xref: /spdk/lib/nvme/nvme_ctrlr.c (revision a6dbe3721eb3b5990707fc3e378c95e505dd8ab5)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2015 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "nvme_internal.h"
10 #include "nvme_io_msg.h"
11 
12 #include "spdk/env.h"
13 #include "spdk/string.h"
14 #include "spdk/endian.h"
15 
16 struct nvme_active_ns_ctx;
17 
18 static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
19 		struct nvme_async_event_request *aer);
20 static void nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx);
21 static int nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns);
22 static int nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns);
23 static int nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns);
24 static void nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr);
25 static void nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
26 				 uint64_t timeout_in_ms);
27 
28 static int
29 nvme_ns_cmp(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
30 {
31 	if (ns1->id < ns2->id) {
32 		return -1;
33 	} else if (ns1->id > ns2->id) {
34 		return 1;
35 	} else {
36 		return 0;
37 	}
38 }
39 
40 RB_GENERATE_STATIC(nvme_ns_tree, spdk_nvme_ns, node, nvme_ns_cmp);
41 
42 #define CTRLR_STRING(ctrlr) \
43 	((ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP || ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA) ? \
44 	ctrlr->trid.subnqn : ctrlr->trid.traddr)
45 
46 #define NVME_CTRLR_ERRLOG(ctrlr, format, ...) \
47 	SPDK_ERRLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
48 
49 #define NVME_CTRLR_WARNLOG(ctrlr, format, ...) \
50 	SPDK_WARNLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
51 
52 #define NVME_CTRLR_NOTICELOG(ctrlr, format, ...) \
53 	SPDK_NOTICELOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
54 
55 #define NVME_CTRLR_INFOLOG(ctrlr, format, ...) \
56 	SPDK_INFOLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
57 
58 #ifdef DEBUG
59 #define NVME_CTRLR_DEBUGLOG(ctrlr, format, ...) \
60 	SPDK_DEBUGLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
61 #else
62 #define NVME_CTRLR_DEBUGLOG(ctrlr, ...) do { } while (0)
63 #endif
64 
65 #define nvme_ctrlr_get_reg_async(ctrlr, reg, sz, cb_fn, cb_arg) \
66 	nvme_transport_ctrlr_get_reg_ ## sz ## _async(ctrlr, \
67 		offsetof(struct spdk_nvme_registers, reg), cb_fn, cb_arg)
68 
69 #define nvme_ctrlr_set_reg_async(ctrlr, reg, sz, val, cb_fn, cb_arg) \
70 	nvme_transport_ctrlr_set_reg_ ## sz ## _async(ctrlr, \
71 		offsetof(struct spdk_nvme_registers, reg), val, cb_fn, cb_arg)
72 
73 #define nvme_ctrlr_get_cc_async(ctrlr, cb_fn, cb_arg) \
74 	nvme_ctrlr_get_reg_async(ctrlr, cc, 4, cb_fn, cb_arg)
75 
76 #define nvme_ctrlr_get_csts_async(ctrlr, cb_fn, cb_arg) \
77 	nvme_ctrlr_get_reg_async(ctrlr, csts, 4, cb_fn, cb_arg)
78 
79 #define nvme_ctrlr_get_cap_async(ctrlr, cb_fn, cb_arg) \
80 	nvme_ctrlr_get_reg_async(ctrlr, cap, 8, cb_fn, cb_arg)
81 
82 #define nvme_ctrlr_get_vs_async(ctrlr, cb_fn, cb_arg) \
83 	nvme_ctrlr_get_reg_async(ctrlr, vs, 4, cb_fn, cb_arg)
84 
85 #define nvme_ctrlr_set_cc_async(ctrlr, value, cb_fn, cb_arg) \
86 	nvme_ctrlr_set_reg_async(ctrlr, cc, 4, value, cb_fn, cb_arg)
87 
88 static int
89 nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc)
90 {
91 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
92 					      &cc->raw);
93 }
94 
95 static int
96 nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts)
97 {
98 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw),
99 					      &csts->raw);
100 }
101 
102 int
103 nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
104 {
105 	return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw),
106 					      &cap->raw);
107 }
108 
109 int
110 nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
111 {
112 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw),
113 					      &vs->raw);
114 }
115 
116 int
117 nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz)
118 {
119 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
120 					      &cmbsz->raw);
121 }
122 
123 int
124 nvme_ctrlr_get_pmrcap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_pmrcap_register *pmrcap)
125 {
126 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, pmrcap.raw),
127 					      &pmrcap->raw);
128 }
129 
130 int
131 nvme_ctrlr_get_bpinfo(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bpinfo_register *bpinfo)
132 {
133 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bpinfo.raw),
134 					      &bpinfo->raw);
135 }
136 
137 int
138 nvme_ctrlr_set_bprsel(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bprsel_register *bprsel)
139 {
140 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bprsel.raw),
141 					      bprsel->raw);
142 }
143 
144 int
145 nvme_ctrlr_set_bpmbl(struct spdk_nvme_ctrlr *ctrlr, uint64_t bpmbl_value)
146 {
147 	return nvme_transport_ctrlr_set_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, bpmbl),
148 					      bpmbl_value);
149 }
150 
151 static int
152 nvme_ctrlr_set_nssr(struct spdk_nvme_ctrlr *ctrlr, uint32_t nssr_value)
153 {
154 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, nssr),
155 					      nssr_value);
156 }
157 
158 bool
159 nvme_ctrlr_multi_iocs_enabled(struct spdk_nvme_ctrlr *ctrlr)
160 {
161 	return ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS &&
162 	       ctrlr->opts.command_set == SPDK_NVME_CC_CSS_IOCS;
163 }
164 
165 /* When the field in spdk_nvme_ctrlr_opts are changed and you change this function, please
166  * also update the nvme_ctrl_opts_init function in nvme_ctrlr.c
167  */
168 void
169 spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
170 {
171 	char host_id_str[SPDK_UUID_STRING_LEN];
172 
173 	assert(opts);
174 
175 	opts->opts_size = opts_size;
176 
177 #define FIELD_OK(field) \
178 	offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size
179 
180 #define SET_FIELD(field, value) \
181 	if (offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size) { \
182 		opts->field = value; \
183 	} \
184 
185 	SET_FIELD(num_io_queues, DEFAULT_MAX_IO_QUEUES);
186 	SET_FIELD(use_cmb_sqs, false);
187 	SET_FIELD(no_shn_notification, false);
188 	SET_FIELD(arb_mechanism, SPDK_NVME_CC_AMS_RR);
189 	SET_FIELD(arbitration_burst, 0);
190 	SET_FIELD(low_priority_weight, 0);
191 	SET_FIELD(medium_priority_weight, 0);
192 	SET_FIELD(high_priority_weight, 0);
193 	SET_FIELD(keep_alive_timeout_ms, MIN_KEEP_ALIVE_TIMEOUT_IN_MS);
194 	SET_FIELD(transport_retry_count, SPDK_NVME_DEFAULT_RETRY_COUNT);
195 	SET_FIELD(io_queue_size, DEFAULT_IO_QUEUE_SIZE);
196 
197 	if (nvme_driver_init() == 0) {
198 		if (FIELD_OK(hostnqn)) {
199 			spdk_uuid_fmt_lower(host_id_str, sizeof(host_id_str),
200 					    &g_spdk_nvme_driver->default_extended_host_id);
201 			snprintf(opts->hostnqn, sizeof(opts->hostnqn),
202 				 "nqn.2014-08.org.nvmexpress:uuid:%s", host_id_str);
203 		}
204 
205 		if (FIELD_OK(extended_host_id)) {
206 			memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id,
207 			       sizeof(opts->extended_host_id));
208 		}
209 
210 	}
211 
212 	SET_FIELD(io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS);
213 
214 	if (FIELD_OK(src_addr)) {
215 		memset(opts->src_addr, 0, sizeof(opts->src_addr));
216 	}
217 
218 	if (FIELD_OK(src_svcid)) {
219 		memset(opts->src_svcid, 0, sizeof(opts->src_svcid));
220 	}
221 
222 	if (FIELD_OK(host_id)) {
223 		memset(opts->host_id, 0, sizeof(opts->host_id));
224 	}
225 
226 	SET_FIELD(command_set, CHAR_BIT);
227 	SET_FIELD(admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000);
228 	SET_FIELD(header_digest, false);
229 	SET_FIELD(data_digest, false);
230 	SET_FIELD(disable_error_logging, false);
231 	SET_FIELD(transport_ack_timeout, SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT);
232 	SET_FIELD(admin_queue_size, DEFAULT_ADMIN_QUEUE_SIZE);
233 	SET_FIELD(fabrics_connect_timeout_us, NVME_FABRIC_CONNECT_COMMAND_TIMEOUT);
234 	SET_FIELD(disable_read_ana_log_page, false);
235 	SET_FIELD(disable_read_changed_ns_list_log_page, false);
236 
237 	if (FIELD_OK(psk)) {
238 		memset(opts->psk, 0, sizeof(opts->psk));
239 	}
240 
241 #undef FIELD_OK
242 #undef SET_FIELD
243 }
244 
245 const struct spdk_nvme_ctrlr_opts *
246 spdk_nvme_ctrlr_get_opts(struct spdk_nvme_ctrlr *ctrlr)
247 {
248 	return &ctrlr->opts;
249 }
250 
251 /**
252  * This function will be called when the process allocates the IO qpair.
253  * Note: the ctrlr_lock must be held when calling this function.
254  */
255 static void
256 nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair)
257 {
258 	struct spdk_nvme_ctrlr_process	*active_proc;
259 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
260 
261 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
262 	if (active_proc) {
263 		TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq);
264 		qpair->active_proc = active_proc;
265 	}
266 }
267 
268 /**
269  * This function will be called when the process frees the IO qpair.
270  * Note: the ctrlr_lock must be held when calling this function.
271  */
272 static void
273 nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair)
274 {
275 	struct spdk_nvme_ctrlr_process	*active_proc;
276 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
277 	struct spdk_nvme_qpair          *active_qpair, *tmp_qpair;
278 
279 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
280 	if (!active_proc) {
281 		return;
282 	}
283 
284 	TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs,
285 			   per_process_tailq, tmp_qpair) {
286 		if (active_qpair == qpair) {
287 			TAILQ_REMOVE(&active_proc->allocated_io_qpairs,
288 				     active_qpair, per_process_tailq);
289 
290 			break;
291 		}
292 	}
293 }
294 
295 void
296 spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr,
297 		struct spdk_nvme_io_qpair_opts *opts,
298 		size_t opts_size)
299 {
300 	assert(ctrlr);
301 
302 	assert(opts);
303 
304 	memset(opts, 0, opts_size);
305 
306 #define FIELD_OK(field) \
307 	offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size
308 
309 	if (FIELD_OK(qprio)) {
310 		opts->qprio = SPDK_NVME_QPRIO_URGENT;
311 	}
312 
313 	if (FIELD_OK(io_queue_size)) {
314 		opts->io_queue_size = ctrlr->opts.io_queue_size;
315 	}
316 
317 	if (FIELD_OK(io_queue_requests)) {
318 		opts->io_queue_requests = ctrlr->opts.io_queue_requests;
319 	}
320 
321 	if (FIELD_OK(delay_cmd_submit)) {
322 		opts->delay_cmd_submit = false;
323 	}
324 
325 	if (FIELD_OK(sq.vaddr)) {
326 		opts->sq.vaddr = NULL;
327 	}
328 
329 	if (FIELD_OK(sq.paddr)) {
330 		opts->sq.paddr = 0;
331 	}
332 
333 	if (FIELD_OK(sq.buffer_size)) {
334 		opts->sq.buffer_size = 0;
335 	}
336 
337 	if (FIELD_OK(cq.vaddr)) {
338 		opts->cq.vaddr = NULL;
339 	}
340 
341 	if (FIELD_OK(cq.paddr)) {
342 		opts->cq.paddr = 0;
343 	}
344 
345 	if (FIELD_OK(cq.buffer_size)) {
346 		opts->cq.buffer_size = 0;
347 	}
348 
349 	if (FIELD_OK(create_only)) {
350 		opts->create_only = false;
351 	}
352 
353 	if (FIELD_OK(async_mode)) {
354 		opts->async_mode = false;
355 	}
356 
357 #undef FIELD_OK
358 }
359 
360 static struct spdk_nvme_qpair *
361 nvme_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
362 			   const struct spdk_nvme_io_qpair_opts *opts)
363 {
364 	int32_t					qid;
365 	struct spdk_nvme_qpair			*qpair;
366 	union spdk_nvme_cc_register		cc;
367 
368 	if (!ctrlr) {
369 		return NULL;
370 	}
371 
372 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
373 	cc.raw = ctrlr->process_init_cc.raw;
374 
375 	if (opts->qprio & ~SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK) {
376 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
377 		return NULL;
378 	}
379 
380 	/*
381 	 * Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the
382 	 * default round robin arbitration method.
383 	 */
384 	if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts->qprio != SPDK_NVME_QPRIO_URGENT)) {
385 		NVME_CTRLR_ERRLOG(ctrlr, "invalid queue priority for default round robin arbitration method\n");
386 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
387 		return NULL;
388 	}
389 
390 	qid = spdk_nvme_ctrlr_alloc_qid(ctrlr);
391 	if (qid < 0) {
392 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
393 		return NULL;
394 	}
395 
396 	qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, opts);
397 	if (qpair == NULL) {
398 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_create_io_qpair() failed\n");
399 		spdk_nvme_ctrlr_free_qid(ctrlr, qid);
400 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
401 		return NULL;
402 	}
403 
404 	TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq);
405 
406 	nvme_ctrlr_proc_add_io_qpair(qpair);
407 
408 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
409 
410 	return qpair;
411 }
412 
413 int
414 spdk_nvme_ctrlr_connect_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
415 {
416 	int rc;
417 
418 	if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) {
419 		return -EISCONN;
420 	}
421 
422 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
423 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
424 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
425 
426 	if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) {
427 		spdk_delay_us(100);
428 	}
429 
430 	return rc;
431 }
432 
433 void
434 spdk_nvme_ctrlr_disconnect_io_qpair(struct spdk_nvme_qpair *qpair)
435 {
436 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
437 
438 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
439 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
440 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
441 }
442 
443 struct spdk_nvme_qpair *
444 spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
445 			       const struct spdk_nvme_io_qpair_opts *user_opts,
446 			       size_t opts_size)
447 {
448 
449 	struct spdk_nvme_qpair		*qpair;
450 	struct spdk_nvme_io_qpair_opts	opts;
451 	int				rc;
452 
453 	if (spdk_unlikely(ctrlr->state != NVME_CTRLR_STATE_READY)) {
454 		/* When controller is resetting or initializing, free_io_qids is deleted or not created yet.
455 		 * We can't create IO qpair in that case */
456 		return NULL;
457 	}
458 
459 	/*
460 	 * Get the default options, then overwrite them with the user-provided options
461 	 * up to opts_size.
462 	 *
463 	 * This allows for extensions of the opts structure without breaking
464 	 * ABI compatibility.
465 	 */
466 	spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
467 	if (user_opts) {
468 		memcpy(&opts, user_opts, spdk_min(sizeof(opts), opts_size));
469 
470 		/* If user passes buffers, make sure they're big enough for the requested queue size */
471 		if (opts.sq.vaddr) {
472 			if (opts.sq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))) {
473 				NVME_CTRLR_ERRLOG(ctrlr, "sq buffer size %" PRIx64 " is too small for sq size %zx\n",
474 						  opts.sq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cmd)));
475 				return NULL;
476 			}
477 		}
478 		if (opts.cq.vaddr) {
479 			if (opts.cq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))) {
480 				NVME_CTRLR_ERRLOG(ctrlr, "cq buffer size %" PRIx64 " is too small for cq size %zx\n",
481 						  opts.cq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cpl)));
482 				return NULL;
483 			}
484 		}
485 	}
486 
487 	qpair = nvme_ctrlr_create_io_qpair(ctrlr, &opts);
488 
489 	if (qpair == NULL || opts.create_only == true) {
490 		return qpair;
491 	}
492 
493 	rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair);
494 	if (rc != 0) {
495 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_connect_io_qpair() failed\n");
496 		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
497 		nvme_ctrlr_proc_remove_io_qpair(qpair);
498 		TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
499 		spdk_bit_array_set(ctrlr->free_io_qids, qpair->id);
500 		nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
501 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
502 		return NULL;
503 	}
504 
505 	return qpair;
506 }
507 
508 int
509 spdk_nvme_ctrlr_reconnect_io_qpair(struct spdk_nvme_qpair *qpair)
510 {
511 	struct spdk_nvme_ctrlr *ctrlr;
512 	enum nvme_qpair_state qpair_state;
513 	int rc;
514 
515 	assert(qpair != NULL);
516 	assert(nvme_qpair_is_admin_queue(qpair) == false);
517 	assert(qpair->ctrlr != NULL);
518 
519 	ctrlr = qpair->ctrlr;
520 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
521 	qpair_state = nvme_qpair_get_state(qpair);
522 
523 	if (ctrlr->is_removed) {
524 		rc = -ENODEV;
525 		goto out;
526 	}
527 
528 	if (ctrlr->is_resetting || qpair_state == NVME_QPAIR_DISCONNECTING) {
529 		rc = -EAGAIN;
530 		goto out;
531 	}
532 
533 	if (ctrlr->is_failed || qpair_state == NVME_QPAIR_DESTROYING) {
534 		rc = -ENXIO;
535 		goto out;
536 	}
537 
538 	if (qpair_state != NVME_QPAIR_DISCONNECTED) {
539 		rc = 0;
540 		goto out;
541 	}
542 
543 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
544 	if (rc) {
545 		rc = -EAGAIN;
546 		goto out;
547 	}
548 
549 out:
550 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
551 	return rc;
552 }
553 
554 spdk_nvme_qp_failure_reason
555 spdk_nvme_ctrlr_get_admin_qp_failure_reason(struct spdk_nvme_ctrlr *ctrlr)
556 {
557 	return ctrlr->adminq->transport_failure_reason;
558 }
559 
560 /*
561  * This internal function will attempt to take the controller
562  * lock before calling disconnect on a controller qpair.
563  * Functions already holding the controller lock should
564  * call nvme_transport_ctrlr_disconnect_qpair directly.
565  */
566 void
567 nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair)
568 {
569 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
570 
571 	assert(ctrlr != NULL);
572 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
573 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
574 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
575 }
576 
577 int
578 spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair)
579 {
580 	struct spdk_nvme_ctrlr *ctrlr;
581 
582 	if (qpair == NULL) {
583 		return 0;
584 	}
585 
586 	ctrlr = qpair->ctrlr;
587 
588 	if (qpair->in_completion_context) {
589 		/*
590 		 * There are many cases where it is convenient to delete an io qpair in the context
591 		 *  of that qpair's completion routine.  To handle this properly, set a flag here
592 		 *  so that the completion routine will perform an actual delete after the context
593 		 *  unwinds.
594 		 */
595 		qpair->delete_after_completion_context = 1;
596 		return 0;
597 	}
598 
599 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
600 
601 	if (qpair->poll_group && (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr))) {
602 		spdk_nvme_poll_group_remove(qpair->poll_group->group, qpair);
603 	}
604 
605 	/* Do not retry. */
606 	nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
607 
608 	/* In the multi-process case, a process may call this function on a foreign
609 	 * I/O qpair (i.e. one that this process did not create) when that qpairs process
610 	 * exits unexpectedly.  In that case, we must not try to abort any reqs associated
611 	 * with that qpair, since the callbacks will also be foreign to this process.
612 	 */
613 	if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) {
614 		nvme_qpair_abort_all_queued_reqs(qpair, 0);
615 	}
616 
617 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
618 
619 	nvme_ctrlr_proc_remove_io_qpair(qpair);
620 
621 	TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
622 	spdk_nvme_ctrlr_free_qid(ctrlr, qpair->id);
623 
624 	nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
625 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
626 	return 0;
627 }
628 
629 static void
630 nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr,
631 		struct spdk_nvme_intel_log_page_directory *log_page_directory)
632 {
633 	if (log_page_directory == NULL) {
634 		return;
635 	}
636 
637 	assert(ctrlr->cdata.vid == SPDK_PCI_VID_INTEL);
638 
639 	ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
640 
641 	if (log_page_directory->read_latency_log_len ||
642 	    (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) {
643 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
644 	}
645 	if (log_page_directory->write_latency_log_len ||
646 	    (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) {
647 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
648 	}
649 	if (log_page_directory->temperature_statistics_log_len) {
650 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true;
651 	}
652 	if (log_page_directory->smart_log_len) {
653 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true;
654 	}
655 	if (log_page_directory->marketing_description_log_len) {
656 		ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true;
657 	}
658 }
659 
660 struct intel_log_pages_ctx {
661 	struct spdk_nvme_intel_log_page_directory log_page_directory;
662 	struct spdk_nvme_ctrlr *ctrlr;
663 };
664 
665 static void
666 nvme_ctrlr_set_intel_support_log_pages_done(void *arg, const struct spdk_nvme_cpl *cpl)
667 {
668 	struct intel_log_pages_ctx *ctx = arg;
669 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
670 
671 	if (!spdk_nvme_cpl_is_error(cpl)) {
672 		nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, &ctx->log_page_directory);
673 	}
674 
675 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
676 			     ctrlr->opts.admin_timeout_ms);
677 	free(ctx);
678 }
679 
680 static int
681 nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr)
682 {
683 	int rc = 0;
684 	struct intel_log_pages_ctx *ctx;
685 
686 	ctx = calloc(1, sizeof(*ctx));
687 	if (!ctx) {
688 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
689 				     ctrlr->opts.admin_timeout_ms);
690 		return 0;
691 	}
692 
693 	ctx->ctrlr = ctrlr;
694 
695 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY,
696 					      SPDK_NVME_GLOBAL_NS_TAG, &ctx->log_page_directory,
697 					      sizeof(struct spdk_nvme_intel_log_page_directory),
698 					      0, nvme_ctrlr_set_intel_support_log_pages_done, ctx);
699 	if (rc != 0) {
700 		free(ctx);
701 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
702 				     ctrlr->opts.admin_timeout_ms);
703 		return 0;
704 	}
705 
706 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES,
707 			     ctrlr->opts.admin_timeout_ms);
708 
709 	return 0;
710 }
711 
712 static int
713 nvme_ctrlr_alloc_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
714 {
715 	uint32_t ana_log_page_size;
716 
717 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + ctrlr->cdata.nanagrpid *
718 			    sizeof(struct spdk_nvme_ana_group_descriptor) + ctrlr->active_ns_count *
719 			    sizeof(uint32_t);
720 
721 	/* Number of active namespaces may have changed.
722 	 * Check if ANA log page fits into existing buffer.
723 	 */
724 	if (ana_log_page_size > ctrlr->ana_log_page_size) {
725 		void *new_buffer;
726 
727 		if (ctrlr->ana_log_page) {
728 			new_buffer = realloc(ctrlr->ana_log_page, ana_log_page_size);
729 		} else {
730 			new_buffer = calloc(1, ana_log_page_size);
731 		}
732 
733 		if (!new_buffer) {
734 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate ANA log page buffer, size %u\n",
735 					  ana_log_page_size);
736 			return -ENXIO;
737 		}
738 
739 		ctrlr->ana_log_page = new_buffer;
740 		if (ctrlr->copied_ana_desc) {
741 			new_buffer = realloc(ctrlr->copied_ana_desc, ana_log_page_size);
742 		} else {
743 			new_buffer = calloc(1, ana_log_page_size);
744 		}
745 
746 		if (!new_buffer) {
747 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate a buffer to parse ANA descriptor, size %u\n",
748 					  ana_log_page_size);
749 			return -ENOMEM;
750 		}
751 
752 		ctrlr->copied_ana_desc = new_buffer;
753 		ctrlr->ana_log_page_size = ana_log_page_size;
754 	}
755 
756 	return 0;
757 }
758 
759 static int
760 nvme_ctrlr_update_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
761 {
762 	struct nvme_completion_poll_status *status;
763 	int rc;
764 
765 	rc = nvme_ctrlr_alloc_ana_log_page(ctrlr);
766 	if (rc != 0) {
767 		return rc;
768 	}
769 
770 	status = calloc(1, sizeof(*status));
771 	if (status == NULL) {
772 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
773 		return -ENOMEM;
774 	}
775 
776 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
777 					      SPDK_NVME_GLOBAL_NS_TAG, ctrlr->ana_log_page,
778 					      ctrlr->ana_log_page_size, 0,
779 					      nvme_completion_poll_cb, status);
780 	if (rc != 0) {
781 		free(status);
782 		return rc;
783 	}
784 
785 	if (nvme_wait_for_completion_robust_lock_timeout(ctrlr->adminq, status, &ctrlr->ctrlr_lock,
786 			ctrlr->opts.admin_timeout_ms * 1000)) {
787 		if (!status->timed_out) {
788 			free(status);
789 		}
790 		return -EIO;
791 	}
792 
793 	free(status);
794 	return 0;
795 }
796 
797 static int
798 nvme_ctrlr_update_ns_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
799 				void *cb_arg)
800 {
801 	struct spdk_nvme_ctrlr *ctrlr = cb_arg;
802 	struct spdk_nvme_ns *ns;
803 	uint32_t i, nsid;
804 
805 	for (i = 0; i < desc->num_of_nsid; i++) {
806 		nsid = desc->nsid[i];
807 		if (nsid == 0 || nsid > ctrlr->cdata.nn) {
808 			continue;
809 		}
810 
811 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
812 		assert(ns != NULL);
813 
814 		ns->ana_group_id = desc->ana_group_id;
815 		ns->ana_state = desc->ana_state;
816 	}
817 
818 	return 0;
819 }
820 
821 int
822 nvme_ctrlr_parse_ana_log_page(struct spdk_nvme_ctrlr *ctrlr,
823 			      spdk_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
824 {
825 	struct spdk_nvme_ana_group_descriptor *copied_desc;
826 	uint8_t *orig_desc;
827 	uint32_t i, desc_size, copy_len;
828 	int rc = 0;
829 
830 	if (ctrlr->ana_log_page == NULL) {
831 		return -EINVAL;
832 	}
833 
834 	copied_desc = ctrlr->copied_ana_desc;
835 
836 	orig_desc = (uint8_t *)ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
837 	copy_len = ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
838 
839 	for (i = 0; i < ctrlr->ana_log_page->num_ana_group_desc; i++) {
840 		memcpy(copied_desc, orig_desc, copy_len);
841 
842 		rc = cb_fn(copied_desc, cb_arg);
843 		if (rc != 0) {
844 			break;
845 		}
846 
847 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
848 			    copied_desc->num_of_nsid * sizeof(uint32_t);
849 		orig_desc += desc_size;
850 		copy_len -= desc_size;
851 	}
852 
853 	return rc;
854 }
855 
856 static int
857 nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr)
858 {
859 	int	rc = 0;
860 
861 	memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
862 	/* Mandatory pages */
863 	ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true;
864 	ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true;
865 	ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true;
866 	if (ctrlr->cdata.lpa.celp) {
867 		ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true;
868 	}
869 
870 	if (ctrlr->cdata.cmic.ana_reporting) {
871 		ctrlr->log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] = true;
872 		if (!ctrlr->opts.disable_read_ana_log_page) {
873 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
874 			if (rc == 0) {
875 				nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
876 							      ctrlr);
877 			}
878 		}
879 	}
880 
881 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL &&
882 	    ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE &&
883 	    !(ctrlr->quirks & NVME_INTEL_QUIRK_NO_LOG_PAGES)) {
884 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES,
885 				     ctrlr->opts.admin_timeout_ms);
886 
887 	} else {
888 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
889 				     ctrlr->opts.admin_timeout_ms);
890 
891 	}
892 
893 	return rc;
894 }
895 
896 static void
897 nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr)
898 {
899 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true;
900 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
901 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
902 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
903 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true;
904 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
905 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
906 }
907 
908 static void
909 nvme_ctrlr_set_arbitration_feature(struct spdk_nvme_ctrlr *ctrlr)
910 {
911 	uint32_t cdw11;
912 	struct nvme_completion_poll_status *status;
913 
914 	if (ctrlr->opts.arbitration_burst == 0) {
915 		return;
916 	}
917 
918 	if (ctrlr->opts.arbitration_burst > 7) {
919 		NVME_CTRLR_WARNLOG(ctrlr, "Valid arbitration burst values is from 0-7\n");
920 		return;
921 	}
922 
923 	status = calloc(1, sizeof(*status));
924 	if (!status) {
925 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
926 		return;
927 	}
928 
929 	cdw11 = ctrlr->opts.arbitration_burst;
930 
931 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_WRR_SUPPORTED) {
932 		cdw11 |= (uint32_t)ctrlr->opts.low_priority_weight << 8;
933 		cdw11 |= (uint32_t)ctrlr->opts.medium_priority_weight << 16;
934 		cdw11 |= (uint32_t)ctrlr->opts.high_priority_weight << 24;
935 	}
936 
937 	if (spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION,
938 					    cdw11, 0, NULL, 0,
939 					    nvme_completion_poll_cb, status) < 0) {
940 		NVME_CTRLR_ERRLOG(ctrlr, "Set arbitration feature failed\n");
941 		free(status);
942 		return;
943 	}
944 
945 	if (nvme_wait_for_completion_timeout(ctrlr->adminq, status,
946 					     ctrlr->opts.admin_timeout_ms * 1000)) {
947 		NVME_CTRLR_ERRLOG(ctrlr, "Timeout to set arbitration feature\n");
948 	}
949 
950 	if (!status->timed_out) {
951 		free(status);
952 	}
953 }
954 
955 static void
956 nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr)
957 {
958 	memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
959 	/* Mandatory features */
960 	ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true;
961 	ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true;
962 	ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
963 	ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true;
964 	ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true;
965 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true;
966 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
967 	ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true;
968 	ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
969 	/* Optional features */
970 	if (ctrlr->cdata.vwc.present) {
971 		ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
972 	}
973 	if (ctrlr->cdata.apsta.supported) {
974 		ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
975 	}
976 	if (ctrlr->cdata.hmpre) {
977 		ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true;
978 	}
979 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
980 		nvme_ctrlr_set_intel_supported_features(ctrlr);
981 	}
982 
983 	nvme_ctrlr_set_arbitration_feature(ctrlr);
984 }
985 
986 bool
987 spdk_nvme_ctrlr_is_failed(struct spdk_nvme_ctrlr *ctrlr)
988 {
989 	return ctrlr->is_failed;
990 }
991 
992 void
993 nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
994 {
995 	/*
996 	 * Set the flag here and leave the work failure of qpairs to
997 	 * spdk_nvme_qpair_process_completions().
998 	 */
999 	if (hot_remove) {
1000 		ctrlr->is_removed = true;
1001 	}
1002 
1003 	if (ctrlr->is_failed) {
1004 		NVME_CTRLR_NOTICELOG(ctrlr, "already in failed state\n");
1005 		return;
1006 	}
1007 
1008 	if (ctrlr->is_disconnecting) {
1009 		NVME_CTRLR_DEBUGLOG(ctrlr, "already disconnecting\n");
1010 		return;
1011 	}
1012 
1013 	ctrlr->is_failed = true;
1014 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1015 	NVME_CTRLR_ERRLOG(ctrlr, "in failed state.\n");
1016 }
1017 
1018 /**
1019  * This public API function will try to take the controller lock.
1020  * Any private functions being called from a thread already holding
1021  * the ctrlr lock should call nvme_ctrlr_fail directly.
1022  */
1023 void
1024 spdk_nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr)
1025 {
1026 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1027 	nvme_ctrlr_fail(ctrlr, false);
1028 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1029 }
1030 
1031 static void
1032 nvme_ctrlr_shutdown_set_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1033 {
1034 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1035 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1036 
1037 	if (spdk_nvme_cpl_is_error(cpl)) {
1038 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1039 		ctx->shutdown_complete = true;
1040 		return;
1041 	}
1042 
1043 	if (ctrlr->opts.no_shn_notification) {
1044 		ctx->shutdown_complete = true;
1045 		return;
1046 	}
1047 
1048 	/*
1049 	 * The NVMe specification defines RTD3E to be the time between
1050 	 *  setting SHN = 1 until the controller will set SHST = 10b.
1051 	 * If the device doesn't report RTD3 entry latency, or if it
1052 	 *  reports RTD3 entry latency less than 10 seconds, pick
1053 	 *  10 seconds as a reasonable amount of time to
1054 	 *  wait before proceeding.
1055 	 */
1056 	NVME_CTRLR_DEBUGLOG(ctrlr, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e);
1057 	ctx->shutdown_timeout_ms = SPDK_CEIL_DIV(ctrlr->cdata.rtd3e, 1000);
1058 	ctx->shutdown_timeout_ms = spdk_max(ctx->shutdown_timeout_ms, 10000);
1059 	NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown timeout = %" PRIu32 " ms\n", ctx->shutdown_timeout_ms);
1060 
1061 	ctx->shutdown_start_tsc = spdk_get_ticks();
1062 	ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1063 }
1064 
1065 static void
1066 nvme_ctrlr_shutdown_get_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1067 {
1068 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1069 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1070 	union spdk_nvme_cc_register cc;
1071 	int rc;
1072 
1073 	if (spdk_nvme_cpl_is_error(cpl)) {
1074 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1075 		ctx->shutdown_complete = true;
1076 		return;
1077 	}
1078 
1079 	assert(value <= UINT32_MAX);
1080 	cc.raw = (uint32_t)value;
1081 
1082 	if (ctrlr->opts.no_shn_notification) {
1083 		NVME_CTRLR_INFOLOG(ctrlr, "Disable SSD without shutdown notification\n");
1084 		if (cc.bits.en == 0) {
1085 			ctx->shutdown_complete = true;
1086 			return;
1087 		}
1088 
1089 		cc.bits.en = 0;
1090 	} else {
1091 		cc.bits.shn = SPDK_NVME_SHN_NORMAL;
1092 	}
1093 
1094 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_shutdown_set_cc_done, ctx);
1095 	if (rc != 0) {
1096 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1097 		ctx->shutdown_complete = true;
1098 	}
1099 }
1100 
1101 static void
1102 nvme_ctrlr_shutdown_async(struct spdk_nvme_ctrlr *ctrlr,
1103 			  struct nvme_ctrlr_detach_ctx *ctx)
1104 {
1105 	int rc;
1106 
1107 	if (ctrlr->is_removed) {
1108 		ctx->shutdown_complete = true;
1109 		return;
1110 	}
1111 
1112 	ctx->state = NVME_CTRLR_DETACH_SET_CC;
1113 	rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_shutdown_get_cc_done, ctx);
1114 	if (rc != 0) {
1115 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1116 		ctx->shutdown_complete = true;
1117 	}
1118 }
1119 
1120 static void
1121 nvme_ctrlr_shutdown_get_csts_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1122 {
1123 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1124 
1125 	if (spdk_nvme_cpl_is_error(cpl)) {
1126 		NVME_CTRLR_ERRLOG(ctx->ctrlr, "Failed to read the CSTS register\n");
1127 		ctx->shutdown_complete = true;
1128 		return;
1129 	}
1130 
1131 	assert(value <= UINT32_MAX);
1132 	ctx->csts.raw = (uint32_t)value;
1133 	ctx->state = NVME_CTRLR_DETACH_GET_CSTS_DONE;
1134 }
1135 
1136 static int
1137 nvme_ctrlr_shutdown_poll_async(struct spdk_nvme_ctrlr *ctrlr,
1138 			       struct nvme_ctrlr_detach_ctx *ctx)
1139 {
1140 	union spdk_nvme_csts_register	csts;
1141 	uint32_t			ms_waited;
1142 
1143 	switch (ctx->state) {
1144 	case NVME_CTRLR_DETACH_SET_CC:
1145 	case NVME_CTRLR_DETACH_GET_CSTS:
1146 		/* We're still waiting for the register operation to complete */
1147 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
1148 		return -EAGAIN;
1149 
1150 	case NVME_CTRLR_DETACH_CHECK_CSTS:
1151 		ctx->state = NVME_CTRLR_DETACH_GET_CSTS;
1152 		if (nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_shutdown_get_csts_done, ctx)) {
1153 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
1154 			return -EIO;
1155 		}
1156 		return -EAGAIN;
1157 
1158 	case NVME_CTRLR_DETACH_GET_CSTS_DONE:
1159 		ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1160 		break;
1161 
1162 	default:
1163 		assert(0 && "Should never happen");
1164 		return -EINVAL;
1165 	}
1166 
1167 	ms_waited = (spdk_get_ticks() - ctx->shutdown_start_tsc) * 1000 / spdk_get_ticks_hz();
1168 	csts.raw = ctx->csts.raw;
1169 
1170 	if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
1171 		NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown complete in %u milliseconds\n", ms_waited);
1172 		return 0;
1173 	}
1174 
1175 	if (ms_waited < ctx->shutdown_timeout_ms) {
1176 		return -EAGAIN;
1177 	}
1178 
1179 	NVME_CTRLR_ERRLOG(ctrlr, "did not shutdown within %u milliseconds\n",
1180 			  ctx->shutdown_timeout_ms);
1181 	if (ctrlr->quirks & NVME_QUIRK_SHST_COMPLETE) {
1182 		NVME_CTRLR_ERRLOG(ctrlr, "likely due to shutdown handling in the VMWare emulated NVMe SSD\n");
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 static inline uint64_t
1189 nvme_ctrlr_get_ready_timeout(struct spdk_nvme_ctrlr *ctrlr)
1190 {
1191 	return ctrlr->cap.bits.to * 500;
1192 }
1193 
1194 static void
1195 nvme_ctrlr_set_cc_en_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1196 {
1197 	struct spdk_nvme_ctrlr *ctrlr = ctx;
1198 
1199 	if (spdk_nvme_cpl_is_error(cpl)) {
1200 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to set the CC register\n");
1201 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1202 		return;
1203 	}
1204 
1205 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
1206 			     nvme_ctrlr_get_ready_timeout(ctrlr));
1207 }
1208 
1209 static int
1210 nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
1211 {
1212 	union spdk_nvme_cc_register	cc;
1213 	int				rc;
1214 
1215 	rc = nvme_transport_ctrlr_enable(ctrlr);
1216 	if (rc != 0) {
1217 		NVME_CTRLR_ERRLOG(ctrlr, "transport ctrlr_enable failed\n");
1218 		return rc;
1219 	}
1220 
1221 	cc.raw = ctrlr->process_init_cc.raw;
1222 	if (cc.bits.en != 0) {
1223 		NVME_CTRLR_ERRLOG(ctrlr, "called with CC.EN = 1\n");
1224 		return -EINVAL;
1225 	}
1226 
1227 	cc.bits.en = 1;
1228 	cc.bits.css = 0;
1229 	cc.bits.shn = 0;
1230 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
1231 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
1232 
1233 	/* Page size is 2 ^ (12 + mps). */
1234 	cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12;
1235 
1236 	/*
1237 	 * Since NVMe 1.0, a controller should have at least one bit set in CAP.CSS.
1238 	 * A controller that does not have any bit set in CAP.CSS is not spec compliant.
1239 	 * Try to support such a controller regardless.
1240 	 */
1241 	if (ctrlr->cap.bits.css == 0) {
1242 		NVME_CTRLR_INFOLOG(ctrlr, "Drive reports no command sets supported. Assuming NVM is supported.\n");
1243 		ctrlr->cap.bits.css = SPDK_NVME_CAP_CSS_NVM;
1244 	}
1245 
1246 	/*
1247 	 * If the user did not explicitly request a command set, or supplied a value larger than
1248 	 * what can be saved in CC.CSS, use the most reasonable default.
1249 	 */
1250 	if (ctrlr->opts.command_set >= CHAR_BIT) {
1251 		if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS) {
1252 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_IOCS;
1253 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NVM) {
1254 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1255 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NOIO) {
1256 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NOIO;
1257 		} else {
1258 			/* Invalid supported bits detected, falling back to NVM. */
1259 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1260 		}
1261 	}
1262 
1263 	/* Verify that the selected command set is supported by the controller. */
1264 	if (!(ctrlr->cap.bits.css & (1u << ctrlr->opts.command_set))) {
1265 		NVME_CTRLR_DEBUGLOG(ctrlr, "Requested I/O command set %u but supported mask is 0x%x\n",
1266 				    ctrlr->opts.command_set, ctrlr->cap.bits.css);
1267 		NVME_CTRLR_DEBUGLOG(ctrlr, "Falling back to NVM. Assuming NVM is supported.\n");
1268 		ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1269 	}
1270 
1271 	cc.bits.css = ctrlr->opts.command_set;
1272 
1273 	switch (ctrlr->opts.arb_mechanism) {
1274 	case SPDK_NVME_CC_AMS_RR:
1275 		break;
1276 	case SPDK_NVME_CC_AMS_WRR:
1277 		if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) {
1278 			break;
1279 		}
1280 		return -EINVAL;
1281 	case SPDK_NVME_CC_AMS_VS:
1282 		if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) {
1283 			break;
1284 		}
1285 		return -EINVAL;
1286 	default:
1287 		return -EINVAL;
1288 	}
1289 
1290 	cc.bits.ams = ctrlr->opts.arb_mechanism;
1291 	ctrlr->process_init_cc.raw = cc.raw;
1292 
1293 	if (nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_set_cc_en_done, ctrlr)) {
1294 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
1295 		return -EIO;
1296 	}
1297 
1298 	return 0;
1299 }
1300 
1301 static const char *
1302 nvme_ctrlr_state_string(enum nvme_ctrlr_state state)
1303 {
1304 	switch (state) {
1305 	case NVME_CTRLR_STATE_INIT_DELAY:
1306 		return "delay init";
1307 	case NVME_CTRLR_STATE_CONNECT_ADMINQ:
1308 		return "connect adminq";
1309 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
1310 		return "wait for connect adminq";
1311 	case NVME_CTRLR_STATE_READ_VS:
1312 		return "read vs";
1313 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
1314 		return "read vs wait for vs";
1315 	case NVME_CTRLR_STATE_READ_CAP:
1316 		return "read cap";
1317 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
1318 		return "read cap wait for cap";
1319 	case NVME_CTRLR_STATE_CHECK_EN:
1320 		return "check en";
1321 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
1322 		return "check en wait for cc";
1323 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
1324 		return "disable and wait for CSTS.RDY = 1";
1325 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1326 		return "disable and wait for CSTS.RDY = 1 reg";
1327 	case NVME_CTRLR_STATE_SET_EN_0:
1328 		return "set CC.EN = 0";
1329 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
1330 		return "set CC.EN = 0 wait for cc";
1331 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
1332 		return "disable and wait for CSTS.RDY = 0";
1333 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
1334 		return "disable and wait for CSTS.RDY = 0 reg";
1335 	case NVME_CTRLR_STATE_DISABLED:
1336 		return "controller is disabled";
1337 	case NVME_CTRLR_STATE_ENABLE:
1338 		return "enable controller by writing CC.EN = 1";
1339 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
1340 		return "enable controller by writing CC.EN = 1 reg";
1341 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
1342 		return "wait for CSTS.RDY = 1";
1343 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1344 		return "wait for CSTS.RDY = 1 reg";
1345 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
1346 		return "reset admin queue";
1347 	case NVME_CTRLR_STATE_IDENTIFY:
1348 		return "identify controller";
1349 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
1350 		return "wait for identify controller";
1351 	case NVME_CTRLR_STATE_CONFIGURE_AER:
1352 		return "configure AER";
1353 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
1354 		return "wait for configure aer";
1355 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
1356 		return "set keep alive timeout";
1357 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
1358 		return "wait for set keep alive timeout";
1359 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
1360 		return "identify controller iocs specific";
1361 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
1362 		return "wait for identify controller iocs specific";
1363 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
1364 		return "get zns cmd and effects log page";
1365 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
1366 		return "wait for get zns cmd and effects log page";
1367 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
1368 		return "set number of queues";
1369 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
1370 		return "wait for set number of queues";
1371 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
1372 		return "identify active ns";
1373 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
1374 		return "wait for identify active ns";
1375 	case NVME_CTRLR_STATE_IDENTIFY_NS:
1376 		return "identify ns";
1377 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
1378 		return "wait for identify ns";
1379 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
1380 		return "identify namespace id descriptors";
1381 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
1382 		return "wait for identify namespace id descriptors";
1383 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
1384 		return "identify ns iocs specific";
1385 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
1386 		return "wait for identify ns iocs specific";
1387 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
1388 		return "set supported log pages";
1389 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
1390 		return "set supported INTEL log pages";
1391 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
1392 		return "wait for supported INTEL log pages";
1393 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
1394 		return "set supported features";
1395 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
1396 		return "set doorbell buffer config";
1397 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
1398 		return "wait for doorbell buffer config";
1399 	case NVME_CTRLR_STATE_SET_HOST_ID:
1400 		return "set host ID";
1401 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
1402 		return "wait for set host ID";
1403 	case NVME_CTRLR_STATE_TRANSPORT_READY:
1404 		return "transport ready";
1405 	case NVME_CTRLR_STATE_READY:
1406 		return "ready";
1407 	case NVME_CTRLR_STATE_ERROR:
1408 		return "error";
1409 	}
1410 	return "unknown";
1411 };
1412 
1413 static void
1414 _nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1415 		      uint64_t timeout_in_ms, bool quiet)
1416 {
1417 	uint64_t ticks_per_ms, timeout_in_ticks, now_ticks;
1418 
1419 	ctrlr->state = state;
1420 	if (timeout_in_ms == NVME_TIMEOUT_KEEP_EXISTING) {
1421 		if (!quiet) {
1422 			NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (keeping existing timeout)\n",
1423 					    nvme_ctrlr_state_string(ctrlr->state));
1424 		}
1425 		return;
1426 	}
1427 
1428 	if (timeout_in_ms == NVME_TIMEOUT_INFINITE) {
1429 		goto inf;
1430 	}
1431 
1432 	ticks_per_ms = spdk_get_ticks_hz() / 1000;
1433 	if (timeout_in_ms > UINT64_MAX / ticks_per_ms) {
1434 		NVME_CTRLR_ERRLOG(ctrlr,
1435 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1436 		goto inf;
1437 	}
1438 
1439 	now_ticks = spdk_get_ticks();
1440 	timeout_in_ticks = timeout_in_ms * ticks_per_ms;
1441 	if (timeout_in_ticks > UINT64_MAX - now_ticks) {
1442 		NVME_CTRLR_ERRLOG(ctrlr,
1443 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1444 		goto inf;
1445 	}
1446 
1447 	ctrlr->state_timeout_tsc = timeout_in_ticks + now_ticks;
1448 	if (!quiet) {
1449 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (timeout %" PRIu64 " ms)\n",
1450 				    nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms);
1451 	}
1452 	return;
1453 inf:
1454 	if (!quiet) {
1455 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (no timeout)\n",
1456 				    nvme_ctrlr_state_string(ctrlr->state));
1457 	}
1458 	ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE;
1459 }
1460 
1461 static void
1462 nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1463 		     uint64_t timeout_in_ms)
1464 {
1465 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, false);
1466 }
1467 
1468 static void
1469 nvme_ctrlr_set_state_quiet(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1470 			   uint64_t timeout_in_ms)
1471 {
1472 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, true);
1473 }
1474 
1475 static void
1476 nvme_ctrlr_free_zns_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1477 {
1478 	spdk_free(ctrlr->cdata_zns);
1479 	ctrlr->cdata_zns = NULL;
1480 }
1481 
1482 static void
1483 nvme_ctrlr_free_iocs_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1484 {
1485 	nvme_ctrlr_free_zns_specific_data(ctrlr);
1486 }
1487 
1488 static void
1489 nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr)
1490 {
1491 	if (ctrlr->shadow_doorbell) {
1492 		spdk_free(ctrlr->shadow_doorbell);
1493 		ctrlr->shadow_doorbell = NULL;
1494 	}
1495 
1496 	if (ctrlr->eventidx) {
1497 		spdk_free(ctrlr->eventidx);
1498 		ctrlr->eventidx = NULL;
1499 	}
1500 }
1501 
1502 static void
1503 nvme_ctrlr_set_doorbell_buffer_config_done(void *arg, const struct spdk_nvme_cpl *cpl)
1504 {
1505 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1506 
1507 	if (spdk_nvme_cpl_is_error(cpl)) {
1508 		NVME_CTRLR_WARNLOG(ctrlr, "Doorbell buffer config failed\n");
1509 	} else {
1510 		NVME_CTRLR_INFOLOG(ctrlr, "Doorbell buffer config enabled\n");
1511 	}
1512 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1513 			     ctrlr->opts.admin_timeout_ms);
1514 }
1515 
1516 static int
1517 nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr)
1518 {
1519 	int rc = 0;
1520 	uint64_t prp1, prp2, len;
1521 
1522 	if (!ctrlr->cdata.oacs.doorbell_buffer_config) {
1523 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1524 				     ctrlr->opts.admin_timeout_ms);
1525 		return 0;
1526 	}
1527 
1528 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
1529 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1530 				     ctrlr->opts.admin_timeout_ms);
1531 		return 0;
1532 	}
1533 
1534 	/* only 1 page size for doorbell buffer */
1535 	ctrlr->shadow_doorbell = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1536 					      NULL, SPDK_ENV_LCORE_ID_ANY,
1537 					      SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1538 	if (ctrlr->shadow_doorbell == NULL) {
1539 		rc = -ENOMEM;
1540 		goto error;
1541 	}
1542 
1543 	len = ctrlr->page_size;
1544 	prp1 = spdk_vtophys(ctrlr->shadow_doorbell, &len);
1545 	if (prp1 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1546 		rc = -EFAULT;
1547 		goto error;
1548 	}
1549 
1550 	ctrlr->eventidx = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1551 				       NULL, SPDK_ENV_LCORE_ID_ANY,
1552 				       SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1553 	if (ctrlr->eventidx == NULL) {
1554 		rc = -ENOMEM;
1555 		goto error;
1556 	}
1557 
1558 	len = ctrlr->page_size;
1559 	prp2 = spdk_vtophys(ctrlr->eventidx, &len);
1560 	if (prp2 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1561 		rc = -EFAULT;
1562 		goto error;
1563 	}
1564 
1565 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG,
1566 			     ctrlr->opts.admin_timeout_ms);
1567 
1568 	rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2,
1569 			nvme_ctrlr_set_doorbell_buffer_config_done, ctrlr);
1570 	if (rc != 0) {
1571 		goto error;
1572 	}
1573 
1574 	return 0;
1575 
1576 error:
1577 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1578 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1579 	return rc;
1580 }
1581 
1582 void
1583 nvme_ctrlr_abort_queued_aborts(struct spdk_nvme_ctrlr *ctrlr)
1584 {
1585 	struct nvme_request	*req, *tmp;
1586 	struct spdk_nvme_cpl	cpl = {};
1587 
1588 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
1589 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
1590 
1591 	STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) {
1592 		STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq);
1593 		ctrlr->outstanding_aborts++;
1594 
1595 		nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, &cpl);
1596 		nvme_free_request(req);
1597 	}
1598 }
1599 
1600 static int
1601 nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1602 {
1603 	if (ctrlr->is_resetting || ctrlr->is_removed) {
1604 		/*
1605 		 * Controller is already resetting or has been removed. Return
1606 		 *  immediately since there is no need to kick off another
1607 		 *  reset in these cases.
1608 		 */
1609 		return ctrlr->is_resetting ? -EBUSY : -ENXIO;
1610 	}
1611 
1612 	ctrlr->is_resetting = true;
1613 	ctrlr->is_failed = false;
1614 	ctrlr->is_disconnecting = true;
1615 	ctrlr->prepare_for_reset = true;
1616 
1617 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting controller\n");
1618 
1619 	/* Disable keep-alive, it'll be re-enabled as part of the init process */
1620 	ctrlr->keep_alive_interval_ticks = 0;
1621 
1622 	/* Abort all of the queued abort requests */
1623 	nvme_ctrlr_abort_queued_aborts(ctrlr);
1624 
1625 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
1626 
1627 	ctrlr->adminq->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1628 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1629 
1630 	return 0;
1631 }
1632 
1633 static void
1634 nvme_ctrlr_disconnect_done(struct spdk_nvme_ctrlr *ctrlr)
1635 {
1636 	assert(ctrlr->is_failed == false);
1637 	ctrlr->is_disconnecting = false;
1638 
1639 	/* Doorbell buffer config is invalid during reset */
1640 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1641 
1642 	/* I/O Command Set Specific Identify Controller data is invalidated during reset */
1643 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
1644 
1645 	spdk_bit_array_free(&ctrlr->free_io_qids);
1646 }
1647 
1648 int
1649 spdk_nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1650 {
1651 	int rc;
1652 
1653 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1654 	rc = nvme_ctrlr_disconnect(ctrlr);
1655 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1656 
1657 	return rc;
1658 }
1659 
1660 void
1661 spdk_nvme_ctrlr_reconnect_async(struct spdk_nvme_ctrlr *ctrlr)
1662 {
1663 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1664 
1665 	ctrlr->prepare_for_reset = false;
1666 
1667 	/* Set the state back to INIT to cause a full hardware reset. */
1668 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
1669 
1670 	/* Return without releasing ctrlr_lock. ctrlr_lock will be released when
1671 	 * spdk_nvme_ctrlr_reset_poll_async() returns 0.
1672 	 */
1673 }
1674 
1675 /**
1676  * This function will be called when the controller is being reinitialized.
1677  * Note: the ctrlr_lock must be held when calling this function.
1678  */
1679 int
1680 spdk_nvme_ctrlr_reconnect_poll_async(struct spdk_nvme_ctrlr *ctrlr)
1681 {
1682 	struct spdk_nvme_ns *ns, *tmp_ns;
1683 	struct spdk_nvme_qpair	*qpair;
1684 	int rc = 0, rc_tmp = 0;
1685 	bool async;
1686 
1687 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1688 		NVME_CTRLR_ERRLOG(ctrlr, "controller reinitialization failed\n");
1689 		rc = -1;
1690 	}
1691 	if (ctrlr->state != NVME_CTRLR_STATE_READY && rc != -1) {
1692 		return -EAGAIN;
1693 	}
1694 
1695 	/*
1696 	 * For non-fabrics controllers, the memory locations of the transport qpair
1697 	 * don't change when the controller is reset. They simply need to be
1698 	 * re-enabled with admin commands to the controller. For fabric
1699 	 * controllers we need to disconnect and reconnect the qpair on its
1700 	 * own thread outside of the context of the reset.
1701 	 */
1702 	if (rc == 0 && !spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
1703 		/* Reinitialize qpairs */
1704 		TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1705 			assert(spdk_bit_array_get(ctrlr->free_io_qids, qpair->id));
1706 			spdk_bit_array_clear(ctrlr->free_io_qids, qpair->id);
1707 
1708 			/* Force a synchronous connect. We can't currently handle an asynchronous
1709 			 * operation here. */
1710 			async = qpair->async;
1711 			qpair->async = false;
1712 			rc_tmp = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
1713 			qpair->async = async;
1714 
1715 			if (rc_tmp != 0) {
1716 				rc = rc_tmp;
1717 				qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1718 				continue;
1719 			}
1720 		}
1721 	}
1722 
1723 	/*
1724 	 * Take this opportunity to remove inactive namespaces. During a reset namespace
1725 	 * handles can be invalidated.
1726 	 */
1727 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
1728 		if (!ns->active) {
1729 			RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
1730 			spdk_free(ns);
1731 		}
1732 	}
1733 
1734 	if (rc) {
1735 		nvme_ctrlr_fail(ctrlr, false);
1736 	}
1737 	ctrlr->is_resetting = false;
1738 
1739 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1740 
1741 	if (!ctrlr->cdata.oaes.ns_attribute_notices) {
1742 		/*
1743 		 * If controller doesn't support ns_attribute_notices and
1744 		 * namespace attributes change (e.g. number of namespaces)
1745 		 * we need to update system handling device reset.
1746 		 */
1747 		nvme_io_msg_ctrlr_update(ctrlr);
1748 	}
1749 
1750 	return rc;
1751 }
1752 
1753 /*
1754  * For PCIe transport, spdk_nvme_ctrlr_disconnect() will do a Controller Level Reset
1755  * (Change CC.EN from 1 to 0) as a operation to disconnect the admin qpair.
1756  * The following two functions are added to do a Controller Level Reset. They have
1757  * to be called under the nvme controller's lock.
1758  */
1759 void
1760 nvme_ctrlr_disable(struct spdk_nvme_ctrlr *ctrlr)
1761 {
1762 	assert(ctrlr->is_disconnecting == true);
1763 
1764 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
1765 }
1766 
1767 int
1768 nvme_ctrlr_disable_poll(struct spdk_nvme_ctrlr *ctrlr)
1769 {
1770 	int rc = 0;
1771 
1772 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1773 		NVME_CTRLR_ERRLOG(ctrlr, "failed to disable controller\n");
1774 		rc = -1;
1775 	}
1776 
1777 	if (ctrlr->state != NVME_CTRLR_STATE_DISABLED && rc != -1) {
1778 		return -EAGAIN;
1779 	}
1780 
1781 	return rc;
1782 }
1783 
1784 static void
1785 nvme_ctrlr_fail_io_qpairs(struct spdk_nvme_ctrlr *ctrlr)
1786 {
1787 	struct spdk_nvme_qpair	*qpair;
1788 
1789 	TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1790 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1791 	}
1792 }
1793 
1794 int
1795 spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr)
1796 {
1797 	int rc;
1798 
1799 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1800 
1801 	rc = nvme_ctrlr_disconnect(ctrlr);
1802 	if (rc == 0) {
1803 		nvme_ctrlr_fail_io_qpairs(ctrlr);
1804 	}
1805 
1806 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1807 
1808 	if (rc != 0) {
1809 		if (rc == -EBUSY) {
1810 			rc = 0;
1811 		}
1812 		return rc;
1813 	}
1814 
1815 	while (1) {
1816 		rc = spdk_nvme_ctrlr_process_admin_completions(ctrlr);
1817 		if (rc == -ENXIO) {
1818 			break;
1819 		}
1820 	}
1821 
1822 	spdk_nvme_ctrlr_reconnect_async(ctrlr);
1823 
1824 	while (true) {
1825 		rc = spdk_nvme_ctrlr_reconnect_poll_async(ctrlr);
1826 		if (rc != -EAGAIN) {
1827 			break;
1828 		}
1829 	}
1830 
1831 	return rc;
1832 }
1833 
1834 void
1835 spdk_nvme_ctrlr_prepare_for_reset(struct spdk_nvme_ctrlr *ctrlr)
1836 {
1837 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1838 	ctrlr->prepare_for_reset = true;
1839 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1840 }
1841 
1842 int
1843 spdk_nvme_ctrlr_reset_subsystem(struct spdk_nvme_ctrlr *ctrlr)
1844 {
1845 	union spdk_nvme_cap_register cap;
1846 	int rc = 0;
1847 
1848 	cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr);
1849 	if (cap.bits.nssrs == 0) {
1850 		NVME_CTRLR_WARNLOG(ctrlr, "subsystem reset is not supported\n");
1851 		return -ENOTSUP;
1852 	}
1853 
1854 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting subsystem\n");
1855 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1856 	ctrlr->is_resetting = true;
1857 	rc = nvme_ctrlr_set_nssr(ctrlr, SPDK_NVME_NSSR_VALUE);
1858 	ctrlr->is_resetting = false;
1859 
1860 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1861 	/*
1862 	 * No more cleanup at this point like in the ctrlr reset. A subsystem reset will cause
1863 	 * a hot remove for PCIe transport. The hot remove handling does all the necessary ctrlr cleanup.
1864 	 */
1865 	return rc;
1866 }
1867 
1868 int
1869 spdk_nvme_ctrlr_set_trid(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_transport_id *trid)
1870 {
1871 	int rc = 0;
1872 
1873 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1874 
1875 	if (ctrlr->is_failed == false) {
1876 		rc = -EPERM;
1877 		goto out;
1878 	}
1879 
1880 	if (trid->trtype != ctrlr->trid.trtype) {
1881 		rc = -EINVAL;
1882 		goto out;
1883 	}
1884 
1885 	if (strncmp(trid->subnqn, ctrlr->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
1886 		rc = -EINVAL;
1887 		goto out;
1888 	}
1889 
1890 	ctrlr->trid = *trid;
1891 
1892 out:
1893 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1894 	return rc;
1895 }
1896 
1897 void
1898 spdk_nvme_ctrlr_set_remove_cb(struct spdk_nvme_ctrlr *ctrlr,
1899 			      spdk_nvme_remove_cb remove_cb, void *remove_ctx)
1900 {
1901 	if (!spdk_process_is_primary()) {
1902 		return;
1903 	}
1904 
1905 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1906 	ctrlr->remove_cb = remove_cb;
1907 	ctrlr->cb_ctx = remove_ctx;
1908 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1909 }
1910 
1911 static void
1912 nvme_ctrlr_identify_done(void *arg, const struct spdk_nvme_cpl *cpl)
1913 {
1914 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1915 
1916 	if (spdk_nvme_cpl_is_error(cpl)) {
1917 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_identify_controller failed!\n");
1918 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1919 		return;
1920 	}
1921 
1922 	/*
1923 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
1924 	 *  controller supports.
1925 	 */
1926 	ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr);
1927 	NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_xfer_size %u\n", ctrlr->max_xfer_size);
1928 	if (ctrlr->cdata.mdts > 0) {
1929 		ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size,
1930 						ctrlr->min_page_size * (1 << ctrlr->cdata.mdts));
1931 		NVME_CTRLR_DEBUGLOG(ctrlr, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size);
1932 	}
1933 
1934 	NVME_CTRLR_DEBUGLOG(ctrlr, "CNTLID 0x%04" PRIx16 "\n", ctrlr->cdata.cntlid);
1935 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
1936 		ctrlr->cntlid = ctrlr->cdata.cntlid;
1937 	} else {
1938 		/*
1939 		 * Fabrics controllers should already have CNTLID from the Connect command.
1940 		 *
1941 		 * If CNTLID from Connect doesn't match CNTLID in the Identify Controller data,
1942 		 * trust the one from Connect.
1943 		 */
1944 		if (ctrlr->cntlid != ctrlr->cdata.cntlid) {
1945 			NVME_CTRLR_DEBUGLOG(ctrlr, "Identify CNTLID 0x%04" PRIx16 " != Connect CNTLID 0x%04" PRIx16 "\n",
1946 					    ctrlr->cdata.cntlid, ctrlr->cntlid);
1947 		}
1948 	}
1949 
1950 	if (ctrlr->cdata.sgls.supported && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
1951 		assert(ctrlr->cdata.sgls.supported != 0x3);
1952 		ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
1953 		if (ctrlr->cdata.sgls.supported == 0x2) {
1954 			ctrlr->flags |= SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT;
1955 		}
1956 
1957 		ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr);
1958 		NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_sges %u\n", ctrlr->max_sges);
1959 	}
1960 
1961 	if (ctrlr->cdata.oacs.security && !(ctrlr->quirks & NVME_QUIRK_OACS_SECURITY)) {
1962 		ctrlr->flags |= SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED;
1963 	}
1964 
1965 	if (ctrlr->cdata.oacs.directives) {
1966 		ctrlr->flags |= SPDK_NVME_CTRLR_DIRECTIVES_SUPPORTED;
1967 	}
1968 
1969 	NVME_CTRLR_DEBUGLOG(ctrlr, "fuses compare and write: %d\n",
1970 			    ctrlr->cdata.fuses.compare_and_write);
1971 	if (ctrlr->cdata.fuses.compare_and_write) {
1972 		ctrlr->flags |= SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED;
1973 	}
1974 
1975 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
1976 			     ctrlr->opts.admin_timeout_ms);
1977 }
1978 
1979 static int
1980 nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr)
1981 {
1982 	int	rc;
1983 
1984 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY,
1985 			     ctrlr->opts.admin_timeout_ms);
1986 
1987 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, 0,
1988 				     &ctrlr->cdata, sizeof(ctrlr->cdata),
1989 				     nvme_ctrlr_identify_done, ctrlr);
1990 	if (rc != 0) {
1991 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1992 		return rc;
1993 	}
1994 
1995 	return 0;
1996 }
1997 
1998 static void
1999 nvme_ctrlr_get_zns_cmd_and_effects_log_done(void *arg, const struct spdk_nvme_cpl *cpl)
2000 {
2001 	struct spdk_nvme_cmds_and_effect_log_page *log_page;
2002 	struct spdk_nvme_ctrlr *ctrlr = arg;
2003 
2004 	if (spdk_nvme_cpl_is_error(cpl)) {
2005 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_get_zns_cmd_and_effects_log failed!\n");
2006 		spdk_free(ctrlr->tmp_ptr);
2007 		ctrlr->tmp_ptr = NULL;
2008 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2009 		return;
2010 	}
2011 
2012 	log_page = ctrlr->tmp_ptr;
2013 
2014 	if (log_page->io_cmds_supported[SPDK_NVME_OPC_ZONE_APPEND].csupp) {
2015 		ctrlr->flags |= SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2016 	}
2017 	spdk_free(ctrlr->tmp_ptr);
2018 	ctrlr->tmp_ptr = NULL;
2019 
2020 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES, ctrlr->opts.admin_timeout_ms);
2021 }
2022 
2023 static int
2024 nvme_ctrlr_get_zns_cmd_and_effects_log(struct spdk_nvme_ctrlr *ctrlr)
2025 {
2026 	int rc;
2027 
2028 	assert(!ctrlr->tmp_ptr);
2029 	ctrlr->tmp_ptr = spdk_zmalloc(sizeof(struct spdk_nvme_cmds_and_effect_log_page), 64, NULL,
2030 				      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2031 	if (!ctrlr->tmp_ptr) {
2032 		rc = -ENOMEM;
2033 		goto error;
2034 	}
2035 
2036 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG,
2037 			     ctrlr->opts.admin_timeout_ms);
2038 
2039 	rc = spdk_nvme_ctrlr_cmd_get_log_page_ext(ctrlr, SPDK_NVME_LOG_COMMAND_EFFECTS_LOG,
2040 			0, ctrlr->tmp_ptr, sizeof(struct spdk_nvme_cmds_and_effect_log_page),
2041 			0, 0, 0, SPDK_NVME_CSI_ZNS << 24,
2042 			nvme_ctrlr_get_zns_cmd_and_effects_log_done, ctrlr);
2043 	if (rc != 0) {
2044 		goto error;
2045 	}
2046 
2047 	return 0;
2048 
2049 error:
2050 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2051 	spdk_free(ctrlr->tmp_ptr);
2052 	ctrlr->tmp_ptr = NULL;
2053 	return rc;
2054 }
2055 
2056 static void
2057 nvme_ctrlr_identify_zns_specific_done(void *arg, const struct spdk_nvme_cpl *cpl)
2058 {
2059 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2060 
2061 	if (spdk_nvme_cpl_is_error(cpl)) {
2062 		/* no need to print an error, the controller simply does not support ZNS */
2063 		nvme_ctrlr_free_zns_specific_data(ctrlr);
2064 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2065 				     ctrlr->opts.admin_timeout_ms);
2066 		return;
2067 	}
2068 
2069 	/* A zero zasl value means use mdts */
2070 	if (ctrlr->cdata_zns->zasl) {
2071 		uint32_t max_append = ctrlr->min_page_size * (1 << ctrlr->cdata_zns->zasl);
2072 		ctrlr->max_zone_append_size = spdk_min(ctrlr->max_xfer_size, max_append);
2073 	} else {
2074 		ctrlr->max_zone_append_size = ctrlr->max_xfer_size;
2075 	}
2076 
2077 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG,
2078 			     ctrlr->opts.admin_timeout_ms);
2079 }
2080 
2081 /**
2082  * This function will try to fetch the I/O Command Specific Controller data structure for
2083  * each I/O Command Set supported by SPDK.
2084  *
2085  * If an I/O Command Set is not supported by the controller, "Invalid Field in Command"
2086  * will be returned. Since we are fetching in a exploratively way, getting an error back
2087  * from the controller should not be treated as fatal.
2088  *
2089  * I/O Command Sets not supported by SPDK will be skipped (e.g. Key Value Command Set).
2090  *
2091  * I/O Command Sets without a IOCS specific data structure (i.e. a zero-filled IOCS specific
2092  * data structure) will be skipped (e.g. NVM Command Set, Key Value Command Set).
2093  */
2094 static int
2095 nvme_ctrlr_identify_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2096 {
2097 	int	rc;
2098 
2099 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2100 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2101 				     ctrlr->opts.admin_timeout_ms);
2102 		return 0;
2103 	}
2104 
2105 	/*
2106 	 * Since SPDK currently only needs to fetch a single Command Set, keep the code here,
2107 	 * instead of creating multiple NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC substates,
2108 	 * which would require additional functions and complexity for no good reason.
2109 	 */
2110 	assert(!ctrlr->cdata_zns);
2111 	ctrlr->cdata_zns = spdk_zmalloc(sizeof(*ctrlr->cdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
2112 					SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2113 	if (!ctrlr->cdata_zns) {
2114 		rc = -ENOMEM;
2115 		goto error;
2116 	}
2117 
2118 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC,
2119 			     ctrlr->opts.admin_timeout_ms);
2120 
2121 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR_IOCS, 0, 0, SPDK_NVME_CSI_ZNS,
2122 				     ctrlr->cdata_zns, sizeof(*ctrlr->cdata_zns),
2123 				     nvme_ctrlr_identify_zns_specific_done, ctrlr);
2124 	if (rc != 0) {
2125 		goto error;
2126 	}
2127 
2128 	return 0;
2129 
2130 error:
2131 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2132 	nvme_ctrlr_free_zns_specific_data(ctrlr);
2133 	return rc;
2134 }
2135 
2136 enum nvme_active_ns_state {
2137 	NVME_ACTIVE_NS_STATE_IDLE,
2138 	NVME_ACTIVE_NS_STATE_PROCESSING,
2139 	NVME_ACTIVE_NS_STATE_DONE,
2140 	NVME_ACTIVE_NS_STATE_ERROR
2141 };
2142 
2143 typedef void (*nvme_active_ns_ctx_deleter)(struct nvme_active_ns_ctx *);
2144 
2145 struct nvme_active_ns_ctx {
2146 	struct spdk_nvme_ctrlr *ctrlr;
2147 	uint32_t page_count;
2148 	uint32_t next_nsid;
2149 	uint32_t *new_ns_list;
2150 	nvme_active_ns_ctx_deleter deleter;
2151 
2152 	enum nvme_active_ns_state state;
2153 };
2154 
2155 static struct nvme_active_ns_ctx *
2156 nvme_active_ns_ctx_create(struct spdk_nvme_ctrlr *ctrlr, nvme_active_ns_ctx_deleter deleter)
2157 {
2158 	struct nvme_active_ns_ctx *ctx;
2159 	uint32_t *new_ns_list = NULL;
2160 
2161 	ctx = calloc(1, sizeof(*ctx));
2162 	if (!ctx) {
2163 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate nvme_active_ns_ctx!\n");
2164 		return NULL;
2165 	}
2166 
2167 	new_ns_list = spdk_zmalloc(sizeof(struct spdk_nvme_ns_list), ctrlr->page_size,
2168 				   NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_SHARE);
2169 	if (!new_ns_list) {
2170 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate active_ns_list!\n");
2171 		free(ctx);
2172 		return NULL;
2173 	}
2174 
2175 	ctx->page_count = 1;
2176 	ctx->new_ns_list = new_ns_list;
2177 	ctx->ctrlr = ctrlr;
2178 	ctx->deleter = deleter;
2179 
2180 	return ctx;
2181 }
2182 
2183 static void
2184 nvme_active_ns_ctx_destroy(struct nvme_active_ns_ctx *ctx)
2185 {
2186 	spdk_free(ctx->new_ns_list);
2187 	free(ctx);
2188 }
2189 
2190 static int
2191 nvme_ctrlr_destruct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2192 {
2193 	struct spdk_nvme_ns tmp, *ns;
2194 
2195 	assert(ctrlr != NULL);
2196 
2197 	tmp.id = nsid;
2198 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
2199 	if (ns == NULL) {
2200 		return -EINVAL;
2201 	}
2202 
2203 	nvme_ns_destruct(ns);
2204 	ns->active = false;
2205 
2206 	return 0;
2207 }
2208 
2209 static int
2210 nvme_ctrlr_construct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2211 {
2212 	struct spdk_nvme_ns *ns;
2213 
2214 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
2215 		return -EINVAL;
2216 	}
2217 
2218 	/* Namespaces are constructed on demand, so simply request it. */
2219 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2220 	if (ns == NULL) {
2221 		return -ENOMEM;
2222 	}
2223 
2224 	ns->active = true;
2225 
2226 	return 0;
2227 }
2228 
2229 static void
2230 nvme_ctrlr_identify_active_ns_swap(struct spdk_nvme_ctrlr *ctrlr, uint32_t *new_ns_list,
2231 				   size_t max_entries)
2232 {
2233 	uint32_t active_ns_count = 0;
2234 	size_t i;
2235 	uint32_t nsid;
2236 	struct spdk_nvme_ns *ns, *tmp_ns;
2237 	int rc;
2238 
2239 	/* First, remove namespaces that no longer exist */
2240 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
2241 		nsid = new_ns_list[0];
2242 		active_ns_count = 0;
2243 		while (nsid != 0) {
2244 			if (nsid == ns->id) {
2245 				break;
2246 			}
2247 
2248 			nsid = new_ns_list[active_ns_count++];
2249 		}
2250 
2251 		if (nsid != ns->id) {
2252 			/* Did not find this namespace id in the new list. */
2253 			NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was removed\n", ns->id);
2254 			nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
2255 		}
2256 	}
2257 
2258 	/* Next, add new namespaces */
2259 	active_ns_count = 0;
2260 	for (i = 0; i < max_entries; i++) {
2261 		nsid = new_ns_list[active_ns_count];
2262 
2263 		if (nsid == 0) {
2264 			break;
2265 		}
2266 
2267 		/* If the namespace already exists, this will not construct it a second time. */
2268 		rc = nvme_ctrlr_construct_namespace(ctrlr, nsid);
2269 		if (rc != 0) {
2270 			/* We can't easily handle a failure here. But just move on. */
2271 			assert(false);
2272 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to allocate a namespace object.\n");
2273 			continue;
2274 		}
2275 
2276 		active_ns_count++;
2277 	}
2278 
2279 	ctrlr->active_ns_count = active_ns_count;
2280 }
2281 
2282 static void
2283 nvme_ctrlr_identify_active_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2284 {
2285 	struct nvme_active_ns_ctx *ctx = arg;
2286 	uint32_t *new_ns_list = NULL;
2287 
2288 	if (spdk_nvme_cpl_is_error(cpl)) {
2289 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2290 		goto out;
2291 	}
2292 
2293 	ctx->next_nsid = ctx->new_ns_list[1024 * ctx->page_count - 1];
2294 	if (ctx->next_nsid == 0) {
2295 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2296 		goto out;
2297 	}
2298 
2299 	ctx->page_count++;
2300 	new_ns_list = spdk_realloc(ctx->new_ns_list,
2301 				   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2302 				   ctx->ctrlr->page_size);
2303 	if (!new_ns_list) {
2304 		SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2305 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2306 		goto out;
2307 	}
2308 
2309 	ctx->new_ns_list = new_ns_list;
2310 	nvme_ctrlr_identify_active_ns_async(ctx);
2311 	return;
2312 
2313 out:
2314 	if (ctx->deleter) {
2315 		ctx->deleter(ctx);
2316 	}
2317 }
2318 
2319 static void
2320 nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx)
2321 {
2322 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2323 	uint32_t i;
2324 	int rc;
2325 
2326 	if (ctrlr->cdata.nn == 0) {
2327 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2328 		goto out;
2329 	}
2330 
2331 	assert(ctx->new_ns_list != NULL);
2332 
2333 	/*
2334 	 * If controller doesn't support active ns list CNS 0x02 dummy up
2335 	 * an active ns list, i.e. all namespaces report as active
2336 	 */
2337 	if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 1, 0) || ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS) {
2338 		uint32_t *new_ns_list;
2339 
2340 		/*
2341 		 * Active NS list must always end with zero element.
2342 		 * So, we allocate for cdata.nn+1.
2343 		 */
2344 		ctx->page_count = spdk_divide_round_up(ctrlr->cdata.nn + 1,
2345 						       sizeof(struct spdk_nvme_ns_list) / sizeof(new_ns_list[0]));
2346 		new_ns_list = spdk_realloc(ctx->new_ns_list,
2347 					   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2348 					   ctx->ctrlr->page_size);
2349 		if (!new_ns_list) {
2350 			SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2351 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2352 			goto out;
2353 		}
2354 
2355 		ctx->new_ns_list = new_ns_list;
2356 		ctx->new_ns_list[ctrlr->cdata.nn] = 0;
2357 		for (i = 0; i < ctrlr->cdata.nn; i++) {
2358 			ctx->new_ns_list[i] = i + 1;
2359 		}
2360 
2361 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2362 		goto out;
2363 	}
2364 
2365 	ctx->state = NVME_ACTIVE_NS_STATE_PROCESSING;
2366 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, ctx->next_nsid, 0,
2367 				     &ctx->new_ns_list[1024 * (ctx->page_count - 1)], sizeof(struct spdk_nvme_ns_list),
2368 				     nvme_ctrlr_identify_active_ns_async_done, ctx);
2369 	if (rc != 0) {
2370 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2371 		goto out;
2372 	}
2373 
2374 	return;
2375 
2376 out:
2377 	if (ctx->deleter) {
2378 		ctx->deleter(ctx);
2379 	}
2380 }
2381 
2382 static void
2383 _nvme_active_ns_ctx_deleter(struct nvme_active_ns_ctx *ctx)
2384 {
2385 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2386 	struct spdk_nvme_ns *ns;
2387 
2388 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2389 		nvme_active_ns_ctx_destroy(ctx);
2390 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2391 		return;
2392 	}
2393 
2394 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2395 
2396 	RB_FOREACH(ns, nvme_ns_tree, &ctrlr->ns) {
2397 		nvme_ns_free_iocs_specific_data(ns);
2398 	}
2399 
2400 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2401 	nvme_active_ns_ctx_destroy(ctx);
2402 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS, ctrlr->opts.admin_timeout_ms);
2403 }
2404 
2405 static void
2406 _nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2407 {
2408 	struct nvme_active_ns_ctx *ctx;
2409 
2410 	ctx = nvme_active_ns_ctx_create(ctrlr, _nvme_active_ns_ctx_deleter);
2411 	if (!ctx) {
2412 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2413 		return;
2414 	}
2415 
2416 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS,
2417 			     ctrlr->opts.admin_timeout_ms);
2418 	nvme_ctrlr_identify_active_ns_async(ctx);
2419 }
2420 
2421 int
2422 nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2423 {
2424 	struct nvme_active_ns_ctx *ctx;
2425 	int rc;
2426 
2427 	ctx = nvme_active_ns_ctx_create(ctrlr, NULL);
2428 	if (!ctx) {
2429 		return -ENOMEM;
2430 	}
2431 
2432 	nvme_ctrlr_identify_active_ns_async(ctx);
2433 	while (ctx->state == NVME_ACTIVE_NS_STATE_PROCESSING) {
2434 		rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2435 		if (rc < 0) {
2436 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2437 			break;
2438 		}
2439 	}
2440 
2441 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2442 		nvme_active_ns_ctx_destroy(ctx);
2443 		return -ENXIO;
2444 	}
2445 
2446 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2447 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2448 	nvme_active_ns_ctx_destroy(ctx);
2449 
2450 	return 0;
2451 }
2452 
2453 static void
2454 nvme_ctrlr_identify_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2455 {
2456 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2457 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2458 	uint32_t nsid;
2459 	int rc;
2460 
2461 	if (spdk_nvme_cpl_is_error(cpl)) {
2462 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2463 		return;
2464 	}
2465 
2466 	nvme_ns_set_identify_data(ns);
2467 
2468 	/* move on to the next active NS */
2469 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2470 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2471 	if (ns == NULL) {
2472 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2473 				     ctrlr->opts.admin_timeout_ms);
2474 		return;
2475 	}
2476 	ns->ctrlr = ctrlr;
2477 	ns->id = nsid;
2478 
2479 	rc = nvme_ctrlr_identify_ns_async(ns);
2480 	if (rc) {
2481 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2482 	}
2483 }
2484 
2485 static int
2486 nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns)
2487 {
2488 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2489 	struct spdk_nvme_ns_data *nsdata;
2490 
2491 	nsdata = &ns->nsdata;
2492 
2493 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS,
2494 			     ctrlr->opts.admin_timeout_ms);
2495 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS, 0, ns->id, 0,
2496 				       nsdata, sizeof(*nsdata),
2497 				       nvme_ctrlr_identify_ns_async_done, ns);
2498 }
2499 
2500 static int
2501 nvme_ctrlr_identify_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2502 {
2503 	uint32_t nsid;
2504 	struct spdk_nvme_ns *ns;
2505 	int rc;
2506 
2507 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2508 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2509 	if (ns == NULL) {
2510 		/* No active NS, move on to the next state */
2511 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2512 				     ctrlr->opts.admin_timeout_ms);
2513 		return 0;
2514 	}
2515 
2516 	ns->ctrlr = ctrlr;
2517 	ns->id = nsid;
2518 
2519 	rc = nvme_ctrlr_identify_ns_async(ns);
2520 	if (rc) {
2521 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2522 	}
2523 
2524 	return rc;
2525 }
2526 
2527 static int
2528 nvme_ctrlr_identify_namespaces_iocs_specific_next(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
2529 {
2530 	uint32_t nsid;
2531 	struct spdk_nvme_ns *ns;
2532 	int rc;
2533 
2534 	if (!prev_nsid) {
2535 		nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2536 	} else {
2537 		/* move on to the next active NS */
2538 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, prev_nsid);
2539 	}
2540 
2541 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2542 	if (ns == NULL) {
2543 		/* No first/next active NS, move on to the next state */
2544 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2545 				     ctrlr->opts.admin_timeout_ms);
2546 		return 0;
2547 	}
2548 
2549 	/* loop until we find a ns which has (supported) iocs specific data */
2550 	while (!nvme_ns_has_supported_iocs_specific_data(ns)) {
2551 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2552 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2553 		if (ns == NULL) {
2554 			/* no namespace with (supported) iocs specific data found */
2555 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2556 					     ctrlr->opts.admin_timeout_ms);
2557 			return 0;
2558 		}
2559 	}
2560 
2561 	rc = nvme_ctrlr_identify_ns_iocs_specific_async(ns);
2562 	if (rc) {
2563 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2564 	}
2565 
2566 	return rc;
2567 }
2568 
2569 static void
2570 nvme_ctrlr_identify_ns_zns_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2571 {
2572 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2573 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2574 
2575 	if (spdk_nvme_cpl_is_error(cpl)) {
2576 		nvme_ns_free_zns_specific_data(ns);
2577 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2578 		return;
2579 	}
2580 
2581 	nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2582 }
2583 
2584 static int
2585 nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns)
2586 {
2587 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2588 	int rc;
2589 
2590 	switch (ns->csi) {
2591 	case SPDK_NVME_CSI_ZNS:
2592 		break;
2593 	default:
2594 		/*
2595 		 * This switch must handle all cases for which
2596 		 * nvme_ns_has_supported_iocs_specific_data() returns true,
2597 		 * other cases should never happen.
2598 		 */
2599 		assert(0);
2600 	}
2601 
2602 	assert(!ns->nsdata_zns);
2603 	ns->nsdata_zns = spdk_zmalloc(sizeof(*ns->nsdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
2604 				      SPDK_MALLOC_SHARE);
2605 	if (!ns->nsdata_zns) {
2606 		return -ENOMEM;
2607 	}
2608 
2609 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2610 			     ctrlr->opts.admin_timeout_ms);
2611 	rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2612 				     ns->nsdata_zns, sizeof(*ns->nsdata_zns),
2613 				     nvme_ctrlr_identify_ns_zns_specific_async_done, ns);
2614 	if (rc) {
2615 		nvme_ns_free_zns_specific_data(ns);
2616 	}
2617 
2618 	return rc;
2619 }
2620 
2621 static int
2622 nvme_ctrlr_identify_namespaces_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2623 {
2624 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2625 		/* Multi IOCS not supported/enabled, move on to the next state */
2626 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2627 				     ctrlr->opts.admin_timeout_ms);
2628 		return 0;
2629 	}
2630 
2631 	return nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, 0);
2632 }
2633 
2634 static void
2635 nvme_ctrlr_identify_id_desc_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2636 {
2637 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2638 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2639 	uint32_t nsid;
2640 	int rc;
2641 
2642 	if (spdk_nvme_cpl_is_error(cpl)) {
2643 		/*
2644 		 * Many controllers claim to be compatible with NVMe 1.3, however,
2645 		 * they do not implement NS ID Desc List. Therefore, instead of setting
2646 		 * the state to NVME_CTRLR_STATE_ERROR, silently ignore the completion
2647 		 * error and move on to the next state.
2648 		 *
2649 		 * The proper way is to create a new quirk for controllers that violate
2650 		 * the NVMe 1.3 spec by not supporting NS ID Desc List.
2651 		 * (Re-using the NVME_QUIRK_IDENTIFY_CNS quirk is not possible, since
2652 		 * it is too generic and was added in order to handle controllers that
2653 		 * violate the NVMe 1.1 spec by not supporting ACTIVE LIST).
2654 		 */
2655 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2656 				     ctrlr->opts.admin_timeout_ms);
2657 		return;
2658 	}
2659 
2660 	nvme_ns_set_id_desc_list_data(ns);
2661 
2662 	/* move on to the next active NS */
2663 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2664 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2665 	if (ns == NULL) {
2666 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2667 				     ctrlr->opts.admin_timeout_ms);
2668 		return;
2669 	}
2670 
2671 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2672 	if (rc) {
2673 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2674 	}
2675 }
2676 
2677 static int
2678 nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns)
2679 {
2680 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2681 
2682 	memset(ns->id_desc_list, 0, sizeof(ns->id_desc_list));
2683 
2684 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS,
2685 			     ctrlr->opts.admin_timeout_ms);
2686 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_ID_DESCRIPTOR_LIST,
2687 				       0, ns->id, 0, ns->id_desc_list, sizeof(ns->id_desc_list),
2688 				       nvme_ctrlr_identify_id_desc_async_done, ns);
2689 }
2690 
2691 static int
2692 nvme_ctrlr_identify_id_desc_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2693 {
2694 	uint32_t nsid;
2695 	struct spdk_nvme_ns *ns;
2696 	int rc;
2697 
2698 	if ((ctrlr->vs.raw < SPDK_NVME_VERSION(1, 3, 0) &&
2699 	     !(ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS)) ||
2700 	    (ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2701 		NVME_CTRLR_DEBUGLOG(ctrlr, "Version < 1.3; not attempting to retrieve NS ID Descriptor List\n");
2702 		/* NS ID Desc List not supported, move on to the next state */
2703 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2704 				     ctrlr->opts.admin_timeout_ms);
2705 		return 0;
2706 	}
2707 
2708 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2709 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2710 	if (ns == NULL) {
2711 		/* No active NS, move on to the next state */
2712 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2713 				     ctrlr->opts.admin_timeout_ms);
2714 		return 0;
2715 	}
2716 
2717 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2718 	if (rc) {
2719 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2720 	}
2721 
2722 	return rc;
2723 }
2724 
2725 static void
2726 nvme_ctrlr_update_nvmf_ioccsz(struct spdk_nvme_ctrlr *ctrlr)
2727 {
2728 	if (spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
2729 		if (ctrlr->cdata.nvmf_specific.ioccsz < 4) {
2730 			NVME_CTRLR_ERRLOG(ctrlr, "Incorrect IOCCSZ %u, the minimum value should be 4\n",
2731 					  ctrlr->cdata.nvmf_specific.ioccsz);
2732 			ctrlr->cdata.nvmf_specific.ioccsz = 4;
2733 			assert(0);
2734 		}
2735 		ctrlr->ioccsz_bytes = ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd);
2736 		ctrlr->icdoff = ctrlr->cdata.nvmf_specific.icdoff;
2737 	}
2738 }
2739 
2740 static void
2741 nvme_ctrlr_set_num_queues_done(void *arg, const struct spdk_nvme_cpl *cpl)
2742 {
2743 	uint32_t cq_allocated, sq_allocated, min_allocated, i;
2744 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2745 
2746 	if (spdk_nvme_cpl_is_error(cpl)) {
2747 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Number of Queues failed!\n");
2748 		ctrlr->opts.num_io_queues = 0;
2749 	} else {
2750 		/*
2751 		 * Data in cdw0 is 0-based.
2752 		 * Lower 16-bits indicate number of submission queues allocated.
2753 		 * Upper 16-bits indicate number of completion queues allocated.
2754 		 */
2755 		sq_allocated = (cpl->cdw0 & 0xFFFF) + 1;
2756 		cq_allocated = (cpl->cdw0 >> 16) + 1;
2757 
2758 		/*
2759 		 * For 1:1 queue mapping, set number of allocated queues to be minimum of
2760 		 * submission and completion queues.
2761 		 */
2762 		min_allocated = spdk_min(sq_allocated, cq_allocated);
2763 
2764 		/* Set number of queues to be minimum of requested and actually allocated. */
2765 		ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues);
2766 	}
2767 
2768 	ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1);
2769 	if (ctrlr->free_io_qids == NULL) {
2770 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2771 		return;
2772 	}
2773 
2774 	/* Initialize list of free I/O queue IDs. QID 0 is the admin queue (implicitly allocated). */
2775 	for (i = 1; i <= ctrlr->opts.num_io_queues; i++) {
2776 		spdk_nvme_ctrlr_free_qid(ctrlr, i);
2777 	}
2778 
2779 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS,
2780 			     ctrlr->opts.admin_timeout_ms);
2781 }
2782 
2783 static int
2784 nvme_ctrlr_set_num_queues(struct spdk_nvme_ctrlr *ctrlr)
2785 {
2786 	int rc;
2787 
2788 	if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) {
2789 		NVME_CTRLR_NOTICELOG(ctrlr, "Limiting requested num_io_queues %u to max %d\n",
2790 				     ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES);
2791 		ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES;
2792 	} else if (ctrlr->opts.num_io_queues < 1) {
2793 		NVME_CTRLR_NOTICELOG(ctrlr, "Requested num_io_queues 0, increasing to 1\n");
2794 		ctrlr->opts.num_io_queues = 1;
2795 	}
2796 
2797 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES,
2798 			     ctrlr->opts.admin_timeout_ms);
2799 
2800 	rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues,
2801 					   nvme_ctrlr_set_num_queues_done, ctrlr);
2802 	if (rc != 0) {
2803 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2804 		return rc;
2805 	}
2806 
2807 	return 0;
2808 }
2809 
2810 static void
2811 nvme_ctrlr_set_keep_alive_timeout_done(void *arg, const struct spdk_nvme_cpl *cpl)
2812 {
2813 	uint32_t keep_alive_interval_us;
2814 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2815 
2816 	if (spdk_nvme_cpl_is_error(cpl)) {
2817 		if ((cpl->status.sct == SPDK_NVME_SCT_GENERIC) &&
2818 		    (cpl->status.sc == SPDK_NVME_SC_INVALID_FIELD)) {
2819 			NVME_CTRLR_DEBUGLOG(ctrlr, "Keep alive timeout Get Feature is not supported\n");
2820 		} else {
2821 			NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: SC %x SCT %x\n",
2822 					  cpl->status.sc, cpl->status.sct);
2823 			ctrlr->opts.keep_alive_timeout_ms = 0;
2824 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2825 			return;
2826 		}
2827 	} else {
2828 		if (ctrlr->opts.keep_alive_timeout_ms != cpl->cdw0) {
2829 			NVME_CTRLR_DEBUGLOG(ctrlr, "Controller adjusted keep alive timeout to %u ms\n",
2830 					    cpl->cdw0);
2831 		}
2832 
2833 		ctrlr->opts.keep_alive_timeout_ms = cpl->cdw0;
2834 	}
2835 
2836 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
2837 		ctrlr->keep_alive_interval_ticks = 0;
2838 	} else {
2839 		keep_alive_interval_us = ctrlr->opts.keep_alive_timeout_ms * 1000 / 2;
2840 
2841 		NVME_CTRLR_DEBUGLOG(ctrlr, "Sending keep alive every %u us\n", keep_alive_interval_us);
2842 
2843 		ctrlr->keep_alive_interval_ticks = (keep_alive_interval_us * spdk_get_ticks_hz()) /
2844 						   UINT64_C(1000000);
2845 
2846 		/* Schedule the first Keep Alive to be sent as soon as possible. */
2847 		ctrlr->next_keep_alive_tick = spdk_get_ticks();
2848 	}
2849 
2850 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
2851 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
2852 	} else {
2853 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
2854 				     ctrlr->opts.admin_timeout_ms);
2855 	}
2856 }
2857 
2858 static int
2859 nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr)
2860 {
2861 	int rc;
2862 
2863 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
2864 		if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
2865 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
2866 		} else {
2867 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
2868 					     ctrlr->opts.admin_timeout_ms);
2869 		}
2870 		return 0;
2871 	}
2872 
2873 	/* Note: Discovery controller identify data does not populate KAS according to spec. */
2874 	if (!spdk_nvme_ctrlr_is_discovery(ctrlr) && ctrlr->cdata.kas == 0) {
2875 		NVME_CTRLR_DEBUGLOG(ctrlr, "Controller KAS is 0 - not enabling Keep Alive\n");
2876 		ctrlr->opts.keep_alive_timeout_ms = 0;
2877 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
2878 				     ctrlr->opts.admin_timeout_ms);
2879 		return 0;
2880 	}
2881 
2882 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT,
2883 			     ctrlr->opts.admin_timeout_ms);
2884 
2885 	/* Retrieve actual keep alive timeout, since the controller may have adjusted it. */
2886 	rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0,
2887 					     nvme_ctrlr_set_keep_alive_timeout_done, ctrlr);
2888 	if (rc != 0) {
2889 		NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: %d\n", rc);
2890 		ctrlr->opts.keep_alive_timeout_ms = 0;
2891 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2892 		return rc;
2893 	}
2894 
2895 	return 0;
2896 }
2897 
2898 static void
2899 nvme_ctrlr_set_host_id_done(void *arg, const struct spdk_nvme_cpl *cpl)
2900 {
2901 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2902 
2903 	if (spdk_nvme_cpl_is_error(cpl)) {
2904 		/*
2905 		 * Treat Set Features - Host ID failure as non-fatal, since the Host ID feature
2906 		 * is optional.
2907 		 */
2908 		NVME_CTRLR_WARNLOG(ctrlr, "Set Features - Host ID failed: SC 0x%x SCT 0x%x\n",
2909 				   cpl->status.sc, cpl->status.sct);
2910 	} else {
2911 		NVME_CTRLR_DEBUGLOG(ctrlr, "Set Features - Host ID was successful\n");
2912 	}
2913 
2914 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
2915 }
2916 
2917 static int
2918 nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr)
2919 {
2920 	uint8_t *host_id;
2921 	uint32_t host_id_size;
2922 	int rc;
2923 
2924 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
2925 		/*
2926 		 * NVMe-oF sends the host ID during Connect and doesn't allow
2927 		 * Set Features - Host Identifier after Connect, so we don't need to do anything here.
2928 		 */
2929 		NVME_CTRLR_DEBUGLOG(ctrlr, "NVMe-oF transport - not sending Set Features - Host ID\n");
2930 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
2931 		return 0;
2932 	}
2933 
2934 	if (ctrlr->cdata.ctratt.host_id_exhid_supported) {
2935 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 128-bit extended host identifier\n");
2936 		host_id = ctrlr->opts.extended_host_id;
2937 		host_id_size = sizeof(ctrlr->opts.extended_host_id);
2938 	} else {
2939 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 64-bit host identifier\n");
2940 		host_id = ctrlr->opts.host_id;
2941 		host_id_size = sizeof(ctrlr->opts.host_id);
2942 	}
2943 
2944 	/* If the user specified an all-zeroes host identifier, don't send the command. */
2945 	if (spdk_mem_all_zero(host_id, host_id_size)) {
2946 		NVME_CTRLR_DEBUGLOG(ctrlr, "User did not specify host ID - not sending Set Features - Host ID\n");
2947 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
2948 		return 0;
2949 	}
2950 
2951 	SPDK_LOGDUMP(nvme, "host_id", host_id, host_id_size);
2952 
2953 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_HOST_ID,
2954 			     ctrlr->opts.admin_timeout_ms);
2955 
2956 	rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_ctrlr_set_host_id_done, ctrlr);
2957 	if (rc != 0) {
2958 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Host ID failed: %d\n", rc);
2959 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2960 		return rc;
2961 	}
2962 
2963 	return 0;
2964 }
2965 
2966 void
2967 nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2968 {
2969 	uint32_t nsid;
2970 	struct spdk_nvme_ns *ns;
2971 
2972 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2973 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
2974 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2975 		nvme_ns_construct(ns, nsid, ctrlr);
2976 	}
2977 }
2978 
2979 static int
2980 nvme_ctrlr_clear_changed_ns_log(struct spdk_nvme_ctrlr *ctrlr)
2981 {
2982 	struct nvme_completion_poll_status	*status;
2983 	int		rc = -ENOMEM;
2984 	char		*buffer = NULL;
2985 	uint32_t	nsid;
2986 	size_t		buf_size = (SPDK_NVME_MAX_CHANGED_NAMESPACES * sizeof(uint32_t));
2987 
2988 	if (ctrlr->opts.disable_read_changed_ns_list_log_page) {
2989 		return 0;
2990 	}
2991 
2992 	buffer = spdk_dma_zmalloc(buf_size, 4096, NULL);
2993 	if (!buffer) {
2994 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate buffer for getting "
2995 				  "changed ns log.\n");
2996 		return rc;
2997 	}
2998 
2999 	status = calloc(1, sizeof(*status));
3000 	if (!status) {
3001 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
3002 		goto free_buffer;
3003 	}
3004 
3005 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
3006 					      SPDK_NVME_LOG_CHANGED_NS_LIST,
3007 					      SPDK_NVME_GLOBAL_NS_TAG,
3008 					      buffer, buf_size, 0,
3009 					      nvme_completion_poll_cb, status);
3010 
3011 	if (rc) {
3012 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_get_log_page() failed: rc=%d\n", rc);
3013 		free(status);
3014 		goto free_buffer;
3015 	}
3016 
3017 	rc = nvme_wait_for_completion_timeout(ctrlr->adminq, status,
3018 					      ctrlr->opts.admin_timeout_ms * 1000);
3019 	if (!status->timed_out) {
3020 		free(status);
3021 	}
3022 
3023 	if (rc) {
3024 		NVME_CTRLR_ERRLOG(ctrlr, "wait for spdk_nvme_ctrlr_cmd_get_log_page failed: rc=%d\n", rc);
3025 		goto free_buffer;
3026 	}
3027 
3028 	/* only check the case of overflow. */
3029 	nsid = from_le32(buffer);
3030 	if (nsid == 0xffffffffu) {
3031 		NVME_CTRLR_WARNLOG(ctrlr, "changed ns log overflowed.\n");
3032 	}
3033 
3034 free_buffer:
3035 	spdk_dma_free(buffer);
3036 	return rc;
3037 }
3038 
3039 void
3040 nvme_ctrlr_process_async_event(struct spdk_nvme_ctrlr *ctrlr,
3041 			       const struct spdk_nvme_cpl *cpl)
3042 {
3043 	union spdk_nvme_async_event_completion event;
3044 	struct spdk_nvme_ctrlr_process *active_proc;
3045 	int rc;
3046 
3047 	event.raw = cpl->cdw0;
3048 
3049 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3050 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
3051 		nvme_ctrlr_clear_changed_ns_log(ctrlr);
3052 
3053 		rc = nvme_ctrlr_identify_active_ns(ctrlr);
3054 		if (rc) {
3055 			return;
3056 		}
3057 		nvme_ctrlr_update_namespaces(ctrlr);
3058 		nvme_io_msg_ctrlr_update(ctrlr);
3059 	}
3060 
3061 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3062 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
3063 		if (!ctrlr->opts.disable_read_ana_log_page) {
3064 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
3065 			if (rc) {
3066 				return;
3067 			}
3068 			nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
3069 						      ctrlr);
3070 		}
3071 	}
3072 
3073 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3074 	if (active_proc && active_proc->aer_cb_fn) {
3075 		active_proc->aer_cb_fn(active_proc->aer_cb_arg, cpl);
3076 	}
3077 }
3078 
3079 static void
3080 nvme_ctrlr_queue_async_event(struct spdk_nvme_ctrlr *ctrlr,
3081 			     const struct spdk_nvme_cpl *cpl)
3082 {
3083 	struct  spdk_nvme_ctrlr_aer_completion_list *nvme_event;
3084 	struct spdk_nvme_ctrlr_process *proc;
3085 
3086 	/* Add async event to each process objects event list */
3087 	TAILQ_FOREACH(proc, &ctrlr->active_procs, tailq) {
3088 		/* Must be shared memory so other processes can access */
3089 		nvme_event = spdk_zmalloc(sizeof(*nvme_event), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
3090 		if (!nvme_event) {
3091 			NVME_CTRLR_ERRLOG(ctrlr, "Alloc nvme event failed, ignore the event\n");
3092 			return;
3093 		}
3094 		nvme_event->cpl = *cpl;
3095 
3096 		STAILQ_INSERT_TAIL(&proc->async_events, nvme_event, link);
3097 	}
3098 }
3099 
3100 void
3101 nvme_ctrlr_complete_queued_async_events(struct spdk_nvme_ctrlr *ctrlr)
3102 {
3103 	struct  spdk_nvme_ctrlr_aer_completion_list  *nvme_event, *nvme_event_tmp;
3104 	struct spdk_nvme_ctrlr_process	*active_proc;
3105 
3106 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3107 
3108 	STAILQ_FOREACH_SAFE(nvme_event, &active_proc->async_events, link, nvme_event_tmp) {
3109 		STAILQ_REMOVE(&active_proc->async_events, nvme_event,
3110 			      spdk_nvme_ctrlr_aer_completion_list, link);
3111 		nvme_ctrlr_process_async_event(ctrlr, &nvme_event->cpl);
3112 		spdk_free(nvme_event);
3113 
3114 	}
3115 }
3116 
3117 static void
3118 nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl)
3119 {
3120 	struct nvme_async_event_request	*aer = arg;
3121 	struct spdk_nvme_ctrlr		*ctrlr = aer->ctrlr;
3122 
3123 	if (cpl->status.sct == SPDK_NVME_SCT_GENERIC &&
3124 	    cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) {
3125 		/*
3126 		 *  This is simulated when controller is being shut down, to
3127 		 *  effectively abort outstanding asynchronous event requests
3128 		 *  and make sure all memory is freed.  Do not repost the
3129 		 *  request in this case.
3130 		 */
3131 		return;
3132 	}
3133 
3134 	if (cpl->status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC &&
3135 	    cpl->status.sc == SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED) {
3136 		/*
3137 		 *  SPDK will only send as many AERs as the device says it supports,
3138 		 *  so this status code indicates an out-of-spec device.  Do not repost
3139 		 *  the request in this case.
3140 		 */
3141 		NVME_CTRLR_ERRLOG(ctrlr, "Controller appears out-of-spec for asynchronous event request\n"
3142 				  "handling.  Do not repost this AER.\n");
3143 		return;
3144 	}
3145 
3146 	/* Add the events to the list */
3147 	nvme_ctrlr_queue_async_event(ctrlr, cpl);
3148 
3149 	/* If the ctrlr was removed or in the destruct state, we should not send aer again */
3150 	if (ctrlr->is_removed || ctrlr->is_destructed) {
3151 		return;
3152 	}
3153 
3154 	/*
3155 	 * Repost another asynchronous event request to replace the one
3156 	 *  that just completed.
3157 	 */
3158 	if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
3159 		/*
3160 		 * We can't do anything to recover from a failure here,
3161 		 * so just print a warning message and leave the AER unsubmitted.
3162 		 */
3163 		NVME_CTRLR_ERRLOG(ctrlr, "resubmitting AER failed!\n");
3164 	}
3165 }
3166 
3167 static int
3168 nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
3169 				    struct nvme_async_event_request *aer)
3170 {
3171 	struct nvme_request *req;
3172 
3173 	aer->ctrlr = ctrlr;
3174 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer);
3175 	aer->req = req;
3176 	if (req == NULL) {
3177 		return -1;
3178 	}
3179 
3180 	req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
3181 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
3182 }
3183 
3184 static void
3185 nvme_ctrlr_configure_aer_done(void *arg, const struct spdk_nvme_cpl *cpl)
3186 {
3187 	struct nvme_async_event_request		*aer;
3188 	int					rc;
3189 	uint32_t				i;
3190 	struct spdk_nvme_ctrlr *ctrlr =	(struct spdk_nvme_ctrlr *)arg;
3191 
3192 	if (spdk_nvme_cpl_is_error(cpl)) {
3193 		NVME_CTRLR_NOTICELOG(ctrlr, "nvme_ctrlr_configure_aer failed!\n");
3194 		ctrlr->num_aers = 0;
3195 	} else {
3196 		/* aerl is a zero-based value, so we need to add 1 here. */
3197 		ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
3198 	}
3199 
3200 	for (i = 0; i < ctrlr->num_aers; i++) {
3201 		aer = &ctrlr->aer[i];
3202 		rc = nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
3203 		if (rc) {
3204 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_construct_and_submit_aer failed!\n");
3205 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3206 			return;
3207 		}
3208 	}
3209 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, ctrlr->opts.admin_timeout_ms);
3210 }
3211 
3212 static int
3213 nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr)
3214 {
3215 	union spdk_nvme_feat_async_event_configuration	config;
3216 	int						rc;
3217 
3218 	config.raw = 0;
3219 
3220 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3221 		config.bits.discovery_log_change_notice = 1;
3222 	} else {
3223 		config.bits.crit_warn.bits.available_spare = 1;
3224 		config.bits.crit_warn.bits.temperature = 1;
3225 		config.bits.crit_warn.bits.device_reliability = 1;
3226 		config.bits.crit_warn.bits.read_only = 1;
3227 		config.bits.crit_warn.bits.volatile_memory_backup = 1;
3228 
3229 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 2, 0)) {
3230 			if (ctrlr->cdata.oaes.ns_attribute_notices) {
3231 				config.bits.ns_attr_notice = 1;
3232 			}
3233 			if (ctrlr->cdata.oaes.fw_activation_notices) {
3234 				config.bits.fw_activation_notice = 1;
3235 			}
3236 			if (ctrlr->cdata.oaes.ana_change_notices) {
3237 				config.bits.ana_change_notice = 1;
3238 			}
3239 		}
3240 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 3, 0) && ctrlr->cdata.lpa.telemetry) {
3241 			config.bits.telemetry_log_notice = 1;
3242 		}
3243 	}
3244 
3245 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER,
3246 			     ctrlr->opts.admin_timeout_ms);
3247 
3248 	rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config,
3249 			nvme_ctrlr_configure_aer_done,
3250 			ctrlr);
3251 	if (rc != 0) {
3252 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3253 		return rc;
3254 	}
3255 
3256 	return 0;
3257 }
3258 
3259 struct spdk_nvme_ctrlr_process *
3260 nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid)
3261 {
3262 	struct spdk_nvme_ctrlr_process	*active_proc;
3263 
3264 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3265 		if (active_proc->pid == pid) {
3266 			return active_proc;
3267 		}
3268 	}
3269 
3270 	return NULL;
3271 }
3272 
3273 struct spdk_nvme_ctrlr_process *
3274 nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr)
3275 {
3276 	return nvme_ctrlr_get_process(ctrlr, getpid());
3277 }
3278 
3279 /**
3280  * This function will be called when a process is using the controller.
3281  *  1. For the primary process, it is called when constructing the controller.
3282  *  2. For the secondary process, it is called at probing the controller.
3283  * Note: will check whether the process is already added for the same process.
3284  */
3285 int
3286 nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
3287 {
3288 	struct spdk_nvme_ctrlr_process	*ctrlr_proc;
3289 	pid_t				pid = getpid();
3290 
3291 	/* Check whether the process is already added or not */
3292 	if (nvme_ctrlr_get_process(ctrlr, pid)) {
3293 		return 0;
3294 	}
3295 
3296 	/* Initialize the per process properties for this ctrlr */
3297 	ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process),
3298 				  64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
3299 	if (ctrlr_proc == NULL) {
3300 		NVME_CTRLR_ERRLOG(ctrlr, "failed to allocate memory to track the process props\n");
3301 
3302 		return -1;
3303 	}
3304 
3305 	ctrlr_proc->is_primary = spdk_process_is_primary();
3306 	ctrlr_proc->pid = pid;
3307 	STAILQ_INIT(&ctrlr_proc->active_reqs);
3308 	ctrlr_proc->devhandle = devhandle;
3309 	ctrlr_proc->ref = 0;
3310 	TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs);
3311 	STAILQ_INIT(&ctrlr_proc->async_events);
3312 
3313 	TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq);
3314 
3315 	return 0;
3316 }
3317 
3318 /**
3319  * This function will be called when the process detaches the controller.
3320  * Note: the ctrlr_lock must be held when calling this function.
3321  */
3322 static void
3323 nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr,
3324 			  struct spdk_nvme_ctrlr_process *proc)
3325 {
3326 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3327 
3328 	assert(STAILQ_EMPTY(&proc->active_reqs));
3329 
3330 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3331 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3332 	}
3333 
3334 	TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq);
3335 
3336 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
3337 		spdk_pci_device_detach(proc->devhandle);
3338 	}
3339 
3340 	spdk_free(proc);
3341 }
3342 
3343 /**
3344  * This function will be called when the process exited unexpectedly
3345  *  in order to free any incomplete nvme request, allocated IO qpairs
3346  *  and allocated memory.
3347  * Note: the ctrlr_lock must be held when calling this function.
3348  */
3349 static void
3350 nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc)
3351 {
3352 	struct nvme_request	*req, *tmp_req;
3353 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3354 	struct spdk_nvme_ctrlr_aer_completion_list *event;
3355 
3356 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
3357 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
3358 
3359 		assert(req->pid == proc->pid);
3360 
3361 		nvme_free_request(req);
3362 	}
3363 
3364 	/* Remove async event from each process objects event list */
3365 	while (!STAILQ_EMPTY(&proc->async_events)) {
3366 		event = STAILQ_FIRST(&proc->async_events);
3367 		STAILQ_REMOVE_HEAD(&proc->async_events, link);
3368 		spdk_free(event);
3369 	}
3370 
3371 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3372 		TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq);
3373 
3374 		/*
3375 		 * The process may have been killed while some qpairs were in their
3376 		 *  completion context.  Clear that flag here to allow these IO
3377 		 *  qpairs to be deleted.
3378 		 */
3379 		qpair->in_completion_context = 0;
3380 
3381 		qpair->no_deletion_notification_needed = 1;
3382 
3383 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3384 	}
3385 
3386 	spdk_free(proc);
3387 }
3388 
3389 /**
3390  * This function will be called when destructing the controller.
3391  *  1. There is no more admin request on this controller.
3392  *  2. Clean up any left resource allocation when its associated process is gone.
3393  */
3394 void
3395 nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
3396 {
3397 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3398 
3399 	/* Free all the processes' properties and make sure no pending admin IOs */
3400 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3401 		TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3402 
3403 		assert(STAILQ_EMPTY(&active_proc->active_reqs));
3404 
3405 		spdk_free(active_proc);
3406 	}
3407 }
3408 
3409 /**
3410  * This function will be called when any other process attaches or
3411  *  detaches the controller in order to cleanup those unexpectedly
3412  *  terminated processes.
3413  * Note: the ctrlr_lock must be held when calling this function.
3414  */
3415 static int
3416 nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr)
3417 {
3418 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3419 	int				active_proc_count = 0;
3420 
3421 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3422 		if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) {
3423 			NVME_CTRLR_ERRLOG(ctrlr, "process %d terminated unexpected\n", active_proc->pid);
3424 
3425 			TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3426 
3427 			nvme_ctrlr_cleanup_process(active_proc);
3428 		} else {
3429 			active_proc_count++;
3430 		}
3431 	}
3432 
3433 	return active_proc_count;
3434 }
3435 
3436 void
3437 nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr)
3438 {
3439 	struct spdk_nvme_ctrlr_process	*active_proc;
3440 
3441 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3442 
3443 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3444 
3445 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3446 	if (active_proc) {
3447 		active_proc->ref++;
3448 	}
3449 
3450 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3451 }
3452 
3453 void
3454 nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr)
3455 {
3456 	struct spdk_nvme_ctrlr_process	*active_proc;
3457 	int				proc_count;
3458 
3459 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3460 
3461 	proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr);
3462 
3463 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3464 	if (active_proc) {
3465 		active_proc->ref--;
3466 		assert(active_proc->ref >= 0);
3467 
3468 		/*
3469 		 * The last active process will be removed at the end of
3470 		 * the destruction of the controller.
3471 		 */
3472 		if (active_proc->ref == 0 && proc_count != 1) {
3473 			nvme_ctrlr_remove_process(ctrlr, active_proc);
3474 		}
3475 	}
3476 
3477 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3478 }
3479 
3480 int
3481 nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr)
3482 {
3483 	struct spdk_nvme_ctrlr_process	*active_proc;
3484 	int				ref = 0;
3485 
3486 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3487 
3488 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3489 
3490 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3491 		ref += active_proc->ref;
3492 	}
3493 
3494 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3495 
3496 	return ref;
3497 }
3498 
3499 /**
3500  *  Get the PCI device handle which is only visible to its associated process.
3501  */
3502 struct spdk_pci_device *
3503 nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr)
3504 {
3505 	struct spdk_nvme_ctrlr_process	*active_proc;
3506 	struct spdk_pci_device		*devhandle = NULL;
3507 
3508 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3509 
3510 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3511 	if (active_proc) {
3512 		devhandle = active_proc->devhandle;
3513 	}
3514 
3515 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3516 
3517 	return devhandle;
3518 }
3519 
3520 static void
3521 nvme_ctrlr_process_init_vs_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3522 {
3523 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3524 
3525 	if (spdk_nvme_cpl_is_error(cpl)) {
3526 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the VS register\n");
3527 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3528 		return;
3529 	}
3530 
3531 	assert(value <= UINT32_MAX);
3532 	ctrlr->vs.raw = (uint32_t)value;
3533 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP, NVME_TIMEOUT_INFINITE);
3534 }
3535 
3536 static void
3537 nvme_ctrlr_process_init_cap_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3538 {
3539 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3540 
3541 	if (spdk_nvme_cpl_is_error(cpl)) {
3542 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CAP register\n");
3543 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3544 		return;
3545 	}
3546 
3547 	ctrlr->cap.raw = value;
3548 	nvme_ctrlr_init_cap(ctrlr);
3549 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
3550 }
3551 
3552 static void
3553 nvme_ctrlr_process_init_check_en(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3554 {
3555 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3556 	enum nvme_ctrlr_state state;
3557 
3558 	if (spdk_nvme_cpl_is_error(cpl)) {
3559 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3560 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3561 		return;
3562 	}
3563 
3564 	assert(value <= UINT32_MAX);
3565 	ctrlr->process_init_cc.raw = (uint32_t)value;
3566 
3567 	if (ctrlr->process_init_cc.bits.en) {
3568 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1\n");
3569 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1;
3570 	} else {
3571 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0;
3572 	}
3573 
3574 	nvme_ctrlr_set_state(ctrlr, state, nvme_ctrlr_get_ready_timeout(ctrlr));
3575 }
3576 
3577 static void
3578 nvme_ctrlr_process_init_set_en_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3579 {
3580 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3581 
3582 	if (spdk_nvme_cpl_is_error(cpl)) {
3583 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write the CC register\n");
3584 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3585 		return;
3586 	}
3587 
3588 	/*
3589 	 * Wait 2.5 seconds before accessing PCI registers.
3590 	 * Not using sleep() to avoid blocking other controller's initialization.
3591 	 */
3592 	if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) {
3593 		NVME_CTRLR_DEBUGLOG(ctrlr, "Applying quirk: delay 2.5 seconds before reading registers\n");
3594 		ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2500 * spdk_get_ticks_hz() / 1000);
3595 	}
3596 
3597 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3598 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3599 }
3600 
3601 static void
3602 nvme_ctrlr_process_init_set_en_0_read_cc(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3603 {
3604 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3605 	union spdk_nvme_cc_register cc;
3606 	int rc;
3607 
3608 	if (spdk_nvme_cpl_is_error(cpl)) {
3609 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3610 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3611 		return;
3612 	}
3613 
3614 	assert(value <= UINT32_MAX);
3615 	cc.raw = (uint32_t)value;
3616 	cc.bits.en = 0;
3617 	ctrlr->process_init_cc.raw = cc.raw;
3618 
3619 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC,
3620 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3621 
3622 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_process_init_set_en_0, ctrlr);
3623 	if (rc != 0) {
3624 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
3625 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3626 	}
3627 }
3628 
3629 static void
3630 nvme_ctrlr_process_init_wait_for_ready_1(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3631 {
3632 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3633 	union spdk_nvme_csts_register csts;
3634 
3635 	if (spdk_nvme_cpl_is_error(cpl)) {
3636 		/* While a device is resetting, it may be unable to service MMIO reads
3637 		 * temporarily. Allow for this case.
3638 		 */
3639 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3640 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3641 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3642 					     NVME_TIMEOUT_KEEP_EXISTING);
3643 		} else {
3644 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3645 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3646 		}
3647 
3648 		return;
3649 	}
3650 
3651 	assert(value <= UINT32_MAX);
3652 	csts.raw = (uint32_t)value;
3653 	if (csts.bits.rdy == 1 || csts.bits.cfs == 1) {
3654 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0,
3655 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3656 	} else {
3657 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n");
3658 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3659 					   NVME_TIMEOUT_KEEP_EXISTING);
3660 	}
3661 }
3662 
3663 static void
3664 nvme_ctrlr_process_init_wait_for_ready_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3665 {
3666 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3667 	union spdk_nvme_csts_register csts;
3668 
3669 	if (spdk_nvme_cpl_is_error(cpl)) {
3670 		/* While a device is resetting, it may be unable to service MMIO reads
3671 		 * temporarily. Allow for this case.
3672 		 */
3673 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3674 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3675 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3676 					     NVME_TIMEOUT_KEEP_EXISTING);
3677 		} else {
3678 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3679 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3680 		}
3681 
3682 		return;
3683 	}
3684 
3685 	assert(value <= UINT32_MAX);
3686 	csts.raw = (uint32_t)value;
3687 	if (csts.bits.rdy == 0) {
3688 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 0 && CSTS.RDY = 0\n");
3689 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLED,
3690 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3691 	} else {
3692 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3693 					   NVME_TIMEOUT_KEEP_EXISTING);
3694 	}
3695 }
3696 
3697 static void
3698 nvme_ctrlr_process_init_enable_wait_for_ready_1(void *ctx, uint64_t value,
3699 		const struct spdk_nvme_cpl *cpl)
3700 {
3701 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3702 	union spdk_nvme_csts_register csts;
3703 
3704 	if (spdk_nvme_cpl_is_error(cpl)) {
3705 		/* While a device is resetting, it may be unable to service MMIO reads
3706 		 * temporarily. Allow for this case.
3707 		 */
3708 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3709 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3710 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3711 					     NVME_TIMEOUT_KEEP_EXISTING);
3712 		} else {
3713 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3714 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3715 		}
3716 
3717 		return;
3718 	}
3719 
3720 	assert(value <= UINT32_MAX);
3721 	csts.raw = value;
3722 	if (csts.bits.rdy == 1) {
3723 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n");
3724 		/*
3725 		 * The controller has been enabled.
3726 		 *  Perform the rest of initialization serially.
3727 		 */
3728 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_RESET_ADMIN_QUEUE,
3729 				     ctrlr->opts.admin_timeout_ms);
3730 	} else {
3731 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3732 					   NVME_TIMEOUT_KEEP_EXISTING);
3733 	}
3734 }
3735 
3736 /**
3737  * This function will be called repeatedly during initialization until the controller is ready.
3738  */
3739 int
3740 nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr)
3741 {
3742 	uint32_t ready_timeout_in_ms;
3743 	uint64_t ticks;
3744 	int rc = 0;
3745 
3746 	ticks = spdk_get_ticks();
3747 
3748 	/*
3749 	 * May need to avoid accessing any register on the target controller
3750 	 * for a while. Return early without touching the FSM.
3751 	 * Check sleep_timeout_tsc > 0 for unit test.
3752 	 */
3753 	if ((ctrlr->sleep_timeout_tsc > 0) &&
3754 	    (ticks <= ctrlr->sleep_timeout_tsc)) {
3755 		return 0;
3756 	}
3757 	ctrlr->sleep_timeout_tsc = 0;
3758 
3759 	ready_timeout_in_ms = nvme_ctrlr_get_ready_timeout(ctrlr);
3760 
3761 	/*
3762 	 * Check if the current initialization step is done or has timed out.
3763 	 */
3764 	switch (ctrlr->state) {
3765 	case NVME_CTRLR_STATE_INIT_DELAY:
3766 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, ready_timeout_in_ms);
3767 		if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_INIT) {
3768 			/*
3769 			 * Controller may need some delay before it's enabled.
3770 			 *
3771 			 * This is a workaround for an issue where the PCIe-attached NVMe controller
3772 			 * is not ready after VFIO reset. We delay the initialization rather than the
3773 			 * enabling itself, because this is required only for the very first enabling
3774 			 * - directly after a VFIO reset.
3775 			 */
3776 			NVME_CTRLR_DEBUGLOG(ctrlr, "Adding 2 second delay before initializing the controller\n");
3777 			ctrlr->sleep_timeout_tsc = ticks + (2000 * spdk_get_ticks_hz() / 1000);
3778 		}
3779 		break;
3780 
3781 	case NVME_CTRLR_STATE_CONNECT_ADMINQ: /* synonymous with NVME_CTRLR_STATE_INIT */
3782 		rc = nvme_transport_ctrlr_connect_qpair(ctrlr, ctrlr->adminq);
3783 		if (rc == 0) {
3784 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ,
3785 					     NVME_TIMEOUT_INFINITE);
3786 		} else {
3787 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3788 		}
3789 		break;
3790 
3791 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
3792 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3793 
3794 		switch (nvme_qpair_get_state(ctrlr->adminq)) {
3795 		case NVME_QPAIR_CONNECTING:
3796 			break;
3797 		case NVME_QPAIR_CONNECTED:
3798 			nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
3799 		/* Fall through */
3800 		case NVME_QPAIR_ENABLED:
3801 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS,
3802 					     NVME_TIMEOUT_INFINITE);
3803 			/* Abort any queued requests that were sent while the adminq was connecting
3804 			 * to avoid stalling the init process during a reset, as requests don't get
3805 			 * resubmitted while the controller is resetting and subsequent commands
3806 			 * would get queued too.
3807 			 */
3808 			nvme_qpair_abort_queued_reqs(ctrlr->adminq, 0);
3809 			break;
3810 		case NVME_QPAIR_DISCONNECTING:
3811 			assert(ctrlr->adminq->async == true);
3812 			break;
3813 		case NVME_QPAIR_DISCONNECTED:
3814 		/* fallthrough */
3815 		default:
3816 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3817 			break;
3818 		}
3819 
3820 		break;
3821 
3822 	case NVME_CTRLR_STATE_READ_VS:
3823 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS, NVME_TIMEOUT_INFINITE);
3824 		rc = nvme_ctrlr_get_vs_async(ctrlr, nvme_ctrlr_process_init_vs_done, ctrlr);
3825 		break;
3826 
3827 	case NVME_CTRLR_STATE_READ_CAP:
3828 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP, NVME_TIMEOUT_INFINITE);
3829 		rc = nvme_ctrlr_get_cap_async(ctrlr, nvme_ctrlr_process_init_cap_done, ctrlr);
3830 		break;
3831 
3832 	case NVME_CTRLR_STATE_CHECK_EN:
3833 		/* Begin the hardware initialization by making sure the controller is disabled. */
3834 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC, ready_timeout_in_ms);
3835 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_check_en, ctrlr);
3836 		break;
3837 
3838 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
3839 		/*
3840 		 * Controller is currently enabled. We need to disable it to cause a reset.
3841 		 *
3842 		 * If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready.
3843 		 *  Wait for the ready bit to be 1 before disabling the controller.
3844 		 */
3845 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
3846 					   NVME_TIMEOUT_KEEP_EXISTING);
3847 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_1, ctrlr);
3848 		break;
3849 
3850 	case NVME_CTRLR_STATE_SET_EN_0:
3851 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 0\n");
3852 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC, ready_timeout_in_ms);
3853 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_set_en_0_read_cc, ctrlr);
3854 		break;
3855 
3856 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
3857 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS,
3858 					   NVME_TIMEOUT_KEEP_EXISTING);
3859 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_0, ctrlr);
3860 		break;
3861 
3862 	case NVME_CTRLR_STATE_DISABLED:
3863 		if (ctrlr->is_disconnecting) {
3864 			NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr was disabled.\n");
3865 		} else {
3866 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms);
3867 
3868 			/*
3869 			 * Delay 100us before setting CC.EN = 1.  Some NVMe SSDs miss CC.EN getting
3870 			 *  set to 1 if it is too soon after CSTS.RDY is reported as 0.
3871 			 */
3872 			spdk_delay_us(100);
3873 		}
3874 		break;
3875 
3876 	case NVME_CTRLR_STATE_ENABLE:
3877 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 1\n");
3878 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC, ready_timeout_in_ms);
3879 		rc = nvme_ctrlr_enable(ctrlr);
3880 		if (rc) {
3881 			NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr enable failed with error: %d", rc);
3882 		}
3883 		return rc;
3884 
3885 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
3886 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
3887 					   NVME_TIMEOUT_KEEP_EXISTING);
3888 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_enable_wait_for_ready_1,
3889 					       ctrlr);
3890 		break;
3891 
3892 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
3893 		nvme_transport_qpair_reset(ctrlr->adminq);
3894 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY, NVME_TIMEOUT_INFINITE);
3895 		break;
3896 
3897 	case NVME_CTRLR_STATE_IDENTIFY:
3898 		rc = nvme_ctrlr_identify(ctrlr);
3899 		break;
3900 
3901 	case NVME_CTRLR_STATE_CONFIGURE_AER:
3902 		rc = nvme_ctrlr_configure_aer(ctrlr);
3903 		break;
3904 
3905 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
3906 		rc = nvme_ctrlr_set_keep_alive_timeout(ctrlr);
3907 		break;
3908 
3909 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
3910 		rc = nvme_ctrlr_identify_iocs_specific(ctrlr);
3911 		break;
3912 
3913 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
3914 		rc = nvme_ctrlr_get_zns_cmd_and_effects_log(ctrlr);
3915 		break;
3916 
3917 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
3918 		nvme_ctrlr_update_nvmf_ioccsz(ctrlr);
3919 		rc = nvme_ctrlr_set_num_queues(ctrlr);
3920 		break;
3921 
3922 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
3923 		_nvme_ctrlr_identify_active_ns(ctrlr);
3924 		break;
3925 
3926 	case NVME_CTRLR_STATE_IDENTIFY_NS:
3927 		rc = nvme_ctrlr_identify_namespaces(ctrlr);
3928 		break;
3929 
3930 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
3931 		rc = nvme_ctrlr_identify_id_desc_namespaces(ctrlr);
3932 		break;
3933 
3934 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
3935 		rc = nvme_ctrlr_identify_namespaces_iocs_specific(ctrlr);
3936 		break;
3937 
3938 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
3939 		rc = nvme_ctrlr_set_supported_log_pages(ctrlr);
3940 		break;
3941 
3942 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
3943 		rc = nvme_ctrlr_set_intel_support_log_pages(ctrlr);
3944 		break;
3945 
3946 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
3947 		nvme_ctrlr_set_supported_features(ctrlr);
3948 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
3949 				     ctrlr->opts.admin_timeout_ms);
3950 		break;
3951 
3952 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
3953 		rc = nvme_ctrlr_set_doorbell_buffer_config(ctrlr);
3954 		break;
3955 
3956 	case NVME_CTRLR_STATE_SET_HOST_ID:
3957 		rc = nvme_ctrlr_set_host_id(ctrlr);
3958 		break;
3959 
3960 	case NVME_CTRLR_STATE_TRANSPORT_READY:
3961 		rc = nvme_transport_ctrlr_ready(ctrlr);
3962 		if (rc) {
3963 			NVME_CTRLR_ERRLOG(ctrlr, "Transport controller ready step failed: rc %d\n", rc);
3964 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3965 		} else {
3966 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
3967 		}
3968 		break;
3969 
3970 	case NVME_CTRLR_STATE_READY:
3971 		NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr already in ready state\n");
3972 		return 0;
3973 
3974 	case NVME_CTRLR_STATE_ERROR:
3975 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr is in error state\n");
3976 		return -1;
3977 
3978 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
3979 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
3980 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
3981 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
3982 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
3983 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
3984 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
3985 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
3986 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
3987 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
3988 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
3989 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
3990 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
3991 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
3992 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
3993 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
3994 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
3995 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
3996 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
3997 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
3998 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
3999 		/*
4000 		 * nvme_ctrlr_process_init() may be called from the completion context
4001 		 * for the admin qpair. Avoid recursive calls for this case.
4002 		 */
4003 		if (!ctrlr->adminq->in_completion_context) {
4004 			spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4005 		}
4006 		break;
4007 
4008 	default:
4009 		assert(0);
4010 		return -1;
4011 	}
4012 
4013 	if (rc) {
4014 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr operation failed with error: %d, ctrlr state: %d (%s)\n",
4015 				  rc, ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4016 	}
4017 
4018 	/* Note: we use the ticks captured when we entered this function.
4019 	 * This covers environments where the SPDK process gets swapped out after
4020 	 * we tried to advance the state but before we check the timeout here.
4021 	 * It is not normal for this to happen, but harmless to handle it in this
4022 	 * way.
4023 	 */
4024 	if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE &&
4025 	    ticks > ctrlr->state_timeout_tsc) {
4026 		NVME_CTRLR_ERRLOG(ctrlr, "Initialization timed out in state %d (%s)\n",
4027 				  ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4028 		return -1;
4029 	}
4030 
4031 	return rc;
4032 }
4033 
4034 int
4035 nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx)
4036 {
4037 	pthread_mutexattr_t attr;
4038 	int rc = 0;
4039 
4040 	if (pthread_mutexattr_init(&attr)) {
4041 		return -1;
4042 	}
4043 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) ||
4044 #ifndef __FreeBSD__
4045 	    pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
4046 	    pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
4047 #endif
4048 	    pthread_mutex_init(mtx, &attr)) {
4049 		rc = -1;
4050 	}
4051 	pthread_mutexattr_destroy(&attr);
4052 	return rc;
4053 }
4054 
4055 int
4056 nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
4057 {
4058 	int rc;
4059 
4060 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4061 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT_DELAY, NVME_TIMEOUT_INFINITE);
4062 	} else {
4063 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
4064 	}
4065 
4066 	if (ctrlr->opts.admin_queue_size > SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES) {
4067 		NVME_CTRLR_ERRLOG(ctrlr, "admin_queue_size %u exceeds max defined by NVMe spec, use max value\n",
4068 				  ctrlr->opts.admin_queue_size);
4069 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES;
4070 	}
4071 
4072 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_ADMIN_QUEUE_SIZE &&
4073 	    (ctrlr->opts.admin_queue_size % SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE) != 0) {
4074 		NVME_CTRLR_ERRLOG(ctrlr,
4075 				  "admin_queue_size %u is invalid for this NVMe device, adjust to next multiple\n",
4076 				  ctrlr->opts.admin_queue_size);
4077 		ctrlr->opts.admin_queue_size = SPDK_ALIGN_CEIL(ctrlr->opts.admin_queue_size,
4078 					       SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE);
4079 	}
4080 
4081 	if (ctrlr->opts.admin_queue_size < SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES) {
4082 		NVME_CTRLR_ERRLOG(ctrlr,
4083 				  "admin_queue_size %u is less than minimum defined by NVMe spec, use min value\n",
4084 				  ctrlr->opts.admin_queue_size);
4085 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES;
4086 	}
4087 
4088 	ctrlr->flags = 0;
4089 	ctrlr->free_io_qids = NULL;
4090 	ctrlr->is_resetting = false;
4091 	ctrlr->is_failed = false;
4092 	ctrlr->is_destructed = false;
4093 
4094 	TAILQ_INIT(&ctrlr->active_io_qpairs);
4095 	STAILQ_INIT(&ctrlr->queued_aborts);
4096 	ctrlr->outstanding_aborts = 0;
4097 
4098 	ctrlr->ana_log_page = NULL;
4099 	ctrlr->ana_log_page_size = 0;
4100 
4101 	rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock);
4102 	if (rc != 0) {
4103 		return rc;
4104 	}
4105 
4106 	TAILQ_INIT(&ctrlr->active_procs);
4107 	STAILQ_INIT(&ctrlr->register_operations);
4108 
4109 	RB_INIT(&ctrlr->ns);
4110 
4111 	return rc;
4112 }
4113 
4114 static void
4115 nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr)
4116 {
4117 	if (ctrlr->cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) {
4118 		ctrlr->flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED;
4119 	}
4120 
4121 	ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin);
4122 
4123 	/* For now, always select page_size == min_page_size. */
4124 	ctrlr->page_size = ctrlr->min_page_size;
4125 
4126 	ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES);
4127 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, MAX_IO_QUEUE_ENTRIES);
4128 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE &&
4129 	    ctrlr->opts.io_queue_size == DEFAULT_IO_QUEUE_SIZE) {
4130 		/* If the user specifically set an IO queue size different than the
4131 		 * default, use that value.  Otherwise overwrite with the quirked value.
4132 		 * This allows this quirk to be overridden when necessary.
4133 		 * However, cap.mqes still needs to be respected.
4134 		 */
4135 		ctrlr->opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK;
4136 	}
4137 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u);
4138 
4139 	ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size);
4140 }
4141 
4142 void
4143 nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr)
4144 {
4145 	pthread_mutex_destroy(&ctrlr->ctrlr_lock);
4146 }
4147 
4148 void
4149 nvme_ctrlr_destruct_async(struct spdk_nvme_ctrlr *ctrlr,
4150 			  struct nvme_ctrlr_detach_ctx *ctx)
4151 {
4152 	struct spdk_nvme_qpair *qpair, *tmp;
4153 
4154 	NVME_CTRLR_DEBUGLOG(ctrlr, "Prepare to destruct SSD\n");
4155 
4156 	ctrlr->prepare_for_reset = false;
4157 	ctrlr->is_destructed = true;
4158 
4159 	spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4160 
4161 	nvme_ctrlr_abort_queued_aborts(ctrlr);
4162 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
4163 
4164 	TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) {
4165 		spdk_nvme_ctrlr_free_io_qpair(qpair);
4166 	}
4167 
4168 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
4169 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
4170 
4171 	nvme_ctrlr_shutdown_async(ctrlr, ctx);
4172 }
4173 
4174 int
4175 nvme_ctrlr_destruct_poll_async(struct spdk_nvme_ctrlr *ctrlr,
4176 			       struct nvme_ctrlr_detach_ctx *ctx)
4177 {
4178 	struct spdk_nvme_ns *ns, *tmp_ns;
4179 	int rc = 0;
4180 
4181 	if (!ctx->shutdown_complete) {
4182 		rc = nvme_ctrlr_shutdown_poll_async(ctrlr, ctx);
4183 		if (rc == -EAGAIN) {
4184 			return -EAGAIN;
4185 		}
4186 		/* Destruct ctrlr forcefully for any other error. */
4187 	}
4188 
4189 	if (ctx->cb_fn) {
4190 		ctx->cb_fn(ctrlr);
4191 	}
4192 
4193 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
4194 
4195 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
4196 		nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
4197 		RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
4198 		spdk_free(ns);
4199 	}
4200 
4201 	ctrlr->active_ns_count = 0;
4202 
4203 	spdk_bit_array_free(&ctrlr->free_io_qids);
4204 
4205 	free(ctrlr->ana_log_page);
4206 	free(ctrlr->copied_ana_desc);
4207 	ctrlr->ana_log_page = NULL;
4208 	ctrlr->copied_ana_desc = NULL;
4209 	ctrlr->ana_log_page_size = 0;
4210 
4211 	nvme_transport_ctrlr_destruct(ctrlr);
4212 
4213 	return rc;
4214 }
4215 
4216 void
4217 nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
4218 {
4219 	struct nvme_ctrlr_detach_ctx ctx = { .ctrlr = ctrlr };
4220 	int rc;
4221 
4222 	nvme_ctrlr_destruct_async(ctrlr, &ctx);
4223 
4224 	while (1) {
4225 		rc = nvme_ctrlr_destruct_poll_async(ctrlr, &ctx);
4226 		if (rc != -EAGAIN) {
4227 			break;
4228 		}
4229 		nvme_delay(1000);
4230 	}
4231 }
4232 
4233 int
4234 nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
4235 				struct nvme_request *req)
4236 {
4237 	return nvme_qpair_submit_request(ctrlr->adminq, req);
4238 }
4239 
4240 static void
4241 nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl)
4242 {
4243 	/* Do nothing */
4244 }
4245 
4246 /*
4247  * Check if we need to send a Keep Alive command.
4248  * Caller must hold ctrlr->ctrlr_lock.
4249  */
4250 static int
4251 nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr)
4252 {
4253 	uint64_t now;
4254 	struct nvme_request *req;
4255 	struct spdk_nvme_cmd *cmd;
4256 	int rc = 0;
4257 
4258 	now = spdk_get_ticks();
4259 	if (now < ctrlr->next_keep_alive_tick) {
4260 		return rc;
4261 	}
4262 
4263 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL);
4264 	if (req == NULL) {
4265 		return rc;
4266 	}
4267 
4268 	cmd = &req->cmd;
4269 	cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE;
4270 
4271 	rc = nvme_ctrlr_submit_admin_request(ctrlr, req);
4272 	if (rc != 0) {
4273 		NVME_CTRLR_ERRLOG(ctrlr, "Submitting Keep Alive failed\n");
4274 		rc = -ENXIO;
4275 	}
4276 
4277 	ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks;
4278 	return rc;
4279 }
4280 
4281 int32_t
4282 spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr)
4283 {
4284 	int32_t num_completions;
4285 	int32_t rc;
4286 	struct spdk_nvme_ctrlr_process	*active_proc;
4287 
4288 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4289 
4290 	if (ctrlr->keep_alive_interval_ticks) {
4291 		rc = nvme_ctrlr_keep_alive(ctrlr);
4292 		if (rc) {
4293 			nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4294 			return rc;
4295 		}
4296 	}
4297 
4298 	rc = nvme_io_msg_process(ctrlr);
4299 	if (rc < 0) {
4300 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4301 		return rc;
4302 	}
4303 	num_completions = rc;
4304 
4305 	rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4306 
4307 	/* Each process has an async list, complete the ones for this process object */
4308 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4309 	if (active_proc) {
4310 		nvme_ctrlr_complete_queued_async_events(ctrlr);
4311 	}
4312 
4313 	if (rc == -ENXIO && ctrlr->is_disconnecting) {
4314 		nvme_ctrlr_disconnect_done(ctrlr);
4315 	}
4316 
4317 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4318 
4319 	if (rc < 0) {
4320 		num_completions = rc;
4321 	} else {
4322 		num_completions += rc;
4323 	}
4324 
4325 	return num_completions;
4326 }
4327 
4328 const struct spdk_nvme_ctrlr_data *
4329 spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr)
4330 {
4331 	return &ctrlr->cdata;
4332 }
4333 
4334 union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
4335 {
4336 	union spdk_nvme_csts_register csts;
4337 
4338 	if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
4339 		csts.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4340 	}
4341 	return csts;
4342 }
4343 
4344 union spdk_nvme_cc_register spdk_nvme_ctrlr_get_regs_cc(struct spdk_nvme_ctrlr *ctrlr)
4345 {
4346 	union spdk_nvme_cc_register cc;
4347 
4348 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
4349 		cc.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4350 	}
4351 	return cc;
4352 }
4353 
4354 union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr)
4355 {
4356 	return ctrlr->cap;
4357 }
4358 
4359 union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr)
4360 {
4361 	return ctrlr->vs;
4362 }
4363 
4364 union spdk_nvme_cmbsz_register spdk_nvme_ctrlr_get_regs_cmbsz(struct spdk_nvme_ctrlr *ctrlr)
4365 {
4366 	union spdk_nvme_cmbsz_register cmbsz;
4367 
4368 	if (nvme_ctrlr_get_cmbsz(ctrlr, &cmbsz)) {
4369 		cmbsz.raw = 0;
4370 	}
4371 
4372 	return cmbsz;
4373 }
4374 
4375 union spdk_nvme_pmrcap_register spdk_nvme_ctrlr_get_regs_pmrcap(struct spdk_nvme_ctrlr *ctrlr)
4376 {
4377 	union spdk_nvme_pmrcap_register pmrcap;
4378 
4379 	if (nvme_ctrlr_get_pmrcap(ctrlr, &pmrcap)) {
4380 		pmrcap.raw = 0;
4381 	}
4382 
4383 	return pmrcap;
4384 }
4385 
4386 union spdk_nvme_bpinfo_register spdk_nvme_ctrlr_get_regs_bpinfo(struct spdk_nvme_ctrlr *ctrlr)
4387 {
4388 	union spdk_nvme_bpinfo_register bpinfo;
4389 
4390 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
4391 		bpinfo.raw = 0;
4392 	}
4393 
4394 	return bpinfo;
4395 }
4396 
4397 uint64_t
4398 spdk_nvme_ctrlr_get_pmrsz(struct spdk_nvme_ctrlr *ctrlr)
4399 {
4400 	return ctrlr->pmr_size;
4401 }
4402 
4403 uint32_t
4404 spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr)
4405 {
4406 	return ctrlr->cdata.nn;
4407 }
4408 
4409 bool
4410 spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4411 {
4412 	struct spdk_nvme_ns tmp, *ns;
4413 
4414 	tmp.id = nsid;
4415 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4416 
4417 	if (ns != NULL) {
4418 		return ns->active;
4419 	}
4420 
4421 	return false;
4422 }
4423 
4424 uint32_t
4425 spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr)
4426 {
4427 	struct spdk_nvme_ns *ns;
4428 
4429 	ns = RB_MIN(nvme_ns_tree, &ctrlr->ns);
4430 	if (ns == NULL) {
4431 		return 0;
4432 	}
4433 
4434 	while (ns != NULL) {
4435 		if (ns->active) {
4436 			return ns->id;
4437 		}
4438 
4439 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4440 	}
4441 
4442 	return 0;
4443 }
4444 
4445 uint32_t
4446 spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
4447 {
4448 	struct spdk_nvme_ns tmp, *ns;
4449 
4450 	tmp.id = prev_nsid;
4451 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4452 	if (ns == NULL) {
4453 		return 0;
4454 	}
4455 
4456 	ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4457 	while (ns != NULL) {
4458 		if (ns->active) {
4459 			return ns->id;
4460 		}
4461 
4462 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4463 	}
4464 
4465 	return 0;
4466 }
4467 
4468 struct spdk_nvme_ns *
4469 spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4470 {
4471 	struct spdk_nvme_ns tmp;
4472 	struct spdk_nvme_ns *ns;
4473 
4474 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
4475 		return NULL;
4476 	}
4477 
4478 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4479 
4480 	tmp.id = nsid;
4481 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4482 
4483 	if (ns == NULL) {
4484 		ns = spdk_zmalloc(sizeof(struct spdk_nvme_ns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
4485 		if (ns == NULL) {
4486 			nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4487 			return NULL;
4488 		}
4489 
4490 		NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was added\n", nsid);
4491 		ns->id = nsid;
4492 		RB_INSERT(nvme_ns_tree, &ctrlr->ns, ns);
4493 	}
4494 
4495 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4496 
4497 	return ns;
4498 }
4499 
4500 struct spdk_pci_device *
4501 spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr)
4502 {
4503 	if (ctrlr == NULL) {
4504 		return NULL;
4505 	}
4506 
4507 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
4508 		return NULL;
4509 	}
4510 
4511 	return nvme_ctrlr_proc_get_devhandle(ctrlr);
4512 }
4513 
4514 uint32_t
4515 spdk_nvme_ctrlr_get_max_xfer_size(const struct spdk_nvme_ctrlr *ctrlr)
4516 {
4517 	return ctrlr->max_xfer_size;
4518 }
4519 
4520 void
4521 spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr,
4522 				      spdk_nvme_aer_cb aer_cb_fn,
4523 				      void *aer_cb_arg)
4524 {
4525 	struct spdk_nvme_ctrlr_process *active_proc;
4526 
4527 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4528 
4529 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4530 	if (active_proc) {
4531 		active_proc->aer_cb_fn = aer_cb_fn;
4532 		active_proc->aer_cb_arg = aer_cb_arg;
4533 	}
4534 
4535 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4536 }
4537 
4538 void
4539 spdk_nvme_ctrlr_disable_read_changed_ns_list_log_page(struct spdk_nvme_ctrlr *ctrlr)
4540 {
4541 	ctrlr->opts.disable_read_changed_ns_list_log_page = true;
4542 }
4543 
4544 void
4545 spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr,
4546 		uint64_t timeout_io_us, uint64_t timeout_admin_us,
4547 		spdk_nvme_timeout_cb cb_fn, void *cb_arg)
4548 {
4549 	struct spdk_nvme_ctrlr_process	*active_proc;
4550 
4551 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4552 
4553 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4554 	if (active_proc) {
4555 		active_proc->timeout_io_ticks = timeout_io_us * spdk_get_ticks_hz() / 1000000ULL;
4556 		active_proc->timeout_admin_ticks = timeout_admin_us * spdk_get_ticks_hz() / 1000000ULL;
4557 		active_proc->timeout_cb_fn = cb_fn;
4558 		active_proc->timeout_cb_arg = cb_arg;
4559 	}
4560 
4561 	ctrlr->timeout_enabled = true;
4562 
4563 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4564 }
4565 
4566 bool
4567 spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page)
4568 {
4569 	/* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
4570 	SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
4571 	return ctrlr->log_page_supported[log_page];
4572 }
4573 
4574 bool
4575 spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code)
4576 {
4577 	/* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
4578 	SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
4579 	return ctrlr->feature_supported[feature_code];
4580 }
4581 
4582 int
4583 spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4584 			  struct spdk_nvme_ctrlr_list *payload)
4585 {
4586 	struct nvme_completion_poll_status	*status;
4587 	struct spdk_nvme_ns			*ns;
4588 	int					res;
4589 
4590 	if (nsid == 0) {
4591 		return -EINVAL;
4592 	}
4593 
4594 	status = calloc(1, sizeof(*status));
4595 	if (!status) {
4596 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4597 		return -ENOMEM;
4598 	}
4599 
4600 	res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload,
4601 				       nvme_completion_poll_cb, status);
4602 	if (res) {
4603 		free(status);
4604 		return res;
4605 	}
4606 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4607 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_attach_ns failed!\n");
4608 		if (!status->timed_out) {
4609 			free(status);
4610 		}
4611 		return -ENXIO;
4612 	}
4613 	free(status);
4614 
4615 	res = nvme_ctrlr_identify_active_ns(ctrlr);
4616 	if (res) {
4617 		return res;
4618 	}
4619 
4620 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
4621 	return nvme_ns_construct(ns, nsid, ctrlr);
4622 }
4623 
4624 int
4625 spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4626 			  struct spdk_nvme_ctrlr_list *payload)
4627 {
4628 	struct nvme_completion_poll_status	*status;
4629 	int					res;
4630 
4631 	if (nsid == 0) {
4632 		return -EINVAL;
4633 	}
4634 
4635 	status = calloc(1, sizeof(*status));
4636 	if (!status) {
4637 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4638 		return -ENOMEM;
4639 	}
4640 
4641 	res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload,
4642 				       nvme_completion_poll_cb, status);
4643 	if (res) {
4644 		free(status);
4645 		return res;
4646 	}
4647 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4648 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_detach_ns failed!\n");
4649 		if (!status->timed_out) {
4650 			free(status);
4651 		}
4652 		return -ENXIO;
4653 	}
4654 	free(status);
4655 
4656 	return nvme_ctrlr_identify_active_ns(ctrlr);
4657 }
4658 
4659 uint32_t
4660 spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload)
4661 {
4662 	struct nvme_completion_poll_status	*status;
4663 	int					res;
4664 	uint32_t				nsid;
4665 
4666 	status = calloc(1, sizeof(*status));
4667 	if (!status) {
4668 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4669 		return 0;
4670 	}
4671 
4672 	res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, status);
4673 	if (res) {
4674 		free(status);
4675 		return 0;
4676 	}
4677 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4678 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_create_ns failed!\n");
4679 		if (!status->timed_out) {
4680 			free(status);
4681 		}
4682 		return 0;
4683 	}
4684 
4685 	nsid = status->cpl.cdw0;
4686 	free(status);
4687 
4688 	assert(nsid > 0);
4689 
4690 	/* Return the namespace ID that was created */
4691 	return nsid;
4692 }
4693 
4694 int
4695 spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4696 {
4697 	struct nvme_completion_poll_status	*status;
4698 	int					res;
4699 
4700 	if (nsid == 0) {
4701 		return -EINVAL;
4702 	}
4703 
4704 	status = calloc(1, sizeof(*status));
4705 	if (!status) {
4706 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4707 		return -ENOMEM;
4708 	}
4709 
4710 	res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, status);
4711 	if (res) {
4712 		free(status);
4713 		return res;
4714 	}
4715 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4716 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_delete_ns failed!\n");
4717 		if (!status->timed_out) {
4718 			free(status);
4719 		}
4720 		return -ENXIO;
4721 	}
4722 	free(status);
4723 
4724 	return nvme_ctrlr_identify_active_ns(ctrlr);
4725 }
4726 
4727 int
4728 spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4729 		       struct spdk_nvme_format *format)
4730 {
4731 	struct nvme_completion_poll_status	*status;
4732 	int					res;
4733 
4734 	status = calloc(1, sizeof(*status));
4735 	if (!status) {
4736 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4737 		return -ENOMEM;
4738 	}
4739 
4740 	res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb,
4741 				    status);
4742 	if (res) {
4743 		free(status);
4744 		return res;
4745 	}
4746 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4747 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_format failed!\n");
4748 		if (!status->timed_out) {
4749 			free(status);
4750 		}
4751 		return -ENXIO;
4752 	}
4753 	free(status);
4754 
4755 	return spdk_nvme_ctrlr_reset(ctrlr);
4756 }
4757 
4758 int
4759 spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size,
4760 				int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status)
4761 {
4762 	struct spdk_nvme_fw_commit		fw_commit;
4763 	struct nvme_completion_poll_status	*status;
4764 	int					res;
4765 	unsigned int				size_remaining;
4766 	unsigned int				offset;
4767 	unsigned int				transfer;
4768 	void					*p;
4769 
4770 	if (!completion_status) {
4771 		return -EINVAL;
4772 	}
4773 	memset(completion_status, 0, sizeof(struct spdk_nvme_status));
4774 	if (size % 4) {
4775 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid size!\n");
4776 		return -1;
4777 	}
4778 
4779 	/* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG
4780 	 * and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG
4781 	 */
4782 	if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) &&
4783 	    (commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) {
4784 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid command!\n");
4785 		return -1;
4786 	}
4787 
4788 	status = calloc(1, sizeof(*status));
4789 	if (!status) {
4790 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4791 		return -ENOMEM;
4792 	}
4793 
4794 	/* Firmware download */
4795 	size_remaining = size;
4796 	offset = 0;
4797 	p = payload;
4798 
4799 	while (size_remaining > 0) {
4800 		transfer = spdk_min(size_remaining, ctrlr->min_page_size);
4801 
4802 		memset(status, 0, sizeof(*status));
4803 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p,
4804 						       nvme_completion_poll_cb,
4805 						       status);
4806 		if (res) {
4807 			free(status);
4808 			return res;
4809 		}
4810 
4811 		if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4812 			NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_fw_image_download failed!\n");
4813 			if (!status->timed_out) {
4814 				free(status);
4815 			}
4816 			return -ENXIO;
4817 		}
4818 		p += transfer;
4819 		offset += transfer;
4820 		size_remaining -= transfer;
4821 	}
4822 
4823 	/* Firmware commit */
4824 	memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
4825 	fw_commit.fs = slot;
4826 	fw_commit.ca = commit_action;
4827 
4828 	memset(status, 0, sizeof(*status));
4829 	res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb,
4830 				       status);
4831 	if (res) {
4832 		free(status);
4833 		return res;
4834 	}
4835 
4836 	res = nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock);
4837 
4838 	memcpy(completion_status, &status->cpl.status, sizeof(struct spdk_nvme_status));
4839 
4840 	if (!status->timed_out) {
4841 		free(status);
4842 	}
4843 
4844 	if (res) {
4845 		if (completion_status->sct != SPDK_NVME_SCT_COMMAND_SPECIFIC ||
4846 		    completion_status->sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) {
4847 			if (completion_status->sct == SPDK_NVME_SCT_COMMAND_SPECIFIC  &&
4848 			    completion_status->sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) {
4849 				NVME_CTRLR_NOTICELOG(ctrlr,
4850 						     "firmware activation requires conventional reset to be performed. !\n");
4851 			} else {
4852 				NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
4853 			}
4854 			return -ENXIO;
4855 		}
4856 	}
4857 
4858 	return spdk_nvme_ctrlr_reset(ctrlr);
4859 }
4860 
4861 int
4862 spdk_nvme_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
4863 {
4864 	int rc, size;
4865 	union spdk_nvme_cmbsz_register cmbsz;
4866 
4867 	cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr);
4868 
4869 	if (cmbsz.bits.rds == 0 || cmbsz.bits.wds == 0) {
4870 		return -ENOTSUP;
4871 	}
4872 
4873 	size = cmbsz.bits.sz * (0x1000 << (cmbsz.bits.szu * 4));
4874 
4875 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4876 	rc = nvme_transport_ctrlr_reserve_cmb(ctrlr);
4877 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4878 
4879 	if (rc < 0) {
4880 		return rc;
4881 	}
4882 
4883 	return size;
4884 }
4885 
4886 void *
4887 spdk_nvme_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
4888 {
4889 	void *buf;
4890 
4891 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4892 	buf = nvme_transport_ctrlr_map_cmb(ctrlr, size);
4893 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4894 
4895 	return buf;
4896 }
4897 
4898 void
4899 spdk_nvme_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr)
4900 {
4901 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4902 	nvme_transport_ctrlr_unmap_cmb(ctrlr);
4903 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4904 }
4905 
4906 int
4907 spdk_nvme_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr)
4908 {
4909 	int rc;
4910 
4911 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4912 	rc = nvme_transport_ctrlr_enable_pmr(ctrlr);
4913 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4914 
4915 	return rc;
4916 }
4917 
4918 int
4919 spdk_nvme_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr)
4920 {
4921 	int rc;
4922 
4923 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4924 	rc = nvme_transport_ctrlr_disable_pmr(ctrlr);
4925 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4926 
4927 	return rc;
4928 }
4929 
4930 void *
4931 spdk_nvme_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
4932 {
4933 	void *buf;
4934 
4935 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4936 	buf = nvme_transport_ctrlr_map_pmr(ctrlr, size);
4937 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4938 
4939 	return buf;
4940 }
4941 
4942 int
4943 spdk_nvme_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr)
4944 {
4945 	int rc;
4946 
4947 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4948 	rc = nvme_transport_ctrlr_unmap_pmr(ctrlr);
4949 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4950 
4951 	return rc;
4952 }
4953 
4954 int
4955 spdk_nvme_ctrlr_read_boot_partition_start(struct spdk_nvme_ctrlr *ctrlr, void *payload,
4956 		uint32_t bprsz, uint32_t bprof, uint32_t bpid)
4957 {
4958 	union spdk_nvme_bprsel_register bprsel;
4959 	union spdk_nvme_bpinfo_register bpinfo;
4960 	uint64_t bpmbl, bpmb_size;
4961 
4962 	if (ctrlr->cap.bits.bps == 0) {
4963 		return -ENOTSUP;
4964 	}
4965 
4966 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
4967 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
4968 		return -EIO;
4969 	}
4970 
4971 	if (bpinfo.bits.brs == SPDK_NVME_BRS_READ_IN_PROGRESS) {
4972 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read already initiated\n");
4973 		return -EALREADY;
4974 	}
4975 
4976 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4977 
4978 	bpmb_size = bprsz * 4096;
4979 	bpmbl = spdk_vtophys(payload, &bpmb_size);
4980 	if (bpmbl == SPDK_VTOPHYS_ERROR) {
4981 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_vtophys of bpmbl failed\n");
4982 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4983 		return -EFAULT;
4984 	}
4985 
4986 	if (bpmb_size != bprsz * 4096) {
4987 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition buffer is not physically contiguous\n");
4988 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4989 		return -EFAULT;
4990 	}
4991 
4992 	if (nvme_ctrlr_set_bpmbl(ctrlr, bpmbl)) {
4993 		NVME_CTRLR_ERRLOG(ctrlr, "set_bpmbl() failed\n");
4994 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4995 		return -EIO;
4996 	}
4997 
4998 	bprsel.bits.bpid = bpid;
4999 	bprsel.bits.bprof = bprof;
5000 	bprsel.bits.bprsz = bprsz;
5001 
5002 	if (nvme_ctrlr_set_bprsel(ctrlr, &bprsel)) {
5003 		NVME_CTRLR_ERRLOG(ctrlr, "set_bprsel() failed\n");
5004 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5005 		return -EIO;
5006 	}
5007 
5008 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5009 	return 0;
5010 }
5011 
5012 int
5013 spdk_nvme_ctrlr_read_boot_partition_poll(struct spdk_nvme_ctrlr *ctrlr)
5014 {
5015 	int rc = 0;
5016 	union spdk_nvme_bpinfo_register bpinfo;
5017 
5018 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5019 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5020 		return -EIO;
5021 	}
5022 
5023 	switch (bpinfo.bits.brs) {
5024 	case SPDK_NVME_BRS_NO_READ:
5025 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read not initiated\n");
5026 		rc = -EINVAL;
5027 		break;
5028 	case SPDK_NVME_BRS_READ_IN_PROGRESS:
5029 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition read in progress\n");
5030 		rc = -EAGAIN;
5031 		break;
5032 	case SPDK_NVME_BRS_READ_ERROR:
5033 		NVME_CTRLR_ERRLOG(ctrlr, "Error completing Boot Partition read\n");
5034 		rc = -EIO;
5035 		break;
5036 	case SPDK_NVME_BRS_READ_SUCCESS:
5037 		NVME_CTRLR_INFOLOG(ctrlr, "Boot Partition read completed successfully\n");
5038 		break;
5039 	default:
5040 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition read status\n");
5041 		rc = -EINVAL;
5042 	}
5043 
5044 	return rc;
5045 }
5046 
5047 static void
5048 nvme_write_boot_partition_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5049 {
5050 	int res;
5051 	struct spdk_nvme_ctrlr *ctrlr = arg;
5052 	struct spdk_nvme_fw_commit fw_commit;
5053 	struct spdk_nvme_cpl err_cpl =
5054 	{.status = {.sct = SPDK_NVME_SCT_GENERIC, .sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR }};
5055 
5056 	if (spdk_nvme_cpl_is_error(cpl)) {
5057 		NVME_CTRLR_ERRLOG(ctrlr, "Write Boot Partition failed\n");
5058 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5059 		return;
5060 	}
5061 
5062 	if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADING) {
5063 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Downloading at Offset %d Success\n", ctrlr->fw_offset);
5064 		ctrlr->fw_payload += ctrlr->fw_transfer_size;
5065 		ctrlr->fw_offset += ctrlr->fw_transfer_size;
5066 		ctrlr->fw_size_remaining -= ctrlr->fw_transfer_size;
5067 		ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5068 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5069 						       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5070 		if (res) {
5071 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_image_download failed!\n");
5072 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5073 			return;
5074 		}
5075 
5076 		if (ctrlr->fw_transfer_size < ctrlr->min_page_size) {
5077 			ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADED;
5078 		}
5079 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADED) {
5080 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Download Success\n");
5081 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5082 		fw_commit.bpid = ctrlr->bpid;
5083 		fw_commit.ca = SPDK_NVME_FW_COMMIT_REPLACE_BOOT_PARTITION;
5084 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5085 					       nvme_write_boot_partition_cb, ctrlr);
5086 		if (res) {
5087 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5088 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5089 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5090 			return;
5091 		}
5092 
5093 		ctrlr->bp_ws = SPDK_NVME_BP_WS_REPLACE;
5094 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_REPLACE) {
5095 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Replacement Success\n");
5096 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5097 		fw_commit.bpid = ctrlr->bpid;
5098 		fw_commit.ca = SPDK_NVME_FW_COMMIT_ACTIVATE_BOOT_PARTITION;
5099 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5100 					       nvme_write_boot_partition_cb, ctrlr);
5101 		if (res) {
5102 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5103 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5104 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5105 			return;
5106 		}
5107 
5108 		ctrlr->bp_ws = SPDK_NVME_BP_WS_ACTIVATE;
5109 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_ACTIVATE) {
5110 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Activation Success\n");
5111 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5112 	} else {
5113 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition write state\n");
5114 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5115 		return;
5116 	}
5117 }
5118 
5119 int
5120 spdk_nvme_ctrlr_write_boot_partition(struct spdk_nvme_ctrlr *ctrlr,
5121 				     void *payload, uint32_t size, uint32_t bpid,
5122 				     spdk_nvme_cmd_cb cb_fn, void *cb_arg)
5123 {
5124 	int res;
5125 
5126 	if (ctrlr->cap.bits.bps == 0) {
5127 		return -ENOTSUP;
5128 	}
5129 
5130 	ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADING;
5131 	ctrlr->bpid = bpid;
5132 	ctrlr->bp_write_cb_fn = cb_fn;
5133 	ctrlr->bp_write_cb_arg = cb_arg;
5134 	ctrlr->fw_offset = 0;
5135 	ctrlr->fw_size_remaining = size;
5136 	ctrlr->fw_payload = payload;
5137 	ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5138 
5139 	res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5140 					       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5141 
5142 	return res;
5143 }
5144 
5145 bool
5146 spdk_nvme_ctrlr_is_discovery(struct spdk_nvme_ctrlr *ctrlr)
5147 {
5148 	assert(ctrlr);
5149 
5150 	return !strncmp(ctrlr->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN,
5151 			strlen(SPDK_NVMF_DISCOVERY_NQN));
5152 }
5153 
5154 bool
5155 spdk_nvme_ctrlr_is_fabrics(struct spdk_nvme_ctrlr *ctrlr)
5156 {
5157 	assert(ctrlr);
5158 
5159 	return spdk_nvme_trtype_is_fabrics(ctrlr->trid.trtype);
5160 }
5161 
5162 int
5163 spdk_nvme_ctrlr_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5164 				 uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5165 {
5166 	struct nvme_completion_poll_status	*status;
5167 	int					res;
5168 
5169 	status = calloc(1, sizeof(*status));
5170 	if (!status) {
5171 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5172 		return -ENOMEM;
5173 	}
5174 
5175 	res = spdk_nvme_ctrlr_cmd_security_receive(ctrlr, secp, spsp, nssf, payload, size,
5176 			nvme_completion_poll_cb, status);
5177 	if (res) {
5178 		free(status);
5179 		return res;
5180 	}
5181 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5182 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_receive failed!\n");
5183 		if (!status->timed_out) {
5184 			free(status);
5185 		}
5186 		return -ENXIO;
5187 	}
5188 	free(status);
5189 
5190 	return 0;
5191 }
5192 
5193 int
5194 spdk_nvme_ctrlr_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5195 			      uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5196 {
5197 	struct nvme_completion_poll_status	*status;
5198 	int					res;
5199 
5200 	status = calloc(1, sizeof(*status));
5201 	if (!status) {
5202 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5203 		return -ENOMEM;
5204 	}
5205 
5206 	res = spdk_nvme_ctrlr_cmd_security_send(ctrlr, secp, spsp, nssf, payload, size,
5207 						nvme_completion_poll_cb,
5208 						status);
5209 	if (res) {
5210 		free(status);
5211 		return res;
5212 	}
5213 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5214 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_send failed!\n");
5215 		if (!status->timed_out) {
5216 			free(status);
5217 		}
5218 		return -ENXIO;
5219 	}
5220 
5221 	free(status);
5222 
5223 	return 0;
5224 }
5225 
5226 uint64_t
5227 spdk_nvme_ctrlr_get_flags(struct spdk_nvme_ctrlr *ctrlr)
5228 {
5229 	return ctrlr->flags;
5230 }
5231 
5232 const struct spdk_nvme_transport_id *
5233 spdk_nvme_ctrlr_get_transport_id(struct spdk_nvme_ctrlr *ctrlr)
5234 {
5235 	return &ctrlr->trid;
5236 }
5237 
5238 int32_t
5239 spdk_nvme_ctrlr_alloc_qid(struct spdk_nvme_ctrlr *ctrlr)
5240 {
5241 	uint32_t qid;
5242 
5243 	assert(ctrlr->free_io_qids);
5244 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5245 	qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1);
5246 	if (qid > ctrlr->opts.num_io_queues) {
5247 		NVME_CTRLR_ERRLOG(ctrlr, "No free I/O queue IDs\n");
5248 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5249 		return -1;
5250 	}
5251 
5252 	spdk_bit_array_clear(ctrlr->free_io_qids, qid);
5253 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5254 	return qid;
5255 }
5256 
5257 void
5258 spdk_nvme_ctrlr_free_qid(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid)
5259 {
5260 	assert(qid <= ctrlr->opts.num_io_queues);
5261 
5262 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5263 
5264 	if (spdk_likely(ctrlr->free_io_qids)) {
5265 		spdk_bit_array_set(ctrlr->free_io_qids, qid);
5266 	}
5267 
5268 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5269 }
5270 
5271 int
5272 spdk_nvme_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
5273 				   struct spdk_memory_domain **domains, int array_size)
5274 {
5275 	return nvme_transport_ctrlr_get_memory_domains(ctrlr, domains, array_size);
5276 }
5277