xref: /spdk/lib/nvme/nvme_ctrlr.c (revision 2172c432cfdaecc5a279d64e37c6b51e794683c1)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk/stdinc.h"
35 
36 #include "nvme_internal.h"
37 #include "nvme_io_msg.h"
38 
39 #include "spdk/env.h"
40 #include "spdk/string.h"
41 
42 struct nvme_active_ns_ctx;
43 
44 static void nvme_ctrlr_destruct_namespaces(struct spdk_nvme_ctrlr *ctrlr);
45 static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
46 		struct nvme_async_event_request *aer);
47 static void nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx);
48 static int nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns);
49 static int nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns);
50 static int nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns);
51 
52 static int
53 nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc)
54 {
55 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
56 					      &cc->raw);
57 }
58 
59 static int
60 nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts)
61 {
62 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw),
63 					      &csts->raw);
64 }
65 
66 int
67 nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
68 {
69 	return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw),
70 					      &cap->raw);
71 }
72 
73 int
74 nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
75 {
76 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw),
77 					      &vs->raw);
78 }
79 
80 static int
81 nvme_ctrlr_set_cc(struct spdk_nvme_ctrlr *ctrlr, const union spdk_nvme_cc_register *cc)
82 {
83 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
84 					      cc->raw);
85 }
86 
87 int
88 nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz)
89 {
90 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
91 					      &cmbsz->raw);
92 }
93 
94 bool
95 nvme_ctrlr_multi_iocs_enabled(struct spdk_nvme_ctrlr *ctrlr)
96 {
97 	return ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS &&
98 	       ctrlr->opts.command_set == SPDK_NVME_CC_CSS_IOCS;
99 }
100 
101 /* When the field in spdk_nvme_ctrlr_opts are changed and you change this function, please
102  * also update the nvme_ctrl_opts_init function in nvme_ctrlr.c
103  */
104 void
105 spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
106 {
107 	char host_id_str[SPDK_UUID_STRING_LEN];
108 
109 	assert(opts);
110 
111 	opts->opts_size = opts_size;
112 
113 #define FIELD_OK(field) \
114 	offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size
115 
116 	if (FIELD_OK(num_io_queues)) {
117 		opts->num_io_queues = DEFAULT_MAX_IO_QUEUES;
118 	}
119 
120 	if (FIELD_OK(use_cmb_sqs)) {
121 		opts->use_cmb_sqs = true;
122 	}
123 
124 	if (FIELD_OK(no_shn_notification)) {
125 		opts->no_shn_notification = false;
126 	}
127 
128 	if (FIELD_OK(arb_mechanism)) {
129 		opts->arb_mechanism = SPDK_NVME_CC_AMS_RR;
130 	}
131 
132 	if (FIELD_OK(arbitration_burst)) {
133 		opts->arbitration_burst = 0;
134 	}
135 
136 	if (FIELD_OK(low_priority_weight)) {
137 		opts->low_priority_weight = 0;
138 	}
139 
140 	if (FIELD_OK(medium_priority_weight)) {
141 		opts->medium_priority_weight = 0;
142 	}
143 
144 	if (FIELD_OK(high_priority_weight)) {
145 		opts->high_priority_weight = 0;
146 	}
147 
148 	if (FIELD_OK(keep_alive_timeout_ms)) {
149 		opts->keep_alive_timeout_ms = MIN_KEEP_ALIVE_TIMEOUT_IN_MS;
150 	}
151 
152 	if (FIELD_OK(transport_retry_count)) {
153 		opts->transport_retry_count = SPDK_NVME_DEFAULT_RETRY_COUNT;
154 	}
155 
156 	if (FIELD_OK(io_queue_size)) {
157 		opts->io_queue_size = DEFAULT_IO_QUEUE_SIZE;
158 	}
159 
160 	if (nvme_driver_init() == 0) {
161 		if (FIELD_OK(hostnqn)) {
162 			spdk_uuid_fmt_lower(host_id_str, sizeof(host_id_str),
163 					    &g_spdk_nvme_driver->default_extended_host_id);
164 			snprintf(opts->hostnqn, sizeof(opts->hostnqn), "2014-08.org.nvmexpress:uuid:%s", host_id_str);
165 		}
166 
167 		if (FIELD_OK(extended_host_id)) {
168 			memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id,
169 			       sizeof(opts->extended_host_id));
170 		}
171 
172 	}
173 
174 	if (FIELD_OK(io_queue_requests)) {
175 		opts->io_queue_requests = DEFAULT_IO_QUEUE_REQUESTS;
176 	}
177 
178 	if (FIELD_OK(src_addr)) {
179 		memset(opts->src_addr, 0, sizeof(opts->src_addr));
180 	}
181 
182 	if (FIELD_OK(src_svcid)) {
183 		memset(opts->src_svcid, 0, sizeof(opts->src_svcid));
184 	}
185 
186 	if (FIELD_OK(host_id)) {
187 		memset(opts->host_id, 0, sizeof(opts->host_id));
188 	}
189 
190 	if (FIELD_OK(command_set)) {
191 		opts->command_set = SPDK_NVME_CC_CSS_NVM;
192 	}
193 
194 	if (FIELD_OK(admin_timeout_ms)) {
195 		opts->admin_timeout_ms = NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000;
196 	}
197 
198 	if (FIELD_OK(header_digest)) {
199 		opts->header_digest = false;
200 	}
201 
202 	if (FIELD_OK(data_digest)) {
203 		opts->data_digest = false;
204 	}
205 
206 	if (FIELD_OK(disable_error_logging)) {
207 		opts->disable_error_logging = false;
208 	}
209 
210 	if (FIELD_OK(transport_ack_timeout)) {
211 		opts->transport_ack_timeout = SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT;
212 	}
213 
214 	if (FIELD_OK(admin_queue_size)) {
215 		opts->admin_queue_size = DEFAULT_ADMIN_QUEUE_SIZE;
216 	}
217 
218 	if (FIELD_OK(fabrics_connect_timeout_us)) {
219 		opts->fabrics_connect_timeout_us = NVME_FABRIC_CONNECT_COMMAND_TIMEOUT;
220 	}
221 
222 #undef FIELD_OK
223 }
224 
225 /**
226  * This function will be called when the process allocates the IO qpair.
227  * Note: the ctrlr_lock must be held when calling this function.
228  */
229 static void
230 nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair)
231 {
232 	struct spdk_nvme_ctrlr_process	*active_proc;
233 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
234 
235 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
236 	if (active_proc) {
237 		TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq);
238 		qpair->active_proc = active_proc;
239 	}
240 }
241 
242 /**
243  * This function will be called when the process frees the IO qpair.
244  * Note: the ctrlr_lock must be held when calling this function.
245  */
246 static void
247 nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair)
248 {
249 	struct spdk_nvme_ctrlr_process	*active_proc;
250 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
251 	struct spdk_nvme_qpair          *active_qpair, *tmp_qpair;
252 
253 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
254 	if (!active_proc) {
255 		return;
256 	}
257 
258 	TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs,
259 			   per_process_tailq, tmp_qpair) {
260 		if (active_qpair == qpair) {
261 			TAILQ_REMOVE(&active_proc->allocated_io_qpairs,
262 				     active_qpair, per_process_tailq);
263 
264 			break;
265 		}
266 	}
267 }
268 
269 void
270 spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr,
271 		struct spdk_nvme_io_qpair_opts *opts,
272 		size_t opts_size)
273 {
274 	assert(ctrlr);
275 
276 	assert(opts);
277 
278 	memset(opts, 0, opts_size);
279 
280 #define FIELD_OK(field) \
281 	offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size
282 
283 	if (FIELD_OK(qprio)) {
284 		opts->qprio = SPDK_NVME_QPRIO_URGENT;
285 	}
286 
287 	if (FIELD_OK(io_queue_size)) {
288 		opts->io_queue_size = ctrlr->opts.io_queue_size;
289 	}
290 
291 	if (FIELD_OK(io_queue_requests)) {
292 		opts->io_queue_requests = ctrlr->opts.io_queue_requests;
293 	}
294 
295 	if (FIELD_OK(delay_cmd_submit)) {
296 		opts->delay_cmd_submit = false;
297 	}
298 
299 	if (FIELD_OK(sq.vaddr)) {
300 		opts->sq.vaddr = NULL;
301 	}
302 
303 	if (FIELD_OK(sq.paddr)) {
304 		opts->sq.paddr = 0;
305 	}
306 
307 	if (FIELD_OK(sq.buffer_size)) {
308 		opts->sq.buffer_size = 0;
309 	}
310 
311 	if (FIELD_OK(cq.vaddr)) {
312 		opts->cq.vaddr = NULL;
313 	}
314 
315 	if (FIELD_OK(cq.paddr)) {
316 		opts->cq.paddr = 0;
317 	}
318 
319 	if (FIELD_OK(cq.buffer_size)) {
320 		opts->cq.buffer_size = 0;
321 	}
322 
323 	if (FIELD_OK(create_only)) {
324 		opts->create_only = false;
325 	}
326 
327 #undef FIELD_OK
328 }
329 
330 static struct spdk_nvme_qpair *
331 nvme_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
332 			   const struct spdk_nvme_io_qpair_opts *opts)
333 {
334 	int32_t					qid;
335 	struct spdk_nvme_qpair			*qpair;
336 	union spdk_nvme_cc_register		cc;
337 
338 	if (!ctrlr) {
339 		return NULL;
340 	}
341 
342 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
343 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
344 		SPDK_ERRLOG("get_cc failed\n");
345 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
346 		return NULL;
347 	}
348 
349 	if (opts->qprio & ~SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK) {
350 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
351 		return NULL;
352 	}
353 
354 	/*
355 	 * Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the
356 	 * default round robin arbitration method.
357 	 */
358 	if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts->qprio != SPDK_NVME_QPRIO_URGENT)) {
359 		SPDK_ERRLOG("invalid queue priority for default round robin arbitration method\n");
360 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
361 		return NULL;
362 	}
363 
364 	qid = spdk_nvme_ctrlr_alloc_qid(ctrlr);
365 	if (qid < 0) {
366 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
367 		return NULL;
368 	}
369 
370 	qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, opts);
371 	if (qpair == NULL) {
372 		SPDK_ERRLOG("nvme_transport_ctrlr_create_io_qpair() failed\n");
373 		spdk_nvme_ctrlr_free_qid(ctrlr, qid);
374 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
375 		return NULL;
376 	}
377 
378 	TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq);
379 
380 	nvme_ctrlr_proc_add_io_qpair(qpair);
381 
382 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
383 
384 	return qpair;
385 }
386 
387 int
388 spdk_nvme_ctrlr_connect_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
389 {
390 	int rc;
391 
392 	if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) {
393 		return -EISCONN;
394 	}
395 
396 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
397 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
398 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
399 
400 	if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) {
401 		spdk_delay_us(100);
402 	}
403 
404 	return rc;
405 }
406 
407 void
408 spdk_nvme_ctrlr_disconnect_io_qpair(struct spdk_nvme_qpair *qpair)
409 {
410 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
411 
412 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
413 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
414 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
415 }
416 
417 struct spdk_nvme_qpair *
418 spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
419 			       const struct spdk_nvme_io_qpair_opts *user_opts,
420 			       size_t opts_size)
421 {
422 
423 	struct spdk_nvme_qpair		*qpair;
424 	struct spdk_nvme_io_qpair_opts	opts;
425 	int				rc;
426 
427 	/*
428 	 * Get the default options, then overwrite them with the user-provided options
429 	 * up to opts_size.
430 	 *
431 	 * This allows for extensions of the opts structure without breaking
432 	 * ABI compatibility.
433 	 */
434 	spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
435 	if (user_opts) {
436 		memcpy(&opts, user_opts, spdk_min(sizeof(opts), opts_size));
437 
438 		/* If user passes buffers, make sure they're big enough for the requested queue size */
439 		if (opts.sq.vaddr) {
440 			if (opts.sq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))) {
441 				SPDK_ERRLOG("sq buffer size %lx is too small for sq size %lx\n",
442 					    opts.sq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cmd)));
443 				return NULL;
444 			}
445 		}
446 		if (opts.cq.vaddr) {
447 			if (opts.cq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))) {
448 				SPDK_ERRLOG("cq buffer size %lx is too small for cq size %lx\n",
449 					    opts.cq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cpl)));
450 				return NULL;
451 			}
452 		}
453 	}
454 
455 	qpair = nvme_ctrlr_create_io_qpair(ctrlr, &opts);
456 
457 	if (qpair == NULL || opts.create_only == true) {
458 		return qpair;
459 	}
460 
461 	rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair);
462 	if (rc != 0) {
463 		SPDK_ERRLOG("nvme_transport_ctrlr_connect_io_qpair() failed\n");
464 		TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
465 		nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
466 		return NULL;
467 	}
468 
469 	return qpair;
470 }
471 
472 int
473 spdk_nvme_ctrlr_reconnect_io_qpair(struct spdk_nvme_qpair *qpair)
474 {
475 	struct spdk_nvme_ctrlr *ctrlr;
476 	enum nvme_qpair_state qpair_state;
477 	int rc;
478 
479 	assert(qpair != NULL);
480 	assert(nvme_qpair_is_admin_queue(qpair) == false);
481 	assert(qpair->ctrlr != NULL);
482 
483 	ctrlr = qpair->ctrlr;
484 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
485 	qpair_state = nvme_qpair_get_state(qpair);
486 
487 	if (ctrlr->is_removed) {
488 		rc = -ENODEV;
489 		goto out;
490 	}
491 
492 	if (ctrlr->is_resetting || qpair_state == NVME_QPAIR_DISCONNECTING) {
493 		rc = -EAGAIN;
494 		goto out;
495 	}
496 
497 	if (ctrlr->is_failed || qpair_state == NVME_QPAIR_DESTROYING) {
498 		rc = -ENXIO;
499 		goto out;
500 	}
501 
502 	if (qpair_state != NVME_QPAIR_DISCONNECTED) {
503 		rc = 0;
504 		goto out;
505 	}
506 
507 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
508 	if (rc) {
509 		rc = -EAGAIN;
510 		goto out;
511 	}
512 
513 out:
514 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
515 	return rc;
516 }
517 
518 spdk_nvme_qp_failure_reason
519 spdk_nvme_ctrlr_get_admin_qp_failure_reason(struct spdk_nvme_ctrlr *ctrlr)
520 {
521 	return ctrlr->adminq->transport_failure_reason;
522 }
523 
524 /*
525  * This internal function will attempt to take the controller
526  * lock before calling disconnect on a controller qpair.
527  * Functions already holding the controller lock should
528  * call nvme_transport_ctrlr_disconnect_qpair directly.
529  */
530 void
531 nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair)
532 {
533 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
534 
535 	assert(ctrlr != NULL);
536 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
537 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
538 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
539 }
540 
541 int
542 spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair)
543 {
544 	struct spdk_nvme_ctrlr *ctrlr;
545 
546 	if (qpair == NULL) {
547 		return 0;
548 	}
549 
550 	ctrlr = qpair->ctrlr;
551 
552 	if (qpair->in_completion_context) {
553 		/*
554 		 * There are many cases where it is convenient to delete an io qpair in the context
555 		 *  of that qpair's completion routine.  To handle this properly, set a flag here
556 		 *  so that the completion routine will perform an actual delete after the context
557 		 *  unwinds.
558 		 */
559 		qpair->delete_after_completion_context = 1;
560 		return 0;
561 	}
562 
563 	if (qpair->poll_group && qpair->poll_group->in_completion_context) {
564 		/* Same as above, but in a poll group. */
565 		qpair->poll_group->num_qpairs_to_delete++;
566 		qpair->delete_after_completion_context = 1;
567 		return 0;
568 	}
569 
570 	if (qpair->poll_group) {
571 		spdk_nvme_poll_group_remove(qpair->poll_group->group, qpair);
572 	}
573 
574 	/* Do not retry. */
575 	nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
576 
577 	/* In the multi-process case, a process may call this function on a foreign
578 	 * I/O qpair (i.e. one that this process did not create) when that qpairs process
579 	 * exits unexpectedly.  In that case, we must not try to abort any reqs associated
580 	 * with that qpair, since the callbacks will also be foreign to this process.
581 	 */
582 	if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) {
583 		nvme_qpair_abort_reqs(qpair, 1);
584 	}
585 
586 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
587 
588 	nvme_ctrlr_proc_remove_io_qpair(qpair);
589 
590 	TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
591 	spdk_nvme_ctrlr_free_qid(ctrlr, qpair->id);
592 
593 	if (nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair)) {
594 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
595 		return -1;
596 	}
597 
598 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
599 	return 0;
600 }
601 
602 static void
603 nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr,
604 		struct spdk_nvme_intel_log_page_directory *log_page_directory)
605 {
606 	if (log_page_directory == NULL) {
607 		return;
608 	}
609 
610 	if (ctrlr->cdata.vid != SPDK_PCI_VID_INTEL) {
611 		return;
612 	}
613 
614 	ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
615 
616 	if (log_page_directory->read_latency_log_len ||
617 	    (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) {
618 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
619 	}
620 	if (log_page_directory->write_latency_log_len ||
621 	    (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) {
622 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
623 	}
624 	if (log_page_directory->temperature_statistics_log_len) {
625 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true;
626 	}
627 	if (log_page_directory->smart_log_len) {
628 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true;
629 	}
630 	if (log_page_directory->marketing_description_log_len) {
631 		ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true;
632 	}
633 }
634 
635 static int nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr)
636 {
637 	int rc = 0;
638 	struct nvme_completion_poll_status	*status;
639 	struct spdk_nvme_intel_log_page_directory *log_page_directory;
640 
641 	log_page_directory = spdk_zmalloc(sizeof(struct spdk_nvme_intel_log_page_directory),
642 					  64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
643 	if (log_page_directory == NULL) {
644 		SPDK_ERRLOG("could not allocate log_page_directory\n");
645 		return -ENXIO;
646 	}
647 
648 	status = calloc(1, sizeof(*status));
649 	if (!status) {
650 		SPDK_ERRLOG("Failed to allocate status tracker\n");
651 		spdk_free(log_page_directory);
652 		return -ENOMEM;
653 	}
654 
655 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY,
656 					      SPDK_NVME_GLOBAL_NS_TAG, log_page_directory,
657 					      sizeof(struct spdk_nvme_intel_log_page_directory),
658 					      0, nvme_completion_poll_cb, status);
659 	if (rc != 0) {
660 		spdk_free(log_page_directory);
661 		free(status);
662 		return rc;
663 	}
664 
665 	if (nvme_wait_for_completion_timeout(ctrlr->adminq, status,
666 					     ctrlr->opts.admin_timeout_ms * 1000)) {
667 		spdk_free(log_page_directory);
668 		SPDK_WARNLOG("Intel log pages not supported on Intel drive!\n");
669 		if (!status->timed_out) {
670 			free(status);
671 		}
672 		return 0;
673 	}
674 
675 	nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, log_page_directory);
676 	spdk_free(log_page_directory);
677 	free(status);
678 	return 0;
679 }
680 
681 static int
682 nvme_ctrlr_update_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
683 {
684 	struct nvme_completion_poll_status *status;
685 	int rc;
686 
687 	status = calloc(1, sizeof(*status));
688 	if (status == NULL) {
689 		SPDK_ERRLOG("Failed to allocaate status tracker\n");
690 		return -ENOMEM;
691 	}
692 
693 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
694 					      SPDK_NVME_GLOBAL_NS_TAG, ctrlr->ana_log_page,
695 					      ctrlr->ana_log_page_size, 0,
696 					      nvme_completion_poll_cb, status);
697 	if (rc != 0) {
698 		free(status);
699 		return rc;
700 	}
701 
702 	if (nvme_wait_for_completion_robust_lock_timeout(ctrlr->adminq, status, &ctrlr->ctrlr_lock,
703 			ctrlr->opts.admin_timeout_ms * 1000)) {
704 		if (!status->timed_out) {
705 			free(status);
706 		}
707 		return -EIO;
708 	}
709 
710 	free(status);
711 	return 0;
712 }
713 
714 static int
715 nvme_ctrlr_init_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
716 {
717 	uint32_t ana_log_page_size;
718 
719 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + ctrlr->cdata.nanagrpid *
720 			    sizeof(struct spdk_nvme_ana_group_descriptor) + ctrlr->cdata.nn *
721 			    sizeof(uint32_t);
722 
723 	ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
724 					   SPDK_MALLOC_DMA);
725 	if (ctrlr->ana_log_page == NULL) {
726 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
727 		return -ENXIO;
728 	}
729 	ctrlr->ana_log_page_size = ana_log_page_size;
730 
731 	ctrlr->log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] = true;
732 
733 	return nvme_ctrlr_update_ana_log_page(ctrlr);
734 }
735 
736 static int
737 nvme_ctrlr_update_ns_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
738 				void *cb_arg)
739 {
740 	struct spdk_nvme_ctrlr *ctrlr = cb_arg;
741 	struct spdk_nvme_ns *ns;
742 	uint32_t i, nsid;
743 
744 	for (i = 0; i < desc->num_of_nsid; i++) {
745 		nsid = desc->nsid[i];
746 		if (nsid == 0 || nsid > ctrlr->cdata.nn) {
747 			continue;
748 		}
749 
750 		ns = &ctrlr->ns[nsid - 1];
751 
752 		ns->ana_group_id = desc->ana_group_id;
753 		ns->ana_state = desc->ana_state;
754 	}
755 
756 	return 0;
757 }
758 
759 int
760 nvme_ctrlr_parse_ana_log_page(struct spdk_nvme_ctrlr *ctrlr,
761 			      spdk_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
762 {
763 	struct spdk_nvme_ana_group_descriptor *desc;
764 	uint32_t i;
765 	int rc = 0;
766 
767 	if (ctrlr->ana_log_page == NULL) {
768 		return -EINVAL;
769 	}
770 
771 	desc = (void *)((uint8_t *)ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page));
772 
773 	for (i = 0; i < ctrlr->ana_log_page->num_ana_group_desc; i++) {
774 		rc = cb_fn(desc, cb_arg);
775 		if (rc != 0) {
776 			break;
777 		}
778 		desc = (void *)((uint8_t *)desc + sizeof(struct spdk_nvme_ana_group_descriptor) +
779 				desc->num_of_nsid * sizeof(uint32_t));
780 	}
781 
782 	return rc;
783 }
784 
785 static int
786 nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr)
787 {
788 	int	rc = 0;
789 
790 	memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
791 	/* Mandatory pages */
792 	ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true;
793 	ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true;
794 	ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true;
795 	if (ctrlr->cdata.lpa.celp) {
796 		ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true;
797 	}
798 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL && !(ctrlr->quirks & NVME_INTEL_QUIRK_NO_LOG_PAGES)) {
799 		rc = nvme_ctrlr_set_intel_support_log_pages(ctrlr);
800 		if (rc != 0) {
801 			goto out;
802 		}
803 	}
804 	if (ctrlr->cdata.cmic.ana_reporting) {
805 		rc = nvme_ctrlr_init_ana_log_page(ctrlr);
806 		if (rc == 0) {
807 			nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
808 						      ctrlr);
809 		}
810 	}
811 
812 out:
813 	return rc;
814 }
815 
816 static void
817 nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr)
818 {
819 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true;
820 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
821 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
822 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
823 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true;
824 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
825 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
826 }
827 
828 static void
829 nvme_ctrlr_set_arbitration_feature(struct spdk_nvme_ctrlr *ctrlr)
830 {
831 	uint32_t cdw11;
832 	struct nvme_completion_poll_status *status;
833 
834 	if (ctrlr->opts.arbitration_burst == 0) {
835 		return;
836 	}
837 
838 	if (ctrlr->opts.arbitration_burst > 7) {
839 		SPDK_WARNLOG("Valid arbitration burst values is from 0-7\n");
840 		return;
841 	}
842 
843 	status = calloc(1, sizeof(*status));
844 	if (!status) {
845 		SPDK_ERRLOG("Failed to allocate status tracker\n");
846 		return;
847 	}
848 
849 	cdw11 = ctrlr->opts.arbitration_burst;
850 
851 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_WRR_SUPPORTED) {
852 		cdw11 |= (uint32_t)ctrlr->opts.low_priority_weight << 8;
853 		cdw11 |= (uint32_t)ctrlr->opts.medium_priority_weight << 16;
854 		cdw11 |= (uint32_t)ctrlr->opts.high_priority_weight << 24;
855 	}
856 
857 	if (spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION,
858 					    cdw11, 0, NULL, 0,
859 					    nvme_completion_poll_cb, status) < 0) {
860 		SPDK_ERRLOG("Set arbitration feature failed\n");
861 		free(status);
862 		return;
863 	}
864 
865 	if (nvme_wait_for_completion_timeout(ctrlr->adminq, status,
866 					     ctrlr->opts.admin_timeout_ms * 1000)) {
867 		SPDK_ERRLOG("Timeout to set arbitration feature\n");
868 	}
869 
870 	if (!status->timed_out) {
871 		free(status);
872 	}
873 }
874 
875 static void
876 nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr)
877 {
878 	memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
879 	/* Mandatory features */
880 	ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true;
881 	ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true;
882 	ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
883 	ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true;
884 	ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true;
885 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true;
886 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
887 	ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true;
888 	ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
889 	/* Optional features */
890 	if (ctrlr->cdata.vwc.present) {
891 		ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
892 	}
893 	if (ctrlr->cdata.apsta.supported) {
894 		ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
895 	}
896 	if (ctrlr->cdata.hmpre) {
897 		ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true;
898 	}
899 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
900 		nvme_ctrlr_set_intel_supported_features(ctrlr);
901 	}
902 
903 	nvme_ctrlr_set_arbitration_feature(ctrlr);
904 }
905 
906 bool
907 spdk_nvme_ctrlr_is_failed(struct spdk_nvme_ctrlr *ctrlr)
908 {
909 	return ctrlr->is_failed;
910 }
911 
912 void
913 nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
914 {
915 	/*
916 	 * Set the flag here and leave the work failure of qpairs to
917 	 * spdk_nvme_qpair_process_completions().
918 	 */
919 	if (hot_remove) {
920 		ctrlr->is_removed = true;
921 	}
922 	ctrlr->is_failed = true;
923 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
924 	SPDK_ERRLOG("ctrlr %s in failed state.\n", ctrlr->trid.traddr);
925 }
926 
927 /**
928  * This public API function will try to take the controller lock.
929  * Any private functions being called from a thread already holding
930  * the ctrlr lock should call nvme_ctrlr_fail directly.
931  */
932 void
933 spdk_nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr)
934 {
935 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
936 	nvme_ctrlr_fail(ctrlr, false);
937 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
938 }
939 
940 static void
941 nvme_ctrlr_shutdown(struct spdk_nvme_ctrlr *ctrlr)
942 {
943 	union spdk_nvme_cc_register	cc;
944 	union spdk_nvme_csts_register	csts;
945 	uint32_t			ms_waited = 0;
946 	uint32_t			shutdown_timeout_ms;
947 
948 	if (ctrlr->is_removed) {
949 		return;
950 	}
951 
952 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
953 		SPDK_ERRLOG("ctrlr %s get_cc() failed\n", ctrlr->trid.traddr);
954 		return;
955 	}
956 
957 	cc.bits.shn = SPDK_NVME_SHN_NORMAL;
958 
959 	if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
960 		SPDK_ERRLOG("ctrlr %s set_cc() failed\n", ctrlr->trid.traddr);
961 		return;
962 	}
963 
964 	/*
965 	 * The NVMe specification defines RTD3E to be the time between
966 	 *  setting SHN = 1 until the controller will set SHST = 10b.
967 	 * If the device doesn't report RTD3 entry latency, or if it
968 	 *  reports RTD3 entry latency less than 10 seconds, pick
969 	 *  10 seconds as a reasonable amount of time to
970 	 *  wait before proceeding.
971 	 */
972 	SPDK_DEBUGLOG(nvme, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e);
973 	shutdown_timeout_ms = (ctrlr->cdata.rtd3e + 999) / 1000;
974 	shutdown_timeout_ms = spdk_max(shutdown_timeout_ms, 10000);
975 	SPDK_DEBUGLOG(nvme, "shutdown timeout = %" PRIu32 " ms\n", shutdown_timeout_ms);
976 
977 	do {
978 		if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
979 			SPDK_ERRLOG("ctrlr %s get_csts() failed\n", ctrlr->trid.traddr);
980 			return;
981 		}
982 
983 		if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
984 			SPDK_DEBUGLOG(nvme, "ctrlr %s shutdown complete in %u milliseconds\n",
985 				      ctrlr->trid.traddr, ms_waited);
986 			return;
987 		}
988 
989 		nvme_delay(1000);
990 		ms_waited++;
991 	} while (ms_waited < shutdown_timeout_ms);
992 
993 	SPDK_ERRLOG("ctrlr %s did not shutdown within %u milliseconds\n",
994 		    ctrlr->trid.traddr, shutdown_timeout_ms);
995 	if (ctrlr->quirks & NVME_QUIRK_SHST_COMPLETE) {
996 		SPDK_ERRLOG("likely due to shutdown handling in the VMWare emulated NVMe SSD\n");
997 	}
998 }
999 
1000 static int
1001 nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
1002 {
1003 	union spdk_nvme_cc_register	cc;
1004 	int				rc;
1005 
1006 	rc = nvme_transport_ctrlr_enable(ctrlr);
1007 	if (rc != 0) {
1008 		SPDK_ERRLOG("transport ctrlr_enable failed\n");
1009 		return rc;
1010 	}
1011 
1012 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
1013 		SPDK_ERRLOG("get_cc() failed\n");
1014 		return -EIO;
1015 	}
1016 
1017 	if (cc.bits.en != 0) {
1018 		SPDK_ERRLOG("called with CC.EN = 1\n");
1019 		return -EINVAL;
1020 	}
1021 
1022 	cc.bits.en = 1;
1023 	cc.bits.css = 0;
1024 	cc.bits.shn = 0;
1025 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
1026 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
1027 
1028 	/* Page size is 2 ^ (12 + mps). */
1029 	cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12;
1030 
1031 	if (ctrlr->cap.bits.css == 0) {
1032 		SPDK_INFOLOG(nvme,
1033 			     "Drive reports no command sets supported. Assuming NVM is supported.\n");
1034 		ctrlr->cap.bits.css = SPDK_NVME_CAP_CSS_NVM;
1035 	}
1036 
1037 	if (!(ctrlr->cap.bits.css & (1u << ctrlr->opts.command_set))) {
1038 		SPDK_DEBUGLOG(nvme, "Requested I/O command set %u but supported mask is 0x%x\n",
1039 			      ctrlr->opts.command_set, ctrlr->cap.bits.css);
1040 		SPDK_DEBUGLOG(nvme, "Falling back to NVM. Assuming NVM is supported.\n");
1041 		ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1042 	}
1043 
1044 	cc.bits.css = ctrlr->opts.command_set;
1045 
1046 	switch (ctrlr->opts.arb_mechanism) {
1047 	case SPDK_NVME_CC_AMS_RR:
1048 		break;
1049 	case SPDK_NVME_CC_AMS_WRR:
1050 		if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) {
1051 			break;
1052 		}
1053 		return -EINVAL;
1054 	case SPDK_NVME_CC_AMS_VS:
1055 		if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) {
1056 			break;
1057 		}
1058 		return -EINVAL;
1059 	default:
1060 		return -EINVAL;
1061 	}
1062 
1063 	cc.bits.ams = ctrlr->opts.arb_mechanism;
1064 
1065 	if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
1066 		SPDK_ERRLOG("set_cc() failed\n");
1067 		return -EIO;
1068 	}
1069 
1070 	return 0;
1071 }
1072 
1073 static int
1074 nvme_ctrlr_disable(struct spdk_nvme_ctrlr *ctrlr)
1075 {
1076 	union spdk_nvme_cc_register	cc;
1077 
1078 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
1079 		SPDK_ERRLOG("get_cc() failed\n");
1080 		return -EIO;
1081 	}
1082 
1083 	if (cc.bits.en == 0) {
1084 		return 0;
1085 	}
1086 
1087 	cc.bits.en = 0;
1088 
1089 	if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
1090 		SPDK_ERRLOG("set_cc() failed\n");
1091 		return -EIO;
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 #ifdef DEBUG
1098 static const char *
1099 nvme_ctrlr_state_string(enum nvme_ctrlr_state state)
1100 {
1101 	switch (state) {
1102 	case NVME_CTRLR_STATE_INIT_DELAY:
1103 		return "delay init";
1104 	case NVME_CTRLR_STATE_INIT:
1105 		return "init";
1106 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
1107 		return "disable and wait for CSTS.RDY = 1";
1108 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
1109 		return "disable and wait for CSTS.RDY = 0";
1110 	case NVME_CTRLR_STATE_ENABLE:
1111 		return "enable controller by writing CC.EN = 1";
1112 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
1113 		return "wait for CSTS.RDY = 1";
1114 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
1115 		return "reset admin queue";
1116 	case NVME_CTRLR_STATE_IDENTIFY:
1117 		return "identify controller";
1118 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
1119 		return "wait for identify controller";
1120 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
1121 		return "identify controller iocs specific";
1122 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
1123 		return "wait for identify controller iocs specific";
1124 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
1125 		return "set number of queues";
1126 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
1127 		return "wait for set number of queues";
1128 	case NVME_CTRLR_STATE_CONSTRUCT_NS:
1129 		return "construct namespaces";
1130 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
1131 		return "identify active ns";
1132 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
1133 		return "wait for identify active ns";
1134 	case NVME_CTRLR_STATE_IDENTIFY_NS:
1135 		return "identify ns";
1136 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
1137 		return "wait for identify ns";
1138 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
1139 		return "identify namespace id descriptors";
1140 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
1141 		return "wait for identify namespace id descriptors";
1142 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
1143 		return "identify ns iocs specific";
1144 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
1145 		return "wait for identify ns iocs specific";
1146 	case NVME_CTRLR_STATE_CONFIGURE_AER:
1147 		return "configure AER";
1148 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
1149 		return "wait for configure aer";
1150 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
1151 		return "set supported log pages";
1152 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
1153 		return "set supported features";
1154 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
1155 		return "set doorbell buffer config";
1156 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
1157 		return "wait for doorbell buffer config";
1158 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
1159 		return "set keep alive timeout";
1160 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
1161 		return "wait for set keep alive timeout";
1162 	case NVME_CTRLR_STATE_SET_HOST_ID:
1163 		return "set host ID";
1164 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
1165 		return "wait for set host ID";
1166 	case NVME_CTRLR_STATE_READY:
1167 		return "ready";
1168 	case NVME_CTRLR_STATE_ERROR:
1169 		return "error";
1170 	}
1171 	return "unknown";
1172 };
1173 #endif /* DEBUG */
1174 
1175 static void
1176 nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1177 		     uint64_t timeout_in_ms)
1178 {
1179 	uint64_t ticks_per_ms, timeout_in_ticks, now_ticks;
1180 
1181 	ctrlr->state = state;
1182 	if (timeout_in_ms == NVME_TIMEOUT_INFINITE) {
1183 		goto inf;
1184 	}
1185 
1186 	ticks_per_ms = spdk_get_ticks_hz() / 1000;
1187 	if (timeout_in_ms > UINT64_MAX / ticks_per_ms) {
1188 		SPDK_ERRLOG("Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1189 		goto inf;
1190 	}
1191 
1192 	now_ticks = spdk_get_ticks();
1193 	timeout_in_ticks = timeout_in_ms * ticks_per_ms;
1194 	if (timeout_in_ticks > UINT64_MAX - now_ticks) {
1195 		SPDK_ERRLOG("Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1196 		goto inf;
1197 	}
1198 
1199 	ctrlr->state_timeout_tsc = timeout_in_ticks + now_ticks;
1200 	SPDK_DEBUGLOG(nvme, "setting state to %s (timeout %" PRIu64 " ms)\n",
1201 		      nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms);
1202 	return;
1203 inf:
1204 	SPDK_DEBUGLOG(nvme, "setting state to %s (no timeout)\n",
1205 		      nvme_ctrlr_state_string(ctrlr->state));
1206 	ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE;
1207 }
1208 
1209 static void
1210 nvme_ctrlr_free_zns_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1211 {
1212 	spdk_free(ctrlr->cdata_zns);
1213 	ctrlr->cdata_zns = NULL;
1214 }
1215 
1216 static void
1217 nvme_ctrlr_free_iocs_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1218 {
1219 	nvme_ctrlr_free_zns_specific_data(ctrlr);
1220 }
1221 
1222 static void
1223 nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr)
1224 {
1225 	if (ctrlr->shadow_doorbell) {
1226 		spdk_free(ctrlr->shadow_doorbell);
1227 		ctrlr->shadow_doorbell = NULL;
1228 	}
1229 
1230 	if (ctrlr->eventidx) {
1231 		spdk_free(ctrlr->eventidx);
1232 		ctrlr->eventidx = NULL;
1233 	}
1234 }
1235 
1236 static void
1237 nvme_ctrlr_set_doorbell_buffer_config_done(void *arg, const struct spdk_nvme_cpl *cpl)
1238 {
1239 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1240 
1241 	if (spdk_nvme_cpl_is_error(cpl)) {
1242 		SPDK_WARNLOG("Doorbell buffer config failed\n");
1243 	} else {
1244 		SPDK_INFOLOG(nvme, "NVMe controller: %s doorbell buffer config enabled\n",
1245 			     ctrlr->trid.traddr);
1246 	}
1247 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT,
1248 			     ctrlr->opts.admin_timeout_ms);
1249 }
1250 
1251 static int
1252 nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr)
1253 {
1254 	int rc = 0;
1255 	uint64_t prp1, prp2, len;
1256 
1257 	if (!ctrlr->cdata.oacs.doorbell_buffer_config) {
1258 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT,
1259 				     ctrlr->opts.admin_timeout_ms);
1260 		return 0;
1261 	}
1262 
1263 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
1264 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT,
1265 				     ctrlr->opts.admin_timeout_ms);
1266 		return 0;
1267 	}
1268 
1269 	/* only 1 page size for doorbell buffer */
1270 	ctrlr->shadow_doorbell = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1271 					      NULL, SPDK_ENV_LCORE_ID_ANY,
1272 					      SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1273 	if (ctrlr->shadow_doorbell == NULL) {
1274 		rc = -ENOMEM;
1275 		goto error;
1276 	}
1277 
1278 	len = ctrlr->page_size;
1279 	prp1 = spdk_vtophys(ctrlr->shadow_doorbell, &len);
1280 	if (prp1 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1281 		rc = -EFAULT;
1282 		goto error;
1283 	}
1284 
1285 	ctrlr->eventidx = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1286 				       NULL, SPDK_ENV_LCORE_ID_ANY,
1287 				       SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1288 	if (ctrlr->eventidx == NULL) {
1289 		rc = -ENOMEM;
1290 		goto error;
1291 	}
1292 
1293 	len = ctrlr->page_size;
1294 	prp2 = spdk_vtophys(ctrlr->eventidx, &len);
1295 	if (prp2 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1296 		rc = -EFAULT;
1297 		goto error;
1298 	}
1299 
1300 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG,
1301 			     ctrlr->opts.admin_timeout_ms);
1302 
1303 	rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2,
1304 			nvme_ctrlr_set_doorbell_buffer_config_done, ctrlr);
1305 	if (rc != 0) {
1306 		goto error;
1307 	}
1308 
1309 	return 0;
1310 
1311 error:
1312 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1313 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1314 	return rc;
1315 }
1316 
1317 static void
1318 nvme_ctrlr_abort_queued_aborts(struct spdk_nvme_ctrlr *ctrlr)
1319 {
1320 	struct nvme_request	*req, *tmp;
1321 	struct spdk_nvme_cpl	cpl = {};
1322 
1323 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
1324 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
1325 
1326 	STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) {
1327 		STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq);
1328 
1329 		nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, &cpl);
1330 		nvme_free_request(req);
1331 	}
1332 }
1333 
1334 int
1335 spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr)
1336 {
1337 	int rc = 0, rc_tmp = 0;
1338 	struct spdk_nvme_qpair	*qpair;
1339 
1340 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1341 
1342 	if (ctrlr->is_resetting || ctrlr->is_removed) {
1343 		/*
1344 		 * Controller is already resetting or has been removed. Return
1345 		 *  immediately since there is no need to kick off another
1346 		 *  reset in these cases.
1347 		 */
1348 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1349 		return ctrlr->is_resetting ? 0 : -ENXIO;
1350 	}
1351 
1352 	ctrlr->is_resetting = true;
1353 	ctrlr->is_failed = false;
1354 
1355 	SPDK_NOTICELOG("resetting controller\n");
1356 
1357 	/* Abort all of the queued abort requests */
1358 	nvme_ctrlr_abort_queued_aborts(ctrlr);
1359 
1360 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
1361 
1362 	/* Disable all queues before disabling the controller hardware. */
1363 	TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1364 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1365 	}
1366 
1367 	ctrlr->adminq->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1368 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1369 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, ctrlr->adminq);
1370 	if (rc != 0) {
1371 		SPDK_ERRLOG("Controller reinitialization failed.\n");
1372 		goto out;
1373 	}
1374 
1375 	/* Doorbell buffer config is invalid during reset */
1376 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1377 
1378 	/* I/O Command Set Specific Identify Controller data is invalidated during reset */
1379 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
1380 
1381 	/* Set the state back to INIT to cause a full hardware reset. */
1382 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
1383 
1384 	nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
1385 	while (ctrlr->state != NVME_CTRLR_STATE_READY) {
1386 		if (nvme_ctrlr_process_init(ctrlr) != 0) {
1387 			SPDK_ERRLOG("controller reinitialization failed\n");
1388 			rc = -1;
1389 			break;
1390 		}
1391 	}
1392 
1393 	/*
1394 	 * For PCIe controllers, the memory locations of the transport qpair
1395 	 * don't change when the controller is reset. They simply need to be
1396 	 * re-enabled with admin commands to the controller. For fabric
1397 	 * controllers we need to disconnect and reconnect the qpair on its
1398 	 * own thread outside of the context of the reset.
1399 	 */
1400 	if (rc == 0 && ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
1401 		/* Reinitialize qpairs */
1402 		TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1403 			rc_tmp = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
1404 			if (rc_tmp != 0) {
1405 				rc = rc_tmp;
1406 				qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1407 				continue;
1408 			}
1409 		}
1410 	}
1411 
1412 out:
1413 	if (rc) {
1414 		nvme_ctrlr_fail(ctrlr, false);
1415 	}
1416 	ctrlr->is_resetting = false;
1417 
1418 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1419 
1420 	if (!ctrlr->cdata.oaes.ns_attribute_notices) {
1421 		/*
1422 		 * If controller doesn't support ns_attribute_notices and
1423 		 * namespace attributes change (e.g. number of namespaces)
1424 		 * we need to update system handling device reset.
1425 		 */
1426 		nvme_io_msg_ctrlr_update(ctrlr);
1427 	}
1428 
1429 	return rc;
1430 }
1431 
1432 int
1433 spdk_nvme_ctrlr_set_trid(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_transport_id *trid)
1434 {
1435 	int rc = 0;
1436 
1437 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
1438 
1439 	if (ctrlr->is_failed == false) {
1440 		rc = -EPERM;
1441 		goto out;
1442 	}
1443 
1444 	if (trid->trtype != ctrlr->trid.trtype) {
1445 		rc = -EINVAL;
1446 		goto out;
1447 	}
1448 
1449 	if (strncmp(trid->subnqn, ctrlr->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
1450 		rc = -EINVAL;
1451 		goto out;
1452 	}
1453 
1454 	ctrlr->trid = *trid;
1455 
1456 out:
1457 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
1458 	return rc;
1459 }
1460 
1461 static void
1462 nvme_ctrlr_identify_done(void *arg, const struct spdk_nvme_cpl *cpl)
1463 {
1464 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1465 
1466 	if (spdk_nvme_cpl_is_error(cpl)) {
1467 		SPDK_ERRLOG("nvme_identify_controller failed!\n");
1468 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1469 		return;
1470 	}
1471 
1472 	/*
1473 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
1474 	 *  controller supports.
1475 	 */
1476 	ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr);
1477 	SPDK_DEBUGLOG(nvme, "transport max_xfer_size %u\n", ctrlr->max_xfer_size);
1478 	if (ctrlr->cdata.mdts > 0) {
1479 		ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size,
1480 						ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
1481 		SPDK_DEBUGLOG(nvme, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size);
1482 	}
1483 
1484 	SPDK_DEBUGLOG(nvme, "CNTLID 0x%04" PRIx16 "\n", ctrlr->cdata.cntlid);
1485 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
1486 		ctrlr->cntlid = ctrlr->cdata.cntlid;
1487 	} else {
1488 		/*
1489 		 * Fabrics controllers should already have CNTLID from the Connect command.
1490 		 *
1491 		 * If CNTLID from Connect doesn't match CNTLID in the Identify Controller data,
1492 		 * trust the one from Connect.
1493 		 */
1494 		if (ctrlr->cntlid != ctrlr->cdata.cntlid) {
1495 			SPDK_DEBUGLOG(nvme,
1496 				      "Identify CNTLID 0x%04" PRIx16 " != Connect CNTLID 0x%04" PRIx16 "\n",
1497 				      ctrlr->cdata.cntlid, ctrlr->cntlid);
1498 		}
1499 	}
1500 
1501 	if (ctrlr->cdata.sgls.supported) {
1502 		assert(ctrlr->cdata.sgls.supported != 0x3);
1503 		ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
1504 		if (ctrlr->cdata.sgls.supported == 0x2) {
1505 			ctrlr->flags |= SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT;
1506 		}
1507 		/*
1508 		 * Use MSDBD to ensure our max_sges doesn't exceed what the
1509 		 *  controller supports.
1510 		 */
1511 		ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr);
1512 		if (ctrlr->cdata.nvmf_specific.msdbd != 0) {
1513 			ctrlr->max_sges = spdk_min(ctrlr->cdata.nvmf_specific.msdbd, ctrlr->max_sges);
1514 		} else {
1515 			/* A value 0 indicates no limit. */
1516 		}
1517 		SPDK_DEBUGLOG(nvme, "transport max_sges %u\n", ctrlr->max_sges);
1518 	}
1519 
1520 	if (ctrlr->cdata.oacs.security && !(ctrlr->quirks & NVME_QUIRK_OACS_SECURITY)) {
1521 		ctrlr->flags |= SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED;
1522 	}
1523 
1524 	SPDK_DEBUGLOG(nvme, "fuses compare and write: %d\n", ctrlr->cdata.fuses.compare_and_write);
1525 	if (ctrlr->cdata.fuses.compare_and_write) {
1526 		ctrlr->flags |= SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED;
1527 	}
1528 
1529 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
1530 			     ctrlr->opts.admin_timeout_ms);
1531 }
1532 
1533 static int
1534 nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr)
1535 {
1536 	int	rc;
1537 
1538 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY,
1539 			     ctrlr->opts.admin_timeout_ms);
1540 
1541 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, 0,
1542 				     &ctrlr->cdata, sizeof(ctrlr->cdata),
1543 				     nvme_ctrlr_identify_done, ctrlr);
1544 	if (rc != 0) {
1545 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1546 		return rc;
1547 	}
1548 
1549 	return 0;
1550 }
1551 
1552 static void
1553 nvme_ctrlr_identify_zns_specific_done(void *arg, const struct spdk_nvme_cpl *cpl)
1554 {
1555 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1556 
1557 	if (spdk_nvme_cpl_is_error(cpl)) {
1558 		/* no need to print an error, the controller simply does not support ZNS */
1559 		nvme_ctrlr_free_zns_specific_data(ctrlr);
1560 	}
1561 
1562 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
1563 			     ctrlr->opts.admin_timeout_ms);
1564 }
1565 
1566 /**
1567  * This function will try to fetch the I/O Command Specific Controller data structure for
1568  * each I/O Command Set supported by SPDK.
1569  *
1570  * If an I/O Command Set is not supported by the controller, "Invalid Field in Command"
1571  * will be returned. Since we are fetching in a exploratively way, getting an error back
1572  * from the controller should not be treated as fatal.
1573  *
1574  * I/O Command Sets not supported by SPDK will be skipped (e.g. Key Value Command Set).
1575  *
1576  * I/O Command Sets without a IOCS specific data structure (i.e. a zero-filled IOCS specific
1577  * data structure) will be skipped (e.g. NVM Command Set, Key Value Command Set).
1578  */
1579 static int
1580 nvme_ctrlr_identify_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
1581 {
1582 	int	rc;
1583 
1584 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
1585 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
1586 				     ctrlr->opts.admin_timeout_ms);
1587 		return 0;
1588 	}
1589 
1590 	/*
1591 	 * Since SPDK currently only needs to fetch a single Command Set, keep the code here,
1592 	 * instead of creating multiple NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC substates,
1593 	 * which would require additional functions and complexity for no good reason.
1594 	 */
1595 	assert(!ctrlr->cdata_zns);
1596 	ctrlr->cdata_zns = spdk_zmalloc(sizeof(*ctrlr->cdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
1597 					SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
1598 	if (!ctrlr->cdata_zns) {
1599 		rc = -ENOMEM;
1600 		goto error;
1601 	}
1602 
1603 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC,
1604 			     ctrlr->opts.admin_timeout_ms);
1605 
1606 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR_IOCS, 0, 0, SPDK_NVME_CSI_ZNS,
1607 				     ctrlr->cdata_zns, sizeof(*ctrlr->cdata_zns),
1608 				     nvme_ctrlr_identify_zns_specific_done, ctrlr);
1609 	if (rc != 0) {
1610 		goto error;
1611 	}
1612 
1613 	return 0;
1614 
1615 error:
1616 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1617 	nvme_ctrlr_free_zns_specific_data(ctrlr);
1618 	return rc;
1619 }
1620 
1621 enum nvme_active_ns_state {
1622 	NVME_ACTIVE_NS_STATE_IDLE,
1623 	NVME_ACTIVE_NS_STATE_PROCESSING,
1624 	NVME_ACTIVE_NS_STATE_DONE,
1625 	NVME_ACTIVE_NS_STATE_ERROR
1626 };
1627 
1628 typedef void (*nvme_active_ns_ctx_deleter)(struct nvme_active_ns_ctx *);
1629 
1630 struct nvme_active_ns_ctx {
1631 	struct spdk_nvme_ctrlr *ctrlr;
1632 	uint32_t page;
1633 	uint32_t num_pages;
1634 	uint32_t next_nsid;
1635 	uint32_t *new_ns_list;
1636 	nvme_active_ns_ctx_deleter deleter;
1637 
1638 	enum nvme_active_ns_state state;
1639 };
1640 
1641 static struct nvme_active_ns_ctx *
1642 nvme_active_ns_ctx_create(struct spdk_nvme_ctrlr *ctrlr, nvme_active_ns_ctx_deleter deleter)
1643 {
1644 	struct nvme_active_ns_ctx *ctx;
1645 	uint32_t num_pages = 0;
1646 	uint32_t *new_ns_list = NULL;
1647 
1648 	ctx = calloc(1, sizeof(*ctx));
1649 	if (!ctx) {
1650 		SPDK_ERRLOG("Failed to allocate nvme_active_ns_ctx!\n");
1651 		return NULL;
1652 	}
1653 
1654 	if (ctrlr->num_ns) {
1655 		/* The allocated size must be a multiple of sizeof(struct spdk_nvme_ns_list) */
1656 		num_pages = (ctrlr->num_ns * sizeof(new_ns_list[0]) - 1) / sizeof(struct spdk_nvme_ns_list) + 1;
1657 		new_ns_list = spdk_zmalloc(num_pages * sizeof(struct spdk_nvme_ns_list), ctrlr->page_size,
1658 					   NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1659 		if (!new_ns_list) {
1660 			SPDK_ERRLOG("Failed to allocate active_ns_list!\n");
1661 			free(ctx);
1662 			return NULL;
1663 		}
1664 	}
1665 
1666 	ctx->num_pages = num_pages;
1667 	ctx->new_ns_list = new_ns_list;
1668 	ctx->ctrlr = ctrlr;
1669 	ctx->deleter = deleter;
1670 
1671 	return ctx;
1672 }
1673 
1674 static void
1675 nvme_active_ns_ctx_destroy(struct nvme_active_ns_ctx *ctx)
1676 {
1677 	spdk_free(ctx->new_ns_list);
1678 	free(ctx);
1679 }
1680 
1681 static void
1682 nvme_ctrlr_identify_active_ns_swap(struct spdk_nvme_ctrlr *ctrlr, uint32_t **new_ns_list)
1683 {
1684 	spdk_free(ctrlr->active_ns_list);
1685 	ctrlr->active_ns_list = *new_ns_list;
1686 	*new_ns_list = NULL;
1687 }
1688 
1689 static void
1690 nvme_ctrlr_identify_active_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
1691 {
1692 	struct nvme_active_ns_ctx *ctx = arg;
1693 
1694 	if (spdk_nvme_cpl_is_error(cpl)) {
1695 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
1696 		goto out;
1697 	}
1698 
1699 	ctx->next_nsid = ctx->new_ns_list[1024 * ctx->page + 1023];
1700 	if (ctx->next_nsid == 0 || ++ctx->page == ctx->num_pages) {
1701 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
1702 		goto out;
1703 	}
1704 
1705 	nvme_ctrlr_identify_active_ns_async(ctx);
1706 	return;
1707 
1708 out:
1709 	if (ctx->deleter) {
1710 		ctx->deleter(ctx);
1711 	}
1712 }
1713 
1714 static void
1715 nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx)
1716 {
1717 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1718 	uint32_t i;
1719 	int rc;
1720 
1721 	if (ctrlr->num_ns == 0) {
1722 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
1723 		goto out;
1724 	}
1725 
1726 	/*
1727 	 * If controller doesn't support active ns list CNS 0x02 dummy up
1728 	 * an active ns list, i.e. all namespaces report as active
1729 	 */
1730 	if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 1, 0) || ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS) {
1731 		for (i = 0; i < ctrlr->num_ns; i++) {
1732 			ctx->new_ns_list[i] = i + 1;
1733 		}
1734 
1735 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
1736 		goto out;
1737 	}
1738 
1739 	ctx->state = NVME_ACTIVE_NS_STATE_PROCESSING;
1740 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, ctx->next_nsid, 0,
1741 				     &ctx->new_ns_list[1024 * ctx->page], sizeof(struct spdk_nvme_ns_list),
1742 				     nvme_ctrlr_identify_active_ns_async_done, ctx);
1743 	if (rc != 0) {
1744 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
1745 		goto out;
1746 	}
1747 
1748 	return;
1749 
1750 out:
1751 	if (ctx->deleter) {
1752 		ctx->deleter(ctx);
1753 	}
1754 }
1755 
1756 static void
1757 _nvme_active_ns_ctx_deleter(struct nvme_active_ns_ctx *ctx)
1758 {
1759 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1760 
1761 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
1762 		nvme_ctrlr_destruct_namespaces(ctrlr);
1763 		nvme_active_ns_ctx_destroy(ctx);
1764 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1765 		return;
1766 	}
1767 
1768 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
1769 	nvme_ctrlr_identify_active_ns_swap(ctrlr, &ctx->new_ns_list);
1770 	nvme_active_ns_ctx_destroy(ctx);
1771 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS, ctrlr->opts.admin_timeout_ms);
1772 }
1773 
1774 static void
1775 _nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
1776 {
1777 	struct nvme_active_ns_ctx *ctx;
1778 
1779 	ctx = nvme_active_ns_ctx_create(ctrlr, _nvme_active_ns_ctx_deleter);
1780 	if (!ctx) {
1781 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1782 		return;
1783 	}
1784 
1785 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS,
1786 			     ctrlr->opts.admin_timeout_ms);
1787 	nvme_ctrlr_identify_active_ns_async(ctx);
1788 }
1789 
1790 int
1791 nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
1792 {
1793 	struct nvme_active_ns_ctx *ctx;
1794 	int rc;
1795 
1796 	ctx = nvme_active_ns_ctx_create(ctrlr, NULL);
1797 	if (!ctx) {
1798 		return -ENOMEM;
1799 	}
1800 
1801 	nvme_ctrlr_identify_active_ns_async(ctx);
1802 	while (ctx->state == NVME_ACTIVE_NS_STATE_PROCESSING) {
1803 		rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
1804 		if (rc < 0) {
1805 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
1806 			break;
1807 		}
1808 	}
1809 
1810 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
1811 		nvme_active_ns_ctx_destroy(ctx);
1812 		return -ENXIO;
1813 	}
1814 
1815 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
1816 	nvme_ctrlr_identify_active_ns_swap(ctrlr, &ctx->new_ns_list);
1817 	nvme_active_ns_ctx_destroy(ctx);
1818 
1819 	return 0;
1820 }
1821 
1822 static void
1823 nvme_ctrlr_identify_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
1824 {
1825 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
1826 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
1827 	uint32_t nsid;
1828 	int rc;
1829 
1830 	if (spdk_nvme_cpl_is_error(cpl)) {
1831 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1832 		return;
1833 	}
1834 
1835 	nvme_ns_set_identify_data(ns);
1836 
1837 	/* move on to the next active NS */
1838 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
1839 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
1840 	if (ns == NULL) {
1841 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
1842 				     ctrlr->opts.admin_timeout_ms);
1843 		return;
1844 	}
1845 	ns->ctrlr = ctrlr;
1846 	ns->id = nsid;
1847 
1848 	rc = nvme_ctrlr_identify_ns_async(ns);
1849 	if (rc) {
1850 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1851 	}
1852 }
1853 
1854 static int
1855 nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns)
1856 {
1857 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
1858 	struct spdk_nvme_ns_data *nsdata;
1859 
1860 	nsdata = &ctrlr->nsdata[ns->id - 1];
1861 
1862 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS,
1863 			     ctrlr->opts.admin_timeout_ms);
1864 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS, 0, ns->id, 0,
1865 				       nsdata, sizeof(*nsdata),
1866 				       nvme_ctrlr_identify_ns_async_done, ns);
1867 }
1868 
1869 static int
1870 nvme_ctrlr_identify_namespaces(struct spdk_nvme_ctrlr *ctrlr)
1871 {
1872 	uint32_t nsid;
1873 	struct spdk_nvme_ns *ns;
1874 	int rc;
1875 
1876 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
1877 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
1878 	if (ns == NULL) {
1879 		/* No active NS, move on to the next state */
1880 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
1881 				     ctrlr->opts.admin_timeout_ms);
1882 		return 0;
1883 	}
1884 
1885 	ns->ctrlr = ctrlr;
1886 	ns->id = nsid;
1887 
1888 	rc = nvme_ctrlr_identify_ns_async(ns);
1889 	if (rc) {
1890 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1891 	}
1892 
1893 	return rc;
1894 }
1895 
1896 static int
1897 nvme_ctrlr_identify_namespaces_iocs_specific_next(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
1898 {
1899 	uint32_t nsid;
1900 	struct spdk_nvme_ns *ns;
1901 	int rc;
1902 
1903 	if (!prev_nsid) {
1904 		nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
1905 	} else {
1906 		/* move on to the next active NS */
1907 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, prev_nsid);
1908 	}
1909 
1910 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
1911 	if (ns == NULL) {
1912 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
1913 				     ctrlr->opts.admin_timeout_ms);
1914 		return 0;
1915 	}
1916 
1917 	/* loop until we find a ns which has (supported) iocs specific data */
1918 	while (!nvme_ns_has_supported_iocs_specific_data(ns)) {
1919 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
1920 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
1921 		if (ns == NULL) {
1922 			/* no namespace with (supported) iocs specific data found */
1923 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
1924 					     ctrlr->opts.admin_timeout_ms);
1925 			return 0;
1926 		}
1927 	}
1928 
1929 	rc = nvme_ctrlr_identify_ns_iocs_specific_async(ns);
1930 	if (rc) {
1931 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1932 	}
1933 
1934 	return rc;
1935 }
1936 
1937 static void
1938 nvme_ctrlr_identify_ns_zns_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
1939 {
1940 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
1941 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
1942 
1943 	if (spdk_nvme_cpl_is_error(cpl)) {
1944 		nvme_ns_free_zns_specific_data(ns);
1945 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1946 		return;
1947 	}
1948 
1949 	nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
1950 }
1951 
1952 static int
1953 nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns)
1954 {
1955 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
1956 	struct spdk_nvme_zns_ns_data **nsdata_zns;
1957 	int rc;
1958 
1959 	switch (ns->csi) {
1960 	case SPDK_NVME_CSI_ZNS:
1961 		break;
1962 	default:
1963 		/*
1964 		 * This switch must handle all cases for which
1965 		 * nvme_ns_has_supported_iocs_specific_data() returns true,
1966 		 * other cases should never happen.
1967 		 */
1968 		assert(0);
1969 	}
1970 
1971 	assert(ctrlr->nsdata_zns);
1972 	nsdata_zns = &ctrlr->nsdata_zns[ns->id - 1];
1973 	assert(!*nsdata_zns);
1974 	*nsdata_zns = spdk_zmalloc(sizeof(**nsdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
1975 				   SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
1976 	if (!*nsdata_zns) {
1977 		return -ENOMEM;
1978 	}
1979 
1980 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
1981 			     ctrlr->opts.admin_timeout_ms);
1982 	rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
1983 				     *nsdata_zns, sizeof(**nsdata_zns),
1984 				     nvme_ctrlr_identify_ns_zns_specific_async_done, ns);
1985 	if (rc) {
1986 		nvme_ns_free_zns_specific_data(ns);
1987 	}
1988 
1989 	return rc;
1990 }
1991 
1992 static int
1993 nvme_ctrlr_identify_namespaces_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
1994 {
1995 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
1996 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
1997 				     ctrlr->opts.admin_timeout_ms);
1998 		return 0;
1999 	}
2000 
2001 	return nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, 0);
2002 }
2003 
2004 static void
2005 nvme_ctrlr_identify_id_desc_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2006 {
2007 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2008 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2009 	uint32_t nsid;
2010 	int rc;
2011 
2012 	if (spdk_nvme_cpl_is_error(cpl)) {
2013 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
2014 				     ctrlr->opts.admin_timeout_ms);
2015 		return;
2016 	}
2017 
2018 	nvme_ns_set_id_desc_list_data(ns);
2019 
2020 	/* move on to the next active NS */
2021 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2022 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2023 	if (ns == NULL) {
2024 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2025 				     ctrlr->opts.admin_timeout_ms);
2026 		return;
2027 	}
2028 
2029 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2030 	if (rc) {
2031 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2032 	}
2033 }
2034 
2035 static int
2036 nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns)
2037 {
2038 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2039 
2040 	memset(ns->id_desc_list, 0, sizeof(ns->id_desc_list));
2041 
2042 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS,
2043 			     ctrlr->opts.admin_timeout_ms);
2044 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_ID_DESCRIPTOR_LIST,
2045 				       0, ns->id, 0, ns->id_desc_list, sizeof(ns->id_desc_list),
2046 				       nvme_ctrlr_identify_id_desc_async_done, ns);
2047 }
2048 
2049 static int
2050 nvme_ctrlr_identify_id_desc_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2051 {
2052 	uint32_t nsid;
2053 	struct spdk_nvme_ns *ns;
2054 	int rc;
2055 
2056 	if ((ctrlr->vs.raw < SPDK_NVME_VERSION(1, 3, 0) &&
2057 	     !(ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS)) ||
2058 	    (ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2059 		SPDK_DEBUGLOG(nvme, "Version < 1.3; not attempting to retrieve NS ID Descriptor List\n");
2060 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
2061 				     ctrlr->opts.admin_timeout_ms);
2062 		return 0;
2063 	}
2064 
2065 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2066 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2067 	if (ns == NULL) {
2068 		/* No active NS, move on to the next state */
2069 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
2070 				     ctrlr->opts.admin_timeout_ms);
2071 		return 0;
2072 	}
2073 
2074 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2075 	if (rc) {
2076 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2077 	}
2078 
2079 	return rc;
2080 }
2081 
2082 static void
2083 nvme_ctrlr_update_nvmf_ioccsz(struct spdk_nvme_ctrlr *ctrlr)
2084 {
2085 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA ||
2086 	    ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP ||
2087 	    ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_FC) {
2088 		if (ctrlr->cdata.nvmf_specific.ioccsz < 4) {
2089 			SPDK_ERRLOG("Incorrect IOCCSZ %u, the minimum value should be 4\n",
2090 				    ctrlr->cdata.nvmf_specific.ioccsz);
2091 			ctrlr->cdata.nvmf_specific.ioccsz = 4;
2092 			assert(0);
2093 		}
2094 		ctrlr->ioccsz_bytes = ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd);
2095 		ctrlr->icdoff = ctrlr->cdata.nvmf_specific.icdoff;
2096 	}
2097 }
2098 
2099 static void
2100 nvme_ctrlr_set_num_queues_done(void *arg, const struct spdk_nvme_cpl *cpl)
2101 {
2102 	uint32_t cq_allocated, sq_allocated, min_allocated, i;
2103 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2104 
2105 	if (spdk_nvme_cpl_is_error(cpl)) {
2106 		SPDK_ERRLOG("Set Features - Number of Queues failed!\n");
2107 		ctrlr->opts.num_io_queues = 0;
2108 	} else {
2109 		/*
2110 		 * Data in cdw0 is 0-based.
2111 		 * Lower 16-bits indicate number of submission queues allocated.
2112 		 * Upper 16-bits indicate number of completion queues allocated.
2113 		 */
2114 		sq_allocated = (cpl->cdw0 & 0xFFFF) + 1;
2115 		cq_allocated = (cpl->cdw0 >> 16) + 1;
2116 
2117 		/*
2118 		 * For 1:1 queue mapping, set number of allocated queues to be minimum of
2119 		 * submission and completion queues.
2120 		 */
2121 		min_allocated = spdk_min(sq_allocated, cq_allocated);
2122 
2123 		/* Set number of queues to be minimum of requested and actually allocated. */
2124 		ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues);
2125 	}
2126 
2127 	ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1);
2128 	if (ctrlr->free_io_qids == NULL) {
2129 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2130 		return;
2131 	}
2132 
2133 	/* Initialize list of free I/O queue IDs. QID 0 is the admin queue (implicitly allocated). */
2134 	for (i = 1; i <= ctrlr->opts.num_io_queues; i++) {
2135 		spdk_nvme_ctrlr_free_qid(ctrlr, i);
2136 	}
2137 
2138 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONSTRUCT_NS,
2139 			     ctrlr->opts.admin_timeout_ms);
2140 }
2141 
2142 static int
2143 nvme_ctrlr_set_num_queues(struct spdk_nvme_ctrlr *ctrlr)
2144 {
2145 	int rc;
2146 
2147 	if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) {
2148 		SPDK_NOTICELOG("Limiting requested num_io_queues %u to max %d\n",
2149 			       ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES);
2150 		ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES;
2151 	} else if (ctrlr->opts.num_io_queues < 1) {
2152 		SPDK_NOTICELOG("Requested num_io_queues 0, increasing to 1\n");
2153 		ctrlr->opts.num_io_queues = 1;
2154 	}
2155 
2156 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES,
2157 			     ctrlr->opts.admin_timeout_ms);
2158 
2159 	rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues,
2160 					   nvme_ctrlr_set_num_queues_done, ctrlr);
2161 	if (rc != 0) {
2162 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2163 		return rc;
2164 	}
2165 
2166 	return 0;
2167 }
2168 
2169 static void
2170 nvme_ctrlr_set_keep_alive_timeout_done(void *arg, const struct spdk_nvme_cpl *cpl)
2171 {
2172 	uint32_t keep_alive_interval_us;
2173 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2174 
2175 	if (spdk_nvme_cpl_is_error(cpl)) {
2176 		if ((cpl->status.sct == SPDK_NVME_SCT_GENERIC) &&
2177 		    (cpl->status.sc == SPDK_NVME_SC_INVALID_FIELD)) {
2178 			SPDK_DEBUGLOG(nvme, "Keep alive timeout Get Feature is not supported\n");
2179 		} else {
2180 			SPDK_ERRLOG("Keep alive timeout Get Feature failed: SC %x SCT %x\n",
2181 				    cpl->status.sc, cpl->status.sct);
2182 			ctrlr->opts.keep_alive_timeout_ms = 0;
2183 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2184 			return;
2185 		}
2186 	} else {
2187 		if (ctrlr->opts.keep_alive_timeout_ms != cpl->cdw0) {
2188 			SPDK_DEBUGLOG(nvme, "Controller adjusted keep alive timeout to %u ms\n",
2189 				      cpl->cdw0);
2190 		}
2191 
2192 		ctrlr->opts.keep_alive_timeout_ms = cpl->cdw0;
2193 	}
2194 
2195 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
2196 		ctrlr->keep_alive_interval_ticks = 0;
2197 	} else {
2198 		keep_alive_interval_us = ctrlr->opts.keep_alive_timeout_ms * 1000 / 2;
2199 
2200 		SPDK_DEBUGLOG(nvme, "Sending keep alive every %u us\n", keep_alive_interval_us);
2201 
2202 		ctrlr->keep_alive_interval_ticks = (keep_alive_interval_us * spdk_get_ticks_hz()) /
2203 						   UINT64_C(1000000);
2204 
2205 		/* Schedule the first Keep Alive to be sent as soon as possible. */
2206 		ctrlr->next_keep_alive_tick = spdk_get_ticks();
2207 	}
2208 
2209 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
2210 			     ctrlr->opts.admin_timeout_ms);
2211 }
2212 
2213 static int
2214 nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr)
2215 {
2216 	int rc;
2217 
2218 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
2219 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
2220 				     ctrlr->opts.admin_timeout_ms);
2221 		return 0;
2222 	}
2223 
2224 	if (ctrlr->cdata.kas == 0) {
2225 		SPDK_DEBUGLOG(nvme, "Controller KAS is 0 - not enabling Keep Alive\n");
2226 		ctrlr->opts.keep_alive_timeout_ms = 0;
2227 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
2228 				     ctrlr->opts.admin_timeout_ms);
2229 		return 0;
2230 	}
2231 
2232 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT,
2233 			     ctrlr->opts.admin_timeout_ms);
2234 
2235 	/* Retrieve actual keep alive timeout, since the controller may have adjusted it. */
2236 	rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0,
2237 					     nvme_ctrlr_set_keep_alive_timeout_done, ctrlr);
2238 	if (rc != 0) {
2239 		SPDK_ERRLOG("Keep alive timeout Get Feature failed: %d\n", rc);
2240 		ctrlr->opts.keep_alive_timeout_ms = 0;
2241 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2242 		return rc;
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 static void
2249 nvme_ctrlr_set_host_id_done(void *arg, const struct spdk_nvme_cpl *cpl)
2250 {
2251 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2252 
2253 	if (spdk_nvme_cpl_is_error(cpl)) {
2254 		/*
2255 		 * Treat Set Features - Host ID failure as non-fatal, since the Host ID feature
2256 		 * is optional.
2257 		 */
2258 		SPDK_WARNLOG("Set Features - Host ID failed: SC 0x%x SCT 0x%x\n",
2259 			     cpl->status.sc, cpl->status.sct);
2260 	} else {
2261 		SPDK_DEBUGLOG(nvme, "Set Features - Host ID was successful\n");
2262 	}
2263 
2264 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
2265 }
2266 
2267 static int
2268 nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr)
2269 {
2270 	uint8_t *host_id;
2271 	uint32_t host_id_size;
2272 	int rc;
2273 
2274 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
2275 		/*
2276 		 * NVMe-oF sends the host ID during Connect and doesn't allow
2277 		 * Set Features - Host Identifier after Connect, so we don't need to do anything here.
2278 		 */
2279 		SPDK_DEBUGLOG(nvme, "NVMe-oF transport - not sending Set Features - Host ID\n");
2280 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
2281 		return 0;
2282 	}
2283 
2284 	if (ctrlr->cdata.ctratt.host_id_exhid_supported) {
2285 		SPDK_DEBUGLOG(nvme, "Using 128-bit extended host identifier\n");
2286 		host_id = ctrlr->opts.extended_host_id;
2287 		host_id_size = sizeof(ctrlr->opts.extended_host_id);
2288 	} else {
2289 		SPDK_DEBUGLOG(nvme, "Using 64-bit host identifier\n");
2290 		host_id = ctrlr->opts.host_id;
2291 		host_id_size = sizeof(ctrlr->opts.host_id);
2292 	}
2293 
2294 	/* If the user specified an all-zeroes host identifier, don't send the command. */
2295 	if (spdk_mem_all_zero(host_id, host_id_size)) {
2296 		SPDK_DEBUGLOG(nvme,
2297 			      "User did not specify host ID - not sending Set Features - Host ID\n");
2298 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
2299 		return 0;
2300 	}
2301 
2302 	SPDK_LOGDUMP(nvme, "host_id", host_id, host_id_size);
2303 
2304 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_HOST_ID,
2305 			     ctrlr->opts.admin_timeout_ms);
2306 
2307 	rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_ctrlr_set_host_id_done, ctrlr);
2308 	if (rc != 0) {
2309 		SPDK_ERRLOG("Set Features - Host ID failed: %d\n", rc);
2310 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2311 		return rc;
2312 	}
2313 
2314 	return 0;
2315 }
2316 
2317 static void
2318 nvme_ctrlr_destruct_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2319 {
2320 	if (ctrlr->ns) {
2321 		uint32_t i, num_ns = ctrlr->num_ns;
2322 
2323 		for (i = 0; i < num_ns; i++) {
2324 			nvme_ns_destruct(&ctrlr->ns[i]);
2325 		}
2326 
2327 		spdk_free(ctrlr->ns);
2328 		ctrlr->ns = NULL;
2329 		ctrlr->num_ns = 0;
2330 	}
2331 
2332 	if (ctrlr->nsdata) {
2333 		spdk_free(ctrlr->nsdata);
2334 		ctrlr->nsdata = NULL;
2335 	}
2336 
2337 	spdk_free(ctrlr->nsdata_zns);
2338 	ctrlr->nsdata_zns = NULL;
2339 
2340 	spdk_free(ctrlr->active_ns_list);
2341 	ctrlr->active_ns_list = NULL;
2342 }
2343 
2344 static void
2345 nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2346 {
2347 	uint32_t i, nn = ctrlr->cdata.nn;
2348 	struct spdk_nvme_ns_data *nsdata;
2349 	bool ns_is_active;
2350 
2351 	for (i = 0; i < nn; i++) {
2352 		struct spdk_nvme_ns	*ns = &ctrlr->ns[i];
2353 		uint32_t		nsid = i + 1;
2354 
2355 		nsdata = &ctrlr->nsdata[nsid - 1];
2356 		ns_is_active = spdk_nvme_ctrlr_is_active_ns(ctrlr, nsid);
2357 
2358 		if (nsdata->ncap && ns_is_active) {
2359 			if (nvme_ns_update(ns) != 0) {
2360 				SPDK_ERRLOG("Failed to update active NS %u\n", nsid);
2361 				continue;
2362 			}
2363 		}
2364 
2365 		if ((nsdata->ncap == 0) && ns_is_active) {
2366 			if (nvme_ns_construct(ns, nsid, ctrlr) != 0) {
2367 				continue;
2368 			}
2369 		}
2370 
2371 		if (nsdata->ncap && !ns_is_active) {
2372 			nvme_ns_destruct(ns);
2373 		}
2374 	}
2375 }
2376 
2377 static int
2378 nvme_ctrlr_construct_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2379 {
2380 	int rc = 0;
2381 	uint32_t i, nn = ctrlr->cdata.nn;
2382 
2383 	/* ctrlr->num_ns may be 0 (startup) or a different number of namespaces (reset),
2384 	 * so check if we need to reallocate.
2385 	 */
2386 	if (nn != ctrlr->num_ns) {
2387 		nvme_ctrlr_destruct_namespaces(ctrlr);
2388 
2389 		if (nn == 0) {
2390 			SPDK_WARNLOG("controller has 0 namespaces\n");
2391 			return 0;
2392 		}
2393 
2394 		ctrlr->ns = spdk_zmalloc(nn * sizeof(struct spdk_nvme_ns), 64, NULL,
2395 					 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
2396 		if (ctrlr->ns == NULL) {
2397 			rc = -ENOMEM;
2398 			goto fail;
2399 		}
2400 
2401 		ctrlr->nsdata = spdk_zmalloc(nn * sizeof(struct spdk_nvme_ns_data), 64,
2402 					     NULL, SPDK_ENV_SOCKET_ID_ANY,
2403 					     SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2404 		if (ctrlr->nsdata == NULL) {
2405 			rc = -ENOMEM;
2406 			goto fail;
2407 		}
2408 
2409 		ctrlr->nsdata_zns = spdk_zmalloc(nn * sizeof(struct spdk_nvme_zns_ns_data *), 64,
2410 						 NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
2411 		if (ctrlr->nsdata_zns == NULL) {
2412 			rc = -ENOMEM;
2413 			goto fail;
2414 		}
2415 
2416 		ctrlr->num_ns = nn;
2417 	} else {
2418 		/*
2419 		 * The controller could have been reset with the same number of namespaces.
2420 		 * If so, we still need to free the iocs specific data, to get a clean slate.
2421 		 */
2422 		for (i = 0; i < ctrlr->num_ns; i++) {
2423 			nvme_ns_free_iocs_specific_data(&ctrlr->ns[i]);
2424 		}
2425 	}
2426 
2427 	return 0;
2428 
2429 fail:
2430 	nvme_ctrlr_destruct_namespaces(ctrlr);
2431 	return rc;
2432 }
2433 
2434 static void
2435 nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl)
2436 {
2437 	struct nvme_async_event_request	*aer = arg;
2438 	struct spdk_nvme_ctrlr		*ctrlr = aer->ctrlr;
2439 	struct spdk_nvme_ctrlr_process	*active_proc;
2440 	union spdk_nvme_async_event_completion	event;
2441 	int					rc;
2442 
2443 	if (cpl->status.sct == SPDK_NVME_SCT_GENERIC &&
2444 	    cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) {
2445 		/*
2446 		 *  This is simulated when controller is being shut down, to
2447 		 *  effectively abort outstanding asynchronous event requests
2448 		 *  and make sure all memory is freed.  Do not repost the
2449 		 *  request in this case.
2450 		 */
2451 		return;
2452 	}
2453 
2454 	if (cpl->status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC &&
2455 	    cpl->status.sc == SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED) {
2456 		/*
2457 		 *  SPDK will only send as many AERs as the device says it supports,
2458 		 *  so this status code indicates an out-of-spec device.  Do not repost
2459 		 *  the request in this case.
2460 		 */
2461 		SPDK_ERRLOG("Controller appears out-of-spec for asynchronous event request\n"
2462 			    "handling.  Do not repost this AER.\n");
2463 		return;
2464 	}
2465 
2466 	event.raw = cpl->cdw0;
2467 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
2468 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
2469 		rc = nvme_ctrlr_identify_active_ns(ctrlr);
2470 		if (rc) {
2471 			return;
2472 		}
2473 		nvme_ctrlr_update_namespaces(ctrlr);
2474 		nvme_io_msg_ctrlr_update(ctrlr);
2475 	}
2476 
2477 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
2478 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
2479 		rc = nvme_ctrlr_update_ana_log_page(ctrlr);
2480 		if (rc) {
2481 			return;
2482 		}
2483 		nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states, ctrlr);
2484 	}
2485 
2486 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
2487 	if (active_proc && active_proc->aer_cb_fn) {
2488 		active_proc->aer_cb_fn(active_proc->aer_cb_arg, cpl);
2489 	}
2490 
2491 	/* If the ctrlr was removed or in the destruct state, we should not send aer again */
2492 	if (ctrlr->is_removed || ctrlr->is_destructed) {
2493 		return;
2494 	}
2495 
2496 	/*
2497 	 * Repost another asynchronous event request to replace the one
2498 	 *  that just completed.
2499 	 */
2500 	if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
2501 		/*
2502 		 * We can't do anything to recover from a failure here,
2503 		 * so just print a warning message and leave the AER unsubmitted.
2504 		 */
2505 		SPDK_ERRLOG("resubmitting AER failed!\n");
2506 	}
2507 }
2508 
2509 static int
2510 nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
2511 				    struct nvme_async_event_request *aer)
2512 {
2513 	struct nvme_request *req;
2514 
2515 	aer->ctrlr = ctrlr;
2516 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer);
2517 	aer->req = req;
2518 	if (req == NULL) {
2519 		return -1;
2520 	}
2521 
2522 	req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
2523 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
2524 }
2525 
2526 static void
2527 nvme_ctrlr_configure_aer_done(void *arg, const struct spdk_nvme_cpl *cpl)
2528 {
2529 	struct nvme_async_event_request		*aer;
2530 	int					rc;
2531 	uint32_t				i;
2532 	struct spdk_nvme_ctrlr *ctrlr =	(struct spdk_nvme_ctrlr *)arg;
2533 
2534 	if (spdk_nvme_cpl_is_error(cpl)) {
2535 		SPDK_NOTICELOG("nvme_ctrlr_configure_aer failed!\n");
2536 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2537 				     ctrlr->opts.admin_timeout_ms);
2538 		return;
2539 	}
2540 
2541 	/* aerl is a zero-based value, so we need to add 1 here. */
2542 	ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
2543 
2544 	for (i = 0; i < ctrlr->num_aers; i++) {
2545 		aer = &ctrlr->aer[i];
2546 		rc = nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
2547 		if (rc) {
2548 			SPDK_ERRLOG("nvme_ctrlr_construct_and_submit_aer failed!\n");
2549 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2550 			return;
2551 		}
2552 	}
2553 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2554 			     ctrlr->opts.admin_timeout_ms);
2555 }
2556 
2557 static int
2558 nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr)
2559 {
2560 	union spdk_nvme_feat_async_event_configuration	config;
2561 	int						rc;
2562 
2563 	config.raw = 0;
2564 	config.bits.crit_warn.bits.available_spare = 1;
2565 	config.bits.crit_warn.bits.temperature = 1;
2566 	config.bits.crit_warn.bits.device_reliability = 1;
2567 	config.bits.crit_warn.bits.read_only = 1;
2568 	config.bits.crit_warn.bits.volatile_memory_backup = 1;
2569 
2570 	if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 2, 0)) {
2571 		if (ctrlr->cdata.oaes.ns_attribute_notices) {
2572 			config.bits.ns_attr_notice = 1;
2573 		}
2574 		if (ctrlr->cdata.oaes.fw_activation_notices) {
2575 			config.bits.fw_activation_notice = 1;
2576 		}
2577 		if (ctrlr->cdata.oaes.ana_change_notices) {
2578 			config.bits.ana_change_notice = 1;
2579 		}
2580 	}
2581 	if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 3, 0) && ctrlr->cdata.lpa.telemetry) {
2582 		config.bits.telemetry_log_notice = 1;
2583 	}
2584 
2585 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER,
2586 			     ctrlr->opts.admin_timeout_ms);
2587 
2588 	rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config,
2589 			nvme_ctrlr_configure_aer_done,
2590 			ctrlr);
2591 	if (rc != 0) {
2592 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2593 		return rc;
2594 	}
2595 
2596 	return 0;
2597 }
2598 
2599 struct spdk_nvme_ctrlr_process *
2600 nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid)
2601 {
2602 	struct spdk_nvme_ctrlr_process	*active_proc;
2603 
2604 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
2605 		if (active_proc->pid == pid) {
2606 			return active_proc;
2607 		}
2608 	}
2609 
2610 	return NULL;
2611 }
2612 
2613 struct spdk_nvme_ctrlr_process *
2614 nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr)
2615 {
2616 	return nvme_ctrlr_get_process(ctrlr, getpid());
2617 }
2618 
2619 /**
2620  * This function will be called when a process is using the controller.
2621  *  1. For the primary process, it is called when constructing the controller.
2622  *  2. For the secondary process, it is called at probing the controller.
2623  * Note: will check whether the process is already added for the same process.
2624  */
2625 int
2626 nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
2627 {
2628 	struct spdk_nvme_ctrlr_process	*ctrlr_proc;
2629 	pid_t				pid = getpid();
2630 
2631 	/* Check whether the process is already added or not */
2632 	if (nvme_ctrlr_get_process(ctrlr, pid)) {
2633 		return 0;
2634 	}
2635 
2636 	/* Initialize the per process properties for this ctrlr */
2637 	ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process),
2638 				  64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
2639 	if (ctrlr_proc == NULL) {
2640 		SPDK_ERRLOG("failed to allocate memory to track the process props\n");
2641 
2642 		return -1;
2643 	}
2644 
2645 	ctrlr_proc->is_primary = spdk_process_is_primary();
2646 	ctrlr_proc->pid = pid;
2647 	STAILQ_INIT(&ctrlr_proc->active_reqs);
2648 	ctrlr_proc->devhandle = devhandle;
2649 	ctrlr_proc->ref = 0;
2650 	TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs);
2651 
2652 	TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq);
2653 
2654 	return 0;
2655 }
2656 
2657 /**
2658  * This function will be called when the process detaches the controller.
2659  * Note: the ctrlr_lock must be held when calling this function.
2660  */
2661 static void
2662 nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr,
2663 			  struct spdk_nvme_ctrlr_process *proc)
2664 {
2665 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
2666 
2667 	assert(STAILQ_EMPTY(&proc->active_reqs));
2668 
2669 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
2670 		spdk_nvme_ctrlr_free_io_qpair(qpair);
2671 	}
2672 
2673 	TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq);
2674 
2675 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
2676 		spdk_pci_device_detach(proc->devhandle);
2677 	}
2678 
2679 	spdk_free(proc);
2680 }
2681 
2682 /**
2683  * This function will be called when the process exited unexpectedly
2684  *  in order to free any incomplete nvme request, allocated IO qpairs
2685  *  and allocated memory.
2686  * Note: the ctrlr_lock must be held when calling this function.
2687  */
2688 static void
2689 nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc)
2690 {
2691 	struct nvme_request	*req, *tmp_req;
2692 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
2693 
2694 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
2695 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
2696 
2697 		assert(req->pid == proc->pid);
2698 
2699 		nvme_free_request(req);
2700 	}
2701 
2702 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
2703 		TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq);
2704 
2705 		/*
2706 		 * The process may have been killed while some qpairs were in their
2707 		 *  completion context.  Clear that flag here to allow these IO
2708 		 *  qpairs to be deleted.
2709 		 */
2710 		qpair->in_completion_context = 0;
2711 
2712 		qpair->no_deletion_notification_needed = 1;
2713 
2714 		spdk_nvme_ctrlr_free_io_qpair(qpair);
2715 	}
2716 
2717 	spdk_free(proc);
2718 }
2719 
2720 /**
2721  * This function will be called when destructing the controller.
2722  *  1. There is no more admin request on this controller.
2723  *  2. Clean up any left resource allocation when its associated process is gone.
2724  */
2725 void
2726 nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
2727 {
2728 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
2729 
2730 	/* Free all the processes' properties and make sure no pending admin IOs */
2731 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
2732 		TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
2733 
2734 		assert(STAILQ_EMPTY(&active_proc->active_reqs));
2735 
2736 		spdk_free(active_proc);
2737 	}
2738 }
2739 
2740 /**
2741  * This function will be called when any other process attaches or
2742  *  detaches the controller in order to cleanup those unexpectedly
2743  *  terminated processes.
2744  * Note: the ctrlr_lock must be held when calling this function.
2745  */
2746 static int
2747 nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr)
2748 {
2749 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
2750 	int				active_proc_count = 0;
2751 
2752 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
2753 		if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) {
2754 			SPDK_ERRLOG("process %d terminated unexpected\n", active_proc->pid);
2755 
2756 			TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
2757 
2758 			nvme_ctrlr_cleanup_process(active_proc);
2759 		} else {
2760 			active_proc_count++;
2761 		}
2762 	}
2763 
2764 	return active_proc_count;
2765 }
2766 
2767 void
2768 nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr)
2769 {
2770 	struct spdk_nvme_ctrlr_process	*active_proc;
2771 
2772 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
2773 
2774 	nvme_ctrlr_remove_inactive_proc(ctrlr);
2775 
2776 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
2777 	if (active_proc) {
2778 		active_proc->ref++;
2779 	}
2780 
2781 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2782 }
2783 
2784 void
2785 nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr)
2786 {
2787 	struct spdk_nvme_ctrlr_process	*active_proc;
2788 	int				proc_count;
2789 
2790 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
2791 
2792 	proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr);
2793 
2794 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
2795 	if (active_proc) {
2796 		active_proc->ref--;
2797 		assert(active_proc->ref >= 0);
2798 
2799 		/*
2800 		 * The last active process will be removed at the end of
2801 		 * the destruction of the controller.
2802 		 */
2803 		if (active_proc->ref == 0 && proc_count != 1) {
2804 			nvme_ctrlr_remove_process(ctrlr, active_proc);
2805 		}
2806 	}
2807 
2808 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2809 }
2810 
2811 int
2812 nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr)
2813 {
2814 	struct spdk_nvme_ctrlr_process	*active_proc;
2815 	int				ref = 0;
2816 
2817 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
2818 
2819 	nvme_ctrlr_remove_inactive_proc(ctrlr);
2820 
2821 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
2822 		ref += active_proc->ref;
2823 	}
2824 
2825 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2826 
2827 	return ref;
2828 }
2829 
2830 /**
2831  *  Get the PCI device handle which is only visible to its associated process.
2832  */
2833 struct spdk_pci_device *
2834 nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr)
2835 {
2836 	struct spdk_nvme_ctrlr_process	*active_proc;
2837 	struct spdk_pci_device		*devhandle = NULL;
2838 
2839 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
2840 
2841 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
2842 	if (active_proc) {
2843 		devhandle = active_proc->devhandle;
2844 	}
2845 
2846 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2847 
2848 	return devhandle;
2849 }
2850 
2851 /**
2852  * This function will be called repeatedly during initialization until the controller is ready.
2853  */
2854 int
2855 nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr)
2856 {
2857 	union spdk_nvme_cc_register cc;
2858 	union spdk_nvme_csts_register csts;
2859 	uint32_t ready_timeout_in_ms;
2860 	int rc = 0;
2861 
2862 	/*
2863 	 * May need to avoid accessing any register on the target controller
2864 	 * for a while. Return early without touching the FSM.
2865 	 * Check sleep_timeout_tsc > 0 for unit test.
2866 	 */
2867 	if ((ctrlr->sleep_timeout_tsc > 0) &&
2868 	    (spdk_get_ticks() <= ctrlr->sleep_timeout_tsc)) {
2869 		return 0;
2870 	}
2871 	ctrlr->sleep_timeout_tsc = 0;
2872 
2873 	if (nvme_ctrlr_get_cc(ctrlr, &cc) ||
2874 	    nvme_ctrlr_get_csts(ctrlr, &csts)) {
2875 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
2876 			/* While a device is resetting, it may be unable to service MMIO reads
2877 			 * temporarily. Allow for this case.
2878 			 */
2879 			SPDK_DEBUGLOG(nvme, "Get registers failed while waiting for CSTS.RDY == 0\n");
2880 			goto init_timeout;
2881 		}
2882 		SPDK_ERRLOG("Failed to read CC and CSTS in state %d\n", ctrlr->state);
2883 		return -EIO;
2884 	}
2885 
2886 	ready_timeout_in_ms = 500 * ctrlr->cap.bits.to;
2887 
2888 	/*
2889 	 * Check if the current initialization step is done or has timed out.
2890 	 */
2891 	switch (ctrlr->state) {
2892 	case NVME_CTRLR_STATE_INIT_DELAY:
2893 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, ready_timeout_in_ms);
2894 		if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_INIT) {
2895 			/*
2896 			 * Controller may need some delay before it's enabled.
2897 			 *
2898 			 * This is a workaround for an issue where the PCIe-attached NVMe controller
2899 			 * is not ready after VFIO reset. We delay the initialization rather than the
2900 			 * enabling itself, because this is required only for the very first enabling
2901 			 * - directly after a VFIO reset.
2902 			 */
2903 			SPDK_DEBUGLOG(nvme, "Adding 2 second delay before initializing the controller\n");
2904 			ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2000 * spdk_get_ticks_hz() / 1000);
2905 		}
2906 		break;
2907 
2908 	case NVME_CTRLR_STATE_INIT:
2909 		/* Begin the hardware initialization by making sure the controller is disabled. */
2910 		if (cc.bits.en) {
2911 			SPDK_DEBUGLOG(nvme, "CC.EN = 1\n");
2912 			/*
2913 			 * Controller is currently enabled. We need to disable it to cause a reset.
2914 			 *
2915 			 * If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready.
2916 			 *  Wait for the ready bit to be 1 before disabling the controller.
2917 			 */
2918 			if (csts.bits.rdy == 0) {
2919 				SPDK_DEBUGLOG(nvme, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n");
2920 				nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1, ready_timeout_in_ms);
2921 				return 0;
2922 			}
2923 
2924 			/* CC.EN = 1 && CSTS.RDY == 1, so we can immediately disable the controller. */
2925 			SPDK_DEBUGLOG(nvme, "Setting CC.EN = 0\n");
2926 			cc.bits.en = 0;
2927 			if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
2928 				SPDK_ERRLOG("set_cc() failed\n");
2929 				return -EIO;
2930 			}
2931 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms);
2932 
2933 			/*
2934 			 * Wait 2.5 seconds before accessing PCI registers.
2935 			 * Not using sleep() to avoid blocking other controller's initialization.
2936 			 */
2937 			if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) {
2938 				SPDK_DEBUGLOG(nvme, "Applying quirk: delay 2.5 seconds before reading registers\n");
2939 				ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2500 * spdk_get_ticks_hz() / 1000);
2940 			}
2941 			return 0;
2942 		} else {
2943 			if (csts.bits.rdy == 1) {
2944 				SPDK_DEBUGLOG(nvme, "CC.EN = 0 && CSTS.RDY = 1 - waiting for shutdown to complete\n");
2945 			}
2946 
2947 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms);
2948 			return 0;
2949 		}
2950 		break;
2951 
2952 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
2953 		if (csts.bits.rdy == 1) {
2954 			SPDK_DEBUGLOG(nvme, "CC.EN = 1 && CSTS.RDY = 1 - disabling controller\n");
2955 			/* CC.EN = 1 && CSTS.RDY = 1, so we can set CC.EN = 0 now. */
2956 			SPDK_DEBUGLOG(nvme, "Setting CC.EN = 0\n");
2957 			cc.bits.en = 0;
2958 			if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
2959 				SPDK_ERRLOG("set_cc() failed\n");
2960 				return -EIO;
2961 			}
2962 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms);
2963 			return 0;
2964 		}
2965 		break;
2966 
2967 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
2968 		if (csts.bits.rdy == 0) {
2969 			SPDK_DEBUGLOG(nvme, "CC.EN = 0 && CSTS.RDY = 0\n");
2970 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms);
2971 			/*
2972 			 * Delay 100us before setting CC.EN = 1.  Some NVMe SSDs miss CC.EN getting
2973 			 *  set to 1 if it is too soon after CSTS.RDY is reported as 0.
2974 			 */
2975 			spdk_delay_us(100);
2976 			return 0;
2977 		}
2978 		break;
2979 
2980 	case NVME_CTRLR_STATE_ENABLE:
2981 		SPDK_DEBUGLOG(nvme, "Setting CC.EN = 1\n");
2982 		rc = nvme_ctrlr_enable(ctrlr);
2983 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1, ready_timeout_in_ms);
2984 		return rc;
2985 
2986 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
2987 		if (csts.bits.rdy == 1) {
2988 			SPDK_DEBUGLOG(nvme, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n");
2989 			/*
2990 			 * The controller has been enabled.
2991 			 *  Perform the rest of initialization serially.
2992 			 */
2993 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_RESET_ADMIN_QUEUE,
2994 					     ctrlr->opts.admin_timeout_ms);
2995 			return 0;
2996 		}
2997 		break;
2998 
2999 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
3000 		nvme_transport_qpair_reset(ctrlr->adminq);
3001 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY,
3002 				     ctrlr->opts.admin_timeout_ms);
3003 		break;
3004 
3005 	case NVME_CTRLR_STATE_IDENTIFY:
3006 		rc = nvme_ctrlr_identify(ctrlr);
3007 		break;
3008 
3009 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
3010 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3011 		break;
3012 
3013 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
3014 		rc = nvme_ctrlr_identify_iocs_specific(ctrlr);
3015 		break;
3016 
3017 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
3018 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3019 		break;
3020 
3021 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
3022 		nvme_ctrlr_update_nvmf_ioccsz(ctrlr);
3023 		rc = nvme_ctrlr_set_num_queues(ctrlr);
3024 		break;
3025 
3026 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
3027 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3028 		break;
3029 
3030 	case NVME_CTRLR_STATE_CONSTRUCT_NS:
3031 		rc = nvme_ctrlr_construct_namespaces(ctrlr);
3032 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS,
3033 				     ctrlr->opts.admin_timeout_ms);
3034 		break;
3035 
3036 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
3037 		_nvme_ctrlr_identify_active_ns(ctrlr);
3038 		break;
3039 
3040 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
3041 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3042 		break;
3043 
3044 	case NVME_CTRLR_STATE_IDENTIFY_NS:
3045 		rc = nvme_ctrlr_identify_namespaces(ctrlr);
3046 		break;
3047 
3048 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
3049 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3050 		break;
3051 
3052 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
3053 		rc = nvme_ctrlr_identify_id_desc_namespaces(ctrlr);
3054 		break;
3055 
3056 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
3057 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3058 		break;
3059 
3060 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
3061 		rc = nvme_ctrlr_identify_namespaces_iocs_specific(ctrlr);
3062 		break;
3063 
3064 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
3065 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3066 		break;
3067 
3068 	case NVME_CTRLR_STATE_CONFIGURE_AER:
3069 		rc = nvme_ctrlr_configure_aer(ctrlr);
3070 		break;
3071 
3072 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
3073 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3074 		break;
3075 
3076 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
3077 		rc = nvme_ctrlr_set_supported_log_pages(ctrlr);
3078 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
3079 				     ctrlr->opts.admin_timeout_ms);
3080 		break;
3081 
3082 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
3083 		nvme_ctrlr_set_supported_features(ctrlr);
3084 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
3085 				     ctrlr->opts.admin_timeout_ms);
3086 		break;
3087 
3088 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
3089 		rc = nvme_ctrlr_set_doorbell_buffer_config(ctrlr);
3090 		break;
3091 
3092 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
3093 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3094 		break;
3095 
3096 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
3097 		rc = nvme_ctrlr_set_keep_alive_timeout(ctrlr);
3098 		break;
3099 
3100 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
3101 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3102 		break;
3103 
3104 	case NVME_CTRLR_STATE_SET_HOST_ID:
3105 		rc = nvme_ctrlr_set_host_id(ctrlr);
3106 		break;
3107 
3108 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
3109 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3110 		break;
3111 
3112 	case NVME_CTRLR_STATE_READY:
3113 		SPDK_DEBUGLOG(nvme, "Ctrlr already in ready state\n");
3114 		return 0;
3115 
3116 	case NVME_CTRLR_STATE_ERROR:
3117 		SPDK_ERRLOG("Ctrlr %s is in error state\n", ctrlr->trid.traddr);
3118 		return -1;
3119 
3120 	default:
3121 		assert(0);
3122 		return -1;
3123 	}
3124 
3125 init_timeout:
3126 	if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE &&
3127 	    spdk_get_ticks() > ctrlr->state_timeout_tsc) {
3128 		SPDK_ERRLOG("Initialization timed out in state %d\n", ctrlr->state);
3129 		return -1;
3130 	}
3131 
3132 	return rc;
3133 }
3134 
3135 int
3136 nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx)
3137 {
3138 	pthread_mutexattr_t attr;
3139 	int rc = 0;
3140 
3141 	if (pthread_mutexattr_init(&attr)) {
3142 		return -1;
3143 	}
3144 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) ||
3145 #ifndef __FreeBSD__
3146 	    pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
3147 	    pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
3148 #endif
3149 	    pthread_mutex_init(mtx, &attr)) {
3150 		rc = -1;
3151 	}
3152 	pthread_mutexattr_destroy(&attr);
3153 	return rc;
3154 }
3155 
3156 int
3157 nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
3158 {
3159 	int rc;
3160 
3161 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
3162 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT_DELAY, NVME_TIMEOUT_INFINITE);
3163 	} else {
3164 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
3165 	}
3166 
3167 	if (ctrlr->opts.admin_queue_size > SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES) {
3168 		SPDK_ERRLOG("admin_queue_size %u exceeds max defined by NVMe spec, use max value\n",
3169 			    ctrlr->opts.admin_queue_size);
3170 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES;
3171 	}
3172 
3173 	if (ctrlr->opts.admin_queue_size < SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES) {
3174 		SPDK_ERRLOG("admin_queue_size %u is less than minimum defined by NVMe spec, use min value\n",
3175 			    ctrlr->opts.admin_queue_size);
3176 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES;
3177 	}
3178 
3179 	ctrlr->flags = 0;
3180 	ctrlr->free_io_qids = NULL;
3181 	ctrlr->is_resetting = false;
3182 	ctrlr->is_failed = false;
3183 	ctrlr->is_destructed = false;
3184 
3185 	TAILQ_INIT(&ctrlr->active_io_qpairs);
3186 	STAILQ_INIT(&ctrlr->queued_aborts);
3187 	ctrlr->outstanding_aborts = 0;
3188 
3189 	ctrlr->ana_log_page = NULL;
3190 	ctrlr->ana_log_page_size = 0;
3191 
3192 	rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock);
3193 	if (rc != 0) {
3194 		return rc;
3195 	}
3196 
3197 	TAILQ_INIT(&ctrlr->active_procs);
3198 
3199 	return rc;
3200 }
3201 
3202 /* This function should be called once at ctrlr initialization to set up constant properties. */
3203 void
3204 nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr, const union spdk_nvme_cap_register *cap,
3205 		    const union spdk_nvme_vs_register *vs)
3206 {
3207 	ctrlr->cap = *cap;
3208 	ctrlr->vs = *vs;
3209 
3210 	if (ctrlr->cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) {
3211 		ctrlr->flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED;
3212 	}
3213 
3214 	ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin);
3215 
3216 	/* For now, always select page_size == min_page_size. */
3217 	ctrlr->page_size = ctrlr->min_page_size;
3218 
3219 	ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES);
3220 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, MAX_IO_QUEUE_ENTRIES);
3221 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u);
3222 
3223 	ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size);
3224 }
3225 
3226 void
3227 nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr)
3228 {
3229 	pthread_mutex_destroy(&ctrlr->ctrlr_lock);
3230 }
3231 
3232 void
3233 nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
3234 {
3235 	struct spdk_nvme_qpair *qpair, *tmp;
3236 
3237 	SPDK_DEBUGLOG(nvme, "Prepare to destruct SSD: %s\n", ctrlr->trid.traddr);
3238 
3239 	ctrlr->is_destructed = true;
3240 
3241 	spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3242 
3243 	nvme_ctrlr_abort_queued_aborts(ctrlr);
3244 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
3245 
3246 	TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) {
3247 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3248 	}
3249 
3250 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
3251 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
3252 
3253 	if (ctrlr->opts.no_shn_notification) {
3254 		SPDK_INFOLOG(nvme, "Disable SSD: %s without shutdown notification\n",
3255 			     ctrlr->trid.traddr);
3256 		nvme_ctrlr_disable(ctrlr);
3257 	} else {
3258 		nvme_ctrlr_shutdown(ctrlr);
3259 	}
3260 
3261 	nvme_ctrlr_destruct_namespaces(ctrlr);
3262 
3263 	spdk_bit_array_free(&ctrlr->free_io_qids);
3264 
3265 	spdk_free(ctrlr->ana_log_page);
3266 	ctrlr->ana_log_page = NULL;
3267 	ctrlr->ana_log_page_size = 0;
3268 
3269 	nvme_transport_ctrlr_destruct(ctrlr);
3270 }
3271 
3272 int
3273 nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
3274 				struct nvme_request *req)
3275 {
3276 	return nvme_qpair_submit_request(ctrlr->adminq, req);
3277 }
3278 
3279 static void
3280 nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl)
3281 {
3282 	/* Do nothing */
3283 }
3284 
3285 /*
3286  * Check if we need to send a Keep Alive command.
3287  * Caller must hold ctrlr->ctrlr_lock.
3288  */
3289 static int
3290 nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr)
3291 {
3292 	uint64_t now;
3293 	struct nvme_request *req;
3294 	struct spdk_nvme_cmd *cmd;
3295 	int rc = 0;
3296 
3297 	now = spdk_get_ticks();
3298 	if (now < ctrlr->next_keep_alive_tick) {
3299 		return rc;
3300 	}
3301 
3302 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL);
3303 	if (req == NULL) {
3304 		return rc;
3305 	}
3306 
3307 	cmd = &req->cmd;
3308 	cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE;
3309 
3310 	rc = nvme_ctrlr_submit_admin_request(ctrlr, req);
3311 	if (rc != 0) {
3312 		SPDK_ERRLOG("Submitting Keep Alive failed\n");
3313 		rc = -ENXIO;
3314 	}
3315 
3316 	ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks;
3317 	return rc;
3318 }
3319 
3320 int32_t
3321 spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr)
3322 {
3323 	int32_t num_completions;
3324 	int32_t rc;
3325 
3326 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3327 
3328 	if (ctrlr->keep_alive_interval_ticks) {
3329 		rc = nvme_ctrlr_keep_alive(ctrlr);
3330 		if (rc) {
3331 			nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3332 			return rc;
3333 		}
3334 	}
3335 
3336 	rc = nvme_io_msg_process(ctrlr);
3337 	if (rc < 0) {
3338 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3339 		return rc;
3340 	}
3341 	num_completions = rc;
3342 
3343 	rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3344 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3345 
3346 	if (rc < 0) {
3347 		num_completions = rc;
3348 	} else {
3349 		num_completions += rc;
3350 	}
3351 
3352 	return num_completions;
3353 }
3354 
3355 const struct spdk_nvme_ctrlr_data *
3356 spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr)
3357 {
3358 	return &ctrlr->cdata;
3359 }
3360 
3361 union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
3362 {
3363 	union spdk_nvme_csts_register csts;
3364 
3365 	if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
3366 		csts.raw = 0xFFFFFFFFu;
3367 	}
3368 	return csts;
3369 }
3370 
3371 union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr)
3372 {
3373 	return ctrlr->cap;
3374 }
3375 
3376 union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr)
3377 {
3378 	return ctrlr->vs;
3379 }
3380 
3381 union spdk_nvme_cmbsz_register spdk_nvme_ctrlr_get_regs_cmbsz(struct spdk_nvme_ctrlr *ctrlr)
3382 {
3383 	union spdk_nvme_cmbsz_register cmbsz;
3384 
3385 	if (nvme_ctrlr_get_cmbsz(ctrlr, &cmbsz)) {
3386 		cmbsz.raw = 0;
3387 	}
3388 
3389 	return cmbsz;
3390 }
3391 
3392 uint32_t
3393 spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr)
3394 {
3395 	return ctrlr->num_ns;
3396 }
3397 
3398 static int32_t
3399 nvme_ctrlr_active_ns_idx(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
3400 {
3401 	int32_t result = -1;
3402 
3403 	if (ctrlr->active_ns_list == NULL || nsid == 0 || nsid > ctrlr->num_ns) {
3404 		return result;
3405 	}
3406 
3407 	int32_t lower = 0;
3408 	int32_t upper = ctrlr->num_ns - 1;
3409 	int32_t mid;
3410 
3411 	while (lower <= upper) {
3412 		mid = lower + (upper - lower) / 2;
3413 		if (ctrlr->active_ns_list[mid] == nsid) {
3414 			result = mid;
3415 			break;
3416 		} else {
3417 			if (ctrlr->active_ns_list[mid] != 0 && ctrlr->active_ns_list[mid] < nsid) {
3418 				lower = mid + 1;
3419 			} else {
3420 				upper = mid - 1;
3421 			}
3422 
3423 		}
3424 	}
3425 
3426 	return result;
3427 }
3428 
3429 bool
3430 spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
3431 {
3432 	return nvme_ctrlr_active_ns_idx(ctrlr, nsid) != -1;
3433 }
3434 
3435 uint32_t
3436 spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr)
3437 {
3438 	return ctrlr->active_ns_list ? ctrlr->active_ns_list[0] : 0;
3439 }
3440 
3441 uint32_t
3442 spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
3443 {
3444 	int32_t nsid_idx = nvme_ctrlr_active_ns_idx(ctrlr, prev_nsid);
3445 	if (ctrlr->active_ns_list && nsid_idx >= 0 && (uint32_t)nsid_idx < ctrlr->num_ns - 1) {
3446 		return ctrlr->active_ns_list[nsid_idx + 1];
3447 	}
3448 	return 0;
3449 }
3450 
3451 struct spdk_nvme_ns *
3452 spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
3453 {
3454 	if (nsid < 1 || nsid > ctrlr->num_ns) {
3455 		return NULL;
3456 	}
3457 
3458 	return &ctrlr->ns[nsid - 1];
3459 }
3460 
3461 struct spdk_pci_device *
3462 spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr)
3463 {
3464 	if (ctrlr == NULL) {
3465 		return NULL;
3466 	}
3467 
3468 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
3469 		return NULL;
3470 	}
3471 
3472 	return nvme_ctrlr_proc_get_devhandle(ctrlr);
3473 }
3474 
3475 uint32_t
3476 spdk_nvme_ctrlr_get_max_xfer_size(const struct spdk_nvme_ctrlr *ctrlr)
3477 {
3478 	return ctrlr->max_xfer_size;
3479 }
3480 
3481 void
3482 spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr,
3483 				      spdk_nvme_aer_cb aer_cb_fn,
3484 				      void *aer_cb_arg)
3485 {
3486 	struct spdk_nvme_ctrlr_process *active_proc;
3487 
3488 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3489 
3490 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3491 	if (active_proc) {
3492 		active_proc->aer_cb_fn = aer_cb_fn;
3493 		active_proc->aer_cb_arg = aer_cb_arg;
3494 	}
3495 
3496 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3497 }
3498 
3499 void
3500 spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr,
3501 		uint64_t timeout_us, spdk_nvme_timeout_cb cb_fn, void *cb_arg)
3502 {
3503 	struct spdk_nvme_ctrlr_process	*active_proc;
3504 
3505 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3506 
3507 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3508 	if (active_proc) {
3509 		active_proc->timeout_ticks = timeout_us * spdk_get_ticks_hz() / 1000000ULL;
3510 		active_proc->timeout_cb_fn = cb_fn;
3511 		active_proc->timeout_cb_arg = cb_arg;
3512 	}
3513 
3514 	ctrlr->timeout_enabled = true;
3515 
3516 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3517 }
3518 
3519 bool
3520 spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page)
3521 {
3522 	/* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
3523 	SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
3524 	return ctrlr->log_page_supported[log_page];
3525 }
3526 
3527 bool
3528 spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code)
3529 {
3530 	/* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
3531 	SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
3532 	return ctrlr->feature_supported[feature_code];
3533 }
3534 
3535 int
3536 spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
3537 			  struct spdk_nvme_ctrlr_list *payload)
3538 {
3539 	struct nvme_completion_poll_status	*status;
3540 	int					res;
3541 	struct spdk_nvme_ns			*ns;
3542 
3543 	status = calloc(1, sizeof(*status));
3544 	if (!status) {
3545 		SPDK_ERRLOG("Failed to allocate status tracker\n");
3546 		return -ENOMEM;
3547 	}
3548 
3549 	res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload,
3550 				       nvme_completion_poll_cb, status);
3551 	if (res) {
3552 		free(status);
3553 		return res;
3554 	}
3555 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
3556 		SPDK_ERRLOG("spdk_nvme_ctrlr_attach_ns failed!\n");
3557 		if (!status->timed_out) {
3558 			free(status);
3559 		}
3560 		return -ENXIO;
3561 	}
3562 	free(status);
3563 
3564 	res = nvme_ctrlr_identify_active_ns(ctrlr);
3565 	if (res) {
3566 		return res;
3567 	}
3568 
3569 	ns = &ctrlr->ns[nsid - 1];
3570 	return nvme_ns_construct(ns, nsid, ctrlr);
3571 }
3572 
3573 int
3574 spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
3575 			  struct spdk_nvme_ctrlr_list *payload)
3576 {
3577 	struct nvme_completion_poll_status	*status;
3578 	int					res;
3579 	struct spdk_nvme_ns			*ns;
3580 
3581 	status = calloc(1, sizeof(*status));
3582 	if (!status) {
3583 		SPDK_ERRLOG("Failed to allocate status tracker\n");
3584 		return -ENOMEM;
3585 	}
3586 
3587 	res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload,
3588 				       nvme_completion_poll_cb, status);
3589 	if (res) {
3590 		free(status);
3591 		return res;
3592 	}
3593 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
3594 		SPDK_ERRLOG("spdk_nvme_ctrlr_detach_ns failed!\n");
3595 		if (!status->timed_out) {
3596 			free(status);
3597 		}
3598 		return -ENXIO;
3599 	}
3600 	free(status);
3601 
3602 	res = nvme_ctrlr_identify_active_ns(ctrlr);
3603 	if (res) {
3604 		return res;
3605 	}
3606 
3607 	ns = &ctrlr->ns[nsid - 1];
3608 	/* Inactive NS */
3609 	nvme_ns_destruct(ns);
3610 
3611 	return 0;
3612 }
3613 
3614 uint32_t
3615 spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload)
3616 {
3617 	struct nvme_completion_poll_status	*status;
3618 	int					res;
3619 	uint32_t				nsid;
3620 	struct spdk_nvme_ns			*ns;
3621 
3622 	status = calloc(1, sizeof(*status));
3623 	if (!status) {
3624 		SPDK_ERRLOG("Failed to allocate status tracker\n");
3625 		return 0;
3626 	}
3627 
3628 	res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, status);
3629 	if (res) {
3630 		free(status);
3631 		return 0;
3632 	}
3633 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
3634 		SPDK_ERRLOG("spdk_nvme_ctrlr_create_ns failed!\n");
3635 		if (!status->timed_out) {
3636 			free(status);
3637 		}
3638 		return 0;
3639 	}
3640 
3641 	nsid = status->cpl.cdw0;
3642 	ns = &ctrlr->ns[nsid - 1];
3643 	free(status);
3644 	/* Inactive NS */
3645 	res = nvme_ns_construct(ns, nsid, ctrlr);
3646 	if (res) {
3647 		return 0;
3648 	}
3649 
3650 	/* Return the namespace ID that was created */
3651 	return nsid;
3652 }
3653 
3654 int
3655 spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
3656 {
3657 	struct nvme_completion_poll_status	*status;
3658 	int					res;
3659 	struct spdk_nvme_ns			*ns;
3660 
3661 	status = calloc(1, sizeof(*status));
3662 	if (!status) {
3663 		SPDK_ERRLOG("Failed to allocate status tracker\n");
3664 		return -ENOMEM;
3665 	}
3666 
3667 	res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, status);
3668 	if (res) {
3669 		free(status);
3670 		return res;
3671 	}
3672 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
3673 		SPDK_ERRLOG("spdk_nvme_ctrlr_delete_ns failed!\n");
3674 		if (!status->timed_out) {
3675 			free(status);
3676 		}
3677 		return -ENXIO;
3678 	}
3679 	free(status);
3680 
3681 	res = nvme_ctrlr_identify_active_ns(ctrlr);
3682 	if (res) {
3683 		return res;
3684 	}
3685 
3686 	ns = &ctrlr->ns[nsid - 1];
3687 	nvme_ns_destruct(ns);
3688 
3689 	return 0;
3690 }
3691 
3692 int
3693 spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
3694 		       struct spdk_nvme_format *format)
3695 {
3696 	struct nvme_completion_poll_status	*status;
3697 	int					res;
3698 
3699 	status = calloc(1, sizeof(*status));
3700 	if (!status) {
3701 		SPDK_ERRLOG("Failed to allocate status tracker\n");
3702 		return -ENOMEM;
3703 	}
3704 
3705 	res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb,
3706 				    status);
3707 	if (res) {
3708 		free(status);
3709 		return res;
3710 	}
3711 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
3712 		SPDK_ERRLOG("spdk_nvme_ctrlr_format failed!\n");
3713 		if (!status->timed_out) {
3714 			free(status);
3715 		}
3716 		return -ENXIO;
3717 	}
3718 	free(status);
3719 
3720 	return spdk_nvme_ctrlr_reset(ctrlr);
3721 }
3722 
3723 int
3724 spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size,
3725 				int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status)
3726 {
3727 	struct spdk_nvme_fw_commit		fw_commit;
3728 	struct nvme_completion_poll_status	*status;
3729 	int					res;
3730 	unsigned int				size_remaining;
3731 	unsigned int				offset;
3732 	unsigned int				transfer;
3733 	void					*p;
3734 
3735 	if (!completion_status) {
3736 		return -EINVAL;
3737 	}
3738 	memset(completion_status, 0, sizeof(struct spdk_nvme_status));
3739 	if (size % 4) {
3740 		SPDK_ERRLOG("spdk_nvme_ctrlr_update_firmware invalid size!\n");
3741 		return -1;
3742 	}
3743 
3744 	/* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG
3745 	 * and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG
3746 	 */
3747 	if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) &&
3748 	    (commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) {
3749 		SPDK_ERRLOG("spdk_nvme_ctrlr_update_firmware invalid command!\n");
3750 		return -1;
3751 	}
3752 
3753 	status = calloc(1, sizeof(*status));
3754 	if (!status) {
3755 		SPDK_ERRLOG("Failed to allocate status tracker\n");
3756 		return -ENOMEM;
3757 	}
3758 
3759 	/* Firmware download */
3760 	size_remaining = size;
3761 	offset = 0;
3762 	p = payload;
3763 
3764 	while (size_remaining > 0) {
3765 		transfer = spdk_min(size_remaining, ctrlr->min_page_size);
3766 
3767 		memset(status, 0, sizeof(*status));
3768 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p,
3769 						       nvme_completion_poll_cb,
3770 						       status);
3771 		if (res) {
3772 			free(status);
3773 			return res;
3774 		}
3775 
3776 		if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
3777 			SPDK_ERRLOG("spdk_nvme_ctrlr_fw_image_download failed!\n");
3778 			if (!status->timed_out) {
3779 				free(status);
3780 			}
3781 			return -ENXIO;
3782 		}
3783 		p += transfer;
3784 		offset += transfer;
3785 		size_remaining -= transfer;
3786 	}
3787 
3788 	/* Firmware commit */
3789 	memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
3790 	fw_commit.fs = slot;
3791 	fw_commit.ca = commit_action;
3792 
3793 	memset(status, 0, sizeof(*status));
3794 	res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb,
3795 				       status);
3796 	if (res) {
3797 		free(status);
3798 		return res;
3799 	}
3800 
3801 	res = nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock);
3802 
3803 	memcpy(completion_status, &status->cpl.status, sizeof(struct spdk_nvme_status));
3804 
3805 	if (!status->timed_out) {
3806 		free(status);
3807 	}
3808 
3809 	if (res) {
3810 		if (completion_status->sct != SPDK_NVME_SCT_COMMAND_SPECIFIC ||
3811 		    completion_status->sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) {
3812 			if (completion_status->sct == SPDK_NVME_SCT_COMMAND_SPECIFIC  &&
3813 			    completion_status->sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) {
3814 				SPDK_NOTICELOG("firmware activation requires conventional reset to be performed. !\n");
3815 			} else {
3816 				SPDK_ERRLOG("nvme_ctrlr_cmd_fw_commit failed!\n");
3817 			}
3818 			return -ENXIO;
3819 		}
3820 	}
3821 
3822 	return spdk_nvme_ctrlr_reset(ctrlr);
3823 }
3824 
3825 int
3826 spdk_nvme_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
3827 {
3828 	int rc, size;
3829 	union spdk_nvme_cmbsz_register cmbsz;
3830 
3831 	cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr);
3832 
3833 	if (cmbsz.bits.rds == 0 || cmbsz.bits.wds == 0) {
3834 		return -ENOTSUP;
3835 	}
3836 
3837 	size = cmbsz.bits.sz * (0x1000 << (cmbsz.bits.szu * 4));
3838 
3839 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3840 	rc = nvme_transport_ctrlr_reserve_cmb(ctrlr);
3841 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3842 
3843 	if (rc < 0) {
3844 		return rc;
3845 	}
3846 
3847 	return size;
3848 }
3849 
3850 void *
3851 spdk_nvme_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
3852 {
3853 	void *buf;
3854 
3855 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3856 	buf = nvme_transport_ctrlr_map_cmb(ctrlr, size);
3857 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3858 
3859 	return buf;
3860 }
3861 
3862 void
3863 spdk_nvme_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr)
3864 {
3865 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3866 	nvme_transport_ctrlr_unmap_cmb(ctrlr);
3867 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3868 }
3869 
3870 bool
3871 spdk_nvme_ctrlr_is_discovery(struct spdk_nvme_ctrlr *ctrlr)
3872 {
3873 	assert(ctrlr);
3874 
3875 	return !strncmp(ctrlr->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN,
3876 			strlen(SPDK_NVMF_DISCOVERY_NQN));
3877 }
3878 
3879 int
3880 spdk_nvme_ctrlr_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
3881 				 uint16_t spsp, uint8_t nssf, void *payload, size_t size)
3882 {
3883 	struct nvme_completion_poll_status	*status;
3884 	int					res;
3885 
3886 	status = calloc(1, sizeof(*status));
3887 	if (!status) {
3888 		SPDK_ERRLOG("Failed to allocate status tracker\n");
3889 		return -ENOMEM;
3890 	}
3891 
3892 	res = spdk_nvme_ctrlr_cmd_security_receive(ctrlr, secp, spsp, nssf, payload, size,
3893 			nvme_completion_poll_cb, status);
3894 	if (res) {
3895 		free(status);
3896 		return res;
3897 	}
3898 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
3899 		SPDK_ERRLOG("spdk_nvme_ctrlr_cmd_security_receive failed!\n");
3900 		if (!status->timed_out) {
3901 			free(status);
3902 		}
3903 		return -ENXIO;
3904 	}
3905 	free(status);
3906 
3907 	return 0;
3908 }
3909 
3910 int
3911 spdk_nvme_ctrlr_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
3912 			      uint16_t spsp, uint8_t nssf, void *payload, size_t size)
3913 {
3914 	struct nvme_completion_poll_status	*status;
3915 	int					res;
3916 
3917 	status = calloc(1, sizeof(*status));
3918 	if (!status) {
3919 		SPDK_ERRLOG("Failed to allocate status tracker\n");
3920 		return -ENOMEM;
3921 	}
3922 
3923 	res = spdk_nvme_ctrlr_cmd_security_send(ctrlr, secp, spsp, nssf, payload, size,
3924 						nvme_completion_poll_cb,
3925 						status);
3926 	if (res) {
3927 		free(status);
3928 		return res;
3929 	}
3930 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
3931 		SPDK_ERRLOG("spdk_nvme_ctrlr_cmd_security_send failed!\n");
3932 		if (!status->timed_out) {
3933 			free(status);
3934 		}
3935 		return -ENXIO;
3936 	}
3937 
3938 	free(status);
3939 
3940 	return 0;
3941 }
3942 
3943 uint64_t
3944 spdk_nvme_ctrlr_get_flags(struct spdk_nvme_ctrlr *ctrlr)
3945 {
3946 	return ctrlr->flags;
3947 }
3948 
3949 const struct spdk_nvme_transport_id *
3950 spdk_nvme_ctrlr_get_transport_id(struct spdk_nvme_ctrlr *ctrlr)
3951 {
3952 	return &ctrlr->trid;
3953 }
3954 
3955 int32_t
3956 spdk_nvme_ctrlr_alloc_qid(struct spdk_nvme_ctrlr *ctrlr)
3957 {
3958 	uint32_t qid;
3959 
3960 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3961 	qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1);
3962 	if (qid > ctrlr->opts.num_io_queues) {
3963 		SPDK_ERRLOG("No free I/O queue IDs\n");
3964 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3965 		return -1;
3966 	}
3967 
3968 	spdk_bit_array_clear(ctrlr->free_io_qids, qid);
3969 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3970 	return qid;
3971 }
3972 
3973 void
3974 spdk_nvme_ctrlr_free_qid(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid)
3975 {
3976 	assert(qid <= ctrlr->opts.num_io_queues);
3977 
3978 	nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
3979 	spdk_bit_array_set(ctrlr->free_io_qids, qid);
3980 	nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
3981 }
3982 
3983 /* FIXME need to specify max number of iovs */
3984 int
3985 spdk_nvme_map_prps(void *prv, struct spdk_nvme_cmd *cmd, struct iovec *iovs,
3986 		   uint32_t len, size_t mps,
3987 		   void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len))
3988 {
3989 	uint64_t prp1, prp2;
3990 	void *vva;
3991 	uint32_t i;
3992 	uint32_t residue_len, nents;
3993 	uint64_t *prp_list;
3994 	int iovcnt;
3995 
3996 	prp1 = cmd->dptr.prp.prp1;
3997 	prp2 = cmd->dptr.prp.prp2;
3998 
3999 	/* PRP1 may started with unaligned page address */
4000 	residue_len = mps - (prp1 % mps);
4001 	residue_len = spdk_min(len, residue_len);
4002 
4003 	vva = gpa_to_vva(prv, prp1, residue_len);
4004 	if (spdk_unlikely(vva == NULL)) {
4005 		SPDK_ERRLOG("GPA to VVA failed\n");
4006 		return -1;
4007 	}
4008 	iovs[0].iov_base = vva;
4009 	iovs[0].iov_len = residue_len;
4010 	len -= residue_len;
4011 
4012 	if (len) {
4013 		if (spdk_unlikely(prp2 == 0)) {
4014 			SPDK_ERRLOG("no PRP2, %d remaining\n", len);
4015 			return -1;
4016 		}
4017 
4018 		if (len <= mps) {
4019 			/* 2 PRP used */
4020 			iovcnt = 2;
4021 			vva = gpa_to_vva(prv, prp2, len);
4022 			if (spdk_unlikely(vva == NULL)) {
4023 				SPDK_ERRLOG("no VVA for %#lx, len%#x\n",
4024 					    prp2, len);
4025 				return -1;
4026 			}
4027 			iovs[1].iov_base = vva;
4028 			iovs[1].iov_len = len;
4029 		} else {
4030 			/* PRP list used */
4031 			nents = (len + mps - 1) / mps;
4032 			vva = gpa_to_vva(prv, prp2, nents * sizeof(*prp_list));
4033 			if (spdk_unlikely(vva == NULL)) {
4034 				SPDK_ERRLOG("no VVA for %#lx, nents=%#x\n",
4035 					    prp2, nents);
4036 				return -1;
4037 			}
4038 			prp_list = vva;
4039 			i = 0;
4040 			while (len != 0) {
4041 				residue_len = spdk_min(len, mps);
4042 				vva = gpa_to_vva(prv, prp_list[i], residue_len);
4043 				if (spdk_unlikely(vva == NULL)) {
4044 					SPDK_ERRLOG("no VVA for %#lx, residue_len=%#x\n",
4045 						    prp_list[i], residue_len);
4046 					return -1;
4047 				}
4048 				iovs[i + 1].iov_base = vva;
4049 				iovs[i + 1].iov_len = residue_len;
4050 				len -= residue_len;
4051 				i++;
4052 			}
4053 			iovcnt = i + 1;
4054 		}
4055 	} else {
4056 		/* 1 PRP used */
4057 		iovcnt = 1;
4058 	}
4059 
4060 	return iovcnt;
4061 }
4062