xref: /spdk/lib/nvme/nvme.c (revision 83ba9086796471697a4975a58f60e2392bccd08c)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2015 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved.
4  */
5 
6 #include "spdk/config.h"
7 #include "spdk/nvmf_spec.h"
8 #include "spdk/string.h"
9 #include "spdk/env.h"
10 #include "nvme_internal.h"
11 #include "nvme_io_msg.h"
12 
13 #define SPDK_NVME_DRIVER_NAME "spdk_nvme_driver"
14 
15 struct nvme_driver	*g_spdk_nvme_driver;
16 pid_t			g_spdk_nvme_pid;
17 
18 /* gross timeout of 180 seconds in milliseconds */
19 static int g_nvme_driver_timeout_ms = 3 * 60 * 1000;
20 
21 /* Per-process attached controller list */
22 static TAILQ_HEAD(, spdk_nvme_ctrlr) g_nvme_attached_ctrlrs =
23 	TAILQ_HEAD_INITIALIZER(g_nvme_attached_ctrlrs);
24 
25 /* Returns true if ctrlr should be stored on the multi-process shared_attached_ctrlrs list */
26 static bool
27 nvme_ctrlr_shared(const struct spdk_nvme_ctrlr *ctrlr)
28 {
29 	return ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE;
30 }
31 
32 void
33 nvme_ctrlr_connected(struct spdk_nvme_probe_ctx *probe_ctx,
34 		     struct spdk_nvme_ctrlr *ctrlr)
35 {
36 	TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
37 }
38 
39 static void
40 nvme_ctrlr_detach_async_finish(struct spdk_nvme_ctrlr *ctrlr)
41 {
42 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
43 	if (nvme_ctrlr_shared(ctrlr)) {
44 		TAILQ_REMOVE(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
45 	} else {
46 		TAILQ_REMOVE(&g_nvme_attached_ctrlrs, ctrlr, tailq);
47 	}
48 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
49 }
50 
51 static int
52 nvme_ctrlr_detach_async(struct spdk_nvme_ctrlr *ctrlr,
53 			struct nvme_ctrlr_detach_ctx **_ctx)
54 {
55 	struct nvme_ctrlr_detach_ctx *ctx;
56 	int ref_count;
57 
58 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
59 
60 	ref_count = nvme_ctrlr_get_ref_count(ctrlr);
61 	assert(ref_count > 0);
62 
63 	if (ref_count == 1) {
64 		/* This is the last reference to the controller, so we need to
65 		 * allocate a context to destruct it.
66 		 */
67 		ctx = calloc(1, sizeof(*ctx));
68 		if (ctx == NULL) {
69 			nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
70 
71 			return -ENOMEM;
72 		}
73 		ctx->ctrlr = ctrlr;
74 		ctx->cb_fn = nvme_ctrlr_detach_async_finish;
75 
76 		nvme_ctrlr_proc_put_ref(ctrlr);
77 
78 		nvme_io_msg_ctrlr_detach(ctrlr);
79 
80 		nvme_ctrlr_destruct_async(ctrlr, ctx);
81 
82 		*_ctx = ctx;
83 	} else {
84 		nvme_ctrlr_proc_put_ref(ctrlr);
85 	}
86 
87 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
88 
89 	return 0;
90 }
91 
92 static int
93 nvme_ctrlr_detach_poll_async(struct nvme_ctrlr_detach_ctx *ctx)
94 {
95 	int rc;
96 
97 	rc = nvme_ctrlr_destruct_poll_async(ctx->ctrlr, ctx);
98 	if (rc == -EAGAIN) {
99 		return -EAGAIN;
100 	}
101 
102 	free(ctx);
103 
104 	return rc;
105 }
106 
107 int
108 spdk_nvme_detach(struct spdk_nvme_ctrlr *ctrlr)
109 {
110 	struct nvme_ctrlr_detach_ctx *ctx = NULL;
111 	int rc;
112 
113 	rc = nvme_ctrlr_detach_async(ctrlr, &ctx);
114 	if (rc != 0) {
115 		return rc;
116 	} else if (ctx == NULL) {
117 		/* ctrlr was detached from the caller process but any other process
118 		 * still attaches it.
119 		 */
120 		return 0;
121 	}
122 
123 	while (1) {
124 		rc = nvme_ctrlr_detach_poll_async(ctx);
125 		if (rc != -EAGAIN) {
126 			break;
127 		}
128 		nvme_delay(1000);
129 	}
130 
131 	return 0;
132 }
133 
134 int
135 spdk_nvme_detach_async(struct spdk_nvme_ctrlr *ctrlr,
136 		       struct spdk_nvme_detach_ctx **_detach_ctx)
137 {
138 	struct spdk_nvme_detach_ctx *detach_ctx;
139 	struct nvme_ctrlr_detach_ctx *ctx = NULL;
140 	int rc;
141 
142 	if (ctrlr == NULL || _detach_ctx == NULL) {
143 		return -EINVAL;
144 	}
145 
146 	/* Use a context header to poll detachment for multiple controllers.
147 	 * Allocate an new one if not allocated yet, or use the passed one otherwise.
148 	 */
149 	detach_ctx = *_detach_ctx;
150 	if (detach_ctx == NULL) {
151 		detach_ctx = calloc(1, sizeof(*detach_ctx));
152 		if (detach_ctx == NULL) {
153 			return -ENOMEM;
154 		}
155 		TAILQ_INIT(&detach_ctx->head);
156 	}
157 
158 	rc = nvme_ctrlr_detach_async(ctrlr, &ctx);
159 	if (rc != 0 || ctx == NULL) {
160 		/* If this detach failed and the context header is empty, it means we just
161 		 * allocated the header and need to free it before returning.
162 		 */
163 		if (TAILQ_EMPTY(&detach_ctx->head)) {
164 			free(detach_ctx);
165 		}
166 		return rc;
167 	}
168 
169 	/* Append a context for this detachment to the context header. */
170 	TAILQ_INSERT_TAIL(&detach_ctx->head, ctx, link);
171 
172 	*_detach_ctx = detach_ctx;
173 
174 	return 0;
175 }
176 
177 int
178 spdk_nvme_detach_poll_async(struct spdk_nvme_detach_ctx *detach_ctx)
179 {
180 	struct nvme_ctrlr_detach_ctx *ctx, *tmp_ctx;
181 	int rc;
182 
183 	if (detach_ctx == NULL) {
184 		return -EINVAL;
185 	}
186 
187 	TAILQ_FOREACH_SAFE(ctx, &detach_ctx->head, link, tmp_ctx) {
188 		TAILQ_REMOVE(&detach_ctx->head, ctx, link);
189 
190 		rc = nvme_ctrlr_detach_poll_async(ctx);
191 		if (rc == -EAGAIN) {
192 			/* If not -EAGAIN, ctx was freed by nvme_ctrlr_detach_poll_async(). */
193 			TAILQ_INSERT_HEAD(&detach_ctx->head, ctx, link);
194 		}
195 	}
196 
197 	if (!TAILQ_EMPTY(&detach_ctx->head)) {
198 		return -EAGAIN;
199 	}
200 
201 	free(detach_ctx);
202 	return 0;
203 }
204 
205 void
206 spdk_nvme_detach_poll(struct spdk_nvme_detach_ctx *detach_ctx)
207 {
208 	while (detach_ctx && spdk_nvme_detach_poll_async(detach_ctx) == -EAGAIN) {
209 		;
210 	}
211 }
212 
213 void
214 nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl)
215 {
216 	struct nvme_completion_poll_status	*status = arg;
217 
218 	if (status->timed_out) {
219 		/* There is no routine waiting for the completion of this request, free allocated memory */
220 		spdk_free(status->dma_data);
221 		free(status);
222 		return;
223 	}
224 
225 	/*
226 	 * Copy status into the argument passed by the caller, so that
227 	 *  the caller can check the status to determine if the
228 	 *  the request passed or failed.
229 	 */
230 	memcpy(&status->cpl, cpl, sizeof(*cpl));
231 	status->done = true;
232 }
233 
234 static void
235 dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
236 {
237 }
238 
239 int
240 nvme_wait_for_completion_robust_lock_timeout_poll(struct spdk_nvme_qpair *qpair,
241 		struct nvme_completion_poll_status *status,
242 		pthread_mutex_t *robust_mutex)
243 {
244 	int rc;
245 
246 	if (robust_mutex) {
247 		nvme_robust_mutex_lock(robust_mutex);
248 	}
249 
250 	if (qpair->poll_group) {
251 		rc = (int)spdk_nvme_poll_group_process_completions(qpair->poll_group->group, 0,
252 				dummy_disconnected_qpair_cb);
253 	} else {
254 		rc = spdk_nvme_qpair_process_completions(qpair, 0);
255 	}
256 
257 	if (robust_mutex) {
258 		nvme_robust_mutex_unlock(robust_mutex);
259 	}
260 
261 	if (rc < 0) {
262 		status->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
263 		status->cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
264 		goto error;
265 	}
266 
267 	if (!status->done && status->timeout_tsc && spdk_get_ticks() > status->timeout_tsc) {
268 		goto error;
269 	}
270 
271 	if (qpair->ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
272 		union spdk_nvme_csts_register csts = spdk_nvme_ctrlr_get_regs_csts(qpair->ctrlr);
273 		if (csts.raw == SPDK_NVME_INVALID_REGISTER_VALUE) {
274 			status->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
275 			status->cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
276 			goto error;
277 		}
278 	}
279 
280 	if (!status->done) {
281 		return -EAGAIN;
282 	} else if (spdk_nvme_cpl_is_error(&status->cpl)) {
283 		return -EIO;
284 	} else {
285 		return 0;
286 	}
287 error:
288 	/* Either transport error occurred or we've timed out.  Either way, if the response hasn't
289 	 * been received yet, mark the command as timed out, so the status gets freed when the
290 	 * command is completed or aborted.
291 	 */
292 	if (!status->done) {
293 		status->timed_out = true;
294 	}
295 
296 	return -ECANCELED;
297 }
298 
299 /**
300  * Poll qpair for completions until a command completes.
301  *
302  * \param qpair queue to poll
303  * \param status completion status. The user must fill this structure with zeroes before calling
304  * this function
305  * \param robust_mutex optional robust mutex to lock while polling qpair
306  * \param timeout_in_usecs optional timeout
307  *
308  * \return 0 if command completed without error,
309  * -EIO if command completed with error,
310  * -ECANCELED if command is not completed due to transport/device error or time expired
311  *
312  *  The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
313  *  and status as the callback argument.
314  */
315 int
316 nvme_wait_for_completion_robust_lock_timeout(
317 	struct spdk_nvme_qpair *qpair,
318 	struct nvme_completion_poll_status *status,
319 	pthread_mutex_t *robust_mutex,
320 	uint64_t timeout_in_usecs)
321 {
322 	int rc;
323 
324 	if (timeout_in_usecs) {
325 		status->timeout_tsc = spdk_get_ticks() + timeout_in_usecs *
326 				      spdk_get_ticks_hz() / SPDK_SEC_TO_USEC;
327 	} else {
328 		status->timeout_tsc = 0;
329 	}
330 
331 	status->cpl.status_raw = 0;
332 	do {
333 		rc = nvme_wait_for_completion_robust_lock_timeout_poll(qpair, status, robust_mutex);
334 	} while (rc == -EAGAIN);
335 
336 	return rc;
337 }
338 
339 /**
340  * Poll qpair for completions until a command completes.
341  *
342  * \param qpair queue to poll
343  * \param status completion status. The user must fill this structure with zeroes before calling
344  * this function
345  * \param robust_mutex optional robust mutex to lock while polling qpair
346  *
347  * \return 0 if command completed without error,
348  * -EIO if command completed with error,
349  * -ECANCELED if command is not completed due to transport/device error
350  *
351  * The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
352  * and status as the callback argument.
353  */
354 int
355 nvme_wait_for_completion_robust_lock(
356 	struct spdk_nvme_qpair *qpair,
357 	struct nvme_completion_poll_status *status,
358 	pthread_mutex_t *robust_mutex)
359 {
360 	return nvme_wait_for_completion_robust_lock_timeout(qpair, status, robust_mutex, 0);
361 }
362 
363 int
364 nvme_wait_for_completion(struct spdk_nvme_qpair *qpair,
365 			 struct nvme_completion_poll_status *status)
366 {
367 	return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, 0);
368 }
369 
370 /**
371  * Poll qpair for completions until a command completes.
372  *
373  * \param qpair queue to poll
374  * \param status completion status. The user must fill this structure with zeroes before calling
375  * this function
376  * \param timeout_in_usecs optional timeout
377  *
378  * \return 0 if command completed without error,
379  * -EIO if command completed with error,
380  * -ECANCELED if command is not completed due to transport/device error or time expired
381  *
382  * The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
383  * and status as the callback argument.
384  */
385 int
386 nvme_wait_for_completion_timeout(struct spdk_nvme_qpair *qpair,
387 				 struct nvme_completion_poll_status *status,
388 				 uint64_t timeout_in_usecs)
389 {
390 	return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, timeout_in_usecs);
391 }
392 
393 static void
394 nvme_user_copy_cmd_complete(void *arg, const struct spdk_nvme_cpl *cpl)
395 {
396 	struct nvme_request *req = arg;
397 	spdk_nvme_cmd_cb user_cb_fn;
398 	void *user_cb_arg;
399 	enum spdk_nvme_data_transfer xfer;
400 
401 	if (req->user_buffer && req->payload_size) {
402 		/* Copy back to the user buffer */
403 		assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
404 		xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc);
405 		if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
406 		    xfer == SPDK_NVME_DATA_BIDIRECTIONAL) {
407 			assert(req->pid == getpid());
408 			memcpy(req->user_buffer, req->payload.contig_or_cb_arg, req->payload_size);
409 		}
410 	}
411 
412 	user_cb_fn = req->user_cb_fn;
413 	user_cb_arg = req->user_cb_arg;
414 	nvme_cleanup_user_req(req);
415 
416 	/* Call the user's original callback now that the buffer has been copied */
417 	user_cb_fn(user_cb_arg, cpl);
418 
419 }
420 
421 /**
422  * Allocate a request as well as a DMA-capable buffer to copy to/from the user's buffer.
423  *
424  * This is intended for use in non-fast-path functions (admin commands, reservations, etc.)
425  * where the overhead of a copy is not a problem.
426  */
427 struct nvme_request *
428 nvme_allocate_request_user_copy(struct spdk_nvme_qpair *qpair,
429 				void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn,
430 				void *cb_arg, bool host_to_controller)
431 {
432 	struct nvme_request *req;
433 	void *dma_buffer = NULL;
434 
435 	if (buffer && payload_size) {
436 		dma_buffer = spdk_zmalloc(payload_size, 4096, NULL,
437 					  SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
438 		if (!dma_buffer) {
439 			return NULL;
440 		}
441 
442 		if (host_to_controller) {
443 			memcpy(dma_buffer, buffer, payload_size);
444 		}
445 	}
446 
447 	req = nvme_allocate_request_contig(qpair, dma_buffer, payload_size, nvme_user_copy_cmd_complete,
448 					   NULL);
449 	if (!req) {
450 		spdk_free(dma_buffer);
451 		return NULL;
452 	}
453 
454 	req->user_cb_fn = cb_fn;
455 	req->user_cb_arg = cb_arg;
456 	req->user_buffer = buffer;
457 	req->cb_arg = req;
458 
459 	return req;
460 }
461 
462 /**
463  * Check if a request has exceeded the controller timeout.
464  *
465  * \param req request to check for timeout.
466  * \param cid command ID for command submitted by req (will be passed to timeout_cb_fn)
467  * \param active_proc per-process data for the controller associated with req
468  * \param now_tick current time from spdk_get_ticks()
469  * \return 0 if requests submitted more recently than req should still be checked for timeouts, or
470  * 1 if requests newer than req need not be checked.
471  *
472  * The request's timeout callback will be called if needed; the caller is only responsible for
473  * calling this function on each outstanding request.
474  */
475 int
476 nvme_request_check_timeout(struct nvme_request *req, uint16_t cid,
477 			   struct spdk_nvme_ctrlr_process *active_proc,
478 			   uint64_t now_tick)
479 {
480 	struct spdk_nvme_qpair *qpair = req->qpair;
481 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
482 	uint64_t timeout_ticks = nvme_qpair_is_admin_queue(qpair) ?
483 				 active_proc->timeout_admin_ticks : active_proc->timeout_io_ticks;
484 
485 	assert(active_proc->timeout_cb_fn != NULL);
486 
487 	if (req->timed_out || req->submit_tick == 0) {
488 		return 0;
489 	}
490 
491 	if (req->pid != g_spdk_nvme_pid) {
492 		return 0;
493 	}
494 
495 	if (nvme_qpair_is_admin_queue(qpair) &&
496 	    req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
497 		return 0;
498 	}
499 
500 	if (req->submit_tick + timeout_ticks > now_tick) {
501 		return 1;
502 	}
503 
504 	req->timed_out = true;
505 
506 	/*
507 	 * We don't want to expose the admin queue to the user,
508 	 * so when we're timing out admin commands set the
509 	 * qpair to NULL.
510 	 */
511 	active_proc->timeout_cb_fn(active_proc->timeout_cb_arg, ctrlr,
512 				   nvme_qpair_is_admin_queue(qpair) ? NULL : qpair,
513 				   cid);
514 	return 0;
515 }
516 
517 int
518 nvme_robust_mutex_init_shared(pthread_mutex_t *mtx)
519 {
520 	int rc = 0;
521 
522 #ifdef __FreeBSD__
523 	pthread_mutex_init(mtx, NULL);
524 #else
525 	pthread_mutexattr_t attr;
526 
527 	if (pthread_mutexattr_init(&attr)) {
528 		return -1;
529 	}
530 	if (pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
531 	    pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
532 	    pthread_mutex_init(mtx, &attr)) {
533 		rc = -1;
534 	}
535 	pthread_mutexattr_destroy(&attr);
536 #endif
537 
538 	return rc;
539 }
540 
541 int
542 nvme_driver_init(void)
543 {
544 	static pthread_mutex_t g_init_mutex = PTHREAD_MUTEX_INITIALIZER;
545 	int ret = 0;
546 
547 	/* Use a special process-private mutex to ensure the global
548 	 * nvme driver object (g_spdk_nvme_driver) gets initialized by
549 	 * only one thread.  Once that object is established and its
550 	 * mutex is initialized, we can unlock this mutex and use that
551 	 * one instead.
552 	 */
553 	pthread_mutex_lock(&g_init_mutex);
554 
555 	/* Each process needs its own pid. */
556 	g_spdk_nvme_pid = getpid();
557 
558 	/*
559 	 * Only one thread from one process will do this driver init work.
560 	 * The primary process will reserve the shared memory and do the
561 	 *  initialization.
562 	 * The secondary process will lookup the existing reserved memory.
563 	 */
564 	if (spdk_process_is_primary()) {
565 		/* The unique named memzone already reserved. */
566 		if (g_spdk_nvme_driver != NULL) {
567 			pthread_mutex_unlock(&g_init_mutex);
568 			return 0;
569 		} else {
570 			g_spdk_nvme_driver = spdk_memzone_reserve(SPDK_NVME_DRIVER_NAME,
571 					     sizeof(struct nvme_driver), SPDK_ENV_NUMA_ID_ANY,
572 					     SPDK_MEMZONE_NO_IOVA_CONTIG);
573 		}
574 
575 		if (g_spdk_nvme_driver == NULL) {
576 			SPDK_ERRLOG("primary process failed to reserve memory\n");
577 			pthread_mutex_unlock(&g_init_mutex);
578 			return -1;
579 		}
580 	} else {
581 		g_spdk_nvme_driver = spdk_memzone_lookup(SPDK_NVME_DRIVER_NAME);
582 
583 		/* The unique named memzone already reserved by the primary process. */
584 		if (g_spdk_nvme_driver != NULL) {
585 			int ms_waited = 0;
586 
587 			/* Wait the nvme driver to get initialized. */
588 			while ((g_spdk_nvme_driver->initialized == false) &&
589 			       (ms_waited < g_nvme_driver_timeout_ms)) {
590 				ms_waited++;
591 				nvme_delay(1000); /* delay 1ms */
592 			}
593 			if (g_spdk_nvme_driver->initialized == false) {
594 				SPDK_ERRLOG("timeout waiting for primary process to init\n");
595 				pthread_mutex_unlock(&g_init_mutex);
596 				return -1;
597 			}
598 		} else {
599 			SPDK_ERRLOG("primary process is not started yet\n");
600 			pthread_mutex_unlock(&g_init_mutex);
601 			return -1;
602 		}
603 
604 		pthread_mutex_unlock(&g_init_mutex);
605 		return 0;
606 	}
607 
608 	/*
609 	 * At this moment, only one thread from the primary process will do
610 	 * the g_spdk_nvme_driver initialization
611 	 */
612 	assert(spdk_process_is_primary());
613 
614 	ret = nvme_robust_mutex_init_shared(&g_spdk_nvme_driver->lock);
615 	if (ret != 0) {
616 		SPDK_ERRLOG("failed to initialize mutex\n");
617 		spdk_memzone_free(SPDK_NVME_DRIVER_NAME);
618 		pthread_mutex_unlock(&g_init_mutex);
619 		return ret;
620 	}
621 
622 	/* The lock in the shared g_spdk_nvme_driver object is now ready to
623 	 * be used - so we can unlock the g_init_mutex here.
624 	 */
625 	pthread_mutex_unlock(&g_init_mutex);
626 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
627 
628 	g_spdk_nvme_driver->initialized = false;
629 	g_spdk_nvme_driver->hotplug_fd = spdk_pci_event_listen();
630 	if (g_spdk_nvme_driver->hotplug_fd < 0) {
631 		SPDK_DEBUGLOG(nvme, "Failed to open uevent netlink socket\n");
632 	}
633 
634 	TAILQ_INIT(&g_spdk_nvme_driver->shared_attached_ctrlrs);
635 
636 	spdk_uuid_generate(&g_spdk_nvme_driver->default_extended_host_id);
637 
638 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
639 
640 	return ret;
641 }
642 
643 /* This function must only be called while holding g_spdk_nvme_driver->lock */
644 int
645 nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid,
646 		 struct spdk_nvme_probe_ctx *probe_ctx, void *devhandle)
647 {
648 	struct spdk_nvme_ctrlr *ctrlr;
649 	struct spdk_nvme_ctrlr_opts opts;
650 
651 	assert(trid != NULL);
652 
653 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts));
654 
655 	if (!probe_ctx->probe_cb || probe_ctx->probe_cb(probe_ctx->cb_ctx, trid, &opts)) {
656 		ctrlr = nvme_get_ctrlr_by_trid_unsafe(trid, opts.hostnqn);
657 		if (ctrlr) {
658 			/* This ctrlr already exists. */
659 
660 			if (ctrlr->is_destructed) {
661 				/* This ctrlr is being destructed asynchronously. */
662 				SPDK_ERRLOG("NVMe controller for SSD: %s is being destructed\n",
663 					    trid->traddr);
664 				probe_ctx->attach_fail_cb(probe_ctx->cb_ctx, trid, -EBUSY);
665 				return -EBUSY;
666 			}
667 
668 			/* Increase the ref count before calling attach_cb() as the user may
669 			* call nvme_detach() immediately. */
670 			nvme_ctrlr_proc_get_ref(ctrlr);
671 
672 			if (probe_ctx->attach_cb) {
673 				nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
674 				probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
675 				nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
676 			}
677 			return 0;
678 		}
679 
680 		ctrlr = nvme_transport_ctrlr_construct(trid, &opts, devhandle);
681 		if (ctrlr == NULL) {
682 			SPDK_ERRLOG("Failed to construct NVMe controller for SSD: %s\n", trid->traddr);
683 			probe_ctx->attach_fail_cb(probe_ctx->cb_ctx, trid, -ENODEV);
684 			return -1;
685 		}
686 		ctrlr->remove_cb = probe_ctx->remove_cb;
687 		ctrlr->cb_ctx = probe_ctx->cb_ctx;
688 
689 		nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
690 		TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
691 		return 0;
692 	}
693 
694 	return 1;
695 }
696 
697 static void
698 nvme_ctrlr_poll_internal(struct spdk_nvme_ctrlr *ctrlr,
699 			 struct spdk_nvme_probe_ctx *probe_ctx)
700 {
701 	int rc = 0;
702 
703 	rc = nvme_ctrlr_process_init(ctrlr);
704 
705 	if (rc) {
706 		/* Controller failed to initialize. */
707 		TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
708 		SPDK_ERRLOG("Failed to initialize SSD: %s\n", ctrlr->trid.traddr);
709 		probe_ctx->attach_fail_cb(probe_ctx->cb_ctx, &ctrlr->trid, rc);
710 		nvme_ctrlr_lock(ctrlr);
711 		nvme_ctrlr_fail(ctrlr, false);
712 		nvme_ctrlr_unlock(ctrlr);
713 		nvme_ctrlr_destruct(ctrlr);
714 		return;
715 	}
716 
717 	if (ctrlr->state != NVME_CTRLR_STATE_READY) {
718 		return;
719 	}
720 
721 	STAILQ_INIT(&ctrlr->io_producers);
722 
723 	/*
724 	 * Controller has been initialized.
725 	 *  Move it to the attached_ctrlrs list.
726 	 */
727 	TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
728 
729 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
730 	if (nvme_ctrlr_shared(ctrlr)) {
731 		TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
732 	} else {
733 		TAILQ_INSERT_TAIL(&g_nvme_attached_ctrlrs, ctrlr, tailq);
734 	}
735 
736 	/*
737 	 * Increase the ref count before calling attach_cb() as the user may
738 	 * call nvme_detach() immediately.
739 	 */
740 	nvme_ctrlr_proc_get_ref(ctrlr);
741 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
742 
743 	if (probe_ctx->attach_cb) {
744 		probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
745 	}
746 }
747 
748 static int
749 nvme_init_controllers(struct spdk_nvme_probe_ctx *probe_ctx)
750 {
751 	int rc = 0;
752 
753 	while (true) {
754 		rc = spdk_nvme_probe_poll_async(probe_ctx);
755 		if (rc != -EAGAIN) {
756 			return rc;
757 		}
758 	}
759 
760 	return rc;
761 }
762 
763 /* This function must not be called while holding g_spdk_nvme_driver->lock */
764 static struct spdk_nvme_ctrlr *
765 nvme_get_ctrlr_by_trid(const struct spdk_nvme_transport_id *trid, const char *hostnqn)
766 {
767 	struct spdk_nvme_ctrlr *ctrlr;
768 
769 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
770 	ctrlr = nvme_get_ctrlr_by_trid_unsafe(trid, hostnqn);
771 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
772 
773 	return ctrlr;
774 }
775 
776 /* This function must be called while holding g_spdk_nvme_driver->lock */
777 struct spdk_nvme_ctrlr *
778 nvme_get_ctrlr_by_trid_unsafe(const struct spdk_nvme_transport_id *trid, const char *hostnqn)
779 {
780 	struct spdk_nvme_ctrlr *ctrlr;
781 
782 	/* Search per-process list */
783 	TAILQ_FOREACH(ctrlr, &g_nvme_attached_ctrlrs, tailq) {
784 		if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) != 0) {
785 			continue;
786 		}
787 		if (hostnqn && strcmp(ctrlr->opts.hostnqn, hostnqn) != 0) {
788 			continue;
789 		}
790 		return ctrlr;
791 	}
792 
793 	/* Search multi-process shared list */
794 	TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
795 		if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) != 0) {
796 			continue;
797 		}
798 		if (hostnqn && strcmp(ctrlr->opts.hostnqn, hostnqn) != 0) {
799 			continue;
800 		}
801 		return ctrlr;
802 	}
803 
804 	return NULL;
805 }
806 
807 /* This function must only be called while holding g_spdk_nvme_driver->lock */
808 static int
809 nvme_probe_internal(struct spdk_nvme_probe_ctx *probe_ctx,
810 		    bool direct_connect)
811 {
812 	int rc;
813 	struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
814 	const struct spdk_nvme_ctrlr_opts *opts = probe_ctx->opts;
815 
816 	if (strlen(probe_ctx->trid.trstring) == 0) {
817 		/* If user didn't provide trstring, derive it from trtype */
818 		spdk_nvme_trid_populate_transport(&probe_ctx->trid, probe_ctx->trid.trtype);
819 	}
820 
821 	if (!spdk_nvme_transport_available_by_name(probe_ctx->trid.trstring)) {
822 		SPDK_ERRLOG("NVMe trtype %u (%s) not available\n",
823 			    probe_ctx->trid.trtype, probe_ctx->trid.trstring);
824 		return -1;
825 	}
826 
827 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
828 
829 	rc = nvme_transport_ctrlr_scan(probe_ctx, direct_connect);
830 	if (rc != 0) {
831 		SPDK_ERRLOG("NVMe ctrlr scan failed\n");
832 		TAILQ_FOREACH_SAFE(ctrlr, &probe_ctx->init_ctrlrs, tailq, ctrlr_tmp) {
833 			TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
834 			probe_ctx->attach_fail_cb(probe_ctx->cb_ctx, &ctrlr->trid, -EFAULT);
835 			nvme_transport_ctrlr_destruct(ctrlr);
836 		}
837 		nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
838 		return -1;
839 	}
840 
841 	/*
842 	 * Probe controllers on the shared_attached_ctrlrs list
843 	 */
844 	if (!spdk_process_is_primary() && (probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE)) {
845 		TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
846 			/* Do not attach other ctrlrs if user specify a valid trid */
847 			if ((strlen(probe_ctx->trid.traddr) != 0) &&
848 			    (spdk_nvme_transport_id_compare(&probe_ctx->trid, &ctrlr->trid))) {
849 				continue;
850 			}
851 
852 			if (opts && strcmp(opts->hostnqn, ctrlr->opts.hostnqn) != 0) {
853 				continue;
854 			}
855 
856 			/* Do not attach if we failed to initialize it in this process */
857 			if (nvme_ctrlr_get_current_process(ctrlr) == NULL) {
858 				continue;
859 			}
860 
861 			nvme_ctrlr_proc_get_ref(ctrlr);
862 
863 			/*
864 			 * Unlock while calling attach_cb() so the user can call other functions
865 			 *  that may take the driver lock, like nvme_detach().
866 			 */
867 			if (probe_ctx->attach_cb) {
868 				nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
869 				probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
870 				nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
871 			}
872 		}
873 	}
874 
875 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
876 
877 	return 0;
878 }
879 
880 static void
881 nvme_dummy_attach_fail_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
882 			  int rc)
883 {
884 	SPDK_ERRLOG("Failed to attach nvme ctrlr: trtype=%s adrfam=%s traddr=%s trsvcid=%s "
885 		    "subnqn=%s, %s\n", spdk_nvme_transport_id_trtype_str(trid->trtype),
886 		    spdk_nvme_transport_id_adrfam_str(trid->adrfam), trid->traddr, trid->trsvcid,
887 		    trid->subnqn, spdk_strerror(-rc));
888 }
889 
890 static void
891 nvme_probe_ctx_init(struct spdk_nvme_probe_ctx *probe_ctx,
892 		    const struct spdk_nvme_transport_id *trid,
893 		    const struct spdk_nvme_ctrlr_opts *opts,
894 		    void *cb_ctx,
895 		    spdk_nvme_probe_cb probe_cb,
896 		    spdk_nvme_attach_cb attach_cb,
897 		    spdk_nvme_attach_fail_cb attach_fail_cb,
898 		    spdk_nvme_remove_cb remove_cb)
899 {
900 	probe_ctx->trid = *trid;
901 	probe_ctx->opts = opts;
902 	probe_ctx->cb_ctx = cb_ctx;
903 	probe_ctx->probe_cb = probe_cb;
904 	probe_ctx->attach_cb = attach_cb;
905 	if (attach_fail_cb != NULL) {
906 		probe_ctx->attach_fail_cb = attach_fail_cb;
907 	} else {
908 		probe_ctx->attach_fail_cb = nvme_dummy_attach_fail_cb;
909 	}
910 	probe_ctx->remove_cb = remove_cb;
911 	TAILQ_INIT(&probe_ctx->init_ctrlrs);
912 }
913 
914 int
915 spdk_nvme_probe(const struct spdk_nvme_transport_id *trid, void *cb_ctx,
916 		spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
917 		spdk_nvme_remove_cb remove_cb)
918 {
919 	return spdk_nvme_probe_ext(trid, cb_ctx, probe_cb, attach_cb, NULL, remove_cb);
920 }
921 
922 int
923 spdk_nvme_probe_ext(const struct spdk_nvme_transport_id *trid, void *cb_ctx,
924 		    spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
925 		    spdk_nvme_attach_fail_cb attach_fail_cb, spdk_nvme_remove_cb remove_cb)
926 {
927 	struct spdk_nvme_transport_id trid_pcie;
928 	struct spdk_nvme_probe_ctx *probe_ctx;
929 
930 	if (trid == NULL) {
931 		memset(&trid_pcie, 0, sizeof(trid_pcie));
932 		spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
933 		trid = &trid_pcie;
934 	}
935 
936 	probe_ctx = spdk_nvme_probe_async_ext(trid, cb_ctx, probe_cb,
937 					      attach_cb, attach_fail_cb, remove_cb);
938 	if (!probe_ctx) {
939 		SPDK_ERRLOG("Create probe context failed\n");
940 		return -1;
941 	}
942 
943 	/*
944 	 * Keep going even if one or more nvme_attach() calls failed,
945 	 *  but maintain the value of rc to signal errors when we return.
946 	 */
947 	return nvme_init_controllers(probe_ctx);
948 }
949 
950 static bool
951 nvme_connect_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
952 		      struct spdk_nvme_ctrlr_opts *opts)
953 {
954 	struct spdk_nvme_ctrlr_opts *requested_opts = cb_ctx;
955 
956 	assert(requested_opts);
957 	memcpy(opts, requested_opts, sizeof(*opts));
958 
959 	return true;
960 }
961 
962 static void
963 nvme_ctrlr_opts_init(struct spdk_nvme_ctrlr_opts *opts,
964 		     const struct spdk_nvme_ctrlr_opts *opts_user,
965 		     size_t opts_size_user)
966 {
967 	assert(opts);
968 	assert(opts_user);
969 
970 	spdk_nvme_ctrlr_get_default_ctrlr_opts(opts, opts_size_user);
971 
972 #define FIELD_OK(field) \
973 	offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= (opts->opts_size)
974 
975 #define SET_FIELD(field) \
976 	if (FIELD_OK(field)) { \
977 			opts->field = opts_user->field; \
978 	}
979 
980 #define SET_FIELD_ARRAY(field) \
981 	if (FIELD_OK(field)) { \
982 		memcpy(opts->field, opts_user->field, sizeof(opts_user->field)); \
983 	}
984 
985 	SET_FIELD(num_io_queues);
986 	SET_FIELD(use_cmb_sqs);
987 	SET_FIELD(no_shn_notification);
988 	SET_FIELD(arb_mechanism);
989 	SET_FIELD(arbitration_burst);
990 	SET_FIELD(low_priority_weight);
991 	SET_FIELD(medium_priority_weight);
992 	SET_FIELD(high_priority_weight);
993 	SET_FIELD(keep_alive_timeout_ms);
994 	SET_FIELD(transport_retry_count);
995 	SET_FIELD(io_queue_size);
996 	SET_FIELD_ARRAY(hostnqn);
997 	SET_FIELD(io_queue_requests);
998 	SET_FIELD_ARRAY(src_addr);
999 	SET_FIELD_ARRAY(src_svcid);
1000 	SET_FIELD_ARRAY(host_id);
1001 	SET_FIELD_ARRAY(extended_host_id);
1002 	SET_FIELD(command_set);
1003 	SET_FIELD(admin_timeout_ms);
1004 	SET_FIELD(header_digest);
1005 	SET_FIELD(data_digest);
1006 	SET_FIELD(disable_error_logging);
1007 	SET_FIELD(transport_ack_timeout);
1008 	SET_FIELD(admin_queue_size);
1009 	SET_FIELD(fabrics_connect_timeout_us);
1010 	SET_FIELD(disable_read_ana_log_page);
1011 	SET_FIELD(disable_read_changed_ns_list_log_page);
1012 	SET_FIELD(tls_psk);
1013 	SET_FIELD(dhchap_key);
1014 	SET_FIELD(dhchap_ctrlr_key);
1015 	SET_FIELD(dhchap_digests);
1016 	SET_FIELD(dhchap_dhgroups);
1017 
1018 #undef FIELD_OK
1019 #undef SET_FIELD
1020 #undef SET_FIELD_ARRAY
1021 }
1022 
1023 struct spdk_nvme_ctrlr *
1024 spdk_nvme_connect(const struct spdk_nvme_transport_id *trid,
1025 		  const struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
1026 {
1027 	int rc;
1028 	struct spdk_nvme_ctrlr *ctrlr = NULL;
1029 	struct spdk_nvme_probe_ctx *probe_ctx;
1030 	struct spdk_nvme_ctrlr_opts *opts_local_p = NULL;
1031 	struct spdk_nvme_ctrlr_opts opts_local;
1032 	char hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
1033 
1034 	if (trid == NULL) {
1035 		SPDK_ERRLOG("No transport ID specified\n");
1036 		return NULL;
1037 	}
1038 
1039 	rc = nvme_driver_init();
1040 	if (rc != 0) {
1041 		return NULL;
1042 	}
1043 
1044 	nvme_get_default_hostnqn(hostnqn, sizeof(hostnqn));
1045 	if (opts) {
1046 		opts_local_p = &opts_local;
1047 		nvme_ctrlr_opts_init(opts_local_p, opts, opts_size);
1048 		memcpy(hostnqn, opts_local.hostnqn, sizeof(hostnqn));
1049 	}
1050 
1051 	probe_ctx = spdk_nvme_connect_async(trid, opts_local_p, NULL);
1052 	if (!probe_ctx) {
1053 		SPDK_ERRLOG("Create probe context failed\n");
1054 		return NULL;
1055 	}
1056 
1057 	rc = nvme_init_controllers(probe_ctx);
1058 	if (rc != 0) {
1059 		return NULL;
1060 	}
1061 
1062 	ctrlr = nvme_get_ctrlr_by_trid(trid, hostnqn);
1063 
1064 	return ctrlr;
1065 }
1066 
1067 void
1068 spdk_nvme_trid_populate_transport(struct spdk_nvme_transport_id *trid,
1069 				  enum spdk_nvme_transport_type trtype)
1070 {
1071 	const char *trstring;
1072 
1073 	trid->trtype = trtype;
1074 	switch (trtype) {
1075 	case SPDK_NVME_TRANSPORT_FC:
1076 		trstring = SPDK_NVME_TRANSPORT_NAME_FC;
1077 		break;
1078 	case SPDK_NVME_TRANSPORT_PCIE:
1079 		trstring = SPDK_NVME_TRANSPORT_NAME_PCIE;
1080 		break;
1081 	case SPDK_NVME_TRANSPORT_RDMA:
1082 		trstring = SPDK_NVME_TRANSPORT_NAME_RDMA;
1083 		break;
1084 	case SPDK_NVME_TRANSPORT_TCP:
1085 		trstring = SPDK_NVME_TRANSPORT_NAME_TCP;
1086 		break;
1087 	case SPDK_NVME_TRANSPORT_VFIOUSER:
1088 		trstring = SPDK_NVME_TRANSPORT_NAME_VFIOUSER;
1089 		break;
1090 	case SPDK_NVME_TRANSPORT_CUSTOM:
1091 		trstring = SPDK_NVME_TRANSPORT_NAME_CUSTOM;
1092 		break;
1093 	default:
1094 		SPDK_ERRLOG("no available transports\n");
1095 		assert(0);
1096 		return;
1097 	}
1098 	snprintf(trid->trstring, SPDK_NVMF_TRSTRING_MAX_LEN, "%s", trstring);
1099 }
1100 
1101 int
1102 spdk_nvme_transport_id_populate_trstring(struct spdk_nvme_transport_id *trid, const char *trstring)
1103 {
1104 	int i = 0;
1105 
1106 	if (trid == NULL || trstring == NULL) {
1107 		return -EINVAL;
1108 	}
1109 
1110 	/* Note: gcc-11 has some false positive -Wstringop-overread warnings with LTO builds if we
1111 	 * use strnlen here.  So do the trstring copy manually instead.  See GitHub issue #2391.
1112 	 */
1113 
1114 	/* cast official trstring to uppercase version of input. */
1115 	while (i < SPDK_NVMF_TRSTRING_MAX_LEN && trstring[i] != 0) {
1116 		trid->trstring[i] = toupper(trstring[i]);
1117 		i++;
1118 	}
1119 
1120 	if (trstring[i] != 0) {
1121 		return -EINVAL;
1122 	} else {
1123 		trid->trstring[i] = 0;
1124 		return 0;
1125 	}
1126 }
1127 
1128 int
1129 spdk_nvme_transport_id_parse_trtype(enum spdk_nvme_transport_type *trtype, const char *str)
1130 {
1131 	if (trtype == NULL || str == NULL) {
1132 		return -EINVAL;
1133 	}
1134 
1135 	if (strcasecmp(str, "PCIe") == 0) {
1136 		*trtype = SPDK_NVME_TRANSPORT_PCIE;
1137 	} else if (strcasecmp(str, "RDMA") == 0) {
1138 		*trtype = SPDK_NVME_TRANSPORT_RDMA;
1139 	} else if (strcasecmp(str, "FC") == 0) {
1140 		*trtype = SPDK_NVME_TRANSPORT_FC;
1141 	} else if (strcasecmp(str, "TCP") == 0) {
1142 		*trtype = SPDK_NVME_TRANSPORT_TCP;
1143 	} else if (strcasecmp(str, "VFIOUSER") == 0) {
1144 		*trtype = SPDK_NVME_TRANSPORT_VFIOUSER;
1145 	} else {
1146 		*trtype = SPDK_NVME_TRANSPORT_CUSTOM;
1147 	}
1148 	return 0;
1149 }
1150 
1151 const char *
1152 spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
1153 {
1154 	switch (trtype) {
1155 	case SPDK_NVME_TRANSPORT_PCIE:
1156 		return "PCIe";
1157 	case SPDK_NVME_TRANSPORT_RDMA:
1158 		return "RDMA";
1159 	case SPDK_NVME_TRANSPORT_FC:
1160 		return "FC";
1161 	case SPDK_NVME_TRANSPORT_TCP:
1162 		return "TCP";
1163 	case SPDK_NVME_TRANSPORT_VFIOUSER:
1164 		return "VFIOUSER";
1165 	case SPDK_NVME_TRANSPORT_CUSTOM:
1166 		return "CUSTOM";
1167 	default:
1168 		return NULL;
1169 	}
1170 }
1171 
1172 int
1173 spdk_nvme_transport_id_parse_adrfam(enum spdk_nvmf_adrfam *adrfam, const char *str)
1174 {
1175 	if (adrfam == NULL || str == NULL) {
1176 		return -EINVAL;
1177 	}
1178 
1179 	if (strcasecmp(str, "IPv4") == 0) {
1180 		*adrfam = SPDK_NVMF_ADRFAM_IPV4;
1181 	} else if (strcasecmp(str, "IPv6") == 0) {
1182 		*adrfam = SPDK_NVMF_ADRFAM_IPV6;
1183 	} else if (strcasecmp(str, "IB") == 0) {
1184 		*adrfam = SPDK_NVMF_ADRFAM_IB;
1185 	} else if (strcasecmp(str, "FC") == 0) {
1186 		*adrfam = SPDK_NVMF_ADRFAM_FC;
1187 	} else {
1188 		return -ENOENT;
1189 	}
1190 	return 0;
1191 }
1192 
1193 const char *
1194 spdk_nvme_transport_id_adrfam_str(enum spdk_nvmf_adrfam adrfam)
1195 {
1196 	switch (adrfam) {
1197 	case SPDK_NVMF_ADRFAM_IPV4:
1198 		return "IPv4";
1199 	case SPDK_NVMF_ADRFAM_IPV6:
1200 		return "IPv6";
1201 	case SPDK_NVMF_ADRFAM_IB:
1202 		return "IB";
1203 	case SPDK_NVMF_ADRFAM_FC:
1204 		return "FC";
1205 	default:
1206 		return NULL;
1207 	}
1208 }
1209 
1210 static size_t
1211 parse_next_key(const char **str, char *key, char *val, size_t key_buf_size, size_t val_buf_size)
1212 {
1213 
1214 	const char *sep, *sep1;
1215 	const char *whitespace = " \t\n";
1216 	size_t key_len, val_len;
1217 
1218 	*str += strspn(*str, whitespace);
1219 
1220 	sep = strchr(*str, ':');
1221 	if (!sep) {
1222 		sep = strchr(*str, '=');
1223 		if (!sep) {
1224 			SPDK_ERRLOG("Key without ':' or '=' separator\n");
1225 			return 0;
1226 		}
1227 	} else {
1228 		sep1 = strchr(*str, '=');
1229 		if ((sep1 != NULL) && (sep1 < sep)) {
1230 			sep = sep1;
1231 		}
1232 	}
1233 
1234 	key_len = sep - *str;
1235 	if (key_len >= key_buf_size) {
1236 		SPDK_ERRLOG("Key length %zu greater than maximum allowed %zu\n",
1237 			    key_len, key_buf_size - 1);
1238 		return 0;
1239 	}
1240 
1241 	memcpy(key, *str, key_len);
1242 	key[key_len] = '\0';
1243 
1244 	*str += key_len + 1; /* Skip key: */
1245 	val_len = strcspn(*str, whitespace);
1246 	if (val_len == 0) {
1247 		SPDK_ERRLOG("Key without value\n");
1248 		return 0;
1249 	}
1250 
1251 	if (val_len >= val_buf_size) {
1252 		SPDK_ERRLOG("Value length %zu greater than maximum allowed %zu\n",
1253 			    val_len, val_buf_size - 1);
1254 		return 0;
1255 	}
1256 
1257 	memcpy(val, *str, val_len);
1258 	val[val_len] = '\0';
1259 
1260 	*str += val_len;
1261 
1262 	return val_len;
1263 }
1264 
1265 int
1266 spdk_nvme_transport_id_parse(struct spdk_nvme_transport_id *trid, const char *str)
1267 {
1268 	size_t val_len;
1269 	char key[32];
1270 	char val[1024];
1271 
1272 	if (trid == NULL || str == NULL) {
1273 		return -EINVAL;
1274 	}
1275 
1276 	while (*str != '\0') {
1277 
1278 		val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
1279 
1280 		if (val_len == 0) {
1281 			SPDK_ERRLOG("Failed to parse transport ID\n");
1282 			return -EINVAL;
1283 		}
1284 
1285 		if (strcasecmp(key, "trtype") == 0) {
1286 			if (spdk_nvme_transport_id_populate_trstring(trid, val) != 0) {
1287 				SPDK_ERRLOG("invalid transport '%s'\n", val);
1288 				return -EINVAL;
1289 			}
1290 			if (spdk_nvme_transport_id_parse_trtype(&trid->trtype, val) != 0) {
1291 				SPDK_ERRLOG("Unknown trtype '%s'\n", val);
1292 				return -EINVAL;
1293 			}
1294 		} else if (strcasecmp(key, "adrfam") == 0) {
1295 			if (spdk_nvme_transport_id_parse_adrfam(&trid->adrfam, val) != 0) {
1296 				SPDK_ERRLOG("Unknown adrfam '%s'\n", val);
1297 				return -EINVAL;
1298 			}
1299 		} else if (strcasecmp(key, "traddr") == 0) {
1300 			if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
1301 				SPDK_ERRLOG("traddr length %zu greater than maximum allowed %u\n",
1302 					    val_len, SPDK_NVMF_TRADDR_MAX_LEN);
1303 				return -EINVAL;
1304 			}
1305 			memcpy(trid->traddr, val, val_len + 1);
1306 		} else if (strcasecmp(key, "trsvcid") == 0) {
1307 			if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
1308 				SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
1309 					    val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
1310 				return -EINVAL;
1311 			}
1312 			memcpy(trid->trsvcid, val, val_len + 1);
1313 		} else if (strcasecmp(key, "priority") == 0) {
1314 			if (val_len > SPDK_NVMF_PRIORITY_MAX_LEN) {
1315 				SPDK_ERRLOG("priority length %zu greater than maximum allowed %u\n",
1316 					    val_len, SPDK_NVMF_PRIORITY_MAX_LEN);
1317 				return -EINVAL;
1318 			}
1319 			trid->priority = spdk_strtol(val, 10);
1320 		} else if (strcasecmp(key, "subnqn") == 0) {
1321 			if (val_len > SPDK_NVMF_NQN_MAX_LEN) {
1322 				SPDK_ERRLOG("subnqn length %zu greater than maximum allowed %u\n",
1323 					    val_len, SPDK_NVMF_NQN_MAX_LEN);
1324 				return -EINVAL;
1325 			}
1326 			memcpy(trid->subnqn, val, val_len + 1);
1327 		} else if (strcasecmp(key, "hostaddr") == 0) {
1328 			continue;
1329 		} else if (strcasecmp(key, "hostsvcid") == 0) {
1330 			continue;
1331 		} else if (strcasecmp(key, "hostnqn") == 0) {
1332 			continue;
1333 		} else if (strcasecmp(key, "ns") == 0) {
1334 			/*
1335 			 * Special case.  The namespace id parameter may
1336 			 * optionally be passed in the transport id string
1337 			 * for an SPDK application (e.g. spdk_nvme_perf)
1338 			 * and additionally parsed therein to limit
1339 			 * targeting a specific namespace.  For this
1340 			 * scenario, just silently ignore this key
1341 			 * rather than letting it default to logging
1342 			 * it as an invalid key.
1343 			 */
1344 			continue;
1345 		} else if (strcasecmp(key, "alt_traddr") == 0) {
1346 			/*
1347 			 * Used by applications for enabling transport ID failover.
1348 			 * Please see the case above for more information on custom parameters.
1349 			 */
1350 			continue;
1351 		} else {
1352 			SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
1353 		}
1354 	}
1355 
1356 	return 0;
1357 }
1358 
1359 int
1360 spdk_nvme_host_id_parse(struct spdk_nvme_host_id *hostid, const char *str)
1361 {
1362 
1363 	size_t key_size = 32;
1364 	size_t val_size = 1024;
1365 	size_t val_len;
1366 	char key[key_size];
1367 	char val[val_size];
1368 
1369 	if (hostid == NULL || str == NULL) {
1370 		return -EINVAL;
1371 	}
1372 
1373 	while (*str != '\0') {
1374 
1375 		val_len = parse_next_key(&str, key, val, key_size, val_size);
1376 
1377 		if (val_len == 0) {
1378 			SPDK_ERRLOG("Failed to parse host ID\n");
1379 			return val_len;
1380 		}
1381 
1382 		/* Ignore the rest of the options from the transport ID. */
1383 		if (strcasecmp(key, "trtype") == 0) {
1384 			continue;
1385 		} else if (strcasecmp(key, "adrfam") == 0) {
1386 			continue;
1387 		} else if (strcasecmp(key, "traddr") == 0) {
1388 			continue;
1389 		} else if (strcasecmp(key, "trsvcid") == 0) {
1390 			continue;
1391 		} else if (strcasecmp(key, "subnqn") == 0) {
1392 			continue;
1393 		} else if (strcasecmp(key, "priority") == 0) {
1394 			continue;
1395 		} else if (strcasecmp(key, "ns") == 0) {
1396 			continue;
1397 		} else if (strcasecmp(key, "hostaddr") == 0) {
1398 			if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
1399 				SPDK_ERRLOG("hostaddr length %zu greater than maximum allowed %u\n",
1400 					    val_len, SPDK_NVMF_TRADDR_MAX_LEN);
1401 				return -EINVAL;
1402 			}
1403 			memcpy(hostid->hostaddr, val, val_len + 1);
1404 
1405 		} else if (strcasecmp(key, "hostsvcid") == 0) {
1406 			if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
1407 				SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
1408 					    val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
1409 				return -EINVAL;
1410 			}
1411 			memcpy(hostid->hostsvcid, val, val_len + 1);
1412 		} else {
1413 			SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
1414 		}
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 static int
1421 cmp_int(int a, int b)
1422 {
1423 	return a - b;
1424 }
1425 
1426 int
1427 spdk_nvme_transport_id_compare(const struct spdk_nvme_transport_id *trid1,
1428 			       const struct spdk_nvme_transport_id *trid2)
1429 {
1430 	int cmp;
1431 
1432 	if (trid1->trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
1433 		cmp = strcasecmp(trid1->trstring, trid2->trstring);
1434 	} else {
1435 		cmp = cmp_int(trid1->trtype, trid2->trtype);
1436 	}
1437 
1438 	if (cmp) {
1439 		return cmp;
1440 	}
1441 
1442 	if (trid1->trtype == SPDK_NVME_TRANSPORT_PCIE) {
1443 		struct spdk_pci_addr pci_addr1 = {};
1444 		struct spdk_pci_addr pci_addr2 = {};
1445 
1446 		/* Normalize PCI addresses before comparing */
1447 		if (spdk_pci_addr_parse(&pci_addr1, trid1->traddr) < 0 ||
1448 		    spdk_pci_addr_parse(&pci_addr2, trid2->traddr) < 0) {
1449 			return -1;
1450 		}
1451 
1452 		/* PCIe transport ID only uses trtype and traddr */
1453 		return spdk_pci_addr_compare(&pci_addr1, &pci_addr2);
1454 	}
1455 
1456 	cmp = strcasecmp(trid1->traddr, trid2->traddr);
1457 	if (cmp) {
1458 		return cmp;
1459 	}
1460 
1461 	cmp = cmp_int(trid1->adrfam, trid2->adrfam);
1462 	if (cmp) {
1463 		return cmp;
1464 	}
1465 
1466 	cmp = strcasecmp(trid1->trsvcid, trid2->trsvcid);
1467 	if (cmp) {
1468 		return cmp;
1469 	}
1470 
1471 	cmp = strcmp(trid1->subnqn, trid2->subnqn);
1472 	if (cmp) {
1473 		return cmp;
1474 	}
1475 
1476 	return 0;
1477 }
1478 
1479 int
1480 spdk_nvme_prchk_flags_parse(uint32_t *prchk_flags, const char *str)
1481 {
1482 	size_t val_len;
1483 	char key[32];
1484 	char val[1024];
1485 
1486 	if (prchk_flags == NULL || str == NULL) {
1487 		return -EINVAL;
1488 	}
1489 
1490 	while (*str != '\0') {
1491 		val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
1492 
1493 		if (val_len == 0) {
1494 			SPDK_ERRLOG("Failed to parse prchk\n");
1495 			return -EINVAL;
1496 		}
1497 
1498 		if (strcasecmp(key, "prchk") == 0) {
1499 			if (strcasestr(val, "reftag") != NULL) {
1500 				*prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_REFTAG;
1501 			}
1502 			if (strcasestr(val, "guard") != NULL) {
1503 				*prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_GUARD;
1504 			}
1505 		} else {
1506 			SPDK_ERRLOG("Unknown key '%s'\n", key);
1507 			return -EINVAL;
1508 		}
1509 	}
1510 
1511 	return 0;
1512 }
1513 
1514 const char *
1515 spdk_nvme_prchk_flags_str(uint32_t prchk_flags)
1516 {
1517 	if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) {
1518 		if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) {
1519 			return "prchk:reftag|guard";
1520 		} else {
1521 			return "prchk:reftag";
1522 		}
1523 	} else {
1524 		if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) {
1525 			return "prchk:guard";
1526 		} else {
1527 			return NULL;
1528 		}
1529 	}
1530 }
1531 
1532 int
1533 spdk_nvme_scan_attached(const struct spdk_nvme_transport_id *trid)
1534 {
1535 	int rc;
1536 	struct spdk_nvme_probe_ctx *probe_ctx;
1537 
1538 	rc = nvme_driver_init();
1539 	if (rc != 0) {
1540 		return rc;
1541 	}
1542 
1543 	probe_ctx = calloc(1, sizeof(*probe_ctx));
1544 	if (!probe_ctx) {
1545 		return -ENOMEM;
1546 	}
1547 
1548 	nvme_probe_ctx_init(probe_ctx, trid, NULL, NULL, NULL, NULL, NULL, NULL);
1549 
1550 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
1551 	rc = nvme_transport_ctrlr_scan_attached(probe_ctx);
1552 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
1553 	free(probe_ctx);
1554 
1555 	return rc < 0 ? rc : 0;
1556 }
1557 
1558 struct spdk_nvme_probe_ctx *
1559 spdk_nvme_probe_async(const struct spdk_nvme_transport_id *trid,
1560 		      void *cb_ctx,
1561 		      spdk_nvme_probe_cb probe_cb,
1562 		      spdk_nvme_attach_cb attach_cb,
1563 		      spdk_nvme_remove_cb remove_cb)
1564 {
1565 	return spdk_nvme_probe_async_ext(trid, cb_ctx, probe_cb, attach_cb, NULL, remove_cb);
1566 }
1567 
1568 struct spdk_nvme_probe_ctx *
1569 spdk_nvme_probe_async_ext(const struct spdk_nvme_transport_id *trid,
1570 			  void *cb_ctx,
1571 			  spdk_nvme_probe_cb probe_cb,
1572 			  spdk_nvme_attach_cb attach_cb,
1573 			  spdk_nvme_attach_fail_cb attach_fail_cb,
1574 			  spdk_nvme_remove_cb remove_cb)
1575 {
1576 	int rc;
1577 	struct spdk_nvme_probe_ctx *probe_ctx;
1578 
1579 	rc = nvme_driver_init();
1580 	if (rc != 0) {
1581 		return NULL;
1582 	}
1583 
1584 	probe_ctx = calloc(1, sizeof(*probe_ctx));
1585 	if (!probe_ctx) {
1586 		return NULL;
1587 	}
1588 
1589 	nvme_probe_ctx_init(probe_ctx, trid, NULL, cb_ctx, probe_cb, attach_cb, attach_fail_cb,
1590 			    remove_cb);
1591 	rc = nvme_probe_internal(probe_ctx, false);
1592 	if (rc != 0) {
1593 		free(probe_ctx);
1594 		return NULL;
1595 	}
1596 
1597 	return probe_ctx;
1598 }
1599 
1600 int
1601 spdk_nvme_probe_poll_async(struct spdk_nvme_probe_ctx *probe_ctx)
1602 {
1603 	struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
1604 
1605 	if (!spdk_process_is_primary() && probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
1606 		free(probe_ctx);
1607 		return 0;
1608 	}
1609 
1610 	TAILQ_FOREACH_SAFE(ctrlr, &probe_ctx->init_ctrlrs, tailq, ctrlr_tmp) {
1611 		nvme_ctrlr_poll_internal(ctrlr, probe_ctx);
1612 	}
1613 
1614 	if (TAILQ_EMPTY(&probe_ctx->init_ctrlrs)) {
1615 		nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
1616 		g_spdk_nvme_driver->initialized = true;
1617 		nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
1618 		free(probe_ctx);
1619 		return 0;
1620 	}
1621 
1622 	return -EAGAIN;
1623 }
1624 
1625 struct spdk_nvme_probe_ctx *
1626 spdk_nvme_connect_async(const struct spdk_nvme_transport_id *trid,
1627 			const struct spdk_nvme_ctrlr_opts *opts,
1628 			spdk_nvme_attach_cb attach_cb)
1629 {
1630 	int rc;
1631 	spdk_nvme_probe_cb probe_cb = NULL;
1632 	struct spdk_nvme_probe_ctx *probe_ctx;
1633 
1634 	rc = nvme_driver_init();
1635 	if (rc != 0) {
1636 		return NULL;
1637 	}
1638 
1639 	probe_ctx = calloc(1, sizeof(*probe_ctx));
1640 	if (!probe_ctx) {
1641 		return NULL;
1642 	}
1643 
1644 	if (opts) {
1645 		probe_cb = nvme_connect_probe_cb;
1646 	}
1647 
1648 	nvme_probe_ctx_init(probe_ctx, trid, opts, (void *)opts, probe_cb, attach_cb, NULL, NULL);
1649 	rc = nvme_probe_internal(probe_ctx, true);
1650 	if (rc != 0) {
1651 		free(probe_ctx);
1652 		return NULL;
1653 	}
1654 
1655 	return probe_ctx;
1656 }
1657 
1658 int
1659 nvme_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service,
1660 		long int *port)
1661 {
1662 	struct addrinfo *res;
1663 	struct addrinfo hints;
1664 	int ret;
1665 
1666 	memset(&hints, 0, sizeof(hints));
1667 	hints.ai_family = family;
1668 	hints.ai_socktype = SOCK_STREAM;
1669 	hints.ai_protocol = 0;
1670 
1671 	if (service != NULL) {
1672 		*port = spdk_strtol(service, 10);
1673 		if (*port <= 0 || *port >= 65536) {
1674 			SPDK_ERRLOG("Invalid port: %s\n", service);
1675 			return -EINVAL;
1676 		}
1677 	}
1678 
1679 	ret = getaddrinfo(addr, service, &hints, &res);
1680 	if (ret) {
1681 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret);
1682 		return -(abs(ret));
1683 	}
1684 
1685 	if (res->ai_addrlen > sizeof(*sa)) {
1686 		SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen);
1687 		ret = -EINVAL;
1688 	} else {
1689 		memcpy(sa, res->ai_addr, res->ai_addrlen);
1690 	}
1691 
1692 	freeaddrinfo(res);
1693 	return ret;
1694 }
1695 
1696 int
1697 nvme_get_default_hostnqn(char *buf, int len)
1698 {
1699 	char uuid[SPDK_UUID_STRING_LEN];
1700 	int rc;
1701 
1702 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &g_spdk_nvme_driver->default_extended_host_id);
1703 	rc = snprintf(buf, len, "nqn.2014-08.org.nvmexpress:uuid:%s", uuid);
1704 	if (rc < 0 || rc >= len) {
1705 		return -EINVAL;
1706 	}
1707 
1708 	return 0;
1709 }
1710 
1711 SPDK_LOG_REGISTER_COMPONENT(nvme)
1712