xref: /spdk/lib/nvme/nvme_ctrlr.c (revision 16b33d51e806dbc8365202ba80673b7afb64666a)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2015 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "nvme_internal.h"
10 #include "nvme_io_msg.h"
11 
12 #include "spdk/env.h"
13 #include "spdk/string.h"
14 #include "spdk/endian.h"
15 
16 struct nvme_active_ns_ctx;
17 
18 static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
19 		struct nvme_async_event_request *aer);
20 static void nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx);
21 static int nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns);
22 static int nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns);
23 static int nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns);
24 static void nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr);
25 static void nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
26 				 uint64_t timeout_in_ms);
27 
28 static int
29 nvme_ns_cmp(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
30 {
31 	if (ns1->id < ns2->id) {
32 		return -1;
33 	} else if (ns1->id > ns2->id) {
34 		return 1;
35 	} else {
36 		return 0;
37 	}
38 }
39 
40 RB_GENERATE_STATIC(nvme_ns_tree, spdk_nvme_ns, node, nvme_ns_cmp);
41 
42 #define CTRLR_STRING(ctrlr) \
43 	((ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP || ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA) ? \
44 	ctrlr->trid.subnqn : ctrlr->trid.traddr)
45 
46 #define NVME_CTRLR_ERRLOG(ctrlr, format, ...) \
47 	SPDK_ERRLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
48 
49 #define NVME_CTRLR_WARNLOG(ctrlr, format, ...) \
50 	SPDK_WARNLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
51 
52 #define NVME_CTRLR_NOTICELOG(ctrlr, format, ...) \
53 	SPDK_NOTICELOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
54 
55 #define NVME_CTRLR_INFOLOG(ctrlr, format, ...) \
56 	SPDK_INFOLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
57 
58 #ifdef DEBUG
59 #define NVME_CTRLR_DEBUGLOG(ctrlr, format, ...) \
60 	SPDK_DEBUGLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
61 #else
62 #define NVME_CTRLR_DEBUGLOG(ctrlr, ...) do { } while (0)
63 #endif
64 
65 #define nvme_ctrlr_get_reg_async(ctrlr, reg, sz, cb_fn, cb_arg) \
66 	nvme_transport_ctrlr_get_reg_ ## sz ## _async(ctrlr, \
67 		offsetof(struct spdk_nvme_registers, reg), cb_fn, cb_arg)
68 
69 #define nvme_ctrlr_set_reg_async(ctrlr, reg, sz, val, cb_fn, cb_arg) \
70 	nvme_transport_ctrlr_set_reg_ ## sz ## _async(ctrlr, \
71 		offsetof(struct spdk_nvme_registers, reg), val, cb_fn, cb_arg)
72 
73 #define nvme_ctrlr_get_cc_async(ctrlr, cb_fn, cb_arg) \
74 	nvme_ctrlr_get_reg_async(ctrlr, cc, 4, cb_fn, cb_arg)
75 
76 #define nvme_ctrlr_get_csts_async(ctrlr, cb_fn, cb_arg) \
77 	nvme_ctrlr_get_reg_async(ctrlr, csts, 4, cb_fn, cb_arg)
78 
79 #define nvme_ctrlr_get_cap_async(ctrlr, cb_fn, cb_arg) \
80 	nvme_ctrlr_get_reg_async(ctrlr, cap, 8, cb_fn, cb_arg)
81 
82 #define nvme_ctrlr_get_vs_async(ctrlr, cb_fn, cb_arg) \
83 	nvme_ctrlr_get_reg_async(ctrlr, vs, 4, cb_fn, cb_arg)
84 
85 #define nvme_ctrlr_set_cc_async(ctrlr, value, cb_fn, cb_arg) \
86 	nvme_ctrlr_set_reg_async(ctrlr, cc, 4, value, cb_fn, cb_arg)
87 
88 static int
89 nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc)
90 {
91 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
92 					      &cc->raw);
93 }
94 
95 static int
96 nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts)
97 {
98 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw),
99 					      &csts->raw);
100 }
101 
102 int
103 nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
104 {
105 	return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw),
106 					      &cap->raw);
107 }
108 
109 int
110 nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
111 {
112 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw),
113 					      &vs->raw);
114 }
115 
116 int
117 nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz)
118 {
119 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
120 					      &cmbsz->raw);
121 }
122 
123 int
124 nvme_ctrlr_get_pmrcap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_pmrcap_register *pmrcap)
125 {
126 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, pmrcap.raw),
127 					      &pmrcap->raw);
128 }
129 
130 int
131 nvme_ctrlr_get_bpinfo(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bpinfo_register *bpinfo)
132 {
133 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bpinfo.raw),
134 					      &bpinfo->raw);
135 }
136 
137 int
138 nvme_ctrlr_set_bprsel(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bprsel_register *bprsel)
139 {
140 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bprsel.raw),
141 					      bprsel->raw);
142 }
143 
144 int
145 nvme_ctrlr_set_bpmbl(struct spdk_nvme_ctrlr *ctrlr, uint64_t bpmbl_value)
146 {
147 	return nvme_transport_ctrlr_set_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, bpmbl),
148 					      bpmbl_value);
149 }
150 
151 static int
152 nvme_ctrlr_set_nssr(struct spdk_nvme_ctrlr *ctrlr, uint32_t nssr_value)
153 {
154 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, nssr),
155 					      nssr_value);
156 }
157 
158 bool
159 nvme_ctrlr_multi_iocs_enabled(struct spdk_nvme_ctrlr *ctrlr)
160 {
161 	return ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS &&
162 	       ctrlr->opts.command_set == SPDK_NVME_CC_CSS_IOCS;
163 }
164 
165 /* When the field in spdk_nvme_ctrlr_opts are changed and you change this function, please
166  * also update the nvme_ctrl_opts_init function in nvme_ctrlr.c
167  */
168 void
169 spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
170 {
171 	assert(opts);
172 
173 	opts->opts_size = opts_size;
174 
175 #define FIELD_OK(field) \
176 	offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size
177 
178 #define SET_FIELD(field, value) \
179 	if (offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size) { \
180 		opts->field = value; \
181 	} \
182 
183 	SET_FIELD(num_io_queues, DEFAULT_MAX_IO_QUEUES);
184 	SET_FIELD(use_cmb_sqs, false);
185 	SET_FIELD(no_shn_notification, false);
186 	SET_FIELD(arb_mechanism, SPDK_NVME_CC_AMS_RR);
187 	SET_FIELD(arbitration_burst, 0);
188 	SET_FIELD(low_priority_weight, 0);
189 	SET_FIELD(medium_priority_weight, 0);
190 	SET_FIELD(high_priority_weight, 0);
191 	SET_FIELD(keep_alive_timeout_ms, MIN_KEEP_ALIVE_TIMEOUT_IN_MS);
192 	SET_FIELD(transport_retry_count, SPDK_NVME_DEFAULT_RETRY_COUNT);
193 	SET_FIELD(io_queue_size, DEFAULT_IO_QUEUE_SIZE);
194 
195 	if (nvme_driver_init() == 0) {
196 		if (FIELD_OK(hostnqn)) {
197 			nvme_get_default_hostnqn(opts->hostnqn, sizeof(opts->hostnqn));
198 		}
199 
200 		if (FIELD_OK(extended_host_id)) {
201 			memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id,
202 			       sizeof(opts->extended_host_id));
203 		}
204 
205 	}
206 
207 	SET_FIELD(io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS);
208 
209 	if (FIELD_OK(src_addr)) {
210 		memset(opts->src_addr, 0, sizeof(opts->src_addr));
211 	}
212 
213 	if (FIELD_OK(src_svcid)) {
214 		memset(opts->src_svcid, 0, sizeof(opts->src_svcid));
215 	}
216 
217 	if (FIELD_OK(host_id)) {
218 		memset(opts->host_id, 0, sizeof(opts->host_id));
219 	}
220 
221 	SET_FIELD(command_set, CHAR_BIT);
222 	SET_FIELD(admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000);
223 	SET_FIELD(header_digest, false);
224 	SET_FIELD(data_digest, false);
225 	SET_FIELD(disable_error_logging, false);
226 	SET_FIELD(transport_ack_timeout, SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT);
227 	SET_FIELD(admin_queue_size, DEFAULT_ADMIN_QUEUE_SIZE);
228 	SET_FIELD(fabrics_connect_timeout_us, NVME_FABRIC_CONNECT_COMMAND_TIMEOUT);
229 	SET_FIELD(disable_read_ana_log_page, false);
230 	SET_FIELD(disable_read_changed_ns_list_log_page, false);
231 	SET_FIELD(tls_psk, NULL);
232 	SET_FIELD(dhchap_key, NULL);
233 	SET_FIELD(dhchap_ctrlr_key, NULL);
234 	SET_FIELD(dhchap_digests,
235 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) |
236 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) |
237 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512));
238 	SET_FIELD(dhchap_dhgroups,
239 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) |
240 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) |
241 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) |
242 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) |
243 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) |
244 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192));
245 
246 	if (FIELD_OK(psk)) {
247 		memset(opts->psk, 0, sizeof(opts->psk));
248 	}
249 
250 #undef FIELD_OK
251 #undef SET_FIELD
252 }
253 
254 const struct spdk_nvme_ctrlr_opts *
255 spdk_nvme_ctrlr_get_opts(struct spdk_nvme_ctrlr *ctrlr)
256 {
257 	return &ctrlr->opts;
258 }
259 
260 /**
261  * This function will be called when the process allocates the IO qpair.
262  * Note: the ctrlr_lock must be held when calling this function.
263  */
264 static void
265 nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair)
266 {
267 	struct spdk_nvme_ctrlr_process	*active_proc;
268 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
269 
270 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
271 	if (active_proc) {
272 		TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq);
273 		qpair->active_proc = active_proc;
274 	}
275 }
276 
277 /**
278  * This function will be called when the process frees the IO qpair.
279  * Note: the ctrlr_lock must be held when calling this function.
280  */
281 static void
282 nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair)
283 {
284 	struct spdk_nvme_ctrlr_process	*active_proc;
285 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
286 	struct spdk_nvme_qpair          *active_qpair, *tmp_qpair;
287 
288 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
289 	if (!active_proc) {
290 		return;
291 	}
292 
293 	TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs,
294 			   per_process_tailq, tmp_qpair) {
295 		if (active_qpair == qpair) {
296 			TAILQ_REMOVE(&active_proc->allocated_io_qpairs,
297 				     active_qpair, per_process_tailq);
298 
299 			break;
300 		}
301 	}
302 }
303 
304 void
305 spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr,
306 		struct spdk_nvme_io_qpair_opts *opts,
307 		size_t opts_size)
308 {
309 	assert(ctrlr);
310 
311 	assert(opts);
312 
313 	memset(opts, 0, opts_size);
314 
315 #define FIELD_OK(field) \
316 	offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size
317 
318 	if (FIELD_OK(qprio)) {
319 		opts->qprio = SPDK_NVME_QPRIO_URGENT;
320 	}
321 
322 	if (FIELD_OK(io_queue_size)) {
323 		opts->io_queue_size = ctrlr->opts.io_queue_size;
324 	}
325 
326 	if (FIELD_OK(io_queue_requests)) {
327 		opts->io_queue_requests = ctrlr->opts.io_queue_requests;
328 	}
329 
330 	if (FIELD_OK(delay_cmd_submit)) {
331 		opts->delay_cmd_submit = false;
332 	}
333 
334 	if (FIELD_OK(sq.vaddr)) {
335 		opts->sq.vaddr = NULL;
336 	}
337 
338 	if (FIELD_OK(sq.paddr)) {
339 		opts->sq.paddr = 0;
340 	}
341 
342 	if (FIELD_OK(sq.buffer_size)) {
343 		opts->sq.buffer_size = 0;
344 	}
345 
346 	if (FIELD_OK(cq.vaddr)) {
347 		opts->cq.vaddr = NULL;
348 	}
349 
350 	if (FIELD_OK(cq.paddr)) {
351 		opts->cq.paddr = 0;
352 	}
353 
354 	if (FIELD_OK(cq.buffer_size)) {
355 		opts->cq.buffer_size = 0;
356 	}
357 
358 	if (FIELD_OK(create_only)) {
359 		opts->create_only = false;
360 	}
361 
362 	if (FIELD_OK(async_mode)) {
363 		opts->async_mode = false;
364 	}
365 
366 #undef FIELD_OK
367 }
368 
369 static struct spdk_nvme_qpair *
370 nvme_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
371 			   const struct spdk_nvme_io_qpair_opts *opts)
372 {
373 	int32_t					qid;
374 	struct spdk_nvme_qpair			*qpair;
375 	union spdk_nvme_cc_register		cc;
376 
377 	if (!ctrlr) {
378 		return NULL;
379 	}
380 
381 	nvme_ctrlr_lock(ctrlr);
382 	cc.raw = ctrlr->process_init_cc.raw;
383 
384 	if (opts->qprio & ~SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK) {
385 		nvme_ctrlr_unlock(ctrlr);
386 		return NULL;
387 	}
388 
389 	/*
390 	 * Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the
391 	 * default round robin arbitration method.
392 	 */
393 	if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts->qprio != SPDK_NVME_QPRIO_URGENT)) {
394 		NVME_CTRLR_ERRLOG(ctrlr, "invalid queue priority for default round robin arbitration method\n");
395 		nvme_ctrlr_unlock(ctrlr);
396 		return NULL;
397 	}
398 
399 	qid = spdk_nvme_ctrlr_alloc_qid(ctrlr);
400 	if (qid < 0) {
401 		nvme_ctrlr_unlock(ctrlr);
402 		return NULL;
403 	}
404 
405 	qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, opts);
406 	if (qpair == NULL) {
407 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_create_io_qpair() failed\n");
408 		spdk_nvme_ctrlr_free_qid(ctrlr, qid);
409 		nvme_ctrlr_unlock(ctrlr);
410 		return NULL;
411 	}
412 
413 	TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq);
414 
415 	nvme_ctrlr_proc_add_io_qpair(qpair);
416 
417 	nvme_ctrlr_unlock(ctrlr);
418 
419 	return qpair;
420 }
421 
422 int
423 spdk_nvme_ctrlr_connect_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
424 {
425 	int rc;
426 
427 	if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) {
428 		return -EISCONN;
429 	}
430 
431 	nvme_ctrlr_lock(ctrlr);
432 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
433 	nvme_ctrlr_unlock(ctrlr);
434 
435 	if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) {
436 		spdk_delay_us(100);
437 	}
438 
439 	return rc;
440 }
441 
442 void
443 spdk_nvme_ctrlr_disconnect_io_qpair(struct spdk_nvme_qpair *qpair)
444 {
445 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
446 
447 	nvme_ctrlr_lock(ctrlr);
448 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
449 	nvme_ctrlr_unlock(ctrlr);
450 }
451 
452 struct spdk_nvme_qpair *
453 spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
454 			       const struct spdk_nvme_io_qpair_opts *user_opts,
455 			       size_t opts_size)
456 {
457 
458 	struct spdk_nvme_qpair		*qpair = NULL;
459 	struct spdk_nvme_io_qpair_opts	opts;
460 	int				rc;
461 
462 	nvme_ctrlr_lock(ctrlr);
463 
464 	if (spdk_unlikely(ctrlr->state != NVME_CTRLR_STATE_READY)) {
465 		/* When controller is resetting or initializing, free_io_qids is deleted or not created yet.
466 		 * We can't create IO qpair in that case */
467 		goto unlock;
468 	}
469 
470 	/*
471 	 * Get the default options, then overwrite them with the user-provided options
472 	 * up to opts_size.
473 	 *
474 	 * This allows for extensions of the opts structure without breaking
475 	 * ABI compatibility.
476 	 */
477 	spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
478 	if (user_opts) {
479 		memcpy(&opts, user_opts, spdk_min(sizeof(opts), opts_size));
480 
481 		/* If user passes buffers, make sure they're big enough for the requested queue size */
482 		if (opts.sq.vaddr) {
483 			if (opts.sq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))) {
484 				NVME_CTRLR_ERRLOG(ctrlr, "sq buffer size %" PRIx64 " is too small for sq size %zx\n",
485 						  opts.sq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cmd)));
486 				goto unlock;
487 			}
488 		}
489 		if (opts.cq.vaddr) {
490 			if (opts.cq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))) {
491 				NVME_CTRLR_ERRLOG(ctrlr, "cq buffer size %" PRIx64 " is too small for cq size %zx\n",
492 						  opts.cq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cpl)));
493 				goto unlock;
494 			}
495 		}
496 	}
497 
498 	qpair = nvme_ctrlr_create_io_qpair(ctrlr, &opts);
499 
500 	if (qpair == NULL || opts.create_only == true) {
501 		goto unlock;
502 	}
503 
504 	rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair);
505 	if (rc != 0) {
506 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_connect_io_qpair() failed\n");
507 		nvme_ctrlr_proc_remove_io_qpair(qpair);
508 		TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
509 		spdk_bit_array_set(ctrlr->free_io_qids, qpair->id);
510 		nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
511 		qpair = NULL;
512 		goto unlock;
513 	}
514 
515 unlock:
516 	nvme_ctrlr_unlock(ctrlr);
517 
518 	return qpair;
519 }
520 
521 int
522 spdk_nvme_ctrlr_reconnect_io_qpair(struct spdk_nvme_qpair *qpair)
523 {
524 	struct spdk_nvme_ctrlr *ctrlr;
525 	enum nvme_qpair_state qpair_state;
526 	int rc;
527 
528 	assert(qpair != NULL);
529 	assert(nvme_qpair_is_admin_queue(qpair) == false);
530 	assert(qpair->ctrlr != NULL);
531 
532 	ctrlr = qpair->ctrlr;
533 	nvme_ctrlr_lock(ctrlr);
534 	qpair_state = nvme_qpair_get_state(qpair);
535 
536 	if (ctrlr->is_removed) {
537 		rc = -ENODEV;
538 		goto out;
539 	}
540 
541 	if (ctrlr->is_resetting || qpair_state == NVME_QPAIR_DISCONNECTING) {
542 		rc = -EAGAIN;
543 		goto out;
544 	}
545 
546 	if (ctrlr->is_failed || qpair_state == NVME_QPAIR_DESTROYING) {
547 		rc = -ENXIO;
548 		goto out;
549 	}
550 
551 	if (qpair_state != NVME_QPAIR_DISCONNECTED) {
552 		rc = 0;
553 		goto out;
554 	}
555 
556 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
557 	if (rc) {
558 		rc = -EAGAIN;
559 		goto out;
560 	}
561 
562 out:
563 	nvme_ctrlr_unlock(ctrlr);
564 	return rc;
565 }
566 
567 spdk_nvme_qp_failure_reason
568 spdk_nvme_ctrlr_get_admin_qp_failure_reason(struct spdk_nvme_ctrlr *ctrlr)
569 {
570 	return ctrlr->adminq->transport_failure_reason;
571 }
572 
573 /*
574  * This internal function will attempt to take the controller
575  * lock before calling disconnect on a controller qpair.
576  * Functions already holding the controller lock should
577  * call nvme_transport_ctrlr_disconnect_qpair directly.
578  */
579 void
580 nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair)
581 {
582 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
583 
584 	assert(ctrlr != NULL);
585 	nvme_ctrlr_lock(ctrlr);
586 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
587 	nvme_ctrlr_unlock(ctrlr);
588 }
589 
590 int
591 spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair)
592 {
593 	struct spdk_nvme_ctrlr *ctrlr;
594 
595 	if (qpair == NULL) {
596 		return 0;
597 	}
598 
599 	ctrlr = qpair->ctrlr;
600 
601 	if (qpair->in_completion_context) {
602 		/*
603 		 * There are many cases where it is convenient to delete an io qpair in the context
604 		 *  of that qpair's completion routine.  To handle this properly, set a flag here
605 		 *  so that the completion routine will perform an actual delete after the context
606 		 *  unwinds.
607 		 */
608 		qpair->delete_after_completion_context = 1;
609 		return 0;
610 	}
611 
612 	qpair->destroy_in_progress = 1;
613 
614 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
615 
616 	if (qpair->poll_group && (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr))) {
617 		spdk_nvme_poll_group_remove(qpair->poll_group->group, qpair);
618 	}
619 
620 	/* Do not retry. */
621 	nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
622 
623 	/* In the multi-process case, a process may call this function on a foreign
624 	 * I/O qpair (i.e. one that this process did not create) when that qpairs process
625 	 * exits unexpectedly.  In that case, we must not try to abort any reqs associated
626 	 * with that qpair, since the callbacks will also be foreign to this process.
627 	 */
628 	if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) {
629 		nvme_qpair_abort_all_queued_reqs(qpair);
630 	}
631 
632 	nvme_ctrlr_lock(ctrlr);
633 
634 	nvme_ctrlr_proc_remove_io_qpair(qpair);
635 
636 	TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
637 	spdk_nvme_ctrlr_free_qid(ctrlr, qpair->id);
638 
639 	nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
640 	nvme_ctrlr_unlock(ctrlr);
641 	return 0;
642 }
643 
644 static void
645 nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr,
646 		struct spdk_nvme_intel_log_page_directory *log_page_directory)
647 {
648 	if (log_page_directory == NULL) {
649 		return;
650 	}
651 
652 	assert(ctrlr->cdata.vid == SPDK_PCI_VID_INTEL);
653 
654 	ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
655 
656 	if (log_page_directory->read_latency_log_len ||
657 	    (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) {
658 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
659 	}
660 	if (log_page_directory->write_latency_log_len ||
661 	    (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) {
662 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
663 	}
664 	if (log_page_directory->temperature_statistics_log_len) {
665 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true;
666 	}
667 	if (log_page_directory->smart_log_len) {
668 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true;
669 	}
670 	if (log_page_directory->marketing_description_log_len) {
671 		ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true;
672 	}
673 }
674 
675 struct intel_log_pages_ctx {
676 	struct spdk_nvme_intel_log_page_directory log_page_directory;
677 	struct spdk_nvme_ctrlr *ctrlr;
678 };
679 
680 static void
681 nvme_ctrlr_set_intel_support_log_pages_done(void *arg, const struct spdk_nvme_cpl *cpl)
682 {
683 	struct intel_log_pages_ctx *ctx = arg;
684 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
685 
686 	if (!spdk_nvme_cpl_is_error(cpl)) {
687 		nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, &ctx->log_page_directory);
688 	}
689 
690 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
691 			     ctrlr->opts.admin_timeout_ms);
692 	free(ctx);
693 }
694 
695 static int
696 nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr)
697 {
698 	int rc = 0;
699 	struct intel_log_pages_ctx *ctx;
700 
701 	ctx = calloc(1, sizeof(*ctx));
702 	if (!ctx) {
703 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
704 				     ctrlr->opts.admin_timeout_ms);
705 		return 0;
706 	}
707 
708 	ctx->ctrlr = ctrlr;
709 
710 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY,
711 					      SPDK_NVME_GLOBAL_NS_TAG, &ctx->log_page_directory,
712 					      sizeof(struct spdk_nvme_intel_log_page_directory),
713 					      0, nvme_ctrlr_set_intel_support_log_pages_done, ctx);
714 	if (rc != 0) {
715 		free(ctx);
716 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
717 				     ctrlr->opts.admin_timeout_ms);
718 		return 0;
719 	}
720 
721 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES,
722 			     ctrlr->opts.admin_timeout_ms);
723 
724 	return 0;
725 }
726 
727 static int
728 nvme_ctrlr_alloc_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
729 {
730 	uint32_t ana_log_page_size;
731 
732 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + ctrlr->cdata.nanagrpid *
733 			    sizeof(struct spdk_nvme_ana_group_descriptor) + ctrlr->active_ns_count *
734 			    sizeof(uint32_t);
735 
736 	/* Number of active namespaces may have changed.
737 	 * Check if ANA log page fits into existing buffer.
738 	 */
739 	if (ana_log_page_size > ctrlr->ana_log_page_size) {
740 		void *new_buffer;
741 
742 		if (ctrlr->ana_log_page) {
743 			new_buffer = realloc(ctrlr->ana_log_page, ana_log_page_size);
744 		} else {
745 			new_buffer = calloc(1, ana_log_page_size);
746 		}
747 
748 		if (!new_buffer) {
749 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate ANA log page buffer, size %u\n",
750 					  ana_log_page_size);
751 			return -ENXIO;
752 		}
753 
754 		ctrlr->ana_log_page = new_buffer;
755 		if (ctrlr->copied_ana_desc) {
756 			new_buffer = realloc(ctrlr->copied_ana_desc, ana_log_page_size);
757 		} else {
758 			new_buffer = calloc(1, ana_log_page_size);
759 		}
760 
761 		if (!new_buffer) {
762 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate a buffer to parse ANA descriptor, size %u\n",
763 					  ana_log_page_size);
764 			return -ENOMEM;
765 		}
766 
767 		ctrlr->copied_ana_desc = new_buffer;
768 		ctrlr->ana_log_page_size = ana_log_page_size;
769 	}
770 
771 	return 0;
772 }
773 
774 static int
775 nvme_ctrlr_update_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
776 {
777 	struct nvme_completion_poll_status *status;
778 	int rc;
779 
780 	rc = nvme_ctrlr_alloc_ana_log_page(ctrlr);
781 	if (rc != 0) {
782 		return rc;
783 	}
784 
785 	status = calloc(1, sizeof(*status));
786 	if (status == NULL) {
787 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
788 		return -ENOMEM;
789 	}
790 
791 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
792 					      SPDK_NVME_GLOBAL_NS_TAG, ctrlr->ana_log_page,
793 					      ctrlr->ana_log_page_size, 0,
794 					      nvme_completion_poll_cb, status);
795 	if (rc != 0) {
796 		free(status);
797 		return rc;
798 	}
799 
800 	if (nvme_wait_for_completion_robust_lock_timeout(ctrlr->adminq, status, &ctrlr->ctrlr_lock,
801 			ctrlr->opts.admin_timeout_ms * 1000)) {
802 		if (!status->timed_out) {
803 			free(status);
804 		}
805 		return -EIO;
806 	}
807 
808 	free(status);
809 	return 0;
810 }
811 
812 static int
813 nvme_ctrlr_update_ns_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
814 				void *cb_arg)
815 {
816 	struct spdk_nvme_ctrlr *ctrlr = cb_arg;
817 	struct spdk_nvme_ns *ns;
818 	uint32_t i, nsid;
819 
820 	for (i = 0; i < desc->num_of_nsid; i++) {
821 		nsid = desc->nsid[i];
822 		if (nsid == 0 || nsid > ctrlr->cdata.nn) {
823 			continue;
824 		}
825 
826 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
827 		assert(ns != NULL);
828 
829 		ns->ana_group_id = desc->ana_group_id;
830 		ns->ana_state = desc->ana_state;
831 	}
832 
833 	return 0;
834 }
835 
836 int
837 nvme_ctrlr_parse_ana_log_page(struct spdk_nvme_ctrlr *ctrlr,
838 			      spdk_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
839 {
840 	struct spdk_nvme_ana_group_descriptor *copied_desc;
841 	uint8_t *orig_desc;
842 	uint32_t i, desc_size, copy_len;
843 	int rc = 0;
844 
845 	if (ctrlr->ana_log_page == NULL) {
846 		return -EINVAL;
847 	}
848 
849 	copied_desc = ctrlr->copied_ana_desc;
850 
851 	orig_desc = (uint8_t *)ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
852 	copy_len = ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
853 
854 	for (i = 0; i < ctrlr->ana_log_page->num_ana_group_desc; i++) {
855 		memcpy(copied_desc, orig_desc, copy_len);
856 
857 		rc = cb_fn(copied_desc, cb_arg);
858 		if (rc != 0) {
859 			break;
860 		}
861 
862 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
863 			    copied_desc->num_of_nsid * sizeof(uint32_t);
864 		orig_desc += desc_size;
865 		copy_len -= desc_size;
866 	}
867 
868 	return rc;
869 }
870 
871 static int
872 nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr)
873 {
874 	int	rc = 0;
875 
876 	memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
877 	/* Mandatory pages */
878 	ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true;
879 	ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true;
880 	ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true;
881 	if (ctrlr->cdata.lpa.celp) {
882 		ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true;
883 	}
884 
885 	if (ctrlr->cdata.cmic.ana_reporting) {
886 		ctrlr->log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] = true;
887 		if (!ctrlr->opts.disable_read_ana_log_page) {
888 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
889 			if (rc == 0) {
890 				nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
891 							      ctrlr);
892 			}
893 		}
894 	}
895 
896 	if (ctrlr->cdata.ctratt.bits.fdps) {
897 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_CONFIGURATIONS] = true;
898 		ctrlr->log_page_supported[SPDK_NVME_LOG_RECLAIM_UNIT_HANDLE_USAGE] = true;
899 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_STATISTICS] = true;
900 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_EVENTS] = true;
901 	}
902 
903 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL &&
904 	    ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE &&
905 	    !(ctrlr->quirks & NVME_INTEL_QUIRK_NO_LOG_PAGES)) {
906 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES,
907 				     ctrlr->opts.admin_timeout_ms);
908 
909 	} else {
910 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
911 				     ctrlr->opts.admin_timeout_ms);
912 
913 	}
914 
915 	return rc;
916 }
917 
918 static void
919 nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr)
920 {
921 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true;
922 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
923 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
924 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
925 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true;
926 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
927 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
928 }
929 
930 static void
931 nvme_ctrlr_set_arbitration_feature(struct spdk_nvme_ctrlr *ctrlr)
932 {
933 	uint32_t cdw11;
934 	struct nvme_completion_poll_status *status;
935 
936 	if (ctrlr->opts.arbitration_burst == 0) {
937 		return;
938 	}
939 
940 	if (ctrlr->opts.arbitration_burst > 7) {
941 		NVME_CTRLR_WARNLOG(ctrlr, "Valid arbitration burst values is from 0-7\n");
942 		return;
943 	}
944 
945 	status = calloc(1, sizeof(*status));
946 	if (!status) {
947 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
948 		return;
949 	}
950 
951 	cdw11 = ctrlr->opts.arbitration_burst;
952 
953 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_WRR_SUPPORTED) {
954 		cdw11 |= (uint32_t)ctrlr->opts.low_priority_weight << 8;
955 		cdw11 |= (uint32_t)ctrlr->opts.medium_priority_weight << 16;
956 		cdw11 |= (uint32_t)ctrlr->opts.high_priority_weight << 24;
957 	}
958 
959 	if (spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION,
960 					    cdw11, 0, NULL, 0,
961 					    nvme_completion_poll_cb, status) < 0) {
962 		NVME_CTRLR_ERRLOG(ctrlr, "Set arbitration feature failed\n");
963 		free(status);
964 		return;
965 	}
966 
967 	if (nvme_wait_for_completion_timeout(ctrlr->adminq, status,
968 					     ctrlr->opts.admin_timeout_ms * 1000)) {
969 		NVME_CTRLR_ERRLOG(ctrlr, "Timeout to set arbitration feature\n");
970 	}
971 
972 	if (!status->timed_out) {
973 		free(status);
974 	}
975 }
976 
977 static void
978 nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr)
979 {
980 	memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
981 	/* Mandatory features */
982 	ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true;
983 	ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true;
984 	ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
985 	ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true;
986 	ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true;
987 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true;
988 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
989 	ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true;
990 	ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
991 	/* Optional features */
992 	if (ctrlr->cdata.vwc.present) {
993 		ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
994 	}
995 	if (ctrlr->cdata.apsta.supported) {
996 		ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
997 	}
998 	if (ctrlr->cdata.hmpre) {
999 		ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true;
1000 	}
1001 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
1002 		nvme_ctrlr_set_intel_supported_features(ctrlr);
1003 	}
1004 
1005 	nvme_ctrlr_set_arbitration_feature(ctrlr);
1006 }
1007 
1008 static void
1009 nvme_ctrlr_set_host_feature_done(void *arg, const struct spdk_nvme_cpl *cpl)
1010 {
1011 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1012 
1013 	spdk_free(ctrlr->tmp_ptr);
1014 	ctrlr->tmp_ptr = NULL;
1015 
1016 	if (spdk_nvme_cpl_is_error(cpl)) {
1017 		NVME_CTRLR_ERRLOG(ctrlr, "Set host behavior support feature failed: SC %x SCT %x\n",
1018 				  cpl->status.sc, cpl->status.sct);
1019 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1020 		return;
1021 	}
1022 
1023 	ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT] = true;
1024 
1025 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
1026 			     ctrlr->opts.admin_timeout_ms);
1027 }
1028 
1029 /* We do not want to do add synchronous operation anymore.
1030  * We set the Host Behavior Support feature asynchronousin in different states.
1031  */
1032 static int
1033 nvme_ctrlr_set_host_feature(struct spdk_nvme_ctrlr *ctrlr)
1034 {
1035 	struct spdk_nvme_host_behavior *host;
1036 	int rc;
1037 
1038 	if (!ctrlr->cdata.ctratt.bits.elbas) {
1039 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
1040 				     ctrlr->opts.admin_timeout_ms);
1041 		return 0;
1042 	}
1043 
1044 	ctrlr->tmp_ptr = spdk_dma_zmalloc(sizeof(struct spdk_nvme_host_behavior), 4096, NULL);
1045 	if (!ctrlr->tmp_ptr) {
1046 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate host behavior support data\n");
1047 		rc = -ENOMEM;
1048 		goto error;
1049 	}
1050 
1051 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE,
1052 			     ctrlr->opts.admin_timeout_ms);
1053 
1054 	host = ctrlr->tmp_ptr;
1055 
1056 	host->lbafee = 1;
1057 
1058 	rc = spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT,
1059 					     0, 0, host, sizeof(struct spdk_nvme_host_behavior),
1060 					     nvme_ctrlr_set_host_feature_done, ctrlr);
1061 	if (rc != 0) {
1062 		NVME_CTRLR_ERRLOG(ctrlr, "Set host behavior support feature failed: %d\n", rc);
1063 		goto error;
1064 	}
1065 
1066 	return 0;
1067 
1068 error:
1069 	spdk_free(ctrlr->tmp_ptr);
1070 	ctrlr->tmp_ptr = NULL;
1071 
1072 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1073 	return rc;
1074 }
1075 
1076 bool
1077 spdk_nvme_ctrlr_is_failed(struct spdk_nvme_ctrlr *ctrlr)
1078 {
1079 	return ctrlr->is_failed;
1080 }
1081 
1082 void
1083 nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
1084 {
1085 	/*
1086 	 * Set the flag here and leave the work failure of qpairs to
1087 	 * spdk_nvme_qpair_process_completions().
1088 	 */
1089 	if (hot_remove) {
1090 		ctrlr->is_removed = true;
1091 	}
1092 
1093 	if (ctrlr->is_failed) {
1094 		NVME_CTRLR_NOTICELOG(ctrlr, "already in failed state\n");
1095 		return;
1096 	}
1097 
1098 	if (ctrlr->is_disconnecting) {
1099 		NVME_CTRLR_DEBUGLOG(ctrlr, "already disconnecting\n");
1100 		return;
1101 	}
1102 
1103 	ctrlr->is_failed = true;
1104 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1105 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1106 	NVME_CTRLR_ERRLOG(ctrlr, "in failed state.\n");
1107 }
1108 
1109 /**
1110  * This public API function will try to take the controller lock.
1111  * Any private functions being called from a thread already holding
1112  * the ctrlr lock should call nvme_ctrlr_fail directly.
1113  */
1114 void
1115 spdk_nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr)
1116 {
1117 	nvme_ctrlr_lock(ctrlr);
1118 	nvme_ctrlr_fail(ctrlr, false);
1119 	nvme_ctrlr_unlock(ctrlr);
1120 }
1121 
1122 static void
1123 nvme_ctrlr_shutdown_set_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1124 {
1125 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1126 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1127 
1128 	if (spdk_nvme_cpl_is_error(cpl)) {
1129 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1130 		ctx->shutdown_complete = true;
1131 		return;
1132 	}
1133 
1134 	if (ctrlr->opts.no_shn_notification) {
1135 		ctx->shutdown_complete = true;
1136 		return;
1137 	}
1138 
1139 	/*
1140 	 * The NVMe specification defines RTD3E to be the time between
1141 	 *  setting SHN = 1 until the controller will set SHST = 10b.
1142 	 * If the device doesn't report RTD3 entry latency, or if it
1143 	 *  reports RTD3 entry latency less than 10 seconds, pick
1144 	 *  10 seconds as a reasonable amount of time to
1145 	 *  wait before proceeding.
1146 	 */
1147 	NVME_CTRLR_DEBUGLOG(ctrlr, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e);
1148 	ctx->shutdown_timeout_ms = SPDK_CEIL_DIV(ctrlr->cdata.rtd3e, 1000);
1149 	ctx->shutdown_timeout_ms = spdk_max(ctx->shutdown_timeout_ms, 10000);
1150 	NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown timeout = %" PRIu32 " ms\n", ctx->shutdown_timeout_ms);
1151 
1152 	ctx->shutdown_start_tsc = spdk_get_ticks();
1153 	ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1154 }
1155 
1156 static void
1157 nvme_ctrlr_shutdown_get_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1158 {
1159 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1160 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1161 	union spdk_nvme_cc_register cc;
1162 	int rc;
1163 
1164 	if (spdk_nvme_cpl_is_error(cpl)) {
1165 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1166 		ctx->shutdown_complete = true;
1167 		return;
1168 	}
1169 
1170 	assert(value <= UINT32_MAX);
1171 	cc.raw = (uint32_t)value;
1172 
1173 	if (ctrlr->opts.no_shn_notification) {
1174 		NVME_CTRLR_INFOLOG(ctrlr, "Disable SSD without shutdown notification\n");
1175 		if (cc.bits.en == 0) {
1176 			ctx->shutdown_complete = true;
1177 			return;
1178 		}
1179 
1180 		cc.bits.en = 0;
1181 	} else {
1182 		cc.bits.shn = SPDK_NVME_SHN_NORMAL;
1183 	}
1184 
1185 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_shutdown_set_cc_done, ctx);
1186 	if (rc != 0) {
1187 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1188 		ctx->shutdown_complete = true;
1189 	}
1190 }
1191 
1192 static void
1193 nvme_ctrlr_shutdown_async(struct spdk_nvme_ctrlr *ctrlr,
1194 			  struct nvme_ctrlr_detach_ctx *ctx)
1195 {
1196 	int rc;
1197 
1198 	if (ctrlr->is_removed) {
1199 		ctx->shutdown_complete = true;
1200 		return;
1201 	}
1202 
1203 	if (ctrlr->adminq == NULL ||
1204 	    ctrlr->adminq->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE) {
1205 		NVME_CTRLR_INFOLOG(ctrlr, "Adminq is not connected.\n");
1206 		ctx->shutdown_complete = true;
1207 		return;
1208 	}
1209 
1210 	ctx->state = NVME_CTRLR_DETACH_SET_CC;
1211 	rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_shutdown_get_cc_done, ctx);
1212 	if (rc != 0) {
1213 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1214 		ctx->shutdown_complete = true;
1215 	}
1216 }
1217 
1218 static void
1219 nvme_ctrlr_shutdown_get_csts_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1220 {
1221 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1222 
1223 	if (spdk_nvme_cpl_is_error(cpl)) {
1224 		NVME_CTRLR_ERRLOG(ctx->ctrlr, "Failed to read the CSTS register\n");
1225 		ctx->shutdown_complete = true;
1226 		return;
1227 	}
1228 
1229 	assert(value <= UINT32_MAX);
1230 	ctx->csts.raw = (uint32_t)value;
1231 	ctx->state = NVME_CTRLR_DETACH_GET_CSTS_DONE;
1232 }
1233 
1234 static int
1235 nvme_ctrlr_shutdown_poll_async(struct spdk_nvme_ctrlr *ctrlr,
1236 			       struct nvme_ctrlr_detach_ctx *ctx)
1237 {
1238 	union spdk_nvme_csts_register	csts;
1239 	uint32_t			ms_waited;
1240 
1241 	switch (ctx->state) {
1242 	case NVME_CTRLR_DETACH_SET_CC:
1243 	case NVME_CTRLR_DETACH_GET_CSTS:
1244 		/* We're still waiting for the register operation to complete */
1245 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
1246 		return -EAGAIN;
1247 
1248 	case NVME_CTRLR_DETACH_CHECK_CSTS:
1249 		ctx->state = NVME_CTRLR_DETACH_GET_CSTS;
1250 		if (nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_shutdown_get_csts_done, ctx)) {
1251 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
1252 			return -EIO;
1253 		}
1254 		return -EAGAIN;
1255 
1256 	case NVME_CTRLR_DETACH_GET_CSTS_DONE:
1257 		ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1258 		break;
1259 
1260 	default:
1261 		assert(0 && "Should never happen");
1262 		return -EINVAL;
1263 	}
1264 
1265 	ms_waited = (spdk_get_ticks() - ctx->shutdown_start_tsc) * 1000 / spdk_get_ticks_hz();
1266 	csts.raw = ctx->csts.raw;
1267 
1268 	if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
1269 		NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown complete in %u milliseconds\n", ms_waited);
1270 		return 0;
1271 	}
1272 
1273 	if (ms_waited < ctx->shutdown_timeout_ms) {
1274 		return -EAGAIN;
1275 	}
1276 
1277 	NVME_CTRLR_ERRLOG(ctrlr, "did not shutdown within %u milliseconds\n",
1278 			  ctx->shutdown_timeout_ms);
1279 	if (ctrlr->quirks & NVME_QUIRK_SHST_COMPLETE) {
1280 		NVME_CTRLR_ERRLOG(ctrlr, "likely due to shutdown handling in the VMWare emulated NVMe SSD\n");
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 static inline uint64_t
1287 nvme_ctrlr_get_ready_timeout(struct spdk_nvme_ctrlr *ctrlr)
1288 {
1289 	return ctrlr->cap.bits.to * 500;
1290 }
1291 
1292 static void
1293 nvme_ctrlr_set_cc_en_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1294 {
1295 	struct spdk_nvme_ctrlr *ctrlr = ctx;
1296 
1297 	if (spdk_nvme_cpl_is_error(cpl)) {
1298 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to set the CC register\n");
1299 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1300 		return;
1301 	}
1302 
1303 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
1304 			     nvme_ctrlr_get_ready_timeout(ctrlr));
1305 }
1306 
1307 static int
1308 nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
1309 {
1310 	union spdk_nvme_cc_register	cc;
1311 	int				rc;
1312 
1313 	rc = nvme_transport_ctrlr_enable(ctrlr);
1314 	if (rc != 0) {
1315 		NVME_CTRLR_ERRLOG(ctrlr, "transport ctrlr_enable failed\n");
1316 		return rc;
1317 	}
1318 
1319 	cc.raw = ctrlr->process_init_cc.raw;
1320 	if (cc.bits.en != 0) {
1321 		NVME_CTRLR_ERRLOG(ctrlr, "called with CC.EN = 1\n");
1322 		return -EINVAL;
1323 	}
1324 
1325 	cc.bits.en = 1;
1326 	cc.bits.css = 0;
1327 	cc.bits.shn = 0;
1328 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
1329 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
1330 
1331 	/* Page size is 2 ^ (12 + mps). */
1332 	cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12;
1333 
1334 	/*
1335 	 * Since NVMe 1.0, a controller should have at least one bit set in CAP.CSS.
1336 	 * A controller that does not have any bit set in CAP.CSS is not spec compliant.
1337 	 * Try to support such a controller regardless.
1338 	 */
1339 	if (ctrlr->cap.bits.css == 0) {
1340 		NVME_CTRLR_INFOLOG(ctrlr, "Drive reports no command sets supported. Assuming NVM is supported.\n");
1341 		ctrlr->cap.bits.css = SPDK_NVME_CAP_CSS_NVM;
1342 	}
1343 
1344 	/*
1345 	 * If the user did not explicitly request a command set, or supplied a value larger than
1346 	 * what can be saved in CC.CSS, use the most reasonable default.
1347 	 */
1348 	if (ctrlr->opts.command_set >= CHAR_BIT) {
1349 		if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS) {
1350 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_IOCS;
1351 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NVM) {
1352 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1353 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NOIO) {
1354 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NOIO;
1355 		} else {
1356 			/* Invalid supported bits detected, falling back to NVM. */
1357 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1358 		}
1359 	}
1360 
1361 	/* Verify that the selected command set is supported by the controller. */
1362 	if (!(ctrlr->cap.bits.css & (1u << ctrlr->opts.command_set))) {
1363 		NVME_CTRLR_DEBUGLOG(ctrlr, "Requested I/O command set %u but supported mask is 0x%x\n",
1364 				    ctrlr->opts.command_set, ctrlr->cap.bits.css);
1365 		NVME_CTRLR_DEBUGLOG(ctrlr, "Falling back to NVM. Assuming NVM is supported.\n");
1366 		ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1367 	}
1368 
1369 	cc.bits.css = ctrlr->opts.command_set;
1370 
1371 	switch (ctrlr->opts.arb_mechanism) {
1372 	case SPDK_NVME_CC_AMS_RR:
1373 		break;
1374 	case SPDK_NVME_CC_AMS_WRR:
1375 		if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) {
1376 			break;
1377 		}
1378 		return -EINVAL;
1379 	case SPDK_NVME_CC_AMS_VS:
1380 		if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) {
1381 			break;
1382 		}
1383 		return -EINVAL;
1384 	default:
1385 		return -EINVAL;
1386 	}
1387 
1388 	cc.bits.ams = ctrlr->opts.arb_mechanism;
1389 	ctrlr->process_init_cc.raw = cc.raw;
1390 
1391 	if (nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_set_cc_en_done, ctrlr)) {
1392 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
1393 		return -EIO;
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 static const char *
1400 nvme_ctrlr_state_string(enum nvme_ctrlr_state state)
1401 {
1402 	switch (state) {
1403 	case NVME_CTRLR_STATE_INIT_DELAY:
1404 		return "delay init";
1405 	case NVME_CTRLR_STATE_CONNECT_ADMINQ:
1406 		return "connect adminq";
1407 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
1408 		return "wait for connect adminq";
1409 	case NVME_CTRLR_STATE_READ_VS:
1410 		return "read vs";
1411 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
1412 		return "read vs wait for vs";
1413 	case NVME_CTRLR_STATE_READ_CAP:
1414 		return "read cap";
1415 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
1416 		return "read cap wait for cap";
1417 	case NVME_CTRLR_STATE_CHECK_EN:
1418 		return "check en";
1419 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
1420 		return "check en wait for cc";
1421 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
1422 		return "disable and wait for CSTS.RDY = 1";
1423 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1424 		return "disable and wait for CSTS.RDY = 1 reg";
1425 	case NVME_CTRLR_STATE_SET_EN_0:
1426 		return "set CC.EN = 0";
1427 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
1428 		return "set CC.EN = 0 wait for cc";
1429 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
1430 		return "disable and wait for CSTS.RDY = 0";
1431 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
1432 		return "disable and wait for CSTS.RDY = 0 reg";
1433 	case NVME_CTRLR_STATE_DISABLED:
1434 		return "controller is disabled";
1435 	case NVME_CTRLR_STATE_ENABLE:
1436 		return "enable controller by writing CC.EN = 1";
1437 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
1438 		return "enable controller by writing CC.EN = 1 reg";
1439 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
1440 		return "wait for CSTS.RDY = 1";
1441 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1442 		return "wait for CSTS.RDY = 1 reg";
1443 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
1444 		return "reset admin queue";
1445 	case NVME_CTRLR_STATE_IDENTIFY:
1446 		return "identify controller";
1447 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
1448 		return "wait for identify controller";
1449 	case NVME_CTRLR_STATE_CONFIGURE_AER:
1450 		return "configure AER";
1451 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
1452 		return "wait for configure aer";
1453 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
1454 		return "set keep alive timeout";
1455 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
1456 		return "wait for set keep alive timeout";
1457 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
1458 		return "identify controller iocs specific";
1459 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
1460 		return "wait for identify controller iocs specific";
1461 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
1462 		return "get zns cmd and effects log page";
1463 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
1464 		return "wait for get zns cmd and effects log page";
1465 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
1466 		return "set number of queues";
1467 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
1468 		return "wait for set number of queues";
1469 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
1470 		return "identify active ns";
1471 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
1472 		return "wait for identify active ns";
1473 	case NVME_CTRLR_STATE_IDENTIFY_NS:
1474 		return "identify ns";
1475 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
1476 		return "wait for identify ns";
1477 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
1478 		return "identify namespace id descriptors";
1479 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
1480 		return "wait for identify namespace id descriptors";
1481 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
1482 		return "identify ns iocs specific";
1483 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
1484 		return "wait for identify ns iocs specific";
1485 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
1486 		return "set supported log pages";
1487 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
1488 		return "set supported INTEL log pages";
1489 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
1490 		return "wait for supported INTEL log pages";
1491 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
1492 		return "set supported features";
1493 	case NVME_CTRLR_STATE_SET_HOST_FEATURE:
1494 		return "set host behavior support feature";
1495 	case NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE:
1496 		return "wait for set host behavior support feature";
1497 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
1498 		return "set doorbell buffer config";
1499 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
1500 		return "wait for doorbell buffer config";
1501 	case NVME_CTRLR_STATE_SET_HOST_ID:
1502 		return "set host ID";
1503 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
1504 		return "wait for set host ID";
1505 	case NVME_CTRLR_STATE_TRANSPORT_READY:
1506 		return "transport ready";
1507 	case NVME_CTRLR_STATE_READY:
1508 		return "ready";
1509 	case NVME_CTRLR_STATE_ERROR:
1510 		return "error";
1511 	case NVME_CTRLR_STATE_DISCONNECTED:
1512 		return "disconnected";
1513 	}
1514 	return "unknown";
1515 };
1516 
1517 static void
1518 _nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1519 		      uint64_t timeout_in_ms, bool quiet)
1520 {
1521 	uint64_t ticks_per_ms, timeout_in_ticks, now_ticks;
1522 
1523 	ctrlr->state = state;
1524 	if (timeout_in_ms == NVME_TIMEOUT_KEEP_EXISTING) {
1525 		if (!quiet) {
1526 			NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (keeping existing timeout)\n",
1527 					    nvme_ctrlr_state_string(ctrlr->state));
1528 		}
1529 		return;
1530 	}
1531 
1532 	if (timeout_in_ms == NVME_TIMEOUT_INFINITE) {
1533 		goto inf;
1534 	}
1535 
1536 	ticks_per_ms = spdk_get_ticks_hz() / 1000;
1537 	if (timeout_in_ms > UINT64_MAX / ticks_per_ms) {
1538 		NVME_CTRLR_ERRLOG(ctrlr,
1539 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1540 		goto inf;
1541 	}
1542 
1543 	now_ticks = spdk_get_ticks();
1544 	timeout_in_ticks = timeout_in_ms * ticks_per_ms;
1545 	if (timeout_in_ticks > UINT64_MAX - now_ticks) {
1546 		NVME_CTRLR_ERRLOG(ctrlr,
1547 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1548 		goto inf;
1549 	}
1550 
1551 	ctrlr->state_timeout_tsc = timeout_in_ticks + now_ticks;
1552 	if (!quiet) {
1553 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (timeout %" PRIu64 " ms)\n",
1554 				    nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms);
1555 	}
1556 	return;
1557 inf:
1558 	if (!quiet) {
1559 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (no timeout)\n",
1560 				    nvme_ctrlr_state_string(ctrlr->state));
1561 	}
1562 	ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE;
1563 }
1564 
1565 static void
1566 nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1567 		     uint64_t timeout_in_ms)
1568 {
1569 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, false);
1570 }
1571 
1572 static void
1573 nvme_ctrlr_set_state_quiet(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1574 			   uint64_t timeout_in_ms)
1575 {
1576 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, true);
1577 }
1578 
1579 static void
1580 nvme_ctrlr_free_zns_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1581 {
1582 	spdk_free(ctrlr->cdata_zns);
1583 	ctrlr->cdata_zns = NULL;
1584 }
1585 
1586 static void
1587 nvme_ctrlr_free_iocs_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1588 {
1589 	nvme_ctrlr_free_zns_specific_data(ctrlr);
1590 }
1591 
1592 static void
1593 nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr)
1594 {
1595 	if (ctrlr->shadow_doorbell) {
1596 		spdk_free(ctrlr->shadow_doorbell);
1597 		ctrlr->shadow_doorbell = NULL;
1598 	}
1599 
1600 	if (ctrlr->eventidx) {
1601 		spdk_free(ctrlr->eventidx);
1602 		ctrlr->eventidx = NULL;
1603 	}
1604 }
1605 
1606 static void
1607 nvme_ctrlr_set_doorbell_buffer_config_done(void *arg, const struct spdk_nvme_cpl *cpl)
1608 {
1609 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1610 
1611 	if (spdk_nvme_cpl_is_error(cpl)) {
1612 		NVME_CTRLR_WARNLOG(ctrlr, "Doorbell buffer config failed\n");
1613 	} else {
1614 		NVME_CTRLR_INFOLOG(ctrlr, "Doorbell buffer config enabled\n");
1615 	}
1616 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1617 			     ctrlr->opts.admin_timeout_ms);
1618 }
1619 
1620 static int
1621 nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr)
1622 {
1623 	int rc = 0;
1624 	uint64_t prp1, prp2, len;
1625 
1626 	if (!ctrlr->cdata.oacs.doorbell_buffer_config) {
1627 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1628 				     ctrlr->opts.admin_timeout_ms);
1629 		return 0;
1630 	}
1631 
1632 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
1633 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1634 				     ctrlr->opts.admin_timeout_ms);
1635 		return 0;
1636 	}
1637 
1638 	/* only 1 page size for doorbell buffer */
1639 	ctrlr->shadow_doorbell = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1640 					      NULL, SPDK_ENV_LCORE_ID_ANY,
1641 					      SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1642 	if (ctrlr->shadow_doorbell == NULL) {
1643 		rc = -ENOMEM;
1644 		goto error;
1645 	}
1646 
1647 	len = ctrlr->page_size;
1648 	prp1 = spdk_vtophys(ctrlr->shadow_doorbell, &len);
1649 	if (prp1 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1650 		rc = -EFAULT;
1651 		goto error;
1652 	}
1653 
1654 	ctrlr->eventidx = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1655 				       NULL, SPDK_ENV_LCORE_ID_ANY,
1656 				       SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1657 	if (ctrlr->eventidx == NULL) {
1658 		rc = -ENOMEM;
1659 		goto error;
1660 	}
1661 
1662 	len = ctrlr->page_size;
1663 	prp2 = spdk_vtophys(ctrlr->eventidx, &len);
1664 	if (prp2 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1665 		rc = -EFAULT;
1666 		goto error;
1667 	}
1668 
1669 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG,
1670 			     ctrlr->opts.admin_timeout_ms);
1671 
1672 	rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2,
1673 			nvme_ctrlr_set_doorbell_buffer_config_done, ctrlr);
1674 	if (rc != 0) {
1675 		goto error;
1676 	}
1677 
1678 	return 0;
1679 
1680 error:
1681 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1682 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1683 	return rc;
1684 }
1685 
1686 void
1687 nvme_ctrlr_abort_queued_aborts(struct spdk_nvme_ctrlr *ctrlr)
1688 {
1689 	struct nvme_request	*req, *tmp;
1690 	struct spdk_nvme_cpl	cpl = {};
1691 
1692 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
1693 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
1694 
1695 	STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) {
1696 		STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq);
1697 		ctrlr->outstanding_aborts++;
1698 
1699 		nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, &cpl);
1700 	}
1701 }
1702 
1703 static int
1704 nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1705 {
1706 	if (ctrlr->is_resetting || ctrlr->is_removed) {
1707 		/*
1708 		 * Controller is already resetting or has been removed. Return
1709 		 *  immediately since there is no need to kick off another
1710 		 *  reset in these cases.
1711 		 */
1712 		return ctrlr->is_resetting ? -EBUSY : -ENXIO;
1713 	}
1714 
1715 	ctrlr->is_resetting = true;
1716 	ctrlr->is_failed = false;
1717 	ctrlr->is_disconnecting = true;
1718 	ctrlr->prepare_for_reset = true;
1719 
1720 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting controller\n");
1721 
1722 	/* Disable keep-alive, it'll be re-enabled as part of the init process */
1723 	ctrlr->keep_alive_interval_ticks = 0;
1724 
1725 	/* Abort all of the queued abort requests */
1726 	nvme_ctrlr_abort_queued_aborts(ctrlr);
1727 
1728 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
1729 
1730 	ctrlr->adminq->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1731 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1732 
1733 	return 0;
1734 }
1735 
1736 static void
1737 nvme_ctrlr_disconnect_done(struct spdk_nvme_ctrlr *ctrlr)
1738 {
1739 	assert(ctrlr->is_failed == false);
1740 	ctrlr->is_disconnecting = false;
1741 
1742 	/* Doorbell buffer config is invalid during reset */
1743 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1744 
1745 	/* I/O Command Set Specific Identify Controller data is invalidated during reset */
1746 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
1747 
1748 	spdk_bit_array_free(&ctrlr->free_io_qids);
1749 
1750 	/* Set the state back to DISCONNECTED to cause a full hardware reset. */
1751 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISCONNECTED, NVME_TIMEOUT_INFINITE);
1752 }
1753 
1754 int
1755 spdk_nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1756 {
1757 	int rc;
1758 
1759 	nvme_ctrlr_lock(ctrlr);
1760 	rc = nvme_ctrlr_disconnect(ctrlr);
1761 	nvme_ctrlr_unlock(ctrlr);
1762 
1763 	return rc;
1764 }
1765 
1766 void
1767 spdk_nvme_ctrlr_reconnect_async(struct spdk_nvme_ctrlr *ctrlr)
1768 {
1769 	nvme_ctrlr_lock(ctrlr);
1770 
1771 	ctrlr->prepare_for_reset = false;
1772 
1773 	/* Set the state back to INIT to cause a full hardware reset. */
1774 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
1775 
1776 	/* Return without releasing ctrlr_lock. ctrlr_lock will be released when
1777 	 * spdk_nvme_ctrlr_reset_poll_async() returns 0.
1778 	 */
1779 }
1780 
1781 int
1782 nvme_ctrlr_reinitialize_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1783 {
1784 	bool async;
1785 	int rc;
1786 
1787 	if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc ||
1788 	    spdk_nvme_ctrlr_is_fabrics(ctrlr) || nvme_qpair_is_admin_queue(qpair)) {
1789 		assert(false);
1790 		return -EINVAL;
1791 	}
1792 
1793 	/* Force a synchronous connect. */
1794 	async = qpair->async;
1795 	qpair->async = false;
1796 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
1797 	qpair->async = async;
1798 
1799 	if (rc != 0) {
1800 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1801 	}
1802 
1803 	return rc;
1804 }
1805 
1806 /**
1807  * This function will be called when the controller is being reinitialized.
1808  * Note: the ctrlr_lock must be held when calling this function.
1809  */
1810 int
1811 spdk_nvme_ctrlr_reconnect_poll_async(struct spdk_nvme_ctrlr *ctrlr)
1812 {
1813 	struct spdk_nvme_ns *ns, *tmp_ns;
1814 	struct spdk_nvme_qpair	*qpair;
1815 	int rc = 0, rc_tmp = 0;
1816 
1817 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1818 		NVME_CTRLR_ERRLOG(ctrlr, "controller reinitialization failed\n");
1819 		rc = -1;
1820 	}
1821 	if (ctrlr->state != NVME_CTRLR_STATE_READY && rc != -1) {
1822 		return -EAGAIN;
1823 	}
1824 
1825 	/*
1826 	 * For non-fabrics controllers, the memory locations of the transport qpair
1827 	 * don't change when the controller is reset. They simply need to be
1828 	 * re-enabled with admin commands to the controller. For fabric
1829 	 * controllers we need to disconnect and reconnect the qpair on its
1830 	 * own thread outside of the context of the reset.
1831 	 */
1832 	if (rc == 0 && !spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
1833 		/* Reinitialize qpairs */
1834 		TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1835 			/* Always clear the qid bit here, even for a foreign qpair. We need
1836 			 * to make sure another process doesn't get the chance to grab that
1837 			 * qid.
1838 			 */
1839 			assert(spdk_bit_array_get(ctrlr->free_io_qids, qpair->id));
1840 			spdk_bit_array_clear(ctrlr->free_io_qids, qpair->id);
1841 			if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc) {
1842 				/*
1843 				 * We cannot reinitialize a foreign qpair. The qpair's owning
1844 				 * process will take care of it. Set failure reason to FAILURE_RESET
1845 				 * to ensure that happens.
1846 				 */
1847 				qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_RESET;
1848 				continue;
1849 			}
1850 			rc_tmp = nvme_ctrlr_reinitialize_io_qpair(ctrlr, qpair);
1851 			if (rc_tmp != 0) {
1852 				rc = rc_tmp;
1853 			}
1854 		}
1855 	}
1856 
1857 	/*
1858 	 * Take this opportunity to remove inactive namespaces. During a reset namespace
1859 	 * handles can be invalidated.
1860 	 */
1861 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
1862 		if (!ns->active) {
1863 			RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
1864 			spdk_free(ns);
1865 		}
1866 	}
1867 
1868 	if (rc) {
1869 		nvme_ctrlr_fail(ctrlr, false);
1870 	}
1871 	ctrlr->is_resetting = false;
1872 
1873 	nvme_ctrlr_unlock(ctrlr);
1874 
1875 	if (!ctrlr->cdata.oaes.ns_attribute_notices) {
1876 		/*
1877 		 * If controller doesn't support ns_attribute_notices and
1878 		 * namespace attributes change (e.g. number of namespaces)
1879 		 * we need to update system handling device reset.
1880 		 */
1881 		nvme_io_msg_ctrlr_update(ctrlr);
1882 	}
1883 
1884 	return rc;
1885 }
1886 
1887 /*
1888  * For PCIe transport, spdk_nvme_ctrlr_disconnect() will do a Controller Level Reset
1889  * (Change CC.EN from 1 to 0) as a operation to disconnect the admin qpair.
1890  * The following two functions are added to do a Controller Level Reset. They have
1891  * to be called under the nvme controller's lock.
1892  */
1893 void
1894 nvme_ctrlr_disable(struct spdk_nvme_ctrlr *ctrlr)
1895 {
1896 	assert(ctrlr->is_disconnecting == true);
1897 
1898 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
1899 }
1900 
1901 int
1902 nvme_ctrlr_disable_poll(struct spdk_nvme_ctrlr *ctrlr)
1903 {
1904 	int rc = 0;
1905 
1906 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1907 		NVME_CTRLR_ERRLOG(ctrlr, "failed to disable controller\n");
1908 		rc = -1;
1909 	}
1910 
1911 	if (ctrlr->state != NVME_CTRLR_STATE_DISABLED && rc != -1) {
1912 		return -EAGAIN;
1913 	}
1914 
1915 	return rc;
1916 }
1917 
1918 static void
1919 nvme_ctrlr_fail_io_qpairs(struct spdk_nvme_ctrlr *ctrlr)
1920 {
1921 	struct spdk_nvme_qpair	*qpair;
1922 
1923 	TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1924 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1925 	}
1926 }
1927 
1928 int
1929 spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr)
1930 {
1931 	int rc;
1932 
1933 	nvme_ctrlr_lock(ctrlr);
1934 
1935 	rc = nvme_ctrlr_disconnect(ctrlr);
1936 	if (rc == 0) {
1937 		nvme_ctrlr_fail_io_qpairs(ctrlr);
1938 	}
1939 
1940 	nvme_ctrlr_unlock(ctrlr);
1941 
1942 	if (rc != 0) {
1943 		if (rc == -EBUSY) {
1944 			rc = 0;
1945 		}
1946 		return rc;
1947 	}
1948 
1949 	while (1) {
1950 		rc = spdk_nvme_ctrlr_process_admin_completions(ctrlr);
1951 		if (rc == -ENXIO) {
1952 			break;
1953 		}
1954 	}
1955 
1956 	spdk_nvme_ctrlr_reconnect_async(ctrlr);
1957 
1958 	while (true) {
1959 		rc = spdk_nvme_ctrlr_reconnect_poll_async(ctrlr);
1960 		if (rc != -EAGAIN) {
1961 			break;
1962 		}
1963 	}
1964 
1965 	return rc;
1966 }
1967 
1968 int
1969 spdk_nvme_ctrlr_reset_subsystem(struct spdk_nvme_ctrlr *ctrlr)
1970 {
1971 	union spdk_nvme_cap_register cap;
1972 	int rc = 0;
1973 
1974 	cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr);
1975 	if (cap.bits.nssrs == 0) {
1976 		NVME_CTRLR_WARNLOG(ctrlr, "subsystem reset is not supported\n");
1977 		return -ENOTSUP;
1978 	}
1979 
1980 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting subsystem\n");
1981 	nvme_ctrlr_lock(ctrlr);
1982 	ctrlr->is_resetting = true;
1983 	rc = nvme_ctrlr_set_nssr(ctrlr, SPDK_NVME_NSSR_VALUE);
1984 	ctrlr->is_resetting = false;
1985 
1986 	nvme_ctrlr_unlock(ctrlr);
1987 	/*
1988 	 * No more cleanup at this point like in the ctrlr reset. A subsystem reset will cause
1989 	 * a hot remove for PCIe transport. The hot remove handling does all the necessary ctrlr cleanup.
1990 	 */
1991 	return rc;
1992 }
1993 
1994 int
1995 spdk_nvme_ctrlr_set_trid(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_transport_id *trid)
1996 {
1997 	int rc = 0;
1998 
1999 	nvme_ctrlr_lock(ctrlr);
2000 
2001 	if (ctrlr->is_failed == false) {
2002 		rc = -EPERM;
2003 		goto out;
2004 	}
2005 
2006 	if (trid->trtype != ctrlr->trid.trtype) {
2007 		rc = -EINVAL;
2008 		goto out;
2009 	}
2010 
2011 	if (strncmp(trid->subnqn, ctrlr->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
2012 		rc = -EINVAL;
2013 		goto out;
2014 	}
2015 
2016 	ctrlr->trid = *trid;
2017 
2018 out:
2019 	nvme_ctrlr_unlock(ctrlr);
2020 	return rc;
2021 }
2022 
2023 void
2024 spdk_nvme_ctrlr_set_remove_cb(struct spdk_nvme_ctrlr *ctrlr,
2025 			      spdk_nvme_remove_cb remove_cb, void *remove_ctx)
2026 {
2027 	if (!spdk_process_is_primary()) {
2028 		return;
2029 	}
2030 
2031 	nvme_ctrlr_lock(ctrlr);
2032 	ctrlr->remove_cb = remove_cb;
2033 	ctrlr->cb_ctx = remove_ctx;
2034 	nvme_ctrlr_unlock(ctrlr);
2035 }
2036 
2037 static void
2038 nvme_ctrlr_identify_done(void *arg, const struct spdk_nvme_cpl *cpl)
2039 {
2040 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2041 
2042 	if (spdk_nvme_cpl_is_error(cpl)) {
2043 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_identify_controller failed!\n");
2044 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2045 		return;
2046 	}
2047 
2048 	/*
2049 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
2050 	 *  controller supports.
2051 	 */
2052 	ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr);
2053 	NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_xfer_size %u\n", ctrlr->max_xfer_size);
2054 	if (ctrlr->cdata.mdts > 0) {
2055 		ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size,
2056 						ctrlr->min_page_size * (1 << ctrlr->cdata.mdts));
2057 		NVME_CTRLR_DEBUGLOG(ctrlr, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size);
2058 	}
2059 
2060 	NVME_CTRLR_DEBUGLOG(ctrlr, "CNTLID 0x%04" PRIx16 "\n", ctrlr->cdata.cntlid);
2061 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
2062 		ctrlr->cntlid = ctrlr->cdata.cntlid;
2063 	} else {
2064 		/*
2065 		 * Fabrics controllers should already have CNTLID from the Connect command.
2066 		 *
2067 		 * If CNTLID from Connect doesn't match CNTLID in the Identify Controller data,
2068 		 * trust the one from Connect.
2069 		 */
2070 		if (ctrlr->cntlid != ctrlr->cdata.cntlid) {
2071 			NVME_CTRLR_DEBUGLOG(ctrlr, "Identify CNTLID 0x%04" PRIx16 " != Connect CNTLID 0x%04" PRIx16 "\n",
2072 					    ctrlr->cdata.cntlid, ctrlr->cntlid);
2073 		}
2074 	}
2075 
2076 	if (ctrlr->cdata.sgls.supported && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
2077 		assert(ctrlr->cdata.sgls.supported != 0x3);
2078 		ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
2079 		if (ctrlr->cdata.sgls.supported == 0x2) {
2080 			ctrlr->flags |= SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT;
2081 		}
2082 
2083 		ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr);
2084 		NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_sges %u\n", ctrlr->max_sges);
2085 	}
2086 
2087 	if (ctrlr->cdata.sgls.metadata_address && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
2088 		ctrlr->flags |= SPDK_NVME_CTRLR_MPTR_SGL_SUPPORTED;
2089 	}
2090 
2091 	if (ctrlr->cdata.oacs.security && !(ctrlr->quirks & NVME_QUIRK_OACS_SECURITY)) {
2092 		ctrlr->flags |= SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED;
2093 	}
2094 
2095 	if (ctrlr->cdata.oacs.directives) {
2096 		ctrlr->flags |= SPDK_NVME_CTRLR_DIRECTIVES_SUPPORTED;
2097 	}
2098 
2099 	NVME_CTRLR_DEBUGLOG(ctrlr, "fuses compare and write: %d\n",
2100 			    ctrlr->cdata.fuses.compare_and_write);
2101 	if (ctrlr->cdata.fuses.compare_and_write) {
2102 		ctrlr->flags |= SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED;
2103 	}
2104 
2105 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
2106 			     ctrlr->opts.admin_timeout_ms);
2107 }
2108 
2109 static int
2110 nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr)
2111 {
2112 	int	rc;
2113 
2114 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY,
2115 			     ctrlr->opts.admin_timeout_ms);
2116 
2117 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, 0,
2118 				     &ctrlr->cdata, sizeof(ctrlr->cdata),
2119 				     nvme_ctrlr_identify_done, ctrlr);
2120 	if (rc != 0) {
2121 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2122 		return rc;
2123 	}
2124 
2125 	return 0;
2126 }
2127 
2128 static void
2129 nvme_ctrlr_get_zns_cmd_and_effects_log_done(void *arg, const struct spdk_nvme_cpl *cpl)
2130 {
2131 	struct spdk_nvme_cmds_and_effect_log_page *log_page;
2132 	struct spdk_nvme_ctrlr *ctrlr = arg;
2133 
2134 	if (spdk_nvme_cpl_is_error(cpl)) {
2135 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_get_zns_cmd_and_effects_log failed!\n");
2136 		spdk_free(ctrlr->tmp_ptr);
2137 		ctrlr->tmp_ptr = NULL;
2138 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2139 		return;
2140 	}
2141 
2142 	log_page = ctrlr->tmp_ptr;
2143 
2144 	if (log_page->io_cmds_supported[SPDK_NVME_OPC_ZONE_APPEND].csupp) {
2145 		ctrlr->flags |= SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2146 	}
2147 	spdk_free(ctrlr->tmp_ptr);
2148 	ctrlr->tmp_ptr = NULL;
2149 
2150 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES, ctrlr->opts.admin_timeout_ms);
2151 }
2152 
2153 static int
2154 nvme_ctrlr_get_zns_cmd_and_effects_log(struct spdk_nvme_ctrlr *ctrlr)
2155 {
2156 	int rc;
2157 
2158 	assert(!ctrlr->tmp_ptr);
2159 	ctrlr->tmp_ptr = spdk_zmalloc(sizeof(struct spdk_nvme_cmds_and_effect_log_page), 64, NULL,
2160 				      SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2161 	if (!ctrlr->tmp_ptr) {
2162 		rc = -ENOMEM;
2163 		goto error;
2164 	}
2165 
2166 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG,
2167 			     ctrlr->opts.admin_timeout_ms);
2168 
2169 	rc = spdk_nvme_ctrlr_cmd_get_log_page_ext(ctrlr, SPDK_NVME_LOG_COMMAND_EFFECTS_LOG,
2170 			0, ctrlr->tmp_ptr, sizeof(struct spdk_nvme_cmds_and_effect_log_page),
2171 			0, 0, 0, SPDK_NVME_CSI_ZNS << 24,
2172 			nvme_ctrlr_get_zns_cmd_and_effects_log_done, ctrlr);
2173 	if (rc != 0) {
2174 		goto error;
2175 	}
2176 
2177 	return 0;
2178 
2179 error:
2180 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2181 	spdk_free(ctrlr->tmp_ptr);
2182 	ctrlr->tmp_ptr = NULL;
2183 	return rc;
2184 }
2185 
2186 static void
2187 nvme_ctrlr_identify_zns_specific_done(void *arg, const struct spdk_nvme_cpl *cpl)
2188 {
2189 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2190 
2191 	if (spdk_nvme_cpl_is_error(cpl)) {
2192 		/* no need to print an error, the controller simply does not support ZNS */
2193 		nvme_ctrlr_free_zns_specific_data(ctrlr);
2194 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2195 				     ctrlr->opts.admin_timeout_ms);
2196 		return;
2197 	}
2198 
2199 	/* A zero zasl value means use mdts */
2200 	if (ctrlr->cdata_zns->zasl) {
2201 		uint32_t max_append = ctrlr->min_page_size * (1 << ctrlr->cdata_zns->zasl);
2202 		ctrlr->max_zone_append_size = spdk_min(ctrlr->max_xfer_size, max_append);
2203 	} else {
2204 		ctrlr->max_zone_append_size = ctrlr->max_xfer_size;
2205 	}
2206 
2207 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG,
2208 			     ctrlr->opts.admin_timeout_ms);
2209 }
2210 
2211 /**
2212  * This function will try to fetch the I/O Command Specific Controller data structure for
2213  * each I/O Command Set supported by SPDK.
2214  *
2215  * If an I/O Command Set is not supported by the controller, "Invalid Field in Command"
2216  * will be returned. Since we are fetching in a exploratively way, getting an error back
2217  * from the controller should not be treated as fatal.
2218  *
2219  * I/O Command Sets not supported by SPDK will be skipped (e.g. Key Value Command Set).
2220  *
2221  * I/O Command Sets without a IOCS specific data structure (i.e. a zero-filled IOCS specific
2222  * data structure) will be skipped (e.g. NVM Command Set, Key Value Command Set).
2223  */
2224 static int
2225 nvme_ctrlr_identify_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2226 {
2227 	int	rc;
2228 
2229 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2230 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2231 				     ctrlr->opts.admin_timeout_ms);
2232 		return 0;
2233 	}
2234 
2235 	/*
2236 	 * Since SPDK currently only needs to fetch a single Command Set, keep the code here,
2237 	 * instead of creating multiple NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC substates,
2238 	 * which would require additional functions and complexity for no good reason.
2239 	 */
2240 	assert(!ctrlr->cdata_zns);
2241 	ctrlr->cdata_zns = spdk_zmalloc(sizeof(*ctrlr->cdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
2242 					SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2243 	if (!ctrlr->cdata_zns) {
2244 		rc = -ENOMEM;
2245 		goto error;
2246 	}
2247 
2248 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC,
2249 			     ctrlr->opts.admin_timeout_ms);
2250 
2251 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR_IOCS, 0, 0, SPDK_NVME_CSI_ZNS,
2252 				     ctrlr->cdata_zns, sizeof(*ctrlr->cdata_zns),
2253 				     nvme_ctrlr_identify_zns_specific_done, ctrlr);
2254 	if (rc != 0) {
2255 		goto error;
2256 	}
2257 
2258 	return 0;
2259 
2260 error:
2261 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2262 	nvme_ctrlr_free_zns_specific_data(ctrlr);
2263 	return rc;
2264 }
2265 
2266 enum nvme_active_ns_state {
2267 	NVME_ACTIVE_NS_STATE_IDLE,
2268 	NVME_ACTIVE_NS_STATE_PROCESSING,
2269 	NVME_ACTIVE_NS_STATE_DONE,
2270 	NVME_ACTIVE_NS_STATE_ERROR
2271 };
2272 
2273 typedef void (*nvme_active_ns_ctx_deleter)(struct nvme_active_ns_ctx *);
2274 
2275 struct nvme_active_ns_ctx {
2276 	struct spdk_nvme_ctrlr *ctrlr;
2277 	uint32_t page_count;
2278 	uint32_t next_nsid;
2279 	uint32_t *new_ns_list;
2280 	nvme_active_ns_ctx_deleter deleter;
2281 
2282 	enum nvme_active_ns_state state;
2283 };
2284 
2285 static struct nvme_active_ns_ctx *
2286 nvme_active_ns_ctx_create(struct spdk_nvme_ctrlr *ctrlr, nvme_active_ns_ctx_deleter deleter)
2287 {
2288 	struct nvme_active_ns_ctx *ctx;
2289 	uint32_t *new_ns_list = NULL;
2290 
2291 	ctx = calloc(1, sizeof(*ctx));
2292 	if (!ctx) {
2293 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate nvme_active_ns_ctx!\n");
2294 		return NULL;
2295 	}
2296 
2297 	new_ns_list = spdk_zmalloc(sizeof(struct spdk_nvme_ns_list), ctrlr->page_size,
2298 				   NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_SHARE);
2299 	if (!new_ns_list) {
2300 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate active_ns_list!\n");
2301 		free(ctx);
2302 		return NULL;
2303 	}
2304 
2305 	ctx->page_count = 1;
2306 	ctx->new_ns_list = new_ns_list;
2307 	ctx->ctrlr = ctrlr;
2308 	ctx->deleter = deleter;
2309 
2310 	return ctx;
2311 }
2312 
2313 static void
2314 nvme_active_ns_ctx_destroy(struct nvme_active_ns_ctx *ctx)
2315 {
2316 	spdk_free(ctx->new_ns_list);
2317 	free(ctx);
2318 }
2319 
2320 static int
2321 nvme_ctrlr_destruct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2322 {
2323 	struct spdk_nvme_ns tmp, *ns;
2324 
2325 	assert(ctrlr != NULL);
2326 
2327 	tmp.id = nsid;
2328 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
2329 	if (ns == NULL) {
2330 		return -EINVAL;
2331 	}
2332 
2333 	nvme_ns_destruct(ns);
2334 	ns->active = false;
2335 
2336 	return 0;
2337 }
2338 
2339 static int
2340 nvme_ctrlr_construct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2341 {
2342 	struct spdk_nvme_ns *ns;
2343 
2344 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
2345 		return -EINVAL;
2346 	}
2347 
2348 	/* Namespaces are constructed on demand, so simply request it. */
2349 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2350 	if (ns == NULL) {
2351 		return -ENOMEM;
2352 	}
2353 
2354 	ns->active = true;
2355 
2356 	return 0;
2357 }
2358 
2359 static void
2360 nvme_ctrlr_identify_active_ns_swap(struct spdk_nvme_ctrlr *ctrlr, uint32_t *new_ns_list,
2361 				   size_t max_entries)
2362 {
2363 	uint32_t active_ns_count = 0;
2364 	size_t i;
2365 	uint32_t nsid;
2366 	struct spdk_nvme_ns *ns, *tmp_ns;
2367 	int rc;
2368 
2369 	/* First, remove namespaces that no longer exist */
2370 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
2371 		nsid = new_ns_list[0];
2372 		active_ns_count = 0;
2373 		while (nsid != 0) {
2374 			if (nsid == ns->id) {
2375 				break;
2376 			}
2377 
2378 			nsid = new_ns_list[active_ns_count++];
2379 		}
2380 
2381 		if (nsid != ns->id) {
2382 			/* Did not find this namespace id in the new list. */
2383 			NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was removed\n", ns->id);
2384 			nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
2385 		}
2386 	}
2387 
2388 	/* Next, add new namespaces */
2389 	active_ns_count = 0;
2390 	for (i = 0; i < max_entries; i++) {
2391 		nsid = new_ns_list[active_ns_count];
2392 
2393 		if (nsid == 0) {
2394 			break;
2395 		}
2396 
2397 		/* If the namespace already exists, this will not construct it a second time. */
2398 		rc = nvme_ctrlr_construct_namespace(ctrlr, nsid);
2399 		if (rc != 0) {
2400 			/* We can't easily handle a failure here. But just move on. */
2401 			assert(false);
2402 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to allocate a namespace object.\n");
2403 			continue;
2404 		}
2405 
2406 		active_ns_count++;
2407 	}
2408 
2409 	ctrlr->active_ns_count = active_ns_count;
2410 }
2411 
2412 static void
2413 nvme_ctrlr_identify_active_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2414 {
2415 	struct nvme_active_ns_ctx *ctx = arg;
2416 	uint32_t *new_ns_list = NULL;
2417 
2418 	if (spdk_nvme_cpl_is_error(cpl)) {
2419 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2420 		goto out;
2421 	}
2422 
2423 	ctx->next_nsid = ctx->new_ns_list[1024 * ctx->page_count - 1];
2424 	if (ctx->next_nsid == 0) {
2425 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2426 		goto out;
2427 	}
2428 
2429 	ctx->page_count++;
2430 	new_ns_list = spdk_realloc(ctx->new_ns_list,
2431 				   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2432 				   ctx->ctrlr->page_size);
2433 	if (!new_ns_list) {
2434 		SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2435 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2436 		goto out;
2437 	}
2438 
2439 	ctx->new_ns_list = new_ns_list;
2440 	nvme_ctrlr_identify_active_ns_async(ctx);
2441 	return;
2442 
2443 out:
2444 	if (ctx->deleter) {
2445 		ctx->deleter(ctx);
2446 	}
2447 }
2448 
2449 static void
2450 nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx)
2451 {
2452 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2453 	uint32_t i;
2454 	int rc;
2455 
2456 	if (ctrlr->cdata.nn == 0) {
2457 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2458 		goto out;
2459 	}
2460 
2461 	assert(ctx->new_ns_list != NULL);
2462 
2463 	/*
2464 	 * If controller doesn't support active ns list CNS 0x02 dummy up
2465 	 * an active ns list, i.e. all namespaces report as active
2466 	 */
2467 	if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 1, 0) || ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS) {
2468 		uint32_t *new_ns_list;
2469 
2470 		/*
2471 		 * Active NS list must always end with zero element.
2472 		 * So, we allocate for cdata.nn+1.
2473 		 */
2474 		ctx->page_count = spdk_divide_round_up(ctrlr->cdata.nn + 1,
2475 						       sizeof(struct spdk_nvme_ns_list) / sizeof(new_ns_list[0]));
2476 		new_ns_list = spdk_realloc(ctx->new_ns_list,
2477 					   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2478 					   ctx->ctrlr->page_size);
2479 		if (!new_ns_list) {
2480 			SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2481 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2482 			goto out;
2483 		}
2484 
2485 		ctx->new_ns_list = new_ns_list;
2486 		ctx->new_ns_list[ctrlr->cdata.nn] = 0;
2487 		for (i = 0; i < ctrlr->cdata.nn; i++) {
2488 			ctx->new_ns_list[i] = i + 1;
2489 		}
2490 
2491 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2492 		goto out;
2493 	}
2494 
2495 	ctx->state = NVME_ACTIVE_NS_STATE_PROCESSING;
2496 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, ctx->next_nsid, 0,
2497 				     &ctx->new_ns_list[1024 * (ctx->page_count - 1)], sizeof(struct spdk_nvme_ns_list),
2498 				     nvme_ctrlr_identify_active_ns_async_done, ctx);
2499 	if (rc != 0) {
2500 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2501 		goto out;
2502 	}
2503 
2504 	return;
2505 
2506 out:
2507 	if (ctx->deleter) {
2508 		ctx->deleter(ctx);
2509 	}
2510 }
2511 
2512 static void
2513 _nvme_active_ns_ctx_deleter(struct nvme_active_ns_ctx *ctx)
2514 {
2515 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2516 	struct spdk_nvme_ns *ns;
2517 
2518 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2519 		nvme_active_ns_ctx_destroy(ctx);
2520 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2521 		return;
2522 	}
2523 
2524 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2525 
2526 	RB_FOREACH(ns, nvme_ns_tree, &ctrlr->ns) {
2527 		nvme_ns_free_iocs_specific_data(ns);
2528 	}
2529 
2530 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2531 	nvme_active_ns_ctx_destroy(ctx);
2532 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS, ctrlr->opts.admin_timeout_ms);
2533 }
2534 
2535 static void
2536 _nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2537 {
2538 	struct nvme_active_ns_ctx *ctx;
2539 
2540 	ctx = nvme_active_ns_ctx_create(ctrlr, _nvme_active_ns_ctx_deleter);
2541 	if (!ctx) {
2542 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2543 		return;
2544 	}
2545 
2546 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS,
2547 			     ctrlr->opts.admin_timeout_ms);
2548 	nvme_ctrlr_identify_active_ns_async(ctx);
2549 }
2550 
2551 int
2552 nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2553 {
2554 	struct nvme_active_ns_ctx *ctx;
2555 	int rc;
2556 
2557 	ctx = nvme_active_ns_ctx_create(ctrlr, NULL);
2558 	if (!ctx) {
2559 		return -ENOMEM;
2560 	}
2561 
2562 	nvme_ctrlr_identify_active_ns_async(ctx);
2563 	while (ctx->state == NVME_ACTIVE_NS_STATE_PROCESSING) {
2564 		rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2565 		if (rc < 0) {
2566 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2567 			break;
2568 		}
2569 	}
2570 
2571 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2572 		nvme_active_ns_ctx_destroy(ctx);
2573 		return -ENXIO;
2574 	}
2575 
2576 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2577 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2578 	nvme_active_ns_ctx_destroy(ctx);
2579 
2580 	return 0;
2581 }
2582 
2583 static void
2584 nvme_ctrlr_identify_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2585 {
2586 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2587 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2588 	uint32_t nsid;
2589 	int rc;
2590 
2591 	if (spdk_nvme_cpl_is_error(cpl)) {
2592 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2593 		return;
2594 	}
2595 
2596 	nvme_ns_set_identify_data(ns);
2597 
2598 	/* move on to the next active NS */
2599 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2600 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2601 	if (ns == NULL) {
2602 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2603 				     ctrlr->opts.admin_timeout_ms);
2604 		return;
2605 	}
2606 	ns->ctrlr = ctrlr;
2607 	ns->id = nsid;
2608 
2609 	rc = nvme_ctrlr_identify_ns_async(ns);
2610 	if (rc) {
2611 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2612 	}
2613 }
2614 
2615 static int
2616 nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns)
2617 {
2618 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2619 	struct spdk_nvme_ns_data *nsdata;
2620 
2621 	nsdata = &ns->nsdata;
2622 
2623 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS,
2624 			     ctrlr->opts.admin_timeout_ms);
2625 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS, 0, ns->id, 0,
2626 				       nsdata, sizeof(*nsdata),
2627 				       nvme_ctrlr_identify_ns_async_done, ns);
2628 }
2629 
2630 static int
2631 nvme_ctrlr_identify_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2632 {
2633 	uint32_t nsid;
2634 	struct spdk_nvme_ns *ns;
2635 	int rc;
2636 
2637 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2638 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2639 	if (ns == NULL) {
2640 		/* No active NS, move on to the next state */
2641 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2642 				     ctrlr->opts.admin_timeout_ms);
2643 		return 0;
2644 	}
2645 
2646 	ns->ctrlr = ctrlr;
2647 	ns->id = nsid;
2648 
2649 	rc = nvme_ctrlr_identify_ns_async(ns);
2650 	if (rc) {
2651 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2652 	}
2653 
2654 	return rc;
2655 }
2656 
2657 static int
2658 nvme_ctrlr_identify_namespaces_iocs_specific_next(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
2659 {
2660 	uint32_t nsid;
2661 	struct spdk_nvme_ns *ns;
2662 	int rc;
2663 
2664 	if (!prev_nsid) {
2665 		nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2666 	} else {
2667 		/* move on to the next active NS */
2668 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, prev_nsid);
2669 	}
2670 
2671 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2672 	if (ns == NULL) {
2673 		/* No first/next active NS, move on to the next state */
2674 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2675 				     ctrlr->opts.admin_timeout_ms);
2676 		return 0;
2677 	}
2678 
2679 	/* loop until we find a ns which has (supported) iocs specific data */
2680 	while (!nvme_ns_has_supported_iocs_specific_data(ns)) {
2681 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2682 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2683 		if (ns == NULL) {
2684 			/* no namespace with (supported) iocs specific data found */
2685 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2686 					     ctrlr->opts.admin_timeout_ms);
2687 			return 0;
2688 		}
2689 	}
2690 
2691 	rc = nvme_ctrlr_identify_ns_iocs_specific_async(ns);
2692 	if (rc) {
2693 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2694 	}
2695 
2696 	return rc;
2697 }
2698 
2699 static void
2700 nvme_ctrlr_identify_ns_zns_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2701 {
2702 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2703 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2704 
2705 	if (spdk_nvme_cpl_is_error(cpl)) {
2706 		nvme_ns_free_zns_specific_data(ns);
2707 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2708 		return;
2709 	}
2710 
2711 	nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2712 }
2713 
2714 static int
2715 nvme_ctrlr_identify_ns_zns_specific_async(struct spdk_nvme_ns *ns)
2716 {
2717 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2718 	int rc;
2719 
2720 	assert(!ns->nsdata_zns);
2721 	ns->nsdata_zns = spdk_zmalloc(sizeof(*ns->nsdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
2722 				      SPDK_MALLOC_SHARE);
2723 	if (!ns->nsdata_zns) {
2724 		return -ENOMEM;
2725 	}
2726 
2727 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2728 			     ctrlr->opts.admin_timeout_ms);
2729 	rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2730 				     ns->nsdata_zns, sizeof(*ns->nsdata_zns),
2731 				     nvme_ctrlr_identify_ns_zns_specific_async_done, ns);
2732 	if (rc) {
2733 		nvme_ns_free_zns_specific_data(ns);
2734 	}
2735 
2736 	return rc;
2737 }
2738 
2739 static void
2740 nvme_ctrlr_identify_ns_nvm_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2741 {
2742 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2743 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2744 
2745 	if (spdk_nvme_cpl_is_error(cpl)) {
2746 		nvme_ns_free_nvm_specific_data(ns);
2747 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2748 		return;
2749 	}
2750 
2751 	nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2752 }
2753 
2754 static int
2755 nvme_ctrlr_identify_ns_nvm_specific_async(struct spdk_nvme_ns *ns)
2756 {
2757 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2758 	int rc;
2759 
2760 	assert(!ns->nsdata_nvm);
2761 	ns->nsdata_nvm = spdk_zmalloc(sizeof(*ns->nsdata_nvm), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
2762 				      SPDK_MALLOC_SHARE);
2763 	if (!ns->nsdata_nvm) {
2764 		return -ENOMEM;
2765 	}
2766 
2767 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2768 			     ctrlr->opts.admin_timeout_ms);
2769 	rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2770 				     ns->nsdata_nvm, sizeof(*ns->nsdata_nvm),
2771 				     nvme_ctrlr_identify_ns_nvm_specific_async_done, ns);
2772 	if (rc) {
2773 		nvme_ns_free_nvm_specific_data(ns);
2774 	}
2775 
2776 	return rc;
2777 }
2778 
2779 static int
2780 nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns)
2781 {
2782 	switch (ns->csi) {
2783 	case SPDK_NVME_CSI_ZNS:
2784 		return nvme_ctrlr_identify_ns_zns_specific_async(ns);
2785 	case SPDK_NVME_CSI_NVM:
2786 		if (ns->ctrlr->cdata.ctratt.bits.elbas) {
2787 			return nvme_ctrlr_identify_ns_nvm_specific_async(ns);
2788 		}
2789 	/* fallthrough */
2790 	default:
2791 		/*
2792 		 * This switch must handle all cases for which
2793 		 * nvme_ns_has_supported_iocs_specific_data() returns true,
2794 		 * other cases should never happen.
2795 		 */
2796 		assert(0);
2797 	}
2798 
2799 	return -EINVAL;
2800 }
2801 
2802 static int
2803 nvme_ctrlr_identify_namespaces_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2804 {
2805 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2806 		/* Multi IOCS not supported/enabled, move on to the next state */
2807 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2808 				     ctrlr->opts.admin_timeout_ms);
2809 		return 0;
2810 	}
2811 
2812 	return nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, 0);
2813 }
2814 
2815 static void
2816 nvme_ctrlr_identify_id_desc_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2817 {
2818 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2819 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2820 	uint32_t nsid;
2821 	int rc;
2822 
2823 	if (spdk_nvme_cpl_is_error(cpl)) {
2824 		/*
2825 		 * Many controllers claim to be compatible with NVMe 1.3, however,
2826 		 * they do not implement NS ID Desc List. Therefore, instead of setting
2827 		 * the state to NVME_CTRLR_STATE_ERROR, silently ignore the completion
2828 		 * error and move on to the next state.
2829 		 *
2830 		 * The proper way is to create a new quirk for controllers that violate
2831 		 * the NVMe 1.3 spec by not supporting NS ID Desc List.
2832 		 * (Re-using the NVME_QUIRK_IDENTIFY_CNS quirk is not possible, since
2833 		 * it is too generic and was added in order to handle controllers that
2834 		 * violate the NVMe 1.1 spec by not supporting ACTIVE LIST).
2835 		 */
2836 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2837 				     ctrlr->opts.admin_timeout_ms);
2838 		return;
2839 	}
2840 
2841 	nvme_ns_set_id_desc_list_data(ns);
2842 
2843 	/* move on to the next active NS */
2844 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2845 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2846 	if (ns == NULL) {
2847 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2848 				     ctrlr->opts.admin_timeout_ms);
2849 		return;
2850 	}
2851 
2852 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2853 	if (rc) {
2854 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2855 	}
2856 }
2857 
2858 static int
2859 nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns)
2860 {
2861 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2862 
2863 	memset(ns->id_desc_list, 0, sizeof(ns->id_desc_list));
2864 
2865 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS,
2866 			     ctrlr->opts.admin_timeout_ms);
2867 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_ID_DESCRIPTOR_LIST,
2868 				       0, ns->id, 0, ns->id_desc_list, sizeof(ns->id_desc_list),
2869 				       nvme_ctrlr_identify_id_desc_async_done, ns);
2870 }
2871 
2872 static int
2873 nvme_ctrlr_identify_id_desc_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2874 {
2875 	uint32_t nsid;
2876 	struct spdk_nvme_ns *ns;
2877 	int rc;
2878 
2879 	if ((ctrlr->vs.raw < SPDK_NVME_VERSION(1, 3, 0) &&
2880 	     !(ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS)) ||
2881 	    (ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2882 		NVME_CTRLR_DEBUGLOG(ctrlr, "Version < 1.3; not attempting to retrieve NS ID Descriptor List\n");
2883 		/* NS ID Desc List not supported, move on to the next state */
2884 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2885 				     ctrlr->opts.admin_timeout_ms);
2886 		return 0;
2887 	}
2888 
2889 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2890 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2891 	if (ns == NULL) {
2892 		/* No active NS, move on to the next state */
2893 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2894 				     ctrlr->opts.admin_timeout_ms);
2895 		return 0;
2896 	}
2897 
2898 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2899 	if (rc) {
2900 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2901 	}
2902 
2903 	return rc;
2904 }
2905 
2906 static void
2907 nvme_ctrlr_update_nvmf_ioccsz(struct spdk_nvme_ctrlr *ctrlr)
2908 {
2909 	if (spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
2910 		if (ctrlr->cdata.nvmf_specific.ioccsz < 4) {
2911 			NVME_CTRLR_ERRLOG(ctrlr, "Incorrect IOCCSZ %u, the minimum value should be 4\n",
2912 					  ctrlr->cdata.nvmf_specific.ioccsz);
2913 			ctrlr->cdata.nvmf_specific.ioccsz = 4;
2914 			assert(0);
2915 		}
2916 		ctrlr->ioccsz_bytes = ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd);
2917 		ctrlr->icdoff = ctrlr->cdata.nvmf_specific.icdoff;
2918 	}
2919 }
2920 
2921 static void
2922 nvme_ctrlr_set_num_queues_done(void *arg, const struct spdk_nvme_cpl *cpl)
2923 {
2924 	uint32_t cq_allocated, sq_allocated, min_allocated, i;
2925 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2926 
2927 	if (spdk_nvme_cpl_is_error(cpl)) {
2928 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Number of Queues failed!\n");
2929 		ctrlr->opts.num_io_queues = 0;
2930 	} else {
2931 		/*
2932 		 * Data in cdw0 is 0-based.
2933 		 * Lower 16-bits indicate number of submission queues allocated.
2934 		 * Upper 16-bits indicate number of completion queues allocated.
2935 		 */
2936 		sq_allocated = (cpl->cdw0 & 0xFFFF) + 1;
2937 		cq_allocated = (cpl->cdw0 >> 16) + 1;
2938 
2939 		/*
2940 		 * For 1:1 queue mapping, set number of allocated queues to be minimum of
2941 		 * submission and completion queues.
2942 		 */
2943 		min_allocated = spdk_min(sq_allocated, cq_allocated);
2944 
2945 		/* Set number of queues to be minimum of requested and actually allocated. */
2946 		ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues);
2947 	}
2948 
2949 	ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1);
2950 	if (ctrlr->free_io_qids == NULL) {
2951 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2952 		return;
2953 	}
2954 
2955 	/* Initialize list of free I/O queue IDs. QID 0 is the admin queue (implicitly allocated). */
2956 	for (i = 1; i <= ctrlr->opts.num_io_queues; i++) {
2957 		spdk_nvme_ctrlr_free_qid(ctrlr, i);
2958 	}
2959 
2960 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS,
2961 			     ctrlr->opts.admin_timeout_ms);
2962 }
2963 
2964 static int
2965 nvme_ctrlr_set_num_queues(struct spdk_nvme_ctrlr *ctrlr)
2966 {
2967 	int rc;
2968 
2969 	if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) {
2970 		NVME_CTRLR_NOTICELOG(ctrlr, "Limiting requested num_io_queues %u to max %d\n",
2971 				     ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES);
2972 		ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES;
2973 	} else if (ctrlr->opts.num_io_queues < 1) {
2974 		NVME_CTRLR_NOTICELOG(ctrlr, "Requested num_io_queues 0, increasing to 1\n");
2975 		ctrlr->opts.num_io_queues = 1;
2976 	}
2977 
2978 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES,
2979 			     ctrlr->opts.admin_timeout_ms);
2980 
2981 	rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues,
2982 					   nvme_ctrlr_set_num_queues_done, ctrlr);
2983 	if (rc != 0) {
2984 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2985 		return rc;
2986 	}
2987 
2988 	return 0;
2989 }
2990 
2991 static void
2992 nvme_ctrlr_set_keep_alive_timeout_done(void *arg, const struct spdk_nvme_cpl *cpl)
2993 {
2994 	uint32_t keep_alive_interval_us;
2995 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2996 
2997 	if (spdk_nvme_cpl_is_error(cpl)) {
2998 		if ((cpl->status.sct == SPDK_NVME_SCT_GENERIC) &&
2999 		    (cpl->status.sc == SPDK_NVME_SC_INVALID_FIELD)) {
3000 			NVME_CTRLR_DEBUGLOG(ctrlr, "Keep alive timeout Get Feature is not supported\n");
3001 		} else {
3002 			NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: SC %x SCT %x\n",
3003 					  cpl->status.sc, cpl->status.sct);
3004 			ctrlr->opts.keep_alive_timeout_ms = 0;
3005 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3006 			return;
3007 		}
3008 	} else {
3009 		if (ctrlr->opts.keep_alive_timeout_ms != cpl->cdw0) {
3010 			NVME_CTRLR_DEBUGLOG(ctrlr, "Controller adjusted keep alive timeout to %u ms\n",
3011 					    cpl->cdw0);
3012 		}
3013 
3014 		ctrlr->opts.keep_alive_timeout_ms = cpl->cdw0;
3015 	}
3016 
3017 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
3018 		ctrlr->keep_alive_interval_ticks = 0;
3019 	} else {
3020 		keep_alive_interval_us = ctrlr->opts.keep_alive_timeout_ms * 1000 / 2;
3021 
3022 		NVME_CTRLR_DEBUGLOG(ctrlr, "Sending keep alive every %u us\n", keep_alive_interval_us);
3023 
3024 		ctrlr->keep_alive_interval_ticks = (keep_alive_interval_us * spdk_get_ticks_hz()) /
3025 						   UINT64_C(1000000);
3026 
3027 		/* Schedule the first Keep Alive to be sent as soon as possible. */
3028 		ctrlr->next_keep_alive_tick = spdk_get_ticks();
3029 	}
3030 
3031 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3032 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
3033 	} else {
3034 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3035 				     ctrlr->opts.admin_timeout_ms);
3036 	}
3037 }
3038 
3039 static int
3040 nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr)
3041 {
3042 	int rc;
3043 
3044 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
3045 		if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3046 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
3047 		} else {
3048 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3049 					     ctrlr->opts.admin_timeout_ms);
3050 		}
3051 		return 0;
3052 	}
3053 
3054 	/* Note: Discovery controller identify data does not populate KAS according to spec. */
3055 	if (!spdk_nvme_ctrlr_is_discovery(ctrlr) && ctrlr->cdata.kas == 0) {
3056 		NVME_CTRLR_DEBUGLOG(ctrlr, "Controller KAS is 0 - not enabling Keep Alive\n");
3057 		ctrlr->opts.keep_alive_timeout_ms = 0;
3058 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3059 				     ctrlr->opts.admin_timeout_ms);
3060 		return 0;
3061 	}
3062 
3063 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT,
3064 			     ctrlr->opts.admin_timeout_ms);
3065 
3066 	/* Retrieve actual keep alive timeout, since the controller may have adjusted it. */
3067 	rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0,
3068 					     nvme_ctrlr_set_keep_alive_timeout_done, ctrlr);
3069 	if (rc != 0) {
3070 		NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: %d\n", rc);
3071 		ctrlr->opts.keep_alive_timeout_ms = 0;
3072 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3073 		return rc;
3074 	}
3075 
3076 	return 0;
3077 }
3078 
3079 static void
3080 nvme_ctrlr_set_host_id_done(void *arg, const struct spdk_nvme_cpl *cpl)
3081 {
3082 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
3083 
3084 	if (spdk_nvme_cpl_is_error(cpl)) {
3085 		/*
3086 		 * Treat Set Features - Host ID failure as non-fatal, since the Host ID feature
3087 		 * is optional.
3088 		 */
3089 		NVME_CTRLR_WARNLOG(ctrlr, "Set Features - Host ID failed: SC 0x%x SCT 0x%x\n",
3090 				   cpl->status.sc, cpl->status.sct);
3091 	} else {
3092 		NVME_CTRLR_DEBUGLOG(ctrlr, "Set Features - Host ID was successful\n");
3093 	}
3094 
3095 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3096 }
3097 
3098 static int
3099 nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr)
3100 {
3101 	uint8_t *host_id;
3102 	uint32_t host_id_size;
3103 	int rc;
3104 
3105 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
3106 		/*
3107 		 * NVMe-oF sends the host ID during Connect and doesn't allow
3108 		 * Set Features - Host Identifier after Connect, so we don't need to do anything here.
3109 		 */
3110 		NVME_CTRLR_DEBUGLOG(ctrlr, "NVMe-oF transport - not sending Set Features - Host ID\n");
3111 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3112 		return 0;
3113 	}
3114 
3115 	if (ctrlr->cdata.ctratt.bits.host_id_exhid_supported) {
3116 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 128-bit extended host identifier\n");
3117 		host_id = ctrlr->opts.extended_host_id;
3118 		host_id_size = sizeof(ctrlr->opts.extended_host_id);
3119 	} else {
3120 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 64-bit host identifier\n");
3121 		host_id = ctrlr->opts.host_id;
3122 		host_id_size = sizeof(ctrlr->opts.host_id);
3123 	}
3124 
3125 	/* If the user specified an all-zeroes host identifier, don't send the command. */
3126 	if (spdk_mem_all_zero(host_id, host_id_size)) {
3127 		NVME_CTRLR_DEBUGLOG(ctrlr, "User did not specify host ID - not sending Set Features - Host ID\n");
3128 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3129 		return 0;
3130 	}
3131 
3132 	SPDK_LOGDUMP(nvme, "host_id", host_id, host_id_size);
3133 
3134 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_HOST_ID,
3135 			     ctrlr->opts.admin_timeout_ms);
3136 
3137 	rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_ctrlr_set_host_id_done, ctrlr);
3138 	if (rc != 0) {
3139 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Host ID failed: %d\n", rc);
3140 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3141 		return rc;
3142 	}
3143 
3144 	return 0;
3145 }
3146 
3147 void
3148 nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr)
3149 {
3150 	uint32_t nsid;
3151 	struct spdk_nvme_ns *ns;
3152 
3153 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3154 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
3155 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
3156 		nvme_ns_construct(ns, nsid, ctrlr);
3157 	}
3158 }
3159 
3160 static int
3161 nvme_ctrlr_clear_changed_ns_log(struct spdk_nvme_ctrlr *ctrlr)
3162 {
3163 	struct nvme_completion_poll_status	*status;
3164 	int		rc = -ENOMEM;
3165 	char		*buffer = NULL;
3166 	uint32_t	nsid;
3167 	size_t		buf_size = (SPDK_NVME_MAX_CHANGED_NAMESPACES * sizeof(uint32_t));
3168 
3169 	if (ctrlr->opts.disable_read_changed_ns_list_log_page) {
3170 		return 0;
3171 	}
3172 
3173 	buffer = spdk_dma_zmalloc(buf_size, 4096, NULL);
3174 	if (!buffer) {
3175 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate buffer for getting "
3176 				  "changed ns log.\n");
3177 		return rc;
3178 	}
3179 
3180 	status = calloc(1, sizeof(*status));
3181 	if (!status) {
3182 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
3183 		goto free_buffer;
3184 	}
3185 
3186 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
3187 					      SPDK_NVME_LOG_CHANGED_NS_LIST,
3188 					      SPDK_NVME_GLOBAL_NS_TAG,
3189 					      buffer, buf_size, 0,
3190 					      nvme_completion_poll_cb, status);
3191 
3192 	if (rc) {
3193 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_get_log_page() failed: rc=%d\n", rc);
3194 		free(status);
3195 		goto free_buffer;
3196 	}
3197 
3198 	rc = nvme_wait_for_completion_timeout(ctrlr->adminq, status,
3199 					      ctrlr->opts.admin_timeout_ms * 1000);
3200 	if (!status->timed_out) {
3201 		free(status);
3202 	}
3203 
3204 	if (rc) {
3205 		NVME_CTRLR_ERRLOG(ctrlr, "wait for spdk_nvme_ctrlr_cmd_get_log_page failed: rc=%d\n", rc);
3206 		goto free_buffer;
3207 	}
3208 
3209 	/* only check the case of overflow. */
3210 	nsid = from_le32(buffer);
3211 	if (nsid == 0xffffffffu) {
3212 		NVME_CTRLR_WARNLOG(ctrlr, "changed ns log overflowed.\n");
3213 	}
3214 
3215 free_buffer:
3216 	spdk_dma_free(buffer);
3217 	return rc;
3218 }
3219 
3220 static void
3221 nvme_ctrlr_process_async_event(struct spdk_nvme_ctrlr *ctrlr,
3222 			       const struct spdk_nvme_cpl *cpl)
3223 {
3224 	union spdk_nvme_async_event_completion event;
3225 	struct spdk_nvme_ctrlr_process *active_proc;
3226 	int rc;
3227 
3228 	event.raw = cpl->cdw0;
3229 
3230 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3231 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
3232 		nvme_ctrlr_clear_changed_ns_log(ctrlr);
3233 
3234 		rc = nvme_ctrlr_identify_active_ns(ctrlr);
3235 		if (rc) {
3236 			return;
3237 		}
3238 		nvme_ctrlr_update_namespaces(ctrlr);
3239 		nvme_io_msg_ctrlr_update(ctrlr);
3240 	}
3241 
3242 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3243 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
3244 		if (!ctrlr->opts.disable_read_ana_log_page) {
3245 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
3246 			if (rc) {
3247 				return;
3248 			}
3249 			nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
3250 						      ctrlr);
3251 		}
3252 	}
3253 
3254 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3255 	if (active_proc && active_proc->aer_cb_fn) {
3256 		active_proc->aer_cb_fn(active_proc->aer_cb_arg, cpl);
3257 	}
3258 }
3259 
3260 static void
3261 nvme_ctrlr_queue_async_event(struct spdk_nvme_ctrlr *ctrlr,
3262 			     const struct spdk_nvme_cpl *cpl)
3263 {
3264 	struct  spdk_nvme_ctrlr_aer_completion_list *nvme_event;
3265 	struct spdk_nvme_ctrlr_process *proc;
3266 
3267 	/* Add async event to each process objects event list */
3268 	TAILQ_FOREACH(proc, &ctrlr->active_procs, tailq) {
3269 		/* Must be shared memory so other processes can access */
3270 		nvme_event = spdk_zmalloc(sizeof(*nvme_event), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
3271 		if (!nvme_event) {
3272 			NVME_CTRLR_ERRLOG(ctrlr, "Alloc nvme event failed, ignore the event\n");
3273 			return;
3274 		}
3275 		nvme_event->cpl = *cpl;
3276 
3277 		STAILQ_INSERT_TAIL(&proc->async_events, nvme_event, link);
3278 	}
3279 }
3280 
3281 static void
3282 nvme_ctrlr_complete_queued_async_events(struct spdk_nvme_ctrlr *ctrlr)
3283 {
3284 	struct  spdk_nvme_ctrlr_aer_completion_list  *nvme_event, *nvme_event_tmp;
3285 	struct spdk_nvme_ctrlr_process	*active_proc;
3286 
3287 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3288 
3289 	STAILQ_FOREACH_SAFE(nvme_event, &active_proc->async_events, link, nvme_event_tmp) {
3290 		STAILQ_REMOVE(&active_proc->async_events, nvme_event,
3291 			      spdk_nvme_ctrlr_aer_completion_list, link);
3292 		nvme_ctrlr_process_async_event(ctrlr, &nvme_event->cpl);
3293 		spdk_free(nvme_event);
3294 
3295 	}
3296 }
3297 
3298 static void
3299 nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl)
3300 {
3301 	struct nvme_async_event_request	*aer = arg;
3302 	struct spdk_nvme_ctrlr		*ctrlr = aer->ctrlr;
3303 
3304 	if (cpl->status.sct == SPDK_NVME_SCT_GENERIC &&
3305 	    cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) {
3306 		/*
3307 		 *  This is simulated when controller is being shut down, to
3308 		 *  effectively abort outstanding asynchronous event requests
3309 		 *  and make sure all memory is freed.  Do not repost the
3310 		 *  request in this case.
3311 		 */
3312 		return;
3313 	}
3314 
3315 	if (cpl->status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC &&
3316 	    cpl->status.sc == SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED) {
3317 		/*
3318 		 *  SPDK will only send as many AERs as the device says it supports,
3319 		 *  so this status code indicates an out-of-spec device.  Do not repost
3320 		 *  the request in this case.
3321 		 */
3322 		NVME_CTRLR_ERRLOG(ctrlr, "Controller appears out-of-spec for asynchronous event request\n"
3323 				  "handling.  Do not repost this AER.\n");
3324 		return;
3325 	}
3326 
3327 	/* Add the events to the list */
3328 	nvme_ctrlr_queue_async_event(ctrlr, cpl);
3329 
3330 	/* If the ctrlr was removed or in the destruct state, we should not send aer again */
3331 	if (ctrlr->is_removed || ctrlr->is_destructed) {
3332 		return;
3333 	}
3334 
3335 	/*
3336 	 * Repost another asynchronous event request to replace the one
3337 	 *  that just completed.
3338 	 */
3339 	if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
3340 		/*
3341 		 * We can't do anything to recover from a failure here,
3342 		 * so just print a warning message and leave the AER unsubmitted.
3343 		 */
3344 		NVME_CTRLR_ERRLOG(ctrlr, "resubmitting AER failed!\n");
3345 	}
3346 }
3347 
3348 static int
3349 nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
3350 				    struct nvme_async_event_request *aer)
3351 {
3352 	struct nvme_request *req;
3353 
3354 	aer->ctrlr = ctrlr;
3355 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer);
3356 	aer->req = req;
3357 	if (req == NULL) {
3358 		return -1;
3359 	}
3360 
3361 	req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
3362 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
3363 }
3364 
3365 static void
3366 nvme_ctrlr_configure_aer_done(void *arg, const struct spdk_nvme_cpl *cpl)
3367 {
3368 	struct nvme_async_event_request		*aer;
3369 	int					rc;
3370 	uint32_t				i;
3371 	struct spdk_nvme_ctrlr *ctrlr =	(struct spdk_nvme_ctrlr *)arg;
3372 
3373 	if (spdk_nvme_cpl_is_error(cpl)) {
3374 		NVME_CTRLR_NOTICELOG(ctrlr, "nvme_ctrlr_configure_aer failed!\n");
3375 		ctrlr->num_aers = 0;
3376 	} else {
3377 		/* aerl is a zero-based value, so we need to add 1 here. */
3378 		ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
3379 	}
3380 
3381 	for (i = 0; i < ctrlr->num_aers; i++) {
3382 		aer = &ctrlr->aer[i];
3383 		rc = nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
3384 		if (rc) {
3385 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_construct_and_submit_aer failed!\n");
3386 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3387 			return;
3388 		}
3389 	}
3390 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, ctrlr->opts.admin_timeout_ms);
3391 }
3392 
3393 static int
3394 nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr)
3395 {
3396 	union spdk_nvme_feat_async_event_configuration	config;
3397 	int						rc;
3398 
3399 	config.raw = 0;
3400 
3401 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3402 		config.bits.discovery_log_change_notice = 1;
3403 	} else {
3404 		config.bits.crit_warn.bits.available_spare = 1;
3405 		config.bits.crit_warn.bits.temperature = 1;
3406 		config.bits.crit_warn.bits.device_reliability = 1;
3407 		config.bits.crit_warn.bits.read_only = 1;
3408 		config.bits.crit_warn.bits.volatile_memory_backup = 1;
3409 
3410 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 2, 0)) {
3411 			if (ctrlr->cdata.oaes.ns_attribute_notices) {
3412 				config.bits.ns_attr_notice = 1;
3413 			}
3414 			if (ctrlr->cdata.oaes.fw_activation_notices) {
3415 				config.bits.fw_activation_notice = 1;
3416 			}
3417 			if (ctrlr->cdata.oaes.ana_change_notices) {
3418 				config.bits.ana_change_notice = 1;
3419 			}
3420 		}
3421 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 3, 0) && ctrlr->cdata.lpa.telemetry) {
3422 			config.bits.telemetry_log_notice = 1;
3423 		}
3424 	}
3425 
3426 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER,
3427 			     ctrlr->opts.admin_timeout_ms);
3428 
3429 	rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config,
3430 			nvme_ctrlr_configure_aer_done,
3431 			ctrlr);
3432 	if (rc != 0) {
3433 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3434 		return rc;
3435 	}
3436 
3437 	return 0;
3438 }
3439 
3440 struct spdk_nvme_ctrlr_process *
3441 nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid)
3442 {
3443 	struct spdk_nvme_ctrlr_process	*active_proc;
3444 
3445 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3446 		if (active_proc->pid == pid) {
3447 			return active_proc;
3448 		}
3449 	}
3450 
3451 	return NULL;
3452 }
3453 
3454 struct spdk_nvme_ctrlr_process *
3455 nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr)
3456 {
3457 	return nvme_ctrlr_get_process(ctrlr, getpid());
3458 }
3459 
3460 /**
3461  * This function will be called when a process is using the controller.
3462  *  1. For the primary process, it is called when constructing the controller.
3463  *  2. For the secondary process, it is called at probing the controller.
3464  * Note: will check whether the process is already added for the same process.
3465  */
3466 int
3467 nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
3468 {
3469 	struct spdk_nvme_ctrlr_process	*ctrlr_proc;
3470 	pid_t				pid = getpid();
3471 
3472 	/* Check whether the process is already added or not */
3473 	if (nvme_ctrlr_get_process(ctrlr, pid)) {
3474 		return 0;
3475 	}
3476 
3477 	/* Initialize the per process properties for this ctrlr */
3478 	ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process),
3479 				  64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
3480 	if (ctrlr_proc == NULL) {
3481 		NVME_CTRLR_ERRLOG(ctrlr, "failed to allocate memory to track the process props\n");
3482 
3483 		return -1;
3484 	}
3485 
3486 	ctrlr_proc->is_primary = spdk_process_is_primary();
3487 	ctrlr_proc->pid = pid;
3488 	STAILQ_INIT(&ctrlr_proc->active_reqs);
3489 	ctrlr_proc->devhandle = devhandle;
3490 	ctrlr_proc->ref = 0;
3491 	TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs);
3492 	STAILQ_INIT(&ctrlr_proc->async_events);
3493 
3494 	TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq);
3495 
3496 	return 0;
3497 }
3498 
3499 /**
3500  * This function will be called when the process detaches the controller.
3501  * Note: the ctrlr_lock must be held when calling this function.
3502  */
3503 static void
3504 nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr,
3505 			  struct spdk_nvme_ctrlr_process *proc)
3506 {
3507 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3508 
3509 	assert(STAILQ_EMPTY(&proc->active_reqs));
3510 
3511 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3512 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3513 	}
3514 
3515 	TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq);
3516 
3517 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
3518 		spdk_pci_device_detach(proc->devhandle);
3519 	}
3520 
3521 	spdk_free(proc);
3522 }
3523 
3524 /**
3525  * This function will be called when the process exited unexpectedly
3526  *  in order to free any incomplete nvme request, allocated IO qpairs
3527  *  and allocated memory.
3528  * Note: the ctrlr_lock must be held when calling this function.
3529  */
3530 static void
3531 nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc)
3532 {
3533 	struct nvme_request	*req, *tmp_req;
3534 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3535 	struct spdk_nvme_ctrlr_aer_completion_list *event;
3536 
3537 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
3538 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
3539 
3540 		assert(req->pid == proc->pid);
3541 		nvme_cleanup_user_req(req);
3542 		nvme_free_request(req);
3543 	}
3544 
3545 	/* Remove async event from each process objects event list */
3546 	while (!STAILQ_EMPTY(&proc->async_events)) {
3547 		event = STAILQ_FIRST(&proc->async_events);
3548 		STAILQ_REMOVE_HEAD(&proc->async_events, link);
3549 		spdk_free(event);
3550 	}
3551 
3552 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3553 		TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq);
3554 
3555 		/*
3556 		 * The process may have been killed while some qpairs were in their
3557 		 *  completion context.  Clear that flag here to allow these IO
3558 		 *  qpairs to be deleted.
3559 		 */
3560 		qpair->in_completion_context = 0;
3561 
3562 		qpair->no_deletion_notification_needed = 1;
3563 
3564 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3565 	}
3566 
3567 	spdk_free(proc);
3568 }
3569 
3570 /**
3571  * This function will be called when destructing the controller.
3572  *  1. There is no more admin request on this controller.
3573  *  2. Clean up any left resource allocation when its associated process is gone.
3574  */
3575 void
3576 nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
3577 {
3578 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3579 
3580 	/* Free all the processes' properties and make sure no pending admin IOs */
3581 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3582 		TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3583 
3584 		assert(STAILQ_EMPTY(&active_proc->active_reqs));
3585 
3586 		spdk_free(active_proc);
3587 	}
3588 }
3589 
3590 /**
3591  * This function will be called when any other process attaches or
3592  *  detaches the controller in order to cleanup those unexpectedly
3593  *  terminated processes.
3594  * Note: the ctrlr_lock must be held when calling this function.
3595  */
3596 static int
3597 nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr)
3598 {
3599 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3600 	int				active_proc_count = 0;
3601 
3602 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3603 		if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) {
3604 			NVME_CTRLR_ERRLOG(ctrlr, "process %d terminated unexpected\n", active_proc->pid);
3605 
3606 			TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3607 
3608 			nvme_ctrlr_cleanup_process(active_proc);
3609 		} else {
3610 			active_proc_count++;
3611 		}
3612 	}
3613 
3614 	return active_proc_count;
3615 }
3616 
3617 void
3618 nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr)
3619 {
3620 	struct spdk_nvme_ctrlr_process	*active_proc;
3621 
3622 	nvme_ctrlr_lock(ctrlr);
3623 
3624 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3625 
3626 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3627 	if (active_proc) {
3628 		active_proc->ref++;
3629 	}
3630 
3631 	nvme_ctrlr_unlock(ctrlr);
3632 }
3633 
3634 void
3635 nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr)
3636 {
3637 	struct spdk_nvme_ctrlr_process	*active_proc;
3638 	int				proc_count;
3639 
3640 	nvme_ctrlr_lock(ctrlr);
3641 
3642 	proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr);
3643 
3644 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3645 	if (active_proc) {
3646 		active_proc->ref--;
3647 		assert(active_proc->ref >= 0);
3648 
3649 		/*
3650 		 * The last active process will be removed at the end of
3651 		 * the destruction of the controller.
3652 		 */
3653 		if (active_proc->ref == 0 && proc_count != 1) {
3654 			nvme_ctrlr_remove_process(ctrlr, active_proc);
3655 		}
3656 	}
3657 
3658 	nvme_ctrlr_unlock(ctrlr);
3659 }
3660 
3661 int
3662 nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr)
3663 {
3664 	struct spdk_nvme_ctrlr_process	*active_proc;
3665 	int				ref = 0;
3666 
3667 	nvme_ctrlr_lock(ctrlr);
3668 
3669 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3670 
3671 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3672 		ref += active_proc->ref;
3673 	}
3674 
3675 	nvme_ctrlr_unlock(ctrlr);
3676 
3677 	return ref;
3678 }
3679 
3680 /**
3681  *  Get the PCI device handle which is only visible to its associated process.
3682  */
3683 struct spdk_pci_device *
3684 nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr)
3685 {
3686 	struct spdk_nvme_ctrlr_process	*active_proc;
3687 	struct spdk_pci_device		*devhandle = NULL;
3688 
3689 	nvme_ctrlr_lock(ctrlr);
3690 
3691 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3692 	if (active_proc) {
3693 		devhandle = active_proc->devhandle;
3694 	}
3695 
3696 	nvme_ctrlr_unlock(ctrlr);
3697 
3698 	return devhandle;
3699 }
3700 
3701 static void
3702 nvme_ctrlr_process_init_vs_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3703 {
3704 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3705 
3706 	if (spdk_nvme_cpl_is_error(cpl)) {
3707 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the VS register\n");
3708 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3709 		return;
3710 	}
3711 
3712 	assert(value <= UINT32_MAX);
3713 	ctrlr->vs.raw = (uint32_t)value;
3714 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP, NVME_TIMEOUT_INFINITE);
3715 }
3716 
3717 static void
3718 nvme_ctrlr_process_init_cap_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3719 {
3720 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3721 
3722 	if (spdk_nvme_cpl_is_error(cpl)) {
3723 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CAP register\n");
3724 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3725 		return;
3726 	}
3727 
3728 	ctrlr->cap.raw = value;
3729 	nvme_ctrlr_init_cap(ctrlr);
3730 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
3731 }
3732 
3733 static void
3734 nvme_ctrlr_process_init_check_en(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3735 {
3736 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3737 	enum nvme_ctrlr_state state;
3738 
3739 	if (spdk_nvme_cpl_is_error(cpl)) {
3740 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3741 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3742 		return;
3743 	}
3744 
3745 	assert(value <= UINT32_MAX);
3746 	ctrlr->process_init_cc.raw = (uint32_t)value;
3747 
3748 	if (ctrlr->process_init_cc.bits.en) {
3749 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1\n");
3750 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1;
3751 	} else {
3752 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0;
3753 	}
3754 
3755 	nvme_ctrlr_set_state(ctrlr, state, nvme_ctrlr_get_ready_timeout(ctrlr));
3756 }
3757 
3758 static void
3759 nvme_ctrlr_process_init_set_en_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3760 {
3761 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3762 
3763 	if (spdk_nvme_cpl_is_error(cpl)) {
3764 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write the CC register\n");
3765 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3766 		return;
3767 	}
3768 
3769 	/*
3770 	 * Wait 2.5 seconds before accessing PCI registers.
3771 	 * Not using sleep() to avoid blocking other controller's initialization.
3772 	 */
3773 	if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) {
3774 		NVME_CTRLR_DEBUGLOG(ctrlr, "Applying quirk: delay 2.5 seconds before reading registers\n");
3775 		ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2500 * spdk_get_ticks_hz() / 1000);
3776 	}
3777 
3778 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3779 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3780 }
3781 
3782 static void
3783 nvme_ctrlr_process_init_set_en_0_read_cc(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3784 {
3785 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3786 	union spdk_nvme_cc_register cc;
3787 	int rc;
3788 
3789 	if (spdk_nvme_cpl_is_error(cpl)) {
3790 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3791 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3792 		return;
3793 	}
3794 
3795 	assert(value <= UINT32_MAX);
3796 	cc.raw = (uint32_t)value;
3797 	cc.bits.en = 0;
3798 	ctrlr->process_init_cc.raw = cc.raw;
3799 
3800 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC,
3801 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3802 
3803 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_process_init_set_en_0, ctrlr);
3804 	if (rc != 0) {
3805 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
3806 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3807 	}
3808 }
3809 
3810 static void
3811 nvme_ctrlr_process_init_wait_for_ready_1(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3812 {
3813 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3814 	union spdk_nvme_csts_register csts;
3815 
3816 	if (spdk_nvme_cpl_is_error(cpl)) {
3817 		/* While a device is resetting, it may be unable to service MMIO reads
3818 		 * temporarily. Allow for this case.
3819 		 */
3820 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3821 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3822 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3823 					     NVME_TIMEOUT_KEEP_EXISTING);
3824 		} else {
3825 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3826 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3827 		}
3828 
3829 		return;
3830 	}
3831 
3832 	assert(value <= UINT32_MAX);
3833 	csts.raw = (uint32_t)value;
3834 	if (csts.bits.rdy == 1 || csts.bits.cfs == 1) {
3835 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0,
3836 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3837 	} else {
3838 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n");
3839 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3840 					   NVME_TIMEOUT_KEEP_EXISTING);
3841 	}
3842 }
3843 
3844 static void
3845 nvme_ctrlr_process_init_wait_for_ready_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3846 {
3847 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3848 	union spdk_nvme_csts_register csts;
3849 
3850 	if (spdk_nvme_cpl_is_error(cpl)) {
3851 		/* While a device is resetting, it may be unable to service MMIO reads
3852 		 * temporarily. Allow for this case.
3853 		 */
3854 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3855 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3856 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3857 					     NVME_TIMEOUT_KEEP_EXISTING);
3858 		} else {
3859 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3860 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3861 		}
3862 
3863 		return;
3864 	}
3865 
3866 	assert(value <= UINT32_MAX);
3867 	csts.raw = (uint32_t)value;
3868 	if (csts.bits.rdy == 0) {
3869 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 0 && CSTS.RDY = 0\n");
3870 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLED,
3871 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3872 	} else {
3873 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3874 					   NVME_TIMEOUT_KEEP_EXISTING);
3875 	}
3876 }
3877 
3878 static void
3879 nvme_ctrlr_process_init_enable_wait_for_ready_1(void *ctx, uint64_t value,
3880 		const struct spdk_nvme_cpl *cpl)
3881 {
3882 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3883 	union spdk_nvme_csts_register csts;
3884 
3885 	if (spdk_nvme_cpl_is_error(cpl)) {
3886 		/* While a device is resetting, it may be unable to service MMIO reads
3887 		 * temporarily. Allow for this case.
3888 		 */
3889 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3890 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3891 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3892 					     NVME_TIMEOUT_KEEP_EXISTING);
3893 		} else {
3894 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3895 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3896 		}
3897 
3898 		return;
3899 	}
3900 
3901 	assert(value <= UINT32_MAX);
3902 	csts.raw = value;
3903 	if (csts.bits.rdy == 1) {
3904 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n");
3905 		/*
3906 		 * The controller has been enabled.
3907 		 *  Perform the rest of initialization serially.
3908 		 */
3909 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_RESET_ADMIN_QUEUE,
3910 				     ctrlr->opts.admin_timeout_ms);
3911 	} else {
3912 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3913 					   NVME_TIMEOUT_KEEP_EXISTING);
3914 	}
3915 }
3916 
3917 /**
3918  * This function will be called repeatedly during initialization until the controller is ready.
3919  */
3920 int
3921 nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr)
3922 {
3923 	uint32_t ready_timeout_in_ms;
3924 	uint64_t ticks;
3925 	int rc = 0;
3926 
3927 	ticks = spdk_get_ticks();
3928 
3929 	/*
3930 	 * May need to avoid accessing any register on the target controller
3931 	 * for a while. Return early without touching the FSM.
3932 	 * Check sleep_timeout_tsc > 0 for unit test.
3933 	 */
3934 	if ((ctrlr->sleep_timeout_tsc > 0) &&
3935 	    (ticks <= ctrlr->sleep_timeout_tsc)) {
3936 		return 0;
3937 	}
3938 	ctrlr->sleep_timeout_tsc = 0;
3939 
3940 	ready_timeout_in_ms = nvme_ctrlr_get_ready_timeout(ctrlr);
3941 
3942 	/*
3943 	 * Check if the current initialization step is done or has timed out.
3944 	 */
3945 	switch (ctrlr->state) {
3946 	case NVME_CTRLR_STATE_INIT_DELAY:
3947 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, ready_timeout_in_ms);
3948 		if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_INIT) {
3949 			/*
3950 			 * Controller may need some delay before it's enabled.
3951 			 *
3952 			 * This is a workaround for an issue where the PCIe-attached NVMe controller
3953 			 * is not ready after VFIO reset. We delay the initialization rather than the
3954 			 * enabling itself, because this is required only for the very first enabling
3955 			 * - directly after a VFIO reset.
3956 			 */
3957 			NVME_CTRLR_DEBUGLOG(ctrlr, "Adding 2 second delay before initializing the controller\n");
3958 			ctrlr->sleep_timeout_tsc = ticks + (2000 * spdk_get_ticks_hz() / 1000);
3959 		}
3960 		break;
3961 
3962 	case NVME_CTRLR_STATE_DISCONNECTED:
3963 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
3964 		break;
3965 
3966 	case NVME_CTRLR_STATE_CONNECT_ADMINQ: /* synonymous with NVME_CTRLR_STATE_INIT and NVME_CTRLR_STATE_DISCONNECTED */
3967 		rc = nvme_transport_ctrlr_connect_qpair(ctrlr, ctrlr->adminq);
3968 		if (rc == 0) {
3969 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ,
3970 					     NVME_TIMEOUT_INFINITE);
3971 		} else {
3972 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3973 		}
3974 		break;
3975 
3976 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
3977 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
3978 
3979 		switch (nvme_qpair_get_state(ctrlr->adminq)) {
3980 		case NVME_QPAIR_CONNECTING:
3981 			break;
3982 		case NVME_QPAIR_CONNECTED:
3983 			nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
3984 		/* Fall through */
3985 		case NVME_QPAIR_ENABLED:
3986 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS,
3987 					     NVME_TIMEOUT_INFINITE);
3988 			/* Abort any queued requests that were sent while the adminq was connecting
3989 			 * to avoid stalling the init process during a reset, as requests don't get
3990 			 * resubmitted while the controller is resetting and subsequent commands
3991 			 * would get queued too.
3992 			 */
3993 			nvme_qpair_abort_queued_reqs(ctrlr->adminq);
3994 			break;
3995 		case NVME_QPAIR_DISCONNECTING:
3996 			assert(ctrlr->adminq->async == true);
3997 			break;
3998 		case NVME_QPAIR_DISCONNECTED:
3999 		/* fallthrough */
4000 		default:
4001 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
4002 			break;
4003 		}
4004 
4005 		break;
4006 
4007 	case NVME_CTRLR_STATE_READ_VS:
4008 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS, NVME_TIMEOUT_INFINITE);
4009 		rc = nvme_ctrlr_get_vs_async(ctrlr, nvme_ctrlr_process_init_vs_done, ctrlr);
4010 		break;
4011 
4012 	case NVME_CTRLR_STATE_READ_CAP:
4013 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP, NVME_TIMEOUT_INFINITE);
4014 		rc = nvme_ctrlr_get_cap_async(ctrlr, nvme_ctrlr_process_init_cap_done, ctrlr);
4015 		break;
4016 
4017 	case NVME_CTRLR_STATE_CHECK_EN:
4018 		/* Begin the hardware initialization by making sure the controller is disabled. */
4019 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC, ready_timeout_in_ms);
4020 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_check_en, ctrlr);
4021 		break;
4022 
4023 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
4024 		/*
4025 		 * Controller is currently enabled. We need to disable it to cause a reset.
4026 		 *
4027 		 * If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready.
4028 		 *  Wait for the ready bit to be 1 before disabling the controller.
4029 		 */
4030 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
4031 					   NVME_TIMEOUT_KEEP_EXISTING);
4032 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_1, ctrlr);
4033 		break;
4034 
4035 	case NVME_CTRLR_STATE_SET_EN_0:
4036 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 0\n");
4037 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC, ready_timeout_in_ms);
4038 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_set_en_0_read_cc, ctrlr);
4039 		break;
4040 
4041 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
4042 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS,
4043 					   NVME_TIMEOUT_KEEP_EXISTING);
4044 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_0, ctrlr);
4045 		break;
4046 
4047 	case NVME_CTRLR_STATE_DISABLED:
4048 		if (ctrlr->is_disconnecting) {
4049 			NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr was disabled.\n");
4050 		} else {
4051 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms);
4052 
4053 			/*
4054 			 * Delay 100us before setting CC.EN = 1.  Some NVMe SSDs miss CC.EN getting
4055 			 *  set to 1 if it is too soon after CSTS.RDY is reported as 0.
4056 			 */
4057 			spdk_delay_us(100);
4058 		}
4059 		break;
4060 
4061 	case NVME_CTRLR_STATE_ENABLE:
4062 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 1\n");
4063 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC, ready_timeout_in_ms);
4064 		rc = nvme_ctrlr_enable(ctrlr);
4065 		if (rc) {
4066 			NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr enable failed with error: %d", rc);
4067 		}
4068 		return rc;
4069 
4070 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
4071 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
4072 					   NVME_TIMEOUT_KEEP_EXISTING);
4073 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_enable_wait_for_ready_1,
4074 					       ctrlr);
4075 		break;
4076 
4077 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
4078 		nvme_transport_qpair_reset(ctrlr->adminq);
4079 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY, NVME_TIMEOUT_INFINITE);
4080 		break;
4081 
4082 	case NVME_CTRLR_STATE_IDENTIFY:
4083 		rc = nvme_ctrlr_identify(ctrlr);
4084 		break;
4085 
4086 	case NVME_CTRLR_STATE_CONFIGURE_AER:
4087 		rc = nvme_ctrlr_configure_aer(ctrlr);
4088 		break;
4089 
4090 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
4091 		rc = nvme_ctrlr_set_keep_alive_timeout(ctrlr);
4092 		break;
4093 
4094 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
4095 		rc = nvme_ctrlr_identify_iocs_specific(ctrlr);
4096 		break;
4097 
4098 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
4099 		rc = nvme_ctrlr_get_zns_cmd_and_effects_log(ctrlr);
4100 		break;
4101 
4102 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
4103 		nvme_ctrlr_update_nvmf_ioccsz(ctrlr);
4104 		rc = nvme_ctrlr_set_num_queues(ctrlr);
4105 		break;
4106 
4107 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
4108 		_nvme_ctrlr_identify_active_ns(ctrlr);
4109 		break;
4110 
4111 	case NVME_CTRLR_STATE_IDENTIFY_NS:
4112 		rc = nvme_ctrlr_identify_namespaces(ctrlr);
4113 		break;
4114 
4115 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
4116 		rc = nvme_ctrlr_identify_id_desc_namespaces(ctrlr);
4117 		break;
4118 
4119 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
4120 		rc = nvme_ctrlr_identify_namespaces_iocs_specific(ctrlr);
4121 		break;
4122 
4123 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
4124 		rc = nvme_ctrlr_set_supported_log_pages(ctrlr);
4125 		break;
4126 
4127 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
4128 		rc = nvme_ctrlr_set_intel_support_log_pages(ctrlr);
4129 		break;
4130 
4131 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
4132 		nvme_ctrlr_set_supported_features(ctrlr);
4133 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_FEATURE,
4134 				     ctrlr->opts.admin_timeout_ms);
4135 		break;
4136 
4137 	case NVME_CTRLR_STATE_SET_HOST_FEATURE:
4138 		rc = nvme_ctrlr_set_host_feature(ctrlr);
4139 		break;
4140 
4141 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
4142 		rc = nvme_ctrlr_set_doorbell_buffer_config(ctrlr);
4143 		break;
4144 
4145 	case NVME_CTRLR_STATE_SET_HOST_ID:
4146 		rc = nvme_ctrlr_set_host_id(ctrlr);
4147 		break;
4148 
4149 	case NVME_CTRLR_STATE_TRANSPORT_READY:
4150 		rc = nvme_transport_ctrlr_ready(ctrlr);
4151 		if (rc) {
4152 			NVME_CTRLR_ERRLOG(ctrlr, "Transport controller ready step failed: rc %d\n", rc);
4153 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
4154 		} else {
4155 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
4156 		}
4157 		break;
4158 
4159 	case NVME_CTRLR_STATE_READY:
4160 		NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr already in ready state\n");
4161 		return 0;
4162 
4163 	case NVME_CTRLR_STATE_ERROR:
4164 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr is in error state\n");
4165 		return -1;
4166 
4167 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
4168 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
4169 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
4170 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
4171 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4172 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
4173 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
4174 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4175 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
4176 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
4177 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
4178 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
4179 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
4180 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
4181 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
4182 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
4183 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
4184 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
4185 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
4186 	case NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE:
4187 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
4188 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
4189 		/*
4190 		 * nvme_ctrlr_process_init() may be called from the completion context
4191 		 * for the admin qpair. Avoid recursive calls for this case.
4192 		 */
4193 		if (!ctrlr->adminq->in_completion_context) {
4194 			spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4195 		}
4196 		break;
4197 
4198 	default:
4199 		assert(0);
4200 		return -1;
4201 	}
4202 
4203 	if (rc) {
4204 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr operation failed with error: %d, ctrlr state: %d (%s)\n",
4205 				  rc, ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4206 	}
4207 
4208 	/* Note: we use the ticks captured when we entered this function.
4209 	 * This covers environments where the SPDK process gets swapped out after
4210 	 * we tried to advance the state but before we check the timeout here.
4211 	 * It is not normal for this to happen, but harmless to handle it in this
4212 	 * way.
4213 	 */
4214 	if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE &&
4215 	    ticks > ctrlr->state_timeout_tsc) {
4216 		NVME_CTRLR_ERRLOG(ctrlr, "Initialization timed out in state %d (%s)\n",
4217 				  ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4218 		return -1;
4219 	}
4220 
4221 	return rc;
4222 }
4223 
4224 int
4225 nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx)
4226 {
4227 	pthread_mutexattr_t attr;
4228 	int rc = 0;
4229 
4230 	if (pthread_mutexattr_init(&attr)) {
4231 		return -1;
4232 	}
4233 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) ||
4234 #ifndef __FreeBSD__
4235 	    pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
4236 	    pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
4237 #endif
4238 	    pthread_mutex_init(mtx, &attr)) {
4239 		rc = -1;
4240 	}
4241 	pthread_mutexattr_destroy(&attr);
4242 	return rc;
4243 }
4244 
4245 int
4246 nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
4247 {
4248 	int rc;
4249 
4250 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4251 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT_DELAY, NVME_TIMEOUT_INFINITE);
4252 	} else {
4253 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
4254 	}
4255 
4256 	if (ctrlr->opts.admin_queue_size > SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES) {
4257 		NVME_CTRLR_ERRLOG(ctrlr, "admin_queue_size %u exceeds max defined by NVMe spec, use max value\n",
4258 				  ctrlr->opts.admin_queue_size);
4259 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES;
4260 	}
4261 
4262 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_ADMIN_QUEUE_SIZE &&
4263 	    (ctrlr->opts.admin_queue_size % SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE) != 0) {
4264 		NVME_CTRLR_ERRLOG(ctrlr,
4265 				  "admin_queue_size %u is invalid for this NVMe device, adjust to next multiple\n",
4266 				  ctrlr->opts.admin_queue_size);
4267 		ctrlr->opts.admin_queue_size = SPDK_ALIGN_CEIL(ctrlr->opts.admin_queue_size,
4268 					       SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE);
4269 	}
4270 
4271 	if (ctrlr->opts.admin_queue_size < SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES) {
4272 		NVME_CTRLR_ERRLOG(ctrlr,
4273 				  "admin_queue_size %u is less than minimum defined by NVMe spec, use min value\n",
4274 				  ctrlr->opts.admin_queue_size);
4275 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES;
4276 	}
4277 
4278 	ctrlr->flags = 0;
4279 	ctrlr->free_io_qids = NULL;
4280 	ctrlr->is_resetting = false;
4281 	ctrlr->is_failed = false;
4282 	ctrlr->is_destructed = false;
4283 
4284 	TAILQ_INIT(&ctrlr->active_io_qpairs);
4285 	STAILQ_INIT(&ctrlr->queued_aborts);
4286 	ctrlr->outstanding_aborts = 0;
4287 
4288 	ctrlr->ana_log_page = NULL;
4289 	ctrlr->ana_log_page_size = 0;
4290 
4291 	rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock);
4292 	if (rc != 0) {
4293 		return rc;
4294 	}
4295 
4296 	TAILQ_INIT(&ctrlr->active_procs);
4297 	STAILQ_INIT(&ctrlr->register_operations);
4298 
4299 	RB_INIT(&ctrlr->ns);
4300 
4301 	return rc;
4302 }
4303 
4304 static void
4305 nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr)
4306 {
4307 	if (ctrlr->cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) {
4308 		ctrlr->flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED;
4309 	}
4310 
4311 	ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin);
4312 
4313 	/* For now, always select page_size == min_page_size. */
4314 	ctrlr->page_size = ctrlr->min_page_size;
4315 
4316 	ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES);
4317 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, MAX_IO_QUEUE_ENTRIES);
4318 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE &&
4319 	    ctrlr->opts.io_queue_size == DEFAULT_IO_QUEUE_SIZE) {
4320 		/* If the user specifically set an IO queue size different than the
4321 		 * default, use that value.  Otherwise overwrite with the quirked value.
4322 		 * This allows this quirk to be overridden when necessary.
4323 		 * However, cap.mqes still needs to be respected.
4324 		 */
4325 		ctrlr->opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK;
4326 	}
4327 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u);
4328 
4329 	ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size);
4330 }
4331 
4332 void
4333 nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr)
4334 {
4335 	int rc;
4336 
4337 	if (ctrlr->lock_depth > 0) {
4338 		SPDK_ERRLOG("lock currently held (depth=%d)!\n", ctrlr->lock_depth);
4339 		assert(false);
4340 	}
4341 
4342 	rc = pthread_mutex_destroy(&ctrlr->ctrlr_lock);
4343 	if (rc) {
4344 		SPDK_ERRLOG("could not destroy ctrlr_lock: %s\n", spdk_strerror(rc));
4345 		assert(false);
4346 	}
4347 
4348 	nvme_ctrlr_free_processes(ctrlr);
4349 }
4350 
4351 void
4352 nvme_ctrlr_destruct_async(struct spdk_nvme_ctrlr *ctrlr,
4353 			  struct nvme_ctrlr_detach_ctx *ctx)
4354 {
4355 	struct spdk_nvme_qpair *qpair, *tmp;
4356 
4357 	NVME_CTRLR_DEBUGLOG(ctrlr, "Prepare to destruct SSD\n");
4358 
4359 	ctrlr->prepare_for_reset = false;
4360 	ctrlr->is_destructed = true;
4361 
4362 	spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4363 
4364 	nvme_ctrlr_abort_queued_aborts(ctrlr);
4365 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
4366 
4367 	TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) {
4368 		spdk_nvme_ctrlr_free_io_qpair(qpair);
4369 	}
4370 
4371 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
4372 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
4373 
4374 	nvme_ctrlr_shutdown_async(ctrlr, ctx);
4375 }
4376 
4377 int
4378 nvme_ctrlr_destruct_poll_async(struct spdk_nvme_ctrlr *ctrlr,
4379 			       struct nvme_ctrlr_detach_ctx *ctx)
4380 {
4381 	struct spdk_nvme_ns *ns, *tmp_ns;
4382 	int rc = 0;
4383 
4384 	if (!ctx->shutdown_complete) {
4385 		rc = nvme_ctrlr_shutdown_poll_async(ctrlr, ctx);
4386 		if (rc == -EAGAIN) {
4387 			return -EAGAIN;
4388 		}
4389 		/* Destruct ctrlr forcefully for any other error. */
4390 	}
4391 
4392 	if (ctx->cb_fn) {
4393 		ctx->cb_fn(ctrlr);
4394 	}
4395 
4396 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
4397 
4398 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
4399 		nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
4400 		RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
4401 		spdk_free(ns);
4402 	}
4403 
4404 	ctrlr->active_ns_count = 0;
4405 
4406 	spdk_bit_array_free(&ctrlr->free_io_qids);
4407 
4408 	free(ctrlr->ana_log_page);
4409 	free(ctrlr->copied_ana_desc);
4410 	ctrlr->ana_log_page = NULL;
4411 	ctrlr->copied_ana_desc = NULL;
4412 	ctrlr->ana_log_page_size = 0;
4413 
4414 	nvme_transport_ctrlr_destruct(ctrlr);
4415 
4416 	return rc;
4417 }
4418 
4419 void
4420 nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
4421 {
4422 	struct nvme_ctrlr_detach_ctx ctx = { .ctrlr = ctrlr };
4423 	int rc;
4424 
4425 	nvme_ctrlr_destruct_async(ctrlr, &ctx);
4426 
4427 	while (1) {
4428 		rc = nvme_ctrlr_destruct_poll_async(ctrlr, &ctx);
4429 		if (rc != -EAGAIN) {
4430 			break;
4431 		}
4432 		nvme_delay(1000);
4433 	}
4434 }
4435 
4436 int
4437 nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
4438 				struct nvme_request *req)
4439 {
4440 	return nvme_qpair_submit_request(ctrlr->adminq, req);
4441 }
4442 
4443 static void
4444 nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl)
4445 {
4446 	/* Do nothing */
4447 }
4448 
4449 /*
4450  * Check if we need to send a Keep Alive command.
4451  * Caller must hold ctrlr->ctrlr_lock.
4452  */
4453 static int
4454 nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr)
4455 {
4456 	uint64_t now;
4457 	struct nvme_request *req;
4458 	struct spdk_nvme_cmd *cmd;
4459 	int rc = 0;
4460 
4461 	now = spdk_get_ticks();
4462 	if (now < ctrlr->next_keep_alive_tick) {
4463 		return rc;
4464 	}
4465 
4466 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL);
4467 	if (req == NULL) {
4468 		return rc;
4469 	}
4470 
4471 	cmd = &req->cmd;
4472 	cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE;
4473 
4474 	rc = nvme_ctrlr_submit_admin_request(ctrlr, req);
4475 	if (rc != 0) {
4476 		NVME_CTRLR_ERRLOG(ctrlr, "Submitting Keep Alive failed\n");
4477 		rc = -ENXIO;
4478 	}
4479 
4480 	ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks;
4481 	return rc;
4482 }
4483 
4484 int32_t
4485 spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr)
4486 {
4487 	int32_t num_completions;
4488 	int32_t rc;
4489 	struct spdk_nvme_ctrlr_process	*active_proc;
4490 
4491 	nvme_ctrlr_lock(ctrlr);
4492 
4493 	if (ctrlr->keep_alive_interval_ticks) {
4494 		rc = nvme_ctrlr_keep_alive(ctrlr);
4495 		if (rc) {
4496 			nvme_ctrlr_unlock(ctrlr);
4497 			return rc;
4498 		}
4499 	}
4500 
4501 	rc = nvme_io_msg_process(ctrlr);
4502 	if (rc < 0) {
4503 		nvme_ctrlr_unlock(ctrlr);
4504 		return rc;
4505 	}
4506 	num_completions = rc;
4507 
4508 	rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4509 
4510 	/* Each process has an async list, complete the ones for this process object */
4511 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4512 	if (active_proc) {
4513 		nvme_ctrlr_complete_queued_async_events(ctrlr);
4514 	}
4515 
4516 	if (rc == -ENXIO && ctrlr->is_disconnecting) {
4517 		nvme_ctrlr_disconnect_done(ctrlr);
4518 	}
4519 
4520 	nvme_ctrlr_unlock(ctrlr);
4521 
4522 	if (rc < 0) {
4523 		num_completions = rc;
4524 	} else {
4525 		num_completions += rc;
4526 	}
4527 
4528 	return num_completions;
4529 }
4530 
4531 const struct spdk_nvme_ctrlr_data *
4532 spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr)
4533 {
4534 	return &ctrlr->cdata;
4535 }
4536 
4537 union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
4538 {
4539 	union spdk_nvme_csts_register csts;
4540 
4541 	if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
4542 		csts.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4543 	}
4544 	return csts;
4545 }
4546 
4547 union spdk_nvme_cc_register spdk_nvme_ctrlr_get_regs_cc(struct spdk_nvme_ctrlr *ctrlr)
4548 {
4549 	union spdk_nvme_cc_register cc;
4550 
4551 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
4552 		cc.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4553 	}
4554 	return cc;
4555 }
4556 
4557 union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr)
4558 {
4559 	return ctrlr->cap;
4560 }
4561 
4562 union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr)
4563 {
4564 	return ctrlr->vs;
4565 }
4566 
4567 union spdk_nvme_cmbsz_register spdk_nvme_ctrlr_get_regs_cmbsz(struct spdk_nvme_ctrlr *ctrlr)
4568 {
4569 	union spdk_nvme_cmbsz_register cmbsz;
4570 
4571 	if (nvme_ctrlr_get_cmbsz(ctrlr, &cmbsz)) {
4572 		cmbsz.raw = 0;
4573 	}
4574 
4575 	return cmbsz;
4576 }
4577 
4578 union spdk_nvme_pmrcap_register spdk_nvme_ctrlr_get_regs_pmrcap(struct spdk_nvme_ctrlr *ctrlr)
4579 {
4580 	union spdk_nvme_pmrcap_register pmrcap;
4581 
4582 	if (nvme_ctrlr_get_pmrcap(ctrlr, &pmrcap)) {
4583 		pmrcap.raw = 0;
4584 	}
4585 
4586 	return pmrcap;
4587 }
4588 
4589 union spdk_nvme_bpinfo_register spdk_nvme_ctrlr_get_regs_bpinfo(struct spdk_nvme_ctrlr *ctrlr)
4590 {
4591 	union spdk_nvme_bpinfo_register bpinfo;
4592 
4593 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
4594 		bpinfo.raw = 0;
4595 	}
4596 
4597 	return bpinfo;
4598 }
4599 
4600 uint64_t
4601 spdk_nvme_ctrlr_get_pmrsz(struct spdk_nvme_ctrlr *ctrlr)
4602 {
4603 	return ctrlr->pmr_size;
4604 }
4605 
4606 uint32_t
4607 spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr)
4608 {
4609 	return ctrlr->cdata.nn;
4610 }
4611 
4612 bool
4613 spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4614 {
4615 	struct spdk_nvme_ns tmp, *ns;
4616 
4617 	tmp.id = nsid;
4618 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4619 
4620 	if (ns != NULL) {
4621 		return ns->active;
4622 	}
4623 
4624 	return false;
4625 }
4626 
4627 uint32_t
4628 spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr)
4629 {
4630 	struct spdk_nvme_ns *ns;
4631 
4632 	ns = RB_MIN(nvme_ns_tree, &ctrlr->ns);
4633 	if (ns == NULL) {
4634 		return 0;
4635 	}
4636 
4637 	while (ns != NULL) {
4638 		if (ns->active) {
4639 			return ns->id;
4640 		}
4641 
4642 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4643 	}
4644 
4645 	return 0;
4646 }
4647 
4648 uint32_t
4649 spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
4650 {
4651 	struct spdk_nvme_ns tmp, *ns;
4652 
4653 	tmp.id = prev_nsid;
4654 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4655 	if (ns == NULL) {
4656 		return 0;
4657 	}
4658 
4659 	ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4660 	while (ns != NULL) {
4661 		if (ns->active) {
4662 			return ns->id;
4663 		}
4664 
4665 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4666 	}
4667 
4668 	return 0;
4669 }
4670 
4671 struct spdk_nvme_ns *
4672 spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4673 {
4674 	struct spdk_nvme_ns tmp;
4675 	struct spdk_nvme_ns *ns;
4676 
4677 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
4678 		return NULL;
4679 	}
4680 
4681 	nvme_ctrlr_lock(ctrlr);
4682 
4683 	tmp.id = nsid;
4684 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4685 
4686 	if (ns == NULL) {
4687 		ns = spdk_zmalloc(sizeof(struct spdk_nvme_ns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
4688 		if (ns == NULL) {
4689 			nvme_ctrlr_unlock(ctrlr);
4690 			return NULL;
4691 		}
4692 
4693 		NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was added\n", nsid);
4694 		ns->id = nsid;
4695 		RB_INSERT(nvme_ns_tree, &ctrlr->ns, ns);
4696 	}
4697 
4698 	nvme_ctrlr_unlock(ctrlr);
4699 
4700 	return ns;
4701 }
4702 
4703 struct spdk_pci_device *
4704 spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr)
4705 {
4706 	if (ctrlr == NULL) {
4707 		return NULL;
4708 	}
4709 
4710 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
4711 		return NULL;
4712 	}
4713 
4714 	return nvme_ctrlr_proc_get_devhandle(ctrlr);
4715 }
4716 
4717 uint32_t
4718 spdk_nvme_ctrlr_get_max_xfer_size(const struct spdk_nvme_ctrlr *ctrlr)
4719 {
4720 	return ctrlr->max_xfer_size;
4721 }
4722 
4723 uint16_t
4724 spdk_nvme_ctrlr_get_max_sges(const struct spdk_nvme_ctrlr *ctrlr)
4725 {
4726 	if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4727 		return ctrlr->max_sges;
4728 	} else {
4729 		return UINT16_MAX;
4730 	}
4731 }
4732 
4733 void
4734 spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr,
4735 				      spdk_nvme_aer_cb aer_cb_fn,
4736 				      void *aer_cb_arg)
4737 {
4738 	struct spdk_nvme_ctrlr_process *active_proc;
4739 
4740 	nvme_ctrlr_lock(ctrlr);
4741 
4742 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4743 	if (active_proc) {
4744 		active_proc->aer_cb_fn = aer_cb_fn;
4745 		active_proc->aer_cb_arg = aer_cb_arg;
4746 	}
4747 
4748 	nvme_ctrlr_unlock(ctrlr);
4749 }
4750 
4751 void
4752 spdk_nvme_ctrlr_disable_read_changed_ns_list_log_page(struct spdk_nvme_ctrlr *ctrlr)
4753 {
4754 	ctrlr->opts.disable_read_changed_ns_list_log_page = true;
4755 }
4756 
4757 void
4758 spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr,
4759 		uint64_t timeout_io_us, uint64_t timeout_admin_us,
4760 		spdk_nvme_timeout_cb cb_fn, void *cb_arg)
4761 {
4762 	struct spdk_nvme_ctrlr_process	*active_proc;
4763 
4764 	nvme_ctrlr_lock(ctrlr);
4765 
4766 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4767 	if (active_proc) {
4768 		active_proc->timeout_io_ticks = timeout_io_us * spdk_get_ticks_hz() / 1000000ULL;
4769 		active_proc->timeout_admin_ticks = timeout_admin_us * spdk_get_ticks_hz() / 1000000ULL;
4770 		active_proc->timeout_cb_fn = cb_fn;
4771 		active_proc->timeout_cb_arg = cb_arg;
4772 	}
4773 
4774 	ctrlr->timeout_enabled = true;
4775 
4776 	nvme_ctrlr_unlock(ctrlr);
4777 }
4778 
4779 bool
4780 spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page)
4781 {
4782 	/* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
4783 	SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
4784 	return ctrlr->log_page_supported[log_page];
4785 }
4786 
4787 bool
4788 spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code)
4789 {
4790 	/* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
4791 	SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
4792 	return ctrlr->feature_supported[feature_code];
4793 }
4794 
4795 int
4796 spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4797 			  struct spdk_nvme_ctrlr_list *payload)
4798 {
4799 	struct nvme_completion_poll_status	*status;
4800 	struct spdk_nvme_ns			*ns;
4801 	int					res;
4802 
4803 	if (nsid == 0) {
4804 		return -EINVAL;
4805 	}
4806 
4807 	status = calloc(1, sizeof(*status));
4808 	if (!status) {
4809 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4810 		return -ENOMEM;
4811 	}
4812 
4813 	res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload,
4814 				       nvme_completion_poll_cb, status);
4815 	if (res) {
4816 		free(status);
4817 		return res;
4818 	}
4819 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4820 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_attach_ns failed!\n");
4821 		if (!status->timed_out) {
4822 			free(status);
4823 		}
4824 		return -ENXIO;
4825 	}
4826 	free(status);
4827 
4828 	res = nvme_ctrlr_identify_active_ns(ctrlr);
4829 	if (res) {
4830 		return res;
4831 	}
4832 
4833 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
4834 	if (ns == NULL) {
4835 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_get_ns failed!\n");
4836 		return -ENXIO;
4837 	}
4838 
4839 	return nvme_ns_construct(ns, nsid, ctrlr);
4840 }
4841 
4842 int
4843 spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4844 			  struct spdk_nvme_ctrlr_list *payload)
4845 {
4846 	struct nvme_completion_poll_status	*status;
4847 	int					res;
4848 
4849 	if (nsid == 0) {
4850 		return -EINVAL;
4851 	}
4852 
4853 	status = calloc(1, sizeof(*status));
4854 	if (!status) {
4855 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4856 		return -ENOMEM;
4857 	}
4858 
4859 	res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload,
4860 				       nvme_completion_poll_cb, status);
4861 	if (res) {
4862 		free(status);
4863 		return res;
4864 	}
4865 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4866 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_detach_ns failed!\n");
4867 		if (!status->timed_out) {
4868 			free(status);
4869 		}
4870 		return -ENXIO;
4871 	}
4872 	free(status);
4873 
4874 	return nvme_ctrlr_identify_active_ns(ctrlr);
4875 }
4876 
4877 uint32_t
4878 spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload)
4879 {
4880 	struct nvme_completion_poll_status	*status;
4881 	int					res;
4882 	uint32_t				nsid;
4883 
4884 	status = calloc(1, sizeof(*status));
4885 	if (!status) {
4886 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4887 		return 0;
4888 	}
4889 
4890 	res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, status);
4891 	if (res) {
4892 		free(status);
4893 		return 0;
4894 	}
4895 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4896 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_create_ns failed!\n");
4897 		if (!status->timed_out) {
4898 			free(status);
4899 		}
4900 		return 0;
4901 	}
4902 
4903 	nsid = status->cpl.cdw0;
4904 	free(status);
4905 
4906 	assert(nsid > 0);
4907 
4908 	/* Return the namespace ID that was created */
4909 	return nsid;
4910 }
4911 
4912 int
4913 spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4914 {
4915 	struct nvme_completion_poll_status	*status;
4916 	int					res;
4917 
4918 	if (nsid == 0) {
4919 		return -EINVAL;
4920 	}
4921 
4922 	status = calloc(1, sizeof(*status));
4923 	if (!status) {
4924 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4925 		return -ENOMEM;
4926 	}
4927 
4928 	res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, status);
4929 	if (res) {
4930 		free(status);
4931 		return res;
4932 	}
4933 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4934 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_delete_ns failed!\n");
4935 		if (!status->timed_out) {
4936 			free(status);
4937 		}
4938 		return -ENXIO;
4939 	}
4940 	free(status);
4941 
4942 	return nvme_ctrlr_identify_active_ns(ctrlr);
4943 }
4944 
4945 int
4946 spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4947 		       struct spdk_nvme_format *format)
4948 {
4949 	struct nvme_completion_poll_status	*status;
4950 	int					res;
4951 
4952 	status = calloc(1, sizeof(*status));
4953 	if (!status) {
4954 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4955 		return -ENOMEM;
4956 	}
4957 
4958 	res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb,
4959 				    status);
4960 	if (res) {
4961 		free(status);
4962 		return res;
4963 	}
4964 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4965 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_format failed!\n");
4966 		if (!status->timed_out) {
4967 			free(status);
4968 		}
4969 		return -ENXIO;
4970 	}
4971 	free(status);
4972 
4973 	return spdk_nvme_ctrlr_reset(ctrlr);
4974 }
4975 
4976 int
4977 spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size,
4978 				int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status)
4979 {
4980 	struct spdk_nvme_fw_commit		fw_commit;
4981 	struct nvme_completion_poll_status	*status;
4982 	int					res;
4983 	unsigned int				size_remaining;
4984 	unsigned int				offset;
4985 	unsigned int				transfer;
4986 	uint8_t					*p;
4987 
4988 	if (!completion_status) {
4989 		return -EINVAL;
4990 	}
4991 	memset(completion_status, 0, sizeof(struct spdk_nvme_status));
4992 	if (size % 4) {
4993 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid size!\n");
4994 		return -1;
4995 	}
4996 
4997 	/* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG
4998 	 * and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG
4999 	 */
5000 	if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) &&
5001 	    (commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) {
5002 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid command!\n");
5003 		return -1;
5004 	}
5005 
5006 	status = calloc(1, sizeof(*status));
5007 	if (!status) {
5008 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5009 		return -ENOMEM;
5010 	}
5011 
5012 	/* Firmware download */
5013 	size_remaining = size;
5014 	offset = 0;
5015 	p = payload;
5016 
5017 	while (size_remaining > 0) {
5018 		transfer = spdk_min(size_remaining, ctrlr->min_page_size);
5019 
5020 		memset(status, 0, sizeof(*status));
5021 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p,
5022 						       nvme_completion_poll_cb,
5023 						       status);
5024 		if (res) {
5025 			free(status);
5026 			return res;
5027 		}
5028 
5029 		if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5030 			NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_fw_image_download failed!\n");
5031 			if (!status->timed_out) {
5032 				free(status);
5033 			}
5034 			return -ENXIO;
5035 		}
5036 		p += transfer;
5037 		offset += transfer;
5038 		size_remaining -= transfer;
5039 	}
5040 
5041 	/* Firmware commit */
5042 	memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5043 	fw_commit.fs = slot;
5044 	fw_commit.ca = commit_action;
5045 
5046 	memset(status, 0, sizeof(*status));
5047 	res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb,
5048 				       status);
5049 	if (res) {
5050 		free(status);
5051 		return res;
5052 	}
5053 
5054 	res = nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock);
5055 
5056 	memcpy(completion_status, &status->cpl.status, sizeof(struct spdk_nvme_status));
5057 
5058 	if (!status->timed_out) {
5059 		free(status);
5060 	}
5061 
5062 	if (res) {
5063 		if (completion_status->sct != SPDK_NVME_SCT_COMMAND_SPECIFIC ||
5064 		    completion_status->sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) {
5065 			if (completion_status->sct == SPDK_NVME_SCT_COMMAND_SPECIFIC  &&
5066 			    completion_status->sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) {
5067 				NVME_CTRLR_NOTICELOG(ctrlr,
5068 						     "firmware activation requires conventional reset to be performed. !\n");
5069 			} else {
5070 				NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5071 			}
5072 			return -ENXIO;
5073 		}
5074 	}
5075 
5076 	return spdk_nvme_ctrlr_reset(ctrlr);
5077 }
5078 
5079 int
5080 spdk_nvme_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
5081 {
5082 	int rc, size;
5083 	union spdk_nvme_cmbsz_register cmbsz;
5084 
5085 	cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr);
5086 
5087 	if (cmbsz.bits.rds == 0 || cmbsz.bits.wds == 0) {
5088 		return -ENOTSUP;
5089 	}
5090 
5091 	size = cmbsz.bits.sz * (0x1000 << (cmbsz.bits.szu * 4));
5092 
5093 	nvme_ctrlr_lock(ctrlr);
5094 	rc = nvme_transport_ctrlr_reserve_cmb(ctrlr);
5095 	nvme_ctrlr_unlock(ctrlr);
5096 
5097 	if (rc < 0) {
5098 		return rc;
5099 	}
5100 
5101 	return size;
5102 }
5103 
5104 void *
5105 spdk_nvme_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
5106 {
5107 	void *buf;
5108 
5109 	nvme_ctrlr_lock(ctrlr);
5110 	buf = nvme_transport_ctrlr_map_cmb(ctrlr, size);
5111 	nvme_ctrlr_unlock(ctrlr);
5112 
5113 	return buf;
5114 }
5115 
5116 void
5117 spdk_nvme_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr)
5118 {
5119 	nvme_ctrlr_lock(ctrlr);
5120 	nvme_transport_ctrlr_unmap_cmb(ctrlr);
5121 	nvme_ctrlr_unlock(ctrlr);
5122 }
5123 
5124 int
5125 spdk_nvme_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr)
5126 {
5127 	int rc;
5128 
5129 	nvme_ctrlr_lock(ctrlr);
5130 	rc = nvme_transport_ctrlr_enable_pmr(ctrlr);
5131 	nvme_ctrlr_unlock(ctrlr);
5132 
5133 	return rc;
5134 }
5135 
5136 int
5137 spdk_nvme_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr)
5138 {
5139 	int rc;
5140 
5141 	nvme_ctrlr_lock(ctrlr);
5142 	rc = nvme_transport_ctrlr_disable_pmr(ctrlr);
5143 	nvme_ctrlr_unlock(ctrlr);
5144 
5145 	return rc;
5146 }
5147 
5148 void *
5149 spdk_nvme_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
5150 {
5151 	void *buf;
5152 
5153 	nvme_ctrlr_lock(ctrlr);
5154 	buf = nvme_transport_ctrlr_map_pmr(ctrlr, size);
5155 	nvme_ctrlr_unlock(ctrlr);
5156 
5157 	return buf;
5158 }
5159 
5160 int
5161 spdk_nvme_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr)
5162 {
5163 	int rc;
5164 
5165 	nvme_ctrlr_lock(ctrlr);
5166 	rc = nvme_transport_ctrlr_unmap_pmr(ctrlr);
5167 	nvme_ctrlr_unlock(ctrlr);
5168 
5169 	return rc;
5170 }
5171 
5172 int
5173 spdk_nvme_ctrlr_read_boot_partition_start(struct spdk_nvme_ctrlr *ctrlr, void *payload,
5174 		uint32_t bprsz, uint32_t bprof, uint32_t bpid)
5175 {
5176 	union spdk_nvme_bprsel_register bprsel;
5177 	union spdk_nvme_bpinfo_register bpinfo;
5178 	uint64_t bpmbl, bpmb_size;
5179 
5180 	if (ctrlr->cap.bits.bps == 0) {
5181 		return -ENOTSUP;
5182 	}
5183 
5184 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5185 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5186 		return -EIO;
5187 	}
5188 
5189 	if (bpinfo.bits.brs == SPDK_NVME_BRS_READ_IN_PROGRESS) {
5190 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read already initiated\n");
5191 		return -EALREADY;
5192 	}
5193 
5194 	nvme_ctrlr_lock(ctrlr);
5195 
5196 	bpmb_size = bprsz * 4096;
5197 	bpmbl = spdk_vtophys(payload, &bpmb_size);
5198 	if (bpmbl == SPDK_VTOPHYS_ERROR) {
5199 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_vtophys of bpmbl failed\n");
5200 		nvme_ctrlr_unlock(ctrlr);
5201 		return -EFAULT;
5202 	}
5203 
5204 	if (bpmb_size != bprsz * 4096) {
5205 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition buffer is not physically contiguous\n");
5206 		nvme_ctrlr_unlock(ctrlr);
5207 		return -EFAULT;
5208 	}
5209 
5210 	if (nvme_ctrlr_set_bpmbl(ctrlr, bpmbl)) {
5211 		NVME_CTRLR_ERRLOG(ctrlr, "set_bpmbl() failed\n");
5212 		nvme_ctrlr_unlock(ctrlr);
5213 		return -EIO;
5214 	}
5215 
5216 	bprsel.bits.bpid = bpid;
5217 	bprsel.bits.bprof = bprof;
5218 	bprsel.bits.bprsz = bprsz;
5219 
5220 	if (nvme_ctrlr_set_bprsel(ctrlr, &bprsel)) {
5221 		NVME_CTRLR_ERRLOG(ctrlr, "set_bprsel() failed\n");
5222 		nvme_ctrlr_unlock(ctrlr);
5223 		return -EIO;
5224 	}
5225 
5226 	nvme_ctrlr_unlock(ctrlr);
5227 	return 0;
5228 }
5229 
5230 int
5231 spdk_nvme_ctrlr_read_boot_partition_poll(struct spdk_nvme_ctrlr *ctrlr)
5232 {
5233 	int rc = 0;
5234 	union spdk_nvme_bpinfo_register bpinfo;
5235 
5236 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5237 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5238 		return -EIO;
5239 	}
5240 
5241 	switch (bpinfo.bits.brs) {
5242 	case SPDK_NVME_BRS_NO_READ:
5243 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read not initiated\n");
5244 		rc = -EINVAL;
5245 		break;
5246 	case SPDK_NVME_BRS_READ_IN_PROGRESS:
5247 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition read in progress\n");
5248 		rc = -EAGAIN;
5249 		break;
5250 	case SPDK_NVME_BRS_READ_ERROR:
5251 		NVME_CTRLR_ERRLOG(ctrlr, "Error completing Boot Partition read\n");
5252 		rc = -EIO;
5253 		break;
5254 	case SPDK_NVME_BRS_READ_SUCCESS:
5255 		NVME_CTRLR_INFOLOG(ctrlr, "Boot Partition read completed successfully\n");
5256 		break;
5257 	default:
5258 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition read status\n");
5259 		rc = -EINVAL;
5260 	}
5261 
5262 	return rc;
5263 }
5264 
5265 static void
5266 nvme_write_boot_partition_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5267 {
5268 	int res;
5269 	struct spdk_nvme_ctrlr *ctrlr = arg;
5270 	struct spdk_nvme_fw_commit fw_commit;
5271 	struct spdk_nvme_cpl err_cpl =
5272 	{.status = {.sct = SPDK_NVME_SCT_GENERIC, .sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR }};
5273 
5274 	if (spdk_nvme_cpl_is_error(cpl)) {
5275 		NVME_CTRLR_ERRLOG(ctrlr, "Write Boot Partition failed\n");
5276 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5277 		return;
5278 	}
5279 
5280 	if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADING) {
5281 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Downloading at Offset %d Success\n", ctrlr->fw_offset);
5282 		ctrlr->fw_payload = (uint8_t *)ctrlr->fw_payload + ctrlr->fw_transfer_size;
5283 		ctrlr->fw_offset += ctrlr->fw_transfer_size;
5284 		ctrlr->fw_size_remaining -= ctrlr->fw_transfer_size;
5285 		ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5286 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5287 						       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5288 		if (res) {
5289 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_image_download failed!\n");
5290 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5291 			return;
5292 		}
5293 
5294 		if (ctrlr->fw_transfer_size < ctrlr->min_page_size) {
5295 			ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADED;
5296 		}
5297 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADED) {
5298 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Download Success\n");
5299 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5300 		fw_commit.bpid = ctrlr->bpid;
5301 		fw_commit.ca = SPDK_NVME_FW_COMMIT_REPLACE_BOOT_PARTITION;
5302 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5303 					       nvme_write_boot_partition_cb, ctrlr);
5304 		if (res) {
5305 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5306 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5307 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5308 			return;
5309 		}
5310 
5311 		ctrlr->bp_ws = SPDK_NVME_BP_WS_REPLACE;
5312 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_REPLACE) {
5313 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Replacement Success\n");
5314 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5315 		fw_commit.bpid = ctrlr->bpid;
5316 		fw_commit.ca = SPDK_NVME_FW_COMMIT_ACTIVATE_BOOT_PARTITION;
5317 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5318 					       nvme_write_boot_partition_cb, ctrlr);
5319 		if (res) {
5320 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5321 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5322 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5323 			return;
5324 		}
5325 
5326 		ctrlr->bp_ws = SPDK_NVME_BP_WS_ACTIVATE;
5327 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_ACTIVATE) {
5328 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Activation Success\n");
5329 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5330 	} else {
5331 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition write state\n");
5332 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5333 		return;
5334 	}
5335 }
5336 
5337 int
5338 spdk_nvme_ctrlr_write_boot_partition(struct spdk_nvme_ctrlr *ctrlr,
5339 				     void *payload, uint32_t size, uint32_t bpid,
5340 				     spdk_nvme_cmd_cb cb_fn, void *cb_arg)
5341 {
5342 	int res;
5343 
5344 	if (ctrlr->cap.bits.bps == 0) {
5345 		return -ENOTSUP;
5346 	}
5347 
5348 	ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADING;
5349 	ctrlr->bpid = bpid;
5350 	ctrlr->bp_write_cb_fn = cb_fn;
5351 	ctrlr->bp_write_cb_arg = cb_arg;
5352 	ctrlr->fw_offset = 0;
5353 	ctrlr->fw_size_remaining = size;
5354 	ctrlr->fw_payload = payload;
5355 	ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5356 
5357 	res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5358 					       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5359 
5360 	return res;
5361 }
5362 
5363 bool
5364 spdk_nvme_ctrlr_is_discovery(struct spdk_nvme_ctrlr *ctrlr)
5365 {
5366 	assert(ctrlr);
5367 
5368 	return !strncmp(ctrlr->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN,
5369 			strlen(SPDK_NVMF_DISCOVERY_NQN));
5370 }
5371 
5372 bool
5373 spdk_nvme_ctrlr_is_fabrics(struct spdk_nvme_ctrlr *ctrlr)
5374 {
5375 	assert(ctrlr);
5376 
5377 	return spdk_nvme_trtype_is_fabrics(ctrlr->trid.trtype);
5378 }
5379 
5380 int
5381 spdk_nvme_ctrlr_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5382 				 uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5383 {
5384 	struct nvme_completion_poll_status	*status;
5385 	int					res;
5386 
5387 	status = calloc(1, sizeof(*status));
5388 	if (!status) {
5389 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5390 		return -ENOMEM;
5391 	}
5392 
5393 	res = spdk_nvme_ctrlr_cmd_security_receive(ctrlr, secp, spsp, nssf, payload, size,
5394 			nvme_completion_poll_cb, status);
5395 	if (res) {
5396 		free(status);
5397 		return res;
5398 	}
5399 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5400 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_receive failed!\n");
5401 		if (!status->timed_out) {
5402 			free(status);
5403 		}
5404 		return -ENXIO;
5405 	}
5406 	free(status);
5407 
5408 	return 0;
5409 }
5410 
5411 int
5412 spdk_nvme_ctrlr_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5413 			      uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5414 {
5415 	struct nvme_completion_poll_status	*status;
5416 	int					res;
5417 
5418 	status = calloc(1, sizeof(*status));
5419 	if (!status) {
5420 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5421 		return -ENOMEM;
5422 	}
5423 
5424 	res = spdk_nvme_ctrlr_cmd_security_send(ctrlr, secp, spsp, nssf, payload, size,
5425 						nvme_completion_poll_cb,
5426 						status);
5427 	if (res) {
5428 		free(status);
5429 		return res;
5430 	}
5431 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5432 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_send failed!\n");
5433 		if (!status->timed_out) {
5434 			free(status);
5435 		}
5436 		return -ENXIO;
5437 	}
5438 
5439 	free(status);
5440 
5441 	return 0;
5442 }
5443 
5444 uint64_t
5445 spdk_nvme_ctrlr_get_flags(struct spdk_nvme_ctrlr *ctrlr)
5446 {
5447 	return ctrlr->flags;
5448 }
5449 
5450 const struct spdk_nvme_transport_id *
5451 spdk_nvme_ctrlr_get_transport_id(struct spdk_nvme_ctrlr *ctrlr)
5452 {
5453 	return &ctrlr->trid;
5454 }
5455 
5456 int32_t
5457 spdk_nvme_ctrlr_alloc_qid(struct spdk_nvme_ctrlr *ctrlr)
5458 {
5459 	uint32_t qid;
5460 
5461 	assert(ctrlr->free_io_qids);
5462 	nvme_ctrlr_lock(ctrlr);
5463 	qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1);
5464 	if (qid > ctrlr->opts.num_io_queues) {
5465 		NVME_CTRLR_ERRLOG(ctrlr, "No free I/O queue IDs\n");
5466 		nvme_ctrlr_unlock(ctrlr);
5467 		return -1;
5468 	}
5469 
5470 	spdk_bit_array_clear(ctrlr->free_io_qids, qid);
5471 	nvme_ctrlr_unlock(ctrlr);
5472 	return qid;
5473 }
5474 
5475 void
5476 spdk_nvme_ctrlr_free_qid(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid)
5477 {
5478 	assert(qid <= ctrlr->opts.num_io_queues);
5479 
5480 	nvme_ctrlr_lock(ctrlr);
5481 
5482 	if (spdk_likely(ctrlr->free_io_qids)) {
5483 		spdk_bit_array_set(ctrlr->free_io_qids, qid);
5484 	}
5485 
5486 	nvme_ctrlr_unlock(ctrlr);
5487 }
5488 
5489 int
5490 spdk_nvme_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
5491 				   struct spdk_memory_domain **domains, int array_size)
5492 {
5493 	return nvme_transport_ctrlr_get_memory_domains(ctrlr, domains, array_size);
5494 }
5495