pmr(ctrlr);
4982 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4983 
4984 	return rc;
4985 }
4986 
4987 int
4988 spdk_nvme_ctrlr_read_boot_partition_start(struct spdk_nvme_ctrlr *ctrlr, void *payload,
4989 		uint32_t bprsz, uint32_t bprof, uint32_t bpid)
4990 {
4991 	union spdk_nvme_bprsel_register bprsel;
4992 	union spdk_nvme_bpinfo_register bpinfo;
4993 	uint64_t bpmbl, bpmb_size;
4994 
4995 	if (ctrlr->cap.bits.bps == 0) {
4996 		return -ENOTSUP;
4997 	}
4998 
4999 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5000 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5001 		return -EIO;
5002 	}
5003 
5004 	if (bpinfo.bits.brs == SPDK_NVME_BRS_READ_IN_PROGRESS) {
5005 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read already initiated\n");
5006 		return -EALREADY;
5007 	}
5008 
5009 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5010 
5011 	bpmb_size = bprsz * 4096;
5012 	bpmbl = spdk_vtophys(payload, &bpmb_size);
5013 	if (bpmbl == SPDK_VTOPHYS_ERROR) {
5014 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_vtophys of bpmbl failed\n");
5015 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5016 		return -EFAULT;
5017 	}
5018 
5019 	if (bpmb_size != bprsz * 4096) {
5020 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition buffer is not physically contiguous\n");
5021 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5022 		return -EFAULT;
5023 	}
5024 
5025 	if (nvme_ctrlr_set_bpmbl(ctrlr, bpmbl)) {
5026 		NVME_CTRLR_ERRLOG(ctrlr, "set_bpmbl() failed\n");
5027 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5028 		return -EIO;
5029 	}
5030 
5031 	bprsel.bits.bpid = bpid;
5032 	bprsel.bits.bprof = bprof;
5033 	bprsel.bits.bprsz = bprsz;
5034 
5035 	if (nvme_ctrlr_set_bprsel(ctrlr, &bprsel)) {
5036 		NVME_CTRLR_ERRLOG(ctrlr, "set_bprsel() failed\n");
5037 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5038 		return -EIO;
5039 	}
5040 
5041 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5042 	return 0;
5043 }
5044 
5045 int
5046 spdk_nvme_ctrlr_read_boot_partition_poll(struct spdk_nvme_ctrlr *ctrlr)
5047 {
5048 	int rc = 0;
5049 	union spdk_nvme_bpinfo_register bpinfo;
5050 
5051 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5052 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5053 		return -EIO;
5054 	}
5055 
5056 	switch (bpinfo.bits.brs) {
5057 	case SPDK_NVME_BRS_NO_READ:
5058 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read not initiated\n");
5059 		rc = -EINVAL;
5060 		break;
5061 	case SPDK_NVME_BRS_READ_IN_PROGRESS:
5062 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition read in progress\n");
5063 		rc = -EAGAIN;
5064 		break;
5065 	case SPDK_NVME_BRS_READ_ERROR:
5066 		NVME_CTRLR_ERRLOG(ctrlr, "Error completing Boot Partition read\n");
5067 		rc = -EIO;
5068 		break;
5069 	case SPDK_NVME_BRS_READ_SUCCESS:
5070 		NVME_CTRLR_INFOLOG(ctrlr, "Boot Partition read completed successfully\n");
5071 		break;
5072 	default:
5073 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition read status\n");
5074 		rc = -EINVAL;
5075 	}
5076 
5077 	return rc;
5078 }
5079 
5080 static void
5081 nvme_write_boot_partition_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5082 {
5083 	int res;
5084 	struct spdk_nvme_ctrlr *ctrlr = arg;
5085 	struct spdk_nvme_fw_commit fw_commit;
5086 	struct spdk_nvme_cpl err_cpl =
5087 	{.status = {.sct = SPDK_NVME_SCT_GENERIC, .sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR }};
5088 
5089 	if (spdk_nvme_cpl_is_error(cpl)) {
5090 		NVME_CTRLR_ERRLOG(ctrlr, "Write Boot Partition failed\n");
5091 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5092 		return;
5093 	}
5094 
5095 	if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADING) {
5096 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Downloading at Offset %d Success\n", ctrlr->fw_offset);
5097 		ctrlr->fw_payload = (uint8_t *)ctrlr->fw_payload + ctrlr->fw_transfer_size;
5098 		ctrlr->fw_offset += ctrlr->fw_transfer_size;
5099 		ctrlr->fw_size_remaining -= ctrlr->fw_transfer_size;
5100 		ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5101 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5102 						       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5103 		if (res) {
5104 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_image_download failed!\n");
5105 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5106 			return;
5107 		}
5108 
5109 		if (ctrlr->fw_transfer_size < ctrlr->min_page_size) {
5110 			ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADED;
5111 		}
5112 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADED) {
5113 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Download Success\n");
5114 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5115 		fw_commit.bpid = ctrlr->bpid;
5116 		fw_commit.ca = SPDK_NVME_FW_COMMIT_REPLACE_BOOT_PARTITION;
5117 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5118 					       nvme_write_boot_partition_cb, ctrlr);
5119 		if (res) {
5120 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5121 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5122 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5123 			return;
5124 		}
5125 
5126 		ctrlr->bp_ws = SPDK_NVME_BP_WS_REPLACE;
5127 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_REPLACE) {
5128 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Replacement Success\n");
5129 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5130 		fw_commit.bpid = ctrlr->bpid;
5131 		fw_commit.ca = SPDK_NVME_FW_COMMIT_ACTIVATE_BOOT_PARTITION;
5132 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5133 					       nvme_write_boot_partition_cb, ctrlr);
5134 		if (res) {
5135 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5136 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5137 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5138 			return;
5139 		}
5140 
5141 		ctrlr->bp_ws = SPDK_NVME_BP_WS_ACTIVATE;
5142 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_ACTIVATE) {
5143 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Activation Success\n");
5144 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5145 	} else {
5146 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition write state\n");
5147 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5148 		return;
5149 	}
5150 }
5151 
5152 int
5153 spdk_nvme_ctrlr_write_boot_partition(struct spdk_nvme_ctrlr *ctrlr,
5154 				     void *payload, uint32_t size, uint32_t bpid,
5155 				     spdk_nvme_cmd_cb cb_fn, void *cb_arg)
5156 {
5157 	int res;
5158 
5159 	if (ctrlr->cap.bits.bps == 0) {
5160 		return -ENOTSUP;
5161 	}
5162 
5163 	ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADING;
5164 	ctrlr->bpid = bpid;
5165 	ctrlr->bp_write_cb_fn = cb_fn;
5166 	ctrlr->bp_write_cb_arg = cb_arg;
5167 	ctrlr->fw_offset = 0;
5168 	ctrlr->fw_size_remaining = size;
5169 	ctrlr->fw_payload = payload;
5170 	ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5171 
5172 	res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5173 					       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5174 
5175 	return res;
5176 }
5177 
5178 bool
5179 spdk_nvme_ctrlr_is_discovery(struct spdk_nvme_ctrlr *ctrlr)
5180 {
5181 	assert(ctrlr);
5182 
5183 	return !strncmp(ctrlr->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN,
5184 			strlen(SPDK_NVMF_DISCOVERY_NQN));
5185 }
5186 
5187 bool
5188 spdk_nvme_ctrlr_is_fabrics(struct spdk_nvme_ctrlr *ctrlr)
5189 {
5190 	assert(ctrlr);
5191 
5192 	return spdk_nvme_trtype_is_fabrics(ctrlr->trid.trtype);
5193 }
5194 
5195 int
5196 spdk_nvme_ctrlr_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5197 				 uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5198 {
5199 	struct nvme_completion_poll_status	*status;
5200 	int					res;
5201 
5202 	status = calloc(1, sizeof(*status));
5203 	if (!status) {
5204 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5205 		return -ENOMEM;
5206 	}
5207 
5208 	res = spdk_nvme_ctrlr_cmd_security_receive(ctrlr, secp, spsp, nssf, payload, size,
5209 			nvme_completion_poll_cb, status);
5210 	if (res) {
5211 		free(status);
5212 		return res;
5213 	}
5214 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5215 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_receive failed!\n");
5216 		if (!status->timed_out) {
5217 			free(status);
5218 		}
5219 		return -ENXIO;
5220 	}
5221 	free(status);
5222 
5223 	return 0;
5224 }
5225 
5226 int
5227 spdk_nvme_ctrlr_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5228 			      uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5229 {
5230 	struct nvme_completion_poll_status	*status;
5231 	int					res;
5232 
5233 	status = calloc(1, sizeof(*status));
5234 	if (!status) {
5235 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5236 		return -ENOMEM;
5237 	}
5238 
5239 	res = spdk_nvme_ctrlr_cmd_security_send(ctrlr, secp, spsp, nssf, payload, size,
5240 						nvme_completion_poll_cb,
5241 						status);
5242 	if (res) {
5243 		free(status);
5244 		return res;
5245 	}
5246 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5247 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_send failed!\n");
5248 		if (!status->timed_out) {
5249 			free(status);
5250 		}
5251 		return -ENXIO;
5252 	}
5253 
5254 	free(status);
5255 
5256 	return 0;
5257 }
5258 
5259 uint64_t
5260 spdk_nvme_ctrlr_get_flags(struct spdk_nvme_ctrlr *ctrlr)
5261 {
5262 	return ctrlr->flags;
5263 }
5264 
5265 const struct spdk_nvme_transport_id *
5266 spdk_nvme_ctrlr_get_transport_id(struct spdk_nvme_ctrlr *ctrlr)
5267 {
5268 	return &ctrlr->trid;
5269 }
5270 
5271 int32_t
5272 spdk_nvme_ctrlr_alloc_qid(struct spdk_nvme_ctrlr *ctrlr)
5273 {
5274 	uint32_t qid;
5275 
5276 	assert(ctrlr->free_io_qids);
5277 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5278 	qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1);
5279 	if (qid > ctrlr->opts.num_io_queues) {
5280 		NVME_CTRLR_ERRLOG(ctrlr, "No free I/O queue IDs\n");
5281 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5282 		return -1;
5283 	}
5284 
5285 	spdk_bit_array_clear(ctrlr->free_io_qids, qid);
5286 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5287 	return qid;
5288 }
5289 
5290 void
5291 spdk_nvme_ctrlr_free_qid(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid)
5292 {
5293 	assert(qid <= ctrlr->opts.num_io_queues);
5294 
5295 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5296 
5297 	if (spdk_likely(ctrlr->free_io_qids)) {
5298 		spdk_bit_array_set(ctrlr->free_io_qids, qid);
5299 	}
5300 
5301 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5302 }
5303 
5304 int
5305 spdk_nvme_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
5306 				   struct spdk_memory_domain **domains, int array_size)
5307 {
5308 	return nvme_transport_ctrlr_get_memory_domains(ctrlr, domains, array_size);
5309 }
5310