xref: /spdk/lib/nvme/nvme_ctrlr.c (revision 367c980b453f48310e52d2574afe7d2774df800c)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk/stdinc.h"
35 
36 #include "nvme_internal.h"
37 #include "nvme_io_msg.h"
38 
39 #include "spdk/env.h"
40 #include "spdk/string.h"
41 
42 struct nvme_active_ns_ctx;
43 
44 static void nvme_ctrlr_destruct_namespaces(struct spdk_nvme_ctrlr *ctrlr);
45 static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
46 		struct nvme_async_event_request *aer);
47 static void nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx);
48 static int nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns);
49 static int nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns);
50 
51 static int
52 nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc)
53 {
54 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
55 					      &cc->raw);
56 }
57 
58 static int
59 nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts)
60 {
61 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw),
62 					      &csts->raw);
63 }
64 
65 int
66 nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
67 {
68 	return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw),
69 					      &cap->raw);
70 }
71 
72 int
73 nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
74 {
75 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw),
76 					      &vs->raw);
77 }
78 
79 static int
80 nvme_ctrlr_set_cc(struct spdk_nvme_ctrlr *ctrlr, const union spdk_nvme_cc_register *cc)
81 {
82 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
83 					      cc->raw);
84 }
85 
86 int
87 nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz)
88 {
89 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
90 					      &cmbsz->raw);
91 }
92 
93 /* When the field in spdk_nvme_ctrlr_opts are changed and you change this function, please
94  * also update the nvme_ctrl_opts_init function in nvme_ctrlr.c
95  */
96 void
97 spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
98 {
99 	char host_id_str[SPDK_UUID_STRING_LEN];
100 
101 	assert(opts);
102 
103 	opts->opts_size = opts_size;
104 
105 #define FIELD_OK(field) \
106 	offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size
107 
108 	if (FIELD_OK(num_io_queues)) {
109 		opts->num_io_queues = DEFAULT_MAX_IO_QUEUES;
110 	}
111 
112 	if (FIELD_OK(use_cmb_sqs)) {
113 		opts->use_cmb_sqs = true;
114 	}
115 
116 	if (FIELD_OK(no_shn_notification)) {
117 		opts->no_shn_notification = false;
118 	}
119 
120 	if (FIELD_OK(arb_mechanism)) {
121 		opts->arb_mechanism = SPDK_NVME_CC_AMS_RR;
122 	}
123 
124 	if (FIELD_OK(arbitration_burst)) {
125 		opts->arbitration_burst = 0;
126 	}
127 
128 	if (FIELD_OK(low_priority_weight)) {
129 		opts->low_priority_weight = 0;
130 	}
131 
132 	if (FIELD_OK(medium_priority_weight)) {
133 		opts->medium_priority_weight = 0;
134 	}
135 
136 	if (FIELD_OK(high_priority_weight)) {
137 		opts->high_priority_weight = 0;
138 	}
139 
140 	if (FIELD_OK(keep_alive_timeout_ms)) {
141 		opts->keep_alive_timeout_ms = MIN_KEEP_ALIVE_TIMEOUT_IN_MS;
142 	}
143 
144 	if (FIELD_OK(transport_retry_count)) {
145 		opts->transport_retry_count = SPDK_NVME_DEFAULT_RETRY_COUNT;
146 	}
147 
148 	if (FIELD_OK(io_queue_size)) {
149 		opts->io_queue_size = DEFAULT_IO_QUEUE_SIZE;
150 	}
151 
152 	if (nvme_driver_init() == 0) {
153 		if (FIELD_OK(hostnqn)) {
154 			spdk_uuid_fmt_lower(host_id_str, sizeof(host_id_str),
155 					    &g_spdk_nvme_driver->default_extended_host_id);
156 			snprintf(opts->hostnqn, sizeof(opts->hostnqn), "2014-08.org.nvmexpress:uuid:%s", host_id_str);
157 		}
158 
159 		if (FIELD_OK(extended_host_id)) {
160 			memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id,
161 			       sizeof(opts->extended_host_id));
162 		}
163 
164 	}
165 
166 	if (FIELD_OK(io_queue_requests)) {
167 		opts->io_queue_requests = DEFAULT_IO_QUEUE_REQUESTS;
168 	}
169 
170 	if (FIELD_OK(src_addr)) {
171 		memset(opts->src_addr, 0, sizeof(opts->src_addr));
172 	}
173 
174 	if (FIELD_OK(src_svcid)) {
175 		memset(opts->src_svcid, 0, sizeof(opts->src_svcid));
176 	}
177 
178 	if (FIELD_OK(host_id)) {
179 		memset(opts->host_id, 0, sizeof(opts->host_id));
180 	}
181 
182 	if (FIELD_OK(command_set)) {
183 		opts->command_set = SPDK_NVME_CC_CSS_NVM;
184 	}
185 
186 	if (FIELD_OK(admin_timeout_ms)) {
187 		opts->admin_timeout_ms = NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000;
188 	}
189 
190 	if (FIELD_OK(header_digest)) {
191 		opts->header_digest = false;
192 	}
193 
194 	if (FIELD_OK(data_digest)) {
195 		opts->data_digest = false;
196 	}
197 
198 	if (FIELD_OK(disable_error_logging)) {
199 		opts->disable_error_logging = false;
200 	}
201 
202 	if (FIELD_OK(transport_ack_timeout)) {
203 		opts->transport_ack_timeout = SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT;
204 	}
205 
206 	if (FIELD_OK(admin_queue_size)) {
207 		opts->admin_queue_size = DEFAULT_ADMIN_QUEUE_SIZE;
208 	}
209 #undef FIELD_OK
210 }
211 
212 /**
213  * This function will be called when the process allocates the IO qpair.
214  * Note: the ctrlr_lock must be held when calling this function.
215  */
216 static void
217 nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair)
218 {
219 	struct spdk_nvme_ctrlr_process	*active_proc;
220 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
221 
222 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
223 	if (active_proc) {
224 		TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq);
225 		qpair->active_proc = active_proc;
226 	}
227 }
228 
229 /**
230  * This function will be called when the process frees the IO qpair.
231  * Note: the ctrlr_lock must be held when calling this function.
232  */
233 static void
234 nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair)
235 {
236 	struct spdk_nvme_ctrlr_process	*active_proc;
237 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
238 	struct spdk_nvme_qpair          *active_qpair, *tmp_qpair;
239 
240 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
241 	if (!active_proc) {
242 		return;
243 	}
244 
245 	TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs,
246 			   per_process_tailq, tmp_qpair) {
247 		if (active_qpair == qpair) {
248 			TAILQ_REMOVE(&active_proc->allocated_io_qpairs,
249 				     active_qpair, per_process_tailq);
250 
251 			break;
252 		}
253 	}
254 }
255 
256 void
257 spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr,
258 		struct spdk_nvme_io_qpair_opts *opts,
259 		size_t opts_size)
260 {
261 	assert(ctrlr);
262 
263 	assert(opts);
264 
265 	memset(opts, 0, opts_size);
266 
267 #define FIELD_OK(field) \
268 	offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size
269 
270 	if (FIELD_OK(qprio)) {
271 		opts->qprio = SPDK_NVME_QPRIO_URGENT;
272 	}
273 
274 	if (FIELD_OK(io_queue_size)) {
275 		opts->io_queue_size = ctrlr->opts.io_queue_size;
276 	}
277 
278 	if (FIELD_OK(io_queue_requests)) {
279 		opts->io_queue_requests = ctrlr->opts.io_queue_requests;
280 	}
281 
282 	if (FIELD_OK(delay_cmd_submit)) {
283 		opts->delay_cmd_submit = false;
284 	}
285 
286 	if (FIELD_OK(sq.vaddr)) {
287 		opts->sq.vaddr = NULL;
288 	}
289 
290 	if (FIELD_OK(sq.paddr)) {
291 		opts->sq.paddr = 0;
292 	}
293 
294 	if (FIELD_OK(sq.buffer_size)) {
295 		opts->sq.buffer_size = 0;
296 	}
297 
298 	if (FIELD_OK(cq.vaddr)) {
299 		opts->cq.vaddr = NULL;
300 	}
301 
302 	if (FIELD_OK(cq.paddr)) {
303 		opts->cq.paddr = 0;
304 	}
305 
306 	if (FIELD_OK(cq.buffer_size)) {
307 		opts->cq.buffer_size = 0;
308 	}
309 
310 	if (FIELD_OK(create_only)) {
311 		opts->create_only = false;
312 	}
313 
314 #undef FIELD_OK
315 }
316 
317 static struct spdk_nvme_qpair *
318 nvme_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
319 			   const struct spdk_nvme_io_qpair_opts *opts)
320 {
321 	uint32_t				qid;
322 	struct spdk_nvme_qpair			*qpair;
323 	union spdk_nvme_cc_register		cc;
324 
325 	if (!ctrlr) {
326 		return NULL;
327 	}
328 
329 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
330 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
331 		SPDK_ERRLOG("get_cc failed\n");
332 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
333 		return NULL;
334 	}
335 
336 	if (opts->qprio & ~SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK) {
337 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
338 		return NULL;
339 	}
340 
341 	/*
342 	 * Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the
343 	 * default round robin arbitration method.
344 	 */
345 	if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts->qprio != SPDK_NVME_QPRIO_URGENT)) {
346 		SPDK_ERRLOG("invalid queue priority for default round robin arbitration method\n");
347 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
348 		return NULL;
349 	}
350 
351 	/*
352 	 * Get the first available I/O queue ID.
353 	 */
354 	qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1);
355 	if (qid > ctrlr->opts.num_io_queues) {
356 		SPDK_ERRLOG("No free I/O queue IDs\n");
357 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
358 		return NULL;
359 	}
360 
361 	qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, opts);
362 	if (qpair == NULL) {
363 		SPDK_ERRLOG("nvme_transport_ctrlr_create_io_qpair() failed\n");
364 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
365 		return NULL;
366 	}
367 
368 	spdk_bit_array_clear(ctrlr->free_io_qids, qid);
369 	TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq);
370 
371 	nvme_ctrlr_proc_add_io_qpair(qpair);
372 
373 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
374 
375 	return qpair;
376 }
377 
378 int
379 spdk_nvme_ctrlr_connect_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
380 {
381 	int rc;
382 
383 	if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) {
384 		return -EISCONN;
385 	}
386 
387 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
388 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
389 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
390 
391 	if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) {
392 		spdk_delay_us(100);
393 	}
394 
395 	return rc;
396 }
397 
398 void
399 spdk_nvme_ctrlr_disconnect_io_qpair(struct spdk_nvme_qpair *qpair)
400 {
401 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
402 
403 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
404 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
405 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
406 }
407 
408 struct spdk_nvme_qpair *
409 spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
410 			       const struct spdk_nvme_io_qpair_opts *user_opts,
411 			       size_t opts_size)
412 {
413 
414 	struct spdk_nvme_qpair		*qpair;
415 	struct spdk_nvme_io_qpair_opts	opts;
416 	int				rc;
417 
418 	/*
419 	 * Get the default options, then overwrite them with the user-provided options
420 	 * up to opts_size.
421 	 *
422 	 * This allows for extensions of the opts structure without breaking
423 	 * ABI compatibility.
424 	 */
425 	spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
426 	if (user_opts) {
427 		memcpy(&opts, user_opts, spdk_min(sizeof(opts), opts_size));
428 
429 		/* If user passes buffers, make sure they're big enough for the requested queue size */
430 		if (opts.sq.vaddr) {
431 			if (opts.sq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))) {
432 				SPDK_ERRLOG("sq buffer size %lx is too small for sq size %lx\n",
433 					    opts.sq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cmd)));
434 				return NULL;
435 			}
436 		}
437 		if (opts.cq.vaddr) {
438 			if (opts.cq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))) {
439 				SPDK_ERRLOG("cq buffer size %lx is too small for cq size %lx\n",
440 					    opts.cq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cpl)));
441 				return NULL;
442 			}
443 		}
444 	}
445 
446 	qpair = nvme_ctrlr_create_io_qpair(ctrlr, &opts);
447 
448 	if (qpair == NULL || opts.create_only == true) {
449 		return qpair;
450 	}
451 
452 	rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair);
453 	if (rc != 0) {
454 		SPDK_ERRLOG("nvme_transport_ctrlr_connect_io_qpair() failed\n");
455 		nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
456 		return NULL;
457 	}
458 
459 	return qpair;
460 }
461 
462 int
463 spdk_nvme_ctrlr_reconnect_io_qpair(struct spdk_nvme_qpair *qpair)
464 {
465 	struct spdk_nvme_ctrlr *ctrlr;
466 	int rc;
467 
468 	assert(qpair != NULL);
469 	assert(nvme_qpair_is_admin_queue(qpair) == false);
470 	assert(qpair->ctrlr != NULL);
471 
472 	ctrlr = qpair->ctrlr;
473 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
474 
475 	if (ctrlr->is_removed) {
476 		rc = -ENODEV;
477 		goto out;
478 	}
479 
480 	if (ctrlr->is_resetting) {
481 		rc = -EAGAIN;
482 		goto out;
483 	}
484 
485 	if (ctrlr->is_failed) {
486 		rc = -ENXIO;
487 		goto out;
488 	}
489 
490 	if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) {
491 		rc = 0;
492 		goto out;
493 	}
494 
495 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
496 	if (rc) {
497 		rc = -EAGAIN;
498 		goto out;
499 	}
500 
501 out:
502 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
503 	return rc;
504 }
505 
506 spdk_nvme_qp_failure_reason
507 spdk_nvme_ctrlr_get_admin_qp_failure_reason(struct spdk_nvme_ctrlr *ctrlr)
508 {
509 	return ctrlr->adminq->transport_failure_reason;
510 }
511 
512 /*
513  * This internal function will attempt to take the controller
514  * lock before calling disconnect on a controller qpair.
515  * Functions already holding the controller lock should
516  * call nvme_transport_ctrlr_disconnect_qpair directly.
517  */
518 void
519 nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair)
520 {
521 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
522 
523 	assert(ctrlr != NULL);
524 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
525 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
526 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
527 }
528 
529 int
530 spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair)
531 {
532 	struct spdk_nvme_ctrlr *ctrlr;
533 
534 	if (qpair == NULL) {
535 		return 0;
536 	}
537 
538 	ctrlr = qpair->ctrlr;
539 
540 	if (qpair->in_completion_context) {
541 		/*
542 		 * There are many cases where it is convenient to delete an io qpair in the context
543 		 *  of that qpair's completion routine.  To handle this properly, set a flag here
544 		 *  so that the completion routine will perform an actual delete after the context
545 		 *  unwinds.
546 		 */
547 		qpair->delete_after_completion_context = 1;
548 		return 0;
549 	}
550 
551 	if (qpair->poll_group && qpair->poll_group->in_completion_context) {
552 		/* Same as above, but in a poll group. */
553 		qpair->poll_group->num_qpairs_to_delete++;
554 		qpair->delete_after_completion_context = 1;
555 		return 0;
556 	}
557 
558 	if (qpair->poll_group) {
559 		spdk_nvme_poll_group_remove(qpair->poll_group->group, qpair);
560 	}
561 
562 	/* Do not retry. */
563 	nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
564 	nvme_qpair_abort_reqs(qpair, 1);
565 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
566 
567 	nvme_ctrlr_proc_remove_io_qpair(qpair);
568 
569 	TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
570 	spdk_bit_array_set(ctrlr->free_io_qids, qpair->id);
571 
572 	if (nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair)) {
573 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
574 		return -1;
575 	}
576 
577 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
578 	return 0;
579 }
580 
581 static void
582 nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr,
583 		struct spdk_nvme_intel_log_page_directory *log_page_directory)
584 {
585 	if (log_page_directory == NULL) {
586 		return;
587 	}
588 
589 	if (ctrlr->cdata.vid != SPDK_PCI_VID_INTEL) {
590 		return;
591 	}
592 
593 	ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
594 
595 	if (log_page_directory->read_latency_log_len ||
596 	    (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) {
597 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
598 	}
599 	if (log_page_directory->write_latency_log_len ||
600 	    (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) {
601 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
602 	}
603 	if (log_page_directory->temperature_statistics_log_len) {
604 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true;
605 	}
606 	if (log_page_directory->smart_log_len) {
607 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true;
608 	}
609 	if (log_page_directory->marketing_description_log_len) {
610 		ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true;
611 	}
612 }
613 
614 static int nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr)
615 {
616 	int rc = 0;
617 	struct nvme_completion_poll_status	*status;
618 	struct spdk_nvme_intel_log_page_directory *log_page_directory;
619 
620 	log_page_directory = spdk_zmalloc(sizeof(struct spdk_nvme_intel_log_page_directory),
621 					  64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
622 	if (log_page_directory == NULL) {
623 		SPDK_ERRLOG("could not allocate log_page_directory\n");
624 		return -ENXIO;
625 	}
626 
627 	status = calloc(1, sizeof(*status));
628 	if (!status) {
629 		SPDK_ERRLOG("Failed to allocate status tracker\n");
630 		spdk_free(log_page_directory);
631 		return -ENOMEM;
632 	}
633 
634 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY,
635 					      SPDK_NVME_GLOBAL_NS_TAG, log_page_directory,
636 					      sizeof(struct spdk_nvme_intel_log_page_directory),
637 					      0, nvme_completion_poll_cb, status);
638 	if (rc != 0) {
639 		spdk_free(log_page_directory);
640 		free(status);
641 		return rc;
642 	}
643 
644 	if (nvme_wait_for_completion_timeout(ctrlr->adminq, status,
645 					     ctrlr->opts.admin_timeout_ms / 1000)) {
646 		spdk_free(log_page_directory);
647 		SPDK_WARNLOG("Intel log pages not supported on Intel drive!\n");
648 		if (!status->timed_out) {
649 			free(status);
650 		}
651 		return 0;
652 	}
653 
654 	nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, log_page_directory);
655 	spdk_free(log_page_directory);
656 	free(status);
657 	return 0;
658 }
659 
660 static int
661 nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr)
662 {
663 	int	rc = 0;
664 
665 	memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
666 	/* Mandatory pages */
667 	ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true;
668 	ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true;
669 	ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true;
670 	if (ctrlr->cdata.lpa.celp) {
671 		ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true;
672 	}
673 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL && !(ctrlr->quirks & NVME_INTEL_QUIRK_NO_LOG_PAGES)) {
674 		rc = nvme_ctrlr_set_intel_support_log_pages(ctrlr);
675 	}
676 
677 	return rc;
678 }
679 
680 static void
681 nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr)
682 {
683 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true;
684 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
685 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
686 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
687 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true;
688 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
689 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
690 }
691 
692 static void
693 nvme_ctrlr_set_arbitration_feature(struct spdk_nvme_ctrlr *ctrlr)
694 {
695 	uint32_t cdw11;
696 	struct nvme_completion_poll_status *status;
697 
698 	if (ctrlr->opts.arbitration_burst == 0) {
699 		return;
700 	}
701 
702 	if (ctrlr->opts.arbitration_burst > 7) {
703 		SPDK_WARNLOG("Valid arbitration burst values is from 0-7\n");
704 		return;
705 	}
706 
707 	status = calloc(1, sizeof(*status));
708 	if (!status) {
709 		SPDK_ERRLOG("Failed to allocate status tracker\n");
710 		return;
711 	}
712 
713 	cdw11 = ctrlr->opts.arbitration_burst;
714 
715 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_WRR_SUPPORTED) {
716 		cdw11 |= (uint32_t)ctrlr->opts.low_priority_weight << 8;
717 		cdw11 |= (uint32_t)ctrlr->opts.medium_priority_weight << 16;
718 		cdw11 |= (uint32_t)ctrlr->opts.high_priority_weight << 24;
719 	}
720 
721 	if (spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION,
722 					    cdw11, 0, NULL, 0,
723 					    nvme_completion_poll_cb, status) < 0) {
724 		SPDK_ERRLOG("Set arbitration feature failed\n");
725 		free(status);
726 		return;
727 	}
728 
729 	if (nvme_wait_for_completion_timeout(ctrlr->adminq, status,
730 					     ctrlr->opts.admin_timeout_ms / 1000)) {
731 		SPDK_ERRLOG("Timeout to set arbitration feature\n");
732 	}
733 
734 	if (!status->timed_out) {
735 		free(status);
736 	}
737 }
738 
739 static void
740 nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr)
741 {
742 	memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
743 	/* Mandatory features */
744 	ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true;
745 	ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true;
746 	ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
747 	ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true;
748 	ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true;
749 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true;
750 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
751 	ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true;
752 	ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
753 	/* Optional features */
754 	if (ctrlr->cdata.vwc.present) {
755 		ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
756 	}
757 	if (ctrlr->cdata.apsta.supported) {
758 		ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
759 	}
760 	if (ctrlr->cdata.hmpre) {
761 		ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true;
762 	}
763 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
764 		nvme_ctrlr_set_intel_supported_features(ctrlr);
765 	}
766 
767 	nvme_ctrlr_set_arbitration_feature(ctrlr);
768 }
769 
770 bool
771 spdk_nvme_ctrlr_is_failed(struct spdk_nvme_ctrlr *ctrlr)
772 {
773 	return ctrlr->is_failed;
774 }
775 
776 void
777 nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
778 {
779 	/*
780 	 * Set the flag here and leave the work failure of qpairs to
781 	 * spdk_nvme_qpair_process_completions().
782 	 */
783 	if (hot_remove) {
784 		ctrlr->is_removed = true;
785 	}
786 	ctrlr->is_failed = true;
787 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
788 	SPDK_ERRLOG("ctrlr %s in failed state.\n", ctrlr->trid.traddr);
789 }
790 
791 /**
792  * This public API function will try to take the controller lock.
793  * Any private functions being called from a thread already holding
794  * the ctrlr lock should call nvme_ctrlr_fail directly.
795  */
796 void
797 spdk_nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr)
798 {
799 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
800 	nvme_ctrlr_fail(ctrlr, false);
801 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
802 }
803 
804 static void
805 nvme_ctrlr_shutdown(struct spdk_nvme_ctrlr *ctrlr)
806 {
807 	union spdk_nvme_cc_register	cc;
808 	union spdk_nvme_csts_register	csts;
809 	uint32_t			ms_waited = 0;
810 	uint32_t			shutdown_timeout_ms;
811 
812 	if (ctrlr->is_removed) {
813 		return;
814 	}
815 
816 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
817 		SPDK_ERRLOG("ctrlr %s get_cc() failed\n", ctrlr->trid.traddr);
818 		return;
819 	}
820 
821 	cc.bits.shn = SPDK_NVME_SHN_NORMAL;
822 
823 	if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
824 		SPDK_ERRLOG("ctrlr %s set_cc() failed\n", ctrlr->trid.traddr);
825 		return;
826 	}
827 
828 	/*
829 	 * The NVMe specification defines RTD3E to be the time between
830 	 *  setting SHN = 1 until the controller will set SHST = 10b.
831 	 * If the device doesn't report RTD3 entry latency, or if it
832 	 *  reports RTD3 entry latency less than 10 seconds, pick
833 	 *  10 seconds as a reasonable amount of time to
834 	 *  wait before proceeding.
835 	 */
836 	SPDK_DEBUGLOG(SPDK_LOG_NVME, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e);
837 	shutdown_timeout_ms = (ctrlr->cdata.rtd3e + 999) / 1000;
838 	shutdown_timeout_ms = spdk_max(shutdown_timeout_ms, 10000);
839 	SPDK_DEBUGLOG(SPDK_LOG_NVME, "shutdown timeout = %" PRIu32 " ms\n", shutdown_timeout_ms);
840 
841 	do {
842 		if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
843 			SPDK_ERRLOG("ctrlr %s get_csts() failed\n", ctrlr->trid.traddr);
844 			return;
845 		}
846 
847 		if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
848 			SPDK_DEBUGLOG(SPDK_LOG_NVME, "ctrlr %s shutdown complete in %u milliseconds\n",
849 				      ctrlr->trid.traddr, ms_waited);
850 			return;
851 		}
852 
853 		nvme_delay(1000);
854 		ms_waited++;
855 	} while (ms_waited < shutdown_timeout_ms);
856 
857 	SPDK_ERRLOG("ctrlr %s did not shutdown within %u milliseconds\n",
858 		    ctrlr->trid.traddr, shutdown_timeout_ms);
859 	if (ctrlr->quirks & NVME_QUIRK_SHST_COMPLETE) {
860 		SPDK_ERRLOG("likely due to shutdown handling in the VMWare emulated NVMe SSD\n");
861 	}
862 }
863 
864 static int
865 nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
866 {
867 	union spdk_nvme_cc_register	cc;
868 	int				rc;
869 
870 	rc = nvme_transport_ctrlr_enable(ctrlr);
871 	if (rc != 0) {
872 		SPDK_ERRLOG("transport ctrlr_enable failed\n");
873 		return rc;
874 	}
875 
876 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
877 		SPDK_ERRLOG("get_cc() failed\n");
878 		return -EIO;
879 	}
880 
881 	if (cc.bits.en != 0) {
882 		SPDK_ERRLOG("called with CC.EN = 1\n");
883 		return -EINVAL;
884 	}
885 
886 	cc.bits.en = 1;
887 	cc.bits.css = 0;
888 	cc.bits.shn = 0;
889 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
890 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
891 
892 	/* Page size is 2 ^ (12 + mps). */
893 	cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12;
894 
895 	if (ctrlr->cap.bits.css == 0) {
896 		SPDK_INFOLOG(SPDK_LOG_NVME,
897 			     "Drive reports no command sets supported. Assuming NVM is supported.\n");
898 		ctrlr->cap.bits.css = SPDK_NVME_CAP_CSS_NVM;
899 	}
900 
901 	if (!(ctrlr->cap.bits.css & (1u << ctrlr->opts.command_set))) {
902 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "Requested I/O command set %u but supported mask is 0x%x\n",
903 			      ctrlr->opts.command_set, ctrlr->cap.bits.css);
904 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "Falling back to NVM. Assuming NVM is supported.\n");
905 		ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
906 	}
907 
908 	cc.bits.css = ctrlr->opts.command_set;
909 
910 	switch (ctrlr->opts.arb_mechanism) {
911 	case SPDK_NVME_CC_AMS_RR:
912 		break;
913 	case SPDK_NVME_CC_AMS_WRR:
914 		if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) {
915 			break;
916 		}
917 		return -EINVAL;
918 	case SPDK_NVME_CC_AMS_VS:
919 		if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) {
920 			break;
921 		}
922 		return -EINVAL;
923 	default:
924 		return -EINVAL;
925 	}
926 
927 	cc.bits.ams = ctrlr->opts.arb_mechanism;
928 
929 	if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
930 		SPDK_ERRLOG("set_cc() failed\n");
931 		return -EIO;
932 	}
933 
934 	return 0;
935 }
936 
937 static int
938 nvme_ctrlr_disable(struct spdk_nvme_ctrlr *ctrlr)
939 {
940 	union spdk_nvme_cc_register	cc;
941 
942 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
943 		SPDK_ERRLOG("get_cc() failed\n");
944 		return -EIO;
945 	}
946 
947 	if (cc.bits.en == 0) {
948 		return 0;
949 	}
950 
951 	cc.bits.en = 0;
952 
953 	if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
954 		SPDK_ERRLOG("set_cc() failed\n");
955 		return -EIO;
956 	}
957 
958 	return 0;
959 }
960 
961 #ifdef DEBUG
962 static const char *
963 nvme_ctrlr_state_string(enum nvme_ctrlr_state state)
964 {
965 	switch (state) {
966 	case NVME_CTRLR_STATE_INIT_DELAY:
967 		return "delay init";
968 	case NVME_CTRLR_STATE_INIT:
969 		return "init";
970 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
971 		return "disable and wait for CSTS.RDY = 1";
972 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
973 		return "disable and wait for CSTS.RDY = 0";
974 	case NVME_CTRLR_STATE_ENABLE:
975 		return "enable controller by writing CC.EN = 1";
976 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
977 		return "wait for CSTS.RDY = 1";
978 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
979 		return "reset admin queue";
980 	case NVME_CTRLR_STATE_IDENTIFY:
981 		return "identify controller";
982 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
983 		return "wait for identify controller";
984 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
985 		return "set number of queues";
986 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
987 		return "wait for set number of queues";
988 	case NVME_CTRLR_STATE_CONSTRUCT_NS:
989 		return "construct namespaces";
990 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
991 		return "identify active ns";
992 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
993 		return "wait for identify active ns";
994 	case NVME_CTRLR_STATE_IDENTIFY_NS:
995 		return "identify ns";
996 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
997 		return "wait for identify ns";
998 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
999 		return "identify namespace id descriptors";
1000 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
1001 		return "wait for identify namespace id descriptors";
1002 	case NVME_CTRLR_STATE_CONFIGURE_AER:
1003 		return "configure AER";
1004 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
1005 		return "wait for configure aer";
1006 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
1007 		return "set supported log pages";
1008 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
1009 		return "set supported features";
1010 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
1011 		return "set doorbell buffer config";
1012 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
1013 		return "wait for doorbell buffer config";
1014 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
1015 		return "set keep alive timeout";
1016 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
1017 		return "wait for set keep alive timeout";
1018 	case NVME_CTRLR_STATE_SET_HOST_ID:
1019 		return "set host ID";
1020 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
1021 		return "wait for set host ID";
1022 	case NVME_CTRLR_STATE_READY:
1023 		return "ready";
1024 	case NVME_CTRLR_STATE_ERROR:
1025 		return "error";
1026 	}
1027 	return "unknown";
1028 };
1029 #endif /* DEBUG */
1030 
1031 static void
1032 nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1033 		     uint64_t timeout_in_ms)
1034 {
1035 	uint64_t ticks_per_ms, timeout_in_ticks, now_ticks;
1036 
1037 	ctrlr->state = state;
1038 	if (timeout_in_ms == NVME_TIMEOUT_INFINITE) {
1039 		goto inf;
1040 	}
1041 
1042 	ticks_per_ms = spdk_get_ticks_hz() / 1000;
1043 	if (timeout_in_ms > UINT64_MAX / ticks_per_ms) {
1044 		SPDK_ERRLOG("Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1045 		goto inf;
1046 	}
1047 
1048 	now_ticks = spdk_get_ticks();
1049 	timeout_in_ticks = timeout_in_ms * ticks_per_ms;
1050 	if (timeout_in_ticks > UINT64_MAX - now_ticks) {
1051 		SPDK_ERRLOG("Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1052 		goto inf;
1053 	}
1054 
1055 	ctrlr->state_timeout_tsc = timeout_in_ticks + now_ticks;
1056 	SPDK_DEBUGLOG(SPDK_LOG_NVME, "setting state to %s (timeout %" PRIu64 " ms)\n",
1057 		      nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms);
1058 	return;
1059 inf:
1060 	SPDK_DEBUGLOG(SPDK_LOG_NVME, "setting state to %s (no timeout)\n",
1061 		      nvme_ctrlr_state_string(ctrlr->state));
1062 	ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE;
1063 }
1064 
1065 static void
1066 nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr)
1067 {
1068 	if (ctrlr->shadow_doorbell) {
1069 		spdk_free(ctrlr->shadow_doorbell);
1070 		ctrlr->shadow_doorbell = NULL;
1071 	}
1072 
1073 	if (ctrlr->eventidx) {
1074 		spdk_free(ctrlr->eventidx);
1075 		ctrlr->eventidx = NULL;
1076 	}
1077 }
1078 
1079 static void
1080 nvme_ctrlr_set_doorbell_buffer_config_done(void *arg, const struct spdk_nvme_cpl *cpl)
1081 {
1082 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1083 
1084 	if (spdk_nvme_cpl_is_error(cpl)) {
1085 		SPDK_WARNLOG("Doorbell buffer config failed\n");
1086 	} else {
1087 		SPDK_INFOLOG(SPDK_LOG_NVME, "NVMe controller: %s doorbell buffer config enabled\n",
1088 			     ctrlr->trid.traddr);
1089 	}
1090 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT,
1091 			     ctrlr->opts.admin_timeout_ms);
1092 }
1093 
1094 static int
1095 nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr)
1096 {
1097 	int rc = 0;
1098 	uint64_t prp1, prp2, len;
1099 
1100 	if (!ctrlr->cdata.oacs.doorbell_buffer_config) {
1101 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT,
1102 				     ctrlr->opts.admin_timeout_ms);
1103 		return 0;
1104 	}
1105 
1106 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
1107 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT,
1108 				     ctrlr->opts.admin_timeout_ms);
1109 		return 0;
1110 	}
1111 
1112 	/* only 1 page size for doorbell buffer */
1113 	ctrlr->shadow_doorbell = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1114 					      NULL, SPDK_ENV_LCORE_ID_ANY,
1115 					      SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1116 	if (ctrlr->shadow_doorbell == NULL) {
1117 		rc = -ENOMEM;
1118 		goto error;
1119 	}
1120 
1121 	len = ctrlr->page_size;
1122 	prp1 = spdk_vtophys(ctrlr->shadow_doorbell, &len);
1123 	if (prp1 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1124 		rc = -EFAULT;
1125 		goto error;
1126 	}
1127 
1128 	ctrlr->eventidx = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1129 				       NULL, SPDK_ENV_LCORE_ID_ANY,
1130 				       SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1131 	if (ctrlr->eventidx == NULL) {
1132 		rc = -ENOMEM;
1133 		goto error;
1134 	}
1135 
1136 	len = ctrlr->page_size;
1137 	prp2 = spdk_vtophys(ctrlr->eventidx, &len);
1138 	if (prp2 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1139 		rc = -EFAULT;
1140 		goto error;
1141 	}
1142 
1143 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG,
1144 			     ctrlr->opts.admin_timeout_ms);
1145 
1146 	rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2,
1147 			nvme_ctrlr_set_doorbell_buffer_config_done, ctrlr);
1148 	if (rc != 0) {
1149 		goto error;
1150 	}
1151 
1152 	return 0;
1153 
1154 error:
1155 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1156 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1157 	return rc;
1158 }
1159 
1160 static void
1161 nvme_ctrlr_abort_queued_aborts(struct spdk_nvme_ctrlr *ctrlr)
1162 {
1163 	struct nvme_request	*req, *tmp;
1164 	struct spdk_nvme_cpl	cpl = {};
1165 
1166 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
1167 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
1168 
1169 	STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) {
1170 		STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq);
1171 
1172 		nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, &cpl);
1173 		nvme_free_request(req);
1174 	}
1175 }
1176 
1177 int
1178 spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr)
1179 {
1180 	int rc = 0;
1181 	struct spdk_nvme_qpair	*qpair;
1182 
1183 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1184 
1185 	if (ctrlr->is_resetting || ctrlr->is_removed) {
1186 		/*
1187 		 * Controller is already resetting or has been removed. Return
1188 		 *  immediately since there is no need to kick off another
1189 		 *  reset in these cases.
1190 		 */
1191 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1192 		return ctrlr->is_resetting ? 0 : -ENXIO;
1193 	}
1194 
1195 	ctrlr->is_resetting = true;
1196 	ctrlr->is_failed = false;
1197 
1198 	SPDK_NOTICELOG("resetting controller\n");
1199 
1200 	/* Abort all of the queued abort requests */
1201 	nvme_ctrlr_abort_queued_aborts(ctrlr);
1202 
1203 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
1204 
1205 	/* Disable all queues before disabling the controller hardware. */
1206 	TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1207 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1208 	}
1209 
1210 	ctrlr->adminq->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1211 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1212 	if (nvme_transport_ctrlr_connect_qpair(ctrlr, ctrlr->adminq) != 0) {
1213 		SPDK_ERRLOG("Controller reinitialization failed.\n");
1214 		rc = -1;
1215 		goto out;
1216 	}
1217 
1218 	/* Doorbell buffer config is invalid during reset */
1219 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1220 
1221 	/* Set the state back to INIT to cause a full hardware reset. */
1222 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
1223 
1224 	nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
1225 	while (ctrlr->state != NVME_CTRLR_STATE_READY) {
1226 		if (nvme_ctrlr_process_init(ctrlr) != 0) {
1227 			SPDK_ERRLOG("controller reinitialization failed\n");
1228 			rc = -1;
1229 			break;
1230 		}
1231 	}
1232 
1233 	/*
1234 	 * For PCIe controllers, the memory locations of the tranpsort qpair
1235 	 * don't change when the controller is reset. They simply need to be
1236 	 * re-enabled with admin commands to the controller. For fabric
1237 	 * controllers we need to disconnect and reconnect the qpair on its
1238 	 * own thread outside of the context of the reset.
1239 	 */
1240 	if (rc == 0 && ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
1241 		/* Reinitialize qpairs */
1242 		TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1243 			if (nvme_transport_ctrlr_connect_qpair(ctrlr, qpair) != 0) {
1244 				qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1245 				rc = -1;
1246 				continue;
1247 			}
1248 		}
1249 	}
1250 
1251 out:
1252 	if (rc) {
1253 		nvme_ctrlr_fail(ctrlr, false);
1254 	}
1255 	ctrlr->is_resetting = false;
1256 
1257 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1258 
1259 	if (!ctrlr->cdata.oaes.ns_attribute_notices) {
1260 		/*
1261 		 * If controller doesn't support ns_attribute_notices and
1262 		 * namespace attributes change (e.g. number of namespaces)
1263 		 * we need to update system handling device reset.
1264 		 */
1265 		nvme_io_msg_ctrlr_update(ctrlr);
1266 	}
1267 
1268 	return rc;
1269 }
1270 
1271 int
1272 spdk_nvme_ctrlr_set_trid(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_transport_id *trid)
1273 {
1274 	int rc = 0;
1275 
1276 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1277 
1278 	if (ctrlr->is_failed == false) {
1279 		rc = -EPERM;
1280 		goto out;
1281 	}
1282 
1283 	if (trid->trtype != ctrlr->trid.trtype) {
1284 		rc = -EINVAL;
1285 		goto out;
1286 	}
1287 
1288 	if (strncmp(trid->subnqn, ctrlr->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
1289 		rc = -EINVAL;
1290 		goto out;
1291 	}
1292 
1293 	ctrlr->trid = *trid;
1294 
1295 out:
1296 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1297 	return rc;
1298 }
1299 
1300 static void
1301 nvme_ctrlr_identify_done(void *arg, const struct spdk_nvme_cpl *cpl)
1302 {
1303 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1304 
1305 	if (spdk_nvme_cpl_is_error(cpl)) {
1306 		SPDK_ERRLOG("nvme_identify_controller failed!\n");
1307 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1308 		return;
1309 	}
1310 
1311 	/*
1312 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
1313 	 *  controller supports.
1314 	 */
1315 	ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr);
1316 	SPDK_DEBUGLOG(SPDK_LOG_NVME, "transport max_xfer_size %u\n", ctrlr->max_xfer_size);
1317 	if (ctrlr->cdata.mdts > 0) {
1318 		ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size,
1319 						ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
1320 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size);
1321 	}
1322 
1323 	SPDK_DEBUGLOG(SPDK_LOG_NVME, "CNTLID 0x%04" PRIx16 "\n", ctrlr->cdata.cntlid);
1324 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
1325 		ctrlr->cntlid = ctrlr->cdata.cntlid;
1326 	} else {
1327 		/*
1328 		 * Fabrics controllers should already have CNTLID from the Connect command.
1329 		 *
1330 		 * If CNTLID from Connect doesn't match CNTLID in the Identify Controller data,
1331 		 * trust the one from Connect.
1332 		 */
1333 		if (ctrlr->cntlid != ctrlr->cdata.cntlid) {
1334 			SPDK_DEBUGLOG(SPDK_LOG_NVME,
1335 				      "Identify CNTLID 0x%04" PRIx16 " != Connect CNTLID 0x%04" PRIx16 "\n",
1336 				      ctrlr->cdata.cntlid, ctrlr->cntlid);
1337 		}
1338 	}
1339 
1340 	if (ctrlr->cdata.sgls.supported) {
1341 		assert(ctrlr->cdata.sgls.supported != 0x3);
1342 		ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
1343 		if (ctrlr->cdata.sgls.supported == 0x2) {
1344 			ctrlr->flags |= SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT;
1345 		}
1346 		/*
1347 		 * Use MSDBD to ensure our max_sges doesn't exceed what the
1348 		 *  controller supports.
1349 		 */
1350 		ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr);
1351 		if (ctrlr->cdata.nvmf_specific.msdbd != 0) {
1352 			ctrlr->max_sges = spdk_min(ctrlr->cdata.nvmf_specific.msdbd, ctrlr->max_sges);
1353 		} else {
1354 			/* A value 0 indicates no limit. */
1355 		}
1356 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "transport max_sges %u\n", ctrlr->max_sges);
1357 	}
1358 
1359 	if (ctrlr->cdata.oacs.security && !(ctrlr->quirks & NVME_QUIRK_OACS_SECURITY)) {
1360 		ctrlr->flags |= SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED;
1361 	}
1362 
1363 	SPDK_DEBUGLOG(SPDK_LOG_NVME, "fuses compare and write: %d\n", ctrlr->cdata.fuses.compare_and_write);
1364 	if (ctrlr->cdata.fuses.compare_and_write) {
1365 		ctrlr->flags |= SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED;
1366 	}
1367 
1368 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
1369 			     ctrlr->opts.admin_timeout_ms);
1370 }
1371 
1372 static int
1373 nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr)
1374 {
1375 	int	rc;
1376 
1377 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY,
1378 			     ctrlr->opts.admin_timeout_ms);
1379 
1380 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0,
1381 				     &ctrlr->cdata, sizeof(ctrlr->cdata),
1382 				     nvme_ctrlr_identify_done, ctrlr);
1383 	if (rc != 0) {
1384 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1385 		return rc;
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 enum nvme_active_ns_state {
1392 	NVME_ACTIVE_NS_STATE_IDLE,
1393 	NVME_ACTIVE_NS_STATE_PROCESSING,
1394 	NVME_ACTIVE_NS_STATE_DONE,
1395 	NVME_ACTIVE_NS_STATE_ERROR
1396 };
1397 
1398 typedef void (*nvme_active_ns_ctx_deleter)(struct nvme_active_ns_ctx *);
1399 
1400 struct nvme_active_ns_ctx {
1401 	struct spdk_nvme_ctrlr *ctrlr;
1402 	uint32_t page;
1403 	uint32_t num_pages;
1404 	uint32_t next_nsid;
1405 	uint32_t *new_ns_list;
1406 	nvme_active_ns_ctx_deleter deleter;
1407 
1408 	enum nvme_active_ns_state state;
1409 };
1410 
1411 static struct nvme_active_ns_ctx *
1412 nvme_active_ns_ctx_create(struct spdk_nvme_ctrlr *ctrlr, nvme_active_ns_ctx_deleter deleter)
1413 {
1414 	struct nvme_active_ns_ctx *ctx;
1415 	uint32_t num_pages = 0;
1416 	uint32_t *new_ns_list = NULL;
1417 
1418 	ctx = calloc(1, sizeof(*ctx));
1419 	if (!ctx) {
1420 		SPDK_ERRLOG("Failed to allocate nvme_active_ns_ctx!\n");
1421 		return NULL;
1422 	}
1423 
1424 	if (ctrlr->num_ns) {
1425 		/* The allocated size must be a multiple of sizeof(struct spdk_nvme_ns_list) */
1426 		num_pages = (ctrlr->num_ns * sizeof(new_ns_list[0]) - 1) / sizeof(struct spdk_nvme_ns_list) + 1;
1427 		new_ns_list = spdk_zmalloc(num_pages * sizeof(struct spdk_nvme_ns_list), ctrlr->page_size,
1428 					   NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1429 		if (!new_ns_list) {
1430 			SPDK_ERRLOG("Failed to allocate active_ns_list!\n");
1431 			free(ctx);
1432 			return NULL;
1433 		}
1434 	}
1435 
1436 	ctx->num_pages = num_pages;
1437 	ctx->new_ns_list = new_ns_list;
1438 	ctx->ctrlr = ctrlr;
1439 	ctx->deleter = deleter;
1440 
1441 	return ctx;
1442 }
1443 
1444 static void
1445 nvme_active_ns_ctx_destroy(struct nvme_active_ns_ctx *ctx)
1446 {
1447 	spdk_free(ctx->new_ns_list);
1448 	free(ctx);
1449 }
1450 
1451 static void
1452 nvme_ctrlr_identify_active_ns_swap(struct spdk_nvme_ctrlr *ctrlr, uint32_t **new_ns_list)
1453 {
1454 	spdk_free(ctrlr->active_ns_list);
1455 	ctrlr->active_ns_list = *new_ns_list;
1456 	*new_ns_list = NULL;
1457 }
1458 
1459 static void
1460 nvme_ctrlr_identify_active_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
1461 {
1462 	struct nvme_active_ns_ctx *ctx = arg;
1463 
1464 	if (spdk_nvme_cpl_is_error(cpl)) {
1465 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
1466 		goto out;
1467 	}
1468 
1469 	ctx->next_nsid = ctx->new_ns_list[1024 * ctx->page + 1023];
1470 	if (ctx->next_nsid == 0 || ++ctx->page == ctx->num_pages) {
1471 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
1472 		goto out;
1473 	}
1474 
1475 	nvme_ctrlr_identify_active_ns_async(ctx);
1476 	return;
1477 
1478 out:
1479 	if (ctx->deleter) {
1480 		ctx->deleter(ctx);
1481 	}
1482 }
1483 
1484 static void
1485 nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx)
1486 {
1487 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1488 	uint32_t i;
1489 	int rc;
1490 
1491 	if (ctrlr->num_ns == 0) {
1492 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
1493 		goto out;
1494 	}
1495 
1496 	/*
1497 	 * If controller doesn't support active ns list CNS 0x02 dummy up
1498 	 * an active ns list, i.e. all namespaces report as active
1499 	 */
1500 	if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 1, 0) || ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS) {
1501 		for (i = 0; i < ctrlr->num_ns; i++) {
1502 			ctx->new_ns_list[i] = i + 1;
1503 		}
1504 
1505 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
1506 		goto out;
1507 	}
1508 
1509 	ctx->state = NVME_ACTIVE_NS_STATE_PROCESSING;
1510 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, ctx->next_nsid,
1511 				     &ctx->new_ns_list[1024 * ctx->page], sizeof(struct spdk_nvme_ns_list),
1512 				     nvme_ctrlr_identify_active_ns_async_done, ctx);
1513 	if (rc != 0) {
1514 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
1515 		goto out;
1516 	}
1517 
1518 	return;
1519 
1520 out:
1521 	if (ctx->deleter) {
1522 		ctx->deleter(ctx);
1523 	}
1524 }
1525 
1526 static void
1527 _nvme_active_ns_ctx_deleter(struct nvme_active_ns_ctx *ctx)
1528 {
1529 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1530 
1531 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
1532 		nvme_ctrlr_destruct_namespaces(ctrlr);
1533 		nvme_active_ns_ctx_destroy(ctx);
1534 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1535 		return;
1536 	}
1537 
1538 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
1539 	nvme_ctrlr_identify_active_ns_swap(ctrlr, &ctx->new_ns_list);
1540 	nvme_active_ns_ctx_destroy(ctx);
1541 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS, ctrlr->opts.admin_timeout_ms);
1542 }
1543 
1544 static void
1545 _nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
1546 {
1547 	struct nvme_active_ns_ctx *ctx;
1548 
1549 	ctx = nvme_active_ns_ctx_create(ctrlr, _nvme_active_ns_ctx_deleter);
1550 	if (!ctx) {
1551 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1552 		return;
1553 	}
1554 
1555 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS,
1556 			     ctrlr->opts.admin_timeout_ms);
1557 	nvme_ctrlr_identify_active_ns_async(ctx);
1558 }
1559 
1560 int
1561 nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
1562 {
1563 	struct nvme_active_ns_ctx *ctx;
1564 	int rc;
1565 
1566 	ctx = nvme_active_ns_ctx_create(ctrlr, NULL);
1567 	if (!ctx) {
1568 		return -ENOMEM;
1569 	}
1570 
1571 	nvme_ctrlr_identify_active_ns_async(ctx);
1572 	while (ctx->state == NVME_ACTIVE_NS_STATE_PROCESSING) {
1573 		rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
1574 		if (rc < 0) {
1575 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
1576 			break;
1577 		}
1578 	}
1579 
1580 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
1581 		nvme_active_ns_ctx_destroy(ctx);
1582 		return -ENXIO;
1583 	}
1584 
1585 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
1586 	nvme_ctrlr_identify_active_ns_swap(ctrlr, &ctx->new_ns_list);
1587 	nvme_active_ns_ctx_destroy(ctx);
1588 
1589 	return 0;
1590 }
1591 
1592 static void
1593 nvme_ctrlr_identify_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
1594 {
1595 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
1596 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
1597 	uint32_t nsid;
1598 	int rc;
1599 
1600 	if (spdk_nvme_cpl_is_error(cpl)) {
1601 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1602 		return;
1603 	} else {
1604 		nvme_ns_set_identify_data(ns);
1605 	}
1606 
1607 	/* move on to the next active NS */
1608 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
1609 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
1610 	if (ns == NULL) {
1611 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
1612 				     ctrlr->opts.admin_timeout_ms);
1613 		return;
1614 	}
1615 	ns->ctrlr = ctrlr;
1616 	ns->id = nsid;
1617 
1618 	rc = nvme_ctrlr_identify_ns_async(ns);
1619 	if (rc) {
1620 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1621 	}
1622 }
1623 
1624 static int
1625 nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns)
1626 {
1627 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
1628 	struct spdk_nvme_ns_data *nsdata;
1629 
1630 	nsdata = &ctrlr->nsdata[ns->id - 1];
1631 
1632 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS,
1633 			     ctrlr->opts.admin_timeout_ms);
1634 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS, 0, ns->id,
1635 				       nsdata, sizeof(*nsdata),
1636 				       nvme_ctrlr_identify_ns_async_done, ns);
1637 }
1638 
1639 static int
1640 nvme_ctrlr_identify_namespaces(struct spdk_nvme_ctrlr *ctrlr)
1641 {
1642 	uint32_t nsid;
1643 	struct spdk_nvme_ns *ns;
1644 	int rc;
1645 
1646 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
1647 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
1648 	if (ns == NULL) {
1649 		/* No active NS, move on to the next state */
1650 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
1651 				     ctrlr->opts.admin_timeout_ms);
1652 		return 0;
1653 	}
1654 
1655 	ns->ctrlr = ctrlr;
1656 	ns->id = nsid;
1657 
1658 	rc = nvme_ctrlr_identify_ns_async(ns);
1659 	if (rc) {
1660 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1661 	}
1662 
1663 	return rc;
1664 }
1665 
1666 static void
1667 nvme_ctrlr_identify_id_desc_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
1668 {
1669 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
1670 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
1671 	uint32_t nsid;
1672 	int rc;
1673 
1674 	if (spdk_nvme_cpl_is_error(cpl)) {
1675 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
1676 				     ctrlr->opts.admin_timeout_ms);
1677 		return;
1678 	}
1679 
1680 	/* move on to the next active NS */
1681 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
1682 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
1683 	if (ns == NULL) {
1684 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
1685 				     ctrlr->opts.admin_timeout_ms);
1686 		return;
1687 	}
1688 
1689 	rc = nvme_ctrlr_identify_id_desc_async(ns);
1690 	if (rc) {
1691 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1692 	}
1693 }
1694 
1695 static int
1696 nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns)
1697 {
1698 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
1699 
1700 	memset(ns->id_desc_list, 0, sizeof(ns->id_desc_list));
1701 
1702 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS,
1703 			     ctrlr->opts.admin_timeout_ms);
1704 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_ID_DESCRIPTOR_LIST,
1705 				       0, ns->id, ns->id_desc_list, sizeof(ns->id_desc_list),
1706 				       nvme_ctrlr_identify_id_desc_async_done, ns);
1707 }
1708 
1709 static int
1710 nvme_ctrlr_identify_id_desc_namespaces(struct spdk_nvme_ctrlr *ctrlr)
1711 {
1712 	uint32_t nsid;
1713 	struct spdk_nvme_ns *ns;
1714 	int rc;
1715 
1716 	if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 3, 0) ||
1717 	    (ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1718 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "Version < 1.3; not attempting to retrieve NS ID Descriptor List\n");
1719 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
1720 				     ctrlr->opts.admin_timeout_ms);
1721 		return 0;
1722 	}
1723 
1724 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
1725 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
1726 	if (ns == NULL) {
1727 		/* No active NS, move on to the next state */
1728 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
1729 				     ctrlr->opts.admin_timeout_ms);
1730 		return 0;
1731 	}
1732 
1733 	rc = nvme_ctrlr_identify_id_desc_async(ns);
1734 	if (rc) {
1735 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1736 	}
1737 
1738 	return rc;
1739 }
1740 
1741 static void
1742 nvme_ctrlr_update_nvmf_ioccsz(struct spdk_nvme_ctrlr *ctrlr)
1743 {
1744 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA ||
1745 	    ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP ||
1746 	    ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_FC) {
1747 		if (ctrlr->cdata.nvmf_specific.ioccsz < 4) {
1748 			SPDK_ERRLOG("Incorrect IOCCSZ %u, the minimum value should be 4\n",
1749 				    ctrlr->cdata.nvmf_specific.ioccsz);
1750 			ctrlr->cdata.nvmf_specific.ioccsz = 4;
1751 			assert(0);
1752 		}
1753 		ctrlr->ioccsz_bytes = ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd);
1754 		ctrlr->icdoff = ctrlr->cdata.nvmf_specific.icdoff;
1755 	}
1756 }
1757 
1758 static void
1759 nvme_ctrlr_set_num_queues_done(void *arg, const struct spdk_nvme_cpl *cpl)
1760 {
1761 	uint32_t cq_allocated, sq_allocated, min_allocated, i;
1762 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1763 
1764 	if (spdk_nvme_cpl_is_error(cpl)) {
1765 		SPDK_ERRLOG("Set Features - Number of Queues failed!\n");
1766 		ctrlr->opts.num_io_queues = 0;
1767 	} else {
1768 		/*
1769 		 * Data in cdw0 is 0-based.
1770 		 * Lower 16-bits indicate number of submission queues allocated.
1771 		 * Upper 16-bits indicate number of completion queues allocated.
1772 		 */
1773 		sq_allocated = (cpl->cdw0 & 0xFFFF) + 1;
1774 		cq_allocated = (cpl->cdw0 >> 16) + 1;
1775 
1776 		/*
1777 		 * For 1:1 queue mapping, set number of allocated queues to be minimum of
1778 		 * submission and completion queues.
1779 		 */
1780 		min_allocated = spdk_min(sq_allocated, cq_allocated);
1781 
1782 		/* Set number of queues to be minimum of requested and actually allocated. */
1783 		ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues);
1784 	}
1785 
1786 	ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1);
1787 	if (ctrlr->free_io_qids == NULL) {
1788 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1789 		return;
1790 	}
1791 
1792 	/* Initialize list of free I/O queue IDs. QID 0 is the admin queue. */
1793 	spdk_bit_array_clear(ctrlr->free_io_qids, 0);
1794 	for (i = 1; i <= ctrlr->opts.num_io_queues; i++) {
1795 		spdk_bit_array_set(ctrlr->free_io_qids, i);
1796 	}
1797 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONSTRUCT_NS,
1798 			     ctrlr->opts.admin_timeout_ms);
1799 }
1800 
1801 static int
1802 nvme_ctrlr_set_num_queues(struct spdk_nvme_ctrlr *ctrlr)
1803 {
1804 	int rc;
1805 
1806 	if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) {
1807 		SPDK_NOTICELOG("Limiting requested num_io_queues %u to max %d\n",
1808 			       ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES);
1809 		ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES;
1810 	} else if (ctrlr->opts.num_io_queues < 1) {
1811 		SPDK_NOTICELOG("Requested num_io_queues 0, increasing to 1\n");
1812 		ctrlr->opts.num_io_queues = 1;
1813 	}
1814 
1815 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES,
1816 			     ctrlr->opts.admin_timeout_ms);
1817 
1818 	rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues,
1819 					   nvme_ctrlr_set_num_queues_done, ctrlr);
1820 	if (rc != 0) {
1821 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1822 		return rc;
1823 	}
1824 
1825 	return 0;
1826 }
1827 
1828 static void
1829 nvme_ctrlr_set_keep_alive_timeout_done(void *arg, const struct spdk_nvme_cpl *cpl)
1830 {
1831 	uint32_t keep_alive_interval_ms;
1832 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1833 
1834 	if (spdk_nvme_cpl_is_error(cpl)) {
1835 		if ((cpl->status.sct == SPDK_NVME_SCT_GENERIC) &&
1836 		    (cpl->status.sc == SPDK_NVME_SC_INVALID_FIELD)) {
1837 			SPDK_DEBUGLOG(SPDK_LOG_NVME, "Keep alive timeout Get Feature is not supported\n");
1838 		} else {
1839 			SPDK_ERRLOG("Keep alive timeout Get Feature failed: SC %x SCT %x\n",
1840 				    cpl->status.sc, cpl->status.sct);
1841 			ctrlr->opts.keep_alive_timeout_ms = 0;
1842 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1843 			return;
1844 		}
1845 	} else {
1846 		if (ctrlr->opts.keep_alive_timeout_ms != cpl->cdw0) {
1847 			SPDK_DEBUGLOG(SPDK_LOG_NVME, "Controller adjusted keep alive timeout to %u ms\n",
1848 				      cpl->cdw0);
1849 		}
1850 
1851 		ctrlr->opts.keep_alive_timeout_ms = cpl->cdw0;
1852 	}
1853 
1854 	keep_alive_interval_ms = ctrlr->opts.keep_alive_timeout_ms / 2;
1855 	if (keep_alive_interval_ms == 0) {
1856 		keep_alive_interval_ms = 1;
1857 	}
1858 	SPDK_DEBUGLOG(SPDK_LOG_NVME, "Sending keep alive every %u ms\n", keep_alive_interval_ms);
1859 
1860 	ctrlr->keep_alive_interval_ticks = (keep_alive_interval_ms * spdk_get_ticks_hz()) / UINT64_C(1000);
1861 
1862 	/* Schedule the first Keep Alive to be sent as soon as possible. */
1863 	ctrlr->next_keep_alive_tick = spdk_get_ticks();
1864 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1865 			     ctrlr->opts.admin_timeout_ms);
1866 }
1867 
1868 static int
1869 nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr)
1870 {
1871 	int rc;
1872 
1873 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
1874 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1875 				     ctrlr->opts.admin_timeout_ms);
1876 		return 0;
1877 	}
1878 
1879 	if (ctrlr->cdata.kas == 0) {
1880 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "Controller KAS is 0 - not enabling Keep Alive\n");
1881 		ctrlr->opts.keep_alive_timeout_ms = 0;
1882 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1883 				     ctrlr->opts.admin_timeout_ms);
1884 		return 0;
1885 	}
1886 
1887 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT,
1888 			     ctrlr->opts.admin_timeout_ms);
1889 
1890 	/* Retrieve actual keep alive timeout, since the controller may have adjusted it. */
1891 	rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0,
1892 					     nvme_ctrlr_set_keep_alive_timeout_done, ctrlr);
1893 	if (rc != 0) {
1894 		SPDK_ERRLOG("Keep alive timeout Get Feature failed: %d\n", rc);
1895 		ctrlr->opts.keep_alive_timeout_ms = 0;
1896 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1897 		return rc;
1898 	}
1899 
1900 	return 0;
1901 }
1902 
1903 static void
1904 nvme_ctrlr_set_host_id_done(void *arg, const struct spdk_nvme_cpl *cpl)
1905 {
1906 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1907 
1908 	if (spdk_nvme_cpl_is_error(cpl)) {
1909 		/*
1910 		 * Treat Set Features - Host ID failure as non-fatal, since the Host ID feature
1911 		 * is optional.
1912 		 */
1913 		SPDK_WARNLOG("Set Features - Host ID failed: SC 0x%x SCT 0x%x\n",
1914 			     cpl->status.sc, cpl->status.sct);
1915 	} else {
1916 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "Set Features - Host ID was successful\n");
1917 	}
1918 
1919 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
1920 }
1921 
1922 static int
1923 nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr)
1924 {
1925 	uint8_t *host_id;
1926 	uint32_t host_id_size;
1927 	int rc;
1928 
1929 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
1930 		/*
1931 		 * NVMe-oF sends the host ID during Connect and doesn't allow
1932 		 * Set Features - Host Identifier after Connect, so we don't need to do anything here.
1933 		 */
1934 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "NVMe-oF transport - not sending Set Features - Host ID\n");
1935 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
1936 		return 0;
1937 	}
1938 
1939 	if (ctrlr->cdata.ctratt.host_id_exhid_supported) {
1940 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "Using 128-bit extended host identifier\n");
1941 		host_id = ctrlr->opts.extended_host_id;
1942 		host_id_size = sizeof(ctrlr->opts.extended_host_id);
1943 	} else {
1944 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "Using 64-bit host identifier\n");
1945 		host_id = ctrlr->opts.host_id;
1946 		host_id_size = sizeof(ctrlr->opts.host_id);
1947 	}
1948 
1949 	/* If the user specified an all-zeroes host identifier, don't send the command. */
1950 	if (spdk_mem_all_zero(host_id, host_id_size)) {
1951 		SPDK_DEBUGLOG(SPDK_LOG_NVME,
1952 			      "User did not specify host ID - not sending Set Features - Host ID\n");
1953 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
1954 		return 0;
1955 	}
1956 
1957 	SPDK_LOGDUMP(SPDK_LOG_NVME, "host_id", host_id, host_id_size);
1958 
1959 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_HOST_ID,
1960 			     ctrlr->opts.admin_timeout_ms);
1961 
1962 	rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_ctrlr_set_host_id_done, ctrlr);
1963 	if (rc != 0) {
1964 		SPDK_ERRLOG("Set Features - Host ID failed: %d\n", rc);
1965 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1966 		return rc;
1967 	}
1968 
1969 	return 0;
1970 }
1971 
1972 static void
1973 nvme_ctrlr_destruct_namespaces(struct spdk_nvme_ctrlr *ctrlr)
1974 {
1975 	if (ctrlr->ns) {
1976 		uint32_t i, num_ns = ctrlr->num_ns;
1977 
1978 		for (i = 0; i < num_ns; i++) {
1979 			nvme_ns_destruct(&ctrlr->ns[i]);
1980 		}
1981 
1982 		spdk_free(ctrlr->ns);
1983 		ctrlr->ns = NULL;
1984 		ctrlr->num_ns = 0;
1985 	}
1986 
1987 	if (ctrlr->nsdata) {
1988 		spdk_free(ctrlr->nsdata);
1989 		ctrlr->nsdata = NULL;
1990 	}
1991 
1992 	spdk_free(ctrlr->active_ns_list);
1993 	ctrlr->active_ns_list = NULL;
1994 }
1995 
1996 static void
1997 nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr)
1998 {
1999 	uint32_t i, nn = ctrlr->cdata.nn;
2000 	struct spdk_nvme_ns_data *nsdata;
2001 	bool ns_is_active;
2002 
2003 	for (i = 0; i < nn; i++) {
2004 		struct spdk_nvme_ns	*ns = &ctrlr->ns[i];
2005 		uint32_t		nsid = i + 1;
2006 
2007 		nsdata = &ctrlr->nsdata[nsid - 1];
2008 		ns_is_active = spdk_nvme_ctrlr_is_active_ns(ctrlr, nsid);
2009 
2010 		if (nsdata->ncap && ns_is_active) {
2011 			if (nvme_ns_update(ns) != 0) {
2012 				SPDK_ERRLOG("Failed to update active NS %u\n", nsid);
2013 				continue;
2014 			}
2015 		}
2016 
2017 		if ((nsdata->ncap == 0) && ns_is_active) {
2018 			if (nvme_ns_construct(ns, nsid, ctrlr) != 0) {
2019 				continue;
2020 			}
2021 		}
2022 
2023 		if (nsdata->ncap && !ns_is_active) {
2024 			nvme_ns_destruct(ns);
2025 		}
2026 	}
2027 }
2028 
2029 static int
2030 nvme_ctrlr_construct_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2031 {
2032 	int rc = 0;
2033 	uint32_t nn = ctrlr->cdata.nn;
2034 
2035 	/* ctrlr->num_ns may be 0 (startup) or a different number of namespaces (reset),
2036 	 * so check if we need to reallocate.
2037 	 */
2038 	if (nn != ctrlr->num_ns) {
2039 		nvme_ctrlr_destruct_namespaces(ctrlr);
2040 
2041 		if (nn == 0) {
2042 			SPDK_WARNLOG("controller has 0 namespaces\n");
2043 			return 0;
2044 		}
2045 
2046 		ctrlr->ns = spdk_zmalloc(nn * sizeof(struct spdk_nvme_ns), 64, NULL,
2047 					 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
2048 		if (ctrlr->ns == NULL) {
2049 			rc = -ENOMEM;
2050 			goto fail;
2051 		}
2052 
2053 		ctrlr->nsdata = spdk_zmalloc(nn * sizeof(struct spdk_nvme_ns_data), 64,
2054 					     NULL, SPDK_ENV_SOCKET_ID_ANY,
2055 					     SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2056 		if (ctrlr->nsdata == NULL) {
2057 			rc = -ENOMEM;
2058 			goto fail;
2059 		}
2060 
2061 		ctrlr->num_ns = nn;
2062 	}
2063 
2064 	return 0;
2065 
2066 fail:
2067 	nvme_ctrlr_destruct_namespaces(ctrlr);
2068 	return rc;
2069 }
2070 
2071 static void
2072 nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl)
2073 {
2074 	struct nvme_async_event_request	*aer = arg;
2075 	struct spdk_nvme_ctrlr		*ctrlr = aer->ctrlr;
2076 	struct spdk_nvme_ctrlr_process	*active_proc;
2077 	union spdk_nvme_async_event_completion	event;
2078 	int					rc;
2079 
2080 	if (cpl->status.sct == SPDK_NVME_SCT_GENERIC &&
2081 	    cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) {
2082 		/*
2083 		 *  This is simulated when controller is being shut down, to
2084 		 *  effectively abort outstanding asynchronous event requests
2085 		 *  and make sure all memory is freed.  Do not repost the
2086 		 *  request in this case.
2087 		 */
2088 		return;
2089 	}
2090 
2091 	if (cpl->status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC &&
2092 	    cpl->status.sc == SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED) {
2093 		/*
2094 		 *  SPDK will only send as many AERs as the device says it supports,
2095 		 *  so this status code indicates an out-of-spec device.  Do not repost
2096 		 *  the request in this case.
2097 		 */
2098 		SPDK_ERRLOG("Controller appears out-of-spec for asynchronous event request\n"
2099 			    "handling.  Do not repost this AER.\n");
2100 		return;
2101 	}
2102 
2103 	event.raw = cpl->cdw0;
2104 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
2105 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
2106 		rc = nvme_ctrlr_identify_active_ns(ctrlr);
2107 		if (rc) {
2108 			return;
2109 		}
2110 		nvme_ctrlr_update_namespaces(ctrlr);
2111 		nvme_io_msg_ctrlr_update(ctrlr);
2112 	}
2113 
2114 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
2115 	if (active_proc && active_proc->aer_cb_fn) {
2116 		active_proc->aer_cb_fn(active_proc->aer_cb_arg, cpl);
2117 	}
2118 
2119 	/* If the ctrlr was removed or in the destruct state, we should not send aer again */
2120 	if (ctrlr->is_removed || ctrlr->is_destructed) {
2121 		return;
2122 	}
2123 
2124 	/*
2125 	 * Repost another asynchronous event request to replace the one
2126 	 *  that just completed.
2127 	 */
2128 	if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
2129 		/*
2130 		 * We can't do anything to recover from a failure here,
2131 		 * so just print a warning message and leave the AER unsubmitted.
2132 		 */
2133 		SPDK_ERRLOG("resubmitting AER failed!\n");
2134 	}
2135 }
2136 
2137 static int
2138 nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
2139 				    struct nvme_async_event_request *aer)
2140 {
2141 	struct nvme_request *req;
2142 
2143 	aer->ctrlr = ctrlr;
2144 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer);
2145 	aer->req = req;
2146 	if (req == NULL) {
2147 		return -1;
2148 	}
2149 
2150 	req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
2151 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
2152 }
2153 
2154 static void
2155 nvme_ctrlr_configure_aer_done(void *arg, const struct spdk_nvme_cpl *cpl)
2156 {
2157 	struct nvme_async_event_request		*aer;
2158 	int					rc;
2159 	uint32_t				i;
2160 	struct spdk_nvme_ctrlr *ctrlr =	(struct spdk_nvme_ctrlr *)arg;
2161 
2162 	if (spdk_nvme_cpl_is_error(cpl)) {
2163 		SPDK_NOTICELOG("nvme_ctrlr_configure_aer failed!\n");
2164 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2165 				     ctrlr->opts.admin_timeout_ms);
2166 		return;
2167 	}
2168 
2169 	/* aerl is a zero-based value, so we need to add 1 here. */
2170 	ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
2171 
2172 	for (i = 0; i < ctrlr->num_aers; i++) {
2173 		aer = &ctrlr->aer[i];
2174 		rc = nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
2175 		if (rc) {
2176 			SPDK_ERRLOG("nvme_ctrlr_construct_and_submit_aer failed!\n");
2177 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2178 			return;
2179 		}
2180 	}
2181 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2182 			     ctrlr->opts.admin_timeout_ms);
2183 }
2184 
2185 static int
2186 nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr)
2187 {
2188 	union spdk_nvme_feat_async_event_configuration	config;
2189 	int						rc;
2190 
2191 	config.raw = 0;
2192 	config.bits.crit_warn.bits.available_spare = 1;
2193 	config.bits.crit_warn.bits.temperature = 1;
2194 	config.bits.crit_warn.bits.device_reliability = 1;
2195 	config.bits.crit_warn.bits.read_only = 1;
2196 	config.bits.crit_warn.bits.volatile_memory_backup = 1;
2197 
2198 	if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 2, 0)) {
2199 		if (ctrlr->cdata.oaes.ns_attribute_notices) {
2200 			config.bits.ns_attr_notice = 1;
2201 		}
2202 		if (ctrlr->cdata.oaes.fw_activation_notices) {
2203 			config.bits.fw_activation_notice = 1;
2204 		}
2205 	}
2206 	if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 3, 0) && ctrlr->cdata.lpa.telemetry) {
2207 		config.bits.telemetry_log_notice = 1;
2208 	}
2209 
2210 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER,
2211 			     ctrlr->opts.admin_timeout_ms);
2212 
2213 	rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config,
2214 			nvme_ctrlr_configure_aer_done,
2215 			ctrlr);
2216 	if (rc != 0) {
2217 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2218 		return rc;
2219 	}
2220 
2221 	return 0;
2222 }
2223 
2224 struct spdk_nvme_ctrlr_process *
2225 nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid)
2226 {
2227 	struct spdk_nvme_ctrlr_process	*active_proc;
2228 
2229 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
2230 		if (active_proc->pid == pid) {
2231 			return active_proc;
2232 		}
2233 	}
2234 
2235 	return NULL;
2236 }
2237 
2238 struct spdk_nvme_ctrlr_process *
2239 nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr)
2240 {
2241 	return nvme_ctrlr_get_process(ctrlr, getpid());
2242 }
2243 
2244 /**
2245  * This function will be called when a process is using the controller.
2246  *  1. For the primary process, it is called when constructing the controller.
2247  *  2. For the secondary process, it is called at probing the controller.
2248  * Note: will check whether the process is already added for the same process.
2249  */
2250 int
2251 nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
2252 {
2253 	struct spdk_nvme_ctrlr_process	*ctrlr_proc;
2254 	pid_t				pid = getpid();
2255 
2256 	/* Check whether the process is already added or not */
2257 	if (nvme_ctrlr_get_process(ctrlr, pid)) {
2258 		return 0;
2259 	}
2260 
2261 	/* Initialize the per process properties for this ctrlr */
2262 	ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process),
2263 				  64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
2264 	if (ctrlr_proc == NULL) {
2265 		SPDK_ERRLOG("failed to allocate memory to track the process props\n");
2266 
2267 		return -1;
2268 	}
2269 
2270 	ctrlr_proc->is_primary = spdk_process_is_primary();
2271 	ctrlr_proc->pid = pid;
2272 	STAILQ_INIT(&ctrlr_proc->active_reqs);
2273 	ctrlr_proc->devhandle = devhandle;
2274 	ctrlr_proc->ref = 0;
2275 	TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs);
2276 
2277 	TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq);
2278 
2279 	return 0;
2280 }
2281 
2282 /**
2283  * This function will be called when the process detaches the controller.
2284  * Note: the ctrlr_lock must be held when calling this function.
2285  */
2286 static void
2287 nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr,
2288 			  struct spdk_nvme_ctrlr_process *proc)
2289 {
2290 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
2291 
2292 	assert(STAILQ_EMPTY(&proc->active_reqs));
2293 
2294 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
2295 		spdk_nvme_ctrlr_free_io_qpair(qpair);
2296 	}
2297 
2298 	TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq);
2299 
2300 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
2301 		spdk_pci_device_detach(proc->devhandle);
2302 	}
2303 
2304 	spdk_free(proc);
2305 }
2306 
2307 /**
2308  * This function will be called when the process exited unexpectedly
2309  *  in order to free any incomplete nvme request, allocated IO qpairs
2310  *  and allocated memory.
2311  * Note: the ctrlr_lock must be held when calling this function.
2312  */
2313 static void
2314 nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc)
2315 {
2316 	struct nvme_request	*req, *tmp_req;
2317 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
2318 
2319 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
2320 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
2321 
2322 		assert(req->pid == proc->pid);
2323 
2324 		nvme_free_request(req);
2325 	}
2326 
2327 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
2328 		TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq);
2329 
2330 		/*
2331 		 * The process may have been killed while some qpairs were in their
2332 		 *  completion context.  Clear that flag here to allow these IO
2333 		 *  qpairs to be deleted.
2334 		 */
2335 		qpair->in_completion_context = 0;
2336 
2337 		qpair->no_deletion_notification_needed = 1;
2338 
2339 		spdk_nvme_ctrlr_free_io_qpair(qpair);
2340 	}
2341 
2342 	spdk_free(proc);
2343 }
2344 
2345 /**
2346  * This function will be called when destructing the controller.
2347  *  1. There is no more admin request on this controller.
2348  *  2. Clean up any left resource allocation when its associated process is gone.
2349  */
2350 void
2351 nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
2352 {
2353 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
2354 
2355 	/* Free all the processes' properties and make sure no pending admin IOs */
2356 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
2357 		TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
2358 
2359 		assert(STAILQ_EMPTY(&active_proc->active_reqs));
2360 
2361 		spdk_free(active_proc);
2362 	}
2363 }
2364 
2365 /**
2366  * This function will be called when any other process attaches or
2367  *  detaches the controller in order to cleanup those unexpectedly
2368  *  terminated processes.
2369  * Note: the ctrlr_lock must be held when calling this function.
2370  */
2371 static int
2372 nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr)
2373 {
2374 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
2375 	int				active_proc_count = 0;
2376 
2377 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
2378 		if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) {
2379 			SPDK_ERRLOG("process %d terminated unexpected\n", active_proc->pid);
2380 
2381 			TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
2382 
2383 			nvme_ctrlr_cleanup_process(active_proc);
2384 		} else {
2385 			active_proc_count++;
2386 		}
2387 	}
2388 
2389 	return active_proc_count;
2390 }
2391 
2392 void
2393 nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr)
2394 {
2395 	struct spdk_nvme_ctrlr_process	*active_proc;
2396 
2397 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
2398 
2399 	nvme_ctrlr_remove_inactive_proc(ctrlr);
2400 
2401 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
2402 	if (active_proc) {
2403 		active_proc->ref++;
2404 	}
2405 
2406 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2407 }
2408 
2409 void
2410 nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr)
2411 {
2412 	struct spdk_nvme_ctrlr_process	*active_proc;
2413 	int				proc_count;
2414 
2415 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
2416 
2417 	proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr);
2418 
2419 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
2420 	if (active_proc) {
2421 		active_proc->ref--;
2422 		assert(active_proc->ref >= 0);
2423 
2424 		/*
2425 		 * The last active process will be removed at the end of
2426 		 * the destruction of the controller.
2427 		 */
2428 		if (active_proc->ref == 0 && proc_count != 1) {
2429 			nvme_ctrlr_remove_process(ctrlr, active_proc);
2430 		}
2431 	}
2432 
2433 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2434 }
2435 
2436 int
2437 nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr)
2438 {
2439 	struct spdk_nvme_ctrlr_process	*active_proc;
2440 	int				ref = 0;
2441 
2442 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
2443 
2444 	nvme_ctrlr_remove_inactive_proc(ctrlr);
2445 
2446 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
2447 		ref += active_proc->ref;
2448 	}
2449 
2450 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2451 
2452 	return ref;
2453 }
2454 
2455 /**
2456  *  Get the PCI device handle which is only visible to its associated process.
2457  */
2458 struct spdk_pci_device *
2459 nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr)
2460 {
2461 	struct spdk_nvme_ctrlr_process	*active_proc;
2462 	struct spdk_pci_device		*devhandle = NULL;
2463 
2464 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
2465 
2466 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
2467 	if (active_proc) {
2468 		devhandle = active_proc->devhandle;
2469 	}
2470 
2471 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2472 
2473 	return devhandle;
2474 }
2475 
2476 /**
2477  * This function will be called repeatedly during initialization until the controller is ready.
2478  */
2479 int
2480 nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr)
2481 {
2482 	union spdk_nvme_cc_register cc;
2483 	union spdk_nvme_csts_register csts;
2484 	uint32_t ready_timeout_in_ms;
2485 	int rc = 0;
2486 
2487 	/*
2488 	 * May need to avoid accessing any register on the target controller
2489 	 * for a while. Return early without touching the FSM.
2490 	 * Check sleep_timeout_tsc > 0 for unit test.
2491 	 */
2492 	if ((ctrlr->sleep_timeout_tsc > 0) &&
2493 	    (spdk_get_ticks() <= ctrlr->sleep_timeout_tsc)) {
2494 		return 0;
2495 	}
2496 	ctrlr->sleep_timeout_tsc = 0;
2497 
2498 	if (nvme_ctrlr_get_cc(ctrlr, &cc) ||
2499 	    nvme_ctrlr_get_csts(ctrlr, &csts)) {
2500 		if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
2501 			/* While a device is resetting, it may be unable to service MMIO reads
2502 			 * temporarily. Allow for this case.
2503 			 */
2504 			SPDK_ERRLOG("Get registers failed while waiting for CSTS.RDY == 0\n");
2505 			goto init_timeout;
2506 		}
2507 		SPDK_ERRLOG("Failed to read CC and CSTS in state %d\n", ctrlr->state);
2508 		return -EIO;
2509 	}
2510 
2511 	ready_timeout_in_ms = 500 * ctrlr->cap.bits.to;
2512 
2513 	/*
2514 	 * Check if the current initialization step is done or has timed out.
2515 	 */
2516 	switch (ctrlr->state) {
2517 	case NVME_CTRLR_STATE_INIT_DELAY:
2518 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, ready_timeout_in_ms);
2519 		if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_INIT) {
2520 			/*
2521 			 * Controller may need some delay before it's enabled.
2522 			 *
2523 			 * This is a workaround for an issue where the PCIe-attached NVMe controller
2524 			 * is not ready after VFIO reset. We delay the initialization rather than the
2525 			 * enabling itself, because this is required only for the very first enabling
2526 			 * - directly after a VFIO reset.
2527 			 */
2528 			SPDK_DEBUGLOG(SPDK_LOG_NVME, "Adding 2 second delay before initializing the controller\n");
2529 			ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2000 * spdk_get_ticks_hz() / 1000);
2530 		}
2531 		break;
2532 
2533 	case NVME_CTRLR_STATE_INIT:
2534 		/* Begin the hardware initialization by making sure the controller is disabled. */
2535 		if (cc.bits.en) {
2536 			SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 1\n");
2537 			/*
2538 			 * Controller is currently enabled. We need to disable it to cause a reset.
2539 			 *
2540 			 * If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready.
2541 			 *  Wait for the ready bit to be 1 before disabling the controller.
2542 			 */
2543 			if (csts.bits.rdy == 0) {
2544 				SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n");
2545 				nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1, ready_timeout_in_ms);
2546 				return 0;
2547 			}
2548 
2549 			/* CC.EN = 1 && CSTS.RDY == 1, so we can immediately disable the controller. */
2550 			SPDK_DEBUGLOG(SPDK_LOG_NVME, "Setting CC.EN = 0\n");
2551 			cc.bits.en = 0;
2552 			if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
2553 				SPDK_ERRLOG("set_cc() failed\n");
2554 				return -EIO;
2555 			}
2556 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms);
2557 
2558 			/*
2559 			 * Wait 2.5 seconds before accessing PCI registers.
2560 			 * Not using sleep() to avoid blocking other controller's initialization.
2561 			 */
2562 			if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) {
2563 				SPDK_DEBUGLOG(SPDK_LOG_NVME, "Applying quirk: delay 2.5 seconds before reading registers\n");
2564 				ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2500 * spdk_get_ticks_hz() / 1000);
2565 			}
2566 			return 0;
2567 		} else {
2568 			if (csts.bits.rdy == 1) {
2569 				SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 0 && CSTS.RDY = 1 - waiting for shutdown to complete\n");
2570 			}
2571 
2572 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms);
2573 			return 0;
2574 		}
2575 		break;
2576 
2577 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
2578 		if (csts.bits.rdy == 1) {
2579 			SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 1 && CSTS.RDY = 1 - disabling controller\n");
2580 			/* CC.EN = 1 && CSTS.RDY = 1, so we can set CC.EN = 0 now. */
2581 			SPDK_DEBUGLOG(SPDK_LOG_NVME, "Setting CC.EN = 0\n");
2582 			cc.bits.en = 0;
2583 			if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
2584 				SPDK_ERRLOG("set_cc() failed\n");
2585 				return -EIO;
2586 			}
2587 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms);
2588 			return 0;
2589 		}
2590 		break;
2591 
2592 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
2593 		if (csts.bits.rdy == 0) {
2594 			SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 0 && CSTS.RDY = 0\n");
2595 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms);
2596 			/*
2597 			 * Delay 100us before setting CC.EN = 1.  Some NVMe SSDs miss CC.EN getting
2598 			 *  set to 1 if it is too soon after CSTS.RDY is reported as 0.
2599 			 */
2600 			spdk_delay_us(100);
2601 			return 0;
2602 		}
2603 		break;
2604 
2605 	case NVME_CTRLR_STATE_ENABLE:
2606 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "Setting CC.EN = 1\n");
2607 		rc = nvme_ctrlr_enable(ctrlr);
2608 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1, ready_timeout_in_ms);
2609 		return rc;
2610 
2611 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
2612 		if (csts.bits.rdy == 1) {
2613 			SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n");
2614 			/*
2615 			 * The controller has been enabled.
2616 			 *  Perform the rest of initialization serially.
2617 			 */
2618 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_RESET_ADMIN_QUEUE,
2619 					     ctrlr->opts.admin_timeout_ms);
2620 			return 0;
2621 		}
2622 		break;
2623 
2624 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
2625 		nvme_transport_qpair_reset(ctrlr->adminq);
2626 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY,
2627 				     ctrlr->opts.admin_timeout_ms);
2628 		break;
2629 
2630 	case NVME_CTRLR_STATE_IDENTIFY:
2631 		rc = nvme_ctrlr_identify(ctrlr);
2632 		break;
2633 
2634 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
2635 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2636 		break;
2637 
2638 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
2639 		nvme_ctrlr_update_nvmf_ioccsz(ctrlr);
2640 		rc = nvme_ctrlr_set_num_queues(ctrlr);
2641 		break;
2642 
2643 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
2644 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2645 		break;
2646 
2647 	case NVME_CTRLR_STATE_CONSTRUCT_NS:
2648 		rc = nvme_ctrlr_construct_namespaces(ctrlr);
2649 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS,
2650 				     ctrlr->opts.admin_timeout_ms);
2651 		break;
2652 
2653 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
2654 		_nvme_ctrlr_identify_active_ns(ctrlr);
2655 		break;
2656 
2657 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
2658 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2659 		break;
2660 
2661 	case NVME_CTRLR_STATE_IDENTIFY_NS:
2662 		rc = nvme_ctrlr_identify_namespaces(ctrlr);
2663 		break;
2664 
2665 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
2666 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2667 		break;
2668 
2669 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
2670 		rc = nvme_ctrlr_identify_id_desc_namespaces(ctrlr);
2671 		break;
2672 
2673 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
2674 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2675 		break;
2676 
2677 	case NVME_CTRLR_STATE_CONFIGURE_AER:
2678 		rc = nvme_ctrlr_configure_aer(ctrlr);
2679 		break;
2680 
2681 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
2682 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2683 		break;
2684 
2685 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
2686 		rc = nvme_ctrlr_set_supported_log_pages(ctrlr);
2687 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
2688 				     ctrlr->opts.admin_timeout_ms);
2689 		break;
2690 
2691 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
2692 		nvme_ctrlr_set_supported_features(ctrlr);
2693 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
2694 				     ctrlr->opts.admin_timeout_ms);
2695 		break;
2696 
2697 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
2698 		rc = nvme_ctrlr_set_doorbell_buffer_config(ctrlr);
2699 		break;
2700 
2701 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
2702 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2703 		break;
2704 
2705 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
2706 		rc = nvme_ctrlr_set_keep_alive_timeout(ctrlr);
2707 		break;
2708 
2709 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
2710 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2711 		break;
2712 
2713 	case NVME_CTRLR_STATE_SET_HOST_ID:
2714 		rc = nvme_ctrlr_set_host_id(ctrlr);
2715 		break;
2716 
2717 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
2718 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2719 		break;
2720 
2721 	case NVME_CTRLR_STATE_READY:
2722 		SPDK_DEBUGLOG(SPDK_LOG_NVME, "Ctrlr already in ready state\n");
2723 		return 0;
2724 
2725 	case NVME_CTRLR_STATE_ERROR:
2726 		SPDK_ERRLOG("Ctrlr %s is in error state\n", ctrlr->trid.traddr);
2727 		return -1;
2728 
2729 	default:
2730 		assert(0);
2731 		return -1;
2732 	}
2733 
2734 init_timeout:
2735 	if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE &&
2736 	    spdk_get_ticks() > ctrlr->state_timeout_tsc) {
2737 		SPDK_ERRLOG("Initialization timed out in state %d\n", ctrlr->state);
2738 		return -1;
2739 	}
2740 
2741 	return rc;
2742 }
2743 
2744 int
2745 nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx)
2746 {
2747 	pthread_mutexattr_t attr;
2748 	int rc = 0;
2749 
2750 	if (pthread_mutexattr_init(&attr)) {
2751 		return -1;
2752 	}
2753 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) ||
2754 #ifndef __FreeBSD__
2755 	    pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
2756 	    pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
2757 #endif
2758 	    pthread_mutex_init(mtx, &attr)) {
2759 		rc = -1;
2760 	}
2761 	pthread_mutexattr_destroy(&attr);
2762 	return rc;
2763 }
2764 
2765 int
2766 nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
2767 {
2768 	int rc;
2769 
2770 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
2771 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT_DELAY, NVME_TIMEOUT_INFINITE);
2772 	} else {
2773 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
2774 	}
2775 
2776 	if (ctrlr->opts.admin_queue_size > SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES) {
2777 		SPDK_ERRLOG("admin_queue_size %u exceeds max defined by NVMe spec, use max value\n",
2778 			    ctrlr->opts.admin_queue_size);
2779 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES;
2780 	}
2781 
2782 	if (ctrlr->opts.admin_queue_size < SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES) {
2783 		SPDK_ERRLOG("admin_queue_size %u is less than minimum defined by NVMe spec, use min value\n",
2784 			    ctrlr->opts.admin_queue_size);
2785 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES;
2786 	}
2787 
2788 	ctrlr->flags = 0;
2789 	ctrlr->free_io_qids = NULL;
2790 	ctrlr->is_resetting = false;
2791 	ctrlr->is_failed = false;
2792 	ctrlr->is_destructed = false;
2793 
2794 	TAILQ_INIT(&ctrlr->active_io_qpairs);
2795 	STAILQ_INIT(&ctrlr->queued_aborts);
2796 	ctrlr->outstanding_aborts = 0;
2797 
2798 	rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock);
2799 	if (rc != 0) {
2800 		return rc;
2801 	}
2802 
2803 	TAILQ_INIT(&ctrlr->active_procs);
2804 
2805 	return rc;
2806 }
2807 
2808 /* This function should be called once at ctrlr initialization to set up constant properties. */
2809 void
2810 nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr, const union spdk_nvme_cap_register *cap,
2811 		    const union spdk_nvme_vs_register *vs)
2812 {
2813 	ctrlr->cap = *cap;
2814 	ctrlr->vs = *vs;
2815 
2816 	if (ctrlr->cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) {
2817 		ctrlr->flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED;
2818 	}
2819 
2820 	ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin);
2821 
2822 	/* For now, always select page_size == min_page_size. */
2823 	ctrlr->page_size = ctrlr->min_page_size;
2824 
2825 	ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES);
2826 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, MAX_IO_QUEUE_ENTRIES);
2827 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u);
2828 
2829 	ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size);
2830 }
2831 
2832 void
2833 nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr)
2834 {
2835 	pthread_mutex_destroy(&ctrlr->ctrlr_lock);
2836 }
2837 
2838 void
2839 nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
2840 {
2841 	struct spdk_nvme_qpair *qpair, *tmp;
2842 
2843 	SPDK_DEBUGLOG(SPDK_LOG_NVME, "Prepare to destruct SSD: %s\n", ctrlr->trid.traddr);
2844 
2845 	ctrlr->is_destructed = true;
2846 
2847 	spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2848 
2849 	nvme_ctrlr_abort_queued_aborts(ctrlr);
2850 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
2851 
2852 	TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) {
2853 		spdk_nvme_ctrlr_free_io_qpair(qpair);
2854 	}
2855 
2856 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
2857 
2858 	if (ctrlr->opts.no_shn_notification) {
2859 		SPDK_INFOLOG(SPDK_LOG_NVME, "Disable SSD: %s without shutdown notification\n",
2860 			     ctrlr->trid.traddr);
2861 		nvme_ctrlr_disable(ctrlr);
2862 	} else {
2863 		nvme_ctrlr_shutdown(ctrlr);
2864 	}
2865 
2866 	nvme_ctrlr_destruct_namespaces(ctrlr);
2867 
2868 	spdk_bit_array_free(&ctrlr->free_io_qids);
2869 
2870 	nvme_transport_ctrlr_destruct(ctrlr);
2871 }
2872 
2873 int
2874 nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
2875 				struct nvme_request *req)
2876 {
2877 	return nvme_qpair_submit_request(ctrlr->adminq, req);
2878 }
2879 
2880 static void
2881 nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl)
2882 {
2883 	/* Do nothing */
2884 }
2885 
2886 /*
2887  * Check if we need to send a Keep Alive command.
2888  * Caller must hold ctrlr->ctrlr_lock.
2889  */
2890 static void
2891 nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr)
2892 {
2893 	uint64_t now;
2894 	struct nvme_request *req;
2895 	struct spdk_nvme_cmd *cmd;
2896 	int rc;
2897 
2898 	now = spdk_get_ticks();
2899 	if (now < ctrlr->next_keep_alive_tick) {
2900 		return;
2901 	}
2902 
2903 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL);
2904 	if (req == NULL) {
2905 		return;
2906 	}
2907 
2908 	cmd = &req->cmd;
2909 	cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE;
2910 
2911 	rc = nvme_ctrlr_submit_admin_request(ctrlr, req);
2912 	if (rc != 0) {
2913 		SPDK_ERRLOG("Submitting Keep Alive failed\n");
2914 	}
2915 
2916 	ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks;
2917 }
2918 
2919 int32_t
2920 spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr)
2921 {
2922 	int32_t num_completions;
2923 	int32_t rc;
2924 
2925 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
2926 
2927 	if (ctrlr->keep_alive_interval_ticks) {
2928 		nvme_ctrlr_keep_alive(ctrlr);
2929 	}
2930 
2931 	rc = nvme_io_msg_process(ctrlr);
2932 	if (rc < 0) {
2933 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2934 		return rc;
2935 	}
2936 	num_completions = rc;
2937 
2938 	rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2939 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2940 
2941 	if (rc < 0) {
2942 		num_completions = rc;
2943 	} else {
2944 		num_completions += rc;
2945 	}
2946 
2947 	return num_completions;
2948 }
2949 
2950 const struct spdk_nvme_ctrlr_data *
2951 spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr)
2952 {
2953 	return &ctrlr->cdata;
2954 }
2955 
2956 union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
2957 {
2958 	union spdk_nvme_csts_register csts;
2959 
2960 	if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
2961 		csts.raw = 0xFFFFFFFFu;
2962 	}
2963 	return csts;
2964 }
2965 
2966 union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr)
2967 {
2968 	return ctrlr->cap;
2969 }
2970 
2971 union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr)
2972 {
2973 	return ctrlr->vs;
2974 }
2975 
2976 union spdk_nvme_cmbsz_register spdk_nvme_ctrlr_get_regs_cmbsz(struct spdk_nvme_ctrlr *ctrlr)
2977 {
2978 	union spdk_nvme_cmbsz_register cmbsz;
2979 
2980 	if (nvme_ctrlr_get_cmbsz(ctrlr, &cmbsz)) {
2981 		cmbsz.raw = 0;
2982 	}
2983 
2984 	return cmbsz;
2985 }
2986 
2987 uint32_t
2988 spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr)
2989 {
2990 	return ctrlr->num_ns;
2991 }
2992 
2993 static int32_t
2994 nvme_ctrlr_active_ns_idx(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2995 {
2996 	int32_t result = -1;
2997 
2998 	if (ctrlr->active_ns_list == NULL || nsid == 0 || nsid > ctrlr->num_ns) {
2999 		return result;
3000 	}
3001 
3002 	int32_t lower = 0;
3003 	int32_t upper = ctrlr->num_ns - 1;
3004 	int32_t mid;
3005 
3006 	while (lower <= upper) {
3007 		mid = lower + (upper - lower) / 2;
3008 		if (ctrlr->active_ns_list[mid] == nsid) {
3009 			result = mid;
3010 			break;
3011 		} else {
3012 			if (ctrlr->active_ns_list[mid] != 0 && ctrlr->active_ns_list[mid] < nsid) {
3013 				lower = mid + 1;
3014 			} else {
3015 				upper = mid - 1;
3016 			}
3017 
3018 		}
3019 	}
3020 
3021 	return result;
3022 }
3023 
3024 bool
3025 spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
3026 {
3027 	return nvme_ctrlr_active_ns_idx(ctrlr, nsid) != -1;
3028 }
3029 
3030 uint32_t
3031 spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr)
3032 {
3033 	return ctrlr->active_ns_list ? ctrlr->active_ns_list[0] : 0;
3034 }
3035 
3036 uint32_t
3037 spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
3038 {
3039 	int32_t nsid_idx = nvme_ctrlr_active_ns_idx(ctrlr, prev_nsid);
3040 	if (ctrlr->active_ns_list && nsid_idx >= 0 && (uint32_t)nsid_idx < ctrlr->num_ns - 1) {
3041 		return ctrlr->active_ns_list[nsid_idx + 1];
3042 	}
3043 	return 0;
3044 }
3045 
3046 struct spdk_nvme_ns *
3047 spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
3048 {
3049 	if (nsid < 1 || nsid > ctrlr->num_ns) {
3050 		return NULL;
3051 	}
3052 
3053 	return &ctrlr->ns[nsid - 1];
3054 }
3055 
3056 struct spdk_pci_device *
3057 spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr)
3058 {
3059 	if (ctrlr == NULL) {
3060 		return NULL;
3061 	}
3062 
3063 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
3064 		return NULL;
3065 	}
3066 
3067 	return nvme_ctrlr_proc_get_devhandle(ctrlr);
3068 }
3069 
3070 uint32_t
3071 spdk_nvme_ctrlr_get_max_xfer_size(const struct spdk_nvme_ctrlr *ctrlr)
3072 {
3073 	return ctrlr->max_xfer_size;
3074 }
3075 
3076 void
3077 spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr,
3078 				      spdk_nvme_aer_cb aer_cb_fn,
3079 				      void *aer_cb_arg)
3080 {
3081 	struct spdk_nvme_ctrlr_process *active_proc;
3082 
3083 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3084 
3085 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3086 	if (active_proc) {
3087 		active_proc->aer_cb_fn = aer_cb_fn;
3088 		active_proc->aer_cb_arg = aer_cb_arg;
3089 	}
3090 
3091 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3092 }
3093 
3094 void
3095 spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr,
3096 		uint64_t timeout_us, spdk_nvme_timeout_cb cb_fn, void *cb_arg)
3097 {
3098 	struct spdk_nvme_ctrlr_process	*active_proc;
3099 
3100 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3101 
3102 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3103 	if (active_proc) {
3104 		active_proc->timeout_ticks = timeout_us * spdk_get_ticks_hz() / 1000000ULL;
3105 		active_proc->timeout_cb_fn = cb_fn;
3106 		active_proc->timeout_cb_arg = cb_arg;
3107 	}
3108 
3109 	ctrlr->timeout_enabled = true;
3110 
3111 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3112 }
3113 
3114 bool
3115 spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page)
3116 {
3117 	/* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
3118 	SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
3119 	return ctrlr->log_page_supported[log_page];
3120 }
3121 
3122 bool
3123 spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code)
3124 {
3125 	/* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
3126 	SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
3127 	return ctrlr->feature_supported[feature_code];
3128 }
3129 
3130 int
3131 spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
3132 			  struct spdk_nvme_ctrlr_list *payload)
3133 {
3134 	struct nvme_completion_poll_status	*status;
3135 	int					res;
3136 	struct spdk_nvme_ns			*ns;
3137 
3138 	status = calloc(1, sizeof(*status));
3139 	if (!status) {
3140 		SPDK_ERRLOG("Failed to allocate status tracker\n");
3141 		return -ENOMEM;
3142 	}
3143 
3144 	res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload,
3145 				       nvme_completion_poll_cb, status);
3146 	if (res) {
3147 		free(status);
3148 		return res;
3149 	}
3150 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
3151 		SPDK_ERRLOG("spdk_nvme_ctrlr_attach_ns failed!\n");
3152 		if (!status->timed_out) {
3153 			free(status);
3154 		}
3155 		return -ENXIO;
3156 	}
3157 	free(status);
3158 
3159 	res = nvme_ctrlr_identify_active_ns(ctrlr);
3160 	if (res) {
3161 		return res;
3162 	}
3163 
3164 	ns = &ctrlr->ns[nsid - 1];
3165 	return nvme_ns_construct(ns, nsid, ctrlr);
3166 }
3167 
3168 int
3169 spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
3170 			  struct spdk_nvme_ctrlr_list *payload)
3171 {
3172 	struct nvme_completion_poll_status	*status;
3173 	int					res;
3174 	struct spdk_nvme_ns			*ns;
3175 
3176 	status = calloc(1, sizeof(*status));
3177 	if (!status) {
3178 		SPDK_ERRLOG("Failed to allocate status tracker\n");
3179 		return -ENOMEM;
3180 	}
3181 
3182 	res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload,
3183 				       nvme_completion_poll_cb, status);
3184 	if (res) {
3185 		free(status);
3186 		return res;
3187 	}
3188 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
3189 		SPDK_ERRLOG("spdk_nvme_ctrlr_detach_ns failed!\n");
3190 		if (!status->timed_out) {
3191 			free(status);
3192 		}
3193 		return -ENXIO;
3194 	}
3195 	free(status);
3196 
3197 	res = nvme_ctrlr_identify_active_ns(ctrlr);
3198 	if (res) {
3199 		return res;
3200 	}
3201 
3202 	ns = &ctrlr->ns[nsid - 1];
3203 	/* Inactive NS */
3204 	nvme_ns_destruct(ns);
3205 
3206 	return 0;
3207 }
3208 
3209 uint32_t
3210 spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload)
3211 {
3212 	struct nvme_completion_poll_status	*status;
3213 	int					res;
3214 	uint32_t				nsid;
3215 	struct spdk_nvme_ns			*ns;
3216 
3217 	status = calloc(1, sizeof(*status));
3218 	if (!status) {
3219 		SPDK_ERRLOG("Failed to allocate status tracker\n");
3220 		return 0;
3221 	}
3222 
3223 	res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, status);
3224 	if (res) {
3225 		free(status);
3226 		return 0;
3227 	}
3228 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
3229 		SPDK_ERRLOG("spdk_nvme_ctrlr_create_ns failed!\n");
3230 		if (!status->timed_out) {
3231 			free(status);
3232 		}
3233 		return 0;
3234 	}
3235 
3236 	nsid = status->cpl.cdw0;
3237 	ns = &ctrlr->ns[nsid - 1];
3238 	free(status);
3239 	/* Inactive NS */
3240 	res = nvme_ns_construct(ns, nsid, ctrlr);
3241 	if (res) {
3242 		return 0;
3243 	}
3244 
3245 	/* Return the namespace ID that was created */
3246 	return nsid;
3247 }
3248 
3249 int
3250 spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
3251 {
3252 	struct nvme_completion_poll_status	*status;
3253 	int					res;
3254 	struct spdk_nvme_ns			*ns;
3255 
3256 	status = calloc(1, sizeof(*status));
3257 	if (!status) {
3258 		SPDK_ERRLOG("Failed to allocate status tracker\n");
3259 		return -ENOMEM;
3260 	}
3261 
3262 	res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, status);
3263 	if (res) {
3264 		free(status);
3265 		return res;
3266 	}
3267 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
3268 		SPDK_ERRLOG("spdk_nvme_ctrlr_delete_ns failed!\n");
3269 		if (!status->timed_out) {
3270 			free(status);
3271 		}
3272 		return -ENXIO;
3273 	}
3274 	free(status);
3275 
3276 	res = nvme_ctrlr_identify_active_ns(ctrlr);
3277 	if (res) {
3278 		return res;
3279 	}
3280 
3281 	ns = &ctrlr->ns[nsid - 1];
3282 	nvme_ns_destruct(ns);
3283 
3284 	return 0;
3285 }
3286 
3287 int
3288 spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
3289 		       struct spdk_nvme_format *format)
3290 {
3291 	struct nvme_completion_poll_status	*status;
3292 	int					res;
3293 
3294 	status = calloc(1, sizeof(*status));
3295 	if (!status) {
3296 		SPDK_ERRLOG("Failed to allocate status tracker\n");
3297 		return -ENOMEM;
3298 	}
3299 
3300 	res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb,
3301 				    status);
3302 	if (res) {
3303 		free(status);
3304 		return res;
3305 	}
3306 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
3307 		SPDK_ERRLOG("spdk_nvme_ctrlr_format failed!\n");
3308 		if (!status->timed_out) {
3309 			free(status);
3310 		}
3311 		return -ENXIO;
3312 	}
3313 	free(status);
3314 
3315 	return spdk_nvme_ctrlr_reset(ctrlr);
3316 }
3317 
3318 int
3319 spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size,
3320 				int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status)
3321 {
3322 	struct spdk_nvme_fw_commit		fw_commit;
3323 	struct nvme_completion_poll_status	*status;
3324 	int					res;
3325 	unsigned int				size_remaining;
3326 	unsigned int				offset;
3327 	unsigned int				transfer;
3328 	void					*p;
3329 
3330 	if (!completion_status) {
3331 		return -EINVAL;
3332 	}
3333 	memset(completion_status, 0, sizeof(struct spdk_nvme_status));
3334 	if (size % 4) {
3335 		SPDK_ERRLOG("spdk_nvme_ctrlr_update_firmware invalid size!\n");
3336 		return -1;
3337 	}
3338 
3339 	/* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG
3340 	 * and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG
3341 	 */
3342 	if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) &&
3343 	    (commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) {
3344 		SPDK_ERRLOG("spdk_nvme_ctrlr_update_firmware invalid command!\n");
3345 		return -1;
3346 	}
3347 
3348 	status = calloc(1, sizeof(*status));
3349 	if (!status) {
3350 		SPDK_ERRLOG("Failed to allocate status tracker\n");
3351 		return -ENOMEM;
3352 	}
3353 
3354 	/* Firmware download */
3355 	size_remaining = size;
3356 	offset = 0;
3357 	p = payload;
3358 
3359 	while (size_remaining > 0) {
3360 		transfer = spdk_min(size_remaining, ctrlr->min_page_size);
3361 
3362 		memset(status, 0, sizeof(*status));
3363 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p,
3364 						       nvme_completion_poll_cb,
3365 						       status);
3366 		if (res) {
3367 			free(status);
3368 			return res;
3369 		}
3370 
3371 		if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
3372 			SPDK_ERRLOG("spdk_nvme_ctrlr_fw_image_download failed!\n");
3373 			if (!status->timed_out) {
3374 				free(status);
3375 			}
3376 			return -ENXIO;
3377 		}
3378 		p += transfer;
3379 		offset += transfer;
3380 		size_remaining -= transfer;
3381 	}
3382 
3383 	/* Firmware commit */
3384 	memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
3385 	fw_commit.fs = slot;
3386 	fw_commit.ca = commit_action;
3387 
3388 	memset(status, 0, sizeof(*status));
3389 	res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb,
3390 				       status);
3391 	if (res) {
3392 		free(status);
3393 		return res;
3394 	}
3395 
3396 	res = nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock);
3397 
3398 	memcpy(completion_status, &status->cpl.status, sizeof(struct spdk_nvme_status));
3399 
3400 	if (!status->timed_out) {
3401 		free(status);
3402 	}
3403 
3404 	if (res) {
3405 		if (completion_status->sct != SPDK_NVME_SCT_COMMAND_SPECIFIC ||
3406 		    completion_status->sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) {
3407 			if (completion_status->sct == SPDK_NVME_SCT_COMMAND_SPECIFIC  &&
3408 			    completion_status->sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) {
3409 				SPDK_NOTICELOG("firmware activation requires conventional reset to be performed. !\n");
3410 			} else {
3411 				SPDK_ERRLOG("nvme_ctrlr_cmd_fw_commit failed!\n");
3412 			}
3413 			return -ENXIO;
3414 		}
3415 	}
3416 
3417 	return spdk_nvme_ctrlr_reset(ctrlr);
3418 }
3419 
3420 int
3421 spdk_nvme_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
3422 {
3423 	int rc, size;
3424 	union spdk_nvme_cmbsz_register cmbsz;
3425 
3426 	cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr);
3427 
3428 	if (cmbsz.bits.rds == 0 || cmbsz.bits.wds == 0) {
3429 		return -ENOTSUP;
3430 	}
3431 
3432 	size = cmbsz.bits.sz * (0x1000 << (cmbsz.bits.szu * 4));
3433 
3434 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3435 	rc = nvme_transport_ctrlr_reserve_cmb(ctrlr);
3436 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3437 
3438 	if (rc < 0) {
3439 		return rc;
3440 	}
3441 
3442 	return size;
3443 }
3444 
3445 void *
3446 spdk_nvme_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
3447 {
3448 	void *buf;
3449 
3450 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3451 	buf = nvme_transport_ctrlr_map_cmb(ctrlr, size);
3452 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3453 
3454 	return buf;
3455 }
3456 
3457 void
3458 spdk_nvme_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr)
3459 {
3460 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3461 	nvme_transport_ctrlr_unmap_cmb(ctrlr);
3462 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3463 }
3464 
3465 bool
3466 spdk_nvme_ctrlr_is_discovery(struct spdk_nvme_ctrlr *ctrlr)
3467 {
3468 	assert(ctrlr);
3469 
3470 	return !strncmp(ctrlr->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN,
3471 			strlen(SPDK_NVMF_DISCOVERY_NQN));
3472 }
3473 
3474 int
3475 spdk_nvme_ctrlr_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
3476 				 uint16_t spsp, uint8_t nssf, void *payload, size_t size)
3477 {
3478 	struct nvme_completion_poll_status	*status;
3479 	int					res;
3480 
3481 	status = calloc(1, sizeof(*status));
3482 	if (!status) {
3483 		SPDK_ERRLOG("Failed to allocate status tracker\n");
3484 		return -ENOMEM;
3485 	}
3486 
3487 	res = spdk_nvme_ctrlr_cmd_security_receive(ctrlr, secp, spsp, nssf, payload, size,
3488 			nvme_completion_poll_cb, status);
3489 	if (res) {
3490 		free(status);
3491 		return res;
3492 	}
3493 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
3494 		SPDK_ERRLOG("spdk_nvme_ctrlr_cmd_security_receive failed!\n");
3495 		if (!status->timed_out) {
3496 			free(status);
3497 		}
3498 		return -ENXIO;
3499 	}
3500 	free(status);
3501 
3502 	return 0;
3503 }
3504 
3505 int
3506 spdk_nvme_ctrlr_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
3507 			      uint16_t spsp, uint8_t nssf, void *payload, size_t size)
3508 {
3509 	struct nvme_completion_poll_status	*status;
3510 	int					res;
3511 
3512 	status = calloc(1, sizeof(*status));
3513 	if (!status) {
3514 		SPDK_ERRLOG("Failed to allocate status tracker\n");
3515 		return -ENOMEM;
3516 	}
3517 
3518 	res = spdk_nvme_ctrlr_cmd_security_send(ctrlr, secp, spsp, nssf, payload, size,
3519 						nvme_completion_poll_cb,
3520 						status);
3521 	if (res) {
3522 		free(status);
3523 		return res;
3524 	}
3525 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
3526 		SPDK_ERRLOG("spdk_nvme_ctrlr_cmd_security_send failed!\n");
3527 		if (!status->timed_out) {
3528 			free(status);
3529 		}
3530 		return -ENXIO;
3531 	}
3532 
3533 	free(status);
3534 
3535 	return 0;
3536 }
3537 
3538 uint64_t
3539 spdk_nvme_ctrlr_get_flags(struct spdk_nvme_ctrlr *ctrlr)
3540 {
3541 	return ctrlr->flags;
3542 }
3543 
3544 const struct spdk_nvme_transport_id *
3545 spdk_nvme_ctrlr_get_transport_id(struct spdk_nvme_ctrlr *ctrlr)
3546 {
3547 	return &ctrlr->trid;
3548 }
3549 
3550 /* FIXME need to specify max number of iovs */
3551 int
3552 spdk_nvme_map_prps(void *prv, struct spdk_nvme_cmd *cmd, struct iovec *iovs,
3553 		   uint32_t len, size_t mps,
3554 		   void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len))
3555 {
3556 	uint64_t prp1, prp2;
3557 	void *vva;
3558 	uint32_t i;
3559 	uint32_t residue_len, nents;
3560 	uint64_t *prp_list;
3561 	int iovcnt;
3562 
3563 	prp1 = cmd->dptr.prp.prp1;
3564 	prp2 = cmd->dptr.prp.prp2;
3565 
3566 	/* PRP1 may started with unaligned page address */
3567 	residue_len = mps - (prp1 % mps);
3568 	residue_len = spdk_min(len, residue_len);
3569 
3570 	vva = gpa_to_vva(prv, prp1, residue_len);
3571 	if (spdk_unlikely(vva == NULL)) {
3572 		SPDK_ERRLOG("GPA to VVA failed\n");
3573 		return -1;
3574 	}
3575 	iovs[0].iov_base = vva;
3576 	iovs[0].iov_len = residue_len;
3577 	len -= residue_len;
3578 
3579 	if (len) {
3580 		if (spdk_unlikely(prp2 == 0)) {
3581 			SPDK_ERRLOG("no PRP2, %d remaining\n", len);
3582 			return -1;
3583 		}
3584 
3585 		if (len <= mps) {
3586 			/* 2 PRP used */
3587 			iovcnt = 2;
3588 			vva = gpa_to_vva(prv, prp2, len);
3589 			if (spdk_unlikely(vva == NULL)) {
3590 				SPDK_ERRLOG("no VVA for %#lx, len%#x\n",
3591 					    prp2, len);
3592 				return -1;
3593 			}
3594 			iovs[1].iov_base = vva;
3595 			iovs[1].iov_len = len;
3596 		} else {
3597 			/* PRP list used */
3598 			nents = (len + mps - 1) / mps;
3599 			vva = gpa_to_vva(prv, prp2, nents * sizeof(*prp_list));
3600 			if (spdk_unlikely(vva == NULL)) {
3601 				SPDK_ERRLOG("no VVA for %#lx, nents=%#x\n",
3602 					    prp2, nents);
3603 				return -1;
3604 			}
3605 			prp_list = vva;
3606 			i = 0;
3607 			while (len != 0) {
3608 				residue_len = spdk_min(len, mps);
3609 				vva = gpa_to_vva(prv, prp_list[i], residue_len);
3610 				if (spdk_unlikely(vva == NULL)) {
3611 					SPDK_ERRLOG("no VVA for %#lx, residue_len=%#x\n",
3612 						    prp_list[i], residue_len);
3613 					return -1;
3614 				}
3615 				iovs[i + 1].iov_base = vva;
3616 				iovs[i + 1].iov_len = residue_len;
3617 				len -= residue_len;
3618 				i++;
3619 			}
3620 			iovcnt = i + 1;
3621 		}
3622 	} else {
3623 		/* 1 PRP used */
3624 		iovcnt = 1;
3625 	}
3626 
3627 	return iovcnt;
3628 }
3629