xref: /spdk/lib/nvme/nvme.c (revision a95bbf2336179ce1093307c872b1debc25193da2)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2015 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved.
4  */
5 
6 #include "spdk/config.h"
7 #include "spdk/nvmf_spec.h"
8 #include "spdk/string.h"
9 #include "spdk/env.h"
10 #include "nvme_internal.h"
11 #include "nvme_io_msg.h"
12 
13 #define SPDK_NVME_DRIVER_NAME "spdk_nvme_driver"
14 
15 struct nvme_driver	*g_spdk_nvme_driver;
16 pid_t			g_spdk_nvme_pid;
17 
18 /* gross timeout of 180 seconds in milliseconds */
19 static int g_nvme_driver_timeout_ms = 3 * 60 * 1000;
20 
21 /* Per-process attached controller list */
22 static TAILQ_HEAD(, spdk_nvme_ctrlr) g_nvme_attached_ctrlrs =
23 	TAILQ_HEAD_INITIALIZER(g_nvme_attached_ctrlrs);
24 
25 /* Returns true if ctrlr should be stored on the multi-process shared_attached_ctrlrs list */
26 static bool
27 nvme_ctrlr_shared(const struct spdk_nvme_ctrlr *ctrlr)
28 {
29 	return ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE;
30 }
31 
32 void
33 nvme_ctrlr_connected(struct spdk_nvme_probe_ctx *probe_ctx,
34 		     struct spdk_nvme_ctrlr *ctrlr)
35 {
36 	TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
37 }
38 
39 static void
40 nvme_ctrlr_detach_async_finish(struct spdk_nvme_ctrlr *ctrlr)
41 {
42 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
43 	if (nvme_ctrlr_shared(ctrlr)) {
44 		TAILQ_REMOVE(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
45 	} else {
46 		TAILQ_REMOVE(&g_nvme_attached_ctrlrs, ctrlr, tailq);
47 	}
48 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
49 }
50 
51 static int
52 nvme_ctrlr_detach_async(struct spdk_nvme_ctrlr *ctrlr,
53 			struct nvme_ctrlr_detach_ctx **_ctx)
54 {
55 	struct nvme_ctrlr_detach_ctx *ctx;
56 	int ref_count;
57 
58 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
59 
60 	ref_count = nvme_ctrlr_get_ref_count(ctrlr);
61 	assert(ref_count > 0);
62 
63 	if (ref_count == 1) {
64 		/* This is the last reference to the controller, so we need to
65 		 * allocate a context to destruct it.
66 		 */
67 		ctx = calloc(1, sizeof(*ctx));
68 		if (ctx == NULL) {
69 			nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
70 
71 			return -ENOMEM;
72 		}
73 		ctx->ctrlr = ctrlr;
74 		ctx->cb_fn = nvme_ctrlr_detach_async_finish;
75 
76 		nvme_ctrlr_proc_put_ref(ctrlr);
77 
78 		nvme_io_msg_ctrlr_detach(ctrlr);
79 
80 		nvme_ctrlr_destruct_async(ctrlr, ctx);
81 
82 		*_ctx = ctx;
83 	} else {
84 		nvme_ctrlr_proc_put_ref(ctrlr);
85 	}
86 
87 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
88 
89 	return 0;
90 }
91 
92 static int
93 nvme_ctrlr_detach_poll_async(struct nvme_ctrlr_detach_ctx *ctx)
94 {
95 	int rc;
96 
97 	rc = nvme_ctrlr_destruct_poll_async(ctx->ctrlr, ctx);
98 	if (rc == -EAGAIN) {
99 		return -EAGAIN;
100 	}
101 
102 	free(ctx);
103 
104 	return rc;
105 }
106 
107 int
108 spdk_nvme_detach(struct spdk_nvme_ctrlr *ctrlr)
109 {
110 	struct nvme_ctrlr_detach_ctx *ctx = NULL;
111 	int rc;
112 
113 	rc = nvme_ctrlr_detach_async(ctrlr, &ctx);
114 	if (rc != 0) {
115 		return rc;
116 	} else if (ctx == NULL) {
117 		/* ctrlr was detached from the caller process but any other process
118 		 * still attaches it.
119 		 */
120 		return 0;
121 	}
122 
123 	while (1) {
124 		rc = nvme_ctrlr_detach_poll_async(ctx);
125 		if (rc != -EAGAIN) {
126 			break;
127 		}
128 		nvme_delay(1000);
129 	}
130 
131 	return 0;
132 }
133 
134 int
135 spdk_nvme_detach_async(struct spdk_nvme_ctrlr *ctrlr,
136 		       struct spdk_nvme_detach_ctx **_detach_ctx)
137 {
138 	struct spdk_nvme_detach_ctx *detach_ctx;
139 	struct nvme_ctrlr_detach_ctx *ctx = NULL;
140 	int rc;
141 
142 	if (ctrlr == NULL || _detach_ctx == NULL) {
143 		return -EINVAL;
144 	}
145 
146 	/* Use a context header to poll detachment for multiple controllers.
147 	 * Allocate an new one if not allocated yet, or use the passed one otherwise.
148 	 */
149 	detach_ctx = *_detach_ctx;
150 	if (detach_ctx == NULL) {
151 		detach_ctx = calloc(1, sizeof(*detach_ctx));
152 		if (detach_ctx == NULL) {
153 			return -ENOMEM;
154 		}
155 		TAILQ_INIT(&detach_ctx->head);
156 	}
157 
158 	rc = nvme_ctrlr_detach_async(ctrlr, &ctx);
159 	if (rc != 0 || ctx == NULL) {
160 		/* If this detach failed and the context header is empty, it means we just
161 		 * allocated the header and need to free it before returning.
162 		 */
163 		if (TAILQ_EMPTY(&detach_ctx->head)) {
164 			free(detach_ctx);
165 		}
166 		return rc;
167 	}
168 
169 	/* Append a context for this detachment to the context header. */
170 	TAILQ_INSERT_TAIL(&detach_ctx->head, ctx, link);
171 
172 	*_detach_ctx = detach_ctx;
173 
174 	return 0;
175 }
176 
177 int
178 spdk_nvme_detach_poll_async(struct spdk_nvme_detach_ctx *detach_ctx)
179 {
180 	struct nvme_ctrlr_detach_ctx *ctx, *tmp_ctx;
181 	int rc;
182 
183 	if (detach_ctx == NULL) {
184 		return -EINVAL;
185 	}
186 
187 	TAILQ_FOREACH_SAFE(ctx, &detach_ctx->head, link, tmp_ctx) {
188 		TAILQ_REMOVE(&detach_ctx->head, ctx, link);
189 
190 		rc = nvme_ctrlr_detach_poll_async(ctx);
191 		if (rc == -EAGAIN) {
192 			/* If not -EAGAIN, ctx was freed by nvme_ctrlr_detach_poll_async(). */
193 			TAILQ_INSERT_HEAD(&detach_ctx->head, ctx, link);
194 		}
195 	}
196 
197 	if (!TAILQ_EMPTY(&detach_ctx->head)) {
198 		return -EAGAIN;
199 	}
200 
201 	free(detach_ctx);
202 	return 0;
203 }
204 
205 void
206 spdk_nvme_detach_poll(struct spdk_nvme_detach_ctx *detach_ctx)
207 {
208 	while (detach_ctx && spdk_nvme_detach_poll_async(detach_ctx) == -EAGAIN) {
209 		;
210 	}
211 }
212 
213 void
214 nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl)
215 {
216 	struct nvme_completion_poll_status	*status = arg;
217 
218 	if (status->timed_out) {
219 		/* There is no routine waiting for the completion of this request, free allocated memory */
220 		spdk_free(status->dma_data);
221 		free(status);
222 		return;
223 	}
224 
225 	/*
226 	 * Copy status into the argument passed by the caller, so that
227 	 *  the caller can check the status to determine if the
228 	 *  the request passed or failed.
229 	 */
230 	memcpy(&status->cpl, cpl, sizeof(*cpl));
231 	status->done = true;
232 }
233 
234 static void
235 dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
236 {
237 }
238 
239 int
240 nvme_wait_for_completion_robust_lock_timeout_poll(struct spdk_nvme_qpair *qpair,
241 		struct nvme_completion_poll_status *status,
242 		pthread_mutex_t *robust_mutex)
243 {
244 	int rc;
245 
246 	if (robust_mutex) {
247 		nvme_robust_mutex_lock(robust_mutex);
248 	}
249 
250 	if (qpair->poll_group) {
251 		rc = (int)spdk_nvme_poll_group_process_completions(qpair->poll_group->group, 0,
252 				dummy_disconnected_qpair_cb);
253 	} else {
254 		rc = spdk_nvme_qpair_process_completions(qpair, 0);
255 	}
256 
257 	if (robust_mutex) {
258 		nvme_robust_mutex_unlock(robust_mutex);
259 	}
260 
261 	if (rc < 0) {
262 		status->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
263 		status->cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
264 		goto error;
265 	}
266 
267 	if (!status->done && status->timeout_tsc && spdk_get_ticks() > status->timeout_tsc) {
268 		goto error;
269 	}
270 
271 	if (qpair->ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
272 		union spdk_nvme_csts_register csts = spdk_nvme_ctrlr_get_regs_csts(qpair->ctrlr);
273 		if (csts.raw == SPDK_NVME_INVALID_REGISTER_VALUE) {
274 			status->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
275 			status->cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
276 			goto error;
277 		}
278 	}
279 
280 	if (!status->done) {
281 		return -EAGAIN;
282 	} else if (spdk_nvme_cpl_is_error(&status->cpl)) {
283 		return -EIO;
284 	} else {
285 		return 0;
286 	}
287 error:
288 	/* Either transport error occurred or we've timed out.  Either way, if the response hasn't
289 	 * been received yet, mark the command as timed out, so the status gets freed when the
290 	 * command is completed or aborted.
291 	 */
292 	if (!status->done) {
293 		status->timed_out = true;
294 	}
295 
296 	return -ECANCELED;
297 }
298 
299 /**
300  * Poll qpair for completions until a command completes.
301  *
302  * \param qpair queue to poll
303  * \param status completion status. The user must fill this structure with zeroes before calling
304  * this function
305  * \param robust_mutex optional robust mutex to lock while polling qpair
306  * \param timeout_in_usecs optional timeout
307  *
308  * \return 0 if command completed without error,
309  * -EIO if command completed with error,
310  * -ECANCELED if command is not completed due to transport/device error or time expired
311  *
312  *  The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
313  *  and status as the callback argument.
314  */
315 int
316 nvme_wait_for_completion_robust_lock_timeout(
317 	struct spdk_nvme_qpair *qpair,
318 	struct nvme_completion_poll_status *status,
319 	pthread_mutex_t *robust_mutex,
320 	uint64_t timeout_in_usecs)
321 {
322 	int rc;
323 
324 	if (timeout_in_usecs) {
325 		status->timeout_tsc = spdk_get_ticks() + timeout_in_usecs *
326 				      spdk_get_ticks_hz() / SPDK_SEC_TO_USEC;
327 	} else {
328 		status->timeout_tsc = 0;
329 	}
330 
331 	status->cpl.status_raw = 0;
332 	do {
333 		rc = nvme_wait_for_completion_robust_lock_timeout_poll(qpair, status, robust_mutex);
334 	} while (rc == -EAGAIN);
335 
336 	return rc;
337 }
338 
339 /**
340  * Poll qpair for completions until a command completes.
341  *
342  * \param qpair queue to poll
343  * \param status completion status. The user must fill this structure with zeroes before calling
344  * this function
345  * \param robust_mutex optional robust mutex to lock while polling qpair
346  *
347  * \return 0 if command completed without error,
348  * -EIO if command completed with error,
349  * -ECANCELED if command is not completed due to transport/device error
350  *
351  * The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
352  * and status as the callback argument.
353  */
354 int
355 nvme_wait_for_completion_robust_lock(
356 	struct spdk_nvme_qpair *qpair,
357 	struct nvme_completion_poll_status *status,
358 	pthread_mutex_t *robust_mutex)
359 {
360 	return nvme_wait_for_completion_robust_lock_timeout(qpair, status, robust_mutex, 0);
361 }
362 
363 int
364 nvme_wait_for_completion(struct spdk_nvme_qpair *qpair,
365 			 struct nvme_completion_poll_status *status)
366 {
367 	return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, 0);
368 }
369 
370 /**
371  * Poll qpair for completions until a command completes.
372  *
373  * \param qpair queue to poll
374  * \param status completion status. The user must fill this structure with zeroes before calling
375  * this function
376  * \param timeout_in_usecs optional timeout
377  *
378  * \return 0 if command completed without error,
379  * -EIO if command completed with error,
380  * -ECANCELED if command is not completed due to transport/device error or time expired
381  *
382  * The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
383  * and status as the callback argument.
384  */
385 int
386 nvme_wait_for_completion_timeout(struct spdk_nvme_qpair *qpair,
387 				 struct nvme_completion_poll_status *status,
388 				 uint64_t timeout_in_usecs)
389 {
390 	return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, timeout_in_usecs);
391 }
392 
393 static void
394 nvme_user_copy_cmd_complete(void *arg, const struct spdk_nvme_cpl *cpl)
395 {
396 	struct nvme_request *req = arg;
397 	spdk_nvme_cmd_cb user_cb_fn;
398 	void *user_cb_arg;
399 	enum spdk_nvme_data_transfer xfer;
400 
401 	if (req->user_buffer && req->payload_size) {
402 		/* Copy back to the user buffer */
403 		assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
404 		xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc);
405 		if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
406 		    xfer == SPDK_NVME_DATA_BIDIRECTIONAL) {
407 			assert(req->pid == getpid());
408 			memcpy(req->user_buffer, req->payload.contig_or_cb_arg, req->payload_size);
409 		}
410 	}
411 
412 	user_cb_fn = req->user_cb_fn;
413 	user_cb_arg = req->user_cb_arg;
414 	nvme_cleanup_user_req(req);
415 
416 	/* Call the user's original callback now that the buffer has been copied */
417 	user_cb_fn(user_cb_arg, cpl);
418 
419 }
420 
421 /**
422  * Allocate a request as well as a DMA-capable buffer to copy to/from the user's buffer.
423  *
424  * This is intended for use in non-fast-path functions (admin commands, reservations, etc.)
425  * where the overhead of a copy is not a problem.
426  */
427 struct nvme_request *
428 nvme_allocate_request_user_copy(struct spdk_nvme_qpair *qpair,
429 				void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn,
430 				void *cb_arg, bool host_to_controller)
431 {
432 	struct nvme_request *req;
433 	void *dma_buffer = NULL;
434 
435 	if (buffer && payload_size) {
436 		dma_buffer = spdk_zmalloc(payload_size, 4096, NULL,
437 					  SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
438 		if (!dma_buffer) {
439 			return NULL;
440 		}
441 
442 		if (host_to_controller) {
443 			memcpy(dma_buffer, buffer, payload_size);
444 		}
445 	}
446 
447 	req = nvme_allocate_request_contig(qpair, dma_buffer, payload_size, nvme_user_copy_cmd_complete,
448 					   NULL);
449 	if (!req) {
450 		spdk_free(dma_buffer);
451 		return NULL;
452 	}
453 
454 	req->user_cb_fn = cb_fn;
455 	req->user_cb_arg = cb_arg;
456 	req->user_buffer = buffer;
457 	req->cb_arg = req;
458 
459 	return req;
460 }
461 
462 /**
463  * Check if a request has exceeded the controller timeout.
464  *
465  * \param req request to check for timeout.
466  * \param cid command ID for command submitted by req (will be passed to timeout_cb_fn)
467  * \param active_proc per-process data for the controller associated with req
468  * \param now_tick current time from spdk_get_ticks()
469  * \return 0 if requests submitted more recently than req should still be checked for timeouts, or
470  * 1 if requests newer than req need not be checked.
471  *
472  * The request's timeout callback will be called if needed; the caller is only responsible for
473  * calling this function on each outstanding request.
474  */
475 int
476 nvme_request_check_timeout(struct nvme_request *req, uint16_t cid,
477 			   struct spdk_nvme_ctrlr_process *active_proc,
478 			   uint64_t now_tick)
479 {
480 	struct spdk_nvme_qpair *qpair = req->qpair;
481 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
482 	uint64_t timeout_ticks = nvme_qpair_is_admin_queue(qpair) ?
483 				 active_proc->timeout_admin_ticks : active_proc->timeout_io_ticks;
484 
485 	assert(active_proc->timeout_cb_fn != NULL);
486 
487 	if (req->timed_out || req->submit_tick == 0) {
488 		return 0;
489 	}
490 
491 	if (req->pid != g_spdk_nvme_pid) {
492 		return 0;
493 	}
494 
495 	if (nvme_qpair_is_admin_queue(qpair) &&
496 	    req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
497 		return 0;
498 	}
499 
500 	if (req->submit_tick + timeout_ticks > now_tick) {
501 		return 1;
502 	}
503 
504 	req->timed_out = true;
505 
506 	/*
507 	 * We don't want to expose the admin queue to the user,
508 	 * so when we're timing out admin commands set the
509 	 * qpair to NULL.
510 	 */
511 	active_proc->timeout_cb_fn(active_proc->timeout_cb_arg, ctrlr,
512 				   nvme_qpair_is_admin_queue(qpair) ? NULL : qpair,
513 				   cid);
514 	return 0;
515 }
516 
517 int
518 nvme_robust_mutex_init_shared(pthread_mutex_t *mtx)
519 {
520 	int rc = 0;
521 
522 #ifdef __FreeBSD__
523 	pthread_mutex_init(mtx, NULL);
524 #else
525 	pthread_mutexattr_t attr;
526 
527 	if (pthread_mutexattr_init(&attr)) {
528 		return -1;
529 	}
530 	if (pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
531 	    pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
532 	    pthread_mutex_init(mtx, &attr)) {
533 		rc = -1;
534 	}
535 	pthread_mutexattr_destroy(&attr);
536 #endif
537 
538 	return rc;
539 }
540 
541 int
542 nvme_driver_init(void)
543 {
544 	static pthread_mutex_t g_init_mutex = PTHREAD_MUTEX_INITIALIZER;
545 	int ret = 0;
546 	/* Any socket ID */
547 	int socket_id = -1;
548 
549 	/* Use a special process-private mutex to ensure the global
550 	 * nvme driver object (g_spdk_nvme_driver) gets initialized by
551 	 * only one thread.  Once that object is established and its
552 	 * mutex is initialized, we can unlock this mutex and use that
553 	 * one instead.
554 	 */
555 	pthread_mutex_lock(&g_init_mutex);
556 
557 	/* Each process needs its own pid. */
558 	g_spdk_nvme_pid = getpid();
559 
560 	/*
561 	 * Only one thread from one process will do this driver init work.
562 	 * The primary process will reserve the shared memory and do the
563 	 *  initialization.
564 	 * The secondary process will lookup the existing reserved memory.
565 	 */
566 	if (spdk_process_is_primary()) {
567 		/* The unique named memzone already reserved. */
568 		if (g_spdk_nvme_driver != NULL) {
569 			pthread_mutex_unlock(&g_init_mutex);
570 			return 0;
571 		} else {
572 			g_spdk_nvme_driver = spdk_memzone_reserve(SPDK_NVME_DRIVER_NAME,
573 					     sizeof(struct nvme_driver), socket_id,
574 					     SPDK_MEMZONE_NO_IOVA_CONTIG);
575 		}
576 
577 		if (g_spdk_nvme_driver == NULL) {
578 			SPDK_ERRLOG("primary process failed to reserve memory\n");
579 			pthread_mutex_unlock(&g_init_mutex);
580 			return -1;
581 		}
582 	} else {
583 		g_spdk_nvme_driver = spdk_memzone_lookup(SPDK_NVME_DRIVER_NAME);
584 
585 		/* The unique named memzone already reserved by the primary process. */
586 		if (g_spdk_nvme_driver != NULL) {
587 			int ms_waited = 0;
588 
589 			/* Wait the nvme driver to get initialized. */
590 			while ((g_spdk_nvme_driver->initialized == false) &&
591 			       (ms_waited < g_nvme_driver_timeout_ms)) {
592 				ms_waited++;
593 				nvme_delay(1000); /* delay 1ms */
594 			}
595 			if (g_spdk_nvme_driver->initialized == false) {
596 				SPDK_ERRLOG("timeout waiting for primary process to init\n");
597 				pthread_mutex_unlock(&g_init_mutex);
598 				return -1;
599 			}
600 		} else {
601 			SPDK_ERRLOG("primary process is not started yet\n");
602 			pthread_mutex_unlock(&g_init_mutex);
603 			return -1;
604 		}
605 
606 		pthread_mutex_unlock(&g_init_mutex);
607 		return 0;
608 	}
609 
610 	/*
611 	 * At this moment, only one thread from the primary process will do
612 	 * the g_spdk_nvme_driver initialization
613 	 */
614 	assert(spdk_process_is_primary());
615 
616 	ret = nvme_robust_mutex_init_shared(&g_spdk_nvme_driver->lock);
617 	if (ret != 0) {
618 		SPDK_ERRLOG("failed to initialize mutex\n");
619 		spdk_memzone_free(SPDK_NVME_DRIVER_NAME);
620 		pthread_mutex_unlock(&g_init_mutex);
621 		return ret;
622 	}
623 
624 	/* The lock in the shared g_spdk_nvme_driver object is now ready to
625 	 * be used - so we can unlock the g_init_mutex here.
626 	 */
627 	pthread_mutex_unlock(&g_init_mutex);
628 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
629 
630 	g_spdk_nvme_driver->initialized = false;
631 	g_spdk_nvme_driver->hotplug_fd = spdk_pci_event_listen();
632 	if (g_spdk_nvme_driver->hotplug_fd < 0) {
633 		SPDK_DEBUGLOG(nvme, "Failed to open uevent netlink socket\n");
634 	}
635 
636 	TAILQ_INIT(&g_spdk_nvme_driver->shared_attached_ctrlrs);
637 
638 	spdk_uuid_generate(&g_spdk_nvme_driver->default_extended_host_id);
639 
640 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
641 
642 	return ret;
643 }
644 
645 /* This function must only be called while holding g_spdk_nvme_driver->lock */
646 int
647 nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid,
648 		 struct spdk_nvme_probe_ctx *probe_ctx, void *devhandle)
649 {
650 	struct spdk_nvme_ctrlr *ctrlr;
651 	struct spdk_nvme_ctrlr_opts opts;
652 
653 	assert(trid != NULL);
654 
655 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts));
656 
657 	if (!probe_ctx->probe_cb || probe_ctx->probe_cb(probe_ctx->cb_ctx, trid, &opts)) {
658 		ctrlr = nvme_get_ctrlr_by_trid_unsafe(trid, opts.hostnqn);
659 		if (ctrlr) {
660 			/* This ctrlr already exists. */
661 
662 			if (ctrlr->is_destructed) {
663 				/* This ctrlr is being destructed asynchronously. */
664 				SPDK_ERRLOG("NVMe controller for SSD: %s is being destructed\n",
665 					    trid->traddr);
666 				return -EBUSY;
667 			}
668 
669 			/* Increase the ref count before calling attach_cb() as the user may
670 			* call nvme_detach() immediately. */
671 			nvme_ctrlr_proc_get_ref(ctrlr);
672 
673 			if (probe_ctx->attach_cb) {
674 				nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
675 				probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
676 				nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
677 			}
678 			return 0;
679 		}
680 
681 		ctrlr = nvme_transport_ctrlr_construct(trid, &opts, devhandle);
682 		if (ctrlr == NULL) {
683 			SPDK_ERRLOG("Failed to construct NVMe controller for SSD: %s\n", trid->traddr);
684 			return -1;
685 		}
686 		ctrlr->remove_cb = probe_ctx->remove_cb;
687 		ctrlr->cb_ctx = probe_ctx->cb_ctx;
688 
689 		nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
690 		TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
691 		return 0;
692 	}
693 
694 	return 1;
695 }
696 
697 static void
698 nvme_ctrlr_poll_internal(struct spdk_nvme_ctrlr *ctrlr,
699 			 struct spdk_nvme_probe_ctx *probe_ctx)
700 {
701 	int rc = 0;
702 
703 	rc = nvme_ctrlr_process_init(ctrlr);
704 
705 	if (rc) {
706 		/* Controller failed to initialize. */
707 		TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
708 		SPDK_ERRLOG("Failed to initialize SSD: %s\n", ctrlr->trid.traddr);
709 		nvme_ctrlr_lock(ctrlr);
710 		nvme_ctrlr_fail(ctrlr, false);
711 		nvme_ctrlr_unlock(ctrlr);
712 		nvme_ctrlr_destruct(ctrlr);
713 		return;
714 	}
715 
716 	if (ctrlr->state != NVME_CTRLR_STATE_READY) {
717 		return;
718 	}
719 
720 	STAILQ_INIT(&ctrlr->io_producers);
721 
722 	/*
723 	 * Controller has been initialized.
724 	 *  Move it to the attached_ctrlrs list.
725 	 */
726 	TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
727 
728 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
729 	if (nvme_ctrlr_shared(ctrlr)) {
730 		TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
731 	} else {
732 		TAILQ_INSERT_TAIL(&g_nvme_attached_ctrlrs, ctrlr, tailq);
733 	}
734 
735 	/*
736 	 * Increase the ref count before calling attach_cb() as the user may
737 	 * call nvme_detach() immediately.
738 	 */
739 	nvme_ctrlr_proc_get_ref(ctrlr);
740 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
741 
742 	if (probe_ctx->attach_cb) {
743 		probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
744 	}
745 }
746 
747 static int
748 nvme_init_controllers(struct spdk_nvme_probe_ctx *probe_ctx)
749 {
750 	int rc = 0;
751 
752 	while (true) {
753 		rc = spdk_nvme_probe_poll_async(probe_ctx);
754 		if (rc != -EAGAIN) {
755 			return rc;
756 		}
757 	}
758 
759 	return rc;
760 }
761 
762 /* This function must not be called while holding g_spdk_nvme_driver->lock */
763 static struct spdk_nvme_ctrlr *
764 nvme_get_ctrlr_by_trid(const struct spdk_nvme_transport_id *trid, const char *hostnqn)
765 {
766 	struct spdk_nvme_ctrlr *ctrlr;
767 
768 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
769 	ctrlr = nvme_get_ctrlr_by_trid_unsafe(trid, hostnqn);
770 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
771 
772 	return ctrlr;
773 }
774 
775 /* This function must be called while holding g_spdk_nvme_driver->lock */
776 struct spdk_nvme_ctrlr *
777 nvme_get_ctrlr_by_trid_unsafe(const struct spdk_nvme_transport_id *trid, const char *hostnqn)
778 {
779 	struct spdk_nvme_ctrlr *ctrlr;
780 
781 	/* Search per-process list */
782 	TAILQ_FOREACH(ctrlr, &g_nvme_attached_ctrlrs, tailq) {
783 		if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) != 0) {
784 			continue;
785 		}
786 		if (hostnqn && strcmp(ctrlr->opts.hostnqn, hostnqn) != 0) {
787 			continue;
788 		}
789 		return ctrlr;
790 	}
791 
792 	/* Search multi-process shared list */
793 	TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
794 		if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) != 0) {
795 			continue;
796 		}
797 		if (hostnqn && strcmp(ctrlr->opts.hostnqn, hostnqn) != 0) {
798 			continue;
799 		}
800 		return ctrlr;
801 	}
802 
803 	return NULL;
804 }
805 
806 /* This function must only be called while holding g_spdk_nvme_driver->lock */
807 static int
808 nvme_probe_internal(struct spdk_nvme_probe_ctx *probe_ctx,
809 		    bool direct_connect)
810 {
811 	int rc;
812 	struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
813 	const struct spdk_nvme_ctrlr_opts *opts = probe_ctx->opts;
814 
815 	if (strlen(probe_ctx->trid.trstring) == 0) {
816 		/* If user didn't provide trstring, derive it from trtype */
817 		spdk_nvme_trid_populate_transport(&probe_ctx->trid, probe_ctx->trid.trtype);
818 	}
819 
820 	if (!spdk_nvme_transport_available_by_name(probe_ctx->trid.trstring)) {
821 		SPDK_ERRLOG("NVMe trtype %u (%s) not available\n",
822 			    probe_ctx->trid.trtype, probe_ctx->trid.trstring);
823 		return -1;
824 	}
825 
826 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
827 
828 	rc = nvme_transport_ctrlr_scan(probe_ctx, direct_connect);
829 	if (rc != 0) {
830 		SPDK_ERRLOG("NVMe ctrlr scan failed\n");
831 		TAILQ_FOREACH_SAFE(ctrlr, &probe_ctx->init_ctrlrs, tailq, ctrlr_tmp) {
832 			TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
833 			nvme_transport_ctrlr_destruct(ctrlr);
834 		}
835 		nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
836 		return -1;
837 	}
838 
839 	/*
840 	 * Probe controllers on the shared_attached_ctrlrs list
841 	 */
842 	if (!spdk_process_is_primary() && (probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE)) {
843 		TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
844 			/* Do not attach other ctrlrs if user specify a valid trid */
845 			if ((strlen(probe_ctx->trid.traddr) != 0) &&
846 			    (spdk_nvme_transport_id_compare(&probe_ctx->trid, &ctrlr->trid))) {
847 				continue;
848 			}
849 
850 			if (opts && strcmp(opts->hostnqn, ctrlr->opts.hostnqn) != 0) {
851 				continue;
852 			}
853 
854 			/* Do not attach if we failed to initialize it in this process */
855 			if (nvme_ctrlr_get_current_process(ctrlr) == NULL) {
856 				continue;
857 			}
858 
859 			nvme_ctrlr_proc_get_ref(ctrlr);
860 
861 			/*
862 			 * Unlock while calling attach_cb() so the user can call other functions
863 			 *  that may take the driver lock, like nvme_detach().
864 			 */
865 			if (probe_ctx->attach_cb) {
866 				nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
867 				probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
868 				nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
869 			}
870 		}
871 	}
872 
873 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
874 
875 	return 0;
876 }
877 
878 static void
879 nvme_probe_ctx_init(struct spdk_nvme_probe_ctx *probe_ctx,
880 		    const struct spdk_nvme_transport_id *trid,
881 		    const struct spdk_nvme_ctrlr_opts *opts,
882 		    void *cb_ctx,
883 		    spdk_nvme_probe_cb probe_cb,
884 		    spdk_nvme_attach_cb attach_cb,
885 		    spdk_nvme_remove_cb remove_cb)
886 {
887 	probe_ctx->trid = *trid;
888 	probe_ctx->opts = opts;
889 	probe_ctx->cb_ctx = cb_ctx;
890 	probe_ctx->probe_cb = probe_cb;
891 	probe_ctx->attach_cb = attach_cb;
892 	probe_ctx->remove_cb = remove_cb;
893 	TAILQ_INIT(&probe_ctx->init_ctrlrs);
894 }
895 
896 int
897 spdk_nvme_probe(const struct spdk_nvme_transport_id *trid, void *cb_ctx,
898 		spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
899 		spdk_nvme_remove_cb remove_cb)
900 {
901 	struct spdk_nvme_transport_id trid_pcie;
902 	struct spdk_nvme_probe_ctx *probe_ctx;
903 
904 	if (trid == NULL) {
905 		memset(&trid_pcie, 0, sizeof(trid_pcie));
906 		spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
907 		trid = &trid_pcie;
908 	}
909 
910 	probe_ctx = spdk_nvme_probe_async(trid, cb_ctx, probe_cb,
911 					  attach_cb, remove_cb);
912 	if (!probe_ctx) {
913 		SPDK_ERRLOG("Create probe context failed\n");
914 		return -1;
915 	}
916 
917 	/*
918 	 * Keep going even if one or more nvme_attach() calls failed,
919 	 *  but maintain the value of rc to signal errors when we return.
920 	 */
921 	return nvme_init_controllers(probe_ctx);
922 }
923 
924 static bool
925 nvme_connect_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
926 		      struct spdk_nvme_ctrlr_opts *opts)
927 {
928 	struct spdk_nvme_ctrlr_opts *requested_opts = cb_ctx;
929 
930 	assert(requested_opts);
931 	memcpy(opts, requested_opts, sizeof(*opts));
932 
933 	return true;
934 }
935 
936 static void
937 nvme_ctrlr_opts_init(struct spdk_nvme_ctrlr_opts *opts,
938 		     const struct spdk_nvme_ctrlr_opts *opts_user,
939 		     size_t opts_size_user)
940 {
941 	assert(opts);
942 	assert(opts_user);
943 
944 	spdk_nvme_ctrlr_get_default_ctrlr_opts(opts, opts_size_user);
945 
946 #define FIELD_OK(field) \
947 	offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= (opts->opts_size)
948 
949 #define SET_FIELD(field) \
950 	if (FIELD_OK(field)) { \
951 			opts->field = opts_user->field; \
952 	}
953 
954 #define SET_FIELD_ARRAY(field) \
955 	if (FIELD_OK(field)) { \
956 		memcpy(opts->field, opts_user->field, sizeof(opts_user->field)); \
957 	}
958 
959 	SET_FIELD(num_io_queues);
960 	SET_FIELD(use_cmb_sqs);
961 	SET_FIELD(no_shn_notification);
962 	SET_FIELD(arb_mechanism);
963 	SET_FIELD(arbitration_burst);
964 	SET_FIELD(low_priority_weight);
965 	SET_FIELD(medium_priority_weight);
966 	SET_FIELD(high_priority_weight);
967 	SET_FIELD(keep_alive_timeout_ms);
968 	SET_FIELD(transport_retry_count);
969 	SET_FIELD(io_queue_size);
970 	SET_FIELD_ARRAY(hostnqn);
971 	SET_FIELD(io_queue_requests);
972 	SET_FIELD_ARRAY(src_addr);
973 	SET_FIELD_ARRAY(src_svcid);
974 	SET_FIELD_ARRAY(host_id);
975 	SET_FIELD_ARRAY(extended_host_id);
976 	SET_FIELD(command_set);
977 	SET_FIELD(admin_timeout_ms);
978 	SET_FIELD(header_digest);
979 	SET_FIELD(data_digest);
980 	SET_FIELD(disable_error_logging);
981 	SET_FIELD(transport_ack_timeout);
982 	SET_FIELD(admin_queue_size);
983 	SET_FIELD(fabrics_connect_timeout_us);
984 	SET_FIELD(disable_read_ana_log_page);
985 	SET_FIELD(disable_read_changed_ns_list_log_page);
986 	SET_FIELD_ARRAY(psk);
987 	SET_FIELD(tls_psk);
988 	SET_FIELD(dhchap_key);
989 	SET_FIELD(dhchap_ctrlr_key);
990 	SET_FIELD(dhchap_digests);
991 	SET_FIELD(dhchap_dhgroups);
992 
993 #undef FIELD_OK
994 #undef SET_FIELD
995 #undef SET_FIELD_ARRAY
996 }
997 
998 struct spdk_nvme_ctrlr *
999 spdk_nvme_connect(const struct spdk_nvme_transport_id *trid,
1000 		  const struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
1001 {
1002 	int rc;
1003 	struct spdk_nvme_ctrlr *ctrlr = NULL;
1004 	struct spdk_nvme_probe_ctx *probe_ctx;
1005 	struct spdk_nvme_ctrlr_opts *opts_local_p = NULL;
1006 	struct spdk_nvme_ctrlr_opts opts_local;
1007 	char hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
1008 
1009 	if (trid == NULL) {
1010 		SPDK_ERRLOG("No transport ID specified\n");
1011 		return NULL;
1012 	}
1013 
1014 	rc = nvme_driver_init();
1015 	if (rc != 0) {
1016 		return NULL;
1017 	}
1018 
1019 	nvme_get_default_hostnqn(hostnqn, sizeof(hostnqn));
1020 	if (opts) {
1021 		opts_local_p = &opts_local;
1022 		nvme_ctrlr_opts_init(opts_local_p, opts, opts_size);
1023 		memcpy(hostnqn, opts_local.hostnqn, sizeof(hostnqn));
1024 	}
1025 
1026 	probe_ctx = spdk_nvme_connect_async(trid, opts_local_p, NULL);
1027 	if (!probe_ctx) {
1028 		SPDK_ERRLOG("Create probe context failed\n");
1029 		return NULL;
1030 	}
1031 
1032 	rc = nvme_init_controllers(probe_ctx);
1033 	if (rc != 0) {
1034 		return NULL;
1035 	}
1036 
1037 	ctrlr = nvme_get_ctrlr_by_trid(trid, hostnqn);
1038 
1039 	return ctrlr;
1040 }
1041 
1042 void
1043 spdk_nvme_trid_populate_transport(struct spdk_nvme_transport_id *trid,
1044 				  enum spdk_nvme_transport_type trtype)
1045 {
1046 	const char *trstring;
1047 
1048 	trid->trtype = trtype;
1049 	switch (trtype) {
1050 	case SPDK_NVME_TRANSPORT_FC:
1051 		trstring = SPDK_NVME_TRANSPORT_NAME_FC;
1052 		break;
1053 	case SPDK_NVME_TRANSPORT_PCIE:
1054 		trstring = SPDK_NVME_TRANSPORT_NAME_PCIE;
1055 		break;
1056 	case SPDK_NVME_TRANSPORT_RDMA:
1057 		trstring = SPDK_NVME_TRANSPORT_NAME_RDMA;
1058 		break;
1059 	case SPDK_NVME_TRANSPORT_TCP:
1060 		trstring = SPDK_NVME_TRANSPORT_NAME_TCP;
1061 		break;
1062 	case SPDK_NVME_TRANSPORT_VFIOUSER:
1063 		trstring = SPDK_NVME_TRANSPORT_NAME_VFIOUSER;
1064 		break;
1065 	case SPDK_NVME_TRANSPORT_CUSTOM:
1066 		trstring = SPDK_NVME_TRANSPORT_NAME_CUSTOM;
1067 		break;
1068 	default:
1069 		SPDK_ERRLOG("no available transports\n");
1070 		assert(0);
1071 		return;
1072 	}
1073 	snprintf(trid->trstring, SPDK_NVMF_TRSTRING_MAX_LEN, "%s", trstring);
1074 }
1075 
1076 int
1077 spdk_nvme_transport_id_populate_trstring(struct spdk_nvme_transport_id *trid, const char *trstring)
1078 {
1079 	int i = 0;
1080 
1081 	if (trid == NULL || trstring == NULL) {
1082 		return -EINVAL;
1083 	}
1084 
1085 	/* Note: gcc-11 has some false positive -Wstringop-overread warnings with LTO builds if we
1086 	 * use strnlen here.  So do the trstring copy manually instead.  See GitHub issue #2391.
1087 	 */
1088 
1089 	/* cast official trstring to uppercase version of input. */
1090 	while (i < SPDK_NVMF_TRSTRING_MAX_LEN && trstring[i] != 0) {
1091 		trid->trstring[i] = toupper(trstring[i]);
1092 		i++;
1093 	}
1094 
1095 	if (trstring[i] != 0) {
1096 		return -EINVAL;
1097 	} else {
1098 		trid->trstring[i] = 0;
1099 		return 0;
1100 	}
1101 }
1102 
1103 int
1104 spdk_nvme_transport_id_parse_trtype(enum spdk_nvme_transport_type *trtype, const char *str)
1105 {
1106 	if (trtype == NULL || str == NULL) {
1107 		return -EINVAL;
1108 	}
1109 
1110 	if (strcasecmp(str, "PCIe") == 0) {
1111 		*trtype = SPDK_NVME_TRANSPORT_PCIE;
1112 	} else if (strcasecmp(str, "RDMA") == 0) {
1113 		*trtype = SPDK_NVME_TRANSPORT_RDMA;
1114 	} else if (strcasecmp(str, "FC") == 0) {
1115 		*trtype = SPDK_NVME_TRANSPORT_FC;
1116 	} else if (strcasecmp(str, "TCP") == 0) {
1117 		*trtype = SPDK_NVME_TRANSPORT_TCP;
1118 	} else if (strcasecmp(str, "VFIOUSER") == 0) {
1119 		*trtype = SPDK_NVME_TRANSPORT_VFIOUSER;
1120 	} else {
1121 		*trtype = SPDK_NVME_TRANSPORT_CUSTOM;
1122 	}
1123 	return 0;
1124 }
1125 
1126 const char *
1127 spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
1128 {
1129 	switch (trtype) {
1130 	case SPDK_NVME_TRANSPORT_PCIE:
1131 		return "PCIe";
1132 	case SPDK_NVME_TRANSPORT_RDMA:
1133 		return "RDMA";
1134 	case SPDK_NVME_TRANSPORT_FC:
1135 		return "FC";
1136 	case SPDK_NVME_TRANSPORT_TCP:
1137 		return "TCP";
1138 	case SPDK_NVME_TRANSPORT_VFIOUSER:
1139 		return "VFIOUSER";
1140 	case SPDK_NVME_TRANSPORT_CUSTOM:
1141 		return "CUSTOM";
1142 	default:
1143 		return NULL;
1144 	}
1145 }
1146 
1147 int
1148 spdk_nvme_transport_id_parse_adrfam(enum spdk_nvmf_adrfam *adrfam, const char *str)
1149 {
1150 	if (adrfam == NULL || str == NULL) {
1151 		return -EINVAL;
1152 	}
1153 
1154 	if (strcasecmp(str, "IPv4") == 0) {
1155 		*adrfam = SPDK_NVMF_ADRFAM_IPV4;
1156 	} else if (strcasecmp(str, "IPv6") == 0) {
1157 		*adrfam = SPDK_NVMF_ADRFAM_IPV6;
1158 	} else if (strcasecmp(str, "IB") == 0) {
1159 		*adrfam = SPDK_NVMF_ADRFAM_IB;
1160 	} else if (strcasecmp(str, "FC") == 0) {
1161 		*adrfam = SPDK_NVMF_ADRFAM_FC;
1162 	} else {
1163 		return -ENOENT;
1164 	}
1165 	return 0;
1166 }
1167 
1168 const char *
1169 spdk_nvme_transport_id_adrfam_str(enum spdk_nvmf_adrfam adrfam)
1170 {
1171 	switch (adrfam) {
1172 	case SPDK_NVMF_ADRFAM_IPV4:
1173 		return "IPv4";
1174 	case SPDK_NVMF_ADRFAM_IPV6:
1175 		return "IPv6";
1176 	case SPDK_NVMF_ADRFAM_IB:
1177 		return "IB";
1178 	case SPDK_NVMF_ADRFAM_FC:
1179 		return "FC";
1180 	default:
1181 		return NULL;
1182 	}
1183 }
1184 
1185 static size_t
1186 parse_next_key(const char **str, char *key, char *val, size_t key_buf_size, size_t val_buf_size)
1187 {
1188 
1189 	const char *sep, *sep1;
1190 	const char *whitespace = " \t\n";
1191 	size_t key_len, val_len;
1192 
1193 	*str += strspn(*str, whitespace);
1194 
1195 	sep = strchr(*str, ':');
1196 	if (!sep) {
1197 		sep = strchr(*str, '=');
1198 		if (!sep) {
1199 			SPDK_ERRLOG("Key without ':' or '=' separator\n");
1200 			return 0;
1201 		}
1202 	} else {
1203 		sep1 = strchr(*str, '=');
1204 		if ((sep1 != NULL) && (sep1 < sep)) {
1205 			sep = sep1;
1206 		}
1207 	}
1208 
1209 	key_len = sep - *str;
1210 	if (key_len >= key_buf_size) {
1211 		SPDK_ERRLOG("Key length %zu greater than maximum allowed %zu\n",
1212 			    key_len, key_buf_size - 1);
1213 		return 0;
1214 	}
1215 
1216 	memcpy(key, *str, key_len);
1217 	key[key_len] = '\0';
1218 
1219 	*str += key_len + 1; /* Skip key: */
1220 	val_len = strcspn(*str, whitespace);
1221 	if (val_len == 0) {
1222 		SPDK_ERRLOG("Key without value\n");
1223 		return 0;
1224 	}
1225 
1226 	if (val_len >= val_buf_size) {
1227 		SPDK_ERRLOG("Value length %zu greater than maximum allowed %zu\n",
1228 			    val_len, val_buf_size - 1);
1229 		return 0;
1230 	}
1231 
1232 	memcpy(val, *str, val_len);
1233 	val[val_len] = '\0';
1234 
1235 	*str += val_len;
1236 
1237 	return val_len;
1238 }
1239 
1240 int
1241 spdk_nvme_transport_id_parse(struct spdk_nvme_transport_id *trid, const char *str)
1242 {
1243 	size_t val_len;
1244 	char key[32];
1245 	char val[1024];
1246 
1247 	if (trid == NULL || str == NULL) {
1248 		return -EINVAL;
1249 	}
1250 
1251 	while (*str != '\0') {
1252 
1253 		val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
1254 
1255 		if (val_len == 0) {
1256 			SPDK_ERRLOG("Failed to parse transport ID\n");
1257 			return -EINVAL;
1258 		}
1259 
1260 		if (strcasecmp(key, "trtype") == 0) {
1261 			if (spdk_nvme_transport_id_populate_trstring(trid, val) != 0) {
1262 				SPDK_ERRLOG("invalid transport '%s'\n", val);
1263 				return -EINVAL;
1264 			}
1265 			if (spdk_nvme_transport_id_parse_trtype(&trid->trtype, val) != 0) {
1266 				SPDK_ERRLOG("Unknown trtype '%s'\n", val);
1267 				return -EINVAL;
1268 			}
1269 		} else if (strcasecmp(key, "adrfam") == 0) {
1270 			if (spdk_nvme_transport_id_parse_adrfam(&trid->adrfam, val) != 0) {
1271 				SPDK_ERRLOG("Unknown adrfam '%s'\n", val);
1272 				return -EINVAL;
1273 			}
1274 		} else if (strcasecmp(key, "traddr") == 0) {
1275 			if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
1276 				SPDK_ERRLOG("traddr length %zu greater than maximum allowed %u\n",
1277 					    val_len, SPDK_NVMF_TRADDR_MAX_LEN);
1278 				return -EINVAL;
1279 			}
1280 			memcpy(trid->traddr, val, val_len + 1);
1281 		} else if (strcasecmp(key, "trsvcid") == 0) {
1282 			if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
1283 				SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
1284 					    val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
1285 				return -EINVAL;
1286 			}
1287 			memcpy(trid->trsvcid, val, val_len + 1);
1288 		} else if (strcasecmp(key, "priority") == 0) {
1289 			if (val_len > SPDK_NVMF_PRIORITY_MAX_LEN) {
1290 				SPDK_ERRLOG("priority length %zu greater than maximum allowed %u\n",
1291 					    val_len, SPDK_NVMF_PRIORITY_MAX_LEN);
1292 				return -EINVAL;
1293 			}
1294 			trid->priority = spdk_strtol(val, 10);
1295 		} else if (strcasecmp(key, "subnqn") == 0) {
1296 			if (val_len > SPDK_NVMF_NQN_MAX_LEN) {
1297 				SPDK_ERRLOG("subnqn length %zu greater than maximum allowed %u\n",
1298 					    val_len, SPDK_NVMF_NQN_MAX_LEN);
1299 				return -EINVAL;
1300 			}
1301 			memcpy(trid->subnqn, val, val_len + 1);
1302 		} else if (strcasecmp(key, "hostaddr") == 0) {
1303 			continue;
1304 		} else if (strcasecmp(key, "hostsvcid") == 0) {
1305 			continue;
1306 		} else if (strcasecmp(key, "hostnqn") == 0) {
1307 			continue;
1308 		} else if (strcasecmp(key, "ns") == 0) {
1309 			/*
1310 			 * Special case.  The namespace id parameter may
1311 			 * optionally be passed in the transport id string
1312 			 * for an SPDK application (e.g. spdk_nvme_perf)
1313 			 * and additionally parsed therein to limit
1314 			 * targeting a specific namespace.  For this
1315 			 * scenario, just silently ignore this key
1316 			 * rather than letting it default to logging
1317 			 * it as an invalid key.
1318 			 */
1319 			continue;
1320 		} else if (strcasecmp(key, "alt_traddr") == 0) {
1321 			/*
1322 			 * Used by applications for enabling transport ID failover.
1323 			 * Please see the case above for more information on custom parameters.
1324 			 */
1325 			continue;
1326 		} else {
1327 			SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
1328 		}
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 int
1335 spdk_nvme_host_id_parse(struct spdk_nvme_host_id *hostid, const char *str)
1336 {
1337 
1338 	size_t key_size = 32;
1339 	size_t val_size = 1024;
1340 	size_t val_len;
1341 	char key[key_size];
1342 	char val[val_size];
1343 
1344 	if (hostid == NULL || str == NULL) {
1345 		return -EINVAL;
1346 	}
1347 
1348 	while (*str != '\0') {
1349 
1350 		val_len = parse_next_key(&str, key, val, key_size, val_size);
1351 
1352 		if (val_len == 0) {
1353 			SPDK_ERRLOG("Failed to parse host ID\n");
1354 			return val_len;
1355 		}
1356 
1357 		/* Ignore the rest of the options from the transport ID. */
1358 		if (strcasecmp(key, "trtype") == 0) {
1359 			continue;
1360 		} else if (strcasecmp(key, "adrfam") == 0) {
1361 			continue;
1362 		} else if (strcasecmp(key, "traddr") == 0) {
1363 			continue;
1364 		} else if (strcasecmp(key, "trsvcid") == 0) {
1365 			continue;
1366 		} else if (strcasecmp(key, "subnqn") == 0) {
1367 			continue;
1368 		} else if (strcasecmp(key, "priority") == 0) {
1369 			continue;
1370 		} else if (strcasecmp(key, "ns") == 0) {
1371 			continue;
1372 		} else if (strcasecmp(key, "hostaddr") == 0) {
1373 			if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
1374 				SPDK_ERRLOG("hostaddr length %zu greater than maximum allowed %u\n",
1375 					    val_len, SPDK_NVMF_TRADDR_MAX_LEN);
1376 				return -EINVAL;
1377 			}
1378 			memcpy(hostid->hostaddr, val, val_len + 1);
1379 
1380 		} else if (strcasecmp(key, "hostsvcid") == 0) {
1381 			if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
1382 				SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
1383 					    val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
1384 				return -EINVAL;
1385 			}
1386 			memcpy(hostid->hostsvcid, val, val_len + 1);
1387 		} else {
1388 			SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
1389 		}
1390 	}
1391 
1392 	return 0;
1393 }
1394 
1395 static int
1396 cmp_int(int a, int b)
1397 {
1398 	return a - b;
1399 }
1400 
1401 int
1402 spdk_nvme_transport_id_compare(const struct spdk_nvme_transport_id *trid1,
1403 			       const struct spdk_nvme_transport_id *trid2)
1404 {
1405 	int cmp;
1406 
1407 	if (trid1->trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
1408 		cmp = strcasecmp(trid1->trstring, trid2->trstring);
1409 	} else {
1410 		cmp = cmp_int(trid1->trtype, trid2->trtype);
1411 	}
1412 
1413 	if (cmp) {
1414 		return cmp;
1415 	}
1416 
1417 	if (trid1->trtype == SPDK_NVME_TRANSPORT_PCIE) {
1418 		struct spdk_pci_addr pci_addr1 = {};
1419 		struct spdk_pci_addr pci_addr2 = {};
1420 
1421 		/* Normalize PCI addresses before comparing */
1422 		if (spdk_pci_addr_parse(&pci_addr1, trid1->traddr) < 0 ||
1423 		    spdk_pci_addr_parse(&pci_addr2, trid2->traddr) < 0) {
1424 			return -1;
1425 		}
1426 
1427 		/* PCIe transport ID only uses trtype and traddr */
1428 		return spdk_pci_addr_compare(&pci_addr1, &pci_addr2);
1429 	}
1430 
1431 	cmp = strcasecmp(trid1->traddr, trid2->traddr);
1432 	if (cmp) {
1433 		return cmp;
1434 	}
1435 
1436 	cmp = cmp_int(trid1->adrfam, trid2->adrfam);
1437 	if (cmp) {
1438 		return cmp;
1439 	}
1440 
1441 	cmp = strcasecmp(trid1->trsvcid, trid2->trsvcid);
1442 	if (cmp) {
1443 		return cmp;
1444 	}
1445 
1446 	cmp = strcmp(trid1->subnqn, trid2->subnqn);
1447 	if (cmp) {
1448 		return cmp;
1449 	}
1450 
1451 	return 0;
1452 }
1453 
1454 int
1455 spdk_nvme_prchk_flags_parse(uint32_t *prchk_flags, const char *str)
1456 {
1457 	size_t val_len;
1458 	char key[32];
1459 	char val[1024];
1460 
1461 	if (prchk_flags == NULL || str == NULL) {
1462 		return -EINVAL;
1463 	}
1464 
1465 	while (*str != '\0') {
1466 		val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
1467 
1468 		if (val_len == 0) {
1469 			SPDK_ERRLOG("Failed to parse prchk\n");
1470 			return -EINVAL;
1471 		}
1472 
1473 		if (strcasecmp(key, "prchk") == 0) {
1474 			if (strcasestr(val, "reftag") != NULL) {
1475 				*prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_REFTAG;
1476 			}
1477 			if (strcasestr(val, "guard") != NULL) {
1478 				*prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_GUARD;
1479 			}
1480 		} else {
1481 			SPDK_ERRLOG("Unknown key '%s'\n", key);
1482 			return -EINVAL;
1483 		}
1484 	}
1485 
1486 	return 0;
1487 }
1488 
1489 const char *
1490 spdk_nvme_prchk_flags_str(uint32_t prchk_flags)
1491 {
1492 	if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) {
1493 		if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) {
1494 			return "prchk:reftag|guard";
1495 		} else {
1496 			return "prchk:reftag";
1497 		}
1498 	} else {
1499 		if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) {
1500 			return "prchk:guard";
1501 		} else {
1502 			return NULL;
1503 		}
1504 	}
1505 }
1506 
1507 struct spdk_nvme_probe_ctx *
1508 spdk_nvme_probe_async(const struct spdk_nvme_transport_id *trid,
1509 		      void *cb_ctx,
1510 		      spdk_nvme_probe_cb probe_cb,
1511 		      spdk_nvme_attach_cb attach_cb,
1512 		      spdk_nvme_remove_cb remove_cb)
1513 {
1514 	int rc;
1515 	struct spdk_nvme_probe_ctx *probe_ctx;
1516 
1517 	rc = nvme_driver_init();
1518 	if (rc != 0) {
1519 		return NULL;
1520 	}
1521 
1522 	probe_ctx = calloc(1, sizeof(*probe_ctx));
1523 	if (!probe_ctx) {
1524 		return NULL;
1525 	}
1526 
1527 	nvme_probe_ctx_init(probe_ctx, trid, NULL, cb_ctx, probe_cb, attach_cb, remove_cb);
1528 	rc = nvme_probe_internal(probe_ctx, false);
1529 	if (rc != 0) {
1530 		free(probe_ctx);
1531 		return NULL;
1532 	}
1533 
1534 	return probe_ctx;
1535 }
1536 
1537 int
1538 spdk_nvme_probe_poll_async(struct spdk_nvme_probe_ctx *probe_ctx)
1539 {
1540 	struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
1541 
1542 	if (!spdk_process_is_primary() && probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
1543 		free(probe_ctx);
1544 		return 0;
1545 	}
1546 
1547 	TAILQ_FOREACH_SAFE(ctrlr, &probe_ctx->init_ctrlrs, tailq, ctrlr_tmp) {
1548 		nvme_ctrlr_poll_internal(ctrlr, probe_ctx);
1549 	}
1550 
1551 	if (TAILQ_EMPTY(&probe_ctx->init_ctrlrs)) {
1552 		nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
1553 		g_spdk_nvme_driver->initialized = true;
1554 		nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
1555 		free(probe_ctx);
1556 		return 0;
1557 	}
1558 
1559 	return -EAGAIN;
1560 }
1561 
1562 struct spdk_nvme_probe_ctx *
1563 spdk_nvme_connect_async(const struct spdk_nvme_transport_id *trid,
1564 			const struct spdk_nvme_ctrlr_opts *opts,
1565 			spdk_nvme_attach_cb attach_cb)
1566 {
1567 	int rc;
1568 	spdk_nvme_probe_cb probe_cb = NULL;
1569 	struct spdk_nvme_probe_ctx *probe_ctx;
1570 
1571 	rc = nvme_driver_init();
1572 	if (rc != 0) {
1573 		return NULL;
1574 	}
1575 
1576 	probe_ctx = calloc(1, sizeof(*probe_ctx));
1577 	if (!probe_ctx) {
1578 		return NULL;
1579 	}
1580 
1581 	if (opts) {
1582 		probe_cb = nvme_connect_probe_cb;
1583 	}
1584 
1585 	nvme_probe_ctx_init(probe_ctx, trid, opts, (void *)opts, probe_cb, attach_cb, NULL);
1586 	rc = nvme_probe_internal(probe_ctx, true);
1587 	if (rc != 0) {
1588 		free(probe_ctx);
1589 		return NULL;
1590 	}
1591 
1592 	return probe_ctx;
1593 }
1594 
1595 int
1596 nvme_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service,
1597 		long int *port)
1598 {
1599 	struct addrinfo *res;
1600 	struct addrinfo hints;
1601 	int ret;
1602 
1603 	memset(&hints, 0, sizeof(hints));
1604 	hints.ai_family = family;
1605 	hints.ai_socktype = SOCK_STREAM;
1606 	hints.ai_protocol = 0;
1607 
1608 	if (addr == NULL || service == NULL) {
1609 		SPDK_ERRLOG("addr and service must both be non-NULL\n");
1610 		return -EINVAL;
1611 	}
1612 
1613 	*port = spdk_strtol(service, 10);
1614 	if (*port <= 0 || *port >= 65536) {
1615 		SPDK_ERRLOG("Invalid port: %s\n", service);
1616 		return -EINVAL;
1617 	}
1618 
1619 	ret = getaddrinfo(addr, service, &hints, &res);
1620 	if (ret) {
1621 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret);
1622 		return -(abs(ret));
1623 	}
1624 
1625 	if (res->ai_addrlen > sizeof(*sa)) {
1626 		SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen);
1627 		ret = -EINVAL;
1628 	} else {
1629 		memcpy(sa, res->ai_addr, res->ai_addrlen);
1630 	}
1631 
1632 	freeaddrinfo(res);
1633 	return ret;
1634 }
1635 
1636 int
1637 nvme_get_default_hostnqn(char *buf, int len)
1638 {
1639 	char uuid[SPDK_UUID_STRING_LEN];
1640 	int rc;
1641 
1642 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &g_spdk_nvme_driver->default_extended_host_id);
1643 	rc = snprintf(buf, len, "nqn.2014-08.org.nvmexpress:uuid:%s", uuid);
1644 	if (rc < 0 || rc >= len) {
1645 		return -EINVAL;
1646 	}
1647 
1648 	return 0;
1649 }
1650 
1651 SPDK_LOG_REGISTER_COMPONENT(nvme)
1652