xref: /spdk/lib/nvme/nvme_ctrlr.c (revision 83ba9086796471697a4975a58f60e2392bccd08c)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2015 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "nvme_internal.h"
10 #include "nvme_io_msg.h"
11 
12 #include "spdk/env.h"
13 #include "spdk/string.h"
14 #include "spdk/endian.h"
15 
16 struct nvme_active_ns_ctx;
17 
18 static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
19 		struct nvme_async_event_request *aer);
20 static void nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx);
21 static int nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns);
22 static int nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns);
23 static int nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns);
24 static void nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr);
25 static void nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
26 				 uint64_t timeout_in_ms);
27 
28 static int
29 nvme_ns_cmp(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
30 {
31 	if (ns1->id < ns2->id) {
32 		return -1;
33 	} else if (ns1->id > ns2->id) {
34 		return 1;
35 	} else {
36 		return 0;
37 	}
38 }
39 
40 RB_GENERATE_STATIC(nvme_ns_tree, spdk_nvme_ns, node, nvme_ns_cmp);
41 
42 #define nvme_ctrlr_get_reg_async(ctrlr, reg, sz, cb_fn, cb_arg) \
43 	nvme_transport_ctrlr_get_reg_ ## sz ## _async(ctrlr, \
44 		offsetof(struct spdk_nvme_registers, reg), cb_fn, cb_arg)
45 
46 #define nvme_ctrlr_set_reg_async(ctrlr, reg, sz, val, cb_fn, cb_arg) \
47 	nvme_transport_ctrlr_set_reg_ ## sz ## _async(ctrlr, \
48 		offsetof(struct spdk_nvme_registers, reg), val, cb_fn, cb_arg)
49 
50 #define nvme_ctrlr_get_cc_async(ctrlr, cb_fn, cb_arg) \
51 	nvme_ctrlr_get_reg_async(ctrlr, cc, 4, cb_fn, cb_arg)
52 
53 #define nvme_ctrlr_get_csts_async(ctrlr, cb_fn, cb_arg) \
54 	nvme_ctrlr_get_reg_async(ctrlr, csts, 4, cb_fn, cb_arg)
55 
56 #define nvme_ctrlr_get_cap_async(ctrlr, cb_fn, cb_arg) \
57 	nvme_ctrlr_get_reg_async(ctrlr, cap, 8, cb_fn, cb_arg)
58 
59 #define nvme_ctrlr_get_vs_async(ctrlr, cb_fn, cb_arg) \
60 	nvme_ctrlr_get_reg_async(ctrlr, vs, 4, cb_fn, cb_arg)
61 
62 #define nvme_ctrlr_set_cc_async(ctrlr, value, cb_fn, cb_arg) \
63 	nvme_ctrlr_set_reg_async(ctrlr, cc, 4, value, cb_fn, cb_arg)
64 
65 static int
66 nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc)
67 {
68 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
69 					      &cc->raw);
70 }
71 
72 static int
73 nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts)
74 {
75 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw),
76 					      &csts->raw);
77 }
78 
79 int
80 nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
81 {
82 	return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw),
83 					      &cap->raw);
84 }
85 
86 int
87 nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
88 {
89 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw),
90 					      &vs->raw);
91 }
92 
93 int
94 nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz)
95 {
96 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
97 					      &cmbsz->raw);
98 }
99 
100 int
101 nvme_ctrlr_get_pmrcap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_pmrcap_register *pmrcap)
102 {
103 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, pmrcap.raw),
104 					      &pmrcap->raw);
105 }
106 
107 int
108 nvme_ctrlr_get_bpinfo(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bpinfo_register *bpinfo)
109 {
110 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bpinfo.raw),
111 					      &bpinfo->raw);
112 }
113 
114 int
115 nvme_ctrlr_set_bprsel(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bprsel_register *bprsel)
116 {
117 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bprsel.raw),
118 					      bprsel->raw);
119 }
120 
121 int
122 nvme_ctrlr_set_bpmbl(struct spdk_nvme_ctrlr *ctrlr, uint64_t bpmbl_value)
123 {
124 	return nvme_transport_ctrlr_set_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, bpmbl),
125 					      bpmbl_value);
126 }
127 
128 static int
129 nvme_ctrlr_set_nssr(struct spdk_nvme_ctrlr *ctrlr, uint32_t nssr_value)
130 {
131 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, nssr),
132 					      nssr_value);
133 }
134 
135 bool
136 nvme_ctrlr_multi_iocs_enabled(struct spdk_nvme_ctrlr *ctrlr)
137 {
138 	return ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS &&
139 	       ctrlr->opts.command_set == SPDK_NVME_CC_CSS_IOCS;
140 }
141 
142 /* When the field in spdk_nvme_ctrlr_opts are changed and you change this function, please
143  * also update the nvme_ctrl_opts_init function in nvme_ctrlr.c
144  */
145 void
146 spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
147 {
148 	assert(opts);
149 
150 	opts->opts_size = opts_size;
151 
152 #define FIELD_OK(field) \
153 	offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size
154 
155 #define SET_FIELD(field, value) \
156 	if (offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size) { \
157 		opts->field = value; \
158 	} \
159 
160 	SET_FIELD(num_io_queues, DEFAULT_MAX_IO_QUEUES);
161 	SET_FIELD(use_cmb_sqs, false);
162 	SET_FIELD(no_shn_notification, false);
163 	SET_FIELD(arb_mechanism, SPDK_NVME_CC_AMS_RR);
164 	SET_FIELD(arbitration_burst, 0);
165 	SET_FIELD(low_priority_weight, 0);
166 	SET_FIELD(medium_priority_weight, 0);
167 	SET_FIELD(high_priority_weight, 0);
168 	SET_FIELD(keep_alive_timeout_ms, MIN_KEEP_ALIVE_TIMEOUT_IN_MS);
169 	SET_FIELD(transport_retry_count, SPDK_NVME_DEFAULT_RETRY_COUNT);
170 	SET_FIELD(io_queue_size, DEFAULT_IO_QUEUE_SIZE);
171 
172 	if (nvme_driver_init() == 0) {
173 		if (FIELD_OK(hostnqn)) {
174 			nvme_get_default_hostnqn(opts->hostnqn, sizeof(opts->hostnqn));
175 		}
176 
177 		if (FIELD_OK(extended_host_id)) {
178 			memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id,
179 			       sizeof(opts->extended_host_id));
180 		}
181 
182 	}
183 
184 	SET_FIELD(io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS);
185 
186 	if (FIELD_OK(src_addr)) {
187 		memset(opts->src_addr, 0, sizeof(opts->src_addr));
188 	}
189 
190 	if (FIELD_OK(src_svcid)) {
191 		memset(opts->src_svcid, 0, sizeof(opts->src_svcid));
192 	}
193 
194 	if (FIELD_OK(host_id)) {
195 		memset(opts->host_id, 0, sizeof(opts->host_id));
196 	}
197 
198 	SET_FIELD(command_set, CHAR_BIT);
199 	SET_FIELD(admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000);
200 	SET_FIELD(header_digest, false);
201 	SET_FIELD(data_digest, false);
202 	SET_FIELD(disable_error_logging, false);
203 	SET_FIELD(transport_ack_timeout, SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT);
204 	SET_FIELD(admin_queue_size, DEFAULT_ADMIN_QUEUE_SIZE);
205 	SET_FIELD(fabrics_connect_timeout_us, NVME_FABRIC_CONNECT_COMMAND_TIMEOUT);
206 	SET_FIELD(disable_read_ana_log_page, false);
207 	SET_FIELD(disable_read_changed_ns_list_log_page, false);
208 	SET_FIELD(tls_psk, NULL);
209 	SET_FIELD(dhchap_key, NULL);
210 	SET_FIELD(dhchap_ctrlr_key, NULL);
211 	SET_FIELD(dhchap_digests,
212 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) |
213 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) |
214 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512));
215 	SET_FIELD(dhchap_dhgroups,
216 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) |
217 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) |
218 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) |
219 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) |
220 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) |
221 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192));
222 #undef FIELD_OK
223 #undef SET_FIELD
224 }
225 
226 const struct spdk_nvme_ctrlr_opts *
227 spdk_nvme_ctrlr_get_opts(struct spdk_nvme_ctrlr *ctrlr)
228 {
229 	return &ctrlr->opts;
230 }
231 
232 /**
233  * This function will be called when the process allocates the IO qpair.
234  * Note: the ctrlr_lock must be held when calling this function.
235  */
236 static void
237 nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair)
238 {
239 	struct spdk_nvme_ctrlr_process	*active_proc;
240 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
241 
242 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
243 	if (active_proc) {
244 		TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq);
245 		qpair->active_proc = active_proc;
246 	}
247 }
248 
249 /**
250  * This function will be called when the process frees the IO qpair.
251  * Note: the ctrlr_lock must be held when calling this function.
252  */
253 static void
254 nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair)
255 {
256 	struct spdk_nvme_ctrlr_process	*active_proc;
257 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
258 	struct spdk_nvme_qpair          *active_qpair, *tmp_qpair;
259 
260 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
261 	if (!active_proc) {
262 		return;
263 	}
264 
265 	TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs,
266 			   per_process_tailq, tmp_qpair) {
267 		if (active_qpair == qpair) {
268 			TAILQ_REMOVE(&active_proc->allocated_io_qpairs,
269 				     active_qpair, per_process_tailq);
270 
271 			break;
272 		}
273 	}
274 }
275 
276 void
277 spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr,
278 		struct spdk_nvme_io_qpair_opts *opts,
279 		size_t opts_size)
280 {
281 	assert(ctrlr);
282 
283 	assert(opts);
284 
285 	memset(opts, 0, opts_size);
286 
287 #define FIELD_OK(field) \
288 	offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size
289 
290 	if (FIELD_OK(qprio)) {
291 		opts->qprio = SPDK_NVME_QPRIO_URGENT;
292 	}
293 
294 	if (FIELD_OK(io_queue_size)) {
295 		opts->io_queue_size = ctrlr->opts.io_queue_size;
296 	}
297 
298 	if (FIELD_OK(io_queue_requests)) {
299 		opts->io_queue_requests = ctrlr->opts.io_queue_requests;
300 	}
301 
302 	if (FIELD_OK(delay_cmd_submit)) {
303 		opts->delay_cmd_submit = false;
304 	}
305 
306 	if (FIELD_OK(sq.vaddr)) {
307 		opts->sq.vaddr = NULL;
308 	}
309 
310 	if (FIELD_OK(sq.paddr)) {
311 		opts->sq.paddr = 0;
312 	}
313 
314 	if (FIELD_OK(sq.buffer_size)) {
315 		opts->sq.buffer_size = 0;
316 	}
317 
318 	if (FIELD_OK(cq.vaddr)) {
319 		opts->cq.vaddr = NULL;
320 	}
321 
322 	if (FIELD_OK(cq.paddr)) {
323 		opts->cq.paddr = 0;
324 	}
325 
326 	if (FIELD_OK(cq.buffer_size)) {
327 		opts->cq.buffer_size = 0;
328 	}
329 
330 	if (FIELD_OK(create_only)) {
331 		opts->create_only = false;
332 	}
333 
334 	if (FIELD_OK(async_mode)) {
335 		opts->async_mode = false;
336 	}
337 
338 #undef FIELD_OK
339 }
340 
341 static struct spdk_nvme_qpair *
342 nvme_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
343 			   const struct spdk_nvme_io_qpair_opts *opts)
344 {
345 	int32_t					qid;
346 	struct spdk_nvme_qpair			*qpair;
347 	union spdk_nvme_cc_register		cc;
348 
349 	if (!ctrlr) {
350 		return NULL;
351 	}
352 
353 	nvme_ctrlr_lock(ctrlr);
354 	cc.raw = ctrlr->process_init_cc.raw;
355 
356 	if (opts->qprio & ~SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK) {
357 		nvme_ctrlr_unlock(ctrlr);
358 		return NULL;
359 	}
360 
361 	/*
362 	 * Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the
363 	 * default round robin arbitration method.
364 	 */
365 	if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts->qprio != SPDK_NVME_QPRIO_URGENT)) {
366 		NVME_CTRLR_ERRLOG(ctrlr, "invalid queue priority for default round robin arbitration method\n");
367 		nvme_ctrlr_unlock(ctrlr);
368 		return NULL;
369 	}
370 
371 	qid = spdk_nvme_ctrlr_alloc_qid(ctrlr);
372 	if (qid < 0) {
373 		nvme_ctrlr_unlock(ctrlr);
374 		return NULL;
375 	}
376 
377 	qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, opts);
378 	if (qpair == NULL) {
379 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_create_io_qpair() failed\n");
380 		spdk_nvme_ctrlr_free_qid(ctrlr, qid);
381 		nvme_ctrlr_unlock(ctrlr);
382 		return NULL;
383 	}
384 
385 	TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq);
386 
387 	nvme_ctrlr_proc_add_io_qpair(qpair);
388 
389 	nvme_ctrlr_unlock(ctrlr);
390 
391 	return qpair;
392 }
393 
394 int
395 spdk_nvme_ctrlr_connect_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
396 {
397 	int rc;
398 
399 	if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) {
400 		return -EISCONN;
401 	}
402 
403 	nvme_ctrlr_lock(ctrlr);
404 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
405 	nvme_ctrlr_unlock(ctrlr);
406 
407 	if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) {
408 		spdk_delay_us(100);
409 	}
410 
411 	return rc;
412 }
413 
414 void
415 spdk_nvme_ctrlr_disconnect_io_qpair(struct spdk_nvme_qpair *qpair)
416 {
417 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
418 
419 	nvme_ctrlr_lock(ctrlr);
420 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
421 	nvme_ctrlr_unlock(ctrlr);
422 }
423 
424 struct spdk_nvme_qpair *
425 spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
426 			       const struct spdk_nvme_io_qpair_opts *user_opts,
427 			       size_t opts_size)
428 {
429 
430 	struct spdk_nvme_qpair		*qpair = NULL;
431 	struct spdk_nvme_io_qpair_opts	opts;
432 	int				rc;
433 
434 	nvme_ctrlr_lock(ctrlr);
435 
436 	if (spdk_unlikely(ctrlr->state != NVME_CTRLR_STATE_READY)) {
437 		/* When controller is resetting or initializing, free_io_qids is deleted or not created yet.
438 		 * We can't create IO qpair in that case */
439 		goto unlock;
440 	}
441 
442 	/*
443 	 * Get the default options, then overwrite them with the user-provided options
444 	 * up to opts_size.
445 	 *
446 	 * This allows for extensions of the opts structure without breaking
447 	 * ABI compatibility.
448 	 */
449 	spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
450 	if (user_opts) {
451 		memcpy(&opts, user_opts, spdk_min(sizeof(opts), opts_size));
452 
453 		/* If user passes buffers, make sure they're big enough for the requested queue size */
454 		if (opts.sq.vaddr) {
455 			if (opts.sq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))) {
456 				NVME_CTRLR_ERRLOG(ctrlr, "sq buffer size %" PRIx64 " is too small for sq size %zx\n",
457 						  opts.sq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cmd)));
458 				goto unlock;
459 			}
460 		}
461 		if (opts.cq.vaddr) {
462 			if (opts.cq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))) {
463 				NVME_CTRLR_ERRLOG(ctrlr, "cq buffer size %" PRIx64 " is too small for cq size %zx\n",
464 						  opts.cq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cpl)));
465 				goto unlock;
466 			}
467 		}
468 	}
469 
470 	qpair = nvme_ctrlr_create_io_qpair(ctrlr, &opts);
471 
472 	if (qpair == NULL || opts.create_only == true) {
473 		goto unlock;
474 	}
475 
476 	rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair);
477 	if (rc != 0) {
478 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_connect_io_qpair() failed\n");
479 		nvme_ctrlr_proc_remove_io_qpair(qpair);
480 		TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
481 		spdk_bit_array_set(ctrlr->free_io_qids, qpair->id);
482 		nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
483 		qpair = NULL;
484 		goto unlock;
485 	}
486 
487 unlock:
488 	nvme_ctrlr_unlock(ctrlr);
489 
490 	return qpair;
491 }
492 
493 int
494 spdk_nvme_ctrlr_reconnect_io_qpair(struct spdk_nvme_qpair *qpair)
495 {
496 	struct spdk_nvme_ctrlr *ctrlr;
497 	enum nvme_qpair_state qpair_state;
498 	int rc;
499 
500 	assert(qpair != NULL);
501 	assert(nvme_qpair_is_admin_queue(qpair) == false);
502 	assert(qpair->ctrlr != NULL);
503 
504 	ctrlr = qpair->ctrlr;
505 	nvme_ctrlr_lock(ctrlr);
506 	qpair_state = nvme_qpair_get_state(qpair);
507 
508 	if (ctrlr->is_removed) {
509 		rc = -ENODEV;
510 		goto out;
511 	}
512 
513 	if (ctrlr->is_resetting || qpair_state == NVME_QPAIR_DISCONNECTING) {
514 		rc = -EAGAIN;
515 		goto out;
516 	}
517 
518 	if (ctrlr->is_failed || qpair_state == NVME_QPAIR_DESTROYING) {
519 		rc = -ENXIO;
520 		goto out;
521 	}
522 
523 	if (qpair_state != NVME_QPAIR_DISCONNECTED) {
524 		rc = 0;
525 		goto out;
526 	}
527 
528 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
529 	if (rc) {
530 		rc = -EAGAIN;
531 		goto out;
532 	}
533 
534 out:
535 	nvme_ctrlr_unlock(ctrlr);
536 	return rc;
537 }
538 
539 spdk_nvme_qp_failure_reason
540 spdk_nvme_ctrlr_get_admin_qp_failure_reason(struct spdk_nvme_ctrlr *ctrlr)
541 {
542 	return ctrlr->adminq->transport_failure_reason;
543 }
544 
545 /*
546  * This internal function will attempt to take the controller
547  * lock before calling disconnect on a controller qpair.
548  * Functions already holding the controller lock should
549  * call nvme_transport_ctrlr_disconnect_qpair directly.
550  */
551 void
552 nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair)
553 {
554 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
555 
556 	assert(ctrlr != NULL);
557 	nvme_ctrlr_lock(ctrlr);
558 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
559 	nvme_ctrlr_unlock(ctrlr);
560 }
561 
562 int
563 spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair)
564 {
565 	struct spdk_nvme_ctrlr *ctrlr;
566 
567 	if (qpair == NULL) {
568 		return 0;
569 	}
570 
571 	ctrlr = qpair->ctrlr;
572 
573 	if (qpair->in_completion_context) {
574 		/*
575 		 * There are many cases where it is convenient to delete an io qpair in the context
576 		 *  of that qpair's completion routine.  To handle this properly, set a flag here
577 		 *  so that the completion routine will perform an actual delete after the context
578 		 *  unwinds.
579 		 */
580 		qpair->delete_after_completion_context = 1;
581 		return 0;
582 	}
583 
584 	if (qpair->auth.cb_fn != NULL) {
585 		qpair->auth.cb_fn(qpair->auth.cb_ctx, -ECANCELED);
586 		qpair->auth.cb_fn = NULL;
587 	}
588 
589 	qpair->destroy_in_progress = 1;
590 
591 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
592 
593 	if (qpair->poll_group && (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr))) {
594 		spdk_nvme_poll_group_remove(qpair->poll_group->group, qpair);
595 	}
596 
597 	/* Do not retry. */
598 	nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
599 
600 	/* In the multi-process case, a process may call this function on a foreign
601 	 * I/O qpair (i.e. one that this process did not create) when that qpairs process
602 	 * exits unexpectedly.  In that case, we must not try to abort any reqs associated
603 	 * with that qpair, since the callbacks will also be foreign to this process.
604 	 */
605 	if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) {
606 		nvme_qpair_abort_all_queued_reqs(qpair);
607 	}
608 
609 	nvme_ctrlr_lock(ctrlr);
610 
611 	nvme_ctrlr_proc_remove_io_qpair(qpair);
612 
613 	TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
614 	spdk_nvme_ctrlr_free_qid(ctrlr, qpair->id);
615 
616 	nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
617 	nvme_ctrlr_unlock(ctrlr);
618 	return 0;
619 }
620 
621 static void
622 nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr,
623 		struct spdk_nvme_intel_log_page_directory *log_page_directory)
624 {
625 	if (log_page_directory == NULL) {
626 		return;
627 	}
628 
629 	assert(ctrlr->cdata.vid == SPDK_PCI_VID_INTEL);
630 
631 	ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
632 
633 	if (log_page_directory->read_latency_log_len ||
634 	    (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) {
635 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
636 	}
637 	if (log_page_directory->write_latency_log_len ||
638 	    (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) {
639 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
640 	}
641 	if (log_page_directory->temperature_statistics_log_len) {
642 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true;
643 	}
644 	if (log_page_directory->smart_log_len) {
645 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true;
646 	}
647 	if (log_page_directory->marketing_description_log_len) {
648 		ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true;
649 	}
650 }
651 
652 struct intel_log_pages_ctx {
653 	struct spdk_nvme_intel_log_page_directory log_page_directory;
654 	struct spdk_nvme_ctrlr *ctrlr;
655 };
656 
657 static void
658 nvme_ctrlr_set_intel_support_log_pages_done(void *arg, const struct spdk_nvme_cpl *cpl)
659 {
660 	struct intel_log_pages_ctx *ctx = arg;
661 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
662 
663 	if (!spdk_nvme_cpl_is_error(cpl)) {
664 		nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, &ctx->log_page_directory);
665 	}
666 
667 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
668 			     ctrlr->opts.admin_timeout_ms);
669 	free(ctx);
670 }
671 
672 static int
673 nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr)
674 {
675 	int rc = 0;
676 	struct intel_log_pages_ctx *ctx;
677 
678 	ctx = calloc(1, sizeof(*ctx));
679 	if (!ctx) {
680 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
681 				     ctrlr->opts.admin_timeout_ms);
682 		return 0;
683 	}
684 
685 	ctx->ctrlr = ctrlr;
686 
687 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY,
688 					      SPDK_NVME_GLOBAL_NS_TAG, &ctx->log_page_directory,
689 					      sizeof(struct spdk_nvme_intel_log_page_directory),
690 					      0, nvme_ctrlr_set_intel_support_log_pages_done, ctx);
691 	if (rc != 0) {
692 		free(ctx);
693 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
694 				     ctrlr->opts.admin_timeout_ms);
695 		return 0;
696 	}
697 
698 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES,
699 			     ctrlr->opts.admin_timeout_ms);
700 
701 	return 0;
702 }
703 
704 static int
705 nvme_ctrlr_alloc_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
706 {
707 	uint32_t ana_log_page_size;
708 
709 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + ctrlr->cdata.nanagrpid *
710 			    sizeof(struct spdk_nvme_ana_group_descriptor) + ctrlr->active_ns_count *
711 			    sizeof(uint32_t);
712 
713 	/* Number of active namespaces may have changed.
714 	 * Check if ANA log page fits into existing buffer.
715 	 */
716 	if (ana_log_page_size > ctrlr->ana_log_page_size) {
717 		void *new_buffer;
718 
719 		if (ctrlr->ana_log_page) {
720 			new_buffer = realloc(ctrlr->ana_log_page, ana_log_page_size);
721 		} else {
722 			new_buffer = calloc(1, ana_log_page_size);
723 		}
724 
725 		if (!new_buffer) {
726 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate ANA log page buffer, size %u\n",
727 					  ana_log_page_size);
728 			return -ENXIO;
729 		}
730 
731 		ctrlr->ana_log_page = new_buffer;
732 		if (ctrlr->copied_ana_desc) {
733 			new_buffer = realloc(ctrlr->copied_ana_desc, ana_log_page_size);
734 		} else {
735 			new_buffer = calloc(1, ana_log_page_size);
736 		}
737 
738 		if (!new_buffer) {
739 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate a buffer to parse ANA descriptor, size %u\n",
740 					  ana_log_page_size);
741 			return -ENOMEM;
742 		}
743 
744 		ctrlr->copied_ana_desc = new_buffer;
745 		ctrlr->ana_log_page_size = ana_log_page_size;
746 	}
747 
748 	return 0;
749 }
750 
751 static int
752 nvme_ctrlr_update_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
753 {
754 	struct nvme_completion_poll_status *status;
755 	int rc;
756 
757 	rc = nvme_ctrlr_alloc_ana_log_page(ctrlr);
758 	if (rc != 0) {
759 		return rc;
760 	}
761 
762 	status = calloc(1, sizeof(*status));
763 	if (status == NULL) {
764 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
765 		return -ENOMEM;
766 	}
767 
768 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
769 					      SPDK_NVME_GLOBAL_NS_TAG, ctrlr->ana_log_page,
770 					      ctrlr->ana_log_page_size, 0,
771 					      nvme_completion_poll_cb, status);
772 	if (rc != 0) {
773 		free(status);
774 		return rc;
775 	}
776 
777 	if (nvme_wait_for_completion_robust_lock_timeout(ctrlr->adminq, status, &ctrlr->ctrlr_lock,
778 			ctrlr->opts.admin_timeout_ms * 1000)) {
779 		if (!status->timed_out) {
780 			free(status);
781 		}
782 		return -EIO;
783 	}
784 
785 	free(status);
786 	return 0;
787 }
788 
789 static int
790 nvme_ctrlr_update_ns_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
791 				void *cb_arg)
792 {
793 	struct spdk_nvme_ctrlr *ctrlr = cb_arg;
794 	struct spdk_nvme_ns *ns;
795 	uint32_t i, nsid;
796 
797 	for (i = 0; i < desc->num_of_nsid; i++) {
798 		nsid = desc->nsid[i];
799 		if (nsid == 0 || nsid > ctrlr->cdata.nn) {
800 			continue;
801 		}
802 
803 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
804 		assert(ns != NULL);
805 
806 		ns->ana_group_id = desc->ana_group_id;
807 		ns->ana_state = desc->ana_state;
808 	}
809 
810 	return 0;
811 }
812 
813 int
814 nvme_ctrlr_parse_ana_log_page(struct spdk_nvme_ctrlr *ctrlr,
815 			      spdk_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
816 {
817 	struct spdk_nvme_ana_group_descriptor *copied_desc;
818 	uint8_t *orig_desc;
819 	uint32_t i, desc_size, copy_len;
820 	int rc = 0;
821 
822 	if (ctrlr->ana_log_page == NULL) {
823 		return -EINVAL;
824 	}
825 
826 	copied_desc = ctrlr->copied_ana_desc;
827 
828 	orig_desc = (uint8_t *)ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
829 	copy_len = ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
830 
831 	for (i = 0; i < ctrlr->ana_log_page->num_ana_group_desc; i++) {
832 		memcpy(copied_desc, orig_desc, copy_len);
833 
834 		rc = cb_fn(copied_desc, cb_arg);
835 		if (rc != 0) {
836 			break;
837 		}
838 
839 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
840 			    copied_desc->num_of_nsid * sizeof(uint32_t);
841 		orig_desc += desc_size;
842 		copy_len -= desc_size;
843 	}
844 
845 	return rc;
846 }
847 
848 static int
849 nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr)
850 {
851 	int	rc = 0;
852 
853 	memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
854 	/* Mandatory pages */
855 	ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true;
856 	ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true;
857 	ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true;
858 	if (ctrlr->cdata.lpa.celp) {
859 		ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true;
860 	}
861 
862 	if (ctrlr->cdata.cmic.ana_reporting) {
863 		ctrlr->log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] = true;
864 		if (!ctrlr->opts.disable_read_ana_log_page) {
865 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
866 			if (rc == 0) {
867 				nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
868 							      ctrlr);
869 			}
870 		}
871 	}
872 
873 	if (ctrlr->cdata.ctratt.bits.fdps) {
874 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_CONFIGURATIONS] = true;
875 		ctrlr->log_page_supported[SPDK_NVME_LOG_RECLAIM_UNIT_HANDLE_USAGE] = true;
876 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_STATISTICS] = true;
877 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_EVENTS] = true;
878 	}
879 
880 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL &&
881 	    ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE &&
882 	    !(ctrlr->quirks & NVME_INTEL_QUIRK_NO_LOG_PAGES)) {
883 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES,
884 				     ctrlr->opts.admin_timeout_ms);
885 
886 	} else {
887 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
888 				     ctrlr->opts.admin_timeout_ms);
889 
890 	}
891 
892 	return rc;
893 }
894 
895 static void
896 nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr)
897 {
898 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true;
899 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
900 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
901 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
902 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true;
903 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
904 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
905 }
906 
907 static void
908 nvme_ctrlr_set_arbitration_feature(struct spdk_nvme_ctrlr *ctrlr)
909 {
910 	uint32_t cdw11;
911 	struct nvme_completion_poll_status *status;
912 
913 	if (ctrlr->opts.arbitration_burst == 0) {
914 		return;
915 	}
916 
917 	if (ctrlr->opts.arbitration_burst > 7) {
918 		NVME_CTRLR_WARNLOG(ctrlr, "Valid arbitration burst values is from 0-7\n");
919 		return;
920 	}
921 
922 	status = calloc(1, sizeof(*status));
923 	if (!status) {
924 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
925 		return;
926 	}
927 
928 	cdw11 = ctrlr->opts.arbitration_burst;
929 
930 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_WRR_SUPPORTED) {
931 		cdw11 |= (uint32_t)ctrlr->opts.low_priority_weight << 8;
932 		cdw11 |= (uint32_t)ctrlr->opts.medium_priority_weight << 16;
933 		cdw11 |= (uint32_t)ctrlr->opts.high_priority_weight << 24;
934 	}
935 
936 	if (spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION,
937 					    cdw11, 0, NULL, 0,
938 					    nvme_completion_poll_cb, status) < 0) {
939 		NVME_CTRLR_ERRLOG(ctrlr, "Set arbitration feature failed\n");
940 		free(status);
941 		return;
942 	}
943 
944 	if (nvme_wait_for_completion_timeout(ctrlr->adminq, status,
945 					     ctrlr->opts.admin_timeout_ms * 1000)) {
946 		NVME_CTRLR_ERRLOG(ctrlr, "Timeout to set arbitration feature\n");
947 	}
948 
949 	if (!status->timed_out) {
950 		free(status);
951 	}
952 }
953 
954 static void
955 nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr)
956 {
957 	memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
958 	/* Mandatory features */
959 	ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true;
960 	ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true;
961 	ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
962 	ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true;
963 	ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true;
964 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true;
965 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
966 	ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true;
967 	ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
968 	/* Optional features */
969 	if (ctrlr->cdata.vwc.present) {
970 		ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
971 	}
972 	if (ctrlr->cdata.apsta.supported) {
973 		ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
974 	}
975 	if (ctrlr->cdata.hmpre) {
976 		ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true;
977 	}
978 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
979 		nvme_ctrlr_set_intel_supported_features(ctrlr);
980 	}
981 
982 	nvme_ctrlr_set_arbitration_feature(ctrlr);
983 }
984 
985 static void
986 nvme_ctrlr_set_host_feature_done(void *arg, const struct spdk_nvme_cpl *cpl)
987 {
988 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
989 
990 	spdk_free(ctrlr->tmp_ptr);
991 	ctrlr->tmp_ptr = NULL;
992 
993 	if (spdk_nvme_cpl_is_error(cpl)) {
994 		NVME_CTRLR_ERRLOG(ctrlr, "Set host behavior support feature failed: SC %x SCT %x\n",
995 				  cpl->status.sc, cpl->status.sct);
996 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
997 		return;
998 	}
999 
1000 	ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT] = true;
1001 
1002 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
1003 			     ctrlr->opts.admin_timeout_ms);
1004 }
1005 
1006 /* We do not want to do add synchronous operation anymore.
1007  * We set the Host Behavior Support feature asynchronousin in different states.
1008  */
1009 static int
1010 nvme_ctrlr_set_host_feature(struct spdk_nvme_ctrlr *ctrlr)
1011 {
1012 	struct spdk_nvme_host_behavior *host;
1013 	int rc;
1014 
1015 	if (!ctrlr->cdata.ctratt.bits.elbas) {
1016 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
1017 				     ctrlr->opts.admin_timeout_ms);
1018 		return 0;
1019 	}
1020 
1021 	ctrlr->tmp_ptr = spdk_dma_zmalloc(sizeof(struct spdk_nvme_host_behavior), 4096, NULL);
1022 	if (!ctrlr->tmp_ptr) {
1023 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate host behavior support data\n");
1024 		rc = -ENOMEM;
1025 		goto error;
1026 	}
1027 
1028 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE,
1029 			     ctrlr->opts.admin_timeout_ms);
1030 
1031 	host = ctrlr->tmp_ptr;
1032 
1033 	host->lbafee = 1;
1034 
1035 	rc = spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT,
1036 					     0, 0, host, sizeof(struct spdk_nvme_host_behavior),
1037 					     nvme_ctrlr_set_host_feature_done, ctrlr);
1038 	if (rc != 0) {
1039 		NVME_CTRLR_ERRLOG(ctrlr, "Set host behavior support feature failed: %d\n", rc);
1040 		goto error;
1041 	}
1042 
1043 	return 0;
1044 
1045 error:
1046 	spdk_free(ctrlr->tmp_ptr);
1047 	ctrlr->tmp_ptr = NULL;
1048 
1049 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1050 	return rc;
1051 }
1052 
1053 bool
1054 spdk_nvme_ctrlr_is_failed(struct spdk_nvme_ctrlr *ctrlr)
1055 {
1056 	return ctrlr->is_failed;
1057 }
1058 
1059 void
1060 nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
1061 {
1062 	/*
1063 	 * Set the flag here and leave the work failure of qpairs to
1064 	 * spdk_nvme_qpair_process_completions().
1065 	 */
1066 	if (hot_remove) {
1067 		ctrlr->is_removed = true;
1068 	}
1069 
1070 	if (ctrlr->is_failed) {
1071 		NVME_CTRLR_NOTICELOG(ctrlr, "already in failed state\n");
1072 		return;
1073 	}
1074 
1075 	if (ctrlr->is_disconnecting) {
1076 		NVME_CTRLR_DEBUGLOG(ctrlr, "already disconnecting\n");
1077 		return;
1078 	}
1079 
1080 	ctrlr->is_failed = true;
1081 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1082 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1083 	NVME_CTRLR_ERRLOG(ctrlr, "in failed state.\n");
1084 }
1085 
1086 /**
1087  * This public API function will try to take the controller lock.
1088  * Any private functions being called from a thread already holding
1089  * the ctrlr lock should call nvme_ctrlr_fail directly.
1090  */
1091 void
1092 spdk_nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr)
1093 {
1094 	nvme_ctrlr_lock(ctrlr);
1095 	nvme_ctrlr_fail(ctrlr, false);
1096 	nvme_ctrlr_unlock(ctrlr);
1097 }
1098 
1099 static void
1100 nvme_ctrlr_shutdown_set_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1101 {
1102 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1103 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1104 
1105 	if (spdk_nvme_cpl_is_error(cpl)) {
1106 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1107 		ctx->shutdown_complete = true;
1108 		return;
1109 	}
1110 
1111 	if (ctrlr->opts.no_shn_notification) {
1112 		ctx->shutdown_complete = true;
1113 		return;
1114 	}
1115 
1116 	/*
1117 	 * The NVMe specification defines RTD3E to be the time between
1118 	 *  setting SHN = 1 until the controller will set SHST = 10b.
1119 	 * If the device doesn't report RTD3 entry latency, or if it
1120 	 *  reports RTD3 entry latency less than 10 seconds, pick
1121 	 *  10 seconds as a reasonable amount of time to
1122 	 *  wait before proceeding.
1123 	 */
1124 	NVME_CTRLR_DEBUGLOG(ctrlr, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e);
1125 	ctx->shutdown_timeout_ms = SPDK_CEIL_DIV(ctrlr->cdata.rtd3e, 1000);
1126 	ctx->shutdown_timeout_ms = spdk_max(ctx->shutdown_timeout_ms, 10000);
1127 	NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown timeout = %" PRIu32 " ms\n", ctx->shutdown_timeout_ms);
1128 
1129 	ctx->shutdown_start_tsc = spdk_get_ticks();
1130 	ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1131 }
1132 
1133 static void
1134 nvme_ctrlr_shutdown_get_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1135 {
1136 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1137 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1138 	union spdk_nvme_cc_register cc;
1139 	int rc;
1140 
1141 	if (spdk_nvme_cpl_is_error(cpl)) {
1142 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1143 		ctx->shutdown_complete = true;
1144 		return;
1145 	}
1146 
1147 	assert(value <= UINT32_MAX);
1148 	cc.raw = (uint32_t)value;
1149 
1150 	if (ctrlr->opts.no_shn_notification) {
1151 		NVME_CTRLR_INFOLOG(ctrlr, "Disable SSD without shutdown notification\n");
1152 		if (cc.bits.en == 0) {
1153 			ctx->shutdown_complete = true;
1154 			return;
1155 		}
1156 
1157 		cc.bits.en = 0;
1158 	} else {
1159 		cc.bits.shn = SPDK_NVME_SHN_NORMAL;
1160 	}
1161 
1162 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_shutdown_set_cc_done, ctx);
1163 	if (rc != 0) {
1164 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1165 		ctx->shutdown_complete = true;
1166 	}
1167 }
1168 
1169 static void
1170 nvme_ctrlr_shutdown_async(struct spdk_nvme_ctrlr *ctrlr,
1171 			  struct nvme_ctrlr_detach_ctx *ctx)
1172 {
1173 	int rc;
1174 
1175 	if (ctrlr->is_removed) {
1176 		ctx->shutdown_complete = true;
1177 		return;
1178 	}
1179 
1180 	if (ctrlr->adminq == NULL ||
1181 	    ctrlr->adminq->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE) {
1182 		NVME_CTRLR_INFOLOG(ctrlr, "Adminq is not connected.\n");
1183 		ctx->shutdown_complete = true;
1184 		return;
1185 	}
1186 
1187 	ctx->state = NVME_CTRLR_DETACH_SET_CC;
1188 	rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_shutdown_get_cc_done, ctx);
1189 	if (rc != 0) {
1190 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1191 		ctx->shutdown_complete = true;
1192 	}
1193 }
1194 
1195 static void
1196 nvme_ctrlr_shutdown_get_csts_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1197 {
1198 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1199 
1200 	if (spdk_nvme_cpl_is_error(cpl)) {
1201 		NVME_CTRLR_ERRLOG(ctx->ctrlr, "Failed to read the CSTS register\n");
1202 		ctx->shutdown_complete = true;
1203 		return;
1204 	}
1205 
1206 	assert(value <= UINT32_MAX);
1207 	ctx->csts.raw = (uint32_t)value;
1208 	ctx->state = NVME_CTRLR_DETACH_GET_CSTS_DONE;
1209 }
1210 
1211 static int
1212 nvme_ctrlr_shutdown_poll_async(struct spdk_nvme_ctrlr *ctrlr,
1213 			       struct nvme_ctrlr_detach_ctx *ctx)
1214 {
1215 	union spdk_nvme_csts_register	csts;
1216 	uint32_t			ms_waited;
1217 
1218 	switch (ctx->state) {
1219 	case NVME_CTRLR_DETACH_SET_CC:
1220 	case NVME_CTRLR_DETACH_GET_CSTS:
1221 		/* We're still waiting for the register operation to complete */
1222 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
1223 		return -EAGAIN;
1224 
1225 	case NVME_CTRLR_DETACH_CHECK_CSTS:
1226 		ctx->state = NVME_CTRLR_DETACH_GET_CSTS;
1227 		if (nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_shutdown_get_csts_done, ctx)) {
1228 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
1229 			return -EIO;
1230 		}
1231 		return -EAGAIN;
1232 
1233 	case NVME_CTRLR_DETACH_GET_CSTS_DONE:
1234 		ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1235 		break;
1236 
1237 	default:
1238 		assert(0 && "Should never happen");
1239 		return -EINVAL;
1240 	}
1241 
1242 	ms_waited = (spdk_get_ticks() - ctx->shutdown_start_tsc) * 1000 / spdk_get_ticks_hz();
1243 	csts.raw = ctx->csts.raw;
1244 
1245 	if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
1246 		NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown complete in %u milliseconds\n", ms_waited);
1247 		return 0;
1248 	}
1249 
1250 	if (ms_waited < ctx->shutdown_timeout_ms) {
1251 		return -EAGAIN;
1252 	}
1253 
1254 	NVME_CTRLR_ERRLOG(ctrlr, "did not shutdown within %u milliseconds\n",
1255 			  ctx->shutdown_timeout_ms);
1256 	if (ctrlr->quirks & NVME_QUIRK_SHST_COMPLETE) {
1257 		NVME_CTRLR_ERRLOG(ctrlr, "likely due to shutdown handling in the VMWare emulated NVMe SSD\n");
1258 	}
1259 
1260 	return 0;
1261 }
1262 
1263 static inline uint64_t
1264 nvme_ctrlr_get_ready_timeout(struct spdk_nvme_ctrlr *ctrlr)
1265 {
1266 	return ctrlr->cap.bits.to * 500;
1267 }
1268 
1269 static void
1270 nvme_ctrlr_set_cc_en_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1271 {
1272 	struct spdk_nvme_ctrlr *ctrlr = ctx;
1273 
1274 	if (spdk_nvme_cpl_is_error(cpl)) {
1275 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to set the CC register\n");
1276 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1277 		return;
1278 	}
1279 
1280 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
1281 			     nvme_ctrlr_get_ready_timeout(ctrlr));
1282 }
1283 
1284 static int
1285 nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
1286 {
1287 	union spdk_nvme_cc_register	cc;
1288 	int				rc;
1289 
1290 	rc = nvme_transport_ctrlr_enable(ctrlr);
1291 	if (rc != 0) {
1292 		NVME_CTRLR_ERRLOG(ctrlr, "transport ctrlr_enable failed\n");
1293 		return rc;
1294 	}
1295 
1296 	cc.raw = ctrlr->process_init_cc.raw;
1297 	if (cc.bits.en != 0) {
1298 		NVME_CTRLR_ERRLOG(ctrlr, "called with CC.EN = 1\n");
1299 		return -EINVAL;
1300 	}
1301 
1302 	cc.bits.en = 1;
1303 	cc.bits.css = 0;
1304 	cc.bits.shn = 0;
1305 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
1306 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
1307 
1308 	/* Page size is 2 ^ (12 + mps). */
1309 	cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12;
1310 
1311 	/*
1312 	 * Since NVMe 1.0, a controller should have at least one bit set in CAP.CSS.
1313 	 * A controller that does not have any bit set in CAP.CSS is not spec compliant.
1314 	 * Try to support such a controller regardless.
1315 	 */
1316 	if (ctrlr->cap.bits.css == 0) {
1317 		NVME_CTRLR_INFOLOG(ctrlr, "Drive reports no command sets supported. Assuming NVM is supported.\n");
1318 		ctrlr->cap.bits.css = SPDK_NVME_CAP_CSS_NVM;
1319 	}
1320 
1321 	/*
1322 	 * If the user did not explicitly request a command set, or supplied a value larger than
1323 	 * what can be saved in CC.CSS, use the most reasonable default.
1324 	 */
1325 	if (ctrlr->opts.command_set >= CHAR_BIT) {
1326 		if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS) {
1327 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_IOCS;
1328 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NVM) {
1329 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1330 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NOIO) {
1331 			/* Technically we should respond with CC_CSS_NOIO in
1332 			 * this case, but we use NVM instead to work around
1333 			 * buggy targets and to match Linux driver behavior.
1334 			 */
1335 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1336 		} else {
1337 			/* Invalid supported bits detected, falling back to NVM. */
1338 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1339 		}
1340 	}
1341 
1342 	/* Verify that the selected command set is supported by the controller. */
1343 	if (!(ctrlr->cap.bits.css & (1u << ctrlr->opts.command_set))) {
1344 		NVME_CTRLR_DEBUGLOG(ctrlr, "Requested I/O command set %u but supported mask is 0x%x\n",
1345 				    ctrlr->opts.command_set, ctrlr->cap.bits.css);
1346 		NVME_CTRLR_DEBUGLOG(ctrlr, "Falling back to NVM. Assuming NVM is supported.\n");
1347 		ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1348 	}
1349 
1350 	cc.bits.css = ctrlr->opts.command_set;
1351 
1352 	switch (ctrlr->opts.arb_mechanism) {
1353 	case SPDK_NVME_CC_AMS_RR:
1354 		break;
1355 	case SPDK_NVME_CC_AMS_WRR:
1356 		if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) {
1357 			break;
1358 		}
1359 		return -EINVAL;
1360 	case SPDK_NVME_CC_AMS_VS:
1361 		if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) {
1362 			break;
1363 		}
1364 		return -EINVAL;
1365 	default:
1366 		return -EINVAL;
1367 	}
1368 
1369 	cc.bits.ams = ctrlr->opts.arb_mechanism;
1370 	ctrlr->process_init_cc.raw = cc.raw;
1371 
1372 	if (nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_set_cc_en_done, ctrlr)) {
1373 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
1374 		return -EIO;
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 static const char *
1381 nvme_ctrlr_state_string(enum nvme_ctrlr_state state)
1382 {
1383 	switch (state) {
1384 	case NVME_CTRLR_STATE_INIT_DELAY:
1385 		return "delay init";
1386 	case NVME_CTRLR_STATE_CONNECT_ADMINQ:
1387 		return "connect adminq";
1388 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
1389 		return "wait for connect adminq";
1390 	case NVME_CTRLR_STATE_READ_VS:
1391 		return "read vs";
1392 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
1393 		return "read vs wait for vs";
1394 	case NVME_CTRLR_STATE_READ_CAP:
1395 		return "read cap";
1396 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
1397 		return "read cap wait for cap";
1398 	case NVME_CTRLR_STATE_CHECK_EN:
1399 		return "check en";
1400 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
1401 		return "check en wait for cc";
1402 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
1403 		return "disable and wait for CSTS.RDY = 1";
1404 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1405 		return "disable and wait for CSTS.RDY = 1 reg";
1406 	case NVME_CTRLR_STATE_SET_EN_0:
1407 		return "set CC.EN = 0";
1408 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
1409 		return "set CC.EN = 0 wait for cc";
1410 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
1411 		return "disable and wait for CSTS.RDY = 0";
1412 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
1413 		return "disable and wait for CSTS.RDY = 0 reg";
1414 	case NVME_CTRLR_STATE_DISABLED:
1415 		return "controller is disabled";
1416 	case NVME_CTRLR_STATE_ENABLE:
1417 		return "enable controller by writing CC.EN = 1";
1418 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
1419 		return "enable controller by writing CC.EN = 1 reg";
1420 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
1421 		return "wait for CSTS.RDY = 1";
1422 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1423 		return "wait for CSTS.RDY = 1 reg";
1424 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
1425 		return "reset admin queue";
1426 	case NVME_CTRLR_STATE_IDENTIFY:
1427 		return "identify controller";
1428 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
1429 		return "wait for identify controller";
1430 	case NVME_CTRLR_STATE_CONFIGURE_AER:
1431 		return "configure AER";
1432 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
1433 		return "wait for configure aer";
1434 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
1435 		return "set keep alive timeout";
1436 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
1437 		return "wait for set keep alive timeout";
1438 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
1439 		return "identify controller iocs specific";
1440 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
1441 		return "wait for identify controller iocs specific";
1442 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
1443 		return "get zns cmd and effects log page";
1444 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
1445 		return "wait for get zns cmd and effects log page";
1446 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
1447 		return "set number of queues";
1448 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
1449 		return "wait for set number of queues";
1450 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
1451 		return "identify active ns";
1452 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
1453 		return "wait for identify active ns";
1454 	case NVME_CTRLR_STATE_IDENTIFY_NS:
1455 		return "identify ns";
1456 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
1457 		return "wait for identify ns";
1458 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
1459 		return "identify namespace id descriptors";
1460 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
1461 		return "wait for identify namespace id descriptors";
1462 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
1463 		return "identify ns iocs specific";
1464 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
1465 		return "wait for identify ns iocs specific";
1466 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
1467 		return "set supported log pages";
1468 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
1469 		return "set supported INTEL log pages";
1470 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
1471 		return "wait for supported INTEL log pages";
1472 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
1473 		return "set supported features";
1474 	case NVME_CTRLR_STATE_SET_HOST_FEATURE:
1475 		return "set host behavior support feature";
1476 	case NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE:
1477 		return "wait for set host behavior support feature";
1478 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
1479 		return "set doorbell buffer config";
1480 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
1481 		return "wait for doorbell buffer config";
1482 	case NVME_CTRLR_STATE_SET_HOST_ID:
1483 		return "set host ID";
1484 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
1485 		return "wait for set host ID";
1486 	case NVME_CTRLR_STATE_TRANSPORT_READY:
1487 		return "transport ready";
1488 	case NVME_CTRLR_STATE_READY:
1489 		return "ready";
1490 	case NVME_CTRLR_STATE_ERROR:
1491 		return "error";
1492 	case NVME_CTRLR_STATE_DISCONNECTED:
1493 		return "disconnected";
1494 	}
1495 	return "unknown";
1496 };
1497 
1498 static void
1499 _nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1500 		      uint64_t timeout_in_ms, bool quiet)
1501 {
1502 	uint64_t ticks_per_ms, timeout_in_ticks, now_ticks;
1503 
1504 	ctrlr->state = state;
1505 	if (timeout_in_ms == NVME_TIMEOUT_KEEP_EXISTING) {
1506 		if (!quiet) {
1507 			NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (keeping existing timeout)\n",
1508 					    nvme_ctrlr_state_string(ctrlr->state));
1509 		}
1510 		return;
1511 	}
1512 
1513 	if (timeout_in_ms == NVME_TIMEOUT_INFINITE) {
1514 		goto inf;
1515 	}
1516 
1517 	ticks_per_ms = spdk_get_ticks_hz() / 1000;
1518 	if (timeout_in_ms > UINT64_MAX / ticks_per_ms) {
1519 		NVME_CTRLR_ERRLOG(ctrlr,
1520 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1521 		goto inf;
1522 	}
1523 
1524 	now_ticks = spdk_get_ticks();
1525 	timeout_in_ticks = timeout_in_ms * ticks_per_ms;
1526 	if (timeout_in_ticks > UINT64_MAX - now_ticks) {
1527 		NVME_CTRLR_ERRLOG(ctrlr,
1528 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1529 		goto inf;
1530 	}
1531 
1532 	ctrlr->state_timeout_tsc = timeout_in_ticks + now_ticks;
1533 	if (!quiet) {
1534 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (timeout %" PRIu64 " ms)\n",
1535 				    nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms);
1536 	}
1537 	return;
1538 inf:
1539 	if (!quiet) {
1540 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (no timeout)\n",
1541 				    nvme_ctrlr_state_string(ctrlr->state));
1542 	}
1543 	ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE;
1544 }
1545 
1546 static void
1547 nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1548 		     uint64_t timeout_in_ms)
1549 {
1550 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, false);
1551 }
1552 
1553 static void
1554 nvme_ctrlr_set_state_quiet(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1555 			   uint64_t timeout_in_ms)
1556 {
1557 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, true);
1558 }
1559 
1560 static void
1561 nvme_ctrlr_free_zns_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1562 {
1563 	spdk_free(ctrlr->cdata_zns);
1564 	ctrlr->cdata_zns = NULL;
1565 }
1566 
1567 static void
1568 nvme_ctrlr_free_iocs_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1569 {
1570 	nvme_ctrlr_free_zns_specific_data(ctrlr);
1571 }
1572 
1573 static void
1574 nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr)
1575 {
1576 	if (ctrlr->shadow_doorbell) {
1577 		spdk_free(ctrlr->shadow_doorbell);
1578 		ctrlr->shadow_doorbell = NULL;
1579 	}
1580 
1581 	if (ctrlr->eventidx) {
1582 		spdk_free(ctrlr->eventidx);
1583 		ctrlr->eventidx = NULL;
1584 	}
1585 }
1586 
1587 static void
1588 nvme_ctrlr_set_doorbell_buffer_config_done(void *arg, const struct spdk_nvme_cpl *cpl)
1589 {
1590 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1591 
1592 	if (spdk_nvme_cpl_is_error(cpl)) {
1593 		NVME_CTRLR_WARNLOG(ctrlr, "Doorbell buffer config failed\n");
1594 	} else {
1595 		NVME_CTRLR_INFOLOG(ctrlr, "Doorbell buffer config enabled\n");
1596 	}
1597 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1598 			     ctrlr->opts.admin_timeout_ms);
1599 }
1600 
1601 static int
1602 nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr)
1603 {
1604 	int rc = 0;
1605 	uint64_t prp1, prp2, len;
1606 
1607 	if (!ctrlr->cdata.oacs.doorbell_buffer_config) {
1608 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1609 				     ctrlr->opts.admin_timeout_ms);
1610 		return 0;
1611 	}
1612 
1613 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
1614 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1615 				     ctrlr->opts.admin_timeout_ms);
1616 		return 0;
1617 	}
1618 
1619 	/* only 1 page size for doorbell buffer */
1620 	ctrlr->shadow_doorbell = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1621 					      NULL, SPDK_ENV_LCORE_ID_ANY,
1622 					      SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1623 	if (ctrlr->shadow_doorbell == NULL) {
1624 		rc = -ENOMEM;
1625 		goto error;
1626 	}
1627 
1628 	len = ctrlr->page_size;
1629 	prp1 = spdk_vtophys(ctrlr->shadow_doorbell, &len);
1630 	if (prp1 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1631 		rc = -EFAULT;
1632 		goto error;
1633 	}
1634 
1635 	ctrlr->eventidx = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1636 				       NULL, SPDK_ENV_LCORE_ID_ANY,
1637 				       SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1638 	if (ctrlr->eventidx == NULL) {
1639 		rc = -ENOMEM;
1640 		goto error;
1641 	}
1642 
1643 	len = ctrlr->page_size;
1644 	prp2 = spdk_vtophys(ctrlr->eventidx, &len);
1645 	if (prp2 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1646 		rc = -EFAULT;
1647 		goto error;
1648 	}
1649 
1650 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG,
1651 			     ctrlr->opts.admin_timeout_ms);
1652 
1653 	rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2,
1654 			nvme_ctrlr_set_doorbell_buffer_config_done, ctrlr);
1655 	if (rc != 0) {
1656 		goto error;
1657 	}
1658 
1659 	return 0;
1660 
1661 error:
1662 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1663 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1664 	return rc;
1665 }
1666 
1667 void
1668 nvme_ctrlr_abort_queued_aborts(struct spdk_nvme_ctrlr *ctrlr)
1669 {
1670 	struct nvme_request	*req, *tmp;
1671 	struct spdk_nvme_cpl	cpl = {};
1672 
1673 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
1674 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
1675 
1676 	STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) {
1677 		STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq);
1678 		ctrlr->outstanding_aborts++;
1679 
1680 		nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, &cpl);
1681 	}
1682 }
1683 
1684 static int
1685 nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1686 {
1687 	if (ctrlr->is_resetting || ctrlr->is_removed) {
1688 		/*
1689 		 * Controller is already resetting or has been removed. Return
1690 		 *  immediately since there is no need to kick off another
1691 		 *  reset in these cases.
1692 		 */
1693 		return ctrlr->is_resetting ? -EBUSY : -ENXIO;
1694 	}
1695 
1696 	ctrlr->is_resetting = true;
1697 	ctrlr->is_failed = false;
1698 	ctrlr->is_disconnecting = true;
1699 	ctrlr->prepare_for_reset = true;
1700 
1701 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting controller\n");
1702 
1703 	/* Disable keep-alive, it'll be re-enabled as part of the init process */
1704 	ctrlr->keep_alive_interval_ticks = 0;
1705 
1706 	/* Abort all of the queued abort requests */
1707 	nvme_ctrlr_abort_queued_aborts(ctrlr);
1708 
1709 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
1710 
1711 	ctrlr->adminq->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1712 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1713 
1714 	return 0;
1715 }
1716 
1717 static void
1718 nvme_ctrlr_disconnect_done(struct spdk_nvme_ctrlr *ctrlr)
1719 {
1720 	assert(ctrlr->is_failed == false);
1721 	ctrlr->is_disconnecting = false;
1722 
1723 	/* Doorbell buffer config is invalid during reset */
1724 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1725 
1726 	/* I/O Command Set Specific Identify Controller data is invalidated during reset */
1727 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
1728 
1729 	spdk_bit_array_free(&ctrlr->free_io_qids);
1730 
1731 	/* Set the state back to DISCONNECTED to cause a full hardware reset. */
1732 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISCONNECTED, NVME_TIMEOUT_INFINITE);
1733 }
1734 
1735 int
1736 spdk_nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1737 {
1738 	int rc;
1739 
1740 	nvme_ctrlr_lock(ctrlr);
1741 	rc = nvme_ctrlr_disconnect(ctrlr);
1742 	nvme_ctrlr_unlock(ctrlr);
1743 
1744 	return rc;
1745 }
1746 
1747 void
1748 spdk_nvme_ctrlr_reconnect_async(struct spdk_nvme_ctrlr *ctrlr)
1749 {
1750 	nvme_ctrlr_lock(ctrlr);
1751 
1752 	ctrlr->prepare_for_reset = false;
1753 
1754 	/* Set the state back to INIT to cause a full hardware reset. */
1755 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
1756 
1757 	/* Return without releasing ctrlr_lock. ctrlr_lock will be released when
1758 	 * spdk_nvme_ctrlr_reset_poll_async() returns 0.
1759 	 */
1760 }
1761 
1762 int
1763 nvme_ctrlr_reinitialize_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1764 {
1765 	bool async;
1766 	int rc;
1767 
1768 	if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc ||
1769 	    spdk_nvme_ctrlr_is_fabrics(ctrlr) || nvme_qpair_is_admin_queue(qpair)) {
1770 		assert(false);
1771 		return -EINVAL;
1772 	}
1773 
1774 	/* Force a synchronous connect. */
1775 	async = qpair->async;
1776 	qpair->async = false;
1777 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
1778 	qpair->async = async;
1779 
1780 	if (rc != 0) {
1781 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1782 	}
1783 
1784 	return rc;
1785 }
1786 
1787 /**
1788  * This function will be called when the controller is being reinitialized.
1789  * Note: the ctrlr_lock must be held when calling this function.
1790  */
1791 int
1792 spdk_nvme_ctrlr_reconnect_poll_async(struct spdk_nvme_ctrlr *ctrlr)
1793 {
1794 	struct spdk_nvme_ns *ns, *tmp_ns;
1795 	struct spdk_nvme_qpair	*qpair;
1796 	int rc = 0, rc_tmp = 0;
1797 
1798 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1799 		NVME_CTRLR_ERRLOG(ctrlr, "controller reinitialization failed\n");
1800 		rc = -1;
1801 	}
1802 	if (ctrlr->state != NVME_CTRLR_STATE_READY && rc != -1) {
1803 		return -EAGAIN;
1804 	}
1805 
1806 	/*
1807 	 * For non-fabrics controllers, the memory locations of the transport qpair
1808 	 * don't change when the controller is reset. They simply need to be
1809 	 * re-enabled with admin commands to the controller. For fabric
1810 	 * controllers we need to disconnect and reconnect the qpair on its
1811 	 * own thread outside of the context of the reset.
1812 	 */
1813 	if (rc == 0 && !spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
1814 		/* Reinitialize qpairs */
1815 		TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1816 			/* Always clear the qid bit here, even for a foreign qpair. We need
1817 			 * to make sure another process doesn't get the chance to grab that
1818 			 * qid.
1819 			 */
1820 			assert(spdk_bit_array_get(ctrlr->free_io_qids, qpair->id));
1821 			spdk_bit_array_clear(ctrlr->free_io_qids, qpair->id);
1822 			if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc) {
1823 				/*
1824 				 * We cannot reinitialize a foreign qpair. The qpair's owning
1825 				 * process will take care of it. Set failure reason to FAILURE_RESET
1826 				 * to ensure that happens.
1827 				 */
1828 				qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_RESET;
1829 				continue;
1830 			}
1831 			rc_tmp = nvme_ctrlr_reinitialize_io_qpair(ctrlr, qpair);
1832 			if (rc_tmp != 0) {
1833 				rc = rc_tmp;
1834 			}
1835 		}
1836 	}
1837 
1838 	/*
1839 	 * Take this opportunity to remove inactive namespaces. During a reset namespace
1840 	 * handles can be invalidated.
1841 	 */
1842 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
1843 		if (!ns->active) {
1844 			RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
1845 			spdk_free(ns);
1846 		}
1847 	}
1848 
1849 	if (rc) {
1850 		nvme_ctrlr_fail(ctrlr, false);
1851 	}
1852 	ctrlr->is_resetting = false;
1853 
1854 	nvme_ctrlr_unlock(ctrlr);
1855 
1856 	if (!ctrlr->cdata.oaes.ns_attribute_notices) {
1857 		/*
1858 		 * If controller doesn't support ns_attribute_notices and
1859 		 * namespace attributes change (e.g. number of namespaces)
1860 		 * we need to update system handling device reset.
1861 		 */
1862 		nvme_io_msg_ctrlr_update(ctrlr);
1863 	}
1864 
1865 	return rc;
1866 }
1867 
1868 /*
1869  * For PCIe transport, spdk_nvme_ctrlr_disconnect() will do a Controller Level Reset
1870  * (Change CC.EN from 1 to 0) as a operation to disconnect the admin qpair.
1871  * The following two functions are added to do a Controller Level Reset. They have
1872  * to be called under the nvme controller's lock.
1873  */
1874 void
1875 nvme_ctrlr_disable(struct spdk_nvme_ctrlr *ctrlr)
1876 {
1877 	assert(ctrlr->is_disconnecting == true);
1878 
1879 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
1880 }
1881 
1882 int
1883 nvme_ctrlr_disable_poll(struct spdk_nvme_ctrlr *ctrlr)
1884 {
1885 	int rc = 0;
1886 
1887 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1888 		NVME_CTRLR_ERRLOG(ctrlr, "failed to disable controller\n");
1889 		rc = -1;
1890 	}
1891 
1892 	if (ctrlr->state != NVME_CTRLR_STATE_DISABLED && rc != -1) {
1893 		return -EAGAIN;
1894 	}
1895 
1896 	return rc;
1897 }
1898 
1899 static void
1900 nvme_ctrlr_fail_io_qpairs(struct spdk_nvme_ctrlr *ctrlr)
1901 {
1902 	struct spdk_nvme_qpair	*qpair;
1903 
1904 	TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1905 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1906 	}
1907 }
1908 
1909 int
1910 spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr)
1911 {
1912 	int rc;
1913 
1914 	nvme_ctrlr_lock(ctrlr);
1915 
1916 	rc = nvme_ctrlr_disconnect(ctrlr);
1917 	if (rc == 0) {
1918 		nvme_ctrlr_fail_io_qpairs(ctrlr);
1919 	}
1920 
1921 	nvme_ctrlr_unlock(ctrlr);
1922 
1923 	if (rc != 0) {
1924 		if (rc == -EBUSY) {
1925 			rc = 0;
1926 		}
1927 		return rc;
1928 	}
1929 
1930 	while (1) {
1931 		rc = spdk_nvme_ctrlr_process_admin_completions(ctrlr);
1932 		if (rc == -ENXIO) {
1933 			break;
1934 		}
1935 	}
1936 
1937 	spdk_nvme_ctrlr_reconnect_async(ctrlr);
1938 
1939 	while (true) {
1940 		rc = spdk_nvme_ctrlr_reconnect_poll_async(ctrlr);
1941 		if (rc != -EAGAIN) {
1942 			break;
1943 		}
1944 	}
1945 
1946 	return rc;
1947 }
1948 
1949 int
1950 spdk_nvme_ctrlr_reset_subsystem(struct spdk_nvme_ctrlr *ctrlr)
1951 {
1952 	union spdk_nvme_cap_register cap;
1953 	int rc = 0;
1954 
1955 	cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr);
1956 	if (cap.bits.nssrs == 0) {
1957 		NVME_CTRLR_WARNLOG(ctrlr, "subsystem reset is not supported\n");
1958 		return -ENOTSUP;
1959 	}
1960 
1961 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting subsystem\n");
1962 	nvme_ctrlr_lock(ctrlr);
1963 	ctrlr->is_resetting = true;
1964 	rc = nvme_ctrlr_set_nssr(ctrlr, SPDK_NVME_NSSR_VALUE);
1965 	ctrlr->is_resetting = false;
1966 
1967 	nvme_ctrlr_unlock(ctrlr);
1968 	/*
1969 	 * No more cleanup at this point like in the ctrlr reset. A subsystem reset will cause
1970 	 * a hot remove for PCIe transport. The hot remove handling does all the necessary ctrlr cleanup.
1971 	 */
1972 	return rc;
1973 }
1974 
1975 int
1976 spdk_nvme_ctrlr_set_trid(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_transport_id *trid)
1977 {
1978 	int rc = 0;
1979 
1980 	nvme_ctrlr_lock(ctrlr);
1981 
1982 	if (ctrlr->is_failed == false) {
1983 		rc = -EPERM;
1984 		goto out;
1985 	}
1986 
1987 	if (trid->trtype != ctrlr->trid.trtype) {
1988 		rc = -EINVAL;
1989 		goto out;
1990 	}
1991 
1992 	if (strncmp(trid->subnqn, ctrlr->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
1993 		rc = -EINVAL;
1994 		goto out;
1995 	}
1996 
1997 	ctrlr->trid = *trid;
1998 
1999 out:
2000 	nvme_ctrlr_unlock(ctrlr);
2001 	return rc;
2002 }
2003 
2004 void
2005 spdk_nvme_ctrlr_set_remove_cb(struct spdk_nvme_ctrlr *ctrlr,
2006 			      spdk_nvme_remove_cb remove_cb, void *remove_ctx)
2007 {
2008 	if (!spdk_process_is_primary()) {
2009 		return;
2010 	}
2011 
2012 	nvme_ctrlr_lock(ctrlr);
2013 	ctrlr->remove_cb = remove_cb;
2014 	ctrlr->cb_ctx = remove_ctx;
2015 	nvme_ctrlr_unlock(ctrlr);
2016 }
2017 
2018 int
2019 spdk_nvme_ctrlr_set_keys(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ctrlr_key_opts *opts)
2020 {
2021 	nvme_ctrlr_lock(ctrlr);
2022 	if (SPDK_GET_FIELD(opts, dhchap_key, ctrlr->opts.dhchap_key) == NULL &&
2023 	    SPDK_GET_FIELD(opts, dhchap_ctrlr_key, ctrlr->opts.dhchap_ctrlr_key) != NULL) {
2024 		NVME_CTRLR_ERRLOG(ctrlr, "DH-HMAC-CHAP controller key requires host key to be set\n");
2025 		nvme_ctrlr_unlock(ctrlr);
2026 		return -EINVAL;
2027 	}
2028 
2029 	ctrlr->opts.dhchap_key =
2030 		SPDK_GET_FIELD(opts, dhchap_key, ctrlr->opts.dhchap_key);
2031 	ctrlr->opts.dhchap_ctrlr_key =
2032 		SPDK_GET_FIELD(opts, dhchap_ctrlr_key, ctrlr->opts.dhchap_ctrlr_key);
2033 	nvme_ctrlr_unlock(ctrlr);
2034 
2035 	return 0;
2036 }
2037 
2038 static void
2039 nvme_ctrlr_identify_done(void *arg, const struct spdk_nvme_cpl *cpl)
2040 {
2041 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2042 
2043 	if (spdk_nvme_cpl_is_error(cpl)) {
2044 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_identify_controller failed!\n");
2045 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2046 		return;
2047 	}
2048 
2049 	/*
2050 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
2051 	 *  controller supports.
2052 	 */
2053 	ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr);
2054 	NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_xfer_size %u\n", ctrlr->max_xfer_size);
2055 	if (ctrlr->cdata.mdts > 0) {
2056 		ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size,
2057 						ctrlr->min_page_size * (1 << ctrlr->cdata.mdts));
2058 		NVME_CTRLR_DEBUGLOG(ctrlr, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size);
2059 	}
2060 
2061 	NVME_CTRLR_DEBUGLOG(ctrlr, "CNTLID 0x%04" PRIx16 "\n", ctrlr->cdata.cntlid);
2062 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
2063 		ctrlr->cntlid = ctrlr->cdata.cntlid;
2064 	} else {
2065 		/*
2066 		 * Fabrics controllers should already have CNTLID from the Connect command.
2067 		 *
2068 		 * If CNTLID from Connect doesn't match CNTLID in the Identify Controller data,
2069 		 * trust the one from Connect.
2070 		 */
2071 		if (ctrlr->cntlid != ctrlr->cdata.cntlid) {
2072 			NVME_CTRLR_DEBUGLOG(ctrlr, "Identify CNTLID 0x%04" PRIx16 " != Connect CNTLID 0x%04" PRIx16 "\n",
2073 					    ctrlr->cdata.cntlid, ctrlr->cntlid);
2074 		}
2075 	}
2076 
2077 	if (ctrlr->cdata.sgls.supported && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
2078 		assert(ctrlr->cdata.sgls.supported != 0x3);
2079 		ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
2080 		if (ctrlr->cdata.sgls.supported == 0x2) {
2081 			ctrlr->flags |= SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT;
2082 		}
2083 
2084 		ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr);
2085 		NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_sges %u\n", ctrlr->max_sges);
2086 	}
2087 
2088 	if (ctrlr->cdata.sgls.metadata_address && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
2089 		ctrlr->flags |= SPDK_NVME_CTRLR_MPTR_SGL_SUPPORTED;
2090 	}
2091 
2092 	if (ctrlr->cdata.oacs.security && !(ctrlr->quirks & NVME_QUIRK_OACS_SECURITY)) {
2093 		ctrlr->flags |= SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED;
2094 	}
2095 
2096 	if (ctrlr->cdata.oacs.directives) {
2097 		ctrlr->flags |= SPDK_NVME_CTRLR_DIRECTIVES_SUPPORTED;
2098 	}
2099 
2100 	NVME_CTRLR_DEBUGLOG(ctrlr, "fuses compare and write: %d\n",
2101 			    ctrlr->cdata.fuses.compare_and_write);
2102 	if (ctrlr->cdata.fuses.compare_and_write) {
2103 		ctrlr->flags |= SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED;
2104 	}
2105 
2106 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
2107 			     ctrlr->opts.admin_timeout_ms);
2108 }
2109 
2110 static int
2111 nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr)
2112 {
2113 	int	rc;
2114 
2115 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY,
2116 			     ctrlr->opts.admin_timeout_ms);
2117 
2118 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, 0,
2119 				     &ctrlr->cdata, sizeof(ctrlr->cdata),
2120 				     nvme_ctrlr_identify_done, ctrlr);
2121 	if (rc != 0) {
2122 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2123 		return rc;
2124 	}
2125 
2126 	return 0;
2127 }
2128 
2129 static void
2130 nvme_ctrlr_get_zns_cmd_and_effects_log_done(void *arg, const struct spdk_nvme_cpl *cpl)
2131 {
2132 	struct spdk_nvme_cmds_and_effect_log_page *log_page;
2133 	struct spdk_nvme_ctrlr *ctrlr = arg;
2134 
2135 	if (spdk_nvme_cpl_is_error(cpl)) {
2136 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_get_zns_cmd_and_effects_log failed!\n");
2137 		spdk_free(ctrlr->tmp_ptr);
2138 		ctrlr->tmp_ptr = NULL;
2139 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2140 		return;
2141 	}
2142 
2143 	log_page = ctrlr->tmp_ptr;
2144 
2145 	if (log_page->io_cmds_supported[SPDK_NVME_OPC_ZONE_APPEND].csupp) {
2146 		ctrlr->flags |= SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2147 	}
2148 	spdk_free(ctrlr->tmp_ptr);
2149 	ctrlr->tmp_ptr = NULL;
2150 
2151 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES, ctrlr->opts.admin_timeout_ms);
2152 }
2153 
2154 static int
2155 nvme_ctrlr_get_zns_cmd_and_effects_log(struct spdk_nvme_ctrlr *ctrlr)
2156 {
2157 	int rc;
2158 
2159 	assert(!ctrlr->tmp_ptr);
2160 	ctrlr->tmp_ptr = spdk_zmalloc(sizeof(struct spdk_nvme_cmds_and_effect_log_page), 64, NULL,
2161 				      SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2162 	if (!ctrlr->tmp_ptr) {
2163 		rc = -ENOMEM;
2164 		goto error;
2165 	}
2166 
2167 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG,
2168 			     ctrlr->opts.admin_timeout_ms);
2169 
2170 	rc = spdk_nvme_ctrlr_cmd_get_log_page_ext(ctrlr, SPDK_NVME_LOG_COMMAND_EFFECTS_LOG,
2171 			0, ctrlr->tmp_ptr, sizeof(struct spdk_nvme_cmds_and_effect_log_page),
2172 			0, 0, 0, SPDK_NVME_CSI_ZNS << 24,
2173 			nvme_ctrlr_get_zns_cmd_and_effects_log_done, ctrlr);
2174 	if (rc != 0) {
2175 		goto error;
2176 	}
2177 
2178 	return 0;
2179 
2180 error:
2181 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2182 	spdk_free(ctrlr->tmp_ptr);
2183 	ctrlr->tmp_ptr = NULL;
2184 	return rc;
2185 }
2186 
2187 static void
2188 nvme_ctrlr_identify_zns_specific_done(void *arg, const struct spdk_nvme_cpl *cpl)
2189 {
2190 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2191 
2192 	if (spdk_nvme_cpl_is_error(cpl)) {
2193 		/* no need to print an error, the controller simply does not support ZNS */
2194 		nvme_ctrlr_free_zns_specific_data(ctrlr);
2195 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2196 				     ctrlr->opts.admin_timeout_ms);
2197 		return;
2198 	}
2199 
2200 	/* A zero zasl value means use mdts */
2201 	if (ctrlr->cdata_zns->zasl) {
2202 		uint32_t max_append = ctrlr->min_page_size * (1 << ctrlr->cdata_zns->zasl);
2203 		ctrlr->max_zone_append_size = spdk_min(ctrlr->max_xfer_size, max_append);
2204 	} else {
2205 		ctrlr->max_zone_append_size = ctrlr->max_xfer_size;
2206 	}
2207 
2208 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG,
2209 			     ctrlr->opts.admin_timeout_ms);
2210 }
2211 
2212 /**
2213  * This function will try to fetch the I/O Command Specific Controller data structure for
2214  * each I/O Command Set supported by SPDK.
2215  *
2216  * If an I/O Command Set is not supported by the controller, "Invalid Field in Command"
2217  * will be returned. Since we are fetching in a exploratively way, getting an error back
2218  * from the controller should not be treated as fatal.
2219  *
2220  * I/O Command Sets not supported by SPDK will be skipped (e.g. Key Value Command Set).
2221  *
2222  * I/O Command Sets without a IOCS specific data structure (i.e. a zero-filled IOCS specific
2223  * data structure) will be skipped (e.g. NVM Command Set, Key Value Command Set).
2224  */
2225 static int
2226 nvme_ctrlr_identify_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2227 {
2228 	int	rc;
2229 
2230 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2231 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2232 				     ctrlr->opts.admin_timeout_ms);
2233 		return 0;
2234 	}
2235 
2236 	/*
2237 	 * Since SPDK currently only needs to fetch a single Command Set, keep the code here,
2238 	 * instead of creating multiple NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC substates,
2239 	 * which would require additional functions and complexity for no good reason.
2240 	 */
2241 	assert(!ctrlr->cdata_zns);
2242 	ctrlr->cdata_zns = spdk_zmalloc(sizeof(*ctrlr->cdata_zns), 64, NULL, SPDK_ENV_NUMA_ID_ANY,
2243 					SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2244 	if (!ctrlr->cdata_zns) {
2245 		rc = -ENOMEM;
2246 		goto error;
2247 	}
2248 
2249 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC,
2250 			     ctrlr->opts.admin_timeout_ms);
2251 
2252 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR_IOCS, 0, 0, SPDK_NVME_CSI_ZNS,
2253 				     ctrlr->cdata_zns, sizeof(*ctrlr->cdata_zns),
2254 				     nvme_ctrlr_identify_zns_specific_done, ctrlr);
2255 	if (rc != 0) {
2256 		goto error;
2257 	}
2258 
2259 	return 0;
2260 
2261 error:
2262 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2263 	nvme_ctrlr_free_zns_specific_data(ctrlr);
2264 	return rc;
2265 }
2266 
2267 enum nvme_active_ns_state {
2268 	NVME_ACTIVE_NS_STATE_IDLE,
2269 	NVME_ACTIVE_NS_STATE_PROCESSING,
2270 	NVME_ACTIVE_NS_STATE_DONE,
2271 	NVME_ACTIVE_NS_STATE_ERROR
2272 };
2273 
2274 typedef void (*nvme_active_ns_ctx_deleter)(struct nvme_active_ns_ctx *);
2275 
2276 struct nvme_active_ns_ctx {
2277 	struct spdk_nvme_ctrlr *ctrlr;
2278 	uint32_t page_count;
2279 	uint32_t next_nsid;
2280 	uint32_t *new_ns_list;
2281 	nvme_active_ns_ctx_deleter deleter;
2282 
2283 	enum nvme_active_ns_state state;
2284 };
2285 
2286 static struct nvme_active_ns_ctx *
2287 nvme_active_ns_ctx_create(struct spdk_nvme_ctrlr *ctrlr, nvme_active_ns_ctx_deleter deleter)
2288 {
2289 	struct nvme_active_ns_ctx *ctx;
2290 	uint32_t *new_ns_list = NULL;
2291 
2292 	ctx = calloc(1, sizeof(*ctx));
2293 	if (!ctx) {
2294 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate nvme_active_ns_ctx!\n");
2295 		return NULL;
2296 	}
2297 
2298 	new_ns_list = spdk_zmalloc(sizeof(struct spdk_nvme_ns_list), ctrlr->page_size,
2299 				   NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_SHARE);
2300 	if (!new_ns_list) {
2301 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate active_ns_list!\n");
2302 		free(ctx);
2303 		return NULL;
2304 	}
2305 
2306 	ctx->page_count = 1;
2307 	ctx->new_ns_list = new_ns_list;
2308 	ctx->ctrlr = ctrlr;
2309 	ctx->deleter = deleter;
2310 
2311 	return ctx;
2312 }
2313 
2314 static void
2315 nvme_active_ns_ctx_destroy(struct nvme_active_ns_ctx *ctx)
2316 {
2317 	spdk_free(ctx->new_ns_list);
2318 	free(ctx);
2319 }
2320 
2321 static int
2322 nvme_ctrlr_destruct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2323 {
2324 	struct spdk_nvme_ns tmp, *ns;
2325 
2326 	assert(ctrlr != NULL);
2327 
2328 	tmp.id = nsid;
2329 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
2330 	if (ns == NULL) {
2331 		return -EINVAL;
2332 	}
2333 
2334 	nvme_ns_destruct(ns);
2335 	ns->active = false;
2336 
2337 	return 0;
2338 }
2339 
2340 static int
2341 nvme_ctrlr_construct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2342 {
2343 	struct spdk_nvme_ns *ns;
2344 
2345 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
2346 		return -EINVAL;
2347 	}
2348 
2349 	/* Namespaces are constructed on demand, so simply request it. */
2350 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2351 	if (ns == NULL) {
2352 		return -ENOMEM;
2353 	}
2354 
2355 	ns->active = true;
2356 
2357 	return 0;
2358 }
2359 
2360 static void
2361 nvme_ctrlr_identify_active_ns_swap(struct spdk_nvme_ctrlr *ctrlr, uint32_t *new_ns_list,
2362 				   size_t max_entries)
2363 {
2364 	uint32_t active_ns_count = 0;
2365 	size_t i;
2366 	uint32_t nsid;
2367 	struct spdk_nvme_ns *ns, *tmp_ns;
2368 	int rc;
2369 
2370 	/* First, remove namespaces that no longer exist */
2371 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
2372 		nsid = new_ns_list[0];
2373 		active_ns_count = 0;
2374 		while (nsid != 0) {
2375 			if (nsid == ns->id) {
2376 				break;
2377 			}
2378 
2379 			nsid = new_ns_list[active_ns_count++];
2380 		}
2381 
2382 		if (nsid != ns->id) {
2383 			/* Did not find this namespace id in the new list. */
2384 			NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was removed\n", ns->id);
2385 			nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
2386 		}
2387 	}
2388 
2389 	/* Next, add new namespaces */
2390 	active_ns_count = 0;
2391 	for (i = 0; i < max_entries; i++) {
2392 		nsid = new_ns_list[active_ns_count];
2393 
2394 		if (nsid == 0) {
2395 			break;
2396 		}
2397 
2398 		/* If the namespace already exists, this will not construct it a second time. */
2399 		rc = nvme_ctrlr_construct_namespace(ctrlr, nsid);
2400 		if (rc != 0) {
2401 			/* We can't easily handle a failure here. But just move on. */
2402 			assert(false);
2403 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to allocate a namespace object.\n");
2404 			continue;
2405 		}
2406 
2407 		active_ns_count++;
2408 	}
2409 
2410 	ctrlr->active_ns_count = active_ns_count;
2411 }
2412 
2413 static void
2414 nvme_ctrlr_identify_active_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2415 {
2416 	struct nvme_active_ns_ctx *ctx = arg;
2417 	uint32_t *new_ns_list = NULL;
2418 
2419 	if (spdk_nvme_cpl_is_error(cpl)) {
2420 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2421 		goto out;
2422 	}
2423 
2424 	ctx->next_nsid = ctx->new_ns_list[1024 * ctx->page_count - 1];
2425 	if (ctx->next_nsid == 0) {
2426 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2427 		goto out;
2428 	}
2429 
2430 	ctx->page_count++;
2431 	new_ns_list = spdk_realloc(ctx->new_ns_list,
2432 				   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2433 				   ctx->ctrlr->page_size);
2434 	if (!new_ns_list) {
2435 		SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2436 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2437 		goto out;
2438 	}
2439 
2440 	ctx->new_ns_list = new_ns_list;
2441 	nvme_ctrlr_identify_active_ns_async(ctx);
2442 	return;
2443 
2444 out:
2445 	if (ctx->deleter) {
2446 		ctx->deleter(ctx);
2447 	}
2448 }
2449 
2450 static void
2451 nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx)
2452 {
2453 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2454 	uint32_t i;
2455 	int rc;
2456 
2457 	if (ctrlr->cdata.nn == 0) {
2458 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2459 		goto out;
2460 	}
2461 
2462 	assert(ctx->new_ns_list != NULL);
2463 
2464 	/*
2465 	 * If controller doesn't support active ns list CNS 0x02 dummy up
2466 	 * an active ns list, i.e. all namespaces report as active
2467 	 */
2468 	if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 1, 0) || ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS) {
2469 		uint32_t *new_ns_list;
2470 
2471 		/*
2472 		 * Active NS list must always end with zero element.
2473 		 * So, we allocate for cdata.nn+1.
2474 		 */
2475 		ctx->page_count = spdk_divide_round_up(ctrlr->cdata.nn + 1,
2476 						       sizeof(struct spdk_nvme_ns_list) / sizeof(new_ns_list[0]));
2477 		new_ns_list = spdk_realloc(ctx->new_ns_list,
2478 					   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2479 					   ctx->ctrlr->page_size);
2480 		if (!new_ns_list) {
2481 			SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2482 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2483 			goto out;
2484 		}
2485 
2486 		ctx->new_ns_list = new_ns_list;
2487 		ctx->new_ns_list[ctrlr->cdata.nn] = 0;
2488 		for (i = 0; i < ctrlr->cdata.nn; i++) {
2489 			ctx->new_ns_list[i] = i + 1;
2490 		}
2491 
2492 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2493 		goto out;
2494 	}
2495 
2496 	ctx->state = NVME_ACTIVE_NS_STATE_PROCESSING;
2497 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, ctx->next_nsid, 0,
2498 				     &ctx->new_ns_list[1024 * (ctx->page_count - 1)], sizeof(struct spdk_nvme_ns_list),
2499 				     nvme_ctrlr_identify_active_ns_async_done, ctx);
2500 	if (rc != 0) {
2501 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2502 		goto out;
2503 	}
2504 
2505 	return;
2506 
2507 out:
2508 	if (ctx->deleter) {
2509 		ctx->deleter(ctx);
2510 	}
2511 }
2512 
2513 static void
2514 _nvme_active_ns_ctx_deleter(struct nvme_active_ns_ctx *ctx)
2515 {
2516 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2517 	struct spdk_nvme_ns *ns;
2518 
2519 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2520 		nvme_active_ns_ctx_destroy(ctx);
2521 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2522 		return;
2523 	}
2524 
2525 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2526 
2527 	RB_FOREACH(ns, nvme_ns_tree, &ctrlr->ns) {
2528 		nvme_ns_free_iocs_specific_data(ns);
2529 	}
2530 
2531 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2532 	nvme_active_ns_ctx_destroy(ctx);
2533 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS, ctrlr->opts.admin_timeout_ms);
2534 }
2535 
2536 static void
2537 _nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2538 {
2539 	struct nvme_active_ns_ctx *ctx;
2540 
2541 	ctx = nvme_active_ns_ctx_create(ctrlr, _nvme_active_ns_ctx_deleter);
2542 	if (!ctx) {
2543 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2544 		return;
2545 	}
2546 
2547 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS,
2548 			     ctrlr->opts.admin_timeout_ms);
2549 	nvme_ctrlr_identify_active_ns_async(ctx);
2550 }
2551 
2552 int
2553 nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2554 {
2555 	struct nvme_active_ns_ctx *ctx;
2556 	int rc;
2557 
2558 	ctx = nvme_active_ns_ctx_create(ctrlr, NULL);
2559 	if (!ctx) {
2560 		return -ENOMEM;
2561 	}
2562 
2563 	nvme_ctrlr_identify_active_ns_async(ctx);
2564 	while (ctx->state == NVME_ACTIVE_NS_STATE_PROCESSING) {
2565 		rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2566 		if (rc < 0) {
2567 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2568 			break;
2569 		}
2570 	}
2571 
2572 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2573 		nvme_active_ns_ctx_destroy(ctx);
2574 		return -ENXIO;
2575 	}
2576 
2577 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2578 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2579 	nvme_active_ns_ctx_destroy(ctx);
2580 
2581 	return 0;
2582 }
2583 
2584 static void
2585 nvme_ctrlr_identify_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2586 {
2587 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2588 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2589 	uint32_t nsid;
2590 	int rc;
2591 
2592 	if (spdk_nvme_cpl_is_error(cpl)) {
2593 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2594 		return;
2595 	}
2596 
2597 	nvme_ns_set_identify_data(ns);
2598 
2599 	/* move on to the next active NS */
2600 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2601 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2602 	if (ns == NULL) {
2603 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2604 				     ctrlr->opts.admin_timeout_ms);
2605 		return;
2606 	}
2607 	ns->ctrlr = ctrlr;
2608 	ns->id = nsid;
2609 
2610 	rc = nvme_ctrlr_identify_ns_async(ns);
2611 	if (rc) {
2612 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2613 	}
2614 }
2615 
2616 static int
2617 nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns)
2618 {
2619 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2620 	struct spdk_nvme_ns_data *nsdata;
2621 
2622 	nsdata = &ns->nsdata;
2623 
2624 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS,
2625 			     ctrlr->opts.admin_timeout_ms);
2626 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS, 0, ns->id, 0,
2627 				       nsdata, sizeof(*nsdata),
2628 				       nvme_ctrlr_identify_ns_async_done, ns);
2629 }
2630 
2631 static int
2632 nvme_ctrlr_identify_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2633 {
2634 	uint32_t nsid;
2635 	struct spdk_nvme_ns *ns;
2636 	int rc;
2637 
2638 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2639 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2640 	if (ns == NULL) {
2641 		/* No active NS, move on to the next state */
2642 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2643 				     ctrlr->opts.admin_timeout_ms);
2644 		return 0;
2645 	}
2646 
2647 	ns->ctrlr = ctrlr;
2648 	ns->id = nsid;
2649 
2650 	rc = nvme_ctrlr_identify_ns_async(ns);
2651 	if (rc) {
2652 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2653 	}
2654 
2655 	return rc;
2656 }
2657 
2658 static int
2659 nvme_ctrlr_identify_namespaces_iocs_specific_next(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
2660 {
2661 	uint32_t nsid;
2662 	struct spdk_nvme_ns *ns;
2663 	int rc;
2664 
2665 	if (!prev_nsid) {
2666 		nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2667 	} else {
2668 		/* move on to the next active NS */
2669 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, prev_nsid);
2670 	}
2671 
2672 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2673 	if (ns == NULL) {
2674 		/* No first/next active NS, move on to the next state */
2675 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2676 				     ctrlr->opts.admin_timeout_ms);
2677 		return 0;
2678 	}
2679 
2680 	/* loop until we find a ns which has (supported) iocs specific data */
2681 	while (!nvme_ns_has_supported_iocs_specific_data(ns)) {
2682 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2683 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2684 		if (ns == NULL) {
2685 			/* no namespace with (supported) iocs specific data found */
2686 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2687 					     ctrlr->opts.admin_timeout_ms);
2688 			return 0;
2689 		}
2690 	}
2691 
2692 	rc = nvme_ctrlr_identify_ns_iocs_specific_async(ns);
2693 	if (rc) {
2694 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2695 	}
2696 
2697 	return rc;
2698 }
2699 
2700 static void
2701 nvme_ctrlr_identify_ns_zns_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2702 {
2703 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2704 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2705 
2706 	if (spdk_nvme_cpl_is_error(cpl)) {
2707 		nvme_ns_free_zns_specific_data(ns);
2708 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2709 		return;
2710 	}
2711 
2712 	nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2713 }
2714 
2715 static int
2716 nvme_ctrlr_identify_ns_zns_specific_async(struct spdk_nvme_ns *ns)
2717 {
2718 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2719 	int rc;
2720 
2721 	assert(!ns->nsdata_zns);
2722 	ns->nsdata_zns = spdk_zmalloc(sizeof(*ns->nsdata_zns), 64, NULL, SPDK_ENV_NUMA_ID_ANY,
2723 				      SPDK_MALLOC_SHARE);
2724 	if (!ns->nsdata_zns) {
2725 		return -ENOMEM;
2726 	}
2727 
2728 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2729 			     ctrlr->opts.admin_timeout_ms);
2730 	rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2731 				     ns->nsdata_zns, sizeof(*ns->nsdata_zns),
2732 				     nvme_ctrlr_identify_ns_zns_specific_async_done, ns);
2733 	if (rc) {
2734 		nvme_ns_free_zns_specific_data(ns);
2735 	}
2736 
2737 	return rc;
2738 }
2739 
2740 static void
2741 nvme_ctrlr_identify_ns_nvm_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2742 {
2743 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2744 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2745 
2746 	if (spdk_nvme_cpl_is_error(cpl)) {
2747 		nvme_ns_free_nvm_specific_data(ns);
2748 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2749 		return;
2750 	}
2751 
2752 	nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2753 }
2754 
2755 static int
2756 nvme_ctrlr_identify_ns_nvm_specific_async(struct spdk_nvme_ns *ns)
2757 {
2758 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2759 	int rc;
2760 
2761 	assert(!ns->nsdata_nvm);
2762 	ns->nsdata_nvm = spdk_zmalloc(sizeof(*ns->nsdata_nvm), 64, NULL, SPDK_ENV_NUMA_ID_ANY,
2763 				      SPDK_MALLOC_SHARE);
2764 	if (!ns->nsdata_nvm) {
2765 		return -ENOMEM;
2766 	}
2767 
2768 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2769 			     ctrlr->opts.admin_timeout_ms);
2770 	rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2771 				     ns->nsdata_nvm, sizeof(*ns->nsdata_nvm),
2772 				     nvme_ctrlr_identify_ns_nvm_specific_async_done, ns);
2773 	if (rc) {
2774 		nvme_ns_free_nvm_specific_data(ns);
2775 	}
2776 
2777 	return rc;
2778 }
2779 
2780 static int
2781 nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns)
2782 {
2783 	switch (ns->csi) {
2784 	case SPDK_NVME_CSI_ZNS:
2785 		return nvme_ctrlr_identify_ns_zns_specific_async(ns);
2786 	case SPDK_NVME_CSI_NVM:
2787 		if (ns->ctrlr->cdata.ctratt.bits.elbas) {
2788 			return nvme_ctrlr_identify_ns_nvm_specific_async(ns);
2789 		}
2790 	/* fallthrough */
2791 	default:
2792 		/*
2793 		 * This switch must handle all cases for which
2794 		 * nvme_ns_has_supported_iocs_specific_data() returns true,
2795 		 * other cases should never happen.
2796 		 */
2797 		assert(0);
2798 	}
2799 
2800 	return -EINVAL;
2801 }
2802 
2803 static int
2804 nvme_ctrlr_identify_namespaces_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2805 {
2806 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2807 		/* Multi IOCS not supported/enabled, move on to the next state */
2808 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2809 				     ctrlr->opts.admin_timeout_ms);
2810 		return 0;
2811 	}
2812 
2813 	return nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, 0);
2814 }
2815 
2816 static void
2817 nvme_ctrlr_identify_id_desc_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2818 {
2819 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2820 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2821 	uint32_t nsid;
2822 	int rc;
2823 
2824 	if (spdk_nvme_cpl_is_error(cpl)) {
2825 		/*
2826 		 * Many controllers claim to be compatible with NVMe 1.3, however,
2827 		 * they do not implement NS ID Desc List. Therefore, instead of setting
2828 		 * the state to NVME_CTRLR_STATE_ERROR, silently ignore the completion
2829 		 * error and move on to the next state.
2830 		 *
2831 		 * The proper way is to create a new quirk for controllers that violate
2832 		 * the NVMe 1.3 spec by not supporting NS ID Desc List.
2833 		 * (Re-using the NVME_QUIRK_IDENTIFY_CNS quirk is not possible, since
2834 		 * it is too generic and was added in order to handle controllers that
2835 		 * violate the NVMe 1.1 spec by not supporting ACTIVE LIST).
2836 		 */
2837 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2838 				     ctrlr->opts.admin_timeout_ms);
2839 		return;
2840 	}
2841 
2842 	nvme_ns_set_id_desc_list_data(ns);
2843 
2844 	/* move on to the next active NS */
2845 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2846 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2847 	if (ns == NULL) {
2848 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2849 				     ctrlr->opts.admin_timeout_ms);
2850 		return;
2851 	}
2852 
2853 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2854 	if (rc) {
2855 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2856 	}
2857 }
2858 
2859 static int
2860 nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns)
2861 {
2862 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2863 
2864 	memset(ns->id_desc_list, 0, sizeof(ns->id_desc_list));
2865 
2866 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS,
2867 			     ctrlr->opts.admin_timeout_ms);
2868 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_ID_DESCRIPTOR_LIST,
2869 				       0, ns->id, 0, ns->id_desc_list, sizeof(ns->id_desc_list),
2870 				       nvme_ctrlr_identify_id_desc_async_done, ns);
2871 }
2872 
2873 static int
2874 nvme_ctrlr_identify_id_desc_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2875 {
2876 	uint32_t nsid;
2877 	struct spdk_nvme_ns *ns;
2878 	int rc;
2879 
2880 	if ((ctrlr->vs.raw < SPDK_NVME_VERSION(1, 3, 0) &&
2881 	     !(ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS)) ||
2882 	    (ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2883 		NVME_CTRLR_DEBUGLOG(ctrlr, "Version < 1.3; not attempting to retrieve NS ID Descriptor List\n");
2884 		/* NS ID Desc List not supported, move on to the next state */
2885 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2886 				     ctrlr->opts.admin_timeout_ms);
2887 		return 0;
2888 	}
2889 
2890 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2891 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2892 	if (ns == NULL) {
2893 		/* No active NS, move on to the next state */
2894 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2895 				     ctrlr->opts.admin_timeout_ms);
2896 		return 0;
2897 	}
2898 
2899 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2900 	if (rc) {
2901 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2902 	}
2903 
2904 	return rc;
2905 }
2906 
2907 static void
2908 nvme_ctrlr_update_nvmf_ioccsz(struct spdk_nvme_ctrlr *ctrlr)
2909 {
2910 	if (spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
2911 		if (ctrlr->cdata.nvmf_specific.ioccsz < 4) {
2912 			NVME_CTRLR_ERRLOG(ctrlr, "Incorrect IOCCSZ %u, the minimum value should be 4\n",
2913 					  ctrlr->cdata.nvmf_specific.ioccsz);
2914 			ctrlr->cdata.nvmf_specific.ioccsz = 4;
2915 			assert(0);
2916 		}
2917 		ctrlr->ioccsz_bytes = ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd);
2918 		ctrlr->icdoff = ctrlr->cdata.nvmf_specific.icdoff;
2919 	}
2920 }
2921 
2922 static void
2923 nvme_ctrlr_set_num_queues_done(void *arg, const struct spdk_nvme_cpl *cpl)
2924 {
2925 	uint32_t cq_allocated, sq_allocated, min_allocated, i;
2926 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2927 
2928 	if (spdk_nvme_cpl_is_error(cpl)) {
2929 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Number of Queues failed!\n");
2930 		ctrlr->opts.num_io_queues = 0;
2931 	} else {
2932 		/*
2933 		 * Data in cdw0 is 0-based.
2934 		 * Lower 16-bits indicate number of submission queues allocated.
2935 		 * Upper 16-bits indicate number of completion queues allocated.
2936 		 */
2937 		sq_allocated = (cpl->cdw0 & 0xFFFF) + 1;
2938 		cq_allocated = (cpl->cdw0 >> 16) + 1;
2939 
2940 		/*
2941 		 * For 1:1 queue mapping, set number of allocated queues to be minimum of
2942 		 * submission and completion queues.
2943 		 */
2944 		min_allocated = spdk_min(sq_allocated, cq_allocated);
2945 
2946 		/* Set number of queues to be minimum of requested and actually allocated. */
2947 		ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues);
2948 	}
2949 
2950 	ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1);
2951 	if (ctrlr->free_io_qids == NULL) {
2952 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2953 		return;
2954 	}
2955 
2956 	/* Initialize list of free I/O queue IDs. QID 0 is the admin queue (implicitly allocated). */
2957 	for (i = 1; i <= ctrlr->opts.num_io_queues; i++) {
2958 		spdk_nvme_ctrlr_free_qid(ctrlr, i);
2959 	}
2960 
2961 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS,
2962 			     ctrlr->opts.admin_timeout_ms);
2963 }
2964 
2965 static int
2966 nvme_ctrlr_set_num_queues(struct spdk_nvme_ctrlr *ctrlr)
2967 {
2968 	int rc;
2969 
2970 	if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) {
2971 		NVME_CTRLR_NOTICELOG(ctrlr, "Limiting requested num_io_queues %u to max %d\n",
2972 				     ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES);
2973 		ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES;
2974 	} else if (ctrlr->opts.num_io_queues < 1) {
2975 		NVME_CTRLR_NOTICELOG(ctrlr, "Requested num_io_queues 0, increasing to 1\n");
2976 		ctrlr->opts.num_io_queues = 1;
2977 	}
2978 
2979 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES,
2980 			     ctrlr->opts.admin_timeout_ms);
2981 
2982 	rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues,
2983 					   nvme_ctrlr_set_num_queues_done, ctrlr);
2984 	if (rc != 0) {
2985 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2986 		return rc;
2987 	}
2988 
2989 	return 0;
2990 }
2991 
2992 static void
2993 nvme_ctrlr_set_keep_alive_timeout_done(void *arg, const struct spdk_nvme_cpl *cpl)
2994 {
2995 	uint32_t keep_alive_interval_us;
2996 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2997 
2998 	if (spdk_nvme_cpl_is_error(cpl)) {
2999 		if ((cpl->status.sct == SPDK_NVME_SCT_GENERIC) &&
3000 		    (cpl->status.sc == SPDK_NVME_SC_INVALID_FIELD)) {
3001 			NVME_CTRLR_DEBUGLOG(ctrlr, "Keep alive timeout Get Feature is not supported\n");
3002 		} else {
3003 			NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: SC %x SCT %x\n",
3004 					  cpl->status.sc, cpl->status.sct);
3005 			ctrlr->opts.keep_alive_timeout_ms = 0;
3006 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3007 			return;
3008 		}
3009 	} else {
3010 		if (ctrlr->opts.keep_alive_timeout_ms != cpl->cdw0) {
3011 			NVME_CTRLR_DEBUGLOG(ctrlr, "Controller adjusted keep alive timeout to %u ms\n",
3012 					    cpl->cdw0);
3013 		}
3014 
3015 		ctrlr->opts.keep_alive_timeout_ms = cpl->cdw0;
3016 	}
3017 
3018 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
3019 		ctrlr->keep_alive_interval_ticks = 0;
3020 	} else {
3021 		keep_alive_interval_us = ctrlr->opts.keep_alive_timeout_ms * 1000 / 2;
3022 
3023 		NVME_CTRLR_DEBUGLOG(ctrlr, "Sending keep alive every %u us\n", keep_alive_interval_us);
3024 
3025 		ctrlr->keep_alive_interval_ticks = (keep_alive_interval_us * spdk_get_ticks_hz()) /
3026 						   UINT64_C(1000000);
3027 
3028 		/* Schedule the first Keep Alive to be sent as soon as possible. */
3029 		ctrlr->next_keep_alive_tick = spdk_get_ticks();
3030 	}
3031 
3032 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3033 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
3034 	} else {
3035 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3036 				     ctrlr->opts.admin_timeout_ms);
3037 	}
3038 }
3039 
3040 static int
3041 nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr)
3042 {
3043 	int rc;
3044 
3045 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
3046 		if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3047 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
3048 		} else {
3049 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3050 					     ctrlr->opts.admin_timeout_ms);
3051 		}
3052 		return 0;
3053 	}
3054 
3055 	/* Note: Discovery controller identify data does not populate KAS according to spec. */
3056 	if (!spdk_nvme_ctrlr_is_discovery(ctrlr) && ctrlr->cdata.kas == 0) {
3057 		NVME_CTRLR_DEBUGLOG(ctrlr, "Controller KAS is 0 - not enabling Keep Alive\n");
3058 		ctrlr->opts.keep_alive_timeout_ms = 0;
3059 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3060 				     ctrlr->opts.admin_timeout_ms);
3061 		return 0;
3062 	}
3063 
3064 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT,
3065 			     ctrlr->opts.admin_timeout_ms);
3066 
3067 	/* Retrieve actual keep alive timeout, since the controller may have adjusted it. */
3068 	rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0,
3069 					     nvme_ctrlr_set_keep_alive_timeout_done, ctrlr);
3070 	if (rc != 0) {
3071 		NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: %d\n", rc);
3072 		ctrlr->opts.keep_alive_timeout_ms = 0;
3073 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3074 		return rc;
3075 	}
3076 
3077 	return 0;
3078 }
3079 
3080 static void
3081 nvme_ctrlr_set_host_id_done(void *arg, const struct spdk_nvme_cpl *cpl)
3082 {
3083 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
3084 
3085 	if (spdk_nvme_cpl_is_error(cpl)) {
3086 		/*
3087 		 * Treat Set Features - Host ID failure as non-fatal, since the Host ID feature
3088 		 * is optional.
3089 		 */
3090 		NVME_CTRLR_WARNLOG(ctrlr, "Set Features - Host ID failed: SC 0x%x SCT 0x%x\n",
3091 				   cpl->status.sc, cpl->status.sct);
3092 	} else {
3093 		NVME_CTRLR_DEBUGLOG(ctrlr, "Set Features - Host ID was successful\n");
3094 	}
3095 
3096 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3097 }
3098 
3099 static int
3100 nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr)
3101 {
3102 	uint8_t *host_id;
3103 	uint32_t host_id_size;
3104 	int rc;
3105 
3106 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
3107 		/*
3108 		 * NVMe-oF sends the host ID during Connect and doesn't allow
3109 		 * Set Features - Host Identifier after Connect, so we don't need to do anything here.
3110 		 */
3111 		NVME_CTRLR_DEBUGLOG(ctrlr, "NVMe-oF transport - not sending Set Features - Host ID\n");
3112 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3113 		return 0;
3114 	}
3115 
3116 	if (ctrlr->cdata.ctratt.bits.host_id_exhid_supported) {
3117 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 128-bit extended host identifier\n");
3118 		host_id = ctrlr->opts.extended_host_id;
3119 		host_id_size = sizeof(ctrlr->opts.extended_host_id);
3120 	} else {
3121 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 64-bit host identifier\n");
3122 		host_id = ctrlr->opts.host_id;
3123 		host_id_size = sizeof(ctrlr->opts.host_id);
3124 	}
3125 
3126 	/* If the user specified an all-zeroes host identifier, don't send the command. */
3127 	if (spdk_mem_all_zero(host_id, host_id_size)) {
3128 		NVME_CTRLR_DEBUGLOG(ctrlr, "User did not specify host ID - not sending Set Features - Host ID\n");
3129 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3130 		return 0;
3131 	}
3132 
3133 	SPDK_LOGDUMP(nvme, "host_id", host_id, host_id_size);
3134 
3135 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_HOST_ID,
3136 			     ctrlr->opts.admin_timeout_ms);
3137 
3138 	rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_ctrlr_set_host_id_done, ctrlr);
3139 	if (rc != 0) {
3140 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Host ID failed: %d\n", rc);
3141 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3142 		return rc;
3143 	}
3144 
3145 	return 0;
3146 }
3147 
3148 void
3149 nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr)
3150 {
3151 	uint32_t nsid;
3152 	struct spdk_nvme_ns *ns;
3153 
3154 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3155 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
3156 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
3157 		nvme_ns_construct(ns, nsid, ctrlr);
3158 	}
3159 }
3160 
3161 static int
3162 nvme_ctrlr_clear_changed_ns_log(struct spdk_nvme_ctrlr *ctrlr)
3163 {
3164 	struct nvme_completion_poll_status	*status;
3165 	int		rc = -ENOMEM;
3166 	char		*buffer = NULL;
3167 	uint32_t	nsid;
3168 	size_t		buf_size = (SPDK_NVME_MAX_CHANGED_NAMESPACES * sizeof(uint32_t));
3169 
3170 	if (ctrlr->opts.disable_read_changed_ns_list_log_page) {
3171 		return 0;
3172 	}
3173 
3174 	buffer = spdk_dma_zmalloc(buf_size, 4096, NULL);
3175 	if (!buffer) {
3176 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate buffer for getting "
3177 				  "changed ns log.\n");
3178 		return rc;
3179 	}
3180 
3181 	status = calloc(1, sizeof(*status));
3182 	if (!status) {
3183 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
3184 		goto free_buffer;
3185 	}
3186 
3187 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
3188 					      SPDK_NVME_LOG_CHANGED_NS_LIST,
3189 					      SPDK_NVME_GLOBAL_NS_TAG,
3190 					      buffer, buf_size, 0,
3191 					      nvme_completion_poll_cb, status);
3192 
3193 	if (rc) {
3194 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_get_log_page() failed: rc=%d\n", rc);
3195 		free(status);
3196 		goto free_buffer;
3197 	}
3198 
3199 	rc = nvme_wait_for_completion_timeout(ctrlr->adminq, status,
3200 					      ctrlr->opts.admin_timeout_ms * 1000);
3201 	if (!status->timed_out) {
3202 		free(status);
3203 	}
3204 
3205 	if (rc) {
3206 		NVME_CTRLR_ERRLOG(ctrlr, "wait for spdk_nvme_ctrlr_cmd_get_log_page failed: rc=%d\n", rc);
3207 		goto free_buffer;
3208 	}
3209 
3210 	/* only check the case of overflow. */
3211 	nsid = from_le32(buffer);
3212 	if (nsid == 0xffffffffu) {
3213 		NVME_CTRLR_WARNLOG(ctrlr, "changed ns log overflowed.\n");
3214 	}
3215 
3216 free_buffer:
3217 	spdk_dma_free(buffer);
3218 	return rc;
3219 }
3220 
3221 static void
3222 nvme_ctrlr_process_async_event(struct spdk_nvme_ctrlr *ctrlr,
3223 			       const struct spdk_nvme_cpl *cpl)
3224 {
3225 	union spdk_nvme_async_event_completion event;
3226 	struct spdk_nvme_ctrlr_process *active_proc;
3227 	int rc;
3228 
3229 	event.raw = cpl->cdw0;
3230 
3231 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3232 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
3233 		nvme_ctrlr_clear_changed_ns_log(ctrlr);
3234 
3235 		rc = nvme_ctrlr_identify_active_ns(ctrlr);
3236 		if (rc) {
3237 			return;
3238 		}
3239 		nvme_ctrlr_update_namespaces(ctrlr);
3240 		nvme_io_msg_ctrlr_update(ctrlr);
3241 	}
3242 
3243 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3244 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
3245 		if (!ctrlr->opts.disable_read_ana_log_page) {
3246 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
3247 			if (rc) {
3248 				return;
3249 			}
3250 			nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
3251 						      ctrlr);
3252 		}
3253 	}
3254 
3255 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3256 	if (active_proc && active_proc->aer_cb_fn) {
3257 		active_proc->aer_cb_fn(active_proc->aer_cb_arg, cpl);
3258 	}
3259 }
3260 
3261 static void
3262 nvme_ctrlr_queue_async_event(struct spdk_nvme_ctrlr *ctrlr,
3263 			     const struct spdk_nvme_cpl *cpl)
3264 {
3265 	struct  spdk_nvme_ctrlr_aer_completion *nvme_event;
3266 	struct spdk_nvme_ctrlr_process *proc;
3267 
3268 	/* Add async event to each process objects event list */
3269 	TAILQ_FOREACH(proc, &ctrlr->active_procs, tailq) {
3270 		/* Must be shared memory so other processes can access */
3271 		nvme_event = spdk_zmalloc(sizeof(*nvme_event), 0, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_SHARE);
3272 		if (!nvme_event) {
3273 			NVME_CTRLR_ERRLOG(ctrlr, "Alloc nvme event failed, ignore the event\n");
3274 			return;
3275 		}
3276 		nvme_event->cpl = *cpl;
3277 
3278 		STAILQ_INSERT_TAIL(&proc->async_events, nvme_event, link);
3279 	}
3280 }
3281 
3282 static void
3283 nvme_ctrlr_complete_queued_async_events(struct spdk_nvme_ctrlr *ctrlr)
3284 {
3285 	struct  spdk_nvme_ctrlr_aer_completion  *nvme_event, *nvme_event_tmp;
3286 	struct spdk_nvme_ctrlr_process	*active_proc;
3287 
3288 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3289 
3290 	STAILQ_FOREACH_SAFE(nvme_event, &active_proc->async_events, link, nvme_event_tmp) {
3291 		STAILQ_REMOVE(&active_proc->async_events, nvme_event,
3292 			      spdk_nvme_ctrlr_aer_completion, link);
3293 		nvme_ctrlr_process_async_event(ctrlr, &nvme_event->cpl);
3294 		spdk_free(nvme_event);
3295 
3296 	}
3297 }
3298 
3299 static void
3300 nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl)
3301 {
3302 	struct nvme_async_event_request	*aer = arg;
3303 	struct spdk_nvme_ctrlr		*ctrlr = aer->ctrlr;
3304 
3305 	if (cpl->status.sct == SPDK_NVME_SCT_GENERIC &&
3306 	    cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) {
3307 		/*
3308 		 *  This is simulated when controller is being shut down, to
3309 		 *  effectively abort outstanding asynchronous event requests
3310 		 *  and make sure all memory is freed.  Do not repost the
3311 		 *  request in this case.
3312 		 */
3313 		return;
3314 	}
3315 
3316 	if (cpl->status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC &&
3317 	    cpl->status.sc == SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED) {
3318 		/*
3319 		 *  SPDK will only send as many AERs as the device says it supports,
3320 		 *  so this status code indicates an out-of-spec device.  Do not repost
3321 		 *  the request in this case.
3322 		 */
3323 		NVME_CTRLR_ERRLOG(ctrlr, "Controller appears out-of-spec for asynchronous event request\n"
3324 				  "handling.  Do not repost this AER.\n");
3325 		return;
3326 	}
3327 
3328 	/* Add the events to the list */
3329 	nvme_ctrlr_queue_async_event(ctrlr, cpl);
3330 
3331 	/* If the ctrlr was removed or in the destruct state, we should not send aer again */
3332 	if (ctrlr->is_removed || ctrlr->is_destructed) {
3333 		return;
3334 	}
3335 
3336 	/*
3337 	 * Repost another asynchronous event request to replace the one
3338 	 *  that just completed.
3339 	 */
3340 	if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
3341 		/*
3342 		 * We can't do anything to recover from a failure here,
3343 		 * so just print a warning message and leave the AER unsubmitted.
3344 		 */
3345 		NVME_CTRLR_ERRLOG(ctrlr, "resubmitting AER failed!\n");
3346 	}
3347 }
3348 
3349 static int
3350 nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
3351 				    struct nvme_async_event_request *aer)
3352 {
3353 	struct nvme_request *req;
3354 
3355 	aer->ctrlr = ctrlr;
3356 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer);
3357 	aer->req = req;
3358 	if (req == NULL) {
3359 		return -1;
3360 	}
3361 
3362 	req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
3363 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
3364 }
3365 
3366 static void
3367 nvme_ctrlr_configure_aer_done(void *arg, const struct spdk_nvme_cpl *cpl)
3368 {
3369 	struct nvme_async_event_request		*aer;
3370 	int					rc;
3371 	uint32_t				i;
3372 	struct spdk_nvme_ctrlr *ctrlr =	(struct spdk_nvme_ctrlr *)arg;
3373 
3374 	if (spdk_nvme_cpl_is_error(cpl)) {
3375 		NVME_CTRLR_NOTICELOG(ctrlr, "nvme_ctrlr_configure_aer failed!\n");
3376 		ctrlr->num_aers = 0;
3377 	} else {
3378 		/* aerl is a zero-based value, so we need to add 1 here. */
3379 		ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
3380 	}
3381 
3382 	for (i = 0; i < ctrlr->num_aers; i++) {
3383 		aer = &ctrlr->aer[i];
3384 		rc = nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
3385 		if (rc) {
3386 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_construct_and_submit_aer failed!\n");
3387 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3388 			return;
3389 		}
3390 	}
3391 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, ctrlr->opts.admin_timeout_ms);
3392 }
3393 
3394 static int
3395 nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr)
3396 {
3397 	union spdk_nvme_feat_async_event_configuration	config;
3398 	int						rc;
3399 
3400 	config.raw = 0;
3401 
3402 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3403 		config.bits.discovery_log_change_notice = 1;
3404 	} else {
3405 		config.bits.crit_warn.bits.available_spare = 1;
3406 		config.bits.crit_warn.bits.temperature = 1;
3407 		config.bits.crit_warn.bits.device_reliability = 1;
3408 		config.bits.crit_warn.bits.read_only = 1;
3409 		config.bits.crit_warn.bits.volatile_memory_backup = 1;
3410 
3411 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 2, 0)) {
3412 			if (ctrlr->cdata.oaes.ns_attribute_notices) {
3413 				config.bits.ns_attr_notice = 1;
3414 			}
3415 			if (ctrlr->cdata.oaes.fw_activation_notices) {
3416 				config.bits.fw_activation_notice = 1;
3417 			}
3418 			if (ctrlr->cdata.oaes.ana_change_notices) {
3419 				config.bits.ana_change_notice = 1;
3420 			}
3421 		}
3422 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 3, 0) && ctrlr->cdata.lpa.telemetry) {
3423 			config.bits.telemetry_log_notice = 1;
3424 		}
3425 	}
3426 
3427 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER,
3428 			     ctrlr->opts.admin_timeout_ms);
3429 
3430 	rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config,
3431 			nvme_ctrlr_configure_aer_done,
3432 			ctrlr);
3433 	if (rc != 0) {
3434 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3435 		return rc;
3436 	}
3437 
3438 	return 0;
3439 }
3440 
3441 struct spdk_nvme_ctrlr_process *
3442 nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid)
3443 {
3444 	struct spdk_nvme_ctrlr_process	*active_proc;
3445 
3446 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3447 		if (active_proc->pid == pid) {
3448 			return active_proc;
3449 		}
3450 	}
3451 
3452 	return NULL;
3453 }
3454 
3455 struct spdk_nvme_ctrlr_process *
3456 nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr)
3457 {
3458 	return nvme_ctrlr_get_process(ctrlr, getpid());
3459 }
3460 
3461 /**
3462  * This function will be called when a process is using the controller.
3463  *  1. For the primary process, it is called when constructing the controller.
3464  *  2. For the secondary process, it is called at probing the controller.
3465  * Note: will check whether the process is already added for the same process.
3466  */
3467 int
3468 nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
3469 {
3470 	struct spdk_nvme_ctrlr_process	*ctrlr_proc;
3471 	pid_t				pid = getpid();
3472 
3473 	/* Check whether the process is already added or not */
3474 	if (nvme_ctrlr_get_process(ctrlr, pid)) {
3475 		return 0;
3476 	}
3477 
3478 	/* Initialize the per process properties for this ctrlr */
3479 	ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process),
3480 				  64, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_SHARE);
3481 	if (ctrlr_proc == NULL) {
3482 		NVME_CTRLR_ERRLOG(ctrlr, "failed to allocate memory to track the process props\n");
3483 
3484 		return -1;
3485 	}
3486 
3487 	ctrlr_proc->is_primary = spdk_process_is_primary();
3488 	ctrlr_proc->pid = pid;
3489 	STAILQ_INIT(&ctrlr_proc->active_reqs);
3490 	ctrlr_proc->devhandle = devhandle;
3491 	ctrlr_proc->ref = 0;
3492 	TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs);
3493 	STAILQ_INIT(&ctrlr_proc->async_events);
3494 
3495 	TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq);
3496 
3497 	return 0;
3498 }
3499 
3500 /**
3501  * This function will be called when the process detaches the controller.
3502  * Note: the ctrlr_lock must be held when calling this function.
3503  */
3504 static void
3505 nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr,
3506 			  struct spdk_nvme_ctrlr_process *proc)
3507 {
3508 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3509 
3510 	assert(STAILQ_EMPTY(&proc->active_reqs));
3511 
3512 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3513 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3514 	}
3515 
3516 	TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq);
3517 
3518 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
3519 		spdk_pci_device_detach(proc->devhandle);
3520 	}
3521 
3522 	spdk_free(proc);
3523 }
3524 
3525 /**
3526  * This function will be called when the process exited unexpectedly
3527  *  in order to free any incomplete nvme request, allocated IO qpairs
3528  *  and allocated memory.
3529  * Note: the ctrlr_lock must be held when calling this function.
3530  */
3531 static void
3532 nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc)
3533 {
3534 	struct nvme_request	*req, *tmp_req;
3535 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3536 	struct spdk_nvme_ctrlr_aer_completion *event;
3537 
3538 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
3539 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
3540 
3541 		assert(req->pid == proc->pid);
3542 		nvme_cleanup_user_req(req);
3543 		nvme_free_request(req);
3544 	}
3545 
3546 	/* Remove async event from each process objects event list */
3547 	while (!STAILQ_EMPTY(&proc->async_events)) {
3548 		event = STAILQ_FIRST(&proc->async_events);
3549 		STAILQ_REMOVE_HEAD(&proc->async_events, link);
3550 		spdk_free(event);
3551 	}
3552 
3553 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3554 		TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq);
3555 
3556 		/*
3557 		 * The process may have been killed while some qpairs were in their
3558 		 *  completion context.  Clear that flag here to allow these IO
3559 		 *  qpairs to be deleted.
3560 		 */
3561 		qpair->in_completion_context = 0;
3562 
3563 		qpair->no_deletion_notification_needed = 1;
3564 
3565 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3566 	}
3567 
3568 	spdk_free(proc);
3569 }
3570 
3571 /**
3572  * This function will be called when destructing the controller.
3573  *  1. There is no more admin request on this controller.
3574  *  2. Clean up any left resource allocation when its associated process is gone.
3575  */
3576 void
3577 nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
3578 {
3579 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3580 
3581 	/* Free all the processes' properties and make sure no pending admin IOs */
3582 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3583 		TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3584 
3585 		assert(STAILQ_EMPTY(&active_proc->active_reqs));
3586 
3587 		spdk_free(active_proc);
3588 	}
3589 }
3590 
3591 /**
3592  * This function will be called when any other process attaches or
3593  *  detaches the controller in order to cleanup those unexpectedly
3594  *  terminated processes.
3595  * Note: the ctrlr_lock must be held when calling this function.
3596  */
3597 static int
3598 nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr)
3599 {
3600 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3601 	int				active_proc_count = 0;
3602 
3603 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3604 		if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) {
3605 			NVME_CTRLR_ERRLOG(ctrlr, "process %d terminated unexpected\n", active_proc->pid);
3606 
3607 			TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3608 
3609 			nvme_ctrlr_cleanup_process(active_proc);
3610 		} else {
3611 			active_proc_count++;
3612 		}
3613 	}
3614 
3615 	return active_proc_count;
3616 }
3617 
3618 void
3619 nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr)
3620 {
3621 	struct spdk_nvme_ctrlr_process	*active_proc;
3622 
3623 	nvme_ctrlr_lock(ctrlr);
3624 
3625 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3626 
3627 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3628 	if (active_proc) {
3629 		active_proc->ref++;
3630 	}
3631 
3632 	nvme_ctrlr_unlock(ctrlr);
3633 }
3634 
3635 void
3636 nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr)
3637 {
3638 	struct spdk_nvme_ctrlr_process	*active_proc;
3639 	int				proc_count;
3640 
3641 	nvme_ctrlr_lock(ctrlr);
3642 
3643 	proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr);
3644 
3645 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3646 	if (active_proc) {
3647 		active_proc->ref--;
3648 		assert(active_proc->ref >= 0);
3649 
3650 		/*
3651 		 * The last active process will be removed at the end of
3652 		 * the destruction of the controller.
3653 		 */
3654 		if (active_proc->ref == 0 && proc_count != 1) {
3655 			nvme_ctrlr_remove_process(ctrlr, active_proc);
3656 		}
3657 	}
3658 
3659 	nvme_ctrlr_unlock(ctrlr);
3660 }
3661 
3662 int
3663 nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr)
3664 {
3665 	struct spdk_nvme_ctrlr_process	*active_proc;
3666 	int				ref = 0;
3667 
3668 	nvme_ctrlr_lock(ctrlr);
3669 
3670 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3671 
3672 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3673 		ref += active_proc->ref;
3674 	}
3675 
3676 	nvme_ctrlr_unlock(ctrlr);
3677 
3678 	return ref;
3679 }
3680 
3681 /**
3682  *  Get the PCI device handle which is only visible to its associated process.
3683  */
3684 struct spdk_pci_device *
3685 nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr)
3686 {
3687 	struct spdk_nvme_ctrlr_process	*active_proc;
3688 	struct spdk_pci_device		*devhandle = NULL;
3689 
3690 	nvme_ctrlr_lock(ctrlr);
3691 
3692 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3693 	if (active_proc) {
3694 		devhandle = active_proc->devhandle;
3695 	}
3696 
3697 	nvme_ctrlr_unlock(ctrlr);
3698 
3699 	return devhandle;
3700 }
3701 
3702 static void
3703 nvme_ctrlr_process_init_vs_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3704 {
3705 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3706 
3707 	if (spdk_nvme_cpl_is_error(cpl)) {
3708 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the VS register\n");
3709 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3710 		return;
3711 	}
3712 
3713 	assert(value <= UINT32_MAX);
3714 	ctrlr->vs.raw = (uint32_t)value;
3715 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP, NVME_TIMEOUT_INFINITE);
3716 }
3717 
3718 static void
3719 nvme_ctrlr_process_init_cap_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3720 {
3721 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3722 
3723 	if (spdk_nvme_cpl_is_error(cpl)) {
3724 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CAP register\n");
3725 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3726 		return;
3727 	}
3728 
3729 	ctrlr->cap.raw = value;
3730 	nvme_ctrlr_init_cap(ctrlr);
3731 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
3732 }
3733 
3734 static void
3735 nvme_ctrlr_process_init_check_en(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3736 {
3737 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3738 	enum nvme_ctrlr_state state;
3739 
3740 	if (spdk_nvme_cpl_is_error(cpl)) {
3741 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3742 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3743 		return;
3744 	}
3745 
3746 	assert(value <= UINT32_MAX);
3747 	ctrlr->process_init_cc.raw = (uint32_t)value;
3748 
3749 	if (ctrlr->process_init_cc.bits.en) {
3750 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1\n");
3751 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1;
3752 	} else {
3753 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0;
3754 	}
3755 
3756 	nvme_ctrlr_set_state(ctrlr, state, nvme_ctrlr_get_ready_timeout(ctrlr));
3757 }
3758 
3759 static void
3760 nvme_ctrlr_process_init_set_en_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3761 {
3762 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3763 
3764 	if (spdk_nvme_cpl_is_error(cpl)) {
3765 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write the CC register\n");
3766 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3767 		return;
3768 	}
3769 
3770 	/*
3771 	 * Wait 2.5 seconds before accessing PCI registers.
3772 	 * Not using sleep() to avoid blocking other controller's initialization.
3773 	 */
3774 	if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) {
3775 		NVME_CTRLR_DEBUGLOG(ctrlr, "Applying quirk: delay 2.5 seconds before reading registers\n");
3776 		ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2500 * spdk_get_ticks_hz() / 1000);
3777 	}
3778 
3779 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3780 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3781 }
3782 
3783 static void
3784 nvme_ctrlr_process_init_set_en_0_read_cc(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3785 {
3786 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3787 	union spdk_nvme_cc_register cc;
3788 	int rc;
3789 
3790 	if (spdk_nvme_cpl_is_error(cpl)) {
3791 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3792 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3793 		return;
3794 	}
3795 
3796 	assert(value <= UINT32_MAX);
3797 	cc.raw = (uint32_t)value;
3798 	cc.bits.en = 0;
3799 	ctrlr->process_init_cc.raw = cc.raw;
3800 
3801 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC,
3802 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3803 
3804 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_process_init_set_en_0, ctrlr);
3805 	if (rc != 0) {
3806 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
3807 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3808 	}
3809 }
3810 
3811 static void
3812 nvme_ctrlr_process_init_wait_for_ready_1(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3813 {
3814 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3815 	union spdk_nvme_csts_register csts;
3816 
3817 	if (spdk_nvme_cpl_is_error(cpl)) {
3818 		/* While a device is resetting, it may be unable to service MMIO reads
3819 		 * temporarily. Allow for this case.
3820 		 */
3821 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3822 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3823 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3824 					     NVME_TIMEOUT_KEEP_EXISTING);
3825 		} else {
3826 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3827 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3828 		}
3829 
3830 		return;
3831 	}
3832 
3833 	assert(value <= UINT32_MAX);
3834 	csts.raw = (uint32_t)value;
3835 	if (csts.bits.rdy == 1 || csts.bits.cfs == 1) {
3836 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0,
3837 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3838 	} else {
3839 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n");
3840 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3841 					   NVME_TIMEOUT_KEEP_EXISTING);
3842 	}
3843 }
3844 
3845 static void
3846 nvme_ctrlr_process_init_wait_for_ready_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3847 {
3848 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3849 	union spdk_nvme_csts_register csts;
3850 
3851 	if (spdk_nvme_cpl_is_error(cpl)) {
3852 		/* While a device is resetting, it may be unable to service MMIO reads
3853 		 * temporarily. Allow for this case.
3854 		 */
3855 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3856 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3857 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3858 					     NVME_TIMEOUT_KEEP_EXISTING);
3859 		} else {
3860 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3861 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3862 		}
3863 
3864 		return;
3865 	}
3866 
3867 	assert(value <= UINT32_MAX);
3868 	csts.raw = (uint32_t)value;
3869 	if (csts.bits.rdy == 0) {
3870 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 0 && CSTS.RDY = 0\n");
3871 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLED,
3872 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3873 	} else {
3874 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3875 					   NVME_TIMEOUT_KEEP_EXISTING);
3876 	}
3877 }
3878 
3879 static void
3880 nvme_ctrlr_process_init_enable_wait_for_ready_1(void *ctx, uint64_t value,
3881 		const struct spdk_nvme_cpl *cpl)
3882 {
3883 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3884 	union spdk_nvme_csts_register csts;
3885 
3886 	if (spdk_nvme_cpl_is_error(cpl)) {
3887 		/* While a device is resetting, it may be unable to service MMIO reads
3888 		 * temporarily. Allow for this case.
3889 		 */
3890 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3891 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3892 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3893 					     NVME_TIMEOUT_KEEP_EXISTING);
3894 		} else {
3895 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3896 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3897 		}
3898 
3899 		return;
3900 	}
3901 
3902 	assert(value <= UINT32_MAX);
3903 	csts.raw = value;
3904 	if (csts.bits.rdy == 1) {
3905 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n");
3906 		/*
3907 		 * The controller has been enabled.
3908 		 *  Perform the rest of initialization serially.
3909 		 */
3910 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_RESET_ADMIN_QUEUE,
3911 				     ctrlr->opts.admin_timeout_ms);
3912 	} else {
3913 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3914 					   NVME_TIMEOUT_KEEP_EXISTING);
3915 	}
3916 }
3917 
3918 /**
3919  * This function will be called repeatedly during initialization until the controller is ready.
3920  */
3921 int
3922 nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr)
3923 {
3924 	uint32_t ready_timeout_in_ms;
3925 	uint64_t ticks;
3926 	int rc = 0;
3927 
3928 	ticks = spdk_get_ticks();
3929 
3930 	/*
3931 	 * May need to avoid accessing any register on the target controller
3932 	 * for a while. Return early without touching the FSM.
3933 	 * Check sleep_timeout_tsc > 0 for unit test.
3934 	 */
3935 	if ((ctrlr->sleep_timeout_tsc > 0) &&
3936 	    (ticks <= ctrlr->sleep_timeout_tsc)) {
3937 		return 0;
3938 	}
3939 	ctrlr->sleep_timeout_tsc = 0;
3940 
3941 	ready_timeout_in_ms = nvme_ctrlr_get_ready_timeout(ctrlr);
3942 
3943 	/*
3944 	 * Check if the current initialization step is done or has timed out.
3945 	 */
3946 	switch (ctrlr->state) {
3947 	case NVME_CTRLR_STATE_INIT_DELAY:
3948 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, ready_timeout_in_ms);
3949 		if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_INIT) {
3950 			/*
3951 			 * Controller may need some delay before it's enabled.
3952 			 *
3953 			 * This is a workaround for an issue where the PCIe-attached NVMe controller
3954 			 * is not ready after VFIO reset. We delay the initialization rather than the
3955 			 * enabling itself, because this is required only for the very first enabling
3956 			 * - directly after a VFIO reset.
3957 			 */
3958 			NVME_CTRLR_DEBUGLOG(ctrlr, "Adding 2 second delay before initializing the controller\n");
3959 			ctrlr->sleep_timeout_tsc = ticks + (2000 * spdk_get_ticks_hz() / 1000);
3960 		}
3961 		break;
3962 
3963 	case NVME_CTRLR_STATE_DISCONNECTED:
3964 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
3965 		break;
3966 
3967 	case NVME_CTRLR_STATE_CONNECT_ADMINQ: /* synonymous with NVME_CTRLR_STATE_INIT and NVME_CTRLR_STATE_DISCONNECTED */
3968 		rc = nvme_transport_ctrlr_connect_qpair(ctrlr, ctrlr->adminq);
3969 		if (rc == 0) {
3970 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ,
3971 					     NVME_TIMEOUT_INFINITE);
3972 		} else {
3973 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3974 		}
3975 		break;
3976 
3977 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
3978 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3979 
3980 		switch (nvme_qpair_get_state(ctrlr->adminq)) {
3981 		case NVME_QPAIR_CONNECTING:
3982 			if (ctrlr->is_failed) {
3983 				nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
3984 				break;
3985 			}
3986 
3987 			break;
3988 		case NVME_QPAIR_CONNECTED:
3989 			nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
3990 		/* Fall through */
3991 		case NVME_QPAIR_ENABLED:
3992 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS,
3993 					     NVME_TIMEOUT_INFINITE);
3994 			/* Abort any queued requests that were sent while the adminq was connecting
3995 			 * to avoid stalling the init process during a reset, as requests don't get
3996 			 * resubmitted while the controller is resetting and subsequent commands
3997 			 * would get queued too.
3998 			 */
3999 			nvme_qpair_abort_queued_reqs(ctrlr->adminq);
4000 			break;
4001 		case NVME_QPAIR_DISCONNECTING:
4002 			assert(ctrlr->adminq->async == true);
4003 			break;
4004 		case NVME_QPAIR_DISCONNECTED:
4005 		/* fallthrough */
4006 		default:
4007 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
4008 			break;
4009 		}
4010 
4011 		break;
4012 
4013 	case NVME_CTRLR_STATE_READ_VS:
4014 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS, NVME_TIMEOUT_INFINITE);
4015 		rc = nvme_ctrlr_get_vs_async(ctrlr, nvme_ctrlr_process_init_vs_done, ctrlr);
4016 		break;
4017 
4018 	case NVME_CTRLR_STATE_READ_CAP:
4019 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP, NVME_TIMEOUT_INFINITE);
4020 		rc = nvme_ctrlr_get_cap_async(ctrlr, nvme_ctrlr_process_init_cap_done, ctrlr);
4021 		break;
4022 
4023 	case NVME_CTRLR_STATE_CHECK_EN:
4024 		/* Begin the hardware initialization by making sure the controller is disabled. */
4025 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC, ready_timeout_in_ms);
4026 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_check_en, ctrlr);
4027 		break;
4028 
4029 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
4030 		/*
4031 		 * Controller is currently enabled. We need to disable it to cause a reset.
4032 		 *
4033 		 * If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready.
4034 		 *  Wait for the ready bit to be 1 before disabling the controller.
4035 		 */
4036 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
4037 					   NVME_TIMEOUT_KEEP_EXISTING);
4038 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_1, ctrlr);
4039 		break;
4040 
4041 	case NVME_CTRLR_STATE_SET_EN_0:
4042 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 0\n");
4043 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC, ready_timeout_in_ms);
4044 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_set_en_0_read_cc, ctrlr);
4045 		break;
4046 
4047 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
4048 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS,
4049 					   NVME_TIMEOUT_KEEP_EXISTING);
4050 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_0, ctrlr);
4051 		break;
4052 
4053 	case NVME_CTRLR_STATE_DISABLED:
4054 		if (ctrlr->is_disconnecting) {
4055 			NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr was disabled.\n");
4056 		} else {
4057 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms);
4058 
4059 			/*
4060 			 * Delay 100us before setting CC.EN = 1.  Some NVMe SSDs miss CC.EN getting
4061 			 *  set to 1 if it is too soon after CSTS.RDY is reported as 0.
4062 			 */
4063 			spdk_delay_us(100);
4064 		}
4065 		break;
4066 
4067 	case NVME_CTRLR_STATE_ENABLE:
4068 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 1\n");
4069 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC, ready_timeout_in_ms);
4070 		rc = nvme_ctrlr_enable(ctrlr);
4071 		if (rc) {
4072 			NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr enable failed with error: %d", rc);
4073 		}
4074 		return rc;
4075 
4076 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
4077 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
4078 					   NVME_TIMEOUT_KEEP_EXISTING);
4079 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_enable_wait_for_ready_1,
4080 					       ctrlr);
4081 		break;
4082 
4083 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
4084 		nvme_transport_qpair_reset(ctrlr->adminq);
4085 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY, NVME_TIMEOUT_INFINITE);
4086 		break;
4087 
4088 	case NVME_CTRLR_STATE_IDENTIFY:
4089 		rc = nvme_ctrlr_identify(ctrlr);
4090 		break;
4091 
4092 	case NVME_CTRLR_STATE_CONFIGURE_AER:
4093 		rc = nvme_ctrlr_configure_aer(ctrlr);
4094 		break;
4095 
4096 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
4097 		rc = nvme_ctrlr_set_keep_alive_timeout(ctrlr);
4098 		break;
4099 
4100 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
4101 		rc = nvme_ctrlr_identify_iocs_specific(ctrlr);
4102 		break;
4103 
4104 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
4105 		rc = nvme_ctrlr_get_zns_cmd_and_effects_log(ctrlr);
4106 		break;
4107 
4108 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
4109 		nvme_ctrlr_update_nvmf_ioccsz(ctrlr);
4110 		rc = nvme_ctrlr_set_num_queues(ctrlr);
4111 		break;
4112 
4113 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
4114 		_nvme_ctrlr_identify_active_ns(ctrlr);
4115 		break;
4116 
4117 	case NVME_CTRLR_STATE_IDENTIFY_NS:
4118 		rc = nvme_ctrlr_identify_namespaces(ctrlr);
4119 		break;
4120 
4121 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
4122 		rc = nvme_ctrlr_identify_id_desc_namespaces(ctrlr);
4123 		break;
4124 
4125 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
4126 		rc = nvme_ctrlr_identify_namespaces_iocs_specific(ctrlr);
4127 		break;
4128 
4129 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
4130 		rc = nvme_ctrlr_set_supported_log_pages(ctrlr);
4131 		break;
4132 
4133 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
4134 		rc = nvme_ctrlr_set_intel_support_log_pages(ctrlr);
4135 		break;
4136 
4137 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
4138 		nvme_ctrlr_set_supported_features(ctrlr);
4139 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_FEATURE,
4140 				     ctrlr->opts.admin_timeout_ms);
4141 		break;
4142 
4143 	case NVME_CTRLR_STATE_SET_HOST_FEATURE:
4144 		rc = nvme_ctrlr_set_host_feature(ctrlr);
4145 		break;
4146 
4147 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
4148 		rc = nvme_ctrlr_set_doorbell_buffer_config(ctrlr);
4149 		break;
4150 
4151 	case NVME_CTRLR_STATE_SET_HOST_ID:
4152 		rc = nvme_ctrlr_set_host_id(ctrlr);
4153 		break;
4154 
4155 	case NVME_CTRLR_STATE_TRANSPORT_READY:
4156 		rc = nvme_transport_ctrlr_ready(ctrlr);
4157 		if (rc) {
4158 			NVME_CTRLR_ERRLOG(ctrlr, "Transport controller ready step failed: rc %d\n", rc);
4159 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
4160 		} else {
4161 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
4162 		}
4163 		break;
4164 
4165 	case NVME_CTRLR_STATE_READY:
4166 		NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr already in ready state\n");
4167 		return 0;
4168 
4169 	case NVME_CTRLR_STATE_ERROR:
4170 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr is in error state\n");
4171 		return -1;
4172 
4173 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
4174 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
4175 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
4176 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
4177 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4178 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
4179 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
4180 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4181 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
4182 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
4183 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
4184 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
4185 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
4186 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
4187 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
4188 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
4189 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
4190 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
4191 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
4192 	case NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE:
4193 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
4194 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
4195 		/*
4196 		 * nvme_ctrlr_process_init() may be called from the completion context
4197 		 * for the admin qpair. Avoid recursive calls for this case.
4198 		 */
4199 		if (!ctrlr->adminq->in_completion_context) {
4200 			spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4201 		}
4202 		break;
4203 
4204 	default:
4205 		assert(0);
4206 		return -1;
4207 	}
4208 
4209 	if (rc) {
4210 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr operation failed with error: %d, ctrlr state: %d (%s)\n",
4211 				  rc, ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4212 	}
4213 
4214 	/* Note: we use the ticks captured when we entered this function.
4215 	 * This covers environments where the SPDK process gets swapped out after
4216 	 * we tried to advance the state but before we check the timeout here.
4217 	 * It is not normal for this to happen, but harmless to handle it in this
4218 	 * way.
4219 	 */
4220 	if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE &&
4221 	    ticks > ctrlr->state_timeout_tsc) {
4222 		NVME_CTRLR_ERRLOG(ctrlr, "Initialization timed out in state %d (%s)\n",
4223 				  ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4224 		return -1;
4225 	}
4226 
4227 	return rc;
4228 }
4229 
4230 int
4231 nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx)
4232 {
4233 	pthread_mutexattr_t attr;
4234 	int rc = 0;
4235 
4236 	if (pthread_mutexattr_init(&attr)) {
4237 		return -1;
4238 	}
4239 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) ||
4240 #ifndef __FreeBSD__
4241 	    pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
4242 	    pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
4243 #endif
4244 	    pthread_mutex_init(mtx, &attr)) {
4245 		rc = -1;
4246 	}
4247 	pthread_mutexattr_destroy(&attr);
4248 	return rc;
4249 }
4250 
4251 int
4252 nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
4253 {
4254 	int rc;
4255 
4256 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4257 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT_DELAY, NVME_TIMEOUT_INFINITE);
4258 	} else {
4259 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
4260 	}
4261 
4262 	if (ctrlr->opts.admin_queue_size > SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES) {
4263 		NVME_CTRLR_ERRLOG(ctrlr, "admin_queue_size %u exceeds max defined by NVMe spec, use max value\n",
4264 				  ctrlr->opts.admin_queue_size);
4265 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES;
4266 	}
4267 
4268 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_ADMIN_QUEUE_SIZE &&
4269 	    (ctrlr->opts.admin_queue_size % SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE) != 0) {
4270 		NVME_CTRLR_ERRLOG(ctrlr,
4271 				  "admin_queue_size %u is invalid for this NVMe device, adjust to next multiple\n",
4272 				  ctrlr->opts.admin_queue_size);
4273 		ctrlr->opts.admin_queue_size = SPDK_ALIGN_CEIL(ctrlr->opts.admin_queue_size,
4274 					       SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE);
4275 	}
4276 
4277 	if (ctrlr->opts.admin_queue_size < SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES) {
4278 		NVME_CTRLR_ERRLOG(ctrlr,
4279 				  "admin_queue_size %u is less than minimum defined by NVMe spec, use min value\n",
4280 				  ctrlr->opts.admin_queue_size);
4281 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES;
4282 	}
4283 
4284 	ctrlr->flags = 0;
4285 	ctrlr->free_io_qids = NULL;
4286 	ctrlr->is_resetting = false;
4287 	ctrlr->is_failed = false;
4288 	ctrlr->is_destructed = false;
4289 
4290 	TAILQ_INIT(&ctrlr->active_io_qpairs);
4291 	STAILQ_INIT(&ctrlr->queued_aborts);
4292 	ctrlr->outstanding_aborts = 0;
4293 
4294 	ctrlr->ana_log_page = NULL;
4295 	ctrlr->ana_log_page_size = 0;
4296 
4297 	rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock);
4298 	if (rc != 0) {
4299 		return rc;
4300 	}
4301 
4302 	TAILQ_INIT(&ctrlr->active_procs);
4303 	STAILQ_INIT(&ctrlr->register_operations);
4304 
4305 	RB_INIT(&ctrlr->ns);
4306 
4307 	return rc;
4308 }
4309 
4310 static void
4311 nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr)
4312 {
4313 	if (ctrlr->cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) {
4314 		ctrlr->flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED;
4315 	}
4316 
4317 	ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin);
4318 
4319 	/* For now, always select page_size == min_page_size. */
4320 	ctrlr->page_size = ctrlr->min_page_size;
4321 
4322 	ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES);
4323 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, MAX_IO_QUEUE_ENTRIES);
4324 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE &&
4325 	    ctrlr->opts.io_queue_size == DEFAULT_IO_QUEUE_SIZE) {
4326 		/* If the user specifically set an IO queue size different than the
4327 		 * default, use that value.  Otherwise overwrite with the quirked value.
4328 		 * This allows this quirk to be overridden when necessary.
4329 		 * However, cap.mqes still needs to be respected.
4330 		 */
4331 		ctrlr->opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK;
4332 	}
4333 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u);
4334 
4335 	ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size);
4336 }
4337 
4338 void
4339 nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr)
4340 {
4341 	int rc;
4342 
4343 	if (ctrlr->lock_depth > 0) {
4344 		SPDK_ERRLOG("lock currently held (depth=%d)!\n", ctrlr->lock_depth);
4345 		assert(false);
4346 	}
4347 
4348 	rc = pthread_mutex_destroy(&ctrlr->ctrlr_lock);
4349 	if (rc) {
4350 		SPDK_ERRLOG("could not destroy ctrlr_lock: %s\n", spdk_strerror(rc));
4351 		assert(false);
4352 	}
4353 
4354 	nvme_ctrlr_free_processes(ctrlr);
4355 }
4356 
4357 void
4358 nvme_ctrlr_destruct_async(struct spdk_nvme_ctrlr *ctrlr,
4359 			  struct nvme_ctrlr_detach_ctx *ctx)
4360 {
4361 	struct spdk_nvme_qpair *qpair, *tmp;
4362 
4363 	NVME_CTRLR_DEBUGLOG(ctrlr, "Prepare to destruct SSD\n");
4364 
4365 	ctrlr->prepare_for_reset = false;
4366 	ctrlr->is_destructed = true;
4367 
4368 	spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4369 
4370 	nvme_ctrlr_abort_queued_aborts(ctrlr);
4371 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
4372 
4373 	TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) {
4374 		spdk_nvme_ctrlr_free_io_qpair(qpair);
4375 	}
4376 
4377 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
4378 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
4379 
4380 	nvme_ctrlr_shutdown_async(ctrlr, ctx);
4381 }
4382 
4383 int
4384 nvme_ctrlr_destruct_poll_async(struct spdk_nvme_ctrlr *ctrlr,
4385 			       struct nvme_ctrlr_detach_ctx *ctx)
4386 {
4387 	struct spdk_nvme_ns *ns, *tmp_ns;
4388 	int rc = 0;
4389 
4390 	if (!ctx->shutdown_complete) {
4391 		rc = nvme_ctrlr_shutdown_poll_async(ctrlr, ctx);
4392 		if (rc == -EAGAIN) {
4393 			return -EAGAIN;
4394 		}
4395 		/* Destruct ctrlr forcefully for any other error. */
4396 	}
4397 
4398 	if (ctx->cb_fn) {
4399 		ctx->cb_fn(ctrlr);
4400 	}
4401 
4402 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
4403 
4404 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
4405 		nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
4406 		RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
4407 		spdk_free(ns);
4408 	}
4409 
4410 	ctrlr->active_ns_count = 0;
4411 
4412 	spdk_bit_array_free(&ctrlr->free_io_qids);
4413 
4414 	free(ctrlr->ana_log_page);
4415 	free(ctrlr->copied_ana_desc);
4416 	ctrlr->ana_log_page = NULL;
4417 	ctrlr->copied_ana_desc = NULL;
4418 	ctrlr->ana_log_page_size = 0;
4419 
4420 	nvme_transport_ctrlr_destruct(ctrlr);
4421 
4422 	return rc;
4423 }
4424 
4425 void
4426 nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
4427 {
4428 	struct nvme_ctrlr_detach_ctx ctx = { .ctrlr = ctrlr };
4429 	int rc;
4430 
4431 	nvme_ctrlr_destruct_async(ctrlr, &ctx);
4432 
4433 	while (1) {
4434 		rc = nvme_ctrlr_destruct_poll_async(ctrlr, &ctx);
4435 		if (rc != -EAGAIN) {
4436 			break;
4437 		}
4438 		nvme_delay(1000);
4439 	}
4440 }
4441 
4442 int
4443 nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
4444 				struct nvme_request *req)
4445 {
4446 	return nvme_qpair_submit_request(ctrlr->adminq, req);
4447 }
4448 
4449 static void
4450 nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl)
4451 {
4452 	/* Do nothing */
4453 }
4454 
4455 /*
4456  * Check if we need to send a Keep Alive command.
4457  * Caller must hold ctrlr->ctrlr_lock.
4458  */
4459 static int
4460 nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr)
4461 {
4462 	uint64_t now;
4463 	struct nvme_request *req;
4464 	struct spdk_nvme_cmd *cmd;
4465 	int rc = 0;
4466 
4467 	now = spdk_get_ticks();
4468 	if (now < ctrlr->next_keep_alive_tick) {
4469 		return rc;
4470 	}
4471 
4472 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL);
4473 	if (req == NULL) {
4474 		return rc;
4475 	}
4476 
4477 	cmd = &req->cmd;
4478 	cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE;
4479 
4480 	rc = nvme_ctrlr_submit_admin_request(ctrlr, req);
4481 	if (rc != 0) {
4482 		NVME_CTRLR_ERRLOG(ctrlr, "Submitting Keep Alive failed\n");
4483 		rc = -ENXIO;
4484 	}
4485 
4486 	ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks;
4487 	return rc;
4488 }
4489 
4490 int32_t
4491 spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr)
4492 {
4493 	int32_t num_completions;
4494 	int32_t rc;
4495 	struct spdk_nvme_ctrlr_process	*active_proc;
4496 
4497 	nvme_ctrlr_lock(ctrlr);
4498 
4499 	if (ctrlr->keep_alive_interval_ticks) {
4500 		rc = nvme_ctrlr_keep_alive(ctrlr);
4501 		if (rc) {
4502 			nvme_ctrlr_unlock(ctrlr);
4503 			return rc;
4504 		}
4505 	}
4506 
4507 	rc = nvme_io_msg_process(ctrlr);
4508 	if (rc < 0) {
4509 		nvme_ctrlr_unlock(ctrlr);
4510 		return rc;
4511 	}
4512 	num_completions = rc;
4513 
4514 	rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4515 
4516 	/* Each process has an async list, complete the ones for this process object */
4517 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4518 	if (active_proc) {
4519 		nvme_ctrlr_complete_queued_async_events(ctrlr);
4520 	}
4521 
4522 	if (rc == -ENXIO && ctrlr->is_disconnecting) {
4523 		nvme_ctrlr_disconnect_done(ctrlr);
4524 	}
4525 
4526 	nvme_ctrlr_unlock(ctrlr);
4527 
4528 	if (rc < 0) {
4529 		num_completions = rc;
4530 	} else {
4531 		num_completions += rc;
4532 	}
4533 
4534 	return num_completions;
4535 }
4536 
4537 const struct spdk_nvme_ctrlr_data *
4538 spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr)
4539 {
4540 	return &ctrlr->cdata;
4541 }
4542 
4543 union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
4544 {
4545 	union spdk_nvme_csts_register csts;
4546 
4547 	if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
4548 		csts.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4549 	}
4550 	return csts;
4551 }
4552 
4553 union spdk_nvme_cc_register spdk_nvme_ctrlr_get_regs_cc(struct spdk_nvme_ctrlr *ctrlr)
4554 {
4555 	union spdk_nvme_cc_register cc;
4556 
4557 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
4558 		cc.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4559 	}
4560 	return cc;
4561 }
4562 
4563 union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr)
4564 {
4565 	return ctrlr->cap;
4566 }
4567 
4568 union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr)
4569 {
4570 	return ctrlr->vs;
4571 }
4572 
4573 union spdk_nvme_cmbsz_register spdk_nvme_ctrlr_get_regs_cmbsz(struct spdk_nvme_ctrlr *ctrlr)
4574 {
4575 	union spdk_nvme_cmbsz_register cmbsz;
4576 
4577 	if (nvme_ctrlr_get_cmbsz(ctrlr, &cmbsz)) {
4578 		cmbsz.raw = 0;
4579 	}
4580 
4581 	return cmbsz;
4582 }
4583 
4584 union spdk_nvme_pmrcap_register spdk_nvme_ctrlr_get_regs_pmrcap(struct spdk_nvme_ctrlr *ctrlr)
4585 {
4586 	union spdk_nvme_pmrcap_register pmrcap;
4587 
4588 	if (nvme_ctrlr_get_pmrcap(ctrlr, &pmrcap)) {
4589 		pmrcap.raw = 0;
4590 	}
4591 
4592 	return pmrcap;
4593 }
4594 
4595 union spdk_nvme_bpinfo_register spdk_nvme_ctrlr_get_regs_bpinfo(struct spdk_nvme_ctrlr *ctrlr)
4596 {
4597 	union spdk_nvme_bpinfo_register bpinfo;
4598 
4599 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
4600 		bpinfo.raw = 0;
4601 	}
4602 
4603 	return bpinfo;
4604 }
4605 
4606 uint64_t
4607 spdk_nvme_ctrlr_get_pmrsz(struct spdk_nvme_ctrlr *ctrlr)
4608 {
4609 	return ctrlr->pmr_size;
4610 }
4611 
4612 uint32_t
4613 spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr)
4614 {
4615 	return ctrlr->cdata.nn;
4616 }
4617 
4618 bool
4619 spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4620 {
4621 	struct spdk_nvme_ns tmp, *ns;
4622 
4623 	tmp.id = nsid;
4624 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4625 
4626 	if (ns != NULL) {
4627 		return ns->active;
4628 	}
4629 
4630 	return false;
4631 }
4632 
4633 uint32_t
4634 spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr)
4635 {
4636 	struct spdk_nvme_ns *ns;
4637 
4638 	ns = RB_MIN(nvme_ns_tree, &ctrlr->ns);
4639 	if (ns == NULL) {
4640 		return 0;
4641 	}
4642 
4643 	while (ns != NULL) {
4644 		if (ns->active) {
4645 			return ns->id;
4646 		}
4647 
4648 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4649 	}
4650 
4651 	return 0;
4652 }
4653 
4654 uint32_t
4655 spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
4656 {
4657 	struct spdk_nvme_ns tmp, *ns;
4658 
4659 	tmp.id = prev_nsid;
4660 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4661 	if (ns == NULL) {
4662 		return 0;
4663 	}
4664 
4665 	ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4666 	while (ns != NULL) {
4667 		if (ns->active) {
4668 			return ns->id;
4669 		}
4670 
4671 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4672 	}
4673 
4674 	return 0;
4675 }
4676 
4677 struct spdk_nvme_ns *
4678 spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4679 {
4680 	struct spdk_nvme_ns tmp;
4681 	struct spdk_nvme_ns *ns;
4682 
4683 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
4684 		return NULL;
4685 	}
4686 
4687 	nvme_ctrlr_lock(ctrlr);
4688 
4689 	tmp.id = nsid;
4690 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4691 
4692 	if (ns == NULL) {
4693 		ns = spdk_zmalloc(sizeof(struct spdk_nvme_ns), 64, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_SHARE);
4694 		if (ns == NULL) {
4695 			nvme_ctrlr_unlock(ctrlr);
4696 			return NULL;
4697 		}
4698 
4699 		NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was added\n", nsid);
4700 		ns->id = nsid;
4701 		RB_INSERT(nvme_ns_tree, &ctrlr->ns, ns);
4702 	}
4703 
4704 	nvme_ctrlr_unlock(ctrlr);
4705 
4706 	return ns;
4707 }
4708 
4709 struct spdk_pci_device *
4710 spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr)
4711 {
4712 	if (ctrlr == NULL) {
4713 		return NULL;
4714 	}
4715 
4716 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
4717 		return NULL;
4718 	}
4719 
4720 	return nvme_ctrlr_proc_get_devhandle(ctrlr);
4721 }
4722 
4723 int32_t
4724 spdk_nvme_ctrlr_get_numa_id(struct spdk_nvme_ctrlr *ctrlr)
4725 {
4726 	if (ctrlr->numa.id_valid) {
4727 		return ctrlr->numa.id;
4728 	} else {
4729 		return SPDK_ENV_NUMA_ID_ANY;
4730 	}
4731 }
4732 
4733 uint16_t
4734 spdk_nvme_ctrlr_get_id(struct spdk_nvme_ctrlr *ctrlr)
4735 {
4736 	return ctrlr->cntlid;
4737 }
4738 
4739 uint32_t
4740 spdk_nvme_ctrlr_get_max_xfer_size(const struct spdk_nvme_ctrlr *ctrlr)
4741 {
4742 	return ctrlr->max_xfer_size;
4743 }
4744 
4745 uint16_t
4746 spdk_nvme_ctrlr_get_max_sges(const struct spdk_nvme_ctrlr *ctrlr)
4747 {
4748 	if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4749 		return ctrlr->max_sges;
4750 	} else {
4751 		return UINT16_MAX;
4752 	}
4753 }
4754 
4755 void
4756 spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr,
4757 				      spdk_nvme_aer_cb aer_cb_fn,
4758 				      void *aer_cb_arg)
4759 {
4760 	struct spdk_nvme_ctrlr_process *active_proc;
4761 
4762 	nvme_ctrlr_lock(ctrlr);
4763 
4764 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4765 	if (active_proc) {
4766 		active_proc->aer_cb_fn = aer_cb_fn;
4767 		active_proc->aer_cb_arg = aer_cb_arg;
4768 	}
4769 
4770 	nvme_ctrlr_unlock(ctrlr);
4771 }
4772 
4773 void
4774 spdk_nvme_ctrlr_disable_read_changed_ns_list_log_page(struct spdk_nvme_ctrlr *ctrlr)
4775 {
4776 	ctrlr->opts.disable_read_changed_ns_list_log_page = true;
4777 }
4778 
4779 void
4780 spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr,
4781 		uint64_t timeout_io_us, uint64_t timeout_admin_us,
4782 		spdk_nvme_timeout_cb cb_fn, void *cb_arg)
4783 {
4784 	struct spdk_nvme_ctrlr_process	*active_proc;
4785 
4786 	nvme_ctrlr_lock(ctrlr);
4787 
4788 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4789 	if (active_proc) {
4790 		active_proc->timeout_io_ticks = timeout_io_us * spdk_get_ticks_hz() / 1000000ULL;
4791 		active_proc->timeout_admin_ticks = timeout_admin_us * spdk_get_ticks_hz() / 1000000ULL;
4792 		active_proc->timeout_cb_fn = cb_fn;
4793 		active_proc->timeout_cb_arg = cb_arg;
4794 	}
4795 
4796 	ctrlr->timeout_enabled = true;
4797 
4798 	nvme_ctrlr_unlock(ctrlr);
4799 }
4800 
4801 bool
4802 spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page)
4803 {
4804 	/* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
4805 	SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
4806 	return ctrlr->log_page_supported[log_page];
4807 }
4808 
4809 bool
4810 spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code)
4811 {
4812 	/* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
4813 	SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
4814 	return ctrlr->feature_supported[feature_code];
4815 }
4816 
4817 int
4818 spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4819 			  struct spdk_nvme_ctrlr_list *payload)
4820 {
4821 	struct nvme_completion_poll_status	*status;
4822 	struct spdk_nvme_ns			*ns;
4823 	int					res;
4824 
4825 	if (nsid == 0) {
4826 		return -EINVAL;
4827 	}
4828 
4829 	status = calloc(1, sizeof(*status));
4830 	if (!status) {
4831 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4832 		return -ENOMEM;
4833 	}
4834 
4835 	res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload,
4836 				       nvme_completion_poll_cb, status);
4837 	if (res) {
4838 		free(status);
4839 		return res;
4840 	}
4841 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4842 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_attach_ns failed!\n");
4843 		if (!status->timed_out) {
4844 			free(status);
4845 		}
4846 		return -ENXIO;
4847 	}
4848 	free(status);
4849 
4850 	res = nvme_ctrlr_identify_active_ns(ctrlr);
4851 	if (res) {
4852 		return res;
4853 	}
4854 
4855 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
4856 	if (ns == NULL) {
4857 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_get_ns failed!\n");
4858 		return -ENXIO;
4859 	}
4860 
4861 	return nvme_ns_construct(ns, nsid, ctrlr);
4862 }
4863 
4864 int
4865 spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4866 			  struct spdk_nvme_ctrlr_list *payload)
4867 {
4868 	struct nvme_completion_poll_status	*status;
4869 	int					res;
4870 
4871 	if (nsid == 0) {
4872 		return -EINVAL;
4873 	}
4874 
4875 	status = calloc(1, sizeof(*status));
4876 	if (!status) {
4877 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4878 		return -ENOMEM;
4879 	}
4880 
4881 	res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload,
4882 				       nvme_completion_poll_cb, status);
4883 	if (res) {
4884 		free(status);
4885 		return res;
4886 	}
4887 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4888 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_detach_ns failed!\n");
4889 		if (!status->timed_out) {
4890 			free(status);
4891 		}
4892 		return -ENXIO;
4893 	}
4894 	free(status);
4895 
4896 	return nvme_ctrlr_identify_active_ns(ctrlr);
4897 }
4898 
4899 uint32_t
4900 spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload)
4901 {
4902 	struct nvme_completion_poll_status	*status;
4903 	int					res;
4904 	uint32_t				nsid;
4905 
4906 	status = calloc(1, sizeof(*status));
4907 	if (!status) {
4908 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4909 		return 0;
4910 	}
4911 
4912 	res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, status);
4913 	if (res) {
4914 		free(status);
4915 		return 0;
4916 	}
4917 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4918 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_create_ns failed!\n");
4919 		if (!status->timed_out) {
4920 			free(status);
4921 		}
4922 		return 0;
4923 	}
4924 
4925 	nsid = status->cpl.cdw0;
4926 	free(status);
4927 
4928 	assert(nsid > 0);
4929 
4930 	/* Return the namespace ID that was created */
4931 	return nsid;
4932 }
4933 
4934 int
4935 spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4936 {
4937 	struct nvme_completion_poll_status	*status;
4938 	int					res;
4939 
4940 	if (nsid == 0) {
4941 		return -EINVAL;
4942 	}
4943 
4944 	status = calloc(1, sizeof(*status));
4945 	if (!status) {
4946 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4947 		return -ENOMEM;
4948 	}
4949 
4950 	res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, status);
4951 	if (res) {
4952 		free(status);
4953 		return res;
4954 	}
4955 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4956 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_delete_ns failed!\n");
4957 		if (!status->timed_out) {
4958 			free(status);
4959 		}
4960 		return -ENXIO;
4961 	}
4962 	free(status);
4963 
4964 	return nvme_ctrlr_identify_active_ns(ctrlr);
4965 }
4966 
4967 int
4968 spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4969 		       struct spdk_nvme_format *format)
4970 {
4971 	struct nvme_completion_poll_status	*status;
4972 	int					res;
4973 
4974 	status = calloc(1, sizeof(*status));
4975 	if (!status) {
4976 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4977 		return -ENOMEM;
4978 	}
4979 
4980 	res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb,
4981 				    status);
4982 	if (res) {
4983 		free(status);
4984 		return res;
4985 	}
4986 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4987 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_format failed!\n");
4988 		if (!status->timed_out) {
4989 			free(status);
4990 		}
4991 		return -ENXIO;
4992 	}
4993 	free(status);
4994 
4995 	return spdk_nvme_ctrlr_reset(ctrlr);
4996 }
4997 
4998 int
4999 spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size,
5000 				int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status)
5001 {
5002 	struct spdk_nvme_fw_commit		fw_commit;
5003 	struct nvme_completion_poll_status	*status;
5004 	int					res;
5005 	unsigned int				size_remaining;
5006 	unsigned int				offset;
5007 	unsigned int				transfer;
5008 	uint8_t					*p;
5009 
5010 	if (!completion_status) {
5011 		return -EINVAL;
5012 	}
5013 	memset(completion_status, 0, sizeof(struct spdk_nvme_status));
5014 	if (size % 4) {
5015 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid size!\n");
5016 		return -1;
5017 	}
5018 
5019 	/* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG
5020 	 * and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG
5021 	 */
5022 	if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) &&
5023 	    (commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) {
5024 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid command!\n");
5025 		return -1;
5026 	}
5027 
5028 	status = calloc(1, sizeof(*status));
5029 	if (!status) {
5030 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5031 		return -ENOMEM;
5032 	}
5033 
5034 	/* Firmware download */
5035 	size_remaining = size;
5036 	offset = 0;
5037 	p = payload;
5038 
5039 	while (size_remaining > 0) {
5040 		transfer = spdk_min(size_remaining, ctrlr->min_page_size);
5041 
5042 		memset(status, 0, sizeof(*status));
5043 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p,
5044 						       nvme_completion_poll_cb,
5045 						       status);
5046 		if (res) {
5047 			free(status);
5048 			return res;
5049 		}
5050 
5051 		if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5052 			NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_fw_image_download failed!\n");
5053 			if (!status->timed_out) {
5054 				free(status);
5055 			}
5056 			return -ENXIO;
5057 		}
5058 		p += transfer;
5059 		offset += transfer;
5060 		size_remaining -= transfer;
5061 	}
5062 
5063 	/* Firmware commit */
5064 	memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5065 	fw_commit.fs = slot;
5066 	fw_commit.ca = commit_action;
5067 
5068 	memset(status, 0, sizeof(*status));
5069 	res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb,
5070 				       status);
5071 	if (res) {
5072 		free(status);
5073 		return res;
5074 	}
5075 
5076 	res = nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock);
5077 
5078 	memcpy(completion_status, &status->cpl.status, sizeof(struct spdk_nvme_status));
5079 
5080 	if (!status->timed_out) {
5081 		free(status);
5082 	}
5083 
5084 	if (res) {
5085 		if (completion_status->sct != SPDK_NVME_SCT_COMMAND_SPECIFIC ||
5086 		    completion_status->sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) {
5087 			if (completion_status->sct == SPDK_NVME_SCT_COMMAND_SPECIFIC  &&
5088 			    completion_status->sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) {
5089 				NVME_CTRLR_NOTICELOG(ctrlr,
5090 						     "firmware activation requires conventional reset to be performed. !\n");
5091 			} else {
5092 				NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5093 			}
5094 			return -ENXIO;
5095 		}
5096 	}
5097 
5098 	return spdk_nvme_ctrlr_reset(ctrlr);
5099 }
5100 
5101 int
5102 spdk_nvme_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
5103 {
5104 	int rc, size;
5105 	union spdk_nvme_cmbsz_register cmbsz;
5106 
5107 	cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr);
5108 
5109 	if (cmbsz.bits.rds == 0 || cmbsz.bits.wds == 0) {
5110 		return -ENOTSUP;
5111 	}
5112 
5113 	size = cmbsz.bits.sz * (0x1000 << (cmbsz.bits.szu * 4));
5114 
5115 	nvme_ctrlr_lock(ctrlr);
5116 	rc = nvme_transport_ctrlr_reserve_cmb(ctrlr);
5117 	nvme_ctrlr_unlock(ctrlr);
5118 
5119 	if (rc < 0) {
5120 		return rc;
5121 	}
5122 
5123 	return size;
5124 }
5125 
5126 void *
5127 spdk_nvme_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
5128 {
5129 	void *buf;
5130 
5131 	nvme_ctrlr_lock(ctrlr);
5132 	buf = nvme_transport_ctrlr_map_cmb(ctrlr, size);
5133 	nvme_ctrlr_unlock(ctrlr);
5134 
5135 	return buf;
5136 }
5137 
5138 void
5139 spdk_nvme_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr)
5140 {
5141 	nvme_ctrlr_lock(ctrlr);
5142 	nvme_transport_ctrlr_unmap_cmb(ctrlr);
5143 	nvme_ctrlr_unlock(ctrlr);
5144 }
5145 
5146 int
5147 spdk_nvme_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr)
5148 {
5149 	int rc;
5150 
5151 	nvme_ctrlr_lock(ctrlr);
5152 	rc = nvme_transport_ctrlr_enable_pmr(ctrlr);
5153 	nvme_ctrlr_unlock(ctrlr);
5154 
5155 	return rc;
5156 }
5157 
5158 int
5159 spdk_nvme_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr)
5160 {
5161 	int rc;
5162 
5163 	nvme_ctrlr_lock(ctrlr);
5164 	rc = nvme_transport_ctrlr_disable_pmr(ctrlr);
5165 	nvme_ctrlr_unlock(ctrlr);
5166 
5167 	return rc;
5168 }
5169 
5170 void *
5171 spdk_nvme_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
5172 {
5173 	void *buf;
5174 
5175 	nvme_ctrlr_lock(ctrlr);
5176 	buf = nvme_transport_ctrlr_map_pmr(ctrlr, size);
5177 	nvme_ctrlr_unlock(ctrlr);
5178 
5179 	return buf;
5180 }
5181 
5182 int
5183 spdk_nvme_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr)
5184 {
5185 	int rc;
5186 
5187 	nvme_ctrlr_lock(ctrlr);
5188 	rc = nvme_transport_ctrlr_unmap_pmr(ctrlr);
5189 	nvme_ctrlr_unlock(ctrlr);
5190 
5191 	return rc;
5192 }
5193 
5194 int
5195 spdk_nvme_ctrlr_read_boot_partition_start(struct spdk_nvme_ctrlr *ctrlr, void *payload,
5196 		uint32_t bprsz, uint32_t bprof, uint32_t bpid)
5197 {
5198 	union spdk_nvme_bprsel_register bprsel;
5199 	union spdk_nvme_bpinfo_register bpinfo;
5200 	uint64_t bpmbl, bpmb_size;
5201 
5202 	if (ctrlr->cap.bits.bps == 0) {
5203 		return -ENOTSUP;
5204 	}
5205 
5206 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5207 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5208 		return -EIO;
5209 	}
5210 
5211 	if (bpinfo.bits.brs == SPDK_NVME_BRS_READ_IN_PROGRESS) {
5212 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read already initiated\n");
5213 		return -EALREADY;
5214 	}
5215 
5216 	nvme_ctrlr_lock(ctrlr);
5217 
5218 	bpmb_size = bprsz * 4096;
5219 	bpmbl = spdk_vtophys(payload, &bpmb_size);
5220 	if (bpmbl == SPDK_VTOPHYS_ERROR) {
5221 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_vtophys of bpmbl failed\n");
5222 		nvme_ctrlr_unlock(ctrlr);
5223 		return -EFAULT;
5224 	}
5225 
5226 	if (bpmb_size != bprsz * 4096) {
5227 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition buffer is not physically contiguous\n");
5228 		nvme_ctrlr_unlock(ctrlr);
5229 		return -EFAULT;
5230 	}
5231 
5232 	if (nvme_ctrlr_set_bpmbl(ctrlr, bpmbl)) {
5233 		NVME_CTRLR_ERRLOG(ctrlr, "set_bpmbl() failed\n");
5234 		nvme_ctrlr_unlock(ctrlr);
5235 		return -EIO;
5236 	}
5237 
5238 	bprsel.bits.bpid = bpid;
5239 	bprsel.bits.bprof = bprof;
5240 	bprsel.bits.bprsz = bprsz;
5241 
5242 	if (nvme_ctrlr_set_bprsel(ctrlr, &bprsel)) {
5243 		NVME_CTRLR_ERRLOG(ctrlr, "set_bprsel() failed\n");
5244 		nvme_ctrlr_unlock(ctrlr);
5245 		return -EIO;
5246 	}
5247 
5248 	nvme_ctrlr_unlock(ctrlr);
5249 	return 0;
5250 }
5251 
5252 int
5253 spdk_nvme_ctrlr_read_boot_partition_poll(struct spdk_nvme_ctrlr *ctrlr)
5254 {
5255 	int rc = 0;
5256 	union spdk_nvme_bpinfo_register bpinfo;
5257 
5258 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5259 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5260 		return -EIO;
5261 	}
5262 
5263 	switch (bpinfo.bits.brs) {
5264 	case SPDK_NVME_BRS_NO_READ:
5265 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read not initiated\n");
5266 		rc = -EINVAL;
5267 		break;
5268 	case SPDK_NVME_BRS_READ_IN_PROGRESS:
5269 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition read in progress\n");
5270 		rc = -EAGAIN;
5271 		break;
5272 	case SPDK_NVME_BRS_READ_ERROR:
5273 		NVME_CTRLR_ERRLOG(ctrlr, "Error completing Boot Partition read\n");
5274 		rc = -EIO;
5275 		break;
5276 	case SPDK_NVME_BRS_READ_SUCCESS:
5277 		NVME_CTRLR_INFOLOG(ctrlr, "Boot Partition read completed successfully\n");
5278 		break;
5279 	default:
5280 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition read status\n");
5281 		rc = -EINVAL;
5282 	}
5283 
5284 	return rc;
5285 }
5286 
5287 static void
5288 nvme_write_boot_partition_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5289 {
5290 	int res;
5291 	struct spdk_nvme_ctrlr *ctrlr = arg;
5292 	struct spdk_nvme_fw_commit fw_commit;
5293 	struct spdk_nvme_cpl err_cpl =
5294 	{.status = {.sct = SPDK_NVME_SCT_GENERIC, .sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR }};
5295 
5296 	if (spdk_nvme_cpl_is_error(cpl)) {
5297 		NVME_CTRLR_ERRLOG(ctrlr, "Write Boot Partition failed\n");
5298 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5299 		return;
5300 	}
5301 
5302 	if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADING) {
5303 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Downloading at Offset %d Success\n", ctrlr->fw_offset);
5304 		ctrlr->fw_payload = (uint8_t *)ctrlr->fw_payload + ctrlr->fw_transfer_size;
5305 		ctrlr->fw_offset += ctrlr->fw_transfer_size;
5306 		ctrlr->fw_size_remaining -= ctrlr->fw_transfer_size;
5307 		ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5308 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5309 						       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5310 		if (res) {
5311 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_image_download failed!\n");
5312 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5313 			return;
5314 		}
5315 
5316 		if (ctrlr->fw_transfer_size < ctrlr->min_page_size) {
5317 			ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADED;
5318 		}
5319 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADED) {
5320 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Download Success\n");
5321 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5322 		fw_commit.bpid = ctrlr->bpid;
5323 		fw_commit.ca = SPDK_NVME_FW_COMMIT_REPLACE_BOOT_PARTITION;
5324 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5325 					       nvme_write_boot_partition_cb, ctrlr);
5326 		if (res) {
5327 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5328 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5329 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5330 			return;
5331 		}
5332 
5333 		ctrlr->bp_ws = SPDK_NVME_BP_WS_REPLACE;
5334 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_REPLACE) {
5335 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Replacement Success\n");
5336 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5337 		fw_commit.bpid = ctrlr->bpid;
5338 		fw_commit.ca = SPDK_NVME_FW_COMMIT_ACTIVATE_BOOT_PARTITION;
5339 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5340 					       nvme_write_boot_partition_cb, ctrlr);
5341 		if (res) {
5342 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5343 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5344 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5345 			return;
5346 		}
5347 
5348 		ctrlr->bp_ws = SPDK_NVME_BP_WS_ACTIVATE;
5349 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_ACTIVATE) {
5350 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Activation Success\n");
5351 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5352 	} else {
5353 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition write state\n");
5354 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5355 		return;
5356 	}
5357 }
5358 
5359 int
5360 spdk_nvme_ctrlr_write_boot_partition(struct spdk_nvme_ctrlr *ctrlr,
5361 				     void *payload, uint32_t size, uint32_t bpid,
5362 				     spdk_nvme_cmd_cb cb_fn, void *cb_arg)
5363 {
5364 	int res;
5365 
5366 	if (ctrlr->cap.bits.bps == 0) {
5367 		return -ENOTSUP;
5368 	}
5369 
5370 	ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADING;
5371 	ctrlr->bpid = bpid;
5372 	ctrlr->bp_write_cb_fn = cb_fn;
5373 	ctrlr->bp_write_cb_arg = cb_arg;
5374 	ctrlr->fw_offset = 0;
5375 	ctrlr->fw_size_remaining = size;
5376 	ctrlr->fw_payload = payload;
5377 	ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5378 
5379 	res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5380 					       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5381 
5382 	return res;
5383 }
5384 
5385 bool
5386 spdk_nvme_ctrlr_is_discovery(struct spdk_nvme_ctrlr *ctrlr)
5387 {
5388 	assert(ctrlr);
5389 
5390 	return !strncmp(ctrlr->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN,
5391 			strlen(SPDK_NVMF_DISCOVERY_NQN));
5392 }
5393 
5394 bool
5395 spdk_nvme_ctrlr_is_fabrics(struct spdk_nvme_ctrlr *ctrlr)
5396 {
5397 	assert(ctrlr);
5398 
5399 	return spdk_nvme_trtype_is_fabrics(ctrlr->trid.trtype);
5400 }
5401 
5402 int
5403 spdk_nvme_ctrlr_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5404 				 uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5405 {
5406 	struct nvme_completion_poll_status	*status;
5407 	int					res;
5408 
5409 	status = calloc(1, sizeof(*status));
5410 	if (!status) {
5411 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5412 		return -ENOMEM;
5413 	}
5414 
5415 	res = spdk_nvme_ctrlr_cmd_security_receive(ctrlr, secp, spsp, nssf, payload, size,
5416 			nvme_completion_poll_cb, status);
5417 	if (res) {
5418 		free(status);
5419 		return res;
5420 	}
5421 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5422 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_receive failed!\n");
5423 		if (!status->timed_out) {
5424 			free(status);
5425 		}
5426 		return -ENXIO;
5427 	}
5428 	free(status);
5429 
5430 	return 0;
5431 }
5432 
5433 int
5434 spdk_nvme_ctrlr_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5435 			      uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5436 {
5437 	struct nvme_completion_poll_status	*status;
5438 	int					res;
5439 
5440 	status = calloc(1, sizeof(*status));
5441 	if (!status) {
5442 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5443 		return -ENOMEM;
5444 	}
5445 
5446 	res = spdk_nvme_ctrlr_cmd_security_send(ctrlr, secp, spsp, nssf, payload, size,
5447 						nvme_completion_poll_cb,
5448 						status);
5449 	if (res) {
5450 		free(status);
5451 		return res;
5452 	}
5453 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5454 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_send failed!\n");
5455 		if (!status->timed_out) {
5456 			free(status);
5457 		}
5458 		return -ENXIO;
5459 	}
5460 
5461 	free(status);
5462 
5463 	return 0;
5464 }
5465 
5466 uint64_t
5467 spdk_nvme_ctrlr_get_flags(struct spdk_nvme_ctrlr *ctrlr)
5468 {
5469 	return ctrlr->flags;
5470 }
5471 
5472 const struct spdk_nvme_transport_id *
5473 spdk_nvme_ctrlr_get_transport_id(struct spdk_nvme_ctrlr *ctrlr)
5474 {
5475 	return &ctrlr->trid;
5476 }
5477 
5478 int32_t
5479 spdk_nvme_ctrlr_alloc_qid(struct spdk_nvme_ctrlr *ctrlr)
5480 {
5481 	uint32_t qid;
5482 
5483 	assert(ctrlr->free_io_qids);
5484 	nvme_ctrlr_lock(ctrlr);
5485 	qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1);
5486 	if (qid > ctrlr->opts.num_io_queues) {
5487 		NVME_CTRLR_ERRLOG(ctrlr, "No free I/O queue IDs\n");
5488 		nvme_ctrlr_unlock(ctrlr);
5489 		return -1;
5490 	}
5491 
5492 	spdk_bit_array_clear(ctrlr->free_io_qids, qid);
5493 	nvme_ctrlr_unlock(ctrlr);
5494 	return qid;
5495 }
5496 
5497 void
5498 spdk_nvme_ctrlr_free_qid(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid)
5499 {
5500 	assert(qid <= ctrlr->opts.num_io_queues);
5501 
5502 	nvme_ctrlr_lock(ctrlr);
5503 
5504 	if (spdk_likely(ctrlr->free_io_qids)) {
5505 		spdk_bit_array_set(ctrlr->free_io_qids, qid);
5506 	}
5507 
5508 	nvme_ctrlr_unlock(ctrlr);
5509 }
5510 
5511 int
5512 spdk_nvme_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
5513 				   struct spdk_memory_domain **domains, int array_size)
5514 {
5515 	return nvme_transport_ctrlr_get_memory_domains(ctrlr, domains, array_size);
5516 }
5517 
5518 int
5519 spdk_nvme_ctrlr_authenticate(struct spdk_nvme_ctrlr *ctrlr,
5520 			     spdk_nvme_authenticate_cb cb_fn, void *cb_ctx)
5521 {
5522 	return spdk_nvme_qpair_authenticate(ctrlr->adminq, cb_fn, cb_ctx);
5523 }
5524