xref: /spdk/lib/nvme/nvme_ctrlr.c (revision 7025ceb9c119a6da0b6ee2013b6ae94b51fac2df)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2015 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "nvme_internal.h"
10 #include "nvme_io_msg.h"
11 
12 #include "spdk/env.h"
13 #include "spdk/string.h"
14 #include "spdk/endian.h"
15 
16 struct nvme_active_ns_ctx;
17 
18 static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
19 		struct nvme_async_event_request *aer);
20 static void nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx);
21 static int nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns);
22 static int nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns);
23 static int nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns);
24 static void nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr);
25 static void nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
26 				 uint64_t timeout_in_ms);
27 
28 static int
29 nvme_ns_cmp(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
30 {
31 	if (ns1->id < ns2->id) {
32 		return -1;
33 	} else if (ns1->id > ns2->id) {
34 		return 1;
35 	} else {
36 		return 0;
37 	}
38 }
39 
40 RB_GENERATE_STATIC(nvme_ns_tree, spdk_nvme_ns, node, nvme_ns_cmp);
41 
42 #define CTRLR_STRING(ctrlr) \
43 	((ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP || ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA) ? \
44 	ctrlr->trid.subnqn : ctrlr->trid.traddr)
45 
46 #define NVME_CTRLR_ERRLOG(ctrlr, format, ...) \
47 	SPDK_ERRLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
48 
49 #define NVME_CTRLR_WARNLOG(ctrlr, format, ...) \
50 	SPDK_WARNLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
51 
52 #define NVME_CTRLR_NOTICELOG(ctrlr, format, ...) \
53 	SPDK_NOTICELOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
54 
55 #define NVME_CTRLR_INFOLOG(ctrlr, format, ...) \
56 	SPDK_INFOLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
57 
58 #ifdef DEBUG
59 #define NVME_CTRLR_DEBUGLOG(ctrlr, format, ...) \
60 	SPDK_DEBUGLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
61 #else
62 #define NVME_CTRLR_DEBUGLOG(ctrlr, ...) do { } while (0)
63 #endif
64 
65 #define nvme_ctrlr_get_reg_async(ctrlr, reg, sz, cb_fn, cb_arg) \
66 	nvme_transport_ctrlr_get_reg_ ## sz ## _async(ctrlr, \
67 		offsetof(struct spdk_nvme_registers, reg), cb_fn, cb_arg)
68 
69 #define nvme_ctrlr_set_reg_async(ctrlr, reg, sz, val, cb_fn, cb_arg) \
70 	nvme_transport_ctrlr_set_reg_ ## sz ## _async(ctrlr, \
71 		offsetof(struct spdk_nvme_registers, reg), val, cb_fn, cb_arg)
72 
73 #define nvme_ctrlr_get_cc_async(ctrlr, cb_fn, cb_arg) \
74 	nvme_ctrlr_get_reg_async(ctrlr, cc, 4, cb_fn, cb_arg)
75 
76 #define nvme_ctrlr_get_csts_async(ctrlr, cb_fn, cb_arg) \
77 	nvme_ctrlr_get_reg_async(ctrlr, csts, 4, cb_fn, cb_arg)
78 
79 #define nvme_ctrlr_get_cap_async(ctrlr, cb_fn, cb_arg) \
80 	nvme_ctrlr_get_reg_async(ctrlr, cap, 8, cb_fn, cb_arg)
81 
82 #define nvme_ctrlr_get_vs_async(ctrlr, cb_fn, cb_arg) \
83 	nvme_ctrlr_get_reg_async(ctrlr, vs, 4, cb_fn, cb_arg)
84 
85 #define nvme_ctrlr_set_cc_async(ctrlr, value, cb_fn, cb_arg) \
86 	nvme_ctrlr_set_reg_async(ctrlr, cc, 4, value, cb_fn, cb_arg)
87 
88 static int
89 nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc)
90 {
91 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
92 					      &cc->raw);
93 }
94 
95 static int
96 nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts)
97 {
98 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw),
99 					      &csts->raw);
100 }
101 
102 int
103 nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
104 {
105 	return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw),
106 					      &cap->raw);
107 }
108 
109 int
110 nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
111 {
112 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw),
113 					      &vs->raw);
114 }
115 
116 int
117 nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz)
118 {
119 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
120 					      &cmbsz->raw);
121 }
122 
123 int
124 nvme_ctrlr_get_pmrcap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_pmrcap_register *pmrcap)
125 {
126 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, pmrcap.raw),
127 					      &pmrcap->raw);
128 }
129 
130 int
131 nvme_ctrlr_get_bpinfo(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bpinfo_register *bpinfo)
132 {
133 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bpinfo.raw),
134 					      &bpinfo->raw);
135 }
136 
137 int
138 nvme_ctrlr_set_bprsel(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bprsel_register *bprsel)
139 {
140 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bprsel.raw),
141 					      bprsel->raw);
142 }
143 
144 int
145 nvme_ctrlr_set_bpmbl(struct spdk_nvme_ctrlr *ctrlr, uint64_t bpmbl_value)
146 {
147 	return nvme_transport_ctrlr_set_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, bpmbl),
148 					      bpmbl_value);
149 }
150 
151 static int
152 nvme_ctrlr_set_nssr(struct spdk_nvme_ctrlr *ctrlr, uint32_t nssr_value)
153 {
154 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, nssr),
155 					      nssr_value);
156 }
157 
158 bool
159 nvme_ctrlr_multi_iocs_enabled(struct spdk_nvme_ctrlr *ctrlr)
160 {
161 	return ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS &&
162 	       ctrlr->opts.command_set == SPDK_NVME_CC_CSS_IOCS;
163 }
164 
165 /* When the field in spdk_nvme_ctrlr_opts are changed and you change this function, please
166  * also update the nvme_ctrl_opts_init function in nvme_ctrlr.c
167  */
168 void
169 spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
170 {
171 	char host_id_str[SPDK_UUID_STRING_LEN];
172 
173 	assert(opts);
174 
175 	opts->opts_size = opts_size;
176 
177 #define FIELD_OK(field) \
178 	offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size
179 
180 #define SET_FIELD(field, value) \
181 	if (offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size) { \
182 		opts->field = value; \
183 	} \
184 
185 	SET_FIELD(num_io_queues, DEFAULT_MAX_IO_QUEUES);
186 	SET_FIELD(use_cmb_sqs, false);
187 	SET_FIELD(no_shn_notification, false);
188 	SET_FIELD(arb_mechanism, SPDK_NVME_CC_AMS_RR);
189 	SET_FIELD(arbitration_burst, 0);
190 	SET_FIELD(low_priority_weight, 0);
191 	SET_FIELD(medium_priority_weight, 0);
192 	SET_FIELD(high_priority_weight, 0);
193 	SET_FIELD(keep_alive_timeout_ms, MIN_KEEP_ALIVE_TIMEOUT_IN_MS);
194 	SET_FIELD(transport_retry_count, SPDK_NVME_DEFAULT_RETRY_COUNT);
195 	SET_FIELD(io_queue_size, DEFAULT_IO_QUEUE_SIZE);
196 
197 	if (nvme_driver_init() == 0) {
198 		if (FIELD_OK(hostnqn)) {
199 			spdk_uuid_fmt_lower(host_id_str, sizeof(host_id_str),
200 					    &g_spdk_nvme_driver->default_extended_host_id);
201 			snprintf(opts->hostnqn, sizeof(opts->hostnqn),
202 				 "nqn.2014-08.org.nvmexpress:uuid:%s", host_id_str);
203 		}
204 
205 		if (FIELD_OK(extended_host_id)) {
206 			memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id,
207 			       sizeof(opts->extended_host_id));
208 		}
209 
210 	}
211 
212 	SET_FIELD(io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS);
213 
214 	if (FIELD_OK(src_addr)) {
215 		memset(opts->src_addr, 0, sizeof(opts->src_addr));
216 	}
217 
218 	if (FIELD_OK(src_svcid)) {
219 		memset(opts->src_svcid, 0, sizeof(opts->src_svcid));
220 	}
221 
222 	if (FIELD_OK(host_id)) {
223 		memset(opts->host_id, 0, sizeof(opts->host_id));
224 	}
225 
226 	SET_FIELD(command_set, CHAR_BIT);
227 	SET_FIELD(admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000);
228 	SET_FIELD(header_digest, false);
229 	SET_FIELD(data_digest, false);
230 	SET_FIELD(disable_error_logging, false);
231 	SET_FIELD(transport_ack_timeout, SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT);
232 	SET_FIELD(admin_queue_size, DEFAULT_ADMIN_QUEUE_SIZE);
233 	SET_FIELD(fabrics_connect_timeout_us, NVME_FABRIC_CONNECT_COMMAND_TIMEOUT);
234 	SET_FIELD(disable_read_ana_log_page, false);
235 	SET_FIELD(disable_read_changed_ns_list_log_page, false);
236 	SET_FIELD(tls_psk, NULL);
237 	SET_FIELD(dhchap_key, NULL);
238 	SET_FIELD(dhchap_digests,
239 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) |
240 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) |
241 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512));
242 	SET_FIELD(dhchap_dhgroups,
243 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) |
244 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) |
245 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) |
246 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) |
247 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) |
248 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192));
249 
250 	if (FIELD_OK(psk)) {
251 		memset(opts->psk, 0, sizeof(opts->psk));
252 	}
253 
254 #undef FIELD_OK
255 #undef SET_FIELD
256 }
257 
258 const struct spdk_nvme_ctrlr_opts *
259 spdk_nvme_ctrlr_get_opts(struct spdk_nvme_ctrlr *ctrlr)
260 {
261 	return &ctrlr->opts;
262 }
263 
264 /**
265  * This function will be called when the process allocates the IO qpair.
266  * Note: the ctrlr_lock must be held when calling this function.
267  */
268 static void
269 nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair)
270 {
271 	struct spdk_nvme_ctrlr_process	*active_proc;
272 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
273 
274 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
275 	if (active_proc) {
276 		TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq);
277 		qpair->active_proc = active_proc;
278 	}
279 }
280 
281 /**
282  * This function will be called when the process frees the IO qpair.
283  * Note: the ctrlr_lock must be held when calling this function.
284  */
285 static void
286 nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair)
287 {
288 	struct spdk_nvme_ctrlr_process	*active_proc;
289 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
290 	struct spdk_nvme_qpair          *active_qpair, *tmp_qpair;
291 
292 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
293 	if (!active_proc) {
294 		return;
295 	}
296 
297 	TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs,
298 			   per_process_tailq, tmp_qpair) {
299 		if (active_qpair == qpair) {
300 			TAILQ_REMOVE(&active_proc->allocated_io_qpairs,
301 				     active_qpair, per_process_tailq);
302 
303 			break;
304 		}
305 	}
306 }
307 
308 void
309 spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr,
310 		struct spdk_nvme_io_qpair_opts *opts,
311 		size_t opts_size)
312 {
313 	assert(ctrlr);
314 
315 	assert(opts);
316 
317 	memset(opts, 0, opts_size);
318 
319 #define FIELD_OK(field) \
320 	offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size
321 
322 	if (FIELD_OK(qprio)) {
323 		opts->qprio = SPDK_NVME_QPRIO_URGENT;
324 	}
325 
326 	if (FIELD_OK(io_queue_size)) {
327 		opts->io_queue_size = ctrlr->opts.io_queue_size;
328 	}
329 
330 	if (FIELD_OK(io_queue_requests)) {
331 		opts->io_queue_requests = ctrlr->opts.io_queue_requests;
332 	}
333 
334 	if (FIELD_OK(delay_cmd_submit)) {
335 		opts->delay_cmd_submit = false;
336 	}
337 
338 	if (FIELD_OK(sq.vaddr)) {
339 		opts->sq.vaddr = NULL;
340 	}
341 
342 	if (FIELD_OK(sq.paddr)) {
343 		opts->sq.paddr = 0;
344 	}
345 
346 	if (FIELD_OK(sq.buffer_size)) {
347 		opts->sq.buffer_size = 0;
348 	}
349 
350 	if (FIELD_OK(cq.vaddr)) {
351 		opts->cq.vaddr = NULL;
352 	}
353 
354 	if (FIELD_OK(cq.paddr)) {
355 		opts->cq.paddr = 0;
356 	}
357 
358 	if (FIELD_OK(cq.buffer_size)) {
359 		opts->cq.buffer_size = 0;
360 	}
361 
362 	if (FIELD_OK(create_only)) {
363 		opts->create_only = false;
364 	}
365 
366 	if (FIELD_OK(async_mode)) {
367 		opts->async_mode = false;
368 	}
369 
370 #undef FIELD_OK
371 }
372 
373 static struct spdk_nvme_qpair *
374 nvme_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
375 			   const struct spdk_nvme_io_qpair_opts *opts)
376 {
377 	int32_t					qid;
378 	struct spdk_nvme_qpair			*qpair;
379 	union spdk_nvme_cc_register		cc;
380 
381 	if (!ctrlr) {
382 		return NULL;
383 	}
384 
385 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
386 	cc.raw = ctrlr->process_init_cc.raw;
387 
388 	if (opts->qprio & ~SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK) {
389 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
390 		return NULL;
391 	}
392 
393 	/*
394 	 * Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the
395 	 * default round robin arbitration method.
396 	 */
397 	if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts->qprio != SPDK_NVME_QPRIO_URGENT)) {
398 		NVME_CTRLR_ERRLOG(ctrlr, "invalid queue priority for default round robin arbitration method\n");
399 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
400 		return NULL;
401 	}
402 
403 	qid = spdk_nvme_ctrlr_alloc_qid(ctrlr);
404 	if (qid < 0) {
405 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
406 		return NULL;
407 	}
408 
409 	qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, opts);
410 	if (qpair == NULL) {
411 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_create_io_qpair() failed\n");
412 		spdk_nvme_ctrlr_free_qid(ctrlr, qid);
413 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
414 		return NULL;
415 	}
416 
417 	TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq);
418 
419 	nvme_ctrlr_proc_add_io_qpair(qpair);
420 
421 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
422 
423 	return qpair;
424 }
425 
426 int
427 spdk_nvme_ctrlr_connect_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
428 {
429 	int rc;
430 
431 	if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) {
432 		return -EISCONN;
433 	}
434 
435 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
436 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
437 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
438 
439 	if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) {
440 		spdk_delay_us(100);
441 	}
442 
443 	return rc;
444 }
445 
446 void
447 spdk_nvme_ctrlr_disconnect_io_qpair(struct spdk_nvme_qpair *qpair)
448 {
449 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
450 
451 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
452 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
453 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
454 }
455 
456 struct spdk_nvme_qpair *
457 spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
458 			       const struct spdk_nvme_io_qpair_opts *user_opts,
459 			       size_t opts_size)
460 {
461 
462 	struct spdk_nvme_qpair		*qpair = NULL;
463 	struct spdk_nvme_io_qpair_opts	opts;
464 	int				rc;
465 
466 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
467 
468 	if (spdk_unlikely(ctrlr->state != NVME_CTRLR_STATE_READY)) {
469 		/* When controller is resetting or initializing, free_io_qids is deleted or not created yet.
470 		 * We can't create IO qpair in that case */
471 		goto unlock;
472 	}
473 
474 	/*
475 	 * Get the default options, then overwrite them with the user-provided options
476 	 * up to opts_size.
477 	 *
478 	 * This allows for extensions of the opts structure without breaking
479 	 * ABI compatibility.
480 	 */
481 	spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
482 	if (user_opts) {
483 		memcpy(&opts, user_opts, spdk_min(sizeof(opts), opts_size));
484 
485 		/* If user passes buffers, make sure they're big enough for the requested queue size */
486 		if (opts.sq.vaddr) {
487 			if (opts.sq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))) {
488 				NVME_CTRLR_ERRLOG(ctrlr, "sq buffer size %" PRIx64 " is too small for sq size %zx\n",
489 						  opts.sq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cmd)));
490 				goto unlock;
491 			}
492 		}
493 		if (opts.cq.vaddr) {
494 			if (opts.cq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))) {
495 				NVME_CTRLR_ERRLOG(ctrlr, "cq buffer size %" PRIx64 " is too small for cq size %zx\n",
496 						  opts.cq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cpl)));
497 				goto unlock;
498 			}
499 		}
500 	}
501 
502 	qpair = nvme_ctrlr_create_io_qpair(ctrlr, &opts);
503 
504 	if (qpair == NULL || opts.create_only == true) {
505 		goto unlock;
506 	}
507 
508 	rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair);
509 	if (rc != 0) {
510 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_connect_io_qpair() failed\n");
511 		nvme_ctrlr_proc_remove_io_qpair(qpair);
512 		TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
513 		spdk_bit_array_set(ctrlr->free_io_qids, qpair->id);
514 		nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
515 		qpair = NULL;
516 		goto unlock;
517 	}
518 
519 unlock:
520 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
521 
522 	return qpair;
523 }
524 
525 int
526 spdk_nvme_ctrlr_reconnect_io_qpair(struct spdk_nvme_qpair *qpair)
527 {
528 	struct spdk_nvme_ctrlr *ctrlr;
529 	enum nvme_qpair_state qpair_state;
530 	int rc;
531 
532 	assert(qpair != NULL);
533 	assert(nvme_qpair_is_admin_queue(qpair) == false);
534 	assert(qpair->ctrlr != NULL);
535 
536 	ctrlr = qpair->ctrlr;
537 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
538 	qpair_state = nvme_qpair_get_state(qpair);
539 
540 	if (ctrlr->is_removed) {
541 		rc = -ENODEV;
542 		goto out;
543 	}
544 
545 	if (ctrlr->is_resetting || qpair_state == NVME_QPAIR_DISCONNECTING) {
546 		rc = -EAGAIN;
547 		goto out;
548 	}
549 
550 	if (ctrlr->is_failed || qpair_state == NVME_QPAIR_DESTROYING) {
551 		rc = -ENXIO;
552 		goto out;
553 	}
554 
555 	if (qpair_state != NVME_QPAIR_DISCONNECTED) {
556 		rc = 0;
557 		goto out;
558 	}
559 
560 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
561 	if (rc) {
562 		rc = -EAGAIN;
563 		goto out;
564 	}
565 
566 out:
567 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
568 	return rc;
569 }
570 
571 spdk_nvme_qp_failure_reason
572 spdk_nvme_ctrlr_get_admin_qp_failure_reason(struct spdk_nvme_ctrlr *ctrlr)
573 {
574 	return ctrlr->adminq->transport_failure_reason;
575 }
576 
577 /*
578  * This internal function will attempt to take the controller
579  * lock before calling disconnect on a controller qpair.
580  * Functions already holding the controller lock should
581  * call nvme_transport_ctrlr_disconnect_qpair directly.
582  */
583 void
584 nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair)
585 {
586 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
587 
588 	assert(ctrlr != NULL);
589 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
590 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
591 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
592 }
593 
594 int
595 spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair)
596 {
597 	struct spdk_nvme_ctrlr *ctrlr;
598 
599 	if (qpair == NULL) {
600 		return 0;
601 	}
602 
603 	ctrlr = qpair->ctrlr;
604 
605 	if (qpair->in_completion_context) {
606 		/*
607 		 * There are many cases where it is convenient to delete an io qpair in the context
608 		 *  of that qpair's completion routine.  To handle this properly, set a flag here
609 		 *  so that the completion routine will perform an actual delete after the context
610 		 *  unwinds.
611 		 */
612 		qpair->delete_after_completion_context = 1;
613 		return 0;
614 	}
615 
616 	qpair->destroy_in_progress = 1;
617 
618 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
619 
620 	if (qpair->poll_group && (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr))) {
621 		spdk_nvme_poll_group_remove(qpair->poll_group->group, qpair);
622 	}
623 
624 	/* Do not retry. */
625 	nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
626 
627 	/* In the multi-process case, a process may call this function on a foreign
628 	 * I/O qpair (i.e. one that this process did not create) when that qpairs process
629 	 * exits unexpectedly.  In that case, we must not try to abort any reqs associated
630 	 * with that qpair, since the callbacks will also be foreign to this process.
631 	 */
632 	if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) {
633 		nvme_qpair_abort_all_queued_reqs(qpair);
634 	}
635 
636 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
637 
638 	nvme_ctrlr_proc_remove_io_qpair(qpair);
639 
640 	TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
641 	spdk_nvme_ctrlr_free_qid(ctrlr, qpair->id);
642 
643 	nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
644 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
645 	return 0;
646 }
647 
648 static void
649 nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr,
650 		struct spdk_nvme_intel_log_page_directory *log_page_directory)
651 {
652 	if (log_page_directory == NULL) {
653 		return;
654 	}
655 
656 	assert(ctrlr->cdata.vid == SPDK_PCI_VID_INTEL);
657 
658 	ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
659 
660 	if (log_page_directory->read_latency_log_len ||
661 	    (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) {
662 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
663 	}
664 	if (log_page_directory->write_latency_log_len ||
665 	    (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) {
666 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
667 	}
668 	if (log_page_directory->temperature_statistics_log_len) {
669 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true;
670 	}
671 	if (log_page_directory->smart_log_len) {
672 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true;
673 	}
674 	if (log_page_directory->marketing_description_log_len) {
675 		ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true;
676 	}
677 }
678 
679 struct intel_log_pages_ctx {
680 	struct spdk_nvme_intel_log_page_directory log_page_directory;
681 	struct spdk_nvme_ctrlr *ctrlr;
682 };
683 
684 static void
685 nvme_ctrlr_set_intel_support_log_pages_done(void *arg, const struct spdk_nvme_cpl *cpl)
686 {
687 	struct intel_log_pages_ctx *ctx = arg;
688 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
689 
690 	if (!spdk_nvme_cpl_is_error(cpl)) {
691 		nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, &ctx->log_page_directory);
692 	}
693 
694 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
695 			     ctrlr->opts.admin_timeout_ms);
696 	free(ctx);
697 }
698 
699 static int
700 nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr)
701 {
702 	int rc = 0;
703 	struct intel_log_pages_ctx *ctx;
704 
705 	ctx = calloc(1, sizeof(*ctx));
706 	if (!ctx) {
707 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
708 				     ctrlr->opts.admin_timeout_ms);
709 		return 0;
710 	}
711 
712 	ctx->ctrlr = ctrlr;
713 
714 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY,
715 					      SPDK_NVME_GLOBAL_NS_TAG, &ctx->log_page_directory,
716 					      sizeof(struct spdk_nvme_intel_log_page_directory),
717 					      0, nvme_ctrlr_set_intel_support_log_pages_done, ctx);
718 	if (rc != 0) {
719 		free(ctx);
720 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
721 				     ctrlr->opts.admin_timeout_ms);
722 		return 0;
723 	}
724 
725 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES,
726 			     ctrlr->opts.admin_timeout_ms);
727 
728 	return 0;
729 }
730 
731 static int
732 nvme_ctrlr_alloc_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
733 {
734 	uint32_t ana_log_page_size;
735 
736 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + ctrlr->cdata.nanagrpid *
737 			    sizeof(struct spdk_nvme_ana_group_descriptor) + ctrlr->active_ns_count *
738 			    sizeof(uint32_t);
739 
740 	/* Number of active namespaces may have changed.
741 	 * Check if ANA log page fits into existing buffer.
742 	 */
743 	if (ana_log_page_size > ctrlr->ana_log_page_size) {
744 		void *new_buffer;
745 
746 		if (ctrlr->ana_log_page) {
747 			new_buffer = realloc(ctrlr->ana_log_page, ana_log_page_size);
748 		} else {
749 			new_buffer = calloc(1, ana_log_page_size);
750 		}
751 
752 		if (!new_buffer) {
753 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate ANA log page buffer, size %u\n",
754 					  ana_log_page_size);
755 			return -ENXIO;
756 		}
757 
758 		ctrlr->ana_log_page = new_buffer;
759 		if (ctrlr->copied_ana_desc) {
760 			new_buffer = realloc(ctrlr->copied_ana_desc, ana_log_page_size);
761 		} else {
762 			new_buffer = calloc(1, ana_log_page_size);
763 		}
764 
765 		if (!new_buffer) {
766 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate a buffer to parse ANA descriptor, size %u\n",
767 					  ana_log_page_size);
768 			return -ENOMEM;
769 		}
770 
771 		ctrlr->copied_ana_desc = new_buffer;
772 		ctrlr->ana_log_page_size = ana_log_page_size;
773 	}
774 
775 	return 0;
776 }
777 
778 static int
779 nvme_ctrlr_update_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
780 {
781 	struct nvme_completion_poll_status *status;
782 	int rc;
783 
784 	rc = nvme_ctrlr_alloc_ana_log_page(ctrlr);
785 	if (rc != 0) {
786 		return rc;
787 	}
788 
789 	status = calloc(1, sizeof(*status));
790 	if (status == NULL) {
791 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
792 		return -ENOMEM;
793 	}
794 
795 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
796 					      SPDK_NVME_GLOBAL_NS_TAG, ctrlr->ana_log_page,
797 					      ctrlr->ana_log_page_size, 0,
798 					      nvme_completion_poll_cb, status);
799 	if (rc != 0) {
800 		free(status);
801 		return rc;
802 	}
803 
804 	if (nvme_wait_for_completion_robust_lock_timeout(ctrlr->adminq, status, &ctrlr->ctrlr_lock,
805 			ctrlr->opts.admin_timeout_ms * 1000)) {
806 		if (!status->timed_out) {
807 			free(status);
808 		}
809 		return -EIO;
810 	}
811 
812 	free(status);
813 	return 0;
814 }
815 
816 static int
817 nvme_ctrlr_update_ns_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
818 				void *cb_arg)
819 {
820 	struct spdk_nvme_ctrlr *ctrlr = cb_arg;
821 	struct spdk_nvme_ns *ns;
822 	uint32_t i, nsid;
823 
824 	for (i = 0; i < desc->num_of_nsid; i++) {
825 		nsid = desc->nsid[i];
826 		if (nsid == 0 || nsid > ctrlr->cdata.nn) {
827 			continue;
828 		}
829 
830 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
831 		assert(ns != NULL);
832 
833 		ns->ana_group_id = desc->ana_group_id;
834 		ns->ana_state = desc->ana_state;
835 	}
836 
837 	return 0;
838 }
839 
840 int
841 nvme_ctrlr_parse_ana_log_page(struct spdk_nvme_ctrlr *ctrlr,
842 			      spdk_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
843 {
844 	struct spdk_nvme_ana_group_descriptor *copied_desc;
845 	uint8_t *orig_desc;
846 	uint32_t i, desc_size, copy_len;
847 	int rc = 0;
848 
849 	if (ctrlr->ana_log_page == NULL) {
850 		return -EINVAL;
851 	}
852 
853 	copied_desc = ctrlr->copied_ana_desc;
854 
855 	orig_desc = (uint8_t *)ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
856 	copy_len = ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
857 
858 	for (i = 0; i < ctrlr->ana_log_page->num_ana_group_desc; i++) {
859 		memcpy(copied_desc, orig_desc, copy_len);
860 
861 		rc = cb_fn(copied_desc, cb_arg);
862 		if (rc != 0) {
863 			break;
864 		}
865 
866 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
867 			    copied_desc->num_of_nsid * sizeof(uint32_t);
868 		orig_desc += desc_size;
869 		copy_len -= desc_size;
870 	}
871 
872 	return rc;
873 }
874 
875 static int
876 nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr)
877 {
878 	int	rc = 0;
879 
880 	memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
881 	/* Mandatory pages */
882 	ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true;
883 	ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true;
884 	ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true;
885 	if (ctrlr->cdata.lpa.celp) {
886 		ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true;
887 	}
888 
889 	if (ctrlr->cdata.cmic.ana_reporting) {
890 		ctrlr->log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] = true;
891 		if (!ctrlr->opts.disable_read_ana_log_page) {
892 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
893 			if (rc == 0) {
894 				nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
895 							      ctrlr);
896 			}
897 		}
898 	}
899 
900 	if (ctrlr->cdata.ctratt.fdps) {
901 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_CONFIGURATIONS] = true;
902 		ctrlr->log_page_supported[SPDK_NVME_LOG_RECLAIM_UNIT_HANDLE_USAGE] = true;
903 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_STATISTICS] = true;
904 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_EVENTS] = true;
905 	}
906 
907 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL &&
908 	    ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE &&
909 	    !(ctrlr->quirks & NVME_INTEL_QUIRK_NO_LOG_PAGES)) {
910 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES,
911 				     ctrlr->opts.admin_timeout_ms);
912 
913 	} else {
914 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
915 				     ctrlr->opts.admin_timeout_ms);
916 
917 	}
918 
919 	return rc;
920 }
921 
922 static void
923 nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr)
924 {
925 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true;
926 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
927 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
928 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
929 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true;
930 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
931 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
932 }
933 
934 static void
935 nvme_ctrlr_set_arbitration_feature(struct spdk_nvme_ctrlr *ctrlr)
936 {
937 	uint32_t cdw11;
938 	struct nvme_completion_poll_status *status;
939 
940 	if (ctrlr->opts.arbitration_burst == 0) {
941 		return;
942 	}
943 
944 	if (ctrlr->opts.arbitration_burst > 7) {
945 		NVME_CTRLR_WARNLOG(ctrlr, "Valid arbitration burst values is from 0-7\n");
946 		return;
947 	}
948 
949 	status = calloc(1, sizeof(*status));
950 	if (!status) {
951 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
952 		return;
953 	}
954 
955 	cdw11 = ctrlr->opts.arbitration_burst;
956 
957 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_WRR_SUPPORTED) {
958 		cdw11 |= (uint32_t)ctrlr->opts.low_priority_weight << 8;
959 		cdw11 |= (uint32_t)ctrlr->opts.medium_priority_weight << 16;
960 		cdw11 |= (uint32_t)ctrlr->opts.high_priority_weight << 24;
961 	}
962 
963 	if (spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION,
964 					    cdw11, 0, NULL, 0,
965 					    nvme_completion_poll_cb, status) < 0) {
966 		NVME_CTRLR_ERRLOG(ctrlr, "Set arbitration feature failed\n");
967 		free(status);
968 		return;
969 	}
970 
971 	if (nvme_wait_for_completion_timeout(ctrlr->adminq, status,
972 					     ctrlr->opts.admin_timeout_ms * 1000)) {
973 		NVME_CTRLR_ERRLOG(ctrlr, "Timeout to set arbitration feature\n");
974 	}
975 
976 	if (!status->timed_out) {
977 		free(status);
978 	}
979 }
980 
981 static void
982 nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr)
983 {
984 	memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
985 	/* Mandatory features */
986 	ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true;
987 	ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true;
988 	ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
989 	ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true;
990 	ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true;
991 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true;
992 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
993 	ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true;
994 	ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
995 	/* Optional features */
996 	if (ctrlr->cdata.vwc.present) {
997 		ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
998 	}
999 	if (ctrlr->cdata.apsta.supported) {
1000 		ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
1001 	}
1002 	if (ctrlr->cdata.hmpre) {
1003 		ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true;
1004 	}
1005 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
1006 		nvme_ctrlr_set_intel_supported_features(ctrlr);
1007 	}
1008 
1009 	nvme_ctrlr_set_arbitration_feature(ctrlr);
1010 }
1011 
1012 bool
1013 spdk_nvme_ctrlr_is_failed(struct spdk_nvme_ctrlr *ctrlr)
1014 {
1015 	return ctrlr->is_failed;
1016 }
1017 
1018 void
1019 nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
1020 {
1021 	/*
1022 	 * Set the flag here and leave the work failure of qpairs to
1023 	 * spdk_nvme_qpair_process_completions().
1024 	 */
1025 	if (hot_remove) {
1026 		ctrlr->is_removed = true;
1027 	}
1028 
1029 	if (ctrlr->is_failed) {
1030 		NVME_CTRLR_NOTICELOG(ctrlr, "already in failed state\n");
1031 		return;
1032 	}
1033 
1034 	if (ctrlr->is_disconnecting) {
1035 		NVME_CTRLR_DEBUGLOG(ctrlr, "already disconnecting\n");
1036 		return;
1037 	}
1038 
1039 	ctrlr->is_failed = true;
1040 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1041 	NVME_CTRLR_ERRLOG(ctrlr, "in failed state.\n");
1042 }
1043 
1044 /**
1045  * This public API function will try to take the controller lock.
1046  * Any private functions being called from a thread already holding
1047  * the ctrlr lock should call nvme_ctrlr_fail directly.
1048  */
1049 void
1050 spdk_nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr)
1051 {
1052 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1053 	nvme_ctrlr_fail(ctrlr, false);
1054 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1055 }
1056 
1057 static void
1058 nvme_ctrlr_shutdown_set_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1059 {
1060 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1061 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1062 
1063 	if (spdk_nvme_cpl_is_error(cpl)) {
1064 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1065 		ctx->shutdown_complete = true;
1066 		return;
1067 	}
1068 
1069 	if (ctrlr->opts.no_shn_notification) {
1070 		ctx->shutdown_complete = true;
1071 		return;
1072 	}
1073 
1074 	/*
1075 	 * The NVMe specification defines RTD3E to be the time between
1076 	 *  setting SHN = 1 until the controller will set SHST = 10b.
1077 	 * If the device doesn't report RTD3 entry latency, or if it
1078 	 *  reports RTD3 entry latency less than 10 seconds, pick
1079 	 *  10 seconds as a reasonable amount of time to
1080 	 *  wait before proceeding.
1081 	 */
1082 	NVME_CTRLR_DEBUGLOG(ctrlr, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e);
1083 	ctx->shutdown_timeout_ms = SPDK_CEIL_DIV(ctrlr->cdata.rtd3e, 1000);
1084 	ctx->shutdown_timeout_ms = spdk_max(ctx->shutdown_timeout_ms, 10000);
1085 	NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown timeout = %" PRIu32 " ms\n", ctx->shutdown_timeout_ms);
1086 
1087 	ctx->shutdown_start_tsc = spdk_get_ticks();
1088 	ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1089 }
1090 
1091 static void
1092 nvme_ctrlr_shutdown_get_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1093 {
1094 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1095 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1096 	union spdk_nvme_cc_register cc;
1097 	int rc;
1098 
1099 	if (spdk_nvme_cpl_is_error(cpl)) {
1100 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1101 		ctx->shutdown_complete = true;
1102 		return;
1103 	}
1104 
1105 	assert(value <= UINT32_MAX);
1106 	cc.raw = (uint32_t)value;
1107 
1108 	if (ctrlr->opts.no_shn_notification) {
1109 		NVME_CTRLR_INFOLOG(ctrlr, "Disable SSD without shutdown notification\n");
1110 		if (cc.bits.en == 0) {
1111 			ctx->shutdown_complete = true;
1112 			return;
1113 		}
1114 
1115 		cc.bits.en = 0;
1116 	} else {
1117 		cc.bits.shn = SPDK_NVME_SHN_NORMAL;
1118 	}
1119 
1120 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_shutdown_set_cc_done, ctx);
1121 	if (rc != 0) {
1122 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1123 		ctx->shutdown_complete = true;
1124 	}
1125 }
1126 
1127 static void
1128 nvme_ctrlr_shutdown_async(struct spdk_nvme_ctrlr *ctrlr,
1129 			  struct nvme_ctrlr_detach_ctx *ctx)
1130 {
1131 	int rc;
1132 
1133 	if (ctrlr->is_removed) {
1134 		ctx->shutdown_complete = true;
1135 		return;
1136 	}
1137 
1138 	if (ctrlr->adminq == NULL ||
1139 	    ctrlr->adminq->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE) {
1140 		NVME_CTRLR_INFOLOG(ctrlr, "Adminq is not connected.\n");
1141 		ctx->shutdown_complete = true;
1142 		return;
1143 	}
1144 
1145 	ctx->state = NVME_CTRLR_DETACH_SET_CC;
1146 	rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_shutdown_get_cc_done, ctx);
1147 	if (rc != 0) {
1148 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1149 		ctx->shutdown_complete = true;
1150 	}
1151 }
1152 
1153 static void
1154 nvme_ctrlr_shutdown_get_csts_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1155 {
1156 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1157 
1158 	if (spdk_nvme_cpl_is_error(cpl)) {
1159 		NVME_CTRLR_ERRLOG(ctx->ctrlr, "Failed to read the CSTS register\n");
1160 		ctx->shutdown_complete = true;
1161 		return;
1162 	}
1163 
1164 	assert(value <= UINT32_MAX);
1165 	ctx->csts.raw = (uint32_t)value;
1166 	ctx->state = NVME_CTRLR_DETACH_GET_CSTS_DONE;
1167 }
1168 
1169 static int
1170 nvme_ctrlr_shutdown_poll_async(struct spdk_nvme_ctrlr *ctrlr,
1171 			       struct nvme_ctrlr_detach_ctx *ctx)
1172 {
1173 	union spdk_nvme_csts_register	csts;
1174 	uint32_t			ms_waited;
1175 
1176 	switch (ctx->state) {
1177 	case NVME_CTRLR_DETACH_SET_CC:
1178 	case NVME_CTRLR_DETACH_GET_CSTS:
1179 		/* We're still waiting for the register operation to complete */
1180 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
1181 		return -EAGAIN;
1182 
1183 	case NVME_CTRLR_DETACH_CHECK_CSTS:
1184 		ctx->state = NVME_CTRLR_DETACH_GET_CSTS;
1185 		if (nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_shutdown_get_csts_done, ctx)) {
1186 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
1187 			return -EIO;
1188 		}
1189 		return -EAGAIN;
1190 
1191 	case NVME_CTRLR_DETACH_GET_CSTS_DONE:
1192 		ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1193 		break;
1194 
1195 	default:
1196 		assert(0 && "Should never happen");
1197 		return -EINVAL;
1198 	}
1199 
1200 	ms_waited = (spdk_get_ticks() - ctx->shutdown_start_tsc) * 1000 / spdk_get_ticks_hz();
1201 	csts.raw = ctx->csts.raw;
1202 
1203 	if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
1204 		NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown complete in %u milliseconds\n", ms_waited);
1205 		return 0;
1206 	}
1207 
1208 	if (ms_waited < ctx->shutdown_timeout_ms) {
1209 		return -EAGAIN;
1210 	}
1211 
1212 	NVME_CTRLR_ERRLOG(ctrlr, "did not shutdown within %u milliseconds\n",
1213 			  ctx->shutdown_timeout_ms);
1214 	if (ctrlr->quirks & NVME_QUIRK_SHST_COMPLETE) {
1215 		NVME_CTRLR_ERRLOG(ctrlr, "likely due to shutdown handling in the VMWare emulated NVMe SSD\n");
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 static inline uint64_t
1222 nvme_ctrlr_get_ready_timeout(struct spdk_nvme_ctrlr *ctrlr)
1223 {
1224 	return ctrlr->cap.bits.to * 500;
1225 }
1226 
1227 static void
1228 nvme_ctrlr_set_cc_en_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1229 {
1230 	struct spdk_nvme_ctrlr *ctrlr = ctx;
1231 
1232 	if (spdk_nvme_cpl_is_error(cpl)) {
1233 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to set the CC register\n");
1234 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1235 		return;
1236 	}
1237 
1238 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
1239 			     nvme_ctrlr_get_ready_timeout(ctrlr));
1240 }
1241 
1242 static int
1243 nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
1244 {
1245 	union spdk_nvme_cc_register	cc;
1246 	int				rc;
1247 
1248 	rc = nvme_transport_ctrlr_enable(ctrlr);
1249 	if (rc != 0) {
1250 		NVME_CTRLR_ERRLOG(ctrlr, "transport ctrlr_enable failed\n");
1251 		return rc;
1252 	}
1253 
1254 	cc.raw = ctrlr->process_init_cc.raw;
1255 	if (cc.bits.en != 0) {
1256 		NVME_CTRLR_ERRLOG(ctrlr, "called with CC.EN = 1\n");
1257 		return -EINVAL;
1258 	}
1259 
1260 	cc.bits.en = 1;
1261 	cc.bits.css = 0;
1262 	cc.bits.shn = 0;
1263 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
1264 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
1265 
1266 	/* Page size is 2 ^ (12 + mps). */
1267 	cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12;
1268 
1269 	/*
1270 	 * Since NVMe 1.0, a controller should have at least one bit set in CAP.CSS.
1271 	 * A controller that does not have any bit set in CAP.CSS is not spec compliant.
1272 	 * Try to support such a controller regardless.
1273 	 */
1274 	if (ctrlr->cap.bits.css == 0) {
1275 		NVME_CTRLR_INFOLOG(ctrlr, "Drive reports no command sets supported. Assuming NVM is supported.\n");
1276 		ctrlr->cap.bits.css = SPDK_NVME_CAP_CSS_NVM;
1277 	}
1278 
1279 	/*
1280 	 * If the user did not explicitly request a command set, or supplied a value larger than
1281 	 * what can be saved in CC.CSS, use the most reasonable default.
1282 	 */
1283 	if (ctrlr->opts.command_set >= CHAR_BIT) {
1284 		if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS) {
1285 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_IOCS;
1286 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NVM) {
1287 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1288 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NOIO) {
1289 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NOIO;
1290 		} else {
1291 			/* Invalid supported bits detected, falling back to NVM. */
1292 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1293 		}
1294 	}
1295 
1296 	/* Verify that the selected command set is supported by the controller. */
1297 	if (!(ctrlr->cap.bits.css & (1u << ctrlr->opts.command_set))) {
1298 		NVME_CTRLR_DEBUGLOG(ctrlr, "Requested I/O command set %u but supported mask is 0x%x\n",
1299 				    ctrlr->opts.command_set, ctrlr->cap.bits.css);
1300 		NVME_CTRLR_DEBUGLOG(ctrlr, "Falling back to NVM. Assuming NVM is supported.\n");
1301 		ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1302 	}
1303 
1304 	cc.bits.css = ctrlr->opts.command_set;
1305 
1306 	switch (ctrlr->opts.arb_mechanism) {
1307 	case SPDK_NVME_CC_AMS_RR:
1308 		break;
1309 	case SPDK_NVME_CC_AMS_WRR:
1310 		if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) {
1311 			break;
1312 		}
1313 		return -EINVAL;
1314 	case SPDK_NVME_CC_AMS_VS:
1315 		if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) {
1316 			break;
1317 		}
1318 		return -EINVAL;
1319 	default:
1320 		return -EINVAL;
1321 	}
1322 
1323 	cc.bits.ams = ctrlr->opts.arb_mechanism;
1324 	ctrlr->process_init_cc.raw = cc.raw;
1325 
1326 	if (nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_set_cc_en_done, ctrlr)) {
1327 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
1328 		return -EIO;
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 static const char *
1335 nvme_ctrlr_state_string(enum nvme_ctrlr_state state)
1336 {
1337 	switch (state) {
1338 	case NVME_CTRLR_STATE_INIT_DELAY:
1339 		return "delay init";
1340 	case NVME_CTRLR_STATE_CONNECT_ADMINQ:
1341 		return "connect adminq";
1342 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
1343 		return "wait for connect adminq";
1344 	case NVME_CTRLR_STATE_READ_VS:
1345 		return "read vs";
1346 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
1347 		return "read vs wait for vs";
1348 	case NVME_CTRLR_STATE_READ_CAP:
1349 		return "read cap";
1350 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
1351 		return "read cap wait for cap";
1352 	case NVME_CTRLR_STATE_CHECK_EN:
1353 		return "check en";
1354 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
1355 		return "check en wait for cc";
1356 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
1357 		return "disable and wait for CSTS.RDY = 1";
1358 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1359 		return "disable and wait for CSTS.RDY = 1 reg";
1360 	case NVME_CTRLR_STATE_SET_EN_0:
1361 		return "set CC.EN = 0";
1362 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
1363 		return "set CC.EN = 0 wait for cc";
1364 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
1365 		return "disable and wait for CSTS.RDY = 0";
1366 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
1367 		return "disable and wait for CSTS.RDY = 0 reg";
1368 	case NVME_CTRLR_STATE_DISABLED:
1369 		return "controller is disabled";
1370 	case NVME_CTRLR_STATE_ENABLE:
1371 		return "enable controller by writing CC.EN = 1";
1372 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
1373 		return "enable controller by writing CC.EN = 1 reg";
1374 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
1375 		return "wait for CSTS.RDY = 1";
1376 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1377 		return "wait for CSTS.RDY = 1 reg";
1378 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
1379 		return "reset admin queue";
1380 	case NVME_CTRLR_STATE_IDENTIFY:
1381 		return "identify controller";
1382 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
1383 		return "wait for identify controller";
1384 	case NVME_CTRLR_STATE_CONFIGURE_AER:
1385 		return "configure AER";
1386 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
1387 		return "wait for configure aer";
1388 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
1389 		return "set keep alive timeout";
1390 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
1391 		return "wait for set keep alive timeout";
1392 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
1393 		return "identify controller iocs specific";
1394 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
1395 		return "wait for identify controller iocs specific";
1396 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
1397 		return "get zns cmd and effects log page";
1398 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
1399 		return "wait for get zns cmd and effects log page";
1400 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
1401 		return "set number of queues";
1402 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
1403 		return "wait for set number of queues";
1404 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
1405 		return "identify active ns";
1406 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
1407 		return "wait for identify active ns";
1408 	case NVME_CTRLR_STATE_IDENTIFY_NS:
1409 		return "identify ns";
1410 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
1411 		return "wait for identify ns";
1412 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
1413 		return "identify namespace id descriptors";
1414 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
1415 		return "wait for identify namespace id descriptors";
1416 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
1417 		return "identify ns iocs specific";
1418 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
1419 		return "wait for identify ns iocs specific";
1420 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
1421 		return "set supported log pages";
1422 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
1423 		return "set supported INTEL log pages";
1424 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
1425 		return "wait for supported INTEL log pages";
1426 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
1427 		return "set supported features";
1428 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
1429 		return "set doorbell buffer config";
1430 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
1431 		return "wait for doorbell buffer config";
1432 	case NVME_CTRLR_STATE_SET_HOST_ID:
1433 		return "set host ID";
1434 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
1435 		return "wait for set host ID";
1436 	case NVME_CTRLR_STATE_TRANSPORT_READY:
1437 		return "transport ready";
1438 	case NVME_CTRLR_STATE_READY:
1439 		return "ready";
1440 	case NVME_CTRLR_STATE_ERROR:
1441 		return "error";
1442 	case NVME_CTRLR_STATE_DISCONNECTED:
1443 		return "disconnected";
1444 	}
1445 	return "unknown";
1446 };
1447 
1448 static void
1449 _nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1450 		      uint64_t timeout_in_ms, bool quiet)
1451 {
1452 	uint64_t ticks_per_ms, timeout_in_ticks, now_ticks;
1453 
1454 	ctrlr->state = state;
1455 	if (timeout_in_ms == NVME_TIMEOUT_KEEP_EXISTING) {
1456 		if (!quiet) {
1457 			NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (keeping existing timeout)\n",
1458 					    nvme_ctrlr_state_string(ctrlr->state));
1459 		}
1460 		return;
1461 	}
1462 
1463 	if (timeout_in_ms == NVME_TIMEOUT_INFINITE) {
1464 		goto inf;
1465 	}
1466 
1467 	ticks_per_ms = spdk_get_ticks_hz() / 1000;
1468 	if (timeout_in_ms > UINT64_MAX / ticks_per_ms) {
1469 		NVME_CTRLR_ERRLOG(ctrlr,
1470 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1471 		goto inf;
1472 	}
1473 
1474 	now_ticks = spdk_get_ticks();
1475 	timeout_in_ticks = timeout_in_ms * ticks_per_ms;
1476 	if (timeout_in_ticks > UINT64_MAX - now_ticks) {
1477 		NVME_CTRLR_ERRLOG(ctrlr,
1478 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1479 		goto inf;
1480 	}
1481 
1482 	ctrlr->state_timeout_tsc = timeout_in_ticks + now_ticks;
1483 	if (!quiet) {
1484 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (timeout %" PRIu64 " ms)\n",
1485 				    nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms);
1486 	}
1487 	return;
1488 inf:
1489 	if (!quiet) {
1490 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (no timeout)\n",
1491 				    nvme_ctrlr_state_string(ctrlr->state));
1492 	}
1493 	ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE;
1494 }
1495 
1496 static void
1497 nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1498 		     uint64_t timeout_in_ms)
1499 {
1500 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, false);
1501 }
1502 
1503 static void
1504 nvme_ctrlr_set_state_quiet(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1505 			   uint64_t timeout_in_ms)
1506 {
1507 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, true);
1508 }
1509 
1510 static void
1511 nvme_ctrlr_free_zns_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1512 {
1513 	spdk_free(ctrlr->cdata_zns);
1514 	ctrlr->cdata_zns = NULL;
1515 }
1516 
1517 static void
1518 nvme_ctrlr_free_iocs_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1519 {
1520 	nvme_ctrlr_free_zns_specific_data(ctrlr);
1521 }
1522 
1523 static void
1524 nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr)
1525 {
1526 	if (ctrlr->shadow_doorbell) {
1527 		spdk_free(ctrlr->shadow_doorbell);
1528 		ctrlr->shadow_doorbell = NULL;
1529 	}
1530 
1531 	if (ctrlr->eventidx) {
1532 		spdk_free(ctrlr->eventidx);
1533 		ctrlr->eventidx = NULL;
1534 	}
1535 }
1536 
1537 static void
1538 nvme_ctrlr_set_doorbell_buffer_config_done(void *arg, const struct spdk_nvme_cpl *cpl)
1539 {
1540 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1541 
1542 	if (spdk_nvme_cpl_is_error(cpl)) {
1543 		NVME_CTRLR_WARNLOG(ctrlr, "Doorbell buffer config failed\n");
1544 	} else {
1545 		NVME_CTRLR_INFOLOG(ctrlr, "Doorbell buffer config enabled\n");
1546 	}
1547 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1548 			     ctrlr->opts.admin_timeout_ms);
1549 }
1550 
1551 static int
1552 nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr)
1553 {
1554 	int rc = 0;
1555 	uint64_t prp1, prp2, len;
1556 
1557 	if (!ctrlr->cdata.oacs.doorbell_buffer_config) {
1558 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1559 				     ctrlr->opts.admin_timeout_ms);
1560 		return 0;
1561 	}
1562 
1563 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
1564 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1565 				     ctrlr->opts.admin_timeout_ms);
1566 		return 0;
1567 	}
1568 
1569 	/* only 1 page size for doorbell buffer */
1570 	ctrlr->shadow_doorbell = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1571 					      NULL, SPDK_ENV_LCORE_ID_ANY,
1572 					      SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1573 	if (ctrlr->shadow_doorbell == NULL) {
1574 		rc = -ENOMEM;
1575 		goto error;
1576 	}
1577 
1578 	len = ctrlr->page_size;
1579 	prp1 = spdk_vtophys(ctrlr->shadow_doorbell, &len);
1580 	if (prp1 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1581 		rc = -EFAULT;
1582 		goto error;
1583 	}
1584 
1585 	ctrlr->eventidx = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1586 				       NULL, SPDK_ENV_LCORE_ID_ANY,
1587 				       SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1588 	if (ctrlr->eventidx == NULL) {
1589 		rc = -ENOMEM;
1590 		goto error;
1591 	}
1592 
1593 	len = ctrlr->page_size;
1594 	prp2 = spdk_vtophys(ctrlr->eventidx, &len);
1595 	if (prp2 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1596 		rc = -EFAULT;
1597 		goto error;
1598 	}
1599 
1600 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG,
1601 			     ctrlr->opts.admin_timeout_ms);
1602 
1603 	rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2,
1604 			nvme_ctrlr_set_doorbell_buffer_config_done, ctrlr);
1605 	if (rc != 0) {
1606 		goto error;
1607 	}
1608 
1609 	return 0;
1610 
1611 error:
1612 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1613 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1614 	return rc;
1615 }
1616 
1617 void
1618 nvme_ctrlr_abort_queued_aborts(struct spdk_nvme_ctrlr *ctrlr)
1619 {
1620 	struct nvme_request	*req, *tmp;
1621 	struct spdk_nvme_cpl	cpl = {};
1622 
1623 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
1624 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
1625 
1626 	STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) {
1627 		STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq);
1628 		ctrlr->outstanding_aborts++;
1629 
1630 		nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, &cpl);
1631 	}
1632 }
1633 
1634 static int
1635 nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1636 {
1637 	if (ctrlr->is_resetting || ctrlr->is_removed) {
1638 		/*
1639 		 * Controller is already resetting or has been removed. Return
1640 		 *  immediately since there is no need to kick off another
1641 		 *  reset in these cases.
1642 		 */
1643 		return ctrlr->is_resetting ? -EBUSY : -ENXIO;
1644 	}
1645 
1646 	ctrlr->is_resetting = true;
1647 	ctrlr->is_failed = false;
1648 	ctrlr->is_disconnecting = true;
1649 	ctrlr->prepare_for_reset = true;
1650 
1651 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting controller\n");
1652 
1653 	/* Disable keep-alive, it'll be re-enabled as part of the init process */
1654 	ctrlr->keep_alive_interval_ticks = 0;
1655 
1656 	/* Abort all of the queued abort requests */
1657 	nvme_ctrlr_abort_queued_aborts(ctrlr);
1658 
1659 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
1660 
1661 	ctrlr->adminq->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1662 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1663 
1664 	return 0;
1665 }
1666 
1667 static void
1668 nvme_ctrlr_disconnect_done(struct spdk_nvme_ctrlr *ctrlr)
1669 {
1670 	assert(ctrlr->is_failed == false);
1671 	ctrlr->is_disconnecting = false;
1672 
1673 	/* Doorbell buffer config is invalid during reset */
1674 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1675 
1676 	/* I/O Command Set Specific Identify Controller data is invalidated during reset */
1677 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
1678 
1679 	spdk_bit_array_free(&ctrlr->free_io_qids);
1680 
1681 	/* Set the state back to DISCONNECTED to cause a full hardware reset. */
1682 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISCONNECTED, NVME_TIMEOUT_INFINITE);
1683 }
1684 
1685 int
1686 spdk_nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1687 {
1688 	int rc;
1689 
1690 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1691 	rc = nvme_ctrlr_disconnect(ctrlr);
1692 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1693 
1694 	return rc;
1695 }
1696 
1697 void
1698 spdk_nvme_ctrlr_reconnect_async(struct spdk_nvme_ctrlr *ctrlr)
1699 {
1700 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1701 
1702 	ctrlr->prepare_for_reset = false;
1703 
1704 	/* Set the state back to INIT to cause a full hardware reset. */
1705 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
1706 
1707 	/* Return without releasing ctrlr_lock. ctrlr_lock will be released when
1708 	 * spdk_nvme_ctrlr_reset_poll_async() returns 0.
1709 	 */
1710 }
1711 
1712 int
1713 nvme_ctrlr_reinitialize_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1714 {
1715 	bool async;
1716 	int rc;
1717 
1718 	if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc ||
1719 	    spdk_nvme_ctrlr_is_fabrics(ctrlr) || nvme_qpair_is_admin_queue(qpair)) {
1720 		assert(false);
1721 		return -EINVAL;
1722 	}
1723 
1724 	/* Force a synchronous connect. */
1725 	async = qpair->async;
1726 	qpair->async = false;
1727 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
1728 	qpair->async = async;
1729 
1730 	if (rc != 0) {
1731 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1732 	}
1733 
1734 	return rc;
1735 }
1736 
1737 /**
1738  * This function will be called when the controller is being reinitialized.
1739  * Note: the ctrlr_lock must be held when calling this function.
1740  */
1741 int
1742 spdk_nvme_ctrlr_reconnect_poll_async(struct spdk_nvme_ctrlr *ctrlr)
1743 {
1744 	struct spdk_nvme_ns *ns, *tmp_ns;
1745 	struct spdk_nvme_qpair	*qpair;
1746 	int rc = 0, rc_tmp = 0;
1747 
1748 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1749 		NVME_CTRLR_ERRLOG(ctrlr, "controller reinitialization failed\n");
1750 		rc = -1;
1751 	}
1752 	if (ctrlr->state != NVME_CTRLR_STATE_READY && rc != -1) {
1753 		return -EAGAIN;
1754 	}
1755 
1756 	/*
1757 	 * For non-fabrics controllers, the memory locations of the transport qpair
1758 	 * don't change when the controller is reset. They simply need to be
1759 	 * re-enabled with admin commands to the controller. For fabric
1760 	 * controllers we need to disconnect and reconnect the qpair on its
1761 	 * own thread outside of the context of the reset.
1762 	 */
1763 	if (rc == 0 && !spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
1764 		/* Reinitialize qpairs */
1765 		TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1766 			/* Always clear the qid bit here, even for a foreign qpair. We need
1767 			 * to make sure another process doesn't get the chance to grab that
1768 			 * qid.
1769 			 */
1770 			assert(spdk_bit_array_get(ctrlr->free_io_qids, qpair->id));
1771 			spdk_bit_array_clear(ctrlr->free_io_qids, qpair->id);
1772 			if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc) {
1773 				/*
1774 				 * We cannot reinitialize a foreign qpair. The qpair's owning
1775 				 * process will take care of it. Set failure reason to FAILURE_RESET
1776 				 * to ensure that happens.
1777 				 */
1778 				qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_RESET;
1779 				continue;
1780 			}
1781 			rc_tmp = nvme_ctrlr_reinitialize_io_qpair(ctrlr, qpair);
1782 			if (rc_tmp != 0) {
1783 				rc = rc_tmp;
1784 			}
1785 		}
1786 	}
1787 
1788 	/*
1789 	 * Take this opportunity to remove inactive namespaces. During a reset namespace
1790 	 * handles can be invalidated.
1791 	 */
1792 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
1793 		if (!ns->active) {
1794 			RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
1795 			spdk_free(ns);
1796 		}
1797 	}
1798 
1799 	if (rc) {
1800 		nvme_ctrlr_fail(ctrlr, false);
1801 	}
1802 	ctrlr->is_resetting = false;
1803 
1804 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1805 
1806 	if (!ctrlr->cdata.oaes.ns_attribute_notices) {
1807 		/*
1808 		 * If controller doesn't support ns_attribute_notices and
1809 		 * namespace attributes change (e.g. number of namespaces)
1810 		 * we need to update system handling device reset.
1811 		 */
1812 		nvme_io_msg_ctrlr_update(ctrlr);
1813 	}
1814 
1815 	return rc;
1816 }
1817 
1818 /*
1819  * For PCIe transport, spdk_nvme_ctrlr_disconnect() will do a Controller Level Reset
1820  * (Change CC.EN from 1 to 0) as a operation to disconnect the admin qpair.
1821  * The following two functions are added to do a Controller Level Reset. They have
1822  * to be called under the nvme controller's lock.
1823  */
1824 void
1825 nvme_ctrlr_disable(struct spdk_nvme_ctrlr *ctrlr)
1826 {
1827 	assert(ctrlr->is_disconnecting == true);
1828 
1829 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
1830 }
1831 
1832 int
1833 nvme_ctrlr_disable_poll(struct spdk_nvme_ctrlr *ctrlr)
1834 {
1835 	int rc = 0;
1836 
1837 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1838 		NVME_CTRLR_ERRLOG(ctrlr, "failed to disable controller\n");
1839 		rc = -1;
1840 	}
1841 
1842 	if (ctrlr->state != NVME_CTRLR_STATE_DISABLED && rc != -1) {
1843 		return -EAGAIN;
1844 	}
1845 
1846 	return rc;
1847 }
1848 
1849 static void
1850 nvme_ctrlr_fail_io_qpairs(struct spdk_nvme_ctrlr *ctrlr)
1851 {
1852 	struct spdk_nvme_qpair	*qpair;
1853 
1854 	TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1855 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1856 	}
1857 }
1858 
1859 int
1860 spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr)
1861 {
1862 	int rc;
1863 
1864 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1865 
1866 	rc = nvme_ctrlr_disconnect(ctrlr);
1867 	if (rc == 0) {
1868 		nvme_ctrlr_fail_io_qpairs(ctrlr);
1869 	}
1870 
1871 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1872 
1873 	if (rc != 0) {
1874 		if (rc == -EBUSY) {
1875 			rc = 0;
1876 		}
1877 		return rc;
1878 	}
1879 
1880 	while (1) {
1881 		rc = spdk_nvme_ctrlr_process_admin_completions(ctrlr);
1882 		if (rc == -ENXIO) {
1883 			break;
1884 		}
1885 	}
1886 
1887 	spdk_nvme_ctrlr_reconnect_async(ctrlr);
1888 
1889 	while (true) {
1890 		rc = spdk_nvme_ctrlr_reconnect_poll_async(ctrlr);
1891 		if (rc != -EAGAIN) {
1892 			break;
1893 		}
1894 	}
1895 
1896 	return rc;
1897 }
1898 
1899 int
1900 spdk_nvme_ctrlr_reset_subsystem(struct spdk_nvme_ctrlr *ctrlr)
1901 {
1902 	union spdk_nvme_cap_register cap;
1903 	int rc = 0;
1904 
1905 	cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr);
1906 	if (cap.bits.nssrs == 0) {
1907 		NVME_CTRLR_WARNLOG(ctrlr, "subsystem reset is not supported\n");
1908 		return -ENOTSUP;
1909 	}
1910 
1911 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting subsystem\n");
1912 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1913 	ctrlr->is_resetting = true;
1914 	rc = nvme_ctrlr_set_nssr(ctrlr, SPDK_NVME_NSSR_VALUE);
1915 	ctrlr->is_resetting = false;
1916 
1917 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1918 	/*
1919 	 * No more cleanup at this point like in the ctrlr reset. A subsystem reset will cause
1920 	 * a hot remove for PCIe transport. The hot remove handling does all the necessary ctrlr cleanup.
1921 	 */
1922 	return rc;
1923 }
1924 
1925 int
1926 spdk_nvme_ctrlr_set_trid(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_transport_id *trid)
1927 {
1928 	int rc = 0;
1929 
1930 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1931 
1932 	if (ctrlr->is_failed == false) {
1933 		rc = -EPERM;
1934 		goto out;
1935 	}
1936 
1937 	if (trid->trtype != ctrlr->trid.trtype) {
1938 		rc = -EINVAL;
1939 		goto out;
1940 	}
1941 
1942 	if (strncmp(trid->subnqn, ctrlr->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
1943 		rc = -EINVAL;
1944 		goto out;
1945 	}
1946 
1947 	ctrlr->trid = *trid;
1948 
1949 out:
1950 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1951 	return rc;
1952 }
1953 
1954 void
1955 spdk_nvme_ctrlr_set_remove_cb(struct spdk_nvme_ctrlr *ctrlr,
1956 			      spdk_nvme_remove_cb remove_cb, void *remove_ctx)
1957 {
1958 	if (!spdk_process_is_primary()) {
1959 		return;
1960 	}
1961 
1962 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1963 	ctrlr->remove_cb = remove_cb;
1964 	ctrlr->cb_ctx = remove_ctx;
1965 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1966 }
1967 
1968 static void
1969 nvme_ctrlr_identify_done(void *arg, const struct spdk_nvme_cpl *cpl)
1970 {
1971 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1972 
1973 	if (spdk_nvme_cpl_is_error(cpl)) {
1974 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_identify_controller failed!\n");
1975 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1976 		return;
1977 	}
1978 
1979 	/*
1980 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
1981 	 *  controller supports.
1982 	 */
1983 	ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr);
1984 	NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_xfer_size %u\n", ctrlr->max_xfer_size);
1985 	if (ctrlr->cdata.mdts > 0) {
1986 		ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size,
1987 						ctrlr->min_page_size * (1 << ctrlr->cdata.mdts));
1988 		NVME_CTRLR_DEBUGLOG(ctrlr, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size);
1989 	}
1990 
1991 	NVME_CTRLR_DEBUGLOG(ctrlr, "CNTLID 0x%04" PRIx16 "\n", ctrlr->cdata.cntlid);
1992 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
1993 		ctrlr->cntlid = ctrlr->cdata.cntlid;
1994 	} else {
1995 		/*
1996 		 * Fabrics controllers should already have CNTLID from the Connect command.
1997 		 *
1998 		 * If CNTLID from Connect doesn't match CNTLID in the Identify Controller data,
1999 		 * trust the one from Connect.
2000 		 */
2001 		if (ctrlr->cntlid != ctrlr->cdata.cntlid) {
2002 			NVME_CTRLR_DEBUGLOG(ctrlr, "Identify CNTLID 0x%04" PRIx16 " != Connect CNTLID 0x%04" PRIx16 "\n",
2003 					    ctrlr->cdata.cntlid, ctrlr->cntlid);
2004 		}
2005 	}
2006 
2007 	if (ctrlr->cdata.sgls.supported && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
2008 		assert(ctrlr->cdata.sgls.supported != 0x3);
2009 		ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
2010 		if (ctrlr->cdata.sgls.supported == 0x2) {
2011 			ctrlr->flags |= SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT;
2012 		}
2013 
2014 		ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr);
2015 		NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_sges %u\n", ctrlr->max_sges);
2016 	}
2017 
2018 	if (ctrlr->cdata.sgls.metadata_address && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
2019 		ctrlr->flags |= SPDK_NVME_CTRLR_MPTR_SGL_SUPPORTED;
2020 	}
2021 
2022 	if (ctrlr->cdata.oacs.security && !(ctrlr->quirks & NVME_QUIRK_OACS_SECURITY)) {
2023 		ctrlr->flags |= SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED;
2024 	}
2025 
2026 	if (ctrlr->cdata.oacs.directives) {
2027 		ctrlr->flags |= SPDK_NVME_CTRLR_DIRECTIVES_SUPPORTED;
2028 	}
2029 
2030 	NVME_CTRLR_DEBUGLOG(ctrlr, "fuses compare and write: %d\n",
2031 			    ctrlr->cdata.fuses.compare_and_write);
2032 	if (ctrlr->cdata.fuses.compare_and_write) {
2033 		ctrlr->flags |= SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED;
2034 	}
2035 
2036 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
2037 			     ctrlr->opts.admin_timeout_ms);
2038 }
2039 
2040 static int
2041 nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr)
2042 {
2043 	int	rc;
2044 
2045 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY,
2046 			     ctrlr->opts.admin_timeout_ms);
2047 
2048 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, 0,
2049 				     &ctrlr->cdata, sizeof(ctrlr->cdata),
2050 				     nvme_ctrlr_identify_done, ctrlr);
2051 	if (rc != 0) {
2052 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2053 		return rc;
2054 	}
2055 
2056 	return 0;
2057 }
2058 
2059 static void
2060 nvme_ctrlr_get_zns_cmd_and_effects_log_done(void *arg, const struct spdk_nvme_cpl *cpl)
2061 {
2062 	struct spdk_nvme_cmds_and_effect_log_page *log_page;
2063 	struct spdk_nvme_ctrlr *ctrlr = arg;
2064 
2065 	if (spdk_nvme_cpl_is_error(cpl)) {
2066 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_get_zns_cmd_and_effects_log failed!\n");
2067 		spdk_free(ctrlr->tmp_ptr);
2068 		ctrlr->tmp_ptr = NULL;
2069 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2070 		return;
2071 	}
2072 
2073 	log_page = ctrlr->tmp_ptr;
2074 
2075 	if (log_page->io_cmds_supported[SPDK_NVME_OPC_ZONE_APPEND].csupp) {
2076 		ctrlr->flags |= SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2077 	}
2078 	spdk_free(ctrlr->tmp_ptr);
2079 	ctrlr->tmp_ptr = NULL;
2080 
2081 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES, ctrlr->opts.admin_timeout_ms);
2082 }
2083 
2084 static int
2085 nvme_ctrlr_get_zns_cmd_and_effects_log(struct spdk_nvme_ctrlr *ctrlr)
2086 {
2087 	int rc;
2088 
2089 	assert(!ctrlr->tmp_ptr);
2090 	ctrlr->tmp_ptr = spdk_zmalloc(sizeof(struct spdk_nvme_cmds_and_effect_log_page), 64, NULL,
2091 				      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2092 	if (!ctrlr->tmp_ptr) {
2093 		rc = -ENOMEM;
2094 		goto error;
2095 	}
2096 
2097 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG,
2098 			     ctrlr->opts.admin_timeout_ms);
2099 
2100 	rc = spdk_nvme_ctrlr_cmd_get_log_page_ext(ctrlr, SPDK_NVME_LOG_COMMAND_EFFECTS_LOG,
2101 			0, ctrlr->tmp_ptr, sizeof(struct spdk_nvme_cmds_and_effect_log_page),
2102 			0, 0, 0, SPDK_NVME_CSI_ZNS << 24,
2103 			nvme_ctrlr_get_zns_cmd_and_effects_log_done, ctrlr);
2104 	if (rc != 0) {
2105 		goto error;
2106 	}
2107 
2108 	return 0;
2109 
2110 error:
2111 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2112 	spdk_free(ctrlr->tmp_ptr);
2113 	ctrlr->tmp_ptr = NULL;
2114 	return rc;
2115 }
2116 
2117 static void
2118 nvme_ctrlr_identify_zns_specific_done(void *arg, const struct spdk_nvme_cpl *cpl)
2119 {
2120 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2121 
2122 	if (spdk_nvme_cpl_is_error(cpl)) {
2123 		/* no need to print an error, the controller simply does not support ZNS */
2124 		nvme_ctrlr_free_zns_specific_data(ctrlr);
2125 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2126 				     ctrlr->opts.admin_timeout_ms);
2127 		return;
2128 	}
2129 
2130 	/* A zero zasl value means use mdts */
2131 	if (ctrlr->cdata_zns->zasl) {
2132 		uint32_t max_append = ctrlr->min_page_size * (1 << ctrlr->cdata_zns->zasl);
2133 		ctrlr->max_zone_append_size = spdk_min(ctrlr->max_xfer_size, max_append);
2134 	} else {
2135 		ctrlr->max_zone_append_size = ctrlr->max_xfer_size;
2136 	}
2137 
2138 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG,
2139 			     ctrlr->opts.admin_timeout_ms);
2140 }
2141 
2142 /**
2143  * This function will try to fetch the I/O Command Specific Controller data structure for
2144  * each I/O Command Set supported by SPDK.
2145  *
2146  * If an I/O Command Set is not supported by the controller, "Invalid Field in Command"
2147  * will be returned. Since we are fetching in a exploratively way, getting an error back
2148  * from the controller should not be treated as fatal.
2149  *
2150  * I/O Command Sets not supported by SPDK will be skipped (e.g. Key Value Command Set).
2151  *
2152  * I/O Command Sets without a IOCS specific data structure (i.e. a zero-filled IOCS specific
2153  * data structure) will be skipped (e.g. NVM Command Set, Key Value Command Set).
2154  */
2155 static int
2156 nvme_ctrlr_identify_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2157 {
2158 	int	rc;
2159 
2160 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2161 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2162 				     ctrlr->opts.admin_timeout_ms);
2163 		return 0;
2164 	}
2165 
2166 	/*
2167 	 * Since SPDK currently only needs to fetch a single Command Set, keep the code here,
2168 	 * instead of creating multiple NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC substates,
2169 	 * which would require additional functions and complexity for no good reason.
2170 	 */
2171 	assert(!ctrlr->cdata_zns);
2172 	ctrlr->cdata_zns = spdk_zmalloc(sizeof(*ctrlr->cdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
2173 					SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2174 	if (!ctrlr->cdata_zns) {
2175 		rc = -ENOMEM;
2176 		goto error;
2177 	}
2178 
2179 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC,
2180 			     ctrlr->opts.admin_timeout_ms);
2181 
2182 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR_IOCS, 0, 0, SPDK_NVME_CSI_ZNS,
2183 				     ctrlr->cdata_zns, sizeof(*ctrlr->cdata_zns),
2184 				     nvme_ctrlr_identify_zns_specific_done, ctrlr);
2185 	if (rc != 0) {
2186 		goto error;
2187 	}
2188 
2189 	return 0;
2190 
2191 error:
2192 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2193 	nvme_ctrlr_free_zns_specific_data(ctrlr);
2194 	return rc;
2195 }
2196 
2197 enum nvme_active_ns_state {
2198 	NVME_ACTIVE_NS_STATE_IDLE,
2199 	NVME_ACTIVE_NS_STATE_PROCESSING,
2200 	NVME_ACTIVE_NS_STATE_DONE,
2201 	NVME_ACTIVE_NS_STATE_ERROR
2202 };
2203 
2204 typedef void (*nvme_active_ns_ctx_deleter)(struct nvme_active_ns_ctx *);
2205 
2206 struct nvme_active_ns_ctx {
2207 	struct spdk_nvme_ctrlr *ctrlr;
2208 	uint32_t page_count;
2209 	uint32_t next_nsid;
2210 	uint32_t *new_ns_list;
2211 	nvme_active_ns_ctx_deleter deleter;
2212 
2213 	enum nvme_active_ns_state state;
2214 };
2215 
2216 static struct nvme_active_ns_ctx *
2217 nvme_active_ns_ctx_create(struct spdk_nvme_ctrlr *ctrlr, nvme_active_ns_ctx_deleter deleter)
2218 {
2219 	struct nvme_active_ns_ctx *ctx;
2220 	uint32_t *new_ns_list = NULL;
2221 
2222 	ctx = calloc(1, sizeof(*ctx));
2223 	if (!ctx) {
2224 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate nvme_active_ns_ctx!\n");
2225 		return NULL;
2226 	}
2227 
2228 	new_ns_list = spdk_zmalloc(sizeof(struct spdk_nvme_ns_list), ctrlr->page_size,
2229 				   NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_SHARE);
2230 	if (!new_ns_list) {
2231 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate active_ns_list!\n");
2232 		free(ctx);
2233 		return NULL;
2234 	}
2235 
2236 	ctx->page_count = 1;
2237 	ctx->new_ns_list = new_ns_list;
2238 	ctx->ctrlr = ctrlr;
2239 	ctx->deleter = deleter;
2240 
2241 	return ctx;
2242 }
2243 
2244 static void
2245 nvme_active_ns_ctx_destroy(struct nvme_active_ns_ctx *ctx)
2246 {
2247 	spdk_free(ctx->new_ns_list);
2248 	free(ctx);
2249 }
2250 
2251 static int
2252 nvme_ctrlr_destruct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2253 {
2254 	struct spdk_nvme_ns tmp, *ns;
2255 
2256 	assert(ctrlr != NULL);
2257 
2258 	tmp.id = nsid;
2259 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
2260 	if (ns == NULL) {
2261 		return -EINVAL;
2262 	}
2263 
2264 	nvme_ns_destruct(ns);
2265 	ns->active = false;
2266 
2267 	return 0;
2268 }
2269 
2270 static int
2271 nvme_ctrlr_construct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2272 {
2273 	struct spdk_nvme_ns *ns;
2274 
2275 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
2276 		return -EINVAL;
2277 	}
2278 
2279 	/* Namespaces are constructed on demand, so simply request it. */
2280 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2281 	if (ns == NULL) {
2282 		return -ENOMEM;
2283 	}
2284 
2285 	ns->active = true;
2286 
2287 	return 0;
2288 }
2289 
2290 static void
2291 nvme_ctrlr_identify_active_ns_swap(struct spdk_nvme_ctrlr *ctrlr, uint32_t *new_ns_list,
2292 				   size_t max_entries)
2293 {
2294 	uint32_t active_ns_count = 0;
2295 	size_t i;
2296 	uint32_t nsid;
2297 	struct spdk_nvme_ns *ns, *tmp_ns;
2298 	int rc;
2299 
2300 	/* First, remove namespaces that no longer exist */
2301 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
2302 		nsid = new_ns_list[0];
2303 		active_ns_count = 0;
2304 		while (nsid != 0) {
2305 			if (nsid == ns->id) {
2306 				break;
2307 			}
2308 
2309 			nsid = new_ns_list[active_ns_count++];
2310 		}
2311 
2312 		if (nsid != ns->id) {
2313 			/* Did not find this namespace id in the new list. */
2314 			NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was removed\n", ns->id);
2315 			nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
2316 		}
2317 	}
2318 
2319 	/* Next, add new namespaces */
2320 	active_ns_count = 0;
2321 	for (i = 0; i < max_entries; i++) {
2322 		nsid = new_ns_list[active_ns_count];
2323 
2324 		if (nsid == 0) {
2325 			break;
2326 		}
2327 
2328 		/* If the namespace already exists, this will not construct it a second time. */
2329 		rc = nvme_ctrlr_construct_namespace(ctrlr, nsid);
2330 		if (rc != 0) {
2331 			/* We can't easily handle a failure here. But just move on. */
2332 			assert(false);
2333 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to allocate a namespace object.\n");
2334 			continue;
2335 		}
2336 
2337 		active_ns_count++;
2338 	}
2339 
2340 	ctrlr->active_ns_count = active_ns_count;
2341 }
2342 
2343 static void
2344 nvme_ctrlr_identify_active_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2345 {
2346 	struct nvme_active_ns_ctx *ctx = arg;
2347 	uint32_t *new_ns_list = NULL;
2348 
2349 	if (spdk_nvme_cpl_is_error(cpl)) {
2350 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2351 		goto out;
2352 	}
2353 
2354 	ctx->next_nsid = ctx->new_ns_list[1024 * ctx->page_count - 1];
2355 	if (ctx->next_nsid == 0) {
2356 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2357 		goto out;
2358 	}
2359 
2360 	ctx->page_count++;
2361 	new_ns_list = spdk_realloc(ctx->new_ns_list,
2362 				   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2363 				   ctx->ctrlr->page_size);
2364 	if (!new_ns_list) {
2365 		SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2366 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2367 		goto out;
2368 	}
2369 
2370 	ctx->new_ns_list = new_ns_list;
2371 	nvme_ctrlr_identify_active_ns_async(ctx);
2372 	return;
2373 
2374 out:
2375 	if (ctx->deleter) {
2376 		ctx->deleter(ctx);
2377 	}
2378 }
2379 
2380 static void
2381 nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx)
2382 {
2383 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2384 	uint32_t i;
2385 	int rc;
2386 
2387 	if (ctrlr->cdata.nn == 0) {
2388 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2389 		goto out;
2390 	}
2391 
2392 	assert(ctx->new_ns_list != NULL);
2393 
2394 	/*
2395 	 * If controller doesn't support active ns list CNS 0x02 dummy up
2396 	 * an active ns list, i.e. all namespaces report as active
2397 	 */
2398 	if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 1, 0) || ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS) {
2399 		uint32_t *new_ns_list;
2400 
2401 		/*
2402 		 * Active NS list must always end with zero element.
2403 		 * So, we allocate for cdata.nn+1.
2404 		 */
2405 		ctx->page_count = spdk_divide_round_up(ctrlr->cdata.nn + 1,
2406 						       sizeof(struct spdk_nvme_ns_list) / sizeof(new_ns_list[0]));
2407 		new_ns_list = spdk_realloc(ctx->new_ns_list,
2408 					   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2409 					   ctx->ctrlr->page_size);
2410 		if (!new_ns_list) {
2411 			SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2412 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2413 			goto out;
2414 		}
2415 
2416 		ctx->new_ns_list = new_ns_list;
2417 		ctx->new_ns_list[ctrlr->cdata.nn] = 0;
2418 		for (i = 0; i < ctrlr->cdata.nn; i++) {
2419 			ctx->new_ns_list[i] = i + 1;
2420 		}
2421 
2422 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2423 		goto out;
2424 	}
2425 
2426 	ctx->state = NVME_ACTIVE_NS_STATE_PROCESSING;
2427 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, ctx->next_nsid, 0,
2428 				     &ctx->new_ns_list[1024 * (ctx->page_count - 1)], sizeof(struct spdk_nvme_ns_list),
2429 				     nvme_ctrlr_identify_active_ns_async_done, ctx);
2430 	if (rc != 0) {
2431 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2432 		goto out;
2433 	}
2434 
2435 	return;
2436 
2437 out:
2438 	if (ctx->deleter) {
2439 		ctx->deleter(ctx);
2440 	}
2441 }
2442 
2443 static void
2444 _nvme_active_ns_ctx_deleter(struct nvme_active_ns_ctx *ctx)
2445 {
2446 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2447 	struct spdk_nvme_ns *ns;
2448 
2449 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2450 		nvme_active_ns_ctx_destroy(ctx);
2451 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2452 		return;
2453 	}
2454 
2455 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2456 
2457 	RB_FOREACH(ns, nvme_ns_tree, &ctrlr->ns) {
2458 		nvme_ns_free_iocs_specific_data(ns);
2459 	}
2460 
2461 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2462 	nvme_active_ns_ctx_destroy(ctx);
2463 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS, ctrlr->opts.admin_timeout_ms);
2464 }
2465 
2466 static void
2467 _nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2468 {
2469 	struct nvme_active_ns_ctx *ctx;
2470 
2471 	ctx = nvme_active_ns_ctx_create(ctrlr, _nvme_active_ns_ctx_deleter);
2472 	if (!ctx) {
2473 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2474 		return;
2475 	}
2476 
2477 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS,
2478 			     ctrlr->opts.admin_timeout_ms);
2479 	nvme_ctrlr_identify_active_ns_async(ctx);
2480 }
2481 
2482 int
2483 nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2484 {
2485 	struct nvme_active_ns_ctx *ctx;
2486 	int rc;
2487 
2488 	ctx = nvme_active_ns_ctx_create(ctrlr, NULL);
2489 	if (!ctx) {
2490 		return -ENOMEM;
2491 	}
2492 
2493 	nvme_ctrlr_identify_active_ns_async(ctx);
2494 	while (ctx->state == NVME_ACTIVE_NS_STATE_PROCESSING) {
2495 		rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2496 		if (rc < 0) {
2497 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2498 			break;
2499 		}
2500 	}
2501 
2502 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2503 		nvme_active_ns_ctx_destroy(ctx);
2504 		return -ENXIO;
2505 	}
2506 
2507 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2508 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2509 	nvme_active_ns_ctx_destroy(ctx);
2510 
2511 	return 0;
2512 }
2513 
2514 static void
2515 nvme_ctrlr_identify_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2516 {
2517 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2518 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2519 	uint32_t nsid;
2520 	int rc;
2521 
2522 	if (spdk_nvme_cpl_is_error(cpl)) {
2523 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2524 		return;
2525 	}
2526 
2527 	nvme_ns_set_identify_data(ns);
2528 
2529 	/* move on to the next active NS */
2530 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2531 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2532 	if (ns == NULL) {
2533 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2534 				     ctrlr->opts.admin_timeout_ms);
2535 		return;
2536 	}
2537 	ns->ctrlr = ctrlr;
2538 	ns->id = nsid;
2539 
2540 	rc = nvme_ctrlr_identify_ns_async(ns);
2541 	if (rc) {
2542 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2543 	}
2544 }
2545 
2546 static int
2547 nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns)
2548 {
2549 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2550 	struct spdk_nvme_ns_data *nsdata;
2551 
2552 	nsdata = &ns->nsdata;
2553 
2554 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS,
2555 			     ctrlr->opts.admin_timeout_ms);
2556 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS, 0, ns->id, 0,
2557 				       nsdata, sizeof(*nsdata),
2558 				       nvme_ctrlr_identify_ns_async_done, ns);
2559 }
2560 
2561 static int
2562 nvme_ctrlr_identify_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2563 {
2564 	uint32_t nsid;
2565 	struct spdk_nvme_ns *ns;
2566 	int rc;
2567 
2568 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2569 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2570 	if (ns == NULL) {
2571 		/* No active NS, move on to the next state */
2572 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2573 				     ctrlr->opts.admin_timeout_ms);
2574 		return 0;
2575 	}
2576 
2577 	ns->ctrlr = ctrlr;
2578 	ns->id = nsid;
2579 
2580 	rc = nvme_ctrlr_identify_ns_async(ns);
2581 	if (rc) {
2582 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2583 	}
2584 
2585 	return rc;
2586 }
2587 
2588 static int
2589 nvme_ctrlr_identify_namespaces_iocs_specific_next(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
2590 {
2591 	uint32_t nsid;
2592 	struct spdk_nvme_ns *ns;
2593 	int rc;
2594 
2595 	if (!prev_nsid) {
2596 		nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2597 	} else {
2598 		/* move on to the next active NS */
2599 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, prev_nsid);
2600 	}
2601 
2602 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2603 	if (ns == NULL) {
2604 		/* No first/next active NS, move on to the next state */
2605 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2606 				     ctrlr->opts.admin_timeout_ms);
2607 		return 0;
2608 	}
2609 
2610 	/* loop until we find a ns which has (supported) iocs specific data */
2611 	while (!nvme_ns_has_supported_iocs_specific_data(ns)) {
2612 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2613 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2614 		if (ns == NULL) {
2615 			/* no namespace with (supported) iocs specific data found */
2616 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2617 					     ctrlr->opts.admin_timeout_ms);
2618 			return 0;
2619 		}
2620 	}
2621 
2622 	rc = nvme_ctrlr_identify_ns_iocs_specific_async(ns);
2623 	if (rc) {
2624 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2625 	}
2626 
2627 	return rc;
2628 }
2629 
2630 static void
2631 nvme_ctrlr_identify_ns_zns_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2632 {
2633 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2634 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2635 
2636 	if (spdk_nvme_cpl_is_error(cpl)) {
2637 		nvme_ns_free_zns_specific_data(ns);
2638 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2639 		return;
2640 	}
2641 
2642 	nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2643 }
2644 
2645 static int
2646 nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns)
2647 {
2648 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2649 	int rc;
2650 
2651 	switch (ns->csi) {
2652 	case SPDK_NVME_CSI_ZNS:
2653 		break;
2654 	default:
2655 		/*
2656 		 * This switch must handle all cases for which
2657 		 * nvme_ns_has_supported_iocs_specific_data() returns true,
2658 		 * other cases should never happen.
2659 		 */
2660 		assert(0);
2661 	}
2662 
2663 	assert(!ns->nsdata_zns);
2664 	ns->nsdata_zns = spdk_zmalloc(sizeof(*ns->nsdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
2665 				      SPDK_MALLOC_SHARE);
2666 	if (!ns->nsdata_zns) {
2667 		return -ENOMEM;
2668 	}
2669 
2670 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2671 			     ctrlr->opts.admin_timeout_ms);
2672 	rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2673 				     ns->nsdata_zns, sizeof(*ns->nsdata_zns),
2674 				     nvme_ctrlr_identify_ns_zns_specific_async_done, ns);
2675 	if (rc) {
2676 		nvme_ns_free_zns_specific_data(ns);
2677 	}
2678 
2679 	return rc;
2680 }
2681 
2682 static int
2683 nvme_ctrlr_identify_namespaces_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2684 {
2685 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2686 		/* Multi IOCS not supported/enabled, move on to the next state */
2687 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2688 				     ctrlr->opts.admin_timeout_ms);
2689 		return 0;
2690 	}
2691 
2692 	return nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, 0);
2693 }
2694 
2695 static void
2696 nvme_ctrlr_identify_id_desc_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2697 {
2698 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2699 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2700 	uint32_t nsid;
2701 	int rc;
2702 
2703 	if (spdk_nvme_cpl_is_error(cpl)) {
2704 		/*
2705 		 * Many controllers claim to be compatible with NVMe 1.3, however,
2706 		 * they do not implement NS ID Desc List. Therefore, instead of setting
2707 		 * the state to NVME_CTRLR_STATE_ERROR, silently ignore the completion
2708 		 * error and move on to the next state.
2709 		 *
2710 		 * The proper way is to create a new quirk for controllers that violate
2711 		 * the NVMe 1.3 spec by not supporting NS ID Desc List.
2712 		 * (Re-using the NVME_QUIRK_IDENTIFY_CNS quirk is not possible, since
2713 		 * it is too generic and was added in order to handle controllers that
2714 		 * violate the NVMe 1.1 spec by not supporting ACTIVE LIST).
2715 		 */
2716 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2717 				     ctrlr->opts.admin_timeout_ms);
2718 		return;
2719 	}
2720 
2721 	nvme_ns_set_id_desc_list_data(ns);
2722 
2723 	/* move on to the next active NS */
2724 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2725 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2726 	if (ns == NULL) {
2727 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2728 				     ctrlr->opts.admin_timeout_ms);
2729 		return;
2730 	}
2731 
2732 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2733 	if (rc) {
2734 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2735 	}
2736 }
2737 
2738 static int
2739 nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns)
2740 {
2741 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2742 
2743 	memset(ns->id_desc_list, 0, sizeof(ns->id_desc_list));
2744 
2745 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS,
2746 			     ctrlr->opts.admin_timeout_ms);
2747 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_ID_DESCRIPTOR_LIST,
2748 				       0, ns->id, 0, ns->id_desc_list, sizeof(ns->id_desc_list),
2749 				       nvme_ctrlr_identify_id_desc_async_done, ns);
2750 }
2751 
2752 static int
2753 nvme_ctrlr_identify_id_desc_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2754 {
2755 	uint32_t nsid;
2756 	struct spdk_nvme_ns *ns;
2757 	int rc;
2758 
2759 	if ((ctrlr->vs.raw < SPDK_NVME_VERSION(1, 3, 0) &&
2760 	     !(ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS)) ||
2761 	    (ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2762 		NVME_CTRLR_DEBUGLOG(ctrlr, "Version < 1.3; not attempting to retrieve NS ID Descriptor List\n");
2763 		/* NS ID Desc List not supported, move on to the next state */
2764 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2765 				     ctrlr->opts.admin_timeout_ms);
2766 		return 0;
2767 	}
2768 
2769 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2770 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2771 	if (ns == NULL) {
2772 		/* No active NS, move on to the next state */
2773 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2774 				     ctrlr->opts.admin_timeout_ms);
2775 		return 0;
2776 	}
2777 
2778 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2779 	if (rc) {
2780 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2781 	}
2782 
2783 	return rc;
2784 }
2785 
2786 static void
2787 nvme_ctrlr_update_nvmf_ioccsz(struct spdk_nvme_ctrlr *ctrlr)
2788 {
2789 	if (spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
2790 		if (ctrlr->cdata.nvmf_specific.ioccsz < 4) {
2791 			NVME_CTRLR_ERRLOG(ctrlr, "Incorrect IOCCSZ %u, the minimum value should be 4\n",
2792 					  ctrlr->cdata.nvmf_specific.ioccsz);
2793 			ctrlr->cdata.nvmf_specific.ioccsz = 4;
2794 			assert(0);
2795 		}
2796 		ctrlr->ioccsz_bytes = ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd);
2797 		ctrlr->icdoff = ctrlr->cdata.nvmf_specific.icdoff;
2798 	}
2799 }
2800 
2801 static void
2802 nvme_ctrlr_set_num_queues_done(void *arg, const struct spdk_nvme_cpl *cpl)
2803 {
2804 	uint32_t cq_allocated, sq_allocated, min_allocated, i;
2805 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2806 
2807 	if (spdk_nvme_cpl_is_error(cpl)) {
2808 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Number of Queues failed!\n");
2809 		ctrlr->opts.num_io_queues = 0;
2810 	} else {
2811 		/*
2812 		 * Data in cdw0 is 0-based.
2813 		 * Lower 16-bits indicate number of submission queues allocated.
2814 		 * Upper 16-bits indicate number of completion queues allocated.
2815 		 */
2816 		sq_allocated = (cpl->cdw0 & 0xFFFF) + 1;
2817 		cq_allocated = (cpl->cdw0 >> 16) + 1;
2818 
2819 		/*
2820 		 * For 1:1 queue mapping, set number of allocated queues to be minimum of
2821 		 * submission and completion queues.
2822 		 */
2823 		min_allocated = spdk_min(sq_allocated, cq_allocated);
2824 
2825 		/* Set number of queues to be minimum of requested and actually allocated. */
2826 		ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues);
2827 	}
2828 
2829 	ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1);
2830 	if (ctrlr->free_io_qids == NULL) {
2831 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2832 		return;
2833 	}
2834 
2835 	/* Initialize list of free I/O queue IDs. QID 0 is the admin queue (implicitly allocated). */
2836 	for (i = 1; i <= ctrlr->opts.num_io_queues; i++) {
2837 		spdk_nvme_ctrlr_free_qid(ctrlr, i);
2838 	}
2839 
2840 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS,
2841 			     ctrlr->opts.admin_timeout_ms);
2842 }
2843 
2844 static int
2845 nvme_ctrlr_set_num_queues(struct spdk_nvme_ctrlr *ctrlr)
2846 {
2847 	int rc;
2848 
2849 	if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) {
2850 		NVME_CTRLR_NOTICELOG(ctrlr, "Limiting requested num_io_queues %u to max %d\n",
2851 				     ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES);
2852 		ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES;
2853 	} else if (ctrlr->opts.num_io_queues < 1) {
2854 		NVME_CTRLR_NOTICELOG(ctrlr, "Requested num_io_queues 0, increasing to 1\n");
2855 		ctrlr->opts.num_io_queues = 1;
2856 	}
2857 
2858 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES,
2859 			     ctrlr->opts.admin_timeout_ms);
2860 
2861 	rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues,
2862 					   nvme_ctrlr_set_num_queues_done, ctrlr);
2863 	if (rc != 0) {
2864 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2865 		return rc;
2866 	}
2867 
2868 	return 0;
2869 }
2870 
2871 static void
2872 nvme_ctrlr_set_keep_alive_timeout_done(void *arg, const struct spdk_nvme_cpl *cpl)
2873 {
2874 	uint32_t keep_alive_interval_us;
2875 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2876 
2877 	if (spdk_nvme_cpl_is_error(cpl)) {
2878 		if ((cpl->status.sct == SPDK_NVME_SCT_GENERIC) &&
2879 		    (cpl->status.sc == SPDK_NVME_SC_INVALID_FIELD)) {
2880 			NVME_CTRLR_DEBUGLOG(ctrlr, "Keep alive timeout Get Feature is not supported\n");
2881 		} else {
2882 			NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: SC %x SCT %x\n",
2883 					  cpl->status.sc, cpl->status.sct);
2884 			ctrlr->opts.keep_alive_timeout_ms = 0;
2885 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2886 			return;
2887 		}
2888 	} else {
2889 		if (ctrlr->opts.keep_alive_timeout_ms != cpl->cdw0) {
2890 			NVME_CTRLR_DEBUGLOG(ctrlr, "Controller adjusted keep alive timeout to %u ms\n",
2891 					    cpl->cdw0);
2892 		}
2893 
2894 		ctrlr->opts.keep_alive_timeout_ms = cpl->cdw0;
2895 	}
2896 
2897 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
2898 		ctrlr->keep_alive_interval_ticks = 0;
2899 	} else {
2900 		keep_alive_interval_us = ctrlr->opts.keep_alive_timeout_ms * 1000 / 2;
2901 
2902 		NVME_CTRLR_DEBUGLOG(ctrlr, "Sending keep alive every %u us\n", keep_alive_interval_us);
2903 
2904 		ctrlr->keep_alive_interval_ticks = (keep_alive_interval_us * spdk_get_ticks_hz()) /
2905 						   UINT64_C(1000000);
2906 
2907 		/* Schedule the first Keep Alive to be sent as soon as possible. */
2908 		ctrlr->next_keep_alive_tick = spdk_get_ticks();
2909 	}
2910 
2911 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
2912 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
2913 	} else {
2914 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
2915 				     ctrlr->opts.admin_timeout_ms);
2916 	}
2917 }
2918 
2919 static int
2920 nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr)
2921 {
2922 	int rc;
2923 
2924 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
2925 		if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
2926 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
2927 		} else {
2928 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
2929 					     ctrlr->opts.admin_timeout_ms);
2930 		}
2931 		return 0;
2932 	}
2933 
2934 	/* Note: Discovery controller identify data does not populate KAS according to spec. */
2935 	if (!spdk_nvme_ctrlr_is_discovery(ctrlr) && ctrlr->cdata.kas == 0) {
2936 		NVME_CTRLR_DEBUGLOG(ctrlr, "Controller KAS is 0 - not enabling Keep Alive\n");
2937 		ctrlr->opts.keep_alive_timeout_ms = 0;
2938 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
2939 				     ctrlr->opts.admin_timeout_ms);
2940 		return 0;
2941 	}
2942 
2943 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT,
2944 			     ctrlr->opts.admin_timeout_ms);
2945 
2946 	/* Retrieve actual keep alive timeout, since the controller may have adjusted it. */
2947 	rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0,
2948 					     nvme_ctrlr_set_keep_alive_timeout_done, ctrlr);
2949 	if (rc != 0) {
2950 		NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: %d\n", rc);
2951 		ctrlr->opts.keep_alive_timeout_ms = 0;
2952 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2953 		return rc;
2954 	}
2955 
2956 	return 0;
2957 }
2958 
2959 static void
2960 nvme_ctrlr_set_host_id_done(void *arg, const struct spdk_nvme_cpl *cpl)
2961 {
2962 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2963 
2964 	if (spdk_nvme_cpl_is_error(cpl)) {
2965 		/*
2966 		 * Treat Set Features - Host ID failure as non-fatal, since the Host ID feature
2967 		 * is optional.
2968 		 */
2969 		NVME_CTRLR_WARNLOG(ctrlr, "Set Features - Host ID failed: SC 0x%x SCT 0x%x\n",
2970 				   cpl->status.sc, cpl->status.sct);
2971 	} else {
2972 		NVME_CTRLR_DEBUGLOG(ctrlr, "Set Features - Host ID was successful\n");
2973 	}
2974 
2975 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
2976 }
2977 
2978 static int
2979 nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr)
2980 {
2981 	uint8_t *host_id;
2982 	uint32_t host_id_size;
2983 	int rc;
2984 
2985 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
2986 		/*
2987 		 * NVMe-oF sends the host ID during Connect and doesn't allow
2988 		 * Set Features - Host Identifier after Connect, so we don't need to do anything here.
2989 		 */
2990 		NVME_CTRLR_DEBUGLOG(ctrlr, "NVMe-oF transport - not sending Set Features - Host ID\n");
2991 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
2992 		return 0;
2993 	}
2994 
2995 	if (ctrlr->cdata.ctratt.host_id_exhid_supported) {
2996 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 128-bit extended host identifier\n");
2997 		host_id = ctrlr->opts.extended_host_id;
2998 		host_id_size = sizeof(ctrlr->opts.extended_host_id);
2999 	} else {
3000 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 64-bit host identifier\n");
3001 		host_id = ctrlr->opts.host_id;
3002 		host_id_size = sizeof(ctrlr->opts.host_id);
3003 	}
3004 
3005 	/* If the user specified an all-zeroes host identifier, don't send the command. */
3006 	if (spdk_mem_all_zero(host_id, host_id_size)) {
3007 		NVME_CTRLR_DEBUGLOG(ctrlr, "User did not specify host ID - not sending Set Features - Host ID\n");
3008 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3009 		return 0;
3010 	}
3011 
3012 	SPDK_LOGDUMP(nvme, "host_id", host_id, host_id_size);
3013 
3014 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_HOST_ID,
3015 			     ctrlr->opts.admin_timeout_ms);
3016 
3017 	rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_ctrlr_set_host_id_done, ctrlr);
3018 	if (rc != 0) {
3019 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Host ID failed: %d\n", rc);
3020 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3021 		return rc;
3022 	}
3023 
3024 	return 0;
3025 }
3026 
3027 void
3028 nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr)
3029 {
3030 	uint32_t nsid;
3031 	struct spdk_nvme_ns *ns;
3032 
3033 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3034 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
3035 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
3036 		nvme_ns_construct(ns, nsid, ctrlr);
3037 	}
3038 }
3039 
3040 static int
3041 nvme_ctrlr_clear_changed_ns_log(struct spdk_nvme_ctrlr *ctrlr)
3042 {
3043 	struct nvme_completion_poll_status	*status;
3044 	int		rc = -ENOMEM;
3045 	char		*buffer = NULL;
3046 	uint32_t	nsid;
3047 	size_t		buf_size = (SPDK_NVME_MAX_CHANGED_NAMESPACES * sizeof(uint32_t));
3048 
3049 	if (ctrlr->opts.disable_read_changed_ns_list_log_page) {
3050 		return 0;
3051 	}
3052 
3053 	buffer = spdk_dma_zmalloc(buf_size, 4096, NULL);
3054 	if (!buffer) {
3055 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate buffer for getting "
3056 				  "changed ns log.\n");
3057 		return rc;
3058 	}
3059 
3060 	status = calloc(1, sizeof(*status));
3061 	if (!status) {
3062 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
3063 		goto free_buffer;
3064 	}
3065 
3066 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
3067 					      SPDK_NVME_LOG_CHANGED_NS_LIST,
3068 					      SPDK_NVME_GLOBAL_NS_TAG,
3069 					      buffer, buf_size, 0,
3070 					      nvme_completion_poll_cb, status);
3071 
3072 	if (rc) {
3073 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_get_log_page() failed: rc=%d\n", rc);
3074 		free(status);
3075 		goto free_buffer;
3076 	}
3077 
3078 	rc = nvme_wait_for_completion_timeout(ctrlr->adminq, status,
3079 					      ctrlr->opts.admin_timeout_ms * 1000);
3080 	if (!status->timed_out) {
3081 		free(status);
3082 	}
3083 
3084 	if (rc) {
3085 		NVME_CTRLR_ERRLOG(ctrlr, "wait for spdk_nvme_ctrlr_cmd_get_log_page failed: rc=%d\n", rc);
3086 		goto free_buffer;
3087 	}
3088 
3089 	/* only check the case of overflow. */
3090 	nsid = from_le32(buffer);
3091 	if (nsid == 0xffffffffu) {
3092 		NVME_CTRLR_WARNLOG(ctrlr, "changed ns log overflowed.\n");
3093 	}
3094 
3095 free_buffer:
3096 	spdk_dma_free(buffer);
3097 	return rc;
3098 }
3099 
3100 void
3101 nvme_ctrlr_process_async_event(struct spdk_nvme_ctrlr *ctrlr,
3102 			       const struct spdk_nvme_cpl *cpl)
3103 {
3104 	union spdk_nvme_async_event_completion event;
3105 	struct spdk_nvme_ctrlr_process *active_proc;
3106 	int rc;
3107 
3108 	event.raw = cpl->cdw0;
3109 
3110 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3111 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
3112 		nvme_ctrlr_clear_changed_ns_log(ctrlr);
3113 
3114 		rc = nvme_ctrlr_identify_active_ns(ctrlr);
3115 		if (rc) {
3116 			return;
3117 		}
3118 		nvme_ctrlr_update_namespaces(ctrlr);
3119 		nvme_io_msg_ctrlr_update(ctrlr);
3120 	}
3121 
3122 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3123 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
3124 		if (!ctrlr->opts.disable_read_ana_log_page) {
3125 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
3126 			if (rc) {
3127 				return;
3128 			}
3129 			nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
3130 						      ctrlr);
3131 		}
3132 	}
3133 
3134 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3135 	if (active_proc && active_proc->aer_cb_fn) {
3136 		active_proc->aer_cb_fn(active_proc->aer_cb_arg, cpl);
3137 	}
3138 }
3139 
3140 static void
3141 nvme_ctrlr_queue_async_event(struct spdk_nvme_ctrlr *ctrlr,
3142 			     const struct spdk_nvme_cpl *cpl)
3143 {
3144 	struct  spdk_nvme_ctrlr_aer_completion_list *nvme_event;
3145 	struct spdk_nvme_ctrlr_process *proc;
3146 
3147 	/* Add async event to each process objects event list */
3148 	TAILQ_FOREACH(proc, &ctrlr->active_procs, tailq) {
3149 		/* Must be shared memory so other processes can access */
3150 		nvme_event = spdk_zmalloc(sizeof(*nvme_event), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
3151 		if (!nvme_event) {
3152 			NVME_CTRLR_ERRLOG(ctrlr, "Alloc nvme event failed, ignore the event\n");
3153 			return;
3154 		}
3155 		nvme_event->cpl = *cpl;
3156 
3157 		STAILQ_INSERT_TAIL(&proc->async_events, nvme_event, link);
3158 	}
3159 }
3160 
3161 void
3162 nvme_ctrlr_complete_queued_async_events(struct spdk_nvme_ctrlr *ctrlr)
3163 {
3164 	struct  spdk_nvme_ctrlr_aer_completion_list  *nvme_event, *nvme_event_tmp;
3165 	struct spdk_nvme_ctrlr_process	*active_proc;
3166 
3167 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3168 
3169 	STAILQ_FOREACH_SAFE(nvme_event, &active_proc->async_events, link, nvme_event_tmp) {
3170 		STAILQ_REMOVE(&active_proc->async_events, nvme_event,
3171 			      spdk_nvme_ctrlr_aer_completion_list, link);
3172 		nvme_ctrlr_process_async_event(ctrlr, &nvme_event->cpl);
3173 		spdk_free(nvme_event);
3174 
3175 	}
3176 }
3177 
3178 static void
3179 nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl)
3180 {
3181 	struct nvme_async_event_request	*aer = arg;
3182 	struct spdk_nvme_ctrlr		*ctrlr = aer->ctrlr;
3183 
3184 	if (cpl->status.sct == SPDK_NVME_SCT_GENERIC &&
3185 	    cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) {
3186 		/*
3187 		 *  This is simulated when controller is being shut down, to
3188 		 *  effectively abort outstanding asynchronous event requests
3189 		 *  and make sure all memory is freed.  Do not repost the
3190 		 *  request in this case.
3191 		 */
3192 		return;
3193 	}
3194 
3195 	if (cpl->status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC &&
3196 	    cpl->status.sc == SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED) {
3197 		/*
3198 		 *  SPDK will only send as many AERs as the device says it supports,
3199 		 *  so this status code indicates an out-of-spec device.  Do not repost
3200 		 *  the request in this case.
3201 		 */
3202 		NVME_CTRLR_ERRLOG(ctrlr, "Controller appears out-of-spec for asynchronous event request\n"
3203 				  "handling.  Do not repost this AER.\n");
3204 		return;
3205 	}
3206 
3207 	/* Add the events to the list */
3208 	nvme_ctrlr_queue_async_event(ctrlr, cpl);
3209 
3210 	/* If the ctrlr was removed or in the destruct state, we should not send aer again */
3211 	if (ctrlr->is_removed || ctrlr->is_destructed) {
3212 		return;
3213 	}
3214 
3215 	/*
3216 	 * Repost another asynchronous event request to replace the one
3217 	 *  that just completed.
3218 	 */
3219 	if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
3220 		/*
3221 		 * We can't do anything to recover from a failure here,
3222 		 * so just print a warning message and leave the AER unsubmitted.
3223 		 */
3224 		NVME_CTRLR_ERRLOG(ctrlr, "resubmitting AER failed!\n");
3225 	}
3226 }
3227 
3228 static int
3229 nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
3230 				    struct nvme_async_event_request *aer)
3231 {
3232 	struct nvme_request *req;
3233 
3234 	aer->ctrlr = ctrlr;
3235 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer);
3236 	aer->req = req;
3237 	if (req == NULL) {
3238 		return -1;
3239 	}
3240 
3241 	req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
3242 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
3243 }
3244 
3245 static void
3246 nvme_ctrlr_configure_aer_done(void *arg, const struct spdk_nvme_cpl *cpl)
3247 {
3248 	struct nvme_async_event_request		*aer;
3249 	int					rc;
3250 	uint32_t				i;
3251 	struct spdk_nvme_ctrlr *ctrlr =	(struct spdk_nvme_ctrlr *)arg;
3252 
3253 	if (spdk_nvme_cpl_is_error(cpl)) {
3254 		NVME_CTRLR_NOTICELOG(ctrlr, "nvme_ctrlr_configure_aer failed!\n");
3255 		ctrlr->num_aers = 0;
3256 	} else {
3257 		/* aerl is a zero-based value, so we need to add 1 here. */
3258 		ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
3259 	}
3260 
3261 	for (i = 0; i < ctrlr->num_aers; i++) {
3262 		aer = &ctrlr->aer[i];
3263 		rc = nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
3264 		if (rc) {
3265 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_construct_and_submit_aer failed!\n");
3266 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3267 			return;
3268 		}
3269 	}
3270 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, ctrlr->opts.admin_timeout_ms);
3271 }
3272 
3273 static int
3274 nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr)
3275 {
3276 	union spdk_nvme_feat_async_event_configuration	config;
3277 	int						rc;
3278 
3279 	config.raw = 0;
3280 
3281 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3282 		config.bits.discovery_log_change_notice = 1;
3283 	} else {
3284 		config.bits.crit_warn.bits.available_spare = 1;
3285 		config.bits.crit_warn.bits.temperature = 1;
3286 		config.bits.crit_warn.bits.device_reliability = 1;
3287 		config.bits.crit_warn.bits.read_only = 1;
3288 		config.bits.crit_warn.bits.volatile_memory_backup = 1;
3289 
3290 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 2, 0)) {
3291 			if (ctrlr->cdata.oaes.ns_attribute_notices) {
3292 				config.bits.ns_attr_notice = 1;
3293 			}
3294 			if (ctrlr->cdata.oaes.fw_activation_notices) {
3295 				config.bits.fw_activation_notice = 1;
3296 			}
3297 			if (ctrlr->cdata.oaes.ana_change_notices) {
3298 				config.bits.ana_change_notice = 1;
3299 			}
3300 		}
3301 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 3, 0) && ctrlr->cdata.lpa.telemetry) {
3302 			config.bits.telemetry_log_notice = 1;
3303 		}
3304 	}
3305 
3306 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER,
3307 			     ctrlr->opts.admin_timeout_ms);
3308 
3309 	rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config,
3310 			nvme_ctrlr_configure_aer_done,
3311 			ctrlr);
3312 	if (rc != 0) {
3313 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3314 		return rc;
3315 	}
3316 
3317 	return 0;
3318 }
3319 
3320 struct spdk_nvme_ctrlr_process *
3321 nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid)
3322 {
3323 	struct spdk_nvme_ctrlr_process	*active_proc;
3324 
3325 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3326 		if (active_proc->pid == pid) {
3327 			return active_proc;
3328 		}
3329 	}
3330 
3331 	return NULL;
3332 }
3333 
3334 struct spdk_nvme_ctrlr_process *
3335 nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr)
3336 {
3337 	return nvme_ctrlr_get_process(ctrlr, getpid());
3338 }
3339 
3340 /**
3341  * This function will be called when a process is using the controller.
3342  *  1. For the primary process, it is called when constructing the controller.
3343  *  2. For the secondary process, it is called at probing the controller.
3344  * Note: will check whether the process is already added for the same process.
3345  */
3346 int
3347 nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
3348 {
3349 	struct spdk_nvme_ctrlr_process	*ctrlr_proc;
3350 	pid_t				pid = getpid();
3351 
3352 	/* Check whether the process is already added or not */
3353 	if (nvme_ctrlr_get_process(ctrlr, pid)) {
3354 		return 0;
3355 	}
3356 
3357 	/* Initialize the per process properties for this ctrlr */
3358 	ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process),
3359 				  64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
3360 	if (ctrlr_proc == NULL) {
3361 		NVME_CTRLR_ERRLOG(ctrlr, "failed to allocate memory to track the process props\n");
3362 
3363 		return -1;
3364 	}
3365 
3366 	ctrlr_proc->is_primary = spdk_process_is_primary();
3367 	ctrlr_proc->pid = pid;
3368 	STAILQ_INIT(&ctrlr_proc->active_reqs);
3369 	ctrlr_proc->devhandle = devhandle;
3370 	ctrlr_proc->ref = 0;
3371 	TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs);
3372 	STAILQ_INIT(&ctrlr_proc->async_events);
3373 
3374 	TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq);
3375 
3376 	return 0;
3377 }
3378 
3379 /**
3380  * This function will be called when the process detaches the controller.
3381  * Note: the ctrlr_lock must be held when calling this function.
3382  */
3383 static void
3384 nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr,
3385 			  struct spdk_nvme_ctrlr_process *proc)
3386 {
3387 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3388 
3389 	assert(STAILQ_EMPTY(&proc->active_reqs));
3390 
3391 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3392 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3393 	}
3394 
3395 	TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq);
3396 
3397 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
3398 		spdk_pci_device_detach(proc->devhandle);
3399 	}
3400 
3401 	spdk_free(proc);
3402 }
3403 
3404 /**
3405  * This function will be called when the process exited unexpectedly
3406  *  in order to free any incomplete nvme request, allocated IO qpairs
3407  *  and allocated memory.
3408  * Note: the ctrlr_lock must be held when calling this function.
3409  */
3410 static void
3411 nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc)
3412 {
3413 	struct nvme_request	*req, *tmp_req;
3414 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3415 	struct spdk_nvme_ctrlr_aer_completion_list *event;
3416 
3417 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
3418 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
3419 
3420 		assert(req->pid == proc->pid);
3421 		nvme_cleanup_user_req(req);
3422 		nvme_free_request(req);
3423 	}
3424 
3425 	/* Remove async event from each process objects event list */
3426 	while (!STAILQ_EMPTY(&proc->async_events)) {
3427 		event = STAILQ_FIRST(&proc->async_events);
3428 		STAILQ_REMOVE_HEAD(&proc->async_events, link);
3429 		spdk_free(event);
3430 	}
3431 
3432 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3433 		TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq);
3434 
3435 		/*
3436 		 * The process may have been killed while some qpairs were in their
3437 		 *  completion context.  Clear that flag here to allow these IO
3438 		 *  qpairs to be deleted.
3439 		 */
3440 		qpair->in_completion_context = 0;
3441 
3442 		qpair->no_deletion_notification_needed = 1;
3443 
3444 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3445 	}
3446 
3447 	spdk_free(proc);
3448 }
3449 
3450 /**
3451  * This function will be called when destructing the controller.
3452  *  1. There is no more admin request on this controller.
3453  *  2. Clean up any left resource allocation when its associated process is gone.
3454  */
3455 void
3456 nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
3457 {
3458 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3459 
3460 	/* Free all the processes' properties and make sure no pending admin IOs */
3461 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3462 		TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3463 
3464 		assert(STAILQ_EMPTY(&active_proc->active_reqs));
3465 
3466 		spdk_free(active_proc);
3467 	}
3468 }
3469 
3470 /**
3471  * This function will be called when any other process attaches or
3472  *  detaches the controller in order to cleanup those unexpectedly
3473  *  terminated processes.
3474  * Note: the ctrlr_lock must be held when calling this function.
3475  */
3476 static int
3477 nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr)
3478 {
3479 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3480 	int				active_proc_count = 0;
3481 
3482 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3483 		if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) {
3484 			NVME_CTRLR_ERRLOG(ctrlr, "process %d terminated unexpected\n", active_proc->pid);
3485 
3486 			TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3487 
3488 			nvme_ctrlr_cleanup_process(active_proc);
3489 		} else {
3490 			active_proc_count++;
3491 		}
3492 	}
3493 
3494 	return active_proc_count;
3495 }
3496 
3497 void
3498 nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr)
3499 {
3500 	struct spdk_nvme_ctrlr_process	*active_proc;
3501 
3502 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3503 
3504 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3505 
3506 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3507 	if (active_proc) {
3508 		active_proc->ref++;
3509 	}
3510 
3511 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3512 }
3513 
3514 void
3515 nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr)
3516 {
3517 	struct spdk_nvme_ctrlr_process	*active_proc;
3518 	int				proc_count;
3519 
3520 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3521 
3522 	proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr);
3523 
3524 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3525 	if (active_proc) {
3526 		active_proc->ref--;
3527 		assert(active_proc->ref >= 0);
3528 
3529 		/*
3530 		 * The last active process will be removed at the end of
3531 		 * the destruction of the controller.
3532 		 */
3533 		if (active_proc->ref == 0 && proc_count != 1) {
3534 			nvme_ctrlr_remove_process(ctrlr, active_proc);
3535 		}
3536 	}
3537 
3538 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3539 }
3540 
3541 int
3542 nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr)
3543 {
3544 	struct spdk_nvme_ctrlr_process	*active_proc;
3545 	int				ref = 0;
3546 
3547 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3548 
3549 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3550 
3551 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3552 		ref += active_proc->ref;
3553 	}
3554 
3555 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3556 
3557 	return ref;
3558 }
3559 
3560 /**
3561  *  Get the PCI device handle which is only visible to its associated process.
3562  */
3563 struct spdk_pci_device *
3564 nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr)
3565 {
3566 	struct spdk_nvme_ctrlr_process	*active_proc;
3567 	struct spdk_pci_device		*devhandle = NULL;
3568 
3569 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3570 
3571 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3572 	if (active_proc) {
3573 		devhandle = active_proc->devhandle;
3574 	}
3575 
3576 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3577 
3578 	return devhandle;
3579 }
3580 
3581 static void
3582 nvme_ctrlr_process_init_vs_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3583 {
3584 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3585 
3586 	if (spdk_nvme_cpl_is_error(cpl)) {
3587 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the VS register\n");
3588 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3589 		return;
3590 	}
3591 
3592 	assert(value <= UINT32_MAX);
3593 	ctrlr->vs.raw = (uint32_t)value;
3594 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP, NVME_TIMEOUT_INFINITE);
3595 }
3596 
3597 static void
3598 nvme_ctrlr_process_init_cap_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3599 {
3600 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3601 
3602 	if (spdk_nvme_cpl_is_error(cpl)) {
3603 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CAP register\n");
3604 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3605 		return;
3606 	}
3607 
3608 	ctrlr->cap.raw = value;
3609 	nvme_ctrlr_init_cap(ctrlr);
3610 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
3611 }
3612 
3613 static void
3614 nvme_ctrlr_process_init_check_en(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3615 {
3616 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3617 	enum nvme_ctrlr_state state;
3618 
3619 	if (spdk_nvme_cpl_is_error(cpl)) {
3620 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3621 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3622 		return;
3623 	}
3624 
3625 	assert(value <= UINT32_MAX);
3626 	ctrlr->process_init_cc.raw = (uint32_t)value;
3627 
3628 	if (ctrlr->process_init_cc.bits.en) {
3629 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1\n");
3630 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1;
3631 	} else {
3632 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0;
3633 	}
3634 
3635 	nvme_ctrlr_set_state(ctrlr, state, nvme_ctrlr_get_ready_timeout(ctrlr));
3636 }
3637 
3638 static void
3639 nvme_ctrlr_process_init_set_en_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3640 {
3641 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3642 
3643 	if (spdk_nvme_cpl_is_error(cpl)) {
3644 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write the CC register\n");
3645 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3646 		return;
3647 	}
3648 
3649 	/*
3650 	 * Wait 2.5 seconds before accessing PCI registers.
3651 	 * Not using sleep() to avoid blocking other controller's initialization.
3652 	 */
3653 	if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) {
3654 		NVME_CTRLR_DEBUGLOG(ctrlr, "Applying quirk: delay 2.5 seconds before reading registers\n");
3655 		ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2500 * spdk_get_ticks_hz() / 1000);
3656 	}
3657 
3658 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3659 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3660 }
3661 
3662 static void
3663 nvme_ctrlr_process_init_set_en_0_read_cc(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3664 {
3665 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3666 	union spdk_nvme_cc_register cc;
3667 	int rc;
3668 
3669 	if (spdk_nvme_cpl_is_error(cpl)) {
3670 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3671 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3672 		return;
3673 	}
3674 
3675 	assert(value <= UINT32_MAX);
3676 	cc.raw = (uint32_t)value;
3677 	cc.bits.en = 0;
3678 	ctrlr->process_init_cc.raw = cc.raw;
3679 
3680 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC,
3681 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3682 
3683 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_process_init_set_en_0, ctrlr);
3684 	if (rc != 0) {
3685 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
3686 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3687 	}
3688 }
3689 
3690 static void
3691 nvme_ctrlr_process_init_wait_for_ready_1(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3692 {
3693 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3694 	union spdk_nvme_csts_register csts;
3695 
3696 	if (spdk_nvme_cpl_is_error(cpl)) {
3697 		/* While a device is resetting, it may be unable to service MMIO reads
3698 		 * temporarily. Allow for this case.
3699 		 */
3700 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3701 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3702 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3703 					     NVME_TIMEOUT_KEEP_EXISTING);
3704 		} else {
3705 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3706 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3707 		}
3708 
3709 		return;
3710 	}
3711 
3712 	assert(value <= UINT32_MAX);
3713 	csts.raw = (uint32_t)value;
3714 	if (csts.bits.rdy == 1 || csts.bits.cfs == 1) {
3715 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0,
3716 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3717 	} else {
3718 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n");
3719 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3720 					   NVME_TIMEOUT_KEEP_EXISTING);
3721 	}
3722 }
3723 
3724 static void
3725 nvme_ctrlr_process_init_wait_for_ready_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3726 {
3727 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3728 	union spdk_nvme_csts_register csts;
3729 
3730 	if (spdk_nvme_cpl_is_error(cpl)) {
3731 		/* While a device is resetting, it may be unable to service MMIO reads
3732 		 * temporarily. Allow for this case.
3733 		 */
3734 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3735 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3736 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3737 					     NVME_TIMEOUT_KEEP_EXISTING);
3738 		} else {
3739 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3740 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3741 		}
3742 
3743 		return;
3744 	}
3745 
3746 	assert(value <= UINT32_MAX);
3747 	csts.raw = (uint32_t)value;
3748 	if (csts.bits.rdy == 0) {
3749 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 0 && CSTS.RDY = 0\n");
3750 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLED,
3751 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3752 	} else {
3753 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3754 					   NVME_TIMEOUT_KEEP_EXISTING);
3755 	}
3756 }
3757 
3758 static void
3759 nvme_ctrlr_process_init_enable_wait_for_ready_1(void *ctx, uint64_t value,
3760 		const struct spdk_nvme_cpl *cpl)
3761 {
3762 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3763 	union spdk_nvme_csts_register csts;
3764 
3765 	if (spdk_nvme_cpl_is_error(cpl)) {
3766 		/* While a device is resetting, it may be unable to service MMIO reads
3767 		 * temporarily. Allow for this case.
3768 		 */
3769 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3770 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3771 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3772 					     NVME_TIMEOUT_KEEP_EXISTING);
3773 		} else {
3774 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3775 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3776 		}
3777 
3778 		return;
3779 	}
3780 
3781 	assert(value <= UINT32_MAX);
3782 	csts.raw = value;
3783 	if (csts.bits.rdy == 1) {
3784 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n");
3785 		/*
3786 		 * The controller has been enabled.
3787 		 *  Perform the rest of initialization serially.
3788 		 */
3789 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_RESET_ADMIN_QUEUE,
3790 				     ctrlr->opts.admin_timeout_ms);
3791 	} else {
3792 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3793 					   NVME_TIMEOUT_KEEP_EXISTING);
3794 	}
3795 }
3796 
3797 /**
3798  * This function will be called repeatedly during initialization until the controller is ready.
3799  */
3800 int
3801 nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr)
3802 {
3803 	uint32_t ready_timeout_in_ms;
3804 	uint64_t ticks;
3805 	int rc = 0;
3806 
3807 	ticks = spdk_get_ticks();
3808 
3809 	/*
3810 	 * May need to avoid accessing any register on the target controller
3811 	 * for a while. Return early without touching the FSM.
3812 	 * Check sleep_timeout_tsc > 0 for unit test.
3813 	 */
3814 	if ((ctrlr->sleep_timeout_tsc > 0) &&
3815 	    (ticks <= ctrlr->sleep_timeout_tsc)) {
3816 		return 0;
3817 	}
3818 	ctrlr->sleep_timeout_tsc = 0;
3819 
3820 	ready_timeout_in_ms = nvme_ctrlr_get_ready_timeout(ctrlr);
3821 
3822 	/*
3823 	 * Check if the current initialization step is done or has timed out.
3824 	 */
3825 	switch (ctrlr->state) {
3826 	case NVME_CTRLR_STATE_INIT_DELAY:
3827 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, ready_timeout_in_ms);
3828 		if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_INIT) {
3829 			/*
3830 			 * Controller may need some delay before it's enabled.
3831 			 *
3832 			 * This is a workaround for an issue where the PCIe-attached NVMe controller
3833 			 * is not ready after VFIO reset. We delay the initialization rather than the
3834 			 * enabling itself, because this is required only for the very first enabling
3835 			 * - directly after a VFIO reset.
3836 			 */
3837 			NVME_CTRLR_DEBUGLOG(ctrlr, "Adding 2 second delay before initializing the controller\n");
3838 			ctrlr->sleep_timeout_tsc = ticks + (2000 * spdk_get_ticks_hz() / 1000);
3839 		}
3840 		break;
3841 
3842 	case NVME_CTRLR_STATE_DISCONNECTED:
3843 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
3844 		break;
3845 
3846 	case NVME_CTRLR_STATE_CONNECT_ADMINQ: /* synonymous with NVME_CTRLR_STATE_INIT and NVME_CTRLR_STATE_DISCONNECTED */
3847 		rc = nvme_transport_ctrlr_connect_qpair(ctrlr, ctrlr->adminq);
3848 		if (rc == 0) {
3849 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ,
3850 					     NVME_TIMEOUT_INFINITE);
3851 		} else {
3852 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3853 		}
3854 		break;
3855 
3856 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
3857 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3858 
3859 		switch (nvme_qpair_get_state(ctrlr->adminq)) {
3860 		case NVME_QPAIR_CONNECTING:
3861 			break;
3862 		case NVME_QPAIR_CONNECTED:
3863 			nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
3864 		/* Fall through */
3865 		case NVME_QPAIR_ENABLED:
3866 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS,
3867 					     NVME_TIMEOUT_INFINITE);
3868 			/* Abort any queued requests that were sent while the adminq was connecting
3869 			 * to avoid stalling the init process during a reset, as requests don't get
3870 			 * resubmitted while the controller is resetting and subsequent commands
3871 			 * would get queued too.
3872 			 */
3873 			nvme_qpair_abort_queued_reqs(ctrlr->adminq);
3874 			break;
3875 		case NVME_QPAIR_DISCONNECTING:
3876 			assert(ctrlr->adminq->async == true);
3877 			break;
3878 		case NVME_QPAIR_DISCONNECTED:
3879 		/* fallthrough */
3880 		default:
3881 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3882 			break;
3883 		}
3884 
3885 		break;
3886 
3887 	case NVME_CTRLR_STATE_READ_VS:
3888 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS, NVME_TIMEOUT_INFINITE);
3889 		rc = nvme_ctrlr_get_vs_async(ctrlr, nvme_ctrlr_process_init_vs_done, ctrlr);
3890 		break;
3891 
3892 	case NVME_CTRLR_STATE_READ_CAP:
3893 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP, NVME_TIMEOUT_INFINITE);
3894 		rc = nvme_ctrlr_get_cap_async(ctrlr, nvme_ctrlr_process_init_cap_done, ctrlr);
3895 		break;
3896 
3897 	case NVME_CTRLR_STATE_CHECK_EN:
3898 		/* Begin the hardware initialization by making sure the controller is disabled. */
3899 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC, ready_timeout_in_ms);
3900 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_check_en, ctrlr);
3901 		break;
3902 
3903 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
3904 		/*
3905 		 * Controller is currently enabled. We need to disable it to cause a reset.
3906 		 *
3907 		 * If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready.
3908 		 *  Wait for the ready bit to be 1 before disabling the controller.
3909 		 */
3910 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
3911 					   NVME_TIMEOUT_KEEP_EXISTING);
3912 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_1, ctrlr);
3913 		break;
3914 
3915 	case NVME_CTRLR_STATE_SET_EN_0:
3916 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 0\n");
3917 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC, ready_timeout_in_ms);
3918 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_set_en_0_read_cc, ctrlr);
3919 		break;
3920 
3921 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
3922 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS,
3923 					   NVME_TIMEOUT_KEEP_EXISTING);
3924 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_0, ctrlr);
3925 		break;
3926 
3927 	case NVME_CTRLR_STATE_DISABLED:
3928 		if (ctrlr->is_disconnecting) {
3929 			NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr was disabled.\n");
3930 		} else {
3931 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms);
3932 
3933 			/*
3934 			 * Delay 100us before setting CC.EN = 1.  Some NVMe SSDs miss CC.EN getting
3935 			 *  set to 1 if it is too soon after CSTS.RDY is reported as 0.
3936 			 */
3937 			spdk_delay_us(100);
3938 		}
3939 		break;
3940 
3941 	case NVME_CTRLR_STATE_ENABLE:
3942 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 1\n");
3943 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC, ready_timeout_in_ms);
3944 		rc = nvme_ctrlr_enable(ctrlr);
3945 		if (rc) {
3946 			NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr enable failed with error: %d", rc);
3947 		}
3948 		return rc;
3949 
3950 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
3951 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
3952 					   NVME_TIMEOUT_KEEP_EXISTING);
3953 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_enable_wait_for_ready_1,
3954 					       ctrlr);
3955 		break;
3956 
3957 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
3958 		nvme_transport_qpair_reset(ctrlr->adminq);
3959 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY, NVME_TIMEOUT_INFINITE);
3960 		break;
3961 
3962 	case NVME_CTRLR_STATE_IDENTIFY:
3963 		rc = nvme_ctrlr_identify(ctrlr);
3964 		break;
3965 
3966 	case NVME_CTRLR_STATE_CONFIGURE_AER:
3967 		rc = nvme_ctrlr_configure_aer(ctrlr);
3968 		break;
3969 
3970 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
3971 		rc = nvme_ctrlr_set_keep_alive_timeout(ctrlr);
3972 		break;
3973 
3974 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
3975 		rc = nvme_ctrlr_identify_iocs_specific(ctrlr);
3976 		break;
3977 
3978 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
3979 		rc = nvme_ctrlr_get_zns_cmd_and_effects_log(ctrlr);
3980 		break;
3981 
3982 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
3983 		nvme_ctrlr_update_nvmf_ioccsz(ctrlr);
3984 		rc = nvme_ctrlr_set_num_queues(ctrlr);
3985 		break;
3986 
3987 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
3988 		_nvme_ctrlr_identify_active_ns(ctrlr);
3989 		break;
3990 
3991 	case NVME_CTRLR_STATE_IDENTIFY_NS:
3992 		rc = nvme_ctrlr_identify_namespaces(ctrlr);
3993 		break;
3994 
3995 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
3996 		rc = nvme_ctrlr_identify_id_desc_namespaces(ctrlr);
3997 		break;
3998 
3999 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
4000 		rc = nvme_ctrlr_identify_namespaces_iocs_specific(ctrlr);
4001 		break;
4002 
4003 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
4004 		rc = nvme_ctrlr_set_supported_log_pages(ctrlr);
4005 		break;
4006 
4007 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
4008 		rc = nvme_ctrlr_set_intel_support_log_pages(ctrlr);
4009 		break;
4010 
4011 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
4012 		nvme_ctrlr_set_supported_features(ctrlr);
4013 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
4014 				     ctrlr->opts.admin_timeout_ms);
4015 		break;
4016 
4017 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
4018 		rc = nvme_ctrlr_set_doorbell_buffer_config(ctrlr);
4019 		break;
4020 
4021 	case NVME_CTRLR_STATE_SET_HOST_ID:
4022 		rc = nvme_ctrlr_set_host_id(ctrlr);
4023 		break;
4024 
4025 	case NVME_CTRLR_STATE_TRANSPORT_READY:
4026 		rc = nvme_transport_ctrlr_ready(ctrlr);
4027 		if (rc) {
4028 			NVME_CTRLR_ERRLOG(ctrlr, "Transport controller ready step failed: rc %d\n", rc);
4029 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
4030 		} else {
4031 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
4032 		}
4033 		break;
4034 
4035 	case NVME_CTRLR_STATE_READY:
4036 		NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr already in ready state\n");
4037 		return 0;
4038 
4039 	case NVME_CTRLR_STATE_ERROR:
4040 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr is in error state\n");
4041 		return -1;
4042 
4043 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
4044 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
4045 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
4046 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
4047 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4048 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
4049 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
4050 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4051 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
4052 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
4053 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
4054 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
4055 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
4056 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
4057 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
4058 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
4059 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
4060 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
4061 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
4062 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
4063 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
4064 		/*
4065 		 * nvme_ctrlr_process_init() may be called from the completion context
4066 		 * for the admin qpair. Avoid recursive calls for this case.
4067 		 */
4068 		if (!ctrlr->adminq->in_completion_context) {
4069 			spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4070 		}
4071 		break;
4072 
4073 	default:
4074 		assert(0);
4075 		return -1;
4076 	}
4077 
4078 	if (rc) {
4079 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr operation failed with error: %d, ctrlr state: %d (%s)\n",
4080 				  rc, ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4081 	}
4082 
4083 	/* Note: we use the ticks captured when we entered this function.
4084 	 * This covers environments where the SPDK process gets swapped out after
4085 	 * we tried to advance the state but before we check the timeout here.
4086 	 * It is not normal for this to happen, but harmless to handle it in this
4087 	 * way.
4088 	 */
4089 	if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE &&
4090 	    ticks > ctrlr->state_timeout_tsc) {
4091 		NVME_CTRLR_ERRLOG(ctrlr, "Initialization timed out in state %d (%s)\n",
4092 				  ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4093 		return -1;
4094 	}
4095 
4096 	return rc;
4097 }
4098 
4099 int
4100 nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx)
4101 {
4102 	pthread_mutexattr_t attr;
4103 	int rc = 0;
4104 
4105 	if (pthread_mutexattr_init(&attr)) {
4106 		return -1;
4107 	}
4108 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) ||
4109 #ifndef __FreeBSD__
4110 	    pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
4111 	    pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
4112 #endif
4113 	    pthread_mutex_init(mtx, &attr)) {
4114 		rc = -1;
4115 	}
4116 	pthread_mutexattr_destroy(&attr);
4117 	return rc;
4118 }
4119 
4120 int
4121 nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
4122 {
4123 	int rc;
4124 
4125 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4126 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT_DELAY, NVME_TIMEOUT_INFINITE);
4127 	} else {
4128 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
4129 	}
4130 
4131 	if (ctrlr->opts.admin_queue_size > SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES) {
4132 		NVME_CTRLR_ERRLOG(ctrlr, "admin_queue_size %u exceeds max defined by NVMe spec, use max value\n",
4133 				  ctrlr->opts.admin_queue_size);
4134 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES;
4135 	}
4136 
4137 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_ADMIN_QUEUE_SIZE &&
4138 	    (ctrlr->opts.admin_queue_size % SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE) != 0) {
4139 		NVME_CTRLR_ERRLOG(ctrlr,
4140 				  "admin_queue_size %u is invalid for this NVMe device, adjust to next multiple\n",
4141 				  ctrlr->opts.admin_queue_size);
4142 		ctrlr->opts.admin_queue_size = SPDK_ALIGN_CEIL(ctrlr->opts.admin_queue_size,
4143 					       SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE);
4144 	}
4145 
4146 	if (ctrlr->opts.admin_queue_size < SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES) {
4147 		NVME_CTRLR_ERRLOG(ctrlr,
4148 				  "admin_queue_size %u is less than minimum defined by NVMe spec, use min value\n",
4149 				  ctrlr->opts.admin_queue_size);
4150 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES;
4151 	}
4152 
4153 	ctrlr->flags = 0;
4154 	ctrlr->free_io_qids = NULL;
4155 	ctrlr->is_resetting = false;
4156 	ctrlr->is_failed = false;
4157 	ctrlr->is_destructed = false;
4158 
4159 	TAILQ_INIT(&ctrlr->active_io_qpairs);
4160 	STAILQ_INIT(&ctrlr->queued_aborts);
4161 	ctrlr->outstanding_aborts = 0;
4162 
4163 	ctrlr->ana_log_page = NULL;
4164 	ctrlr->ana_log_page_size = 0;
4165 
4166 	rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock);
4167 	if (rc != 0) {
4168 		return rc;
4169 	}
4170 
4171 	TAILQ_INIT(&ctrlr->active_procs);
4172 	STAILQ_INIT(&ctrlr->register_operations);
4173 
4174 	RB_INIT(&ctrlr->ns);
4175 
4176 	return rc;
4177 }
4178 
4179 static void
4180 nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr)
4181 {
4182 	if (ctrlr->cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) {
4183 		ctrlr->flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED;
4184 	}
4185 
4186 	ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin);
4187 
4188 	/* For now, always select page_size == min_page_size. */
4189 	ctrlr->page_size = ctrlr->min_page_size;
4190 
4191 	ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES);
4192 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, MAX_IO_QUEUE_ENTRIES);
4193 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE &&
4194 	    ctrlr->opts.io_queue_size == DEFAULT_IO_QUEUE_SIZE) {
4195 		/* If the user specifically set an IO queue size different than the
4196 		 * default, use that value.  Otherwise overwrite with the quirked value.
4197 		 * This allows this quirk to be overridden when necessary.
4198 		 * However, cap.mqes still needs to be respected.
4199 		 */
4200 		ctrlr->opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK;
4201 	}
4202 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u);
4203 
4204 	ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size);
4205 }
4206 
4207 void
4208 nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr)
4209 {
4210 	pthread_mutex_destroy(&ctrlr->ctrlr_lock);
4211 
4212 	nvme_ctrlr_free_processes(ctrlr);
4213 }
4214 
4215 void
4216 nvme_ctrlr_destruct_async(struct spdk_nvme_ctrlr *ctrlr,
4217 			  struct nvme_ctrlr_detach_ctx *ctx)
4218 {
4219 	struct spdk_nvme_qpair *qpair, *tmp;
4220 
4221 	NVME_CTRLR_DEBUGLOG(ctrlr, "Prepare to destruct SSD\n");
4222 
4223 	ctrlr->prepare_for_reset = false;
4224 	ctrlr->is_destructed = true;
4225 
4226 	spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4227 
4228 	nvme_ctrlr_abort_queued_aborts(ctrlr);
4229 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
4230 
4231 	TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) {
4232 		spdk_nvme_ctrlr_free_io_qpair(qpair);
4233 	}
4234 
4235 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
4236 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
4237 
4238 	nvme_ctrlr_shutdown_async(ctrlr, ctx);
4239 }
4240 
4241 int
4242 nvme_ctrlr_destruct_poll_async(struct spdk_nvme_ctrlr *ctrlr,
4243 			       struct nvme_ctrlr_detach_ctx *ctx)
4244 {
4245 	struct spdk_nvme_ns *ns, *tmp_ns;
4246 	int rc = 0;
4247 
4248 	if (!ctx->shutdown_complete) {
4249 		rc = nvme_ctrlr_shutdown_poll_async(ctrlr, ctx);
4250 		if (rc == -EAGAIN) {
4251 			return -EAGAIN;
4252 		}
4253 		/* Destruct ctrlr forcefully for any other error. */
4254 	}
4255 
4256 	if (ctx->cb_fn) {
4257 		ctx->cb_fn(ctrlr);
4258 	}
4259 
4260 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
4261 
4262 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
4263 		nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
4264 		RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
4265 		spdk_free(ns);
4266 	}
4267 
4268 	ctrlr->active_ns_count = 0;
4269 
4270 	spdk_bit_array_free(&ctrlr->free_io_qids);
4271 
4272 	free(ctrlr->ana_log_page);
4273 	free(ctrlr->copied_ana_desc);
4274 	ctrlr->ana_log_page = NULL;
4275 	ctrlr->copied_ana_desc = NULL;
4276 	ctrlr->ana_log_page_size = 0;
4277 
4278 	nvme_transport_ctrlr_destruct(ctrlr);
4279 
4280 	return rc;
4281 }
4282 
4283 void
4284 nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
4285 {
4286 	struct nvme_ctrlr_detach_ctx ctx = { .ctrlr = ctrlr };
4287 	int rc;
4288 
4289 	nvme_ctrlr_destruct_async(ctrlr, &ctx);
4290 
4291 	while (1) {
4292 		rc = nvme_ctrlr_destruct_poll_async(ctrlr, &ctx);
4293 		if (rc != -EAGAIN) {
4294 			break;
4295 		}
4296 		nvme_delay(1000);
4297 	}
4298 }
4299 
4300 int
4301 nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
4302 				struct nvme_request *req)
4303 {
4304 	return nvme_qpair_submit_request(ctrlr->adminq, req);
4305 }
4306 
4307 static void
4308 nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl)
4309 {
4310 	/* Do nothing */
4311 }
4312 
4313 /*
4314  * Check if we need to send a Keep Alive command.
4315  * Caller must hold ctrlr->ctrlr_lock.
4316  */
4317 static int
4318 nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr)
4319 {
4320 	uint64_t now;
4321 	struct nvme_request *req;
4322 	struct spdk_nvme_cmd *cmd;
4323 	int rc = 0;
4324 
4325 	now = spdk_get_ticks();
4326 	if (now < ctrlr->next_keep_alive_tick) {
4327 		return rc;
4328 	}
4329 
4330 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL);
4331 	if (req == NULL) {
4332 		return rc;
4333 	}
4334 
4335 	cmd = &req->cmd;
4336 	cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE;
4337 
4338 	rc = nvme_ctrlr_submit_admin_request(ctrlr, req);
4339 	if (rc != 0) {
4340 		NVME_CTRLR_ERRLOG(ctrlr, "Submitting Keep Alive failed\n");
4341 		rc = -ENXIO;
4342 	}
4343 
4344 	ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks;
4345 	return rc;
4346 }
4347 
4348 int32_t
4349 spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr)
4350 {
4351 	int32_t num_completions;
4352 	int32_t rc;
4353 	struct spdk_nvme_ctrlr_process	*active_proc;
4354 
4355 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4356 
4357 	if (ctrlr->keep_alive_interval_ticks) {
4358 		rc = nvme_ctrlr_keep_alive(ctrlr);
4359 		if (rc) {
4360 			nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4361 			return rc;
4362 		}
4363 	}
4364 
4365 	rc = nvme_io_msg_process(ctrlr);
4366 	if (rc < 0) {
4367 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4368 		return rc;
4369 	}
4370 	num_completions = rc;
4371 
4372 	rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4373 
4374 	/* Each process has an async list, complete the ones for this process object */
4375 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4376 	if (active_proc) {
4377 		nvme_ctrlr_complete_queued_async_events(ctrlr);
4378 	}
4379 
4380 	if (rc == -ENXIO && ctrlr->is_disconnecting) {
4381 		nvme_ctrlr_disconnect_done(ctrlr);
4382 	}
4383 
4384 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4385 
4386 	if (rc < 0) {
4387 		num_completions = rc;
4388 	} else {
4389 		num_completions += rc;
4390 	}
4391 
4392 	return num_completions;
4393 }
4394 
4395 const struct spdk_nvme_ctrlr_data *
4396 spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr)
4397 {
4398 	return &ctrlr->cdata;
4399 }
4400 
4401 union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
4402 {
4403 	union spdk_nvme_csts_register csts;
4404 
4405 	if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
4406 		csts.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4407 	}
4408 	return csts;
4409 }
4410 
4411 union spdk_nvme_cc_register spdk_nvme_ctrlr_get_regs_cc(struct spdk_nvme_ctrlr *ctrlr)
4412 {
4413 	union spdk_nvme_cc_register cc;
4414 
4415 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
4416 		cc.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4417 	}
4418 	return cc;
4419 }
4420 
4421 union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr)
4422 {
4423 	return ctrlr->cap;
4424 }
4425 
4426 union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr)
4427 {
4428 	return ctrlr->vs;
4429 }
4430 
4431 union spdk_nvme_cmbsz_register spdk_nvme_ctrlr_get_regs_cmbsz(struct spdk_nvme_ctrlr *ctrlr)
4432 {
4433 	union spdk_nvme_cmbsz_register cmbsz;
4434 
4435 	if (nvme_ctrlr_get_cmbsz(ctrlr, &cmbsz)) {
4436 		cmbsz.raw = 0;
4437 	}
4438 
4439 	return cmbsz;
4440 }
4441 
4442 union spdk_nvme_pmrcap_register spdk_nvme_ctrlr_get_regs_pmrcap(struct spdk_nvme_ctrlr *ctrlr)
4443 {
4444 	union spdk_nvme_pmrcap_register pmrcap;
4445 
4446 	if (nvme_ctrlr_get_pmrcap(ctrlr, &pmrcap)) {
4447 		pmrcap.raw = 0;
4448 	}
4449 
4450 	return pmrcap;
4451 }
4452 
4453 union spdk_nvme_bpinfo_register spdk_nvme_ctrlr_get_regs_bpinfo(struct spdk_nvme_ctrlr *ctrlr)
4454 {
4455 	union spdk_nvme_bpinfo_register bpinfo;
4456 
4457 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
4458 		bpinfo.raw = 0;
4459 	}
4460 
4461 	return bpinfo;
4462 }
4463 
4464 uint64_t
4465 spdk_nvme_ctrlr_get_pmrsz(struct spdk_nvme_ctrlr *ctrlr)
4466 {
4467 	return ctrlr->pmr_size;
4468 }
4469 
4470 uint32_t
4471 spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr)
4472 {
4473 	return ctrlr->cdata.nn;
4474 }
4475 
4476 bool
4477 spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4478 {
4479 	struct spdk_nvme_ns tmp, *ns;
4480 
4481 	tmp.id = nsid;
4482 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4483 
4484 	if (ns != NULL) {
4485 		return ns->active;
4486 	}
4487 
4488 	return false;
4489 }
4490 
4491 uint32_t
4492 spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr)
4493 {
4494 	struct spdk_nvme_ns *ns;
4495 
4496 	ns = RB_MIN(nvme_ns_tree, &ctrlr->ns);
4497 	if (ns == NULL) {
4498 		return 0;
4499 	}
4500 
4501 	while (ns != NULL) {
4502 		if (ns->active) {
4503 			return ns->id;
4504 		}
4505 
4506 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4507 	}
4508 
4509 	return 0;
4510 }
4511 
4512 uint32_t
4513 spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
4514 {
4515 	struct spdk_nvme_ns tmp, *ns;
4516 
4517 	tmp.id = prev_nsid;
4518 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4519 	if (ns == NULL) {
4520 		return 0;
4521 	}
4522 
4523 	ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4524 	while (ns != NULL) {
4525 		if (ns->active) {
4526 			return ns->id;
4527 		}
4528 
4529 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4530 	}
4531 
4532 	return 0;
4533 }
4534 
4535 struct spdk_nvme_ns *
4536 spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4537 {
4538 	struct spdk_nvme_ns tmp;
4539 	struct spdk_nvme_ns *ns;
4540 
4541 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
4542 		return NULL;
4543 	}
4544 
4545 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4546 
4547 	tmp.id = nsid;
4548 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4549 
4550 	if (ns == NULL) {
4551 		ns = spdk_zmalloc(sizeof(struct spdk_nvme_ns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
4552 		if (ns == NULL) {
4553 			nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4554 			return NULL;
4555 		}
4556 
4557 		NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was added\n", nsid);
4558 		ns->id = nsid;
4559 		RB_INSERT(nvme_ns_tree, &ctrlr->ns, ns);
4560 	}
4561 
4562 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4563 
4564 	return ns;
4565 }
4566 
4567 struct spdk_pci_device *
4568 spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr)
4569 {
4570 	if (ctrlr == NULL) {
4571 		return NULL;
4572 	}
4573 
4574 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
4575 		return NULL;
4576 	}
4577 
4578 	return nvme_ctrlr_proc_get_devhandle(ctrlr);
4579 }
4580 
4581 uint32_t
4582 spdk_nvme_ctrlr_get_max_xfer_size(const struct spdk_nvme_ctrlr *ctrlr)
4583 {
4584 	return ctrlr->max_xfer_size;
4585 }
4586 
4587 uint16_t
4588 spdk_nvme_ctrlr_get_max_sges(const struct spdk_nvme_ctrlr *ctrlr)
4589 {
4590 	if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4591 		return ctrlr->max_sges;
4592 	} else {
4593 		return UINT16_MAX;
4594 	}
4595 }
4596 
4597 void
4598 spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr,
4599 				      spdk_nvme_aer_cb aer_cb_fn,
4600 				      void *aer_cb_arg)
4601 {
4602 	struct spdk_nvme_ctrlr_process *active_proc;
4603 
4604 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4605 
4606 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4607 	if (active_proc) {
4608 		active_proc->aer_cb_fn = aer_cb_fn;
4609 		active_proc->aer_cb_arg = aer_cb_arg;
4610 	}
4611 
4612 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4613 }
4614 
4615 void
4616 spdk_nvme_ctrlr_disable_read_changed_ns_list_log_page(struct spdk_nvme_ctrlr *ctrlr)
4617 {
4618 	ctrlr->opts.disable_read_changed_ns_list_log_page = true;
4619 }
4620 
4621 void
4622 spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr,
4623 		uint64_t timeout_io_us, uint64_t timeout_admin_us,
4624 		spdk_nvme_timeout_cb cb_fn, void *cb_arg)
4625 {
4626 	struct spdk_nvme_ctrlr_process	*active_proc;
4627 
4628 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4629 
4630 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4631 	if (active_proc) {
4632 		active_proc->timeout_io_ticks = timeout_io_us * spdk_get_ticks_hz() / 1000000ULL;
4633 		active_proc->timeout_admin_ticks = timeout_admin_us * spdk_get_ticks_hz() / 1000000ULL;
4634 		active_proc->timeout_cb_fn = cb_fn;
4635 		active_proc->timeout_cb_arg = cb_arg;
4636 	}
4637 
4638 	ctrlr->timeout_enabled = true;
4639 
4640 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4641 }
4642 
4643 bool
4644 spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page)
4645 {
4646 	/* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
4647 	SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
4648 	return ctrlr->log_page_supported[log_page];
4649 }
4650 
4651 bool
4652 spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code)
4653 {
4654 	/* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
4655 	SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
4656 	return ctrlr->feature_supported[feature_code];
4657 }
4658 
4659 int
4660 spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4661 			  struct spdk_nvme_ctrlr_list *payload)
4662 {
4663 	struct nvme_completion_poll_status	*status;
4664 	struct spdk_nvme_ns			*ns;
4665 	int					res;
4666 
4667 	if (nsid == 0) {
4668 		return -EINVAL;
4669 	}
4670 
4671 	status = calloc(1, sizeof(*status));
4672 	if (!status) {
4673 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4674 		return -ENOMEM;
4675 	}
4676 
4677 	res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload,
4678 				       nvme_completion_poll_cb, status);
4679 	if (res) {
4680 		free(status);
4681 		return res;
4682 	}
4683 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4684 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_attach_ns failed!\n");
4685 		if (!status->timed_out) {
4686 			free(status);
4687 		}
4688 		return -ENXIO;
4689 	}
4690 	free(status);
4691 
4692 	res = nvme_ctrlr_identify_active_ns(ctrlr);
4693 	if (res) {
4694 		return res;
4695 	}
4696 
4697 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
4698 	if (ns == NULL) {
4699 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_get_ns failed!\n");
4700 		return -ENXIO;
4701 	}
4702 
4703 	return nvme_ns_construct(ns, nsid, ctrlr);
4704 }
4705 
4706 int
4707 spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4708 			  struct spdk_nvme_ctrlr_list *payload)
4709 {
4710 	struct nvme_completion_poll_status	*status;
4711 	int					res;
4712 
4713 	if (nsid == 0) {
4714 		return -EINVAL;
4715 	}
4716 
4717 	status = calloc(1, sizeof(*status));
4718 	if (!status) {
4719 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4720 		return -ENOMEM;
4721 	}
4722 
4723 	res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload,
4724 				       nvme_completion_poll_cb, status);
4725 	if (res) {
4726 		free(status);
4727 		return res;
4728 	}
4729 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4730 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_detach_ns failed!\n");
4731 		if (!status->timed_out) {
4732 			free(status);
4733 		}
4734 		return -ENXIO;
4735 	}
4736 	free(status);
4737 
4738 	return nvme_ctrlr_identify_active_ns(ctrlr);
4739 }
4740 
4741 uint32_t
4742 spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload)
4743 {
4744 	struct nvme_completion_poll_status	*status;
4745 	int					res;
4746 	uint32_t				nsid;
4747 
4748 	status = calloc(1, sizeof(*status));
4749 	if (!status) {
4750 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4751 		return 0;
4752 	}
4753 
4754 	res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, status);
4755 	if (res) {
4756 		free(status);
4757 		return 0;
4758 	}
4759 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4760 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_create_ns failed!\n");
4761 		if (!status->timed_out) {
4762 			free(status);
4763 		}
4764 		return 0;
4765 	}
4766 
4767 	nsid = status->cpl.cdw0;
4768 	free(status);
4769 
4770 	assert(nsid > 0);
4771 
4772 	/* Return the namespace ID that was created */
4773 	return nsid;
4774 }
4775 
4776 int
4777 spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4778 {
4779 	struct nvme_completion_poll_status	*status;
4780 	int					res;
4781 
4782 	if (nsid == 0) {
4783 		return -EINVAL;
4784 	}
4785 
4786 	status = calloc(1, sizeof(*status));
4787 	if (!status) {
4788 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4789 		return -ENOMEM;
4790 	}
4791 
4792 	res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, status);
4793 	if (res) {
4794 		free(status);
4795 		return res;
4796 	}
4797 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4798 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_delete_ns failed!\n");
4799 		if (!status->timed_out) {
4800 			free(status);
4801 		}
4802 		return -ENXIO;
4803 	}
4804 	free(status);
4805 
4806 	return nvme_ctrlr_identify_active_ns(ctrlr);
4807 }
4808 
4809 int
4810 spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4811 		       struct spdk_nvme_format *format)
4812 {
4813 	struct nvme_completion_poll_status	*status;
4814 	int					res;
4815 
4816 	status = calloc(1, sizeof(*status));
4817 	if (!status) {
4818 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4819 		return -ENOMEM;
4820 	}
4821 
4822 	res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb,
4823 				    status);
4824 	if (res) {
4825 		free(status);
4826 		return res;
4827 	}
4828 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4829 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_format failed!\n");
4830 		if (!status->timed_out) {
4831 			free(status);
4832 		}
4833 		return -ENXIO;
4834 	}
4835 	free(status);
4836 
4837 	return spdk_nvme_ctrlr_reset(ctrlr);
4838 }
4839 
4840 int
4841 spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size,
4842 				int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status)
4843 {
4844 	struct spdk_nvme_fw_commit		fw_commit;
4845 	struct nvme_completion_poll_status	*status;
4846 	int					res;
4847 	unsigned int				size_remaining;
4848 	unsigned int				offset;
4849 	unsigned int				transfer;
4850 	uint8_t					*p;
4851 
4852 	if (!completion_status) {
4853 		return -EINVAL;
4854 	}
4855 	memset(completion_status, 0, sizeof(struct spdk_nvme_status));
4856 	if (size % 4) {
4857 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid size!\n");
4858 		return -1;
4859 	}
4860 
4861 	/* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG
4862 	 * and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG
4863 	 */
4864 	if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) &&
4865 	    (commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) {
4866 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid command!\n");
4867 		return -1;
4868 	}
4869 
4870 	status = calloc(1, sizeof(*status));
4871 	if (!status) {
4872 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4873 		return -ENOMEM;
4874 	}
4875 
4876 	/* Firmware download */
4877 	size_remaining = size;
4878 	offset = 0;
4879 	p = payload;
4880 
4881 	while (size_remaining > 0) {
4882 		transfer = spdk_min(size_remaining, ctrlr->min_page_size);
4883 
4884 		memset(status, 0, sizeof(*status));
4885 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p,
4886 						       nvme_completion_poll_cb,
4887 						       status);
4888 		if (res) {
4889 			free(status);
4890 			return res;
4891 		}
4892 
4893 		if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4894 			NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_fw_image_download failed!\n");
4895 			if (!status->timed_out) {
4896 				free(status);
4897 			}
4898 			return -ENXIO;
4899 		}
4900 		p += transfer;
4901 		offset += transfer;
4902 		size_remaining -= transfer;
4903 	}
4904 
4905 	/* Firmware commit */
4906 	memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
4907 	fw_commit.fs = slot;
4908 	fw_commit.ca = commit_action;
4909 
4910 	memset(status, 0, sizeof(*status));
4911 	res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb,
4912 				       status);
4913 	if (res) {
4914 		free(status);
4915 		return res;
4916 	}
4917 
4918 	res = nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock);
4919 
4920 	memcpy(completion_status, &status->cpl.status, sizeof(struct spdk_nvme_status));
4921 
4922 	if (!status->timed_out) {
4923 		free(status);
4924 	}
4925 
4926 	if (res) {
4927 		if (completion_status->sct != SPDK_NVME_SCT_COMMAND_SPECIFIC ||
4928 		    completion_status->sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) {
4929 			if (completion_status->sct == SPDK_NVME_SCT_COMMAND_SPECIFIC  &&
4930 			    completion_status->sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) {
4931 				NVME_CTRLR_NOTICELOG(ctrlr,
4932 						     "firmware activation requires conventional reset to be performed. !\n");
4933 			} else {
4934 				NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
4935 			}
4936 			return -ENXIO;
4937 		}
4938 	}
4939 
4940 	return spdk_nvme_ctrlr_reset(ctrlr);
4941 }
4942 
4943 int
4944 spdk_nvme_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
4945 {
4946 	int rc, size;
4947 	union spdk_nvme_cmbsz_register cmbsz;
4948 
4949 	cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr);
4950 
4951 	if (cmbsz.bits.rds == 0 || cmbsz.bits.wds == 0) {
4952 		return -ENOTSUP;
4953 	}
4954 
4955 	size = cmbsz.bits.sz * (0x1000 << (cmbsz.bits.szu * 4));
4956 
4957 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4958 	rc = nvme_transport_ctrlr_reserve_cmb(ctrlr);
4959 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4960 
4961 	if (rc < 0) {
4962 		return rc;
4963 	}
4964 
4965 	return size;
4966 }
4967 
4968 void *
4969 spdk_nvme_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
4970 {
4971 	void *buf;
4972 
4973 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4974 	buf = nvme_transport_ctrlr_map_cmb(ctrlr, size);
4975 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4976 
4977 	return buf;
4978 }
4979 
4980 void
4981 spdk_nvme_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr)
4982 {
4983 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4984 	nvme_transport_ctrlr_unmap_cmb(ctrlr);
4985 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4986 }
4987 
4988 int
4989 spdk_nvme_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr)
4990 {
4991 	int rc;
4992 
4993 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
4994 	rc = nvme_transport_ctrlr_enable_pmr(ctrlr);
4995 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
4996 
4997 	return rc;
4998 }
4999 
5000 int
5001 spdk_nvme_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr)
5002 {
5003 	int rc;
5004 
5005 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5006 	rc = nvme_transport_ctrlr_disable_pmr(ctrlr);
5007 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5008 
5009 	return rc;
5010 }
5011 
5012 void *
5013 spdk_nvme_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
5014 {
5015 	void *buf;
5016 
5017 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5018 	buf = nvme_transport_ctrlr_map_pmr(ctrlr, size);
5019 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5020 
5021 	return buf;
5022 }
5023 
5024 int
5025 spdk_nvme_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr)
5026 {
5027 	int rc;
5028 
5029 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5030 	rc = nvme_transport_ctrlr_unmap_pmr(ctrlr);
5031 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5032 
5033 	return rc;
5034 }
5035 
5036 int
5037 spdk_nvme_ctrlr_read_boot_partition_start(struct spdk_nvme_ctrlr *ctrlr, void *payload,
5038 		uint32_t bprsz, uint32_t bprof, uint32_t bpid)
5039 {
5040 	union spdk_nvme_bprsel_register bprsel;
5041 	union spdk_nvme_bpinfo_register bpinfo;
5042 	uint64_t bpmbl, bpmb_size;
5043 
5044 	if (ctrlr->cap.bits.bps == 0) {
5045 		return -ENOTSUP;
5046 	}
5047 
5048 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5049 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5050 		return -EIO;
5051 	}
5052 
5053 	if (bpinfo.bits.brs == SPDK_NVME_BRS_READ_IN_PROGRESS) {
5054 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read already initiated\n");
5055 		return -EALREADY;
5056 	}
5057 
5058 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5059 
5060 	bpmb_size = bprsz * 4096;
5061 	bpmbl = spdk_vtophys(payload, &bpmb_size);
5062 	if (bpmbl == SPDK_VTOPHYS_ERROR) {
5063 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_vtophys of bpmbl failed\n");
5064 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5065 		return -EFAULT;
5066 	}
5067 
5068 	if (bpmb_size != bprsz * 4096) {
5069 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition buffer is not physically contiguous\n");
5070 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5071 		return -EFAULT;
5072 	}
5073 
5074 	if (nvme_ctrlr_set_bpmbl(ctrlr, bpmbl)) {
5075 		NVME_CTRLR_ERRLOG(ctrlr, "set_bpmbl() failed\n");
5076 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5077 		return -EIO;
5078 	}
5079 
5080 	bprsel.bits.bpid = bpid;
5081 	bprsel.bits.bprof = bprof;
5082 	bprsel.bits.bprsz = bprsz;
5083 
5084 	if (nvme_ctrlr_set_bprsel(ctrlr, &bprsel)) {
5085 		NVME_CTRLR_ERRLOG(ctrlr, "set_bprsel() failed\n");
5086 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5087 		return -EIO;
5088 	}
5089 
5090 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5091 	return 0;
5092 }
5093 
5094 int
5095 spdk_nvme_ctrlr_read_boot_partition_poll(struct spdk_nvme_ctrlr *ctrlr)
5096 {
5097 	int rc = 0;
5098 	union spdk_nvme_bpinfo_register bpinfo;
5099 
5100 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5101 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5102 		return -EIO;
5103 	}
5104 
5105 	switch (bpinfo.bits.brs) {
5106 	case SPDK_NVME_BRS_NO_READ:
5107 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read not initiated\n");
5108 		rc = -EINVAL;
5109 		break;
5110 	case SPDK_NVME_BRS_READ_IN_PROGRESS:
5111 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition read in progress\n");
5112 		rc = -EAGAIN;
5113 		break;
5114 	case SPDK_NVME_BRS_READ_ERROR:
5115 		NVME_CTRLR_ERRLOG(ctrlr, "Error completing Boot Partition read\n");
5116 		rc = -EIO;
5117 		break;
5118 	case SPDK_NVME_BRS_READ_SUCCESS:
5119 		NVME_CTRLR_INFOLOG(ctrlr, "Boot Partition read completed successfully\n");
5120 		break;
5121 	default:
5122 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition read status\n");
5123 		rc = -EINVAL;
5124 	}
5125 
5126 	return rc;
5127 }
5128 
5129 static void
5130 nvme_write_boot_partition_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5131 {
5132 	int res;
5133 	struct spdk_nvme_ctrlr *ctrlr = arg;
5134 	struct spdk_nvme_fw_commit fw_commit;
5135 	struct spdk_nvme_cpl err_cpl =
5136 	{.status = {.sct = SPDK_NVME_SCT_GENERIC, .sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR }};
5137 
5138 	if (spdk_nvme_cpl_is_error(cpl)) {
5139 		NVME_CTRLR_ERRLOG(ctrlr, "Write Boot Partition failed\n");
5140 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5141 		return;
5142 	}
5143 
5144 	if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADING) {
5145 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Downloading at Offset %d Success\n", ctrlr->fw_offset);
5146 		ctrlr->fw_payload = (uint8_t *)ctrlr->fw_payload + ctrlr->fw_transfer_size;
5147 		ctrlr->fw_offset += ctrlr->fw_transfer_size;
5148 		ctrlr->fw_size_remaining -= ctrlr->fw_transfer_size;
5149 		ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5150 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5151 						       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5152 		if (res) {
5153 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_image_download failed!\n");
5154 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5155 			return;
5156 		}
5157 
5158 		if (ctrlr->fw_transfer_size < ctrlr->min_page_size) {
5159 			ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADED;
5160 		}
5161 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADED) {
5162 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Download Success\n");
5163 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5164 		fw_commit.bpid = ctrlr->bpid;
5165 		fw_commit.ca = SPDK_NVME_FW_COMMIT_REPLACE_BOOT_PARTITION;
5166 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5167 					       nvme_write_boot_partition_cb, ctrlr);
5168 		if (res) {
5169 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5170 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5171 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5172 			return;
5173 		}
5174 
5175 		ctrlr->bp_ws = SPDK_NVME_BP_WS_REPLACE;
5176 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_REPLACE) {
5177 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Replacement Success\n");
5178 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5179 		fw_commit.bpid = ctrlr->bpid;
5180 		fw_commit.ca = SPDK_NVME_FW_COMMIT_ACTIVATE_BOOT_PARTITION;
5181 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5182 					       nvme_write_boot_partition_cb, ctrlr);
5183 		if (res) {
5184 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5185 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5186 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5187 			return;
5188 		}
5189 
5190 		ctrlr->bp_ws = SPDK_NVME_BP_WS_ACTIVATE;
5191 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_ACTIVATE) {
5192 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Activation Success\n");
5193 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5194 	} else {
5195 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition write state\n");
5196 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5197 		return;
5198 	}
5199 }
5200 
5201 int
5202 spdk_nvme_ctrlr_write_boot_partition(struct spdk_nvme_ctrlr *ctrlr,
5203 				     void *payload, uint32_t size, uint32_t bpid,
5204 				     spdk_nvme_cmd_cb cb_fn, void *cb_arg)
5205 {
5206 	int res;
5207 
5208 	if (ctrlr->cap.bits.bps == 0) {
5209 		return -ENOTSUP;
5210 	}
5211 
5212 	ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADING;
5213 	ctrlr->bpid = bpid;
5214 	ctrlr->bp_write_cb_fn = cb_fn;
5215 	ctrlr->bp_write_cb_arg = cb_arg;
5216 	ctrlr->fw_offset = 0;
5217 	ctrlr->fw_size_remaining = size;
5218 	ctrlr->fw_payload = payload;
5219 	ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5220 
5221 	res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5222 					       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5223 
5224 	return res;
5225 }
5226 
5227 bool
5228 spdk_nvme_ctrlr_is_discovery(struct spdk_nvme_ctrlr *ctrlr)
5229 {
5230 	assert(ctrlr);
5231 
5232 	return !strncmp(ctrlr->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN,
5233 			strlen(SPDK_NVMF_DISCOVERY_NQN));
5234 }
5235 
5236 bool
5237 spdk_nvme_ctrlr_is_fabrics(struct spdk_nvme_ctrlr *ctrlr)
5238 {
5239 	assert(ctrlr);
5240 
5241 	return spdk_nvme_trtype_is_fabrics(ctrlr->trid.trtype);
5242 }
5243 
5244 int
5245 spdk_nvme_ctrlr_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5246 				 uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5247 {
5248 	struct nvme_completion_poll_status	*status;
5249 	int					res;
5250 
5251 	status = calloc(1, sizeof(*status));
5252 	if (!status) {
5253 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5254 		return -ENOMEM;
5255 	}
5256 
5257 	res = spdk_nvme_ctrlr_cmd_security_receive(ctrlr, secp, spsp, nssf, payload, size,
5258 			nvme_completion_poll_cb, status);
5259 	if (res) {
5260 		free(status);
5261 		return res;
5262 	}
5263 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5264 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_receive failed!\n");
5265 		if (!status->timed_out) {
5266 			free(status);
5267 		}
5268 		return -ENXIO;
5269 	}
5270 	free(status);
5271 
5272 	return 0;
5273 }
5274 
5275 int
5276 spdk_nvme_ctrlr_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5277 			      uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5278 {
5279 	struct nvme_completion_poll_status	*status;
5280 	int					res;
5281 
5282 	status = calloc(1, sizeof(*status));
5283 	if (!status) {
5284 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5285 		return -ENOMEM;
5286 	}
5287 
5288 	res = spdk_nvme_ctrlr_cmd_security_send(ctrlr, secp, spsp, nssf, payload, size,
5289 						nvme_completion_poll_cb,
5290 						status);
5291 	if (res) {
5292 		free(status);
5293 		return res;
5294 	}
5295 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5296 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_send failed!\n");
5297 		if (!status->timed_out) {
5298 			free(status);
5299 		}
5300 		return -ENXIO;
5301 	}
5302 
5303 	free(status);
5304 
5305 	return 0;
5306 }
5307 
5308 uint64_t
5309 spdk_nvme_ctrlr_get_flags(struct spdk_nvme_ctrlr *ctrlr)
5310 {
5311 	return ctrlr->flags;
5312 }
5313 
5314 const struct spdk_nvme_transport_id *
5315 spdk_nvme_ctrlr_get_transport_id(struct spdk_nvme_ctrlr *ctrlr)
5316 {
5317 	return &ctrlr->trid;
5318 }
5319 
5320 int32_t
5321 spdk_nvme_ctrlr_alloc_qid(struct spdk_nvme_ctrlr *ctrlr)
5322 {
5323 	uint32_t qid;
5324 
5325 	assert(ctrlr->free_io_qids);
5326 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5327 	qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1);
5328 	if (qid > ctrlr->opts.num_io_queues) {
5329 		NVME_CTRLR_ERRLOG(ctrlr, "No free I/O queue IDs\n");
5330 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5331 		return -1;
5332 	}
5333 
5334 	spdk_bit_array_clear(ctrlr->free_io_qids, qid);
5335 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5336 	return qid;
5337 }
5338 
5339 void
5340 spdk_nvme_ctrlr_free_qid(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid)
5341 {
5342 	assert(qid <= ctrlr->opts.num_io_queues);
5343 
5344 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
5345 
5346 	if (spdk_likely(ctrlr->free_io_qids)) {
5347 		spdk_bit_array_set(ctrlr->free_io_qids, qid);
5348 	}
5349 
5350 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
5351 }
5352 
5353 int
5354 spdk_nvme_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
5355 				   struct spdk_memory_domain **domains, int array_size)
5356 {
5357 	return nvme_transport_ctrlr_get_memory_domains(ctrlr, domains, array_size);
5358 }
5359